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University of Banja Luka

Banja Luka

Bosnia and Herzegovina

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Remote Sensing (ISSN 2072-4292) (available at: https://www.mdpi.com/journal/remotesensing/

special issues/V6D07666X5).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0573-0 (Hbk)

ISBN 978-3-7258-0574-7 (PDF)

doi.org/10.3390/books978-3-7258-0574-7

Cover image courtesy of Miro Govedarica, Flor Álvarez-Taboada, and Gordana Jakovljević
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Gordana Jakovljevic, Ph.D., is an Assistant Professor at the University of Banja Luka, Bosnia

and Herzegovina. Her practical and theoretical research interests lie in the fields of remote sensing,

deep learning, and environmental protection, especially in water management. The primary aim

of Gordana’s research is to develop a standardized, clearly defined methodology for the automated

processing of remote sensing data in real or near-real time to increase the usability of remote sensing

data in environmental monitoring and decision making. Additionally, her interests include the

development of service-oriented GIS, 2D and 3D visualization, and BIM. She is a member of the

FIG Task Force “Climate Compass Task Force”, FIG Commission 4 and FIG 4.3 working group

(mapping plastic).

vii





Preface

Aquatic systems have high natural and economic value. The continuous increase in the human

population, urbanization, and dramatic changes in climate impact the structure of the freshwater

ecosystem and its chemical and physical characteristics. Due to this, the comprehensive monitoring of

water bodies is needed. To address these complex challenges, there is growing interest in using remote

sensing technologies and artificial intelligence.

This Special Issues reprint is dedicated to enhancing the leverage of integrating remote sensing

data, in situ data, and artificial intelligence in inland water monitoring. It explores the application

of cutting-edge technologies such as artificial neural networks and data-driven algorithms to

provide information to stakeholders and decision-makers promptly. This Special Issue addresses

essential questions in water monitoring, offering the tools and methodologies for a comprehensive

understanding of the current status and changes over time as well as identification of the pressures

on the local, regional, and global scales. The main goal is to emphasize the potential of integrating

remote sensing data and artificial intelligence for sustainable water management, as well as fostering

knowledge exchange and innovative research for effective water protection.

Miro Govedarica, Flor Álvarez-Taboada, and Gordana Jakovljević

Editors
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Abstract: The advancement of multi-source Earth observation technology has led to a substantial
body of literature on inland water monitoring. This has resulted in the emergence of a distinct
interdisciplinary field encompassing the application of multi-source Earth observation techniques in
inland water monitoring. Despite this growth, few systematic reviews of this field exist. Therefore,
in this paper, we offer a comprehensive analysis based on 30,212 publications spanning the years
1990 to 2022, providing valuable insights. We collected and analyzed fundamental information such
as publication year, country, affiliation, journal, and author details. Through co-occurrence analysis,
we identified country and author partnerships, while co-citation analysis revealed the influence of
journals, authors, and documents. We employed keywords to explore the evolution of hydrological
phenomena and study areas, using burst analysis to predict trends and frontiers. We discovered
exponential growth in this field with a closer integration of hydrological phenomena and Earth
observation techniques. The research focus has shifted from large glaciers to encompass large river
basins and the Tibetan Plateau. Long-term research attention has been dedicated to optical properties,
sea level, and satellite gravity. The adoption of automatic image recognition and processing, enabled
by deep learning and artificial intelligence, has opened new interdisciplinary avenues. The results
of the study emphasize the significance of long-term, stable, and accurate global observation and
monitoring of inland water, particularly in the context of cloud computing and big data.

Keywords: inland water; multi-source satellite observation technology; scientometrics; CiteSpace

1. Introduction

Inland water refers to water resources including surface water such as ice and snow,
rivers, lakes, and groundwater. Changes in inland water reflect the comprehensive impact
of natural factors such as regional precipitation, runoff, evapotranspiration, and human
activities, as well as important factors affecting the global water cycle [1,2]. In recent
years, benefiting from the development of remote sensing technology and improvements
in computer and cloud computing capabilities, multi-source satellite Earth observation
technology has achieved unprecedented success in inland water monitoring [3]. Extensive
regional and global studies have generated valuable insights for understanding water cycle
processes and guiding water resource management decisions.

Satellite technology has become widely utilized for monitoring changes in inland
water. The Gravity Recovery and Climate Experiment (GRACE) has been applied to
studying mass migration and calculating terrestrial water storage [4–7]. Satellite altimetry

Remote Sens. 2023, 15, 3945. https://doi.org/10.3390/rs15163945 https://www.mdpi.com/journal/remotesensing
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technology is used for monitoring global sea levels, lake levels, and glacier elevations [8,9].
Remote sensing imagery is employed for extracting information on surface water [10,11].
Some scholars have analyzed the research results of satellite technology in the field of
inland water monitoring by reading a large number of studies. This traditional review
method often requires a long time to read the literature, and the accuracy of the analysis
is highly dependent on the author’s experience. Moreover, these articles often only cover
a single research direction, which can only provide a macroscopic qualitative description
and reveal certain regularities and conclusions. Therefore, traditional literature reviews
make it difficult to quantitatively and systematically reveal the development process, and
the conclusions lack objectivity [12,13].

The scientific knowledge graph, a method used in scientometrics and information met-
rics, is capable of uncovering the origin and development patterns of knowledge. It visually
represents the structural relationships and evolution of knowledge in related fields [14]. For
instance, Yang et al. used scientometric methods to summarize 50 years of satellite altimetry
technology research and quantitatively analyze the relationship between technological
progress and research trends, offering a clear explanation of the overall development and
future directions of satellite altimetry [15]. Similarly, Xu et al. conducted a bibliometric
analysis of 998 relevant studies from the Web of Science core collection, constructing a
scientific knowledge graph to reveal the future development trends of the normalized
difference vegetation index (NDVI) [16]. The knowledge graph they constructed enhances
the intuitive and concrete description, benefiting both researchers with limited experience
and readers seeking a quick understanding of a specific field.

Therefore, we employed CiteSpace to quantitatively analyze the literature regard-
ing multi-source satellite Earth observation technology in inland water monitoring. The
main work of this paper includes (1) statistics and trends of the number of publications
based on the dataset; (2) statistics on the quantity of basic information in publications;
(3) highly cooperative countries and author groups; (4) highly co-cited journals, authors,
and literature; (5) clustering and burst analysis based on keyword co-occurrence; and
(6) knowledge extraction based on feature words. In this paper, we summarize the existing
literature, systematically reveal the development trends and the law of change in this field,
and provide guidance and references for further research.

2. Materials and Methods

2.1. Data Collection

The search topic in the Web of Science core collection was set as TS = (RS OR Remote
Sensing OR Satellite Altimetry OR Gravity OR GRACE) AND (River OR Fluvial OR Lake
OR Glaciers OR Ice OR Snow OR Wetland OR Groundwater OR Swamp OR Marsh OR
Estuary OR Bayou). A total of 30,212 documents published between 1960 and 2022 were
refined, including articles and review articles. Table 1 presents the basic information of the
dataset, which includes 87,035 authors from 8297 different institutions and 1919 journals in
183 countries and regions. Among the 30,212 articles, the total numbers of citations and
quotes at the time of data collection were recorded. On average, each article cited around
50 other articles, and each article was cited by an average of 26–27 articles.

Table 1. Basic information of the Web of Science (WOS) core collection dataset.

Type Value/Number

Documents 30,212
Authors 87,035

Countries/Regions 183
Institutions 8297

Sources 1919
Average Times Citing per Item 49.62
Average Times Cited per Item 27.31
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2.2. Scientometric Analysis

Scientometric analysis of literature is a method of literature analysis that uses bib-
liometric principles to analyze relevant literature. It involves using mathematical and
statistical methods to study the distribution structure, quantitative relationships, and
change patterns of the literature. Scientometrics is the study of the quantitative aspects of
the process of science as a communication system. It is centrally, but not only, concerned
with the analysis of citations in the academic literature. In recent years, it has come to play
a major role in the measurement and evaluation of research performance [17].

CiteSpace is one of the common software packages used for scientometric analysis. It
is a literature analysis package developed by Professor Chen Chaomei based on Java to
conduct statistics, analysis, and mining of the literature on a specific subject. It aims to
identify evolutionary trends, development frontiers, and research hotspots within a subject
area and generate knowledge network maps based on the analysis results [18,19]. This
software has been updated by more than 30 versions. For scientometric analysis, VOSviewer
is also a software package that is often used by researchers. VOSviewer was developed
by Nees Jan van Eck and Ludo Waltman of the Centre for Science and Technology Studies
at Leiden University. Each of these two packages has its own characteristics, and there is
a lot of literature that discusses the algorithms and results of both packages. CiteSpace
features a time-series-based visualization that can be used to detect trends in subject matter
over time and to further predict trends in the subject matter. VOSviewer software mainly
uses distance-based visualization methods to draw maps by limiting the relative positions
between texts and has strong knowledge graph presentation capabilities [20–22]. In general,
the two software packages differ only in their different functions. The purpose of both
is the visualization of textual data, so for the analysis in this paper, we used CiteSpace
(6.1.R4) and VOSviewer (1.6.18), with CiteSpace as the main package and VOSviewer as
a supplement.

2.3. Processing Flow

We first downloaded and formed a dataset of publications that met the requirements
of this study. The basic information of this dataset, including year, country, institution,
journal, and author, was first counted quantitatively. Next, countries and authors were
analyzed using co-occurrence analysis to obtain the cooperative relationship. Co-citation
analysis was then used to illustrate the influence of journals and authors, and the resulting
co-citation network of literature can reveal the evolution of research themes. To obtain the
clustering graph and explore the frontiers of the field, we used co-occurrence analysis and
burst analysis on keywords. We detected word frequency based on feature words (title,
keywords, and abstract) and obtained the interannual variation in the number of study
themes and areas. The flow schematic is shown in Figure 1 below.

 
Figure 1. Schematic diagram of scientometric analysis.
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3. Results

3.1. Annual Statistics of Publications

We counted 30,212 papers that fit the research theme from 1960 to 2022. In terms of the
time series of published papers, it can be roughly divided into three phases, i.e., the start-up,
steady growth, and rapid growth phases, as shown in Figure 2. (1) The period 1960–1990
was the start-up stage, when satellite technology was just being developed and was still
in the technology verification period. Launched satellites, such as Geosat, Skylab, etc.,
generally had low accuracy and unstable performance. Therefore, there were no large-scale
scientific applications of these satellite data, and thus the number of publications in this
period was less than 100. (2) The period 1990–2005 was the steady growth phase. This phase
is represented by the T/P family, the ERS family, and Landsat-5. Due to the improvements
in satellite orbiting accuracy and sensor accuracy, the stability and accuracy of satellites
were greatly improved during this period. As a result, satellite observation technology was
gradually used for inland water monitoring, and the number of related studies increased
slowly. (3) The third phase, from 2005 to the present, is the rapid growth phase. This
phase has involved the development of multiple satellites and accumulated nearly 40 years
of continuous observation data. Satellites such as the Interferometric Synthetic Aperture
Radar (InSAR) and Global Navigation Satellite System (GNSS) have also been gradually
used for inland water monitoring [6]. Therefore, the number of studies has grown rapidly
in this phase.

Figure 2. Statistics on the number of publications based on the WOS database.

3.2. Basic Information Statistics
3.2.1. Basic Statistics on the Number of Countries, Institutions, and Authors

According to the analysis, a total of 183 countries published relevant literature. There
are 10 countries that have more than 1000 publications: the United States (9424), China
(8960), Germany (2508), Canada (2096), the United Kingdom (2056), India (1977), France
(1973), Italy (1386), Australia (1374), and the Netherlands (1082). It is estimated that
more than 80,000 authors and 8000 affiliations have made contributions to this field. As
shown in Figure 3, the Chinese Academy of Sciences (CAS), National Aeronautics and
Space Administration (NASA), Centre National de la Recherche Scientifique (CNRS), and
Helmholtz Association contributed 34% of the literature, which represents the main portion
of the publications. In addition to these institutions, universities such as the University of
California, the University of Colorado, the University of the Chinese Academy of Sciences,
and Wuhan University in China have also published more than 600 articles. The top
10 authors by the number of publications are also shown in Figure 3 below, including Shum
CK (83), Ma RH (79), Li YM (69), Duan HT (68), Hu CM (63), Bresciani M (60), Pradhan B
(58), and Song KS (53).

4
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Figure 3. Top 10 authors of publications and geographic distribution of the literature collected by
category of affiliation.

3.2.2. Basic Statistics on the Number of Affiliated Disciplines

These publications are divided into 162 disciplines according to the Web of Science
categories. The information provided suggests that out of the 30,212 papers analyzed, the
majority (over 70%) are distributed among several disciplines. The highest percentage
(23.45%) falls into the category of Earth multidisciplinary science. Other significant disci-
plines include environmental science (19.72%), remote sensing (11.27%), imaging science
and technology (9.31%), and water resources (9.04%). The remaining 30% of publications
cover a range of disciplines such as geophysics, marine science, atmospheric meteorology,
ecology, geology, astrophysics, civil engineering, etc. Figure 4 shows statistics on the main
subject groups to which publications belong in different countries. It appears that the focus
of research varies across different countries. Publications in the United States, Germany,
Canada, the United Kingdom, and France focus mainly on multidisciplinary geosciences,
while those in China and India are mostly in the field of environmental sciences. This
illustrates the differences in research priorities and academic traditions between countries.
This difference is also due to the fact that China and India are populous countries and face
greater geographical and water resource management pressures. As a result, these coun-
tries are paying more attention to inland water monitoring and environmental protection,
which may lead to more research focusing on environmental science.

 

Figure 4. Number of publications by subject category by country.
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3.2.3. Basic Statistics on the Number of Journals

The literature was collected from approximately 1919 different journals. Of these jour-
nals, two stand out, each with more than 1000 articles. The two journals are Remote Sensing
(2373 papers) and Remote Sensing of Environment (1026 papers). Additionally, several
other journals have published more than 600 articles each. These include the International
Journal of Remote Sensing (718), Geophysical Research Letters (631), Journal of Hydrology (619),
IEEE Transactions on Geoscience and Remote Sensing (614), and Water (547). Figure 5
presents these statistics. Remote Sensing is one of the leading sources of literature on the ap-
plication of multi-source satellite Earth observation techniques in terrestrial hydrology, with
the largest collection of literature. Remote Sensing of Environment focuses on biophysical
quantitative methods in respect of terrestrial, oceanic, and atmospheric transport [23,24],
with an impact factor of 13.66, making it the most cited journal. The International Journal of
Remote Sensing focuses on remote sensing of the atmosphere, biosphere, cryosphere, and
Earth, as well as human modifications to the Earth system [25]. The Journal of Hydrology
publishes original research papers and comprehensive reviews across all subfields of the
hydrological sciences. It includes water-based management and policy issues that affect the
economy and society. Science and Nature are known for featuring the latest advancements
and development trends in various fields. The articles published in these two journals can
provide significant references and spark new ideas for scholars. It is important to note that
the information provided is based on the specific journals mentioned in the context of the
research analysis. There are numerous other journals in different disciplines that contribute
to the overall body of literature.

Figure 5. The most published journals and their citations.

3.3. Cooperative Relations
3.3.1. National Cooperative Network

Figure 6 shows the network of cooperation between countries. It is clear from the
chart that China and the United States are the two countries with the largest numbers
of publications and the highest intensity of cooperation with other countries. China has
collaborated with 50 other countries on 3951 articles, of which the United States was the
most important collaborator with 1306 links, followed by Germany, Australia, Canada,
the Netherlands, and the United Kingdom. The United States, in addition to its close
collaboration with China, has established significant partnerships with countries such
as the United Kingdom, Germany, France, and Canada. The United States is the most
cooperative country, with a total link strength of up to 6646. Indeed, there is a clustering
of Denmark, Iceland, Luxembourg, Sweden, and New Zealand into a group, as well as

6
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the grouping of Germany, Poland, the Czech Republic, Switzerland, Finland, Hungary,
Spain, Italy, and other countries. This phenomenon indicates the influence of regions on the
similarity of countries in terms of research collaboration. Geographically close countries in
Europe tend to exhibit higher similarities in research collaboration.

 

Figure 6. National cooperation networks. A network of 46 countries with more than 100 collaborative
papers. The nodes are divided into five groups, each represented by a different color.

3.3.2. Author Cooperative Network

The authors with the highest numbers of collaborative articles are Shum CK (66), Ma
RH (63), Hu CM (48), Li YM (47), Bresciani M (44), and Duan HT (43). Figure 7 reflects
that there are two core author groups. The core author group formed by Shum CK and
Lee H mainly studies the application of satellite altimetry technology and satellite gravity,
particularly utilizing GRACE data for regional surface water monitoring and establishing
hydrodynamic models [23–26]. The second group consists of Duan HT, Hu CM, Song KS,
Li YM, and Ma RH [27–30] and mainly uses visible light remote sensing images to detect
inland lakes and interpret corresponding hydrological phenomena. Additionally, authors
such as Li X, Chen X, and Wang L act as bridges between these two core author groups,
promoting the frequency and close connection between authors.

Figure 7. Author collaboration network. This network consists of 998 nodes and 1994 links.
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Figure 7 also highlights the presence of smaller author groups. One such small author
group consists of Cazenave A, Calmant S, Frappart F, Kouraev AV, and Ramillien G [31,32].
Their research is centered around remote sensing and satellite gravity technology applied
to river flow and basin-level calculations. Another group includes authors such as van den
Broeke MR, Bamber JL, Rignot E, and Berthier E [32–34]. This group focuses on different
monitoring methods to monitor and calculate parameters such as the thickness of polar
ice sheets, sea ice, and the mass balance of glaciers. These small author groups tend to
have more specialized research interests and themes, despite being smaller in size and less
popular than the core author groups. They have created new ideas, innovative methods,
and unique perspectives in a specific field. Their small size and specific research direction
can make them more flexible in collaborative decision-making.

3.4. Analysis of the Impact
3.4.1. Co-Citation Analysis of Authors and Journals

Centrality is an indicator that compares the activity of an institution or author with
that of other institutions, authors, etc. and acts as a bridge between them. Nodes with a
centrality of more than 0.1 in CiteSpace are called critical nodes. Figure 8a shows the top
10 most cited journals and their centrality. Remote Sensing of Environment, Geophysical
Research Letters, and the International Journal of Remote Sensing are the three journals with
the most citations. Different journals have different focuses, and the literature they include
is also different. Science of the Total Environment is an international multidisciplinary
journal with the widest range of disciplines. Its centrality exceeds 0.1, which is the highest
centrality of all the journals.

 
(a) (b) 

Figure 8. Most influential journals and authors: (a) the most frequently cited journals and their
centrality; and (b) the most frequently cited authors and their centrality.

Figure 8b presents the top 10 authors with the highest citation numbers and centralities
in the co-citation author network. Rodell M. primarily focuses on studying large-scale or
global temporal and spatial changes in the water cycle. This includes analyzing data from
GRACE and GRACE-FO to understand the resulting impacts on climate, drought, and
water storage [35–37]. With over 1500 citations, Rodell is considered the most influential
author in this research field. Tapley BD and Swenson S are another two prominent authors
in the field, with 1218 and 1145 citations, respectively. Zwally HJ is the only author
with a centrality of more than 0.1 and plays a role in bridging communication between
different authors.
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3.4.2. Literature Co-Citation Network

The co-citation network of the literature takes on a static form with a time series. As
shown in Figure 9, in this co-citation network, the article written by Gorelick N. et al. on
promoting the Google Earth Engine (GEE) in 2017 is the most cited paper [38]. This means
that more users can access and take advantage of the data, tools, and functions provided
by the platform. This will make data analysis and processing faster and interdisciplinary
and cross-border cooperation stronger. GEE also highlights the use of time-series satellite
data for large-scale monitoring of land and water dynamics [2,39]. Pekel JF et al. collected
millions of Landsat images on GEE and quantified the global changes in surface water
between 1984 and 2015, leading to the production of a comprehensive global map of surface
water [40]. In an article cited 386 times in the field, the study identified prolonged drought
and human activities as significant contributors to global surface water transformation.
Moreover, three of the other top five co-cited papers are about GRACE, including the JPL
RL05 mascon and CRS RL05 mascon solutions [41,42]. The gravity field model solved using
GRACE data has become an important means for large-scale land mass migration changes,
such as global sea level transformation, regional surface water monitoring, polar ice sheet
and mountain glacier melting, and seismic coseismic change [5,43,44]. At present, the latest
GRACE data have been updated to version RL06. The literature in respect of Ice, Cloud,
and land Elevation Satellite-2 (ICEsat-2) and Surface Water Ocean Topography (SWOT)
has also been co-cited more than 100 times [45,46]. These technologies, along with other
relevant datasets such as ECMWF Reanalysis (ERA5), Bedmap, Modern-Era Retrospective
Analysis for Research and Applications (MERRA), Global Land Evaporation Amsterdam
Model (GLEAM), and Randolf Glacier Inventory (RGI), contribute to the key knowledge of
multi-source satellite Earth observation technology in inland water exploration.

Figure 9. Literature co-citation network. The time slice was set to 3 years, and the details display the
33 nodes with the most citations. The literature co-citation network is composed of 904 nodes and
2831 co-citation links.

The co-citation network of literature can not only reflect the citation status but also
grasp the development order of the field through basic information such as titles, key-
words, and abstracts. From left to right, the theme of evolution in chronological order
is represented. As shown in Figure 10, similar literature, such as topics, technologies, or
data usage, tends to cluster closely in the network. In the alternation of the observation
technology and observation theme, we can see the promotion effect of the advancement of
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multi-source satellite Earth observation technology on the monitoring of different compo-
nents of inland water. Initially, satellite altimetry techniques were predominantly employed
for glacier monitoring and global mean sea level estimation, where low accuracy require-
ments were acceptable. Gravity satellites have significantly enhanced the accuracy of
global gravity fields while filling the technical gaps in groundwater monitoring. Long-term
monitoring of groundwater in California and the North China Plain has been successfully
conducted [47–49]. In recent years, researchers have shifted their attention to the extraction
and monitoring of surface water, such as rivers and lakes. Mountain glaciers and lakes
on the Qinghai–Tibet Plateau became research hotspots during this period. The launch of
SWOT will assist researchers in comprehending and tracking the distribution and changes
in water worldwide. This mission will be the first comprehensive global survey of Earth’s
surface water [40]. In addition, with the support of interdisciplinary techniques based on
deep convolution, surface water extraction on a global scale has entered a new phase.

 

Figure 10. Evolution of research themes over time. Literature with high bursts is shown in red.

3.5. Keyword Co-Occurrence Analysis

Co-occurrence analysis is a commonly used method in text mining and topic modeling.
The principle of co-occurrence analysis is to extract keywords and analyze the connections
between them based on their co-occurrence frequency. Figure 11 shows the breakdown of
the clusters. Cluster 1 is related to remote sensing image and surface water monitoring
and consists of the keywords remote sensing, Landsat, lake, river, dynamic, wetland, basin,
classification, geographic information system (GIS), etc. Cluster 2 mainly includes key-
words such as model, groundwater, climate change, drought, grace, depletion, prediction,
etc., which are related to gravity satellite and groundwater monitoring. Cluster 3 relates to
MODIS and monitoring the thickness of snow cover. Cluster 4 is associated with the use
of satellite altimetry, including radar and laser measurements, for monitoring ice sheets.
It involves ice characteristics, mass balance, and hydrological processes, particularly in
regions like Greenland. Cluster 5 is significantly far away from the other four clusters; it
appears to be relatively independent and less directly related to the other four clusters.
This cluster focuses on the application of InSAR and GNSS for observing land subsidence
and its dynamic response to changes in inland water storage.
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Figure 11. Keyword clustering network. The network only shows keywords that have co-occurred
more than 120 times. The network contains 94 nodes and 3839 links. These nodes are clearly divided
into five clusters, which are represented by different colors.

3.6. Knowledge Extraction Based on Feature Words (Titles, Keywords, and Abstracts)

To gain insights into the evolution of research topics and identify frontier themes, we
also analyzed the frequency of hydrological phenomena and study areas since the 1990s.
The search scope encompasses titles, keywords, and abstracts. The analysis tracks the
temporal evolution of these topics.

3.6.1. Research Theme

Figure 12 provides insights into the frequency and trends of hydrological phenomena
that are of greatest concern to researchers in the field. Overall, the integration of hydrologi-
cal phenomena and Earth observation is developing exponentially. Studies on precipitation
and temperature have accumulated the largest amount of literature, with precipitation
appearing 6474 times and temperature appearing 5097 times. Precipitation-related studies
have shown an exponential upward trend over the past 30 years. Precipitation and tem-
perature data are often used as meteorological indicators to assist in various hydrological
interpretations, such as evapotranspiration calculations, groundwater storage assessments,
surface water flow analysis, and drought studies [50–53]. Although a number of studies on
snow and ice melt were recorded early on, their growth has been relatively slow, with a total
of 2288 records by 2023. This suggests a sustained but modest interest in this phenomenon.
Research on surface water exchange started later, with a total of 1296 records. However,
the word frequency between 2018 and 2022 reached 732, surpassing 50% of the total from
the previous 28 years. This increase is attributed to the emergence of satellite gravity tech-
nology, particularly GRACE-FO. Satellite gravity technology provides a means by which to
detect groundwater conditions on a large scale, leading to increased interest and studies in
this field [54,55]. The phenomenon of runoff and seasonal change returned approximately
2500 records, showing an overall upward trend from 1990 to 2021, with a slight decrease
in the period 2021–2022. Evapotranspiration had a relatively lower frequency, with fewer
than 1000 occurrences, and showed a modest increase over the past 30 years. Therefore, it
appears to be the phenomenon of least concern among the hydrological phenomena studied.
There are many challenges to accurately quantifying evapotranspiration. These include the
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time extension of remote sensing data, the scale transformation of remote sensing informa-
tion, uncertainty in remote sensing classification, and the universality of remote sensing
evapotranspiration models and inversion algorithms [56,57]. In addition, the evaporation
paradox is proposed, so accurate quantitative monitoring of evapotranspiration will take a
long time to verify.

Figure 12. Number of hydrological phenomena researched by year.

3.6.2. Research Area

Figure 13 depicts the 10 study areas with the highest number of occurrences. They are
Antarctica (2153), Tibet (2055), the Yangtze River Basin (1799), the Arctic (1342), Greenland
(1273), the Alps (1115), the Indian Basin (956), the Amazon Basin (740), the Mississippi
Basin (703), and Alaska (682). Compared with other study areas, the study of continen-
tal glaciers such as Antarctica and Greenland started early, especially the exploration of
Antarctica, accumulating more than 160 publications before the 21st century. According to
statistics, the study of polar glaciers has the most overlapping trends, and both locations
have seen a decline in numbers in recent years. In the 21st century, there has been a notable
increase in quantitative studies focused on regions such as the Indian Basin, Yangtze River
Basin, and Qinghai–Tibet Plateau. These areas are heavily influenced by humans and have
a wide-ranging impact, making them popular study areas in recent years. These areas
are expected to remain hot research topics in the future. Due to the special geographical
location and harsh natural environment, the number of hydrological and meteorological
stations on the Qinghai–Tibet Plateau is limited. For a long time, research on the climate
response mechanism of lake changes on the plateau was mostly restricted to the qualitative
description of precipitation, evaporation, temperature, wind speed, cryosphere melting,
and other climatic factors. In the past decades, advancements in technology, recognition of
the importance of related research, data-sharing initiatives, and interdisciplinary cooper-
ation have resulted in significant progress in the quantitative study of the Qinghai–Tibet
Plateau, making it the most popular study area with the fastest growth rate and most
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increments [58]. In the comparison of the time dimension, the results of this statistic show
that the main research area in this field has changed from polar glaciers to the Qinghai–Tibet
Plateau and large river basins, such as the Yangtze River Basin and the Indian Basin.

Figure 13. Number of different study areas researched by year.

3.7. Burst Analysis of Keywords

As shown in Figure 14, the results reveal three distinct phases in the evolution of
research topics in this field. During the first phase (1990–2000), a significant number of
studies utilized technologies such as satellite altimetry for Earth observation. The acquired
information was predominantly used for the development of numerical models and general
circulation models. The popular study areas during this phase were primarily focused on
large glaciers, including Antarctica and Alaska. This phenomenon echoes the conclusions
above. In the second phase (2000–2018), researchers increasingly emphasized the applica-
tion of related technologies to study surface water, glacier mass balance, hydrology, land
cover, and other related aspects. This period involved a surge in publications showcas-
ing the practical applications of remote sensing data. In the third phase (2018–present),
improvements in the resolution and accuracy of various sensors and a more complete
Earth observation series have accumulated massive amounts of data for scientific research.
New technologies, such as automatic identification and intelligent batch processing, have
emerged. The latest methods for data processing, including random forests, machine learn-
ing, and deep learning, have gained prominence. Researchers have turned their attention
to a combination of hydrological phenomena and interdisciplinary data-processing algo-
rithms. Intelligent image recognition and data processing based on the above algorithms
have become the forefront of development in this field. Throughout the entire timeline,
scholars have demonstrated a longstanding interest in studying the optical properties of
various sensors, gravity detection, and sea levels. As shown in Figure 14, the timeline of
these three keywords is grayed out. This phenomenon indicates their sustained importance
in the field of hydrological research.
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Figure 14. Results of keyword burst analysis. The time slice was set at 3 years. The 32 keywords
shown in the graph meet the following requirements: they are in the top 8% of each slice and have
the highest bursts.

4. Discussion

4.1. The Role of Time-Varying Quantitative Analysis

One of the contributions of our analysis is the literature on the application of sciento-
metric analysis to the application of multi-source satellite Earth observation techniques to
inland waters. This paper is different from the others in that we have added a time-varying
quantitative analysis of the research theme and study area, which provides double verifi-
cation of the evolution of the field and the burst analysis results. This approach enables a
more accurate and nuanced quantitative analysis of the evolution and frontiers of the field.
Based on the results presented in Sections 3.4.2, 3.6.2 and 3.7, we can determine that the
focus in this area has shifted from sea level and polar glaciers to groundwater and surface
water. The specific number of changes in relation to different study areas and research
topics was quantified. The Tibetan Plateau has been a popular research area in recent
years and will continue to be popular in the coming years. Affected by the uneven spatial
distribution of freshwater resources in the inflow or outflow basins of the Qinghai–Tibet
Plateau caused by climate change, the Yangtze River Basin and the Indian River Basin
have become unstable. As the Qinghai–Tibet Plateau is the birthplace of many river basins,
the changes in its water environment also have a profound impact on these river basins.
Although many scholars have carried out a significant amount of research on climate
change and water cycle mechanisms on the Qinghai–Tibet Plateau, there is generally no
advanced multi-level coupling model and a lack of ground monitoring [59–61]. Fortunately,
the launch of SWOT (https://swot.jpl.nasa.gov/ accessed on 10 July 2023) will effectively
improve the monitoring of lake water levels in the region, which will greatly encourage
regional and global short-term dynamics and long-term trend monitoring [62,63]. The
attention paid to this field will continue to rise in the future.

4.2. Validation of the Accuracy of the Results

In contrast to most reviews with a single research theme, the topics covered in this
paper belong to a cross-disciplinary field. In interdisciplinary bibliometric analysis, the
primary condition for experimental success is to obtain accurate and complete datasets. In
order to obtain the literature that best met the requirements of the research topic, we tested
how to identify terms that met the criteria for this paper. From broad search terms to precise
feature terms, 100 articles in each dataset were selected, and the number of documents and
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their accuracy for each search result were determined. The results are shown in Table 2. It
can be seen that under more accurate word searches, the number of documents returned is
larger and more accurate.

Table 2. Different search terms and the number and accuracy of their returns.

Subject Term of the Retrieval Number Accuracy

TS = Satellite AND Inland Water 1262 70%

TS = Satellite AND (River OR Fluvial OR Lake OR Glaciers OR Ice OR Snow OR Wetland OR
Groundwater OR Swamp OR Marsh OR Estuary OR Bayou) 29,292 85%

TS = (RS OR Remote Sensing OR Satellite Altimetry OR Gravity OR GRACE) AND Inland Water 1567 82%

TS = (RS OR Remote Sensing OR Satellite Altimetry OR Gravity OR GRACE) AND (River OR
Fluvial OR Lake OR Glaciers OR Ice OR Snow OR Wetland OR Groundwater OR Swamp OR

Marsh OR Estuary OR Bayou)
30,212 93%

In addition, we used Google Scholar to verify the accuracy of citations in the database
(Web of Science) used in this paper. The scope of the Web of Science core collection is limited,
mainly to SCI, SSCI, ESCI, and other source journals/conference papers with high authority.
Google Scholar includes not only the Web of Science but also EI searches, preprint websites
(such as ArXiv, SSRN, etc.), and papers such as university/scholar personal websites. Web
of Science and Google Scholar calculate the citations of a paper based on how many papers
in their databases cite it. We obtained a total of 100 articles with citations of different orders
of magnitude from Google Scholar and compared the data with the Web of Science used
in this paper. Figure 15 shows the fitted curve, correlation coefficient, and goodness-of-fit
for these 100 samples. The goodness-of-fit degree is greater than 0.9, indicating that the
straight line fits the sample values well. The correlation coefficient is 0.9775, and there is a
strong correlation between the citations in the two databases. This verifies the reliability of
the results of this study to a certain extent.

Figure 15. Comparison and correlation of citations in Web of Science and Google Scholar.

4.3. Detailed Setting of the Software

One potential limitation of this study is that different analysis software and different
settings will lead to differences in results. However, as far as the current comparative stud-
ies are concerned, the two software packages have been verified many times by different
researchers, and the results are considered credible. Pan et al., in their comparison of biblio-
metric software analysis, showed that most researchers using bibliometric software do not
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provide sufficient usage information, which is not conducive to the reader’s reproduction
of the processing flow and results [20]. Therefore, in this article, under the condition of
ensuring accuracy, we have displayed graphical information based on the principle of
clear graphical display and as many nodes as possible. The network set by CiteSpace was
sliced over a period of 3 years, and the first 10 nodes of each slice were selected to prepare
for display. We adjusted the g-index value to actually control the number of nodes to be
displayed; the author cooperation network shows a total of 996 nodes, and the document
co-citation network displays a total of 904 nodes. Other relevant settings are reflected in
the figure name. A small difference in results is allowed, and differences introduced by
different settings do not mean errors. We should also take these differences into account
when drawing conclusions.

5. Conclusions

The analysis of publication trends in this field reveals several key findings. The
number of publications in this field has exhibited exponential growth, indicating increasing
interest and involvement from researchers. Among the top five publications, the United
States, China, Germany, Canada, and the United Kingdom produced more than 80% of
the publications. The disciplines and degree of cooperation between countries are also
geographically linked. In densely populated countries such as China and India, inland
water monitoring mainly serves environmental science, while publications in the United
States, Britain, France, Germany, and Canada mainly belong to geodisciplinary fields. In
terms of cooperation, China and the United States are the two countries with the highest
degree of cooperation, but some European countries, such as Germany, Poland, the Czech
Republic, Switzerland, Finland, Hungary, Spain, Italy, etc., also have a strong degree of
cooperation. The degree of cooperation is related to geographical distance. In addition, a
core group of authors, led by Shum CK and Lee H, has emerged as influential contributors
in this field. The development of research in this field can be divided into three periods. The
period from 1990 to 2000 marked the exploration phase of new detection technologies. The
period from 2000 to 2018 involved significant growth in detection technology development.
The period after 2018 represents the development phase of cloud computing and intelligent
processing applications. The focus of research has shifted from large-scale glaciers to river
basins and lakes.

From the review above, key findings emerge: (1) In recent years, there has been a
consistent rise in the number of studies focusing on the Tibetan Plateau and its associated
basins, including the Indian Basin and the Yangtze River Basin. The maturity of regional-
scale research will inevitably give impetus to the short-term and long-term monitoring
of inland water on a global scale. After accumulating a large number of regional inland
water studies, inland water studies on a global scale will provide a clearer explanation
of the inland water cycle and its mechanisms. (2) Inland water monitoring has grown
with advancements in multi-source Earth observation technology, driving research in the
field. In particular, the launch of SWOT in December 2022 is expected to be a ground-
breaking development in global surface water monitoring. SWOT will provide the first
comprehensive survey of the Earth’s surface water, offering valuable information for under-
standing and tracking water resources globally. This mission will generate new momentum.
(3) Furthermore, the integration of the hydrological field with disciplines such as deep
learning and intelligent recognition is opening up new avenues for researchers. The inte-
gration of hydrology with various cross-disciplinary fields is expected to facilitate further
exploration and research. Researchers can anticipate a growing number of studies that com-
bine knowledge and expertise from hydrology, cloud computing, big data, deep learning,
and intelligent recognition. Through the application of these technologies, outcomes will
address the challenges and opportunities associated with the long-term and global-scale
observation of inland water. Regrettably, our findings do not capture the relationship
between study themes, study areas, and the evolution of research methods due to the
absence of quantitative statistics on research methods. To address this limitation, future
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scientific analyses on this topic should aim to quantitatively examine research methods
and explore the underlying connections between research themes, regions, and methods.
Moreover, existing literature analysis software, such as CiteSpace and VOSviewer, lacks
advanced keyword refinement and algorithm integration functions, making it challenging
for users to obtain accurate results. However, by ensuring a large and comprehensive
sample, the influence of individual incorrect samples can be mitigated. Moving forward,
we aspire to further enhance natural language processing by integrating multi-source data
and strengthening knowledge graph reasoning capabilities.

Funding: This work was sponsored by the National Natural Science Foundation of China (41974016,
42104023, 42264001), the Major Discipline Academic and Technical Leaders Training Program of
Jiangxi Province (20225BCJ23014), Hebei Water Conservancy Research Plan (2022-28).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, G.; Guo, L.; Chang, C.; Zhao, X.; Li, L. Contrast and analysis of water storage changes in the north slopes and south slopes of
the central Tianshan Mountains in Xinjiang. Arid Land Geogr. 2016, 39, 254–264.

2. Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A
review. Rev. Geophys. 2018, 56, 333–360. [CrossRef]

3. Sogno, P.; Klein, I.; Kuenzer, C. Remote Sensing of Surface Water Dynamics in the Context of Global Change—A Review. Remote
Sens. 2022, 14, 2475. [CrossRef]

4. Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment
(GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [CrossRef]

5. Tapley, B.D.; Watkins, M.M.; Flechtner, F.; Reigber, C.; Bettadpur, S.; Rodell, M.; Sasgen, I.; Famiglietti, J.S.; Landerer, F.W.;
Chambers, D.P.; et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 2019, 9, 358–369. [CrossRef]

6. Humphrey, V.; Gudmundsson, L.; Seneviratne, S.I. Assessing Global Water Storage Variability from GRACE: Trends, Seasonal
Cycle, Subseasonal Anomalies and Extremes. Surv. Geophys. 2016, 37, 357–395. [CrossRef]

7. Feng, W.; Shum, C.K.; Zhong, M.; Pan, Y. Groundwater Storage Changes in China from Satellite Gravity: An Overview. Remote
Sens. 2018, 10, 674. [CrossRef]

8. Wouters, B.; van de Wal, R.S.W. Global sea-level budget 1993–present. Earth Syst. Sci. Data 2018, 10, 1551–1590.
9. Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT Mission and Its Capabilities for Land Hydrology. Surv. Geophys.

2016, 37, 307–337. [CrossRef]
10. Crétaux, J.-F.; Abarca-del-Río, R.; Berge-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring

from Space. Surv. Geophys. 2016, 37, 269–305. [CrossRef]
11. Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [CrossRef]
12. Liu, Z.; Yang, Z.; Chen, M.; Xu, H.; Yang, Y.; Zhang, J.; Wu, Q.; Wang, M.; Song, Z.; Ding, F. Research Hotspots and Frontiers of

Mountain Flood Disaster: Bibliometric and Visual Analysis. Water 2023, 15, 673. [CrossRef]
13. Zhang, J.; Liu, J.; Chen, Y.; Feng, X.; Sun, Z. Knowledge Mapping of Machine Learning Approaches Applied in Agricultural

Management—A Scientometric Review with CiteSpace. Sustainability 2021, 13, 7662. [CrossRef]
14. Chen, C.; Chitose, A.; Kusadokoro, M.; Nie, H.; Xu, W.; Yang, F.; Yang, S. Sustainability and challenges in biodiesel production

from waste cooking oil: An advanced bibliometric analysis. Energy Rep. 2021, 7, 4022–4034. [CrossRef]
15. Yang, L.; Lin, L.; Fan, L.; Liu, N.; Huang, L.; Xu, Y.; Mertikas, S.P.; Jia, Y.; Lin, M. Satellite Altimetry: Achievements and Future

Trends by a Scientometrics Analysis. Remote Sens. 2022, 14, 3332. [CrossRef]
16. Xu, Y.; Yang, Y.; Chen, X.; Liu, Y. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sens. 2022,

14, 3967. [CrossRef]
17. Mingers, J.; Leydesdorff, L. A review of theory and practice in scientometrics. Eur. J. Oper. Res. 2015, 246, 1–19. [CrossRef]
18. Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci.

Technol. 2006, 57, 359–377. [CrossRef]
19. Chen, C. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2017, 2, 1–40. [CrossRef]
20. Pan, X.; Yan, E.; Cui, M.; Hua, W. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A

comparative study of three tools. J. Informetr. 2018, 12, 481–493. [CrossRef]
21. Song, X.; Chi, P. Comparative Study of the Data Analysis Results by Vosviewer and Citespace. Inf. Sci. 2016, 108, 112.
22. van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84,

523–538. [CrossRef] [PubMed]
23. Lee, H.; Beighley, R.E.; Alsdorf, D.; Jung, H.; Shum, C.K.; Duan, J.; Guo, J.; Yamazaki, D.; Andreadis, K. Characterization of

terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens. Environ. 2011, 115,
3530–3538. [CrossRef]

17



Remote Sens. 2023, 15, 3945

24. Kim, J.W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.-H. Integrated analysis of PALSAR/Radarsat-1
InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands. Remote Sens. Environ.
2009, 113, 2356–2365. [CrossRef]

25. Lee, H.; Durand, M.; Jung, H.; Alsdorf, D.; Shum, C.K.; Sheng, Y. Characterization of surface water storage changes in Arctic lakes
using simulated SWOT measurements. Int. J. Remote Sens. 2010, 31, 3931–3953. [CrossRef]

26. Akbor, S.; Hossain, F.; Lee, H.; Shum, C.K. Inter-comparison study of water level estimates derived from hydrodynamic–
hydrologic model and satellite altimetry for a complex deltaic environment. Remote Sens. Environ. 2011, 115, 1522–1531.
[CrossRef]

27. Cao, Z.; Duan, H.; Feng, L.; Ma, R.; Xue, K. Climate- and human-induced changes in suspended particulate matter over Lake
Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [CrossRef]

28. Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from
Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [CrossRef]

29. Wan, W.; Xiao, P.; Feng, X.; Li, H.; Ma, R.; Duan, H.; Zhao, L. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30.
Chin. Sci. Bull. 2014, 59, 1021–1035. [CrossRef]

30. Sun, F.; Zhao, Y.; Gong, P.; Ma, R.; Dai, Y. Monitoring dynamic changes of global land cover types: Fluctuations of major lakes in
China every 8 days during 2000–2010. Chin. Sci. Bull. 2014, 59, 171–189. [CrossRef]

31. Crétaux, J.-F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Del Rio, R.A.;
Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote
sensing data. Adv. Space Res. 2011, 47, 1497–1507. [CrossRef]

32. Schmidt, R.; Schwintzer, P.; Flechtner, F.; Reigber, C.; Güntner, A.; Döll, P.; Ramillien, G.; Cazenave, A.; Petrovic, S.;
Jochmann, H.; et al. GRACE observations of changes in continental water storage. Glob. Planet Chang. 2006, 50, 112–116.
[CrossRef]

33. Pfeffer, W.; Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Sharp, M. The Randolph Glacier Inventory: A globally complete
inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [CrossRef]

34. Thomas, R.; Rignot, E.; Casassa, G.; Kanagaratnam, P.; Akins, T.; Brecher, H.; Frederick, E.; Gogineni, P.; Krabill, W.; Manizade, S.;
et al. Accelerated Sea-Level Rise from West Antarctica. Science 2004, 306, 255–258. [CrossRef]

35. Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating groundwater storage changes in the Mississippi
River basin (USA) using GRACE. Hydrogeol. J. 2007, 15, 159–166. [CrossRef]

36. Chen, J.; Famigliett, J.S.; Scanlon, B.R.; Rodell, M. Groundwater Storage Changes: Present Status from GRACE Observations.
Surv. Geophys. 2016, 37, 397–417. [CrossRef]

37. Forman, B.A.; Reichle, R.H.; Rodell, M. Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water
Resour. Res. 2012, 48, 01507. [CrossRef]

38. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

39. Hu, B.; Wang, L. Terrestrial water storage change and its attribution: A review and perspective. Water Resour. Hydropower Eng.
2021, 52, 13–25.

40. Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.
Nature 2016, 540, 418–422. [CrossRef]

41. Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569.
[CrossRef]

42. Wiese, D.N.; Landerer, F.W.; Watkins, M.M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution.
Water Resour. Res. 2016, 52, 7490–7502. [CrossRef]

43. Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.-H. Emerging trends in global
freshwater availability. Nature 2018, 557, 651–659. [CrossRef] [PubMed]

44. Chen, Q.; Shen, Y.; Kusche, J.; Chen, W.; Chen, T.; Zhang, X. High-Resolution GRACE Monthly Spherical Harmonic Solutions.
Solid Earth 2020, 126, B018892. [CrossRef]

45. Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al.
The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens.
Environ. 2017, 190, 260–273. [CrossRef]

46. Ma, C.; Guo, X.; Zhang, H.; Di, J.; Chen, G. An Investigation of the Influences of SWOT Sampling and Errors on Ocean Eddy
Observation. Remote Sens. 2020, 12, 2682. [CrossRef]

47. Flechtner, F.; Reigber, C.; Rummel, R.; Balmino, G. Satellite Gravimetry: A Review of Its Realization. Surv. Geophys. 2021, 42,
1029–1074. [CrossRef]

48. Scanlon, B.R.; Longuevergne, L.; Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the
California Central Valley, USA. Water Resour. Res. 2012, 48, 4520. [CrossRef]

49. Feng, W.; Zhong, M.; Lemoine, J.M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using
the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49,
2110–2118. [CrossRef]

18



Remote Sens. 2023, 15, 3945

50. Girotto, M.; Reichle, R.; Rodell, M.; Maggioni, V. Data Assimilation of Terrestrial Water Storage Observations to Estimate
Precipitation Fluxes: A Synthetic Experiment. Remote Sens. 2021, 13, 1223. [CrossRef]

51. Lyu, Y.; Huang, Y.; Bao, A.; Zhong, R.; Yang, H. Temporal/Spatial Variation of Terrestrial Water Storage and Groundwater Storage
in Typical Inland River Basins of Central Asia. Water 2021, 13, 3385. [CrossRef]

52. Abou, Z.N.; Torabi, H.A.; Rossi, P.M.; Tourian, M.J.; Bakhshaee, A.; Kløve, B. Evaluating Impacts of Irrigation and Drought on
River, Groundwater and a Terminal Wetland in the Zayanderud Basin. Water 2020, 12, 1305.

53. Shah, D.; Mishra, V. Strong Influence of Changes in Terrestrial Water Storage on Flood Potential in India. J. Geophys. Res. Atmos.
2020, 126, D033566. [CrossRef]

54. Rodell, M.; Famiglietti, J.S. The potential for satellite-based monitoring of groundwater storage changes using GRACE: The High
Plains aquifer, Central US. J. Hydrol. 2002, 263, 245–256. [CrossRef]

55. Tu, M.; Liu, Z.; He, C.; Ren, Q.; Lu, W. Research Progress of Groundwater Storage Changes Monitoring in China Based on GRACE
Satellite Data. Adv. Earth Sci. 2020, 35, 643–656.

56. García-Santos, V.; Sánchez, J.M.; Cuxart, J. Evapotranspiration Acquired with Remote Sensing Thermal-Based Algorithms: A
State-of-the-Art Review. Remote Sens. 2022, 14, 3440. [CrossRef]

57. Liou, Y.-A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A
Review. Energies 2014, 7, 2821–2849. [CrossRef]

58. Chen, J.; Liu, Y.; Cao, L.; Hu, J.; Liu, S. A review on the research of remote sensing monitoring of lake changes and quantitative
estimation of lake water balance in Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2022, 44, 1203–1215.

59. Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The imbalance of the
Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [CrossRef]

60. Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third Pole
Environment (TPE). Environ. Dev. 2012, 3, 52–64. [CrossRef]

61. Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy
and water cycle: A review. Glob. Planet. Change 2014, 112, 79–91. [CrossRef]

62. Xiong, J.; Jiang, L.; Qiu, Y.; Wongchuig, S.; Abhishek; Guo, S.; Chen, J. On the capabilities of the SWOT satellite to monitor the
lake level change over the Third Pole. Environ. Res. Lett. 2023, 18, 044008. [CrossRef]

63. Wu, Y.; Yang, F.; Lai, G.; Lin, K. Research progress of knowledge graph learning and reasoning. J. Chin. Comput. Syst. 2016, 37,
2007–2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

19



Citation: Arias-Rodriguez, L.F.;

Tüzün, U.F.; Duan, Z.; Huang, J.; Tuo,

Y.; Disse, M. Global Water Quality of

Inland Waters with Harmonized

Landsat-8 and Sentinel-2 Using

Cloud-Computed Machine Learning.

Remote Sens. 2023, 15, 1390. https://

doi.org/10.3390/rs15051390

Academic Editors: Flor Alvarez-

Taboada, Miro Govedarica and

Gordana Jakovljević
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Abstract: Modeling inland water quality by remote sensing has already demonstrated its capacity to
make accurate predictions. However, limitations still exist for applicability in diverse regions, as well
as to retrieve non-optically active parameters (nOAC). Models are usually trained only with water
samples from individual or local groups of waterbodies, which limits their capacity and accuracy
in predicting parameters across diverse regions. This study aims to increase data availability to
understand the performance of models trained with heterogeneous databases from both remote
sensing and field measurement sources to improve machine learning training. This paper seeks to
build a dataset with worldwide lake characteristics using data from water monitoring programs
around the world paired with harmonized data of Landsat-8 and Sentinel-2. Additional feature
engineering is also examined. The dataset is then used for model training and prediction of water
quality at the global scale, time series analysis and water quality maps for lakes in different continents.
Additionally, the modeling performance of nOACs are also investigated. The results show that
trained models achieve moderately high correlations for SDD, TURB and BOD (R2 = 0.68) but lower
performances for TSM and NO3-N (R2 = 0.43). The extreme learning machine (ELM) and the random
forest regression (RFR) demonstrate better performance. The results indicate that ML algorithms
can process remote sensing data and additional features to model water quality at the global scale
and contribute to address the limitations of transferring and retrieving nOAC. However, significant
limitations need to be considered, such as calibrated harmonization of water data and atmospheric
correction procedures. Moreover, further understanding of the mechanisms that facilitate nOAC
prediction is necessary. We highlight the need for international contributions to global water quality
datasets capable of providing extensive water data for the improvement of global water monitoring.

Keywords: remote sensing; water quality; harmonize RS data; machine learning; global modeling

1. Introduction

Monitoring water quality of inland waters in different countries is mostly conducted
individually by each nation. Global integration of their data is often constrained by a lack
of worldwide projects or collaborations [1]. When possible, the countries measure the water
quality mainly inside their borders through their monitoring systems and the data are
stored locally. Therefore, an important quantity of data that is collected every year is usually
not available or is difficult to access for external researchers or international institutions.
Currently, there are international projects that aim to homogeneously integrate water
quality data from several countries for applications in water resources [2]. However, these
programs are in early stages and up to now there no comprehensive and unique sources
for global and homogeneous water quality data. At the same time, the global coverage
of operational monitoring stations is insufficient or lacks acceptable levels of confidence
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and precision [1,3,4]. This situation limits considerably the application of current data-
driven methods that use big datasets to learn from water quality patterns. Therefore,
monitoring water quality remains limited by only conventional analysis such as collection
of water samples in the field and laboratory analysis [5,6]. Conventional methods are highly
accurate, but also expensive, time demanding and limited in spatial and temporal coverages.
Additionally, it is complex to develop a representative understanding of the water quality
status in a waterbody from punctual field measurements or limited field campaigns over
the course of large periods of time. A solution to increase the scope and capabilities of
monitoring water quality is the use of remote sensing data, which contributes to provide
data from remote sensors that couple field data and increase the analysis in time and space.
International institutions such as the United Nations already encourage the coupling of
monitoring systems with remote sensing technologies through its Environment Program [1].
When paired with field data, combined water and remote sensing measurements allow
monitoring at a larger scope, since they have the potential to analyze waterbodies at regional
or global locations. This is achieved by studying water quality from indicator parameters
and dealing with better cost–benefit methods in comparison with the extensive spatial and
temporal scales that are analyzed. Several modeling techniques associate remote-sensed
signals, mostly in the visible and near-infrared wavelengths (400–900 nm), with the water
parameter of interest to derive information of the waterbody. The relationship between
optically active constituents (OAC) such as chlorophyll-a (Chl-a), total suspended matter
(TSM) and surface radiation arises due to the interaction between the radiation and the
OAC through processes such as absorption and scattering [7]. Remote sensing is suited
to analyze these relationships because of the high sensitivity in the radiometric resolution
of several satellite sensors. As water absorbs within the visible spectrum, low reflectance
occurs in the water column in contrast to the high reflectance of land. Therefore, high
sensitivity in the spectral sensors is required to detect the slight changes in water reflectance
that surpass the absorption of water [8,9]. Currently, sensors such as Landsat-8 OLI and
Sentinel-2 MSI are suited to provide remote sensing data for water quality monitoring
because of their radiometric and temporal resolutions [10]. While remote-sensing-based
models can reproduce the patters and dynamics of key water parameters, it becomes
relevant to improve the confidence and accuracy of such methodologies and the data
that are provided to calibrate them. From the different approaches developed in the last
decades, machine learning algorithms currently offer accurate and precise models for water
quality monitoring [11–14]. Machine learning comprises statistical methods which are able
to learn from the data they are provided through iterative processes of error adjustment
between training and prediction datasets. The process involves providing data to the
selected algorithm which is trained with known or predefined features or objects that
allows detection, classification or pattern recognition in semi-automated or automated
learning. Methodologies combining machine learning with remote sensing data have been
used to successfully model water quality [14–21]. Some algorithms are considered standard
for machine learning evaluations, such as support vector machines (SVR) and random
forest regression (RFR) [22]. Furthermore, deep learning, a subset of machine learning
based on neural networks, has demonstrated higher accuracy than other methodologies
used to model water quality such as bio-optical or band/ratio models [13,23–26]. Due to its
novelty, there are still open challenges in the application of machine learning which require
further research [24,27–30].

The availability of paired remote sensing and field water quality data is highly limited
because of the independent nature of acquiring both types of data. Monitoring water
quality programs in different countries were not designed to take into consideration remote
sensing acquisitions or satellite overpasses. Therefore, an important percentage of field data
are not feasible to be coupled with remote sensing images [31]. Moreover, remote sensing
data originate from multiple instruments with different characteristics. This heterogeneous
data, in terms of frequency, spatial and radiometric resolution, demand further data pre-
treatment and better machine learning models to reveal meaningful information and may
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make difficult model transferability. Inherent challenges regarding modeling processes
also exist, in particular for deep learning. Yet, a deeper neural network may retrieve
more accurate results but at a higher computational cost and with associated risks of
overfitting. To determine optimal conditions and parameters of these elements is still
a crucial research question [32]. In addition, important water quality parameters such as
nutrient concentrations, indicators of oxygen levels or organic compounds are not feasible to
be directly retrieved by remote sensing because of their inaction over the spectral response
of the water when dissolved, and are therefore known as non-optically active compounds
(nOACs). Current research poses the possibilities to determine these parameters on indirect
correlations with other optically active components such as chlorophyll-a, turbidity or
suspended solids [33]. Finally, due to the nature of machine learning models trained
with remote sensing data being inherently empirical, they are expected to be valid mainly
in the region from where their training data are originated, and most of these models
are applicable only at their specific regions or waterbodies. As these models rely on
optical characteristics, which may vary from waterbody to waterbody in complex waters,
their transferability is further limited to the origin of their training data. However, a key
characteristic of machine learning methodologies is that they learn patterns and behaviors
from great amounts of data. Therefore, the existence of a worldwide integrated dataset
of water quality and remote sensing data gives the possibility to develop a data-driven
approach with the capacity for global estimations of water quality by comprising global
lake characteristics in a single dataset. In this study, we aim to create this dataset with the
available resources for remote sensing image processing and open-access field water quality
measurements. Harmonization of remote sensing data contributes to the increase in data
availability by combining remote sensing data from different sensors. A recent example is
the harmonization process for Landsat-8 OLI and Sentinel-2 MSI, which have been subject
to treatment to homogenize their spectral response and spatial resolution [10,14,34]. This
method aims to standardize these differences to produce harmonized datasets that can be
used together for various applications such as land cover classification and change detection.
This harmonization process represents a significant improvement in multi-temporal and
multi-sensor analysis, making it possible to better track changes in the Earth’s surface over
time. Despite some processes of the harmonization not being specifically designed for
inland waters, such as the 6S atmospheric correction, it is already widely used in remote
sensing, showing promise for improving the accuracy of water quality retrievals in the
future. Similarly, the results of its usage require caution when being interpreted. Ultimately,
the adoption of these methodologies enabled the construction of a global dataset for model
development and contributed to understanding the potential of machine learning with
increased data availability.

To contribute to clarifying the above challenges, this work aims (i) to gather open-
access water quality monitoring datasets of the relevant parameters from different regions
in the world for their synergistic use with remote sensing; (ii) to maximize the data avail-
ability of coupled field and sensor acquisitions by using an image homogenization process
for L8 and S2 and produce harmonized images from both satellites, enabling both sensors
to be used synergistically and increasing the size available spectral data; (iii) to build
a comprehensive dataset created from the coupling of the global dataset and the harmo-
nized remote sensing products; and (iv) to model relevant water quality parameters using
machine learning and validate the use of the developed models for global water quality
predictions. In addition, we investigate the results using this dataset and machine learning
approaches to understand better the optimal balance between computational demand and
retrieved accuracy as well as the possibilities of nOAC direct or indirect retrievals.

2. Materials and Methods

2.1. Sources of Global Water Quality Dataset

The main source of field data is the open-access data portals from water and envi-
ronment national agencies of different countries which make public their archives of field

22



Remote Sens. 2023, 15, 1390

measurements and monitoring activities. A summary of agencies and links of acquisition
is provided in Table 1. In its raw form, the dataset contained almost 300,000 total samples.
A summary of the number of observations and lakes by region is displayed in Table 2.
The global locations of all the stations from the above-mentioned data sources are shown
in Figure 1.

Figure 1. The global location of all the stations from the above-mentioned data sources in raw form.
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Table 1. Source of national and international water quality datasets acquired in this study.

Source Data Location Region

Water Quality Portal (WQP) waterqualitydata.us
(accessed on 15 January 2022) United States

European Environment Agency (EEA) Waterbase eea.europa.eu/data-and-maps/data/waterbase
(accessed on 13 January 2022) Europe

Mexican National Water Monitoring Network gob.mx/conagua/articulos/calidad-del-agua
(accessed on 1 September 2021) Mexico

Open Government Portal of Canada open.canada.ca/en/od
(accessed on 15 January 2022) Canada

General Chilean Water Directorade dga.mop.gob.cl/servicioshidrometeorologicos
(accessed on 15 January 2022) Chile

Global Freshwater Quality Database (GEMStat) gemstat.org/data
(accessed on 7 January 2022) Global

Table 2. Overview of the number of observations and lakes per region in the raw dataset.

Region n Lakes

United States 263,699 43
Europe 17,681 64
Mexico 9086 32
Canada 5412 2
Japan 1292 3
Chile 897 16

Russia 32 1

Recent research of Thorslund and van Vliet [35], indicates that the current state of
the global water quality stations monitoring lakes and reservoirs is focused mainly on
the U.S. followed by Europe, Mexico and South Africa. Australia has a great number of
stations, near 90,000, but most of them are for groundwater, and only 5 are located on
lakes or reservoirs. For this study, the gross part of the data components comes from
the U.S. and European sources since their data archives are open access and easy to
acquire through their respective portals. The U.S. data were acquired from the Water
Quality Portal [36] (https://www.waterqualitydata.us/, accessed on 15 January 2022),
which is a cooperative service sponsored by the United States Geological Survey (USGS),
the Environmental Protection Agency (EPA) and the National Water Quality Monitoring
Council (NWQMC) that integrates publicly available water quality data from the USGS
National Water Information System (NWIS), the EPA STOrage and RETrieval (STORET)
Data Warehouse and the USDA ARS Sustaining The Earth’s Watersheds—Agricultural
Research Database System (STEWARDS). Data from the European continent were acquired
through the European Environment Agency (EEA) Waterbase (https://www.eea.europa.
eu/data-and-maps/data/waterbase-water-quality-icm-2, accessed on 13 January 2022),
which contains time series of nutrients, organic matter, hazardous substances and other
chemicals in rivers, lakes, groundwater and transitional, coastal and marine waters (EEA
2021). Additionally, datasets from the National Water Monitoring Network of Mexico (https:
//www.gob.mx/conagua/articulos/calidad-del-agua, accessed on 1 September 2021) [37],
the Canadian Great Lakes (https://search.open.canada.ca/en/od/, accessed on 15 January
2022) [38], and the Chilean General Water Directory (DGA) lake’s database [39] were also
acquired (https://dga.mop.gob.cl/servicioshidrometeorologicos/Paginas/default.aspx,
accessed on 15 January 2022). Finally, the Global Freshwater Quality Database (GEMStat)
(https://gemstat.org/data/, accessed on 7 January 2022), which is a GEMS/Water Program
of the United Nations Environment Program (UNEP), was also acquired to account as
much as possible for remaining global data around the world. The GEMStat is hosted by
the GEMS/Water Data Centre (GWDC) within the International Centre for Water Resources
and Global Change (ICWRGC) in Koblenz, Germany [2].
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2.2. Field Dataset Compliance by Lake Selection, Satellite Coincidence and Data Curation

For lake selection, the minimum surface area to consider a waterbody was set to
20 km2. This size ensures the avoidance of adjacency errors in the NIR region from the
surrounding land surfaces and bottom reflectance in the sensor acquisitions [40]. At the
same time, this area is on the limit to retrieve an adequate number of pixels from the image
acquisition based on the spatial resolution per pixel (30 × 30 m) of the intended OLI and
MSI sensors to be used as the source of radiometric data.

We used the Level-1 and Level-2 database from the Global Lakes and Wetlands
Database (GLWD) developed by the World Wildlife Fund (WWF) and the Center for Envi-
ronmental Systems Research, University of Kassel, Germany (https://www.worldwildlife.
org/pages/global-lakes-and-wetlands-database, accessed on 20 January 2022) [41], to
apply lake selection.

The first GLDW product, GLWD-1, comprises 3067 lakes (area > 50 km2) and 654 reservoirs
(storage capacity > 0.5 km3) worldwide, and includes extensive attribute data. The second
GLDW product, GLWD-2, comprises permanent open waterbodies with surface areas
larger than 0.1 km2, from which the minimum area of 20 km2 was established. Additionally,
we applied a rigorous data cleaning process which involved the rejection of samples that
(i) predate the launch of Landsat-8 and Sentinel-2, (ii) are not within the ±3 days range of L8
and S2 images, (iii) were taken deeper than 1.0 m, (iv) are duplicate records, (v) are labeled
as of poor or suspect data quality, (vi) are below and above the detection limits for every
parameter, (vii) have fill values, (viii) are detected as outliers and faulty study parameter
measurements or (ix) belong to not-studied parameters. Additionally, it is important to
mention that shape of a waterbody, along with its size, is an important factor to consider
when accounting for a detailed selection. Narrower waterbodies tend to have a higher
adjacency effect due to the reflection of light off the edges of the lake and into the water
column. Small waterbodies such as rivers and canals are particularly affected, while larger,
more open waterbodies may have a lower adjacency effect.

In its cleaned form the dataset contained almost 7000 total samples. An overview of
the number of observations and lakes per region in the cleaned dataset and their respective
number of samples per parameter are shown in Tables 3 and 4, respectively. Descriptive
statistics of the parameters are provided in Table 5.

Table 3. Overview of the number of observations and lakes per region in the cleaned dataset.

Region n Lakes

United States 2032 33
Europe 1540 54
Mexico 2875 32
Canada 16 2
Japan 202 3
Chile 206 14

Russia 13 1

Table 4. Number of cleaned samples per parameter. Type column refers to optically active constituents
(OAC) and non-optically active constituents (nOAC).

Parameter n Type

Chlorophyll-a (Chl-a: mg/L) 1080 OAC
Turbidity (TURB: NTU) 554 OAC

Total suspended matter (TSM (mg/L) 291 OAC
Secchi disk depth (SDD: m) 694 OAC

Dissolved oxygen (DO: mg/L) 1872 nOAC
Total phosphorus (PTOT: mg/L) 987 nOAC

Nitrate (NO3-N: mg/L) 711 nOAC
Biochemical oxygen demand (BOD: mg/L) 214 nOAC

Chemical oxygen demand (COD: mg/L) 481 nOAC
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Table 5. Descriptive statistics of our study parameters. Abbreviations as follows: (St.Dev: Standard
Deviation, Perc.: Percentage).

Parameter Chl-a TURB TSM SDD DO PTOT NO3-N BOD COD

Count 1080 711 1872 987 694 291 554 214 481
Mean 26.87 2.89 8.80 0.20 2.73 40.65 24.48 11.25 30.39

St. Dev. 52.53 23.98 2.24 0.39 3.31 54.71 55.11 12.65 27.98
Min 0.00 0.00 1.30 0.00 0.00 1.00 0.10 0.50 2.10

25% Perc. 1.90 0.04 7.60 0.03 0.67 12.00 2.30 3.42 13.00
Median 6.80 0.18 8.90 0.07 1.20 20.00 5.30 5.99 22.00

75% Perc. 22.90 1.41 10.00 0.18 3.20 43.72 18.00 17.00 39.00
Max 561.07 443.00 27.00 5.73 18.00 520.00 578.70 94.00 270.00

2.3. Harmonization of Landsat-8 and Sentinel-2 Data

To increment data availability, harmonization of data from different remote sensors
was applied as a feasible solution to increase availability of remote sensing data and,
therefore, to increase the possibilities to match up with available water quality measure-
ments. Harmonization is a novel approach, and its implementation has been in develop-
ment for general applications such as land or crop modeling. Recently, harmonization of
Landsat-8 and Sentinel-2 data has been applied for water quality retrievals with promising
results [14,33]. However, this process is still challenging and requires several stages of
image processing [42], especially when it is intended to be used at a global scale and using
entire collections of remote sensors, as in this study. For the purposes of this study, there
is the need of an implementation in a cloud platform capable of processing the complete
imagery of both Landsat-8 and Sentinel-2. Additionally, atmospheric correction applicable
to all images is also necessary to retrieve remote sensing reflectance (Rrs). Google Earth
Engine (GEE) is a cloud platform that provides excellent access to complete archives of both
Landsat and Sentinel data and allows operations and corrections over the entire imagery.
Currently, there are studies that describe and apply this methodology for different cases
and study purposes. Particularly, we use the methodology described in [34], which is
based on the original methodology by [10]. Following the above-mentioned methodology,
the collections of Landsat-8 (L8) top-of-atmosphere (TOA) and Sentinel-2 (S2) Level-1C
(L1C) were acquired via Google Earth Engine (GEE) for the studied lakes and dates of
measurement. Images were then atmospherically corrected using the Second Simulation
of the Satellite Signal in the Solar Spectrum (6S) developed by [43], which uses Radiative
Transfer Models (RTMs) to simulate the passage of solar radiation across the atmosphere.
The 6S algorithm was adapted to a Python (Py6S) interface [44] and implemented recently
for its use with Google Earth Engine [45] via a Python API and Docker container. For
cloud detection in L8 images, we applied the CFMask algorithm on GEE based on the
implementation of [34]. Cloud detection in S2 images was performed with single-scene
pixel-based cloud detector method developed by [46], in which cloud detection is expressed
as a machine learning problem that can outperform current threshold-based cloud detection
algorithms such as Fmask or Sen2Cor. This detector is already available as the s2cloudless
Python package and as a tool of the sentinelhub-py library. Cloud shadow detection was
conducted via the Temporal Dark Outlier Mask (TDOM) [34], which is a version adapted
from [47]. TDOM applies dark pixel anomaly [48] to predict the position and the extent of
a cloud’s shadows by using the cloud’s shape, height and position of the sun at that
time [49]. Co-registration was performed by measuring the misalignment between L8 and
S2 images (up to 38 m) [42] and aligning the L8 with its corresponding S2 [50]. Afterwards,
reprojection was applied to account for possible differences in band scale and projection [51].
L8 bands from B2 through B7 were reprojected with respect to the red band of S2 (WGS84),
and each band’s resolution was re-scaled to 30 m using bicubic interpolation [52,53]. The
Bidirectional Reflectance Distribution Functions (BRDF) model developed by [47] was
applied to reduce the directional effects due to the differences in solar and view angles
between L8 and S2 [10]. This correction is based on fixed c-factors provided by [54], where
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the view angle is set to nadir and the illumination is set based on the center latitude of the
tile [10]. The implementation of BRDF correction in GEE is based on results from different
studies [54,55]. Topographic correction, which accounts for variations in reflectance due
to slope, aspect and elevation, was implemented using the SRTM V3 (30 m SRTM Plus)
and GTOPO30 (Global 30 ArcSecond Elevation) products to cover all Earth regions [56].
Adjustment in L8 bands was performed using cross-sensor transformation coefficients
from [57] to solve spectral differences with S2 due to independent radiometric and geo-
metric calibration processes. In [57], the absolute difference metrics and major axis linear
regression analysis over 10,000 image pairs across the conterminous United States was
used to obtain these transformation coefficients. The above process retrieves harmonized
Landsat-8 and Sentinel-2 (HLS) images which have corrected surface reflectance with equal
spectral and spatial characteristics. A detailed overview of the harmonization process is
shown in Figure 2. Pixel extraction of the remote sensing reflectance (Rrs) was performed
from the described location (latitude and longitude) of the field stations. We selected the
main six bands from the visible, infrared and shortwave infrared, which are relevant for
remote sensing of inland waters to reduce processing time.

Figure 2. Overview of the HLS processing.

2.4. Feature Engineering and Dataset Arrangement

Additional features were derived from the HLS dataset in search of stronger correla-
tions. Similarly, the effect of adding additional features on the model performance was
also evaluated. To this end, different types of datasets were tested. Each dataset contained
different engineered features and inherent characteristics of each lake. The main differences
were based on the usage of common band ratios applied to remote sensing bands [58–64]
and additional non-radiometric features such as time and location characteristics (latitude,
longitude, month and year). Data were scaled to account for better performances in the
modeling process. Additional feature specifications are shown in Table 6. Four different
datasets were evaluated: (i) the harmonized bands (HB) dataset contained purely the
HLS bands; (ii) the feature engineering (FE) dataset contained the HLS bands plus the
additional band ratios; (iii) the harmonized bands plus region and time (HBRT) dataset
which contained the harmonized bands dataset in addition to time and space features,
and (iv) the feature engineering plus region and time (FERT) dataset which contained the
feature engineering data plus region and time. A summary of each dataset description is
provided in Table 7.
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Table 6. List of additional features derived from the HLS dataset and lake inherent characteristics.

Feature Formula Naming

Ratio of red and green plus near infrared Red/Green + NIR SF1
Average of green plus red (Green + Red)/2 SF2
Ration of green and red Green/Red SF3
Ratio of red and green Red/Green SF4

Radio of near infrared and green NIR/Green SF5
Latitude - Lat

Longitude - Lon
Month - Month

Year - Year

Table 7. Summary of the studied datasets.

Dataset Features Description

HB (harmonized bands) HLS bands Original harmonized Landsat–Sentinel bands

FE (feature engineering) H-bands, red/green + NIR, (green + red)/2,
green/red, red/green, NIR/green HLS bands and the radiometric band ratios

HBRT (HLS bands and region and time) HB, latitude, longitude, year and month HB dataset, region and time

FERT (engineering and region and time) FE, latitude, longitude, year and month FE dataset, region and time

2.5. Machine Learning Algorithms

Machine Learning algorithms are data-driven methods, and, therefore, they require
enough in situ water quality observations that contribute to the “learning” of the model.
In this process, the models establish a relationship between water leaving radiance ac-
quired remotely [65] and the in situ observations [33]. Hence, there is an inherent empirical
relationship established between target parameters and predicting features. The learn-
ing characteristic of machine learning algorithms is further evaluated in this study by
considering additional predicting features that, such as the water leaving reflectance of
a specific measuring point, are also intrinsic to each waterbody. This could help to improve
retrievals from purely remote sensing features, which often suffer from high correlation
and collinearity between them [6]. Recently applied regression models in research of re-
mote sensing of inland waters were used as modeling approaches. Supervised learning
algorithms considered were the linear regression (LR) [66–69], support vector regression
(SVR) [70–74] and random forest (RF) [22,75–77]. Additionally, we employed deep learning
algorithms, which have been less commonly applied in the field, from which we focused
on the extreme learning machine (ELM) [13,31,78] and the multilayer perceptron regressor
(MLP) [14,79–81].

For every target parameter, each of the above models and hyperparameter optimiza-
tion with common values in GridSearch was trained and tested. Intensive hyperparameter
tuning was not mainly addressed, since the primary goal was to evaluate differences in
datasets for machine learning models in similar conditions. The settings of the LR model
consider an intercept. Hyperparameters for SVR used a radial basis function (rbf) kernel,
regularization parameter of C = 1.0 and epsilon = 0.1. We employed RFR with squared
error criterion as a function to measure the quality of a split. Different activation functions
were tested for ELM depending on the training data (sig, sin, radbas, hardlim, purelin and
tansig), with common occurrences of sigmoidal function and hidden nodes ranging from
50–1000 for different parameters. MLP was used having five hidden layers with the ADAM
activation function and a learning rate of 0.01, and Bayesian regularized backpropagation
was utilized to train the model. The modeling approach was conducted using SciKit Learn
(v1.0.2) in Python (v.3.10,3) and the Caret package (v2019.03.27) in R (41.3). Google CoLab
was used as the cloud computing platform to perform all calculations.
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2.6. Model Evaluation

Cross-validation with k = 5 folds was selected as our main method of model evaluation.
The train/test split ratio was 80% training and 20% testing. Random selection of samples
in each iteration was performed to ensure representative selection of data in the training
and testing stages. The presence of multicollinearity in the predictors was addressed
by an initial feature selection with mutual info regression as the scoring function and
a second-degree polynomial feature to account for the non-linearity in the data. To ascertain
model performance, we used the following quantitative error metrics: the mean absolute
error (i), mean squared error (ii), root mean squared error (iii) and R2 (iv). Additionally,
we considered the number of features (v) used as a metric for overall comparison among
the models. It was considered that the model with the need for fewer predictors has an
advantage in terms of required computing power. The error metrics were calculated for
both the training and independent testing dataset. Respectively, each performance metric
is defined as

R2(y, ŷ) = 1 − ∑
nsamples−1

i=0 (yi − ŷi)
2

∑
nsamples−1

i=0 (yi − yi)
2

(1)

RMSE (y, ŷ) =

√
1

nsamples
∑

nsamples−1

i=0 (yi − ŷi)
2 (2)

RMSE (y, ŷ) =
1

nsamples
∑

nsamples−1

i=0 (yi − ŷi)
2 (3)

MAE (y, ŷ) = 1 − ∑
nsamples−1

i=0 (yi − ŷi)
2

n
(4)

where ŷi is the estimated value, yi is the observed value and nsamples is the number of samples.

3. Results

3.1. Correlation of Water Parameters and Derived Predictors

The correlation between target parameters and predicting features was investigated
by the Pearson’s coefficient. The range of the coefficient for all features is shown in
Figure 3. The bigger thickness in the arrow indicates a higher correlation with specific
predictors. Individual plots of nodes and arrows and their correlation matrix are provided
in the Supplementary Materials. Overall, the highest positive and negative correlations
are in the order of r ≈ 0.50 and r ≈ −0.48. The green band is moderately correlated
(r ≈ 0.38) with turbidity, SDD, BOD and COD. The red band has a slightly higher correlation
(r ≈ 0.42) with TURB, SDD and COD. The NIR band presented the highest correlations on
average (r ≈ 0.43) with TURB, TSM, BOD and COD. The SWIR bands displayed very weak
correlations (0.17 ≤ r ≤ −0.07).

From the band ratios, the SF1 and SF2 had a considerable correlation with the targets.
SF1 displayed (r ≈ 0.39) with TURB, SDD, BOD and COD. SF4 and SF5 were poorly
correlated (0.20 ≤ r ≤ −0.20) with all the parameters, except for an r = -0.30 and r = 0.27
for TURB. From the SF predictors, SF2 and SF3 showed a higher correlation (r ≈ 0.39 and
r ≈ 0.36) with TURB, SDD, BOD and COD. Latitude and longitude were also moderately
correlated with SDD, PTOT, BOD and COD, especially latitude (r ≈ 0.37). Year and month
were poorly correlated with all analyzed predictors (0.20 ≤ r ≤ −0.20). Overall, the most
correlated features were the ones of the visible and near-infrared regions, which showed
higher correlation in comparison with the spectral features and the region and time features.
Green, red and near-infrared bands showed higher correlations with TURB, SDD and BOD
and COD. Short-wave infrared bands 1 and 2 almost completely lacked any significant
correlation. Individual correlations are displayed in the supplementary figures (SF1). The
NIR band and SDD parameters show the highest correlations for a predictive feature and
a target parameter. Similarly, NO3-N and DO show the lower correlations for a feature and
target, correspondingly.
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Figure 3. Sum and individual correlations of the water quality parameters with predicting features.
The total of each node represents the sum of absolute value of positive and negative correlations
between all the parameters with all predictors.

3.2. Model and Dataset Evaluation

Training and test phases were evaluated using the four available datasets (HB, FE,
HBRT and FERT) for each algorithm (LR, SVR, RFR, ELM and MLP). The best dataset for
each model is then shown in the table alongside the error metrics of better performance.
This evaluation was performed for every target parameter. The entire modeling results are
summarized in Table 8. In general, LR retrieved low-performance models (R2 = 0.33). It
performed better on SDD and COD. However, lower performances were shown for TSS
and TURB. SVR performed better than LR in most of the parameters, both for the nOACs
and OACs, except for COD and Chl-a. Regarding NO3-N, most of the models performed
poorly, with only SVR attaining reasonable results by retrieving R2 = 0.42 using the HBRT
dataset. In the beginning of the calibration process, RFR tended to overfit the data, even
with a relatively low number of estimators in each random forest (n_estimators = 5000).
This was addressed by tuning the maximum depth of each tree and the minimum number
of samples required for a split.
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Table 8. Summary of the best performing dataset for all models and all parameters in train and test
stages. Acronyms and units are as follows: chlorophyll-a (Chl-a: mg/L); turbidity (TURB: NTU);
total suspended matter (TSM (mg/L); Secchi disk depth (SDD: m); dissolved oxygen (DO: mg/L);
total phosphorus (PTOT: mg/L); nitrate (NO3-N: mg/L); biochemical oxygen demand (BOD: mg/L);
chemical oxygen demand (COD: mg/L).

TRAIN TEST

Model Dataset R2 RMSE MSE MAE # Feat Dataset R2 RMSE MSE MAE # Feat

Chl-a
LR HBRT 0.48 38.42 1475.96 20.58 9 HB 0.43 42.25 1784.68 23.34 6

SVR FERT 0.63 33.66 1132.83 13.87 15 FERT 0.42 38.76 1502.37 19.74 15
RFR FERT 0.81 23.92 572.21 9.60 10 HBRT 0.53 35.11 1232.70 16.18 9
ELM FERT 0.53 36.20 1310.31 19.08 15 FERT 0.53 33.61 1129.74 21.77 15
MLP FERT 0.62 60.43 3652.16 25.86 15 FERT 0.37 27.53 758.13 13.53 15

TURB
LR HBRT 0.70 27.53 757.80 13.29 9 HBRT 0.32 45.40 2060.82 21.37 9

SVR FERT 0.97 9.21 84.77 1.60 15 FERT 0.41 52.32 2737.40 19.22 15
RFR HBRT 0.82 22.01 484.41 7.59 9 HBRT 0.47 50.05 2504.73 16.50 9
ELM HBRT 0.43 44.33 1964.97 20.43 10 FERT 0.65 26.97 727.41 16.06 15
MLP HBRT 0.60 30.11 906.71 13.46 15 HBRT 0.61 40.44 1635.66 17.40 10

TSM
LR HB 0.51 32.96 1086.33 22.13 6 HB 0.22 40.58 1646.95 26.72 6

SVR FERT 0.89 16.02 256.70 4.07 15 HBRT 0.28 54.79 3001.95 25.55 10
RFR FERT 0.79 24.18 584.45 15.11 4 HBRT 0.30 52.04 2708.02 28.09 4
ELM FERT 0.30 48.57 2358.74 28.39 15 FE 0.43 40.23 1618.31 25.52 11
MLP HB 0.28 36.27 1315.51 22.28 6 HB 0.30 48.39 2341.57 26.06 6

SDD
LR HBRT 0.70 1.81 3.28 1.18 9 FERT 0.56 2.26 5.10 1.42 12

SVR FERT 0.82 1.39 1.92 0.49 15 HBRT 0.69 2.03 4.14 1.10 7
RFR FERT 0.88 1.18 1.40 0.58 14 HBRT 0.72 1.93 3.73 1.02 6
ELM FERT 0.70 1.84 3.39 1.20 15 FERT 0.72 1.69 2.84 1.17 15
MLP FERT 0.80 2.62 6.87 1.54 15 FERT 0.58 1.65 2.73 0.94 15

DO
LR HBRT 0.40 1.69 2.84 1.17 8 HBRT 0.37 1.75 3.07 1.25 8

SVR HBRT 0.44 1.64 2.68 1.06 6 HBRT 0.39 1.76 3.08 1.19 6
RFR HBRT 0.83 0.94 0.88 0.58 4 HBRT 0.56 1.55 2.39 0.99 4
ELM FERT 0.40 1.72 2.96 1.24 15 FERT 0.32 1.78 3.18 1.32 15
MLP HBRT 0.53 1.88 3.53 1.33 10 FERT 0.37 1.69 2.86 1.19 10

PTOT
LR HBRT 0.52 0.25 0.06 0.14 9 HB 0.22 0.43 0.18 0.17 6

SVR HBRT 0.79 0.17 0.03 0.05 9 HBRT 0.47 0.26 0.07 0.11 9
RFR FERT 0.84 0.15 0.02 0.05 14 FERT 0.56 0.24 0.06 0.09 14
ELM FERT 0.57 0.22 0.05 0.13 15 FE 0.41 0.27 0.07 0.16 11
MLP FERT 0.58 0.31 0.09 0.14 15 FERT 0.40 0.25 0.06 0.10 15

NO3-N
LR HBRT 0.30 4.66 21.71 0.30 2 FERT 0.03 37.25 1387.90 6.07 1

SVR HBRT 0.82 2.48 6.17 0.94 9 FERT 0.42 26.32 692.88 2.96 14
RFR HBRT 0.78 2.64 6.98 0.77 2 FERT -1.52 26.86 721.55 3.19 1
ELM FERT 0.42 14.57 212.43 6.58 15 HBRT 0.43 31.31 980.11 6.96 15
MLP FE 0.05 4.94 24.40 2.61 11 FE 0.21 25.99 675.47 3.93 11

BOD
LR HB 0.56 7.33 53.80 4.96 5 HB 0.32 10.08 101.54 6.00 5

SVR HBRT 0.71 6.01 36.15 2.58 9 FERT 0.41 10.55 111.33 5.68 14
RFR HBRT 0.87 4.21 17.72 2.17 7 HBRT 0.56 9.44 89.12 4.74 7
ELM FERT 0.42 9.95 98.96 6.16 15 FERT 0.65 7.41 54.96 5.12 15
MLP HB 0.57 9.67 93.51 7.09 6 HBRT 0.39 9.19 84.44 5.33 10

COD
LR HBRT 0.52 19.21 368.94 12.45 8 HBRT 0.48 21.11 445.72 13.34 8

SVR FERT 0.64 17.86 319.10 8.47 15 HBRT 0.40 20.21 408.63 12.20 6
RFR HBRT 0.83 11.75 138.15 6.07 8 HBRT 0.54 17.94 321.67 10.56 8
ELM FERT 0.38 22.15 490.49 13.92 15 FERT 0.57 16.83 283.16 11.95 15
MLP HBRT 0.39 31.23 975.36 15.72 10 HBRT 0.21 20.09 403.41 13.39 10

From this routine, RFR improved greatly and retrieved most of the parameters in
acceptable values mostly by using the best on HBRT, and except for NO3-N, RFR performed
satisfactorily for DO (R2 = 0.56) and PTOT (R2 = 0.56). Regarding the development of
the deep learning models, it was expected to establish a baseline routine of calibrated
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models with LR and improve it based on the SVR and RFR training methodologies to
finally surpass ensemble learning models with neural networks such as ELM and MLP.
Overall, ELM performed satisfactorily in most of the analyzed parameters. Specifically,
ELM outperformed all algorithms when retrieving Chl-a (R2 = 0.53), TURB (R2 = 0.65),
TSM (R2 = 0.43), SDD (R2 = 0.72), BOD (R2 = 0.65) and COD (R2 = 0.57). However, the
results we obtained from the MLP were subpar in comparison with ELM or RFR. MLP
was trained with relatively high learning rates (1 × 10−2 to 1 × 10−5), and tests of up to 10
deep layers were used together with the Adam optimizer. Weights were initialized with
random normal, as it retrieved better results than Xavier initialization. Except for TURB,
MLP results generally have less accuracy than ELM and RFR.

At this point, the main metrics for model performance were R2, RMSE, MSE, MAE
and the number of features utilized to reach optimal error performance in the test phase
(# Feat). We compared these metrics in a comprehensive evaluation to determine the best
model for each parameter. The five algorithms (LR, SVR, RFR, ELM and MLP) were trained
using the best dataset determined in Table 8 to calibrate each model in its best conditions.
The results of this evaluation are displayed in radial graphs in Figure 4.

 

   

  

   

Figure 4. Comprehensive evaluation of tested algorithms based on the relevant error metrics for
optimal performance. The algorithms use the best source dataset in all cases.

In general, ELM and RFR resulted in the best models, which outperformed the rest
of the machine learning techniques for most of the water parameters (Chl-a, TURB, TSM,
SDD, PTOT, BOD and COD) from a comprehensive perspective. SVR performed better for
the challenging NO3-N. Scatter plots of target parameters using the models calibrated with
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the best corresponding dataset are shown in Figure 5 for both train and test datasets. From
the scatterplots it is visible that TSM, NO3-N and to a lesser degree TSM were the most
challenging parameters to model and that SDD was able to be modeled with high accuracy
by the ELM (R2 = 0.72), as seen in the performance in terms of error metrics in Table 8.

Figure 5. Scatterplots of modeled and measured water quality parameters in the test dataset.

The results also showed that the big majority of the models for all the water parameters
performed better when using any of the two datasets aware of region and time (HBRT and
FERT). Therefore, a deeper analysis was performed in this direction by comparing the R2

of each dataset and the performance of each model when trained with different datasets.
Figure 6 shows the average R2 for the complete modeling process, which includes not
only the best results summarized in Table 8 but the rest of the models as well. Figure 6a
stresses how the performances of both HBRT and FERT are superior to HB and FE for
train and test evaluations. Similarly, Figure 6b shows the performance of the algorithms
when using different datasets. When trained with HBRT or FERT datasets (Figure 6a, red
lines; Figure 6b increased tendency from left to right), all the algorithms reached higher
correlations than when trained with HB or FE (Figure 6a, blue lines; Figure 6b decreasing
tendency from right to left).
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Figure 6. Train and test average R2 for each algorithm and dataset. In (a,b) improvement is noticeable
when using datasets that have the RT features which are colored in red for both train and test phases.
Similarly, the increase in the performance is seen on all the models when using an HBRT or FERT
dataset, (c,d).

3.3. Model Capabilities

To stage model capabilities, we applied the methodology using harmonized products
for the period March 2021–March 2022 to estimate time series of specific parameters (Chl-a,
DO and SDD) and to model their variations throughout a year. The points marked in
the evolution of the targets were used as a suitable date and to map spatial distribution.
We selected different lakes around the world to test the transferability of the models.
Specifically, Lake Tahoe (U.S.), Lake Trasimeno (Italy) and Lake Vichuquen (Chile) were
selected for Chl-a, DO and SDD, respectively, based on field data availability. Time series
and parameter maps are shown in Figure 7. Chl-a in Lake Tahoe shows concentrations
between 5–10 mg/L for most of the year, but after a breaking point in December 2021,
where the concentration reached its highest level above 20 mg/L, it gradually decreased
and kept a range between (10–15 mg/L). DO shows low variability during the year, and it
is in a range of 8.8–9.5 mg/L in Lake Vichuquen.

The lowest concentration is reached by the end of November 2021, from which it
starts a recovery to higher concentrations above 9 mg/L. March, April and mid-May seem
to be the months of higher availability of DO in the area. The spatial resolution of 30 m
from the harmonized products allows adequate visualization of the distribution of DO
even in a relatively small lake as Vichuquen (40 km2). From the map, it is visible that DO
availability is higher in the outlet and inlets, located at north and south, respectively, likely
caused by the turbulence and stirring of the incoming and leaving water flows. SDD in
Lake Trasimeno ranges on average from 1 to 4 m during the year. The lowest transparency
is seen after August 2021 (≈1 m) and remains in this range until its recovery in January
2022 of 2.5 m. The breaking point in August is selected as the date of interest for a spatial
visualization (31 August 2021). The surface distribution of SDD reveals a big cluster of
lower transparency in the northwest part of the lake. The south part, which is an open bay,
remains clearer.
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(a) 

  
(b) 

  
(c) 

Figure 7. Time series and spatial distribution of (a) Chl-a in Lake Tahoe (U.S., 29 November 2021),
(b) DO in Lake Vichuquen (Chile, 29 November 2021) and (c) SDD for Lake Trasimeno (Italy, 31
August 2021). Background image: harmonized red band in greyscale. The plots show the average of
the parameter for the whole lake. Spatial variation is visible in the maps.
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3.4. Correlation between OAC and nOAC

For the specific case of nOACs (DO, NO3-N, PTOT, BOD and COD), their estimation
resulted in a challenging approach, as seen in the results of Table 8 and Figures 4 and 5. For
NO3-N only SVR was able to produce reasonable results (R2 = 0.42). To further evaluate
the possibility of estimating nOAC using indirect means, a correlation analysis between
OAC and nOAC was performed and is displayed in Figure 8. Similar to Figure 3, each
node of the Chor diagram shows the sum of absolute values of Pearson’s correlation.
Separate individual nodes are available in the Supplementary Materials. From the results,
no significant correlations between OAC and nOAC were retrieved, as seen in the total
absolute value of the nodes in Figure 8, which barely overpass r ≈ 0.20 for TSM (Figure 8a),
BOD (Figure 8b) and SDD (Figure 8c). These results stress the difficulty of estimating nOAC
from indirect methods which could rely on relevant correlations with OAC that can be
computed via remote sensing.

 

 

 

 

Figure 8. Sum and individual correlations of the OAC with nOAC. Diagrams of (a), (b) and (c) TSM,
BOD and SDD, respectively.

4. Discussion

4.1. Global Water Quality Data Availability

The availability of water quality data at a global scale that can be used in synergy
with remote sensing data is still very limited. In this study, the raw gathered data were
filtered substantially and went from initial 300,000 measurements of all the parameters
around the globe to a final dataset of around 7000 samples after data selection. This is still
an important amount of data in comparison with the available data in previous years or
other studies of water quality in inland waters [12,31,75,82,83]. Regarding the sampling
sites and depths in the considered waterbodies, this study considered the location of the
sites during the cleaning phase of the data and rejected samples that were adjacent to the
shore to avoid the adjacency error. This is a similar approach to a previous study that
successfully utilized a wide range of sampling sites in [31]. Although this work focused
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on the water column and avoided shallow regions close to the coast and bottom of the
reservoir, rejection of lakes or reservoirs based on average depth was not performed. Here,
it is acknowledged that a more targeted approach to sampling could improve the quality
of the results and suggested that future studies consider the location and depth of the
sampling sites to minimize potential errors.

However, it cannot be denied that the water availability at a global level is limited by
several factors that can be improved based on the inter-cooperation of different instances
and technical issues. For example, measuring stations at the global level are limited to
certain areas around the world. In this work, we notice a lack of water information for
large parts of the planet, particularly in South America, Africa and Asia. As exposed in
Section 2, the study of Thorslund and van Vliet [35] indicates that most of the measuring
water stations for lakes and reservoirs were located in North America (with big differences)
and Europe. This exposes how a very important number of inland waters are not being
monitored. Additionally, the integration of global data is constrained by the fact that every
nation is responsible for the technical requirements of water monitoring and making data
public. Therefore, it is likely that already monitored data from several regions in the world
are not yet available to a greater extent due to limitations in this direction, and therefore
their usage may be missed for global applications. In worse cases, gathering global data
could even be limited by trifling facts as ignorance of foreign languages. Thus, international
cooperation is then needed to apply team-work to data availability. In this sense, initiatives
such as the Global Freshwater Quality Database (GEMStat) from the UN Environmental
Program [1] offer an adequate framework for the previously mentioned challenges.

4.2. Harmonized Remote Sensing Data for Water Quality Estimation

In addition to field data availability, remote sensing also has important limitations in
modeling full potential water quality at the global scale. For instance, temporal resolution
limits the coupling of spectral and field data. In this study, we addressed this limitation up
to a certain degree by harmonizing Landsat-8 and Sentinel-2 data, which increased data
availability. This allowed the use of coupled satellite data in a singular dataset, which was
one the main objectives of this study.

However, the current harmonization process is not specifically designed for inland
waters. Similarly, the atmospheric correction used in [34], the Second Simulation of the
Satellite Signal in the Solar Spectrum (6S), is also not designed for waterbodies, as it
occurs with other corrections designed for inland waters such as C2RCC. Therefore, the
results based on this methodology should be taken with caution, since discrepancies
from a harmonization process and an atmospheric correction for different applications
than water quality retrievals are likely to exist. The main reason this study applied these
methodologies was the existing implementation in the cloud platform used for image
processing. There is no current harmonization process or atmospheric correction developed
for cloud computing in GEE that is designed to enhance the spectral characteristics of
water surfaces, and working with the entire collection of Landsat and Sentinel satellites
was not feasible using local computational resources. Developing both a harmonization
procedure and an atmospheric correction for the cloud platform was out of the objectives
of this research. However, the harmonization procedure is still in development, and
it is likely to account for water surface characteristics in the future [84]. Likewise, the
6S atmospheric correction is a common procedure in remote sensing and it has already
been implemented in mapping and water quality monitoring [85]. Adopting the above-
described methodology allowed the building of a global dataset for model development and
contributed to understanding to what extent machine learning can benefit from increased
data availability.

Nevertheless, non-coupled satellite acquisitions and dates of water measurements
were two of the main filters that avoided the usage of a great portion of the gathered data.
The spatial resolution also constrains availability when the resolution is not enough to
retrieve enough pixels from very small reservoirs. The pixel size of harmonized data is
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30 × 30 m, which allows consideration of a big number of lakes and reservoirs. However,
it may not be the best resolution for inland waters below surfaces of 20 km2 due to possible
errors caused by bottom reflection and adjacency errors caused by land next to shores.
Therefore, the revisit time of harmonized data (3 days), even when it may be considered
adequate in the field, is probably not good enough to monitor changes in water parameters
that could exhibit great variations even during one single day and to account for a great
part of the available field data, as seen in this study. Therefore, the tendency to improve
temporal and spatial resolutions is highly important, as some ground-based high-frequency
sensors already demonstrate [86].

4.3. Machine Learning Models and Cloud Computing

ML models provide research in water quality the possibility to model and estimate
different water parameters with a high degree of accuracy based on adequate data avail-
ability [21,87,88]. In addition, the variety and distinct nature of available ML algorithms for
modeling purposes foster rigorous evaluation of the methodology and contribute to reach-
ing stronger and more developed models [14,33]. In this study, we focused on the “learning”
advantage of ML models and tried to provide as much data as possible by means of global
measurements and remote sensing data fusion techniques, with the goal of reaching robust
models that could retrieve water quality parameters accurately. As in previous research
using ML approaches, we could develop models that predict water quality parameters
with reasonable results. Furthermore, a key improvement in the direction of modeling at
the global scale was achieved, which has been one of the main limitations of modeling
water quality of inland waters [6,7] and that was only addressed before by bio-optical
models with more complex approaches in terms of development [7,33,89]. The extent of the
regionalization modeling is precisely the advantage that ML models offer when providing
enough and high-quality data. In this study, we showed how the contribution of enough
high-quality input data and adequate calibration of ML models could start pushing existing
research barriers. In this sense, the potential for improvement of the ML models is still
enormous, particularly with the progressive increment in data availability coming from
more frequent field campaigns, better acquisition sensors and disclosure of non-public
data. Therefore, modeling global water quality in inland waters should be considered as
a continuous area of research and development with the goal to achieve models that
improve continuously from constant monitoring. In addition to the above-mentioned
limitations, challenges regarding computational power and storage space existed. The large
number of models to be tested plus even small calibration techniques resulted in extensive
computing periods which could not be covered by our locally available hardware resources.
Therefore, a cloud computing platform (Google Colab) was required to address this prob-
lem and proceed with model evaluation. Cloud computing allows parallel computing
while focusing cloud servers only for computational tasks. This methodology distributes
more efficiently available resources and should be considered for similar tasks, especially
when dealing with large datasets. Similarly, the usage of Google Earth Engine also allowed
working efficiently with the vast quantity of remote sensing data products of the match ups
with field measurements, and thanks to previous knowledge of state-of-the-art applications
on the harmonizing process [10,14,34,47,54], these limitations were diminished.

The potential for global monitoring was already addressed by [90] with a synthetic
dataset of top-of-atmosphere and bottom-of-atmosphere reflectances to comprise optical
variability present in inland waters. Regarding field data measured on Earth, and to the
extent of the authors’ knowledge, this is the first attempt to model water quality on a global
scale using remote sensing data based on machine learning algorithms. Therefore, the
comparison of the models developed here is complicated because, until the submission
of this paper, there are no similar studies that attempt similar modeling scales. However,
based on the well-established validation methodology applied, the reasonable performance
of the models and its adequate application in time series and water quality maps, we
posit that our methodology is on the way to establishing a basis for future development in
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this research area. With the distances apart and for an exercise of comparison, the results
here yielded were compared with novel publications that have successfully developed ML
models for inland water quality. For example, error metrics of Chl-a (R2 = 0.53), TURB
(R2 = 0.65) and DO R2 = 0.56) from ELM and RFR are comparable with modeling results
observed in [33] of Chl-a (R2 = 0.48), TURB (R2 = 0.44) and DO R2 = 0.21. On the other hand,
PTOT (R2 = 0.56), NO3-N (R2 = 0.42), BOD (R2 = 0.65) and COD (R2 = 0.57) are comparable
with the results of Zhang et al. [88] regarding phosphorus (R2 = 0.94), nitrogen (R2 = 0.95),
BOD (R2 = 0.91) and COD (R2 = 0.95), which were retrieved from hyperspectral images.
Regarding the poor performance of the MLP, the strategy was to build neural nets deep and
wide enough to first overfit the data and then reduce them. However, this operation could
not be totally completed due to a lack of dedicated GPUs (even in the cloud server) and
time constraints. Even in the best performing parameter (TURB), most of the MLP results
were in the underfitting range, and train and test splits showed similar error metrics. These
results may provide a clear picture of the behavior of a partially optimized MLP.

4.4. Estimation of OAC and nOAC

The estimation of OAC with remote sensing has been addressed extensively in research
for least two decades [12,19,22,60,82,91–99]. Particularly, parameters such as SDD, turbidity or
Chl-a and TSM have been studied with great detail, and their estimation has been the target of
different modeling approaches, from empirical to semi-analytical models [26,83,95,100–110]. nOAC,
however, represented a greater challenge because of its lack of response to absorption or
scattering of the electromagnetic light [7].

A direct estimation of nOAC from RS data has been previously investigated. For
example, [73] used SVM and SPOT5 data for potassium permanganate index (CODmn),
ammonia nitrogen (NH3-N), chemical oxygen demand (COD) and dissolved oxygen (DO)
in the Weihe River with better performance than the statistical regression. Recently, [111]
used ML models for spatial distributions of the annual and monthly DO variability in
Lake Huron from Landsat and MODIS data with consistent values of R2 = 0.88. Simi-
larly, [88] used a Bayesian probabilistic neural network to predict phosphorus, nitrogen,
chemical oxygen demand (COD), biochemical oxygen demand (BOD) and chlorophyll-a
from hyperspectral images in a river from multispectral images. We compared the average
R2 summary of the OAC (Chl-a, TURB, TSM and SDD) and nOAC (DO, PTOT, NO3-N,
BOD and COD) to contrast how the results also show that in general nOAC presents more
challenges than OAC (Figure 9). All the models achieved higher results in OAC, but at the
same time nOAC results were reasonable and did not show an incapacity to model these
parameters. This reinforces the fact that ML models are also suited to deal with parameters
with non-linear relationships between remote sensing data or inherent lake characteristics,
contributing to the improvement of modeling nOAC.

Figure 9. Average R2 for all the models by the nature of the target parameters. OAC: Chl-a, TURB,
TSM and SDD. nOAC: DO, PTOT, NO3-N, BOD and COD.
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4.5. Inherent Lakes’ Characteristics as Model Improvers

Typically, semi-empirical models in the field of remote sensing of inland waters do
rely on the physics knowledge of the optics in the water and the response of water or
water constituents to the interaction with the electromagnetic energy. One main objective
of this study was to evaluate this conventional approach against more unconventional
methodology that could rely more on the learning capability of the ML algorithms. On
the basis that these algorithms work better with a higher number of observations and
adequate predictors that explain better the behavior of the targets, we selected additional
characteristics of each lake to evaluate possible improvements in comparison with purely
radiometric remote sensing bands or band ratios already tested in the previous literature.
The cautious evaluation of the impact on model performance is that the addition of these
characteristics would have led to the creation of four different datasets: HB, FE, HBRT and
FERT. Region and time were the selected characteristics added to the original datasets, the
product of the remote sensing data. The correlation analysis revealed a moderate correlation
with the water parameters for latitude and longitude and very weak correlations for year
and month. Figure 10 stresses this situation.

Figure 10. Individual correlation of each predictor with water quality parameters. Features are ranged
from −1 to 1 depending on their higher positive or negative correlation. (a) displays correlations of
predictors and targets. (b) fades the areas of very low or zero correlation (−0.20 ≤ r ≤ 0.20).

In Figure 10a it is seen how the visible bands and band ratios show a higher correlation.
SWIR bands and year and month are in a very weak range, as displayed in Figure 10b,
where the region −0.20 ≤ r ≤ 0.20 is covered to highlight stronger correlations. The
occurrence that Lat and Lon are having a stronger correlation than year and month means,
therefore, that a greater utility in model development could be due to the fact that year and
month are not strictly inherent characteristics of a waterbody. Their inclusion was mainly
because of the fact that the time and seasonality have important influences on the behavior
of certain water quality, such as the blooming of algae or the arrival of storms that discharge
waters with sediment, creating turbidity. Nevertheless, the improvement in error metrics
of all the water parameters when ML models used HB and FERT datasets was evident
and validated in our methodology (Figure 11). This leads us to the conclusion that this
approach resulted in an effective improvement of the modeling of water quality parameters
by the addition of inherent lake characteristics that can be useful for ML algorithms.
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Figure 11. Improvement of temporally and spatially aware models.

Therefore, research in this direction is needed to keep the improvement of the modeling
process and to develop more accurate models. There are several inherent characteristics
that may be useful for such purposes and that can be found in constant patterns in time,
such as trophic state and chemical, biological, physical, limnological or morphological
features. Time features can be improved or added as labels for the season of the year, as
seen in [111].

5. Conclusions

This work developed machine learning models for water quality retrieval at a global
scale using remote homogenized multimodal remote sensing data. This contributed to
overcoming the present state of knowledge in which the transferability of models is limited
by the origin of field data, and modeling water quality in inland waters at different locations
was constrained. These findings directly impact the increment of our ability to analyze
lakes and reservoirs globally, particularly for several water parameters of different nature
and characteristics, which are key in the overall understanding of water quality in lakes and
reservoirs. This work is limited by the amount and origin of the field data gathered and the
extent of the remote sensing archives processed. The application of the models developed
here was demonstrated at the global scale in different lakes separated by continental
distances. However, the usage of these models in regions from where there were no
data in the calibration process is likely to be poorly accurate and would lack reliability
in results. Therefore, the methodology should be improved by gathering data from more
and different sources around the world, particularly from the African, Asian and South
American continents. Remote sensing data can be increased by harmonizing data from
older satellites, such as the Landsat constellation, and extending the current dataset. Thus,
future work should focus on increasing the data availability of both remote sensing and
global data in the field and incorporating the advances in remote sensing research such as
correction of adjacency errors and improvement of atmospheric correction.
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Abstract: Remote-sensing data are used extensively to monitor water quality parameters such as
clarity, temperature, and chlorophyll-a (chl-a) content. This is generally achieved by collecting in situ
data coincident with satellite data collections and then creating empirical water quality models using
approaches such as multi-linear regression or step-wise linear regression. These approaches, which
require modelers to select model parameters, may not be well suited for optically complex waters,
where interference from suspended solids, dissolved organic matter, or other constituents may act as
“confusers”. For these waters, it may be useful to include non-standard terms, which might not be
considered when using traditional methods. Recent machine-learning work has demonstrated an
ability to explore large feature spaces and generate accurate empirical models that do not require
parameter selection. However, these methods, because of the large number of included terms
involved, result in models that are not explainable and cannot be analyzed. We explore the use of Least
Absolute Shrinkage and Select Operator (LASSO), or L1, regularization to fit linear regression models
and produce parsimonious models with limited terms to enable interpretation and explainability. We
demonstrate this approach with a case study in which chl-a models are developed for Utah Lake,
Utah, USA., an optically complex freshwater body, and compare the resulting model terms to model
terms from the literature. We discuss trade-offs between interpretability and model performance
while using L1 regularization as a tool. The resulting model terms are both similar to and distinct
from those in the literature, thereby suggesting that this approach is useful for the development
of models for optically complex water bodies where standard model terms may not be optimal.
We investigate the effect of non-coincident data, that is, the length of time between satellite image
collection and in situ sampling, on model performance. We find that, for Utah Lake (for which there
are extensive data available), three days is the limit, but 12 h provides the best trade-off. This value
is site-dependent, and researchers should use site-specific numbers. To document and explain our
approach, we provide Colab notebooks for compiling near-coincident data pairs of remote-sensing
and in situ data using Google Earth Engine (GEE) and a second notebook implementing L1 model
creation using scikitlearn. The second notebook includes data-engineering routines with which to
generate band ratios, logs, and other combinations. The notebooks can be easily modified to adapt
them to other locations, sensors, or parameters.

Keywords: remote sensing; water quality; model development; linear regression; LASSO regularization;
L1; coincident data; Google Earth Engine
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1. Introduction

1.1. Remote Sensing of Water Quality

Remote-sensing data are used to monitor water quality [1] by estimating water quality
parameters such as clarity, temperature, and chlorophyll-a (chl-a) content [2–4]. Landsat
data are often used to estimate chl-a concentrations, which are a common index of water
quality [5–10], because their high spatial resolution (approximately 30 m per pixel), high
temporal collection rate (every 16 days), large coverage time (~37 years of data), and
spectral bands designed for vegetation studies are well suited to the estimation of chl-a
concentrations for use in long-term studies [11]. We selected Landsat data as an example
dataset for this study because of the long time periods and appropriate spectral information
contained in the dataset. These long time periods overlap with more field data, so there
are more observations available to create and validate models. Other missions, such as
MODIS or Sentinel 1, or multi-spectral images from aircraft or drones could also be used
with these methods.

Water quality characterization using earth observation data relies on regression models
that estimate the selected water quality parameters based on correlations with measured
spectral data. These models are created using spectral data collected coincidentally or
near coincidentally with the in situ measurements, so they measure the same conditions.
The spectral data are regressed on the in situ measurements, and the resulting regression
model is applied to estimate concentrations of interest [12–15]. In addition to regression
models, semi-analytical methods are also used and rely on spectral signatures of the
parameters of interest, such as chl-a levels, and use equations based on these expected
spectral peaks to compute the expected reflectance values from the sensor [16,17]. More
recently, studies have reported various machine-learning methods for fitting models, with
many of the papers comparing different methods, algorithms, and approaches [18–21].
These methods have proven successful, but the resulting models are complex, and it is
not always possible to explain the model terms and their physical meaning. Typically, the
regression models used to estimate chl-a and other water quality parameters are created by
selecting model parameters based on our understanding of the spectra of the water quality
parameter of interest. After the potential model terms are selected, the models are created
by either directly fitting the models using multilinear regression methods with a limited
set of preselected terms or by pre-selecting a slightly larger number of terms according to
the order of the expected correlations and then using step-wise linear regression to limit
the number of terms in the final model [15,22,23]. Efron et al. [24] discuss a number of
parameter selection methods or automatic parameter selection techniques for multilinear
regression models, noting that “good” models are generally categorized based on their
prediction accuracy but stressing that parsimony is an important criterion.

Since water quality models are generally developed using in situ data collected co-
incidentally with satellite data collections, the resulting models were often only applied
to images from the same collection [25,26]. In situ data are rarely collected at the same
time as satellite acquisitions, unless they are collected specifically for a remote-sensing
study, which limits the applicability of these approaches. Recent research has shown that
non-coincident data can be used to develop accurate chl-a models and that these models
can be applied to all the historical Landsat images of a given water body [22,23,27]. This
significantly increases the number of data available for model development and data anal-
ysis, thus supporting the use of remote-sensing data to evaluate long-term trends. This
finding potentially supports the use of available in situ data collected through a larger
range of conditions for model development, resulting in more robust models. For example,
Hansen and Williams [15] used near-coincident data to develop sub-seasonal models that
leveraged different spectral signatures based on the seasonal succession of algal species
and used these models to analyze conditions over a nearly 40-year period. Tanner et al. [28]
applied one of these models developed for Utah Lake to all historic Landsat observations
to analyze long-term trends in chl-a concentrations.
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1.2. Water Quality Models for Optically Complex Waters

Using remote-sensing data to study water quality in optically complex waters is
complicated by factors such as complex optical properties (especially in turbid water bodies
such as Utah Lake [25,26,29]), high suspended sediment volumes, shallow depths, and the
challenge of differentiating between dense algae blooms and land vegetation in shallow,
near-shore areas [8,30]. Multi-linear and step-wise regression result in parsimonious models
with only a few terms, where the behavior or correlation of each term can be analyzed.
However, the model terms for multi-linear regression, or the model terms and order of the
terms for step-wise linear regression, must be selected a priori. Such terms are generally
selected based on a spectral understanding of the parameter of interest and may not be
optimal for optically complex water.

In this study, we focus on two challenges that impact empirical model development:
the first is obtaining sufficient data with which to develop a regression model, and the
second is determining the terms to include in the model, especially with regard to optically
complex waters where a model may need to account for confounding factors and their
resulting spectra. The first challenge can be addressed by using near-coincident data for
model development rather than only coincident data and applying the resulting models
to historic remote-sensing data. The second can be addressed using machine-learning
methods, for which the limitation is that it is difficult to examine and explain individual
terms in the model; consequently, the resulting models lack explainability. Our method
addresses this latter issue.

Figure 1 shows an image of Utah Lake, our case study area. Utah Lake is optically
complex with very high concentrations of suspended sediments, organic matter, and
carbonate precipitates (Figure 1). Utah Lake characteristically exhibits the effects these
various confusing substances have on the spectral chl-a signal as it has high concentrations
of suspended solids, high levels of dissolved organic matter, a significant number of
precipitates, and is shallow, thus posing a potential for bottom reflectance, although the
water is so turbid the bottom is rarely visible [31].

Recent work demonstrating machine-learning methods has addressed the problem of
developing models for optically complex scenarios, as model development can be used
to explore a large feature space of non-standard terms. However, because of the large
number of parameters and non-linear combinations inherent in most machine-learning
methods, it can be difficult to determine the ultimate weight and physical relevance of
various parameters and under what circumstances a model might be applicable based on
a spectral understanding. Additionally, in most water quality applications, there are a
limited number of measured or observed data, and machine-learning methods with a large
number of features compared to the number of target data can result in the overfitting of a
model, a term used to describe models that fit a training dataset very well but cannot be
generalized to other data (even from the same population). This is certainly a concern for
water quality applications as in situ water quality datasets are generally small.

Due to the potentially large number of parameters and non-linear combinations
inherent in most machine-learning methods, it can be difficult to evaluate a trained machine-
learning model to determine the ultimate weight and importance of the various parameters
and their physical relevance as well as under what circumstances the model might be
applicable based on a spectral understanding.

Our goal is to use machine-learning approaches to develop models with explainable
spectral terms for complex waters rather than solely a model with a minimal error metric.

1.3. Approach

In this study, we explore regression models created using Least Absolute Shrinkage
and Selection Operator (LASSO) regularization, which is more commonly known as L1
regularization. This results in a familiar multi-term regression model with a limited number
of terms that can be evaluated to understand statistical correlations between the spectral
terms and in situ data. Using L1 regularization allows us to explore a very large feature
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space as it does not require the a priori selection of specific model terms or the relatively
expected importance or order of those terms. We present a case study wherein the number
of features is similar in order or magnitude to the number of measurements used to fit
the model. With L1 regularization, the user can trade model accuracy and parsimony
using a weighting term. Stine (as summarized in [19]) notes that L1 provides more robust
parameter selection than stepwise regression, which is sensitive to user-provided feature
selection and order, especially in cases where the number of features is similar to the
number of observations.

Figure 1. A Landsat image showing sediment plumes and carbonate precipitation in the northern
and southern ends of Utah Lake, with less turbid waters entering the lake through Provo Bay on
the right center of the image. Sediment resuspension from boats and other activities can be seen as
“tracks”, with a boat and its associated tracks evident just west and a little south of Provo Bay.

Ishwaran, in the discussion provided in [24], notes that while we good prediction error
performance is desirable, simpler models are also prudent. These goals can be “diamet-
rically” opposed. In theory, lower prediction error should result in more parsimonious
models, but in practice, small improvements in prediction often result in larger models [24].
We use L1 regularization to develop a more general model by “shrinking” (i.e., regularizing
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or constraining) many model coefficients such that they approach zero. This results in
models that are less complex and avoid overfitting. For our purposes, this also results in
simplified models wherein terms can be examined and explained easily.

There are two related regularization approaches that are commonly used: Ridge (L2)
and L1 regularization. Both add a penalty term to the loss function, which is typically
the sum of the squared error. The added penalty term is the sum of the coefficients
squared for L1 or the sum of the absolute values of the coefficients for L2 regularization.
Both approaches minimize the coefficient values in the model as both the number and
magnitude of the coefficients increase this term. L2 regularization shrinks the model
coefficients such that they approach zero, which results in many terms having small
coefficients, but the coefficients do not generally reach zero. Conversely, L1 regularization
tends to set coefficient values to zero rather than a small number. L1 regularization can
encounter convergent issues because of the step-function that occurs when coefficients are
set to zero and, consequently, is used less than L2 regularization. Knight, in the discussion
provided in [24], notes that L1 regularization is special in that it usually produces exactly
0 estimates for model coefficients when they are dropped, and that it is robust with respect
to the tuning parameter. Loubes and Massart, in the discussion provided in [24], note that
parameter selection methods such as L1 allow for the fitting of linear models to noisy data
with only a few parameters.

L1 regularization minimizes cost functions, which constitute the prediction error
plus the sum of the absolute values of the coefficients, as shown in Equation (1). We
implemented a multi-linear regression model with L1 regularization using the Lasso model
from scikit-learn (sklearn.linear_model.Lasso) [32]. The scikit-learn Lasso model minimizes
the cost function, which, in this case, is the L2 norm of the error term squared (i.e., the
mean squared error) and the L1 norm of the model coefficients (i.e., the sum of the absolute
values of the model coefficients):

min
2

1
2n

‖X·w − y‖2
2 + α‖w‖1 (1)

where X denotes the model features, n denotes the number of features; w represents the
feature coefficients; y is the target value or measured chl-a concentration; ‖x‖2

2 is the
squared L2-norm or the square of the sum of x, which, in this case, is the squared error

given as
(√

∑(X·w − y)2
)2

; X·w are the predicted values (i.e., the dot product of the

model coefficients and parameters); and ‖w‖1 is the L1-norm or sum of the absolute value
of the coefficients ∑|w|. This results in a function with a weighted combination of the
fitting error and the sum of the absolute value of the model coefficients with alpha (α) as
the LASSO weighting parameter.

Minimizing this cost function (Equation (1)) using L1 regularization facilitates the
sections of a subset of features for regression analysis. This enhances prediction accuracy
by reducing overfitting and facilitates interpretability by limiting the number of resulting
model parameters.

L1 regularization can be thought of as an approach used to obtain the best predictive
performance with the smallest number of features. However, in some cases, L1 selects
parameters based on their interaction with the target value and does not attempt to select
the parameters that have the most dominant effect on prediction. L1 does not necessarily
approximate a physical model. For example, if multiple features are correlated, L1 tends to
choose only one of those features and assigns a weight of 0 to the others. This can cause a
model to omit a significant proportion of informative features. Generally, L1 will choose
more variables than a traditional model, even with optimal α selection. Due to these issues,
a different dataset can cause L1 regularization to select different variables; however, in this
study, we found the variable selection process to be very stable. We explore this effect in
Section 3.2, where we evaluate a range of α values and datasets using k-fold validations
and compute what percentage of the models select various parameters [33,34].
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Based on these caveats, we caution other researchers against blindly using models
generated via L1 in cases where the number of parameters is of a similar order to the
number of training samples, which is typical for most remote-sensing applications where
a few hundred samples is considered large. We submit L1 regularization as a means to
explore a large parameter space and identify potential model features for optically complex
water bodies that would not traditionally be considered.

To demonstrate our approach, we fit a multi-linear regression model using several
parameters generated from Landsat band values that were, in turn, generated using feature-
engineering options. We then fit a model on the target value (chl-a concentration), using L1
regularization to reduce the number of terms used in the model. We use a very large number
of features as we cannot be certain which features might be important for estimating chl-a
concentrations in optically complex waters. This approach is a repeatable, quantitative
method for the selection of the appropriate features for a given water body, and it allows
a model to use terms to address confounding factors present in optically complex waters
that may not be obvious.

1.4. Study Area

To demonstrate and explain our approach, we use chl-a data from Utah Lake along
with remote-sensing data from the Landsat series; notably, this approach is general and
could be applied to other water quality parameters, sensors, or locations. We selected Utah
Lake (Figure 1) because it is optically complex with very high concentrations of suspended
sediments, organic matter, and carbonate precipitates. Remote-sensing methods are often
complicated by the effects of these various confounding factors, including suspended solids
and organic matter, dissolved organic matter, precipitates, and bottom reflectance on the
expected spectral signal for different water quality parameters [31].

Utah Lake is unique in that it is a very optically complex body of water, has been
documented in a number of published remote-sensing and water quality studies, and has
been scrutinized through a large dataset of in situ measurements [4,35]. This provides
us with a large dataset with which to engage and the ability to compare our models to
published models. In this study, we used in situ data from the Utah Ambient Water
Quality Monitoring System (AWQMS) database managed by the Utah Department of Water
Quality (DWQ).

Utah Lake is a major physical feature in the Utah Valley and a valuable natural
resource. It is a shallow, turbid, slightly saline, eutrophic lake in a semi-arid area. It
has good pollution degradation and stabilization capacity because of its shallow, well-
oxygenated, high-pH waters. It supports and harbors abundant wildlife that forms part
of a productive ecosystem. The lake provides and supports a wide range of beneficial
applications, including ecological habitats, water storage, and recreation (e.g., boating,
sailing, fishing, and hunting). Abundant wildlife and ecological richness are some of its
more significant assets [36].

Figure 1 is an example Landsat image of Utah Lake that clearly shows sediment
plumes in the south stemming from Goshen Bay, with the “grey” color of much of the
lake indicating carbonate precipitation and suspended clays. Optically clearer, less turbid
water can be seen entering the lake from Provo Bay on the East side of the lake. Provo Bay
receives relatively clear water from Hobble Creek and several smaller tributaries. Examples
of sediment resuspension can be seen in boat “tracks”; in Figure 1 a boat and its associated
tracks are evident west and a little south of Provo Bay, which is located in the middle of the
eastern shoreline. Landsat data have been previously used to evaluate Utah Lake, and this
research includes published models for estimating chl-a concentrations [22,27,30].

Table 1 presents data and summary statistics for pertinent Utah Lake parameters.
These data were downloaded in August of 2020 from AWQMS based on a search query
applied to the period from 1901 through 2019. Utah Lake has Secchi depth measurements
of only 0.27 and 0.25 m for its mean and median values, respectively, and a level of total
dissolved solids of over 1000 mg/L. These very shallow Secchi depths and the high level
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of total dissolved solids indicate that Utah Lake is optically complex. Other parameters,
which are presented in Table 1, support this conclusion. While the geochemistry of Utah
Lake, including its dissolved and suspended solids, is eutrophic, studies have shown that
water quality, as measured by chl-a, has been improving over the last 40 years [28].

Table 1. Utah Lake data from the Utah Ambient Water Quality Monitoring System (AWQMS),
managed by the Utah Department of Water Quality (DWQ) (downloaded 1 August 2020), for the
2019 period.

Characteristic Name N Mean Median Max. Min. Std. Dev Skew Kurt.

Depth, Secchi disk (m) 3083 0.27 0.25 7.00 0.00 0.21 15.29 402.48
Turbidity (NTU) 683 62.30 41.60 790.00 0.10 89.12 5.31 33.68
Total suspended solids (mg/L) 1281 63.26 45.00 900.00 1.00 75.46 5.20 38.85
Total dissolved solids (mg/L) 1061 1016.94 1000.00 2340.00 106.00 281.45 0.26 0.78
Total volatile solids (mg/L) 716 12.30 9.00 110.00 2.00 11.09 3.40 18.40
Specific conductance (μmho/cm) 6614 1758.35 1772.15 20,980.0 0.00 501.40 14.41 539.50
Calcium (mg/L) 1058 62.59 59.00 213.00 24.50 21.93 3.35 13.98
Hardness, Ca, Mg (mg/L) 715 413.27 406.40 898.50 137.20 94.67 1.70 5.04
Carbonate (mg/L) 690 2.89 N/A 123.00 0.00 6.26 10.70 195.91
Chlorophyll a, (μg/L) 821 40.51 21.30 597.50 0.20 58.84 3.92 21.76

Utah Lake, like most water bodies, does not have water sampling data with the spatial
and temporal scope required to evaluate long-term trends and spatial patterns; however, it
does have more in situ data available than many reservoirs. This reason, combined with its
optically complex nature, is why we selected Utah Lake to demonstrate L1 regularization
for model selection.

2. Data and Methods

2.1. Overview

We obtained in situ measurements that included the measurement date, sample
collection time, measurement location (latitude and longitude), and chl-a concentrations
from AQWMS (Table 1). We uploaded these data and used Google Earth Engine (GEE) to
acquire all available Landsat pixel data from the in situ data locations along with the time
difference between the satellite and field collections. The satellite data included the values
for each Landsat band and the image timestamps.

We used a 5-day offset for the initial data extraction process, that is, any data within
5 days of either side of a field collection; however, we performed most computations
using a smaller offset and both 30 and 90 m resolution datasets. The 30 m resolution
data correspond to a single pixel at the native Landsat resolution, and the 90 m resolution
data represent a 3 × 3 grid averaged to mitigate noise and spatial variation. We extracted
the band data using GEE, which identified images within the offset window, selected the
pixel(s) associated with the in situ measurement location, and computed the 90 m average.
These data were exported as a table. The table has one row for each in situ measurement
and includes the in situ date/times, locations, offsets to remote-sensing data (in hours), in
situ parameter values, and remote-sensing band values. For the Landsat missions, there
are 8 additional columns. We generated separate tables for the 30 m and 90 m data. These
data can be used to develop models using our approach or any other method. Details and
working code used to create this table are provided in a Google Colab Notebook called
DataCollectionNotebook (Notebook1).

The remainder of Section 2 outlines the model generation process, providing details
and discussion for each step. We use the data generated by Notebook1 in this study
(Section 2.2) and select an offset and the features to be considered in model creation, such
as bands or band combinations, and generate these features (Section 2.3). We discuss
some data issues caused by negative reflectance values (Section 2.4); then, we discuss α

value selection (Section 2.5). Subsequently, we present model-fitting and error estimation
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processes performed (Section 2.6). Details of and working code used to perform model
fitting are included in the ModelFitNotebook (Notebook2). We provide a brief description
of the two notebooks that contain the example code to perform the feature-engineering and
model-fitting steps (Section 2.7). Notebook1 generates the data used to create using the
methods provided in Notebook2.

In Section 3, we demonstrate the impacts of resolution, offset, and α selection on model
accuracy and discuss best approaches for selecting these parameters. This includes the
impacts of the time offset between in situ and remote-sensing data and how the resolution
of remote-sensing data impacts model error.

2.2. Study Data

We used AQWMS data collected from 42 Utah Lake locations (Figure 2). We selected
“chlorophyll a, uncorrected for pheophytin” surface measurements as the water quality
parameter. The data were downloaded in July 2022 and contained 1024 samples from
11 July 1989 through 15 September 2021. We only performed minimal data cleaning and
quality assurance with respect to these data. Results presented in later sections indicate
that we may have included some outliers, and several duplicate samples, which affected
model’s results. Since this paper focuses on the model creation methods and not on models’
results, we did not expend any additional efforts on data cleaning.

Figure 2. Utah Lake sample locations from the DWQ AQWMS database.
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Figure 3 shows that most of these data were collected since 2017. Two outliers with
values of 503 and 905 μg/L were excluded in the plot to preserve readability. The 99.5%
quantile for these data is 427.63 μg/L. The boxplots (top panel) suggest that the concen-
tration of chl-a is increasing over time, with larger interquartile ranges on the boxplots
and large outliers indicating increased variability. However, there is sampling bias in
these measurements. Later samples focus on areas prone to algal blooms and higher chl-a
concentrations, such as Provo Bay. Recent studies show that chl-a concentrations in the
lake, with the exception of small areas of Provo Bay, are decreasing over time [28,30].

 

Figure 3. Box plots of chl-a concentrations over time (top panel), with the number of samples
collected per year presented in a bar chart (bottom panel). These data were downloaded from
the AQWMS database and contain data collected from 11 July 1989 through 15 September 2021,
constituting 1024 measurements in total. Outliers in the top plot were clipped to 500 μg/L for
visualization purposes.

Figure 4 shows the distribution of chl-a concentrations and statistics for measured
values that have near-coincident satellite pixels. These data have a usable Landsat pixel
available within the 5-day (120 h) offset (Figure 4). This resulted in a dataset with 531 sam-
ples, amounting to about half of the original dataset. These data have a maximum value of
503.3 μg/L and mean and median values of 36.9 and 17.75 μg/L, respectively. The quantile
plot and information (Figure 4) show that 99.5% of the data are below 337 μg/L. The
data are right-skewed. Most sample concentrations are relatively low, with rare episodic
events exhibiting high concentrations (i.e., blooms). The 75th percentile concentration is
only 42 μg/L, which is less than 10% of the maximum. The episodic nature of the high
concentration data is shown in the relatively large skew and kurtosis values, which match
our expectations for algal blooms.
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Figure 4. Whisker, quantile, and histogram plots (left) and summary statistics for chl-a values (μg/L)
that have a near-coincident Landsat pixel data pair. For these data, we selected a 5-day offset and a
30 m resolution. The quantile values in the second panel match the tick marks in the quantile plot in
the left panel (second from the top).

Figure 5 depicts the in situ measurements plotted against the absolute value of the
offset (in hours) between the in situ measurements and their nearest Landsat image. The
absolute offset value includes in situ data collected either before or after the satellite passed
over. The dividing lines occur at 12 h increments until 72 h (3 days); then, they occur at
24 h increments to 120 h (5 days). In between each line is a number indicating the number
of pairs that occurred in that interval. Figure 5 highlights the relationship between Landsat
collections and field work. Landsat collections occurred at 10:30 am local time. The plots
show that field data are often collected in the mornings, with data clustered around 24 h
(1-day) offsets. This plot shows that our in situ data were generally collected within a
few hours of 10:30 local solar time. The clusters show that the data from the “morning”
sampling trips were collected about two and a half hours before and after the satellite’s
overpass, or from about 8:00 am to about 1:00 pm, a pattern we followed in our own
water-sampling campaigns. This morning sampling pattern is clearly presented in Figure 5
with sample clusters at 24, 48, and 72 h, wherein the dividing line represents the time
splitting the data clusters. While in this study we maintained multiples of 12 for our offset,
we recommend that each researcher should carefully examine examine their data, and
potentially use offsets other than 12 h intervals. For example, the 30 h window includes data
within a cluster of samples that would otherwise be excluded by 24 h window (Figure 5).
These samples were only a few hours beyond the 24 h mark, and the inclusion of these
samples significantly increased the size of the available data. In other words, in Figure 5, a
cutoff of 30 h keeps the entire cluster of pairs around the 24 h mark rather than only the
pairs to the left of it. In subsequent computations, we limited data to an offset of 3 days, or
72 h, for model development; however, we also present models with smaller offsets.

Table 2 provides the number of pairs in an offset period and the mean, median, and
standard deviation of the values in the period. It also provides the cumulative number of
data pairs that were used for model development, along with the cumulative statistics. The
last line presents the statistics for all the data, which is a subset of the information provided
in Figure 4. The cumulative mean matches the mean of all the data, while the cumulative
standard deviation is slightly different due to rounding errors. The data in the different
time slices along with the cumulative datasets show variation, wherein mean, median, and
standard deviation values clustered around the values for the entire dataset. We compared
the data in each 6 h offset bin using both a Student’s T test and the Tukey–Kramer test
for unequal size groups. The resulting comparison shows that there was no significant
difference among any of the bins at an α level of 0.01.
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Figure 5. Satellite collection and in situ data pairs shown as the absolute offset in hours from the
satellite collection.

Table 2. Number of in situ/satellite image pairs for different outsets, with descriptive statistics
provided for the in situ chl-a data.

Offset (Hours) N Mean Median Std Dev
Cumulative

N
Cum. Mean Cum. Std Dev

0–12 91 32.84 16.6 60.37 91 32.84 60.37
12–24 48 31.06 11.35 73.12 139 32.23 65.03
24–36 75 32.94 15.16 46.42 214 32.48 59.17
36–48 60 44.24 31.75 48.33 274 35.05 56.98
48–60 57 28.87 11.5 37.21 331 33.99 54.10
60–72 92 33.62 23.35 35.28 423 33.91 50.59
72–96 63 44.74 21.30 57.57 486 35.31 51.55
96–120 70 48.00 21.62 69.72 556 36.91 54.17

All 556 36.91 17.75 54.25 N/A 36.91 54.25

We acquired the near-coincident remote-sensing data used in this study using GEE [37]
from the Landsat 5, 7, 8, and 9 missions included in the Collection 2 data generated by
the USGS. These datasets have the following GEE image collection identifiers: LAND-
SAT/LT05/C02/T1_L2, L2LANDSAT/LE07/C02/T1_L2, LANDSAT/LC08/C02/T1_L2,
and LANDSAT/LC09/C02/T1_L2, respectively. The collection identifiers include the
overall mission (LANDSAT), the satellite (LT05–LC09), the collection (CO2), and the pro-
cessing level (T1_L2). While Landsat 5 and Landsat 7 have the same band designations [11],
Landsat 8 has different band designations (Table 3). We mapped the bands to a common
set of names (Table 3) and combined the Landsat datasets into a single image collection
using GEE.

Table 3. Mapping of band names to satellite bands for the three Landsat missions used in this paper.

Band Name
Satellite Bands

Landsat 8 Landsat 7 Landsat 5

Blue SR_B2 SR_B1 SR_B1
green SR_B3 SR_B2 SR_B2

red SR_B4 SR_B3 SR_B3
NIR 1 SR_B5 SR_B4 SR_B4

SWIR1 2 SR_B6 SR_B5 SR_B5
SWIR2 2 SR_B7 SR_B7 SR_B7

SurfTempK 3 ST_B10 ST_B6 ST_B6
1 Near-infrared (NIR); 2 shortwave infrared (SWIR); 3 surface temperature (Kelvin).
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We used the calibrated surface reflectance data from the USGS Level 2 Collection
2 Tier 1 data [38,39], thereby eliminating the need to perform atmospheric corrections.
The USGS produces three data tiers; for this dataset, tier 1 (T1) meets geometric and
radiometric quality standards, and Level 2 data correspond to data that are calibrated and
ready for analysis.

Using GEE, we generated an image collection from all the images from Landsat
missions 5, 7, 8, and 9 that included Utah Lake. However, since the coverage period
of our in situ data ended in September 2021, we did not use any Landsat 9 images in
this study. Data in the GEE image collections were stored as integers; we converted the
integers to surface reflectance floating-point values using the USGS-supplied multipliers
before analysis.

We used the quality assessment (QA) band to eliminate pixels that were clouded, had
cloud shadows, or were otherwise contaminated and to identify water pixels [38]. For
30 m data, the pixels that contained the in situ measurement points needed to pass the
quality-screening test. For the 90 m data, either all 9 or any of the 9 pixels in the 3 × 3 group
nearest the in situ point needed to pass the quality-screening procedure to be selected. This
method is similar to those described by Cardall, Tanner, and Williams [37].

The result of this process was a dataset containing the in situ measurement value, the
offset in hours between the measurement and the pixel value, and the band values of the
corresponding Landsat image pixels. We recommend collecting data at a large offset and
filtering the data at the model-fitting stage to avoid incrementally collecting more data for
larger time offsets.

We have provided Notebook1, which contains working code, to better describe and
demonstrate the method. Notebook1 accepts a CSV file with date, location (in latitude and
longitude), and a measurement value of any in situ data as input. It outputs a CSV file that
echoes this input and adds columns with the offset information and the reflectance value
for each of the satellite bands. Notebook1 is designed to select Landsat data but could be
modified for other sensors.

2.3. Model Parameters

We used 6 Landsat bands (Table 3) corresponding to the blue, green, red, near-infrared
(NIR), shortwave infrared-1 (SWIR1), and shortwave infrared-2 (SWIR2) regions. We did
not use the surface temperature band as a potential model feature. Since we expected high
chl-a values to be strongly correlated with warm temperatures, we excluded temperature
from the model to avoid an overfit and poor model performance in non-summer months.
Surface temperature may be an appropriate feature for some models, such as a seasonal
model trained for summer months.

We generated potential features for the linear regression model that include: the
Landsat bands (6), the inverse of the natural log of each band (1/ ln x) (6), the natural
logs of each band (ln x) (6), the inverse of each band (1/x) (6), the square of each band
(x2) (6), band ratios (x1/x2) (30), normalized band differences ([x1 − x2]/[x1 + x2]) (15),
and band pair multiplications (x1 ∗ x2) (15). We included the inverse and squared terms
for the bands so that we could consider non-linear model relationships in a LASSO multi-
linear regression. The inclusion of the 6 bands and all the engineered features resulted in
90 different potential features in the model. The use of other sensors, such as MODIS or
Sentinel II, would result in a different number bands, band spectral range, and features.

Initially, we generated all the features for SWIR1 and SWIR2 bands. The resulting
models preferably selected the inverse of these two bands as features. However, while
the number of errors was relatively low, these bands are noisy and correlated with water
temperature, which we intentionally did not include as a potential feature; therefore, these
features will likely be excluded in models designed to achieve maximum performance. In
the work reported below, we retained the SWIR1 and SWIR2 band features but did not
include any engineered features using these bands, e.g., band inverses, band ratios, squares,
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or other features. We retained SWIR1 because some of the published Utah Lake models
use SWIR1.

2.4. Negative and Small Reflectance Values

The USGS calibration process for surface reflectance data can result in the acquirement
of negative values for the blue and SWIR bands over water, as water has low reflectance
in these wavelengths. These negative values are not physically possible but are artifacts
of data processing. In the coincident data pairs, with a coincidence window of 5 days,
there were 16, 2, 37, 40, and 40 negative values for the blue, red, NIR, SWIR1, and SWIR2
bands, respectively. The values, while negative, have small absolute values. This occurs
because water is highly light-absorbent in the SWIR range. Due to the high concentrations
of suspended solids in Utah Lake, it is possible that light in the SWIR range can scatter back
from suspended material if the scatterers are shallow enough, thereby providing the small
values observed in the data. For instance, at 1640 nm (~SWIR1), the absorption coefficient
for water is 6.35/cm [40]; thus, if light scatters back from 1 cm depth, only e−12.70 ~3 × 10−6

of the light that reaches that far will be reflected from the surface. Likewise, the SWIR2
band has an absorption coefficient of about 20/cm, which is generally higher throughout
the bandpass [40]. Due to this high level of light absorption, the SWIR bands are very
sensitive to any unremoved glint (from skylight or sunlight). Landsat level 2 reflectance
data are highly optimized for land and are not corrected for glint from water surfaces.

Most physically based models (i.e., based on response of chlorophyll and accounting
for other constituents in the water) use visible and near-infrared wavelengths (see, for
example, [41]). For Utah Lake, suspended calcium carbonate and sediments are currently
present in the upper portion of the water column, and these allow for the return of light;
additionally, as noted, we retained the SWIR1 band because published Utah Lake models
used this band.

We found that if we fit a model with these small, negative values (with bands set to a
minimal positive value before computing inverses or logs), a few predicted chl-a values
(fewer than 10 of the approximately 500-member dataset) consequently corresponded to
large, negative values. We used an ad hoc approach to evaluate different methods to address
this issue. For this study, we replaced extremely small or negative values reflectance for the
blue, red, NIR, and SWIR1 bands with values of 0.01, 0.01, 0.001, and 0.001, respectively.
Offset methods may be more appropriate in order to maintain original, small band values
distinct from these changes. Data-cleaning operations are required and are specific to any
given dataset. We recommend more advanced methods, such as an offset approach, but
did not evaluate other methods for this study.

2.5. Alpha

The degree to which L1 reduces the number of model parameters is tuned using the
α parameter, which computes the penalty function with a weighted combination of the
fitting error and the sum of the absolute value of the model coefficients (Equation (1)). A
larger α value increases the weight of the coefficient sum and results in fewer parameters
in the final model, while a lower α value results in more terms as it favors a small error
with less weight assigned to the number of features. At the extremes, an α value of zero
retains all the potential model parameters, while a large α value results in a linear model
that is a single constant, i.e., all coefficients are set to zero and the model is just a constant.
In the latter case, the model error, which is the first term in the loss function (Equation (1)),
constitutes the variance of the data (square of the standard deviation). This extremely large
α value results in a model of the form of ŷ = c or causes the prediction to be a constant that
is equal to the mean of the dataset.

We explore α selection in detail in the case study provided in Section 3.1. We suggest
that practitioners compute the variance of their dataset and evaluate their coefficients’
magnitude for a full model (i.e., α = 0). This will provide some insight into the expected
range of the α value. Conversely, using the scikit-learn library, one can quickly select
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different values of α and evaluate the results, thus enabling the simple identification of the
range of α values that provides a model with the preferred number of terms.

This approach facilitates the exploration of a wide feature space. For example, a priori,
we do not know if the best model is linear or non-linear. By including band inverses,
logs of bands, and squared band values, we can use linear regression methods to fit
non-linear models and allow the algorithm to determine which is the best method to
model the data. We allow L1 regression to determine whether linear, non-linear, or a
combination of both types of terms provides higher predictive capabilities while providing
a parsimonious model where parameter contributions can be explored and explained.
However, L1 regularization will generally discard correlated features, while the most
informative model may include these correlated features. This is discussed in Section 4.

2.6. Model Training, Error Estimation, and Evaluation

For the case study, we used the default values to fit the scikit-learn Lasso model (with
the exception of α, which we adjusted). We explicitly set the maximum interactions to
1000; this is also the default value. The Lasso model uses coordinate descent to minimize
the cost function and fit the model [32]. We used k-fold cross-validation to determine
model’s performance. Unless otherwise stated, we used 10 folds and 20 repeats. For each
fold, 10% of the data were reserved as the test set, and the model was fit to the remaining
90% of the data; then, the accuracy was computed using the test data. This was repeated
20 times, with the data stochastically sampled for each fold. This resulted in 200 model
realizations that were used to estimate the error for any given model. While it is common to
use train–test–validate splits to develop and evaluate models, in this case, since the number
of parameters and number of samples are similar, we used the k-fold approach as there
was not a sufficient number of data to render the train–test–validate approach viable. For
example, for a time offset of 12 h, there are 91 data pairs, which almost matches the number
of potential features (90). In this case, 90% of the dataset equates to approximately 80 values,
that is, the number in each fold, which is less than the number of total potential parameters.

We computed several error metrics, including the root-mean-squared error (RMSE),
which we will generally use for reporting in subsequent sections. After evaluating model
accuracy using k-fold cross validation, we generated the final model using the full dataset
with no data reserved. We used k-fold analysis to select the model parameters and estimate
error; then, we used the resulting parameters with all the data to develop an accurate but
parsimonious model that could be used and explained.

We evaluated feature selection over a range of α values to determine if the features
selected by the L1 algorithm were robust or if the selected features changed significantly
with different α values or over the duration of the stochastic realizations. We evaluated
feature stability by counting how many times each feature was selected for a model with a
given number of parameters, wherein any of the models had at least 200 realizations. We
present details of this analysis in Section 3.

After selecting the appropriate model parameters, such as α, and estimating the error,
we then used the model, trained with respect to all the data, to evaluate the impact of
coincidence time offsets on model accuracy. This analysis, presented in Sections 3.3 and 3.4,
provides practitioners with guidelines and methods for evaluating the trade-offs between
data quantity and variation with time.

2.7. Code and Notebooks

We have provided example code in two separate Google Colab notebooks to help
communicate the details of the methods we developed and provide readers with a starting
point if they should choose to evaluate these techniques.

Notebook1 takes a CSV file of in situ measurements, including the measurement date,
latitude, longitude, measured value, and maximum offset window, as an input. It outputs
a CSV file that includes the original data, the measured satellite band values (currently,
the Landsat series), and the offset time from the in situ sample to the satellite collection.
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Notebook1 uses the complete Landsat image collection (Landsat 5, 7, 8, and 9) with data
from the early 1980s to the present. Notebook1 can be easily modified to obtain data from
other collections such as MODIS or Sentinel 2.

Notebook2 reads in the data file generated by Notebook1, performs minimal data
cleaning, and conducts feature engineering; then, it uses L1 regularization to generate a
multi-linear regression model in either normal or log-space. The level of data cleaning is
minimal, consisting of the removal of blank rows or rows where there are NaN values. Note-
book2 performs a feature-engineering task that generates additional model features. The
features are selectable by checkboxes, and choices include the following bands: log(band),
inverse log(band), inverse bands, band ratios, normalized band differences, square of
bands, and band products. Notebook2 can save a CSV file with all the measurements and
features to allow a practitioner to use their own software or methods for model fitting. For
accurate model development, we recommend a more in-depth data-cleaning step that is
data-specific and not algorithmic.

Notebook2 generates a multi-linear regression model by regressing the features on the
measured in situ data using L1 regularization. Both the offset amount (i.e., time window for
coincident samples) and the L1 α value are selectable. Notebook2 also allows the features
to be normalized or scaled using either min–max scaling or normal (z-score) scaling. We
did not scale data or evaluate data scaling for this study.

Notebook2 provides some simple visualizations to aid model fitting and estimates
model error using repeated k-fold validation with 10 folds and 20 repeats, which is easily
changeable. It outputs a CSV file with the selected offset, pixel scaling (i.e., 3 × 3 or 9 × 9),
number of data points used in the model, list of all the features used in fitting, parameter
coefficients, and error estimates.

3. Case Study and Results

3.1. Impact of Alpha Selection

Figure 6 presents the parameter coefficients for the models created with α values
(displayed on the x-axis) ranging from 1000 to 1 and from 100 to 1 × 10−2 for the chl-a
model (top panel) and log(chl-a) model (bottom panel), respectively. In Figure 6, each
line represents the value of a coefficient for a model feature that has been selected by the
algorithm. At large α values, most coefficients are zero, with the number and size of the
parameter coefficients increasing with decreasing α values. Small α values weight error
higher than feature count, resulting in more of the features being included in the model.
These plots were made with 90 potential features and a 72 h (3 day) time window, thereby
providing 402 measurements.

At large α values, which are displayed on the left side of both the top and bottom
panels (Figure 6, top), most of the parameter coefficients are zero or low, as expected. As
the α value decreases, both the number and value of the parameter coefficients increase.

The parameter coefficients for 1/NIR and 1/blue bands are the first parameters
selected and do not reach zero until they are near larger α values. None of the other features
are selected (i.e., the parameter coefficients become non-zero) until an α value below about
0.8 or 1 for the chl-a model or log(chl-a) model, respectively, when the coefficient for
the 1/red and blue/NIR feature becomes non-zero for the chl-a model and log(chl-a)
model, respectively. Additional features are added to the selections (i.e., the parameters are
assigned non-zero coefficients) as the α value continues to decrease.

Figure 6 does not reach extreme α values allowing it to show models with all 90 features;
this occurs at α values near 1 × 10−8, and such models are not realistic for a dataset of only
400 measurements. In this region, some of the features have large positive and negative
offsetting coefficients, which are also unreasonable.
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Figure 6. The model coefficient values with a 72 h (3 day) time window for the chl-a (top) and
log(chl-a) (bottom) models whose α values vary from 1000 to 1 and 100 to 1 × 10−2, respectively
(x-axis is log scale) plotted on a log scale. This plot shows the number and size of the parameter
coefficients, where each line represents the coefficient for a model feature. The number of coefficients
(parameters) increases with decreasing α values (i.e., more lines), with absolute coefficient values
also increasing (i.e., line magnitude).

The bottom panel of Figure 6 shows the behavior of L1 regularization for a model that
predicts the log of chl-a (log(chl-a)) content rather than chl-a content directly. Figure 6 shows
that various features are added to the model at significantly lower α values compared to the
direct chl-a model. This is in part because the absolute value of the error is lower in the L1
algorithm because the log of the values is significantly smaller than the values themselves.

We evaluated the accuracy of the models with different α values and used k-fold
validation to estimate errors (Figure 7). For this analysis, we used data with an offset
or time window of 12 h. We used ten folds with 20 repeats to compute error metrics for
different values of α, which are shown as points on the graph; thus, the error estimates for
each α value, or graph point, are based on 200 realizations. We evaluated both the direct
chl-a model and the log(chl-a) model, which are presented in the top and bottom panels of
Figure 7, respectively.
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Figure 7. Test and training error versus α value computed using 200 k-fold realizations for each α

value, where number of model coefficients for the chl-a and log(chl-a) models is depicted in the top
and bottom panels, respectively. These plots used data with a 12 h (1 day) time window. The blue
line shows the number of terms in the model versus α or the L1 regularization weight.

Figure 7 graphically presents the results and trade-offs of different α values for the
chl-a and log(chl-a) models in the top and bottom panels, respectively. These figures show
the mean RMSE of the training and test datasets and the mode of the number of model
terms vs. α. The standard model uses α values from 0.001 to 50, while the log(chl-a) model
uses α values from 0.0001 to 1. There are 200 stochastic realizations for each data point.
The shaded area in the plot represents the 25th and 75th quartiles and shows the variability
of the test error metric over the 200 realizations. For small α values, the mean of the error
is well outside the 75th percentile. This is because a few of the 200 realizations have very
large errors and skew the dataset. Both models behave as expected, where the test data
error is initially very high—indicating overfitting—and then reduces to a value similar to
the training error (Figure 7). The training error has significantly less variation for all the
realizations compared to the test error, as shown by the width of the shaded area.

For both models, chl-a and log(chl-a), the variance in the test error increases with an
increasing α. A great deal of this behavior can be attributed to the small size of our dataset.
For a time offset of 12 h, there are only 82 measurements. With 10 folds, that means that the
test dataset has only 7 or 8 values, leaving the training datasets with about 70 values. These
data have a mean of about 30 and a standard deviation of about 60 (Table 2); therefore,
there was significant variation in the test data for any given realization. These plots show

63



Remote Sens. 2023, 15, 1670

general trends, but the variation in the test error for any given realization is large, with the
shaded portion, itself large, containing only half (~100) of the 200 realizations for each data
point on the graph. However, the variation in the error computed for the training data is
relatively small, indicating little variation over the 200 realizations.

The chl-a model plot indicates overfitting until about the middle of the plots; then,
both the training and test errors become similar and increase with decreasing α values.
Figure 7 shows that as α increases, the number of retained features (blue line) decreases,
as the former places a higher penalty on the sum of the coefficients. The model with the
fewest terms has the highest RMSE as the model moves towards predicting a constant.

For the chl-a model, the difference between training and testing also decreases until
an α value of about 1.0, at which point they become similar, and there are four to six terms
retained for the model. At this point the errors are similar and increase with increasing α

values as the model essentially only predicts the mean of the test or training dataset.
The bottom panel of Figure 7 shows the results of the log(chl-a) model, which has

similar trends but presents a larger gap between the testing and training datasets at low α

values. For this dataset, the log(chl-a)-model indicates clear overfitting at small α values,
with less overfitting as α increases. One interesting aspect of this plot is that at low α

values, the mean RMSE is well outside the 75th percentile (even more so than in the top
panel). This occurs because the dataset includes three large values; if these three values
all appear in the testing data, the resulting model can be severely overfit with respect to
the low values. The 200 realizations produced a few models with very large, unrealistic
values for these few cases, which resulted in a very large mean value, though only for a
few realizations; over 50 % of the realizations (between the 25th and 75th percentiles) are
close to the test dataset error.

Table 4 summarizes the impact of α values on the number of terms in the model. This
table was generated using all the data with a 72 h offset rather than the 12 h offset used
in the plots. The RMSE was also computed using all the data (i.e., the training data). The
number of terms in the model drops to five when α is equal to twelve and does not drop to
four until α is five for the chl-a model. While not shown in Figure 7, the variation in the
number of coefficients is small.

Table 4. The number of terms included in calibrated chl-a and log(chl-a) models and the correspond-
ing range of α values with a 72 h (3-day) time window using all the data.

Chl-a
Model

Chl-a
Model

Chl-a
Model

Log(chl-a)
Model

Log(chl-a)
Model

Log(chl-a)
Model

Alpha (α)
Number of

Terms
RMSE Alpha (α)

Number of
Terms

RMSE

0.005 22 25.46 0.0001 23 36.89
0.01 20 25.82 0.0002 20 36.35
0.05 16 26.69 0.0005 19 35.69
0.1 12 27.24 0.0010 14 35.96
0.5 8 27.52 0.0022 11 35.81
1 8 27.89 0.0046 10 35.73
5 4 31.10 0.0100 10 37.31
10 3 31.32 0.0215 9 42.32
25 3 31.94 0.0464 8 53.91
50 2 32.61 0.1000 7 64.34

We have not provided a suggested range or value for α because the correct value
depends on the variation in the target data, the range of the parameters, and the number of
parameters in the final model. However, the mean value of the dataset can provide insight
into the ranges to explore for determining the value of α. Evaluating the dataset’s mean
and variation through Equation (1) can provide some guidance. For example, if the dataset
variation is in the 10s of units, e.g., 50 μg/L, and the expected features have coefficient
values in the range of 0–1 and we want five parameters in the model, then the sum of the
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five coefficients needs to be in the same order of magnitude as the variation in the dataset.
In this case, an α of 1 would assign approximately equal weight to the prediction error
and the coefficients, while an α value of 500 would probably result in a model with only a
single constant. However, depending on the range of feature values, coefficient values are
frequently less than 1, which would require a larger α value to generate a model with five
features. For this example, you could use an iterative approach with α values in the range
of 1 to 100 to determine which α values result in a five-term model.

3.2. Model Terms and Stability

We evaluated the stability of the terms selected by L1 regularization. Specifically, we
were interested in whether the realizations generated for the stochastic k-fold analysis
would select the same equation terms with different coefficients or if each realization would
select different terms. We found that the features selected by L1 regularization remained
relatively constant with very little variation, for which old features were retained and new
terms were selected as α decreased.

Figure 8 presents heatmaps for the chl-a (top panel) and log(chl-a) models (bottom
panel), displaying the number of model terms selected (y-axis) versus the selected features
(x-axis). We used k-fold realizations to generate this plot, for which there were 200 realiza-
tions per α value. The values for any given feature number are based on several hundred
to a few thousand realizations, as a range of α values may result in the same number of
features. The features in each panel are ordered by the percentage of time, or probability,
that the feature was selected in any model, with the most-selected features depicted on the
left. The color and number in the box reflect the probability that a feature was selected in
the realizations. For each realization, we determined the number of features in the resulting
model and which features were selected. We then computed, for any given feature count,
the probability that a given feature was selected. The number of features is somewhat
variable for a given α, and a range of α values can result in models with the same number
of terms, which means that for any given feature count, there were at least 400, usually
significantly more, realizations. Figure 8 shows that while there is some variability in the
terms that were selected, in general, once a term was selected at a low feature count, it was
retained in models with higher feature counts. For a given feature count, the selected terms
remained consistent.

In the first row of the heatmap for the chl-a model (with a median feature count of
25), 25 of the most probable features (columns) were selected 100% of the time. For the
next row, consisting of 24 features, 17 features were selected over 90% of the time, while
7 other features were selected over 80% of the time. As the number of terms in the model
decreases (increasing α), so does the number of features, and the features that are selected
are selected over 90 to 100% of the time, while other features are rarely chosen.

Figure 8 shows that the first two features, 1
ρNIR

and 1
ρblue

, for either model are selected
over 80% and 90% of the time in any model for the chl-a and log(chl-a) models, respectively,
with either feature being selected 100% of the time for most feature counts. Other features
are similar, with the next two features for either model being selected 100% of the time for
the log(chl-a) model, while there is slightly more variation for the chl-a model.

For actual model development, this type of analysis should be performed, and model-
ers should consider which parameters should be included in the final model.
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Figure 8. Heatmap of feature selection probability in the trained L1 model vs. feature names for the
chl-a model (top panel) and the log(chl-a) model (bottom panel), respectively. This shows that for a
given feature count, the selected features are consistent over hundreds of realizations. The standard
model uses α values from 0.001 to 50, while the log(chl-a) model uses α values from 0.0001 to 1.

3.3. Impact of Time Coincidence

We used both the chl-a and log(chl-a) models with α values of 0.5 and 0.04, respectively,
to analyze the impact of coincidence measurements or the offset between when satellite
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and in situ data were collected. We used k-fold validation with 10 splits and 20 repeats to
compute the RMSE error (Table 5). A time offset impacts a model in two different ways.
For samples taken later in time, it is likely that conditions have changed, which generally
tends to decrease the accuracy of the models, but with an increasing time window there
are more in situ–satellite measurement pairs, which generally increases model accuracy,
and the tradeoffs between these two processes are not obvious. Accordingly, it is often
unclear which offset should be used to develop the best model; is it better to have more
representative data (i.e., small offset) or more data (i.e., large offset)? We present the
results of different offsets to provide insight into how our dataset behaved. Care should be
taken when interpreting these results, as different datasets will behave differently from our
example.

Table 5. Impact of the time window size for near-coincident measures on the median RMSE for
models with an α of 0.5 (chl-a) and 0.04 (log(chl-a)).

Window Size (Hours) # of Data Pairs RMSE (chla) RMSE (log(chla))

6 55 11.67 11.09
12 85 10.78 16.99
18 99 12.12 16.52
24 123 15.80 20.54
30 168 17.44 23.12
36 193 19.55 22.98
42 202 20.98 25.24
48 249 26.04 33.53
54 290 26.07 33.37
60 300 26.22 33.63
66 328 28.38 35.87
72 388 27.40 34.45

We obtained an extensive dataset that contains over 500 in situ measurements. Table 5
shows that as the window size decreases, the number of data pairs also decreases, changing
from 388 to 55 data pairs for time windows of 72 to 6 h, respectively. Even with a short
window of 6 h, we have 55 data points, which is more than many published studies.

For our data, the RMSE decreases from about 28 to about 12 and about 35 to about
11 for the chl-a and log(chl-a) models, respectively, as the time window decreases from 72
to 6 h, i.e., 388 to 55 data pairs. The largest time window, 72 h, has an RMSE larger than
the RMSE of the smallest offset, 6 h, by factor of about 2 to 3 for the chl-a and log(chl-a)
models, respectively.

Table 5 has implications for model developers. It shows that the tradeoffs between the
data collected coincidentally or near-coincidentally and the number of data points available
for model fitting can significantly affect the error. In our case study, we have a very large
number of available in situ measurements, over 500, which means that we have sufficient
data for the models (even with small time offsets). For many locations, this may not be the
case. Many published studies use 10 measurements or fewer for model development but
generally have measurements taken within a few hours of the satellite collection.

Our results imply that the use of a 12 h offset for our dataset resulted in the best
model. This model is slightly better than the model created with data pairs from a 6 h
offset. In addition, since we used a k-fold validation with 10 folds, we computed errors
using models trained on only 90% of the available data. Utah Lake is large and subject
to wind disturbance, which can rapidly change algae distribution, so a shorter window
may be more important for Utah Lake than for other locations. For lakes that are more
protected or smaller, a larger time window might be appropriate, especially if data are
limited, and a larger offset allows more data. Rather than making a recommendation on an
appropriate time window, we see this work as a guide that practitioners can use to conduct
similar evaluations.
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3.4. Pixel Resolution

We evaluated the impact of satellite data resolution on the development of a model
used to examine Utah Lake. In prior sections, we used data with 30 m resolution, which
is the default resolution of Landsat data. However, when evaluating non-coincident data,
others [15] used 90 m pixels computed by the spatial averaging of the Landsat data to reduce
variation or noise. They reasoned that since the data were not acquired coincidentally
with satellite collection, using spatially averaged data may help reduce the impact of local
variations. To evaluate the impact of 90 m data, we averaged a 3 × 3 Landsat pixel array
around each in situ measurement location. Our algorithm provides averages even if all
the pixels were unusable because they were occluded by clouds, cloud shadows, or other
data quality issues. For example, some computed averages may consist of fewer than nine
measurements. In general, this 90 m dataset presented a small increase in the number of
data pairs for any given time window, as some of the in situ measurements had low quality
pixels at the measurement location but usable pixels within the 90 m area.

Table 6 shows the impact of using averaged data for the chl-a models developed with
offsets from 6 to 72 h and an α value of 0.50. We used k-fold validation with 10 folds
and 20 repeats to compute RMSE from the testing data. For most offsets, there are a few
more data pairs in the 90 m dataset. For most time windows, the 90 m dataset produces a
slightly smaller error, although this is not the case for all of them. In general, the errors are
essentially the same, except for time windows greater than 42 h, where the error for the
90 m dataset is slightly larger.

Table 6. Impact of pixel resolution with near-coincident measures on the median RMSE for models
with an α of 0.5 (chl-a).

Window Size
(Hours)

30 m
# Data Pairs

30 m
Test RMSE

90 m
# Data Pairs

90 m
Test RMSE

6 55 11.67 55 12.45
12 85 10.78 86 15.82
18 99 12.12 99 15.76
24 123 15.80 126 20.23
30 168 17.44 173 25.46
36 193 19.55 198 21.94
42 202 20.98 209 24.23
48 249 26.04 258 32.71
54 290 26.07 304 32.58
60 300 26.22 318 33.33
66 328 28.38 349 36.56
72 388 27.40 411 35.14

Tables 7 and 8 show the impact of the α values on the number of terms and RMSE
values for the 30 m and 90 m datasets, respectively. We did not use k-fold validation on
these data but computed the error for the entire dataset. This resulted in slightly different
values than those shown in Table 6. The 90 m data consistently resulted in models with
fewer terms than the 30 m models, for which slightly different RMSE values, both higher
and lower, were obtained for the chl-a and log(chl-a) models, respectively. While the
number of terms may be significant, the difference in RMSE is within the expected variation
of the data.

The use of the 90 m data rather than the 30 m data resulted in slightly better models,
for which there were fewer terms for a given α value and similar RMSE values. We attribute
this finding to the fact that in situ measurements are point values that may differ from the
average value over a pixel measured by a satellite. In addition, due to winds and currents,
algal blooms can move between the time the sample was taken and that of the satellite
overpass. In both cases, the 90 m data capture a greater degree of variation, though with
less precision. Hansen and Williams [15] suggested using 90 m data; while our results agree
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with this suggestion, they also show that users need to evaluate their data to determine the
impact of using average pixel values versus single pixel values for model development.

Table 7. A comparison of 30 m and 90 m versus α in calibrated chl-a models with a 12 h (3-day) time
window and using all the data.

Alpha 30 m Chl-a 30 m Chl-a 90 m Chl-a 90 m Chl-a

Values (α) Number of Terms RMSE Number of Terms RMSE

0.005 20 8.45 17 9.44
0.01 18 9.73 15 10.90
0.05 11 11.72 10 12.25
0.1 8 12.15 8 12.53
0.5 4 13.15 6 13.54
1 7 14.61 5 13.74
5 4 17.68 4 15.21
10 3 18.50 3 16.44
25 2 22.54 3 21.39
50 2 23.01 2 22.74

Table 8. A comparison of 30 m and 90 m data versus α in calibrated log(chl-a) models with a 12 h
(3-day) time window and using all the data.

Alpha (α)
30 m

Log(chl-a)
30 m

Log(chl-a)
90 m

Log(chl-a)
90 m

Log(chl-a)

Values Number of Terms RMSE Number of Terms RMSE

0.0001 22 55.76 20 53.47
0.0002 18 54.96 18 52.83
0.0005 15 54.39 14 51.88
0.0010 10 54.52 11 51.17
0.0022 10 54.48 7 50.87
0.0046 10 54.73 8 51.58
0.0100 9 56.04 7 52.86
0.0215 7 59.74 5 55.55
0.0464 4 59.87 4 60.24
0.1000 4 57.41 4 56.61

3.5. Model Comparisons

For this analysis, we generated both chl-a (Equation (2)) and log(chl-a) (Equation (3))
models using a time window of 12 h, which provided 24 h of data. These models were
generated using all the data, with no data reserved for error analysis. Errors were computed
for all the data (i.e., training data). We used α values of 0.5 and 0.04 for the chl-a and log(chl-
a) models, respectively, which yielded four or five model terms plus the intercepts for the
chl-a and log(chl-a) models, respectively. For all these models, chl-a concentrations are
provided in μg/L. As these are regression equations, the coefficients for each term in the
model have the correct units with which to be converted to μg/L; however, for conciseness,
we did not assign units to the model coefficients.

The chl-a model that uses an α value of 0.5 and the data within 12 h of the satellite
collection is defined as follows:

chla = 3.03 + 2.10
1

ρblue
− 3.731

1
ρgreen

− 0.0139
1

ρNIR
+ 0.016

ρblue
ρNIR

(2)

where chla is the chl-a concentration in μg/L and ρx represents the mean Landsat Level 2
reflectance from band x.
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The log(chl-a) model generated using an α value of 0.04 and incorporating the data
within 12 h of the satellite collection is defined as follows:

ln(chla) = 3.66 + 0.84 ln(ρNIR) + 0.052
1

ρblue
− 0.0438

1
ρred

+ 0.005
1

ρNIR
− 0.257

ρblue
ρNIR

(3)

where chla is the chl-a concentration in μg/L and ρx represents the mean Landsat Level 2
reflectance from band x.

The models have three shared terms that appear in both models. The three shared
terms include two band inverse values, 1

ρblue
and 1

ρNIR
, and a band ratio, ρblue

ρNIR
. The chl-a and

log(chl-a) models have unique band inverse terms of 1
ρgreen

and 1
ρred

, respectively, while the
log(chl-a) model also has an ln(ρNIR) term.

Matthews [42] conducted an exhaustive literature search of water quality models. The
models he selected were not explicitly developed for optically complex waters, though a
few might have been. He reported 18 different models for estimating chl-a concentrations
and these models included 14 different terms, with half of the terms (7) being used only by
a single model and not by any of the other models. The most common terms, which were
used in more than one model, were blue, green, red, and NIR bands, which were used in
nine, six, four, and three models, respectively. The SWIR1 and SWIR2 bands, along with the
ratio of the blue and red bands ( ρblue

ρred
), were used in two different models. Matthews [42]

only specified if a band, band ratio, or a log of a band or band ratio was included in the
models. Therefore, the reported bands could have been band inverses (i.e., 1/band). If
this is the case, then the band ratio terms and the ρblue

ρNIR
terms from our models match the

reported bands, with only the ln(ρNIR) term not reported in this study.
Hansen and Williams [15] published three seasonal models specifically for Utah

Lake. These models were developed either using all available data or data from specific
seasons. The investigated hypothesis was that phytoplankton populations change with
seasons and present different spectral signatures. These models consisted of a whole-season
(Equation (4)), an early-season (Equation (5)), and a late-season (Equation (6)) model. All
three models estimated ln(chl-a):

ln(chl) = −1.53 + 2.55
ρNIR
ρblue

− 1.15 ln(ρblue) (4)

ln(chl) = −14.23 + 9.33
ρgreen

ρblue
+ 0.003 · ρblue − 0.004 · ρSWIR1 (5)

ln(chl) = 7.33 − 0.004 · ρblue − 0.05
ρgreen

ρSWIR2
+ 0.01

ρred
ρSWIR1

(6)

where chla is the chl-a concentration in μg/L and ρx represents the mean Landsat Level 2
reflectance from band x.

In these three models there are nine unique terms, with only the blue band shared
between all three models; none of the other terms are shared. The ρNIR

ρblue
ratio term is in

both our models and in the whole season model [15]. Our models both include a 1
ρblue

term,
while their models include ρblue or ln(ρblue) terms, which are similar. These Utah Lake
models share the blue and SWIR bands with those reported by [42] but share none of the
other terms.

These comparisons show that the terms selected by L1 regularization are commonly
used in published chl-a models. However, our approach allows the model to select terms
that are generally not considered for model development, such as the log of band values.

Figure 9 compares the errors of our L1-created models and the models developed by
Hansen and Williams [15]. Figure 9 shows the results from the L1 models that were trained
using the data with a 12 h offset and α values of 0.5 and 0.04 for the chl-a and log(chl-a)
models, respectively. We applied the L1-created Hansen and Williams [15] models to data
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with a time offset of 6 to 72 h. For the L1 models, this means that any data with time offsets
of greater than 12 h had not been used in training and constitute a test set.

Figure 9. A comparison of errors for the L1 and Hansen models. The errors were computed using the
entire dataset. The L1 models were fitted with the data with a time offset of 12 h.

Figure 9 shows that both the L1 and L1-log models closely match, and are slightly
superior to, Hansen and Williams’ [15] whole-season model and are better than the seasonal
models. We did not fit L1 seasonal models for this paper nor did we compute errors
for the Hansen models only concerning seasonal data, but we expect that the results
would be similar. Hansen and Williams [15] showed that the seasonal models adequately
corresponded to the seasonal data and outperformed the models generated on all the data;
however, seasonal models are limited by the fact that there are often only very limited
datasets for any given season. The L1 models trained on any given dataset generally
perform worse than the whole-lake model on data from larger time offsets, though not
always. As shown in Figure 9, if the L1 models are trained on the same data, they perform
essentially the same as the whole-season model.

3.6. Optically Complex Water and SWIR1

Our goal in exploring the use of L1 regularization for the creation of remote-sensing
models was to determine if this approach would be useful for optically complex waters
where non-standard bands may be useful. Specifically, we sought to determine whether it
would choose bands or other features that would not be selected based on the expected
physics of the problem. Figure 10 demonstrates an example of where this might occur. For
the following discussion, we have no ground truth, but the image supports our hypothesis.

Water has very high absorbance in the SWIR wavelength; therefore, its atmospherically
corrected surface reflectance values are low. For example, at a wavelength of 1640 nanome-
ters, which is about equal to that of the SWIR1 band for Landsat images, the absorption
coefficient is 6.35/cm; thus, only about 0.01 (1%) of the light is reflected from a depth
of ~0.36 cm below the water surface [40]. SWIR2 is similar but with a higher level of
absorbance. This means that SWIR1 or SWIR2 can only interrogate a few millimeters of
the top of a body of water. For this reason, these bands are not included in remote-sensing
models for the chl-a concentrations in water. While our final model did not include either
SWIR1 or SWIR2 bands, Figure 8 shows that the SWIR1 band is selected as the 17th and 12th
most common parameter for all models for the chl-a and log(chl-a) models, respectively.
The SWIR2 band is selected as the 14th and 11th most common parameter for all models
for the chl-a and log(chl-a) models, respectively.
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Figure 10. A Landsat image from 17 July 1986, with visual imagery from the RBG Landsat bands and
estimated chl-a concentration maps on the right and left panels, respectively. Water from Hobble
Creek flows into area B, resulting in relatively clear water in Provo Bay, which is shown in the ellipse
labeled “B”; the remainder of the lake exhibits significant amounts of sediment from a recent storm,
especially the area in the ellipse labeled “A”. The clear water in “B” has a significant estimated chl-a
concentration, while the water in “A” has a very low, ~0, chl-a concentration.

Figure 10 is an image based on the RGB Landsat bands from July 17, 1989, that
demonstrates why a model created with L1 regularization might include the SWIR1 or
SWIR2 bands. The left panel is a real-color image of Utah Lake. Area A contains a large
silt plume precipitated by a recent storm. Utah Lake is shallow, with depths less than 3 m,
and has a long fetch and reach on the order of 40 and 15 km, respectively. Accordingly,
wind generates very large waves that suspend significant amounts of sediment (Area A).
Area B is where Hobble Creek, a larger tributary, flows into Provo Bay. The water in Area
B is relatively clear, as indicated by the darker color, as light is reflecting from the bottom
of the bay. The right panel of Figure 10 shows the estimated chl-a concentration on the
same date using the model given in Equation (3). This panel shows that Area A has a chl-a
concentration of approximately 0, while Area B has a relatively high concentration, up to
15 μg/L. While we have no ground truth, the sediment concentration in Area A is high
enough to reflect light in the SWIR1 and SWIR2 bands, while the relatively clear water in
Area B does not reflect light in these bands. We have obtained field data with Secchi disc
readings of less than 10 cm that support this idea that suspended sediments significantly
affect the refection and absorption normally associated with water.

The model generated using L1 regularization may have selected SWIR1 and SWIR2 to
differentiate between sediment plumes and algae plumes. In the left panel, Area A does
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have a “green” color that could be an algal bloom; however, the model clearly shows that
there are no algae present in this area. In contrast, Area B appears to have relatively clear
water in the image, but the model shows that its chl-a concentrations are significantly higher
than those in the lake. This is an example of why models created with L1 regularization
might select either the SWIR1 or SWIR2 bands, though we know that reflectance from
water in these bands should essentially be zero.

Due to the high absorption of water in the SWIR1 and SWIR2 bands, it is easy to use
this image as an example. We have surmised that similar issues are involved in the feature
selection process for models with only a few parameters. As discussed above, the features
selected by the L1 algorithm are similar to, but not the same as, most published chl-a
models. We have surmised that this is because of the very optically complex nature of Utah
Lake, where water does not look like water, as demonstrated in the left panel of Figure 10.

As an aside, Tanner, Cardall, and Williams [28] hypothesize that algal growth in Utah
Lake is light-limited and that blooms do not start in the turbid mid-lake waters. Rather,
they postulate that blooms generally start in the bays, where water is clearer and warmer,
and then move out into the lake.

4. Discussion

4.1. L1 Regularization

Our goal was to evaluate L1 regularization to determine if it is an appropriate method
for use in the exploration of a large parameter space. This is especially important in
cases where the number of features or predictors (p) is similar to, or larger than, the
number of observations (n). In many remote-sensing applications, there are a limited
number of in situ observations, and features or predictors are typically chosen using prior
understanding of the spectral behavior of the target features, such as chl-a concentrations.
Other constituents in optically complex water can interfere with the spectral signatures of
chl-a, so non-traditional terms might be useful for predictions.

Prior to performing this research, it was not clear if L1 regularization could be used
for models wherein the number of potential features and the number of measurements
were of similar magnitudes. Our model runs showed that an L1 model converges to the
same set of features, even over a large number of realizations. This allows the model to
explore the entire feature space. This is different than step-wise regression, where the order
in which the terms are presented to the algorithm is important and the modeler is required
to determine the order of importance of the selected terms.

L1 regularization evaluated model terms not commonly found in published models,
though most of the selected terms were similar. In the beginning of our study, we noted
that our initial search space included various engineered terms corresponding to the
SWIR1 and SWIR2 bands. We found that despite these models’ low error metrics, they
demonstrated significant noise when they were applied to the lake. Subsequently, we
re-explored the parameter space without these features and generated better models. Based
on this experience, we recommend L1 regularization for exploring large parameter spaces,
followed by the performance of an additional exploration of the selected features. One
of the strengths and weaknesses of L1 is that it selects features that are informative and
excludes other correlated features that may be useful in a model. In this study, L1 selected
the smallest number of features to achieve the highest predictive performance. This can
result in an acceptable model but may also result in a less robust or efficient model. In
general, L1 can be thought of as selecting features based on their interaction and main
effects on the target variable. This can occur because the main effects are not as informative
as the interactions. This can result in L1’s failure to select some useful variables. We
evaluated our L1 models on multiple samples from the same dataset using the k-fold
method and found that the sets of predictor variables that were returned were stable.
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4.2. Significance of Temporal Coincidence and Spatial Resolution

We explored the impact of time coincidence and pixel resolution on model develop-
ment using L1 regularization. Accuracy decreased and variability increased with increasing
time offsets. We attribute this to the fact that the in situ data and the satellite collection
data were measured at slightly different times, as conditions can rapidly change over
a three-day period. We performed an evaluation using the average of a 3 × 3 (9) pixel
grid to help mitigate issues associated with both spatial and temporal variances in algal
distribution. We found that the 3 × 3 grid slightly increased accuracy but to an extent well
within the variation computed using 200 k-fold realizations. For much of this paper, we
used the closest single pixel and varying offsets. For modelers using this approach, both
time offset and pixel average methods should be explored. Especially with regard to a
time offset, there are direct tradeoffs with respect to the number of data pairs available for
model development.

4.3. Data Engineering and Feature Selection

The L1 models selected features that have been reported in the published literature
and performed very well, even with respect to the optically complex water of Utah Lake.
For actual model development, the normalization of some or all of the engineered features
may result in a more robust model. We minimally explored normalization with min–max
and z-scores (both of which are available in the notebook), but we did not examine this
in-depth because our research goal was to demonstrate the use of L1 regularization to
explore large feature spaces for optically complex models and not to generate the best
model for Utah Lake. Evaluating different normalization methods and determining which
variables to normalize would have added significant complexity to this paper without
adding any useful information, as most model builders are familiar with normalization and
each application would be data- and site-specific. Another potential approach, which we
did not explore, would be the use of offsets rather than minimum values for negative band
values. This would retain relative quantities, while setting these low values to a minimum
would not. We did not evaluate methods for addressing negative band values; as discussed
in Section 2.4, we simply replaced the negative values of the blue, red, NIR, and SWIR1
bands with values of 0.01, 0.01, 0.001, and 0.001, respectively. This probably affected the
models’ accuracy for low concentrations. Aside from normalization, another approach that
modelers should consider is the offsetting of all the values by a amount. This would result
in all positive values but have little impact on values above the median. This would also
allow the L1 models to include features in these bands to help address complexity caused
by the high concentrations of suspended solids, clays, calcite, and silts present in Utah
Lake (Figure 10).

4.4. Model Creation

We have shown that L1 regularization can be used for remote-sensing models and
to explore a feature space with a size similar to the data space, that is, where the number
of features and number of observations are similar. It is an efficient model development
approach, which is capable of generating hundreds of models on a desktop machine in
just a few minutes. This facilitates approaches such as the use/development of seasonal
models [15,43] and site-specific models that consider changing or complex optical character-
istics. However, we believe that modelers should be careful when accepting the first model
generated by the L1 methods. They should carefully evaluate input data and features. Tech-
niques such as normalization or other data-cleaning methods may aid model development.
After an performing an initial model evaluation in a very large feature space, it may prove
beneficial to explore a smaller feature space. For example, one could eliminate the top
features and determine if the model selects existing model features and a correlated feature
that had previously been excluded. A single model can be generated almost immediately,
so this type of exploration should be considered.
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L1 regularization with data that have correlated informative features tends to select
one feature and push the others toward 0. This results in a model that can omit significant
informative features. L1 regularization will often choose more features than are required
because of this issue. This can be gleaned by comparing the L1 model to the published
models. Our L1 models have four or five features, while the published models have only
two or three features.

5. Conclusions

The goal of this numerical experiment was to evaluate the ability of using L1 regular-
ization to generate remote-sensing models using a large feature space. This is important
because for most remote-sensing models, the availability of in situ observations is limited,
often amounting to only a few tens of measurements. We also briefly explored the impact
of non-coincident measurements and pixel resolution on model accuracy. We found that
L1 regularization is a useful technique and can be used to explore large feature spaces. L1
selects features based on which features have significant interaction effects, and generally
will not select two features that are highly correlated. This means that features that are
directly correlated with the target variable may not be selected. The evaluation of this
behavior is beyond the scope of this article, but it has been given an in-depth treatment
in [44].

In addition to demonstrating the application of L1 regularization to feature selection,
we provided an in-depth example of which types of analysis, visualizations, and other
approaches modelers should use if they adopt this method.

In addition to the manuscript, we have provided two Google Earth Engine Colab
notebooks. The first (Notebook1) demonstrates and provides tools for obtaining non-
coincident remote-sensing data, provided that a list of sample dates, values, and locations
is available. It provides computations for feature engineering, generating 90 features from
the 6 Landsat bands we used. Currently, the notebook retrieves Landsat data, but it can be
easily modified to operate with other sensors. The second notebook (Notebook2) applies
L1 regularization and generates a model that can be used to estimate target measurements.

Our explorations showed that L1 regularization is useful for exploring large feature
spaces and identifying features not traditionally used. This is especially useful for optically
complex waters. However, while L1 regularization is useful, the final model may not be
the best model that can be developed. We recommend evaluating the features L1 selects
along with traditional features and performing an analysis to create a final model.

Colab notebooks that implement and describe this approach are available on GitHub
at https://github.com/BYU-Hydroinformatics/ee-wq-lasso (5 March 2023). Occasionally,
these notebooks may be updated.
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Received: 5 September 2023

Revised: 12 October 2023

Accepted: 13 October 2023

Published: 18 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Retrieval of Water Quality Parameters in Dianshan Lake Based
on Sentinel-2 MSI Imagery and Machine Learning: Algorithm
Evaluation and Spatiotemporal Change Research

Lei Dong 1,2, Cailan Gong 1,*, Hongyan Huai 3, Enuo Wu 4, Zhihua Lu 3, Yong Hu 1, Lan Li 1 and Zhe Yang 1,2

1 Key Laboratory of Infrared System Detection and Imaging Technologies,
Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
fcdl@mail.ustc.edu.cn (L.D.); lilan@mail.sitp.ac.cn (L.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Shanghai Environment Monitoring Center, Shanghai 200235, China; huaihy@sheemc.cn (H.H.);

luzh@saes.sh.cn (Z.L.)
4 Shanghai Academy of Environmental Sciences, Shanghai 200233, China; wuan@sheemc.cn
* Correspondence: gcl@mail.sitp.ac.cn

Abstract: According to current research, machine learning algorithms have been proven to be
effective in detecting both optical and non-optical parameters of water quality. The use of satellite
remote sensing is a valuable method for monitoring long-term changes in the quality of lake water.
In this study, Sentinel-2 MSI images and in situ data from the Dianshan Lake area from 2017 to
2023 were used. Four machine learning methods were tested, and optimal detection models were
determined for each water quality parameter. It was ultimately determined that these models could
be applied to long-term images to analyze the spatiotemporal variations and distribution patterns
of water quality in Dianshan Lake. Based on the research findings, integrated learning algorithms,
especially CatBoost, have achieved good results in the retrieval of all water quality parameters.
Spatiotemporal analysis reveals that the overall distribution of water quality parameters is uneven,
with significant spatial variations. Permanganate index (CODMn), Total Nitrogen (TN), and Total
Phosphorus (TP) show relatively small interannual differences, generally exhibiting a decreasing
trend in concentrations. In contrast, chlorophyll-a (Chl-a), dissolved oxygen (DO), and Secchi Disk
Depth (SDD) exhibit significant interannual and inter-year differences. Chl-a reached its peak in 2020,
followed by a decrease, while DO and SDD showed the opposite trend. Further analysis indicated
that the distribution of water quality parameters is significantly influenced by climatic factors and
human activities such as agricultural expansion. Overall, there has been an improvement in the
water quality of Dianshan Lake. The study demonstrates the feasibility of accurately monitoring
water quality even without measured spectral data, using machine learning methods and satellite
reflectance data. The research results presented in this paper can provide new insights into water
quality monitoring and water resource management in Dianshan Lake.

Keywords: machine learning; water quality parameters; spatiotemporal distribution; Dianshan Lake;
Sentinel-2

1. Introduction

The effective provision of water resources is closely intertwined with the progress of
cities, ecological equilibrium, and economic prosperity [1,2]. Inland water bodies such as
lakes are vital in maintaining ecological balance, supporting industrial production, and
ensuring human well-being [3,4]. However, in recent years, the compounded impacts of
human activities and climate change have posed severe threats to the ecological equilibrium
of water bodies, resulting in intensified global freshwater eutrophication and deterioration
of water quality [2,5]. Against this backdrop, the effective assessment of lake water quality
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is paramount in maintaining ecosystem stability. This evaluation relies on key nutrient
indicators, namely, Chl-a, TP, TN, SDD, and CODMn [6–8]. Chl-a, a primary pigment in
phytoplankton, functions as a biomarker for phytoplankton biomass, thereby significantly
influencing the overall health of the ecosystem [9]. SDD, quantified using the Secchi disk
transparency method, provides insights into the nutrient status of the lake and assumes a
critical role in monitoring water quality [3,10,11]. Elevated levels of TN and TP serve as
indicators of potential eutrophication concerns [12,13]. The measurement of DO, which is
closely correlated with Chl-a, plays a pivotal role in evaluating water quality and its impact
on aquatic life [14,15]. The proper management and interpretation of these key indicators
are imperative for ensuring sustainable water resource management and safeguarding the
delicate balance of lake ecosystems [16].

Traditional water quality monitoring involves manual in situ sampling and lab anal-
ysis, providing accurate data but with limited spatial coverage and efficiency. Unlike
time-consuming conventional techniques, satellites offer high-frequency, wide-ranging,
and long-term water quality data, thus overcoming limitations [4,17–21]. Specialized water-
color satellites have been developed for aquatic environments and are widely used [22,23].
However, lakes smaller than 100 sq. km constitute 63% of the total lake area [24]. Due
to watercolor satellites’ relatively low spatial resolution, smaller lakes may not be fully
monitored. In contrast, Landsat and Sentinel satellite data have higher spatial resolution
and are more suitable for monitoring small inland water bodies [18,25,26]. Some studies
have effectively employed Sentinel-2 and Landsat imagery for coastal and inland lake
water quality monitoring [27–30].

Methods for evaluating water quality parameters using satellite remote sensing data
can be categorized into two types: empirical modeling and bio-optical modeling [14]. In
recent years, bio-optical modeling has made some progress; however, it is severely con-
strained by data limitations and challenges in atmospheric correction accuracy [18], because
atmospheric correction is a factor that must be considered in aquatic remote sensing [31–35].
A subset of researchers has initiated exploration into direct modeling methods utilizing
satellite reflectance data. Their goal is to mitigate errors and uncertainties arising from
atmospheric correction to the greatest extent possible. In recent years, with the develop-
ment of the field of artificial intelligence, the application of machine learning algorithms
in water quality assessment has been increasing gradually [14]. Machine learning models
can uncover underlying complex nonlinear relationships, thus providing a general and
optimized approach for water quality parameter detection [36–38]. Its application in water
quality modeling and detection shows a continuous growth trend [39–42]. Common ma-
chine learning methods used for water quality assessment include Support Vector Machine
Regression (SVR) and Random Forest Regression (RF). In recent years, XGBoost Regression
(XGBoost) and CatBoost Regression (CatBoost) have also gained increasing popularity.

Current research utilizing machine learning combined with satellite data for the re-
trieval of water quality parameters has been successfully applied in multiple
cases [14,18,24,25,29,42]. However, there are significant differences in the water quality
parameters used, and the spatial and radiometric resolution of sensors in different regions,
leading to variations in retrieval algorithms [43]. Dianshan Lake, which receives water
from Taihu Lake and is influenced by agricultural activities and residential wastewater
discharge in the surrounding areas, has experienced several water pollution incidents over
the past two decades. Water quality monitoring has been a focal point for government
water authorities and the research community [44]. Presently, there is limited research
on the spatiotemporal characteristics of water quality evolution and driving factors in
Dianshan Lake using remote sensing algorithms, making it challenging to provide tar-
geted recommendations for environmental protection, management, and control measures.
Therefore, the central objective of this study is to directly utilize satellite reflectance data
to develop and validate models for retrieving water quality parameters. The specific ob-
jectives are as follows: (1) Utilize four machine learning methods (RF, XGBoost, CatBoost,
and SVR) to establish optimal retrieval models for various water quality parameters (Chl-a,
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CODMn, DO, SDD, TN, TP). (2) Employ Sentinel-2 satellite remote sensing imagery from
2017 to 2023 to retrieve various water quality parameters for spatiotemporal change analy-
sis. The study aims to provide a scientific basis for lake management and environmental
protection efforts.

2. Materials and Methods

2.1. Study Area

Dianshan Lake (31◦04′–31◦12′N, 120◦54′–121◦01′E) is situated on the border of Qingpu
District in Shanghai and Kunshan City in Jiangsu Province, China. Its location in China is
shown in Figure 1a. With an area of approximately 62 square kilometers and an average
depth of 2.5 m, the lake plays a pivotal role in various social and ecological functions. It
serves as the receiving end of water from the Wujiang area of Taihu Lake and functions as
the headwaters of the Huangpu River.

Figure 1. (a) Location schematic diagram of the study area, (b) Distribution of sampling points in
Taihu Lake, (c) Distribution of sampling points in Dianshan Lake, (d) Schematic diagram of the
relative positions of Taihu Lake and Dianshan Lake.

2.2. Dataset

This study employed three types of datasets: (1) Sentinel-2 MSI satellite imagery
data spanning the period from 2017 to 2023, utilized to retrieve water quality parameters;
(2) Concentration data of Chl-a, CODMn, DO, SDD, TN, and TP acquired through sampling
in Dianshan Lake. These data were employed for the development and evaluation of ma-
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chine learning methods; (3) Measured Chl-a, CODMn, DO, SDD, TN, and TP concentration
data from Taihu Lake were utilized to further validate the model’s applicability.

2.2.1. Satellite Data

Both Sentinel-2 MSI and Landsat offer high-resolution remote sensing image data for
Earth observation and environmental monitoring. Considering Sentinel-2 MSI’s distinct
advantages over Landsat, which include shorter revisit periods, a greater number of
spectral bands, higher spatial resolution, and an open data policy, this study harnessed
the capabilities of Sentinel-2 MSI. Specifically, we utilized a dataset of 100 Sentinel-2 MSI
images acquired from the Copernicus Open Access Hub (https://scihub.copernicus.eu/,
accessed on 15 June 2023) spanning the period from 2017 to April 2023. The selection of
these downloaded images adhered to strict criteria, ensuring cloud-free conditions above
the lake and minimal sun glint on the lake surface. The distribution of data according to
the quantity of time is shown in Figure 2.

Figure 2. Temporal and Quantitative Distribution of Sentinel-2 MSI Images Used in This Study.

The radiation received by sensors at the top of the atmosphere (TOA) can be primarily
attributed to Rayleigh scattering and aerosol scattering [45]. Atmospheric correction is a
process aimed at mitigating the impacts of Rayleigh scattering, Mie scattering, atmospheric
absorption, and aerosol influence on remote sensing images. Some researchers have
proposed that using uncorrected TOA images can yield superior results compared to
images that have undergone atmospheric correction [46]. In this study, we employed
the SNAP software for Rayleigh correction of the images, resulting in dimensionless
Rayleigh-corrected reflectance. Following this, the image resolution was resampled to 20 m,
and the Normalized Difference Water Index (NDWI) [47] was utilized to delineate water
regions. Before performing water quality modeling, and to mitigate uncertainties stemming
from aerosols and other factors, an enhanced MD09 method [48,49] was implemented for
aerosol correction. This method involves a straightforward Rayleigh reflectance correction
technique that entails subtracting the minimum value from the shortwave infrared band
(Band 11 in MSI images) within the visible and near-infrared bands. The resulting value is
then divided by π.

2.2.2. Field Data

From 2017 to 2022, a monthly routine water sampling campaign was conducted in
Dianshan Lake to collect data on water quality parameters. The study specifically selected
data points falling within a ±5-day range of the satellite overpass time as the focal dataset,
resulting in a total of 398 datasets. The statistical description of the data is shown in Table 1.
The precise locations of the sampling sites within Dianshan Lake are illustrated in Figure 1c.
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Table 1. Statistical description of measured water quality parameters in Dianshan Lake.

Water Quality
Parameter

Range Mean ± Std Median CV N

Chl-a (mg/m3) 1.34–51 15.04 ± 10.35 12.80 0.69 398
CODMn (mg/L) 2.10–7.00 3.96 ± 0.80 3.80 0.20 398

DO (mg/L) 3.90–13.84 8.73 ± 1.97 8.60 0.23 398
TN (mg/L) 0.33–5.23 2.04 ± 1.00 1.87 0.49 398
TP (mg/L) 0.03–0.26 0.10 ± 0.05 0.090 0.45 398
SDD (m) 0.1–1.1 0.42 ± 0.4 0.17 0.41 398

The water samples collected during in situ experiments were transported to the
laboratory for analysis of water quality parameters. The laboratory analysis methods
adhered to the water quality parameter determination procedures outlined in the Chinese
National Standard GB3838-2002. Table A1 presents a compilation of the names of different
water quality parameters, alongside their corresponding determination methods.

To assess the transferability of the optimal model to different geographical regions,
additional data were collected from 2018 to 2022 at 32 monitoring stations situated around
Taihu Lake. Due to the high level of eutrophication in Taihu Lake, surface blooms of
cyanobacteria are frequent. To ensure water body consistency as much as possible, we
utilized a visual interpretation method to identify sampling points unaffected by cyanobac-
terial blooms in satellite true-color images as supplementary data. There were a total of 161
validation points in Taihu Lake. The statistical description of the data is shown in Table 2
and the sampling site locations in the Taihu Lake region are visually depicted in Figure 1b.

Table 2. Statistical description of measured water quality parameters in Taihu Lake.

Water Quality
Parameter

Arrange Mean ± Std Median CV N

Chl-a (mg/m3) 6.34–63.38 21.41–9.63 19.62 0.45 130
CODMn (mg/L) 3.37–5.15 4.24–0.42 4.30 0.10 130

DO (mg/L) 6.10–11.55 7.98–1.20 7.70 0.15 130
TN (mg/L) 0.24–0.53 0.36–0.07 0.34 0.19 130
TP (mg/L) 0.83–3.51 1.73–0.54 1.60 0.31 130
SDD (m) 0.066–0.329 0.112–0.029 0.111 0.26 130

2.3. Modeling

Based on the latitude and longitude coordinates of the actual measurement sites,
the corresponding image reflectance for the respective dates is extracted. To ensure data
consistency, a 3 × 3 pixel window surrounding each site is considered. The average
reflectance within this window is then computed and utilized as the matched data.

In the investigation of the six water quality parameters, our study explored four dis-
tinct machine learning methods, namely: (1) Random Forest Regression (RF), (2) XGBoost
Regression (XGB), (3) CatBoost Regression (CatBoost), and (4) SVR. The selection of these
methods was grounded in their performance and characteristics across various data sce-
narios. Moreover, these techniques have been demonstrated as successful applications in
estimating water quality parameters in several inland lakes previously [18,24,29,38,50–54].

These methods possess distinct characteristics. In the landscape of ensemble learning
techniques, Random Forest Regression (RF) has garnered substantial interest due to its
commendable performance and robust characteristics. By constructing multiple decision
trees and aggregating their predictions, RF not only mitigates the risk of overfitting but also
accommodates a diverse range of data types, including both continuous and categorical
features. In contrast, XGBoost Regression (XGB) distinguishes itself through its efficient
gradient boosting algorithm, which facilitates exceptional performance on large-scale
datasets. XGB incorporates regularization techniques to control model complexity and
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exhibits considerable proficiency in handling missing values and feature engineering.
Conversely, CatBoost Regression (CatBoost) specializes in the treatment of categorical
features, autonomously affecting feature transformations without necessitating additional
preprocessing steps. This confers it with advantages in certain domains. Support Vector
Regression (SVR) is one of the most frequently used methods in recent years. SVR excels
in regression with high dimensions, noise, and nonlinearity. Its adaptable kernels and
robustness with small datasets contribute to its significance in ensemble learning.

For each model, an identical set of input features was chosen to assess the ultimate
outcomes. In this study, we utilized the Pearson correlation coefficient to ascertain the rela-
tionships between various water quality parameters and some widely employed spectral
band combinations.

Prior researchers have demonstrated the robustness of band ratio algorithm (Rrs(λ1)−
Rrs(λ2)) and band difference algorithm ( Rrs(λ1)

Rrs(λ2) ) when applied to the retrieval of water qual-
ity in optical complex inland lakes [38]. In this study, we also incorporated the Normalized
Difference Band Calculation algorithm ( Rrs(λ2)−Rrs(λ1)

Rrs(λ2)+Rrs(λ1) ) [40] and the three-band combina-

tion form (Rrs(λ3)×
(

1
Rrs(λ2) − 1

Rrs(λ1)

)
) [39] to assess their correlations with water quality

parameters. The objective was to identify the optimal inputs for the machine learning
models. In the process of constructing retrieval models for each water quality parameter,
a comprehensive set of 13 input features was employed. Among these input variables,
the combination of these 13 variables exhibited the most optimal performance. These
encompassed the initial 9 visible and near-infrared bands from the MSI image, alongside
the band combinations from each method that exhibited the highest correlation with the
concentration of water quality parameters. Please refer to Table 3 for the most relevant
band combinations for each water quality parameter.

Table 3. Input features for various water quality parameters (only wavelength combinations listed).

Band Combination Form Chl-a CODMn DO SDD TN TP

Rrs(λ1)− Rrs(λ2) B7 1 B9 B7 B2 B6 B7 B5 B2 B2 B3 B7 B6
Rrs(λ1)
Rrs(λ2)

B4 B5 B6 B7 B6 B7 B2 B5 B6 B7 B7 B6
Rrs(λ2)−Rrs(λ1)
Rrs(λ2)+Rrs(λ1)

B4 B5 B6 B7 B6 B7 B5 B2 B7 B6 B6 B7

Rrs(λ3)×
(

1
Rrs(λ2) − 1

Rrs(λ1)

)
B5 B4 B2 B7 B6 B5 B6 B7 B1 B3 B5 B6 B6 B7 B1 B7 B6 B2

1 The wavelengths of Sentinel-2 MSI image bands.

It is noteworthy that the selection of hyperparameters in machine learning substan-
tially influences the model’s performance and generalization capability. This process di-
rectly impacts the model’s robustness and governs its complexity to mitigate overfitting. In
our study, the Python programming language was employed to conduct a grid search tech-
nique for determining the model’s hyperparameters. Each training session incorporated a
fivefold cross-validation strategy to comprehensively evaluate the model’s performance.

In SVR, the C parameter controls the degree of regularization, the kernel parameter
defines the type of kernel function, and the gamma parameter influences the range of
the kernel function’s impact. By judiciously adjusting these parameters, a balance be-
tween model complexity and regularization can be achieved to enhance performance.
Optimizing the performance of the XGBoost model depends on the selection of several
key hyperparameters. Smaller learning rates and larger gamma values contribute to im-
proved generalization performance, while parameters like min child weight, max depth,
and reg alpha help stabilize the model, preventing overfitting. Random Forest (RF) can
effectively control the number and depth of trees in the forest by tuning parameters such as
n estimators, max depth, min samples split, min samples leaf, and max features, thereby
enhancing model performance. CatBoost can optimize model complexity and regulariza-
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tion by adjusting parameters like iterations, learning rate, depth, and l2 leaf reg, resulting
in improved performance.

The grid search strategies for each model are summarized in Table 4, and the optimal
parameters chosen for different water quality parameters in each model are presented in
Table A2.

Table 4. Hyperparameter grid search table for each model.

Model Hyperparameters Options

RF

n_estimators np.arange 1 (10, 600, 10)
max_depth np.arange (10, 50, 5)

min_samples_split np.arange (1, 50, 1)
min_samples_leaf np.arange (1, 12, 1)

SVR
C np.arange (1, 10, 0.01)

kernel [‘linear’, ‘rbf’,’sigmoid’]
gamma np.arange (1, 100, 0.001)

XGBoost

learning_rate np.arange (0.15, 0.2, 0.005)
gamma np.arange (0.001, 0.005, 0.001)

min_child_weight np.arange (5, 10, 1)
max_depth np.arange (2, 10, 1)
sub_sample [0.8, 1]
reg_alpha [0.001, 0.01, 0.1, 1]

CatBoost

iterations np.arange (50, 500, 10)
learning_rate np.arange (0.01, 0.05, 0.01)

depth np.arange (2,10,1)
l2_leaf_reg np.arange (1,10,1)

1 ‘np.arange(10, 600, 10)’ generates a sequence of numbers, starting at 10 and increasing by 10 at each step, until it
is just below 600.

2.4. Accuracy Evaluation

The metrics chosen for assessing the models’ performance encompassed the coefficient
of determination (R2), mean absolute percentage error (MAPE), root mean squared error
(RMSE), and bias.

R2(y, ŷ) = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (1)

MAPE =
1
N

N

∑
i=1

|yi − ŷi
yi

| × 100% (2)

RMSE (y, ŷ) =

√
∑N

i=1(yi − ŷi)
2

N
(3)

bias =
1
N

N

∑
i=1

(yi − y) (4)

where N represents the sample size, yi is the value of the i-th observed data point, ŷi is the
value of the i-th predicted data point, and y is the mean value of N observed data points.

3. Results and Analysis

3.1. Model Calibration and Validation

Out of the entire synchronized dataset, 80% of the data (N = 318) was randomly
allocated for constructing the models, whereas the remaining 20% of the data (N = 80) was
employed to assess the models’ performance. It is essential to emphasize that a consistent
training dataset was utilized across all experiments for training and validation.

Regarding Chl-a estimation (Figure 3), it was observed that all models tended to under-
estimate high-concentration values, possibly due to the limited availability of data points
for such values. Nevertheless, the CatBoost, RF, and XGBoost models exhibited significantly
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improved performance in accurately predicting true values across both the training and test
datasets when compared to the SVR models. In particular, the CatBoost model showcased
a well-distributed scatter around the 1:1 line for both the training set (RMSE = 3.26 mg/m2,
MAPE = 15.18%) and the test set (RMSE = 11.11 mg/m2, MAPE = 28.12%). This signifies a
higher level of accuracy. Consequently, the CatBoost model emerges as the optimal choice
for Chl-a retrieval.

Figure 3. For the training set (n = 318) and test set (n = 80) in Dianshan Lake, scatter plots of the
results of (a) RF, (b) SVR, (c) XGBoost, and (d) CatBoost for Chl-a retrieval are presented. The black,
blue, and red lines represent the 1:1 line and regression lines between measured and estimated values
on the training and test datasets, respectively. The blue dots and red dots represent the training set
and test set, respectively.

Regarding the CODMn index (Figure 4), all models exhibited an overestimation of val-
ues with CODMn < 4.5 mg/L and an underestimation of values with CODMn > 4.5 mg/L.
This phenomenon was particularly prominent in the SVR model. Although the MAPE val-
ues for all models remained below 15%, the performance of CatBoost stood out as notably
superior to that of XGBoost, RF, and SVR. Among these models, CatBoost yielded the most
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favorable results for CODMn estimation (training set: RMSE = 0.33 mg/L, MAPE = 6.85%;
test set: RMSE = 0.55 mg/L, MAPE = 10.55%). Thus, the RF model emerges as a preferred
choice for CODMn estimation.

Figure 4. For the training set (n = 318) and test set (n = 80) in Dianshan Lake, scatter plots of the
results of (a) RF, (b) SVR, (c) XGBoost, and (d) CatBoost for CODMn retrieval are presented. The black,
blue, and red lines represent the 1:1 line and regression lines between measured and estimated values
on the training and test datasets, respectively. The blue dots and red dots represent the training set
and test set, respectively.

Concerning the DO index (Figure 5), all models consistently displayed a slight overes-
timation of low-concentration values and an underestimation of high-concentration values.
It is important to highlight that all models exhibited a high degree of accuracy in estimating
DO concentrations on both the training and test sets (RMSE < 1.5 mg/L, MAPE < 15%). In
terms of various error metrics, it is obvious that the SVR model yields the poorest perfor-
mance. Although the training set results are similar for CatBoost and XGBoost, XGBoost
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performs slightly better than CatBoost on the test set. As a result, the XGBoost model (train-
ing set: RMSE = 1.01 mg/L, MAPE = 9.78%; test set: RMSE = 1.2 mg/L, MAPE = 12.11%)
is considered the optimal choice for DO retrieval.

Figure 5. For the training set (n = 318) and test set (n = 80) in Dianshan Lake, scatter plots of the
results of (a) RF, (b) SVR, (c) XGBoost, and (d) CatBoost models for DO retrieval are presented. The
black, blue, and red lines represent the 1:1 line and regression lines between measured and estimated
values on the training and test datasets, respectively. The blue dots and red dots represent the training
set and test set, respectively.

In the case of the transparency index (Figure 6), the XGBoost, RF, and CatBoost
models exhibited favorable results in the training set. Notably, all four models tended to
overestimate SDD values when SDD < 0.4 m and underestimate values when SDD > 0.6 m.
In summary, the XGBoost model showcased the best performance across both the training
and test sets (training set: RMSE = 0.07 m, MAPE = 15.12%; test set: RMSE = 0.155 m,
MAPE = 34.14%). Consequently, it is deemed the optimal choice for SDD retrieval.
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Figure 6. For the training set (n = 318) and test set (n = 80) in Dianshan Lake, scatter plots of the
results of (a) RF, (b) SVR, (c) XGBoost, and (d) CatBoost models for SDD retrieval are presented. The
black, blue, and red lines represent the 1:1 line and regression lines between measured and estimated
values on the training and test datasets, respectively. The blue dots and red dots represent the training
set and test set, respectively.

In terms of the TN index (Figure 7), the results retrieved by the four models exhibit
a notable similarity. Concerning the training dataset, both the Random Forest (RF) and
XGBoost models show superior performance. Their MAPE is below 20%. Analyzing the
bias, RF outperforms all other models. Specifically, for the training set, RF demonstrates an
RMSE of 0.45 mg/L, a MAPE of 19.45%, and a bias of 0. For the test set, the metrics are an
RMSE of 0.54 mg/L, a MAPE of 21.83%, and a bias of −0.01. These outcomes underscore
RF’s heightened accuracy and stability in predictions, compared to the alternative models.
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Figure 7. For the training set (n = 318) and test set (n = 80) in Dianshan Lake, scatter plots of the
results of (a) RF, (b) SVR, (c) XGBoost, and (d) CatBoost models for TN retrieval are presented. The
black, blue, and red lines represent the 1:1 line and regression lines between measured and estimated
values on the training and test datasets, respectively. The blue dots and red dots represent the training
set and test set, respectively.

Regarding the TP index (Figure 8), CatBoost notably outperformed the other models,
exhibiting the best outcomes (training set: RMSE = 0.02 mg/L, MAPE = 19.2%; test set:
RMSE = 0.036 mg/L, MAPE = 29.34%). Notably, the R2 values for both the training and
test sets surpassed 0.75, and the MAPE values remained below 30%. Conversely, SVR
showcased less favorable results, yielding MAPE values exceeding 65% across the training
and test sets.
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Figure 8. For the training set (n = 318) and test set (n = 80) in Dianshan Lake, scatter plots of the
results of (a) RF, (b) SVR, (c) XGBoost, and (d) CatBoost models for TP retrieval are presented. The
black, blue, and red lines represent the 1:1 line and regression lines between measured and estimated
values on the training and test datasets, respectively.

Distinct characteristics are observed among various machine learning algorithms when
predicting water quality parameters. By ranking the assessment results of the six water
quality parameters, it is evident that CatBoost consistently achieves the most favorable
outcomes across all four instances. XGBoost ranks within the top two positions in five out
of six cases, whereas SVR consistently yields relatively inferior results across all six water
quality parameters. Overall, in the evaluation of retrieval results for the six water quality
parameters, CatBoost performs the best, followed by XGBoost in second place, RF in third,
and SVR in the last position.

3.2. Spatiotemporal Patterns of Diandao Lake Water Quality Based on Sentinel-2
3.2.1. Temporal Variation

According to Section 3.1, it can be observed that the best models for Chl-a, CODMn,
DO, SDD, TN, and TP are CatBoost, CatBoost, XGBoost, XGBoost, RF, and CatBoost,
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respectively. For ease of understanding and readability, we shall refer to them as BM-Chl-a,
BM-CODMn, BM-DO, BM-SDD, BM-TN, and BM-TP. In this section, the best models were
employed to estimate the concentrations of Chl-a, DO, CODMn, SDD, TN, and TP. Yearly
average images (Figure 9) for these water quality parameters were calculated from 2017 to
2022 (data for 2023 were available only for the first four months and were excluded from
this analysis). In addition, we also plotted the overall monthly average image (Figure 10)
from 2017 to 2023. To gain a more intuitive understanding of the temporal changes in
various water quality parameters, we have compiled their quarterly averages for each year
(Figure 11).

Figure 9. Images depicting the annual average concentrations of (a) Chl-a, (b) CODMn, (c) DO,
(d) SDD, (e) TN, and (f) TP in Dianshan Lake, retrieved using Sentinel-2 MSI imagery, for the years
2017 to 2022.
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Figure 10. Images depicting the monthly average concentrations of (a) Chl-a, (b) CODMn, (c) DO,
(d) SDD, (e) TN, and (f) TP in Dianshan Lake, retrieved using Sentinel-2 MSI imagery, for the years
2017 to 2023.

Figure 11. Bar charts illustrating the seasonally average concentration distribution of (a) Chl-a,
(b) CODMn, (c) DO, (d) SDD, (e) TN, and (f) TP in Dianshan Lake from 2017 to 2023. The black
dashed line represents the average value of water quality parameters calculated using six years of
data from 2017 to 2022.
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Upon analysis, the average Chl-a concentration over the six years was found to be
13.53 ± 2 mg/m3. The lowest recorded value occurred in 2017 at 10.86 mg/m3, while
the highest was observed in 2020 at 15.03 mg/m3. There was a continuous upward trend
in Chl-a concentration from 2017 to 2020, with relatively minor interannual differences
between 2020 and 2022. However, during the summer, autumn, and winter seasons, the
concentrations showed a decreasing trend compared to 2020 (Figure 11a). The average
CODMn concentration was determined to be 3.94 ± 0.4 mg/L. CODMn exhibited overall
small fluctuations, with seasonal averages ranging between 3.5 and 4.5 mg/L across
the years (Figure 11b). The lowest value was observed in 2019 at 3.9 mg/L, while the
highest was recorded in 2020 at 4.04 mg/L. The average DO concentration amounted to
9.89 ± 0.42 mg/L. The lowest concentration was observed in 2020 at 9.37 mg/L, while
the highest concentration was noted in 2018 at 10.38 mg/L. DO also showed a declining
trend from 2017 to 2020, with an increase in concentration observed in the spring and
winter of 2021, followed by another decrease in 2022 (Figure 11c). For SDD, the average
value was 0.44 ± 0.04 m. SDD did not exhibit a clear pattern of change, but overall,
it showed a trend of initially decreasing and then increasing. SDD values were higher
in 2017–2019, lower in 2020 and 2021, and increased again in 2022 (Figure 11d). The
average TN concentration was calculated to be 2.08 ± 0.1 mg/L. The lowest concentration
occurred in 2019 at 1.91 mg/L, and the highest was observed in 2021 at 2.21 mg/L. TN
displayed relatively small interannual differences, indicating stable changes over the years
(Figure 11e). Lastly, the average TP concentration was measured at 0.109 ± 0.003 mg/L.
The lowest value was registered in 2022 at 0.105 mg/L, whereas the highest value was
recorded in 2020 at 0.111 mg/L.

The seasonal variations in water quality parameters mirror their monthly fluctuations.
Chl-a, CODMn, and TN concentrations exhibit higher levels in the summer and autumn,
while they demonstrate lower levels in the spring and winter. Conversely, other water
quality parameters display the opposite trend (Figures 10 and 11).

3.2.2. Spatial Variation

To explore the spatial variations of various water quality parameters within Dianshan
Lake, we conducted a comprehensive analysis by computing the mean values based
on data collected from 100 images. The annual average values obtained for Dianshan
Lake were 13.73 mg/m3 for Chl-a, 3.94 mg/L for CODMn, 8.92 mg/L for DO, 0.44 m for
SDD, 2.09 mg/L for TN, and 0.11 mg/L for TP, respectively. The corresponding standard
deviations were recorded as 4.4 mg/m3, 0.29 mg/L, 1.47 mg/L, 0.11 m, 0.74 mg/L, and
0.013 mg/L.

The mean images of each water quality parameter reveal distinct spatial patterns
within Dianshan Lake. There is a clear negative correlation between Chl-a and SDD distri-
butions, wherein areas with higher Chl-a concentrations tend to exhibit lower transparency
(Figure 12a,d). Within the lake area, the northern and southwestern regions demonstrate
elevated Chl-a concentrations, particularly near the entrances of Jishuigang Harbor in
the northeast and the western region, where Chl-a concentrations reach their peaks. In
contrast, the central open areas of the lake and the southeastern region exhibit lower
Chl-a concentrations.

Similar to Chl-a, the spatial distribution of CODMn and TN also displays a correlation
(Figure 12b,e). CODMn exhibits a discernible distribution pattern throughout the lake, with
higher concentrations observed along the lake’s edges and lower concentrations in the
open areas within the lake. DO concentrations are lowest near the entrance of Jishuigang
Harbor in the southwestern region, while the central open areas and northern regions of
the lake demonstrate higher DO concentrations (Figure 12c).

Regarding nitrogen content, TN concentrations are lower in the lake’s edge regions
and higher in the open areas within the lake (Figure 12e). Similarly, the spatial distribution
trend of TP resembles that of TN (Figure 12f). The southwestern and northeastern regions
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of the lake exhibit lower TP concentrations, while the eastern areas and central open regions
display higher TP concentrations.

 

Figure 12. Average concentration maps of (a) Chl-a, (b) CODMn, (c) DO, (d) SDD, (e) TN, and (f) TP
in Dianshan Lake from 2017 to 2022.

To investigate the spatial variations of Dianshan Lake more comprehensively, we
calculated the coefficient of variation map for the entire lake area (Figure 13). It can be
observed that regions with higher concentrations of DO, TN, and TP tend to exhibit larger
variability. Similarly, SDD follows a similar pattern, with regions showing higher values
appearing in red hues, indicating greater coefficients of variation. In contrast, the standard
deviation of CODMn remains relatively consistent across the entirety of the lake, suggesting
an overall lower variability, which is in line with its temporal variation image. The situation
for Chl-a is slightly different, whereby regions with lower average concentrations across
the lake display relatively unstable conditions, implying significant variability.

 

Figure 13. Coefficient of variation maps of (a) Chl-a, (b) CODMn, (c) DO, (d) SDD, (e) TN, and (f) TP
concentrations in Dianshan Lake from 2017 to 2022.

4. Discussion

4.1. Applicability of the Models

In the practical application of Dianshan Lake, promising outcomes have been achieved
through the construction of models utilizing both actual measurement data from Dianshan
Lake and satellite reflectance data, enabling the prediction of various water quality parame-
ters. To comprehensively assess the applicability of the established best models for various
water quality parameters, further in-depth research was conducted. Considering Dianshan
Lake as a representative small lake with poor-to-low nutrient levels, we extended our inves-
tigation to Taihu Lake—a larger lake characterized by higher nutrient levels. The primary
objective was to validate the generality and stability of BM-Chl-a, BM-CODMn, BM-DO,
BM-SDD, BM-TN, and BM-TP across diverse environmental contexts. The performance of
the best model for each parameter in the Taihu Lake dataset is shown in Table 5.

Based on the outcomes, noteworthy shifts were observed in the prediction perfor-
mance of Chl-a. The RMSE of Chl-a escalated to 19.88 mg/m2, while the MAPE surged to
45%, nearly doubling the previous values. Consequently, BM-Chl-a exhibited substantial
errors in predicting Chl-a, signifying a diminished predictive capacity for this parameter.
The prediction errors of BM-CODMn and BM-DO also displayed some increase. The
RMSE values (0.74 mg/L and 1.69 mg/L) and MAPE values (15% and 15%) both grew by
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approximately half. Although the prediction outcomes remained within a certain range,
in comparison to the prior test data, these two models exhibited heightened uncertainty
in predicting CODMn and DO. Regarding BM-SDD, the model’s predictive performance
showed improvement, as reflected by diminished RMSE (0.07 m) and MAPE (16%) values,
indicating enhanced accuracy in forecasting water transparency concentrations. However,
in the instances of BM-TN and BM-TP, the models’ performance faltered. The predictive
errors for these two indicators markedly increased when contrasted with the test data from
Dianshan Lake, particularly the MAPE values (55% and 68%), which tripled. Consequently,
BM-TN and BM-TP demonstrated marked limitations, with their forecasts significantly
diverging from actual conditions.

Table 5. Performance of the best model of each parameter on Taihu Lake.

Water Quality Parameter RMSE MAPE Bias

Chl-a 19.88 mg/m3 44.88% −12.14 mg/m3

CODMn 0.74 mg/L 14.61% 0.08 mg/L
DO 1.69 mg/L 14.88% −1.25 mg/L

SDD 0.07 m 15.7% −0.013 m
TN 1.5 mg/L 54.78% 10.45 mg/L
TP 0.05 mg/L 67.56% 0.034 mg/L

In light of the models’ predictive outcomes compared to the authentic test data from
Taihu Lake, it can be deduced that the predictive performance of parameters such as Chl-a,
CODMn, DO, TN, and TP exhibited varying degrees of decline or fluctuation. Only the
predictive performance for SSD maintained a relatively favorable state. In essence, the best
models for Dianshan Lake displayed specific restrictions and inadequacies in predicting
water quality parameters for Taihu Lake. Further enhancement and optimization are
imperative through the incorporation of localized data to augment its predictive prowess.

4.2. Performance and Evaluation of Machine Learning Algorithms
4.2.1. Analysis of Error Sources Affecting Model Performance

In the realm of machine learning, the quality of the dataset has a direct bearing on
the performance of the model. Additionally, the congruence between field estimations
and satellite-derived estimations stands as a crucial criterion for evaluating the efficacy of
the proposed Chl-a algorithm. Given the foundation of our study in employing satellite
reflectance and measurement data to construct retrieval models, the quality of satellite
reflectance data becomes particularly salient.

First and foremost, atmospheric correction presents itself as a principal source of error.
Particularly, in comparison to expansive oceanic regions, atmospheric correction for inland
water body imagery proves to be a more intricate endeavor due to intricate interactions with
neighboring land pixels. Rectifying atmospheric effects over water surfaces is particularly
demanding, often requiring a higher degree of precision compared to correction procedures
applied over terrestrial areas. In this study, a specialized atmospheric correction method
tailored for inland water bodies [48,49] was employed. Following Rayleigh correction, the
“dark pixel method” was transferred to the shortwave near-infrared band [32,45,50,55] to
mitigate aerosol effects. This approach ensures a maximum level of correction accuracy,
even in the presence of unavoidable errors.

Furthermore, the alignment of time windows [56] and pixel window [57] sizes for on-
site estimations and satellite data introduces error sources within the retrieval model. While
Sentinel-2 MSI imagery follows a five-day orbital cycle, practical limitations arising from
adverse weather conditions considerably restrict the number of images that effectively align
with measured data. According to statistics from pertinent water management authorities
in Shanghai, Dianshan Lake has an approximate water turnover cycle of seven days.
Accordingly, we extended the time window to five days to secure a more substantial dataset
alignment. Apart from Chl-a, the correlation between other water quality parameters and
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single-band reflectance remains relatively low (Figure 14). Encouragingly, correlations
involving combinations of bands display improved trends. Looking ahead, enhancing the
frequency of in situ measurements to shorten the time window and acquire more aligned
data warrants consideration.

Figure 14. Machine learning input features and correlation coefficients of each water quality parame-
ter. B1~B8a represent the corresponding bands of the Sentinel-2 MSI image, and T1~T4 represent the
band combination with the greatest correlation with each water quality parameter (Rrs(λ1)− Rrs(λ2),
Rrs(λ1)
Rrs(λ2) , Rrs(λ2)−Rrs(λ1)

Rrs(λ2)+Rrs(λ1) , Rrs(λ3)× ( 1
Rrs(λ2) − 1

Rrs(λ1) )).

Moreover, to demonstrate the effectiveness of satellite reflectance pixel windows,
different window sizes were employed in constructing retrieval models, including single-
pixel windows, 3 × 3 pixel window averages, and 5 × 5 pixel window averages.

RMSE and MAPE are employed as performance metrics. As illustrated in Table 6, for
both RMSE and MAPE, the 3 × 3 pixel window consistently yields the lowest error across
various water quality parameter retrievals. This aligns with our predicted outcomes. The
single-pixel window exhibits higher variability, potentially stemming from greater noise.
The 5 × 5 pixel window, with a ground resolution of 100 m × 100 m, might excessively
“smooth” the data, thus diminishing spectral features. In contrast, the 3 × 3 pixel window
effectively eliminates noise while retaining significant water feature information in the
region, thereby maximizing water quality uniformity.

Table 6. Accuracy display of water quality parameters using different pixel windows and different
methods to build models.

Parameters Methods
1 × 1 3 × 3 5 × 5

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

Chl-a
(mg/m3)

CatBoost 11.19 29.12 11.11 28.12 11.21 29.12
RF 10.94 29.87 10.94 29.57 10.99 31.57

SVR 13.99 38.15 12.99 35.15 13.99 39.15
XGBoost 10.46 29.86 10.46 30.86 10.96 31.86

CODMn
(mg/L)

CatBoost 0.58 11.29 0.57 11.24 0.59 11.87
RF 0.60 11.33 0.58 11.28 0.62 12.19

SVR 0.61 11.63 0.60 11.10 0.61 12.11
XGBoost 0.57 10.60 0.55 10.55 0.57 11.32

DO
(mg/L)

CatBoost 1.27 12.89 1.25 12.77 1.31 13.16
RF 1.32 13.24 1.32 13.16 1.35 13.68

SVR 1.24 12.29 1.20 12.11 1.24 12.29
XGBoost 1.34 13.14 1.24 12.56 1.28 12.97
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Table 6. Cont.

Parameters Methods
1 × 1 3 × 3 5 × 5

RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%)

SDD
(m)

CatBoost 14.44 34.38 14.73 34.26 14.65 34.63
RF 14.69 34.44 14.77 34.28 14.75 34.90

SVR 14.80 34.14 14.74 34.14 14.81 34.57
XGBoost 14.38 34.03 14.15 33.22 14.35 34.31

TN
(mg/L)

CatBoost 0.72 25.83 0.63 24.01 0.68 26.14
RF 0.82 26.08 0.68 25.15 0.65 26.33

SVR 0.73 24.80 0.65 24.26 0.62 25.07
XGBoost 0.69 25.81 0.61 24.68 0.61 24.76

TP
(mg/L)

CatBoost 0.04 33.13 0.04 32.14 0.04 32.91
RF 0.06 78.09 0.06 75.45 0.06 74.07

SVR 0.04 32.47 0.04 31.71 0.04 32.02
XGBoost 0.04 30.20 0.04 29.34 0.04 31.88

4.2.2. Evaluation of the Models

Based on the previous analysis, it is evident that CatBoost has the greatest potential
for application in inland water quality assessment. It demonstrated superior performance
in predicting Chl-a, CODMn, SDD, and TP. The convincing results are particularly evident
in Table 6, where changes in pixel window size did not affect the accuracy trend. The main
challenge of machine learning modeling is the need for extensive samples. CatBoost excels
with small datasets, effectively curbing overfitting and providing valuable insights into
feature importance, aiding in understanding model performance and predictions [58].

Among the models, SVR exhibited the weakest performance. It notably erred sig-
nificantly in predicting TP (Figure 8). SVR’s performance might excel with high-quality
data [38], which could explain its unsatisfactory performance when modeling satellite
reflectance data due to atmospheric correction errors. XGBoost and RF also show promise,
as prior studies highlight their utility in inland lake water quality assessment [24,38].

4.3. Spatiotemporal Change Analysis

After analysis, it was found that there were minimal overall differences in the temporal
variations of CODMn, TN, and TP, which may be related to the nutrient status of Dianshan
Lake. The lake’s overall eutrophication is not severe, with occasional occurrences of algae
blooms in late summer and early autumn. Except for TN, almost all other parameters
indicate better water quality during the winter and spring seasons compared to the summer
and autumn seasons. TN, in particular, exhibits a pronounced seasonal variation trend
over six years, with notably high values during the winter. This phenomenon may result
from the combined influence of multiple factors.

Environmental and meteorological factors such as water temperature, air temperature,
and precipitation can affect water quality [59]. We compiled monthly average values of
environmental factors (water temperature, pH, conductivity) and meteorological factors
(air temperature, precipitation, wind speed) for Dianshan Lake and examined their re-
lationships with water quality parameters through correlation analysis (Table 7). Water
temperature, air temperature, and precipitation showed strong correlations with various
water quality parameters, while pH and conductivity were significantly correlated only
with Chl-a and TP, and wind speed exhibited weak correlations with all parameters. Due
to climate-related factors, both air and water temperatures reach their lowest points in
winter (December, January, February) and peak in late summer and early autumn (August,
September). Similarly, precipitation is very high in summer and very low in winter. These
factors can influence the intensity of chemical reactions in the water, as well as the variation
of nutrients and chemicals released from sediments, leading to changes in water chem-
istry and characteristics. Precipitation also drives the input of nutrients from the lake’s
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surroundings, which can promote algal growth and increase concentrations of Chl-a, thus
improving water quality in spring and winter compared to summer and autumn.

Table 7. Pearson correlation coefficient of water quality parameters and environmental factors.

Index Chl-a CODMn DO SDD TN TP

Water temperature 0.38 0.71 * −0.94 * −0.86 * −0.32 −0.1
PH 0.73 * 0.46 −0.35 −0.19 −0.24 −0.25

Conductivity −0.4 −0.12 0.43 0.56 0.38 0.39
Air temperature 0.41 0.82 * −0.97 * −0.82 * −0.35 −0.13

Precipitation 0.78 * 0.45 −0.72 * −0.42 −0.67 * −0.37
Wind speed 0.15 0.43 −0.42 −0.21 −0.49 −0.33

* Represents significant correlation, Pearson correlation coefficient > 0.6.

Agricultural nonpoint source pollution is widely recognized as one of the most impor-
tant nutrient sources contributing to water quality deterioration [60]. Therefore, changes in
land use, especially in the area of farmland, can also impact water quality parameters [43].
Dianshan Lake is designated as a protected area for drinking water resources, with re-
strictions on industrial development and a ban on livestock farming. Previous research
has indicated that agriculture is the primary source of pollution leading to deteriorating
water quality in this region [61]. One of the primary reasons for agricultural pollution
of water quality is the widespread use of agricultural chemicals such as fertilizers and
pesticides. These chemicals are washed into lakes by rainwater, leading to an increase in
the concentrations of TN and TP in the water, thereby triggering eutrophication issues. As
TN and TP levels rise, the content of Chl-a also increases, resulting in the overgrowth of
algae in the water body. This leads to a decline in water quality, characterized by severe
eutrophication, and a potential decrease in the concentration of DO, adversely affecting
aquatic organisms. Additionally, due to soil erosion and wastewater discharges, there
may be an increase in suspended solids in the water, leading to increased water turbidity
and reduced water transparency. These changes in the range of water quality parame-
ters can be attributed to the adverse impact of agricultural activities on the water body.
Data obtained from the Statistical Yearbook website (http://www.tjnjw.com/, accessed on
4 September 2023) show that the farmland area in Qingpu District decreased from 25,466
hectares in 2017 to 20,581 hectares in 2019 and then increased to 25,400 hectares in 2021.
The farmland area decreased initially and then increased, with the smallest area recorded
in 2019, coinciding with the year when various parameters reached extreme values over the
six years (as observed in Section 3.2.1). This suggests a strong correlation between the area
of farmland around Dianshan Lake and water quality: when the farmland area decreases,
water quality improves, and when the farmland area increases, water quality deteriorates.

As indicated in Section 3.2.2, water quality parameters exhibit noticeable spatial
differences, which could be related to the uneven distribution of water flow, sediment,
and nutrient inputs. It is noteworthy that there are significant differences between the
water quality parameters at the inlet and outlet of Dianshan Lake. The inlet is typically
a critical area for water quality changes, as it is directly influenced by the surrounding
environment, while the outlet may be influenced by internal lake ecosystems and processes.
Based on the mean values of water quality parameters (Figure 12), at the inlet of Dianshan
Lake, the Chl-a concentration and CODMn concentration are higher, while DO and SDD
concentrations are lower. Conversely, at the outlet, the opposite trend is observed. Jishui
Port takes the shipping channel as the main water function, and the traffic discharge enters
the lake area along with the entrance. The influx of water from tributaries introduces a
large amount of suspended sediment and organic matter, increasing the concentrations of
Chl-a and CODMn. The water near the inlet of the lake is much turbid compared to the
open areas within the lake, resulting in lower transparency.
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4.4. Strengths and Limitations of the Study

This study possesses significant strengths across various dimensions. Firstly, our
study adopts a direct model built upon image reflectance data. This strategy mitigates the
influence of atmospheric correction on research outcomes to a certain extent, effectively
curtailing error propagation from modeled measured data to satellite image application.
Consequently, this approach bolsters the stability of the proposed model. Secondly, our
study transcends the limitations of assessing algorithm performance solely based on indi-
vidual water quality parameters. Instead, we amalgamate multiple pivotal water quality
parameters and gauge the efficacy of six distinct machine learning methods. In comparison
to appraising methods solely on a singular water quality parameter, our all-encompassing
evaluation strategy is more holistic and precise. This curtails uncertainty in evaluation
findings and enhances the trustworthiness of research conclusions. Lastly, our study ven-
tures beyond the exploration of modeling techniques. It encompasses a spatiotemporal
analysis of diverse water quality parameters within Dianshan Lake. This examination of
spatiotemporal distribution furnishes invaluable insights into water quality retrieval within
small lakes. Moreover, our study deepens the comprehension of small lake ecosystems,
delivering substantial groundwork for informed decisions regarding lake water quality
management and preservation. The analytical results furnish novel viewpoints and avenues
for research and practical applications in related spheres.

While this study has made commendable advancements, it is important to address
a few noteworthy considerations. Firstly, regarding the distribution of the dataset, we
acknowledge that there are certain limitations in terms of data samples within high- and
low-concentration ranges. In our application of the model to the Taihu Lake region, we
observed that predictions only for SDD (water transparency) were notably accurate. There-
fore, there might be room for improvement in predicting other water quality parameters.
This disparity could potentially arise from the distinct characteristics of Dianshan Lake
and Taihu Lake, but it has not impeded the model’s practical applicability across different
regions. Secondly, when machine learning is used for prediction, the precision of measured
parameter concentrations can significantly impact the model’s performance, as evident in
the prediction of TP and SDD. Since TP concentrations are typically quite low, often below
0.1 mg/L, and our actual measurements are controlled only up to 0.001 mg/L, this results
in multiple identical TP concentration values in the measured data. This accuracy issue
leads to a situation where a specific TP concentration may correspond to multiple different
reflectance spectral data, increasing the difficulty for the model to distinguish similar values
and, consequently, resulting in poorer model performance. The same holds true for SDD.
Future work could consider improving measurement precision based on the concentration
distribution of measured water quality parameters to enhance model performance. Finally,
we employed a time window of five days to synchronize the measured and satellite data. It
is acknowledged that changes within the water body could transpire during this period,
and future research could contemplate the integration of additional observational data to
expand the dataset’s scope.

5. Conclusions

This study utilized satellite data and in situ measurements to determine the optimal
models for Chl-a, CODMn, DO, SDD, TN, and TP from four machine learning models
(RF, SVR, XGBoost, and CatBoost), which were identified as CatBoost, CatBoost, XGBoost,
XGBoost, RF, and CatBoost, respectively. The applicability of these models was validated
using data from Taihu Lake. These models were then applied to Sentinel-2 imagery from
2017 to 2023 to obtain the spatiotemporal distribution of water quality parameters in Dian-
shan Lake. Image inversion results indicated that the overall distribution of water quality
parameters in the study area was uneven, with significant spatial variation, relatively minor
interannual differences, and significant seasonal patterns. Further analysis revealed that
the spatiotemporal variation of water quality parameters was influenced by climatic factors
such as temperature and precipitation, as well as human activities including agriculture
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and industry. The results of this study indicate that constructing models using multispectral
satellite image reflectance and in situ water quality parameter sampling data is effective.
Furthermore, in the future, model enhancement can be further achieved by improving the
precision of in situ data, reducing the data time window, such as utilizing multisource
satellite data, and implementing other methods. In conclusion, our study demonstrates
advantages in methodology, data processing, and practical implementation. It provides
valuable practical experience for the accurate monitoring of water quality parameters in
small water bodies using satellite data and offers essential data support for local water
resource management and environmental protection.
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Appendix A

Table A1. Methods for Determining Some Water Quality Parameters in Chinese National Standard
GB3838-2002.

Water Quality
Parameter

Determination Method

Chl-a Nitrite Reduction Method and Continuous-Flow Analysis
CODMn High-Temperature Oxidation Method and Continuous-Flow Analysis

DO Electrode Method and Continuous-Flow Analysis
SDD Potassium Permanganate Spectrophotometric Method and Continuous-Flow Analysis
TN Ether Extraction–Spectrophotometric Method
TP Transparency Meter Measurement

Table A2. The best hyperparameters found by grid optimization of the models.

Model Hyperparameters Chl-a CODMn DO SDD TN TP

RF

n_estimators 450 500 360 390 490 300
max_depth 40 25 10 45 20 20

min_samples_split 5 4 5 11 7 3
min_samples_leaf 3 5 7 2 3 7

SVR
C 4.91 2 8.67 9.82 7.52 2.94

kernel ‘rbf’ ‘rbf’ ‘rbf’ ‘rbf’ ‘rbf’ ‘linear’
gamma 88.109 58.907 29.329 80.078 66.251 16.369

XGBoost

learning_rate 0.16 0.015 0.085 0.04 0.035 0.155
gamma 0.001 0.003 0.003 0.001 0.001 0.003

min_child_weight 9 5 8 8 9 6
max_depth 2 2 10 6 6 8
sub_sample 1 1 0.8 1 0.8 1
reg_alpha 0.1 1 1 0.01 1 0.01

CatBoost

iterations 200 170 370 430 230 450
learning_rate 0.03 0.03 0.01 0.04 0.02 0.01

depth 6 9 8 8 6 9
l2_leaf_reg 2 1 2 9 2 2
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58. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54,
1937–1967. [CrossRef]

59. Chen, Z.; An, C.; Tan, Q.; Tian, X.; Li, G.; Zhou, Y. Spatiotemporal analysis of land use pattern and stream water quality in
southern Alberta, Canada. J. Contam. Hydrol. 2021, 242, 103852. [CrossRef] [PubMed]

60. Huang, J.; Zhang, Y.; Bing, H.; Peng, J.; Dong, F.; Gao, J.; Arhonditsis, G.B. Characterizing the river water quality in China: Recent
progress and on-going challenges. Water Res. 2021, 201, 117309. [CrossRef] [PubMed]

61. Wang, S.; Ma, X.; Fan, Z.; Zhang, W.; Qian, X. Impact of nutrient losses from agricultural lands on nutrient stocks in Dianshan
Lake in Shanghai, China. Water Sci. Eng. 2014, 7, 373–383.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

103



Citation: Amieva, J.F.; Oxoli, D.;

Brovelli, M.A. Machine and Deep

Learning Regression of Chlorophyll-a

Concentrations in Lakes Using

PRISMA Satellite Hyperspectral

Imagery. Remote Sens. 2023, 15, 5385.

https://doi.org/10.3390/rs15225385

Academic Editors: Miro Govedarica,

Flor Alvarez-Taboada and Gordana

Jakovljević
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Abstract: The estimation of Chlorophyll-a concentration is crucial for monitoring freshwater ecosys-
tem health, particularly in lakes, as it is closely linked to eutrophication processes. Satellite imagery
enables synoptic and frequent evaluations of Chlorophyll-a in water bodies, providing essential
insights into spatiotemporal eutrophication dynamics. Frontier applications in water remote sens-
ing support the utilization of machine and deep learning models applied to hyperspectral satellite
imagery. This paper presents a comparative analysis of conventional machine and deep learning
models—namely, Random Forest Regressor, Support Vector Regressor, Long Short-Term Memory,
and Gated Recurrent Unit networks—for estimating Chlorophyll-a concentrations. The analysis is
based on data from the PRecursore IperSpettrale della Missione Applicativa (PRISMA) hyperspectral
mission, complemented by low-resolution Chlorophyll-a concentration maps. The analysis focuses on
three sub-alpine lakes, spanning Northern Italy and Switzerland as testing areas. Through a series of
modelling experiments, best-performing model configurations are pinpointed for both Chlorophyll-a
concentration estimations and the improvement of spatial resolution in predictions. Support Vector
Regressor demonstrated a superior performance in Chlorophyll-a concentration estimations, while
Random Forest Regressor emerged as the most effective solution for refining the spatial resolution
of predictions.

Keywords: machine learning; deep learning; hyperspectral imagery; PRISMA satellite; Chlorophyll-a;
water quality; lakes eutrophication

1. Introduction

Eutrophication is predominantly an anthropogenic process characterized by an exces-
sive accumulation of nutrients, primarily nitrogen and phosphorus, in surface freshwater
ecosystems such as lakes. This nutrient excess promotes the rapid growth of algae and
aquatic plants which can increase both water turbidity and, as algae die and decompose,
water oxygen depletion, leading to negative impacts on aquatic life and lake ecosystems [1].
Human disturbances to the water cycle, such as agricultural runoff, urban development,
and wastewater discharge, mostly contribute to eutrophication [2]. Therefore, controlling
and mitigating lake eutrophication is essential to protect both freshwater ecosystems and
human well-being by maintaining the ecological and economic value of lakes [3]. The need
to preserve freshwater ecosystems is further enforced by their direct connection with the
United Nations Sustainable Development Goal 6 (SDG 6: Ensure availability and sustain-
able management of water and sanitation for all) [4]. Accordingly, effective control and
mitigation actions towards freshwater ecosystem protection are imperative and require
both space- and time-resolved monitoring and quantification of eutrophication levels in
surface water bodies [5].

A significant indicator of eutrophication is the concentration of Chlorophyll in water,
which is a major component of algae pigments and cyanobacteria and allows for the esti-
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mation of algal biomass in water bodies [6]. Specifically, Chlorophyll-a (Chl-a) is mostly
used as a proxy for total algal biomass [7]. Chl-a concentration is relatively easy to measure
using various techniques, including imaging spectroscopy [8], and both in-situ and remote
sensing methods are often applied in the practice [9]. In-situ monitoring generally suffers
from limitations in terms of space–time coverage of measurements [10]. Conversely, re-
mote sensing methods, such as satellite multispectral and hyperspectral imagery, allow for
the synoptic assessment of Chl-a concentration over the whole water body’s surface and
provide repeated measurements over time, which are critical to capturing eutrophication
space–time dynamics [11]. Imaging spectroscopy exploits characteristic Chl-a sunlight
absorption and reflection patterns at specific wavelengths including green, blue, red, and
near-infrared bands [12] to determine its concentration in water. Airborne and spaceborne
imagery has been employed since the 1980s for monitoring Chl-a concentration, proving
to be more successful in ocean and seawater applications rather than inland waters due
mainly to the limited spatial and spectral resolution of data available at that time [10].
Moreover, the optical complexity of inland waters, primarily caused by a high presence of
suspended particles, reduces the reliability of both atmospheric corrections and estimation
models initially designed for land and ocean applications [12]. Nonetheless, the detailed
and frequent retrieval of inland water biochemical parameters, including Chl-a, has become
possible thanks to the latest generation of medium to high spatial resolution multispec-
tral spaceborne sensors, such as those onboard Landsat-8/9, Sentinel-2, and Sentinel-3
satellites [13].

Frontier applications of inland water quality remote monitoring involve hyperspectral
satellite imagery, on which bio-optical algorithms demonstrated improved performances
compared with multispectral imagery [14,15]. These applications are also favoured by new
advancements in global hyperspectral remote sensing, proven by the recent or upcoming
launches of hyperspectral satellites [16]. An early example of the above is the Hyperion
imager, launched by the United States (US) National Aeronautics and Space Administration
(NASA) in 2000 and operational until 2017 [17]. Relevant examples of the most recent mis-
sions that provide publicly available imagery are as follows: the German Aerospace Center
Earth Sensing Imaging Spectrometer (DESIS) [18] and the hyperspectral imager aboard the
Environmental Mapping and Analysis Program (EnMAP) satellite mission [19], the Chinese
Advanced Hyperspectral Imager (AHSI) aboard the GaoFeng-5 satellite [20], followed by
the launch of the PRecursore IperSpettrale della Missione Applicative (PRISMA) sensor by
the Italian Space Agency (ASI) [21], and HyperScout instruments launched on nanosatel-
lites by the European Space Agency (ESA) [22]. These imaging systems offer data cubes
where each pixel is composed of several spectral bands enabling space, time and spectral
resolved detection of water biochemical constituents [23].

As the resolution and coverage of satellite hyperspectral images continue to improve,
cutting-edge data technologies, particularly the implementation of machine and deep learn-
ing algorithms [24], are playing a pivotal role in advancing the diffusion and enhancing
the capabilities of Chl-a estimation models. Alongside traditional spectral indices and
physics-based models [25], machine and deep learning approaches have been frequently
exploited in the literature within hyperspectral imaging for Chl-a and other biochemical
constituents estimation in water bodies [26]. Recent and pertinent examples are as follows.
In [27], Partial Least Squares (PLS) is utilized to determine Chl-a and Total Suspended
Matter (TSM). Ref. [28] models in-situ measurements using linear models and Support
Vector Machines (SVM) to predict Chl-a concentrations in Lake Taihu (China). Ref. [29]
estimates water quality parameters, including Chl-a, for the Elbe River using ten different
machine-learning regression models. Ref. [30] evaluates Random Forest (RF), SVM, and Ar-
tificial Neural Networks (ANN) for predicting Chl-a concentrations in various inland water
bodies, also exploring the inclusion of spectral derivatives as input data. Ref. [31] devel-
oped a PLS-ANN model for Chl-a prediction in Lake Erie. Additionally, Ref. [32] utilizes
simulated hyperspectral satellite data to predict Chl-a concentrations in lakes, employing
an array of models including RF, SVM, Multivariate Adaptive Regression Spline (MARS),
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and CNN. Ref. [33] generates synthetic EnMAP hyperspectral imagery using EnMAP
end-to-end simulator software (EeteS) [34] for Chl-a prediction in Czech Republic water
reservoirs using Principal Component Regression, PLS Regression, and RF models. Fi-
nally, Refs. [35,36] utilize hyperspectral data from the Hyperspectral Imager for the Coastal
Ocean (HICO) [37] and the PRISMA satellite, respectively, to predict Chl-a concentrations
using Mixture Density Network (MDN) models.

Despite the availability of machine and deep learning algorithms, there are persistent
challenges in implementing them for operational monitoring tasks, often due to a lack of
the space–time resolved reference data necessary to train and validate such models [25,38].
With this in mind, the present study aims to employ a variety of machine and deep
learning regression models and subsequently conduct a comparative assessment across
diverse experimental setups, with the goal of predicting Chl-a concentration maps from
medium-resolution hyperspectral satellite imagery through the training and evaluation
of these models with reference data characterized by lower spatial resolution, heightened
acquisition frequency up to 2 days, and a wide swath width. The objective of the analysis is
twofold. Firstly, it aims to verify that the use of the rich spectral information of hyperspectral
imagery, coupled with machine and deep learning models, is suitable for reconstructing
Chl-a concentration maps using pre-existing and widely accessible reference data. Secondly,
it aims to assess the potential for enhancing the spatial resolution of pre-existing Chl-a
concentration maps by aligning it with the hyperspectral imagery employed as the regressor
in model implementation.

The selected study area includes three sub-alpine lakes between Northern Italy and
Switzerland, specifically Lake Como, Lake Maggiore, and Lake Lugano (see Figure 1).
These lakes were chosen because they align with the selection made by the “Informative
System for the Integrated Monitoring of Insubric Lakes and their Ecosystems” (SIMILE)
project, within which this research is conducted. The SIMILE project is funded by the Inter-
reg program of the European Union, which primarily focuses on enhancing coordinated
management and stakeholder involvement in monitoring the water quality of sub-alpine
lakes between Northern Italy and Switzerland [39,40]. It exploits a combination of in-situ
measurements and remote sensing techniques to fulfil its objectives. Within the realm of
satellite remote sensing, the project computes three key indicators for assessing lake water
quality: Lake Water Surface Temperature derived from Landsat 8 imagery, Total Suspended
Matter, and Chl-a concentrations [41] derived from the Sentinel-3 A/B Ocean and Land
Colour Instrument (OLCI) imagery at 300 m resolution, which provides a revisit time of
less than 2 days. Each of these indicators is monitored by generating time-series of raster
maps [42].

In this study, hyperspectral images obtained from the PRISMA mission are used.
PRISMA imagery features 239 bands spanning the Visible and Near-Infrared (VNIR) and
Short-Wave Infrared (SWIR) regions of the electromagnetic spectrum (400–2500 nm) [21].
PRISMA images have a spatial resolution of 30 m, a Spectral Sampling Interval (SSI) of
12 nm, and a revisit time of 29 days [21]. For model training and testing, time-series
maps of Chl-a concentration generated by the SIMILE project team from Sentinel-3 data
are employed as low-resolution reference data. Quality assessment for these maps was
provided by [40] through comparisons with in-situ measurements, supporting their use
as reference Chl-a concentration data in this work. The study considers both machine
learning models, such as RF Regressor and SVR, as well as deep learning models such
as Long Short-Term Memory (LSTM) networks [43,44] and Gated Recurrent Unit (GRU)
networks [45]. The choice of these models is based on empirical evidence from the literature
and is primarily guided by two key characteristics, as suggested by [24] and summarized
as follows. First, when considering RF Regressor and SVR models, their effectiveness in
handling non-linear dependencies within the input data is a primary factor. Moreover,
when integrated with dimensionality reduction techniques, these models excel in reducing
redundant spectral information. Second, LSTM and GRU models are preferred for their
suitability in dealing with hyperspectral imagery. This preference is rooted in the sequential
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nature of the hyperspectral data, enabling them to capture both long and short-range
dependencies of the contiguous bands in the spectral dimension.

Figure 1. Summary of available data (pixels with information of Chl-a maps and PRISMA acquisi-
tions) within the study’s AOI. In the reference map is highlighted the approximate location of the
AOI within Europe (red dot).

The models are employed to (i) reconstruct reference Chl-a concentrations maps com-
puted from Sentinel-3 data, and (ii) augment the spatial resolution of such maps from 300 m
to 30 m, thereby aligning them with the resolution of PRISMA imagery. The ultimate goal
of such applications is to evaluate the performance of different models in reconstructing
the reference Chl-a maps exploiting PRISMA images. Several experiments involving dif-
ferent configurations of model hyperparameters and resolutions for the training/testing
datasets were conducted. The resulting accuracies were analyzed statistically to delineate
and recommend the most effective models and experimental settings. The SVR model
performed best for reconstructing reference Chl-a maps at 300 m spatial resolution, while
the RF Regressor model proved to be the most effective for predicting Chl-a maps at 30 m
spatial resolution.

The remainder of the paper is as follows. Section 2 describes the data utilized in the
study, detailing the criteria for dataset selection, outlining data preparation techniques,
and introducing the models considered along with their respective hyperparameter settings.
Section 3 presents the outcomes of the modelling experiments, offering a discussion of the
significant findings compared with the experimental settings adopted. Finally, Section 4
includes conclusions and future directions of the work.

107



Remote Sens. 2023, 15, 5385

2. Data and Methods

2.1. Data Procurement and Preprocessing

This study examined two input datasets, namely reference Chl-a concentration raster
maps (generated by the SIMILE project at a spatial resolution of 300 m and co-registered on
a common grid) and PRISMA hyperspectral imagery with a resolution of 30 m. PRISMA
Level L2D geocoded and bottom-of-atmosphere reflectance data [46] were employed in the
analysis. The complete time series of reference Chl-a concentration maps encompasses a
total of 389 layers, each providing complete coverage of the designated Area of Interest
(AOI) within this study (see Figure 1). This time series spans from 15 January 2019 to 5
November 2022. Through the examination of the accessible hyperspectral PRISMA images
catalogued in the official missions data portal (http://prisma.asi.it/js-cat-client-prisma-src
(accessed on 22 May 2023)), 27 acquisitions that intersected with the AOI in the timeframe
of the reference Chl-a maps time series were identified. All bands of each considered
PRISMA image were manipulated in the preprocessing operations. Following an initial
manual screening process based on the extent of intersection with the reference Chl-a
maps, cloud coverage within each PRISMA acquisition, and sun glint disturbance, a total
of 12 PRISMA images were deemed suitable. The chosen PRISMA image tiles provided
only partial coverage of the AOI, as illustrated in Figure 1. Notably, part of Lake Maggiore
is excluded from the analysis due to the unavailability of PRISMA tiles in the catalogue
covering that area.

Table 1 provides an overview of the dataset utilized in this study. While the acquisition
dates of the reference Chl-a maps and the corresponding PRISMA images do not coincide,
the maximum temporal discrepancy is limited to 2 days. The table also includes information
about the lakes covered by each PRISMA acquisition.

Figure 1 additionally provides a synopsis of the regions containing accessible data,
defined as pixels incorporating information on each pair of Chl-a concentration maps and
corresponding PRISMA acquisitions across the entirety of the dataset. This pertains to the
three lakes within the AOI.

Table 1. Selected pairs of Chl-a maps and PRISMA images with acquisition dates and lakes’ cov-
erage. ID acquisitions are sorted by dates and refer to the original 27 PRISMA acquisitions avail-
able in the official mission data portal. Missing IDs correspond to acquisitions excluded after the
manual screening.

ID Acquisition
PRISMA
Acquisition Date

Lake Como Lake Maggiore Lake Lugano
Reference Chl-a
Map Date

1 24 April 2020 YES NO YES 23 April 2020
2 24 April 2020 YES NO NO 23 April 2020
4 25 April 2020 NO YES NO 23 April 2020
6 3 July 2020 NO YES NO 5 July 2020
10 9 July 2021 YES NO YES 9 July 2021
13 31 August 2021 YES NO NO 31 August 2021
17 16 October 2021 NO YES NO 16 October 2021
18 22 October 2021 YES NO NO 22 October 2021
19 22 October 2021 YES NO YES 22 October 2021
21 26 November 2021 NO NO YES 24 November 2021
23 9 February 2022 NO YES NO 9 February 2022
24 27 March 2022 YES NO NO 25 March 2022

Following the acquisition of PRISMA images, an array of preprocessing operations
was executed. This included co-registration, intersection with their reference Chl-a maps,
and the removal of null values and anomalous pixels possibly affected by disturbances
in water surface spectral signature. The schematic representation of these pre-processing
steps is depicted in Figure 2.
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Figure 2. Schematic of pre-processing operations on the input data.

While the L2D PRISMA imagery used in this study is already geocoded, an extra
step of co-registration was necessary to rectify both local and global distortions. For this
purpose, the Python library Gefolki [47] was employed. The co-registration process was
critical to ensure accurate alignment of the PRISMA images with the reference data.

The co-registration algorithm implemented in Gefolki computes pixel-wise displace-
ments (optical flow) between pairs of images. A reference grid from the Sentinel-2 mission
was considered because of its higher spatial resolution (10 m) and positional accuracy than
the original PRISMA grid. To accomplish this, a mosaic using Sentinel-2 images from the
period of 11 September 2022 to 18 September 2022 covering the entire AOI was employed.
The full AOI coverage could not be achieved with a single Sentinel-2 image tile. Each
PRISMA image was resampled to 10 m spatial resolution to perform the co-registration
with the Sentinel-2 reference image. The Sentinel-2 mosaic was cropped to the intersected
area with the associated PRISMA image, and the displacements between the pixels of the
PRISMA image and the reference image were estimated and used to correct the original
distortions. Finally, the PRISMA images were resampled to their original resolution (30 m).
This procedure is used to co-register all the PRISMA images on a common grid in the
final dataset.

After completing the co-registration of the PRISMA images, the next step involved
intersecting the co-registered images with their corresponding Chl-a maps. This process
aimed to preserve the overlapping regions shared by each acquisition pair. During this
operation, pixels with no data in the PRISMA image were set to null in the corresponding
Chl-a map, and conversely, for all the acquisition pairs.

The final pre-processing step involved removing anomalous pixels which contained
values in the spectral signature inconsistent with the Chl-a concentration recorded in the
Chl-a concentration maps, or pixels possibly associated with disturbances on the water
surface, such as scum or foam. Anomalous pixels were removed from both the PRISMA
images and the corresponding Chl-a maps. To detect the anomalous pixels, the procedure
adopted in this study consisted of determining different spectral indices by using the
reflectance values of the Sentinel 3 A/B OLCI images that generated the Chl-a maps. These
indices are based on bands algebra and were retrieved from the literature with no name
associated. The indices were then used to verify the following conditions and identify the
anomalous pixel values as shown in Figure 3.
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The first condition implies assessing whether, for each pixel, its corresponding value of
the Index 1 [48], which is computed using Equation (1), is less than one while the associated
Chl-a value exceeds 10 μg/L. Under these circumstances, the pixel is considered anomalous.
This is attributed to the expectation that pixels with an index less than one are more likely
associated with very low Chl-a concentrations, and conversely.

Index 1 =
Band 11 (708 nm)
Band 8 (665 nm)

. (1)

It is important to specify that in Equation (1), band 11 of Sentinel-3 A/B OLCI corre-
sponds to the red edge transition of the Chlorophyll fluorescence baseline, while band 8
is linked to the second peak of Chlorophyll absorption [49]. A second condition is used
instead to check whether the subsequent ratio [50], computed using Equation (2) and
referred to in this work as Index 2, is higher than one for a specific pixel. If so, that pixel
should be removed as it may indicate an anomaly on the water surface, likely associated
with noise, scum, or foam.

Index 2 =
Band 12 (753 nm)
Band 11 (708 nm)

. (2)

In Equation (2), band 12 of Sentinel-3 A/B OLCI is used because of its connection to
the absorption of oxygen, as well as the presence of clouds and vegetation [49]. The last
condition is verified by comparing two indices which are computed using Equations (3)
and (4), and referred to in this work respectively as Index 3a and Index 3b. Where one of
them is above 1 but the other is not, the pixel is considered anomalous [51]. If both indices
are below one, this means that the pixel refers to an area of deep blue water and if the two
indices are above one, it is likely that the pixel is related to the presence of phytoplankton.

Index 3a =
Band 6 (560 nm)

Band 3 (442.5 nm)
(3)

Index 3b =
Band 6 (560 nm)
Band 4 (490 nm)

. (4)

In Equations (3) and (4), band 3 of Sentinel-3 A/B OLCI corresponds to the point
where Chlorophyll absorption is at its highest, while band 4 indicates areas with high
Chlorophyll concentration. Band 6 serves instead as a reference indicator for the lowest
Chlorophyll concentration in the image [49].

Figure 3. Schematic of the anomalous pixels removal procedure.
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2.2. Training and Test Datasets Preparation

Following the pre-processing of reference Chl-a maps, it became necessary to devise
a data-splitting strategy for the three primary phases involved in the implementation of
machine and deep learning models: training (train set), validation (validation set), and
evaluation (test set). To accomplish this, an iterative methodology was adopted to uphold
consistent distributions between the test set and the combined training and validation set.
By allocating pairs of acquisitions to one of the two alternate groups, the distribution of
Chl-a values for each group was assessed. The aim was to achieve the most accurate fit
to the identity function. To this end, a Quantile-Quantile plot (QQ-plot) was employed
(see Figure 4), yielding an R2 of 0.876, thus indicating a robust alignment with the target
function. As a result of this process, acquisitions 4, 23, and 24 (see Table 1) were assigned
to the test set while the remaining ones were preserved for the training and validation set.
Subsequently, the training-validation set was partitioned using a fixed ratio of 80% for
training and 20% for validation. Considering the distribution of Chl-a concentrations in the
whole dataset, the acquisitions in the test set embed a broad range of Chl-a concentrations.
Specifically, acquisition 4 is associated with relatively low-to-medium Chl-a concentrations
(mean equal to 3.07 μg/L and a maximum equal to 4.49 μg/L). Acquisitions 23 and 24 depict
medium to high Chl-a concentrations, with respective mean concentrations of 5.21 μg/L
and 5.21 μg/L, and maximum concentrations of 8.92 μg/L and 7.06 μg/L. This choice was
adopted to mitigate possible model over-fitting due to the low number of acquisitions for
the study area in the considered time period and to evaluate models on the widest available
array of Chl-a concentration episodes. Because of data availability, very high or low Chl-a
concentrations could not be included in the test set.

Figure 4. QQ-plot of training and test sets. Blue dots represent quantiles of pixel values distribution
from reference Chl-a maps in the training set (X-axis) and test set (Y-axis).
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2.3. PRISMA Images Normalization and Dimensionality Reduction

Further operations were conducted on PRISMA images, including normalization
and dimensionality reduction. The PRISMA images were initially transformed from their
original Digital Number (DN) units to reflectance values, employing the standard formula
(see Equation (5)) outlined in the PRISMA data manual [52].

xscaled = L2scaleXXmin + xDN
(L2scaleXXmax − L2scaleXXmin)

65.535
. (5)

The term “XX” in Equation (5) denotes a particular region within the input spectrum,
either “VNIR” or “SWIR”. L2scale min and max represent the minimum and maximum
scaling factors provided in the metadata for each PRISMA image. The normalization value
of 65.535 is derived from the computation of 216 − 1 , which accounts for the 16-bit coding
used to store pixel information. Then, these reflectance values were scaled to a range of
[0–216] to store them as unsigned integers (uint16). Starting with this information, three
alternative approaches for normalizing the PRISMA images were considered: (i) Min-max
scaling, (ii) standard scaling, and (iii) normalization to float reflectance units within the
range [0–1], i.e., dividing by the fixed factor of 216. Another assessed aspect was the
dimensionality reduction of the hyperspectral images. For this purpose, the Principal
Component Analysis (PCA) technique was exploited to reduce the spectral dimension to
30 Principal Components (PCs). Finally, the benefits of reducing the spatial dimension
were explored by lowering the resolution of the PRISMA images to match that of the
associated Chl-a maps, i.e., from 30 m to 300 m. For this case study, the use of 30 PCs
explained more than 99% of the variance for all the acquisitions. This was considered
sufficient for testing purposes and used as a sample case in the modelling experiments.
Different normalization and dimensionality reduction approaches were tested within
different modelling experiments, as explained in the following section.

2.4. Machine and Deep Learning Regression Models for Chl-a Concentration

Performances of two machine learning (RF Regressor and SVR) and two deep learn-
ing (LSTM and GRU) models in estimating Chl-a concentrations maps by combining
Sentinel-3 derived data and PRISMA hyperspectral imagery were explored. The evaluation
encompasses a range of hyperparameter settings to identify the most effective combination.
Several experiments were designed for each model by intervening in one or more set-
tings. Details are provided in Section 3. The general settings used to define the modelling
experiments are outlined below.

1. Normalization approach: A set of experiments was conducted to determine the best
normalization approach among the ones discussed in Section 2.3.

2. Spectral dimensionality reduction: An experiment was conducted to investigate
whether the PCA technique contributes or not to the model performances.

3. Data augmentation: For the machine learning models, additional bands extracted
using image filters were included in the processing. The considered filters were the
Sobel X and Sobel Y filters [53], and the Mean filter [54].

4. Model hyperparameters: Different hyperparameter settings were investigated for
each model following a grid search strategy. The considered hyperparameters are
listed in Tables 2–4.

5. Tests on best input spatial resolution: First, all experiments used 300 m spatial resolu-
tion inputs and then, considering the best experiment for each model typology, it was
repeated using inputs at 30 m resolution to determine which of the two approaches
performed better. This approach was followed because, despite the different spatial
resolution, the data derives from the same original distribution, ensuring that the
model selection step remains unaffected.
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The machine learning models considered in this study were the RF Regressor [55]
and the SVR [56]. In some of the experiments, where the spatial downsampling of the
PRISMA images to the spatial resolution of the associated Chl-a maps was applied, data
augmentation approaches were implemented. These approaches involved extracting ad-
ditional bands from the input images using the Sobel X and Sobel Y filters, and the Mean
filter. The extracted bands were stacked into the input data to augment the dataset size,
compensating for the reduction induced by spatial downsampling.

For the implementation of the RF Regressor model, the Scikit-learn Python library was
used [57]. Model hyperparameters considered for tuning are described in Table 2.

Table 2. RF Regressor hyperparameters [58].

Parameter Description

Number of estimators
It is the number of decision trees built. Higher values are
expected to improve performance while increasing
computational time.

Minimum number of samples
per leaf

It sets the minimum samples required for a leaf node,
reducing over-fitting with higher values.

Maximum depth of each deci-
sion tree

It controls model complexity; large values can lead to
over-fitting.

Table 3. SVR hyperparameters [59].

Parameter Description

Gamma

Kernel coefficient for the RBF. It governs the shape of the
decision boundary. A high value leads to an extended or
complex decision boundary, which, if not carefully controlled,
may result in over-fitting.

C

It influences the width of the margin and the tolerance for
misclassified data points. It is a regularization
hyperparameter which enables to balance between training
and testing errors.

For the implementation of the SVR model, the Radial Basis Function (RBF) kernel,
computed using the Scikit-learn Python library, was used to conduct trials for the empirical
definition of the best hyperparameter values, as detailed in Table 3.

Regarding deep learning models, two architectures were considered, namely
LSTM [43,44] and GRU [45] networks. Both are recurrent architectures well suited for
the sequential structure of the hyperspectral data. The Tsai Python package [60] was
used for their implementation. The hyperparameters considered for the definition of the
experiments are explained in Table 4 and these are common for both architectures.

Table 4. LSTM and GRU hyperparameters.

Parameter Description

Number of layers The number of LSTM or GRU cells stacked on top of each other.

Dropout in the recurrent neu-
ral network cells

Effective regularization method that contrast over-fitting by
randomly deactivating a portion of neurons [61]. When dealing
with recurrent neurons, dropout is specifically applied to the
connections between consecutive recurrent hidden cells.
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Table 4. Cont.

Parameter Description

Dropout in the fully con-
nected layer

Proportion of dropout applied to the fully connected
layers’ outputs.

Directionality

Both unidirectional and bidirectional networks were investigated.
The difference is that bidirectional networks calculate the hidden
state at each time step using information from both past and
future inputs, whereas unidirectional networks utilize only past
inputs in their calculations.

Hidden size The number of features in the hidden state.

3. Results and Discussion

This section reports the results of the modelling experiments described in Section 2.4.
The predictive performances of the different models under different settings are reported
and compared using well-known metrics, such as the Mean Absolute Error (MAE) and the
Root Mean Square Error (RMSE). The evaluation is based on the acquisitions from the test
set, specifically acquisitions 4, 23, and 24 (see Section 2.2).

3.1. RF Regressor

A total of 12 experiments with different settings were performed using the RF Regres-
sor model. Experimental settings and results are reported in Table 5.

Considering the PRISMA image normalization approaches introduced in Section 2.3,
three experiments were carried out (RF-1 to RF-3) to establish the best option. The re-
sults achieved by the three experiments are identical in terms of predictive performances,
suggesting a negligible effect of the normalization approach on the output.

The fourth experiment (RF-4) was used to evaluate the benefits of applying the PCA
technique to reduce the spectral dimension to 30 PCs. As observed in Table 5, this exper-
iment yielded a worse performance in comparison with the previous three cases. This
may be attributed to the ensemble nature of RF which utilizes decision trees, known to
be robust against multicollinearity. Consequently, in this particular context, PCA may not
yield substantial advantages, given that the algorithm inherently handles a multitude of
features and their complex interactions.

In the fifth experiment (RF-5), it was investigated whether including additional bands
would benefit the performance of the model. The same normalization approach of Exper-
iment RF-2 (standard scaling) and no dimensionality reduction were applied. For each
pixel, the Mean and the Sobel x and Sobel y filters were applied. According to the result,
the addition of these new features was not helpful in terms of predictive performance.

In order to determine the optimal configuration for the model’s hyperparameters,
five experiments were undertaken, denoted as RF-6 through RF-11. These experiments
assessed various combinations of hyperparameters to ascertain which yielded the most
favourable outcomes. Experiment RF-10 emerged as the top-performing RF Regressor
model configuration.

The final experiment (RF-12) aimed to assess whether utilizing input data at a
30-m spatial resolution could lead to improved performance compared to the previously
identified best-performing model configuration (i.e., RF-10). To achieve this, Chl-a maps
needed to be upsampled to match the spatial resolution of the PRISMA images. The Nearest
Neighbour method was employed for this purpose. It is important to note that, due to
computational limitations, the number of trees was reduced to 1000 in this experiment
compared to RF-10. Under these specified conditions, the results of Experiment RF-12
demonstrate a higher level of error compared to RF-10.
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Table 5. Settings and results of RF Regressor model experiments. MAE and RMSE represent the
average score of the metrics from the application of the experiments to each of the acquisitions in the
test set.

Exp. ID Exp. Setting Res [m] PCA Norm.
Data
Augm.

N Trees
Min.
Leaf

Max.
Depth

MAE
[μg/L]

RMSE
[μg/L]

RF-1 Norm. 300 No Minmax No 1000 3 10 0.931 1.112
RF-2 Norm. 300 No Std. No 1000 3 10 0.931 1.112
RF-3 Norm. 300 No Reflect. No 1000 3 10 0.931 1.112
RF-4 Spec. red. 300 30 PCs Std. No 1000 3 10 1.020 1.245
RF-5 Data augm. 300 No Std. Yes 1000 3 10 1.106 1.296
RF-6 Model hyperp. 300 No Std. No 1000 3 5 1.032 1.192
RF-7 Model hyperp. 300 No Std. No 1000 3 20 0.930 1.113
RF-8 Model hyperp. 300 No Std. No 100 3 20 0.947 1.128
RF-9 Model hyperp. 300 No Std. No 10,000 3 20 0.924 1.107
RF-10 Model hyperp. 300 No Std. No 10,000 2 20 0.915 1.099
RF-11 Model hyperp. 300 No Std. No 10,000 10 20 0.934 1.114
RF-12 Spatial res. 30 No Std. No 1000 2 20 0.986 1.181

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Normal-
ization (Norm.), Data augmentation (Data augm.), Numbers of estimators (N trees), Minimum number of samples
per leaf (Min. leaf), Maximum depth of each decision tree (Max. depth), Spectral dimensionality reduction (Spec.
red.), Min-max scaling (Minmax), standard scaling (Std.), normalization to float reflectance units within the range
[0, 1] (Reflect.), Model hyperparameters (Model hyperp.).

3.2. SVR

A total of 10 experiments with different settings were performed using the SVR model.
The experimental settings and results are reported in Table 6.

The effect of PRISMA image normalization approaches was analysed through three
experiments (SVR-1 to SVR-3). The standard scaling resulted in the most effective approach
in terms of prediction performances. The effect of PCA application for reducing the
spectral dimension of the PRISMA images was evaluated in Experiment SVR-4. In this
case, prediction performance resulted to be significantly improved with the use of 30 PCs
instead of the original PRISMA bands. This result may be explained by the fact that the
SVR model is based on an RBF kernel, which incorporates feature distances and may be
sensitive to multicollinearity, thereby possibly resulting in over-fitting. Experiment SVR-5
investigated the advantages of employing data augmentation on the input data. This
did not lead to an improvement in the model’s performance, achieving a less favourable
outcome compared to SVR-4. Different setups for the SVR model hyperparameters, C
and gamma, were assessed in experiments SVR-6 to SVR-9. Despite the evaluations, it
was found that Experiment SVR-4 consistently yielded the most favourable outcomes.
Therefore, SVR-4 was identified as the best-performing model configuration. The final
experiment (SVR-10) assessed the impact of employing a 30-m spatial resolution for the
input data, which included the original PRISMA images and the Chl-a maps upsampled
via the Nearest Neighbor technique. Unfortunately, the results from SVR-10 were not
satisfactory, with both MAE and RMSE metrics surpassing those attained by the previously
identified top-performing model configuration, SVR-4.
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Table 6. Settings and results of SVR model experiments. MAE and RMSE represent the average score
of the metrics from the application of the experiments to each of the acquisitions in the test set.

Exp. ID Exp. Setting Res [m] PCA Norm.
Data
Augm.

Gamma C
MAE
[μg/L]

RMSE
[μg/L]

SVR-1 Norm. 300 No Minmax No 0.001 15 1.285 1.431
SVR-2 Norm. 300 No Std. No 0.001 15 0.699 0.898
SVR-3 Norm. 300 No Reflect. No 0.001 15 1.253 1.394
SVR-4 Spec. red. 300 30 PCs Std. No 0.001 15 0.687 0.895
SVR-5 Data augm. 300 30 PCs Std. Yes 0.001 15 0.909 1.126
SVR-6 Model hyperp. 300 30 PCs Std. No 0.0001 15 0.752 0.993
SVR-7 Model hyperp. 300 30 PCs Std. No 0.01 15 0.956 1.152
SVR-8 Model hyperp. 300 30 PCs Std. No 0.001 1.5 0.756 0.955
SVR-9 Model hyperp. 300 30 PCs Std. No 0.001 150 1.106 1.307
SVR-10 Spatial res. 30 30 PCs Std. No 0.001 15 1.260 1.555

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Nor-
malization (Norm.), Data augmentation (Data augm.), Spectral dimensionality reduction (Spec. red.), Min-max
scaling (Minmax), standard scaling (Std.), normalization to float reflectance units within the range [0, 1] (Reflect.),
Model hyperparameters (Model hyperp.), Spatial resolution (Spatial res.).

3.3. LSTM Network

A total of 14 experiments with different settings were performed using the LSTM
network. Experimental settings and results are reported in Table 7.

The first three experiments (LSTM-1 to LSTM-3) explored the best normalization
approach. The best performance was achieved with the experiment LSTM-2 which cor-
responds to the standard scaling method. Experiment LSTM-4 explored the spectral
dimensionality reduction, and determined that this technique was useful for improving the
performance as it achieved a lower level of error. From Experiment LSTM-5 to Experiment
LSTM-12, all the hyperparameters of this model architecture were systematically adjusted.
Among these experiments, the best-performing configuration was the Experiment LSTM-10.
Furthermore, Experiment LSTM-13 used the same hyperparameter settings as LSTM-10
but incorporated bidirectional flow. Notably, this modification improved the performance
compared to LSTM-10. The utilization of 30-m resolution inputs was examined in Experi-
ment LSTM-14. The model hyperparameters and input normalization were kept identical
to those in Experiment LSTM-13. However, the outcome did not show any improvement
over the performance metrics of the best-performing model configuration, LSTM-13.

Table 7. Settings and results of LSTM model experiments. MAE and RMSE represent the average
score of the metrics from the application of the experiments to each of the acquisitions in the test set.

Exp. ID Exp. Setting
Res
[m]

PCA Norm.
Hidden
Size

N Layers
Drop.
RNN

Drop.
FCN

Bidir.
MAE
[μg/L]

RMSE
[μg/L]

LSTM-1 Norm. 300 No Minmax 10 2 0.6 0.4 No 1.443 1.584
LSTM-2 Norm. 300 No Std. 10 2 0.6 0.4 No 1.303 1.431
LSTM-3 Norm. 300 No Reflect. 10 2 0.6 0.4 No 1.897 2.012
LSTM-4 Spec. red. 300 30 PCs Std. 10 2 0.6 0.4 No 1.298 1.428
LSTM-5 Model hyperp. 300 30 PCs Std. 5 2 0.6 0.4 No 1.386 1.522
LSTM-6 Model hyperp. 300 30 PCs Std. 15 2 0.6 0.4 No 1.323 1.452
LSTM-7 Model hyperp. 300 30 PCs Std. 10 4 0.6 0.4 No 1.494 1.635
LSTM-8 Model hyperp. 300 30 PCs Std. 10 1 0.6 0.4 No 1.334 1.490
LSTM-9 Model hyperp. 300 30 PCs Std. 10 2 0.2 0.4 No 1.342 1.475
LSTM-10 Model hyperp. 300 30 PCs Std. 10 2 0.8 0.4 No 1.278 1.407
LSTM-11 Model hyperp. 300 30 PCs Std. 10 2 0.8 0.6 No 1.366 1.498
LSTM-12 Model hyperp. 300 30 PCs Std. 10 2 0.8 0.2 No 1.305 1.434
LSTM-13 Dir. flow 300 30 PCs Std. 10 2 0.8 0.4 Yes 1.211 1.345
LSTM-14 Spatial res. 30 30 PCs Std. 10 2 0.8 0.4 Yes 1.278 1.455

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Normal-
ization (Norm.), Data augmentation (Data augm.), Spectral dimensionality reduction (Spec. red.), Min-max scaling
(Minmax), standard scaling (Std.), normalization to float reflectance units within the range [0, 1] (Reflect.), Model
hyperparameters (Model hyperp.), Spatial resolution (Spatial res.), Number of layers (N layers), Dropout in the
recurrent neural network cells (Drop. RNN), Dropout in the fully connected layer (Drop. FCN), Directionality (Bdir.).
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3.4. GRU Network

A total of 17 experiments with different settings were performed using the GRU
network. Experimental settings and results are reported in Table 8.

The first three experiments (GRU-1 to GRU-3) focused on investigating the effect of
normalization approaches. The standard scaling method (GRU-2) emerged once again as
the most effective approach. The results obtained from Experiment GRU-4 indicate that
employing the PCA method for this model did not yield any significant benefit. Hyperpa-
rameter tuning was carried out by experiments GRU-5 to GRU-15, with Experiment GRU-8
resulting as the best-performing model configuration. Experiment GRU-16 was used to
determine whether configuring the GRU-8 network with bidirectional flow would enhance
its performance. The results indicate a decrease in performance. Finally, Experiment GRU-
17 maintained an identical configuration to Experiment GRU-8, except for the utilization of
30-m input data. However, this adjustment did not yield any improvements in the model’s
performance. As a result, the best-performing model configuration was identified as that of
Experiment GRU-8.

Table 8. Settings and results of GRU model experiments. MAE and RMSE represent the average
score of the metrics from the application of the experiments to each of the acquisitions in the test set.

Exp. ID Exp. Setting Res [m] PCA Norm.
Hidden
Size

N
Layers

Drop.
RNN

Drop.
FCN

Bidir.
MAE
[μg/L]

RMSE
[μg/L]

GRU-1 Norm. 300 No Minmax 10 2 0.6 0.4 No 1.367 1.499
GRU-2 Norm. 300 No Std. 10 2 0.6 0.4 No 1.287 1.416
GRU-3 Norm. 300 No Reflect. 10 2 0.6 0.4 No 1.559 1.698
GRU-4 Spec. red. 300 30 PCs Std. 10 2 0.6 0.4 No 1.305 1.433
GRU-5 Model hyperp. 300 No Std. 5 2 0.6 0.4 No 1.435 1.575
GRU-6 Model hyperp. 300 No Std. 20 2 0.6 0.4 No 1.235 1.366
GRU-7 Model hyperp. 300 No Std. 40 2 0.6 0.4 No 1.221 1.352
GRU-8 Model hyperp. 300 No Std. 60 2 0.6 0.4 No 1.186 1.321
GRU-9 Model hyperp. 300 No Std. 100 2 0.6 0.4 No 1.271 1.408
GRU-10 Model hyperp. 300 No Std. 60 1 0.6 0.4 No 1.236 1.373
GRU-11 Model hyperp. 300 No Std. 60 10 0.6 0.4 No 1.231 1.362
GRU-12 Model hyperp. 300 No Std. 60 2 0.2 0.4 No 1.272 1.419
GRU-13 Model hyperp. 300 No Std. 60 2 0.8 0.4 No 1.194 1.340
GRU-14 Model hyperp. 300 No Std. 60 2 0.6 0.2 No 1.202 1.355
GRU-15 Model hyperp. 300 No Std. 60 2 0.6 0.8 No 1.260 1.399
GRU-16 Dir. flow 300 No Std. 60 2 0.6 0.4 Yes 1.213 1.363
GRU-17 Spatial res. 30 No Std. 60 2 0.6 0.4 No 1.203 1.382

Table abbreviations: Experiment ID (Exp. ID), Experiment setting (Exp. Setting), Input resolution (Res), Normal-
ization (Norm.), Data augmentation (Data augm.), Spectral dimensionality reduction (Spec. red.), Min-max scaling
(Minmax), standard scaling (Std.), normalization to float reflectance units within the range [0, 1] (Reflect.), Model
hyperparameters (Model hyperp.), Spatial resolution (Spatial res.), Number of layers (N layers), Dropout in the
recurrent neural network cells (Drop. RNN), Dropout in the fully connected layer (Drop. FCN), Directionality (Bidir.).

3.5. Summary of Best Models and Inference on 30 m

Drawing from the aforementioned experiments, it is evident that the best perfor-
mances were attained when training and assessing the models with 300-m input datasets.
The details of the best-performing configurations for each model are consolidated in Table 9,
with SVR (Experiment SVR-4) emerging as the top-performing model overall.

Figure 5 presents the visual results for Experiment SVR-4 with its model setting applied
to the test acquisitions (ID 4, 23 and 24; see Table 1) and Figure 6 shows the distribution of
the errors for each of the acquisitions in the test set.
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Figure 5. Predictions and reference Chl-a map and their absolute difference (Abs. difference)
computed from Experiment SVR-4 applied to each of the acquisitions in the test set.

Figure 6. Distribution of the errors of Experiment SVR-4 applied to each of the acquisitions in the
test set.
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Table 9. Comparison of metrics for the best-performing configuration for each model applied to each
of the acquisitions in the test set. Overall MAE and RMSE represent the average score of the metrics
from the application of the experiments on the test set acquisitions. Values are reported in [μg/L].

Exp. ID Model
MAE
Overall

RMSE
Overall

MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24

SVR-4 SVR 0.687 0.895 0.544 0.688 0.712 0.961 0.806 1.036
RF-10 RF 0.915 1.099 0.464 0.622 0.903 1.106 1.378 1.570
GRU-8 GRU 1.186 1.321 0.929 0.997 1.262 1.420 1.365 1.544
LSTM-13 LSTM 1.211 1.345 0.992 1.053 1.288 1.442 1.355 1.538

Until this moment, the output spatial resolution of 300 m was overlooked, and only
the resulting performance was analyzed. However, recognizing that output with a finer
spatial resolution of 30 m could yield more valuable results, efforts were directed towards
determining the optimal approach to achieve predictions at this higher resolution.

For this purpose, two alternative approaches were identified. The first, which has
already been investigated, consisted of using 30-m data for model training, validation,
and evaluation (testing). The second approach involved the use of the best-performing
configurations of each considered model, which were trained with 300 m data (a summary
of the results is included in Table 9), and to perform an inference on 30-m data for their
evaluation. Figure 7 provides a schematic of these two alternative approaches.

Figure 7. Schematic of the inference procedures on 30 m spatial resolution output.

After evaluating both approaches with the best-performing configurations of the
four model typologies, the RF Regressor (Experiment RF-12) both trained and evaluated
with 30-m data, emerged as the best alternative for achieving a prediction with 30 m of
spatial resolution. The summary of these results is reported in Table 10.
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Table 10. Comparison of metrics for the best-performing configuration for each model using 30 m
spatial resolution data, applied for each of the acquisitions in the test set. Training set (Train res.) and
evaluation set (Eval. res) spatial resolutions are reported in dedicated columns. Overall MAE and
RMSE represent the average scores for the metrics obtained from applying the experiments to each of
the acquisitions in the test set. Values are reported in [μg/L].

Exp. ID Model
Train.
Res. [m]

Eval.
Res. [m]

MAE
Overall

RMSE
Overall

MAE-4 RMSE-4 MAE-23 RMSE-23 MAE-24 RMSE-24

RF-10 RF 300 30 1.076 1.241 0.988 1.071 0.836 1.068 1.405 1.585
RF-12 RF 30 30 0.986 1.181 0.815 0.921 0.707 0.987 1.435 1.635
SVR-4 SVR 300 30 1.107 1.266 1.578 1.620 0.778 1.017 0.964 1.161
SVR-10 SVR 30 30 1.260 1.555 1.052 1.571 1.043 1.235 1.686 1.859
LSTM-13 LSTM 300 30 1.234 1.369 0.826 0.905 1.413 1.556 1.462 1.648
LSTM-14 LSTM 30 30 1.278 1.455 1.004 1.112 1.004 1.214 1.826 2.039
GRU-8 GRU 300 30 1.248 1.393 0.643 0.746 1.294 1.448 1.808 1.986
GRU-17 GRU 30 30 1.203 1.382 0.598 0.727 1.518 1.732 1.493 1.686

Figure 8 presents the visual results of Experiment RF-12, trained and evaluated at 30-m
spatial resolution data and applied to each of the acquisitions in the test set. The associated
errors’ distributions are shown in Figure 9.

Figure 8. Predictions and reference Chl-a map and their absolute difference (Abs. difference)
computed from Experiment RF-12 trained and evaluated at 30-m spatial resolution data and applied
to each of the acquisitions in the test set.
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Figure 9. Distribution of the errors of Experiment RF-12 trained and evaluated at 30-m spatial
resolution data and applied to each of the acquisitions in the test set.

A final observation drawn from the presented results is the tendency of the considered
machine learning models to underestimate Chl-a values in high local concentration spots.
Further considerations on the above are reported in the following section.

4. Conclusions and Outlook

This study addressed the implementation aspects related to the generation of Chl-a
concentration maps utilizing PRISMA hyperspectral imagery, with low-resolution training
data derived from Sentinel-3 imagery. The complete workflow for preparing input data for
a range of machine and deep learning models was outlined. Performances of the models
under various hyperparameter configurations were compared to offer empirical insights
into the best-performing solutions for estimating multi-resolution Chl-a concentrations
in lakes using hyperspectral imagery and pre-existing Chl-a concentration maps at lower
spatial but higher temporal resolution.

By conducting several modelling experiments, the optimal configurations for each of
the four analyzed models were determined. Specifically, the most favourable performances
were attained when employing 300 m spatial resolution inputs for all experiments. The best
results were achieved with the SVR model. Supplementary experiments were conducted to
evaluate model performances in enhancing the spatial resolution of Chl-a concentration
predictions from the original 300 m reference data (i.e., Sentinel-3 derived Chl-a concentra-
tion maps) to 30 m resolution such as the one of PRISMA hyperspectral imagery. The RF
Regressor proved to deliver the best performance for this last objective.

While the obtained performances are relevant for all model typologies, it is worth
noting that these results could be potentially improved with the availability of additional
PRISMA acquisitions. As discernible from the presented results, the selected machine
learning models demonstrated a tendency to underestimate regions characterized by high
Chl-a concentrations. The inclusion of supplementary PRISMA acquisitions linked to high
Chl-a concentration spots in the input dataset (which were limited in the dataset used for
this study) is expected to mitigate this discrepancy and represents a critical improvement
for future developments of this work.

Given the limitations to the accessibility of ground truth data for training and evaluat-
ing machine and deep learning models, the approach outlined in this study is promising
for preliminary large-scale estimates of Chl-a concentrations in freshwater bodies. This
is because it suggests strategies for the use of low-resolution and widely accessible train-
ing and testing datasets by leading to a final product with a significantly higher spatial
resolution than the reference data while maintaining an acceptable margin of error. This
enhancement is achieved by leveraging both spectral and spatial characteristics of the
emerging hyperspectral satellite imagery. It is worth remarking that operations such as
resampling low-resolution reference data for model evaluation on 30 m resolution outputs
were tested for purely experimental purposes. The use of high-resolution reference data is
envisaged to improve both the quality and reliability of the proposed procedure, especially
of local gradients of Chl-a concentrations in each single water body.
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The outcomes of the suggested method have the potential to function as supportive
resources for the monitoring and administration of the lakes under investigation. The use
of global coverage and freely available data, coupled with open modelling tools, ad-
ditionally strengthens this groundwork for enhancements and replications in different
geographic regions.
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accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sens. Environ. 2014,
146, 124–135. [CrossRef]

51. Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; JSTOR: New York, NY, USA, 1994.

124



Remote Sens. 2023, 15, 5385

52. Agenzia Spaziale Italiana (ASI). PRISMA Product Specification. 2020. Available online: https://prisma.asi.it/missionselect/
docs/PRISMA%20Product%20Specifications_Is2_3.pdf (accessed on 22 May 2023).

53. Sobel, I. An isotropic 3 × 3 image gradient operator. In Proceedings of the 5th Annual Symposium on Theory of Computing,
Austin, TX, USA, 30 April–2 May 1973; ACM: New York, NY, USA, 1973; pp. 271–272.

54. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: London, UK, 2018.
55. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
56. Drucker, H.; Wu, D.; Vapnik, V.N. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1997, 9, 155–161.
57. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
58. Scikit-Learn. Random Forest Regressor. 2023. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.

ensemble.RandomForestRegressor.html (accessed on 22 May 2023).
59. Scikit-Learn. Support Vector Machines. 2023. Available online: https://scikit-learn.org/stable/modules/svm.html (accessed on

22 May 2023).
60. Oguiza, I. tsai—A State-of-the-Art Deep Learning Library for Time Series and Sequential Data. 2022. Available online:

https://github.com/timeseriesAI/tsai (accessed on 22 May 2023).
61. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

125



Citation: Villota-González, F.H.;

Sulbarán-Rangel, B.; Zurita-Martínez,

F.; Gurubel-Tun, K.J.; Zúñiga-Grajeda,

V. Assessment of Machine Learning

Models for Remote Sensing of Water

Quality in Lakes Cajititlán and

Zapotlán, Jalisco—Mexico. Remote

Sens. 2023, 15, 5505. https://

doi.org/10.3390/rs15235505

Academic Editors: Miro Govedarica,

Flor Alvarez-Taboada and Gordana

Jakovljević
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Abstract: Remote sensing has emerged as a promising tool for monitoring water quality (WQ)
in aquatic ecosystems. This study evaluates the effectiveness of remote sensing in assessing WQ
parameters in Cajititlán and Zapotlán lakes in the state of Jalisco, Mexico. Over time, these lakes have
witnessed a significant decline in WQ, necessitating the adoption of advanced monitoring techniques.
In this research, satellite-based remote sensing data were combined with ground-based measurements
from the National Water Quality Monitoring Network of Mexico (RNMCA). These data sources were
harnessed to train and evaluate the performance of six distinct categories of machine learning (ML)
algorithms aimed at estimating WQ parameters with active spectral signals, including chlorophyll-a
(Chl-a), turbidity, and total suspended solids (TSS). Various limitations were encountered during
the study, primarily due to atmospheric conditions and cloud cover. These challenges affected
both the quality and quantity of the data. However, these limitations were overcome through
rigorous data preprocessing, the application of ML techniques designed for data-scarce scenarios, and
extensive hyperparameter tuning. The superlearner algorithm (SLA), which leverages a combination
of individual algorithms, and the multilayer perceptron (MLP), capable of handling complex and
non-linear problems, outperformed others in terms of predictive accuracy. Notably, in Lake Cajititlán,
these models provided the most accurate predictions for turbidity (r2 = 0.82, RMSE = 9.93 NTU,
MAE = 7.69 NTU), Chl-a (r2 = 0.60, RMSE = 48.06 mg/m3, MAE = 37.98 mg/m3), and TSS (r2 = 0.68,
RMSE = 13.42 mg/L, MAE = 10.36 mg/L) when using radiometric data from Landsat-8. In Lake
Zapotlán, better predictive performance was observed for turbidity (r2 = 0.75, RMSE = 2.05 NTU,
MAE = 1.10 NTU) and Chl-a (r2 = 0.71, RMSE = 6.16 mg/m3, MAE = 4.97 mg/m3) with Landsat-8
radiometric data, while TSS (r2 = 0.72, RMSE = 2.71 mg/L, MAE = 2.12 mg/L) improved when
Sentinel-2 data were employed. While r2 values indicate that the models do not exhibit a perfect
fit, those approaching unity suggest that the predictor variables offer valuable insights into the
corresponding responses. Moreover, the model’s robustness could be enhanced by increasing the
quantity and quality of input variables. Consequently, remote sensing emerges as a valuable tool to
support the objectives of WQ monitoring systems.

Keywords: machine learning algorithms; in situ water quality data; lakes; Landsat-8; Sentinel-2

1. Introduction

Water resources provide ecosystem services of high natural and economic value for
the population in general. Consequently, more than 40% of human settlements are located
near coastal regions and on the shores of lotic and lentic resources [1,2]. Unfortunately, this
makes these bodies of water more susceptible to pollution and overexploitation. In this
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way, WQ monitoring has become the most suitable strategy to evaluate sustainability in
water management practices [3,4]. In recent years, there has been an increase in continuous
monitoring campaigns for WQ parameters in various Latin American countries [5]. These
initiatives aim to comprehend and proactively address WQ degradation by analyzing data
collected during monitoring campaigns.

Conventional monitoring determines the WQ parameters by collecting samples in
the field and their subsequent analysis in the laboratory. This is why it becomes a highly
precise technique, but its complexity increases when working in large bodies of water.
Consequently, the work is laborious and time-consuming, which results in an increase in
costs that governments in many poor or developing countries cannot afford [6]. In addi-
tion, the sampling points may be limited due to restricted access in sectors with irregular
topographies. Therefore, the accuracy and precision of the data may be compromised, in-
cluding by in situ sampling error or laboratory analysis error. Hence, conventional methods
cannot easily identify temporal and spatial variations of WQ parameters. Consequently,
it is not possible to represent the complete state of the water surface and thus an obstacle
prevents the monitoring and management of the quality of water masses [1,5–7].

On the other hand, advances in space science, cloud computing and ML contribute to
the development of new techniques to work with natural resource management. For in-
stance, satellites have built-in optical and thermal sensors that measure reflected electro-
magnetic radiation. This information is used to evaluate WQ with high spectral and spatial
resolution [2,8]. Remote sensing as a technique to monitor WQ has been used since the
1970s, so that, since that decade, studies with methodological approaches have been devel-
oped to take advantage of the advantages offered by satellites [9]. The satellite radiometers
used up to now are designed for the observation of the ocean and the terrestrial surface;
therefore, they are not suitable for observing continental waters [10,11]. However, the fine
spatial resolution of terrestrial sensors enables the acquisition of acceptable results for
monitoring WQ parameters [4,12].

The literature review underscores the increasing utilization of Landsat-8 and Sentinel-2
sensors, highlighting their remarkable advantages in terms of fine spatial and temporal
resolution [13,14]. Landsat-8, for instance, provides data at 16-day intervals, roughly
equivalent to 22 annual images, depending on the location, while Sentinel-2 captures
images every 5 days, resulting in approximately 73 images annually. These attributes have
played a pivotal role in yielding highly promising results in the remote detection of WQ
parameters within continental water bodies [15–18].

Nevertheless, a significant challenge for these studies has been the limitation in
accessing sufficient training data for ML models [2,19]. The acquisition of satellite images
is constrained by adverse climatic factors, such as persistent cloud cover or precipitation,
which hinder the capture of surface water reflectance values [20]. The pressing need for an
adequate quantity of training data materializes as a substantial challenge in this research
domain. To address this data limitation, several studies employ the k-Fold-Cross-Validation
technique to maximize the use of limited data and build robust models [18]. It is heartening
to note that the relationship between the reflected light from specific parameters and
their field-measured concentrations has proven to be an effective avenue for generating
promising results in predictive models [21].

Furthermore, to overcome the shortage of training data for ML models, several studies
opt to incorporate in situ data from monitoring activities available through open-access
portals of national water and environmental agencies across diverse nations [19]. For in-
stance, Papenfus et al. [22] employed data from the United States Environmental Protection
Agency’s Water Quality Portal to facilitate remote sensing of Chl-a in lakes and reservoirs
within the United States. Similarly, other data sources include the European Environ-
ment Agency (EEA) Waterbase portal in Europe, the Global Freshwater Quality Database
(GEMStat) at a global scale, and Canada’s Open Government Portal [19].

In Latin America, studies such as that by Rodríguez López et al. [23] used in situ data
from Dirección General de Aguas de Chile to estimate Chl-a concentration using Landsat-8
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and obtained r2 values ranging from 0.64 to 0.93 when testing various neural networks.
In Brazil, Bettencourt et al. [24] estimated turbidity and Chl-a through in situ data from
the National Agency of Waters (ANA-Hidroweb). In Argentina, Germán et al. [25] esti-
mated Chl-a levels using Sentinel-2 satellite data in conjunction with in situ measurements
obtained from a monitoring program conducted by the Ministry of Water, Environment,
and Public Services of the province of Córdoba. Their findings revealed an r2 of 0.77.
In Mexico, Otto et al. [26] used data from the RNMCA together with Landsat radiometric
data as input variables to develop empirical models and estimate turbidity in Lake Chapala;
the authors obtained an r2 of 0.7. Similarly, Torres Vera [27], based on data from the RN-
MCA, developed an ML model to estimate TSS in Lake Chapala using Landsat images; the
r2 obtained was 0.81. Another significant work was conducted by Arias Rodríguez et al. [5],
where the authors evaluated an extreme learning machine (ELM), a support vector regres-
sion, and a linear regression to estimate Chl-a, turbidity, TSS, and Secchi disk depth in
the lakes of the Mexican territory (Chapala, Cuitzeo, Patzcuaro, Yuriria, and Catemaco).
They integrated in situ measurements of the RNMCA with data from Landsat-8, Sentinel-3,
and Sentinel-2, and reported that the atmospherically corrected Sentinel-3 data and ELM
models performed better, particularly for turbidity (r2 = 0.7). This illustrates the remarkable
evolution in the application of remote sensing technologies for WQ monitoring in Latin
American countries while emphasizing the innovative strategies employed to address the
challenges in this research field.

Despite the vast scientific literature dedicated to WQ monitoring through remote
sensing techniques, the global environment remains a complex and evolving system,
as emphasized by Sagan et al. [8]. In light of this understanding, dependence solely on
existing research becomes inadequate and occasionally unfeasible. To tackle this challenge,
it is essential to engage in continuous research and monitoring of water bodies that have
not undergone comprehensive analysis.

This situation is exemplified in the case of lakes Cajititlán and Zapotlán, distinguished
by their unique geography, hydrology, surrounding land use, and environmental condi-
tions, rendering them particularly pertinent to this study. Each water body constitutes a
distinct system, and solutions effective in one may not be directly applicable in the other.
The diversity and distinctiveness of these ecosystems underscore the necessity of data
collection and the generation of specific contextual information for future water research
and management projects [14]. Furthermore, both lakes hold ecological and touristic sig-
nificance within the country, as their waters are employed for agricultural irrigation and
recreational purposes [28,29].

In the perspective of developing countries like Mexico, budget constraints often limit
the resources allocated for water management [30]. Accessing advanced equipment, such as
hyperspectral sensors or drones equipped with high-resolution multispectral cameras, can
pose a significant challenge due to financial restrictions [31,32]. In this context, the study’s
primary objective is to introduce an innovative and cost-effective solution for monitoring
WQ in Lakes Cajititlán and Zapotlán. By breaking new ground, the aim is to contribute
to filling the critical gap in the field of remote sensing studies, where these particular
bodies of water have remained largely unexplored. To achieve this goal, a wide range of
ML algorithms were systematically evaluated, distinguishing the best performing ones to
ensure the effectiveness and robustness of the method. By addressing this research gap,
this work advances the understanding and management of WQ, thereby establishing a
valuable precedent for future studies in similar ecological contexts.

Utilizing the data made available by the National Water Commission (CONAGUA)
and delivering a pragmatic management tool for these bodies of water, a valuable resource
was provided that serves the interests of both the scientific community and the local
population. In the present day, society assumes a pivotal role in the decision-making
processes related to water resource management [33]. There is a growing demand for
robust tools that streamline the acquisition of pertinent information concerning WQ in
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these natural resources. Such information is indispensable for preempting environmental
challenges, including water pollution, and proactively mitigating these issues [34].

This study involved correlating radiometric data from Landsat-8 and Sentinel-2 with
WQ parameters characterized by an active spectral signal. While existing methods from
the literature were employed, the uniqueness of this research is corroborated by the ex-
amination of water bodies that had not previously been monitored by remote sensing.
Furthermore, the advantage lies in the availability of RNMCA data from 2009 to the
present, which effectively increases the volume of input data for training ML algorithms.

The effectiveness of eight state-of-the-art ML algorithms spanning various categories
was evaluated, introducing a broader range compared to previous studies using RNMCA
data. The scope of hyperparameter adjustment was expanded through grid search tech-
niques to enhance the model performance. The first category of algorithms encompasses
ensemble methods, where the Gradient Boosting Regressor was considered for its capacity
to amalgamate the predictive prowess of multiple decision trees. This attribute renders
it particularly adept at capturing the intricate and interrelated dynamics inherent in WQ
parameters [35]. Concomitantly, the Random Forest Regressor, a model that harnesses an
ensemble of decision trees, was engaged to deliver precise predictions [36]. Furthermore,
the SLA was leveraged to enhance predictive performance. The SLA operates by stacking
the outputs of individual estimators and utilizing a regressor to compute the final pre-
diction, harnessing the collective strength of each constituent estimator [37]. The second
category encompasses neural networks, where the MLP assumes a pivotal role. The MLP,
renowned for its proficiency in apprehending intricate relationships, excels at modeling
non-linear dependencies between WQ input and output variables more effectively than
conventional linear regression models [21,38]. Within the third category, regularization
techniques were incorporated, with particular emphasis on the Ridge regression algorithm.
Ridge regression, through the introduction of a penalty term, effectively mitigates the
risk of overfitting in linear regression models [36]. The fourth category, consisting of
instance-based methods, introduced the K-Neighbors Regressor. This algorithm relies on
the similarity between data points to make predictions, rendering it well-suited for the
estimation of WQ parameters [35]. In the fifth category, decision trees were comprehen-
sively explored for their inherent interpretability and effectiveness [21]. Finally, the sixth
category extended the evaluation to encompass other algorithms, such as Support Vector
Machines, renowned for their distinctive capabilities in modeling intricate and non-linear
relationships [36].

The thorough investigation of these diverse ML algorithms underlines the primary
objective of the study: to identify the most effective approach for addressing the intricate
and nonlinear characteristics inherent to WQ parameters [21]. Additionally, the strategic
adjustment of hyperparameters, encompassing broad ranges, played a pivotal role in
enhancing the predictive model’s performance. This comprehensive analysis ensures that
the results are not only robust but also capable of meeting the complex challenges posed by
WQ parameter estimation.

2. Materials and Methods

2.1. Description of the Study Area

Lake Cajititlán is located in the municipality of Tlajomulco de Zúñiga in the state of
Jalisco, Mexico at the geographic coordinates: 20.41543° in latitude and −103.335317° in
longitude. It has a length of 7.5 km, a width of 2.0 km and a depth of 2.5 m [39]. Lake Za-
potlán is located in the south of the State of Jalisco at the geographic coordinates: 19.755395°
in latitude and −103.483733° in longitude. It has an approximate area of 16.73 km2 and
an average depth of 4.5 m. Figure 1 shows the location of the lakes with their respective
monitoring points managed by the RNMCA.
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Figure 1. Location map of the Cajititlán and Zapotlán lakes with the water quality sampling points
administered by the RNMCA.

2.2. Lake Water Quality Data

The in situ data were acquired from the platform of the Jalisco State Water Commission
through the open data service of the WQ system of the RNMCA [40]. Three optically
active parameters (Chl-a, turbidity and TSS) were selected, which interact with light and
change the energy spectrum of the radiation reflected from water bodies, so that they can be
measured with remote sensors. The RNMCA uses the 10200-H extraction method described
in the American Public Health Association to measure Chl-a [41]. Turbidity is measured
by the nephelometry method referred to in NMX-AA-038-SCFI-2001 [42]. The TSS are
determined by the procedures of the Mexican standard NMX-AA-034-SCFI-2015 [43].

2.3. Satellite Data

The reflectance values of the Landsat-8 and Sentinel-2 images of the pixels where the
fixed monitoring points are established were extracted (Figure 1). Matching satellite prod-
ucts were identified within a tolerance of ±3 days based on in situ monitoring dates [5,44].
The RNMCA has in situ data spanning from 2009 to the present. Consequently, data
filtering was performed based on satellite image availability. Landsat-8 data, consisting
of L2 surface reflectance level images, are available from April 2013 to the present date.
In parallel, the Sentinel-2 images used in this study belonged to surface reflectance level 2A
and have been accessible since March 2017. For Cajititlán, 33 Landsat-8 and 36 Sentinel-2
images were matched, and for Zapotlán 19 Landsat-8 and 32 Sentinel-2 images.
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The Landsat-8 and Sentinel-2 images were obtained and processed on the Google
Earth Engine (GEE) platform, which is powered by Google’s cloud infrastructure and uses a
JavaScript programming language, as well as on the platform from Google Colaboratory us-
ing the Earth Engine Python API using the geemap library [45]. Numerous images showed
cloud cover over the monitoring points, posing a significant challenge in acquiring accurate
lake surface reflectance values. To mitigate this issue, specialized functions that operate
in the BQA bands for Landsat-8 and the QA60 band for Sentinel-2 were employed. These
functions, as suggested by studies conducted by Braaten et al. [46,47], Kochenour et al. [47],
and Vanhellemont et al. [48], provided instrumental in the identification and removal of
pixels affected by shadows and clouds within the images. This meticulous process aimed
to eliminate values that do not correspond to the true surface reflectance of the lake water
mirror, ensuring the generation of a dataset without serious alteration and suitable for train-
ing ML algorithms. [46–48]. Detailed descriptions of the Landsat-8 and Sentiel-2 satellite
products can be reviewed in Tables A1 and A2 of Appendix A.

2.4. Machine Learning Models

Eight regression algorithms from six different categories were evaluated to develop the
predictive models (Table 1). The open-source Python resources available in the Scikit-learn
library were used and executed in the Google Colaboratory environment that uses Google
cloud servers [35].

Table 1. Categories of the regression algorithms used in the study.

Category Algorithm Abbr.

Ensemble Gradient Boosting Regressor GBR
Ensemble Random Forest Regressor RFR
Ensemble Super Learner Algorithm SLA

Neural networks Multilayer Perceptron MLP
Regularization Ridge Regressor Ridge
Instance based K-Neighbors Regressor KNR
Decision Tree Decision Tree Regressor DTR

Others Support Vector Regressor SVR
The algorithms have been grouped into categories based on their approaches and applications, making it easier to
understand the different techniques used in data analysis.

In the study, the use of the MLP feedforward was prioritized due to its ability to
model non-linear and complex phenomena. This supervised learning algorithm learns a
function f (.) = Ro → Ro by training on a data set, where m is the number of dimensions
for the input and o is the number of dimensions for the output. Given a set of features
X = x1, x2, . . . xm and an objective y it can learn a nonlinear function approximator for
classification or regression [35,49].

2.4.1. Data Processing and Algorithm Training

The process was developed by running code in the Python programming language.
It began with the identification of the numerical variables that correspond to the satellite
reflectance and the concentration values of the WQ parameter to be predicted. Non-numeric
values were removed, and a data distribution analysis was performed using the method
of Shapiro and Wilk [50] with a 95% confidence interval. Outliers were identified and
eliminated using the pandas library boxplot graph and the interquartile range method
(IQR) [51]. A correlation analysis matrix was also constructed using Pandas in Python,
employing the Pearson correlation coefficient (R) to assess the spectral bands of the sensors
that exhibited the strongest correlation with the WQ parameters. This analysis enabled to
pinpoint the specific wavelengths where the parameters demonstrated their highest peak
of reflected energy [5].

A Pipeline was created that includes three phases. In the first phase, the data are
divided randomly, identifying the predictor variables and the response variable. In this
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way, 80% of the data was selected for training and 20% for validation. For each of the
ML algorithms, in the second phase, the training data were scaled and in the third phase,
by implementing the Exhaustive Feature Selector class from the mlxtend library, the spectral
bands of Landsat-8 and Sentinel-2 were selected as most relevant input variables. All
possible combinations were sampled and evaluated with a cross-validation of 8 folds for
Landsat-8 and 12 folds for Sentinel-2, matching numbers according to the number of bands
analyzed [52].

With the processed data, the hyperparameter adjustment was performed, so the
optimal values were identified by testing different possibilities through an exhaustive
search with the grid search method. In this way, the models were trained, and their
respective errors were estimated using the Repeated k-Fold-Cross-Validation validation
method. In the end, the new model was fitted with all of the training data and with the
best hyperparameters found.

To illustrate the flow of the methodology on data processing and algorithm training,
a diagram is provided in Figure 2.

Figure 2. Workflow for data processing and training of ML algorithms.

2.4.2. Model Validation

The Repeated k-Fold-Cross-Validation method divided the training observations into
n folds (sets) of the same size, repeating the cross-validation procedure with different
randomization. The metrics used were: the Root Mean Square Error (RMSE), the Mean
Absolute Error (MAE), and the coefficient of determination (r2) that corresponds to the
proportion of the total variance. They can be defined as follows [35]:

RMSE(y, ŷ) =

√
∑N−1

i=0 (yi − ŷi)2

N
CrossRe f ] (1)

MAE(y, ŷ) =
∑N−1

i=0 |yi − ŷi|
N

. (2)

r2(y, ŷ) = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳ)2

. (3)

where (ŷi) is the estimated value, (yi) is the observed value and (N) is the number of samples.

3. Results

3.1. Data Preprocessing and Evaluation

The presence of cloudiness in the satellite images considerably reduced the number
of coincident records between the radiometric data and the in situ data. A total of 34 low-
quality satellite products affected by the presence of clouds in the total surface of the
lakes were identified, therefore, they do not contain water reflectance information and
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were discarded for the study. Of these 34 images, 8 Landsat-8 and 16 Sentinel-2 images
were identified for Lake Cajititlán, while for Lake Zapotlán there were 6 Landsat-8 and
4 Sentinel-2 images. On the other hand, there were images that presented cloudiness, only
in some sampling points; therefore, they were corrected by means of masks that eliminated
the pixels of clouds and shadows, keeping only the pixels with reflectance values of the
surface of the lake water. In the final dataset, a total of 128 records were retained for the CA
parameters in Cajitilán when using Landsat-8, while 98 records remained when Sentinel-2
was employed. For Zapotlán, 78 records were obtained for both Landsat-8 and Sentinel-2. It
is worth noting that these records represent the data that aligned with the in situ monitoring.
From these records, some extreme outliers of certain parameters were removed, so the
number of records used to train the algorithms is variable. A comprehensive breakdown of
the specific record counts employed for algorithm training is provided in Supplementary
Table S1.

Figure 3 shows an example of cloud mask application for the Landsat-8 image of
Lake Cajititlán, working with the combination of true color bands L8-b4 - L8-b3 - L8-b2 to
identify clouds and bodies of water.

(a)

(b)

Figure 3. Application of cloud masks to Landsat-8 images of Lake Cajititlán. (a) Original image with
cloudiness. (b) Image with cloud mask.
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Radiometric data from Landsat-8 and Sentinel-2 were matched with data from the
RNMCA creating a separate dataset for each lake. The normality test of Shapiro and
Wilk [50] with a confidence interval of 95% reported that the data of the WQ parameters
and the radiometric data of the Landsat-8 and Sentinel-2 images do not follow a normal
distribution. The statistical results can be reviewed in Tables A3–A5 of the Appendix A.
For Lake Cajititlán, a broader distribution of the Chl-a data was evidenced, varying from a
minimum value of 0.34 mg/m3 and to a maximum value of 1387.59 mg/m3. In the case
of turbidity, the range was between 9 NTU and 140 NTU, and for TSS, between 10 mg/L
and 170 mg/L. On the other hand, for Lake Zapotlán, the distribution of the data for the
parameters was found in a lower range than in Cajititlán. Thus, the ranges were: Chl-a
between 0.30 mg/m3 and 81 mg/m3, TSS between 7 mg/L and 64 mg/L, and turbidity
between 3.70 NTU and 100 NTU. For a more complete analysis, the distribution of the
variables was graphically represented in a boxplot, as shown in Figure 4. Consequently,
extreme outliers that were far from the mean were identified, mainly in the Chl-a data sets
in Lake Cajititlán (Figure 4a) and turbidity in Lake Zapotlán (Figure 4b).

(a) (b)

Figure 4. Distribution of the data set of water quality parameters for (a) Cajititlán, and (b) Zapotlán.

Figure 5 shows the analysis of the distribution of the Landsat-8 and Sentinel-2 radio-
metric data for the Cajititlán and Zapotlán lakes. The Landsat-8 images were generated
by OLI sensors that measure the visible (VIS), near-infrared (NIR), and short-wavelength
infrared (SWIR) regions of the spectrum. For its part, the Sentinel-2 images were generated
by a multispectral instrument, which samples 13 VIS and NIR spectral bands at 10 m, red
edge and SWIR at 20 m, and atmospheric bands at 60 m of spatial resolution in a wide
strip with a global review frequency of 5 days. Thus, a larger interquartile range was
reported for Sentinel-2, thus demonstrating a wider range in the distribution of this data set.
Additionally, positive asymmetric biases are recorded for all the Landsat-8 and Sentinel-2
spectral bands, demonstrating that there are high reflectance values that move away from
the majority concentration of the data. On the other hand, a greater number of outliers are
recorded in the Landsat-8 (Figure 5a) and Sentinel-2 (Figure 5c) radiometric data for Lake
Cajititlán, which are far from each other. Likewise, for Lake Zapotlán, there were fewer
outliers in the Sentinel-2 (Figure 5d) and Landsat-8 radiometric data (Figure 5b), so that the
range of dispersion of values is more adjusted except for L8-b5.

Figure 6 shows the heat map of the correlation matrix between the RNMCA values with
the radiometric data of the Landsat-8 and Sentinel-2 spectral bands for the Cajititlán and
Zapotlán lakes. According to this exploratory analysis, in Lake Cajititlán better correlations
are reported between the in situ values of the RNMCA and the radiometric data of L8-b3
(green), L8-b4 (red) from the VIS and L8-b5 from the NIR. TSS registered the highest
correlation coefficients, R = 0.68 in L8-b5, R = 0.55 in L8-b3 and R = 0.52 in L8-b4. Sentinel-2
showed slightly better correlations between RNMCA and S2-b5 (Red Edge 1), S2-b6 (Red
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Edge 2), S2-b7 (Red Edge 3) and S2-b8 (NIR1), where Chl- a presented the best record
with coefficients of R = 0.33 in S2-b6 and S2-b7, R = 0.31 in S2-b8 and R = 0.30 in S2-b5.
On the other hand, for Lake Zapotlán, the best correlation records between the RNMCA
and the Landsat-8 radiometric data occurred in L8-b3 and L8-b4 of the VIS. Turbidity was
the parameter with the highest correlation values, R = 0.69 in L8-b3 and R = 0.57 in L8-b4.
Likewise, the correlation between the RNMCA and the radiometric data from Sentinel-2
reported slightly better results in S2-b1 (aerosol), S2-b2 (blue), S2-b3 (green), S2-b4 (red)
and S2- b5 (NIR). Turbidity was the parameter with the highest correlation values R = 0.36
in S2-b1, S2-b3 and S2-b5; R = 0.33 in S2-b2; and R = 0.31 in S2-b4. Consequently, the best
correlations of the RNMCA data with the spectral bands in the spectral range of the
VIS and NIR are evident. However, there are other wavelengths that maintain weaker
correlations but can be identified by ML models and find patterns to improve predictive
performance [4,21,38]. The combinations of spectral bands selected as predictors for each
ML algorithm are presented in Table S1 of the Supplementary Material.

(a) (b)

(c) (d)

Figure 5. Distribution of radiometric data (a) Landsat-8 Cajititlán, and (b) Landsat-8 Zapotlán,
(c) Sentinel-2 Cajititlán and (d) Sentinel-2 Zapotlán.
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Figure 6. Heat map of the correlation matrix between the RNMCA values with the Landsat-8 and
Sentinel-2 spectral bands for the Cajititlán and Zapotlán lakes.

3.2. Performance of Machine Learning Models

The best performances for the modeling were identified by comparing the r2 values.
In each of the lakes, the best results for the prediction of TSS, turbidity and Chl-a were
found based on the ML algorithms and radiometric data evaluated. Figure 7a shows
the results for Lake Cajititlán. It is observed that the Landsat-8 radiometric data were
the most appropriate input variables to develop the ML predictive models. For example,
for turbidity r2 values between 0.64 and 0.82 were obtained, for TSS r2 were between 0.42
and 0.68, and for Chl-a r2 were between 0.34 and 0.60. Likewise, the models that presented
the best performance were the MLP with r2 between 0.58 and 0.78 and SLA with r2 between
0.60 and 0.82, while the lowest performance was reported by the DTR with r2 between 0.36
and 0.70. In the case of the models developed with Sentinel-2 radiometric data for turbidity,
r2 values between 0.14 and 0.57 were obtained, for TSS they reached a range of r2 between
0.15 and 0.61, and for Chl-a the r2 comprised results between 0.10 and 0.45. For this case,
the most acceptable performances were achieved with the Ridge models with r2 between
0.47 and 0.54, SLA with r2 between 0.14 and 0.61, and MLP with r2 between 0.24 and 0.55.

On the other hand, Figure 7b shows the results for the WQ prediction of Lake Zapotlán.
It is observed that the results were more varied, not identifying a strong trend for any of the
satellite products evaluated. Although, if a general average is analyzed for all ML models,
r2 = 0.44 is reported for Landsat-8 data models and r2 = 0.49 for Sentiel-2 data models.
These averages for each of the lakes, in fusion of the ML models, WQ parameters and
satellite products can be seen in Tables A6 and A7 of the Appendix A. In Lake Zapotlán,
the predictive capacity for turbidity with the Landsat-8 models reached r2 values between
0.22 and 0.75, while the Sentinel-2 models registered r2 between 0.27 and 0.69, lower values
compared to those found in the lake Cajititlán. The same trend is observed for TSS with
Landsat-8, this is, the r2 vary between 0.18 and 0.58 while for Sentinel-2 the r2 values are
between 0.45 and 0.72. Finally, it is also observed that for Chl-a the values of r2 are between
0.17 and 0.71 for Landsat-8 models, and r2 between 0.22 and 0.57 for Sentinel-2 models.
Another difference with what was found in Lake Cajititlán is that the MLP and SLA models
were the best predictors for the Landsat-8 models, while the lowest performance was for
DTR (r2 between 0.17 and 0.23). In the case of the Sentinel-2 models, the MLP (r2 between
0.57 and 0.70) and SLA (r2 between 0.55 and 0.72) reached the best predictive capacity,
and the DTR (r2 between 0.26 and 0.45) reported the lowest performance. The difference
found with the Sentinel-2 and Landsat-8 data is evident since the modeled algorithms
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varied in each of the lakes according to the approach, the hyperparameters, and the size of
the training sample.

(a) (b)

Figure 7. Assessment of the predictive capabilities of ML models for (a) Lake Cajititlán and (b) Lake
Zapotlán. The models are identified by distinct symbols and colors, with green denoting turbidity,
red representing TSS, and blue signifying Chl-a. Furthermore, solid lines correspond to models
developed using Landsat-8 data (L8), while dashed lines correspond to models utilizing Sentinel-2
data (S2).

The r2 in general does not present a perfect adjustment; however, the values close
to the unit explain that the predictive variables have the tendency to provide valuable
information about the response. Full validation of the ML models showing the error metrics,
r2, best algorithm, predictor spectral bands, and WQ parameters for each lake are shown in
Table S1 of the Supplementary Material.

According to the results of the Repeated k-Fold-Cross-Validation, the best predic-
tive models for TSS, Chl-a, and turbidity in each of the lakes were selected. In this
way, Figure 8 presents the scatter diagrams of the residuals (in situ values vs. pre-
dicted values) for the in situ data of the WQ parameters that result from the best
selected models. In the context of Lake Cajititlán, the SLA models developed using
Landsat-8 radiometric data displayed superior performance for predicting turbidity,
with r2 = 0.82, RMSE = 9.93 NTU, and MAE = 7.69 NTU (Figure 8a). For Chl-a, r2 = 0.60,
RMSE = 48.06 mg/m3 and MAE = 37.98 mg/m3 were observed (Figure 8c). The MLP
model, trained with Landsat-8 radiometric data, delivered the best results for TSS pre-
diction, yielding r2 = 0.68, RMSE = 13.42 mg/L and MAE = 10.36 mg/L (Figure 8e).
Conversely, Lake Zapotlán exhibited distinct results, with the MLP models trained with
Landsat-8 radiometric data outperforming other models. Turbidity prediction achieved
r2 = 0.75, RMSE = 2.05 NTU, and MAE = 1.10 NTU (Figure 8b) while Chl-a prediction
displayed an r2 = 0.71, RMSE = 6.16 mg/m3 and MAE = 4.97 mg/m3 (Figure 8d). In the
case of TSS, the SLA model, trained with Sentinel-2 radiometric data, produced the best
results, with an r2 = 0.72, RMSE = 2.71 mg/L and MAE = 2.12 mg/L (Figure 8f).
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Distribution of the residuals for the ML models with the best performance in the prediction
of the WQ parameters: (a) Turbidity in Cajititlán, (b) Turbidity in Zapotlán, (c) Chl-a in Cajititlán,
(d) Chl-a in Zapotlán, (e) TSS in Cajititlán. (f) TSS in Zapotlán.

3.3. Water Quality Parameter Predictions

The best-performing ML models were used to predict the WQ parameters. The input
data for the model were obtained from the Landsat-8 image of collection 2 and level 2 dated
10 November 2022. This image was not part of the training of the algorithms and was the
most current available on the Earth Engine Data Catalog. Figure 9a,c show the qualitative
analysis of the Landsat-8 image in natural color (combination: L8-b4, L8-b3, L8-b2), where
a greenish coloration is observed for the two Lakes, being more intense in Lake Cajititlán.
In addition, it is possible to perceive color variations in the water mirror of each lake, so
that the variation in the spatial distribution of the WQ parameters is evident. Likewise,
the spectral signatures of the sampling points of Lake Cajititlán showed high peaks at
L8-b3 and L8-b5 (Figure 9b). This indicates a predominance of green color and energy in
the NIR region, as shown in Figure 9a. For Lake Zapotlán, it is observed that the highest
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values of reflected energy are in the green region (L8-b3) as seen in Figure 9d. In general,
when comparing the reflectance between the lakes, it is observed that the highest values
are found in Lake Cajititlán and this is in accordance with the values of the WQ parameters
in situ, where it is evident that there is a higher concentration of Chl-a, TSS, and turbidity
in this lake.

(a) (b)

(c) (d)

Figure 9. Landsat-8 image in natural color for lakes (a) Cajititlán and (c) Zapotlán. Spectral signal for
the monitoring points managed by the RNMC for (b) Cajititlán and (d) Zapotlán.

The morphology of the lakes varies over time depending on several factors. Therefore,
for the results of the predictions of the WQ parameters, the water mirror was delimited
according to the optical information of the selected Landsat-8 image. For this, the combi-
nation of bands was used: L8-b6, L8-b5, and L8-b4 of vegetation analysis. Consequently,
the pixels of the lake that represent vegetation on the shores of the two lakes and floating
aquatic plants were eliminated, as is the case of Zapotlán, which has a considerable area of
the water mirror covered by Eichhornia crassipes and Typha latifolia L. In this way, the input
data for the prediction of WQ parameters were only pixels of the water surface, eliminating
pixels of vegetation.

Figure 10 depicts the spatial distribution of Chl-a, SST, and turbidity on the water sur-
face based on predictions generated by the best-performing ML models evaluated. It was
evident that the concentrations of water quality parameters in Lake Cajititlán (Figure 10a)
exceeded those observed in Lake Zapotlán (Figure 10b), indicating higher contamination
levels in Cajititlán. In this context, lake Cajititlán was classified as a lake in a hypereu-
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trophic state, according to the Carlson and Simpson [53] Trophic Status Index for Chl-a
(TSIChl − a = 9.81 ∗ ln(Chl − a) + 30.6). The spatial distribution of Chl-a oscillates be-
tween 90 mg/m3 and 302 mg/m3, and the largest surface area of the water mirror is
above 200 mg/m3. TSS levels range between 45.7 mg/L and 71 mg/L and according to the
standards by CONAGUA [54] in the RNMCA, these values correspond to surface waters
with low TSS content, that means generally natural conditions that favor the conservation
of aquatic communities and unrestricted agricultural irrigation. Turbidity registers values
in a range of 48 mg/L and 84 mg/L, these values are derived from the presence of high
levels of suspended particles and algae according to the values recorded in the previous
parameters. On the other hand, the spatial distribution of Chl-a in Lake Zapotlán classi-
fied the lake as mesotrophic where the concentrations were lower with values between
8 mg/m3 and 25 mg/m3. Likewise, in the highest concentrations, with values ranging
between 25 mg/m3 and 40 mg/m3, the lake is classified as eutrophic. TSS levels were
recorded between 11 mg/L and 17.5/L and according to CONAGUA [54] standards, these
are excellent waters with particularly good quality. The turbidity of the lake presented low
values that oscillate between 1.76 NTU and 12.46 NTU.

(a) (b)

Figure 10. Spatial distribution maps for the estimation of Chl-a, TSS and turbidity with radiometric
data from Landsat-8 10 November 2022). Results for Lake Cajititlán in the left column (a) and
Zapotlán in the right column (b).
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4. Discussion

4.1. Data Processing

Limited access to training data for ML algorithms was a notable challenge in this
study. While the study had access to a substantial database from the RNMCA, aligning
it with the acquisition data of satellite images proved to be a complex task. As a result,
Landsat-8 and Sentinel-2 imagery was chosen, as these sensors offered lower temporal
resolution compared to others and were suitable for capturing data from the relatively
small continental water bodies under study. This choice aligns with common practices
in the field, as documented in the literature review by Chen et al. [38], Yang et al. [14],
Sagan et al. [8] and Topp et al. [4].

Subsequent to data acquisition, thorough data processing played a pivotal role. On one
hand, the in situ data analysis revealed that the observed values did not conform to a
normal distribution. Furthermore, the identification and removal of extreme outliers
became essential to prevent their negative influence on the performance of ML algorithms.
Outliers, as noted by Najah et al. [21], possess the potential to distort descriptive statistics
such as mean and standard deviation, consequently leading to inaccurate predictions by
the models. On the other hand, satellite data introduced limitations, primarily attributed
to atmospheric conditions. The presence of clouds acted as a barrier, obstructing the
retrieval of reflectance values from the water’s surface [20]. Accurate predictive model
development and validation depends on the availability of WQ data that aligns with
uncontaminated reflectance data. When cloud cover affects reflectance data, it complicates
the process of model calibration and validation, as noted by Gulati and Sharma [55] and
Gholizadeh et al. [1]. Consequently, this study opted to eliminate pixels corresponding to
cloud or shadow values. This was achieved by employing masking functions to identify
and exclude such pixels, in line with recommendations from previous studies, such as
Kochenour [56]. However, alternative methods, such as image reconstruction, warrant
further exploration to potentially recover information and thereby increase the dataset
available for training the predictive models [57,58].

The disparities in the correlations of WQ parameters between lakes Cajititlán and
Zapotlán may be attributed to variations in factors such as the physical and chemical com-
position of the water in each lake. Parameters like Chl-a concentration, turbidity, and TSS
have a direct impact on how light is reflected on the water’s surface [4]. Additionally, rapid
changes in water conditions could be influenced by factors like water flow, seasonality,
and nearby pollution sources [14]. The geographical and topographical features of the sur-
rounding region also play a significant role. Factors like vegetation, latitude, and altitude
can affect the interaction of light with the water [1]. Moreover, disparities were observed in
parameter-sensor correlations, with Landsat-8 exhibiting a more suitable spectral range
for certain parameters. These findings underscore the necessity of accounting for the
heterogeneity of water bodies and sensor characteristics when interpreting correlations in
WQ studies utilizing satellite data. It highlights the complexity of WQ monitoring and the
importance of evaluating the specific conditions of each lake to obtain accurate results [59].

4.2. ML Models Performance

The atmospheric effects and optical complexities observed in Lakes Cajititlán and
Zapotlán had a noticeable impact on the quality of the input data used for the ML models.
These limitations affected the scale and robustness of the models and are consistent with
findings from other studies [1,8,14]. The optical complexities of these lakes were evident
in the concentration values of WQ parameters, with Lake Cajititlán showing higher con-
tamination levels compared to Lake Zapotlán. The quality of the radiometric data was
also affected during cloud masking, where some shadow pixels remained unremoved,
leading to alterations in the reflectance values of the water surface, as reported in other
studies [4,20,57,58].

To address these challenges, the authors recommend developing models tailored to
each specific body of water and adjusting hyperparameters based on the quality of the
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input data obtained during processing [2,38]. Choosing the right ML algorithms can be
challenging due to the wide array of options available. Key considerations for selection
include the quantity and quality of the available data. This is particularly relevant in fields
like medicine, ecology, or geoscience, where data collection can be resource-intensive and
may have ethical constraints [35,36]. To overcome limited datasets, researchers often turn to
ML techniques specifically designed for such scenarios. These techniques aim to optimize
ML models to deliver the best possible performance with the available data [21]. In this
study, k-Fold-Cross-Validation was used to evaluate and enhance model performance,
a technique previously employed by researchers such as Blix et al. [60], even with smaller
training datasets. For extremely limited data, some researchers like Arias et al. [7] opt
for leave-one-out cross-validation (LOOCV), although this approach demands substantial
computational resources.

While some investigations [1,14] focus on using only visible (VIS) and near-infrared
(NIR) spectral regions due to their empirical and semi-analytical modeling capabilities,
this study initially leveraged all the spectral bands from Landsat-8 and Sentinel-2 satellites.
This approach enabled access to information across a wide range of wavelengths, offering
a more comprehensive view of the water surface and its characteristics [4,5]. Subsequently,
the exhaustive feature selector was employed for feature selection to identify the most rep-
resentative predictor bands [52]. This process aimed to assess the contributions of different
spectral regions to the model, leading to the use of optimal spectral band combinations.
Conclusively, the study did not definitively establish the most suitable spectral bands to
use, as various models employing different combinations depending on the lake and the
parameter being estimated. This ongoing challenge highlights the complexity of applying
remote sensing in WQ detection. For instance, in the case of Chl-a, Zhang and Han [61]
reported a strong correlation between Landsat-8 bands 1 and 4 and their combinations,
while Kim et al. [62] used Landsat-8 bands 1 and 2, in addition to a ratio of band 2 to band 4.
A more recent study by Arias et al. [5] used data from the RNMCA and used all Landsat-8
bands. On the other hand, for TSS and turbidity, several studies have been found that
report a good correlation between the first five Landsat bands [1,12]. Lim and Choi [63]
built multiple regression models to recover TSS from b2 and b5 of Landsat-8. In this way,
the alternatives that can be used to define the input data for ML models are evidenced.
What could be determined is that ML algorithms can produce models that capture complex
and non-linear relationships between remotely sensed reflectance and WQ parameters [38].

To ensure the robustness of the models, a critical aspect involves randomizing the
selection of training data and subsequently fine-tuning the hyperparameters of the ML al-
gorithms, as recommended in prior research [64,65]. It is worth noting that hyperparameter
tuning requires meticulous analysis and incurs a significant computational cost due to the
multitude of alternatives that must be tested using GridSearch. Furthermore, the evaluation
through cross-validation is imperative [66,67]. Among the ML models assessed, Support
SVR and Ridge linear models demand calibration of fewer hyperparameters compared
to their counterparts. The models that exhibited the highest performance were the SLA
and the MLP. The MLP, being an artificial neural network model, uses backpropagation to
adjust the weights between neurons, resulting in enhancing prediction accuracy. Its ability
to handle complex and non-linear datasets provides it with a distinct advantage over other
ML models [35,36]. In the case of the SLA, its superior performance can be attributed to its
strategy of combining predictions from multiple models that individually demonstrated
the best performance. Notably, the MLP and Ridge models were frequently selected due to
their capacity to contribute to a diverse ensemble that can enhance individual predictions.
This diversity is vital because if all combined models are too similar to one another, they
may not effectively complement each other [64].

In summary, the prediction outcomes of this study are consistent with previous re-
search conducted by Otto et al. [26], Torres [27], and Arias et al. [5], who investigated
different water bodies. However, this study’s distinct contribution lies in the evaluation
of eight ML algorithms, introducing greater variability and overall performance improve-
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ment. The increased data overlap and performance enhancements achieved in this study
highlighted the potential of remote sensing supported by ML techniques in the domain of
WQ monitoring.

4.3. Prediction of WQ Parameters and Practical Application

This study presents a significant contribution in the field of WQ monitoring in aquatic
bodies, specifically in the Cajititlán and Zapotlán lakes in the state of Jalisco, Mexico.
One of the main distinguishing features of this work is that these lakes, which until
now had remained largely unexplored in terms of remote sensing WQ monitoring, have
been the subject of extensive analysis. This approach is essential in the current context,
since, despite the extensive scientific literature dedicated to remote sensing techniques,
our planet continues to be a dynamic and complex system in constant evolution [68].
Therefore, exclusive reliance on existing studies has proven insufficient and impractical [4].
Assessment of these lakes, which face continued deterioration in WQ over time, becomes
an essential task.

The predictive ML models developed in this study open the door to new possibilities.
The MLP and SLA algorithms, which were noted for their high performance, presented
a promising approach for WQ monitoring in these lakes. These results have significant
practical implications. First of all, the study highlights the importance of the integration
of these techniques in the RNMCA. Since there are water bodies that have been excluded
from monitoring campaigns due to certain limitations [5], the application of remote sensing
supported by ML can expand the scope of analysis and contribute to the advancement
of environmental monitoring efforts [2]. This integration would not only be beneficial in
improving monitoring coverage but can also serve as an important precedent for early
decision making. By enabling remote analysis of contamination, these techniques provide
valuable information before physical site visits are made, which can be essential in proactive
decision making [14]. In a broader social context, these techniques have direct relevance to
society. By involving the community in assessing WQ and monitoring water bodies, citizen
participation is encouraged, and greater awareness is promoted about the importance of
conserving these resources. This collaboration between the community and researchers can
empower society by providing them with the tools and knowledge necessary to actively
participate in activities related to WQ preservation [2].

5. Conclusions

Working with historical data from the RNMCA, which conducts long-term monitoring
campaigns spanning from 2009 to the present, has facilitated the development of a useful
database for the study. Despite facing limitations stemming from atmospheric factors
and occasional satellite data mismatches, this dataset has proven to be helpful for the
development of ML models. To address these challenges, extensive hyperparameter tuning
was performed and the widely used k-Fold-Cross-Validation technique was applied in
data-limited scenarios. As a result, the ML models exhibited varying predictive capacities,
with the MLP and SLA algorithms demonstrating superior performance, yielding valu-
able insights into the spatial distribution of Chl-a, SST, and turbidity in Lakes Cajititlán
and Zapotlán.

Underscoring the significance of remote sensing, the study revealed that only through
a qualitative analysis of spectral signatures within satellite images was it possible to identify
heightened light reflection in the green and near-infrared wavelengths, a telltale sign of the
greenish coloration characteristic of eutrophic waters in Lake Cajititlán.

Within this context, the study meticulously developed models that showcase the
highest predictive capabilities. Importantly, these models were fine-tuned to accommodate
the unique characteristics of each lake. The inability to generalize findings arises from the
differences in water composition, topography, and various other environmental factors that
distinguish the two lakes. This research has, therefore, generated invaluable data for the
comprehensive analysis of these lakes, hitherto untouched in the realm of WQ monitoring

143



Remote Sens. 2023, 15, 5505

through remote sensing. Consequently, this study lays the groundwork for future research
endeavors in a rapidly growing field that has garnered the attention of both researchers
and water management authorities.

The outcomes of the study also underscore the immense potential of integrating
remote sensing techniques into the monitoring campaigns conducted by the RNMCA. This
expansion offers the possibility of including more water bodies in monitoring efforts that
were previously excluded due to a range of limitations. Furthermore, it sets a promising
precedent for advancing environmental monitoring practices, ultimately facilitating more
informed and timely decision making in water resource management.
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The following abbreviations are used in this manuscript:

WQ Water Quality
ML Machine Learning
RNMCA National Water Quality Monitoring Network
TSS Total Suspended Solids
Chl-a Chlorophyll-a
MLP Multilayer Perceptron
SLA Super Learner Algorithm
GEE Google Earth Engine
MRSE Mean Square Error
MAE Mean Absolute Error
r2 Coefficient of Determination
L8 Landsat-8
S2 Sentinel-2
VIS Visible
NIR Near Infrared
SWIR Short Wavelength Infrared
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Appendix A

Table A1. Characteristics of Landsat-8 satellite products.

Band Sensor Wavelength (μm) Spatial Resolution (m)
Radiometric
Resolution

1—Ultra blue (Coastal Aerosol) OLI 0.43–0.45 30 16 bits
2—Blue OLI 0.45–0.51 30 16 bits
3—Green OLI 0.53–0.59 30 16 bits
4—Red OLI 0.64–0.67 30 16 bits
5—Near infrared (NIR) OLI 0.85–0.88 30 16 bits
6—Shortwave infrared (SWIR1) OLI 1.57–1.65 30 16 bits
7—Shortwave infrared (SWIR2) OLI 2.11–2.29 30 16 bits
8—Panchromatic OLI 0.52–0.90 15 16 bits
9—Cirrus OLI 1.36–1.38 30 16 bits
10—Thermal infrared 1 TIRS 10.60–11.19 100 16 bits
11—Thermal infrared 2 TIRS 11.50–12.51 100 16 bits

Table A2. Characteristics of Sentinel-2 satellite products.

S2A S2B

Band
Central

Wavelength (nm)
Band Width (nm)

Central
Wavelength (nm)

Band Width (nm)
Spatial

Resolution (m)

1—Coastal aerosol 443.9 27 442.3 45 60
2—Blue 496.6 98 492.1 98 10
3—Green 560.0 45 559 46 10
4—Red 664.5 38 665 39 10
5—Vegetation red edge 703.9 19 703.8 20 20
6—Vegetation red edge 740.2 18 739.1 18 20
7—Vegetation red edge 782.5 28 779.7 28 20
8—NIR 835.1 145 833 133 10
8a—Vegetation red edge 864.8 33 864 32 20
9—Water vapor 945.0 26 943.2 27 60
10—SWIR - cirrus 1373.5 75 1376.9 76 60
11—SWIR 1610.4 141 1613.7 143 20
12—SWIR 2185.7 238 2202.4 242 20

Table A3. Water Quality Parameters—Descriptive Statistics and Shapiro-Wilk Test.

Lake Parameter Count Mean Std Min 25% 50% 75% Max Statistic p-Value (95%)

TSS 252.00 63.71 24.28 10.00 48.00 62.50 76.00 170.00 0.98 1.64 × 10−3

Cajititlán Tur 252.00 71.71 24.23 9.00 55.00 70.00 88.13 140.00 0.98 1.38 × 10−3

Chl-a 252.00 241.46 154.87 0.34 166.25 239.18 299.89 1387.59 0.76 6.36 × 10−19

TSS 153.00 19.58 9.67 7.00 13.00 18.00 23.00 64.00 0.86 5.74 × 10−11

Zapotlán Tur 153.00 12.99 10.54 3.70 7.30 10.00 15.00 100.00 0.63 5.15 × 10−18

Chl-a 153.00 21.20 14.82 0.30 10.11 19.43 28.44 81.78 0.94 7.17 × 10−6

Table A4. Landsat-8 radiometric data set—Descriptive Statistics and Shapiro-Wilk Test.

Lake Parameter Count Mean Std Min 25% 50% 75% Max Statistic p-Value (95%)

L8-b1 129 0.0130 0.0210 0.00004 0.0020 0.0076 0.0144 0.15 0.53 1.36 × 10−18

L8-b2 129 0.0183 0.0197 0.0010 0.0087 0.0137 0.0205 0.16 0.54 2.40 × 10−18

L8-b3 129 0.0554 0.0164 0.0081 0.0471 0.0543 0.0611 0.13 0.93 4.13 × 10−6

Cajititlán L8-b4 129 0.0309 0.0154 0.0012 0.0235 0.0287 0.0335 0.10 0.89 1.65 × 10−8

L8-b5 129 0.0477 0.0269 0.0075 0.0331 0.0400 0.0583 0.18 0.86 1.52 × 10−9

L8-b6 129 0.0113 0.0217 0.0003 0.0030 0.0044 0.0093 0.17 0.45 6.42 × 10−20

L8-b7 129 0.0092 0.0181 0.0005 0.0025 0.0034 0.0076 0.15 0.42 2.02 × 10−20
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Table A4. Cont.

Lake Parameter Count Mean Std Min 25% 50% 75% Max Statistic p-Value (95%)

L8-b10 129 23.87 3.94 11.15 21.36 24.18 26.77 31.16 0.97 4.13 × 10−3

L8-b1 78 0.0174 0.0296 0.0001 0.0049 0.0095 0.0162 0.18 0.49 5.78 × 10−15

L8-b2 78 0.0219 0.0203 0.0034 0.0105 0.0162 0.0229 0.14 0.67 5.66 × 10−12

L8-b3 78 0.0521 0.0208 0.0224 0.0383 0.0468 0.0579 0.11 0.88 1.62 × 10−6

Zapotlán L8-b4 78 0.0374 0.0195 0.0119 0.0259 0.0307 0.0454 0.09 0.88 1.68 × 10−6

L8-b5 78 0.0596 0.0923 0.0007 0.0088 0.0158 0.0546 0.37 0.63 8.57 × 10−13

L8-b6 78 0.0303 0.0446 0.0008 0.0029 0.0083 0.0390 0.23 0.68 1.06 × 10−11

L8-b7 78 0.0193 0.0262 0.0007 0.0024 0.0071 0.0272 0.13 0.71 4.00 × 10−11

L8-b10 78 23.27 4.03 8.63 20.89 24.34 26.47 29.13 0.90 2.10 × 10−5

Table A5. Sentinel-2 radiometric data set—Descriptive statistics and Shapiro-Wilk Test.

Lake Parameter Count Mean Std Min 25% 50% 75% Max Statistic p-Value (95%)

S2-b1 128 0.0572 0.0613 0.0035 0.0127 0.0284 0.0790 0.31 0.79 2.76 × 10−12

S2-b2 128 0.0634 0.0600 0.0091 0.0203 0.0341 0.0928 0.33 0.79 3.75 × 10−12

S2-b3 128 0.1017 0.0558 0.0508 0.0624 0.0739 0.1206 0.32 0.80 5.55 × 10−12

S2-b4 128 0.0694 0.0586 0.0209 0.0279 0.0402 0.0878 0.27 0.77 6.13 × 10−13

Cajititlán S2-b5 128 0.1547 0.0575 0.0856 0.1162 0.1289 0.1658 0.34 0.80 4.55 × 10−12

S2-b6 128 0.1449 0.0648 0.0554 0.1048 0.1205 0.1628 0.36 0.85 3.23 × 10−10

S2-b7 128 0.1461 0.0674 0.0575 0.1036 0.1216 0.1640 0.38 0.85 4.28 × 10−10

S2-b8 128 0.1242 0.0639 0.0419 0.0851 0.1005 0.1401 0.38 0.84 1.24 × 10−10

S2-b8A 128 0.1004 0.0690 0.0313 0.0555 0.0690 0.1172 0.35 0.80 8.03 × 10−12

S2-b9 128 0.0738 0.1126 0.0003 0.0091 0.0192 0.1100 0.71 0.66 6.99 × 10−16

S2-b11 128 0.0471 0.0604 0.0015 0.0050 0.0136 0.0676 0.27 0.74 1.16 × 10−13

S2-b12 128 0.0423 0.0553 0.0009 0.0043 0.0118 0.0600 0.26 0.74 8.44 × 10−14

S2-b1 79 0.0421 0.0330 0.0007 0.0129 0.0314 0.0709 0.12 0.88 3.30 × 10−6

S2-b2 79 0.0476 0.0344 0.0090 0.0188 0.0342 0.0768 0.14 0.88 2.42 × 10−6

S2-b3 79 0.0633 0.0362 0.0180 0.0344 0.0491 0.0890 0.16 0.89 3.42 × 10−6

S2-b4 79 0.0501 0.0361 0.0091 0.0222 0.0345 0.0745 0.14 0.87 7.48 × 10−7

Zapotlán S2-b5 79 0.0660 0.0399 0.0178 0.0326 0.0553 0.0947 0.16 0.91 5.45 × 10−5

S2-b6 79 0.0613 0.0537 0.0049 0.0182 0.0324 0.0982 0.19 0.86 5.85 × 10−7

S2-b7 79 0.0656 0.0629 0.0042 0.0175 0.0333 0.0984 0.24 0.83 4.25 × 10−8

S2-b8 79 0.0637 0.0683 0.0034 0.0152 0.0312 0.0943 0.28 0.79 2.84 × 10−9

S2-b8A 79 0.0645 0.0725 0.0017 0.0121 0.0293 0.0917 0.29 0.78 2.01 × 10−9

S2-b9 79 0.0781 0.0802 0.0005 0.0125 0.0584 0.1164 0.29 0.85 1.60 × 10−7

S2-b11 79 0.0439 0.0430 0.0007 0.0071 0.0214 0.0773 0.15 0.85 2.54 × 10−7

S2-b12 79 0.0353 0.0346 0.0012 0.0060 0.0163 0.0652 0.13 0.85 2.01 × 10−7

Table A6. Means of the coefficient of determination (r2) for the modeling results for Lake Cajititlán,
as a function of CA parameters, ML models and satellite products.

ML Models Tur-L8 Chl-a-L8 TSS-L8 Mean for Models Tur-S2 Chl-a-S2 TSS-S2 Mean for Models

DTR 0.70 0.36 0.42 0.49 0.14 0.10 0.15 0.13
KNN 0.76 0.37 0.59 0.58 0.37 0.13 0.47 0.32

RF 0.73 0.34 0.53 0.53 0.53 0.10 0.20 0.28
GBTR 0.76 0.37 0.44 0.52 0.35 0.12 0.29 0.25
Ridge 0.64 0.38 0.50 0.51 0.54 0.45 0.47 0.49
SVR 0.78 0.54 0.56 0.63 0.57 0.22 0.51 0.43
MLP 0.78 0.58 0.68 0.68 0.55 0.24 0.49 0.43
SLA 0.82 0.60 0.60 0.67 0.57 0.14 0.61 0.44

Mean for WQ
parameters

0.75 0.44 0.54 - 0.45 0.19 0.40 0.35

General mean 0.58 0.35

The table displays the horizontal averages for the ML models and the vertical averages for the CA parameters. The
overall average corresponds to the average of all ML models for each set of satellite data (Landsat-8 and Sentinel-2).
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Table A7. Means of the coefficient of determination (r2) for the modeling results for Lake Zapotlán,
as a function of CA parameters, ML models and satellite products. .

ML Models Tur-L8 Chl-a-L8 TSS-L8 Mean for Models Tur-S2 Chl-a-S2 TSS-S2 Mean for Models

DTR 0.23 0.17 0.24 0.21 0.27 0.26 0.45 0.32
KNN 0.22 0.64 0.18 0.35 0.32 0.37 0.50 0.40

RF 0.54 0.51 0.17 0.41 0.41 0.47 0.59 0.49
GBTR 0.51 0.61 0.18 0.43 0.37 0.45 0.64 0.49
Ridge 0.60 0.35 0.46 0.47 0.63 0.22 0.60 0.48
SVR 0.48 0.29 0.28 0.35 0.51 0.40 0.57 0.50
MLP 0.75 0.71 0.53 0.66 0.64 0.57 0.70 0.63
SLA 0.64 0.67 0.58 0.63 0.69 0.55 0.72 0.65

Mean for WQ
parameters

0.50 0.49 0.33 - 0.48 0.41 0.59 0.49

General mean 0.44 0.49

The table displays the horizontal averages for the ML models and the vertical averages for the CA parameters. The
overall average corresponds to the average of all ML models for each set of satellite data (Landsat-8 and Sentinel-2).
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Abstract: Water scarcity and quality deterioration, driven by rapid population growth, urbanization,
and intensive industrial and agricultural activities, emphasize the urgency for effective water man-
agement. This study aims to develop a model to comprehensively monitor various water quality
parameters (WQP) and evaluate the feasibility of implementing this model in real-world scenarios,
addressing the limitations of conventional in-situ sampling. Thus, a comprehensive model for moni-
toring WQP was developed using a 38-year dataset of Landsat imagery and in-situ data from the
Water Information System of Europe (WISE), employing Back-Propagated Artificial Neural Networks
(ANN). Correlation analyses revealed strong associations between remote sensing data and various
WQPs, including Total Suspended Solids (TSS), chlorophyll-a (chl-a), Dissolved Oxygen (DO), Total
Nitrogen (TN), and Total Phosphorus (TP). Optimal band combinations for each parameter were
identified, enhancing the accuracy of the WQP estimation. The ANN-based model exhibited very
high accuracy, particularly for chl-a and TSS (R2 > 0.90, NRMSE < 0.79%), surpassing previous studies.
The independent validation showcased accurate classification for TSS and TN, while DO estimation
faced challenges during high variation periods, highlighting the complexity of DO dynamics. The
usability of the developed model was successfully tested in a real-case scenario, proving to be an
operational tool for water management. Future research avenues include exploring additional data
sources for improved model accuracy, potentially enhancing predictions and expanding the model’s
utility in diverse environmental contexts.

Keywords: water quality monitoring; Artificial Neural Network (ANN); artificial intelligence; WISE;
sustainable water management

1. Introduction

Water is vital for the life of humans, animals, plants, and ecosystems. Human
health, food security, economic growth, energy production, and ecosystems are all water-
dependent. Growing population and urbanization, intensive industrial development,
agriculture, increasing demand, and misuse of water have increased water stress, making
water a scarce and expensive resource, especially in undeveloped countries.

This growing issue has been recognized and several policies have been adopted in
order to provide sustainable management and prevent further decreases in water quality
and quantity. The 2030 Agenda for Sustainable Development [1], adopted by United
Nations Member states, within Sustainable Development Goals (SDG) 6 [2] emphasizes
the water-related issue. SDG 6 has eight targets including water quality. In Europe,
the Water Framework Directive (WFD) [3] defines a framework for the protection of the
aquatic environment (rivers, lakes, transitional waters, groundwaters, and coastal waters.).
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The primary aim of WFD is to achieve at least a good status in all water bodies. To
assess the status of the water bodies, monitoring of biological, hydromorphological, and
physicochemical water quality parameters (WQP) as defined within Annex V and Annex
X [4] needs to be conducted.

The WFD implies that rivers with catchment areas greater than 10 km2 and lakes
greater than 0.5 km2 in surface area and all of the water bodies into which priority sub-
stances are discharged need to be included within the water status assessment and mon-
itoring. WQP is traditionally determined by the collection of in-situ samples and then
analyzing them in the laboratory [3]. Although this method provides high accuracy, it
is labor, time, and cost-intensive. Therefore, monitoring all water bodies as defined by
WFD would require major financial investments. Moreover, the conventional methodology
determines the WQP concentration at the sampling point. The water quality within water
bodies is rarely constant due to unpredictable events such as storms, accidental spillages, or
leakages. and it is highly influenced by hydrodynamic characteristics such as flow direction
and discharge. Due to that the monitoring of spatial and temporal variations and trends in
large water bodies by conventional methods is challenging.

To overcome those limits, remote sensing technologies, which have the advantage of
large spatial coverage and high temporal resolution, have been used to identify and monitor
water bodies more effectively and efficiently [5–7]. The remote sensing monitoring of WQP
is based on establishing the correlation between in-situ monitoring data and corresponding
surface reflection. The spectral characteristics of water are functions of the hydrological,
biological, and chemical characteristics of water [8]. Therefore, the amount of radiation at
various wavelengths reflected from the water surface can be used directly or indirectly to
detect WQP.

The clear water reflects light with wavelengths < 600 nm, resulting in high reflectance
in the blue-green while absorbing radiation at the Near-Infra Red (NIR) portion of the spec-
trum and beyond. The increase of chlorophyll-a (chl-a) concentration increases absorption
in Red (R) and strongly absorbs Blue (B) light while the reflection peak is located at the
green (G) part of the spectrum [9]. Water clarity is the function of Total Suspended Solids
(TSS) concentration. TSS is the measure of the weight of inorganic particulates suspended
in the water column and it is responsible for most of the scattering [10]. By influencing the
scattering of light, TSS directly controls the transparency and oxygen content of the water
body [11]. The increased concentration of TSS causes the peak to shift from G toward the R
region and increases water reflectance in the NIR region.

Thus, many studies have used band combinations and spectral indices to develop em-
pirical algorithms for the estimation of optical active WQP and achieved good results [12,13].
Various spectral bands have been used to quantify the chl-a and TSS (Table 1).

Table 1. Remote sensing data used for monitoring of WQP.

Author Platform WQP Spectral Bands Algorithm Accuracy

[14] Landsat 8 chl-a R, G

[15] Landsat 8

chl-a B, G, R, NIR, NIR/R

MLR

R2 = 0.77
TSS G, NIR, NIR/R R2 = 0.78
TN G, R, NIR R2 = 0.55
TP B, G, R, NIR R2 = 0.57

[6] Landsat 5
chl-a NIR, NIR/B

LR
R2 = 0.6

TSS R R2 = 0.67

[16] Ikonos 2
chl-a B, G
TSS G, R

[17] Landsat 8 chl-a B, G, R, NIR, SWIR1, SWIR2
[18] Landsat 5 TSS R/G, NIR, R RF
[19] Landsat 8 TN (B + R)/G, Coastal/NIR, G/NIR MLR R2 = 0.75
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Table 1. Cont.

Author Platform WQP Spectral Bands Algorithm Accuracy

[20] Landsat 5, 7, 8
chl-a B, G, R, NIR, R/B2, NIR/B2

ANN
R2 = 0.89

SS B, G, R, NIR, R2, R/B, B*R, G*R R2 = 0.93

[21] Landsat 8
TN R/(G + NIR)

LR
R2 = 0.71

TP (Coastal + G + R)/NIR R2 = 0.66

[22] Landsat 8
TN R, G/B

ANN
R2 = 0.86

TP G, G/B R2 = 0.64

However, inland waters are seriously affected by human activities, due to optical
properties being complex and highly variable. Therefore, each band is not only sensitive to
one but also to other WQP which can lead to significant uncertainty in the results produced.

In addition, WQPs such as Total Nitrogen (TN), Total Phosphorus (TP), and Dissolved
Oxygen (DO) are important information for understanding water body dynamics. Increased
levels of nutrients can lead to algal blooms and oxygen depletion.

However, since the relationship between surface reflectance and concentration of those
parameters is indirect and non-linear, the estimation of their concentration represents a
great challenge if they are based on traditional empirical algorithms. In recent years, with
the increase in processing power and the development of artificial intelligence, machine
learning (ML) algorithms have been increasingly used for WQP monitoring. The most
common ML models for water quality parameters are Random Forest (RF), Supported
Vector Machine (SVM) and Artificial Neural Network (ANN).

Guo et al. [23] used the Landsat and MODIS reflection and SVM for monitoring of DO
in Lake Huron. Results show good robustness with average R2 = 0.91. Qian et al. [24] tested
Multiple Linear Regression (MLR), SVM, RF and ANN for monitoring of three non-optical
(pH, DO, Electrical Conductivity (EC)) and one optical parameter (Turbidity) at Qingcaosha
Reservoir based on Sentinel 2 images. The results indicated that ANN showed more robust
performance for all WQP (RMSE: 0.33; 0.49; 0.38; 0.26 for pH, DO, EC, and Turbidity,
respectively) compared to traditional ML algorithms. Guo et al. [25] monitored the TP,
TN, and Chemical Oxygen Demand (COD) by using Sentinel 2 imagery and NN, RF, and
SVM algorithms. Their results showed that ML can significantly improve the estimation
accuracy of non-optical parameters with Normalized Root Mean Square Error (NRMSE)
of TP: 16.8%; TN: 29.64% and COD 18.75. Similarly, Ref. [26] tested the performance of
MLR, SVM, and ANN for monitoring of chl-a, DO, Turbidity, blue-green algae (BGA),
and fluorescent dissolved organic matter (fDOM) from Sentinel 2 and Landsat 8 images.
The DNN outperformed the ML algorithms resulting in Root Mean Square Error (RMSE)
of 0.86, 7.56, 1.81, 14.50, and 5.19 for BGA, chl-a, DO, fDOM, and Turbidity, respectively.
Hafeez et al. [20] estimated the concentration of TSS, chl-a and Turbidity with several
ML algorithms including ANN, RF, and SVM by using Landsat (5, 7, 8) imagery. ANN
outperformed RMSE chl-a:1.4; TSS: 2; Turbidity: 3.10) followed by SVM. Leggesse et al. [27]
compared the six ML algorithms integrated with Landsat 8 imagery for the prediction
of three optically active WQP (chl-a, Turbidity and Total Dissolved solids (TDS)). The
results indicated that XGBoost regression performed best for chl-a (RMSE: 9.47) while RF
performed best for the rest of the parameters (RMSE TDS: 12.3; Turbidity: 7.82) while ANN
and SVM provided lower accuracy. Gomez et al. [28] tested the performance of RF, SVM
and ANN on a balanced dataset for the monitoring of chl-a based on Sentinel 2 images.
The results showed that RF performed better compared to others (RMSE: RF 0.82; SVM
1.45; ANN 1.75).

It has been shown that ANN and SVM have provided excellent performance in
monitoring both optically active and non-active WQP [20,26,28,29]. ANN, as a nonlinear
approximation method, is more flexible for WQP monitoring. However, the resulting
accuracy of ML is generally a function of the selected model and the quality and size of
the training data. The development of an ANN model requires large training datasets and
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extensive experience in order to determine the optimal NN architecture. Using too many
layers can result in overfitting, which involves the fitting of noise in training data and lower
generalization to new data [30]. On the other hand, a low number of layers can lead to
underfitting when the model cannot represent the complexity of data adequately. Due to
that, SVM and RF can have a higher generalization ability than ANN. Govedarica et al. [7]
tested the performance of ANN and SVM for monitoring Turbidity, TSS, TN, and TP. The
results showed that SVM outperformed ANN for Landsat 8 data while ANN produced
better results for Sentinel 2 data. The reason for the higher performance of SVM can be
due to being less sensitive to small data samples and mixed pixels [30,31] and it avoids
the occurrence of overtraining and optimization of fewer parameters [32,33]. However, an
increase in the number of training data can make SVM difficult to implement.

On the other hand [27,28] show that RF had better generalization ability and was
less affected by overfitting compared with ANN and SVM. It was noticed that there
was an increase in RF performance with an increase in the number of features used in
the prediction [28] while it can be decreased for small training datasets [34,35]. The RF
algorithm is characterized by the considerable time expenditures for training the trees in
the ensemble when the datasets are large [36]. Compared to SVM, RF can take up to four
times longer to train and optimize [37].

In addition to ML, deep learning algorithms (DL) have been widely applied in remote
sensing image classification. Convolution Neural Networks (CNN) are capable of extracting
intrinsic features and have provided state-of-the-art accuracy. Pu et al. [38] used CNN
to classify the water quality of a lake based on Landsat 8 images. The results showed
that CNN outperformed SVM and RF (OA: CNN 97.12%; SVM 96.89%; RF 86.15%). Cui
et al. [39] used CNN and a combination of Landsat 8 and Sentinel 2 images for monitoring
water transparency reaching an R2 of 0.85. Similarly, Ref. [40] demonstrated chl-a retrieved
from Sentinel-2 images using CNN regression resulting in an R2 of 0.92. Although CNN
has demonstrated increased accuracy and robustness, most of the research that is based
on moderate-resolution satellite images deals with large water bodies such as lakes, and
transitional or coastal waters. This is mostly due to the fact that CNN uses convolution
filters of varying sizes (3 × 3, 5 × 5, or 7 × 7 pixels) to extract meaningful higher-level
abstract features and increase accuracy. However, taking into account spatial resolution and
the width of rivers these patches can represent heterogeneous classes limiting the accuracy
of the model [40].

The main aims of this paper are (a) to develop a comprehensive ANN-based model
for monitoring water body status, and (b) to test the usability of the developed model in
real-case scenarios.

2. Materials and Methods

2.1. Study Area

The study area (Figure 1) for this research focused on water quality monitoring based
on remote sensing data for the main water bodies within the Republic of Serbia. The
Republic of Serbia is located in southeast Europe between 41◦53′N and 46◦11′N latitude
and 18◦51′E and 23◦01′E longitude. The North part represents the Pannonian Plain with
dominant flat terrain while the central and south parts represent hilly regions. Most of the
rivers belong to the Black Sea basin. The longest river is the Danube. In addition to the
Danube, there are three navigable rivers: Sava, Tisa and part of the Great Morava.

On the territory of the Republic of Serbia, there are 498 surface water bodies, 99%
of these are represented by streams and 1% are lakes. According to the classification of
WFD, these streams are classified as rivers (69%), heavily modified water bodies (28%) and
artificial water bodies (3%) [41]. The monitoring program for surface water bodies in the
2017–2019 period includes 137 monitoring stations (123 profiles on streams and 14 locations
on accumulations) located on 121 water bodies. In that period, 76% of the water bodies
were not included in the monitoring program. The assessment of the ecological potential
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was performed on 24% of the water bodies from which 2% had a good, 8% moderate, 9%
poor, and 5% bad ecological status [42].

 

Figure 1. Study area. (Left): location of the Water Information System of Europe (WISE) monitor-
ing stations in Europe. (Upper Right): Location of monitoring stations in the Republic of Serbia.
(Lower Right): Location of main water bodies in Serbia.

2.2. Data

Optical remote sensing monitoring of WQP is based on the correlation between the
in-situ measurement and the corresponding surface reflectance.

In this paper, the in-situ data were provided by the Water Information System of
Europe (WISE). WISE was launched in 2007, as a joint initiative from European Commission
and European Environmental Agency, providing a web portal for water-related information
ranging from inland to marine [43]. WISE represents the formal reporting tool for EU
water legislation enabling the sharing of water-related information at a European level.
The WISE-WFD database contains data reported by EU Member States, Norway and the
United Kingdom according to article 13 of the WFD. The database includes aggregated and
disaggregated information as well as spatial references about ground and surface water
bodies. The disaggregated database represents raw in-situ observed values of WQP [44]
reported on an annual basis. Currently, there are more than 60,000,000 in-situ observations
and more than 70,000 spatial object identifiers. Data were collected in the period from 1984
to 2022. The sampling location for in-situ water quality monitoring, used in this research,
was located along the main inland water bodies (river, lake, and transitional) in Europe
to obtain a range of hydrological and atmospheric conditions across a continental scale
(Figure 1).

Landsat 5, Landsat 7, and Landsat 8 surface reflectance products from 1984 to 2022
over Europe were used. In total, 213,117 images were analyzed to create a long time series
and train the model for WQP monitoring. The date ranges and number of images per
sensor are provided in Table 2.
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Table 2. Time frame and number of images per sensor.

Sensor Start Date End Date Number of Images

Landsat 5 TM 19 March 1984. 29 September 2015. 99,319
Landsat 7 ETM+ 30 June 1999. 31 December 2021. 76,224

Landsat 8 OLI 21 March 2013. 31 December 2021. 37,574

Landsat Surface reflectance imagery is atmospherically corrected, containing six (B,
G, R, NIR, SWIR, SWIR 2) bands processed to orthorectified surface reflectance using
LEDAPS [45]. The Landsat mission is to achieve global coverage once every 16 days with
a spatial resolution of 30 m for the multispectral bands. The Google Earth Engine API
integrated into Google Colab was used as an access point to the images.

The consistency and standardization of Landsat data across its various missions
(Landsat 5, 7 and 8, in this case) is crucial for enabling comparability and consistent anal-
ysis over different time periods using time series and to ensure a seamless multi-sensor
data record where observed satellite changes can be ascribed to surface changes and
not to instrument changes. This consistency is maintained through several factors [46]:
(i) rigorous calibration procedures to ensure that sensor characteristics, such as spectral
response and radiometric accuracy, remain consistent across the different platforms, to
minimize variations between sensors, enabling data continuity [47] (ii) standardized data
processing algorithms employed consistently across different Landsat missions, which
are corrected for atmospheric effects, geometric distortions, and other artifacts, ensuring
that data from different satellites can be combined and compared accurately [48], and
(iii) metadata and data format, which documents sensor characteristics, acquisition pa-
rameters and processing methods. Although the complete normalization of these factors
within the USGS Landsat processing framework remains pending [46], the efforts made to
produce consistent and analysis-ready Landsat data across different missions have made
possible its broad use for water quality assessment and monitoring [49].

2.3. Methodology

Figure 2 summarizes the approach followed in this paper. It consists of three main
steps: preprocessing, processing, and prediction.

Preprocessing: The Sentinel 2 Level 2A satellite images were used to detect water
bodies. Level 2A was atmospherically corrected by using Sentinel 2 Atmospherically Cor-
rection, which is based on [50,51]. The Level 2A images also contain the Scene Classification
Layer (SCL), which provides a pixel classification map with four different classes for clouds
and six different classes for shadows, cloud shadows, vegetation, soil, water, and snow [52].
Visual inspection showed that water pixels are mostly classified as water or dark pixels.
Waterbody masks were created by using the region grow algorithm where water pixels are
used as seeds, and neighboring pixels that were classified as dark pixels and had reflectance
values lower than 800 in the SWIR 2 band were added to the region. Corresponding water
masks were created for each Landsat image used for the prediction of WQP concentration
in 2020 in the study area.

The coordinates of the monitoring station were reprojected from WGS84 to WGS84/UTM
34 N projection to match the Landsat imagery coordinate system. Since WQP monitoring is
based on remote sensing, the monitoring stations located on small inland water bodies and
groundwaters were excluded from the dataset. Additionally, the location of each station
was checked against detected water bodies in order to make sure that the extracted value
represented water reflectance.
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Figure 2. Workflow.

For each point, the values of surface reflectance were extracted from available Landsat
5, Landsat 7, and Landsat 8 Surface Reflectance Level 2A images. The cloud and shadow
masking were performed in order to provide clean water pixels. The resulting table con-
tained the identifier of monitoring stations, the corresponding value of surface reflectance,
and the sensing date. The surface reflectance was filtered by date to match the in-situ
data. The maximum time gap between the in-situ sampling and satellite overpass was
3 days. Final training data contained the surface reflectance of B, G, R, NIR, SWIR1, SWIR 2
band, band ratios NIR/R, G/R, G/B, B/R, R/G, R/B2, NIR/B2, G/SWIR2, spectral indices
NDVI, NDWI and NDTU, as well as B*R, G*R, (B + R + NIR)/G and NIR/(R + SWIR)
and the corresponding concentration of WQP. The Pearson correlation analysis was used
to investigate the association between remote sensing and in-situ data with a correlation
coefficient (r). Based on the correlation the input data set for each WQP was defined. The
data were standardized to fit a normal distribution with a mean value of 0 and standard
deviation of 1 and split into training and test sets (80% and 20%, correspondingly).

Processing: The relationship between the WQP concentration and surface reflectance
was modeled by using ANN. ANNs are pattern-recognition algorithms that consist of
an interconnected group of artificial neurons, and they process information using a con-
nection approach to computation [53] In this study, a fully connected back-propagation
neural network was applied. The network had three layers: input, hidden, and output
(Figure 3). The input layer represents predictor or independent variables (in this case
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radiance measurement of different wavelengths). Hidden layers contain a varying number
of neurons. The number of nodes in the hidden layer depends on the complexity of the
approximated function and sample numbers. If the network is too small, the self-learning
ability and precision of the network will decrease, causing under-fitting. Meanwhile, if the
network is too large, training time will increase, and the generalization capability of the
network will decrease, producing over-fitting [54]. There is no theoretical formula that can
be used for the selection of optimum NN architecture. The architecture was fixed by using
a trial-and-error approach. The output values of the hidden layer were the input values of
the output layer, which also performs the summation and activation functions. The output
of this layer was the target of water quality parameters. To derive the correct output, the
network learned by training on the subsets of in-situ data. In the back-propagated network,
the outputs were then compared with actual values from the training data set, the error was
calculated, and the results were transferred to the output layer. As the data passed through
the network many times, weights were adjusted and errors were reduced (Figure 3).

Figure 3. ANN architecture.

Accuracy assessment: The performance of the developed ANN model was evaluated
based on common statistical measures: coefficient of determination (R2) (Equation (1)),
RMSE (Equation (2)), normalized RMSE (NRMSE) (Equation (3)), Mean Square Error (MSE)
(Equation (4)), Mean Absolute Error (MAE) (Equation (5)). A RMSE measures the quality
of the model fit; 0 indicates a perfect fit for the data, while large values are obtained if the
estimated concentration of WQP and true concentration differ substantially. NRMSE is
used to compare results between models with different scales.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(ŷi − y)2 (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

NRMSE =
RMSE

ymax − ymin
(3)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (4)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where yi is actual value, ŷi is the predicted value, n sample size, y mean of the n actual
values, ymax is the maximum of n actual values and ymin is the minimal of n actual values.
A model with a high R2 and low RMSE and NRMSE would be suitable for WQP monitoring.
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The R2 factor is essential for the evaluation of the developed prediction model with the
following classification: excellent prediction R2 > 0.9, good prediction 0.82 ≤ R2 < 0.90,
approximate quantitative prediction 0.66 ≤ R2 ≤ 0.81, a prediction that can possibly
distinguish between high and low values 0.50 ≤ R2 ≤ 0.65, and unsuccessful prediction
R2 < 0.5 [55,56].

Prediction: The trained ANN models were used to monitor the WQP concentration
based on Landsat 8 Level 2A images for the year 2020 in the study area. Before making
the prediction, the images needed to be masked using a water mask (created in the prepro-
cessing phase) in order to ensure that all the pixels represent the water and do not contain
surrounding classes. After the prediction of the WQP concentration water quality was
classified into classes based on values presented in Table 3. Those values were defined
to be in line with those as defined by the legal documents in the field for the Republic of
Serbia [57–59].

Table 3. Limit values of WQP concentration for classification of water body status [57–59].

Class/Parameter chl-a DO TSS TN TP

I (High) 0–25 8.5> 0–25 <1 0–0.05
II (Good) 25–50 7–8.5 25- 1–2 0.05–0.30

III
(Moderate) 50–100 5–7 - 2–8 0.30–0.40

IV (Poor) 100–250 4–5 - 8–15 0.40–1
V (Bad) >250 <4 - >15 >1

In order to gain a deeper insight into the performance of the developed models and
assess their practical application, validation was performed. To validate the developed
models in the Republic of Serbia, we compared the satellite-derived results and field mea-
surements for the year 2020 for the Zemun monitoring station in the Danube River (which
was not included in the training data). Since the in-situ sampling was not regular, there
were no matches between the exact dates of satellite-derived results and field sampling,
and therefore, the classical statistical measures (R2, RMSE, NRMSE) were not calculated.

2.4. Implementation

The developed workflow was implemented in the Python programming language.
The workflow consisted of three modules for the creation of training data, prediction, and
monitoring of WQP, and it is fully automated. Manual input is only used for the selection
of optimal NN architecture. The remote sensing data were accessed and preprocessed by
using GEE Python API. The data set and NN architecture were defined for each WQP. The
proposed architecture consisted of input, hidden, and output layers with an activation
function (Table 4). The number of the input neurons was selected to be equal to the selected
input bands that had a strong correlation with WQPs, and the number of output neurons
was selected to be one. The trial-and-error approach was used for the selection of a proper
number of hidden neurons. All of the data sets were split at 80% for training and 20%
for validation. The learning rate and decay rate were determined through grid search
(Learning rate: [0.0001, 0.001, 0.01, 0.1]; Weight decay: [0.000001, 0.00001, 0.0001]). To
avoid overfitting, early stopping was used. Early stopping is a commonly used form
of regularization that interrupts the training process when there is no improvement of
validation loss for a predefined number of epochs. Each time the validation loss improves,
the copy of model parameters is stored. After training the algorithm terminates, and those
parameters are used instead of the last parameters.
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Table 4. Parameters used to train the model for water quality monitoring.

Parameter
Dataset

Size
ANN

Architecture
Input Epoch Optimizer Loss Min Max

chl-a 3450 9-20-15-20-6-1 B, G, G/B, R/B2, G/SWIR 438 RMSprop MSE 0 45

DO 11,585 128-32-8-1
SWIR2, NDWI, NDTU, GSWIR,

NIR/R, R/G, R/(B + NIR), R-NIR,
B-NIR

684 Adam MSE 0.2 23.8

TSS 11,078 128-32-16-8-1 B, G, R, NDTU, G/SWIR, G/R,
R/G, I2, R-NIR, B*R, G*R 1500 Adam MSE 0.1 260

TN 12,307 128-32-8-1
B, G, NIR, SWIR, B/R, G/SWIR,
G/R, R/G, (NIR + R)/G, (B + R +
NIR)/G, R-NIR, R + NIR, B-NIR

1043 Adam MSE 0.0008 8.96

TP 12,164 128-32-8-1 NIR, G/SWIR, R-NIR 310 Adam MSE 0.0008 3.0

The training of the networks was conducted using the publicly available cloud plat-
form Collaboratory (Google Colab), which is based on Jupyter Notebooks. The parameters
used in the model training are presented in Table 4.

3. Results

The selection of optimal band combination for each WQP was performed (Table 4)
allowing for the development of the high-accuracy model. The back-propagated ANN
algorithms were proven to be very efficient in monitoring and estimating concentrations
of different WQP, for both optically and non-optically active parameters, with highly
acceptable results. In general, very positive results were obtained for all WQP and, as
shown in Figure 4, coefficients of determination (R2) vary between 0.91 and 0.99 at the
validation phase. Since the R2 > 0.9, the developed models provided an excellent prediction
for all WQPs.

 
Figure 4. Graphical fit of predicted results in validation phase (a) chl-a, (b) DO, (c) TSS, (d) TN and
(e) TP.
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The results of the accuracy assessment are presented in Table 5. As expected, the
highest accuracy and lowest NRMSE were obtained for the optically active WQP, i.e., chl-a
and TSS (0.79% and 0.72%, respectively).

Table 5. Accuracy assessment of WQP monitoring using back-propagated ANN algorithms.

Parameter
Training Validation RMSE NRMSE [%]

MAE MSE MAE MSE

chl-a [μg/L] 0.065 0.023 0.083 0.070 0.34 0.79
DO [mg/L] 0.040 0.008 0.052 0.024 0.35 0.93
TSS [mg/L] 0.951 6.566 1.049 13.749 1.89 0.72
TN [mg/L] 0.084 0.040 0.065 0.020 0.14 1.61
TP [mg/L] 0.015 0.003 0.015 0.0024 0.04 1.38

The results of the independent validation of the developed model are presented in
Table 6, which showed that the models developed for TSS and TN provided accurate
classification for all months, while DO reached the lowest values (the water body status
matched only in 37.5% of the cases).

Table 6. Comparison between estimated and measured concentrations of TSS, DO, TN for the
Zemun monitoring station in 2020 where M—results of in-situ measurement, P—results of prediction,
(C)—water body status based on Table 3. The data for January, February, November and December
have been omitted since there were no RS data collected for that period. I–IV are water body
status classes.

Month Date
TSS DO TN TP

M (C) P (C) M (C) P (C) M (C) P (C) M (C) P (C)

March
8 4.4 (I) 7.5 (II) 1.9 (II) 0.051 (II)

18 6 (I) 11.4 (I) 1.5 (II) 0.111 (II)

April 15 17 (I) 10.8 (I) 1.5 (II) 0.057 (II)
25 17.6 (I) 15 (I) 1.6 (II) 0.046 (I)

May 11 18.8 (I) 14.6 (I) 1.8 (II) 0.038 (I)
20 9 (I) 9.6 (I) 1.1 (II) 0.031 (I)

June

3 15.8 (I) 8.6 (I) 1.9 (II) 0.092 (II)
12 18.9 (I) 8.9 (I) 1.1 (II) 0.290 (II)
17 20 (I) 7.7 (II) 1 (II) 0.246 (II)
19 21 (I) 12 (I) 1.3 (II) 0.300 (II)
28 17.9 (I) 13.8 (I) 1.1 (II) 0.310 (III)

July
14 5.6 (I) 7.9 (II) 1.8 (II) 0.320 (III)
15 4 (I) 6.5 (III) 1.5 (II) 0.235 (II)
31 3.57 (I) 9.8 (I) 1.9 (II) 0.279 (II)

August
15 17.5 (I) 7.3 (II) 1.9 (II) 0.450 (IV)
19 7 (I) 6.2 (III) 1.5 (II) 0.456 (IV)
22 11.8 (I) 9.5 (I) 1.6 (II) 0.500 (IV)

September 9 14.4 (I) 13.2 (I) 1.6 (II) 0.076 (II)
16 8 (I) 7.7 (II) 1.2 (II) 0.18 (II)

October
3 15.1 (I) 16.9 (I) 1.9 (II) 0.064 (II)

21 16 (I) 9.5 (I) 1.4 (II) 0.166 (II)
25 15.5 (I) 15.1 (I) 1.4 (II) 0.054 (II)

4. Discussion

4.1. Proposed Model for WQP Monitoring

Aquatic environments have been impacted by various pressures that affect their status
and increase water stress. To move towards a more sustainable use of water resources, an
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appropriate water quality monitoring program needs to be established. In this study, a
38-year long time-series of Landsat and in-situ data were used for the monitoring of WQP
based on back-propagated ANN.

As expected, the results of the correlation analysis showed that the highest correlation
between remote sensing data and WQP was obtained for TSS. TSS had a significant positive
correlation with visible bands and G*R, B*R, and R + NIR while a negative correlation was
noticed for G/SWIR. The strong correlation between TSS and visible bands and G*B and
B*R was also reported in [20] since higher concentrations of TSS increase water leaving
radiance across the whole visible spectrum. Additionally, Refs. [10,60], and others have
demonstrated that the R band is suitable for monitoring TSS. Similarly, the highest positive
correlation was obtained between chl-a and the green band and the G/B ratio, while the
G/SWIR ratio showed a strong negative correlation. The high correlation between chl-
a and G bands is consistent with previous studies since water with an increased chl-a
concentration reflects a high amount of G radiation [9,61]. DO had a positive correlation
with SWIR2, NIR/R and R-NIR while a significant negative correlation was noticed for
G/SWIR, R/(B + NIR), and NDWI. The TN and TP had a positive correlation with G, NIR
and the R + NIR and NIR band, respectively, while a negative correlation was noticed
between TN and NDWI and G/SWIR for TP. The highest correlation between TN and TP
and NIR and G band was also reported by [25,62].

According to the results, the highest accuracy (R2, NRMSE [%]) was obtained for chl-a
and TSS (Table 5). This is expected since those are optically active water parameters. For
chl-a, the accuracy attained in this paper (R2: 0.99, NRMSE: 0.79%) was higher than the ones
reported in previous studies. Barraza-Moraga et al. [62] achieved an NRMSE of 3.6% (R2:
0.97, RMSE: 2.58) using Sentinel 2 images to develop an MLE model for chl-a monitoring,
while [63] used UAV images and MLR resulting in a R2 of 0.91 and RMSE of 0.07. Along
the same lines, Ref. [64] used UAV images to build a CNN model and obtained an R2 of
0.79 (RMSE: 8.76), while [65] used Sentinel 2 images and Ada boost regression resulting in
a R2 of 0.90 (RMSE: 1.48). Hafeez et al. [20] used ANN achieving an NRMSE of 5.1% (R2:
0.87, RMSE: 1.4) while [66] reached an R2 of 0.88 using CNN and Sentinel 2 and Geo-Fan 2.

Also, the model developed for monitoring the TSS achieved a high accuracy (R2: 0.99,
RMSE: 1.89, NRMSE: 0.72%), larger than the values reported by [65] using Sentinel-2 and
RF (R2: 0.6, RMSE: 2.97), and more accurate than the models developed by [20] and [17]
using Landsat images and NN, which yielded an R2 of 0.89 (RMSE: 2, NRMSE: 6.2%) and a
R2 of 0.93 (RMSE: 0.99, NRMSE: 2.2%), respectively.

Similar results were also obtained for DO, TN and TP (Table 5), with higher accuracies
than the ones obtained by [20] to monitor TN using Landsat 8 and a stepwise regression
function (R2: 0.61), The same author, when using the RF algorithm, increased the accuracy
of R2 to 0.88 [64] and of R2 to 0.94 when using NN [25]. Refs. [22,67] used NN, reaching
accuracies of R2 of 0.95 and 0.86, respectively. Lower accuracies were achieved by [22] by
using NN to model TN (R2: 0.64, RMSE: 0.04), similar to [56], who used partial least square
regression on Landsat 8 and Sentinel 2 data achieving an R2 of 0.63 and 0.77, respectively.

For DO, the accuracies obtained in this study were also higher than the ones obtained
by [17,24,68] using NN, or [65], who obtained an R2 of 0.74 by using an Ada boost regression
and Sentinel 2 images.

The results in Table 5 showed that NN, as a nonlinear approximation method, provided
more accurate results for WQP monitoring. However, the training of NN models requires a
large training dataset, otherwise, they may lead to overfitting or underfitting, which greatly
limits the extraction of general rules and the generalization ability of the model [69]. Taking
into account that most of the previously analyzed papers used small training data sets,
such as 125 [22], 60 [25], 155 [64], and 92 [66] samples, it was expected that the proposed
method would have a higher accuracy. In addition, the selection of optimal input data as
well as the usage of the large time series covering a wide variety of conditions and an early
stopping function [70] to avoid overfitting probably had an impact on the increase in the
model accuracy.
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Regarding the independent validation of the developed model which is shown in
(Table 6), although there is no exact coincidence between the date of measurement and
estimated concentration, the lowest accuracy was obtained for DO since the water body
status matched only in 37.5% of the cases. This can be explained by the high variation
of the DO concentration especially in summer months. The results show that the DO
concentration can decrease from class I to III within one day [71]. The waterbody status
for TP was accurately classified at 75%. However, it was noticed that the developed model
tended to overestimate TP during increased concentration. The models developed for TSS
and TN provided an accurate classification for all the months. It should be taken into
account that the exclusion of monitoring stations located on small inland water bodies
and groundwater due to remote sensing-based monitoring limitations might limit the
comprehensive coverage of water quality assessments. This exclusion could introduce
potential biases in the model’s training dataset, affecting its adaptability to diverse water
body sizes and types.

4.2. Usability of the Developed Model in a Real-Case Scenario: Dobrodol Water Reservoir

The developed models and satellite imagery pixel values for larger water bodies in
the Republic of Serbia were used to estimate the WQP concentration., since for water
management, the classification of water status is necessary. Based on the estimated WQP
concentrations and water quality standards for surface water classify each water-quality
parameter into five classes indicating water status from “Excellent” to “Bad”.

The change in water body status during 2020 for the Dobrodol water reservoir is
presented in Figure 5. It shows that areas close to shorelines with point and diffuse
pollution arising from human activity have relatively poor water quality compared to the
deeper areas. Generally, the water status of the Dobrodol water body during 2020 could be
classified as good, mostly due to the higher concentration of TN. This was expected due to
nutrient-rich agriculture discharging from the surrounding land [69]. The visual inspection
shows that the chl-a concentration was the highest at the banks and that it decreased when
you moved toward the center of the water reservoir, which is in line with either the physical
process of sedimentation or algae encroachment [70]. The higher concentration of chl-a
was noted during summer. The increase in the growth of algae accelerated the escape of
oxygen from the water column, which resulted in an increase of chl-a and a reduction in
DO content and the ecological health and balance in the aquatic environment [71,72].
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Figure 5. Water body status classification and spatial variation of WQP for the Dobrodol water body.

5. Conclusions

The study successfully established a robust water quality monitoring program using a
38-year time series of Landsat and in-situ data, coupled with a back-propagated Artificial
Neural Network (ANN) model. This model demonstrated high accuracy in monitoring
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various water quality parameters (WQP), showcasing its potential for sustainable water
resource management.

The correlation analysis revealed strong associations between remote sensing data and
specific WQPs, such as Total Suspended Solids (TSS), chlorophyll-a (chl-a), Dissolved Oxy-
gen (DO), Total Nitrogen (TN), and Total Phosphorus (TP). Optimal band combinations for
each parameter were identified, providing valuable insights into the spectral relationships
aiding accurate WQP estimation.

The ANN-based model exhibited exceptional accuracy, particularly for optically active
parameters like chl-a and TSS, surpassing results from previous studies that used different
remote sensing techniques. This underscores the superiority of the developed model in
achieving high precision in WQP estimations, surpassing various existing methods and
algorithms.

The study highlighted the efficacy of Neural Networks as a nonlinear approximation
method for WQP monitoring. It outperformed other techniques but emphasized the
necessity for substantial training datasets to avoid overfitting or underfitting. Optimal
input data selection and the use of extensive time series data contributed significantly to
model accuracy enhancement.

The independent validation of the developed model revealed a strong ability to classify
WQP concentrations accurately. Notably, while the models for TSS and TN provided
consistent and accurate classifications, DO estimation faced challenges, especially during
high variation periods. This underscores the complexity of DO dynamics in water bodies,
particularly during seasonal shifts.

Regarding further research, exploring the integration of additional data sources, such
as high-resolution imagery or meteorological data, could further refine the model’s accuracy.
Incorporating these data could potentially improve predictions by capturing more intricate
environmental parameters that contribute to water quality dynamics. This would contribute
to advancing the understanding of the model’s robustness and applicability in different
environmental contexts, potentially improving its performance and expanding its utility
for broader water quality monitoring and management objectives. Aligning when the
sampling data are obtained with satellite overpasses would also be recommended in order
to increase the accuracy of the models.

Addressing these weaknesses could potentially strengthen the paper’s findings by
providing a more comprehensive assessment of the model’s performance in real scenarios
and expanding its applicability across various water body sizes and types.
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Abstract: Lakes play a crucial role in the global biogeochemical cycles through the transport, storage,
and transformation of different biogeochemical compounds. Their regulatory service appears to be
disproportionately important relative to their small areal extent, necessitating continuous monitoring.
This study leverages the potential of optical remote sensing sensors, specifically Sentinel-2 Multi-
spectral Imagery (MSI), to monitor and predict water quality parameters in lakes. Optically active
parameters, such as chlorophyll a (CHL), total suspended matter (TSM), and colored dissolved matter
(CDOM), can be directly detected using optical remote sensing sensors. However, the challenge lies in
detecting non-optically active substances, which lack direct spectral characteristics. The capabilities of
artificial intelligence applications can be used in the identification of optically non-active compounds
from remote sensing data. This study aims to employ a machine learning approach (combining
the Genetic Algorithm (GA) and Extreme Gradient Boost (XGBoost)) and in situ and Sentinel-2
Multispectral Imagery data to construct inversion models for 16 physical and biogeochemical water
quality parameters including CHL, CDOM, TSM, total nitrogen (TN), total phosphorus (TP), phos-
phate (PO4), sulphate, ammonium nitrogen, 5-day biochemical oxygen demand (BOD5), chemical
oxygen demand (COD), and the biomasses of phytoplankton and cyanobacteria, pH, dissolved oxy-
gen (O2), water temperature (WT) and transparency (SD). GA_XGBoost exhibited strong predictive
capabilities and it was able to accurately predict 10 biogeochemical and 2 physical water quality
parameters. Additionally, this study provides a practical demonstration of the developed inversion
models, illustrating their applicability in estimating various water quality parameters simultaneously
across multiple lakes on five different dates. The study highlights the need for ongoing research and
refinement of machine learning methodologies in environmental monitoring, particularly in remote
sensing applications for water quality assessment. Results emphasize the need for broader temporal
scopes, longer-term datasets, and enhanced model selection strategies to improve the robustness
and generalizability of these models. In general, the outcomes of this study provide the basis for a
better understanding of the role of lakes in the biogeochemical cycle and will allow the formulation
of reliable recommendations for various applications used in the studies of ecology, water quality, the
climate, and the carbon cycle.

Keywords: water quality; lakes; remote sensing; Sentinel-2; artificial intelligence; machine learning;
genetic algorithm; Extreme Gradient Boosting (XGBoost); water monitoring

1. Introduction

There are more than 117 million lakes (>0.002 km2) on Earth [1]. They comprise only
4% of the Earth’s land surface but contain 85% of the global freshwater resource upon
which society relies for drinking, agriculture, fisheries, energy, transport, recreation, and
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tourism [2]. Moreover, lakes offer diverse habitats, support high levels of biodiversity,
provide ecosystem services [3], and play a crucial role in the global biogeochemical cycles
through the transport, storage, and transformation of biogeochemical compounds [4–6].
They contribute to climate regulation and are recognized as valuable sentinels of global
environmental change [7].

The wide ecological, environmental, and socio-economic importance of lakes demands
continuous monitoring of the water quality of lakes. Therefore, the need for improved and
innovative approaches and techniques to obtain the required high-quality information on
biogeochemical and physical water quality parameters is continuously growing. However,
traditional in situ data collection and analysis methods are labor-intensive and often
expensive, leading to only a small fraction of lakes being regularly observed, typically at
a single point, and providing only a snapshot in time [8,9]. It is difficult to detect spatial
or temporal variations in water quality [10]. Remote sensing offers an alternative to these
limitations, but it presents challenges due to the optical complexity of lake water, the lack of
in situ data needed for validation, and the absence of satellite sensors specifically designed
for remote sensing of lakes [11]. The available spatial, temporal, spectral, and radiometric
resolutions of ocean and land surface remote sensors are often not sufficient for remote
sensing of lake water quality [12–17]. The technical issues have been partly improved by the
European Space Agency (ESA) with the launch of Multispectral Instruments (MSI) on board
of Sentinel-2A and of Sentinel-2B. Although it was originally designed for land monitoring,
Sentinel-2 MSI has proven suitable for estimating lake water quality [16,18–21]. Sentinel-2
MSI has a revisit time of two to five days and an acceptable radiometric resolution, and
it allows data acquisition at 10 m, 20 m, and 60 m spatial resolutions. These capabilities
enable the assessment of an unprecedented number of lakes on a global scale.

Water quality can be estimated based on different biogeochemical and physical pa-
rameters of the water. The optically active parameters of water, such as colored dissolved
organic matter (CDOM), total suspended matter (TSM), and chlorophyll-a (CHL), can be di-
rectly detected using the optical remote sensing sensors, making them the most commonly
used parameters in remote sensing studies and monitoring programs [22–28]. There are
also some physical parameters of water, such as transparency (e.g., Secchi disk depth, SD)
and water surface temperature (WT), that can be estimated directly from remote sensing
data and have been widely used in inland water quality studies [29–31].

Estimating non-optically active biogeochemical and physical water quality parame-
ters, such as dissolved organic carbon (DOC), total nitrogen (TN), total phosphorus (TP),
ammonia nitrogen (NH3-N), ortho-phosphate (PO4), biochemical oxygen demand (BOD),
chemical oxygen demand (COD), dissolved oxygen (O2), etc., that have no direct spectral
characteristics, is much more challenging with optical remote sensing. However, the rela-
tionships between optically non-active and optically active lake water quality parameters
allow the optical determination of non-active substances indirectly from remote sensing
data [16,32–61]. While the estimation of optically non-active parameters in water, which
lack direct optical signatures and spectral characteristics, has been limited historically,
pioneering studies trace back to the 1990s [14,62]. However, advancements in space science
and increased computing capacity have fueled a notable and rapidly growing trend in esti-
mating optically non-active water quality parameters through remote sensing [55,58,63,64].

Remote sensing-based water quality retrieval methods can be categorized into empiri-
cal, semi-empirical, analytical (physical), and semi-analytical methods [65–68]. Empirical
techniques focus on statistical relationships between spectral bands or band combinations
and observed water parameters, without considering the spectral characteristics of the wa-
ter components or providing a physical justification for the association [69]. Semi-empirical
approaches generate algorithms based on physical and spectral information, which are
connected to the optical properties of the observed components [65,66,68]. Analytical
methods use inherent and apparent optical properties to predict the reflectance of surface
water and calculate the concentrations of water constituents, while semi-analytical methods
employ simplified analytical models [70].
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Empirical and semi-empirical approaches are usually restricted to a given location and
time of calibration and they often have poor inversion precision and weak generalization
in retrieving water quality parameters in optically complex waters with nonlinear rela-
tionships between the concentrations and optical signatures [71,72]. Machine learning, an
application of artificial intelligence, can detect both linear and nonlinear interactions and
improves the identification of complex relationships between independent and dependent
variables through the model itself [72,73]. Different types of machine learning approaches,
such as supervised (e.g., Decision Tree, Random Forest, Support Vector Machines, Extreme
Gradient Boosting), unsupervised (e.g., K-Means Clustering), and reinforcement learning
(e.g., Principal Component Analysis), have been used in previous studies of water quality
remote sensing [55,72,74–76]. While machine learning does pose challenges, such as com-
plex model parameters, broad generalizability, overfitting, and difficulty finding the best
parameter combination through self-regulation [72,77], it is worth noting the positive as-
pects. For example, Extreme Gradient Boosting (XGBoost), which is known for its ensemble
learning capabilities, offers distinct advantages such as the effective handling of complex
relationships within the data, robustness against overfitting, and optimal performance even
with limited samples [72,78]. The decision to utilize XGBoost is underpinned by its track
record as one of the most successful machine learning techniques across various domains
in recent years [79–84]. Notably, while widely acknowledged in broader applications,
its potential in limnology, specifically in the realm of remote sensing of lakes, has been
underexplored. The numerous tuning parameters in XGBoost significantly impact the
model accuracy and performance, posing a challenge in manually tuning global param-
eters to achieve optimal results [72]. In addressing this, the Genetic Algorithm (GA), a
search-based optimization method, has demonstrated success in optimizing parameter
settings for machine learning models in various studies [72,85,86]. Together, XGBoost and
GA form a synergistic pairing, well-suited to meet the challenges related to the remote
sensing applications in lakes.

Considering all the above, this study aims to (1) use the GA_XGBoost machine learning
algorithm along with in situ and Sentinel-2 MSI data to construct inversion models of 14 bio-
geochemical (TN, TP, PO4, sulfate (SO4), ammonium nitrogen (NH4N), 5 days BOD (BOD5),
COD, CHL, CDOM, TSM, biomass of phytoplankton (FPBM), biomass of cyanobacteria
(CYBM), pH, O2) and two physical (WT, SD) lake water quality parameters; and (2) provide
a practical demonstration of the developed inversion models, illustrating their applicability
in estimating various water quality parameters simultaneously across multiple lakes on five
different dates. The results of this study will provide the basis for a better understanding
of the role of lakes in the biogeochemical cycle and will facilitate reliable recommendations
for various applications in the studies of ecology, water quality, the climate, and the carbon
cycle. Additionally, the results will lead to the possibility to improve the cost-efficiency of
lake monitoring and facilitate making detailed recommendations for decision-makers.

2. Materials and Methods

2.1. Study Sites

Biogeochemical and physical water quality parameters used as input data for the
GA_XGBoost model in the current study were collected from the surface layer (0.5 m) of
45 Estonian lakes (Figure 1) from April to September in the years 2015 to 2020.

The surface areas of the in situ studied lakes are between 0.07 km2 to 27.4 km2 and the
mean and the maximum depths vary from 0.3 m to 12 m, and from 1 m to 38 m, accordingly.
These 45 lakes represent five different lake classes [87]: oligotrophic (3 lakes), mesotrophic
(10 lakes), eutrophic/hypertrophic (25 lakes), semidystrophic/dystrophic (6 lakes), and
acidotrophic (1 lake). Both soft-water and hard-water lakes were represented (see detailed
information and sampling dates in Appendix A, Table A1). All lakes are included in the
state monitoring program of Estonia and were sampled one to ten times during the study
period. Data were collected by the Institute of Environmental and Agricultural Sciences of
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the Estonian University of Life Sciences and provided by the Environmental Monitoring
Database (KESE) of the Estonian Environment Agency.

Figure 1. Study area, 45 lakes of the input data for the GA_XGBoost model (Lakes (In situ), blue dots);
and 180 Estonian lakes (>0.1 km2), whose biogeochemical and physical water quality parameters
were retrieved using the GA_XGBoost models and Sentinel-2 data (Lakes (Sentinel-2), red dots).

Based on the validated GA_XGBoost models, the biogeochemical and physical water
quality parameters of 180 Estonian lakes with size >0.1 km2 (Figure 1) were retrieved
from Sentinel-2 images on five different dates (19 April 2021; 10 May 2018; 18 June 2021;
18 July 2020; 17 August 2020) to demonstrate the implementation of the developed models.
Although there are 354 lakes in Estonia that are larger than 0.1 km2, only 180 of them were
cloudless on all five dates. An Analysis of Variance (ANOVA) test was used to analyze
the differences among means of water quality parameters on different dates. Additionally,
the Tukey’s Honest Significant Difference test (Tukey’s HSD), a post-hoc test based on the
studentized range distribution, was employed to assess whether the biogeochemical and
physical parameters on five different dates exhibited significant differences from each other.

2.2. Biogeochemical and Physical Water Quality Parameters

Most of the biogeochemical and physical parameters covered by the current study are
optically non-active (13 parameters), while 3 parameters are optically active (Table 1).

The statistical information of the biogeochemical and physical water quality param-
eters of study lakes is summarized in the Table 2. Since the lakes with different trophic
levels and different alkalinity from six different months were included in the study, a large
variability of in situ data was expected. TP, PO4, NH4N, CHL, and CDOM showed the
highest variability. Nevertheless, the skewness (showing the asymmetry of distribution)
and kurtosis (showing whether the data are heavy-tailed or light-tailed relative to a normal
distribution) values of in situ datasets remained mostly in the acceptable range (skewness
was between −2 and 2 and kurtosis was between −7 and 7). However, some studied
parameters were highly skewed, for example, TP, which followed log-normal distribution.
In general, machine learning models (e.g., XGBoost) do not assume any normality and they
also work well with non-normally distributed data. Despite this, log-transformed data
were used in the case of highly skewed TP. In addition, CHL is known to be log-normally
distributed, so log-transformed values are often used. Therefore, log-transformed data
were also used for CHL in the current study.
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Table 1. Biogeochemical and physical parameters covered by the current study, their abbreviations,
measurement units, and reference to measurement methodologies. Optically active parameters
are underlined.

Parameter Abbreviation Unit Reference/Standard

Total nitrogen TN mgN/L ISO, 2003 [88]
Total phosphorus TP mgP/L ISO, 2018 [89]
Phosphate PO4 mg/L ISO, 2004 [90]
Sulfate SO4 mg/L ISO, 2007 [91]
Ammonium nitrogen NH4N mg/L ISO, 1984 [92]
5-day biochemical oxygen demand BOD5 mgO2/L ISO, 2019 [93]
Dichromatic chemical oxygen demand COD mgO2/L ISO, 2004 [94]
Biomass of phytoplankton FPBM mg/L ISO, 1992 [95]
Biomass of cyanobacteria CYBM mg/L ISO, 1992 [95]
pH pH ISO, 2012a [96]
Dissolved oxygen O2 mg/L ISO, 2012b [97]
Water temperature WT ◦C [98]
Secchi disk depth SD m [99]
Chlorophyll a CHL μg/L ISO, 1992 [95]
Colored dissolved organic matter CDOM mg/L [98]
Total suspended matter TSM mg/L [98]

Table 2. Means (mean), standard deviations (std), minimum (min) and maximum (max) values,
25th percentile, 50th percentile, 75th percentile, Kurtosis, and Skewness of biogeochemical and
physical water quality parameters of study lakes (2015–2020). The names and units of the parameters
are available in Table 1. Count shows the number of samples as well as the matchups with Sentinel-2
MSI data.

Count Mean Std Min 25% 50% 75% Max Skewness Kurtosis

TN 102 0.90 0.61 0.15 0.51 0.73 1.10 3.90 2.23 6.77
TP 102 0.06 0.19 0.01 0.02 0.03 0.05 1.60 7.02 50.4
PO4 99 0.008 0.007 0.002 0.003 0.006 0.01 0.05 2.90 10.4
SO4 100 7.70 7.28 0.10 1.70 4.65 12.0 31.0 1.13 0.58
NH4N 102 0.023 0.021 0.01 0.01 0.02 0.024 0.14 3.57 15.9
BOD5 102 2.15 1.39 0.70 1.30 1.70 2.68 7.50 1.77 3.45
COD 87 42.1 29.2 15.0 23.0 36.0 48.0 160 1.99 4.20
CHL 102 13.6 14.9 1.00 3.45 8.30 17.5 100 2.60 10.4
CDOM 102 10.9 15.9 0.85 3.10 5.55 10.8 81.0 3.22 10.7
TSM 38 156 95.9 8.23 99.1 154 223 371 0.24 −0.6
FPBM 80 4.73 5.40 0.16 0.76 2.60 6.78 21.7 1.36 0.82
CYBM 58 1.81 3.24 0.00 0.03 0.33 2.05 13.0 2.22 4.29
PH 83 7.98 1.07 3.65 7.85 8.21 8.53 9.40 −2.16 5.05
O2 84 8.62 2.42 2.63 7.21 8.80 10.1 15.6 −0.06 0.41
WT 85 17.1 5.08 5.20 13.7 18.0 20.6 26.9 −0.40 −0.35
SD 98 1.88 1.24 0.25 0.70 1.75 2.60 5.00 0.67 −0.37

2.3. Satellite Data

Copernicus Sentinel-2A and -2B MSI data were used to retrieve the biogeochemical
and physical water quality parameters of lakes. The Sentinel-2 MSI is available in 13 spec-
tral bands with different spatial resolutions. Band 1 to Band 8a were used in the current
study. The spatial resolution of Band 2 (B2; central wavelength, CWL = 492.1 nm), Band
3 (B3; CWL = 559 nm), and Band 4 (B4; CWL = 665 nm) is 10 m. The spatial resolution of
Band 5 (B5; CWL = 703.8 nm), Band 6 (B6; CWL = 739.1 nm), Band 7 (B7; CWL = 779.7 nm),
and Band 8A (B8A; CWL = 864.80 nm) is 20 m. The spatial resolution of Band 1 (B1;
CWL = 442.30 nm) is 60 m. Prior to the processing, all the Sentinel-2 images were resam-
pled to 20 m spatial resolution. Sentinel-2 Level-1 data were processed using the ESTHub
Processing Platform—Portal for Earth observation data processing (EstHub) provided by
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Land Board of Estonia and the Sentinel Application Platform (SNAP 8.0) and developed by
Brockmann Consult (Hamburg, Germany), SkyWatch (Kitchener, UK), and C-S, Le Plessis
Robinson (France). For atmospheric correction, Case 2 Regional CoastColour processor
with C2X (v1.5.) neuronal nets [100] for S2 MSI (C2X) and the multisensor pixel identifi-
cation tool (IdePix) were used. C2X was deliberately chosen for atmospheric correction
due to its demonstrated effectiveness in previous studies, particularly in lakes with diverse
optical properties within the same geographical region as in the present study [21,101].
To remove low quality or invalid pixels, following flags were used: IDEPIX_CLOUD,
IDEPIX_CLOUD_AMBIGUOUS, IDEPIX_CLOUD_SURE, IDEPIX_CLOUD_BUFFER, IDE-
PIX_CLOUD_SHADOW, IDEPIX_COASTLINE, IDEPIX_LAND, IDEPIX_CIRRUS_SURE,
IDEPIX_CIRRUS_AMBIGUOUS, IDEPIX_POTENTIAL_SHADOW, and IDEPIX_CLUSTE
RED_CLOUD_SHADOW.

The match-ups were extracted as the means of 3 × 3 pixels centered in the in situ
sampling point. If the in situ sampling point was located too close to shoreline, the pixels
of the center of the lake were extracted to minimize the adjacency effect. Match-ups were
selected with up to 2 days difference between the Sentinel-2 image acquisition and the
in situ measurement date. In this study, we obtained one (19 lakes), two (11 lakes), three
(6 lakes), four (2 lakes), or 5–10 (6 lakes) matchups with Sentinel-2 data from April to
September 2015–2020 (Appendix A, Table A1). The exact number of match-ups for each
biogeochemical and physical water quality parameter is seen in Table 2.

2.4. Retrieval of Biogeochemical and Physical Water Quality Parameters

Fifteen different formulae based on 2- or 3-band or band ratios were used (Table 3).
Every formula was tested with different band combinations.

Table 3. The basic formulae used in this study. B notes the atmospherically corrected angular
dependent water-leaving reflectance and index a, b, or c denotes different Sentinel-2 bands (8 bands
in different options).

Formula

1. Ba + Bb
2. Ba − Bb
3. Ba/Bb
4. Ba * Bb

5. Ba + Bb + Bc
6. Ba + Bb * Bc

7. (Ba + Bb) * Bc
8. (Ba − Bb) * Bc
9. (Ba + Bb)/Bc
10. Ba * Bb/Bc

11. (Ba − Bb)/(Ba + Bb)
12. (Ba/Bb) * (Ba/Bb)
13. Ba/Bb − Ba/Bc

14. Ba − (Bb + Bc)/2
15. Ba/(Bb + Bc)

A total of 3034 unique band combinations was generated. For each biogeochemical
and physical water quality parameter, we initially employed all the input variables (single
bands and band combinations), and then selected the best top ten inputs, and ultimately
determined the optimal input combination within the top ten inputs range using a filter-
based feature selection method. Subsequently, these selected combinations were employed
in the GA_XGBoost model, and the best combinations for each parameter were determined
based on model performance.

2.5. Extreme Gradient Boosting Model and Genetic Algorithm

The XGBoost modelling procedure starts with continuous iteration, when the tree
will be added in each iteration to fit the residuals from the last fit, finally forming a robust
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estimator that integrates many tree models, thereby improving the model effect [72]. The
predicted value in the gradient lifting regression tree is the weighted sum of the prediction
results for all weak classifiers [72]. For XGBoost, each leaf node of a tree has a prediction
score, i.e., the leaf weight, which is the regression value of all samples on that leaf node in
that tree, and the sum of the leaf weights on all weak classifiers is the predicted value [72].
A more detailed description of XGBoost model can be found in [78].

GA was added to the XGBoost to optimize the tuning parameter selection process of
the model (the model is continuously iterated until the optimal solution is reached). The
GA_XGBoost algorithm successfully combines the advantages of small sample regression
of XGBoost, controlling model complexity, and reducing model overfitting [72].

The parameter tuning of GA_XGBoost included the following (XGBoost Tutorials—xgboost
1.0.0-SNAPSHOT documentation [102]):

(1) General parameters selection: Related to which booster to use for boosting. Gbtree
booster that uses a tree-based model was selected;

(2) Booster parameters:

• Step size shrinkage used in the update to avoid overfitting (learning_rate).
Range 0–1.

• Maximum depth of a tree (max_depth). The higher the value the more complex
the model and the probability of overfitting is higher. Range 0–∞.

• Minimum sum of instance weight (hessian) required in a child (min_child_weight).
The larger min_child_weight is, the more conservative the algorithm. Range 0–∞.

• Subsample ratio of training instances (subsample). Setting it to 0.5 means that XG-
Boost will randomly sample half of the training data before trees grow, preventing
overfitting. Subsampling occurs once in each boosting iteration. Range 0–1.

• The subsample ratio of columns when building each tree (colsample_bytree).
Subsampling is performed once for each tree constructed. Range 0–1.

(3) Learning task parameters: specify the learning task and the consistent learning objec-
tive. Objective reg:squarederror (regression with squared loss) was applied.

Train/test/validation split was made prior to implementing the GA_XGBoost using
60% of the data for training, 20% of the data for validation, and 20% of the data for
testing. The number of samples in each split varied by parameter because the initial set of
samples was not the same per parameter. The training dataset was used for training the
GA_XGBoost algorithm, while the test dataset was used for helping to adjust GA_XGBoost
parameters to control the precision. The validation dataset was completely independent
from the one that was used for testing the performance of the developed GA_XGBoost
algorithm. The training, testing, and validation processes of the GA_XGBoost model were
applied using the Scikit-learn Python modules and XGBoost Python package in Python 3.9.

2.6. Accuracy Evaluation

The ranking system based on different statistical metrics was used to find the best
model for retrieval of the biogeochemical and physical water quality parameters from
satellite data. A statistical metric, the coefficient of determination (R2), was scaled from
0 (minimum value) to 1 (maximum value) and a p-value < 0.001 was given 1, a p-value
between 0.001 and 0.05 was given 0.5, and a p-value >0.05 was given 0. The root-mean-
squared error (RMSE) and mean absolute percentage error (MAPE) were scaled from
0 (maximum value) to 1 (minimum value). Finally, all four values were summed and the
model with the highest score was nominated as the best model for retrieval. Scikit-learn
metrics module (sklearn.metrics, [103]) in Python 3.9 was used to calculate R2, RMSE, and
MAPE. R2 denotes the squared correlation between the measured and predicted values.

With R2, a p-value was calculated. RMSE denotes the mean difference between the
measured and predicted values. RMSE is calculated using Equation (1).

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (1)
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where ŷi is the predicted value, yi is the measured value, and n is the number of measure-
ments. MAPE denotes the mean absolute percentage error from the measured value and the
predicted values divided by the measured value. MAPE is calculated using Equation (2).

MAPE =
100%

n ∑n
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2)

where ŷi is the predicted value, yi is the measured value, and n is the number of measurements.

3. Results

3.1. Correlations between Optically Active and Optically Non-Active Parameters

Almost all the optically non-active parameters covered by the current study showed a
statistically significant correlation (p-value < 0.05) with at least one of the optically active
parameters (Figure 2). There were statistically significant positive correlations between
CHL and TN, TP, BOD5, COD, FPBM, and CYBM. The same optically non-active water
quality parameters gave negative correlations with SD. CDOM was positively correlated
with TN, TP, PO4, NH4N, and COD, and was negatively correlated with pH. TSM showed
positive correlations with SO4 and pH, and negative correlations with TP, PO4, and COD.
O2 was the only parameter that did not show a statistically significant correlation with
any optically active parameters. However, O2 was correlated with pH and BOD5, which
correlated strongly with CDOM and CHL, respectively (Figure 2).

Figure 2. Heatmap of Pearson correlations between biogeochemical and physical water quality
parameters. Statistically significant correlations (p-value < 0.05) are colored either red (positive) or
blue (negative), while correlations that were not significant (p > 0.05) are marked as grey.

Given that various optically active substances exert an influence on different segments
of the reflectance spectrum, the approach to non-optical substances involves seeking connec-
tions with the spectral regions affected by the correlated optical substances. Simultaneously,
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non-active substances are often associated with multiple optically active parameters. There-
fore, our approach involved a thorough examination across various spectral bands to
elucidate the rationale behind retrieving non-optically active parameter values through
remote sensing methods.

3.2. Reflectance Spectra of Sentinel-2 MSI

The spectral characteristics of optically active substances varied among lakes with
different trophic statuses, reflecting differences in their concentration and composition
(Figure 3). Commonly, the mean reflectance spectra of oligotrophic lakes showed high
values at shorter wavelengths and low values in the red part of the spectra. The mean
reflectance spectra of mesotrophic and eutrophic lakes with turbid and productive waters
showed typical peaks around 560 and 700–710 nm. The peak near 700–710 nm indicated a
very high biomass in the water. Acidotrophic and dystrophic lakes were brown in color
and were found mainly in forest and peatland areas. Their typical reflectance spectra
were very similar and are combined into one class in Figure 3. In lakes with brown
water, the water-leaving signal is usually very low in most parts of the spectrum due
to a very high concentration of CDOM. However, the reflectance increased towards red
wavelengths as CDOM absorption decreased exponentially with the increasing wavelength.
As mentioned above, C2X was intentionally selected for atmospheric correction based
on its established efficacy in prior studies, specifically in lakes exhibiting diverse optical
properties within the identical geographical region as the current study [21,101], and the
consistency of the reflectance spectra with the expected shapes reaffirms the reliability and
robust performance of C2X, substantiating its effective application in waters characterized
by diverse optical properties.

Figure 3. The mean Sentinel-2 MSI atmospherically corrected reflectance spectra sorted by the trophic
state of study lakes. Sentinel-2 data are derived from each match-up point. Thick lines show the
mean value, and the semitransparent area shows the standard error (±) of the mean.

3.3. GA_XGBoost Model Performance and Evaluation

The best combinations of the two- or three-band or band ratio algorithms that outper-
formed other combinations from a total of 3034 algorithms were used in the GA_XGBoost
model as an input variable (x) to predict one of the water quality parameters (y) (Table 4).
Band 4 (665 nm) was used most frequently in the two or three bands or band ratio al-
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gorithms of the best models, followed by bands 2 (490 nm), 3 (560 nm), 5 (705 nm), and
6 (740 nm). Bands 1 (443 nm), 7 (783 nm) and 8a (865 nm) appeared somewhat less fre-
quently. This was not surprising as the water leaving signal in the blue band (B1) was often
negligible in our lakes due to the high concentration of CDOM and phytoplankton, both
of which absorb blue light strongly. The water-leaving signal in NIR (Bands 7 and 8a) is
usually negligible in aquatic environments due to the very high absorption of light by water
molecules at those wavelengths. However, a very high biomass of phytoplankton (bloom)
or a very high concentration of mineral particles results in non-negligible water reflectance
in NIR [104–106]. The studied lakes usually did not have very high concentrations of
mineral particles, while the high biomass was seen also in the 705 nm (B5) peak in the
reflectance spectra of many lakes.

Table 4. The two- or three-band or band ratio algorithms (selected using filter-based feature selection
method) for deriving biogeochemical and physical water quality parameters (y) from Sentinel-2 MSI
data that were used as input data (x) in the GA_XGBoost model. The full names and units of the
parameters are available in Table 1 and the accuracy indices of the best models are shown in Table 5.

Water Quality
Parameter (y)

x

TP ‘B2 * B6’, ‘(B1 − B5) * B3’, ‘(B7/B3)*(B7/B3)’, ‘B4/B2-B4/B7’, ‘(B7 + B2)/B3’, ‘(B2 − B4)*B6’, ‘(B3 + B5) * B1’
TN ‘B5 − (B4 + B3)/2’, ‘B7/(B2 + B4)’, ‘B7 − (B4 + B8A)/2’, ‘(B4 + B1)/B3’, ‘B1 − (B7 + B5)/2’, ‘(B1 + B8A)/B3’

PO4
‘B2 * B6/B1’, ‘B3 * B6/B2’, ‘B7 * B3/B2’, ‘B2/(B7 + B6)’, ‘B2 − (B6 + B4)/2’, ‘B5 − (B2 + B3)/2’, ‘(B2 − B7) * B4’,
‘(B2 − B6)/(B2 − B6)’, ‘(B2/B6) * (B2/B6)’

NH4
‘B2 − (B3 + B4)/2’, ‘B3 − (B6 + B1)/2’, ‘(B6 − B8A) * B5’, ‘B2/B4 − B2/B6’, ‘B2/B6 − B2/B4’, ‘B4/B8A −
B4/B1’

SO4
‘B3 * B8A/B4’, ‘B4 * B1/B7’, ‘B4/B2 − B4/B1’,’B1/(B7 + B2)’, ‘(B3 + B5)/B1’, ‘(B7 + B2)/B1’, ‘B1 − (B7 + B6)/2’,
‘(B1 − B3) * B5’, ‘(B8A − B7) * B6’

O2 ‘B5 * B2/B3’, ‘(B4 + B8A) * B3’, ‘B5 − (B4 + B8A)/2’, ‘(B1 − B8A) * B6) ‘
pH ‘B2 − B1’, ‘(B6 + B8A)/B7’, ‘B2 − (B1 + B3)/2’, ‘B4 − (B3 + B5)/2’, ‘(B4 − B5) * B3’, ‘B4/B2 − B4/B1’
WT ‘(B1 − B3) * B6’, ‘(B1 − B4) * B6’, ‘(B2 − B3) * B4’

COD ‘B8A * B6/B1’, ‘B7 + B4 * B5’, ‘B7 + B5 * B4’, ‘B4 − (B5 + B8A)/2’, ‘(B5 − B6)/(B5 − B6)’, ‘B1/B3 − B1/B4’,
‘B1/B4 − B1/B3’

BOD5 ‘B4/B5’, ‘(B5 + B6)/B4’, ‘B6 − (B1 + B8A)/2’, ‘(B5/B4) * (B5/B4)’
SD ‘B6 * B5/B4’, ‘(B1 − B2) * B6’, ‘(B2 − B1) * B6’, ‘(B2 − B5) * B6’

FPBM ‘B6 * B2/B1’, ‘B7 + B3 * B2’, ‘(B7 + B6) * B8A’, ‘(B8A + B4) * B6’
CYBM ‘B4 + B3 * B7’, ‘(B5 + B4) * B8A’, ‘(B8A + B4) * B7’
CHL ‘(B2 + B4) * B8A’, ‘(B2/B6) * (B2/B6)’, ‘B4/B1 − B4/B5’

CDOM ‘B2/B5 − B2/B6’, ‘B2/B6 − B2/B4’, ‘B4/B6 − B4/B5’, ‘B6/B7 − B6/B5’, ‘B7/B6 − B7/B5’
TSM ‘B6-B2’, ‘B2-(B6 + B7)/2’, ‘(B3 − B4) * B1’, ‘(B4 − B3) * B1’, ‘(B5 − B4) * B8A’, ‘(B6 − B8A) * B7’

The scatter plots of training, test, and validation datasets produced using the best
GA_XGBoost_model for deriving biogeochemical and physical water quality parameters
from Sentinel-2 are shown in Figure 4. The performance metrics of the best GA_XGBoost
models of different water quality parameters (Table 5) showed that the MAPE and RMSE in-
creased and R2 decreased from the training stage to the testing stage (e.g., TN, SO4, O2, WT,
COD, and SD). The change was generally smaller and rather minor when moving from the
testing phase to the validation phase, with some exceptions (TP, TN, PO4, NH4, and SO4).
Overall, GA_XGBoost models for optically active substances and parameters highly corre-
lated with them (BOD5, FPBM, CYBM) performed significantly better than other models
and showed high accuracy (R2 between 0.79 and 0.92). However, the MAPE exceeded the
acceptable range (>50%) in the case of FPBM, CYBM, SO4, and NH4N. This was in contrast
to TP, TN, PO4, O2, pH, WT, COD and SD, for which models had a somewhat lower R2, but
MAPE remained <50%. The MAPE values for FPBM, CYBM, SO4, and NH4N surpassed
the acceptable range, rendering it challenging to achieve accurate retrievals of the corre-
sponding water quality parameters using these models. Thus, GA_XGBoost was able to
predict 12 biogeochemical and physical water quality parameters with acceptable accuracy
(TN, TP, PO4, BOD5, COD, CHL, CDOM, TSM, pH, O2, WT, SD). These 12 GA_XGBoost
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models were used to retrieve the biogeochemical and physical water quality parameters
of 180 Estonian lakes >0.1 km2 from Sentinel-2 images simultaneously on five different
dates (19 April 2021; 10 May 2018; 18 June 2021; 18 July 2020; 17 August 2020) to provide a
practical demonstration of the developed inversion models.

Table 5. The performance metrics of the best GA_XGBoost model for deriving biogeochemical and
physical water quality parameters from Sentinel-2 data. n shows the number of match-ups between
in situ and Sentinel-2 data; R2-is the coefficient of determination; MAPE is mean absolute percentage
error (%); and RMSE is the root-mean-square error. Accuracy indices (R2, MAPE, RMSE) of the
training, testing and validating phases are shown.

Water Quality
Parameter

Training Testing Validation
Total n n R2 MAPE(%) RMSE n R2 MAPE(%) RMSE n R2 MAPE(%) RMSE

TP 102 60 0.99 0.16 0.00 21 0.90 36.5 0.02 21 0.60 34.4 0.02
TN 102 60 0.99 0.21 0.00 21 0.68 36.0 0.24 21 0.46 32.0 0.32
PO4 99 59 0.99 7.24 0.0005 20 0.87 43.9 0.003 20 0.45 43.8 0.004
NH4 102 60 0.99 3.39 0.0008 21 0.79 75.5 0.02 21 0.68 161 0.19
SO4 100 60 0.99 0.89 0.03 20 0.69 168 3.26 20 0.58 123 5.20
O2 84 50 0.99 1.98 0.21 17 0.62 15.2 1.31 17 0.62 46.1 4.54
pH 83 49 0.99 0.59 0.05 17 0.72 7.02 0.64 17 0.71 7.27 0.67
WT 85 51 0.99 1.37 0.78 17 0.63 14.1 3.08 17 0.58 17.3 3.96

COD 87 51 0.99 0.27 0.17 18 0.49 29.6 12.9 18 0.42 43.9 17.9
BOD5 102 60 0.99 0.03 0.0005 21 0.90 17.8 0.56 21 0.85 30.1 0.66

SD 98 58 0.99 7.70 0.12 20 0.58 37.9 0.86 20 0.57 38.7 0.81
FPBM 80 48 0.99 1.32 0.01 16 0.79 169 2.01 16 0.79 109 2.19
CYBM 58 34 0.99 4.94 0.0008 12 0.85 684 1.64 12 0.88 532 1.81
CHL 102 60 0.96 17.3 3.41 21 0.80 71.5 9.87 21 0.82 48.8 4.78

CDOM 102 60 0.99 0.01 0.001 21 0.94 41.5 3.77 21 0.92 40.7 6.72
TSM 38 22 0.99 0.0007 0.001 8 0.94 20.3 22.3 8 0.83 43.8 32.1

Figure 4. Cont.

178



Remote Sens. 2024, 16, 464

Figure 4. Cont.

179



Remote Sens. 2024, 16, 464

 
Figure 4. Scatter plots of training, test, and validation datasets produced using the best
GA_XGB_model for deriving biogeochemical and physical water quality parameters from Sentinel-2
data along with the ideal model (1:1 line). The figure starts on the previous page.

3.4. A Practical Demonstration of the Developed Inversion Models

To demonstrate the practical utility of the developed models, the GA_XGBoost al-
gorithms were employed to map biogeochemical and physical water quality parameters
across 180 lakes on five distinct dates. We considered it important to choose dates when
as many lakes as possible were cloud-free. Therefore, dates from different years are pre-
sented (Figure 5). However, we tried to ensure that all months from April to August were
represented, regardless of the specific year. Furthermore, the aim was not to examine all
180 lakes in depth, but rather to provide a general demonstration of the developed models’
practical applicability.

In general, statistically significant differences were found between the mean values of bio-
geochemical and physical water quality parameters at different dates (ANOVA, p-value < 0.05).
TP, TN, PO4, CHL, and CDOM were the highest on 19 April 2021 (0.05 mg/L, 0.98 mg/L, 0.011
mg/L, 12.9 μg/L, and 12.4 mg/L, respectively), and decreased in other months (Figure 5).
The mean PO4 was significantly different from other dates on 19 April 2021 (Tukey’s HSD,
p-value < 0.05), and the mean values of CDOM on 19 April 2021 and 10 May 2018 were
significantly different from 18 July 2020 and 17 August 2020 (Tukey’s HSD, p-value < 0.05).
The mean concentrations of TP, TN, TSM, and CHL differed most significantly on all five
dates (Tukey’s HSD, p-value < 0.05). CHL reached its lowest values on 18 June 2021 (mean,
5.97 μg/L), TN and CDOM reached their lowest values on 18 July 2020 (the mean values
were 0.76 mg/L and 8.74 mg/L, respectively), and TP and PO4 reached their lowest values
on 17 August 2020 (the mean values were 0.02 mg/L and 0.007 mg/L, respectively). The
concentrations of TSM were very variable in different lakes and the mean values showed
no significant trend throughout the season. The average TN:TP ratio varied from 25 to 56
on different dates, having the highest mean values and being statistically distinct from the
other dates in August 2020 (Tukey’s HSD, p-value < 0.05), indicating a high phosphorus
limitation at that time of year at most of the lakes. The concentrations of BOD5 and COD
decreased from April to July and increased slightly in August, similarly to CHL, with
the mean values significantly different from others dates on 19 April 2021 (Tukey’s HSD,
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p-value < 0.05). Overall, the average BOD5 values were around 2 mg O2/L on all five
dates and did not exceed 6 mg O2/L in any of the 180 lakes referring to clear or mod-
erately polluted lakes. The mean value of COD ranged from 33.1 to 36.9 mg O2/L. The
mean concentration of O2 was highest (8.53 mg/L) and the mean value of WT was lowest
(17.4 ◦C) on 19 April 2021. The mean value of SD was also significantly lower (1.20 m) on
19 April 2021 compared to other dates (Tukey’s HSD, p-value < 0.05). Similarly to the mean
concentration of CHL, the mean values of pH were somewhat higher on 19 April 2021 (8.09)
and on 17 August 2020 (7.95).

Figure 5. The boxplots of the mean values of chlorophyll a (CHL, μg/L), colored dissolved organic
matter (CDOM, mg/L), total suspended matter (TSM, mg/L), total nitrogen (TN, mg/L), total
phosphorus (TP, mg/L), PO4 (mg/L), TN:TP ratio, BOD5 (mg O2/L), COD (mg O2/L), pH, Secchi
depth (SD, m), water temperature (WT, C◦), and O2 (mg/L) in 180 Estonian lakes > 0.1 km2 on five
different dates using Sentinel-2 data. On the plots the line indicates the median, the circle is the mean,
the box shows the interquartile range, and the upper and lower whiskers are the maximum and
minimum, respectively.

4. Discussion

The correlation with optically active substances serves as a valuable consideration
for the assessment of non-optically active water quality parameters using remote sensing.
Furthermore, the goal is not merely to establish correlations but, more importantly, to
determine causative relationships. This distinction underscores the significance of under-
standing the underlying mechanisms and interactions between optical and non-optical
parameters for accurate remote sensing assessments of water quality. In our research,
the statistical correlations between optically active substances and non-optically active
water quality parameters can be considered causative. For example, TN, TP, BOD5, COD,
FPBM, and CYBM were statistically significantly correlated with CHL. Nutrients influence
CHL concentrations by inducing phytoplankton productivity and biomass growth [107].
Additionally, BOD5 shows the amount of the oxygen consumed by organisms and the
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readily decomposable organic matter in the water. The strong correlations between CHL
and BOD5 revealed that phytoplankton and other aquatic plants are the primary sources
of rapidly decaying organics [108], indicating an autochthonous carbon dominance in
our study lakes. COD is a measure of oxygen used up during chemical oxidation. COD
also refers to the amount of organic matter in water, but it also involves the refractory
to decomposition allochthonous carbon, which is not reflected by BOD. Indeed, in our
study, COD had a stronger correlation with CDOM than with CHL. CDOM also correlated
well with nutrients, indicating their similar terrestrial origin [109]. The acidity of surface
waters is affected by CDOM [110], which accounted for the significant negative correlation
between pH and CDOM in our study. TSM and phosphorus in water have been demon-
strated to be correlated [111–114], and were also correlated in this study. The particle size
distribution, geographical variance, and percentage of phosphorous attached to particles
all have an impact on the correlation between TP and TSM [114]. Moreover, in accordance
with TSM concentrations, it may either absorb or desorb nutrients. Generally, 20% of the
nutrients are present in particulate form in waters at TSM concentrations of 10 mg/L, 60%
at TSM concentrations of 100 mg/L, and 80% at TSM concentrations of 1000 mg/L [114].
Recognizing the causative nature of these correlations improves remote sensing’s efficacy
in assessing water quality, emphasizing the importance of taking into account both optical
and non-optical parameters for a thorough understanding of environmental conditions
in lakes.

As most optically non-active water quality parameters were impacted by several
optical substances, no specific bands or band combinations were chosen, but rather as many
various combinations as possible were tested to identify the most sensitive ones. The best
results were obtained by combining different band combinations as GA XGBoost feature
inputs. Similarly to us, Chen et al. [72] also obtained the best results for predicting CHL,
TP, TN, NH3-N, and turbidity by combining multiple two- or three-band or band ratio
algorithms in the GA_XGBoost model. Sentinel-2 MSI Band 4 (665 nm) was discovered
to be the most applied band in the models. Band 4 or the bands near 665 nm of other
sensors have previously been used as representative bands across the CHL, CDOM, and
TSM two- or three-band or band ratio algorithms [16,18,115–118]. Utilizing diverse band
combinations improves the robustness of predictive models, aligning with the broader
trend of optimizing satellite-derived data for water quality assessment.

This study used the GA_XGBoost machine learning algorithm along with in situ and
Sentinel-2 MSI data to construct the inversion models of 14 biogeochemical (TN, TP, PO4,
SO4, NH4N, BOD5, COD, CHL, CDOM, TSM, FPBM, CYBM, pH, O2) and two physical
(WT, SD) lake water quality parameters. XGBoost is a scalable end-to-end tree-boosting
algorithm proposed by Chen et al. [78]. It has gained increasing attention in recent years
due to its high efficiency and prediction accuracy. The most significant feature behind the
effectiveness of XGBoost is its scalability in all setups due to several important systems and
algorithmic optimizations [78]. XGBoost can be described as a novel tree-learning algorithm
to handle sparse data and a theoretically based weighted quantile sketch method that
enables the handling of instance weights in approximate tree learning [78]. Additionally, it
has parallel and distributed computing and out-of-core computation accelerated learning,
which enables faster model exploration and achieves a balance between model performance
and computing speed inherent to XGBoost [78]. Adding regularization elements to the
objective function controls the complexity of the model and supports feature sampling,
which can prevent the overfitting of the model [78]. In our study, GA_XGBoost was able
to predict ten biogeochemical (TN, TP, PO4, BOD5, COD, CHL, CDOM, TSM, pH, O2)
and two physical water quality parameters (WT, SD). We have introduced performance
scores to ensure the algorithm performs optimally across all three datasets (testing, training,
validation). Upon examining the performance metrics in Table 5, it is noteworthy that there
was an observed increase in MAPE and RMSE, accompanied by a decrease in R2 during the
transition from the training to testing stages. Unfortunately, this pattern underscores the
potential concern for overfitting, especially for certain parameters. The shift from testing to
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validation phases indicated a relatively smaller and more moderate change. However, it is
advisable to employ a more effective approach for model selection, adjustments, and tuning
in future studies to clearly avoid potential overfitting concerns. Additionally, the observed
low accuracy in Table 5, particularly in the statistics for certain water quality parameters
such as SO4, NH4N, FPBM, CYBM, and COD underline specific challenges faced by the
GA_XGBoost machine learning algorithm. While our study achieved overall success,
it is crucial to delve into the difficulties encountered, shedding light on the limitations
of machine learning methods in environmental modelling using remote sensing. For
example, COD, as an optically non-active parameter, presents inherent challenges due to
the complexity of its determination. Unlike optically active substances, COD lacks direct
spectral characteristics, making its estimation dependent on complicated relationships with
other parameters. The difficulty lies in discerning these complex interactions accurately,
contributing to variations in predictive performance. The complexities associated with the
relationships between these substances and optically active parameters pose challenges
that may not be fully addressed by machine learning algorithms alone. This challenge
extends to other optically non-active parameters, such as SO4, NH4N, FPBM, and CYBM,
as reflected in elevated performance metrics.

Moreover, the dataset size is an important aspect that might significantly influence
the performance and generalizability of machine learning models. Unfortunately, the
limitations in dataset size are inherent in remote sensing studies, particularly when dealing
with match-ups between in situ measurements and satellite data. Given the constraints
posed by the nature of remote sensing data and the relatively short study period, the choice
of the XGBoost machine learning approach was deliberate. The XGBoost algorithm’s ability
to handle smaller datasets efficiently played a crucial role in addressing the challenges
set by the available data. This aligns with the established literature, including works by
Chen et al. [72], which acknowledges the suitability of XGBoost for smaller datasets.

Furthermore, the dynamic nature of the biogeochemical and physical properties of
lakes presents a challenge in ensuring the reliability of results produced using machine
learning methods. Table 2 shows a diverse range of measured values for each water
quality parameter, providing a snapshot of the variability in water quality conditions
within the study area. While the dataset may not cover every conceivable scenario, it
captures substantial variation that allowed the models to discern patterns and relationships.
Additionally, our study incorporated data from different seasons to capture the temporal
variability in these properties. However, it is essential to acknowledge that the dynamic
nature of lakes introduces complexities that may impact the predictive accuracy of machine
learning models. While we aimed to represent diverse seasonal conditions, the variability
over time could present limitations, especially when attempting to generalize the models
to broader contexts. Future studies could benefit from expanding the temporal scope and
considering longer-term datasets to enhance the robustness of machine learning models in
capturing the dynamic nature of lakes.

Even in light of these challenges, our results were in good consistency in terms of
accuracy with the research of other authors who concentrated on individual lakes and only
one or two parameters. In previous studies, XGBoost has been used to retrieve mostly CHL,
TN, and TP, but also COD, electrical conductivity (EC), NH3-N, O2, pH, SD, SiO2, TSM,
turbidity, and WT from mainly individual Chinese rivers, lakes, and reservoirs, primarily
using Sentinel-2 MSI, Landsat 8 OLI, or an unmanned aerial vehicle (UAV) [72,74,119–123].
In these studies, XGBoost models demonstrated high accuracy in retrieving various water
quality parameters in inland waters, outperforming other machine learning models such
as Random Forest (RF), Support Vector Regressor (SVR), Deep Neural Network (DNN),
Lasso, etc., as well as linear, quadratic polynomial, logarithmic, power, and exponential
regression models (Appendix B, Table A2). While the developed machine learning models
consistently yield reliable results in localized studies, it is important to acknowledge
their potential limitations when applied to broader contexts. For instance, in large-scale
water quality assessments, variations in geographical and environmental factors may
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necessitate adjustments, such as new band selection and parameter tuning, as highlighted
by Guo et al. [46].

In general, the mean values and the variability of the estimated water quality param-
eters allowed us to demonstrate that it is possible to obtain reliable results for multiple
lakes at the same time using the developed GA_XGBoost model and Sentinel-2 MSI data.
Nutrient concentrations, and thus CHL, were greater in April and May. In spring, more
light becomes available, the surface water gets warmer, the water column stratifies, and
due to the inhibition of vertical mixing, phytoplankton and nutrients are compressed in the
euphotic zone. As a result, an environment with relatively high nutrient and light levels
is created, promoting fast phytoplankton development [124]. The mean concentrations
of CHL were lower in June and July due to the decreasing nutrients in water. Nutrient
depletion and increased zooplankton grazing often promote spring bloom collapse and
maintain low phytoplankton biomass over summer [124]. A slight increase in CHL and
TN concentrations in August revealed the presence of cyanobacteria in at least some lakes
at that time as diazotrophic cyanobacteria may fix atmospheric nitrogen to meet their
nitrogen needs [125]. The pH showed a similar seasonal trend as CHL, whose seasonal
course is driven by primary production, which fixes inorganic carbon and therefore raises
the pH during periods of intense growth [126]. In April and May, when the largest river
discharge typically takes place [127], the mean concentration of CDOM was at its maxi-
mum. Water transparency (given as SD) was the lowest in April, which is typical of the
spring months, confirming that CHL and CDOM concentrations have a strong impact on
water clarity [128,129]. The mean water temperature was highest in June 2021, the same
month that Estonia experienced the warmest June ever [130]. In April and May, the mean
oxygen concentration was at its maximum. Firstly, oxygen dissolves better in cold water,
and secondly, this is the peak period for primary production that produces oxygen as a
by-product [131]. The high amount of CDOM in spring and the oxygen used in its decompo-
sition may be the reason that the mean oxygen concentration did not reach saturation levels
even in April [132]. The application of the GA_XGBoost model, combined with satellite
data, indeed represents a powerful approach for remote sensing in the assessment of water
quality across a diverse range of lakes. This method not only validates the efficiency of
remote sensing, but also highlights its potential to provide comprehensive insights into
spatiotemporal variations of numerous water quality parameters simultaneously across a
large number of lakes.

5. Conclusions

This study aimed to use the GA_XGBoost machine learning algorithm along with in
situ and Sentinel-2 MSI data to monitor and predict water quality parameters in lakes. We
constructed inversion models of 16 physical and biogeochemical water quality parameters
(TN, TP, PO4, SO4, NH4N, BOD5, COD, CHL, CDOM, TSM, FPBM, CYBM, pH, O2, WT, and
SD) and provided a practical demonstration of the developed inversion models, illustrating
their applicability in estimating various water quality parameters simultaneously across
multiple lakes on five different dates.

• GA_XGBoost exhibited strong predictive capabilities and it was able to accurately
predict ten biogeochemical and two physical water quality parameters (TN, TP, PO4,
BOD5, COD, CHL, CDOM, TSM, pH, O2, WT, and SD), showcasing its effectiveness in
water quality and remote sensing applications.

• The observed increase in MAPE and RMSE, accompanied by a decrease in R2 during
the transition from training to testing stages, highlighted the potential concern for
overfitting, especially for specific parameters. This emphasizes the need for careful
model selection, adjustments, and tuning in future studies.

• Despite the dynamic nature of lakes, our results demonstrated reliable estimates
for multiple lakes simultaneously, considering the seasonal variations in water
quality parameters.
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While our findings contribute to the growing body of knowledge on remote sensing
applications for water quality assessment, it is crucial to acknowledge certain limitations.
Challenges linked to optically non-active parameters, the potential for overfitting, and
the limitations of remote sensing datasets highlight the necessity for ongoing research
and refinement of machine learning methodologies in environmental monitoring. Future
investigations should delve into broader temporal scopes, incorporate longer-term datasets,
and employ enhanced model selection strategies. These efforts are crucial for advancing
the robustness and generalizability of remote sensing-based water quality models.
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Appendix A

Table A1. Names, coordinates, maximum and mean depth, catchment area, and lake area of 45 Esto-
nian lakes by sampling dates where in situ data of the current study were collected.

Lake Name Lat (N) Lon (E)
Max
Depth, m

Mean
Depth, m

Catch.
Area, km2 Area, km2 Trophic State Sampling Date

Aheru järv/Kandsi järv 57.68844 26.35283 7.4 3.4 52.4 2.34 Eutrophic (hard water) 12 September 2016
Elistvere järv 58.57139 26.70728 3.5 2 171 1.29 Eutrophic (macrophyte) 9 May 2016
Elistvere järv 58.57139 26.70728 3.5 2 171 1.29 Eutrophic (macrophyte) 15 September 2016
Endla järv 58.85357 26.19651 2.4 1.5 433 2.84 Mixotrophic (hard water) 16 May 2018
Ermistu järv 58.36923 23.98146 2.9 1.3 32.3 4.49 Eutrophic (macrophyte) 30 May 2017
Hino järv 57.58357 27.20177 10.4 3.1 2.12 1.99 Oligotrophic 6 May 2020
Hino järv 57.58357 27.20177 10.4 3.1 2.12 1.99 Oligotrophic 12 August 2020
Hino järv 57.58357 27.20177 10.4 3.1 2.12 1.99 Oligotrophic 7 September 2020
Jõemõisa järv 58.65372 26.82892 3.2 2.6 216 0.72 Mixotrophic (hard water) 5 August 2015
Järise järv 58.49416 22.41262 1.4 0.7 11.1 0.96 Eutrophic (macrophyte) 22 August 2018
Kaiavere järv 58.60383 26.67486 5 2.8 92.2 2.47 Eutrophic (hard water) 9 May 2016
Kaiavere järv 58.60383 26.67486 5 2.8 92.2 2.47 Eutrophic (hard water) 20 July 2016
Kaiavere järv 58.60383 26.67486 5 2.8 92.2 2.47 Eutrophic (hard water) 15 September 2016
Kaisma järv 58.69312 24.68132 2.1 1.25 16 1.4 Mixotrophic (hard water) 20 May 2019
Kaisma järv 58.69312 24.68132 2.1 1.25 16 1.4 Mixotrophic (hard water) 18 July 2019
Kaiu järv 58.64201 26.8389 3 2.6 216 1.34 Mixotrophic (hard water) 5 August 2015
Kalli järv 58.37695 27.23623 1.4 1.1 82.8 1.99 Eutrophic (macrophyte) 9 May 2020
Karijärv 58.29831 26.41993 14.5 5.7 11.1 0.82 Eutrophic (hard water) 14 September 2015
Karijärv 58.29831 26.41993 14.5 5.7 11.1 0.82 Eutrophic (hard water) 3 July 2019
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Table A1. Cont.

Lake Name Lat (N) Lon (E)
Max
Depth, m

Mean
Depth, m

Catch.
Area, km2 Area, km2 Trophic State Sampling Date

Karijärv 58.29831 26.41993 14.5 5.7 11.1 0.82 Eutrophic (hard water) 4 September 2019
Kariste järv 58.14161 25.3484 7.2 3.3 128 0.61 Eutrophic (hard water) 30 May 2017
Kariste järv 58.14161 25.3484 7.2 3.3 128 0.61 Eutrophic (hard water) 25 September 2017
Karujärv 58.37102 22.2161 6 1.6 16.1 3.46 Eutrophic (hard water) 28 May 2018
Karujärv 58.37102 22.2161 6 1.6 16.1 3.46 Eutrophic (hard water) 22 August 2018
Konsu järv 59.22656 27.58052 10.2 5.8 27 1.39 Mixotrophic (hard water) 25 June 2019
Konsu järv 59.22656 27.58052 10.2 5.8 27 1.39 Mixotrophic (hard water) 22 April 2020
Kooru järv 58.48363 22.13946 1.2 0.3 38.7 0.85 Eutrophic (halotrophic) 16 August 2015
Kooru järv 58.48363 22.13946 1.2 0.3 38.7 0.85 Eutrophic (halotrophic) 27 September 2015
Kooru järv 58.48363 22.13946 1.2 0.3 38.7 0.85 Eutrophic (halotrophic) 28 September 2015
Kooru järv 58.48363 22.13946 1.2 0.3 38.7 0.85 Eutrophic (halotrophic) 29 May 2017
Kooru järv 58.48363 22.13946 1.2 0.3 38.7 0.85 Eutrophic (halotrophic) 28 May 2018
Kooru järv 58.48363 22.13946 1.2 0.3 38.7 0.85 Eutrophic (halotrophic) 28 July 2019
Kooru järv 58.48363 22.13946 1.2 0.3 38.7 0.85 Eutrophic (halotrophic) 29 August 2020

Koosa järv 58.4257 27.14411 1.9 1.2 75.9 2.83 Mixotrophic
(macrophyte) 20 July 2020

Käsmu järv 59.58175 25.88399 3.3 2.2 16.5 0.49 Mixotrophic (soft water) 12 August 2015
Käsmu järv 59.58175 25.88399 3.3 2.2 16.5 0.49 Mixotrophic (soft water) 12 August 2020
Köstrijärv 57.75009 26.39461 4.4 3.3 1.8 0.12 Eutrophic (macrophyte) 7 May 2018
Lahepera järv 58.57375 27.19274 4.2 2.4 28.9 0.1 Eutrophic (macrophyte) 11 May 2020
Lahepera järv 58.57375 27.19274 4.2 2.4 28.9 0.1 Eutrophic (macrophyte) 20 July 2020
Leegu järv 58.36587 27.27614 1 0.6 5.6 0.86 Eutrophic (macrophyte) 20 July 2020
Lohja järv 59.54821 25.69092 3.7 2.2 12.3 0.56 Mixotrophic (soft water) 12 August 2015
Lohja järv 59.54821 25.69092 3.7 2.2 12.3 0.56 Mixotrophic (soft water) 8 July 2020
Lohja järv 59.54821 25.69092 3.7 2.2 12.3 0.56 Mixotrophic (soft water) 12 August 2020
Loosalu järv 58.93337 25.0777 5 3.7 1.6 0.35 Dystrophic 20 May 2018
Mustjärv (Nohipalo
Mustjärv) 57.93201 27.34217 8.9 3.9 9.7 0.22 Acidotrophic 2 May 2016

Mustjärv (Nohipalo
Mustjärv) 57.93201 27.34217 8.9 3.9 9.7 0.22 Acidotrophic 2 May 2017

Mustjärv (Nohipalo
Mustjärv) 57.93201 27.34217 8.9 3.9 9.7 0.22 Acidotrophic 7 May 2020

Männiku järv 59.34583 24.71239 9 5 13 0.1 Eutrophic (hard water) 25 August 2015
Ohepalu järv 59.33395 25.95198 2.5 0.5 7.5 0.68 Dystrophic 23 July 2015
Ohepalu järv 59.33395 25.95198 2.5 0.5 7.5 0.68 Dystrophic 12 August 2020
Pabra järv 57.60901 27.39527 3.6 2.4 36.5 0.76 Semidystrophic 16 August 2017
Peenjärv 59.21379 27.57548 - - - 0.08 Mixotrophic (hard water) 25 June 2019
Pikkjärv (Viitna
Pikkjärv) 59.4465 26.01005 6.2 3 1.1 0.16 Oligotrophic 14 August 2017

Pikkjärv (Viitna
Pikkjärv) 59.4465 26.01005 6.2 3 1.1 0.16 Oligotrophic 15 May 2018

Pikkjärv (Viitna
Pikkjärv) 59.4465 26.01005 6.2 3 1.1 0.16 Oligotrophic 19 May 2020

Pikkjärv (Viitna
Pikkjärv) 59.4465 26.01005 6.2 3 1.1 0.16 Oligotrophic 17 August 2020

Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 2 May 2016
Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 2 May 2017
Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 2 May 2018
Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 7 August 2018
Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 1 July 2019
Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 2 September 2019
Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 4 May 2020
Pühajärv 58.02409 26.45667 8.5 4.3 44 2.98 Eutrophic (hard water) 7 May 2020
Saadjärv 58.53688 26.65778 25 8 31.9 7.23 Eutrophic (hard water) 9 May 2016
Saadjärv 58.53688 26.65778 25 8 31.9 7.23 Eutrophic (hard water) 14 July 2016
Saare järv 58.65489 26.7627 5.6 4.2 8.5 27.4 Eutrophic (hard water) 5 August 2015

Soitsjärv 58.55667 26.68168 8 1.2 15.2 1.58 Mixotrophic
(macrophyte) 9 May 2016

Suurjärv (Rouge
Suurjärv) 57.7275 26.92278 38 12 25.8 0.135 Eutrophic (hard water) 4 August 2015

Suurjärv (Rouge
Suurjärv) 57.7275 26.92278 38 12 25.8 0.135 Eutrophic (hard water) 4 May 2017

Suurjärv (Rouge
Suurjärv) 57.7275 26.92278 38 12 25.8 0.135 Eutrophic (hard water) 4 September 2019

Suurjärv (Rouge
Suurjärv) 57.7275 26.92278 38 12 25.8 0.135 Eutrophic (hard water) 5 May 2020

Suurjärv (Rouge
Suurjärv) 57.7275 26.92278 38 12 25.8 0.135 Eutrophic (hard water) 6 May 2020

Suurjärv (Rouge
Suurjärv) 57.7275 26.92278 38 12 25.8 0.135 Eutrophic (hard water) 7 September 2020

Tõhela järv 58.41785 23.99619 1.5 1.3 21.7 4.07 Eutrophic (macrophyte) 30 May 2017
Tõhela järv 58.41785 23.99619 1.5 1.3 21.7 4.07 Eutrophic (macrophyte) 25 July 2017
Tõhela järv 58.41785 23.99619 1.5 1.3 21.7 4.07 Eutrophic (macrophyte) 21 July 2020
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 17 August 2015
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Table A1. Cont.

Lake Name Lat (N) Lon (E)
Max
Depth, m

Mean
Depth, m

Catch.
Area, km2 Area, km2 Trophic State Sampling Date

Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 29 May 2016
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 30 August 2016
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 26 September 2016
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 27 September 2016
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 20 May 2019
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 24 May 2020
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 18 July 2020
Tänavjärv 59.17897 23.80563 2.5 1.8 4.7 1.39 Semidystrophic 16 August 2020
Tündre järv 57.95075 25.61889 10.6 4.9 7.1 0.716 Eutrophic (hard water) 11 May 2016
Uljaste järv 59.3594 26.77396 6.4 2.2 1.1 0.63 Semidystrophic 14 August 2017
Uljaste järv 59.3594 26.77396 6.4 2.2 1.1 0.63 Semidystrophic 25 September 2017
Uljaste järv 59.3594 26.77396 6.4 2.2 1.1 0.63 Semidystrophic 15 May 2019
Uljaste järv 59.3594 26.77396 6.4 2.2 1.1 0.63 Semidystrophic 17 August 2020
Valgejärv (Kurtna
Valgejärv) 59.26342 27.59712 10.5 4.2 1 0.08 Semidystrophic 15 May 2019

Valgjärv 58.08903 26.64033 5.5 3.2 4.9 0.65 Eutrophic (hard water) 4 May 2017
Valgjärv 58.08903 26.64033 5.5 3.2 4.9 0.65 Eutrophic (hard water) 5 July 2017
Valgojärv (Nohipalo
Valgojärv) 57.9412 27.34662 12.5 6.2 2.2 0.07 Oligotrophic 2 May 2017

Valgojärv (Nohipalo
Valgojärv) 57.9412 27.34662 12.5 6.2 2.2 0.07 Oligotrophic 1 August 2017

Valgojärv (Nohipalo
Valgojärv) 57.9412 27.34662 12.5 6.2 2.2 0.07 Oligotrophic 2 September 2019

Valgojärv (Nohipalo
Valgojärv) 57.9412 27.34662 12.5 6.2 2.2 0.07 Oligotrophic 7 May 2020

Verevi järv 58.23074 26.40464 11 3.6 1.1 0.12 Hypertrophic 8 August 2017
Verevi järv 58.23074 26.40464 11 3.6 1.1 0.12 Hypertrophic 6 May 2020
Viljandi järv 58.35027 25.59324 11 5.6 66.8 1.58 Eutrophic (hard water) 6 May 2020
Õisu järv 58.20532 25.52078 4.3 2.8 199 1.93 Eutrophic (hard water) 8 July 2019
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 4 August 2015
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 11 May 2016
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 3 August 2016
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 12 September 2016
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 4 May 2017
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 7 May 2018
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 3 July 2019
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 4 September 2019
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 6 May 2020
Ähijärv 57.71297 26.49654 5.5 3.8 14.7 1.81 Eutrophic (hard water) 16 September 2020

Appendix B

Table A2. The performance metrics of different models for deriving biogeochemical and physical
water quality parameters from remote sensing data. R2, R-squared; MAPE, mean absolute percentage
error (%); RMSE, root-mean-square error; N, number of data.

Water Qual-
ity Parameter

Model R2 MAE RMSE MAPE
Remote
Sensing Plat-
form/Sensor

Spatial
Resolution

Waterbody N Reference

CHL GA_XGBoost 0.86 0.02 0.05 - UAV 0.1 Nanfei River 67 [72]
CHL XGBoost 0.82 0.03 0.05 - UAV 0.1 Nanfei River 67 [72]
CHL XGBoost - 11.50 14.70 30.2 Landsat 5 TM 30 m Lake Taihu 163 [119]

CHL XGBoost - 7.20 12.90 34.8 Landsat 7
ETM+ 30 m Lake Taihu 163 [119]

CHL XGBoost - 11.60 15.70 35.2 Landsat 8 OLI 30 m Lake Taihu 163 [119]

CHL XGBoost 0.42 1.52 2.07 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CHL XGBoost 0.73 - 0.26 7.59 Sentinel-2 MSI 20 m Q reservoir 96 [74]

CHL XGBoost 0.84 - 6.65 - Zhuhai-No.1,
CMOS 30 m Dushan Lake,

Weishan Lake 99 [123]

CHL GA_RF 0.80 0.03 0.05 - UAV 0.1 Nanfei River 67 [72]
CHL RF 0.74 0.04 0.06 - UAV 0.1 Nanfei River 67 [72]
CHL RF - 8.90 14.40 18.3 Landsat 5 TM 30 m Lake Taihu 163 [119]

CHL RF - 7.70 13.80 44.1 Landsat 7
ETM+ 30 m Lake Taihu 163 [119]

CHL RF - 10.70 14.90 33.8 Landsat 8 OLI 30 m Lake Taihu 163 [119]

CHL RF 0.32 1.51 1.94 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CHL RF 0.67 - 0.30 13.13 Sentinel-2 MSI 20 m Q reservoir 96 [74]
CHL AdaBoost 0.78 0.03 0.06 - UAV 0.1 Nanfei River 67 [72]
CHL GA_AdaBoost 0.83 0.03 0.05 - UAV 0.1 Nanfei River 67 [72]
CHL SVR - 13.40 17.60 46.5 Landsat 5 TM 30 m Lake Taihu 163 [119]
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Water Qual-
ity Parameter

Model R2 MAE RMSE MAPE
Remote
Sensing Plat-
form/Sensor

Spatial
Resolution

Waterbody N Reference

CHL SVR - 8.40 18.70 37.7 Landsat 7
ETM+ 30 m Lake Taihu 163 [119]

CHL SVR - 13.10 15.60 32.2 Landsat 8 OLI 30 m Lake Taihu 163 [119]
CHL SVR 0.46 - 0.36 14.3 Sentinel-2 MSI 20 m Q reservoir 96 [74]
CHL ANN 0.15 - 0.45 17.94 Sentinel-2 MSI 20 m Q reservoir 96 [74]
CHL DNN 0.81 0.03 0.05 - UAV 0.1 Nanfei River 67 [72]

CHL BP 0.12 1.57 2.21 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CHL Lasso 0.20 1.54 2.08 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CHL MLR 0.10 1.60 2.24 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CODMn XGBoost 0.11 0.79 0.86 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CODMn RF 0.20 0.71 0.80 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CODMn BP 0.22 0.69 0.80 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CODMn Lasso 0.07 0.70 0.83 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CODMn MLR 0.06 0.71 0.83 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

CODMn ML-MLR 0.19 0.72 0.82 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

EC XGBoost 0.27 - 1.23 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 0 159 [133]

EC XGBoost 0.33 - 2.57 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 1 159 [133]

EC XGBoost 0.21 - 2.85 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 2 159 [133]

EC XGBoost 0.32 - 2.58 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 3 159 [133]

NH3-N GA_XGBoost 0.69 0.14 0.16 - UAV 0.1 Nanfei River 67 [72]
NH3-N XGBoost 0.65 0.15 0.17 - UAV 0.1 Nanfei River 67 [72]
NH3-N XGBoost 0.82 - 0.14 28.6 Sentinel-2 MSI 20 m Q reservoir 96 [74]
NH3-N GA_RF 0.62 0.15 0.17 - UAV 0.1 Nanfei River 67 [72]
NH3-N RF 0.60 0.15 0.19 - UAV 0.1 Nanfei River 67 [72]
NH3-N RF 0.12 - 0.22 73.53 Sentinel-2 MSI 20 m Q reservoir 96 [74]
NH3-N AdaBoost 0.55 0.15 0.20 - UAV 0.1 Nanfei River 67 [72]
NH3-N GA_AdaBoost 0.67 0.15 0.17 - UAV 0.1 Nanfei River 67 [72]
NH3-N SVR 0.49 - 0.15 118.45 Sentinel-2 MSI 20 m Q reservoir 96 [74]
NH3-N ANN 0.25 - 0.17 107.43 Sentinel-2 MSI 20 m Q reservoir 96 [74]
NH3-N DNN 0.63 0.15 0.18 - UAV 0.1 Nanfei River 67 [72]

O2 XGBoost 0.97 - 0.01 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 0 159 [133]

O2 XGBoost 0.93 - 0.01 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 1 159 [133]

O2 XGBoost 0.90 - 0.01 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 2 159 [133]

O2 XGBoost 0.96 - 0.01 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 3 159 [133]

O2 XGBoost 0.90 - 0.14 0.07 Sentinel-2 MSI 20 m Q reservoir 96 [74]
O2 RF 0.77 - 0.34 3.43 Sentinel-2 MSI 20 m Q reservoir 96 [74]
O2 SVR 0.85 - 0.17 1.38 Sentinel-2 MSI 20 m Q reservoir 96 [74]
O2 ANN 0.79 - 0.20 2.04 Sentinel-2 MSI 20 m Q reservoir 96 [74]

pH XGBoost 0.78 - 0.08 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 0 159 [133]

pH XGBoost 0.74 - 0.19 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 1 159 [133]

pH XGBoost 0.74 - 0.26 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 2 159 [133]

pH XGBoost 0.76 - 0.09 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 3 159 [133]

SD XGBoost 0.84 0.64 1.14 - Landsat 5 TM 30

Different lake
datasets from
Europe, China,
and America

4099 [123]

SD XGBoost 0.76 0.89 1.87 - Landsat 7
ETM+ 30

Different lake
datasets from
Europe, China,
and America

2420 [123]

SD XGBoost 0.88 0.50 0.80 - Landsat 8 OLI 30

Different lake
datasets from
Europe, China,
and America

1249 [123]
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Water Qual-
ity Parameter

Model R2 MAE RMSE MAPE
Remote
Sensing Plat-
form/Sensor

Spatial
Resolution

Waterbody N Reference

SD XGBoost 0.98 2.01 2.52 - UAV 0.185 m
The Shahu Port
channel, The
Xunsi River

72 [120]

SD RF 0.97 1.98 2.81 - UAV 0.185 m
The Shahu Port
channel, The
Xunsi River

72 [120]

SD RF 0.82 0.62 1.13 - Landsat 5 TM 30

Different lake
datasets from
Europe, China,
and America

4099 [123]

SD RF 0.78 0.84 1.84 - Landsat 7
ETM+ 30 m

Different lake
datasets from
Europe, China,
and America

2420 [123]

SD RF 0.85 0.47 0.74 - Landsat 8 OLI 30 m

Different lake
datasets from
Europe, China,
and America

1249 [123]

SD AdaBoost 0.98 2.00 2.55 - UAV 0.185 m
The Shahu Port
channel, The
Xunsi River

72 [120]

SD GBDT 0.91 3.62 4.75 - UAV 0.185 m
The Shahu Port
channel, The
Xunsi River

72 [120]

SD Exponential
function 0.45 - 12.48 - UAV 0.185 m

The Shahu Port
channel, The
Xunsi River

72 [120]

SD Linear
function 0.80 - 7.59 - UAV 0.185 m

The Shahu Port
channel, The
Xunsi River

72 [120]

SD Logarithmic
function 0.80 - 7.58 - UAV 0.185 m

The Shahu Port
channel, The
Xunsi River

72 [120]

SD Power
function 0.68 - 9.44 - UAV 0.185 m

The Shahu Port
channel, The
Xunsi River

72 [120]

SD Quadratic
polynomial 0.80 - 7.65 - UAV 0.185 m

The Shahu Port
channel, The
Xunsi River

72 [120]

SiO2 XGBoost 0.98 - 0.01 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 0 159 [133]

SiO2 XGBoost 0.96 - 0.01 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 1 159 [133]

SiO2 XGBoost 0.97 - 0.00 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 2 159 [133]

SiO2 XGBoost 0.97 - 0.00 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 3 159 [133]

TN GA_XGBoost 0.79 0.74 1.09 - UAV 0.1 Nanfei River 67 [72]
TN XGBoost 0.70 0.81 1.28 - UAV 0.1 Nanfei River 67 [72]

TN XGBoost 0.71 1.03 1.33 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TN GA_RF 0.67 0.91 1.35 - UAV 0.1 Nanfei River 67 [72]
TN RF 0.67 0.90 1.36 - UAV 0.1 Nanfei River 67 [72]

TN RF 0.70 1.13 1.50 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TN AdaBoost 0.61 1.22 1.55 - UAV 0.1 Nanfei River 67 [72]
TN GA_AdaBoost 0.67 0.89 1.36 - UAV 0.1 Nanfei River 67 [72]
TN DNN 0.77 0.84 1.14 - UAV 0.1 Nanfei River 67 [72]

TN BP 0.82 0.84 1.27 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TN Lasso 0.64 1.28 1.45 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TN MLR 0.64 1.27 1.46 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TN ML-MLR 0.82 0.87 1.28 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TP GA_XGBoost 0.70 0.03 0.03 - UAV 0.1 Nanfei River 67 [72]
TP XGBoost 0.61 0.03 0.04 - UAV 0.1 Nanfei River 67 [72]

TP XGBoost 0.28 0.05 0.07 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TP GA_RF 0.55 0.03 0.04 - UAV 0.1 Nanfei River 67 [72]
TP RF 0.46 0.03 0.05 - UAV 0.1 Nanfei River 67 [72]

TP RF 0.35 0.04 0.06 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TP AdaBoost 0.61 0.03 0.04 - UAV 0.1 Nanfei River 67 [72]
TP GA_AdaBoost 0.64 0.03 0.04 - UAV 0.1 Nanfei River 67 [72]
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Model R2 MAE RMSE MAPE
Remote
Sensing Plat-
form/Sensor

Spatial
Resolution

Waterbody N Reference

TP DNN 0.56 0.03 0.04 - UAV 0.1 Nanfei River 67 [72]

TP BP 0.43 0.05 0.05 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TP Lasso 0.38 0.05 0.06 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TP MLR 0.38 0.05 0.06 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TP ML-MLR 0.27 0.04 0.07 - UAV 1600 × 1300 pixels The Zhanghe
River 45 [119]

TSM XGBoost 0.18 641.20 751.90 - Landsat 8 OLI 30 m Ebinur Lake,
China 102 [121]

TSM XGBoost 0.24 798.85 884.85 - Sentinel-2 MSI 20 m Ebinur Lake,
China 102 [121]

TSM RF 0.68 215.88 256.92 - Landsat 8 OLI 30 m Ebinur Lake,
China 102 [121]

TSM RF 0.73 220.27 222.69 - Sentinel-2 MSI 20 m Ebinur Lake,
China 102 [121]

TUB GA_XGBoost 0.60 9.82 10.13 - UAV 0.1 Nanfei River 67 [72]
TUB XGBoost 0.52 9.97 11.47 - UAV 0.1 Nanfei River 67 [72]
TUB GA_RF 0.45 10.27 12.16 - UAV 0.1 Nanfei River 67 [72]
TUB RF 0.37 10.56 13.20 - UAV 0.1 Nanfei River 67 [72]
TUB AdaBoost 0.39 10.36 12.67 - UAV 0.1 Nanfei River 67 [72]
TUB GA_AdaBoost 0.45 10.28 12.26 - UAV 0.1 Nanfei River 67 [72]
TUB DNN 0.54 9.92 11.03 - UAV 0.1 Nanfei River 67 [72]

WT XGBoost 0.73 - 0.15 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 0 159 [133]

WT XGBoost 0.89 - 0.10 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 1 159 [133]

WT XGBoost 0.89 - 0.08 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 2 159 [133]

WT XGBoost 0.90 - 0.01 - Landsat 8 OLI 30 The Ganga River
Basin, Cluster 3 159 [133]
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Abstract: With the increasing occurrence of cyanobacteria blooms, it is crucial to improve our
ability to monitor impacted lakes accurately, efficiently, and safely. Cyanobacteria are naturally
occurring in many waters globally. Some species can release neurotoxins which cause skin irritations,
gastrointestinal illness, pet/livestock fatalities, and possibly additional complications after long-
term exposure. Using a DJI M300 RTK Unmanned Aerial Vehicle equipped with a MicaSense
10-band dual camera system, six New Hampshire lakes were monitored from May to September
2022. Using the image spectral data coupled with in situ water quality data, a random forest
classification algorithm was used to predict water quality categories. The analysis yielded very high
overall classification accuracies for cyanobacteria cell (93%), chlorophyll-a (87%), and phycocyanin
concentrations (92%). The 475 nm wavelength, normalized green-blue difference index—version
4 (NGBDI_4), and normalized green-red difference index—version 4 (NGRDI_4) indices were the
most important features for these classifications. Logarithmic regressions illuminated relationships
between single bands/indices with water quality data but did not perform as well as the classification
algorithm approach. Ultimately, the UAS multispectral data collected in this study successfully
classified cyanobacteria cell, chlorophyll-a, and phycocyanin concentrations in the studied NH lakes.

Keywords: cyanobacteria; unmanned aerial systems; water quality; multispectral imagery; machine
learning classification

1. Introduction

Globally, waterbodies are changing rapidly due to human development and changes
in climate. These anthropogenic effects impact the structure of freshwater communities as
well as the physical and chemical characteristics that drive many ecosystem responses [1].
Environmental monitoring is necessary to understand these occurrences and track changes
over time to understand full ecosystem processes and inter-ecosystem interactions such as
the effects of nutrient cycling within a changing climate [2].

As a result of changes such as increasing air temperature and altered nutrient balances,
cyanobacteria blooms are occurring on many lakes and ponds in New Hampshire (USA)
each summer. Cyanobacteria were one of the first organisms on Earth to produce oxygen
and are naturally occurring in many of the world’s waterbodies [3]. Although recently
reclassified into the prokaryotic kingdom, Monera, cyanobacteria are classified as a bac-
terium despite their numerous algal characteristics [4]. Excess phosphorus entering the
water column stimulates the growth and proliferation of cyanobacteria leading to eutrophic
conditions while also triggering public health advisories, limiting recreational use, and
reducing property values. Cyanobacteria harmful algal blooms (CHABs) are a subgroup
of cyanobacteria blooms which release various forms of toxins that can cause skin irrita-
tions, nausea, vomiting, diarrhea, and fevers, as well as pet and livestock fatalities [5–7].
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Existing and emerging studies have attempted to assess any possible connections with
long term exposure and anthropogenic diseases [8,9]. Traditionally, scientists have studied
cyanobacteria blooms in lakes and ponds with in situ field observations in addition to the
analysis of water samples in laboratories. Monitoring this biological component of aquatic
ecosystems is necessary to determine the internal processes at play and overall health of
the local environment [10]. Understanding the occurrence, concentration, spatial patterns,
and duration of CHABs will help communities and regulating agencies further understand
CHABs from which to create effective management plans.

In the past decade, the integration of unmanned aerial systems (UAS), also known
as drones, to study freshwater ecosystems has increased in scope and accuracy due to
technological advances of lightweight UAS and the development of very high spatial and
spectral resolution cameras. With the improved development of UAS including new and
more effective sensors, longer flight periods, and improved processing software, scientists
and researchers have begun using this tool to study aquatic systems. Spatial resolutions of
UAS now include sub-meter pixels down to a few centimeters [11]. Multispectral sensors
with high spectral resolution sense electromagnetic energy with narrow band widths [11,12].
UAS are more versatile than satellites with a minimum flying height of a few centimeters off
the water’s surface to 121 m (as permissible by Part 107 Federal Air Administration (FAA)
regulations) while maintaining their high spatial resolutions [13,14]. Not to be confused
with the imagery captured by satellites, the use of UAS in environmental studies is an
emerging low cost and user-friendly application that provides the ability for rapid and
frequent deployment of specific study sites, low altitude flights below the cloud deck,
modification capabilities, and easy navigation of small lakes or stream networks which are
difficult or impossible to assess with traditional methods or current satellite technology.
These advances in UAS technology are well suited for small waterbodies and inland waters
such as many of the lakes in NH.

The use of a multispectral sensor, which captures a spectral response in designated
portions of the electromagnetic spectrum, enhances our ability to discriminate objects of
interest both on land and water [15]. Multispectral sensors often capture imagery yielding
one value in each of the blue, green, red, red edge, and NIR portions of the spectrum.
This allows for increased accuracy in the detection, identification, and quantification of
certain aquatic ecosystem components, particularly blue-green and green algae [16]. The
MicaSense RedEdge-MX and RedEdge-MX Blue Dual Camera Imaging System was used
for this study (Seattle, WA, USA). This dual camera system captures electromagnetic energy,
in the form of reflectance, centered around the following 10 wavelengths: 444 (coastal
blue), 475 (blue), 531 (green), 560 (green), 650 (red), 668 (red), 705 (red edge), 717 (red
edge), 740 (red edge), and 842 (NIR) nm. In this study, reflectance values were extracted
from the UAS-collected imagery and used to calculate derivative bands or indices to find a
relationship with collected water quality data (the reference data).

Many studies have found the use of green, red, red edge, and NIR wavelengths are best
for studying phytoplankton, chlorophyll-a, and submerged aquatic vegetation [11,17–19].
In addition, the blue portion of the spectrum has also been incorporated to study cyanobac-
teria [20,21]. Many others have used derivative bands made by mathematically combining
multiple bands such as a normalized difference vegetation index (NDVI) and other indices
to determine chlorophyll-a, algal, and/or cyanobacteria measurements [13,21–26]. This
approach is rapidly evolving and less often applied to UAS applications than to satellite
applications [27]. There is limited research within New England using remote sensing
methods to study cyanobacteria in small lakes; a region where cyanobacteria blooms are
becoming an ever increasing public and ecological issue.

Therefore, the goal of this study was to investigate an alternate method for quantifying
the cell concentration of cyanobacteria in New Hampshire waterbodies using UAS multi-
spectral data over the course of the growing season to identify areas within the waterbodies
that exceed thresholds set by agencies and/or this study. To do this, each flight was paired
with collected water samples. The water samples were analyzed for cyanobacteria cell

197



Remote Sens. 2023, 15, 2839

concentration, chlorophyll-a, phycocyanin, and phycoerythrin to calibrate the relationship
and model between the in situ sample data and the UAS imagery. These water quality
parameters were selected based on the current NH State cyanobacteria monitoring proce-
dures (cell concentration) of the New Hampshire Department of Environmental Protection
(NHDES), and standard monitoring practices through pigment analyses for cyanobacteria
(chlorophyll-a, phycocyanin, and phycoerythrin) [10,11,13,17–35]. The specific objectives
of this study were:

1. To build a dataset of both UAS reflectance data and water quality data for cyanobacte-
ria in NH lakes.

2. To target cyanobacteria blooms from multiple lakes in New Hampshire with different
dominant species of cyanobacteria over the course of the bloom’s life cycle.

3. To determine the best spectral relationship for classification between very high spatial
resolution multispectral UAS imagery and cyanobacteria for the sampled lakes.

2. Materials and Methods

2.1. Site Selection and Descriptions

Candidate lakes in New Hampshire were identified for this study through a series of
criteria using a scoring system developed for this analysis. This scoring system consisted of
data on previous bloom duration, concentrations, and dominant cyanobacteria species, lake
size, public accessibility, and distance from water quality and image analysis laboratories.
The candidate lakes were then located on the FAA Sectional Aeronautical Chart and
removed if in a restricted airspace. Stakeholders for the remaining lakes were contacted to
determine their willingness to collaborate. Silver Lake (Hollis), Keyser Pond (Henniker),
and French Pond (Henniker) were then selected as the three primary lakes to include in
this study. These three lakes were sampled roughly every other week from the first week
in May to the first week of September 2022. Greenwood Pond (Kingston), Showell Pond
(Sandown), and Tucker Pond (Salisbury) were added to the study once a cyanobacteria
bloom had begun on the respective waterbody to add to the dataset during August and
September of 2022 (Figure 1).

The six selected lakes span a variety of lake trophic classifications including lakes
designated as oligotrophic, mesotrophic, and eutrophic (Table 1). Identified based on
ambient water quality by the State of New Hampshire, oligotrophic lakes are those with
low nutrient concentrations and high water clarity. Eutrophic lakes contain high levels of
nutrients and degraded water clarity Mesotrophic lakes contain higher levels of nutrients
than oligotrophic lakes but not as high as eutrophic lakes, and moderate levels of water
clarity degradation [36].

Table 1. Summary of New Hampshire lakes flown with the UAS and sampled for water quality
measurements in 2022.

Lake Town Trophic State
Surface Area

(ha)
Maximum
Depth (m)

Advisories
Number of Days
Under Advisory

French Pond Henniker Eutrophic 16 12 None 0

Greenwood Pond Kingston Mesotrophic 20 4 27 July–4 August 8

Keyser Pond Henniker Mesotrophic 7 5 6 July–9 August 34

Showell Pond Sandown Mesotrophic 8 3–4 2 August–27 September 56

Silver Lake Hollis Oligotrophic 16 7 21 June–28 July,
5 August–16 November 140

Tucker Pond Salisbury Mesotrophic 22 6 11 August–18 November 99
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Figure 1. Study site locations within the state of New Hampshire.

2.1.1. French Pond

French Pond spans 16 hectares in Henniker, NH, is classified as a eutrophic lake,
and has a maximum depth of 12 m (Table 1) [37]. There is a state-owned boat launch
along the northern shore of the lake and one campground along the eastern shore. The
rest of the shoreline is primarily forested and scattered with shoreline properties within a
historically agricultural watershed. French Pond has had fewer cyanobacteria advisories
than Silver Lake and Keyser Pond with just two from 2017 through 2021 which lasted 22
and 60 days, respectively. However, French Pond had many advisories from 2006 through
2017 (eight in total). Species of cyanobacteria present have included Aphanizomenon,
Dolichospermum, Microcystis, and Woronichinia. French Pond did not experience any
blooms of cyanobacteria in 2022 (Table 1).

2.1.2. Greenwood Pond

Greenwood Pond covers 20 hectares in Kingston, NH and has a maximum depth of 4 m
(Table 1) [37]. The water was accessed from the town beach on the eastern shores of the lake.
Classified as a mesotrophic lake, Greenwood Pond has experienced cyanobacteria blooms
since 2004 which have become more frequent since 2017. There have been four separate
NHDES advisories for CHABs from 2017 through 2021. Each has lasted between 4 and
34 days (average of 14 days). Species of cyanobacteria present have included Planktothrix,
Oscillatoria, and Dolichospermum. In 2022, Greenwood Pond experienced a short bloom
of cyanobacteria, with the advisory lasting only 8 days from the end of July into August
(Table 1). The bloom was reported to be of scattered surface accumulations of Planktothrix.
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2.1.3. Keyser Pond

Keyser Pond covers 7 hectares in Henniker, NH and has a maximum depth of 5 m
(Table 1) [37]. Unlike Silver Lake, there is no state beach area, but a state operated boat
launch is present along with a privately owned campground and cottage rentals which
attract seasonal visitors. Keyser Pond is classified as a mesotrophic lake. Within the past
five years, 2017 through 2021, Keyser Pond has had four advisories which have lasted
between 22 and 112 days, with an average of 65 days. The first listed advisory was posted
in 2007, but the second was not until 2015. Since then, cyanobacteria blooms at Keyser
Pond have followed an increasing trend in duration. Species of cyanobacteria present have
included Chrysosporum, Dolichospermum, Oscillatoria, Planktothrix, and Spirulina. In
2022, Keyser Pond experienced a full lake bloom primarily of Chrysosporum for 34 days
from July into August (Table 1). This bloom drastically decreased the depth of secchi disk
transparency measurements and consisted of some Planktothrix and Dolichospermum.

2.1.4. Showell Pond

Showell pond spans 8 hectares in Sandown, NH and has a maximum depth over
3 m (Table 1) [27] With permission, sampling was conducted from the lawn of a private
residence along the eastern shores of the lake at the end of Showell Pond Lane. Classified as
a mesotrophic lake, Showell Pond has recorded consistent blooms of cyanobacteria dating
back to 2006 [38]. There were only two NHDES advisories from CHABs from 2017 through
2021. The advisories lasted 76 days in 2018 and 90 days in 2019 (an average of 83 days).
Species of cyanobacteria present have included Dolichospermum, Coelosphaerium, Oscil-
latoria, and Aphanizomenon. In 2022, Showell Pond experienced a bloom similar to Keyser
Pond. Lasting for 56 days, the dominant species were Chrysosporum, Planktothrix, and
Spirulina, and turned the entire lake a greenish-brown color (Table 1).

2.1.5. Silver Lake

Silver Lake spans 16 hectares in Hollis, NH and has a maximum depth of 7 m
(Table 1) [37]. The Silver Lake State Park beach area is located along the northern shores of
the lake. The wind predominantly blows towards the State Park beach, bringing with it
accumulations of substances on the surface of the lake. Classified as an oligotrophic lake,
Silver Lake has experienced cyanobacteria blooms since 1991 [39]. Silver Lake has had a
total of nine separate NHDES advisories for CHABs from 2017 through 2021. Each has
lasted between 5 and 89 days (average of 37 days). Species of cyanobacteria present have
included Microcystis and Dolichospermum. Woronichinia were also present in 2021 and
2022. In 2022, Silver Lake experienced two separate advisories, one from June into July, and
the second from August into November. In total, these advisories were active for 140 days
(Table 1). The 2022 blooms were dominated by species of Microcystis and Dolichospermum
with some presence of Woronichinia. Surface scum appeared along the state park beach
and swimming area.

2.1.6. Tucker Pond

Tucker Pond covers 22 hectares in Salisbury, NH and has a maximum depth of 6 m
(Table 1). With permission, sampling was conducted from the dock of a private residence
along the eastern shoreline on Sixth Road. Classified as a mesotrophic lake, Tucker Pond
has had only three listed NHDES advisories from CHABs, all of which have occurred since
2019 [40]. These advisories lasted between 14 and 132 days (average of 68 days). Woroni-
chinia is the dominant species present. In 2022, Tucker Pond experienced a cyanobacteria
bloom lasting 99 days from August through November. Consisting of Worochinia and
Microcystis, this bloom appeared as surface accumulations along the south and southwest-
ern shorelines.
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2.2. Workflow

Data analysis for this project followed two separate workflows which converge as
seen in Figure 2. On each sampling day, UAS imagery was collected prior to the collection
of water samples. UAS imagery was processed and spectral indices were developed and
applied to the imagery. Water samples were analyzed for cyanobacteria speciation and cell
count, phycocyanin and phycoerythrin concentrations, and chlorophyll-a concentration.
The workflow then converges for the statistical analyses of classification and regressions
to link the water quality data to the UAS imagery. The results of these analyses were
evaluated for accuracy and adjusted as needed.

Figure 2. Flow chart of methodology. Gray boxes are part of the UAS methodology, blue boxes are
part of the water quality methodology, and white boxes are part of the data analysis.

2.3. UAS Methodology

A FAA Part 107 licensed remote pilot in command operated the UAS with at least one
visual observer present each time. The necessary permit was acquired to fly the UAS from
Silver Lake State Park. A DJI Matrice 300 RTK (Nanshan, Shenzhen, China) was used as
the primary aerial vehicle with the MicaSense RedEdge-MX and RedEdge-MX Blue Dual
Camera Imaging System (Seattle, WA, USA) (Figure 3). This dual sensor consists of two
cameras which function simultaneously to capture a total of 10 bands (i.e., wavelengths)
of electromagnetic energy (Table 2). The UAS flight paths were preprogrammed using
the DJI Pilot software on the enterprise smart controller for the Matrice 300 RTK. Because
the sensors were not in communication with the aircraft, a smart device was connected to
the Wi-Fi of the sensors to set the trigger speed. Initially, each flight was flown at 100 m
above ground level, with 80% forward and side overlap of images along and between flight
lines. Flight lines are flown parallel to each other over the entire area of study as shown in
Figure 1. At a speed of 10 m/s, the sensors captured images approximately every 1.31 s. On
and following 29 June, all flights were flown at 120 m above ground level with 80% forward
and side overlap, and at a speed of 10 m/s. This adjustment was implemented to aid with
post-processing difficulties in the imagery from flying over water. This processing was
conducted using Agisoft Metashape (St. Petersburg, Russia). Each pixel covered roughly
9 cm2 of ground area for flights flown 100 m above ground level, and 11 cm2 of ground area
for flights flown at 120 m above ground level. Sky conditions varied throughout the season
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for the flights and included overcast and bright days. Therefore, all images were corrected
for solar illumination using the downwelling light sensor 2.0 at the time of capture to
ensure all image dates were directly comparable. Wind speed below 8 m/s was required
to reduce the risk of flying an unstable aircraft. Total flight times varied depending on
the lake size but were between 12 and 27 min, all of which required only a single set of
batteries per flight.

  
(a) (b) 

Figure 3. DJI Matrice 300 RTK with calibration plate (a) and MicaSense RedEdge-MX Dual Camera
Imaging System with downwelling light sensor 2.0 (b).

Table 2. Wavelengths (nm) captured by the MicaSense RedEdge-MX Dual Camera Imaging System
with centers and band widths (nm) identified in parenthesis.

Coastal Blue Blue Green Green Red Red Red Edge Red Edge Red Edge NIR

444 475 531 560 650 668 705 717 740 842
(28) (32) (14) (27) (16) (14) (10) (12) (18) (57)

2.3.1. Image Processing

The objective of image processing was to extract average pixel values from each band
captured by the sensor for a specified area surrounding each water sampling point. Three
software packages were used: Agisoft Metashape, eCognition (Munich, Germany), and
ArcGIS Pro (Redlands, CA, USA). Images were loaded into Agisoft Metashape to create
an orthomosaic by stitching the individual images into a single scene (i.e., a mosaic). In
Agisoft Metashape, all the images were calibrated using an image of the reflectance panel
captured on the day of sampling to enable direct comparison between image dates. A
batch processing workflow was then conducted to (1) align the images, (2) build a dense
cloud, (3) build a digital elevation model, and (4) construct the orthomosaic. The final
orthomosaic was given the WGS84 geographic and UTM 19N projected coordinate systems
and exported as a tiff file. Meanwhile, the GPS point of each water quality sampling
location was collected using the Fulcrum® (San Francisco, CA, USA) data collection mobile
application and input into ArcGIS Pro 3.0 with the same coordinate systems. A 2 m2 buffer
was created around each point which was roughly equivalent to half the canoe’s length
squared (approximately 600 pixels). Once a day of sampling had both an orthomosaic tiff
file and a sampling location buffer shapefile, eCognition was used to extract average pixel
values per band from within the buffer area for each sampling location on the imagery. A
ruleset was created for the vector-based segmentation and applied using the buffer areas at
the pixel level. The vector-based segmentation overlays the buffered polygon data layer
on the orthomosaic. It then identifies each pixel of the orthomosaic which falls within or
touches each buffered area. The data from these pixels were then extracted. Attributes for
each 2 m2 sampling area included brightness, mean, and standard deviation for each of
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the ten bands. These attributes were then exported as a new shapefile. This new shapefile,
containing only the 2 m2 sampling areas and image attribute data, was then loaded back
into ArcGIS Pro 3.0 to read and export the attribute data into Microsoft Excel. This process
was repeated 21 times, once for each sampling day.

2.3.2. Calculating Derivative Bands

For aquatic studies of cyanobacteria, chlorophyll-a, and/or submerged aquatic vegeta-
tion, scientists have used the NDVI, normalized difference red edge index (NDRE), BNDVI,
coastal blue normalized difference vegetation index (cBNDVI), normalized green blue
difference index (NGBDI), normalized green red difference index (NGRDI) (aka NDGI),
surface algal bloom index (SABI), florescence line height—blue (FLH Blue), SHI index
(named after the author Kun Shi), and cyanobacteria index (CI) derivative bands (Table 3).
The CI identifies the presence and concentration of chlorophyll-a (when centered around
681 nm) through the spectral reflectance of the sample (Equation (1)) [13,25]. When using
alternative pigments to identify the CI, such as phycocyanin, the spectral shape is centered
around 655 nm [25,26]. Due to slightly different bands captured in this study compared to
others which used the CI, two versions of the CI were used, both of which were slightly
different than in the previously referenced studies.

For this study, 78 versions of 10 derivative bands were created (Table 3, Appendix C).
These derivative bands were selected based on those used in existing aquatic-UAS studies
and algebraically calculated from the extracted band averages per water sample site using
Microsoft Excel. A complete list of indices used can be found in Appendix C.

Table 3. Derivative bands used and/or created. See Appendix C for complete list of derivative bands.
* See Equation (1).

Derivative Band Description General Equation Source

NDVI Normalized difference vegetation index (NIR − Red)/(NIR + Red) [21,22,24,41]

NDRE Normalized difference red edge (NIR − RedEdge)/(NIR + RedEdge) [23,42]

BNDVI Blue normalized difference vegetation index (NIR − Blue)/(NIR + Blue) [21]

cBNDVI Coastal blue normalized difference vegetation index (NIR − Coastal Blue)/(NIR + Coastal Blue) [21]

NGBDI Normalized green blue difference index (Green − Blue)/(Green + Blue) [43]

NGRDI aka NDGI Normalized difference glacier index (Green − Red)/(Green + Red) [24]

SABI Surface algal bloom index (NIR − Red)/(Blue + Green) [23,44]

FLH Blue Fluorescence line height Green − (Red + (Blue − Red)) [23,45]

SHI The author’s last name is Shi (eRed − eNIR)/(eRed + eNIR) [23,46]

CI * Cyanobacteria Index SS = (λ − λ−)/(λ+ − λ−) [25,26]

Equation (1): Formula for calculating the cyanobacteria index centered for phyco-
cyanin. SS represents the spectral shape, λ represents 655 nm, λ+ represents the adjacent
bands longer than 655 (for example, 681 nm), and λ− represents the adjacent bands shorter
than 655 nm (for example, 620 nm). Cyanobacteria is present when the SS is greater than 0.
Equation modified from Mishra et al. (2019) and Sharp et al. (2021) who both needed to
compensate for atmospheric reflectance from satellite imagery [25,26].

SS = (λ − λ−)/(λ+ − λ−) (1)

2.4. Water Quality Sample Methodology
2.4.1. Water Sample Collection

Water sample collection immediately followed each UAS flight with as little delay as
possible (beginning within minutes). Sampling sites within each waterbody were selected
using a random stratified sampling approach. If bloom conditions upon arriving at a
waterbody were likely present from a visual standpoint, or known according to the NHDES
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Cyano Mapper, sampling locations were selected to target areas which appeared to have
high concentrations, while spacing them out throughout the lake.

After arriving at a sampling site, the canoe was anchored to prevent drift. Per com-
mon lake water quality monitoring practices, a reading of surface water temperature and
dissolved oxygen (percent and concentration) was collected using a YSI ProODO (Yellow
Springs, OH, USA) which was routinely calibrated each sampling day. If the site was
also the deep spot of the waterbody, a full temperature and dissolved oxygen profile was
recorded. A water clarity measurement was then collected using a secchi disk and view
scope off the shady side of the canoe. Notes on date, time, sky condition, and sample depth
were also entered into an electronic data sheet on the Fulcrum® mobile application. These
data were collected following standard practices but were determined not to be needed
as part of the final data analysis in this study. The GPS location along with photos were
collected at each site. A two-meter integrated core sample was collected of lake water at
each site (if the site was >3 m deep and Secchi Disk Transparency (SDT) > 2 m deep) and
mixed before pouring into the sample bottles for laboratory analyses. However, this case
was not common. If the site was <3 m deep or SDT < 2 m, a subsurface grab was conducted
with a mixing bucket which was then mixed and poured into the sample bottles.

Five of the six lakes included in this study experienced cyanobacteria blooms in 2022
according to the NHDES Harmful Algal Bloom Monitoring Program ranging from 8 to
140 days in total (Table 1). Silver Lake was the only one to experience two bloom advisories.
In total, 7, 7, and 4 UAS flights occurred, with 45, 63, and 16 water samples collected from
Silver Lake, Keyser Pond, and French Pond, respectively. One UAS flight occurred and 25,
26, and 12 water quality samples were collected at Greenwood Pond, Showell Pond, and
Tucker Pond, respectively. Twenty-two water quality samples were not used for the water
quality to UAS spectral data analysis due to poor reflectance data (Table 4).

Table 4. Dates of sampling in 2022 with the total number of samples collected per lake.

Lake Sample Dates Total UAS-Water Samples

Silver Lake 3 May, 20 May, 6 June, 15 June, 21
June, 29 June, 11 July, 10 August 43

Keyser Pond 12 May, 25 May, 15 June, 7 July, 20
July, 27 July, 16 August 63

French Pond 12 May, 25 May, 15 June, 7 July 13

Greenwood Pond 3 August 25

Showell Pond 25 August 26

Tucker Pond 2 September 9

2.4.2. Cyanobacteria Speciation and Cell Counts

A compound light microscope and a gridded Sedgewick–Rafter slide were used for the
microscopy analysis of cyanobacteria speciation and cell counts. Samples were refrigerated
and analyzed within 48 h of collection. The sample was inverted three times before 1 mL
was extracted and pipetted on the slide. Results per sample included the total number of
cells per genus, and the total number of cells per milliliter of sample.

2.4.3. Fluorometry

Analysis of phycocyanin and phycoerythrin was conducted per guidelines set by the
UNH Center for Freshwater Biology using a FluoroQuik (Amiscience Corporation, Fre-
mont, CA, USA) (Appendix A). Prior to reading samples, the FluoroQuik was blanked with
deionized water, standards were measured, and pigment concentrations were recorded.
Approximately 3 mg/L of sample was added to the cuvette and placed inside the Fluoro-
Quik. Each sample was run in triplicate to calculate a sample mean for both phycocyanin
and phycoerythrin relative concentrations in μg/L.

204



Remote Sens. 2023, 15, 2839

2.4.4. Chlorophyll-a Extraction

Analysis of chlorophyll-a concentration was conducted per guidelines set forth by the
UNH Water Quality Analysis Laboratory using a hot ethanol extraction and spectropho-
tometric analysis. According to the laboratory standard operating procedure (SOP), “this
method has the benefit of extraction without grinding, avoiding toxic methanol or acetone
exposure” (Appendix B). After the hot ethanol bath preparation the day prior and settling
overnight, the absorbance of each sample was measured at 665 nm and 750 nm before and
after the addition of 0.25% HCl. Using these values along with the total volume of the
sample that was able to be filtered, total chlorophyll-a concentration in μg/L was calculated.

2.5. Statistical Analysis

Field data entry was conducted using the Fulcrum® mobile application and then
input into Microsoft Excel. Statistical analyses for water quality parameter simple linear
regressions were performed using R (Indianapolis, IN, USA). This step was important to
identify which water quality parameters had significant relationships to cell concentration,
the parameter used by the NHDES for issuing cyanobacteria advisories. The water quality
parameters with significant linear relationships in our dataset were used for the random
forest classification algorithm to identify areas of the waterbody that are above or below
thresholds set by agencies and/or this study.

Classification of the UAS imagery and indices for each water quality parameter was
performed using the random forest classification algorithm in Python (Python Software
Foundation, Wilmington, DE, USA). This algorithm uses a supervised machine learning
process with two parts. First, the user inputs training areas of known data to teach the
algorithm. Then, based on these training areas, the computer algorithm classifies the
remaining data. The accuracy of the classification is then determined from the water
samples set aside independent of the training data. The parameters within the random
forest Python script yielded 500 “trees” and were repeated 20 times to produce an average
overall classification accuracy.

Each viable water quality parameter, cell concentration, chlorophyll-a, and phyco-
cyanin, were simplified (i.e., recoded) into classes. For recreational waters, the NHDES
currently issues cyanobacteria advisories when cell concentrations exceed 70,000 cells/mL
or if over 50% of the cells within an algal bloom are cyanobacteria. Cell concentration
classes followed the State of New Hampshire 70,000 cells/mL threshold, with “Low” be-
ing samples less than the threshold, and “High” being samples equal to or greater than
the threshold. Classes for chlorophyll-a were selected based on the NHDES designated
chlorophyll-a concentrations for trophic classes and the World Health Organization (WHO)
chlorophyll-a thresholds for potential exposure to cyanotoxins [36,47]. Mesotrophic and
oligotrophic lakes are defined by having chlorophyll-a concentrations less than 11 μg/L
(in addition to other factors), while eutrophic and nuisance statuses are applied to lakes
with greater than 11 μg/L of chlorophyll-a [36]. Chlorophyll-a concentrations of 10 μg/L
or less indicate low to not low risk of exposure, while concentrations at or above 10 μg/L
indicate moderate to high risk of exposure to algal toxins [37]. Therefore, chlorophyll-a
concentrations less than 10 μg/L were identified as “Low”, and concentrations greater than
or equal to 10 μg/L were identified as “High” for this study. Lastly, classes for phycocyanin
were created following guidelines set in Almuhtaram et al., 2018. Because a significant
correlation was found between phycocyanin and cell concentration, the equation of the line
of best fit (y = 0.0005x + 19.822) was used with 70,000 input as the x value to determine the
threshold for “High” and “Low” phycocyanin concentrations as 54.822 μg/L. Each water
quality parameter was divided into only two classes to maintain the necessary 60 samples
per class for accurate classification using an error matrix. An error matrix is the standard
methodology for recording thematic accuracy in remote sensing [48].

For the random forest classification analysis, the reference data (water quality samples)
and the UAS data were divided randomly into 50% for training the algorithm and 50%
for validation or assessing the accuracy of the result. In other words, the algorithm is fed
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the entire dataset of paired water sample results (Highs or Lows for one water quality
parameter at a time), with the UAS reflectance and indices (UAS data) per sample as the
input to the model. The random forest classification algorithm then randomly subsets 50%
of the data to train the model. It learns, based on the UAS data, the resulting water quality
classification is either High or Low for each sample in the training subset. The remaining
50% of the dataset is then used for validation. The algorithm then takes the input UAS data
and assigns water quality classifications based on what it learned with the training subset
(to produce the output of the model). The accuracy of the model (i.e., properly assigning
samples as either High or Low compared to the known water quality results) is determined
using an error matrix [49].

Other variations of training/validation (45% and 55%) were also selected by adjusting
the validation size in the python script from 0.5 to 0.45 then 0.55 but produced marginally
less accurate results. The alternate validation sizes were tested per standard best practices
when conducting the random forest classification algorithm to produce the highest possible
accuracies [50]. Additionally, samples with poor reflectance data were initially left in but
then removed. Poor reflectance samples were determined if a sample site’s 2 m buffer
contained pixels affected by orthomosaic holes, sun glint, emergent vegetation, or shoreline.
These samples were identified and removed when the band standard deviation for pixels
within the 2 m area was over 100 DN. Lastly, the random forest algorithm was run with
all 78 UAS parameters included, with the 10% least important features removed, and with
only the top 10% most important features included. The condition that produced the
highest overall accuracies for each water quality parameter were when the sample set was
divided into 50% training and 50% validation, with poor reflectance samples removed,
and with only using the top 10% most important features. The random forest algorithm
returned high overall accuracies with a smaller standard deviation for each water quality
parameter. Accuracy results are presented as error matrices from which overall, user’s, and
producer’s accuracies were calculated [49]. Simple linear and logarithmic regressions for
the most important UAS bands and indices (found through the random forest algorithm)
to each water quality parameter were conducted in Microsoft Excel. Determining which
features were most important was based on the average feature importance score produced
through the random forest classification and computing the average of the 20 iterations per
water quality parameter. This analysis indicates which UAS features contribute most to the
classification of a sample being “predicted” from those used to “train” the model. Simple
regressions were calculated simply because this is the approach many similar studies
apply [10,21–24,26,31,32], but produced less desirable results than from the random forest
classification algorithm.

Lastly, to visually illustrate the random forest classification algorithm, the model was
applied to every pixel of a waterbody to classify the water quality throughout the lake.
UAS data from every pixel over a lake, one day at a time, were extracted (reflectance
values per band) or calculated (indices) for the top 10% most important features iden-
tified from the random forest classification algorithm (a total of 8 features). The lake
pixels were then classified as either “High” or “Low” for each of the three water quality
parameters separately.

3. Results

3.1. Water Quality Parameter Relationships

Table 5 shows the correlations between the four water quality parameters. A significant
linear relationship exists between many of the parameters but is not consistent across all
lakes. Overall, there is an emerging trend between cell concentration and phycocyanin, cell
concentration and chlorophyll-a, and phycocyanin and chlorophyll-a. Although significant
results were found between cell concentration, chlorophyll-a, and phycocyanin, phyco-
erythrin did not follow suit except for Silver Lake (Table 5). Because there were only four
water samples collected at Silver Lake exceeding the state threshold (cell concentration),
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these results were not deemed suitable to use phycoerythrin as a surrogate measurement
for cell concentration.

Table 5. Simple linear regression outputs between water quality parameters (R2 values). Bold,
italicized, and blue values indicate significant results (p < 0.01). Cells = cell concentration (cells/mL),
Chl-a = chlorophyll-a concentration (μg/L), PC = phycocyanin concentration (μg/L), PE = phyco-
erythrin (μg/L). Datapoints for cell concentrations over 1 million (n = 3) were removed for this
analysis. For example, Cells/PC is the simple linear regression between cell concentrations and
phycocyanin concentrations.

Number of Samples Cells/PC Cells/PE Cells/Chl-a PC/PE PC/Chl-a PE/Chl-a

All Lakes 184 0.76 −0.0076 0.94 0.14 0.69 −0.023

French Pond 18 0.98 −0.26 0.29 −0.27 0.30 −0.079

Greenwood Pond 25 −0.16 −0.36 0.088 0.093 0.72 −0.041

Keyser Pond 61 0.76 −0.14 0.78 −0.094 0.93 −0.15

Showell Pond 25 −0.30 0.029 0.097 0.32 −0.29 −0.22

Silver Lake 43 0.97 0.72 0.60 0.79 0.61 0.36

Tucker Pond 12 −0.72 0.24 0.031 −0.37 0.14 −0.14

3.2. Random Forest Classification Algorithm

Building a relationship between data collected by the UAS and the water quality
data was conducted using the random forest (RF) classification algorithm. The results for
each water quality parameter are shown in Table 6. The average accuracies for the three
water quality parameters were 92.9%, 87.4%, and 91.7% with standard deviations of 3%
which shows the random forest classification algorithm produced both accurate and precise
results to determine if samples were above or below state thresholds (properly classified
within the High or Low classes).

Table 6. Overall classification results and standard deviations from the random forest (RF) clas-
sification algorithm for each water quality parameter. Results were generated using the top 10%
most important features identified from the RF algorithm, with samples that had poor/obstructed
reflectance values removed. Average overall accuracies were calculated from 20 repetitions.

RF Average Overall Accuracy
RF Standard

Deviation

Cell Concentration (cells/mL) 92.9% 3%

Chlorophyll-a Concentration (μg/L) 87.4% 3%

Phycocyanin Concentration (μg/L) 91.7% 3%

3.3. Simple Regressions

The R2 value from a simple regression explains how much variation in the water
quality parameter value can be explained by the UAS parameter. Higher R2 values were
generated from logarithmic regressions than linear and are shown in Table 7. The UAS
parameter legend for index equations can be found in Appendix C. Table 7 shows the
results from the simple logarithmic regressions for the top 10% of the most important
features (UAS bands and indices) of the 78 features originally used for each classification to
the selected water quality parameters.
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Table 7. Simple logarithmic regression results for the top 10% most important features of the
UAS parameters from the random forest classification algorithm for each water quality parameter.
* Indicates p < 0.01, ** indicates p < 0.001. The scatter plots for the highest three R2 values per water
quality parameter are provided in Appendix D.

Water Quality Parameter Regression Equation R2

Log Cell Concentration (cells/mL)

=6.5242 × NGBDI_4 + 2.476 31% **
=7.325 × NGRDI_4 + 1.717 28% **
=−0.003 × Blue_475 + 4.684 26% **

=−0.061 × Green_Stdev_531 + 4.510 19% **
=−0.002 × Green_531 + 4.487 18% **

=−0.042 × Green_Stdev_560 + 4.454 16% **
=−0.034 × Red_Stdev_650 + 4.242 12% **

=−0.004 × CI_2 + 3.409 0%

Log Chlorophyll-a Concentration
(μg/L)

=−0.002 × Blue_475 + 1.904 24% **
= 3.238 × NGRDI_4 + 0.563 23% **

=−0.001 × Green_531 + 1.901 22% **
=3.146 × NGRDI_3 + 0.713 14% **

=−0.001 × FLHblue_2 + 1.314 4% *
=−0.598 × CI_1 + 1.854 4% *

=−0.001 × FLHblue_1 + 1.334 3%
=−0.000 × CI_2 + 1.308 0%

Log Phycocyanin Concentration
(μg/L)

=2.824 × NGBDI_4 + 0.726 27% **
=−0.001 × Blue_475 + 1.727 27% **
= 3.137 × NGRDI_4 + 0.412 24% **

=−0.001 × Green_531 + 1.687 22% *
=−0.028 × Green_Stdev_531 + 1.642 19%
=−0.022 × Green_Stdev_560 + 1.669 19%
=−0.018 × Red_Stdev_650 + 1.575 16%

=−0.002 × CI_2 + 1.131 0%

3.4. Application of Results to Keyser Pond

The most complete dataset portraying before, during, and after conditions of a
cyanobacteria bloom in 2022 was for Keyser Pond. Here, 15 samples were collected from
the 12 May 2022 through 15 June 2022 prior to the onset of the bloom and subsequent
advisory. Once the cyanobacteria bloom had established, 36 samples were collected from
7 July 2022 through 27 July 2022. Twelve more samples were collected on 16 August 2022
after the bloom had subsided. The cyanobacteria bloom caused the water to turn a greenish
brown color for the duration of the bloom. Figure 4 illustrates this trend through the water
quality data over the course of the field season. Ideally, this pattern was desired for each
lake for this study to capture UAS data from blooms with varying concentrations, but only
occurred at Keyser Pond.

A visual application of the random forest classification algorithm applied to Keyser
Pond before, during, and after the 2022 cyanobacteria advisory is provided in Figure 5
(15 June through 16 August). Each pixel is classified as either “High” (above the NHDES
threshold for cyanobacteria, ≥70,000 cells/mL) or “Low” (below the NHDES threshold for
cyanobacteria < 70,000 cells/mL). Technical difficulties were experienced with the UAS’
internal GPS on 20 July which resulted in an incomplete orthomosaic as the flight was
terminated prematurely for safety. Shadows from trees along the north-eastern shore also
affected the model’s results and can be seen on 20 and 27 July.
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Figure 4. Sampling day averages for cyanobacteria concentration (cells/mL), chlorophyll-a (chl-a)
concentration (μg/L), and phycocyanin (PC) concentration (μg/L) for Keyser Pond over the course of
the sampling season. Samples collected from floating clumps detached from the benthic mat bloom
were not included here (n = 2, cell concentrations were over 1 and 4 million cells/mL).

 

Figure 5. Cell concentrations (cells/mL) per pixel classified from the random forest classification
algorithm as High or Low to represent areas of Keyser Pond exceeding the NHDES threshold for
cyanobacteria (70,000 cells/mL) before (15 June), during (7 July, 20 July, and 27 July), and after (16
August) the 2022 NHDES cyanobacteria bloom advisory.
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4. Discussion

Cyanobacteria blooms have been a growing concern for many lake stakeholders in
New England, particularly in New Hampshire. Monitoring cyanobacteria blooms has
become an increased need in many lake communities. Contrary to traditional water quality
sampling, monitoring cyanobacteria blooms using a UAS allows the user to assess the entire
waterbody, reduces sample analysis and processing times, and increases sampler safety. The
use of a very high spatial resolution multispectral camera flown on a DJI Matrice 300 RTK
was investigated to capture reflectance values centered around ten different wavelengths
of light of lakes known to experience cyanobacteria blooms.

4.1. Explanation and Interpretation of Results

Through building paired datasets of both water quality and UAS spectral data, multi-
variate classification and regression analyses were conducted. Most importantly, discerning
if a sample was above or below the New Hampshire state threshold for cyanobacteria cell
concentration yielded an overall accuracy of 93%, a chlorophyll-a concentration above or
below 10 μg/L had an overall accuracy of 87%, and a phycocyanin concentration above or
below 54.8% was 92% accurate overall. Therefore, this process could help lake stakeholders
make informed management decisions regarding closures of certain use areas of the wa-
terbody throughout the bloom season. Looking at the random forest algorithm results, a
potential explanation for the lower overall accuracy for chlorophyll-a could possibly be
attributed to the method in which chlorophyll-a was extracted. During this laboratory
procedure, water samples were filtered through a 47 mm filter with pore sizes of 0.7 μm
(Appendix B). This was the only analysis to include a filtration step. Although unlikely, it
is possible that some dissolved chlorophyll-a, less than 0.7 μm, was able to flow through
the filter rather than be trapped by it, thus not being measured in the hot ethanol and
fluorescence portion of the analysis. It is also possible that chlorophyll-a was captured
on filters from organisms other than cyanobacteria, including green algae or plant cells as
chlorophyll-a is not exclusive to cyanobacteria.

Multivariate regressions proved difficult with this dataset due to both structural
multicollinearity and data multicollinearity in the spectral data. Simple regression was
the preferred method for similar studies. Variation in cell concentrations, chlorophyll-a
concentrations, and phycocyanin concentrations can be poorly explained by individual
spectral features (Table 7). Simple regressions were calculated for the top ten percent of
the most important features (determined from the average feature important scores from
the random forest algorithm). As shown in Table 7, the reflectance data from the Blue
475 wavelength, NGBDI_4, and NGRDI_4 indices were the three most important features
for classifying cell concentrations into “High” and “Low” categories based on the UAS or
spectral data. The Blue 475 band is part of the NGBDI_4 equation, which also contains the
green 560 band (Appendix C). The Green 560 band is also found in the NGRDI_4 equation
along with the red 668 band. However, the Green 560 band alone was not found to be within
the top 10% of the most important features. The NGRDI_4, Green 531, and FLHblue_2
features were the most important features for classifying chlorophyll-a concentrations into
high and low categories based on the spectral data. The FLHblue_2 equation uses the
Blue 444, Green 531, and Red 650, 668 bands. Lastly, the Blue 475, NGBDI_4, and CI_2
features were most important for classifying phycocyanin concentrations into high and low
categories based on spectral data. The CI_2 contains data from the red 650 and 668 bands,
in addition to the red edge at 705 nm. Four of the total seventy-eight features were found to
be in the top 10% most important features for all three water quality parameters: Blue 475,
NGRDI_4, CI_2, and Green_531 (Table 7).

Identifying which spectral features were most important for studying cyanobacteria
concentrations with surrogate water quality parameters can guide emerging studies. Based
on these findings, future studies should use sensors capable of capturing imagery from or
near 444 nm, 475 nm, 531 nm, 560 nm, 650 nm, 668 nm, and 705 nm; and especially, those
in bold. The MicaSense RedEdge-MX Dual Camera Imaging System senses wavelengths
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comparable to the Landsat 8 and Sentinel 2 satellites [51,52]. The important similarities of
the MicaSense sensor to the Sentinel 2 (S2) satellite include the 475 band (490 S2), 560 band
(560 S2), and 668 (664 S2).

The collection and processing of the water quality samples took over 4.5 times longer
than the collection and processing of the UAS data. The three most time-consuming com-
ponents were determining cell and chlorophyll-a concentrations, and physically collecting
each water quality sample via canoe. Other studies have evaluated the applicability and
reliability of using phycocyanin as indicators for cyanobacteria rather than relying on the
time intensive cell counting for cell concentration [10,29,30,53,54]. This study showed sig-
nificant relationships between cell and phycocyanin concentrations at French Pond, Keyser
Pond, Silver Lake, Tucker Pond, and for the entire dataset. The ability to use fluorometry to
measure phycocyanin rather than the time intensive method of counting cells to determine
cell concentrations or filtering and analyzing samples to measure chlorophyll-a concentra-
tions would drastically improve the speed at which analyses could be made and results
shared with communities. In the time it took to collect all the water samples alone, the
entire UAS methodology could have been conducted and completed (Figure 6). This time
comparison does not include tasks shared by both processes which include time traveled
to each lake, communication with lake residents and stakeholders, or data analysis.

Figure 6. Approximate comparison of the amount of time each task took to complete. Blue sections
represent those associated with the collection and processing of water quality parameters. Grayscale
sections represent those associated with the collection and processing of UAS parameters. Traditional
water quality tasks took roughly 310 h to complete while UAS tasks took roughly 65 h to complete.

4.2. Limitations

Five of the six lakes included in this study experienced cyanobacteria blooms in 2022
according to the NHDES Harmful Algal Bloom Monitoring Program (Table 1). However,
samples showing bloom forming conditions were only collected at Keyser Pond, Showell
Pond, and Silver Lake. There were no collected samples indicating bloom conditions from
French Pond, Greenwood Pond, or Tucker Pond as follows:

1. French Pond did not have any cyanobacteria blooms during the 2022 field season;
thus no “High” cell concentration samples were collected.

2. The cyanobacteria bloom present at Greenwood Pond in 2022 was very rapid. Once
sampling was conducted, the cyanobacteria bloom had subsided.

3. At Tucker Pond, a pixilated surface bloom of Worochinia and Microcystis was present
in small groupings along the southern and southwestern shores. Notes from lake
residents indicated the bloom only appeared to span roughly 15 feet into the lake. On
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the day of sampling, the concentrations of cyanobacteria were found to be below the
state of New Hampshire’s advisory threshold of 70,000 cells/mL.

4. On par with the Microcystis and Worochinia bloom in Tucker Pond, Silver Lake’s bloom
of primarily Microcystis and Dolichospermum proved difficult to capture. The ribbon
of high cyanobacteria concentrations was isolated to the northern shores along the
state park beach area, extending roughly 20 feet out into the lake at most. As a result,
only a small fraction of the total samples collected throughout the lake surpassed the
state threshold. During the peak of the first advisory on 6/29/22, collected samples
ranged from 1150 to over 3.4 million cells/mL as the bloom was unevenly distributed
throughout the lake.

Samples above the state threshold were collected at Keyser Pond, Showell Pond, and
Silver Lake in 2022. Keyser Pond and Showell Pond contained very homogenous blooms of
primarily Chyrosoporium with some Planktothrix in 2022 which turned the entire waterbodies
a greenish-brown color. These blooms decreased water clarity measured with a secchi disk
and view scope to less than 1 m. Cell concentrations ranged from 70,256 to 182,640 cells/mL
at Keyser Pond, and from 320,400 to 650,250 cells/mL at Showell Pond for the samples
collected during the advisories. Additionally, two samples were collected at Keyser Pond
from clumps of Planktothrix that had broken off the benthic mat and floated to the surface
after the advisory had lifted and ambient water cyanobacteria cell concentrations had
fallen beneath the state threshold. These two samples, collected on 8/16/22, contained cell
concentrations over 1 and 4 million cells/mL.

In addition to lake-specific analyses, this study identified the need for a more detailed
analysis to be completed at a species-specific level. Different species of cyanobacteria
alter lakes in varied ways. As seen in Keyser and Showell Ponds, blooms of Chrysosporum
turned the entire waterbodies a greenish-brown color. This color alteration extended
from the surface down into the water column. Planktothrix appeared in specks within the
water column and as free-floating clumps that had detached from the benthic substrate.
Microcystis was predominately found at Silver Lake in surface scum isolated to a single
section of the waterbody. Often forming early in the morning and mixing with the water
column as the wind and solar angle increased. This scum repeatedly came and dissipated
quickly which caused the advisory to last for months and be illusive to the UAS.

Additional limitations arose in the image collection and processing phases of the UAS
methodology. Due to the battery life of the UAS and not having a motorized boat, smaller
lakes were targeted for this study. Lakes without islands or hidden coves were selected to
maintain line of sight by the UAS pilot in command and to make canoeing to sites easier.
Image processing in Agisoft Metashape proved difficult for waterbodies. Traditionally, tie
points are used to properly align overlapping photos. However, the software struggles
to identify tie points over a homogenous water’s surface, thus creating holes (Figure 7).
The solution to this problem was to fly the UAS higher to include more of the lake edge in
more photos. Although not a perfect solution, this worked well enough for the purposes
of this study. This limitation would be a hindering factor for wide lakes or those that are
very large. Any in-lake features such as islands, floating docks, moored boats, etc. would
help to build tie points over this homogenous surface. This challenge was also stated by
many other scientists [17,24,31–33,55–57]. Due to this issue, ten water quality sampling
points were not included in the UAS spectral data to water quality parameter analyses
because they occurred in the reflectance data “holes.” Another limitation to using UAS
for environmental monitoring is caused by the weather. The DJI Matrice 300 RTK could
only safely fly on days where the wind speed (including gusts) was less than 8 MPH or
3.6 m/s, and there was no chance of rain in the immediate forecast. The wind proved to be
more difficult but was generally at its lowest earlier in the morning. However, this timing
was beneficial since it occurred when the sun angle and glint were at their lowest even
though some edges of the waterbodies were within shadows from shoreline vegetation on
sunny days.
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(a) (b) 

Figure 7. Examples of black and white orthomosaic outputs for Silver Lake created from images
flown at 100 m (a) and 120 m (b). More points in the point cloud were generated from the higher
flying height which resulted in a more complete orthomosaic of Silver Lake.

4.3. Relation to Similar Studies

Contrary to other studies, this study involved multiple visits to various lakes with
different dominant species of cyanobacteria from May to September in 2022. The revisitation
allowed sampling to be conducted during various stages of the bloom cycle, ambient
weather conditions, and seasonal changes in other water quality parameters including total
suspended solids and emergent/submerged aquatic vegetation cover (not measured). It is
difficult to draw usable conclusions from one flight over one lake on one day with only a
handful of collected water samples for analysis without this replication.

However, many scientists have attempted to find correlations between chlorophyll-a
concentrations and spectral indices collected by a UAS equipped sensor with less rigorous
field studies. These studies include correlations to general “algae” [22,24,32], cyanobac-
teria [26], and a toxin associated with some species of cyanobacteria, microcystin [23]. A
variety of sensors including a Parrot Sequoia multispectral sensor, a Canon ELPH 110HS,
and a modified digital camera were used [21,24,32]. Two studies used the MicaSense
RedEdge sensor [22,23]. A variety of indices were built for the chlorophyll-a regressions.
R2 values ranged from 0.004 to 0.88 depending on the index used. The most common index
was a NDVI or modified blue NDVI (BNDVI). The NDVI_3 and BNDVI_3 regressions to
chlorophyll-a in this study produced R2 values of 0.50 and 0.66 respectively but were not of
the most important for the random forest classification. These indices produced R2 values
of 0.15 and 0.16 [23], 0.51 [32], 0.70 [22], 0.77 to 0.87 [21] and 0.88 [24]. These regressions
were also represented in various forms including linear, logarithmic, and polynomial.

The logarithmic R2 values found in this study (Table 7) are comparable to those found
in Sharp et al., 2021 [26]. However, the indices which showed the best correlations for the
lakes studied in New Hampshire were not similar to those used in these referenced studies.
The NGRDI did not produce a significant linear relationship with chlorophyll-a in Kim
et al., 2021, though it produced one of the highest R2 values for chlorophyll-a concentrations
of the most important features for classification in this study [24]. The difference might
be attributed to one being a linear and the other a logarithmic line of best fit, or due to
different wavelengths of light used in the equations per the sensor’s capabilities although
they are both designed to be NGRDI = (green − red)/(green + red). García-Fernández et al.,
2021 used the NGBDI to assess the quality of grape plants for wine production using a
UAS equipped RGB sensor [43]. Although not an aquatic study, the NGBDI was used to
assess alterations to growth due to water stress. This index proved to be very important
for determining the presence of cyanobacteria associated parameters likely because it uses
data from the blue and green portions of the electromagnetic spectrum (Table 7).

The use of phycocyanin concentration for assessing cyanobacteria blooms is growing
in momentum [27]. This study serves as an additional source for verifying the cyanobacte-
ria cell concentration to phycocyanin concentration relationship in addition to Almuhtaram
et al., 2018 and Bertone et al., 2018 [53,54]. Few papers have discussed connecting phy-
cocyanin concentration to UAS spectral features [26,34,35]. Sharp et al., 2021 studied a
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single cyanobacteria bloom in California, USA, over the summer of 2019 [26]. Sharp and
colleagues included four visits to the lake for measurements of chlorophyll-a and phyco-
cyanin paired with the overpass of the Sentinel-3a satellite. One visit corresponded with
a small UAS (sUAS) mission over 12 sites in one portion of the lake when the dominant
taxa were Dolichospermum, Gleotrichia, and Microcystis, but a CI was not recreated due
to the limited wavelengths of the UAS sensor used. The sUAS was only used to map
chlorophyll-a concentrations throughout the study area using a band ratio relationship
from a previously published paper designed for a different waterbody. Pyo et al., 2018
studied the relationship between phycocyanin and chlorophyll-a to hyperspectral imagery
using modeled simulations [35]. They produced R2 values between 0.55 and 0.75 for their
two and three band ratios when plotted against estimated phycocyanin, and between 0.25
and 0.56 for chlorophyll-a. J. M. Ahn et al., 2021 also used a UAS mounted hyperspectral
sensor to form a correlation with phycocyanin concentrations (R2 = 0.85) using a “generic
algorithm” [34].

Using a multivariate classification algorithm approach rather than only simple re-
gressions allowed the overall success of this study to drastically increase. Although less
commonly conducted compared to simple regressions, models for remotely sensed data
to water quality data using machine learning algorithms produce high accuracies across
the board in many recently published studies. Surface sediment classification using an
object-based classification method from UAS multispectral data in tidal flats produced
an overall classification accuracy of 72.8% [58]. Scientists mapping percent cover of emer-
gent vegetation in freshwater waterbodies of California (USA) used the random forest
classification algorithm to discern overall accuracies of 82% [59]. In addition, researchers
studying two lakes in China classified general water quality into three classes based on
designated uses. Using a convolutional neural network with four convolutional layers,
overall accuracies reached 92.5% within their study [60].

The argument can be made from a public safety standpoint for recreational waters,
that knowing if cyanobacteria is classified as above or below regulatory thresholds is
the primary goal. Only then would distinguishing between cell concentrations be useful,
i.e., 25,000 cells/mL and 45,000 cells/mL. In other words, due to the high accuracy a
classification approach produces, stakeholders can know if the waterbody is safe for the
designated use. With the random forest algorithm method, this study found very high
overall and user’s accuracies from 87.4 to 92.9% for the three water quality parameters with
UAS multispectral spectral data.

4.4. Recommendations for Future Research

The integration of using UASs to study and monitor cyanobacteria and harmful algal
blooms is an emerging discipline [61]. Because of its infancy, there is lots of room for
expansion and refinement. This study would be strengthened with a larger dataset, and
one across multiple years. With a larger dataset, including more UAS reflectance data of
cyanobacteria blooms with additional reference (water quality) data validation, one can
then subdivide the dataset by lake, trophic class, or dominant cyanobacteria species and
re-run all algorithms to create lake or species-specific trends. With a larger dataset, the
number of classes used for classification could be increased to further refine assessments.
It would also be interesting to build a dataset from lakes without homogenous blooms
similar to Tucker Pond or Silver Lake. Once the dataset is large enough, images from a
flight over the lake could then be processed to identify the status of the lake at a classified
pixel level. If repeated, this could aid in determining where blooms begin on an individual
lake, and where they reside. This information could be used to complement data gathered
for remediation efforts such as alum treatments, physical removal, or aeration. Lastly,
these findings could be applied to lakes large enough for studies incorporating imagery
from satellites—particularly the Sentinel 2 satellite. This approach would only improve as
satellite technology increases in spatial resolution.
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5. Conclusions

The use of a 10-band multispectral sensor flown on a UAS to detect cyanobacteria
blooms in NH waterbodies was found to be a viable approach to monitor the rising water
quality issue of cyanobacteria blooms. Identifying cyanobacteria blooms through imagery
allows the user to assess the entire waterbody, including coves, littoral areas, and open
water areas which might be inaccessible by land or boat. The use of imagery also promotes
sampler safety through decreased time spent at each waterbody and the elimination of
the need to contact the water for sampling. Additionally, this study identified significant
correlations between cyanobacteria cell concentration to chlorophyll-a concentration, and
cyanobacteria cell concentration to phycocyanin concentrations. These relationships identi-
fied the validity of using secondary parameters to measure cyanobacteria concentration. In
conjunction with the water quality data, the NGBDI_4, NGRDI_4, 475 nm, 560 nm, and
668 nm were found to be the most important indices and bands for identifying the presence
and classification of cyanobacteria, chlorophyll-a, and phycocyanin through the UAS classi-
fication approach. These important features illuminate the ability for this methodology to
be applied to data collected by the Sentinel 2 satellite for larger freshwater waterbodies.
Lastly, the UAS approach took significantly less time to complete than the traditional water
quality sampling and analysis approach, therefore opening the possibility for these results
to be applied in larger area, state, or region-wide studies.
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Appendix A

Cyanobacteria Fluorometric Detection of Whole Lake Water—New Hampshire Lay Lakes Monitor-
ing Program

For cyanomonitoring protocol, freeze all samples before reading, thaw quickly in a
water bath, and read within 20 min of reaching target temperature (21–24 ◦C). It works well
to thaw samples in small batches of 8–12 depending on the efficiency of reading. Be careful
not to over warm the samples. The goal is to bring them up to temp but not over. If you
over-warm samples, place them in a cool water bath to bring them back down to between
21 and 24 ◦C.

General tips: always place the cuvette in the fluorometer in the same orientation and
ensure that there are no air bubbles or drips on the side of the cuvette.

Materials List

Kim Wipes, Waste bucket, DI Water Bottle, Infrared thermometer, bucket for thawing
samples. Cyanofluor: Meter, 4-sided glass cuvette, calibration standard cuvette. Fluoro-
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quick (model number FQ-PC-PE-RATIO-C, serial number DL072501): Methacrylate Plastic
cuvette, charging cable.

FluoroQuik SOP

General Note: The FlouroQuik should be blanked immediately prior to analyzing lake
water samples and both low and high standards should be “read” before proceeding to
lake water samples. The following SOP is applicable to both dual channel instruments:
the chlorophyll/phycocyanin model and the phycocyanin/phycoeurethrin model. The
flouroQuik requires plastic cuvettes and the instrument measures pigments as micrograms
per liter (μg/L)

1. Rinse a cuvette three times with DI water.
2. Fill the rinsed cuvette with DI water and place the cuvette in the FlouroQuik chamber.
3. Press “measure”.
4. Press “blank”.
5. Press “measure” and record both pigment concentrations (e.g., chlorophyll and phy-

cocyanin or phycocyanin and phycoeurythrin).
6. Press “return”.
7. Rinse the cuvette with low pigment standard.
8. Fill the cuvette with low pigment standard.
9. Place the cuvette in the FlouroQuik chamber.
10. Press “measure”.
11. Press “sample”.
12. Record both pigment concentrations.
13. Press “return”.
14. Rinse the cuvette three times with DI water.
15. Rinse the cuvette with high pigment standard.
16. Fill the cuvette with high pigment standard.
17. Place the cuvette in the FlouroQuik chamber.
18. Press “measure”.
19. Press “sample”.
20. Record both pigment concentrations.
21. Press “return”.
22. Rinse the cuvette three times with DI water.
23. Rinse the cuvette with a lake water sample.
24. Fill the cuvette with the lake water sample.
25. Place the cuvette in the FlouroQuik chamber.
26. Press “measure”.
27. Press “sample”.
28. Record both pigment concentrations.
29. Repeat steps 20 through 27 until all lake water samples have been analyzed.
30. Analyze a low pigment concentration and a DI blank as the last two samples and

record the pigment concentrations.

Appendix B

UNH Water Quality Analysis Laboratory Standard Operating Procedure
Chlorophyll-a—Hot Ethanol Extraction and Spectrophotometric Determination
Introduction

This extraction is applied to samples on filters. This method has the benefit of extrac-
tion without grinding and avoiding toxic methanol or acetone exposure [62]. Samples are
analyzed with spectrophotometric analysis at 665 and 750 nm using a 1 cm spectrophotome-
ter cuvette (method in Standard Methods (10200 H) with different extinction coefficient for
ethanol and conversion for chlorophyll per unit area).

Sample Preparation
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1. Filter a known volume of culture onto a Whatman GF/F filter (47 mm). Swirl your
culture before sampling to ensure homogeneous sampling. Keep vacuum level low
(<10 in Hg) to prevent cell breakage and low filtration efficiency.

2. Rinse funnel walls with small amount of DI.
3. Remove the funnel. Fold the filter in quarters and place in aluminum foil. Label foil

and freeze samples until analysis.

Hot Ethanol Extraction (Day 1)

1. Turn on the water bath 30–60 min before starting. Set point to 79 ◦C. Make sure the
water is above the right inner port.

2. Keep samples in dark or low light at all times. If the sample is kept in the dark, only
1.3% of the chlorophyll degrades with the 5 min. hot extraction and 24-h storage.

3. Use test tubes with screw tops that have the tube numbers scribed on the side with a
diamond pencil (ethanol extracts numbers written in sharpie).

4. Place the filter (Whatman GFF, 47 mm) or scraped material in the tube. Add 10 mL
(pipette) of 95% ethanol. Make sure the filter is totally submerged in the ethanol.

5. Mark the location of the meniscus on the side of the tube and place the cap on loosely.
6. Heat the tube in a water bath at 79 ◦C for 5 min, then mix and cool for 24 h in the dark

(at room temperature and can be sealed tightly).
7. Turn off the hot water bath.
8. After extraction, use 95% ethanol to bring up to mark on side of tube if ethanol has

evaporated, then mix.
9. Clear sample by centrifugation, filtration, or settling. We normally use settling.

Spec Analysis (Day 2)

1. Analyze sample with spectrophotometric analysis at 665 and 750 nm using 1 cm
cuvette (Standard Methods). The 7G on spec cuvette faces you.

2. Run the blank.

a. Measure blank (fill the cuvette with 3 mL of ethanol only) every time you
change from 665 nm to 750 nm. Record absorbance. Click set blank.

3. Run a sample.

a. Take the test tube with the filter in it. Tighten the cap and then invert it to mix.
b. Pipette 3 mL of sample into the cuvette.
c. Read the sample at 665.

i. If adsorption is over 1.5 absorbance units, dilute sample. Try 1:10 di-
lution first into cuvette: 300 μL sample and 2.7 mL of ethanol. This
was only needed for one sample which came from a benthic mat of
cyanobacteria that had broken off and floated to the surface.

d. Record value.
e. Set nm type 750, enter.
f. Measure blank again.
g. Measure the sample again but at 750.
h. Record the value.

4. Add 0.1 mL of 0.25 N HCl into 3 mL of sample in spec cuvette of extractant after the
first reading and let sit for 3 min to phaeophytinize all chl before reading (amount of
acid is very important). Measure at 665 and 750 nm again with a blank in between,
record absorbance.

5. Rinse 3x with DI and repeat to Step 3.

Calculations

Calculations are made as follows:

Chlorophyll-a (μg/L) = ((28.78((6650-7500) − (665a-750a))v)/(A/l))1000 (A1)
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where subscript 0 = absorption at the designated wavelength before acid addition and
subscript a = absorption at the designated wavelength after acid addition. v = volume
of extractant used (in liters, 0.01 for this study), A = volume of original sample that was
filtered in mL, and l = path length of cell (1000 for this study).

Appendix C

Table A1. Index equation versions. Refer to Table 3 for citations and descriptions. * Indicates this
parameter is found in the top feature important scores in Table 7.

Index and General Equation Specific Equation ID

CI
(650 − 560)/(668 − 560) CI_1 *

(668 − 650)/(705 − 650) CI_2 *

NDVI = (NIR − R)/(NIR + R)

(842 − 650)/(842 + 650) NDVI_1

(842 − 650)/(842 + 668) NDVI_2

(842 − 668)/(842 + 650) NDVI_3

(842 − 668)/(842 + 668) NDVI_4

cBNDVI = (NIR − cB)/(NIR + cB) (842 − 444)/(842 + 444) CBNDVI

BNDVI = (NIR − B)/(NIR + B)

(842 − 475)/(842 + 475) BNDVI_1

(842 − 444)/(842 + 475) BNDVI_2

(842 − 475)/(842 + 444) BNDVI_3

NDRE = (NIR − RE)/(NIR + RE)

(842 − 705)/(842 + 705) NDRE_1

(842 − 717)/(842 + 717) NDRE_2

(842 − 740)/(842 + 740) NDRE_3

NGBDI = (G − B)/(G + B)

(531 − 444)/(531 + 444) NGBDI_1

(531 − 475)/(531 + 475) NGBDI_2

(560 − 444)/(560 + 444) NGBDI_3

(560 − 475)/(560 + 475) NGBDI_4 *

NGRDI = (G − R)/(G + R)

(531 − 650)/(531 + 650) NGRDI_1

(531 − 668)/(531 + 668) NGRDI_2

(560 − 650)/(560 + 650) NGRDI_3 *

(560 − 668)/(560 + 668) NGRDI_4 *

SABI = (NIR − R)/(B + G)

(842 − 650)/(444 + 531) SABI_1

(842 − 650)/(444 + 560) SABI_2

(842 − 650)/(475 + 531) SABI_3

(842 − 650)/(475 + 560) SABI_4

(842 − 668)/(444 + 531) SABI_5

(842 − 668)/(444 + 560) SABI_6

(842 − 668)/(475 + 531) SABI_7

(842 − 668)/(475 + 560) SABI_8
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Table A1. Cont.

Index and General Equation Specific Equation ID

KIVU = (B − R)/G

(444 − 650)/531 KIVU_1

(444 − 650)/560 KIVU_2

(444 − 668)/531 KIVU_3

(444 − 668)/560 KIVU_4

(475 − 650)/531 KIVU_5

(475 − 650)/560 KIVU_6

(475 − 668)/531 KIVU_7

(475 − 668)/560 KIVU_8

FLH Blue = G − (R + (B − R))

531 − (650 + (444 − 650)) FLHblue_1 *

531 − (650 + (444 − 668)) FLHblue_2 *

531 − (650 + (475 − 650)) FLHblue_3

531 − (650 + (475 − 668)) FLHblue_4

531 − (668 + (444 − 650)) FLHblue_5

531 − (668 + (444 − 668)) FLHblue_6

531 − (668 + (475 − 650)) FLHblue_7

531 − (668 + (475 − 668)) FLHblue_8

560 − (650 + (444 − 650)) FLHblue_9

560 − (650 + (444 − 668)) FLHblue_10

560 − (650 + (475 − 650)) FLHblue_11

560 − (650 + (475 − 668)) FLHblue_12

560 − (668 + (444 − 650)) FLHblue_13

560 − (668 + (444 − 668)) FLHblue_14

560 − (668 + (475 − 650)) FLHblue_15

560 − (668 + (475 − 668)) FLHblue_16

MODIS normalized spectral index [46]
from [23] = (eRed − eNIR)/(eRed + eNIR)

(650 − 842)/(650 + 842) MODIS_NSI_1

(650 − 842)/(668 + 842) MODIS_NSI_2

(668 − 842)/(650 + 842) MODIS_NSI_3

(668 − 842)/(668 + 842) MODIS_NSI_4
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Appendix D

Figure A1. Scatter plots for the three highest R2 values per water quality parameter from the simple
regressions provided in Table 7.
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Abstract: Mapping underwater aquatic vegetation (UVeg) is crucial for understanding the dynamics
of freshwater ecosystems. The advancement of artificial intelligence (AI) techniques has shown great
potential in improving the accuracy and efficiency of UVeg mapping using remote sensing data. This
paper presents a comparative study of the performance of classical and modern AI tools, including
logistic regression, random forest, and a visual-prompt-tuned foundational model, the Segment
Anything model (SAM), for mapping UVeg by analyzing air- and space-borne images in the few-shot
learning regime, i.e., using limited annotations. The findings demonstrate the effectiveness of the
SAM foundation model in air-borne imagery (GSD = 3–6 cm) with an F1 score of 86.5% ± 4.1% when
trained with as few as 40 positive/negative pairs of pixels, compared to 54.0% ± 9.2% using the
random forest model and 42.8% ± 6.2% using logistic regression models. However, adapting SAM to
space-borne images (WorldView-2 and Sentinel-2) remains challenging, and could not outperform
classical pixel-wise random forest and logistic regression methods in our task. The findings presented
provide valuable insights into the strengths and limitations of AI models for UVeg mapping, aiding
researchers and practitioners in selecting the most suitable tools for their specific applications.

Keywords: few-shot learning; underwater aquatic vegetation; submerged vegetation; foundation
model; machine learning; Sentinel-2; VHR; WorldView-2; UAV; Segment Anything model

1. Introduction

Aquatic vegetation holds immense significance within ecosystems, as it not only
supports the food chain but also serves as the primary indicator of ecosystem quality [1].
Detailed information on the distribution, composition, and abundance of aquatic vegetation
is widely utilized to assess the environmental quality of aquatic systems, thereby playing a
crucial role in maintaining the proper functioning of lakes. In particular, submerged, or in
general, underwater aquatic vegetation (UVeg), comprising plants that primarily grow un-
derwater but may possess floating or emerged reproductive organs, plays a vital ecological
and environmental role. These plants fulfill crucial functions, including providing habitat
for various species, stabilizing sediments, regulating water flow, acting as a natural purifier,
and participating in the biogeochemical cycling process [2].

Precise identification of UVeg distribution and growth duration can provide valuable
information for effective lake management and future ecological restoration endeavors.
As a result, numerous national and international water quality frameworks, including
those employed by the European Union, integrate the assessment of submerged aquatic
vegetation extent or health as key indicators in their evaluations. Remote sensing tech-
nology, particularly satellite data, has emerged as an effective tool for mapping UVeg.
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In particular, multi-spectral data have been extensively employed for mapping the distri-
bution of large-scale aquatic vegetation and evaluating its intra-annual and inter-annual
variations [3–6].

However, accurately distinguishing between submerged aquatic vegetation and emer-
gent or floating vegetation remains a complex task through satellite data. The transitional
nature of aquatic vegetation, influenced by factors such as incomplete development, sea-
sonality, water level fluctuations, and flooding events, poses significant challenges for
accurate classification using remote sensing techniques. In light of these complexities,
our research aims to overcome these limitations by focusing on monitoring all forms of
vegetation occurring beneath the water surface. While our previous work [7] focused solely
on identifying emergent and floating aquatic vegetation, our attention in this study lies on
underwater aquatic vegetation, which encompasses all forms of vegetation occurring in
submerged or partially submerged conditions.

To provide a comprehensive overview of the existing techniques, Rowan and Kalac-
ska [2] conducted a review specifically tailored for non-specialists. Their paper discusses
the challenges associated with UVeg mapping using remote sensing, such as water at-
tenuation, spectral complexity, and spatial heterogeneity. Furthermore, they provide an
overview of different remote sensing platforms, including aerial and space-borne sensors,
commonly used for UVeg mapping and argue that understanding the capabilities and
limitations of these platforms is crucial in selecting the appropriate tools for UVeg mapping.
The authors also discuss the specific spectral characteristics of UVeg, as well as classification
methods, and finally, they highlight the importance of validation and accuracy assessment
in UVeg mapping studies. By incorporating insights from this review, our study aims to
contribute to the existing knowledge and further enhance the accuracy and efficiency of
UVeg mapping using remote sensing data.

The study of Villa et al. [8] introduces a rule-based approach for mapping macro-
phyte communities using multi-temporal aquatic vegetation indices. Their study em-
phasizes the importance of considering temporal variations in vegetation indices and
proposes a classification scheme based on rules derived from these indices. The approach
shows promising results in accurately mapping macrophyte communities, providing valu-
able insights for ecological assessments and environmental monitoring. The paper by
Husson et al. [9] highlights the use of unmanned aircraft vehicles (UAVs) for mapping
aquatic vegetation. They discuss the advantages of UAVs, such as high spatial resolution
and cost-effectiveness. Their study demonstrates the accuracy of UAV-based vegetation
mapping, including species distribution and habitat heterogeneity. UAV imagery provides
detailed information for ecological research and conservation efforts. The paper also ad-
dresses challenges and suggests future directions for optimizing UAV-based methods in
aquatic vegetation mapping. Heege et al. [10] presented the Modular Inversion Program
(MIP), a processing tool that utilizes remote sensing data to map submerged vegetation in
optically shallow waters. MIP incorporates modules for calculating the bottom reflectance
and fractionating it into specific reflectance spectra, enabling mapping of different types
of vegetation.

Machine learning (ML) approaches in remote sensing offer efficient and accurate
methods for analyzing vast amounts of satellite data and extracting valuable insights about
the Earth’s surface and environment. However, previous studies on classifying wetland
vegetation have often focused on single sites and lacked rigorous testing of the generaliza-
tion capabilities. To fill this gap, Piaser et al. [11] compiled an extensive reference dataset
of about 400,000 samples covering nine different sites and multiple seasons to represent
temperate wetland vegetation communities at a continental scale. They compared the
performance of eight ML classifiers, including support vector machine (SVM), random
forest (RF), and XGBoost, using multi-temporal Sentinel-2 data as input features. According
to their findings, the top choices for mapping macrophyte community types in temperate
areas, as explored in this study, are SVM, RF, and XGBoost. Reducing the number of input
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features led to accuracy degradation, emphasizing the effectiveness of multi-temporal
spectral indices for aquatic vegetation mapping.

The debate between classical ML techniques and deep learning (DL) revolves around
computational resources and the available annotated datasets. Classical ML can achieve
high discriminative performance with moderate processing speed, making it suitable for
scenarios with limited computational resources [12]. In contrast, DL’s undeniable success in
computer vision tasks, particularly in remote sensing imagery [13,14], comes at the expense
of requiring substantial computational resources. Additionally, DL models are data-hungry
during training, posing challenges for the few-shot learning tasks commonly encountered
in remote sensing applications. Despite this, techniques like pre-training on other datasets,
data augmentation, and, most importantly, self-supervised learning (SSL) exist to mitigate
this issue.

Based on SSL, foundation models came recently to the forefront of machine learning
research, offering a unified, versatile approach that learns across various tasks and domains.
As illustrated by Bommasani et al. [15], a key advantage of foundation models lies in their
ability to perform with limited annotations, utilizing pre-existing knowledge to make sense
of sparse or partially labeled data. The Segment Anything model (SAM) [16] epitomizes
this advantage with its ability to effectively segment any class in an image, making it
especially suitable for the analysis of complex and often poorly annotated environments.

In this study, we harness the capabilities of SAM in mapping and analyzing the un-
derwater aquatic vegetation in Polyphytos Lake, Greece. Our approach combines a range
of remote sensing data, including multi-spectral satellite images from WorldView-2 and
Sentinel-2, UAV-acquired data, and expert annotations from marine biologists, in collabora-
tion with local water service authorities.

Given the often-scarce annotations in aquatic ecosystem studies, the application of
foundation models, such as SAM, offers a powerful tool to gain insights into aquatic vege-
tation, water quality, and potential pollution sources. The subsequent sections of this paper
will detail our methodology, challenges, results, and their implications, demonstrating
the significant potential of foundation models in data-scarce, complex environments like
aquatic ecosystems.

2. Materials and Methods

2.1. Study Area

Our study took place at the Polyphytos reservoir, as shown in Figure 1 an artificial
lake on the Aliakmon River, located in West Macedonia, Northern Greece, specifically in
Kozani province. The reservoir’s surface area is 75 km2. The reservoir was formed in 1975
when a dam was built on the Aliakmon River close to the Polyphytos village. The longest
dimension of the lake is 31 km and the widest is 2.5 km. It is the biggest of five reservoirs
built along the river, with a drainage area of 5630 square kilometers, and it collects water
from surface runoff and several torrents.

The reservoir is used to produce hydroelectric power and supply irrigation water,
and since 2003, it has been the main source of drinking water for Thessaloniki, the second-
largest city in Greece, with a population of 1.05 million people. Every day, around
145,000 cubic meters of surface water is taken from the Polyphytos Reservoir to Thes-
saloniki’s Drinking Water Treatment Plant (TDWTP).

The Polyphytos region has a continental climate with cold winters and mild summers.
The region’s rainfall is not very high, but previous studies [17] have shown that rainfall
does not drop much during summer. However, the months from June to September are
seen as dry because of the relatively low average rainfall.

Over the years, Polyphytos Lake has transformed into a significant sanctuary for birds
and a thriving environment for many fish species. Regarding vegetation, the vicinity of the
reservoir boasts a considerable expanse of wetlands, marshlands, and muddy ecosystems.
Additionally, a range of aquatic plant life resides within the Polyphytos Reservoir, e.g., as
show in Figure 2, contributing to the area’s rich ecological diversity.
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Figure 1. Three regions of interest within the Polyphytos Lake study area in Greece.

Figure 2. Aquatic vegetation (submerged and emergent vegetation) near the Kozani nautical club
(field trip on 17 June 2022).

2.2. Data Sources

We obtained multi-spectral satellite images from two sources: WorldView-2 and
Sentinel-2. The WorldView-2 images provided high-resolution data with a ground sampling

226



Remote Sens. 2023, 15, 4001

distance (GSD) of 1.8 m, enabling detailed observation of the lake and its surrounding areas.
The Sentinel-2 images complemented the WorldView-2 data by offering additional spectral
information for our analysis, although with the lowest GSD of 10 m. In order to acquire
more granular and comprehensive data, we executed a UAV survey over Polyphytos Lake.
We deployed the DJI Mini 3 Pro UAV, maintaining a flight altitude between 50 and 70 m.
The UAV came equipped with a high-resolution camera, enabling us to gather detailed and
current data on the lake’s attributes. A description of the data sources used in the study is
given in Table 1.

Table 1. Summary of data sources, specifications, and sensing dates.

Data Source Area GSD Dates

WorldView-2 AOI 1 1.8 m 31 August 2020

Sentinel-2 AOI 1 10–60 m
16, 21, 26 and 31 August 2020
5, 10 and 15 September 2020

DJI Mini 3 Pro UAV AOI 1–3 3–6 cm 6 March 2023

2.3. Dataset Annotation

Through information exchange with local water service authorities and in situ visits
by the authors, detailed annotations could be retrieved, specifically focusing on the UVeg
present in Polyphytos Lake. The meticulous identification and labeling of underwater veg-
etation formations at various scales and depths using multiple uncertainty classes ensure
the accuracy and reliability of these annotations. The availability of such comprehensive
annotations allows us to assess the performance and effectiveness of our AI tools in accu-
rately mapping and monitoring UVeg in Polyphytos Lake, providing valuable insights into
the distribution, health, and ecological significance of underwater vegetation in the lake.

Manual annotation was performed separately for the WorldView-2 and UAV imagery,
while the annotations of the Sentinel-2 data were extracted based on the WorldView-2
annotations. Due to the proximity of dates, we assume no modification in vegetation
extent (UVeg extent). Therefore, only adaptation of the spatial resolution was performed by
transforming the binary values of the pixels in the lower ground sampling distance (GSD)
of WorldView-2 to percentage values of the higher-GSD pixels of Sentinel-2m, as shown in
Figure 3.

Figure 3. Adapted UVeg annotation matching Sentinel-2 GSD of 10 m. Each pixel represents the
percentage of UVeg based on the binary values of WV-2 GSD of 1.8 m.

2.4. Comparison of ML Techniques

In this work, we compare two different AI methodologies for segmenting UVeg in
Polyphytos Lake:

• Pixel-based Logistic Regression or Random Forest:

The first approach utilizes classical machine learning techniques such as logistic
regression and random forest. In this method, we extract various spectral and textural
features from the multi-spectral satellite images and UAV data. These features are then
used to train pixel-based classification models, which can classify each pixel as either UVeg
or non-UVeg. Logistic regression and random forest algorithms are employed for the
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classification task, leveraging their ability to learn complex relationships between the input
features and the UVeg class labels. We recognize random forest, which is a bagging model,
together with boosting models as powerful and widely-used ML techniques based on
ensembling [11,12]. Additionally, we included logistic regression as a baseline ML method,
as it represents traditional thresholding techniques commonly found in remote sensing
studies when combining linear combinations of bands.

Apart from the multi-spectral bands, we utilized the QAA-RGB algorithm [18], a mod-
ified version of the quasi-analytical algorithm (QAA), to detect underwater vegetation in
Polyphytos Lake using only the red, green, and blue bands. The algorithm was specifically
designed for high-resolution satellite sensors, and it retrieves various parameters, including
the total absorption, particle backscattering, diffuse attenuation coefficient, and Secchi
disk depth, which have been used as additional features in our comparative analysis.
By using remote sensing reflectance data from three specific bands (red, green, and blue),
the algorithm ensures robustness and applicability across different water types. The imple-
mentation of QAA-RGB was carried out within the ACOLITE processor, which provides a
comprehensive and accessible platform for the scientific community.

• Foundation Model for Semantic Segmentation with Prompt-tuning:

The second approach utilizes a foundation model called SAM (Segment Anything) [16].
SAM is a state-of-the-art deep learning model designed specifically for semantic segmen-
tation tasks. It is pretrained on a large-scale dataset, enabling it to learn general patterns
and features related to segmentation. However, what sets SAM apart is its prompt-tuning
approach. During fine-tuning, SAM is provided with a small set of positive and negative
UVeg pixels as prompts. These prompts guide the model to learn the specific characteristics
and boundaries of UVeg in Polyphytos Lake. By adaptively adjusting the prompts, SAM
refines its segmentation capabilities and improves its accuracy in detecting and delineating
UVeg regions.

In our model evaluation, we employed three key metrics computed from the number of
pixels as true positive (TP), true negative (TN), false positive (FP), and false negative (FN):

PA, the producer’s accuracy (recall), quantifies the percentage of correctly classified
pixels in relation to the ground truth, thus representing the model’s ability to accurately
identify and classify true positive instances:

PA =
TP

TP + FN
UA, the user’s accuracy (precision), measures the percentage of correctly classified

pixels based on the model’s predictions, reflecting the precision of the model in accurately
identifying and classifying true positive instances:

UA =
TP

TP + FP
Additionally, we computed the F1 score, a commonly used metric for evaluating such

models. The F1 score can be interpreted as a weighted average of the precision (UA) and
recall (PA), where an F1 score reaches its best value at 1 (perfect precision and recall) and
worst at 0. It is defined as:

F1 = 2 ∗ UA ∗ PA
UA + PA

The F1 score tries to balance these two measures. A good F1 score indicates low false
positives and low false negatives, which are especially important when false positives and
false negatives have different costs, often the case in imbalanced datasets.

We established baselines for all three modalities—UAV RGB images, multi-spectral
images from WorldView-2, and Sentinel-2 sensors—using logistic regression. To mitigate
the effects of the imbalanced dataset in all three modalities, we employed resampling
methods during the training phase. These involve artificially augmenting the dataset by
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repeating uniformly selected samples to ensure an equal representation of samples from
different classes. This approach not only enhances the performance of logistic regression,
but also provides an unbiased analysis for feature importance [19].

We further conducted a comparative analysis of three data sources using k-fold cross-
validation. To account for the significant differences in dataset size among the modalities,
we utilized different numbers of folds for each modality. This approach ensured that
the training sets were sufficiently large for modalities with a smaller total number of
pixels. To evaluate the performance of our models, we computed metrics based on the
concatenated confusion matrices obtained from each fold. Instead of calculating the average
values of metrics separately for each fold, this approach provides a more robust assessment.
Specifically, for the Sentinel-2 modality, where the number of available pixels from the
positive class is limited, averaging the metrics across folds can introduce bias into the
estimate [20]. For the SAM method, resampling with replacement of a fixed number of
pixel pairs was performed with 500 repetitions.

In addition, we carried out ablation studies on single-, double-, and triple-feature
classifiers. The objective was to investigate the influence of feature selection on the predic-
tive accuracy of our per-pixel classification model. By systematically excluding features
from the model, we were able to quantify the contribution of each individual feature or
combination of features. The evaluation of these ablation studies was based on the F1
metric. Through this ablation study, we obtained valuable insights into how different bands,
or their combinations, affect the accuracy of the model in classifying UVeg pixels. This,
consequently, directed our optimization of the band-selection process to apply the SAM,
a foundation model that utilizes only three bands. A more sophisticated feature-importance
analysis of WorldView-2 data was performed, focusing on pixel proximity to the shore.
Specifically, apart from the analysis in the total WorldView-2 image, the analysis was also
conducted on a manually selected subset of the image near the shore with a higher density
of visually apparent UVeg regions, referred to as “shallow pixels”. The areas of the lake
farther from the shore did not exhibit visually apparent UVeg, likely due to the lake’s depth.

Moreover, we conducted an extensive analysis of the two SAM variants, “huge”
and “base”, utilizing the ViT-B and ViT-H encoders developed by Meta AI Research and
FAIR (https://github.com/facebookresearch/segment-anything, accessed on 10 July 2023).
SAM has two encoder options: ViT-B (91M parameters) and ViT-H (636M parameters).
The primary objective of this analysis is to gain insights into the performance disparities
between the two variants under the few-shot learning task of segmenting UVeg.

In the context of the Sentinel-2 data source, we investigated the use of multi-class
classification by comparing the performance of models with 2–4 classes instead of using
a regression-based approach. Here, the number of classes refers to distinct categories or
groups into which the satellite data can be classified. In a 2-class model, the data would be
divided into two distinct categories, which might correspond to the “presence” or “absence”
of a certain feature in the satellite imagery, for example. For the 3-class model, the data
would be divided into three categories, possibly representing low, medium, and high
levels of a certain feature. In the 4-class model, there would be four different categories,
potentially providing an even finer granularity of the measured feature. Since the task
was not binary classification but multi-class, we used the metric of balanced accuracy to
evaluate the performance. Balanced accuracy is the average of the recall (the proportion of
actual positives that are correctly identified) obtained for each class, which ensures that
every class is equally weighted regardless of how often it appears in the data. This was
particularly relevant because of the multi-class nature of our models. By comparing the 2-,
3-, and 4-class models, we were able to rigorously evaluate how different levels of class
granularity impacted the accuracy of our Sentinel-2 data classifications.

Finally, to assess the transferability of the models in different areas of interest (AOIs)
within the lake, a logistic regression model and a random forest model were trained on
AOI1 near the Rymnio bridge and evaluated on AOI2 and AOI3 (described in Table 1).
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The random forest model underwent hyperparameter tuning using a validation set from
AOI1, while testing was conducted separately on the different lake AOIs [21].

3. Results

The primary findings from the comparative study on segmenting underwater aquatic
vegetation data based on very limited annotations are illustrated in Figures 4–6. This
study provides an exhaustive comparison of three machine learning techniques, namely a
logistic regression model, a random forest model, and a foundational model referred to
as the Segment Anything Model (SAM). The SAM model, which is based on the Vision
Transformer architecture, is pretrained for the task of semantic segmentation and is specifi-
cally tailored for visual prompting. The comparative analysis is carried out across three
distinct data sources: UAV, WorldView-2, and Sentinel-2. Baseline measures for each metric,
represented as red dashed lines, are computed based on the training error of the logistic
regression model.

Figure 4. Comparison of machine learning techniques for segmenting underwater aquatic vegetation
using UAV data with limited annotation. The SAM model yields an F1 score of 86.5% ± 4.1% when
trained with as few as 40 positive/negative pairs of pixels, compared to 54.0% ± 9.2% using the
random forest model and 42.8% ± 6.2% using logistic regression models.

Figure 5. Comparison of machine learning techniques for segmenting underwater aquatic vegetation
using WorldView-2 data with limited annotation.
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Figure 6. Comparison of machine learning techniques for segmenting underwater aquatic vegetation
using Sentinel-2 data with limited annotation.

Figure 4 showcases a comparison of these methods over an area of 0.07 km2, captured
on a UAV mission. The GSD in this area varies from 3 to 6 cm, contingent on the drone’s
flight altitude.

Figure 5 depicts the comparison of the three machine learning techniques over a total
area of approximately 1.4 km2, captured using the WorldView-2 satellite. The pixel size in
this area is 1.8 m. The data incorporate eight multi-spectral bands, one panchromatic band,
and a synthetic band that estimates the Secchi disk depth based on the QAA-RGB algorithm.

Figure 6 demonstrates the comparison of the two machine learning techniques over an
area of 1.4 km2, as captured with the Sentinel-2 satellite. The pixel size in this region varies
between 10 m and 60 m. The data utilized for this comparison include all bands from the
Level-2A (L2A) products.

All evaluations are based on a bootstrap simulation, which involves the random
sampling of positive/negative pairs with replacement. This simulation is conducted
500 times, providing a robust statistical analysis of the performance differences among the
machine learning models.

Examples of the UVeg masks generated with the foundational model, SAM, can be
seen in Figures 7 and 8. Figure 7 showcases masks created from a UAV mission scene, while
Figure 8 presents masks derived from a WorldView-2 satellite scene.

The inter-modality comparison results are given in Table 2. For each method and
modality, the performance from a sufficiently large training dataset size is demonstrated to
facilitate the assessment of UVeg segmentation using the different data sources. Notably, the
performance results for the Sentinel-2 data source using the foundational model SAM are
not calculated due to its significantly poor performance, rendering any results meaningless
or trivial.

Figure 7. UVeg masks estimated with SAM with point-prompting in UAV data (RGB). In both
examples 8 positive/negative prompt-point pairs are given. The estimated mask is shown with
opacity on top of the RGB bands. Positive training points are shown in green and negative training
points in red.
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Figure 8. UVeg masks estimated with SAM with point-prompting in WV2 data (bands Green–
RedEdge–NearInfrared1). On the left, a better UVeg mask is estimated based on 8 positive/negative
pairs of points. On the right, there is an example of the artifacts using more (20) prompt-point pairs.
The computed mask is shown with opacity on top of the selected WV2 bands. Positive training points
are shown in green and negative training points in red.

Table 2. Comparison results of the different ML methods for the three data sources based on
sufficiently large training datasets (different for each data source). Methods with highest F1 score are
in bold.

Modality ML Method Size of
Training Set

Dataset Size F1 U A PA

UAV

Log Regr 10-fold CV ∼8M px 0.350 0.219 0.861
RF 10-fold CV ∼8M px 0.576 0.415 0.941

SAM 20 px pairs ∼8M px 0.842 * 0.957 0.751

World View 2

Log Regr 20-fold CV ∼400k px 0.340 0.207 0.956
RF 20-fold CV ∼400k px 0.472 0.328 0.845

SAM 8 px pairs ∼400k px 0.264 0.157 0.834

Sentinel-2
Log Regr 40-fold CV ∼14k px 0.184 0.103 0.890

RF 40-fold CV ∼14k px 0.331 0.231 0.581

* The highest F1 score of 86.5% ± 4.0%, with corresponding UA of 89.6% ± 5.8% and PA of 83.9% ± 4.8%, is
achieved for UAV images using 40 positive/negative pairs of pixels for prompting the SAM model.

Table 2 provides the comparative analysis of the three data sources using k-fold cross-
validation. The table showcases the performance metrics obtained from the concatenated
confusion matrices, which offer a robust evaluation of the models. Notably, different
numbers of folds were utilized for each modality to address the variation in dataset sizes.
The SAM method is assessed by resampling a fixed number of pixel pairs with replacement,
and this process is repeated 500 times.

3.1. Feature-Importance Analysis

We further conducted a feature-importance analysis through an ablation study. By sys-
tematically removing specific bands and observing the resulting impact on model perfor-
mance, we determined the significance of individual features in the context of single-feature,
two-feature, and three-feature classifiers.

Figures 9–11 present the outcomes of the feature importance analysis conducted on the
three distinct data sources. The analysis evaluates the performance of single-feature, two-
feature, and three-feature classifiers. The horizontal axis represents the feature importance
score (F1 score), while the vertical axis displays the various features and representative
feature combinations considered. These figures offer valuable insights into the diverse
significance of features and their influence on model performance across different classifier
configurations. The red dashed line denotes the baseline F1 score, computed based on all
the features from each data source.

Figure 9 demonstrates the comparison results for the RGB bands of the UAV imagery.
Figure 10 displays the comparison results for the eight bands of the WorldView-2 imagery,
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along with a separate panchromatic channel and a synthetic channel estimating the Secchi
disk depth, as calculated from the QAA-RGB algorithm [18]. Figure 11 exhibits the compar-
ison results for the 12 bands of the Sentinel-2 L2A products. Finally, a closer investigation
into the Secchi disk depth synthetic feature based on the RGB bands of the WorldView-2
imagery for separating UVeg pixels is shown in Figure 12.

Figure 9. UAV ablation study: Comparison of feature importance in UAV RGB imagery based on
single-feature, two-feature, and three-feature classifiers. UVeg segmentation baseline F1 score using
logistic regression is shown in red dashed line.

Figure 10. WorldView-2 ablation study: Comparison of band importance in WorldView-2 multi-
spectral imagery based on single-feature, two-feature, and three-feature classifiers. A representative
subset of band combinations (uniformly selected) is demonstrated. Apart from analyzing all image
pixels, a separate study is presented based on shallow-water pixels only, close to the shore with a
higher density of apparent UVeg. UVeg segmentation baseline F1 scores using logistic regression
with all bands for both groups (all pixels/shallow water only) are shown in red dashed lines.
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Figure 11. Sentinel-2 ablation study: Comparison of band importance in Sentinel-2 multi-spectral
imagery based on single-feature, two-feature, and three-feature classifiers. A representative subset
of band combinations is demonstrated from the available options for analysis. UVeg segmentation
baseline F1 score using logistic regression with all bands is shown in red dashed line.

For reasons of practical interest, the feature importance analysis of WorldView-2
was also performed, apart from the total amount of pixels, on a subset of the image that
exhibited a higher density of visually apparent UVeg regions and was close to the shore,
which we thus consider “shallow pixels”. In Figure 10, the feature importance analysis of
the complete image is shown in a light blue color, similarly to the analyses of UAV and
Sentinel-2 imagery, while the analysis of the “shallow pixels” only is presented in gray.
The UVeg segmentation baseline F1 scores using logistic regression with all bands for both
groups (all pixels/shallow water only) are shown in red dashed lines.

Figure 12. Histogram of Secchi disk depth values derived from the RGB bands of the WV2 image [18].
The right side displays an estimated Secchi disk depth map. UVeg regions are present within the red
circles near the shoreline.

3.2. Segment Anything Model Variants

Figure 13 provides a comparative analysis of two variants of the Segment Anything
Model (SAM)—the “huge” and “base” versions. The comparison is conducted under a “few
annotations” regime, where the number of positive/negative pair annotations is limited.
The X-axis represents the number of annotated pairs, while the Y-axis denotes the F1 score.
The mean values of the F1 score are accompanied by the standard deviation, indicating the
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variability in the model’s performance across multiple runs. This comparison is based on
a bootstrap simulation conducted 500 times, providing a robust statistical analysis of the
performance difference between the two SAM model variants.

Figure 13. SAM performance with point-prompting in UAV data. The number of prompt-points on
the horizontal axis represents pairs of randomly selected positive and negative points.

3.3. Different Quantization in Sentinel-2 Pixels (Two to Four Classes)

In the context of applying multi-class classification to the Sentinel-2 data source, we
present two significant figures. Figure 14 illustrates the class distribution of the quan-
tized annotation at a GSD of 10 m, showcasing the complexity and possible class imbal-
ance in the dataset. Figure 15 further explores the impact of different class granularities
(two to four classes) on the data representation at the same GSD. These figures collectively
offer insights into the challenges and implications of multi-class classification tasks within
the Sentinel-2 data source.

Figure 14. Descriptive statistics of the quantized annotation in GSD = 10 m.
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Figure 15. Impact of different class granularities on data representation in Sentinel-2: Investigation of
2–4-class models’ performance at a ground sampling distance of 10 m for different sensing dates.

3.4. Transferring UAV Models in Different Lake Areas

Table 3 presents the results of model transferability across different lake locations.
The logistic regression model and random forest model were trained on AOI1 and evaluated
on AOI2 and AOI3. The random forest model underwent hyperparameter tuning using
Bayesian optimization with a validation set from AOI1.

Table 3. Transferability of models in different lake locations using UAV data source. This table
presents the results of evaluating the transferability of models across different locations within the
lake. The logistic regression and random forest models were trained on AOI1 and tested on AOI2
and AOI3.

Data Source Test Area
Test Area

Size
ML Method F1 U A PA

UAV
trained on AOI1

AOI 1 *
(10-fold CV) ∼8 M px

LogReg 0.350 0.219 0.861
RF 0.576 0.415 0.941

AOI 2 ∼8 M px
LogReg 0.312 0.228 0.493

RF 0.291 0.291 0.292

AOI 3 ∼17 M px
LogReg 0.384 0.256 0.764

RF 0.342 0.279 0.442
* Baseline results from Table 2.

4. Discussion

The results in Figure 4 demonstrate the superiority of the pre-trained foundation
model, SAM, in the few-shot learning regime, i.e., limited annotations of positive and
negative pixel-pairs for segmenting UVeg from UAV imagery. The highest F1 score of
86.5% ± 4.0%, with a corresponding UA of 89.6% ± 5.8% and PA of 83.9% ± 4.8%, is
achieved for UAV images using 40 positive/negative pairs of pixels for prompting the
SAM model. The corresponding assessment metrics are much lower for the RF and logistic
regression models, i.e., 54.0% ± 9.2% using RF models and 42.8% ± 6.2% using logistic
regression models. The baseline F1 score for the UAV images is 42.3% (red dashed line),
which is the best linear separator of the UVeg/no UVeg classes based on the three bands R,
G, and B of the UAV images.

236



Remote Sens. 2023, 15, 4001

In general, the baselines marked with red dashed lines in Figures 4–6 serve as effective
linear separators for all bands within each data source, considering the limited size of the
available dataset. Consequently, we consider these baselines as valuable indicators of the
information contributed by each modality in segmenting underwater aquatic vegetation.

A more comprehensive comparison of the three data sources based on different ML
methods and sufficiently large training datasets (specific to each data source) is presented
in Table 2. The methods with the highest F1 scores are highlighted in bold. Notably,
the SAM method performs best for the highest-resolution UAV imagery, while the random
forest pixel-wise method remains the state of the art for the WorldView-2 and Sentinel-2
data sources.

We believe that the inability to adapt SAM to lower-resolution remote sensing images
can be attributed to the specific characteristics of the training data used for the foundation
model. To support this argument, we attempted simple methods like upsampling and patch
splitting for WorldView-2 and Sentinel-2 images to generate synthetic higher-resolution
images, but without success. However, we firmly believe that future research efforts should
focus on properly training and adapting foundational models for coarser-resolution remote
imagery, such as Sentinel-2 and WorldView-2, given the available resources in terms of
training data and computational power.

The choice of using RF as a comparison with the SAM foundation model was based
on the well-established understanding that ensembling techniques tend to outperform
more basic methods in machine learning. Random forest, being a bagging model, along
with boosting models, has demonstrated superior performance compared to other ML
approaches [11,12]. While deep learning has been successful in computer vision and remote
sensing, we could not utilize such methods due to the limited annotated data for our
task, making the foundation model the most suitable option. Additionally, we included
logistic regression as a baseline ML method since it represents traditional thresholding
techniques commonly used in remote sensing studies, where linear combinations of bands
are designed.

In Figure 7, two masks were produced for the same scene captured during the UAV
mission using three RGB bands. These masks were based on different random selections of
eight prompt-input points, where the red stars denote negative class input points and the
green stars indicate positive class input points. We observe the impact of the point-pair
selection on the segmentation accuracy, with the segmentation mask on the left being
more accurate than the one on the right, which can also be seen quantitatively in the
model’s variance in Figure 4, with eight point-pairs. The number of point-pairs for this
demonstration was selected because with eight pairs of positive/negative points the SAM
model results in generally accurate masks; however, in some cases the model fails and
results in masks like the one on the right of Figure 7. Investigating the impact of the
input-point selection strategy in an active learning regime (interactively), e.g., selecting the
most prominent errors of the current predicted mask, is an ongoing focus of our research
group with significant practical applications.

In Figure 8, two additional masks were produced for a scene recorded by the WorldView-
2 satellite. The three most informative bands (Green–RedEdge–NearInfrared1) were selected
for this operation, as per the feature importance analysis discussed in Section 2. The left panel
shows a mask created using eight pairs of positive/negative input points, which yielded
the highest F1 score according to the results presented in Figure 5. Conversely, the right
panel exhibits a mask that contains notable artifacts. These artifacts were more prominent
when using a greater number of positive/negative point pairs, resulting in a reduction in
performance, as evident in the findings displayed in Figure 5.

The feature importance analysis of the three data sources, as depicted in Figures 9–11,
was conducted through an ablation study. The analysis of the UAV bands using a single-
feature classifier revealed that the blue band provides the most informative data, while the
combination of green and blue bands, as a two-feature classifier, performed nearly as well
as the baseline linear separation using all bands together. Regarding Sentinel-2 in Figure 11,
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the most informative bands for UVeg segmentation were found to be B07, B08, B01, and B09
when employing single-feature classifiers. Additionally, the combinations of B01-B07-B12
and B01-B07-B11 were demonstrated to encompass the complete information required for
linearly separating pixels with UVeg presence.

In consideration of practical applications, due to the high cost of UAV imagery and
the large GSD of the Sentinel-2 imagery, the WorldView-2 modality is considered a feasible
choice for UVeg detection. Consequently, a more sophisticated feature importance analysis
of WorldView-2 data was conducted that investigates the effect of pixels’ proximity to the
shore in feature importance. Specifically, apart from the total amount of pixels, a feature
importance analysis in Figure 10 was conducted on a subset of the image that exhibited
a higher density of visually apparent UVeg regions and is close to the shore, which we
thus considered “shallow pixels”. The areas of the lake further from the shore did not
have visually apparent UVeg, probably because of the lake’s depth. In “shallow waters”,
both the blue (B) and green bands (G) demonstrated high informativeness, whereas their
significance diminished when considering the total amount of pixels due to the presence of
deeper-water pixels. Despite B and G individually achieving the highest F1 scores in the
single-feature classifier, the combination B-G did not result in further enhancement in the
two-feature classifier. This can likely be attributed to the similarity in information content
between both bands concerning UVeg segmentation, indicating that their combination does
not yield better results. Moreover, the combination of green, red, and near-infrared1 bands
encompassed almost the entire information content of all bands. Similar conclusions were
drawn for the two- and three-feature classifiers, both for the “shallow water” subset and
the complete image encompassing deeper waters. However, when examining the Secchi
disk depth (Zsd) as a single-feature classifier, it exhibited poor discriminative power as
a synthetic index computed by the QAA-RGB algorithm [18]. The lack of separability is
further illustrated in Figure 12, where the histograms of the two classes are visually and
quantitatively indistinguishable.

Figure 13 provides interesting insights into the performance of two SAM variants,
“huge” and “base”. The SAM model has two encoder options: ViT-B (91M parameters) and
ViT-H (636M parameters). While ViT-H is expected to show significant improvement over
ViT-B, we noticed a surprising change in the F1 score and precision for around 100 posi-
tive/negative pixel pairs. These findings are intriguing and will guide our future research.

Based on our analysis of the Sentinel-2 data source in Section 3.3, it appears that increas-
ing the granularity of the class structure from binary to multi-class models, namely, two-
to four-class models, inversely impacts the accuracy of the classifications. As evidenced
in Figure 15, the performance, when measured in terms of balanced accuracy, diminishes
as we progress from binary to multi-class classification. Furthermore, the class distribu-
tion depicted in Figure 14 underscores the significant data imbalance at a GSD of 10 m.
This class imbalance might contribute to the decrease in model performance as the class
granularity increases, as the models may struggle to learn from under-represented classes.
Interestingly, this pattern holds consistently across different time periods, underscoring
the robustness of these observations and contributing insights to the optimal approach to
classifying complex, multi-dimensional datasets like those derived from Sentinel-2.

The results in Table 3 show comparable metrics for the different AOIs, thus clearly
demonstrating the ability of the logistic regression models to be successfully transferred
to different locations within the lake. The results based on the random forest pixel-wise
classifier show a reduction in all metrics compared to the cross-validation baseline, which
is attributed to the limited dataset size of the cross-validation study in AOI1. Although all
AOIs were captured on the same date in a single UAV mission (as shown in Table 1), these
findings provide valuable insights into the practical usage of such models. For example,
during a UAV mission covering the entire lake, it would be feasible to segment all UVeg
regions by training or fine-tuning a model on a smaller subarea and then transferring the
trained model to the rest of the lake. No results are provided for the Segment Anything
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model due to insufficient data for fine-tuning; however, recent studies propose methods for
adapting prompts with one shot [22].

Considering the successful transferability observed with the logistic regression model
in Section 3.4, a potential direction for future research would be to explore adapting the
Segment Anything model to new lake areas. Building upon the insights gained, incor-
porating the one-shot prompt adaptation methods proposed by Zhang et al. [22] may
enable the transfer of the Segment Anything model’s capabilities. This could facilitate the
efficient segmentation of UVeg regions across larger areas of the lake, even on different
dates, by leveraging a fine-tuned model from a smaller subarea.

5. Conclusions

In summary, this work demonstrates the effectiveness of the SAM foundation model
for segmenting underwater vegetation in high-resolution UAV imagery in the few-shot
learning regime. However, adapting SAM to lower-resolution images (WorldView-2 and
Sentinel-2) remains challenging, and traditional pixel-wise methods remain the state of
the art in our task. The specific characteristics of the foundation model training data are
believed to be the reason for this inability to adapt SAM, despite attempts with techniques
like patch splitting and upsampling.

The feature importance analysis and comparison of ML methods across the three data
sources reveal important insights. The analysis of single-feature classifiers highlights the
significance of specific bands in each data source and the limitations of synthetic indices
like the Secchi disk depth. These findings provide valuable guidance for future research
and practical applications in underwater vegetation segmentation.

Additionally, the study explores SAM variants and the impact of class granularity
on Sentinel-2 classification. Logistic regression models demonstrate successful transfer-
ability across different areas within the lake, offering a practical approach to segmenting
UVeg regions in larger areas using models trained on smaller subareas. Future research
can focus on adapting the Segment Anything model to new lake areas using one-shot
prompt-adaptation methods, facilitating efficient segmentation across larger areas and
different dates.
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Abbreviations

The following abbreviations are used in this manuscript:

UVeg Underwater Aquatic Vegetation
SAM Segment Anything Model
UAV Unmanned Aerial Vehicle
LogReg Logistic Regression
RF Random Forest
AI Artificial Intelligence
TDWTP Thessaloniki’s Drinking Water Treatment Plant
QAA-RGB Quasi-Analytical Algorithm—Red Green Blue
TP, TN, FP, FN True Positive, True Negative, False Positive, False Negative
UA, PA User’s Accuracy, Producer’s Accuracy
AOI Area of Interest
ML Machine Learning
DL Deep Learning
SSL Self-Supervised Learning
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Abstract: An extensive number of farmlands in the Poyang Lake region of China have been sub-
merged due to the impact of flood disasters, resulting in significant agricultural economic losses.
Therefore, it is of great importance to conduct the long-term temporal monitoring of flood-induced
water body changes using remote sensing technology. However, the scarcity of optical images and
the complex, fragmented terrain are pressing issues in the current water body extraction efforts in
southern hilly regions, particularly due to difficulties in distinguishing shadows from numerous
mountain and water bodies. For this purpose, this study employs Sentinel-1 synthetic aperture radar
(SAR) data, complemented by water indices and terrain features, to conduct research in the Poyang
Lake area. The results indicate that the proposed multi-source data water extraction method based
on microwave remote sensing data can quickly and accurately extract a large range of water bodies
and realize long-time monitoring, thus proving a new technical means for the accurate extraction
of floodwater bodies in the Poyang Lake region. Moreover, the comparison of several methods
reveals that CAU-Net, which utilizes multi-band imagery as the input and incorporates a channel
attention mechanism, demonstrated the best extraction performance, achieving an impressive overall
accuracy of 98.71%. This represents a 0.12% improvement compared to the original U-Net model.
Moreover, compared to the thresholding, decision tree, and random forest methods, CAU-Net exhib-
ited a significant enhancement in extracting flood-induced water bodies, making it more suitable for
floodwater extraction in the hilly Poyang Lake region. During this flood monitoring period, the water
extent in the Poyang Lake area rapidly expanded and subsequently declined gradually. The peak
water area reached 4080 km2 at the height of the disaster. The severely affected areas were primarily
concentrated in Yongxiu County, Poyang County, Xinjian District, and Yugan County.

Keywords: Sentinel-1; water extraction; flood disaster; decision tree; random forest; improved U-Net

1. Introduction

Flood disasters are one of the major catastrophes in China, causing significant losses
to the national agricultural economy each year, primarily by reducing the yields of food
crops. Numerous crops thrive in water-rich environments and are commonly cultivated
near rivers and lakes, and as a consequence, the widespread inundation of farmlands is
a direct impact of floods on agricultural production. The flood season in southern China
typically coincides with critical stages in the rice cultivation process, such as the heading
and harvesting of early-season rice, the field management of mid-season rice, and the
transplanting of late-season rice seedlings. This situation exerts adverse effects on rice
production and can even lead to complete crop failure. According to the “2020 Annual
Report on National Natural Disasters” issued by the Chinese Ministry of Emergency
Management, the floods occurring in China during 2020 destroyed close to 3869 hectares
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of crops in July alone, causing direct economic losses of CNY 1097.4 billion [1]. Among
them, the catastrophic floods caused by heavy rainfall in the Yangtze and Huai River
basins were one of the top 10 major disasters in China in 2020 [2]. The accurate acquisition
of temporal and spatial distribution information of floodwater can aid in dynamically
monitoring floods, provide technical support for flood monitoring in the southern hilly
areas of China, and act as a reference for the adjustment and optimization of agricultural
production structures and food security in the future.

Satellite remote sensing technology is gradually replacing manual monitoring meth-
ods due to characteristics including coverage of large measurement areas, non-intrusive
measurements, and low cost. In particular, optical remote sensing is widely used due to
its rich data sources that can be applied to calculate numerous spectral indices for water
bodies, including the normalized difference water index (NDWI) [3], super green water
index [4], vegetation red-edge water index [5], etc. However, the cloudy and rainy con-
ditions that frequently occur during the flood season in southern China adversely affect
the performance of optical remote sensing sensors, making it difficult to obtain stable and
usable optical images for flood monitoring [6]. As a result, the disaster assessment is often
limited to comparing pre-disaster and post-disaster images, which may not effectively
capture the entire process of prolonged and continuous floods in southern China.

The development of microwave remote sensing, particularly the release of free Sentinel-
1 SAR data, has provided new data sources for flood monitoring. For example, Zeng
et al. [7], Chen and Jiang [8], and Jia et al. [9] utilized microwave data to extract water body
information using methods such as simple thresholding, change detection combined with
thresholding, and the Sentinel-1 dual-polarized water index (SDWI). Additional research,
both domestic and international, has proposed related methods including Otsu optimal
threshold segmentation [10] and object-based approaches [11]. However, these methods
primarily focus on enhancing water body characteristics while neglecting the influence of
mountain shadows formed by the side-looking imaging of Sentinel-1 satellites. Mountain
shadows and water bodies have similar backscattering coefficients, resulting in a similar
dark tone in Sentinel-1 SAR images, making it challenging to distinguish between the two
during the extraction of water bodies. In regions with frequent floods, such as the southern
hilly areas of China, the terrain is undulating, and mountain shadows are prevalent. Thus,
there is an urgent need to address the rapid and accurate extraction of flood-affected areas
by accounting for the characteristic topography and water body attributes of these southern
hilly regions.

In an attempt to acutely distinguish between shadows and water bodies in moun-
tainous areas, Yang et al. [12] simulated radar images using terrain data and removed the
shadows that were falsely identified as floodwater bodies, achieving the semi-automatic
and accurate extraction of large-scale floodwater bodies. Therefore, this study focuses on
removing mountain shadows based on terrain features. More specifically, decision tree
nodes are introduced to rapidly assess the impact of terrain features on mountain shadows.
Decision trees offer several advantages in binary classification, including fast calculation,
simple principles, and accurate results, and thus they are widely used in water body ex-
traction applications [13,14]. In recent years, with the continuous development of artificial
intelligence algorithms, machine learning methods such as maximum likelihood, random
forest, and support vector machines have been extensively applied in remote sensing re-
search. Among them, the random forest method demonstrates high classification accuracy,
a fast prediction speed, and the ability to handle multi-dimensional data [15–17]. Li et al.
employed the random forest method based on multi-source data for land-use classification
in the southern hilly mountains, effectively addressing the low classification accuracy
caused by mountain shadows. Deep learning can fully explore the feature information in
remote sensing images and has gradually become more popular in water body extraction
applications [18–20]. Among the deep learning models, U-Net has proven to exhibit a high
extraction accuracy and minimal spatial resolution losses [21,22], making it suitable for
precise water body extraction. However, current research on deep learning-based water

243



Remote Sens. 2023, 15, 5247

body extraction methods primarily focuses on optical remote sensing, while relatively few
studies have been conducted on microwave remote sensing [23].

This study employs the decision tree, random forest, and improved U-Net algorithms
for water body extraction using the flood disaster in the Poyang Lake area as a case study
and Sentinel-1 SAR images from 30 September 2019 as the data source. A comparison of the
shadow removal effect and accuracy of the water body extraction results for each method
is performed to select the most suitable approach for floodwater extraction in the Poyang
Lake region. The selected method is then used to analyze the spatiotemporal distribution of
floodwater bodies in the Poyang Lake area from June to August 2020. This work provides
valuable insights for the planning of agricultural infrastructure.

2. Study Area and Data Sources

2.1. Overview of the Study Area

Located in the northern part of Jiangxi Province, China, Poyang Lake (between
28◦22′–29◦45′N and 115◦47′–116◦45′E) is the largest freshwater lake in the country. Within
Jiangxi, the total area of the county-level regions through which Poyang Lake flows is
approximately 22,300 km2, including 11 counties and cities such as Lianxi District, Hukou
County, Lushan City, Poyang County, and Nanchang County (Figure 1). The surrounding
area of Poyang Lake is characterized by complex land cover and significant topographical
variations. The dominant landform type is hilly terrain, accounting for about 78% of the
total area, followed by plains and hillocks (approximately 12.1% of the total), and water
bodies (covering about 9.9%). Poyang Lake is located in a low-lying area and is influenced
by the East Asian monsoon, with concentrated rainfall during the summer season. As
a result, from July to September, the lake’s water area rapidly expands during the flood
season, and the limited drainage capacity, combined with its unique relationship with the
Yangtze River, often leads to frequent flood disasters. Since 1949, there have been over
20 recorded major flood events in the area [24].

Figure 1. The location of Poyang Lake.

244



Remote Sens. 2023, 15, 5247

2.2. Data Source

Sentinel-1 SAR satellite imagery was downloaded from the European Space Agency’s
official website (http://scihub.copernicus.eu (accessed on 27 July 2023)), and corresponding
precise orbit data were obtained from the website (https://s1qc.asf.alaska.edu/ (accessed
on 27 July 2023)). Moreover, 30 m resolution SRTM-1 Digital Elevation Model (DEM)
data were downloaded from the Geospatial Data Cloud Platform (http://www.gscloud.cn
(accessed on 27 July 2023)). Supplementary data included vector maps of the administrative
divisions of the counties in the study area, water level data, and Google Earth imagery.

Sentinel-1 SAR satellite imagery has a resolution of 10 m and comes in four imaging
modes, with a maximum swath width of 400 km. These images are favored by many
researchers due to their free availability and high resolution, and they have been widely
applied in various fields. The VV (vertical-vertical) and VH (vertical-horizontal) polarized
bands of Sentinel-1 imagery are typically used for water body extraction. Hence, we
employed the Ground Range Detected Product (GRD) data from the Interferometric Wide
Swath (IW) mode. Google Earth imagery was available only for 4 October 2019 in the study
area, and thus a Sentinel-1B SAR image from 30 September 2019 was selected to construct
the water body extraction method. Another Sentinel-1B SAR image from the flood period in
2020 was selected for flood disaster analysis in the study area. Detailed image information
is presented in Table 1. The DEM dataset was used to remove misidentifications caused by
mountain shadows, while the Google Earth high-resolution imagery and water level data
were employed for the sample selection and flood disaster analysis, respectively.

Table 1. Sentinel-1 SAR image data information.

Data Platform Type Polarization Mode

30 September 2019 Sentinel-1 B GRD VV, VH
20 June 2020 Sentinel-1 B GRD VV, VH
2 July 2020 Sentinel-1 B GRD VV, VH

14 July 2020 Sentinel-1 B GRD VV, VH
26 July 2020 Sentinel-1 B GRD VV, VH

7 August 2020 Sentinel-1 B GRD VV, VH
19 August 2020 Sentinel-1 B GRD VV, VH

2.3. Data Preprocessing

The data preprocessing steps included track correction, radiometric calibration, filter-
ing, terrain correction, decibelization, mosaic creation, and clipping. Radiation calibration
converts the intensity value of the image into the backscattering coefficient using the
following conversion relationship:

σ0 =
A2

K
θ (1)

where σ0 is the backscattering coefficient; A is the DN value of the original image; K is the
absolute scaling factor; and θ is the angle of incidence.

The filtering process utilizes the Refined Lee filter, which effectively eliminates speckle
noise while preserving the edge information of features [25]. The terrain correction com-
bines SRTM-1 DEM data obtained through bilinear interpolation and corrects the geometric
distortion caused by terrain using the distance Doppler algorithm. The conversion to
decibels involves transforming the backscatter coefficients of the image into logarithmic
form, which is more conducive to reflecting the differences in radar intensity.

3. Methods

3.1. Image Feature Extraction

(1) Radar image feature

The VV and VH backscatter coefficients are the main data features extracted from the
Sentinel-1 SAR image data for water body extraction in this study. They provide different
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scattering characteristics between various objects, enabling the enhancement of floodwater
identification by distinguishing the different scattering properties of water and non-water
bodies in radar signals. The two backscatter coefficients are determined as follows:

σVV(db) = 10 ∗ log10(σVV) (2)

σVH(db) = 10 ∗ log10(σVH) (3)

where σVV(db) and σVH(db) are the backscatter coefficients, and σVV and σVH are the pixel
values of the two polarized images.

(2) Sentinel-1 dual-polarized water index

Among the main water body extraction methods used for Sentinel-1 SAR images,
threshold segmentation is simple, fast, and can rapidly provide valuable information for
flood disaster assessments. However, the “double peaks” feature of a single band is not
distinct, making it challenging to obtain accurate thresholds and consequently resulting
in suboptimal water body extraction results. The SDWI, proposed by Jia et al. (2019),
is inspired from the normalized difference vegetation index (NDVI) and NDWI, and is
calculated as follows:

KSDWI = ln(10 × VV × VH) (4)

where KSDWI is the SDWI, and VV and VH represent the VV and VH backscatter
coefficients, respectively.

The SDWI multiplies the data from two polarized bands of the Sentinel-1 SAR satellite,
enhancing the characteristics of water bodies while attenuating the features of soil and
vegetation, thereby obtaining distinct “double peaks” that are effective for water body
extraction. Figure 2 presents the pixel histogram of the preprocessed SAR image after SDWI
calculation, revealing clear peaks and valleys. The lowest value of the valley, −7.4605,
represents the threshold for the SDWI threshold segmentation method. In this study, the
decision tree method uses this threshold as the root node, enabling the preliminary coarse
extraction of water bodies in the study area.

Figure 2. Pixel histogram of SDWI images in the study area.

(3) Topographic feature

The SDWI values for water bodies and mountain shadows are similar in the water
body class, making it difficult to distinguish between them using just this index. To remove
the mixed mountain shadows from the extracted water bodies, we incorporate terrain
features such as elevation and slope into the decision tree and random forest decision
tree nodes to suppress the false positives. By combining high-resolution Google Earth
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imagery from 4 October 2019, the coarse-extracted water bodies are visually examined,
identifying the main areas of misclassification between water bodies and shadows. The
elevation and slope information for these regions are then obtained to establish approximate
threshold ranges to differentiate water bodies from shadows. Precise threshold values that
effectively remove shadows are calculated using iterative analysis, with 300 m determined
for elevation and 18 for slope. The elevation and slope information are derived from the
SRTM-1 DEM data through terrain analysis processing.

3.2. Water Extraction Method

(1) Decision Tree

The decision tree (DT) model recursively partitions a set of training data into subsets
with the same classification features by testing a single feature at the root node or multiple
features at the leaf nodes [26]. This model is effective in solving binary classification
problems. It quickly and intuitively captures the impact of each feature on the classification
categories. Therefore, in this study, the DT method was initially applied to water body
extraction to assess the influence of terrain features on mountain shadows. The proposed
method considers the actual conditions of the study area, combining features such as the
SDWI, elevation, and slope for water body extraction in the Poyang Lake area.

(2) Random Forest

The random forest (RF) algorithm is a classifier based on the Bagging ensemble
learning theory [27]. This algorithm builds a series of decision trees by constructing
different sample training sets and subsequently integrates all classification voting results
obtained by majority voting decisions after K rounds of training. Finally, according to
the principle of minority obedience to the majority, the category with the most votes is
designated as the final output. The final classification decision is described as follows:

H(x) = arcmax
Y

∑K
i=1 I(hi(x) = Y) (5)

where H(x) is the final classification result of random forest result; hi(x) denotes the classi-
fied results for a single decision tree; Y is the output variable; and I() is the
characteristic function.

This approach is independent of prior knowledge from interpreters and can thus
handle high-dimensional and complex datasets, with extensive applications in land use
classification and landslide hazard assessments, amongst other fields [28,29]. In this study,
based on Sentinel-1 SAR imagery and DEM data, we selected three types of indicators for
water body extraction in the random forest model, namely, radar feature variables, water
index variables, and terrain feature variables.

(3) Improved U-Net

The U-Net network model, named after its U-shaped structure, is an improved end-to-
end architecture based on the Fully Convolutional Network (FCN) framework [30]. This
model can effectively fuse high-level semantic information and shallow features, leveraging
context information and detail features to obtain more accurate feature maps [31]. However,
the original U-Net model only uses three-channel imagery as the input and does not
fully consider the terrain and landform characteristics within the study area. To address
this limitation, we enhanced the model by modifying the image input to six channels,
enabling the model to simultaneously extract radar features, water indices, and terrain
characteristics. Moreover, to explore deep semantic information in the six-channel imagery,
we replaced the original feature extraction network of the model with the deeper VGG16
convolutional neural network. We also incorporated a channel attention mechanism during
the downsampling process of the convolutional network (Figure 3) to update the model’s
attention weights for different channels and further improve the segmentation performance.
Finally, to better distinguish water body boundaries, we modified the model’s loss function
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by introducing the Dice coefficient in addition to the Cross-Entropy Loss, creating the
Dice Loss to assist the classifier and achieve better segmentation results. Based on these
improvements, we obtained the enhanced U-Net, denoted as the Channel Attention U-Net
(CAU-Net) semantic segmentation model for water body extraction in the Poyang Lake
area. Figure 4 presents the structure of the optimized model.

Figure 3. Channel attention mechanism.

 

Figure 4. Model structure.

The CAU-Net model is implemented in the TensorFlow deep learning framework. To
enhance the model training stability, improve generalization ability, and accelerate training
speed, this study utilized the cosine annealing learning rate decay mechanism to adjust the
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learning rate during the model training process. The initial learning rate was set to 10-4, and
it continuously decayed according to formula 6 during the training process, enabling the
model to descend stably in the correct gradient direction. The model hyperparameters were
adjusted using the Adaptive Moment Estimation (Adam) optimizer, aiming to improve the
model’s convergence.

ηt = ηmin +
1
2
(ηmax − ηmin)(1 + cos(

Tcur

Tmax
π)) (6)

where ηmax is the maximum learning rate; ηmin is the minimum learning rate; Tcur is the
current round; and Tmax is half a cycle.

In order to increase the accuracy of the model water boundary segmentation, the Loss
function used in the training process was constructed as Dice_Loss by introducing the Dice
coefficient based on Cross Entropy Loss. Dice_Loss is expressed as follows:

Dice_Loss = 1 − 2∑n
i=1 yiai

∑n
i=1 yi + ∑n

i=1 ai
(7)

where n represents the total number of test data; y represents the truth value; and a
represents the predicted value.

During the model training process, the goodness-of-fit function of the model stabilized
and converged when the number of iterations was close to 20. The training model obtained
in the previous step was used for the extraction of water bodies in the Sentinel-1B SAR
image of the study area.

3.3. Sample Selection

The number, distribution, and representativeness of training samples can significantly
impact the accuracy of the water body extraction [32]. In this study, water bodies were
treated as a binary classification problem, dividing the study area into two classes: water
and non-water. Water bodies exhibit color differences in shallow and deep water areas,
and thus a suitable number of samples were selected for each category while ensuring a
diverse representation of non-water land cover types. For the decision tree and random
forest methods, training samples were generated through visual interpretation and random
sampling from Google Earth high-resolution imagery, resulting in a total of 1440 sample
points that were split into training and validation sets at a ratio of 7:3.

For the CAU-Net method, a dataset must be constructed to train the model, considering
the differences between water bodies and mountain shadows. The dataset was synthesized
from six-band images including VV and VH radar features, SDWI data, elevation, slope,
and aspect as the bands. The study area was covered by a large Sentinel-1 SAR image. In
order to incorporate different water body types from various regions, six representative
sub-regions were selected, including mountainous regions, flatlands (including urban
areas), mountainous regions with rivers, flatlands with lakes, croplands with lakes, and
flatlands with various types of water bodies (Figure 5). The images of these regions were
batch-cropped to 256 × 256 pixels for model training and were manually labeled using
the Labelme plugin to obtain the corresponding water body distribution labels. A total of
409 images were used to construct the water body distribution dataset, and were divided
into training and validation sets at 4:1 ratio. During the training, data augmentation
techniques, such as horizontal and vertical flipping, cropping, and scaling, were applied to
enhance the model’s generalization ability and prevent overfitting.
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Figure 5. Typical area in the study area.

3.4. Accuracy Evaluation

In order to compare the extraction effects of different extraction methods on flood-
affected water bodies, the accuracy was evaluated using two indexes, namely the overall
accuracy (OA) and Kappa coefficient. Both indexes are calculated based on the confusion
matrix of the extracted results as follows:

OA =
∑κ

i=1 xii

N
(8)

Kappa =
N∑k

i=1 xii − ∑k
i=1 xi+x+i

N2 − ∑k
i=1 xi+x+i

(9)

where N is the total number of samples; K is the total class number; xii is the number of
samples assigned to the correct category; and x+i and xi+ are the true number of Class i
samples and the predicted number of Class i samples, respectively.

4. Results

In order to compare the three water extraction methods proposed in this study, a
detailed comparison was conducted by qualitatively evaluating the effectiveness of the
shadow removal based on the SDWI threshold method. Furthermore, real water samples
were visually interpreted from Google Earth imagery and used to construct confusion
matrices with the water extraction results obtained from the four methods. This facilitated
a quantitative assessment of the water extraction accuracy. Through both qualitative and
quantitative analyses, the most suitable water extraction method for the Poyang Lake
region was ultimately determined.
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4.1. Qualitative Comparison of Water Extraction Results

Figure 6 presents the water extraction results determined by fusing the pre-processed
Sentinel images with DEM data and subsequently applying the SDWI threshold approach
and the three methods proposed in this study. All four methods are observed to roughly
outline the water bodies in the Poyang Lake area over a large scale.

Figure 6. Results of water extraction by different methods.

In order to provide a more intuitive demonstration of the differences between the
methods, we selected several typical water extraction results within the study area for a
detailed comparative analysis. Figure 7 depicts the results. The water body extraction
performance is observed to vary across the methods. The extraction of the SDWI method
is fast and simple, yet it is influenced by various factors such as image noise and terrain,
leading to suboptimal results with a significant amount of scattered misclassified water
bodies. Following the incorporation of the terrain features, the decision tree and random
forest methods exhibit improvements via the reduction in misclassified water bodies.
However, their extraction of water body boundaries still remains relatively coarse. In
comparison, the proposed CAU-Net method effectively mitigates the impact of image
noise and terrain factors, greatly minimizing the misclassification of water bodies. The
second row of Figure 7 reveals the presence of noise points generated due to water surface
reflection. The SDWI, decision tree, and random forest methods are heavily affected by this
noise, resulting in the misclassification of water bodies in the noisy regions as non-water
bodies. In contrast, CAU-Net effectively suppresses the influence of this background noise.
In particular, the analysis of neighboring pixels around the noise points using convolutional
neural networks greatly reduces the misclassification of water bodies.
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Figure 7. Water extraction results of different methods in typical areas.

The fourth row in Figure 7 depicts a typical area of high hills within the study re-
gion, vividly illustrating the impact of each method in suppressing mountain shadows.
The SDWI method, which does not account for mountain shadow effects, is observed to
greatly misclassify mountain shadows as water bodies in high hill terrain. The decision
tree method, which is built upon SDWI threshold segmentation and incorporates terrain
features, demonstrates a fast extraction speed with a certain level of shadow suppression
in hilly areas. The random forest method has a strong applicability to high-dimensional
datasets and effectively eliminates misclassified mountain shadows by incorporating the
water index (SDWI) and terrain features as well as the original Sentinel polarization char-
acteristics. When incorporating terrain features as training data for multi-band remote
sensing images, the CAU-Net method extensively extracts feature information from the re-
mote sensing images. The resulting water body extraction greatly suppresses the influence
of mountain shadows, yielding accurate extraction results.

4.2. Quantitative Comparison of Water Extraction Results

In order to quantitatively compare the extraction accuracy of the various extraction
methods, this study conducts a comprehensive analysis using two metrics, namely, the
OA and Kappa coefficient. The CAU-Net model proposed in this study demonstrates
a strong performance. Compared to the traditional methods of threshold segmentation,
decision tree, and random forest in machine learning, CAU-Net significantly improves
the accuracy of water body extraction. More specifically, it achieves an impressive OA of
98.71% and a Kappa coefficient of 0.97, both of which outperform the comparative methods.
Furthermore, using the same six-band image as input to train the data, the OA and Kappa
coefficient of CAU-Net increase by 0.12% and 0.02, respectively, compared to the U-Net
model without the attention mechanism. This indicates that the method proposed in this
study improves on the U-Net model for water body extraction.

Following this, to investigate the impact of mountain shadows on the accuracy of
water body extraction, this study selected two typical areas: (i) a hilly region around Lushan
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City, which has relatively high average altitude and significant terrain undulations; and
(ii) a low hilly region at the border area between Poyang and Duchang counties, with a
relatively low average altitude but still exhibits some terrain undulations. A total of 188 and
197 sample points were evenly selected for validation in the two respective areas. Table 2
reports the accuracy of different water body extraction methods in these two typical areas.

Table 2. The extraction accuracy of each method in different terrain.

Landform Evaluation Index SDWI DT RF CAU-Net

High hill OA 89.36% 95.87% 96.19% 96.45%
Kappa 0.87 0.89 0.89 0.91

Low hill
OA 91.48% 94.69% 95.18% 95.11%

Kappa 0.87 0.88 0.89 0.89

Compared to the SDWI threshold method, in the high hill area, all three experimen-
tal methods showed a significant improvement in accuracy. More specifically, the OA
increased by 6.51%, 6.83%, and 7.09% respectively, while the Kappa coefficient increased
by 2.43%, 2.57%, and 4.57%. Improvements in accuracy were also observed in the low hill
area, despite the lower level of mountain shadows. The OA increased by 3.21%, 3.70%,
and 3.63% respectively, and the Kappa coefficient increased by 1.04%, 2.19%, and 1.68%.
Comparing the accuracy of the experimental approaches reveals that the decision tree,
random forest, and CAU-Net methods are able to suppress shadows at varying extents,
effectively enhancing the accuracy of water body extraction.

4.3. Analysis of Flood Disaster in Poyang Lake

The comparison of the water body extraction results using the three methods indicates
that both the SDWI method and CAU-Net can achieve the desired accuracy while ensuring
timeliness. Therefore, CAU-Net is chosen as the optimal water body extraction method.
Based on CAU-Net, this study utilizes the deep learning model obtained earlier to predict
the water body extent during the flood period from June to August 2020 using Sentinel-1B
imagery captured every 12 days. Figure 8 presents the resulting maps of the water body
during the six periods.

Due to the influence of heavy rainfall over several days, the water level in the Five
Rivers of Jiangxi Province rose rapidly at the end of June. From 4 to 11 July, the water
level in the Poyang Lake area increased by more than 0.4 m per day for 8 consecutive days,
resulting in a total of 12 numbered flood events. According to Table 3, all five key river
water level stations in the Poyang Lake area exceeded the warning level during this flood
disaster and reached their highest levels around 12 July. Among them, the iconic water
level station, Xingzi Station, reached a record high of 22.63 m, surpassing the 1998 flood
level by 13 cm and exceeding the historical extreme value.

Table 3. Flood characteristic values of water level stations of key rivers in Poyang Lake in 2020.

Gauging Station
Highest Water

Level/m
Warning Water

Level/m
Occurrence Time

1 Hukou 22.49 19.50 12 July 2020
2 Xingzi 22.63 19.00 12 July 2020
3 Yongxiu 23.63 20.00 11 July 2020
4 Duchang 22.42 19.00 11 July 2020
5 Poyang 22.75 19.50 12 July 2020

The total area of the study region is 24,279 km2. Figure 9 presents the water body areas
for each period from June to August 2020. The results indicate that the water body area in
the study region was only 2639 km2 on 20 June, reaching its maximum value of 4080 km2 on
14 July and subsequently decreasing to 3596 km2 on 19 August. Due to the existence of flood
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control embankments and low-lying areas, the change in the water body area lags behind
the water level. This indicates that the maximum water body area obtained in this study is
consistent with the time of the highest water level. The submerged water body area in the
study area initially expanded rapidly and subsequently exhibited a slow recession during
the entire flood period. At turning point 1 (2 July), the study area experienced continuous
heavy rainfall, and the submerged water body area rapidly expanded, increasing by a total
of 1441 km2 during the rising period. At turning point 2, when the rainfall almost stopped
and the floodwaters ceased to rise, the submerged water body slowly receded, decreasing
by a total of 484 km2 during the recession period. The rapid expansion of the floodwater in
the study area placed significant pressure on the relevant departments of Jiangxi Province
to respond promptly with flood control and disaster relief measures. Furthermore, the slow
recession of the floodwaters posed considerable challenges for post-disaster rescue and
recovery efforts.

Figure 8. CAU-Net long-time series water extraction results.

This paper took 20 June, 14 July, and 19 August as the pre-flood, mid-flood, and
post-flood times, respectively. Figure 10 presents the flood inundation maps determined
by overlaying the water body extents during the (i) pre-flood and mid-flood periods; and
(ii) the mid-flood and post-flood periods. The maps reveal the severely affected areas of
the flood disaster to be concentrated around Poyang Lake, with significant inundation
occurring in Yongxiu County, Poyang County, Xinjian District, and Yugan County.
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Figure 9. Water area change line chart.

Figure 10. Change of flood inundation extent.

5. Discussion

In the southern regions of China, flood disasters occur frequently during the rainy
season every year, causing the inevitable inundation of farmland around lakes and rivers,
resulting in significant crop losses. The rapid and accurate acquisition of flood inundation
extent and area is of great significance for quick disaster assessments and reducing crop
losses. In this study, Sentinel-1 SAR images and SRTM-1 DEM data were employed to
compare and analyze three models, namely decision tree, random forest, and CAU-Net.
Based on the results, the CAU-Net method was selected to extract the water body extent
during the 2020 Poyang Lake flood. The floodwater distribution areas for each period in
the study area were subsequently obtained and the disaster situation was analyzed.

The extraction of water body information is critical to remote sensing-based flood
monitoring. Optical remote sensing has evolved from simple visual interpretation to the
construction of the NDWI, which can achieve relatively accurate water body extraction re-
sults, and different water body index layers can be generated under various conditions [33].
However, flood monitoring is distinct to simple water body extraction. During flood disas-
ters, adverse weather conditions often prevail, making optical remote sensing ineffective
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for monitoring. Microwave remote sensing, on the other hand, with its ability to penetrate
clouds and fog, has become a popular choice for flood monitoring [34]. The results of the
three water body extraction methods meet the requirements for high accuracy in terms
of the OA and Kappa coefficient. This demonstrates the feasibility of using SAR data for
water body extraction, with CAU-Net achieving the highest accuracy.

Numerous shadows are cast by mountains in the study area. Due to their similar
characteristics to water bodies in microwave remote sensing images, a considerable number
of these mountain shadows are mistakenly identified as water bodies. To obtain a more
accurate range of flood disasters, this study proposes three water body extraction methods
based on SDWI and terrain features. The results indicate that all three extraction methods
effectively suppress the influence of mountain shadows. Among them, by introducing the
decision tree method based on SDWI threshold segmentation and conducting a series of
experiments, we determined thresholds suitable for terrain features, thus effectively sup-
pressing shadows within water bodies. However, it is worth noting that the segmentation
thresholds and classification criteria for this method often rely on the interpreter’s expe-
rience, resulting in a certain degree of subjectivity. On the other hand, the random forest
method does not rely on the prior knowledge of the interpreter, yielding more reasonable
extraction results. Our results indicate that the random forest method is more suitable for
extracting floodwater bodies in small-scale hilly areas. In comparison, CAU-Net not only
reduces the influence of human factors but also achieves high extraction accuracy with
the best shadow removal effect on mountainous terrains. Although this method requires
time for initial model training, it can be directly applied to multi-temporal flood range
extraction in the later stages, making it more efficient. Therefore, the CAU-Net method
is undoubtedly more applicable for water body extraction around Poyang Lake, with its
extensive mountainous terrain.

The disaster analysis revealed the water area in the Poyang Lake region to exhibit
a trend of “rapid expansion and slow recession” during this flood period. On 14 July
2020, the water area reached its peak at 4080 km2. This flood disaster has caused severe
losses, particularly in the heavily affected areas of Yongxiu County, Poyang County, Xinjian
District, and Yugan County. The government should prioritize disaster reduction efforts
in these regions. It is crucial to scientifically guide the post-disaster recovery of crop pro-
duction, provide tailored technical support, and minimize disaster losses. In addition, the
planning and construction of agricultural infrastructure should be enhanced in these areas.
Additional emergency drainage facilities should also be present to prepare for potential
rises in water levels or even flooding during future flood seasons, thereby minimizing crop
losses.

6. Conclusions

(1) During the rainy season, optical imagery in the southern hilly regions is severely
constrained by cloudy and rainy weather conditions. This study effectively addressed
this issue by utilizing Sentinel-1 SAR imagery in conjunction with multi-source data.
The results demonstrate the feasibility of employing SAR imagery in flood disaster
monitoring in the Poyang Lake region, providing a key technological reference for
future efforts in flood disaster management.

(2) The deep learning approach demonstrates notable advantages in land feature ex-
traction tasks. With the aim of addressing the issue of interference from mountain
shadows in the study area, we propose the CAU-Net method for water body extraction.
This method achieves an overall accuracy of 98.71% and a Kappa coefficient of 0.97 in
water body extraction within the study area, both of which are at the highest level
among the various methods. In the highland areas with abundant mountain shadows,
its extraction accuracy reaches 96.45%, representing a significant improvement of
7.09% compared to the SDWI method. CAU-Net effectively facilitates water body
extraction in hilly regions. Moreover, it enables the water exaction of long-term image
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sequences, thereby realizing the monitoring of flood disaster processes. CAU-Net
provides a new technical means for flood monitoring in the Poyang Lake region.

(3) The analysis of long-term image sequences in the study area reveals that the flood area
expanded rapidly and subsequently receded slowly. The severely affected areas are
primarily located around lakes and rivers, or in relatively low-lying terrain, coinciding
with the crop cultivation areas. By analyzing the water body extraction results before
and after the flood, this study accurately quantified the flooded area, providing data
support for disaster assessments and post-disaster reconstruction.
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Abstract: Continuously global warming and landscape change have aggravated the damage of
flood disasters to ecological safety and sustainable development. If the risk of flood disasters under
climate and land-use changes can be predicted and evaluated, it will be conducive to flood control,
disaster reduction, and global sustainable development. This study uses bias correction and spatial
downscaling (BCSD), patch-generating land-use simulation (PLUS) coupled with multi-objective
optimization (MOP), and entropy weighting to construct a 1 km resolution flood risk assessment
framework for the Guanzhong Plain under multiple future scenarios. The results of this study show
that BCSD can process the 6th Climate Model Intercomparison Project (CMIP6) data well, with a
correlation coefficient of up to 0.98, and that the Kappa coefficient is 0.85. Under the SSP126 scenario,
the change in land use from cultivated land to forest land, urban land, and water bodies remained
unchanged. In 2030, the proportion of high-risk and medium-risk flood disasters in Guanzhong
Plain will be 41.5% and 43.5% respectively. From 2030 to 2040, the largest changes in risk areas
were in medium- and high-risk areas. The medium-risk area decreased by 1256.448 km2 (6.4%), and
the high-risk area increased by 1197.552 km2 (6.1%). The increase mainly came from the transition
from the medium-risk area to the high-risk area. The most significant change in the risk area from
2040 to 2050 is the higher-risk area, which increased by 337 km2 (5.7%), while the medium- and
high-risk areas decreased by 726.384 km2 (3.7%) and 667.488 km2 (3.4%), respectively. Under the
SSP245 scenario, land use changes from other land use to urban land use; the spatial distribution of
the overall flood risk and the overall flood risk of the SSP126 and SSP245 scenarios are similar. The
central and western regions of the Guanzhong Plain are prone to future floods, and the high-wind
areas are mainly distributed along the Weihe River. In general, the flood risk in the Guanzhong Plain
increases, and the research results have guiding significance for flood control in Guanzhong and
global plain areas.
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1. Introduction

The dramatic changes in the global climate have led to an increase in the frequency
of flood disasters. Meanwhile, anthropogenic activities have increased the proportion of
impervious surfaces in the world and reduced the area of green space. In this case, it is
causing serious economic and life losses on a global scale [1–5]. Especially in developing
countries, the abuse of resources and environmental protection awareness is relatively
low, making them more vulnerable to floods [6]. Recently, various parts of China have
suffered from the effects of flooding [7]. For example, on 20 July 2021, Zhengzhou City,
Henan Province, saw a “once-in-a-millennium” torrential rain, causing severe flash floods,
landslides, river floods, and large-scale urban floods. The disaster caused 380 deaths
and missing people in Zhengzhou City, with direct economic losses of CNY 40.9 billion,
seriously affecting people’s lives [8–10]. The frequent occurrence of floods is closely linked
to climate change. The latest assessment report of the Intergovernmental Panel on Climate
Change (IPCC) shows that human activities have led to increasing climate change and
dramatic changes in the regional environment [11–13], with more frequent extreme weather
events and climate change disrupting the smoothness in hydrological analysis, thus further
increasing the intensity of regional flooding. Flood disasters and human activities have a
direct impact on land use and land cover, and changes in land use and land cover can subtly
change regional temperature, rainfall, vegetation, and other neglected climatic factors to a
certain extent [14,15], making flood prevention more difficult. At present, China’s research
on the impact of climate change and land-use types on floods is still in its infancy, which
poses a considerable challenge for future flood control and disaster reduction work and
flood disaster risk management [16,17].

The research on global climate and land-use change has made great strides in recent
years [14,18,19]. Climate models are indispensable for the prediction of climate change.
The Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate model (GCM)
is now widely used in climate change research [20–22]. Chen [20] found that the CMIP6
model improved the modeling of extreme index trends in critical regions of the world,
predicting a significant increase in extreme rainfall days and five consecutive days of
maximum precipitation. It is crucial to predict areas prone to waterlogging on a fine scale.
Studies showed that human activities change land-use conditions, which is an important
reason for the occurrence of floods [23–27]. The probability of a waterlogging disaster is
proportional to the proportion of the impervious surface and inversely proportional to the
proportion of green space [28,29]. At present, the cellular automata (CA), future land-use
simulation (FLUS), and PLUS models are widely used to simulate and predict dynamic
changes in land use [30,31]. Lin et al. [31] used maximum entropy (MAXENT) and the
FLUS model to predict future waterlogging-prone areas. Zhang [32] used the PLUS model
to simulate future multi-scenario land-use types in the Yangtze River basin for 2035–2095,
and the Kappa coefficient was 0.896. Most studies demonstrated that the PLUS model
has a higher accuracy for the landscape pattern, location, and quantity simulation than
the FLUS model [33,34]. Meanwhile, the PLUS model can be used to simulate regional
ecological environment changes and to evaluate, design, and plan ecological management
behaviors [35]. Compared with other models, the PLUS model can better reveal the internal
relationship of land-use change. However, few studies have considered the impact of
climate change and land use on flood disasters at the same time. This paper aims to fill
this gap.

Another key issue is the selection and proportion of flood-disaster-causing factors [36,37].
In the current research, the methods of using multi-criteria analysis to evaluate flood
disaster and vulnerability include the Technique for Order of Preference by Similarity
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to Ideal Solution (TOPSIS) and Simple Additive Weighting [38], hierarchical analysis
(AHP) [39], the fuzzy analytic hierarchy process [40], the set pair analysis–variable fuzzy
sets model [41], and entropy weighting [42]. The entropy weight method is mainly used
in the study of environmental science, but it is a relatively new method for flood risk
assessment. This method does not consider the decision maker’s factors in the calculation
process, calculating the weight by solving the mathematical model, so it produces more
objective results [43,44]. In previous flood risk studies, higher-resolution data play an
essential role in regional future flood risk evaluation. A coarse resolution product [39] was
used to predict the runoff under four typical concentration paths (RCPs) using 21 general
climate models (GCMs), and runoff estimates at 25 km resolution in Canada from 1961 to
2005 and from 2061 to 2100 were generated [45]; Rincón [45] used CMhyd to downscale
seven GCMs in CMIP5, and the study based its calculations on station data, with the
number of stations directly influencing the spatial resolution. In contrast, most of the
existing multi-scenario flood risk assessments focus on RCPs; Li [46] constructed flood risk
assessments for different scenarios (RCPs 2.6, 4.5, 6.0, and 8.5). However, less consideration
is given to SSPs, where the main flood-inducing factors that should be considered are
precipitation (SSPs-RCPs), land use (SSPs-RCPs), GDP, and population (SSPs-RCPs). To
optimize the scenario change and the resolution of the flood assessment, this study builds
on this to construct a high-resolution multi-scenario flood risk assessment framework.

The present work aims to construct a 1 km resolution future multi-scenario flood risk
assessment framework in the context of climate change and urbanization, to conduct a multi-
scenario flood risk assessment for the future Guanzhong Plain via coupling BCSD, PLUS,
and the entropy weighting methods, to guide future flood prevention in the Guanzhong
Plain, and to supply references for other plain areas globally.

2. General Situation of the Research Area

2.1. Research Area

The Guanzhong Plain is located in the Weihe River alluvial plain on the northern foot
of the Qinling Mountains in Shaanxi Province. It is also known as the Weihe Plain. It is
between 107.4◦~111.49◦E and 33.92◦~36.05◦N, with an average altitude of about 500 m
(Figure 1a). There have been significant spatial and temporal differences in the occurrence
of floods in the Guanzhong Plain over the last 400 years, compared to other regions [47].
In the first 200 years, the flood disasters in the Guanzhong Plain mainly occurred in Xi’an
and Tongchuan, in the lower reaches of the Luo River. The occurrence of floods in the
Guanzhong Plain over the last 200 years has had noticeable seasonal differences, with the
extremes mainly occurring in the summer and autumn. In addition, the flat topography,
loose soils, and sparse surface vegetation of the Guanzhong Plain are unique natural
conditions that can lead to regional flooding.
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Figure 1. (a) Location map of the Guanzhong Plain; (b) monthly precipitation, evaporation, and
temperature in Guanzhong Plain during the study year.
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2.2. Data Sources

HRLT (1975–2014): Comprehensive statistical analysis methods such as machine learn-
ing, generalized additive models, and thin plate splines were used to interpolate daily grid
data. They were based on the 0.5◦ × 0.5◦ grid dataset of the China Meteorological Admin-
istration, with elevation, aspect, slope, terrain humidity index, latitude, and longitude as
the main covariates. The MAE, RMSE, Cor, R2, and NSE were 1.30 mm, 4.78 mm, 0.84, 0.71,
and 0.70. The resolution of the dataset was 1 km × 1 km [48].

CMIP6 data (1975–2050) were derived from the historical test data of cmip6 and the
data of different shared social and economic paths (SSPs, including SSP126 and SSP245);
this study predicts the daily precipitation in the Guanzhong Plain under different scenarios
from 2030 to 2050.

The data on land use and driving factors used in this study are shown in Table 1.

Table 1. Driving factors and land-use data.

Type Data Time
Original

Resolution
Resource

Land use
2010

1 km
www.globallandcover.com/, accessed on

3 January 20222020

Socio-economic factors

POP 2010, 2020
0.5◦

https://springernature.figshare.com/
articles/dataset, accessed on

10 January 2022

Gross domestic product
(GDP) 2010, 2020

http://cstr.cn/31253.11.sciencedb.01683,
accessed on 10 January 2022.

CSTR:31253.11.sciencedb.01683.
Grain sown area and

output 2010, 2020
Statistical Yearbook of Shaanxi

Province 2022Rural and urban
population 2010, 2020

Grain purchase price 2010, 2020

Natural environmental
conditions

Digital elevation model
(DEM) 2010 1 km

NASA SRTM1 v3.0
Slope 2010 1 km

Traffic location factors

Railway 2010 OpenStreetMap
https://www.openstreetmap.org/,

accessed on 10 January 2022

Highway 2010
Expressway 2010

River 2010

To ensure data consistency during the calculation, the drive factor data were uniformly
resampled to 1 km × 1 km using ArcGIS.

3. Materials and Methods

3.1. BCSD

To obtain reliable datasets at a conventional resolution of 0.5◦, GCMs at different
resolutions need to be bias-corrected and downscaled. Based on the bias between the
simulated and observed climate variables at each percentile, the simulated dataset’s cumu-
lative distribution function (CDF) is adjusted using the equidistant cumulative distribution
function (EDCDF) method. The method can be expressed as follows:

xcorrect = x + F−1
oc (Fms(x))− F−1

mc (Fms(x)) (1)

where x is the climate variable, in which the precipitation is used in this paper;
F−1

oc (Fms(x))− F−1
mc (Fms(x)) is the deviation between the model output and the observation;

F is the cumulative distribution function (CDF); F−1
oc and F−1

mc denotes the observation and
the model output during the historical training period; and Fms denotes the model output
during the correction period.
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3.2. MOP + PLUS
3.2.1. MOP

MOP [49] is an open and flexible method incorporating various ecological and macroe-
conomic policies. To construct a reasonable land-use structure, this study designs two
scenarios according to different constraints and objective functions: (1) a sustainable devel-
opment model that balances economic benefits and ecological values (SSP126); (2) natural
development scenarios predicted by the Markov chain (SSP245).

The optimization objectives of MOP are listed in Table 2. The constraint conditions
of these objective functions are shown in Table 3. Finally, the multi-objective optimization
results are calculated using Lingo.

Table 2. Multi-objective optimization function for evaluation.

Function Formula Description

Function for estimating
economic benefits.

M1 = max
6
∑

i=1
ebixi =

max{5.89x1 + 0.40x2 + 24.37x3 + 249.6x4+ 0.001x5 + 1.97x6}

The coefficient ebi is the economic benefits of
each land-use type (unit: 104 CNY/ha),
CNY = Chinese yuan.

Function for estimating
ecological service value

M2 = max
6
∑

i=1
esvixi =

max{0.68x1 + 2.89x2 + 0.22x3 + 0.000142x4+ 0.4x6}

The coefficient esvi is the ecological service
values of each land-use type (unit:
104 CNY/ha).

MOP function under the SSP126
scenario SSP126 = max

{
0.5∑6

i=1 ebixi + 0.5∑6
i=1 esvixi

} x1 ∼ x6 represents the area of different
land-use types (ha): cultivated land (x1),
woodland (x2), grassland (x3), urban land (x4),
bare land (x5), and water (x6).

Table 3. Multi-objective optimization constraints for evaluation.

Constraint Description

∑6
i=1 xi = 3552159.78 The total land-use area remains unchanged.

0.35
3
∑

i=1
xi + 66.53x4 ≤ Pi

The population density of agricultural land and urban land
are 0.35 and 66.53, respectively (person/ha). Pi is the total
population by 2030, 2040, and 2050; Pi is, respectively,
30 million, 31.2 million, and 32.3 million.

x3+x5
3552159.78 ≥ 0.04

To ensure the diversity of land use, the total grassland and
bare land area in this study are less than 0.04.

3
∑

i=1
xi ≥ 3080771

Considering that the change in cultivated land should keep
a dynamic balance, the total area of cultivated land should
be greater than or equal to the current value.

875920.6 ≤ x2 ≤ wi × 120%
We set the woodland area to be between the woodland area
in 2020 and wi × 120%, and wi is the predicted woodland
area of the Markov chain in 2030, 2040, and 2050.

0.038 ≤ x3
3552159.78 ≤ 0.043

We set the grassland coverage in 2020 as the upper limit
(0.043) and the grassland coverage in 2050 predicted by the
Markov chain as the lower limit (0.038).

ui × 80% ≤ x4 ≤ ui × 120%
ui is what the Markov chain predicts as the urban land area
in 2030, 2040, and 2050. We set ui × 120% as the upper limit
(0.043) and ui × 80% as the lower limit (0.038).

49539.33 ≤ x6 ≤ vi × 120%
vi is what the Markov chain predicts as the water area in
2030, 2040, and 2050. We set vi × 120% as the upper limit
and the water area in 2020 as the lower limit.

3.2.2. PLUS

The PLUS model combines rule mining based on the land expansion analysis strategy
with cellular automata based on multiple random patch seed types [34]. It allows the driver
to be explored, and it is possible to obtain the reasonable probability of various kinds of
LULC extensions using the RF classification.

(1) Land expansion strategy analysis (LEAS)
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The transition rules obtained in LEAS have the characteristics of time, which can
describe the nature of land-use change during a specific time interval.

Pd
i,k(x) =

∑M
n=1 I(hn(x) = d)

M
(2)

where P is the final growth probability of the land-use type K in unit I, I (·) is the indicator
function of the decision tree set, hn(x) is the prediction type of the nth decision tree of the
vector x, and M is the total number of decision trees.

(2) CA

The CA model is a land-use simulation model driven by scenarios. Its main principle
is divided into two parts: “top-down” (global land-use demand) and “bottom-up” (local
land-use competition).

OPd=1,t
i,k = Pd=1

i,k × Ωt
i,k × Dt

k (3)

where OPd=1,t
i,k represents the change probability of the kth land-use type at the ith place of

the data grid, Dt
k is the influence of k on the future land use in t time, and Ωt

i,k represents
the neighborhood effect at the ith position of the grid.

(3) Model validation

Based on previous studies and the principles of data availability, data consistency,
data comprehensiveness, and data redundancy [50–54], this paper selects natural driving
factors such as elevation, slope, and precipitation; accessibility driving factors such as
river distance, road distance, and railway distance; and socio-economic driving factors
such as GDP and population density. The land-use demand under the scenarios of SSP126
and SSP245 in 2030, 2040, and 2050, calculated by the Markov chain and MOP, is used
to determine the land-use demand of the project. Based on the land-use pattern of the
Guanzhong Plain in 2010 and 2020, the land-use patterns in 2030, 2040, and 2050 under the
joint action of the above driving factors are simulated. By setting the same PLUS model
parameters, this study simulates the land-use pattern in 2020 based on the land-use pattern
in 2010 and compares it with the real land-use situation in 2020. The Kappa coefficient is
0.8507, which indicates that the prediction accuracy is higher, and the land-use pattern
simulation results are reliable.

3.3. Construction of Flood Risk Assessment Model

This paper selects the flood risk evaluation index of the Guanzhong Plain from three
aspects: disaster-causing factors, disaster-pregnant factors, and disaster-bearing factors.
The disaster-causing factors are the average annual rainfall and Rx5day; the disaster-
pregnant factors are the elevation, slope, distance from rivers, distance from roads, and
land use, based on the land-use data for 2030, 2040, and 2050 under the two scenarios of
SSP126 and SSP245 simulated by the PLUS model. Runoff coefficients (RC) were used
to assign values to each of the six land uses: 0.60, 0.30, 0.35, 0.92, 0.70, and 1.00; and the
disaster-bearing factors are the population density and GDP. All data were normalized
to obtain the respective factor indicators. The flood risk assessment structure is shown in
Figure 2.

For calculating the hazard, sensitivity, and vulnerability indicators, the entropy weight-
ing method was chosen for each precipitation unit under different scenarios for 2030, 2040,
and 2050.
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Figure 2. Flood risk assessment framework.

4. Results

4.1. Verification of Future Precipitation Accuracy

The GCMs data selected for this study are shown in Table 4. The research, first,
compares the performance of observation data and model data during the historical period
(1970–2014). From the deviation index between the root-mean-square error and the multi-
year average value, the error of the multi-mode ensemble average is significantly smaller
than that of the single mode. The precipitation of the multi-mode set is consistent with the
observed monthly precipitation during the year (Figure 3). The Taylor chart shows that
each model has a good simulation ability for precipitation in the Guanzhong Plain. Among
them, the standard deviation of each mode is less than 1, and the correlation coefficient is
more than 0.95.

Table 4. Basic information of 5 GCMs from CMIP6.

Model Country Original Resolution (◦) Resolution after Downscaling (◦)

CanESM5 Canada 2.8 × 2.8 0.5 × 0.5
CNRM-ESM2-1 France 2.5 × 1.2676 0.5 × 0.5

GFDL-ESM4 U.S.A. 2.88 × 1.8 0.5 × 0.5
MIROC6 Japan 1.4063 × 1.4 0.5 × 0.5

MRI-ESM2-0 Germany 1.125 × 1.12 0.5 × 0.5

Moreover, the standard deviation is smaller than that of the single mode, and the
correlation coefficient is higher than that of the single mode, reaching more than 0.98.
As can be seen from Figure 3, the simulated monthly precipitation values before the
model correction significantly deviated from the observed values. After the correction, the
difference between the simulated and observed monthly precipitation values is controlled,
with the maximum error within 5 mm (Figure 4). The constructed deviation correction
model can correct the model deviation very well. In conclusion, the simulation effect of
multi-mode ensemble averaging is better than that of single-mode. Still, the resolution and
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accuracy of the mode after ensemble averaging have not reached the accuracy required by
this study, so deviation correction and downscaling are necessary.

Figure 3. Taylor chart of monthly average precipitation based on climate model and meteorological
observation data.

  

Figure 4. Comparison of monthly average precipitation between observation value and simulation value.

The corrected downscaling model is used to downscale the cmip6 data from 2030 to
2050 under the SSP126 and SSP245 scenarios, that is, to complete the future precipitation
forecast in the Guanzhong Plain. Ultimately, this study uses the downscaled CMIP6 data to
calculate the annual precipitation and Rx5day.

4.2. Future Land-Use Scenario Simulation Results

The spatial distribution of the drivers selected for this study is shown in Figure 5.
Combining the drivers with the future land-use demand of the Guanzhong Plain under
different scenarios obtained from MOP and Markov chain projections, the land-use pattern
of the Guanzhong Plain can be simulated under multiple scenarios in 2030, 2040, and 2050
(Figure 6).

Figure 6 and Table 5 show the predicted results and the number of LULC types for
the different scenarios. The area occupied by cultivated land is always higher, while urban
land, water bodies, woodland, and grassland are lower, and bare land is always at the
lowest level. In the SSP126 scenario, from 2030 to 2050, all land types show an increasing
trend except for urban land, which decreases by 6.9% year on year. In contrast, urban land
increases by 4.1% from 2030 to 2040 and by 2.6% from 2040 to 2050. Overall, it shows an
upward trend and a slower growth rate. In contrast to the SSP126 scenario, urban land
under the SSP245 scenario maintains a higher growth rate from 2030 to 2050, increasing by
18.4% year on year, with all other land types showing a decreasing trend.
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Figure 5. (a–h) Distribution of the drivers in the Guanzhong Plain.
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Figure 6. LULC simulation results and land class shares for different scenarios at different times.

Table 5. Land-use demands under different scenarios.

Type
SSP126 SSP245

2020 2030 2040 2050 2030 2040 2050

Cropland 22,879,843 22,628,622 22,396,611 22,240,356 22,398,817 22,005,502 21,685,365
Woodland 9,732,451 9,730,251 9,718,942 9,748,918 9,656,993 9,575,550 9,490,178
Grassland 1,618,498 1,697,143 1,657,674 1,660,798 1,569,406 1,529,747 1,497,225

Water 548,437 550,432 633,893 622,750 538,184 528,244 518,958
Urban land 4,660,253 4,831,098 5,033,004 5,167,280 5,276,346 5,801,081 6,248,796
Bare land 28,960 28,696 28,318 28,340 28,696 28,318 27,919

Figure 7 shows the simulated LULC changes for the SSP126 and SSP245 scenarios. In
2020–2030, the arable land in the SSP126 scenario is mainly converted to grassland and
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urban land. Between 2030 and 2040, 1.8% of the arable land converts to urban land, while
4.6% of the urban land converts to arable land (and vice versa, to a lesser extent), resulting
in a lower rate of change for urban land between 2030 and 2040 and a similar shift in the
previous period between 2040 and 2050, with a continued overall conversion of agricultural
land to other land types and, significantly, urban land use. Under the SSP2-4.5 scenario,
the main changes between cropland, urban land, and forest land occur between 2020 and
2030, with conversion rates from cropland to urban land and forest land of 3.8% and 1.1%,
respectively. In addition, similar changes occur between 2030–2040 and 2040–2050, with
arable land mainly being converted to urban land, resulting in a significant increase in the
urban land area.

Figure 7. Variation in LULC types during different periods in the SSP126 and SSP245 scenarios.

4.3. Risk Assessment of Future Flood
4.3.1. Hazard Indicators

The Geographic Information System (GIS), as a visual technical means, is mainly used
in flood disaster risk assessment [55]. Figure 8 shows the flood hazard maps under different
scenarios during different periods, from which the spatial distribution characteristics of
flood hazards in the Guanzhong Plain can be analyzed. Based on the GIS environment,
the Jenks method creates a flood hazard map using the hazard index. The map shows
the potential areas where flood events are more likely to occur. For scenario SSP126, the
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medium-to-higher-risk area gradually shifts from the northeast to the southwest of the
Guanzhong Plain. There is a significant increase in the medium-to-higher-risk area. SSP245
is similar to the above, but the medium-to-higher-risk area is more significant. The rise in
hazards in the southwest also contributes to a certain extent to the eventual concentration
of the higher-risk areas for flooding in the southwestern part of the Guanzhong Plain.
Combined with Figure 9, it can be seen that in the 25%–75% interval, more data exist for
SSP245 than for SSP126. For Rx5day, the SSP245 scenario is mainly concentrated in the
80–90 mm range. The SSP126 scenario is primarily focused in the 70–100 mm range, with
the former concentration associated with higher precipitation and more extreme values. In
contrast, the annual rainfall also shows a similar distribution, which leads to the SSP245
scenario being more likely to produce higher precipitation in both scenarios relative to the
SSP126 scenario, thus leading to flooding.

Figure 8. Spatial distribution of hazard indicators in the Guanzhong Plain between 2030 and 2050
under different development scenarios.
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Figure 9. Distribution of Rx5day versus annual precipitation timing for the two scenarios during
2030–2050.

4.3.2. Sensitivity Indicators

The spatial distribution of the environmental sensitivity to flooding in the Guanzhong
Plain between 2030 and 2050 is shown in Figure 10. The spatial distribution of the sensitivity
to flood hazards in the Guanzhong Plain can be analyzed from this. To better analyze
the changes, three typical areas of change are selected for analysis; when coupled with
Figure 11, it can be seen that the green area mainly represents the variation in low-risk
areas, which remains around 0.06 for all years, except for the SSP245 scenario, where it is
0.03 in 2030. The red areas mainly show the change from low-risk areas to medium- and
high-risk areas, and the blue areas mainly show the transition from medium-risk areas
to high- and higher-risk areas. As we set the distance from the river to remain constant,
the changes in this part are mainly influenced by land use. Combined with Figure 6, it
can be seen that there is a more obvious expansion of urban land in this area. Under the
SSP245 scenario, the high- and higher-risk areas in 2050 account for more than 30%, with
the higher-risk area reaching 38.9%, so the area’s risk level is significantly higher.

Figure 10. Cont.
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Figure 10. Spatial distribution of sensitivity indicators in the Guanzhong Plain between 2030 and
2050 under different development scenarios.

Figure 11. Map showing the percentage of area in different risk zones.

4.3.3. Vulnerability Indicators

This study primarily considers flood vulnerability regarding demographic and socioe-
conomic factors. On this basis, the Jenks methodology is used to classify the risk levels into
five, which are lower, low, medium, high, and higher. Most of the medium–higher vulnera-
ble areas are mainly located in urban land areas. Most areas have low vegetation cover but
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are densely populated and more economically developed, which has been shown to play
a somewhat important role in increasing vulnerability. The areas of low vulnerability are
mainly located in agricultural areas, and most are flat. As seen in Figure 12, there is little
change in the vulnerability between the two scenarios, mainly in the form of a decrease in
the lower-risk areas and an increase in the medium-to-higher-risk areas.

Figure 12. Spatial distribution of vulnerability indicators in the Guanzhong Plain between 2030 and
2050 under different development scenarios.

4.3.4. Future Multi-Scenario Flood Risk Assessment

The flood risk map for the Guanzhong Plain (Figure 13) was obtained by integrating
the GIS environment-based hazard, sensitivity, and vulnerability maps described above.
The equal spacing approach was used to classify the flood risk into five categories: lower,
low, medium, high, and higher risk.
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Figure 13. Spatial distribution of flood risk indices in the Guanzhong Plain between 2030 and 2050
under different development scenarios.

Combined with Figures 14 and 15, it can be seen that under the SSP126 scenario, the
percentage of flood risk zone levels in the Guanzhong Plain in 2030 are 0.018, 0.123, 0.435,
0.415, and 0.009, where the high- and medium-risk zones occupy a large area and are
mainly concentrated in the areas where rivers converge, with the high-risk zones located
near the Weihe River (Pucheng, Wugong, Fengxiang, and Yongji). The largest changes
in the risk area between 2030 and 2040 are in the medium- and high-risk areas, with the
medium-risk area decreasing by 1256.448 km2 (0.064) and the high-risk area increasing by
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1197.552 km2 (0.061); the increase mainly comes from the transition from the medium-risk
area to the high-risk area. The spatial distribution of risk areas is similar, but the high-risk
areas increase in Qindu and near the lower reaches of the Weihe River and the Ba River,
and a comparison of Figures 5 and 7 shows that the increase in the high-risk areas is related
to the rise in urban land use and precipitation. The most significant change in the risk area
in the Guanzhong Plain between 2040 and 2050 is in the higher-risk area, which increases
by 337 km2 (0.057), while the medium- and high-risk areas decrease by 726.384 km2 (0.037)
and 667.488 km2 (0.034), respectively, with a distribution similar to that of precipitation and
urban land use in 2050. This distribution is identical to that of precipitation and urban land
use in 2050. As shown in Figure 13, a large proportion of the area at risk overall is related
to the distribution of DEM, the slope, and arable land, and the overall flat topography of
the Guanzhong Plain and its well-developed rivers are more prone to flooding.

Figure 14. Map of the area at risk as a percentage.

In the SSP245 scenario, the overall risk distribution is similar to that in the SSP126
scenario, with an overall increase in the high-risk area in the central and western parts of
the plain, with the percentage of flood-risk areas in the Guanzhong Plain in 2030 being
0.021, 0.117, 0.418, 0.429, and 0.012, respectively. Between 2030 and 2040, the medium- and
high-risk areas continue to have the greatest change in the area, with the medium-risk
area decreasing by 1433.136 km2 (0.073) and the high-risk area increasing by 1099.392 km2

(0.056), mainly due to changes in precipitation and an increase in urban land use; between
2040 and 2050, the increase in the area of the higher-risk area peaks at 1472.4 km2. This is
mainly in the vicinity of the Weihe River’s mainstem. The urban land area has significantly
changed, from 236.112 km2 to 905.096 km2 and, finally, to 2380.796 km2.
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Figure 15. Change in risk transfer under different scenarios.

5. Discussion

5.1. CMIP6 Downscaling and Validation

Based on the CMIP6 data, we selected five GCMs’ data that are suitable for the study
area, and the selected data were revised for bias and downscaled by pooled averaging
as well as BCSD methods, which showed that after ensemble averaging, the standard
deviation of each mode is less than 0.5, the root-mean-square error is within 0.4, and
the correlation coefficient is more than 0.95. For higher accuracy, the BCSD method was
chosen to downscale the data after ensemble averaging, and it can be seen that BCSD
can completely carry out downscaling and correction work. Zhu [56,57] used the model
ensemble averaging method to validate the CMIP6 precipitation data for the Tibet Plateau
and the Yangtze River Basin, and the results showed that the model ensemble averaging
method can reduce model errors well, but further corrections are needed. Eum [58] ranked
four downscaling methods, BCSD, the bias-correction/constructed analog, multivariate
adaptive constructed analogs (MACA), and the bias-correction/climate imprint, based on
performance metrics using the TOPSIS; the results showed that MACA and BCSD have
considerable skills regarding the time series correlation criteria, while BCSD is superior to
the other methods regarding the distribution and extreme value correlation criteria. This
would suggest that the BCSD method chosen for this study has some advantages over other
downscaling methods and is a tool that can be used well for downscaling.

5.2. MOP Coupling PLUS Multi-Scenario Simulation

This study uses the MOP and PLUS models for land-use multi-scenario prediction.
The simulation accuracy can reach a Kappa of 0.85 and an overall accuracy of 0.92, which
can better simulate the future land-type distribution of the Guanzhong Plain. The change
in land use also shows different characteristics under different scenarios. In the SSP126
scenario, the conversion of agricultural land to forests, buildings, and water is constant [59].
In Europe, the area of forested land in a similar context has increased due to the introduction
of policies and the designation of nature reserves [60]. “Forest conservation”, “Reforestation
and Revegetation”, and other eco-civilizations promote environmental protection as well
as sustainable development, which also leads to the continuous return of cultivated land
to forest and grass [61]. This is in line with our results. In the SSP245 scenario, the future
conversion of arable land to buildings and increased population density in the southeast
will continue to affect climate change and lead to more extreme rainfall events [62].
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5.3. Flood Risk Assessment

The entropy weight method is used in this article for flood risk assessment. The
analysis shows that the higher risk areas for flooding in the Guanzhong Plain are mainly
found in the central part of the Guanzhong Plain as well as in the northern part, which is in
line with the findings of Dou’s study [63]. In other regions, Liu [64] used the entropy weight
method to assess flood risk in the Bangladesh–India–Myanmar region and found that the
results were generally consistent with those obtained from the study when compared with
historical flood hazards. The impact of different flood disaster risk factors on future flood
disaster risk was quantitatively analyzed. The results of the quantitative calculation by the
entropy weight method in this study show that when the flood risk is determined by spatial
weight superposition, the weights of each factor in the two scenarios are similar, among
which the distance from the river has the highest weight (16.8%), and the second is RMAX3
(16.3%). These results are deviated from those of previous studies [65–67]. Stefanos [65]
pointed out that compared with natural factors, human factors are the main cause of flood
disasters in most basins. Hammami [67] selected eight kinds of flood causes to evaluate
the sensitivity of regional flood disasters. The results showed that the factor that had
a significant impact on the occurrence of floods was elevation. Based on this study of
flood disaster risk assessment, it is found that the most important flood-disaster-causing
factors are different in multi-criteria systems in different regions. Therefore, the most
appropriate flood control measures should be taken according to the evaluation results of
different regions.

This paper combines the risk of flood disasters during historical periods with the accu-
rate prediction of flood risks in future development scenarios, which is of great significance
for future sustainable development. Previous studies have shown that this is an effective
method to determine the future flood risk distribution through future land-use scenarios.
Lin et al. [68] used the FLUS model to simulate future land-use scenarios in Guangzhou
to assess the city’s flood risk. Canters et al. [69] used the CA model to simulate land-use
change on the Belgian coast and analyze its impact on flood risk. However, the commonly
used land-use scenario simulation methods (FLUS, the Conversion of Land Use and its
Effects at Small Region Extent model, etc.) have the disadvantages of an unclear model
conversion mechanism and inconvenient operation. There are great deficiencies in excavat-
ing the law of land-use conversion and revealing dynamic changes in the landscape, and
it is difficult to effectively identify the factors affecting the dynamic evolution of various
land-use patches [60,70]. These problems limit the application of these models in land-use
simulation and will inevitably affect the prediction accuracy of flood risk. At the same time,
the assessment of flood risk is mostly based on history and the current situation [71,72]
or climate change [73,74]. Few studies have linked the PLUS model to future urban land
development planning and urban flood disaster risk evolution. In this study, the flood
disaster risk maps under different development scenarios obtained by coupling PLUS,
MOP, and the entropy weight method can provide a basis and reference for future urban
planning and flood control in plain areas.

5.4. Flood Adaptation Strategies and Policies

In the 21st century, flood control in plain cities is a major challenge, and government
departments need the guidance of risk analysis to determine flood control policies. In
this study, the proposed framework can be used to explore future flood disaster risks.
The results can provide support for land-use planning and provide a basis for decision-
makers to decide how to set flood control measures and urban development directions,
which is crucial for developing countries in the process of rapid urbanization. In the
future, the Guanzhong Plain area must increase flood control planning, such as drainage
systems, flood buffer zones, etc. Low-impact development and a sponge city can effectively
reduce rainfall runoff, the amount of pollutants in rainwater, and return rainfall, which are
sustainable flood control and disaster reduction measures [75,76]. Luo et al. [6] considered
that the combination of gray (engineering measures) and green (natural measures) can
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effectively reduce the damage of floods to cities. Therefore, increasing the proportion of
green space and green plants in Guanzhong and global plain urban areas, combining the
natural conditions with urban flood control measures, and forming an integrated rainwater
control system to reduce rainwater runoff are all suggested measures. At the same time,
the government should incorporate the protection and restoration of natural systems into
policies and regulations to promote urban flood control construction in plain areas.

For the urban areas that have been built, flexible and multi-spatial scale flood manage-
ment strategies should be proposed. Among them, the most critical thing is to dynamically
adjust the land-use function for future flood scenarios. For example, flood-prone agricul-
tural areas can be changed to aquaculture models. In the planning of building types, the
building structure should be innovated, the building specifications should be enhanced,
and the flood control capacity should be improved. At the same time, the government
should establish emergency strategies for flood risk management, plan evacuation routes
in advance, improve rescue systems and assistance mechanisms, and ensure the safety of
people’s lives and property. According to the survey results of flood disasters in recent
years, the disorder of social and economic development is the main reason for the increase
in flood losses. The scientific land-use planning of the flood detention area can avoid
large-scale development, thus greatly reducing flood losses [77].

6. Conclusions

In this study, after averaging the five GCMs by mode ensemble, the BCSD method
was used for downscaling analysis. The results show that the standard deviation after
ensemble averaging is less than 1, and the correlation coefficient exceeds 0.95. However, the
resolution is still relatively low, and, to improve the resolution, the resolution and accuracy
after the operation with the BCSD method are better than after ensemble averaging.

Under different scenarios, there is a wide range of future land-use changes. The SSP126
scenario, except for cultivated land, maintains an increasing trend, with woodland and
grassland showing fluctuating growth trends and with cultivated land consistently shifting
to woodland, urban land, and water bodies; the SSP245 scenario, except for urban land,
maintains a decreasing trend, with cultivated land and other land types mainly shifting to
urban land, leading to a large increase.

The results of the flood risk assessment using the entropy weighting method show
that the overall spatial distribution of flood risk is similar between the SSP126 and SSP245
scenarios, with the central and western parts of the Guanzhong Plain being more susceptible
to flooding in the future, mainly due to the regional increase in future precipitation and
the expansion of urban land use. Under the SSP245 scenario, the higher-risk area increases
to 2380.796 km2 by 2050, and the higher-risk area for the whole region shows a gradual
increase from east to west along the Wei River. This study can provide a guide for future
flood hazard prevention in the Guanzhong Plain.
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