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1. Introduction

With the astounding ability to capture a wealth of brain signals, Brain–Computer In-
terfaces (BCIs) have the potential to revolutionize humans’ quality of life [1] by processing
these brain signals for controlling external devices [2]. Being an emerging and innova-
tive field, BCI offers numerous applications in various fields of life, including robotics,
education, prosthetics, security and communication technologies [3]. Processing the neuro-
physiological signals, a major component of BCI, involves further procedures of (1) noise
removal, (2) feature extraction and (3) classification [4]. Pre-processed signals are subject to
various noises, including power line noises, physiological noises, motion artifacts and in-
terference noises. These noises can affect the efficiency of the entire BCI procedure. For this
reason, noise removal algorithms are utilized for noise removal or reduction [5]. Next, the
process of feature extraction starts where algorithms are used to acquire relevant task-based
features. This phase acquires data based on spectral and spatial and temporal domains [6].
The last step for signal processing is classification, whereby the acquired and processed
features are converted into viable commands, which ultimately control external devices [7].
This Special Issue of Sensors focused particularly on these three signal-processing tech-
niques. We invited scientists to share their work conducted on improving performance,
information transfer rate, reliability and accuracy of the BCI systems’ signal processing.
These works could be based on either non-invasive or invasive techniques, for instance,
functional near-infrared spectroscopy (fNIRS), electroencephalography (EEG) and other
hybrid brain-imaging techniques.

2. Overview of the Contributions

This issue’s first article uses mental tasks and binary classification tests by employing
features of power spectral density (PSD). The authors were able to enhance the classifier’s
performance through their peculiar feature set, which can be evidently used in the field
of neurophysiology. The second article of this issue applies the P300-BCI Paradigm for
controlling home appliances through the brain. The proposed system achieves a high
accuracy and shows potential for future application on smart homes. The third article
makes use of EEG modality for proposing the multi-kernel temporal and spatial convolution
network (MultiT-S ConvNet) based on deep learning and the end-to-end convolutional
neural network (ConvNet). The model uses temporal filtering and, thus, can be used
to enhance the learning capacity. The fourth article proposes a classification approach
using fNIRS-based biomarkers. The data were acquired from both neurotypical and
neurodivergent individuals. The four-class classification performances were promising
and offered potential for applicability in the field of neuropsychiatry. The fifth article of
this issue proposes the design of an unmanned vehicle, using a biomedical sensor, which
would be able to monitor health and aid physicians in medical emergencies.

Sensors 2024, 24, 1201. https://doi.org/10.3390/s24041201 https://www.mdpi.com/journal/sensors1
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Furthermore, the sixth article of this issue uses fNIRS-based BCI to enhance clas-
sification accuracy through Least Absolute Shrinkage and Selection Operator (LASSO)
homotopy-based sparse representation classification. This methodology is helpful for
rehabilitation purposes in particular. The seventh article conducts brain signal classification
acquired through fNIRS signals based on motor execution tasks. The results show enhanced
improvement in classification accuracy through deep learning. This classification can be
helpful in the field of gait rehabilitation. The eighth article detects ErrPs through EEG in
participants with cerebral palsy, amputation or stroke. It also deciphers the discriminative
information which is held by different brain regions. This study can be beneficial in for-
mulating adaptive BCIs. The ninth article of this issue utilizes the fNIRS-based approach
for upper limb motion detection. The results showed promising accuracy and can be
utilized for real-time control. The tenth article works on complicated dexterous task of
finger-tapping and acquires data using the fNIRS approach. The classification accuracies
appear promising and can be further enriched to generate control commands for BCI
application. The eleventh article analyzes the methodologies of 92 studies which utilize
fNIRS-EEG-based data and analyses. The review highlights gaps, future directions and
potential challenges.

All of the aforementioned studies accelerate foundational and practical knowledge and
application in the field of BCI signal processing. We, the editorial team, appreciate all of
these innovative research endeavors and would like to thank the authors for their diligent
incorporation of feedback, critical assessment of their work and attentiveness to following the
timeline, because of which we have been able to successfully publish this Special Issue. We
hope the readers feel inspired by and are able to learn more from the research articles.
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Abstract: Brain–computer interface (BCI) technology has emerged as an influential communication
tool with extensive applications across numerous fields, including entertainment, marketing, mental
state monitoring, and particularly medical neurorehabilitation. Despite its immense potential, the
reliability of BCI systems is challenged by the intricacies of data collection, environmental factors, and
noisy interferences, making the interpretation of high-dimensional electroencephalogram (EEG) data a
pressing issue. While the current trends in research have leant towards improving classification using
deep learning-based models, our study proposes the use of new features based on EEG amplitude
modulation (AM) dynamics. Experiments on an active BCI dataset comprised seven mental tasks
to show the importance of the proposed features, as well as their complementarity to conventional
power spectral features. Through combining the seven mental tasks, 21 binary classification tests
were explored. In 17 of these 21 tests, the addition of the proposed features significantly improved
classifier performance relative to using power spectral density (PSD) features only. Specifically, the
average kappa score for these classifications increased from 0.57 to 0.62 using the combined feature set.
An examination of the top-selected features showed the predominance of the AM-based measures,
comprising over 77% of the top-ranked features. We conclude this paper with an in-depth analysis of
these top-ranked features and discuss their potential for use in neurophysiology.

Keywords: active BCI; mental state; modulation features

1. Introduction

Active brain–computer interfaces (BCIs) have emerged as powerful communication
tools for users with severe and multiple disabilities [1]. In recent years, BCIs have dropped
in price and become portable, thus allowing for so-called passive applications to also
emerge, e.g., in entertainment, marketing, and mental state monitoring for safety, to name
a few [2–4]. Medical applications, particularly in neurorehabilitation [5,6], still remain
a predominant use of active brain–computer interfaces (BCIs) as they can improve the
quality of life for patients suffering from amputations or paralysis due to neuronal damage,
such as stroke [7,8]. Typical interventions range from upper limb rehabilitation [9] to
gait enhancement [10], communication support [11], and interactive engagement [12]
via the modulation of sensorimotor rhythms to aid motor function restoration and drive
neuroplasticity [13].

Despite the great potential for both active and passive BCIs, there are still several
major challenges that need to be overcome. From the user perspective, psychological state
and familiarity with BCI technology influence the efficacy of rehabilitation. Studies have
shown that mental state, such as fatigue, frustration, and attention level, can significantly
affect BCI performance [14]. Since learning to use a BCI system demands considerable
mental effort, user fatigue is a significant psychological factor, underscoring the importance
of user motivation in the successful adoption of BCI systems [15]. Furthermore, other

Sensors 2023, 23, 9352. https://doi.org/10.3390/s23239352 https://www.mdpi.com/journal/sensors4
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factors, such as individual attention span and spatial ability, also contribute to the variable
reliability of BCIs in practical scenarios [16,17]. Overall, several major challenges relating
to the robustness of BCIs still exist, such as inter- and intra-subject variability [18], as well
as varying signal quality (e.g., signals obtained from gel-based versus dry electrodes) and
artifacts, which can bury specific task-related brain activity within noise [19,20]. In fact,
BCI performance is highly dependent on the settings that the system has been trained for;
thus, any out-of-domain test settings can drastically reduce accuracy.

Over the years, several approaches have been proposed to improve the robustness
of BCIs. Multimodal systems, or so-called hybrid BCIs [21,22], take advantage of differ-
ent neurophysiological modalities (e.g., eye and facial movements or hemodynamics via
functional near-infrared spectroscopy (fNIRS)) to improve BCI accuracy. Other approaches
have included the development of new signal processing and feature extraction tools to
help sift out important brain patterns from noise. For example, the last decades have seen
developments in features such as fractal dimension and entropy measures [23,24], as well
as the use of amplitude envelope-based features [25,26] to complement traditional spectral
power [27–29], spectral coherence [30,31], and time domain statistics [32] features. More
recently, deep learning models have emerged as data-driven methods that can help to
advance BCI technologies [33–36]. While such data-driven methods have shown improved
accuracy on specific datasets, they are known to poorly generalize across datasets [35,37]
and may introduce new vulnerabilities (e.g., susceptibility to adversarial attacks [38,39]).

In this paper, we propose to improve active BCI robustness by incorporating a new
signal representation that allows for the measurement of amplitude modulation (AM) dy-
namics and cross-frequency coupling using electroencephalography (EEG) signals. While
such a representation has been used in the past for Alzheimer’s disease biomarker de-
velopment [40,41] and passive BCI monitoring [42], it is explored here as a new feature
for active BCIs. The proposed method has several advantages over conventional power
spectral density (PSD) features [43–45], which motivated this exploration. First, it addresses
the inherent non-stationary nature of EEG signals, which traditionally complicates the
detection of neural activity patterns. Second, AM dynamics features have been shown to
be more robust to artifacts in passive BCI applications (e.g., [46]); thus, they may be able
to assist with artifact robustness for active BCIs. Third, cortical hemodynamics measured
with fNIRS have been found to be correlated with amplitude modulations measured from
EEG signals [47], suggesting that amplitude modulation is a good indication of local neural
processing. Since multimodal EEG–fNIRS systems have been shown to outperform EEG
systems alone [48], the proposed features may be able to capture multiple signal modalities
using a single electrode, thus also improving user experience while making BCIs more
robust. Lastly, cross-frequency amplitude and phase coherence features have been linked
to different cognitive processes; thus, they may further assist with inter- and intra-subject
variability [49–52]. To validate the proposed method, we used the multitask BCI database
described in [48] and provide an in-depth discussion of the potential neural processes
captured by these new features, providing insights into their importance in the active
BCI field.

2. Materials and Methods

In this section, we describe the dataset, extracted features, and feature ranking and
classification algorithms used.

2.1. Experimental Protocol

The present study used the open-source BCI database described in [48]. This dataset
investigates the discrimination of distinct neural response patterns associated with seven
different mental tasks using features extracted from both EEG and fNIRS modalities. The
seven mental tasks include mental rotation (ROT), word generation (WORD), mental
subtraction (SUB), mental singing (SING), mental navigation (NAV), motor imagery (MI),
and face imagery (FACE). Mental rotation, word generation, and mental subtraction are
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classified as brainteasers, while mental singing, mental navigation, and motor imagery are
classified as dynamic imagery tasks and face imagery is classified as a static imagery task.
Table 1 describes each mental task.

Multimodal data were collected from 12 participants who were fluent in English
and/or French, had no history of neurological disorders, and had no previous experience
with BCIs. The participants consented to participating in the study and monetary compen-
sation was provided after each completed session. All participants agreed with the terms
and conditions of the study, which was approved by the INRS Research Ethics Committee.

The data were collected over three recording sessions of 2 to 3 h each, during a period
of 3 to 5 weeks. Each session consisted of four sub-sessions, in which each mental task
was randomly repeated four times. Each sub-session began and ended with a 30 s baseline
period, during which the participants were asked to remain in a neutral mental state and
fixate on the cross at the center of their screen. Before each trial, a 3 s countdown screen
identified the task to be performed. Once the countdown was over, the participants had
to execute the required mental task for a period of 15 s and were instructed to carry out
the task as many times as possible during that period. Each trial was followed by a rest
period of random duration, sampled from a uniform distribution of between 10 and 15 s, in
which participants were asked to continue minimizing movements but were allowed to
blink, swallow, etc. The participants were also required to complete a subjective evaluation
questionnaire between the second and third sub-session of each session. The stimuli and
questionnaire were implemented using Presentation software (Neural Behavioral Systems,
USA). More details about the experimental protocol can be found in [48].

EEG data were recorded using a BioSemi ActiveTwo system with 62 electrodes and
4 electrooculography (EOG) electrodes. The experiment used a standard 10-10 system for
electrode placement, but without AF7 and AF8, where holders were used for fNIRS probes
instead. Only data from nine participants were analyzed as data from Participants 2 and
8 were rejected due to excessive artifacts and higher overall drowsiness levels observed
during the recordings. Data from Participant 12 were rejected because the three required
sessions were not completed. These participant exclusions matched those suggested in [48]
and were replicated here to facilitate comparisons. Moreover, while 60 fNIRS optodes were
also included in the dataset, they were not analyzed in this study.

Table 1. Short description of each mental task.

Mental Task Task Description

Mental Rotation (ROT) Participants had to imagine the 3D rotation of two objects and determine whether the objects were identical
Word Generation (WORD) A letter was presented randomly and the participants needed to find as many words as possible

beginning with this letter
Subtraction (SUB) Participants had to execute the mental subtraction of 1 to 2 digit numbers from a 3 digit number
Singing (SING) Participants had to choose a song and then mentally sing it while paying attention to

the emotions that they felt
Navigation (NAV) Participants had to imagine walking from one room to another in their past or current residence
Motor Imagery (MI) Participants had to imagine moving their fingers
Face Imagery (FACE) Participants had to remember the face of a friend

2.2. Dataset Pre-Processing

Utilizing the publicly available EEGLAB MATLAB toolbox [53], we first pre-processed
the raw EEG signals. Initially, the EEG dataset was re-referenced to the Cz channel, which
was later removed. To eliminate electrical grid noise, we applied a notch filter of between 59
and 61 Hz. To tackle high-frequency noise and signal drift arising from electrode impedance
variation, a band-pass finite impulse response (FIR) filter, ranging from 0.1 Hz to 50 Hz,
was employed.

To facilitate comparisons to the results in [48], channels P8 and O1 were also discarded.
Moreover, the first 2 and 14 markers from subject 3 (session 1) and subject 5 (session 1)
showed discrepancies with the experimental protocol and were also discarded. We then
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used the fastICA algorithm [54] to extract independent components. These components
were further evaluated using the ADJUST algorithm [55] that is available in the EEGLAB
toolbox, allowing us to identify and automatically remove components associated with
artifacts. To mitigate the potential impact of lost data, all channels removed in the earlier
stages of pre-processing were restored using spherical interpolation. Following this, the
EOG channels were removed and the dataset was re-referenced to the average. For detailed
examination and replication purposes, the pre-processing script is available at the following
GitHub repository: https://github.com/OlivierRS/EEG-Preprocessing-with-ADJUST,
accessed on 19 November 2023.

2.3. Feature Extraction
2.3.1. Power Spectral Density (Baseline) Features

As a means of comparison to the proposed amplitude modulation features, we uti-
lized power spectral density (PSD) features as the baseline. Initially, the pre-processed
EEG signals were segmented into epochs, starting 1 s before the beginning of each mental
task and continuing for 15 s thereafter, generating a total epoch duration of 16 s. Subse-
quently, these epochs were subdivided into non-overlapping 1 s time windows. The PSD
was calculated from each of these windows using Welch’s method, employing the MNE
toolbox [56], where the power of each frequency was normalized by the sum of the entire
power spectrum. PSD features were extracted from several conventional frequency bands,
including theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–12 Hz), beta1 (12–21 Hz), beta2
(21–30 Hz), theta to beta (8–30 Hz), and delta to gamma (0–50 Hz), for each EEG electrode.
In addition to the PSD features, we also extracted power ratios, notably alpha (8–12 Hz) to
beta (12–30 Hz) and theta to beta ratios, for each electrode. Subsequent to the extraction
process, all features underwent log-scaling.

2.3.2. Proposed Amplitude Modulation Power Features

The extraction of the amplitude modulation power (AMP) features is presented in
Figure 1. The process involved the decomposition of EEG signals into five spectral bands
utilizing a filter bank (FB). The bands selected for this study included the conventional
delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz),
given their established roles in representing neuronal dynamics [57]. We used a zero-phase
FIR filter to execute the signal filtering, which consisted of two successive filtering steps in
opposing directions on a mirror-padded version of the input signal. The outcome was a
series of signals that represented the power dynamics across each frequency band over time.
We subsequently obtained the envelope using the absolute value of the Hilbert transform.
This envelope was then filtered using the same filter bank, culminating in a set of 5-by-5
modulation signals (shown in the bottom part of the figure) that represented the spectral
decomposition of the power dynamics within each specific EEG frequency band, i.e., the
measure of the amplitude–amplitude coupling of two EEG frequency bands.

For notation, we refer to these 25 signals as ‘<modulated band>-m<modulant>’, where
‘modulated band’ refers to one of the five bands from the first filtering step and ‘modulant’
pertains to the band applied during the second filtering step. A visual representation of
the entire set of the AM time series according to this convention is exhibited in the bottom
matrix of Figure 1. However, as per Bedrosian’s theorem [58], not all of these 25 signals
could be possible; in fact, only 14 of them could, as low-frequency bands modulated
by high-frequency bands were invalid. A more in-depth description of the amplitude
modulation-based features can be found in [46,59].

As mentioned previously, while AMP features have been explored for use as biomark-
ers for neurodegenerative diseases or passive BCIs, they were explored here for active BCI
control. One important aspect of active BCIs is being as close to real-time as possible in
order to maximize the information transfer rate. However, AMP features have an inherent
latency in that envelopes greater than 1 s (i.e., the window sizes typically used for PSD
features) are needed. In the past, 8 s windows have been shown to be optimal for biomarker
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development [59]. Here, we proposed to reduce this to 4 s but with a sliding window of
3 s, suggesting that decisions can be made every second after the initial ‘buffer’ period.
This approach yielded 11 distinct feature time ‘frames’ per trial for each frequency band,
covering the total trial duration from −1 to 15 s. The features were normalized by the total
spectral power at the corresponding time frame.

Figure 1. Flow chart illustrating the procedure for amplitude modulation time series extraction from
EEG signals. In the top left corner, the straight line denotes the original and band-filtered EEG signal.
The dashed lines and adjoining blocks represent the envelope extraction and processing stages. Based
on Bedrosian’s theorem, the bottom left matrix differentiates between valid (blue) and invalid (red)
amplitude modulation time series.

2.3.3. Phase Circular Correlation of Amplitude Modulated Signals

In addition to analyzing power time dynamics using AMP features, we also extracted
features to quantify the connectivity between cortical sites. Although metrics such as
phase locked value and magnitude squared coherence have traditionally been used for
this purpose, they have been criticized for their vulnerability to coincidental phase syn-
chrony, which can result in the misinterpretation of the results [60]. To address this, we
used the phase circular correlation of AM signals (CCORAM) method [60] to examine
the connections between different electrode pairs, a choice motivated by the increased
robustness of the method, as well as its ability to account for phase co-variance within
electrode pairs. To reduce computational demands and avoid excessive dimensionality, we
only used a subset of electrodes, specifically F7, F8, T7, T8, C3, C4, P7, P8, O1, and O2. This
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selection was based on a strategy to maximize the spatial span using a 19-channel montage
and minimize the effects of source propagation by excluding neighboring channels [61,87].
With this approach, we calculated the CCORAM for each possible pair within the selected
14 AM bands.

2.4. Feature Selection, Classification, and Figures of Merit

Feature selection methods are essential in removing redundant features and avoiding
the curse of dimensionality. Methods such as minimum redundancy maximum relevance
(mRMR) [62] and recursive feature elimination (RFE) [63] account for interactions among
features in their selection process, aiming to minimize redundancy within the selected
feature set. Despite their effectiveness, these techniques pose computational challenges,
especially in scenarios involving datasets with extensive numbers of features. In contrast,
the Fisher linear discriminant (FLD) [64], a filter-based selection method, offers a more
practical solution as it evaluates individual features iteratively with significantly lower
computational complexity.

For classification, we employed a stratified shuffle split cross-validation approach.
In this approach, the aggregated data from all participants were divided, maintaining a
90-10 split for training and testing, respectively, ensuring the proportional representation
of both classes in each subset. This procedure was reiterated 100 times, using a different
random split each time, to foster a robust estimation of the model’s performance. The
hyperparameters of the SVM, with radial basis function kernels, C, and gamma, were
optimized in the training set, leveraging a cross-validated grid search. For the figures of
merit, we used the average kappa score metric on the predicted labels from the test set for
each of the 100 bootstrap trials.

2.5. Eigendecomposition-Based Ranking of Binary Classifications

In this study, we examined the interactions between mental tasks via a series of
21 binary classification tasks, aiming to critically assess the influence of amplitude
modulation-based features. However, this approach posed a challenge as the insights
derived from individual binary classification could only offer a partial understanding of
the mental task patterns. To address this, we employed a methodology utilizing eigende-
composition to derive a ranking score, hereafter referred to as the ’prestige score’ based
on terminology from the established literature [65]. The detailed process of extracting the
prestige score is depicted in Figure 2.

This approach provides insights into the relative importance of mental tasks by con-
sidering the entire set of classification performances. The prestige score not only reflects
the immediate kappa scores of mental tasks in discriminating against other tasks but also
synthesizes the entire set of classification performances represented by kappa scores for task
pairs. In particular, when a task is inherently difficult to identify and consequently yields a
low discriminative score, having one or two binary classifications with high kappa scores
can lead to the overestimation of its true discriminative capacity. With this methodology, we
could analytically discern the genuine discriminative scores of the tasks that secured high
kappa scores, revealing the relative ease of achieving such scores and thereby justifying the
adjustment of these scores to accurately reflect the task’s true discriminative nature.

Figure 2 depicts an illustration of the process of extracting the prestige scores. On the
right side of the figure, the step-by-step procedure for applying eigendecomposition to a
7 × 7 interaction matrix is demonstrated. This matrix was constructed by incorporating
the 21 kappa or Fisher score measurements in its upper triangle, each element of which
represented a measurement from a pair of tasks. The analytical process yielded the prestige
score, associated with the eigenvector with the highest eigenvalue. Utilizing the Perron–
Frobenius theorem, these prestige scores were identified as normalized positive vectors
that revealed the latent influences that each class held as dictated by the chosen metric [66].
To maintain the relative magnitudes of the interactions captured in the different dataset
folds during data amalgamation, each prestige score was scaled by its corresponding
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eigenvalue. This approach avoided the empirical analysis that is traditionally conducted
on 7 × 7 interaction matrices, allowing for a more robust and succinct interpretation
of the influences of mental tasks through 7-element vectors. Consequently, plotting the
feature distribution of individual mental tasks became a more streamlined alternative to the
conventional method of illustrating all 21 pairs of mental task combinations. Subsequently,
the left side of Figure 2 clarifies the iterative procedure employed to amalgamate the
prestige scores.

Figure 2. Flow chart illustrating the computation of the scaled prestige scores, depicting how the
21 kappa score measurements were generated in each iteration and arranged in the 7 × 7 interaction
matrix ‘M’, followed by the eigendecomposition and final averaging of the prestige scores. Kappa
scores are used as an illustrative example.

3. Experimental Results

In this section, we describe the experimental results in terms of the impact of the pro-
posed features, the ranking of the mental tasks, and a discussion on the top-selected features.

3.1. Estimation of Optimal Feature Set Size

To estimate the most suitable balance between reducing overfitting risk and ensuring
high classifier accuracy, we proceeded to identify the optimal number of features by
systematically testing various feature set sizes. Figure 3 depicts the relationship between
the quantity of the top-selected features, ranked using the Fisher linear discriminant scores,
and the performance of a vanilla SVM classifier. The x-axis represents the number of
selected features and the y-axis represents the grand average kappa score derived from
all 21 task pair classifications. In total, three combinations of feature types were tested
and the model performance using PSD, AMP+PSD, and AMP+CCORAM+PSD are shown
in yellow, orange, and blue, respectively. We used the kappa scores to analyze the curve
and determine the exact number of features for when the accuracy started to plateau. As
can be seen, this occurred after 2000 features for all feature type combinations. Above
this threshold, the performance gain was negligible and potential overfitting issues could
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appear. Henceforth, only experiments with classifiers trained using this number of top
features will be reported.

Figure 3. Grand average of task pair kappa scores versus the number of features. The top 2000 features
were chosen for subsequent experiments.

Following feature selection, we conducted an in-depth analysis of the distribution
of all selected features, categorizing them by type and analyzing them within each top
feature subset based on both appearance frequency and FLD score. The AMP features
were predominant, representing 74.14% of the selected pool with a cumulative score of
70.02%. PSD features followed, accounting for 22.72% with a cumulative score of 27.11%.
The CCORAM features were the least represented at 3.14%, contributing 2.86% to the
cumulative score.

3.2. Impact of Proposed Features on Classification Performance

Figure 4 shows the kappa scores obtained for each of the 21 possible task pairs for PSD
features alone (orange), PSD features combined with the proposed AMP features (red), and
all three feature sets together (blue). As can be seen, the incorporation of AMP features
significantly enhanced performance across 17 of the 21 task pairs. For the remaining four
task pairs, the accuracy still increased in three, just not significantly (i.e., ROT-WORD,
NAV-WORD, and FACE-SING), while the accuracy actually dropped relative to using
PSD features alone in one (ROT-SUB). Task pairs associated with mental activities, such
as SUB, WORD, FACE, and SING, generally showed negligible enhancements. Notably,
the MI-SING and FACE-SING pairs registered the lowest kappa values. These tasks,
which are intricately linked to cognitive functions, such as working memory, long-term
affective retrieval, and both auditory and visual memory processing, could inherently
possess greater inter-subject variability due to their abstract nature, while factors such as
individual cognitive approach, mental state, and problem-solving strategy could influence
the outcome, leading to subjective disparities.

Overall, the average kappa scores across all 21 task pairs were 0.6221, 0.6237, and
0.5761 for the AMP+CCORAM+PSD, AMP+PSD, and PSD models, respectively. These
findings suggest that in the majority of cases, AMP features capture exclusive information
that is not obtained through PSD alone.
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Figure 4. Comparison of the kappa scores of the AMP+CCORAM+PSD (blue), AMP+PSD (red),
and PSD (orange) models, derived from the selection of the 2000 optimal features. Columns
AMP+CCORAM+PSD and/or AMP+PSD with a symbol * indicate a significant difference rela-
tive to PSD results, with a significance level alpha of 0.05.

3.3. Ranking of Mental Task Kappa Scores

By employing the eigendecomposition ranking technique, we estimated the discrimi-
native power of the individual mental tasks. Figure 5 illustrates the estimated individual
kappa scores for each of the seven mental tasks, which were derived from the averaged
prestige score vectors across the 100 dataset folds. These vectors were procured through
the ranking method outlined previously, employing the kappa score interaction matrix. In
essence, each iteration of the classification pipeline produced a single interaction matrix,
from which a prestige score was extracted. This procedure was repeated across all folds to
ultimately average the prestige scores, thereby providing an estimate of the “true” kappa
score for each mental task. As a result, mental tasks with higher relative scores were
suggestive of a consistently superior discriminating pattern quality, revealing exclusive
patterns that distinctly characterized such tasks. The outcomes of this analysis are shown
in Figure 5, where the discriminatory power of each task is displayed in decreasing order
of prestige score.

As can be seen, the rotation (ROT) task achieved the highest score. Interestingly, in [48],
this task was shown to be preferred amongst the participants, despite its demanding nature.
This capacity for differentiation could be attributed to its primarily visual nature, which
reduces the subjectivity typically present in tasks involving complex processing, such as
memory or emotion, thereby exhibiting more discernable neuronal patterns. Conversely,
our findings showed that the FACE and SING tasks were the least accurately identified, a
result that was in alignment with feedback given by subjects in [48], suggesting that these
were their least favorite tasks.

The navigation (NAV) and subtraction (SUB) tasks placed second and third in this
analysis, both of which were liked by subjects in [48]. Interestingly, while the motor imagery
(MI) task demonstrated a similar kappa score to the FACE and WORD tasks in our study,
its use is widespread within the active BCI community. It has been hypothesized that MI-
induced patterns may be overshadowed when paired with brain teaser tasks. This could
be observed in task pairs such as FACE–MI and SING–MI. The intricate dynamics of MI,
involving both promising classifications in certain configurations and limitations in others,
underscores a complex landscape that necessitates a careful and balanced consideration
when selecting tasks for BCI applications.
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Figure 5. Ranking of individual mental tasks using PSD+AMP+CCORAM features, derived from
pairwise classification kappa scores. A higher rank indicates a more distinct pattern, facilitating the
model’s ability to discriminate one mental task from others.

3.4. Mental Task Feature Analysis

In a similar vein to the analysis performed in the previous section and depicted by
Figure 2, we re-conducted this analysis with the goal of understanding which feature
patterns most efficiently captured neural patterns for different tasks. We started by con-
structing a 7 × 7 matrix for each feature. Each cell in these matrices corresponded to
the FLD score for a pair of mental tasks when differentiated using that particular feature.
Consequently, each matrix provided a snapshot of the discriminative power of a single
feature across different task pairs. From these matrices, prestige scores were derived for
each feature, reflecting its distributed discriminative power across the mental tasks.

This analysis was repeated for all features and then aggregated per feature type group,
i.e., AMP, CCORAM, or PSD. Figure 6 summarizes our findings. As can be seen, the
AMP features were the most efficient in capturing discerning patterns for each individual
mental task, followed by the traditional PSD features. Particularly in the ROT task, AMP
demonstrated a marked effectiveness over PSD, whereas for the SUB task, both AMP and
PSD showed similar discriminative power. Meanwhile, the contribution of the CCORAM
feature type was notably lower, showing no clear leaning towards any specific task, indicat-
ing its limited utility in this context. It is hoped that these findings will provide insights
for researchers developing active BCIs regarding what features to use depending on the
mental task in question.

3.5. Multidimensional Analysis of Relevant Features

For each individual feature, which were associated with unique combinations of
channels, bands, and feature types, we computed a distinct prestige score, representing
their ranking across mental tasks. Utilizing these scores, we constructed topoplots to
visually represent the distribution of feature rankings across the EEG scalp. For the AMP
feature type, the corresponding topoplots for each band are illustrated in Figures 7–11.
Similarly, for the PSD feature type, Figures 12–14 display the topoplots of the prestige score
distributions for each band.
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Figure 6. Average Fisher-based prestige scores of mental tasks per feature type (AMP, PSD, and
CCORAM).

Figure 7. Ranking distribution of AMP features related to the delta band.

Figure 8. Ranking distribution of AMP features related to the theta band.
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Figure 9. Ranking distribution of AMP features related to the alpha band.

Figure 10. Ranking distribution of AMP features related to the beta band.
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Figure 11. Ranking distribution of AMP features related to the gamma band.

Figure 12. Ranking distribution of PSD features for the theta band.

Figure 13. Ranking distribution of PSD features for the alpha band.
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Figure 14. Ranking distribution of PSD features for the beta band.

4. Discussion

The proposed amplitude modulation features are postulated to mirror core biological
mechanisms within the brain that are potentially engaged in processing stimuli and di-
recting behavioral responses [42,67–69]. Numerous studies have suggested that amplitude
modulation patterns in EEG signals could be indicative of mechanisms for controlled
inhibition [69–72] and cognitive process integration [73–75], and correlate with energy
consumption in cortical tissues [76]. Based on our experiments, such features offer a supple-
mental layer of information that could enrich traditional PSD features in classifying mental
states and tasks, thus improving the robustness of active BCI systems. In the following sub-
sections, we postulate the underpinnings of these new features and their complementary
roles to PSDs.

4.1. Beta Band Analysis

The beta frequency sub-band, which serves numerous roles depending on its loca-
tion and context in the brain [73,77], is dominantly involved in long-term memory and
stimuli processes [78,79]. It facilitates the binding of temporally separated information
into meaningful entities and aids in maintaining task-specific cognitive processes over
extended periods [73]. Figure 14 illustrates topoplots that depict the spatial distribution of
the prestige scores for relevant PSD features associated with the beta band. A comparative
examination of the topoplots for the FACE and ROT tasks revealed analogous patterns,
with both demonstrating bilateral frontotemporal patterns in the beta band.

A similar bilateral frontal pattern is seen in the beta–mbeta band in the AMP topoplots
in Figure 10. Additionally, the AMP topoplots unveiled noteworthy patterns in the parieto-
occipital-temporal region for the beta–mdelta and beta–mtheta bands. Beta activity mod-
ulated by the lower delta and theta bands was disseminated across the scalp, while the
distribution of faster beta dynamics, specifically beta–malpha and beta–mbeta, was inclined
towards the frontal area. The observation of slow temporal beta activity dynamics in the
occipital-parietal area could suggest top-down control via the slow wave dynamics of
specialized visual processing brain structures [73,80–82]. This activity is congruent with the
visual nature of the FACE task. Conversely, fast beta activity dynamics were localized in
the frontal area, implying the potential association with long-term memory and recall pro-
cesses. It is well established that slow waves play a pivotal role in facilitating long-distance
communication between distinct brain structures, with the interactions between the beta
and theta bands contributing to the binding of neuronal information across both time and
space [73,83].

In both the motor imagery (MI) and navigation (NAV) tasks, there was a notable pres-
ence of activity in the motor cortex, emphasizing their shared reliance on motor functions.
For the MI task, the literature has typically reported amplitude changes in the mu band
(7.5 Hz to 12.5 Hz) and beta band oscillations in the motor cortex [84,85], although this is
not evidenced in the PSD topoplots presented in Figure 14. Nevertheless, this typical MI
beta activity can be observed in the AMP topoplots in Figure 10. Here, beta activity in the
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MI task could be delineated into beta–mtheta and beta–mbeta AM bands, suggesting a role
for beta in maintaining long-term motor action.

For the NAV task, a slight similarity was discerned between the distributions of the
beta1 PSD and corresponding AMP topoplots. This resemblance unveiled insights into
the multifarious nature of beta band activity, hinting at processes such as the recall of
familiar memories and the long-term binding of information. In particular, the beta–mdelta
and beta–mbeta bands in the AMP topoplot exhibited relevant bilateral frontotemporal
and occipital patterns. We hypothesized that beta–mdelta activity in frontotemporal areas
was indicative of processes related to recalling familiar memories, possibly due to the
involvement of the limbic system [73,81,83,86,87]. This system is a well-known generator
of delta band oscillations, with delta band activity from the medial temporal cortex being
notably associated with assessing the familiarity of sensory stimuli [76,88,89].

Further, beta–mbeta activity may be associated with the long-term temporal binding
of information, a crucial aspect considering that the NAV task involved navigating through
familiar terrain over extended durations. This band, depicting the fast temporal dynamics
of beta oscillations in the prefrontal area, could reflect communication from the limbic
system to the cortex, a mechanism that is integral to working and long-term memory
processes [73,82,83]. In addition, beta–mtheta activity revealed an exclusive pattern in the
left cortical hemisphere, potentially related to memory restitution.

In both the ROT and SING tasks, a general agreement between AMP and PSD was
observed, with the presence of beta–mbeta activity in the motor cortex aligning with the
necessity for advanced visuomotor functions in ROT and the long-term maintenance of
specific processes in SING [73,81]. These observations collectively highlighted the consistent
binding role of beta–mbeta activity across varied tasks.

In the PSD topoplots in Figure 14, relevant activity in the beta1 band was observed
in the parietal and motor cortices during the WORD task. This pattern can be similarly
observed in the AMP topoplots in Figure 10, within the beta–mdelta, beta–mtheta, and
beta–mbeta bands. Notably, there was a diminished contribution from the anterior frontal
region in the case of the beta–malpha band.

Following these observations, the AMP topoplots illustrated in Figure 10 underscored
the significance of the motor cortex during the WORD task. This suggests the pivotal
roles of motor functions in linguistic tasks [73,90]. The presence of the beta–mbeta and
beta–mtheta bands further accentuated the potential of fast beta band dynamics in binding
large neuronal assemblies [73,80,91].

4.2. Theta Band Analysis

As shown in Figure 12, the FACE task presented a relevant feature distribution in the
occipital-parietal region and a partial presence in the frontal cortex. This pattern could be
divided into two complementary patterns observed in the theta–mdelta and theta–mtheta
bands in Figure 8. While the theta–mdelta band clearly represented most of the relevant
activity located in the prefrontal, motor, and occipital cortices, the theta–mtheta band
exhibited precise relevant activity in the occipital-parietal area. The theta band is known to
be involved in memory retrieval [76–78,82,86,87,92] and the process of visual information
encoding. This activity aligned with the requirements of the FACE task, which was a visual
task necessitating memory retrieval.

For the MI task, the slow temporal dynamics of the theta band, represented by theta–
mdelta, suggested modulated attention across time by the PFC. In contrast, faster theta
power changes, represented by the theta–mtheta band, seemed mainly to contribute to the
decoding of recalling visual information. In the MI task, the patterns observed across PSD
and AMP, particularly in theta–mtheta band, supported the hypothesis of sensory feedback
processing, providing a nuanced understanding of the reactivation of specialized sensory
brain structures.

In the NAV task, both the PSD and AMP topoplots in Figures 8 and 12, respectively,
showcase parietal and prefrontal activity, hinting at the activation of visual processing
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regions and working memory involvement, with theta oscillations likely reflecting a de-
coding mechanism for previously learned information [75,80]. Similarly, the ROT task
presented theta patterns in the occipital-parietal regions that are associated with visual
stimuli encoding, while frontal patterns in theta–mdelta band could be interpreted as
reflecting problem-solving processes.

Despite the absence of prominent patterns in PSD for the SING task, the theta–mtheta
activity in AMP revealed the involvement of the frontal and parietal regions, potentially
indicating memorized information retrieval, maintaining the consistent hypothetical role
of theta’s involvement in information encoding [76,78,93].

Regarding the WORD task, the AMP topoplots in Figure 8 provide nuanced insights
into the theta band’s temporal dynamics and reveal a left prefrontal cortex lateralization,
aligning with the literature on hemisphere association with linguistic functions. Further,
the importance of the motor cortex, as highlighted in the AMP topoplots, aligned with the
literature regarding its involvement in linguistic tasks [94].

4.3. Alpha Band Analysis

By examining the FACE task in Figure 13, it can be seen that both the alpha1 and
alpha2 bands exhibited relevant occipital-parietal spatial distributions, as well as left
frontal distribution. In the AMP topoplots presented in Figure 9, such patterns are also
identifiable; however, the alpha–mdelta band showed diffused relevant activity across
the entire scalp, while the alpha–mtheta band distribution was focused in the frontal
and left occipital areas. These findings suggest two levels of speed in the alpha power
temporal dynamics: slow variation in alpha activity seemed to be related to global scope
function, while faster temporal dynamics seemed to be related to specific functions, such
as executive and visual processing. Alpha oscillations, known for their relation with
inhibition [70,81,95], show modulation by slow waves in the delta band, indicating the
possible involvement of the limbic system as a modulated attention process. We could
hypothesize that remembering a familiar face requires the sustained inhibition of new
stimuli processing, as well as coordination between visually specialized brain structures
(occipital) and specialized executive/emotion-related brain structures (frontal) [95].

Regarding the MI task, the mu band (7.5 to 12.5 Hz) is typically considered to be
a relevant oscillation frequency within the motor cortex during motor imagery [96,97].
This pattern was also discernible in our feature analysis of the PSD topoplots in Figure 13,
where we noted relevant activity for both the alpha1 (8 to 10 Hz) and alpha2 (10 to 12 Hz)
bands in the motor cortex, coupled with observations of parietal-occipital activity for both
bands. Upon contrasting this observed activity with that in the AMP topoplots, similar
distributions of the relevant features were evident in the alpha–mdelta and alpha–mtheta
bands. Specifically, the topoplot of alpha–mdelta band in Figure 9 illustrates pronounced
and widespread activity in the motor cortex, suggesting that mu activity becomes more
discernible when considering the slow temporal dynamics of alpha oscillations. We further
hypothesized that the MI task necessitated the partial deactivation of the motor region as
the movement was imagined and not executed, explaining the presence of slow modu-
lated inhibition in the motor area. Furthermore, the alpha–mdelta band exhibited highly
relevant activity in the parietal-occipital regions, potentially indicating the inhibition of
visual stimuli [77], analogous to observations made in the FACE task. The alpha–mtheta
band displayed a subdued pattern in the parietal-occipital cortex, with the distribution
being more centralized in the somatosensory cortex. This activity was noteworthy as
it suggested the presence of some form of virtual sensory feedback accompanying the
imagined motor activity.

For the ROT task, the PSD topoplots depicted in Figure 13 exhibit consistent patterns
for the alpha1 and alpha2 bands, showcasing activity in the bilateral frontal and right
occipital regions. Delving deeper into the AMP topoplots, as seen in Figure 9, a clear
distinction arises between two brain areas: the alpha–mdelta band was concentrated in
the right occipital area, while alpha–mtheta band was prominently active in the bilateral
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frontal regions. This differentiation implied that the alpha–mdelta band was notably
associated with controlled attention in the visual cortex, a nuanced insight provided by
the comprehensive temporal analysis inherent to AMP features. This discerned alpha
activity in both frontal and occipital areas potentially reflected a dynamic shift in attention
and modulated inhibition across time. This interpretation aligned coherently with the
demands of the ROT task, which necessitated the processing of visual stimuli coupled with
logical evaluation.

For the SING task, the alpha–mtheta band was notably relevant in the prefrontal cortex
and left parietal cortex, as evidenced more clearly by AMP than PSD. The alpha–mdelta
band presented a comparable, albeit more diffuse, cortical-frontal activity. Unlike the other
tasks, SING did not primarily involve visual processing, explaining the absence of any
significant occipital activity. However, the task could necessitate imagined visual constructs
or advanced sensorial representation, implicating the somatosensory, motor, and prefrontal
cortices. The pronounced presence of alpha–mdelta activity in the prefrontal cortex could
signify the greater influence of sympathetic structures during song recollection.

Intriguingly, the SUB task exhibited distribution patterns analogous to those of the
SING task. This similarity was characterized by pronounced prefrontal activity in both the
alpha–mdelta and alpha–mtheta bands, along with a bilateral occipital-parietal pattern.
This pattern is observable in the alpha1 and alpha2 bands in the PSD topoplots represented
in Figure 13 and the alpha–mdelta and alpha–mtheta bands in the AMP topoplots depicted
in Figure 9. These observed distributions suggested the potential reliance on working
memory and visual cues in the SUB task [76,90,98]. Lastly, the AMP topoplots for the
WORD task revealed a left asymmetry in the cortical distribution of relevant features,
a characteristic only present in the alpha2 band in the PSD topoplots. This asymmetry
aligned with reports in the existing scientific literature [99].

4.4. Delta Band Analysis

As shown in Figure 7, the delta band exhibited a uniform distribution of relevant
features across the scalp in all tasks, illustrating its role in modulating various cognitive
processes throughout the brain. Notably, in the FACE and ROT tasks, the increased
relevance of delta activity in the bilateral frontotemporal and parietal-occipital regions was
observed, emphasizing its pivotal role in modulating attention [71,72] and facilitating the
integration and coordination of sensory information [79]. This temporal synchronization
is especially crucial in tasks requiring coherent communication among different brain
regions for structured cognitive task execution. In the MI, SING, and SUB tasks, a subtle
yet noticeable relevance in the parietal-occipital regions underscored the delta band’s
versatility in contributing to functions like motor imagery, sensory processing, and working
memory. The insights derived from analyzing the delta band AMP topoplots across tasks
(Figure 7) underscored the delta band’s fundamental role in attention modulation, the
temporal binding of neurological activity, and sustaining cognitive processing.

4.5. Gamma Band Analysis

As can be seen in Figure 11, for the FACE task, the relevant gamma band activity in the
somatosensory area and bilateral frontotemporal regions emphasized its role in the process-
ing of sensory information associated with recalling previously learned stimuli. The rapid
oscillations of the gamma band were indicative of localized neuronal activity [70,73,80],
making neurons more receptive to specific stimuli and thereby aiding in the retrieval of
specific visual information [76,77,88,93]. In the MI task, the prominence of the gamma
band in the motor and premotor cortices was consistent with the localized activation of
neuronal structures associated with imagined motor activity. This suggests that the gamma
band is closely linked with tasks that involve motor planning without actual movement.
In the ROT task, all modulated gamma bands depicted in Figure 11 exhibited consistent
distributions of relevant activity across a variety of cortical areas. The observed patterns of
activity aligned with the multifaceted demands of the ROT task, which necessitated the
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concurrent engagement of abstract visual representation, advanced sensory processing,
working memory, and executive functions. In both the SING and SUB tasks, the primary
patterns in the somatosensory and parietal cortices marked the gamma band’s significance
in sensory processing, which is required in tasks in which sensorial patterns are reacti-
vated, such as mental singing. Lastly, the WORD task displayed lateral patterns in the
gamma–mdelta and gamma–mbeta bands in the left parietal cortex, with a shift towards the
right parietal area in the gamma–mtheta, gamma–malpha, and gamma–mgamma bands.
Such hemispheric specialization echoed with the previously observed patterns in the theta
and alpha bands and further aligned with the well-established concept of hemisphere
dominance in language processing [99].

4.6. Performance Interpretation

In light of the distinctive patterns observed across the different bands and mental
tasks, we propose additional interpretations for some of the performance results. For the
ROT task, unique distribution patterns were apparent in both the alpha and beta bands,
depending on the temporal dynamics, alongside noticeable activity in the right motor
cortex in the beta–mbeta band. These patterns, revealed by the AMP topoplots, offered
additional insights beyond what PSDs could provide, thereby potentially explaining the
clear differences in the accumulated prestige scores observed in Figure 6.

When comparing the MI task to the SING task, several similarities emerged, including
the involvement of the alpha band in the motor cortex and parietal-occipital regions and
the presence of beta band activity in the motor and sensorimotor cortices, as well as fron-
totemporal areas. These similarities could account for the low kappa score observed for the
MI-SING mental task pair in Figure 4. Lastly, the SUB task demonstrated clear similarities
in both the PSD and AMP topoplots for the alpha and beta bands and comparable occipital
activity in the theta band. These similarities in the distributions of both feature types could
account for the small differences in prestige scores observed in Figure 6.

In conclusion, distinguishing between the band amplitude dynamics in slow and fast
components significantly enhanced our understanding of the roles of such bands. This was
particularly crucial as slow oscillations are typically associated with long-distance com-
munication between distinct brain regions, while fast oscillations correspond to intensive
neurological activity. While our analysis provided an initial step towards understanding the
neural oscillations and regional distributions underlying different tasks, a complete picture
of brain dynamics is yet to emerge. Further investigations into functional connectivity and
synchronization between different brain areas during tasks will provide more insights into
the complex brain networks involved in mental processes.

Overall, our findings highlight the potential of AM features as promising tools for
uncovering task-related changes across different frequencies and brain regions. By reflecting
fundamental neurological mechanisms, such as inter-areal communication and top-down
control, AM features could potentially enrich our understanding of the complexities of
brain activity. These findings underscore the need to incorporate and investigate AM
features in future BCI research.

4.7. Limitations

This work was not without its limitations. First, the number of participants, while in
line with both clinical [37,100] and non-clinical BCI studies [101–103], was limited and fu-
ture work could explore larger population sizes. Moreover, the proposed classification tasks
relied on discriminating between two different mental tasks. In the future, a third resting
class could also be used. Additionally, while the present study was interested in gauging
the benefits of the proposed features and their existence across participants and session
dates, the data from all participants were first combined and then partitioned into training
and test sets. To further improve classifier accuracy, future work could explore a more
common per-subject analysis where classifiers are fine-tuned to each individual user [104]
or use data from certain days for training and those from other days for testing [105].
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The extraction of AMP and CCORAM features in our study employed a 4 s time
interval, introducing some latency. While the impact was minimized with a sliding window
with 3 s overlap, the initial latency was a limiting factor compared to, e.g., PSD-based
measures, which can rely on windows of 1 s and overlaps of milliseconds. As such,
active BCIs based on the proposed features may have lower information transfer rates
than other methods. While this may not be an issue for many applications, including
neurorehabilitation, future studies could investigate the use of shorter epoch sizes to
optimize the balance between latency and accuracy.

Moreover, while using CCORAM provided a more robust estimation of synchronized
regions relative to the traditional coherence and phase locked value metrics, it did not reveal
the direction of information flow. This information, in turn, could lead to additional insights,
such as differentiation between motor control and sensory feedback information [106].
Additionally, phase-to-phase metrics are believed to measure cross-frequency interactions
in the brain more accurately compared to phase–amplitude coupling-related features [74];
thus, future work could also explore such measures. Regarding frequency bands, here,
we relied on the five conventional bands to allow for comparisons to previous works.
However, some active BCIs may achieve improved performance with other bands (e.g.,
the mu band for MI-based BCIs). Future work could also explore the benefits of using
alternative frequency band representations.

Lastly, we chose to use Fisher linear discriminant-based feature selection due to
its computational effectiveness and ease-of-use for binary tasks. However, such simple
selection methods do not remove potentially redundant features, which could be the cause
of the small fluctuations seen in Figure 3. In the future, other more advanced feature
selection algorithms, such as the mRMR algorithm [62], may provide a more concise feature
pool for analysis.

5. Conclusions

In this paper, we proposed a new feature set for active BCIs based on the amplitude
modulation dynamics of different EEG sub-bands. Via extensive experimentation, we
showed the benefits of the proposed features, as well as their complementarity to con-
ventional power spectral features. An in-depth discussion was provided to explore the
complex cognitive mechanisms being measured by the new features and conjecture their
roles in improving BCI accuracy for different mental tasks. As for future work, we wish
to explore the use of the proposed features for adaptive BCIs, where the mental states of
users can be tracked in real time (e.g., fatigue, frustration) to adjust active BCI classification.
Such cognitive states are known to affect active BCI accuracy and may be a major limiting
factor in BCI use in neurorehabilitation applications [14,107,108].
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Abbreviations

The following abbreviations are used in this manuscript:

AM Amplitude Modulation
AMP Amplitude Modulation Power
CCORAM Circular Correlation of Amplitude Modulation
PSD Power Spectral Density
BCI Brain–Computer Interface
ROT Rotation Imagery Task
SING Sing Imagery Task
FACE Face Imagery Task
MI Motor Imagery Task
NAV Navigational Imagery Task
SUB Arithmetic Task
WORD Word Completion Task
EOG Electrooculography
EEG Electroencephalogram
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Abstract: Brain-Computer Interface (BCI) is a technique that allows the disabled to interact with a
computer directly from their brain. P300 Event-Related Potentials (ERP) of the brain have widely been
used in several applications of the BCIs such as character spelling, word typing, wheelchair control
for the disabled, neurorehabilitation, and smart home control. Most of the work done for smart home
control relies on an image flashing paradigm where six images are flashed randomly, and the users
can select one of the images to control an object of interest. The shortcoming of such a scheme is that
the users have only six commands available in a smart home to control. This article presents a symbol-
based P300-BCI paradigm for controlling home appliances. The proposed paradigm comprises of a
12-symbols, from which users can choose one to represent their desired command in a smart home.
The proposed paradigm allows users to control multiple home appliances from signals generated
by the brain. The proposed paradigm also allows the users to make phone calls in a smart home
environment. We put our smart home control system to the test with ten healthy volunteers, and the
findings show that the proposed system can effectively operate home appliances through BCI. Using
the random forest classifier, our participants had an average accuracy of 92.25 percent in controlling
the home devices. As compared to the previous studies on the smart home control BCIs, the proposed
paradigm gives the users more degree of freedom, and the users are not only able to control several
home appliances but also have an option to dial a phone number and make a call inside the smart
home. The proposed symbols-based smart home paradigm, along with the option of making a phone
call, can effectively be used for controlling home through signals of the brain, as demonstrated by
the results.

Keywords: brain-computer interface; smart home; phone control; event-related potentials; EEG; P300

1. Introduction

A neurological disease known as a locked-in syndrome is caused by the total paralysis
of all voluntary muscles throughout the body. It could be caused by brain or spinal cord
damage, amyotrophic lateral sclerosis, brainstem stroke, diseases of the circulatory system,
damage to nerve cells, and several other neuromuscular diseases. People who have locked-
in syndrome are completely cognizant and able to reason and think, but they are unable
to talk or move anything other than their eyes. All other voluntary muscle movement is
blocked, making it impossible for them to speak or move [1–3]. Locked-in syndrome pa-
tients may generally move their eyes and can occasionally blink to communicate, but some
seriously ill patients can also lose control of their eye movements and may become com-
pletely paralyzed. It is extremely difficult to interact with individuals who have locked-in
syndrome and other forms of paralysis since they are unable to speak or express their needs
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or sentiments to those around them due to their lack of muscle-based modes of communi-
cation. For such patients, a direct brain-computer interface (BCI), which sends messages
and instructions to the outside world via a new, non-muscular communication and control
channel, may be an effective option. These people may be able to communicate once again
because of brain-computer interfaces that open a new line of communication between their
brain signals and computers. Recent research has demonstrated that BCI technology makes
it viable for the brain to directly interact with the outside world, enabling paralyzed people
to interact and gain control. The BCI technology enables users to interact with computers
and operate appliances without using their muscles. BCI research aims to improve the over-
all quality of life for the disabled by giving them access to technology that allows them to
interact with their environment. To attain this objective, several BCI applications have been
presented in the literature. including character spelling [4,5], word typing [6], controlling
a wheelchair [7,8], controlling a robotic/prosthetic limb [9], virtual reality control [10,11],
neurorehabilitation [12], controlling a car [13], web browser control [14], Unmanned Aerial
Vehicle (UAV) control [15,16], and games [17–19]. All these BCIs take commands from the
brain and transform them to control signals for the desired application.

There are numerous ways of reading the brain’s activity such as functional Magnetic
Resonance Imaging (fMRI), Magnetoencephalography (MEG), Positron Emission Tomog-
raphy (PET), Computer Tomography (CT), Electrocorticography (ECoG), and functional
Near-Infrared Spectroscopy (fNIRS). However, Electroencephalography (EEG) has been the
most popular type for BCIs because it is non-invasive, relatively cheap, and easier to use.
The brain’s EEG signal is made up of numerous signals with varied characteristics, each of
which corresponds to a different mental activity. P300 Event-Related Potential (ERP), one of
the signals, has been used in various BCI applications. When the user is exposed to an un-
common stimulus in a sequence of common stimuli, about 300 milliseconds after the start of
the target/rare stimulus, a positive wave called P300 appears. It is induced when a person
recognizes an occasional “target” stimulus among a regular stream of common “non-target”
stimuli. When the user concentrates on a specific stimulus while simultaneously being
exposed to several stimuli, P300 can be induced. In 1998, Farwell and Donchin [20] were
the first to demonstrate a character spelling application of the P300-ERP. They proposed
displaying a flashing matrix, having 6 rows and 6 columns of characters and numbers, to
the users, and taking EEG signals of the users. They could get the P300 wave only after the
target character was flashed, which could be detected using a classifier. The P300 signal has
been used for numerous other applications of BCI; for instance, directing the movement
of a cursor or a screen item [21,22], browsing the internet [23], file explorer [24], Playing
games [25], and navigating a wheelchair [26].

There have been few studies on using the BCI to operate a smart-home environment.
Hoffmann et al. [27] proposed an interface consisting of 6 images of home appliances for
disabled subjects, and the users could select one of the images. Their proposed image
flashing paradigm had been the most popular paradigm for smart-home control and
several researchers used the same scheme. Achanccaray et al. [28] and Cortez et al. [29]
used the same paradigm to control six home appliances. The problem with this image
flashing paradigm is that the users have only six commands available, therefore they can
perform only six tasks in a smart home. Carabalona et al. [30] developed an icon-based
smart home control system. They proposed to use icons instead of characters in a smart
home control system. However, the accuracy achieved using their proposed system was
very low i.e., 50%. Park et al. [31] used Steady-State Visual Evoked Potentials (SSVEP)
to operate three household appliances: a robotic vacuum cleaner, an air cleaner, and a
humidifier. Kais et al. [32] proposed an implementation of home devices control using
the motor imagery BCI. They used the BCI competition dataset where subjects performed
four types of motor imagery (Left hand, Right hand, Foot, and Tongue). These four motor
imagery states can be used to turn on/off two devices. Edlinger et al. [33] combined P300
and SSVEP for controlling a virtual home environment and tested their system with three
subjects. Katyal et al. [34] also proposed a hybrid paradigm containing SSVEP and P300
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to increase the number of decision options. Similarly, Chai et al. [35] proposed combining
SSVEP with electromyography (EMG) signals. Uyanik et al. [36] proposed an SSVEP-based
BCI to control a wheelchair along with a smart home. Kim et al. [37] combined ERPs with
speech imagery. Usman et al. [38], proposed a symbols-based smart home control system
using the P300. The suggested method used a 6×4 matrix, akin to the character spelling
paradigm. The proposed system was tested on three subjects and achieved an accuracy
of 87.5%. Taejun Lee et al. [39] utilized a BCI based on the P300 to control three home
applications: the door lock, the electric light, and the speaker. Vega et al. [40] used six
symbols of commonly used home appliances and employed a deep learning model for
the classification of EEG. Shukla et al. [41,42] used a 2 × 3 matrix containing six symbols
(TV, Mobile, Door, Fan, Light bulb, and Heater) and used P300-ERP to control these six
appliances. They tested their system with 14 participants and achieved an average accuracy
of 92.44%. The problem with such systems is the limited number of control options available
to the users.

This paper proposes a P300-based intelligent home control system that allows users
to control multiple home appliances and allows them to dial a phone call. Our interface
comprises a matrix of twelve symbols. Each symbol indicates a smart home activity that can
be executed. Users can choose any symbol to perform their desired action, such as turning
on or off lights. To detect P300, we employed a supervised machine learning algorithm,
Random Forest (RF), and evaluated our proposed system with 10 healthy participants
for smart home control and making phone calls. The accuracy rate was 92.25 percent
on average.

The rest of the paper is organized as follows. Section 2 presents a detailed methodology
of the proposed home control system. The experimental results are presented in Section 3.
Finally, Section 4 presents a conclusion and discussion.

2. Materials and Methods

Our methodology comprises displaying a flashing paradigm to the user as shown
in Figure 1. While the user is observing the flashing paradigm, EEG waves are recorded
using a 32-channel EEG cap. After preprocessing, a random forest classifier is then used to
classify the P300 signal of the brain. The classification of the P300 signal leads to choosing
the target symbol. Ideally, the P300 should be found after 300 ms of the flashing of the
symbol the user is focusing on.

Figure 1. Block diagram of the proposed system.

2.1. Participants

Ten healthy volunteers (7 males and 3 females; ages 18 to 35 years) participated in
the experiments. The participants’ vision was normal or corrected and had no record
of any neurological brain illnesses. None of the participants had any prior knowledge
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or experience with BCIs of any kind. The experimental protocol was explained to the
participants and all participants signed a written informed consent form before the start of
the experiment.

2.2. Primary Display for Controlling Home Appliances

In this paper, we propose an interface that consists of a 4 × 3 matrix containing
12 symbols. Each symbol is randomly intensified as shown in Figure 2, and the users must
concentrate on the symbol they want to choose. The description of those symbols is shown
in Figure 3. Rather than intensifying rows and columns of the matrix as in traditional P300
displays, we chose to intensify each symbol individually because previous research has
shown that the prior probability of the target is inversely related to the amplitude of the
P300 [43]. Higher probabilities of the appearance of the target lead to lower amplitudes of
the P300-ERP, which in turn makes the classification difficult and hence reduces accuracy.
In the case of our proposed smart home control, we have only 12 symbols in the main
display making it a 4 × 3 matrix. Using the row and column-wise intensification will lead
us to have a target probability of 2/7 because out of seven intensifications (4 rows and
3 columns) two should contain the target symbol (one row and one column). Whereas
intensifying each symbol gives us the probability of the appearance of the target symbol to
be 1/12 which is far less than the row/column intensification.

 
Figure 2. Primary Display to control the smart home.

The subjects were told to randomly choose a symbol and focus on the chosen symbol
and count how many times it flashed quietly. After 300 ms of the target symbol flashing,
P300 appears. Intensifications are randomized in blocks. Each symbol is intensified exactly
once in random order in each block of twelve intensifications. This intensification block
is repeated fifteen times in total. We employed a 100 ms intensification time with a 75 ms
blank interval in between.
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Figure 3. Functional symbols on the main Interface and their description.

On the primary display, the users have twelve symbols to choose from, and each
symbol represents an action to be taken in the smart home such as controlling the TV, lights,
volume, and phone. The description of all those symbols is shown in Figure 3.

2.3. Secondary Display for Making Phone Calls

In our proposed system, the users have the option of making phone calls along with
controlling the home appliances. On the main display, there is a symbol for a phone call
as shown in Figures 2 and 3. If the user selects that phone call symbol, the display gets
changed to a secondary display containing a 4 × 3 matrix of numbers that are shown in
Figure 4. The secondary display contains numbers (0–9) for typing the phone number to be
called, a call symbol for connecting the phone call, and a return symbol to disconnect the
phone call and return to the primary display.
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Figure 4. Secondary display for making phone calls.

2.4. Experimental Setup

A 32-channel EEG data was acquired, as per the 10–20 international electrode system.
The placement of electrodes is shown in Figure 5. Out of those 32 channels, only 8 were
used for the classification of ERPs. The subjects were seated on a cozy chair in front of
a display screen and were instructed to focus on the desired symbol from the displayed
symbols (as shown in Figure 2). Each participant was required to attend two sessions:
training and testing. Each participant was instructed to select a random symbol/number
during the training session, and this experiment was repeated 10 times. During the test
session, each participant chose 40 symbols/numbers at random (20 symbols on the main
display and 20 numbers on the secondary display).

 
Figure 5. Electrode placement (highlighted electrodes are used in this study).
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2.5. Signal Processing and Classification

In this study, we used 8 channels for signal processing and classification. The locations
of the used electrodes are shown in Figure 5. It is known from the previous studies [44,45]
that the P300-ERP is most dominant in the Pz area and the nearby electrodes. Therefore,
we have chosen only those locations. The acquired EEG signals are bandpass filtered using
a third-order Butterworth filter between 0.1 Hz to 25 Hz to remove the noise. The filtered
signal is then segmented, and segments of 800 ms are extracted after the onset of each
stimulus, i.e., flashing of each symbol from each of the used channels. To construct a single
feature vector, the data segments are concatenated over the eight channels.

For the classification of P300-ERPs, we employed the random forest classifier because
RF had shown superior performance in P300 classification in our previous studies [38,46].
We also compared the results of the random forest classifier with commonly used classifica-
tion methods such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),
and k-nearest neighbors (kNN).

Random Forest is an ensemble classification technique. The general idea of the random
forest is to build multiple decision tree classifiers and combine their results for better
accuracy. Using multiple classifiers in an ensemble gives a more stable prediction. Random
forest utilizes a random subset of the data to train each of the decision trees in the forest
and then combines the result of each decision tree by majority voting. In this way, the weak
classifiers are combined to form a strong classifier.

Random Forest was used to detect the presence of P300 ERPs in the recorded EEG
signal. The system selects the symbol that elicits P300-ERP and displays the result as
feedback to the user.

3. Results

We conducted experiments using our proposed paradigm on ten healthy volunteers.
The 32 channels’ EEG data was acquired at a sampling frequency of 250 Hz. The participants
were instructed to pay close attention to the target symbol and silently count how many
times it flashed. This silent counting helps users in maintaining their attention. Each partic-
ipant attended two sessions, namely training, and testing. During training, each participant
selected 10 randomly selected symbols and during the test session, 40 symbols/numbers
were selected, one at a time, as per the choice of the participants. The users were shown the
main display, as shown in Figure 2. The symbols on the display were randomly flashing.
The flashing time is shown in Table 1.

Table 1. Flashing time of the proposed paradigm.

Intensification time 100 ms

Inter-stimulus blank time 75 ms

Total Symbols 12

Number of repetitions for each symbol 15

Flashing a single symbol takes 175 ms: 100 ms for flashing and 75 ms of blank time
in between two flashes. The proposed paradigm has a total of 12 symbols on the screen.
Therefore, to flash each symbol once, the system requires 2.1 s. We had chosen to flash
each symbol 15 times. Therefore, if we calculate the time required to select a symbol by
each user, it comes out to be 31.5 s (2.1 × 15). The same timings were used in the second
(numbers-based) paradigm to make a phone call. The users can select each number in 31.5 s.
Figure 6 shows the images of the data collection.
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(a) (b) 

Figure 6. Data Collection. (a) Preparation for EEG data collection; (b) A participant during data collection.

3.1. Experimental Results

During the test session, each user was asked to select twenty random symbols on the
primary symbols-based display, and twenty random numbers on the phone call interface.
Table 2 presents the accuracy of classification for each subject on both displays. The random
forest classifier achieved an overall accuracy of 92.25 percent.

Table 2. Classification accuracies on the proposed displays using random forest classifier.

Subjects Accuracy on Primary Display (%) Accuracy on Secondary Display (%) Average Accuracy (%)

S1 95 100 97.5
S2 85 85 85
S3 100 95 97.5
S4 90 95 92.5
S5 80 85 82.5
S6 95 100 97.5
S7 85 90 87.5
S8 95 95 95
S9 90 95 92.5

S10 95 95 95
Mean 91 93.5 92.25

We also compared the results of the random forest classifier with other commonly
used classifiers such as SVM, LDA, kNN. The comparison of the accuracies obtained by
these classifiers is presented in Table 3. All these classifiers performed well with minor
differences in accuracies. RF classifier performed the best with an average accuracy of 92.25,
whereas the SVM, LDA, and kNN achieved average classification accuracies of 91, 89.25,
and 90.25 percent, respectively.

Table 3. Comparison of classification accuracies using RF, SVM, LDA, and kNN classifiers.

Subjects Random Forest SVM LDA kNN

S1 97.5 95 92.5 95
S2 85 85 82.5 85
S3 97.5 97.5 95 92.5
S4 92.5 95 90 92.5
S5 82.5 85 82.5 80
S6 97.5 92.5 90 92.5
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Table 3. Cont.

Subjects Random Forest SVM LDA kNN

S7 87.5 85 87.5 87.5
S8 95 95 92.5 90
S9 92.5 92.5 90 95

S10 95 87.5 90 92.5
Mean 92.25 91 89.25 90.25

3.2. Waveform Morphologies

The averaged ERPs for target and non-target stimuli are shown in Figure 7 for both
the proposed displays. The P300 event-related potential is visible for the target cases in
both paradigms. However, it was noted that the amplitude of the P300 was smaller in
the case of the symbols-based paradigm. The accuracy was also lesser in the case of the
symbols-based paradigm as shown in Table 2.

Figure 7. Waveforms for target and non−target stimuli. (a) Primary symbols−based display for
controlling home appliances. (b) Secondary display (Numbers−based) for making phone calls.
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A comparison of the P300 waveforms for the primary and secondary paradigms is
shown in Figure 8. The amplitude of the numbers-based paradigm is larger than the
symbols-based paradigm. The reason for this difference in P300 amplitude can be the
familiarity of the users with numbers. The users are more familiar with the numbers, as
compared to the symbols. This familiarity improves the user’s P300 response, which leads
to improved classification accuracy. The comparison of accuracies on both the paradigms is
presented in Figure 9.

Figure 8. Comparison of the ERPs for both the displays.

Figure 9. Comparison of the classification accuracies for both the displays.
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A slight difference in accuracies of the primary and secondary display can be seen in
Figure 9, because the amplitude of P300-ERPs was smaller in the case of the symbols-based
paradigm. The numbers-based paradigm produced better P300 however, the difference is
not that significant. On average, the numbers-based paradigm has 2.5% better accuracy
than the symbols-based paradigm.

4. Discussion and Conclusions

This paper presented a novel BCI paradigm to control home appliances using the
P300-ERP of the brain. The proposed paradigm included common household appliances
such as televisions, lights, and music. We also included an option to make a phone call in
our smart home. As evident from the results, the proposed P300-BCI system is capable of
both controlling appliances and making phone calls in a smart home setting.

Compared to our previously proposed smart home system [38], we have achieved
better accuracy in this paper. The reason for this improvement in accuracy is a single symbol
flashing instead of flashing rows and columns. When we do rows/columns flashing in
a 4 × 3 matrix, there are a total of 7 flashes (4 rows and 3 columns). Out of these seven
flashes, two flashes correspond to the target symbol/number (one row and one column).
This leads the prior probability of the target to be 2/7 or 0.286. Whereas flashing individual
numbers/symbols in the same 4 × 3 matrix gives us a prior probability of target as 1/12
or 0.083 (one symbol out of a total twelve). It is known from previous studies [43] that
in an oddball paradigm, the P300’s magnitude is negatively correlated with the target’s
prior probability. The probability of flashing the target symbol is very low in this proposed
paradigm as compared to the previous studies. Therefore, it leads to better P300 s, which
in turn gives us better classification accuracy. Moreover, we have included a secondary
paradigm for making phone calls and the users were able to dial phone numbers with an
accuracy of 93.5%.

We can see from the results that the accuracy of the secondary display (numbers-based)
is slightly better than the symbols-based display, one reason for this can be the familiarity
of the users with the numbers as compared to the symbols. These results are consistent
with Kaufmann et al. [47] where they had replaced the characters with the popular faces in
a P300-based paradigm and achieved better accuracies.

Compared with the other smart home applications proposed in the literature, the
proposed paradigm offers a more degree of freedom with an increased number of devices
to control. The users can control 12 devices at a time using a single interface. The users
also have the freedom to dial a phone number of their choice and make a phone call, which
is an important aspect in improving the quality of life of the disabled. The number of
symbols can further be increased and can be changed depending on the application and
requirements of the users.

We have calculated the time required by the users to perform each command in the
smart home. The users require 31.5 s to perform each command (selecting a symbol or
a number). The time can be reduced by reducing the number of repetitions in flashing.
However, if we reduce the number of flashes, the classification of P300 s gets difficult and
may decrease the classification accuracy. In the future, better classification models can be
employed to solve this problem of P300 recognition in a lesser number of repetitions.
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Abbreviations

The following abbreviations are used in this manuscript:

BCI Brain-Computer Interface
CT Computer Tomography
ECoG Electrocorticography
EEG Electroencephalography
EMG Electromyography
ERP Event Related Potential
fMRI functional Magnetic Resonance Imaging
fNIRS functional near-infrared spectroscopy
kNN k-Nearest Neighbors
LDA Linear Discriminant Analysis
MEG Magnetoencephalography
PET Positron Emission Tomography
RF Random Forest
SSVEP Steady-State Visual Evoked Potentials
SVM Support Vector Machine
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Abstract: Deep learning using an end-to-end convolutional neural network (ConvNet) has been
applied to several electroencephalography (EEG)-based brain–computer interface tasks to extract
feature maps and classify the target output. However, the EEG analysis remains challenging since it
requires consideration of various architectural design components that influence the representational
ability of extracted features. This study proposes an EEG-based emotion classification model called
the multi-kernel temporal and spatial convolution network (MultiT-S ConvNet). The multi-scale
kernel is used in the model to learn various time resolutions, and separable convolutions are applied
to find related spatial patterns. In addition, we enhanced both the temporal and spatial filters
with a lightweight gating mechanism. To validate the performance and classification accuracy of
MultiT-S ConvNet, we conduct subject-dependent and subject-independent experiments on EEG-
based emotion datasets: DEAP and SEED. Compared with existing methods, MultiT-S ConvNet
outperforms with higher accuracy results and a few trainable parameters. Moreover, the proposed
multi-scale module in temporal filtering enables extracting a wide range of EEG representations,
covering short- to long-wavelength components. This module could be further implemented in
any model of EEG-based convolution networks, and its ability potentially improves the model’s
learning capacity.

Keywords: brain–computer interface (BCI); electroencephalography (EEG); emotion classification;
machine learning; convolutional neural network (ConvNet)

1. Introduction

1.1. Background

The brain—computer interface (BCI) technology is a technology that acquires brain
signals and interprets neuronal information into the desired action. BCI has been used in
various medical and non-medical applications [1], such as assistive technology [2,3], game
playing [4,5], and mental state recognition [6,7]. There are several ways to record brain
activity. One of the most popular modalities of BCI is electroencephalography (EEG). The
EEG method has been used to record electrical signals in the human brain by measuring
tiny voltage fluctuations using electrode sensors. The EEG recording can be performed
by attaching electrodes to the scalp surface without surgery and implantation. This non-
invasive EEG system holds the promise of real-world BCI applications and is currently
entering the mass market. For example, EEG has been used to diagnose abnormalities
of the human brain by detecting the presence of aberrant electrical activity [8,9]. In non-
medical fields, attempts have been made to transduce EEG states from human players to
control video games [10]. Moreover, the acquisition of EEG signals is also exploited to
recognize human psychological states [11]. Distinct patterns of EEG signals can describe
users’ emotions and feelings in response to specific circumstances with less human bias.
Despite its several potential applications, the non-stationarity and high-dimensionality of
EEG signals pose a challenge to reliable implementation. EEG recordings could be easily
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affected by various sources of noise, including eye movement, muscle contraction, and
environmental settings, which present significant difficulties in EEG interpretation. Because
the brain is a complex organ with different parts that function and respond differently, to
evaluate spatial brain activity, EEG data are generally recorded in more than one and up
to 64 electrode positions increasing space dimensionality and complexity during feature
extraction and analysis.

Therefore, the capability of developed EEG methods should consider several aspects,
including interpretability, performance, and usability for real-world applications. As-
certaining methods aim to understand complex EEG signals derived from the human
brain extracting their informative features and classifying them. Conventionally, beneficial
knowledge is extracted from raw EEG signals by manually defined features and reported
through statistical reports. For instance, frequency bands in slow to hyperactivity brain
waves reflect the distinction in the intensity of emotions [12]. Positive emotions, such as
joy or happiness, are relatively associated with the left frontal hemisphere. In contrast,
negative emotions, such as sadness or fear, are relatively associated with the right frontal
hemisphere [13,14]. Nevertheless, these defined features are easily sensitive to noise, and
their computation requires appropriate data cleansing, signal preprocessing, and expertise.

1.2. Research Gap

Recently, many studies have applied deep learning (DL) to extract and interpret EEG
signals. An end-to-end convolutional neural network (ConvNet or CNN) is constructed
on the basis of a shared-weight architecture that can reasonably learn joint optimization
of feature extraction and classification. The appropriate design, such as the layer’s depth
and width, kernel size, and optimizer, becomes an essential consideration that significantly
affects the representational ability and classification performance. It has been demonstrated
that deep and shallow convolution networks can automatically extract essential temporal
and spatial information from raw EEG signals [15]. Nevertheless, as the feature extraction of
these models is based on a single kernel size, their learning ability and EEG representational
performance are limited. Larger ranges of signal transformations are needed to represent
differences in slow and hyperactive EEG frequencies. Parameter tuning and optimization
are also required for a particular task. In addition to the kernel, parameter dependence
and computational cost in training and testing processes have to be taken into account [16].
A separation of network layers was suggested to help reduce the computational cost
and model complexity. To further improve model efficiencies, the network architectures,
including kernel sizes and parameter sets, should be rationally designed for each specific
EEG analysis task.

1.3. Motivation and Contribution

Accordingly, achieving good EEG data analysis performance using DL-based tech-
niques requires a wide range of useful representations while preserving optimized trainable
parameters. This study proposes an architecture called multi-kernel temporal and spatial
convolution for EEG-based emotion classification. We present (1) multi-kernel learning for
temporal convolution and (2) filter recalibration with a lightweight gating mechanism. The
proposed model makes the classification process more efficient by factoring the kernel into a
series of operations to capture various short and long patterns. Then, separable convolution
is applied for spatial learning by considering each channel separately and convolving over
electrode channels. Moreover, we recalibrate weights after temporal and spatial convolving
to utilize the limited data available. We compare our model with existing techniques and
investigate task accuracy by conducting classification experiments on BCI datasets.

2. Related Works

2.1. Feature Extraction and Classification

In the classification of emotions learned from EEG signals, feature extraction is an
essential step in which these emotions are represented and categorized into the desired
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labels. Conventionally, EEG features can be categorized into three domains: time, frequency,
and time–frequency domains [17]. The time domain observes time-series characteristics
and variations using conventional techniques, such as linear prediction and component
analysis. The frequency or spectral domain is the standard method used for quantifying
EEG signals by adapting the Fourier transform. Fourier analysis reflects the frequency
content using sums of trigonometric functions and then distributes the average power
into the PSD. As shown in Figure 1a, the PSD in a human EEG signal is approximately
divided into several ranges, including theta (4–7 Hz), alpha (8–12 Hz), beta (13–32 Hz),
and gamma (>32 Hz) bands. These frequency bands reflect brain activities through the
strength of variation. High-frequency bands, such as gamma or beta waves, indicate
hyperactive brain activity and alertness, and low-frequency bands, such as delta or theta
waves, indicate deep meditation and relaxation. Theta (4–7 Hz) is a slow wave associated
with the subconscious mind, deep relaxation, and meditation. Changes in alpha (8–12 Hz)
and beta (13–32 Hz) waves are the most discriminative for emotional states [12,18]. Gamma
(>33 Hz) is a hyperactivity wave associated with problem-solving and concentration and is
related to positive and negative emotions but on different sides; left for negative and right
for positive [19].

(a)

(b)

Figure 1. (a) Power spectral density (PSD) features, extracted from raw EEG signals. (b) Filter bank
common spatial pattern (FBCSP).

Moreover, in addition to frequency or temporal features, spatial features can be ex-
tracted using multi-channel electrodes. Each part of the human brain can convey different
information through the asymmetric hemisphere. For example, the frontal lobe is associated
with reasoning, parts of speech, and emotion. The temporal lobe is associated with the
perception and recognition of auditory stimuli, whereas the occipital lobe is responsible for
vision. For this reason, EEG signals require a method that can manipulate both temporal
and spatial information for feature learning and classification. A common spatial pattern
(CSP) [20] is a mathematical method for computing the variance of features to discriminate
window patterns or emotional classes. This method uses the simultaneous diagonaliza-
tion of two covariance matrices to construct optimal spatial filters [21,22]. CSP patterns
can be used as features for machine learning (ML) to classify emotions [23]. However,
the classification of CSP features requires a specific frequency range, which significantly
depends on the subject or task. To address this problem, filter bank common spatial pat-
tern (FBCSP) [21] has been proposed to perform an autonomous feature selection through
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temporal-spatial filtering. Compared with CSP methods, FBCSP as shown in Figure 1b,
adds two more processes to perform feature selection and classification, respectively. The
first two stages perform temporal and spatial filtering to construct a filter bank of dis-
criminative CSP features. Then, features are selected independently depending on the
classifiers in the third stage. Popular techniques with good EEG classification accuracy
include random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM),
and fully connected network (FCN) [24,25]. However, these techniques employ manual
parameterization to classify EEG features, and the appropriate selection for a particular
task relies on the complexity and cleanliness of data recording.

2.2. End-to-End Convolutional Neural Networks

In recent years, the use of end-to-end CNNs (ConvNets) has been introduced for
effective and reasonable EEG analysis in feature extraction and classification tasks. First,
the raw EEG signals are measured in microvolts (μV) and recorded in a 2D space, with
temporal (T, time) and spatial dimensions (E, the number of electrode channels). Then, the
convolutional operation is applied to extract informative features through three types of
filtering, i.e., convolving across time, space, and both time and space, respectively, as shown
in Figure 2. Temporal filtering convolves information across the time—space domain with
a 1 × t kernel size. The temporal content of each electrode channel is extracted by shared
weighting over the time—space input. Spatial filtering proceeds with the filter matrix E × 1
across all electrode channels, learning the variance of features. The temporal-–spatial kernel
with a k1 × k2 2D kernel size, where k represents a specific kernel size, is applied to both
time and channel domains. In addition, there is a need to determine the suitable size for
learning various representations and distinctions. Typically, the kernel size is manually
defined and used in feature extractors in CNNs. A single-scale kernel might be trapped
with a limited amount of representations. Especially for EEG feature extraction, the learning
of representations needs to be diverse and capable of effectively extracting temporal and
spatial features.

(a) (b) (c)

Figure 2. EEG convolution filter types include (a) temporal filter, (b) spatial filter, and (c) temporal-
–spatial filter. The yellow blocks denote the two-dimensional (2D) kernel for performing feature extraction.

Apart from kernel designs, the network depth significantly influences the learning
strategy, particularly low–high-level feature decoding. For example, a deep convolutional
network (Deep ConvNet) has been used for EEG decoding with a single-layer temporal
filter, and then, the output is fed into multi-layer spatial convolution and pooling lay-
ers, as shown in Figure 3a. The EEG classification results show that the Deep ConvNet
outperforms the widely used FBCSP (mean decoding accuracy of 84.0% and 82.1%, re-
spectively) [15]. Deep ConvNets can achieve competitive accuracy and can be applied to
general EEG decoding tasks. On the other hand, according to the FBCSP pipeline, a shallow
convolutional network (Shallow ConvNet) is designed for tailoring decoding band power
features, as shown in Figure 3b. The first layer performs a temporal convolution to simulate
bandpass extraction. Then, the second layer performs a spatial convolution that analogizes
the CSP spatial filter in FBCSP. The extracted features of Shallow ConvNet are related to
log band power and are designed explicitly for oscillatory signal classification.

Moreover, another critical aspect that affects informative features and learning ability
is reducing the network size while maintaining good performance. One of the simpler
networks is a separable convolution that enables networks to construct informative features
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by fusing both spatial and channel information. The operation consists of spatial mapping
independently performed over each input channel and feed-forward mapping to project the
output onto a new feature space. These operations enable networks to construct informative
features by fusing spatial and temporal information within local receptive fields at each
layer. A compact CNN for EEG-based BCI, called EEGNet, is introduced to construct an
EEG-specific model with separable convolution [16]. The number of trainable parameters
in EEGNet is significantly less than that of Deep ConvNet and Shallow ConvNet (170 and
100 times, respectively), but EEGNet still achieves performance comparable to that of Deep
ConvNet and Shallow ConvNet.

(a) Deep ConvNet

(b) Shallow ConvNet

(c) EEGNet

Figure 3. Model architectures of (a–c).

3. Proposed Method

This study proposes an end-to-end CNN called multi-kernel temporal and spatial
convolution (MultiT-S ConvNet) for EEG-based emotion recognition. The proposed model
enables multi-scale representation learning and improves classification performance. The
model consists of three parts, namely, a temporal learner, spatial learner, and classifier,
which simultaneously learn discriminative representations in the time and electrode chan-
nel dimensions. The model architecture is depicted in Figure 4, and the details are described
in the following sections.

3.1. Multi-Kernel Temporal Processing

In this study, we hypothesize that multi-kernel filters can improve temporal represen-
tations learned from raw EEG data. Considering the kernel design of temporal convolution,
the larger size can learn higher resolutions in the time domain but necessitates high compu-
tational costs. On the other hand, a smaller kernel size essentially learns low-level features
or shorter temporal patterns in the time domain and can reduce computational costs. Multi-
scale convolution kernels combining long and short patterns are applied by factoring a
kernel into various kernel sizes that would independently convolve and map them in order.
Learning a wide range of representations while avoiding high computational costs can
improve the performance of EEG classification. The main advantage of this architecture is
significant quality gain at a modest increase in computational requirements compared with
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shallower and narrower architectures. Accordingly, we specifically adopted four kernels of
length 25 ms (=5 samples under the sampling rate of 200 Hz), 50 ms (=10 samples), 100 ms
(=20 samples), and 200 ms (=40 samples). These choices were based on four frequency
bands, namely, theta (4–7 Hz), alpha (8–12 Hz), beta (13–32 Hz), and gamma (>33 Hz),
extensively used to characterize brain states/activities. The sampling rate is also considered
because wavelengths can be captured with the same time scale, even from different datasets.
These multi-kernels can capture an extensive range of representations in EEG signals. The
larger kernel size can learn various informative features, along longer temporal patterns.
Meanwhile, the smaller kernel size specifically extracts shorter temporal patterns.

Figure 4. MultiT-S ConvNet architecture. The model comprises temporal filtering, spatial filtering,
and classification layers. The first layer employs four types of temporal convolutions to learn multiple
temporal features from raw EEG signals. Then, the separable convolution is used to learn temporal-
specific spatial filters across electrode channels. The SE block is used to recalibrate the features of
both filters. The final classification layer is used to discriminate the emotional labels.

The raw EEG signals in Figure 4 can be represented as 2D time series whose dimensions
are time (T) and electrode channels (E). The window size is set as 2 s (T is 400 data points
for the SEED dataset) based on the change in emotion over time. We duplicate the input into
four modules and convolve them using four different kernel sizes: (1× 5), (1× 10), (1× 20),
and (1 × 40). Each module is padded with zeros to retain the same size. Along the multi-
kernel temporal convolution, a tensor of size (T′ × E× Fte) is produced, where T′× denotes
the temporal dimensionality after convolution and Fte denotes the total number of temporal
features after concatenation. All convolutions, including those modules, apply rectified
linear activation (ReLU) and average pooling to data before sending them to the next layer.

3.2. Remaining Modules
3.2.1. Spatial Processing

For each time step (T′) and temporal feature (Fte), we collected information across
electrodes using two full-length filters. A separable convolution was applied for spatial
feature learning and to reduce computational costs. Figure 5 depicts the separable con-
volution and the virtualization of topoplots. It consists of two steps: spatial filtering and
feed-forward processing. Spatial filtering connects each temporal feature map individually
to learn specific spatial filters across electrodes. We manually set the feature multiplier to 2
to increase the number of parameters in the neural network to learn more traits better. The
network gathers data with the Fte × 2 of the respective filter (1 × E) and stacks the outputs
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into feature maps (T′ × 1 × (Fte × 2)). The interpretation of this step is to build multiple
filters that can learn informative features across all electrode channels individually. Then,
feed-forward processing continues to learn and optimizes a temporal-–spatial summary
for each feature map with independent filters (1 × 1 × (Fte × 2)) across the spatial feature
maps. Here we learn how to weigh the useful set of filters from the previous extraction.
After this spatial processing, temporal-–spatial feature maps (T′′ × 1 × Fsp) are extracted,
where T′′ represents the time after temporal-–spatial processing and pooling.

Figure 5. Spatial Convolution. Spatial processing separately convolves across the electrodes on the
temporal feature maps. Feedforward processing subsequently weights the feature maps to extract
temporal-–spatial features. Shading represents how the network emphasizes or understates the
corresponding feature maps.

3.2.2. Channel Recalibration

From the outputs, after each temporal and spatial processing, we need to utilize the
limited dataset as much as possible regarding the time-cost consumption of EEG recording.
The squeeze-and-excitation block (SE block) is further applied to adaptively recalibrate
the gathering of informative feature responses by explicitly modeling interdependencies
between feature maps [26]. Adding SE blocks after the convolutional layers can help model
weighting that learns to emphasize and dismiss informative features. The weights of each
feature map are equally informative after performing temporal convolution in Section 3.1.
The temporal SE block is briefly described in two steps. First, in the squeezing step, global
information is compressed into a feature descriptor (1 × 1 × Fte) using average pooling.
Next, a dense layer is added with ReLU activation to reduce the channel complexity by a
ratio (r) while r is set to 16. Then, another dense layer with sigmoid activation is added
to give each channel a smooth gating function. Finally, the excitation step obtains the
aggregated information and fully captures the channel-wise dependencies. According to
the temporal feature maps, the features are multiplied by the weights of the temporal SE
block and output (T′ × E × Fte).

Moreover, after spatial processing in Section 3.2.1, the spatial SE is applied to adap-
tively recalibrate temporal-spatial feature responses. The squeeze step is to compress
global temporal-spatial information into a feature descriptor (1× 1× Fsp). Next, two dense
layers reduce the channel complexity (r = 16). In the squeezing step, the temporal-spatial
feature maps are multiplied by the weights of the spatial SE block. After performing these
convolutions, the extracted features are generated and transmitted to the classification layer.

3.2.3. Classification

The outputs from the previous module are flattened into one vector representing
all extracted features and linearly transformed into classification logits with an FCN. For
binary classification, the final layer unit is 1. The loss function is binary cross-entropy, and
the activation function is a sigmoid function. While 3 classes classification, the final layer

48



Sensors 2022, 22, 8250

unit is 3. The loss function is categorical cross-entropy, and the activation function is a
softmax function. The final output is a discrete emotion label with probability.

4. Experiments and Results

To validate the method’s performance, feature extractability, and classification accu-
racy, we examined and compared it with existing methods. The experiments and results con-
sist of subject-dependent and independent classification on the SEED and DEAP datasets.

4.1. Experiment Setting
4.1.1. Datasets

This study conducted experiments on two open-access datasets: SEED (SJTU emotion
EEG dataset) [22] and DEAP (dataset for emotion analysis using physiological signals) [27]
datasets. These datasets have been widely used in emotion recognition using multimodal
physiological signals. The SEED dataset [22] consists of 64 channels of EEG signals recorded
from 15 subjects. All subjects were asked to watch 15 excerpts of movie clips for 3 trials.
Each clip was approximately 4 min long, and the time interval between trials was one week
or longer. The emotional labels corresponded to three types of movies to stimulate emo-
tional states: positive, neutral, and negative. The recorded EEG signals were downsampled
from 1000 to 200 Hz and applied a bandpass filter from 0–75 Hz. The DEAP dataset [27] is
a multimodal dataset that consists of EEG and peripheral physiological signals. The EEG
signals of 32 subjects were recorded by 32 electrodes using the BioSemi ActiveTwo system;
40 one-min excerpts of music videos were used to stimulate emotional states. All subjects
were asked to rate the emotion score (1–9) in the valence-arousal space. The EEG signal was
recorded with a 512 sample rate. The signals were downsampled to 128 Hz, a bandpass
filter was applied to them from 4 to 45 Hz, and EOG artifacts were removed. According to
the review paper [25], the average accuracy of the SEED dataset was 90.0%, significantly
higher than 83.6% of the DEAP dataset within-subject dependencies.

This study conducted SEED experiments in a three-class classification, including
positive, neutral, and negative labels, and a binary classification with less complexity and
fewer data considered positive and negative labels. On the other hand, DEAP employed
2D models rated by subjects caused discrepancies between movie types and real subject
emotions. To simplify the problem, we investigate a binary classification of valence and
arousal scores with positive and negative labels.

4.1.2. Baseline and Existing Models

In baseline experiments, the PSD with four bands was used as extracted features, along
with ML classifiers. The baseline classifiers related to EEG analysis comprise the KNN,
RF, and FCN. These models were tuned by grid search with the optimal hyperparameters
selected, resulting in the most accurate performance. Accordingly, the number of neighbors
for the KNN classification is set to 21. The number of RF trees is set to 100. The FCN
has 2 hidden layers with 100 nodes, which are then forwarded to the output layer. The
activation function is the logistic sigmoid function. Adam optimization is applied while
training the FCN model.

Moreover, we compare the performance of MultiT-S ConvNet against existing models,
including the Deep ConvNet, Shallow ConvNet, and EEGNet models. The Deep ConvNet
architecture [15] consists of one temporal convolution layer, four spatial convolution and
pooling layers, and a classification layer in order. The Shallow ConvNet architecture [15]
consists of single temporal and spatial convolution layers. Then, it sequentially passes data
to a pooling layer and a classification layer. For the EEGNet architecture, we refer to the
original network [16], which consists of temporal convolution and a separable convolution
layer followed by a classification layer. The MultiT-S ConvNet architecture is depicted
in Figure 6. The number of filters and trainable parameters are shown in Figure 2. We
applied the Adam optimizer to all DL models in the training process. The loss function for
binary classification is binary cross-entropy, whereas three-class classification is categorical
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cross-entropy. Each model was trained for 200 epochs with 100 batch sizes. These were
trained on GPU, NVIDIA Quadro P6000 (Santa Clara, United States), using Tensorflow [28]
and Keras [29].

Figure 6. MultiT-S ConvNet model setting.

4.1.3. Comparison Approaches

All models were examined on the subject-dependent and independent classification of
the SEED and DEAP datasets. In the subject-dependent experiments, 5-fold cross-validation
was applied, experimenting with different partitions of 80% training data and 20% test data;
30% of the training data were held out for validation of free parameters, and the model
parameters were optimized on the basis of the remaining 70%. Moreover, the validation set
was randomly picked on the desired subject, and the 5-fold cross-validation was applied
to all subjects. For the subject-independent experiment, we applied the leave-one-out
cross-validation to access model performance. The model was trained using data from all
but one subject and tested on the held-out subject; 30% of the training data were randomly
selected for free-parameter validation without balancing among subjects.

The performance metric was classification accuracy. Moreover, we show the chance
level, which is the obtained accuracy when consistently predicting the majority class. To
verify multiple comparisons, analysis of variance (ANOVA) was applied to determine
whether the means in the desired group were significantly different. Then, Dunnett’s test
was used to observe the many-to-one comparisons with our proposed method.

4.2. SEED Experiments and Results

For the SEED dataset experiments, we performed two-class and three-class classifi-
cation to study both subject-dependent and subject-independent results. The two-class
experiment uses two-thirds of the three-class dataset to simplify the problem’s complexity
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and additional investigation. Their accuracy is shown in Figure 7 and Table 1. For the
performance results, all models can achieve the 50% and 33.3% chance levels in the subject-
dependent and subject-independent experiments, respectively. We used one-way ANOVA
to compare differences in the means of all models, and we found that the SEED dataset’s
results are significant. The post hoc Dunnett’s test is then conducted to compare every
result with that of MultiT-S ConvNet for observing the significant difference. RF, Deep
ConvNet, Shallow ConvNet, EEGNet, and MultiT-S ConvNet significantly outperform the
chance levels (p < 0.01). Moreover, MultiT-S ConvNet achieves the highest accuracy in all
experiments. For two-class and three-class classifications, the subject-dependent results are
95.2% ± 3.2% and 86.0% ± 5.3% respectively, whereas the subject-independent results are
75.1% ± 8.4% and 54.6% ± 6.8% respectively. RF outperforms other baseline techniques
by a significant level (p < 0.05). The accuracy of all DL models is significantly higher than
KNN (p < 0.01) and FCN (p < 0.05) models. However, there is no statistical difference
among deep learning models (p > 0.05), except in three-class and subject-independent
experiments, where the accuracy of MultiT-S ConvNet is significantly higher than that of
EEGNet (p < 0.05).

Figure 7. Average classification accuracy for all subjects on the SEED dataset. Error bars denote a
95% confidence interval (CI) computed from all subject’s means. The horizontal dashed lines indicate
the chance level. The stars indicate significant differences compared with MultiT-S ConvNet.

Table 1. The accuracy results of subject-dependent and subject-independent classification on SEED
and DEAP datasets. The bottom row indicates our proposed MultiT-S ConvNet results. Bold indicates
the highest accuracy.

SEED-2 Classes SEED-3 Classes DEAP-Valence DEAP-Arousal
Models Subj. Dep. Subj. Indep. Subj. Dep. Subj. Indep. Subj. Dep. Subj. Indep. Subj. Dep. Subj. Indep.

Chance Level 50.0 ± 0.0 50.0 ± 0.0 33.3 ± 0.0 33.3 ± 0.0 56.6 ± 9.2 56.6 ± 9.2 58.9 ± 15.5 58.9 ± 15.5
KNN 70.5 ± 12.3 72.0 ± 7.8 52.5 ± 12.7 43.7 ± 8.0 55.9 ± 6.9 52.9 ± 5.2 61.6 ± 11.0 53.0 ± 10.7

RF 87.0 ± 7.7 73.4 ± 8.5 71.7 ± 9.5 52.7 ± 6.9 55.6 ± 7.3 51.1 ± 3.6 61.8 ± 10.6 50.0 ± 7.5
FCN 77.4 ± 11.9 66.1 ± 10.1 56.5 ± 13.6 46.4 ± 8.4 54.8 ± 6.4 53.9 ± 6.6 60.8 ± 10.9 50.6 ± 13.2

Deep ConvNet 94.8 ± 3.4 72.0 ± 7.8 85.0 ± 4.5 51.1 ± 7.4 76.6 ± 3.4 47.5 ± 7.0 78.6 ± 4.6 51.8 ± 13.0
Shallow ConvNet 91.2 ± 7.4 74.0 ± 8.5 82.1 ± 7.7 54.4 ± 7.4 76.0 ± 6.9 49.1 ± 7.7 78.9 ± 6.7 51.0 ± 14.7

EEGNet 89.1 ± 3.6 70.1 ± 9.5 76.3 ± 15.1 47.8 ± 9.7 79.2 ± 6.3 49.3 ± 7.2 82.1 ± 6.9 51.4 ± 10.3
MultiT-S ConvNet 95.2 ± 3.2 75.1 ± 8.4 86.0 ± 5.3 54.6 ± 6.8 77.6 ± 5.8 52.6 ± 8.8 82.2 ± 6.5 51.5 ± 10.4

4.3. DEAP Experiments and Results

Using the DEAP dataset, we conducted four experiments of valence and arousal
binary classification on both subject dependence and subject independence. The classes
were defined by emotion scores, where 1 to 4 is a negative class, and 5 to 9 is a positive
class. DEAP dataset’s results are shown in Figure 8 and Table 1. Similar to the SEED
dataset, one-way ANOVA with Dunnett’s post hoc is applied to investigate significant
differences among all models. The chance level of valence is 56.6% ± 9.2%, whereas the
chance level of arousal is 58.9% ± 15.5%. For subject-dependent experiments, EEGNet
outperforms the other models with a valence classification accuracy of 79.2% ± 5.8%, and
MultiT-S ConvNet outperforms the other models with an arousal classification accuracy
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of 82.2% ± 6.5%. In both valence and arousal experiments, all CNN models explicitly and
significantly outperform the baseline models (p < 0.01). Nevertheless, these chance levels
could not be achieved in the subject-independent experiments.

Figure 8. Average classification accuracy for all subjects on the DEAP dataset. Error bars denote a
95% CI computed from all subject’s means. The horizontal dashed lines indicate the chance level, and
the grey areas indicate the CI of chance levels. The stars indicate significant differences compared
with MultiT-S ConvNet.

4.4. Ablation Study

To verify the effectiveness of our temporal filtering, we further investigate the effect of
temporal convolution on the other CNN models. Based on the first blocks of each model in
Figure 3, we reform a temporal convolution with multi-kernel convolution. Meanwhile,
the spatial filters were halved to preserve the number of parameters and computational
cost. Here, we consider a two-class classification with a subject-independent setting on
the SEED dataset, and the results are shown in Table 2. In addition, a paired t-test is
used to observe the difference between the corresponding models. Deep ConvNet with
multi-kernel temporal convolution consists of 12 × 4 temporal (band) filters, 12 spatial
filters, and 168 temporal-spatial filters. As a result, the number of trainable parameters
decreases from 182,497 to 73,777. It significantly outperforms the original Deep ConvNet
with 73.96% accuracy from 72.04% (p < 0.05). For EEGNet with multi-kernel temporal
convolution, the number of trainable parameters increases from 13,537 to 16,177, but it
achieves a significantly better accuracy of 74.00% than the original EEGNet of 70.15%
(p < 0.01). However, there is no significant difference between Shallow ConvNet with and
without multi-kernel convolution (p > 0.05). Moreover, we trained the MultiT-S ConvNet
model without SE blocks to observe their effects on the learning performance. The accuracy
of our model without SE Blocks decreases from 75.13% to 73.95% (p < 0.05).

Table 2. The number of filters, trainable parameters, and accuracies before and after applying
multi-kernel convolution on the SEED dataset.

No. of Temp. Filter No. of Spat. Filter
No. of Temp-Spat

Filter
Trainable Parameters Acc.(%)

Deep ConvNet 24 24 48 + 96 + 192 = 336 182,497 72.04
Deep ConvNet (+) 12 × 4 = 48 12 24 + 48 + 96 = 168 73,777 73.96 *
Shallow ConvNet 40 40 101,281 73.96

Shallow ConvNet (+) 20 × 4 = 80 20 101,721 73.19
EEGNet 32 64 64 13,537 70.15

EEGNet (+) 16 × 4 = 64 32 32 16,177 74.00 **
MultiT-S ConvNet 24 × 4 = 96 64 30,313 75.13

Note: (+) indicates reforming of temporal filters and halving of spatial filters. Stars indicate paired t-tests compared
to the corresponding model. (** is p < 0.01 and * is p < 0.05).

5. Discussion

5.1. Classification Performance

In this study, the accuracy performance was examined using SEED and DEAP, which
are well-known EEG emotion datasets. In addition, existing models and our proposed model
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were implemented with similar settings, including data segmentation, pre-processing, pa-
rameter tuning, and evaluation metrics, to ensure the reliability of model performance
comparison. The experiments and results demonstrate that all ConvNets with appropriate
design choices can outperform traditional approaches in terms of accuracy performances
in all classification experiments. Moreover, this study compares MultiT-S ConvNet against
existing ConvNet models in terms of accuracy performance in EEG-based emotion clas-
sification, as shown in Table 3. The comparison shows that the overall performance of
MultiT-S ConvNet outperforms Deep ConvNet, Shallow ConvNet, and EEGNet with higher
accuracies of 2.2%, 2.3%, and 3.7%, respectively.

Table 3. The comparison of model performance between the proposed MultiT-S ConvNet and existing
ConvNets. The accuracy (%) is the average from all experiments in this study. It calculates differences
in the accuracy between MultiT-S ConvNet and other models, and the positive mark denotes a higher
accuracy of the MultiT-S ConvNet. The minimum frequency (Hz) covered by each model is displayed.
The bottom row computes the number of trainable parameters in dependence on the sampling rate
of the SEED dataset. The negative and positive marks denote a decrease and increase of trainable
parameters required by the MultiT-S ConvNet, compared with indicated models.

MultiT-S ConvNet vs. Deep ConvNet vs. Shallow ConvNet vs. EEGNet

Accuracy (%) 71.9 +2.2 +2.3 +3.7
Minimum freq. covered 5 Hz 40 Hz 17 Hz 2 Hz

Number of Trainable Parameters 30,313 −152,184 −43,464 +14,136

According to the result, the SEED dataset is more uncomplicated to classify than the
DEAP dataset because it contains different sources of emotional labels and the cleanliness
of the signals. For the emotion states, the SEED dataset uses the movie types, whereas the
DEAP dataset uses a subject questionnaire. This ambiguity directly affects the classification
performance and trustworthiness of each dataset. Based on the SEED dataset results, all the
obtained accuracy reached the chance level (p < 0.01) in both subject-dependent and inde-
pendent experiments. For the DEAP dataset, only the ConvNet-based techniques reached
the chance level (p < 0.01) in the subject-dependent experiments. In contrast, for the DEAP
dataset, none of the models could surpass the chance level in subject-independent experi-
ments. Many studies using the DEAP dataset have mainly conducted subject-dependent
experiments because the data distribution of each subject in this dataset is highly diverse
and varied. Observing the topoplots of PSD features in 4 frequency bands by human
eyesight shows that the SEED dataset plots can be distinguished, whereas the DEAP
dataset plots are very similar. In terms of subject-dependent and subject-independent
learning, subject-dependent performance outperforms subject-independent performance
significantly in all experiments. Consequently, the individual distribution directly affects
learning performance. Moreover, our results are comparable and consistent with existing
studies in terms of average accuracy [25].

5.2. Architectures and Design Choices

For several decades, ML has been applied in EEG analysis for individual modules
combined with prior knowledge. Most previous studies applied manual parameterization
for feature extraction and then transmitted them to an ML classifier [9,11]. These tradi-
tional techniques require background knowledge for signal processing, noise reduction,
and data manipulation. From the results in terms of the PSD feature, the classifiers are
possibly influenced and affected by the noise and complexity of multi-channel EEG signals,
resulting in poor performance. However, the ensemble model, RF, performs well overall
and significantly outperforms all baseline techniques on the SEED dataset. The RF model
potentially learns how to reduce the generalization error of the prediction and deal with
various EEG classification tasks.
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On the other hand, ConvNet models are a better choice in EEG analysis than manual
hand-crafted features. Numerous ConvNets with end-to-end architecture have been pro-
posed to learn informative features and deal with the variation of noises in EEG analysis
automatically and efficiently. For instance, attention classification using Shallow ConvNet
and long short-term memory (LSTM) network on a three-back task [30], and emotion classi-
fication using subject-invariant bilateral variational domain adversarial neural network [31].
However, EEG features need to be extracted into various representations that improve the
learning effect, especially for EEG analysis. Here, we proposed the multi-kernel convolution
that helps the model achieve better results than the single-kernel convolution. As a result,
our module applies to and obtains better accuracy than existing ConvNets while preserving
the model size and computation costs. In this study, all ConvNets models outperform
the baseline techniques in all experiments, except in subject-independent experiments
on the DEAP dataset. The number of parameters verifies that the learned features are
useful for classification. It effectively estimates missing data and maintains good accuracy
even when a large proportion of the data is missing. With significantly higher accuracy
performance, our MultiT-S ConvNet has approximately six times and three times fewer
trainable parameters than Deep ConvNet and Shallow ConvNet, respectively. Despite
having fewer parameters than our proposed model, EEGNet performance is unstable in
terms of the average accuracy and standard deviation of the SEED and DEAP datasets.
Moreover, the additional variations of features extracted by multi-kernel reduce overfitting
or vanishing gradient problems while training a model.

6. Conclusions

In conclusion, a well-designed end-to-end convolution network is a promising feature
extraction and classification tool in EEG-based emotion analysis. We proposed multi-kernel
filtering to increase the variation of temporal representations and further recalibrate both
temporal and spatial features using the lightweight gating mechanism. The results show
that our MultiT-S ConvNet outperforms the traditional and existing models. However,
there are some limitations in the current study that could be addressed in future research.
This study focused on discrete emotion recognition with the type of movie stimuli. In
the future, the applicability of the MultiT-S network will be explored in brain disease
recognition, such as epilepsy and Alzheimer’s disease. In addition, this proposed model
could be further developed to allow detecting and analyzing dynamic changes in EEG
signals over time. Ultimately, our module could be added to any model of EEG-based
convolution networks and its ability could improve the learning effect of other existing
models when there is a limited dataset.
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Abstract: Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand
as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG
has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers
better spatial resolution, though it is constrained by its poor temporal resolution. One important
merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be
integrated into a compatible experimental setup, providing a compelling ground for the development
of a multimodal fNIRS–EEG integration analysis approach. Despite a growing number of studies
using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past
studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of
analysis methods currently used in concurrent fNIRS–EEG studies, providing an up-to-date overview
and guideline for future projects to conduct concurrent fNIRS–EEG studies. A literature search
was conducted using PubMed and Web of Science through 31 August 2021. After screening and
qualification assessment, 92 studies involving concurrent fNIRS–EEG data recordings and analyses
were included in the final methodological review. Specifically, three methodological categories of
concurrent fNIRS–EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG
analyses, and parallel fNIRS–EEG analyses, were identified and explained with detailed description.
Finally, we highlighted current challenges and potential directions in concurrent fNIRS–EEG data
analyses in future research.

Keywords: EEG; functional NIRS; multimodal neuroimaging; concurrent recording; integrated analysis

1. Introduction

The human brain comprises billions of neurons [1]. Each of these forms a number of
synapses, establishing a complicated network with quadrillions of connections and thus
enabling our brains to function in an adaptive manner [2]. Although our understanding of
neurons on a microscopic scale has progressed in recent decades, little is known about how
these huge numbers of neurons (and synapses) work collectively to generate macroscopic
brain signals and human behaviors. It is believed that human brain functions and associated
behaviors are carried out by complex neural activations and networks. These internal
activities generally elevate electrical activity (direct effects) accompanied by a hemodynamic
and metabolic response (indirect effects), which serve as the basic sources for all noninvasive
neuroimaging techniques. Depending on the sources of the signals, these brain imaging
techniques can be roughly divided into two categories. The first category refers to imaging
techniques that directly capture the neural electrical activities by detecting the induced
electrical or magnetic fluctuations over the scalp. The most representative methods in
this category are Electroencephalography (EEG) and Magnetoencephalography (MEG).
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The second category comprises indirect imaging approaches that rely on hemodynamic
(cerebral blood flow, cerebral blood volume) and metabolic (glucose and oxygen utilization)
responses induced by neural activity. Commonly available techniques in this category
include functional near-infrared spectroscopy (fNIRS), functional magnetic resonance
imaging (fMRI), and positron emission tomography (PET). In this perspective, EEG and
fNIRS have been gaining popularity in the research community and clinical practice due to
their distinct natures, particularly their noninvasiveness, mobility, and flexibility.

1.1. The Fundamental Basis of fNIRS

Functional Near-infrared Spectroscopy (fNIRS), first reported by Jobsis in 1977 [3], is
an optical imaging technique for non-invasive investigation of hemodynamic responses in
the brain. fNIRS usually utilizes lights with distinct wavelengths (between 600 and 1000 nm)
that can penetrate the scalp and reach the cortical surface to measure the concentration
changes of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) that
are coupled with the metabolic activity of neurons in the outer layers of the cortex. This
technique is particularly useful for studying the functional activation within the brain due to
the inherent relationship between neural activity and hemodynamic responses in the brain [4].
Specifically, fNIRS measures the regional changes of HbO and HbR concentration, which can
serve as an indicator of hemodynamic changes associated with neural activity in the brain.

Currently, the continuous wave NIRS (CW-NIRS) is extensively used in the research
and clinical settings due to its low cost and simplicity. The measurement of the hemoglobin
concentration (HbO and HbR) in CW-NIRS primarily relies on the physical basis that chro-
mophores inside the brain, especially the HbO and HbR, have specific and sensitive absorption
characteristics in the near-infrared range (between 600 and 1000 nm). Lights at different wave-
lengths can then be injected into the brain via the sources (illuminators) placed on the scalp,
and the attenuated lights are detected by the optical detectors placed near the illuminators
(Figure 1A), from which the concentration changes of HbO and HbR can be computed based
on the Modified Beer-Lambert Law [5]. Specifically, CW-NIRS systems typically utilize
laser/LED sources to shine two distinct wavelengths into the brain at a constant intensity
and use detectors to measure the intensity of diffusely reflected light continuously.

A

B

Brain cortex

Light source Light detector

Scalp Skull

EEG electrode

Pyramidal
neuron

Brain cortex

Scalp Skull

Current sink

Current source

Figure 1. Schematic demonstration: (A) fNIRS and (B) EEG measurement.
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1.2. The Fundamental Basis of EEG

Electroencephalography (EEG), first described by Hans Berger in 1929 [6], is thought to
result primarily from the synchronization of post-synaptic potentials at cortical pyramidal
neurons [7]. The recorded EEG signal does not represent single neuron depolarization
inside the brain. Instead, it is assumed that tens of thousands of synchronized pyramidal
neurons within the cortex are firing when the brain is activated, wherein dendritic trunks
of the neurons are coherently orientated, parallel with each other and perpendicular to the
cortical surface so as to induce sufficient summation and propagation of electrical signals
to the scalp (Figure 1B) [8].

Typically, EEG signals are measured through EEG electrodes (including a reference
electrode and a ground electrode) placed over a subject’s scalp. Voltage differences between
the electrodes and the reference electrode are then measured and amplified (Figure 1B).
The recorded EEG signals, which represent the large-scale neural oscillatory activity, can
be divided into various rhythms depending on characteristic frequency bands, including
theta (4–7 Hz), alpha (8–14 Hz), beta (15–25 Hz), and gamma (>25 Hz) [9]. These brain
rhythms contain information associated with the ongoing neuronal processing in specific
brain areas, which allows EEG to be used as a non-invasive method for the characterization
of cortical reorganization, induced by various brain disorders, particularity in the diagnosis
of epilepsy and stroke [9–12], and the assessment of brain state alterations [13–15].

1.3. Integration of EEG and fNIRS: Rationale and Advantages

The functional activity of the cerebral cortex can be investigated using various imaging
techniques including EEG, fNIRS, fMRI, and their combinations [16–19]. Each of these
techniques has its own advantages and disadvantages. However, single-modality imaging
techniques can only capture limited information associated with neural activity due to their
technical limitations and the inherent complexity of neural processing within the brain.
For example, compared to fMRI, fNIRS features higher temporal resolution (<1 s), good
portability, lower cost, good resistance to motion artifacts, and applicability to various
measurement scenarios including clinical settings as well as the natural environment [5].
More importantly, fNIRS measurements have been proven to be similar to the blood oxygen
level dependent (BOLD) response obtained by fMRI [20]. However, there are also several
limitations of fNIRS techniques: the limited penetration depth, low signal-to-noise ratio,
and low temporal resolution compared to EEG. EEG possess several advantages over fMRI
for exploring dynamic brain activity: it is portable, inexpensive, and features a remarkably
high temporal resolution (millisecond) compared to fNIRS and fMRI [21], though EEG is
highly vulnerable to motion artifacts that would inhibit the EEG measurement in a natural
settings [22].

To comprehensively explore the functional activity of the brain, multimodal ap-
proaches are needed. Integrated EEG–fNIRS approaches offer numerous benefits over
single-modality methods by exploiting their individual strengths; EEG provides favorable
temporal resolution while fNIRS offers better spatial resolution and is robust to noise [23,24].
Additionally, EEG and fNIRS signals are associated with the neuronal electrical activity
and metabolic response, respectively, providing a built-in validation for identified activity.
Measurements obtained from each of these two modalities thereby provide complementary
information related to functional activity of the brain.

In addition to their complementary technical properties, the rationale behind the
combination of EEG and fNIRS relies on a physiological phenomenon called neurovas-
cular coupling within the brain [25]. Neural activity is inherently accompanied with the
fluctuation of cerebral blood flow (CBF) that carries vital oxygen and nutrients to neurons.
Specifically, when neurons are activated within a specific brain region, blood will flow to
that brain region to meet the increased demand of glucose and oxygen, resulting in fluc-
tuations of hemoglobin concentration (HbO and HbR) that can be detected by functional
imaging techniques such as fNIRS and fMRI (Figure 2). The so-called neurovascular cou-
pling forms the theoretical basis for integrated fNIRS–EEG imaging of brain activity. It has
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been shown in recent studies that impairment of neurovascular coupling could serve as a
sign for several neurological diseases such as Alzheimer’s disease and stroke [25–27], which
might provide a new prospective for evaluation and diagnosis of neurological diseases as
well as increase our understanding of mechanisms underlying neurovascular coupling.

Figure 2. Demonstration of neurovascular coupling.

1.4. Motivation of the Present Review

The fact that integration of fNIRS and EEG provides complementary information about
electrical and metabolic-hemodynamic activity of the brain activity has led to increasing
investigations of the benefits of integrated EEG and fNIRS [27–29]. In the last decade,
numerous studies utilizing integrated fNIRS–EEG systems have been reported on both
nonclinical and clinical topics [30]. Data analysis of concurrent fNIRS–EEG recordings
is a fundamental but essential step for fNIRS–EEG research studies. This step usually
consists of several key processes, including raw data processing, feature extraction, and
integrated/fused analysis of these two modalities. Although several recent reviews have
been published to summarize the latest progress on applications of concurrent fNIRS–
EEG recordings, such as brain–computer interface, development of wearable fNIRS–EEG
devices, and neuromodulation, there is no comprehensive summary yet regarding the
general analysis pipeline of simultaneously recorded fNIRS and EEG signals. To fill this
knowledge gap, this review aims to systematically summarize the status of analyses
methods used in concurrent fNIRS–EEG studies involving healthy individuals as well as
patient populations. Specifically, we focus on multiple levels of integrated analyses of
concurrent fNIRS–EEG recordings by critically evaluating the data processing methods,
extracted features, and forms of integration of these two modalities. The present review
differs from previous reviews in that this is the first systematic, methodology-focused
review to describe which approaches were used in previous concurrent fNIRS–EEG studies
and how these approaches were used, thus providing an up-to-date overview and technical
guideline for future projects to conduct concurrent fNIRS-EEG studies.
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This review is organized as follows: Section 1 is dedicated to the description of the
origins, the main characteristics of fNIRS and EEG, and the rationale of combining fNIRS
and EEG for multimodal brain imaging. Section 2 describes the strategy of our literature
review and the criteria of identification and classification of published articles. Section 3
starts with a brief summary of the preprocessing of raw fNIRS and EEG data and then
elaborates three main categories of analysis approaches in concurrent fNIRS–EEG studies.
Finally, Section 4 is devoted to underlining the limitations, challenges, and future direction
of data analysis of integrated fNIRS–EEG techniques.

2. Methodology

This review was conducted following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) protocol [31]. As shown in Figure 3, the flow
diagram of PRISMA mainly includes three steps: (1) initial search: search related studies
based on the defined keywords in selected databases; (2) prescreening: remove duplicated
articles and select articles based on designed criteria; (3) qualifying: read through the full
text of the selected articles to make sure they meet the eligibility and inclusion criteria.
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Figure 3. PRISMA flow diagram for the literature review and article selection.

2.1. Search Strategy

The search for relevant peer-reviewed articles describing the use of a concurrent
fNIRS–EEG design was conducted on PubMed and Web of Science as literature sources.
The following keyword combinations were used in the literature search: (“fNIRS” OR
“NIRS” OR “functional near-infrared spectroscopy” OR “near-infrared spectroscopy”)
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AND (“EEG” OR “electroencephalography”) AND (“Brain”). Only articles that were
published in English through 31 August 2021 were included.

2.2. Prescreening and Qualifying Criteria

The prescreening criteria were based on the reading of titles and abstracts. First,
duplicated articles under different titles were removed. Then, publications were excluded if
they (1) were not in line with the topic, i.e., animal studies; (2) were non-journal publications,
such as reviews, conference papers, comments, dissertations, newspapers, and books; and
(3) did not report analysis results of both fNIRS and EEG measurements.

We then performed further screening and qualifying by reading through the full text
of the articles. In this process, publications were excluded if they (1) focused on montage
design, experimental design, or hardware development of concurrent fNIRS–EEG systems;
(2) focused on preprocessing of fNIRS and/or EEG data; or (3) included extra modalities in
the analyses, such as heart rate, electromyography, transcranial magnetic stimulation, etc.
Furthermore, the following inclusion criteria for the review were considered: (1) articles
focusing on brain function investigation using concurrent fNIRS–EEG were included;
(2) articles with details of signal processing, feature extraction, and concurrent analysis of
fNIRS–EEG were included.

3. Results

The search strategy resulted in a total of 980 records in the initial search from the
selected databases (507 from Web of Science and 473 from PubMed, Figure 3). After the
prescreening and qualifying stages, we obtained a total of 92 articles available for this
review, including 5 studies focusing on fNIRS-informed EEG analyses, 8 studies focusing
on EEG-informed fNIRS analyses, and 79 studies focusing on the parallel analyses of fNIRS–
EEG (Figure 3). Figure 4A summarizes the number of concurrent fNIRS–EEG studies each
year since 2012, and Figure 4B shows the percentage of each type of integrated analysis of
fNIRS–EEG.

Figure 4. Literature summary of concurrent EEG–fNIRS studies: (A) Yearly publications from 2012 to
2021 and (B) distribution of each type of concurrent fNIRS-EEG studies.

3.1. Preprocessing of fNIRS and EEG Signal

Signal preprocessing is an essential step for any post-processing of integrated analysis
of concurrent fNIRS–EEG data. Since the present review specifically focused on the inte-
grated analysis of concurrent fNIRS–EEG data, here we only outline a general pipeline for
the basic preprocessing of each modality.
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3.1.1. Basic Preprocessing of fNIRS Signal

Basic preprocessing of fNIRS data is shown in Figure 5A. One particularly essential
step in the preprocessing of fNIRS data is signal quality check and artifact correction. The
quality of the fNIRS signal could be affected by several confounding noise sources, such as
instrument noise (e.g., due to light source instability, electronic noise) [32], physiological
interference (e.g., respiration, heartbeat) [33,34], or motion artifacts [35,36]. Instrument
noise and physiological interference are mostly located within a constant frequency range.
For instance, the instrument-degradation-induced noise is around 3~5 Hz, and respiration
and heartbeat lie in 1~1.5 Hz and 0.2~0.5 Hz, respectively [5]. Thus, these noises can be
easily removed by applying the band-pass filter/low pass filter. Motion artifact in the form
of spikes or baseline shifts is a typical category of noise in raw fNIRS signal, especially in
data collected from child populations or during experimental tasks that include motion
(e.g., walking or speaking) [36,37]. Multiple algorithms have been developed to identify
and correct motion artifacts in raw fNIRS signals, such as spline interpolation [38], wavelet-
based methods [39,40], or principal component analysis [41]. We refer the readers to
recently published articles for a more detailed overview of the preprocessing of fNIRS
signal [42,43].

Raw EEG data

Data Filtering
• Instrumental noise (50/60 Hz)
• Select target components (Alpha, Beta 

etc.)

Artifact removal
• Ocular/Eye blinks
• Motion/muscle artifact
• Cardiac artifact 

Re-referencing
• Average reference
• Linked Mastoids
• Reference Electrode Standardization 

Technique (REST)

Raw fNIRS data

Optical density conversion

Denoising
• Remove Motion artifact
• Remove systemic artifact
• Filtering

Hemoglobin concentration 
(Hb) 

A B

Signal quality check
• Signal to noise ratio
• Contrast to noise ratio
• Optode-scalp coupling

Figure 5. Basic preprocessing pipeline: (A) fNIRS raw data and (B) EEG raw data.

3.1.2. Basic Preprocessing of EEG Signal

We have outlined the basic preprocessing of EEG data in Figure 5B. Similar to fNIRS,
EEG recordings are often contaminated by different artifacts that come from internal and
external sources. Internal artifacts include physiological activities of the subject (e.g.,
ECG, muscle, and ocular artifacts) and movement [44,45]. External artifacts mainly in-
clude environmental/instrumental interference (50 Hz/60 Hz), electrode pop-up and
cable movement. Elimination of internal artifacts relies on extra measurements (e.g., elec-
trooculogram/electrocardiogram/accelerometer) or signal decomposition algorithms (e.g.,
ICA/PCA) [46,47]. External artifacts may be removed either by simple filters, signal decom-
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position algorithms (e.g., ICA), or artifactual segment rejection [48]. We refer the readers
to [49,50] for a more detailed overview of the preprocessing of EEG signals.

3.2. EEG-Informed fNIRS Analyses

Neurovascular coupling demonstrates that regional neural activity is typically ac-
companied by the generation of electrical activity and the resulted metabolic variation,
which is the fundamental principle of EEG and fNIRS measurements. Simultaneous fNIRS–
EEG recording is therefore highly suited for neurovascular coupling investigation through
various analysis approaches.

Among all the concurrent fNIRS–EEG studies, using EEG-derived characteristics
to enhance fNIRS analyses, which is usually referred as EEG-informed fNIRS analyses,
provides a particularly new and straightforward solution for investigating neurovascular
coupling. Table 1 summarizes all studies that performed EEG-informed fNIRS analyses.

Table 1. Characteristics of studies that performed EEG-informed fNIRS analysis.

Authors Tasks Brain Regions Features
Analysis
Methods

Peng et al., 2014 [51] Resting fNIRS: Whole
EEG: Whole

fNIRS: HbO/HbR/HbT concentration
EEG: Amplitude GLM

Pouliot et al., 2014 [52] Resting fNIRS: Whole
EEG: Whole

fNIRS: HbO/HbR/HbT concentration
EEG: Amplitude GLM

Talukdar et al.,
2015 [53] Resting fNIRS: Whole

EEG: Whole
fNIRS: HbO concentration
EEG: Power spectral envelopes GLM

Peng et al., 2016 [54] Simulation;
Resting

fNIRS: Whole
EEG: Whole

fNIRS: HbO/HbR/HbT concentration
EEG: Amplitude GLM

Khan et al., 2018 [55] Motor fNIRS: Left motor
EEG: Left motor

fNIRS: HbO/HbR concentration
EEG: Power spectrum

Vector-phase
analysis

Zama et al., 2019 [56] Motor fNIRS: Motor
EEG: Whole

fNIRS: HbO/HbR concentration
EEG: ERD/ERS GLM

Li et al., 2020 [57] Motor fNIRS: Motor
EEG: Whole

fNIRS: HbO/HbR concentration
EEG: Absolute Power (amplitude) GLM

Sirpal et al., 2021 [58] Resting fNIRS: Whole
EEG: Whole

fNIRS: HbO concentration
EEG: Amplitude Autoencoder

In typical fNIRS analyses (Figure 6), the fNIRS signal is commonly regressed via
a general linear model (GLM) constructed by convolving the canonical hemodynamic
response function (HRF) with a boxcar or impulse function representing the consistent
temporal profile of the experimental paradigm to identify cortical regions activated by
specific stimuli [59]. Briefly, for measured fNIRS signal Y in a channel, the GLM model is
given by

Y = Xβ + ε (1)

where X is the design matrix, β is the regression coefficients to be estimated, and ε is the
error term. In the case of a block design experiment, X is commonly given by a convolution
matrix of a chosen hemodynamic response function (HRF) and boxcar functions describing
the latency and duration of the stimulus. Note that the HRF may use various type of
shapes, such as canonical HRF, gamma-HRF, or Gaussian-HRF [35]. Columns of X are the
regressors that represent conditions or tasks in the experiment, and additional nuisance
terms or auxiliary measurements that usually account for the systemic physiology or
motion artifacts.
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Figure 6. Basic principle of general linear model (GLM) in fNIRS analysis.

The estimated regression coefficient β and the error ε can be tested via a t-test to
identify the channels that represent a significant contrast between different tasks. The t-test
is calculated by

t =
cT × β√

cTcov(β)c
, (2)

where cov(β) is the covariance matrix of β and c is the contrast vector, which determines
the contrast between specific conditions.

The main limitation in common standalone fNIRS analysis is that neuronal response
to repeated trials or stimuli is time-varying across the experiment in a realistic setting,
which may be inconsistent with the boxcar function typically used in the construction
of a GLM analysis design matrix. With this in mind, the core idea of EEG-informed
fNIRS analysis is to replace or adjust the boxcar function in the fNIRS GLM analysis with
temporal- or frequency-specific regressors of interest derived from EEG signals [57]. Based
on the linear hypothesis of neurovascular coupling, the characteristics of the neural activity
extracted in EEG may offer better estimation of the fNIRS response after convoluting the
HRF, thus increasing the efficiency of identifying the related active region induced by
experimental tasks.

Figure 7 summarizes a generalized analysis framework of EEG-informed fNIRS analy-
sis. The selection of time-varying EEG features plays a crucial role in the construction of
a fNIRS GLM analysis design matrix. Among all EEG-informed fNIRS analysis studies,
amplitude information derived from EEG signals has been used as effective regressors of
interest for improving the estimation of the active fNIRS response associated with different
stimuli [56,57]. Li et al. collected concurrent EEG and fNIRS data from healthy participants
during a repeated motor execution task and extracted the peak value and latency of the
EEG signal within each trial to construct a series of frequency-specific design matrices [57].
Their results showed that amplitudes of frequency-specific EEG components, especially the
alpha and beta band, could better capture the time-varying neural activity at single trial
level and thus enhance the performance of fNIRS GLM analysis when compared with the
classic boxcar function-based fNIRS method [57]. The potential value of EEG-informed
fNIRS analysis in clinical applications was also explored, in particularly on the topic of
epileptic activity, given the suitability of this technique for the localization of brain sites
associated with epileptic discharges. A series of representative studies was performed
by Pouliot and his colleagues, where the onsets and amplitudes of epileptic spikes were
identified by EEG temporal traces and convolved with the HRF for fNIRS GLM estima-
tion [51,52,54,60]. These studies demonstrated that an EEG-informed fNIRS approach
revealed higher sensitivity and specificity than the classic GLM method in the detection of
epileptic events such as seizures or interictal epileptiform discharges (IEDs). Their work
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provides evidence that EEG-informed fNIRS analysis could be a sensitive technique for
monitoring epileptic activity.
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Figure 7. The conventional schematic of EEG-informed fNIRS GLM analysis framework.

In addition to the amplitude-specific information, frequency-related features were de-
rived from EEG signals and used as regressors of interest for fNIRS GLM analysis. Talukdar
et al. used gamma transfer functions to map EEG spectral envelopes that reflect time-
varying power variations in neural rhythms to hemodynamics measured during median
nerve stimulation [53]. The approach was evaluated through simulated EEG–fNIRS data
and experimental EEG–NIRS data measured from three human subjects. Results indicated
that fNIRS hemodynamics can be predicted by EEG spectral envelopes convoluted with
multiple sets of gamma transfer functions, providing a new perspective for the modeling
of neurovascular coupling.

3.3. FNIRS-Informed EEG Analyses

Studies using fNIRS to enhance the processing of EEG signals typically rely on the
relatively robust spatial information of fNIRS compared to EEG. Within this context, fNIRS-
informed EEG analyses, as summarized in Table 2, include two main levels of applications:
fNIRS-informed EEG source localization and fNIRS-informed EEG channel selection. The
former applies task-evoked information of fNIRS to enhance the mathematical estimation
of active EEG source activity related to specific tasks [27], while the latter used fNIRS as
a reliable reference for choosing the most representative task-related EEG channels for
analysis [61].

3.3.1. FNIRS-Informed EEG Source Imaging Analysis

Due to its high temporal resolution and portability, EEG is by far the most widely
used neuroimaging technique to measure rapid neuronal electrical activity. However,
one limitation of scalp EEG is the volume conduction problem; a single electrode on
the scalp picks up activity from multitude sources (cortical activity, subcortical activity,
external noise, etc.), which results in difficulty accurately localizing the source activity [62].
Therefore, EEG source imaging (ESI) has been developed to overcome the limitation of scalp
EEG in characterizing the spatial brain activity. Typically, ESI relies on the surface EEG
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signals and the anatomical structure and physiological properties of the brain to estimate
sources within the brain. This allows for more accurate localization of the cortical regions
contributing to EEG signals measured at the scalp. A common challenge for ESI is the
ill-posed “inverse problem”; the number of sources that give rise to EEG signals vastly
outnumbers the available measurements, making it impossible to localize the measured
scalp EEG activity to the actual current-generating source within the brain with absolute
certainty [63]. Given the good spatial resolution of fNIRS, the majority of fNIRS-informed
EEG studies have focused on using fNIRS-based spatial priors to enhance the estimation of
EEG source activity.

In summary of these studies, a traditional pipeline of fNIRS-informed EEG source
imaging is shown in Figure 8. Briefly, this pipeline begins with the forward model of the
ESI (Figure 8A):

Y = GJ + ε, (3)

where Y ∈ R
m×d is the scalp EEG signal consisting of m channels and d measurement

samples, J ∈ R
s×d is the unknown source activity of s dipole sources in the source space,

G ∈ R
m×s is the lead field matrix which describes the relationship between the source

activity and the EEG electrodes, and ε represents the noise component in the sensor space.
Using the EEG signals measured at the scalp, we can attempt to invert the forward model to
determine which parts of the brain are active from their associated scalp potentials, which
is the so-called inverse problem. A common solution of the inverse problem using classical
minimum-norm estimate (MNE) is given as:

Ĵ = RGT
(

GRGT + λC
)−1

Y, (4)

where Ĵ is the estimated source activity, R is the source covariance matrix representing
the prior knowledge about the distribution of source J, C is the noise covariance matrices,
and λ is the regularization parameters representing the trade-off between model accuracy
and complexity, which is traditionally determined using the L-curve method [64]. The
source covariance matrix R and noise covariance matrix C are usually set to identity
matrices when no prior information about the source space is available. With this in mind,
spatial prior information provided by fNIRS, usually represented by t values of significant
channels after GLM analysis, can be applied directly on the source covariance matrix R,
changing the weight of each source according to whether or not it is within an fNIRS-active
region. This results in improvement of EEG source activity estimation (Figure 8B). Note
that the inverse problem can be solved by multiple approaches, such as MNE, weighted
MNE, or probabilistic Bayesian methods, resulting in different forms of source covariance
matrix R [65,66].

The analysis pipeline shown in Figure 8B has been adapted in all existing fNIRS-
informed EEG analysis studies to investigate brain dynamics associated with typical brain
function as well as brain disorders. The first fNIRS-informed ESI study was carried out
by Aihara et al., in which the authors incorporated the fNIRS-based prior information in
the current source estimation using a Variational Bayesian Multimodal EncephaloGraphy
(VBMEG) method [67]. Using a simulation study and a finger tapping motor task, this study
demonstrated that fNIRS-informed ESI can achieve results similar to fMRI-information ESI.
Following a similar idea, Morioka et al. applied fNIRS-informed ESI to decode subjects’
mental states in a spatial attention task and found that the fNIRS–EEG framework exhibited
significant performance improvement over decoding methods based on EEG sensor signals
alone [68]. Recently, Li et al. employed the fNIRS-informed ESI technique to explore
the atypical brain dynamics associated with Alzheimer’s disease and stroke, from which
brain network alterations induced by these brain disorders were characterized in a high
spatiotemporal manner [27,69].
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Figure 8. Basic concepts of EEG source imaging and traditional pipeline of fNIRS-informed EEG
source imaging analysis (adapted with permission from Ref. [27]. 2019, Li et al.

3.3.2. FNIRS-Informed EEG Channel Selection for BCI Studies

FNIRS-informed EEG source imaging represents the deep fusion of fNIRS and EEG
signals. In addition, one study published by Li et al. demonstrated that fNIRS-based
spatial prior information can also be used to optimize processing of scalp EEG signal in BCI
studies [61]. Briefly, a desirable BCI system should be portable, minimally invasive, and
feature high classification accuracy and efficiency. However, the main challenge of hybrid
EEG–fNIRS BCI systems is how to reduce the complexity of the system while achieving a
satisfactory performance. To tackle this challenge, Li et al. proposed a fNIRS-based channel
selection method to greatly reduce the number of fNIRS and EEG channels needed for
BCI systems. In this fNIRS-based channel selection method, two fNIRS channels with
strongest task-evoked response, as assessed by GLM analysis, were determined. Then only
two EEG channels that were close to the selected fNIRS channels were selected for the
performance assessment of the hybrid fNIRS–EEG BCI system. Results demonstrated that
this approach could drastically minimized the burden (e.g., weight of cables, preparation
time) on the user while achieving a good performance compared to BCI systems including
large numbers of channels [61].

Overall, although limited studies focused on this topic were available or review, fNIRS-
informed EEG source imaging analysis has potential for achieving a deep fusion of these
two portable techniques. This multimodal approach holds promise for improving our
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understanding of the spatiotemporal dynamics of typical and atypical brain functions in
various scenarios including naturalistic interaction and clinical settings.

Table 2. Characteristics of studies performed fNIRS-informed EEG analysis.

Authors Tasks Brain Regions Features Analysis Methods

Aihara et al.,
2012 [67]

Motor (Simulation;
Experiment)

fNIRS: Motor
EEG: Whole

fNIRS: HbO peak
EEG: Source current amplitude

EEG source
imaging

Morioka et al.,
2014 [68] Mental fNIRS: Parietal, occipital

EEG: Whole
fNIRS: HbO t-statistic
EEG: Source current amplitude

EEG source
imaging

Li et al.,
2017 [61] Motor fNIRS: Motor

EEG: Whole

fNIRS: HBO/HbR concentrations
and slope
EEG: Wavelet transform coefficients

Binary classification

Li et al.,
2019 [27] Working memory fNIRS: Frontal, central

EEG: Whole
fNIRS: HbO t-statistic
EEG: Functional connectivity

EEG source
imaging, Brain
network analysis

Li et al.,
2020 [69] Motor fNIRS: Frontal, parietal

EEG: Whole
fNIRS: HbO t-statistic
EEG: Functional connectivity

EEG source
imaging,
Brain network
analysis

3.4. Parallel Analysis of EEG-fNIRS

Sections 3.3 and 3.4 describe directional integration analyses of EEG and fNIRS. How-
ever, the majority of concurrent EEG-fNIRS studies available for review focused on parallel
analysis/integration of the two complementary techniques (Figure 4). Such parallel analy-
ses of concurrent fNIRS and EEG data usually seek to investigate the interaction between
fNIRS and EEG signals through feature-based fusion analyses or correlational analyses
without any directional interference from the two modalities.

3.4.1. Feature Fusion Based on fNIRS–EEG Signals for Classification

Hybrid fNIRS-EEG classification-based studies account for a significant portion of
feature-based fusion analyses of concurrent fNIRS-EEG data. We roughly summarize these
studies into two categories based on their study aims: (1) brain–computer interface (BCI)
studies and, (2) characterization of typical and atypical brain functions.

The development of a BCI system allows users to control computers or external devices
based directly on the modulation of brain activity. Active investigations of the benefits
of hybrid EEG-fNIRS BCIs have been conducted and validated on healthy populations
in a number of BCI studies [28,29,61,70]. Specifically, by fusing the features derived from
two modalities, hybrid fNIRS-EEG studies have shown enhanced classification and decoding
accuracy over a single modality in various tasks, such as motor imagery and execution [61,71].

On the other hand, the complementary properties of fNIRS and EEG have led to
extensive investigations of the spatiotemporal hemodynamic and electrical patterns of
brain activity associated with a variety of functions, such as mental workload [72–75],
affective state [76], and intellectual function [77]. Similar analysis pipelines have also been
adopted to identified atypical brain patterns associated with different brain disorders,
from which multimodal features can be used to differentiate patients with Alzheimer’s
Disease [78] and Parkinson’s Disease [79] from healthy controls.

Despite the different aims of studies within the above two categories, most studies
tend to follow similar steps when processing concurrent fNIRS and EEG data, primarily
consisting of feature extraction, feature fusion, and classification. Among the reviewed lit-
erature, widely used fNIRS features are commonly derived from the concentration changes
of HbO and HbR, including the mean, slope, skewness, kurtosis, peak value, variance,
and median of HbO/HbR [61,80–82]. Typical EEG features used in concurrent fNIRS-EEG
analyses largely depend on the experimental tasks. In the case of a motor task, the power
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spectrum density and common spatial patterns are widely used [29,83–86], mainly due to
the event-related desynchronization/event-related synchronization (ERD/ERS) observed
in motor-evoked electrical potential [87]. Studies involving cognitive tasks usually adopt
features related to band power of signals [72,82,88–91]. Additionally, the logarithmic
band power features [84], time-frequency features [61,71], and amplitude-related proper-
ties [92–94] are often utilized in several studies involving motor and mental tasks. Defini-
tions and calculations of these features are summarized and shown in Table 3. In terms of
classification, most existing studies adopt traditional machine learning techniques such as
decision tree [93,94], linear discriminant analysis (LDA) [28,29,81,82,86,89–91,95,96], sup-
port vector machine (SVM) [61,70,72,85], and k-nearest neighbors (KNN) [92–94]. Recent
studies have demonstrated increasing interest in innovative deep learning techniques such
as the convolutional neural network (CNN) [97] and recurrent neural networks (RNN) [98].
We refer the readers to [99,100] for a more detailed introduction of the state-of-the-art
classification techniques.

Table 3. Definition and calculation of EEG and fNIRS features.

Features Definitions

Mean (μ) μ = 1
N

t2

∑
t=t1

x(t)

Slope (Sp) Sp =
x(t2)−x(t1)

t2−t1

Standard deviation (Sd) Sd =

√
∑(x(t)−μ)2

N

Skewness (Skew) Skew = 1
N

∑
t2
t=t1

(x(t)−μ)3

Sd3

Kurtosis (Kurt) Kurt = 1
N

∑
t2
t=t1

(x(t)−μ)4

Sd4

Median (Med) Med =

{
x
( n

2
)

if n is even
x( n−1

2 )+x( n+1
2 )

2 if n is odd

Power spectral density (PSD) PSDt
f =

1
N

N
∑

t=1

∣∣∣ x(t)e−2π f t
∣∣∣2

Logarithmic band power (PLB) PLBf = log
(

PSDf

)
Common spatial pattern (CSP) Xi = [CiCM]

[
Si

SM

]
, (i = 1, 2)

Phase locking value (PLV) PLV =

∣∣∣∣N−1
N
∑

t=1
ei(∅x(t)−∅y(t)

∣∣∣∣
Pearson correlation coefficient (r) r = ∑(x(t)−x) (y(t)−y)√

∑(x(t)−x)2 ∑(y(t)−y)2

x(t) is the input brain signals (i.e., EEG and fNIRS). N is the number of observations of the samples. ∅x(t) and ∅y(t)
are instantaneous phase values at time point t. f refers to the f -th frequency band. Xi represent the measured
signals of i-th tasks. Si is the source signal related to the i-th task. SM is the common source signal of both signals.
Ci and CM are the weight matrix of common spatial pattern. x(t) and y(t) present the signals from different channel.
x and y refer to the mean value of the signals of x(t) and y(t), respectively.

3.4.2. Correlational Analysis of Concurrent fNIRS–EEG Data

The well-established phenomenon of neurovascular coupling (NVC) supports the
premise that regional neural activity is accompanied by electrical activity generation and
concurrent metabolic variation. Therefore, correlational analyses between concurrent
fNIRS–EEG recordings have been extensively explored to investigate the spatiotempo-
ral association between hemodynamic and electrical patterns of various brain functions.
Among the eighteen articles reviewed here (Table 4), correlational analyses of concurrent
fNIRS–EEG have mainly focused on correlation and coherence analyses. Pearson corre-
lation, partial correlation, and simple linear regression are commonly used measures for
assessing the relationship between the event-related potential pattern in EEG and hemo-
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dynamic changes in fNIRS [101–110]. Several studies assessed the relationship between
EEG and fNIRS signal through cross-correlation analysis and canonical correlation analysis
(CCA) [111–114]. Compared to the Pearson correlation method, cross-correlation can cap-
ture the delayed response of the hemodynamic compensation phenomenon after neural
firing, while the CCA is a statistical method to identify a linear relationship between the
two modality data sets by determining the inter-subject co-variances. Frequency and phase
coupling were adopted in two studies to evaluate the interaction between electrical acti-
vation and hemodynamic response, in which spectral coherence and wavelet coherence
were employed as metrics to assess the neurovascular coupling [115,116]. GLM-based
analysis was also utilized to model the association of fNIRS and EEG in a recent study.
Chaiarelli et al. proposed a novel general linear model-based algorithm to estimate the
interaction of fNIRS and EEG signal in persons with Alzheimer’s disease [117]. In the GLM,
key components of the down-sampled EEG power spectrum (theta, alpha, and beta) were
used as the independent variables. The fNIRS signal was treated as the dependent variable.
Then the estimated β-weight was used to assess how well the frequency-specific neuronal
electric activity correlated with the corresponding hemodynamic response. Similarly, Per-
petuini et al. employed an entropy based GLM method to assess neurovascular coupling
alternation for an Alzheimer’s disease group relative to a healthy control group [118]. Due
to the significant variation in the temporal scale of two signals, the EEG signal was first
convolved with the canonical hemodynamic response and then downsampled. Compared
with single EEG/fNIRS-based features, neurovascular coupling-based features achieved
the highest classification accuracy for AD detection.

Table 4. Studies using parallel EEG–fNIRS analysis for neurovascular coupling investigation.

Authors Task Brain Regions Features Correlation Method

Chen et al., 2015
[101] Visual and auditory fNIRS: Temporal, occipital

EEG: Whole
fNIRS: HbO/HbR concentrations

EEG: ERP Pearson correlation

Chen et al., 2020
[102] Resting Whole fNIRS: HbO/HbR global amplitude

EEG: Power Spectrum Partial correlation

Balconi et al., 2016
[103] Visual and auditory fNIRS: Frontal

EEG: Whole
fNIRS: HbO concentrations

EEG: ERP Pearson correlation

Zich et al., 2017
[104] Motor execution Central fNIRS: HbO/HbR concentrations

EEG: ERD Pearson correlation

Borgheai et al., 2019
[105] Mental arithmetic fNIRS: Frontal

EEG: Whole
fNIRS: HbO/HbR concentrations
EEG: Power spectrum and ERP Pearson correlation

Gentile et al., 2020
[106] Finger tapping fNIRS: Motor

EEG: Whole
fNIRS: HbO/HbR concentrations

EEG: ERP Linear regression

Zhang et al., 2020
[107] Resting Whole

fNIRS: dynamic functional
connectivity

EEG: Microstate (amplitude)
Pearson correlation

Lin et al., 2020
[108] Mental Occipital and parietal fNIRS: HbO concentration

EEG: Power spectrum and ERD Pearson correlation

Kaga et al., 2020
[109] Working memory fNIRS: Frontal

EEG: Pz, Cz, Pz,
fNIRS: HbO concentration

EEG: ERP Pearson correlation

Suzuki et al., 2018
[110] Working memory fNIRS: Frontal

EEG: Fz, O1, O2,
fNIRS: HbO concentration

EEG: Power spectrum Pearson correlation

Keles et al., 2016
[111] Resting Whole fNIRS: HbO/HbR concentrations

EEG: Power spectrum Cross-correlation

Pinti et al., 2021
[112] Visual stimulation Occipital fNIRS: HbO/HbR concentrations

EEG: Power spectrum Cross-correlation

Nair et al., 2021
[113] Anesthesia Frontal fNIRS: HbO/HbR amplitude

EEG: Amplitude
Cross-correlation and

phase difference

71



Sensors 2022, 22, 5865

Table 4. Cont.

Authors Task Brain Regions Features Correlation Method

Al-Shargie et al., 2017
[114] Mental arithmetic Frontal fNIRS: HbO concentration

EEG: Average power (amplitude)
Canonical correlation

analysis

Govindan et al., 2016
[115] Resting Frontotemporal

fNIRS: difference between HbO and
HbR

EEG: Amplitude

Coherence and Phase
Spectra

Chalak et al., 2017
[116] Resting Parietal

fNIRS: Cerebral tissue oxygen
saturation

EEG: Amplitude
Wavelet coherence

Chiarelli et al., 2021
[117] Resting Whole fNIRS: HbO/HbR concentrations

EEG: Power envelops
GLM-Standardized

β-weight

Prepetuini et al., 2020
[118] Working memory fNIRS: Frontal

EEG: Whole
fNIRS: HbO/HbR sample entropy

EEG: Sample entropy
GLM-Standardized

β-weight

4. Integrated Analysis of Concurrent fNIRS-EEG: Current Limitations and Future
Directions

Both fNIRS and EEG are portable, non-invasive and cost-effective brain imaging tech-
niques that enable researchers to study brain function in conditions not suited for other
neuroimaging modalities such as fMRI and MEG. Accordingly, acquisition and analysis of
concurrent, integrated fNIRS–EEG data can potentially reveal more comprehensive infor-
mation associated with brain activity. The present review highlights what data processing
and analysis approaches can be adopted to study brain functioning in healthy cohorts as
well as those with brain disorders, thus serving as a foundation for future work. However,
it should be acknowledged that further development of integrated analyses of the two
modalities is required to fully benefit from the added value of each modality.

Neurovascular coupling in the brain is highly dynamic in nature, for both resting state
and task-engaging states. While various fusion approaches of fNIRS and EEG signals allow
for the imaging and investigation of brain activity with richer information, the majority of
such integrated analyses still rely on a summary of signals extracted from fNIRS and EEG
time series data. Neural activity is time-varying, thus requiring a more dynamic analytic
approach to improve accuracy in modeling actual brain function. Therefore, it is important
to explore the dynamic interaction of fNIRS and EEG signals with a more fine-grained
temporal resolution. This is a challenge for fNIRS signals, which usually suffer reduced
temporal resolution relative to EEG. Recently, effort has been made to tackle this challenge
by growing interest in the temporal fluctuations of fNIRS-based functional connectivity
across the brain, the so-called dynamic functional connectivity (dFC). Several studies have
shown that resting-state and task-evoked hemodynamic responses can be characterized
using dFC analysis to reflect a more dynamic and modular nature of neurovascular coupling
during normal cognitive processing and atypical brain activity associated with Alzheimer’s
disease [119,120]. It is expected that fusion of the dynamic properties of fNIRS and EEG
may open new lines of concurrent fNIRS–EEG analyses.

Despite the numerous approaches for integrated analysis of concurrent fNIRS–EEG,
most studies have utilized feature-based fusion of these two modalities, such as hybrid BCI
systems or correlation analyses between fNIRS-based (e.g., mean HbO) and EEG-based
features (e.g., power spectrum). Such analyses only allow for a rough characterization
of neurovascular coupling underlying brain activity. Questions remain as to how the
findings obtained from the integrated analyses of fNIRS–EEG reflects the interaction be-
tween neuronal electric activity and the resulting hemodynamic response. Therefore, it is
expected that more directionally integrated analyses of fNIRS and EEG data, such as the
fNIRS-informed EEG analyses or the EEG-informed fNIRS analyses, can be explored in
future work.

Combining fNIRS and EEG serves to bridge brain imaging techniques across labora-
tory settings to practical applications due to their high mobility, non-invasiveness, and low
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cost compared to MRI-based techniques. However, few studies, especially those focusing
on hybrid fNIRS–EEG BCI systems, have validated the feasibility of using such multimodal
approaches to address the needs of multiple practical scenarios, such as hybrid real-time
BCI systems, bedside monitoring, or neuromodulation based on the so-called brain control-
lability analysis, to treat different neurological and psychiatric diseases [121–123]. Therefore,
a prioritized goal of future research may focus on enhancing the ecological validity of ex-
perimental designs and analysis pipelines/algorithms that can be adopted in online or low
time-delayed settings. In fact, as motivated by real-time BCI applications, progress has
been made to increase the temporal response of fNIRS–BCI systems through single-trial
analysis [124], early signal detection [61], and adaptive filtering [125]. We anticipate future
solutions for real-time fNIRS signal processing may facilitate the development of real-time
hybrid BCI systems that enable human–computer interaction with high spatial and tempo-
ral performance. Another typical experimental protocol of fNIRS is hyperscanning, where
brain activities are recorded from two or more participants simultaneously, permitting
a direct investigation of how multi-brains communicate to each other during social in-
teraction [120,126]. Following this, we expect that the development of wearable fNIRS
and EEG devices will likely drive the typical fNIRS-based hyperscanning studies toward
multimodal fNIRS–EEG system-based hyperscanning research. This innovation will enable
us to examine human interaction in a high spatiotemporal resolution perspective, thereby
expanding our understanding of the neural mechanism underlying social interaction.

Apart from the perspective on methodological integration of fNIRS and EEG, we want
to highlight challenges in instrument development that might affect study design and
signal processing of concurrent fNIRS–EEG studies. In particular, conventional concurrent
fNIRS–EEG studies usually connect separate fNIRS and EEG systems for data recording,
which reduces the mobility of both systems and constrains the applications of concurrent
fNIRS and EEG. Recent advances have been made toward fiberless and wearable integrated
fNIRS–EEG systems that allows for broader research scenarios such as social interaction
and outdoor activity [127,128]. However, further improvement of fNIRS and EEG instru-
ments is necessary when applying these systems in clinical cohorts with psychological or
psychiatric disorders. For example, patients with psychiatric disorders, such as ASD and
ADHD, often display motor restlessness, anxiety, or hyperarousal symptoms that require
specific considerations during development of integrated fNIRS–EEG instrumentation.
Key factors to be considered may include (1) user-friendly materials for comfort contact
between electrodes/optodes, (2) lightweight/highly integrated design for enhanced mea-
surement experience, and (3) advanced signal processing algorithms for robust long-time
real-world study. In addition, simultaneous multimodal data recording, including brain,
physiological, and behavioral information, is important to the comprehensive understand-
ing of disease-linked/function-specific brain activity. Physiological or auxiliary signals
(e.g., blood pressure, respiration, and head movement) have been proven to greatly im-
prove the filtering of physiological interference and motion artifacts during fNIRS signal
processing [129–131]. In this context, one impactful direction of fNIRS–EEG instrument
development should focus on the development of multimodal systems that are deeply inte-
grated with these and other emerging modalities, such as eye tracking devices, physiology
modules (e.g., heart rate, skin conductivity), and accelerometers as well as VR devices.
From a clinical perspective, such multimodal systems could offer multi-dimensional brain–
physiology–behavior biomarkers specifically linked to brain disorders at individual level.
Together with powerful statistical/machine learning, we expect that future studies in the
field will propose advanced algorithms to fuse such multimodal information for accurate
monitoring of brain activity and facilitating personalized treatment protocols to obtain
enhanced efficiency for each individual patient.
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Abstract: Diagnosis of most neuropsychiatric disorders relies on subjective measures, which makes
the reliability of final clinical decisions questionable. The aim of this study was to propose a machine
learning-based classification approach for objective diagnosis of three disorders of neuropsychiatric
or neurological origin with functional near-infrared spectroscopy (fNIRS) derived biomarkers. Thir-
teen healthy adolescents and sixty-seven patients who were clinically diagnosed with migraine,
obsessive compulsive disorder, or schizophrenia performed a Stroop task, while prefrontal cortex
hemodynamics were monitored with fNIRS. Hemodynamic and cognitive features were extracted for
training three supervised learning algorithms (naïve bayes (NB), linear discriminant analysis (LDA),
and support vector machines (SVM)). The performance of each algorithm in correctly predicting the
class of each participant across the four classes was tested with ten runs of a ten-fold cross-validation
procedure. All algorithms achieved four-class classification performances with accuracies above 81%
and specificities above 94%. SVM had the highest performance in terms of accuracy (85.1 ± 1.77%),
sensitivity (84 ± 1.7%), specificity (95 ± 0.5%), precision (86 ± 1.6%), and F1-score (85 ± 1.7%). fNIRS-
derived features have no subjective report bias when used for automated classification purposes. The
presented methodology might have significant potential for assisting in the objective diagnosis of
neuropsychiatric disorders associated with frontal lobe dysfunction.

Keywords: fNIRS; BCI; classification; schizophrenia; obsessive compulsive disorder; migraine;
Stroop test

1. Introduction

In clinical practice, the majority of neuropsychiatric disorders are diagnosed with a
clinician-dependent interpretation of patient information, which is obtained through a
variety of subjectively biased sources such as clinical interviews, self-reports, observational
data, and behavioral measures [1–5]. The potential of introducing subjectivity during both
interpretation and acquisition of these diagnostic measures may have a prominent impact
on the final clinical decision and highlights the critical need for developing accurate, objec-
tive, and reliable clinical decision support systems. Such decision support systems should
ideally analyze objective and quantitative measures of the distinct characteristics of the
neurobiological changes that are gradually induced by each neuropsychiatric disorder [6,7].

Within this context, various functional brain imaging modalities, such as functional
magnetic resonance imaging (fMRI), positron emission tomography (PET), electroen-
cephalography (EEG), and functional near-infrared spectroscopy (fNIRS), have been uti-
lized for characterizing the neurobiological underpinnings of a variety of neuropsychiatric
disorders [8–10]. Among these modalities, fNIRS systems have stepped forward for extract-
ing informative, neuronally induced hemodynamic markers of cognition during altered
brain states in naturalistic settings [11,12]. Consequently, fNIRS systems have also received
increasing interest in the field of psychiatry for assisting diagnosis, prognosis, and follow-up
of treatment procedures thanks to their: (1) portability, (2) non-invasive nature, (3) modest
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equipment size, (4) robustness to electrogenic or motion artifacts, (5) low operating cost,
(6) quick set-up time and calibration, (7) ability to collect biological information at any
desired frequency and duration, and (8) ease of application in ecologically valid settings to
a broad range of patient populations involving children and elderly adults [13].

Indeed, recent studies have presented compelling evidence that a wide variety of neu-
ropsychiatric disorders can be characterized by functional alterations in the hemodynamic
activity of the prefrontal cortex (PFC), which can be detected with fNIRS [13]. For instance,
hypoactivation in frontal lobe regions has been detected in patients with schizophrenia
(SCZ) and major depressive disorder (MDD) during verbal fluency tasks when compared
to their healthy counterparts [5,14]. Similarly, hyper- and hypo-connectivity between differ-
ent brain regions during resting state have been identified in patients with schizophrenia
(SCZ) [15–19] and major depressive disorder (MDD) [8,9,14], while decreased cerebral blood
flow in bilateral symmetric regions of the inferior PFC has been detected in patients with
obsessive compulsive disorder (OCD) when compared to their healthy counterparts [20,21].
PFC dysfunction in the form of hypo- or hyper-connectivity during resting state or hy-
poactivation during various cognitive tests (e.g., Stroop and verbal fluency test) has been
extensively observed and reported in patient groups diagnosed with a variety of major neu-
ropsychiatric disorders, which include SCZ, MDD, bipolar disorder (BD), post-traumatic
stress disorder (PTSD), and attention deficiency and hyperactivity disorder (ADHD). Re-
sults from meta-analysis studies indicated that the topographical distributions of functional
abnormalities observed in these patient groups are likely to have disorder-specific pat-
terns [14]. Overall, these studies have highlighted the potential of exploring PFC-based
neurofunctional features as objective and distinctive biomarkers of various major neuropsy-
chiatric disorder states. They also showed that information from practical and preferably
field-deployable cerebral physiology monitoring tools such as fNIRS systems can quantify
and parameterize abnormalities in frontal lobe function and may have a great potential for
assisting in the objective diagnosis and classification of major psychiatric disorders which,
in most cases, have overlapping behavioral symptoms across each other and are difficult to
distinguish when decisions are based solely on observation, self-report, interview, and/or
rating scales.

Considering the critical demand to integrate more objective measures of neurophysio-
logical alterations into diagnostic clinical decision processes, the presented study aimed
to assess the feasibility and applicability of an fNIRS-based automated classification ap-
proach for accurate prediction and objective identification of the presence of three distinct
neuropsychiatric or neurological disorder states which are known to induce alterations in
frontal lobe function. In our recent work, we demonstrated the feasibility and applicabil-
ity of an fNIRS-assisted automated classification approach for accurate prediction of the
presence of impulsivity in adolescents [22]. More specifically, our results suggested that
training computationally efficient supervised learning algorithms with informative features
obtained from clinical, behavioral, and fNIRS-derived hemodynamic measures could serve
as a decision support system for recognizing the presence of impulsivity in individuals.
However, the clinical features included in the feature sets still had the potential to present
subjective bias when used for algorithm training purposes because there always existed
some probability that the subjects could provide false reports in the clinical interviews.

Based on the promising performance of integrating fNIRS-derived features and clinical
features for recognizing the presence of impulsivity in our recent work, the objective of this
study was to introduce a more reliable, machine learning-based classification approach
for correct identification of the presence of three distinct neuropsychiatric and/or neu-
rological disorder states. The proposed machine learning-based classification approach
involved training three supervised learning algorithms with (i) fNIRS-derived informative
biomarkers only and (ii) a combination of fNIRS-derived biomarkers and performance
measures obtained during a cognitive test, named the Stroop task. We tested the feasibil-
ity of the proposed approach with three distinct supervised learning algorithms and by
extending our classification problem to include four classes of subjects. The ultimate goal
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was to demonstrate the feasibility of an fNIRS-based automated classification methodol-
ogy for predicting the presence of a neuropsychiatric disease, where input features are
of pure biological origin and can be derived non-invasively in naturalistic settings by
use of ergonomic fNIRS probes. For this purpose, hemodynamic information obtained
from concurrent fNIRS recordings during a Stroop task was processed to extract global
efficiency metrics which are indicative of the strength of functional connectivity among
different PFC regions. The efficacy of training three distinct supervised machine learning
algorithms, namely naive Bayes (NB), linear discriminant analysis (LDA), and support
vector machines (SVM), with (a) fNIRS-derived neuronally induced biomarkers and (b) a
combination of fNIRS-derived biomarkers and cognitive performance measures obtained
during the Stroop task, was evaluated. The performance metrics of possible combinations
of each classification algorithm and feature set combination were assessed by whether each
subject was correctly labeled among the four classes, which included healthy controls (HC),
patients diagnosed with migraine without aura (MIG), schizophrenia (SCZ), and obsessive
compulsive disorder (OCD).

Our study presents the following novelties with respect to the current literature: To
date, there have been no studies that attempted to identify the presence of a neuropsy-
chiatric or neurological disorder by use of a four-class automated classification scheme
based on a combination of fNIRS-derived neuronally induced metrics obtained during
a neuropsychological test and supervised machine learning methods. The efficacy of an
automated classification approach which aims to correctly label a neuropsychiatric disorder
into one of four categories has not been evaluated before with structural or functional
neuroimaging measures. The efficacy of combining fNIRS-derived global efficiency metrics
of the PFC as sole informative features of a neuropsychiatric and/or neurological disorder
with supervised learning methods has also not been evaluated before.

2. Materials and Methods

2.1. Subjects

In this study, 13 healthy control (HC) subjects (6 female (F), mean age 26), 20 migraine
(MIG) patients without aura (12 F, mean age 27), 26 patients with obsessive compulsive
disorder (OCD) (11 F, mean age 29), and 21 schizophrenia (SCZ) patients (10 F, mean age 28)
participated. Each subject provided informed consent before participating in the experi-
ment. The study protocol was approved by the Ethics Committee of Pamukkale University,
Denizli, Turkey. All experiments were conducted according to the latest Declaration of
Helsinki. Parts of these datasets have been utilized in previous works performed by our
group and coworkers [23–29].

2.2. Experimental Protocol

During the experiments, subjects sat on a comfortable chair in front of a computer
screen which was placed approximately 1 m away from their eyes. All experiments were
carried out in a dimly illuminated, silent room. The experimental protocol was briefly
explained to each subject prior to the onset of each experiment. They were requested
to sit relaxed and refrain from moving their head during the fNIRS recordings. During
the experiment, their task was to carefully complete a color–word Stroop task which was
adapted to Turkish from a pioneer protocol proposed by Zysset et al. [30]. Each experiment
began with 30 s of a baseline recording followed by presentation of alternating blocks
of 3 stimulus conditions which consisted of neutral (N), congruent (C), and incongruent
(IC) stimuli (Figures 1 and 2). There was a total of 5 stimulus blocks for each condition
(i.e., N, C, IC) and all task blocks were presented in a randomized order that changed for
every experimental session. Each stimulus block consisted of 6 different trials of the same
condition. Within a block, each trial appeared on the screen for 2.5 s followed by a 4 s blank
screen. Task blocks were separated with 20 s periods of rest (Figure 2).
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Figure 1. Types of stimuli that were presented within the color–word Stroop experiment. Samples
of trial presentations are schematically represented for match (top row) and non-match conditions
(bottom row) of (A) neutral, (B) congruent, and (C) incongruent stimuli.

Figure 2. Experimental protocol depicting stimuli timing for neutral, congruent, and incongruent
stimuli blocks in a sample session. HBO time series from a representative channel of a subject are
plotted before (black) and after an 8th order Butterworth high-pass filter is applied with a cut-off
frequency of 0.009 Hz (blue). a.u: arbitrary units.

During each stimulus presentation, two rows of letters were displayed on the screen.
The task was to evaluate whether the color of the letters displayed at the top row matched
with the meaning of the word displayed at the bottom row. Subjects were asked to press
the left button of the mouse if the color of the upper row letters matched with the meaning
of the bottom row word. These cases were called match cases (Figure 1, top panel). They
were asked to press the right button if the color of the upper row letters did not match with
the meaning of the bottom row word for non-match cases (Figure 1, bottom panel). The
letters in all trials were printed in one of four basic colors, which were yellow, red, blue, or
green. In N trials, top row letters were written in yellow, red, blue, or green but did not
form a meaningful word, and a color name was typed in black on the bottom row. For C
trials, a word with the meaning of a color was typed in the same congruent color in the
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top row. For the IC trials, a word with the meaning of a color was typed in another color
(i.e., incongruent) in the top row. Hence, subjects had to suppress processing the color
information and evaluate the meaning information of the top row letters while making a
comparison with the meaning information of the bottom row letters to provide a correct
answer for the IC trials. Such an interference between two competing cognitive inputs
induced a Stroop effect [23–27,30]. The number of match and non-match cases for each trial
type was balanced during the experiment. The average reaction time and error rate were
calculated for N, IC, and C trials separately.

2.3. fNIRS Data Acquisition

Hemodynamic signals were collected from the prefrontal cortex region with a wireless
ARGES-CEREBRO system (Hemosoft Information Technology and Training Services Inc.,
Ankara, Turkey) [24–26,31–33] which has a flexible forehead probe equipped with 4 light
emitting diodes (LEDs) and 10 photodetectors (Figure 3A). The LED–photodetector pairs
with 2.5 cm distance were accepted as channels and a total of 16 equidistant channels were
formed which covered parts medial, orbitofrontal, and dorsolateral cortices (Figure 3B).
Each LED emits near-infrared light at 750 and 850 nm in continuous wave mode and the
sampling rate of the system is 1.77 Hz. The ability of this probe design to allow light pene-
tration through the cortical tissue and collect hemodynamic information from the anterior
part of the PFC has been discussed extensively in previous work by our group [23,33].
Wavelength-specific light intensity changes were detected at each detector separately, and
this information was converted to optical density (OD) changes of each wavelength for
each channel. Channels whose raw light intensity signals presented coefficient of vari-
ability (C.V) above 7.5% (C.V = 100 × standard deviation(signal)/mean(signal)) were
not included in the analyses [34]. Time series of OD changes were provided as inputs to
the modified Beer–Lambert law to compute channel-specific changes in localized HBO
and HBR concentrations [10,11,35,36]. The partial pathlength factor was taken as 6 for
both wavelengths [37–39]. HBO signals were visually inspected to exclude trial blocks
which had motion artifacts within a time window spanning 5 s pre- and post-stimulus
duration. Changes in HBO concentration have been reported to be a better indicator of
alterations in neuronal metabolism induced by cognitive tasks [40–44], while having a
higher signal-to-noise ratio when compared to HBR signals [40,41,44]. Hence, the efficacy
of only HBO-derived hemodynamic features was tested for classification purposes.

Figure 3. (A) Configuration of the forehead probe and (B) approximate location of the LEDs and
photodetectors with respect to the international 10–20 system for electrode placement. LEDs are
demonstrated with red dots and detectors are represented with blue dots. Yellow lines are drawn
between the LED–photodetector pairs, which form a total of 16 channels.
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2.4. Data Analysis
2.4.1. Processing of fNIRS Signals

The fNIRS-HBO signals are composed of neuronally and systemically induced hemo-
dynamic components which are intermixed with each other over a broad range of fre-
quencies. The neuronally induced hemodynamic variations in the HBO signal are caused
by both spontaneous and task-related neuronal activity, while the systemic physiological
activity-related hemodynamic components have multiple origins, which include variations
in heartbeat, respiration, blood pressure, and vascular tone. Hence, prior to obtaining
correlation-based functional connectivity metrics between HBO signals of different channel
pairs, the impact of common, global systemic effects of non-neuronal origin inherent in
both channel data had to be reduced. Such a procedure is necessary to isolate the extent
of correlation caused by only neuronally induced hemodynamic effects, since common
physiological effects of non-neuronal origin could inflate the correlation between signals of
channel pairs. A partial correlation approach was adapted from the works of Akin [28] and
Akin [29] to reduce the impact of common systemic interference to Pearson’s correlation
coefficients calculated between HBO signals of each channel pair. Similar to these works,
HBO signals of all channels were initially high-pass-filtered with a cut-off frequency of
0.009 Hz using an 8th order Butterworth filter. The high-pass-filtered HBO signals were
then averaged to have a single global signal regressor, which was utilized as the partial
regressor for modeling and removing the impact of common systemic noise from the
correlations between each channel pair in the subsequent step of the analysis [22,24–29].

Time traces used for computing the correlation between each channel pair were
obtained as follows. For each channel, HBO signals corresponding to each stimulus
block were truncated from the onset to the end of that block. These time segments were
then concatenated in time to obtain a single task-related HBO signal for each channel
of each subject. Similarly, the partial correlation regressor was obtained by truncating
and concatenating the time segments belonging to all task blocks in the global signal
regressor. Then, 16-by-16 partial correlation (PC)-corrected functional connectivity (FC)
matrices for each subject were generated after removing the impact of this partial correlation
regressor [22,29].

2.4.2. Computation of Cognitive Quotient and Global Efficiency Features

Two groups of features were extracted from the behavioral and hemodynamic data
obtained during the Stroop task. Similar to our previous work [22], the behavioral perfor-
mance was quantified with a feature named the cognitive quotient (CQ), which could be
considered as a generalized cognitive performance indicator of each subject during the
Stroop task. The accuracy and reaction time metrics obtained from all trials of the Stroop
experiment were fused in this single metric by dividing the overall accuracy performance
(i.e., percentage of correct answers over all trials) with the average reaction time for all trials.

Regarding the hemodynamic features, a relatively novel functional connectivity metric
called global efficiency (GE) was obtained from the 16-by-16 partial correlation-corrected
FC matrices obtained for each subject. The GE metric was obtained from a graph theoretical
network analysis approach, and its efficacy in demonstrating the degree of connectedness
and information transfer between cortical regions during various cognitive tasks has been
shown in previous studies [22,27–29].

After the partial correlation-corrected FC matrices were obtained for each subject, these
matrices were decomposed into two matrices, which represent the degree of connectedness
of the default mode (DM) and the cognitive mode (CM) networks of the brain. This
decomposition was established by applying principal component analysis to the FC matrix,
the details of which are extensively explained in the recent work of Akin [29]. Briefly,
principal component (PC) decomposition was applied to the 16 by 16 FC matrices and the
weights of the PCs were thresholded using an optimization procedure described in [29].
The DM and CM components of the FC matrices were reconstructed by weighting and
summing the PC regressors that had weights below and above the threshold, separately.
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GE values of the DM and the CM components were computed separately for each subject
by using the formula of Latora and Marchiori [45]. The GE feature for the DM network was
named GEdm, and similarly, the GE feature for the CM was named GEcm (Figure 4).

 

Figure 4. Pipeline for extracting fNIRS derived features.

2.4.3. Classification Methods

The feasibility of training fNIRS-derived GE features with machine learning classifiers
for correct identification of the presence of a disorder in each subject was evaluated and
compared for three distinct algorithms. These algorithms were naive Bayes (NB), linear
discriminant analysis (LDA), and support vector machines (SVM). These algorithms were
selected for several reasons: (1) They have been shown to perform well with small sample
sizes (n < 200) [5,15,22,46–57]. (2) Their computational cost is low. (3) They have performed
successfully in a variety of classification problems where fNIRS features extracted during
cognitive and motor tasks were utilized [25,26,28–31]. (4) Their good performance for
classification at the single subject level has been reported for previous neuropsychiatry
studies with similar sample sizes, but a lower number of classes [1,5,15,58–62]. The mathe-
matical architecture of these algorithms has been extensively explained in previous work
performed by our group [22,46] and others [52–56].

Each classification algorithm was constructed by using the libraries of the WEKA
platform (version 3.8.5) [63]. The sequential minimal optimization (SMO) algorithm was
utilized for training the SVM classifier [64]. SMO was run with the Pearson VII univer-
sal kernel [65], also known as the PUK kernel. To avoid overfitting, the regularization
parameter (C) of SMO and PUK kernel parameters (i.e., omega (ω) and sigma (σ)) was
optimized by maximizing the accuracy with a grid-search procedure. Assigning C = 10
and ω = σ = 1 yielded the best results. LDA and NB classifiers were constructed with the
default parameters implemented in the WEKA software. A brief flowchart of the processing
pipeline is demonstrated in Figure 5.
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Figure 5. Flowchart of the system design.

2.4.4. Performance Evaluation

To evaluate and compare the classification performances of each algorithm, accuracy,
precision, sensitivity, specificity, and F1-score were calculated through a comparison of the
actual and predicted labels of test data [61]. For each algorithm, performance metrics were
obtained after 10 runs of a 10-fold cross-validation (C.V) procedure, where in each run,
1/10th of the subject data were separated for testing the algorithm and the remainder of
subject data were used for training, and this procedure was repeated 10 times. For each
performance metric, the mean scores across all runs and their standard deviation were
computed (Tables 1 and 2). This procedure was conducted for cases when each algorithm
was trained with (i) fNIRS only features (i.e., GEcm and GEdm) and (ii) a combination of
fNIRS-derived features (i.e., GEcm, GEdm) and a behavioral feature (i.e., CQ). All features
were computed for each subject separately.

Table 1. Four-class classification performances of NB, LDA, and SVM algorithms when trained with
fNIRS only features (i.e., GEcm and GEdm). Each performance metric is represented in percentages
(%) as the mean value across all runs ± standard deviation of the mean.

Method Accuracy Precision Recall Specificity F1-Score

NB 81.77 ± 1.06 82.1 ± 1 81 ± 0.01 94 ± 0.004 81 ± 1

LDA 83.8 ± 1 85 ± 0.01 83 ± 0.01 95 ± 0.01 84 ± 0.01

SVM 81 ± 0.84 80 ± 0.01 79 ± 0.01 94 ± 0.003 80 ± 0.008

Pairwise comparisons between the performance metrics obtained from each possible
algorithm (i.e., NB, LDA, SVM) and feature set (i.e., GEcm + GEdm or GEcm + GEdm + CQ)
combination were performed with two-tailed, two-sample t-tests. Comparisons of each per-
formance metric (i.e., accuracy, precision, recall, specificity, and F1-score) among different
combinations of algorithm and feature set choices aimed to assess: (i) whether training each
algorithm with only fNIRS features resulted in a statistically significantly different classifi-
cation performance when compared to training the same algorithm with a combination
of fNIRS and behavioral features, and (ii) whether there exists an algorithm and feature
set combination with a statistically significantly higher performance when compared to all
other options.
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Table 2. Four-class classification performances of NB, LDA, and SVM when trained with fNIRS
and behavioral features (i.e., GEcm, GEdm, and CQ). Each performance metric is represented in
percentages (%) as the mean value across all runs ± standard deviation of the mean. Bold-typed
results denote significantly higher performance of the corresponding algorithm with respect to the
results when the algorithm is fed with fNIRS only features.

Method Accuracy Precision Recall Specificity F1-Score

NB 84.68 ± 1.3 85 ± 0.01 83 ± 0.01 95 ± 0.01 84 ± 0.01

LDA 83.8 ± 1.6 84 ± 1.1 83 ± 1.4 94 ± 0.04 84 ± 1.2

SVM 85 ± 1.77 86 ± 1.6 84 ± 1.7 95 ± 0.5 85 ± 1.7

3. Results

Table 1 presents the four-class classification performances of NB, LDA, and SVM classi-
fiers when they were trained with two fNIRS-derived features (i.e., GEcm, GEdm). All algo-
rithms achieved accuracy, precision, recall, and F1-score performances above 81%, while the
specificity scores were all above 94%. It should be noted that LDA performed significantly
higher than both SVM and NB (Figure 6) in terms of accuracy (83.8 ± 1%, p < 0.05), preci-
sion (85 ± 0.01%, p < 0.05), recall (83 ± 0.01%, p < 0.05), specificity (95 ± 0.01%, p < 0.05),
and F1-score (84 ± 0.01%, p < 0.05). The performances of NB and SVM were not statistically
significantly different in terms of the reported metrics.

Figure 6. Classification performances of NB, LDA, and SVM algorithms after being trained with
fNIRS-derived features (i.e., GEcm and GEdm). Horizontal lines depict statistically significant differ-
ences between performances of different algorithm pairs. All algorithms achieved accuracy, precision,
recall, and F1-score performances above 80%, while the specificity scores were above 94%. LDA per-
formed significantly higher than both SVM and NB in terms of accuracy, precision, recall, specificity,
and F1-score. The error bars represent standard error of the mean performance after 10 runs of a
10-fold C.V.

Table 2 presents the four-class classification performances of NB, LDA, and SVM
classifiers when they were trained with fNIRS and behavioral features (i.e., GEcm, GEdm,
and CQ). Comparisons between the performance of each tabulated algorithm with respect
to the corresponding performance obtained with fNIRS only features (Table 1) were per-
formed with paired t-tests, and bold-typed results (Table 2) denote significantly higher
performance of the corresponding algorithm when compared to the results when the same

87



Sensors 2022, 22, 5407

algorithm is fed with fNIRS only features. All algorithms achieved accuracy, precision,
recall, and F1-score performances above 83%, while the specificity scores were all above
94%. Feeding NB and SVM with a combination of fNIRS and behavioral features resulted
in a statistically significantly higher performance in each metric when compared to the
performance obtained by training the same algorithm with fNIRS only features. However,
LDA achieved a similar performance in each metric regardless of the type of feature set
combination utilized for training. There were no statistically significant differences in
accuracy, recall, specificity, and F1-scores among the three algorithms. Nonetheless, the
precision score obtained with SVM was statistically significantly higher than both LDA and
NB (86 ± 1.6%, p < 0.05, Table 2 and Figure 7).

Figure 7. Classification performances of NB, LDA, and SVM algorithms after being trained with a
combination of fNIRS and behavioral features (i.e., GEcm, GEdm, and CQ). Horizontal lines depict
statistically significant differences between performances of different algorithm pairs. All algorithms
achieved accuracy, sensitivity, precision, and recall performances above 83%, while the specificity
scores were all above 94%. There was no statistically significant difference among accuracy, recall,
specificity, and F1-score performances of the three algorithms. The error bars represent standard error
of the mean performance after 10 runs of a 10-fold C.V.

Training LDA with fNIRS only features resulted in a comparable performance with the
performance metrics obtained when the same algorithm was trained with a combination
of fNIRS and behavioral features. A statistical comparison of the performance of the best-
performing algorithm (LDA) and fNIRS only feature set combination of Table 1 with the
performance metrics of NB and SVM of Table 2 demonstrated that no significant difference
existed between any algorithm pair for accuracy, recall, specificity, and F1-scores.

To sum up, we conclude that training LDA with fNIRS only features results in a
comparable performance with training the three supervised algorithms with a combination
of fNIRS and behavioral features. Regarding the best performance, although there were
no statistically significant differences among the three algorithms for accuracy, recall,
specificity, and F1-scores (Figure 6), we should still note that SVM had the best performance
in all metrics when trained with a combination of fNIRS and behavioral features obtained
during the Stroop task (Tables 1 and 2 and Figure 7).

Figure 8 presents the confusion matrices for each algorithm, which demonstrate
the true-positive and false-negative predictions attributed to each class. All algorithms
achieved classification accuracies above 70% for each class. All algorithms demonstrated
the highest true-positive prediction rate for SCZ patients, which was followed by OCD, HC,
and MIG. SCZ and OCD subjects were not misclassified as HCs for any of the algorithms.
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This result is significant as these two patient groups are expected to have the most distinct
alterations in cognitive performance and cerebral hemodynamic activity during the Stroop
task when compared to the HC group [13,17,66–71]. The fact that HC subjects were
not misclassified as OCD or SCZ for any of the algorithms suggests the distinctive and
physiology-related informative power of the selected features. However, HC subjects could
be falsely attributed to the MIG class (SVM: 1.05%, NB: 4.74%, LDA: 4.21%) regardless of
the algorithm type. This result is not surprising as MIG subjects were tested during the
interictal period while they were exempt from attacks, hence their cognitive performance
and the relevant spatial and topographic distribution of functional activation might have
been similar to HCs during the interictal period. The consistencies in the classification
performance patterns of the three algorithms as well as the consistency of performance
results with physiology-related information highlight the distinctive power and biologically
informative nature of the fNIRS-derived features utilized in the study. It can be concluded
that training NB, LDA, and SVM with fNIRS-derived metrics demonstrates a differential
diagnosis potential, regardless of the mathematical architecture of the algorithm.

Figure 8. Confusion matrices depicting the true-positive (shaded in yellow) and false-negative
predictions of (A) SVM, (B) NB, (C) LDA when they are trained with a combination of fNIRS and
behavioral features.

4. Discussion

The current diagnostic model for a majority of neuropsychiatric disorders relies on
evaluation of measures which include clinical, observational, and/or behavioral scales that
are obtained through interviews, questionnaires, observations, self-reports, and/or neu-
ropsychiatric test batteries [3–5]. However, subjectivity introduced during both collection
and clinical interpretation of these multi-domain measures brings forth the demand for
more objective diagnostic markers. The high variability in clinical decisions for similar
cases observed across different clinicians, cultures, and countries highlights the critical
need for developing more objective decision support systems for diagnosis, which should
ideally be based on quantitative measures of the neurophysiological alterations underlying
each disorder.

Taking this critical demand into consideration, the presented study aimed to assess
the feasibility and applicability of an fNIRS-based automated classification approach for
accurate prediction and objective identification of the presence of three distinct neuropsy-
chiatric or neurological disorder states which are known to induce alterations in frontal
lobe function. The proposed machine learning-based classification approach involved
training various supervised learning algorithms with (i) novel fNIRS-derived informative
biomarkers and (ii) a combination of fNIRS-derived biomarkers and performance measures
obtained during a neuro-cognitive test, named the Stroop task. We tested and compared
the efficacy of training three commonly employed and computationally efficient supervised
learning algorithms with these neuronally induced biomarkers, and their comparably high
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performances were demonstrated with accuracy, precision, recall, specificity, and F1-scores.
The performance of each algorithm in the correct identification of the presence of a disorder
in each subject was evaluated by whether the subject was correctly labeled among the
four classes, which included HCs, MIG, SCZ, and OCD. Hence, four-class brain–computer
interface system designs were formulated which simply included the collection of hemo-
dynamic signals with an fNIRS system while the subject was engaged in a Stroop task.
Two global efficiency features were obtained from the PFC HBO signals, and accuracy and
reaction rate performance obtained during the Stroop task were fused in a single behavioral
feature, named the cognitive quotient (CQ). The comparably high performance scores
obtained with the three classification algorithms, which have distinct mathematical archi-
tectures, highlighted the informative nature of these neuronally induced features. They
also demonstrated the promising nature of integrating fNIRS-derived features together
with cognitive performance scores from neuropsychiatric test measures and multivariate
pattern analysis (MVPA) approaches for accurate recognition of neuropsychiatric disorder
states. Our methodological approach resulted in increased classification accuracy when
compared to the brain–computer interface (BCI) study designs conducted with fNIRS for
other classification purposes, such as decoding mental thought processes or motor imagery
signals [71,72].

In the following sections, we first evaluate the efficacy of NB, LDA, and SVM in correct
identification of the presence of a disorder at the single subject level and we discuss the
differential diagnostic potential of the proposed approach. We then highlight the impor-
tance of our findings, discuss the limitations of our study, and propose recommendations
for future work.

4.1. Comparison of the Classification Performances of LDA, NB, and SVM

Training NB, LDA, and SVM with two fNIRS-derived functional connectivity metrics
resulted in accuracy, precision, recall, and F1-score performances above 81%, while the
specificity scores were all above 94%. While the performance metrics obtained with each
algorithm had a very close range, it should be noted that LDA performed significantly
higher than both SVM and NB in terms of accuracy (83.8 ± 1%, p < 0.05), precision
(85 ± 0.01%, p < 0.05), recall (83 ± 0.01%, p < 0.05), specificity (95 ± 0.01%, p < 0.05),
and F1-score (84 ± 0.01%, p < 0.05) when trained with fNIRS only features. A statistical
comparison of the performance of the best-performing algorithm (LDA) and fNIRS only
feature set combination of Table 1 with the performance metrics obtained by training
each algorithm with a combination of fNIRS and behavioral features demonstrated that
no significant difference existed between the performances of any algorithm pair for
accuracy, recall, specificity, and F1-scores. Hence, we conclude that training LDA with
fNIRS only features results in a comparable performance with training the three supervised
algorithms with a combination of fNIRS and behavioral metrics. Regarding the best
performance, we should note that SVM had the best performance in all metrics when
trained with a combination of fNIRS and behavioral features obtained during a Stroop
task (Tables 1 and 2 and Figure 6). However, we should also note that SVM did not have a
statistically significantly higher performance than the rest of the algorithms for the majority
of the performance metrics (i.e., accuracy, recall, specificity, and F1-scores reported in
Figure 6). Hence, we can conclude that the utilized features are distinctive in nature as
they performed well with all three classifiers regardless of the mathematical architecture of
the algorithm. Obtaining a high classification performance with all classifiers highlights
the feasibility and applicability of feeding machine learning-based methods with fNIRS-
derived neuro-cognitive biomarkers for classification of disorder states associated with
alterations in frontal lobe function.

With the recent advances in the computational power of daily used computers, MVPA
methods have received increasing interest for automated identification and objective recog-
nition of neurological and neuropsychiatric disorder states by use of structural and func-
tional neuroimaging features. The majority of these studies examined the diagnostic
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potential of utilizing multivariate features for: (i) correct identification of the presence of
a disease state, (ii) rating the severity of a clinical state, or (iii) differentiating subgroups
of patients. Arabshirani et al. provided an excellent review of previous neuroimaging
studies that aimed at single-subject prediction of neurological, neurodegenerative, or neu-
ropsychiatric disorders by use of structural and functional imaging features [61], while
Orru et al. presented an extensive summary of the previous studies that utilized SVM
for differentiating a neuropsychiatric disease state from a healthy state [73]. Regarding
automated recognition of SCZ, Steardo et al. provided a review of classification studies
that utilized a combination of SVM and neuroimaging markers [58]. The majority of these
studies reported binary classification performances for differentiating a disorder state
from a healthy state and the reported accuracies ranged from 67% to 100%. Regarding
differentiation of OCD from a healthy state, the highest performance metrics were reported
by Sen et al., who proposed the utility of resting state functional connectivity-derived
network features with SVM [74]. They achieved 80% accuracy, 81% sensitivity, and 77%
specificity with a relatively small sample size (n = 16 for OCD and n = 13 for HC). Similarly,
three studies utilized MVPA methods and MRI-based neuroimaging markers for accurate
prediction of the presence of migraine by use of two-class classification schemes, and the
reported accuracies ranged between 80% and 96% [75–77].

Among three-class classification studies, Yu et al. reported a study where they used
several MVPA methods to discriminate healthy controls (n = 38), schizophrenic patients
(n = 32), and patients diagnosed with major depression disorder (n = 19). They achieved a
correct classification rate of 81% using functional connectivity features from resting state
fMRI scans [59]. Their sample size was also similar to our study. Kawazaki et al. built
a binary classification model for differentiating SCZ from HC utilizing voxel-based mor-
phometry features from MRI with a small dataset (n = 30 per class). Their classification
accuracy performance was 80% [78]. Yassin et al. performed a three-class classification
study where they trained several machine learning algorithms for accurate identification
of autism spectrum disorder, healthy controls, and SCZ patients. The best results were
achieved with MRI-derived cortical thickness parameters using a logistic regression (LR)
classifier. Their overall maximum classification accuracy was reported as 69%. The maxi-
mum binary classification accuracies between different class pairs were less than 80% when
tested with several classifiers, including SVM [79].

We should note that an objective comparison of our performance results with the
performances reported in previous studies is complicated since the study designs differed
in terms of sample size, number of classes, type and number of features, disorder types,
C.V procedure, and the selected classifiers (Table 3). Nonetheless, we can still conclude
that the performance metrics achieved with our four-class classification methodology fall
in the high-performance spectrum among the performance metrics reported in previous
studies, which targeted classification of various neuropsychiatric populations from healthy
counterparts by use of structural and functional neuroimaging measures.

Table 3. Comparison of the classification performances of the discussed studies.

Author/s (Year) Sample Size Classifier(s) Number of Classes Features Mean Accuracy (%)

Sen et al. (2017) [74] 16 OCD, 13 HC SVM 2
Resting state network
features derived from
fMRI data

80

Chong et al. (2016) [75] 58 MIG, 50 HC Quadratic
Discriminate Analysis 2

Resting state network
features derived from
fMRI data

86

Yang et al. (2018) [76]
21 MIG without aura,
15 MIG with aura,
28 HC

Convolutional
Neural Networks 2 and 3

Resting state network
features derived from
fMRI data

85–99 (2 class),
87(3 class)

Hernandez et al. (2014) [77] 15 HC, 20 MIG, 19
Medication Abuse SVM 2

Graph theoretical
features derived from
fMRI data

87
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Table 3. Cont.

Author/s (Year) Sample Size Classifier(s) Number of Classes Features Mean Accuracy (%)

Yu et al.(2013) [59] 32 SCZ, 19 MDD, 38 HC SVM 3
Resting state network
features derived from
fMRI data

81

Kawasaki et al.(2007) [78] 30 SCZ, 30 HC Multivariate Linear
Model 2

Voxel based
morphometry features
extracted from MRI data

80

Yassin et al. (2020) [79] 64 SCZ, 36 ASD, 106 HC Logistic Regression 3

Cortical thickness and
subcortical volume
features derived from
MRI data

69

Pardo et al. (2006) [80] 10 SCZ, 10 BP, 8 HC LDA 3

Neuropsychiatric test
scores and structural
metrics derived from
MRI data

96

Present work
20 MIG, 26 OCD,
21 SCZ, 13 HC LDA, SVM, NB 4

Cognitive quotient and
Global Efficiency metrics
derived from fNIRS data

84.7 (LDA), 83.8(NB),
85 (SVM)

4.2. Potential of the Proposed Methodology for Differential Diagnosis

Comorbidities often exist among major neuropsychiatric disorders in the form of
overlapping behavioral symptoms and similar neurobiological alterations. Hence, one of
the major challenges for a precise diagnostic decision is to be able to differentially diagnose
neuropsychiatric disorders which have overlapping symptoms, such as SCZ, MDD, and
BD [14,57]. While differential diagnosis of the patient groups presented in this study would
be easy to decipher at the clinical stage, we should emphasize the fact that our work
serves as a proof-of-concept study to demonstrate the utility of combining fNIRS-derived
functional connectivity metrics obtained during a cognitive test with machine learning-
based classification methods for assisting accurate classification and objective identification
of neuropsychiatric disorder states associated with frontal lobe functional abnormalities.

Recent studies have presented compelling evidence that a wide variety of neuropsy-
chiatric disorders are characterized with alterations in the neural activity of the PFC [13].
However, whether there exists a distinct topographical distribution of functional abnormal-
ities specific to each neuropsychiatric disorder and whether each neuropsychiatric disorder
can be associated with a distinct abnormality in cerebral activation that can be recognized
by fNIRS during a cognitive test remains unclear. In our study, all algorithms achieved
classification accuracies above 70% for each class. All algorithms demonstrated the highest
true-positive prediction rate for SCZ patients, which was followed by OCD, HC, and MIG.
HC subjects were not misclassified as OCD or SCZ for any of the algorithms. These two
patient groups are expected to have the most distinct alterations in cognitive performance
and cerebral hemodynamic activity during the Stroop tasks when compared to the HC
group [13,17,66–70]. Hence, the fact that HC subjects were not misclassified as OCD or SCZ
for any of the algorithms suggests the distinctive and physiology-related informative power
of the selected features. HC subjects could be falsely attributed to the MIG class. This result
is not surprising as MIG subjects were tested during the interictal period which might be
cognitively similar to a healthy state, and hence the spatial and topographic distribution of
their functional activation might not be significantly different from HCs during the Stroop
task. OCD and SCZ subjects were not misclassified as HCs for any of the algorithms. The
consistencies in the classification performance patterns of the three algorithms as well as
the consistency of performance results with physiology-related information highlight the
distinctive power and biologically informative nature of the fNIRS-derived features utilized
in the study.

To sum up, our results suggest that training NB, SVM, or LDA with the fNIRS-derived
global efficiency metrics obtained during a Stroop task demonstrates a differential diagnosis
potential, regardless of the mathematical architecture of the algorithm. Our findings
also support the notion that some novel neuro-biological features obtained with fNIRS
methodology during cognitive tasks might serve as distinct signatures of the spatiotemporal

92



Sensors 2022, 22, 5407

characteristics of different neuropsychiatric disorder states which are associated with frontal
lobe function abnormalities. Exploration of such informative and biologically derived
features and combining them with machine learning-based classification approaches may
have significant potential for differential diagnoses of psychopathologies which have
comorbidities and overlapping symptoms.

4.3. Limitations of the Study and Recommendations for Future Work

We should note that the sample sizes of our subject groups were still small, although
they exceeded the sample sizes reported in many of the previously reported classification
studies in neuropsychiatry literature [58,61,73–80]. As a continuation of this study, we will
test the performance of our methodology on a larger subject cohort. Our classification
problems will include a higher number of disorder types and we will test the efficacy
of identifying patients with comorbidities. We will also test the informative power of
extracting hemodynamic and cognitive features from concurrent fNIRS recordings taken
during a variety of neuropsychological tests which target different aspects of cognition.

Deep learning (DL) techniques have a great potential to improve the performance of
fNIRS-based BCI systems if sufficiently large training sets are available [81,82]. The major
advantages of these techniques rely on their ability to capture the complexity of neural
information embedded in the HBO signal patterns through optimization of the network
structures [81]. Indeed, there exists some successfully implemented DL classifiers with
fNIRS and EEG signals [82–86]. However, we avoided testing the utility of DL algorithms
in the presented work because of the limited cohort size of each group. Models constructed
with DL algorithms have a tendency to overfit data when they are trained with small sample
sizes (i.e., n < 5000) [81]. Future work will involve testing the efficacy of DL algorithms for
addressing the presented classification problem in a larger cohort size and by utilizing data
augmentation procedures.

In the presented study, clinical diagnosis of each participant was performed by expe-
rienced psychiatrists after careful follow-up procedures, and their final clinical decision
was considered the golden standard. Hence, we could test and report the performance
of each algorithm by whether it could correctly predict the final clinical decision of an
experienced psychiatrist whose decision is considered as ground truth. Although the
participants included in the study were reported to have strong and distinct symptoms
and the clinicians had good clinical expertise for making a correct diagnosis, there still
exists a possibility that some of the patients might have been given a different diagnosis
by a different group of clinicians and might be incorrectly labeled. Hence, we can only
report the value and high performance of combining fNIRS only markers and supervised
learning algorithms in correctly predicting the clinical decision of an experienced clinician.
Nonetheless, such a decision support system still might assist young clinicians who have
not gained enough expertise with patients.

While the differential diagnosis of the patient classes reported in this study might not
be a difficult problem in the clinics, we should note that this is a proof-of-concept study for
demonstrating the potential of predicting a clinical decision through analysis of informative
hemodynamic features obtained noninvasively in a clinical setting with a wearable and
ergonomic fNIRS system design. Hemodynamic information can be collected with similar
system designs during similar cognitive tests or vasomechanical challenges and can be
processed to extract biomarkers which can be used for differential diagnosis of neurological
or neuropsychiatric disorders that are known to induce abnormalities in PFC function.

5. Conclusions

The overarching goal of this study was to test the feasibility of an fNIRS-based BCI
system design for accurate and objective identification of the presence of neuropsychiatric
or neurological disorders. Our results demonstrate the potential of training supervised
learning algorithms with fNIRS-derived hemodynamic and cognitive features for precise
recognition of the presence of a neurological or neuropsychiatric disorder at the single-

93



Sensors 2022, 22, 5407

subject level. They also highlight the promise of exploring PFC-based neurofunctional
features as distinctive and objective biomarkers of neuropsychiatric or neurological dis-
orders which are associated with alterations in frontal lobe function. Neuronally induced
biomarkers can be easily obtained in clinical settings with portable, wearable fNIRS sys-
tems. Such system designs might also have great potential for objective classification
and differential diagnosis of major neuropsychiatric disorders which, in most cases, have
overlapping behavioral symptoms across each other and are hard to distinguish when
decisions are based solely on observation, self-report, interview, and/or rating scales.
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Abstract: Controller design and signal processing for the control of air-vehicles have gained extreme
importance while interacting with humans to form a brain–computer interface. This is because fewer
commands need to be mapped into multiple controls. For our anticipated biomedical sensor for
breath analysis, it is mandatory to provide medication to the patients on an urgent basis. To address
this increasingly tense situation in terms of emergencies, we plan to design an unmanned vehicle
that can aid spontaneously to monitor the person’s health, and help the physician spontaneously
during the rescue mission. Simultaneously, that must be done in such a computationally efficient
algorithm that the minimum amount of energy resources are consumed. For this purpose, we resort
to an unmanned logistic air-vehicle which flies from the medical centre to the affected person. After
obtaining restricted permission from the regional administration, numerous challenges are identified
for this design. The device is able to lift a weight of 2 kg successfully which is required for most
emergency medications, while choosing the smallest distance to the destination with the GPS. By
recording the movement of the vehicle in numerous directions, the results deviate to a maximum of
2% from theoretical investigations. In this way, our biomedical sensor provides critical information to
the physician, who is able to provide medication to the patient urgently. On account of reasonable
supply of medicines to the destination in terms of weight and time, this experimentation has been
rendered satisfactory by the relevant physicians in the vicinity.

Keywords: unmanned aerial vehicle; spectroscopy; brain–computer interface application;
mathematical modelling; semiconductor laser

1. Introduction

Over the past decades, computer and communication technologies have developed
rapidly in the form of brain–computer interface (BCI). As evident from its underlying
nomenclature, BCI enables a user to control a computer or any other device with signals of
the brain. In the past couple of decades, researchers have developed several applications
of the BCI including, but not limited to, character spelling [1,2] and word typing [3,4],
wheelchair control [5,6], prosthetics control [7,8], neurological rehabilitation [9], home
control [10], virtual reality control [11], gaming [12,13] and quadcopter control [14,15].
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Taking these into account, this paper aims at developing an Unmanned Aerial Vehicle
(UAV) for the BCI application for better operating of air-vehicles.

Therefore, these techniques have now become an indispensable tool for patients’ daily
life. The purpose of BCI is to make patients’ life more appropriate and natural in a daily
living environment [16]. The fundamental aim of BCI is to assist patients (particularly, in
locked-in state) to interact with the living environment using only brain signals [17,18].
After the obtained command from the brain, another challenge is to properly control the
applications that manipulate wheelchairs, robotic arms or drones [19–25] as in this study.
Many signal processing techniques have previously been created, however, in this study,
a framework is devised that can be helpful in finer operation of air-vehicles. Several
techniques can be implemented for this purpose, as in [26,27].

Biomedical logistic sensors are gaining interest in the aerospace industry, extending
their applications from solar-powered drones to origami-style space-based solar power
stations due to their flexibility, light weight and transparency. The basic element is an
autonomous air-vehicle which is a quad-rotor without the presence of a human pilot
onboard [28–30]. Its navigation or movement is controlled through a control system on
board or it can also be navigated manually by remote control from the ground [31–34]. A
quad-rotor has three translational and rotational movements through which it can achieve
six degrees of freedom. For this purpose, the rotational and translational motion have
to couple with the help of rotors [35,36]. The quad-copter has four arms and each arm
contains an independent rotor. Generally, quad-rotors use two pairs of propellers with
identical parameters (i.e., two clockwise and two anti-clockwise). The variation in speed of
each rotor makes it possible to achieve the manoeuvring of the quad-rotor.

The resulting dynamics of the model are highly nonlinear, especially after accounting
for the complicated aerodynamics effects and unlike ground vehicles which have much
friction during their motion, the quad-rotors may have little friction to gain their movement
(as per their system model or design), and they must provide their own damping effects
to eliminate all these nonlinear factors. For this purpose, these vehicles use an electronic
control system to maintain the stability of quad-rotors using electronic board and sensors,
i.e., an accelerometer [37–43]. The quad-rotors were among the first vehicles to take off
and land vertically. The agile and revolutionary design of quad-rotors not only makes
them capable of exploring an unknown locus, but they can also move with precision and
much faster pace than any other vehicle in a dense environment [44,45]. This paper is
a demonstration of one of the versatile applications of quad-rotors to transfer product
autonomously to the required destination.

With this background, the main goal of our work is to develop a microsensor which
is based on the fundamentals of two modes (wavelengths), utilising the principles of
intracavity absorption spectroscopy [38,44]. This is a laser-based setup that consists of
two wavelengths (specified by the term modes), as shown in Figure 1. The scheme works
in a way in which the light from the Semiconductor Optical Amplifier (SOA) is reflected
by two Fibre Bragg Gratings (FBGs), each specifying a wavelength (mode) that creates a
competition between both modes. The difference between the intensities of both modes
(SOA and human breath) aids in the detection of diseases of elderly patients, monitored
continuously by the respective physician. The Variable Couplers (VCs) divide the light
intensity, and the isolators ensure its flow in one direction (for instance, to the Optical
Spectrum Analyzer (OSA)) (complete experimental details can be found in [46,47], with
latest developments regarding expansion to wireless channel in [48]).
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Figure 1. Design of the laser based two mode experimental scheme [38].

In case of any emergency situation, it is obvious from the description provided above
that this demands spontaneous action by the physician in the form of transportation of
medication to the said patient [39,44,45,49]. In light of this fact, we plan to make a product
that is capable of transferring products, in particular, medical items from one place to
another autonomously, with a limited time span. The physicians dealing with emergency
situations were consulted for this purpose, and the foremost requirements were discussed.
According to them, the said device must have reliable accuracy and efficiency that is
mandatory in transportation procedure. As illustrated above, in case of an emergency, the
patient must be immediately provided with aid in such a way that the life threatening
situation can be avoided. This can be some suitable medicine or some medical instruments
that can help as a life saver. This, in turn, means that the hardware and software parts
must both be developed in a strictly technical way that helps in the operation of the device
afterwards [40,42,43,50].

The proposed sensor will be used for the detection of Volatile Organic Compunds
(VOCs) in the human breath which is exhaled from the lungs. This can provide useful
information about specific diseases, hence the motivation behind this work. Certain sensors
exist for the checking of specific health characteristics in human beings [51,52]. For instance,
wearable sensors are being specifically developed that help to check the health of human
beings on a continuous basis [51]. Molecularly imprinted materials are being widely used
to sense human attributes [53]. Recent advancements include, but are not limited to,
behaviour verification, movement monitoring, surveillance, characterization and other
applications for human beings and animals [54,55]. On account of these notions, there
exists a wide range of work for future in this specific area of development, as predicted
in [56]. Hence, this is the first attempt that targets human breath and its diagnosis [38,55,57].
The list of abbreviations is outlined in Table 1.

Motivation and objectives

• BCIs have been successfully incorporated into numerous areas of the world, with
successful outcomes;

• Biomedical sensors have been evolving fast for the past few decades and BCIs are
proving to be a very important tool for that;

• During the state of an emergency for elderly patients, it is mandatory to attend and
provide medication at the earliest to the relevant person, for which UAVs can be
utilized effectively;

• Considering the development of biomedical sensor for the targeted patients, a UAV is
planned to be designed that can aid in the remote monitoring and first aid to the said
individuals;

• The quadcopter designed in this work has presented a highly stable operation, which
is mandatory for the supply of medical equipment from the hospital to the patient.
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Table 1. List of symbols.

VCi/VC1 Variable Coupler corresponding to the inner cavity

VCo/VC2 Variable Coupler corresponding to the outer cavity

SOA Semiconductor Optical Amplifier

OSA Optical Spectrum Analyzer

Mi/M1 Mode corresponding to the inner cavity

Mo/M2 Mode corresponding to the outer cavity

UAV Unmanned Air Vehicle

ESC Electronic Speed Controller

BLDC Brushless Direct Current

BEC Battery Elimination Circuit

Li-Po Lithium Polymer

φ Roll

θ Pitch

Ψ Yaw

Vb Back Electromotive Force

Te Electromagnetic Torque

Tω′ Torque due to rotational acceleration of motor

Tω Torque generated due to velocity of the motor

TL Torque due to mechanical load across motor

Kt Torque constant

J Inertia of constant

Kp Coefficient for Proportional term

Ki Coefficient for Integral term

Kd Coefficient for Derivative term

2. Related Work

In the last few years, the relevance and applications of unmanned air-vehicles have
multiplied significantly in different areas of life ([30,32,36,45,58,59]), based on various
operational mechanisms. There are many advantages to these devices, including, but
not limited to, the cheap potential use of these vehicles, which gives opportunities to
perform tasks which are very difficult and sometimes impossible otherwise, especially for
emergency operations [44,60]. Most of these vehicles are not only able to fly in complex
and busy places, but also can reach them in much less time than people themselves, which
is desirable in the modern era. Thanks to these merits, many research organizations in
collaboration with vendors have started delivering products through multi-rotors after
recognizing the capabilities of these flying vehicles [61–63]. However, being a recent area of
investigation, these devices lack stability and appropriate designs for specific applications,
which are the foremost disadvantages of using them. Another problem is the usage of
expensive equipment that cannot be purchased for normal air-vehicles. For these reasons,
the current focus is on the design and modelling of quad-rotors in order to make them stable,
reliable and cheap. Frame design and modelling are the first steps toward the journey of
building any air-vehicle, as the overall flight dynamics and parameters are based on its
frame. It is therefore important to mention that the design of a quad-copter’s dynamics is
classified with respect to two reference systems, i.e., body frame and inertial frame.

After discussions with the physicians working in the emergency, it is very important
to realize that the device is designed for the transportation of medical items. For this
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purpose, there are several factors that must be considered beforehand. These include, but
should not be limited to, efficient utilization of resources, supplying driving energy to
the device in the form of its voltage, spectrum allocation and obtaining permission from
the telecommunication authorities. Another prominent factor would be that the medical
aspects have to be checked and examined to the maximum possible level of emergency
items. To the best of our knowledge, this is the first approach in our vicinity in this
connection, with limited financial resources and overall high efficiency, as discussed in
the forthcoming sections in detail. The cases have been discussed in appropriate details
in [64–67]. The trajectory of the quad-copter must be controlled in a reasonable way to do
this, which involves its propulsion [68,69]. Propulsion means to push forward or to drive
an object. In terms of an air-vehicle, propulsion is the force through which propellers push
the air down and gain thrust. Brushless motors are mostly used to achieve propulsion in a
quad-copter. These motors not only have very high power-to-weight ratio, but can also
spin with thousands of revolutions per minute (rpm) [63]. The motor’s speed is controlled
through an electronic device called an electronic speed controller (ESC) [70,71]. The ESC
can switch motors from on to off state and vice versa, thereby maintaining the desired
speed and thrust of quad-copter. Therefore, controlling the air-vehicle’s flight dynamics is
a complex and interesting problem. The core unit of an air-vehicle is its control mechanism,
which works like a brain in humans, and therefore has been the focus of interest in the last
few years by the scientists via different approaches. Some model the control system directly
by calculating their required parameters from the system and some use different theories
to achieve these tasks (i.e., through classical control theory phenomenon) [36,37,58,62,64].

3. Hardware Considerations

Since the device is aimed for a biomedical application, there are numerous aspects
that have to be brought into attention beforehand.

3.1. FRAME

The standout amongst the most vital piece of any quad-copter is its frame. It ought
to be lightweight and flexible with the goal that it can hold the weight of different
segments [72,73]. This is essential because the medical equipment can be of various weights.
Moreover, the object to be moved might be sensitive in the sense that a slight damage
during the operation could cause serious consequences [64]. Therefore, the option of con-
structing an edge at home, with the assistance of aluminium or balsa sheet, is eradicated.
We resort to using a pre-fabricated casing whose parts are moderately low-cost and simple
to supplant. In case of a crash, the arms ought to be somewhat resistant in a way that they
should be the ones which undergo damage, thereby averting any harm to engines or costly
gadgets on the edge. On the other hand, we really need them to be somewhat fragile, to
accommodate the object on quad-copter.

Likewise, the arms assume an essential part in the battle against vibrations, which
can cause various diverse issues. Flight controllers, with their touchy accelerometers and
spinners, do not normally respond well to unremitting shaking. Any vibrations during the
flight in a non-friendly environment may cause damage [74].

If we use an arm which has too much flexibility, it can reverberate and create harmonics
that are transferred across the multi-rotor. On the contrary, arms that are too stiff would
pass on vibrations with no hosing, bringing similar issues. There is a fine line between
these two matters which needs to be drawn, and we attempt to use carbon fibre which is
one of the most widely recognized materials for multi-rotor outlines. A large number of its
physical properties suit our application [44,64].

3.2. Selection of Brush-Less DC (BLDC) Motor

BLDC (brush-less DC) motors do not utilise brushes for compensation. They are
electronically commutated and have the following properties [72,75]:

• High effectiveness with noiseless tasks;
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• Better speed versus torque attributes; and
• Quite high speed and longer life.

To control the speed of the motor, an ESC is required. The life of BLDC motor is quite
long as there are no brushes which might be a source of damage. There is no starting and
considerably less electrical commotion. In addition, considering the device for a biomedical
application, the advantage of a brushless motor is its better preliminary cost ([44,65]).

We require four numbers of BLDC Motors for the copter. For the major part of the
device, brushless motors are stated in kVs, such as, 810 kV, 1100 kV, 1400 kV, and 1800 kV.
At this point, it must be recalled that the kV rating indicates the number of revolutions per
minute (rpm) of the motor. For instance, a BLDC motor which has a kV rating of 1000 kV
will turn at 1000 rpm when a voltage of 1 volt is applied at its input. Similarly, on applying
12 volts, the motor will turn at 12,000 rpm, and so on [63,75].

3.3. Electronic Speed Controller (ESC)

It is important to control the mechanism of the BLDC in a reliable way, for which an
ESC is used. An ESC in a quad-copter performs two essential functions ([69,70]). First, it
works as a Battery Elimination Circuit (BEC), a device that enables both the motors and the
recipient to be powered by a solitary battery. The second function is to take the receiver’s
feedback, in the form of the flight controller’s signal, and provide the required amount of
current to the motors.

Each motor requires an ESC that regulates the amount of power to the engine, as
indicated by the input throttle level. It additionally gives +5 V power to the flight hardware.
ESC is based on a 32-bit microcontroller (ARM/AVR) and it has a variety of MOSFETs to
drive the BLDC engine [63]. The firmware of ESC can be customized during the manufac-
turing phase.

In this way, the ESCs perform and ideal job of controlling BLDC. In simple words, an
ESC is just a brushless motor controller board with battery input and a three-phase yield
for the motor. ESCs can be found in a wide range of variations, where the input current is
the most critical factor. This enables an appropriate control of the cut-off voltage, timing,
acceleration and braking mechanism of the system [63,71,75].

3.4. Power Input

Lithium Polymer (Li-Po) battery is a kind of rechargeable battery that has over-
whelmed the electric world, particularly for quad-copters. They are the primary reason
why electric flight is presently an exceptionally feasible choice over fuel-controlled models.

Li-Po batteries are light in weight and hold enormous power in a little bundle. How-
ever, they are costly and have a lifetime of just 400 to 500 charge cycles. This means that a
lot of care has to be to be taken while using this device. Otherwise, due to the unpredictable
electrolyte utilized as a part of Li-Po batteries, they can blast or burst into flames easily
when misused. Every cell of the Li-Po battery is rated at 3.7 V. The Li-Po battery, with four
cells each of 3.7 V, used for our project is rated at 14.8 V. The amount of power the battery
pack can hold is called the limit, and it is shown in milliamp hours (mAh). The battery we
use for our project is of 3000 mAh. This means that 3000 mAh would be totally released in
one hour when a 3000 mA stack is placed on it.

3.5. Propellers

It is imperative to rotate the motor, and hence the device. Therefore, on each of the
brushless motors, a propeller is mounted. The four propellers are really not indistinguish-
able. When one takes a photo from below, one sees that the front and the back propellers
are tilted to one side, while the left and right propellers are tilted to one side.

4. Design Methodology

Here, the procedure we choose to accomplish our project is discussed with the help of
a spiral model methodology ([76,77]). We include mathematical approaches and algorithms
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that are implemented throughout in this project which helps in better explaining the
kinematics and aerodynamics of the quad-copter.

4.1. Flowchart

The design of the quad-copter is divided into two stages. In the first stage, hardware
design and assembling of quad-copter is performed, while in the second stage, software
design and its implementation is completed, as shown in Figure 2. For a better explanation,
the flowchart of quad-copter design is also shown in the Figure 3.

Figure 2. Design Methodology.

Figure 3. Flow chart of assembling and testing quad-copter.
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With the help of the equipment mentioned above, we proceed in the following way.
The components are assembled to establish a physical structure of the quad copter, followed
by testing the GUI communication with the controller board. Test runs are conducted on
the brushless motors by this GUI, checking its forward, reverse, left and right movements,
respectively. Afterwards, the ESC and brushless motors are programmed in case there is
some issue with the said movement. This is cross-checked by applying some disturbance to
the quad copter, and the sensor is calibrated to accommodate the said level of disturbance.

4.2. Mathematical Modelling of Quad-Copter Dynamics

A mathematical model is a description of a system using mathematical concepts and
language, and it plays its role in the operation of the device [63–65]. Similarly, the quad-
copter’s aerodynamics is mathematically modelled with respect to two reference systems
which are most important parameters to gain the stable flight and motion [41,42]. The first
reference system is the inertial frame of reference which is related to the earth and the body
of the quad-copter. The second frame of reference is related to the quad-copter’s frame
itself, as to how how its translational and rotational motion can be controlled (portraying
the frame orientation with respect to the origin of the quad-copter frame, Figure 4).

Figure 4. (a) Reference system of Quad-copter and (b) its movement with respect to the axes.

The position of the quad-copter during flight is given by the parameters Roll (φ),
Pitch (θ) and Yaw (Ψ) angles, which define its rotation with respect to x-axis, y-axis and
z-axis, respectively. The mathematical equation which defines the relationship between the
quad-copter with respect to the earth is given by

R =

⎡
⎣CΨCθ CΨSθSφ − SΨCφ CΨSθCφ − SΨCφ

SΨCθ SΨSθSφ − CΨCφ SΨSθCφ − CΨSφ

−SθCθSφ CθCφ

⎤
⎦, (1)
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where Sφ & Cφ are notations of sin(x) and cos(x), respectively.
The thrust is the force or pull by which the quad-copter propellers move the air

downwards for gaining upward force. Mathematically,

T = k · ω2. (2)

The rotational torque of the quad-copter is proportional to the square of the angular
velocity of quad-copter motors which is given as

τψ = (−1)i+1b · ω2
i , (3)

where motor i in the above equation is positive if the rotation of propeller is clockwise and
negative otherwise. The torque is defined as the cross product of applied force and moment
arm from the pivot point. Therefore, if L defines the length between a propeller and the
copter’s mid-point, the total torque of the body of the frame of the quad-copter is given
by [78]

τB =

⎡
⎣ L.k.(−ω2

1 + ω2
3)

L.k.(−ω2
2 + ω2

4)
b.(−ω2

1 + ω2
2 − ω2

3 + ω2
4)

⎤
⎦. (4)

4.3. Brushless Dc Motor Model

The mathematical modelling of quad-copter motors is implemented by defining the
mathematical model [79], which is shown in Figure 5.

Figure 5. Mathematical Model of BLDC Motor.

Now, to find the transfer function of the model, we use armature voltage V(t) and
angular displacement Θ, to define the angular velocity as

ω(t) =
dΘ
dt

. (5)

The quad-copter brushless motor mathematical model consist of both electrical and
mechanical parts. The equation for the electrical phenomenon is as follows:

− e(s) + Raia + La
di
dt

+ Vb = 0, (6)

where Vb is the Back Electromotive Force which is given by

Vb = Kbω, (7)

where Kb is the motor constant.
Mechanical Characteristics

According to law of conversation of energy, the total sum of torques of motor must be
equal to zero. Therefore,

Te − Tω′ − Tω − TL = 0, (8)
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where Te is the electromagnetic torque, Tω′ is the torque due to rotational acceleration of
the motor, Tω is the torque generated due to velocity of the motor, and TL is the torque due
to mechanical load across motor. Te is directly proportional to the armature current ia and
it can be written as

Te = Ktia, (9)

where Kt is torque constant and it depends on flux density of the stator magnets. Tω′ can
be written as

T
ω
′ = J

dωa

dt
, (10)

where J is the inertia of constant.

5. Experimental Results

This section presents the various results and outputs based on real-time processing
using a controller. As part of our project, which involves obstacle avoiding, and stable
autonomous flight, we wanted to determine whether it was possible to receive correct
output from the ultrasonic and other peripheral devices and sensor by given input. Thus,
for this purpose, a test bench is designed for simulation. The mathematical simulation was
carried out in Matlab (student version, complete details are available on https://www.
mathworks.com/help/pdf_doc/matlab/rn.pdf; accessed on 21 December 2021)). For the
purpose of our work, no toolboxes were used, as our system did not find any similarity with
them. These were conducted in consultation with the technical team, and the simulations
were performed at least thrice before proceeding with their interpretations. Test results
and transformed useful data after analysis are shown in this section. The results and data
obtained from GPS after applying algorithm are also described here, in accordance with
Table 2.

Table 2. Description of main parameters.

No. Parameter Description

1 Satellites 22 tracking, 66 searching

2 Patch Antenna Size 15 mm × 15 mm × 4 mm

3 Update rate 1 to 10 Hz

4 Position Accuracy 1.8 m

5 Velocity Accuracy 0.1 m/s

6 Warm/cold start 34 s

7 Acquisition sensitivity −145 dBm

8 Tracking sensitivity −165 dBm

9 Maximum Velocity 515 m/s

10 Input Voltage range 3.0–5.5 V DC

11 Current drawn during navigation 25 mA tracking, 20 mA

12 Output NMEA 0183, 9600 baud default

13 Feature Multi-path detection and compensation

5.1. GPS Simulations

The GPS module used to find the current and desired locations of the quad-copter
are presented here. As the purpose of GPS is to find the latitude and longitude, these two
parameters are used to track the location of the quad-copter. The specifications of GPS used
for autonomous quad-copter are as follows [80].
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The Algorithm 1 used for the motion of quad-copter using GPS is divide and con-
quer [81–84], which is described below.

Algorithm 1: Divide and conquer
1. Sort points along the x-coordinate.
2. Split the set of points into two equal-sized subsets by a vertical line x = xmid.
3. Solve the problem recursively in the left and right subsets. This will give the left-
side and right-side minimal distances dLmin and dRmin, respectively.
4. Find the minimal distance dLRmin among the pair of points in which one
point lies to the left of the dividing vertical and the second point lies to the right.

5. The final answer is the minimum among dLmin, dRmin, and dLRmin.

The output results of the GPS module are shown in Figure 6.

Figure 6. GPS Module output results.

5.2. Proportional (P), Integral (I) and Derivative (D) Controller

A Proportional (P), Integral (I) and Derivative (D) controller is the combination of
three different types of controlling devices which are based on the control algorithm, hereby
referred to as a PID controller. The mathematical modelling of quad-copter motors is
performed by defining the mathematical model which is shown in Figure 7. A complete
control mechanism becomes [31,32]

usum(t) =Kpesum(t) + Ki

∫ t

0
esum(t′)dt′ + Kd

desum(t)
dt

,

Kp > 0, Ki > 0, Kd > 0,
(11)

where Kp, Ki and Kd are coefficients for the corresponding Proportional (P), Integral (I) and
Derivative (D) terms, respectively. Ideally, the quad-copter should directly attain a specific
height, after a specific time, without causing any delay in the flight. For this purpose, we
take this ideal flight to be 1 arbitrary units (a.u.), after the passage of exactly 1 s. This helps
us in obtaining a comparison of the various parameters of the device with this standard
(reference) graphical values and the corresponding results.
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Figure 7. Working principle of a PID controller with feedback mechanism, indicating various
components.

5.2.1. Proportional Controller

It is very important to supply the correct amount of current to the quad-copter, as
an error could lead to malfunctioning of the motor. For this purpose, the proportional
controller is used which causes the motor current of quad-copter set in proportion to the
error, as shown in Equation (11) and Figure 7, and the resulting plot is shown in Figure 8.
However, the proportional controller fails if the arms of the quad-copter have to pull
different weights during flight due to different environment disturbances. This is exactly
where the derivative and integral controllers play their part.

Figure 8. Principle of proportional controller.

5.2.2. Integral Controller

In this controller, the product of integral gain and error of the signal is added to the
previous state of the model (Equation (11)), as indicated in Figure 7, with the resulting
situation in Figure 9. The integral controller helps to decrease the rise time, thereby
minimizing steady-state error. The integral term is proportional to both the magnitude
of the error signal and the duration of the error in PID controller response. The different
values of integral controller response are shown in Figure 9. A comparison among these
values indicates the role of the integral controller in the flight of the device. For instance,
when compared with the standard (reference) value, we see that the value of 0.5 shows the
best closeness to the reference value, and the value of 2 shows the most different pattern.
However, it must be stated that the time obtained by the quad-copter to attain a stable
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height is a bit more in case of the former value (0.5) as compared to the latter one (2). This
could be justified by examining Equation (11), where a value of 2 will take a longer time
as compared to 0.5, as the integration term will take time. This, in turn, will fluctuate the
values, until a stable height is finally reached. This is exactly what is found in Figure 9.

Figure 9. Principle of Integral Controller.

5.2.3. Derivative Controller

The derivative controller is an important part of the PID controller which reacts only
when there is a change in error, as per Equation (11). It protects the auto controller from
surpassing its limit by generating friction. The derivative of the error signal is calculated
by finding the slope of the error signal with time and product of this rate of change with
the derivative gain Kd. The response of the derivative controller is shown in Figure 10.
An examination of this figure can be correlated with the mathematical interpretation of
Equation (11). A value of 2 will take more time to integrate (summing the component
values), and this results in an relative fluctuating curve. This will continue until and
unless a stable amplitude has been attained, which is desirable for the quad-copter, and
mandatory for the transportation of medical items. Therefore, this fact must be kept into
account during the operation of the quad-copter, likewise discussed in the former section
in detail.

Figure 10. Principle of Derivative Controller.
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5.3. Trajectory of the Quad-Copter

In order to maintain a smooth test of the vehicle, some technical aspects have to be
brought into focus:

1. With the help of the vehicle’s camera, a device can be detected by the vehicle using
RF-ID tag on the object. This means that the object can be picked up from the hospital’s
store where it is located in a certain shelf, and transported to the patient in need;

2. To test the efficiency of the drone’s activity, we place the central location of the drone
within 300 m of the hospital’s store (at furthest);

3. The medicines which have to be transported from the hospital to the patients come in
various forms, and are sensitive to environmental variations. At this stage, the vehicle
is used to transport only solid medicines and devices, as per recommendations of the
physicians of the concerned hospital;

4. Afterwards, the positions of the patients were set at random distances (displacements)
from the hospital’s store, with the furthest one being at 1.5 km;

5. The maximum weight which the vehicle can lift is 1.5 kg. The maximum speed without
any load is 25 km/h, and that with the maximum weight aboard is 21.5 km/h;

6. To carry out the experiments, specific permission was obtained from the local authority,
as well as the hospital administration on weekends, as the work was not possible
otherwise [43];

7. The weather conditions need to be taken into consideration beforehand. Each measure-
ment was taken on a sunny day, with maximum wind speed of 8 km/h, atmospheric
pressure under 1025 hPa, precipitation under 0.5 cm, humidity under under 65%, and
visibility under 10.35 km.

In order to check the movement of the quad-copter from source to target destination,
we resort to checking its trajectory along various directions. For the sake of convenience,
the direction of motion towards the sky (vertical/upward) is nominated as the y-axis,
the direction of motion towards right or left is nominated as the z-axis, and the direction
towards the destination (horizontal) is nominated as the x-axis. This is conducted in
complete accordance with Figure 4. First, we keep the values of x and z axes as constant,
and vary the value of y. The motion of the quad-copter was recorded with the help of a
video camera. The machine was flown five times along this path, and the average value
was taken for each measurement. This value was compared with the simulated results,
and the average error between these two values were calculated. These are shown in the
respective plot in Figure 11.

Figure 11. First trajectory scenario: Investigation of change in values of y. (top) shows a comparison
between the ideal, simulation and actual (trajectory) values during the movement of the quad-copter
along the y-axis, and (bottom) shows the average error between the simulated results and the actual
(trajectory) values, which is very small.
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Next, we perform the same test along x-axis, while keeping constant the values along
the other two axes. The actual values were compared with the simulation results, and they
are shown in Figure 12. Similarly, the case is analysed along the z-axis in Figure 13.

Figure 12. Second trajectory scenario: Investigation of change in values of x. (top) shows a comparison
between the ideal, simulation and actual (trajectory) values during the movement of the quad-copter
along the x-axis, and (bottom) shows the average error between the simulated results and the actual
(trajectory) values, which is very small.

Figure 13. Second trajectory scenario: Investigation of change in values of z. (top) shows a comparison
between the ideal, simulation and actual (trajectory) values during the movement of the quad-copter
along the z-axis, and (bottom) shows the average error between the simulated results and the actual
(trajectory) values, which is very small.

Observations

1. In Figure 11, simulation results show resemblance with the theoretical ones, as well
as the trajectory of the quad-copter. As soon as the device takes off, we see that the
error between the simulation and trajectory is less than 1.75%, which increases to a
maximum of 2.25% at two occasions, efficiently comparable to the nearest results [21].
First, it is the occasion when the device has consumed about one-third of the travel
time. This might be due to the sudden increase in the wind speed at that moment.
A similar moment is observed when the device is about to reach the destination.
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On average, the error value along the ordinate is 1.17%, which is acceptable for a
quad-copter in similar designs [15,21].

2. Regarding Figure 13, a similar trend is observed for the motion of the device along
z-axis. The fluctuations in the trajectory are slightly more than those along the y-axis.
This is mainly because of two reasons. First, the device is equipped with a sensor
that checks its motion along y-axis, but not along the z-axis. After consultation with
the local vendors, we could not find a particular solution at that moment. Second,
when the air moves along any direction, it has an effect on the motion of the device.
This matter was discussed with two pilots of helicopters, who agreed with our stance
that the weight of this machine is much smaller than that of a normal helicopter, and
this can have an effect on the motion along the z-axis. In addition, they said that this
would supposedly not affect any objects loaded on the machine, unless they cross
the weight limit of our quad-copter. The average error is found to be 1.28%, which is
comparable to recent works on quad-copters with different applications [6,22].

3. Afterwards, the motion of the quad-copter along the x-axis is recorded and compared
with the simulation results in Figure 12. When the device travels about half of its
distance, some fluctuations are seen in this trajectory which can be interpreted as
follows. The quad-copter leaves the store inside the hospital and flies over the ground
along its way to the destination which is about half-way. On account of the open
area, the air speed is slightly higher as there is less congestion. This again acts as a
slight resistance for the device, on its way. Therefore, the device experiences some
fluctuations at this point. The average error in the value is 1.04%, which is slightly less
than for the y- and z-axes, and no correlated results could be found at this level [9,11].

4. As per the trajectory profile of the device, it is important to note the stability during its
movement. At this moment, it is observed that the overall results are within tolerable
limits that are the primary focus of the biomedical application. For BCI to further
accelerate its progress, the size of the device is important, as discussed in [8,9]. This
becomes crucial as the medication becomes sensitive, which is not found in [15].
Although it is successful in imaging issues, the approach in [19] needs to be verified in
different weather conditions, streamlining the identical repercussions. This becomes
more interesting as there has been a focus on testing and implementation of BCI in
virtual environments [21], and much remains to be done for the practical scenario, as
we have approached here, with positive prospects in the future. This requires a deep
investigation of the device in various dimensions on a continuous basis with BCI, an
approach that has been attempted for the first time hitherto.

5. In this manner, our focus in this work was to implement the controller for better
control of the quadcopter that can be used to implement the real brain signals as in the
literature [11,15–17,22]. The target is to implement it in a biomedical sensor for which
various technical aspects have been investigated. The characteristics of the controller
were discussed in detail for smooth functioning with the real brain signals that can
aid in the prospective design of the said scheme in the future.

6. Conclusions

The proposed framework provided better results in controlling air-vehicles with less
error which can be engaged for brain–computer interfaces. In this manner, this research
continues in light of recent developments in the areas of UAVs, as there is an urgent need
to develop systems that are able to deliver logistics in a reliable and safe way. This becomes
more important for the case of biomedical sensors that are designed to be mounted on the
human body. In case of an emergency situation, the physician needs to take immediate
steps, which might be life-saving in certain situations, and a direct connection between
the physician and the patient might certainly not be possible on account of distance. The
sensitivity of such a scenario raises a red flag if the locality of the patient is in a rural or
distant area, with unspecified transportation options. This was the motivation behind the
development of our biomedical sensor that is designed to monitor the health status of
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elderly patients. Considering the need to transport medical equipment from the hospital
to the patient and vice versa, the current work tackles the development of a UAV in the
form of a quad-copter. Several issues have been dealt with during the development of this
device, after obtaining special permission to check the device in an urban environment. The
location of the medical centre and the patient play an important role in the experimentation,
for which the investigation was conducted appropriately. The maximum value of average
error between simulation and trajectory was found to be at 1.368% in all cases, with a load
carrying capacity of 2 kg, under persistent weather conditions that have been mentioned
hitherto. This means that not only medication can be supplied, but also some equipment in
this range of weight can be moved from the hospital to the affected person which can help
in saving precious lives. Another novel aspect is the fact that the equipment which has
been used for this purpose is not very expensive, aiding in the physical implementation of
the biomedical sensor in terms of its economic parameters. Care has been taken to analyse
the device in specific conditions, maintaining the sanctity, precision and accuracy of the
work, justified by the physicians of the hospital.

There are numerous ideas that can be explored to extend this work. One of the
future work directions of this project is to enhance quad-copter trajectory by implementing
machine learning-based scheme to remember the path of trajectory of flight, in order to
maximize the logistics of medication. At this time, the device can lift 2 kg, and reviews are
being performed extend this range. The experimentation has been satisfactorily done in the
prescribed weather conditions (daylight, partly cloudy and windy). Since the weather in
the surrounding of the experimental range is like this, we are negotiating with the technical
team to extend it to harsher conditions such as rain and snow in the future, and this might
require certain permissions from the aviation authority in those areas. We hope that once
the results become available, they would lead to supply of medication to the far-off areas
requiring a much smaller amount of time, thereby saving precious resources. For this,
we are planning to map the vicinity of the medical centre where the UAV is expected to
manoeuvre whenever required. Once this is done, the device might be able to fly to the
desired location by using the least time and resources, which is one of the main targets of
automated vehicles for the future.
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Abstract: Brain-computer interface (BCI) systems based on functional near-infrared spectroscopy
(fNIRS) have been used as a way of facilitating communication between the brain and peripheral
devices. The BCI provides an option to improve the walking pattern of people with poor walking
dysfunction, by applying a rehabilitation process. A state-of-the-art step-wise BCI system includes
data acquisition, pre-processing, channel selection, feature extraction, and classification. In fNIRS-
based BCI (fNIRS-BCI), channel selection plays a vital role in enhancing the classification accuracy of
the BCI problem. In this study, the concentration of blood oxygenation (HbO) in a resting state and in
a walking state was used to decode the walking activity and the resting state of the subject, using
channel selection by Least Absolute Shrinkage and Selection Operator (LASSO) homotopy-based
sparse representation classification. The fNIRS signals of nine subjects were collected from the left
hemisphere of the primary motor cortex. The subjects performed the task of walking on a treadmill
for 10 s, followed by a 20 s rest. Appropriate filters were applied to the collected signals to remove
motion artifacts and physiological noises. LASSO homotopy-based sparse representation was used
to select the most significant channels, and then classification was performed to identify walking and
resting states. For comparison, the statistical spatial features of mean, peak, variance, and skewness,
and their combination, were used for classification. The classification results after channel selection
were then compared with the classification based on the extracted features. The classifiers used for
both methods were linear discrimination analysis (LDA), support vector machine (SVM), and logistic
regression (LR). The study found that LASSO homotopy-based sparse representation classification
successfully discriminated between the walking and resting states, with a better average classification
accuracy (p < 0.016) of 91.32%. This research provides a step forward in improving the classification
accuracy of fNIRS-BCI systems. The proposed methodology may also be used for rehabilitation
purposes, such as controlling wheelchairs and prostheses, as well as an active rehabilitation training
technique for patients with motor dysfunction.

Keywords: BCI; fNIRS; SRC; channel selection; classification

1. Introduction

Nowadays, many elderly people have motor dysfunction and joint problems because
of age factors, stroke, and spinal cord injuries. Due to this, they face many problems when
walking, which strongly influences their lives [1]. According to WHO data, mental illnesses
and neurological disorders are major sources of morbidity, death, and disability. Mental,
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neurological, and behavioral diseases have a major impact on the world’s population,
impacting more than 450 million individuals. According to the Global Burden of Disease
Report, neurological and mental disorders account for four out of the six primary causes of
years lived with disability, accounting for 33 percent of the years lived with disability and
13 percent of disability-adjusted life years (DALYs) [2]. People with walking disabilities
need to improve their walking patterns or capability by using rehabilitation and assistive
devices [3]. The brain-computer interface (BCI) is the best way to accommodate the neuro-
rehabilitation process, by providing a communication pathway between the brain and
the peripheral devices [4]. The field of perceptible neuroscience scrutinizes itself with
calibrating information processing models of the brain with the operational and structural
(e.g., hemodynamic, metabolic, and electrical) features of the brain [5]. In the last few years,
the development of BCI has played an important role in the analysis of brain dysfunction
disorders and musculoskeletal gait. A typical BCI system consists of the following five
major stages: signal acquisition, pre-processing, feature extraction, classification, and
control commands to peripheral devices. In the signal acquisition stage, brain signals are
acquired using brain signal acquisition modalities. The acquired signals contain noises
such as physiological, instrumentation, and motion artifacts. These errors can be removed
with the help of appropriate filters in the pre-processing stage. After obtaining filtered and
processed data, some useful features can be extracted. These extracted features contain
intrinsic information related to brain activity. In the classification stage, the most suitable
classifier is employed for the extracted features, to predict the response to a particular
class. Furthermore, the brain activity discriminated by the classifier is used as a command
to control the external devices. The general flow diagram of functional near-infrared
spectroscopy (fNIRS)-BCI is shown in Figure 1. BCI systems provide the end-user with
full control over the channels used to communicate with the brain and external devices,
regardless of the level of dependence on the output channel [1].

Figure 1. Block diagram of BCI system.

For improving mild cognitive impairment (MCI), BCI based on functional near-
infrared spectroscopy (fNIRS) had a positive result [3]. It has been widely used in the reha-
bilitation process [6]. fNIRS is utilized to concentrate on the brain areas of interest in eleven
sicknesses, including stroke, MCI, traumatic brain injury, and harm recognition [7]. There
are several modalities used to acquire brain signals for rehabilitation, such as magnetic field
measurement using magnetoencephalography (MEG) [8,9], electroencephalography (EEG),
radioactive tracer-based positron emission tomography (PET) [10,11], functional magnetic
resonance imaging (fMRI) [12,13], gamma emission-based single-photon emission com-
puted tomography (SPECT) [14,15], and fNIRS. fNIRS is widely used due to its advantages
of mobility and ease of use compared to other neuroimaging modalities when research-
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ing the brain basis of cognitive inputs during gait [16,17]. The fNIRS modality has been
most commonly used over the recent decades, because of its portability and high spatial
resolution. fNIRS is operated in wavelengths between 650 and 1000 nm; in this range, the
blood oxygenation concentration (HbO) and the blood deoxygenation concentration (HbR)
are more clear [7]. Several classifiers and techniques are applied to fNIRS signals [6,18], to
improve the accuracy and efficiency of BCI systems, to help disabled and elderly people in
their daily life [7,19].

For the classification of different brain activity, fNIRS-based BCI mostly extracted
features such as mean, peak, variance, skewness, kurtosis values, etc., from the obtained
data [20]. In the literature, studies have been performed using single, multiple or a com-
bination of features to classify two- or multiple-class fNIRS-BCI problems [21]. Support
vector machine (SVM) and linear discrimination analysis (LDA) are mainly used to clas-
sify walking and resting states, but the classification accuracy is low and needs to be
improved [22].

To improve the classification accuracy, it is important to introduce some new methods
and technologies in the field of fNIRS-BCI. In this study, a new classification method is
discussed, which is sparse representation-based classification (SRC). SRC has been used
in the compressed sensing (CS) theory; the core concept of CS is that we can represent a
huge amount of data with a few data points [23]. Weighted SRC was applied to EEG-BCI
to classify motor imagery, and achieved good classification accuracy results [24]. Sparse
representation-based classification was used to translate the motor imagery of a single
index finger classification, with an accuracy of 81.32%; the results were used to construct
a BCI-enhanced finger rehabilitation system [25]. Optimization features, such as spatial-
frequency-temporal, were calculated from the public dataset of EEG, and were used as
predictors for SRC. The classification accuracy achieved was higher than on the original
basis [26]. Shin et al. classified motor images using SRC and compared the results with SVM.
They discovered that SRC had better results than SVM and LDA, in terms of classification
accuracy, testing duration, and noise robustness [27]. This study includes the use of LASSO
homotopy-based SRC for channel selection for the fNIRS-BCI system, to identify walking
and resting states, Figure 2.

Figure 2. BCI system with LASSO-based sparse representation classification for channel selection.

2. Materials and Methods

2.1. Experimental Design

The raw optical signals from the brain during activity and resting states were collected
by dynamic near-infrared optical tomography (DYNOT; NIRx Medical Technologies, New
York, NY, USA). For signal acquisition, the sampling frequency was set to 1.81 Hz, with
operating wavelengths of 760 and 830 nm. A total of nine healthy male subjects, aged
approximately 30 ± 3, were called up for the study. All the subjects were right-handed
and had no neurological disorders. The experiments were conducted in accordance with
the latest Declaration of Helsinki, and verbal consent from the subjects was collected
before experimentation.

2.2. Experimental Paradigm

The subjects were asked to take an initial rest in a quiet room for 30 s before the start
of the activity. After the initial rest, subjects were asked to start walking with their right
leg on the treadmill for 10 s, followed by a 20 s rest while standing on the treadmill. Ten
trials were performed for each subject. For baseline correction, a 30 s rest was given at
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the end of each experiment. The length of the experiment for each subject was 300 s. The
experimental paradigm is shown in Figure 3.

Figure 3. Experimental paradigm for data acquisition: after an initial 30 s rest, a single trial consisted
of a 10 s period of walking followed by a 20 s rest.

2.3. Experimental Configuration

In accordance with the literature [28], the twelve-channel configuration maintained a
minimum distance distribution of 3 cm between the source and the detector. Brain signals
from the left hemisphere of the primary motor cortex (M1) were acquired. There were nine
optodes, out of which five were sources and four were light detectors. The configuration of
the source and detector, with channels, is shown in Figure 4.

 

Figure 4. Position of source and detectors on the left hemisphere of the motor cortex. D represents
the detectors and S represents sources.

2.4. Data Acquisition

Raw optical density signals were converted into oxy and deoxyhemoglobin concentra-
tion changes (ΔCHbO(t) and ΔCHbR(t) by using the modified Beer–Lambert law (MBLL)
shown in Equation (1) [29].

[
ΔCHbO(t)
ΔCHbR(t)

]
=

[
αHbO(λ1) αHbR(λ1)
αHbO(λ2) αHbR(λ2)

]−1[ ΔA(t, λ1)
ΔA(t, λ2)

]
d × l

, (1)

where αHbR(λ1,2) and αHbO(λ1,2) are the extinction coefficients of HbO and HbR in μM−1

cm−1, respectively, and ΔCHbR(t) and ΔCHbO(t) are the concentration changes in HbR
and HbO in μM, respectively. Furthermore, l is the source and detector distance, d is the
curved path length factor, and A(t, λ1) and A(t, λ2) are the absorption coefficients at two
different instants.
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2.5. Signal Processing

In this study, we only used the HbO response of brain activity for further processing.
Noises including respiration between 1 and 1.5 Hz, heartbeat 0.5 Hz, and instrumental
noise are present in the signals. These noises were removed using high-pass and low-pass
filters with cut-off frequencies of 0.01 and 0.5 Hz [7]. The Hemodynamic Response filter
and Gaussian filter were applied to the acquired signal for the removal of drift noise, using
the NIRS-SPM toolbox [30]. For the motion artifacts, a hemodynamic response filter and
discrete cosine transform were applied using the NIRS-SPM toolbox. Figure 5 shows the
average trial ΔCHbR(t) signals of subject four for channels 9–12.

Figure 5. Average trial ΔCHbO signals of subject four for channels 9–12.

2.6. Feature Extraction

A prior study explained several combinations of statistical features, with the goal of
finding an effective filter for a given cortical region [31]. In this paper, spatial features were
extracted from HbO data of all the active channels. The features were calculated for the
entire task and rest session. The signal mean was calculated as follows:

mean =
1
N ∑N

i=0 Xi, (2)

where the total number of observations is represented as N, and Xi represents the ΔCHbO(t)
across each observation. The variance was calculated as follows:

Var = ∑ (Xi − X)2

n − 1
, (3)

where Xi represents the ΔCHbO(t) across each observation, X is the mean value of observa-
tions, and N is the total number of observations. The Skewness was calculated as follows:

Skewness = ∑ (Xi − μ)2

N × σ
, (4)

where Xi is each observation, μ is the mean of each observation, σ is the standard deviation
of data, and N is the total number of observations. The peak values were calculated using
the max function in MATLAB.
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2.7. Channel Selection

Selecting channels of interest (COI) or a region of interest (ROI) in BCI can save
processing time, reduce dimensionality, improve performance, and provide adequate brain
region identification with low noise signals. In the literature, the z-score approach, which
uses cross-correlation and z-scores for ROI/COI selection, was utilized to improve the
performance of the fNIRS-BCI system [21]. The hemodynamic responses with positive
t-values were selected by using the t-value method [32]. For pain-related cortical activations,
the cross-correlation approach was employed to identify potentially dominating channels
in both hemispheres. The response delay was calculated after a visual check, to identify
probable dominating channels. The active channels that were next to each other were
chosen [33]. In this paper, the LASSO homotopy-based sparse representation method is
used for channel selection.

2.7.1. Sparse Representation Classification

The basic idea of the SRC method is to recognize the true class of new signals by
learning the sparsest representation (fewest significant coefficients) of the test signals, in
terms of training signals [34]. A principle that a signal can be approximated by, using a
linear combination of dictionary atoms, is formulated as follows [35]:(

b
A

, x, k
)
= x1a1 + . . . + xkak + ε, (5)

where the dictionary is represented as A = [a1, · · ·, ak], dictionary atom is represented as ai, x
is a sparse coefficient vector, and ε is an error term. A, x, and k are the model parameters. In
general, the SRC algorithm produces a dictionary before solving the optimization problem,
reconstructing, and calculating the residual.

For a certain category, when the residual is very small and the other categories are
very large, the unknown category of the object belongs to that category [3]. The simplest
sparse representation classification model is shown in Figure 6.

Figure 6. Sparse representation model. The dictionary is represented as A = [a1, · · · , ak], dictionary
atom is represented as ai, x is a sparse coefficient vector and Y is the output signal result as combination
of A × x.

2.7.2. LASSO Homotopy

The notion of homotopy comes from topology, and the homotopy technique is mostly
used to solve problems involving nonlinear systems of equations. The homotopy approach
was first developed to tackle the l1 penalty least squares problem [36]. Least absolute
selection and shrinkage operator are representative approaches that use the homotopy-
based strategy to tackle the sparse representation problem with l1-norm regularization
(LASSO) [36]. Regularization is a crucial concept for avoiding data overfitting, especially
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when the learned and test data differ significantly. Regularization is implemented by
adding a penalty term to the best fit produced from the trained data, in order to attain
lower variance with the tested data, as well as by compressing the coefficients of the least
important predictor or channel variable over the output variable. L1 regularization forces
the weights of uninformative features and channels to be zero, by subtracting a small
amount from the weight at each iteration, and, thus, making the weight of each channel or
predictor equal to zero. LASSO homotopy starts optimization at a large value of λ parameter
along the solution path and terminates at a point of λ, which is approximately zero,
giving an optimal solution. The mathematical model of LASSO homotopy is represented
as follows:

1
2N

(
y − Xβ′)′(y − Xβ′)+ λ ∑P

j=1

∣∣β j
∣∣, (6)

In the first term, y is the prediction value or test sample, X is the feature vector or
trained sample, and β′ is the vector of coefficients (weights on the basis of significance).
The first term in the equation is the residual sum of squares (error term) and the second is
product of λ× sum of the absolute values of the magnitude of coefficients (penalty term). λ
denotes the amount of shrinkage. λ = 0 implies that all the features are considered and is
equivalent to the linear regression, where the only residual square is considered to build
a predictive model. λ = ∞ implies that no features are considered (i.e., as λ approaches
infinity, it eliminates more and more features and channels).

2.8. Classification Algorithms

K-fold cross-validation is used to estimate classification performance. To ensure data
separation for training and testing of classifiers for each channel selection method and
activity utilized, the dataset was separated into training and testing sets, and the value of k
was set to five-fold cross-validation.

In MATLAB®, the classification learner app was used for classification and valida-
tion of data. Several classifiers were selected and employed on the data, on the basis of
prediction speed and training time. Following the literature [22], the following classifiers
were used: linear discrimination analysis (LDA), logistic regression (LR), and support
vector machine (SVM). The following settings were made during classification: covariance
structure for LDA was set to diagonal covariance, and the kernel function for SVM was the
Gaussian function.

3. Results

In this study, the LASSO homotopy method was employed for the channel selection
of HbO signals with significant information; Table 1 shows the channels selected for each
subject. From Table 1, we observe that the maximum and minimum channels selected
by the LASSO homotopy method are nine and two for distinct subjects, respectively.
The classification was performed using LDA, LR, and SVM on the data of the selected
channels. The subject-wise average classification accuracies of all the classifiers used
are given in Table 2. For comparison purpose, classification accuracies were calculated
using conventional statistical features. Tables 3 and 4 show the subject-wise classification
accuracies of three- and four-feature combinations of statistical features. A comparison
of the overall average classification accuracies of all the classifiers after channel selection
using LASSO homotopy, and without channel selection, is shown in Table 5. In Table 6, the
results of the t-test are shown [37]. A comparative bar graph is shown in Figure 7, for the
average classification accuracies of all the classifiers.
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Table 1. Subject-wise channel selection using LASSO homotopy-based spare representation.

Subjects Selected Channels

1 1, 2, 3, 4, 7, 8, 9, 10, 11
2 2, 3, 4, 5, 6, 7, 9, 11
3 2, 6, 8, 9, 10, 11
4 8, 9, 12
5 1, 2, 5, 6, 7, 8, 12
6 1, 5, 8, 11, 12
7 2, 4, 5, 6, 8, 9, 11, 12
8 6, 10
9 1, 2, 3, 4, 6, 7, 8, 9

Table 2. Subject-wise classification accuracies of all subjects (%) were obtained by implementing
LASSO homotopy for channel selection of HbO signals and classification using SVM, LDA, and LR
of the walking and resting states (binary classification) of 9 subjects.

Subjects LDA LR SVM

1 72.6% 69.1% 95.7%
2 75.7% 76.7% 95.9%
3 74.6% 83% 95.2%
4 68% 67.4% 85.4%
5 71.9% 72.4% 91.3%
6 68% 70.4% 95.2%
7 75.9% 74.6% 95.4%
8 62.6% 62.2% 75.9%
9 69.8% 69.8% 91.3%

Table 3. Subject-wise classification accuracies of all subjects (%) were obtained by extracting features
(i.e., SM. SP, and SV) of HbO signals and classification using SVM, LDA, and LR of the walking and
resting states (binary classification) of 9 subjects.

Subjects LDA LR SVM

1 65.5% 63.9% 75.5%
2 66.5% 65.2% 72.4%
3 63.9% 62.8% 70.4%
4 66.9% 68.1% 68.9%
5 66.7% 66.7% 71.5%
6 61.9% 65.7% 71.3%
7 63.9% 64.8% 71.7%
8 66.5% 66.5% 71.7%
9 68.1% 67.4% 81.5%

Table 4. Subject-wise classification accuracies of all subjects (%) were obtained by extracting features
(i.e., SM. SP, SV, and SK) of HbO signals and classification using SVM, LDA, and LR of the walking
and resting states (binary classification) of 9 subjects.

Subjects LDA LR SVM

1 65.4% 65.2% 78.1%
2 66.5% 69.4% 78.5%
3 64.6% 63% 71.9%
4 65% 65.9% 73%
5 66.1% 65.4% 74.8%
6 61.5% 65.9% 73.5%
7 62.8% 64.1% 72.6%
8 66.3% 68% 85.2%
9 67.6% 68% 85.2%
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Table 5. Average classification accuracies of all subjects (%) were obtained by extracting features and
selecting channels of HbO signals and classification using SVM, LDA, and LR of the walking and
resting states (binary classification) of 9 subjects.

LDA LR SVM

After LASSO Homotopy 71.01% 71.6% 91.32%
Mean, Peak and Variance 65.54% 65.67% 72.7%

Mean, Peak, Variance and Skewness 65.08% 65.9% 76.2%

Table 6. Statistical significance of the LASSO homotopy-based sparse representation method.

Bonferroni Correction Applied (p < 0.0167)

SVM vs.
LDA 1.0886 × 10−6

LR 6.8421 × 10−6

Figure 7. This figure shows a bar chart comparison of average classification accuracies for walking
and resting states of all classifiers using both methods.

4. Discussion

In the literature, recent studies have focused on enhancing the classification accura-
cies of fNIRS-BCI systems using the optimal classification technique [22], general linear
model [38], vector-based phase analysis [38–41], optimal feature selection [31,38], optimal
feature combination [42], t-value method [43,44], cross-correlation [45], and dominant chan-
nel selection [46]. An accurate and reliable fNIRS-BCI performance may lead to producing
applications in neuro-robotics, rehabilitation, clinical BCI, for monitoring and analysis, and
neuro-ergonomics.

In the present study, a new method for selecting channels on the basis of the strong
influence of individual input variables on the output response was introduced to increase
fNIRS-BCI performance, especially in terms of classification accuracy. In the literature,
there were many optimization techniques used to enhance the classification accuracy of the
fNIRS-BCI system, to make it more robust and reliable. A comparative analysis between
classifications of fNIRS-BCI, based on two methods, was conducted. The classification
accuracies based on the proposed method were compared with the accuracies based on the
conventional method of excessively used feature extractions, without channel selection,
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using all the channel data. In the first method, we observed that by using two different
combinations of spatial features, we achieved average classification accuracies, for LDA, LR,
and SVM, of 65 ± 1.34%, 65 ± 1.6%, and 72 ± 4.9%, respectively. After the implementation
of the other method, LASSO homotopy-based sparse representation for channel selection,
the classification accuracies of LDA, LR, and SVM improved to 71.01, 71.6, and 91.32%,
respectively. This study shows that selecting the channels with intrinsic brain information
as features for classification improves the classification accuracy of fNIRS-BCI. LASSO
homotopy-based SRC enhances both the prediction accuracy and model interpretability.
It lowers the variability of the system estimations, by precisely decreasing some of the
coefficients, and making models that are easy to understand, produce, and interpret [47].
For the channel selection method used for EEG-BCI, the classification accuracy was 93.08%,
by selecting only eight channels out of 64 when classifying motor imagery tasks [48]. A
similar study was performed to select cortical activation-based channel selection using the
z-score method for fNIRS-BCI problems, achieving a classification accuracy of 88% [21].
LASSO homotopy-based SRC autonomously selects the most significant channels for the
fNIRS-BCI system, thus greatly improving the overall classification accuracy.

This study has a few limitations, including the fact that it only applies to a single
activity at a time, because specific tasks are linked to certain brain regions, and subject-
based channels were selected due to the different brain sizes. LASSO homotopy-based SRC
selects channels with the minimum residual sum of error. Furthermore, the offline study
is performed and analyzed, while the online study may be conducted for other cognitive
activities. Moreover, several machine learning algorithms are applied in this study to
analyze performance. Further deep learning algorithms may be implemented with LASSO
homotopy-based SRC for analysis, and may perform better.

5. Conclusions

This study attempts to apply LASSO homotopy-based sparse representation to fNIRS
to identify the following two binary classes of data: walking state and resting state. The
average classification accuracies are 71.01, 71.6, and 91.32% for LDA, LR, and SVM, respec-
tively. The results show that LASSO homotopy-based SRC can effectively identify classes
with significantly (p < 0.0167) improved classification accuracies. This study shows the
better performance of LASSO homotopy-based SRC as a step to improve the classification
performance of state-of-the-art fNIRS-BCI problems.

Author Contributions: Conceptualization, A.G. and N.N.; methodology, A.G.; software, R.A.K.; vali-
dation, M.J.K. and H.N.; formal analysis, A.G. and R.A.K.; investigation, H.N.; resources, U.S.K.; data
curation, M.J.K. and H.N.; writing—original draft preparation, A.G. and H.N.; writing—review and
editing, N.N.; visualization, A.G. and H.N.; supervision, N.N.; project administration, N.N.; funding
acquisition, U.S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Centre of Robotics and Automation Rawalpindi,
Pakistan, grant No. NCRA-RF-027.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Pusan National University,
Busan, Republic of Korea.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The original data used for this study can be shared upon reasonable
request by the associate author.

Acknowledgments: We would like to acknowledge the National Centre of Robotics and Automation
(NCRA), Rawalpindi, Pakistan, for providing the necessary support, laboratory equipment, and
facilities to conduct this study.

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publication
of this paper.

127



Sensors 2022, 22, 2575

References

1. Naseer, N.; Hong, K.-S. fNIRS-based brain-computer interfaces: A review. Front. Hum. Neurosci. 2015, 9, 3. [CrossRef]
2. Hussain, G.; Rasul, A.; Anwar, H.; Sohail, M.U.; Kamran, S.K.S.; Baig, S.M.; Shabbir, A.; Iqbal, J. Epidemiological Data of

Neurological Disorders in Pakistan and Neighboring Countries: A Review. Pak. J. Neurol. Sci. 2017, 12, 52–70.
3. Li, H.; Gong, A.; Zhao, L.; Zhang, W.; Wang, F.; Fu, Y. Decoding of Walking Imagery and Idle State Using Sparse Representation

Based on fNIRS. Intell. Neurosci. 2021, 2021, 6614112. [CrossRef]
4. Shih, J.J.; Krusienski, D.J.; Wolpaw, J. Brain-Computer Interfaces in Medicine. Mayo Clin. Proc. 2012, 87, 268–279. [CrossRef]

[PubMed]
5. Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A Review on the Use of Wearable Functional

Near-Infrared Spectroscopy in Naturalistic Environments. Jpn. Psychol. Res. 2018, 60, 347–373. [CrossRef]
6. Ghaffar, M.S.B.A.; Khan, U.S.; Iqbal, J.; Rashid, N.; Hamza, A.; Qureshi, W.S.; Tiwana, M.I.; Izhar, U. Improving classification

performance of four class FNIRS-BCI using Mel Frequency Cepstral Coefficients (MFCC). Infrared Phys. Technol. 2020, 112, 103589.
[CrossRef]

7. Hong, K.-S.; Yaqub, M.A. Application of functional near-infrared spectroscopy in the healthcare industry: A review. J. Innov. Opt.
Health Sci. 2019, 12, 91. [CrossRef]

8. James, L.M.; Enghdal, B.E.; Leuthold, A.C.; Georgopoulos, A.P. Classification of Trauma-Related Outcomes in US Veterans Using
Magnetoencephalography (MEG). J. Neurol. Neuromed. 2021, 6, 13–20. [CrossRef]

9. Thorpe, D.R.; Engdahl, B.E.; Leuthold, A.; Georgopoulos, A.P. Assessing Recovery from Mild Traumatic Brain Injury (Mtbi) using
Magnetoencephalography (MEG): An Application of the Synchronous Neural Interactions (SNI) Test. J. Neurol. Neuromed. 2020, 5,
28–34. [CrossRef]

10. Bokhari, S.; Schneider, R.H.; Salerno, J.W.; Rainforth, M.V.; Gaylord-King, C.; Nidich, S.I. Effects of cardiac rehabilitation with and
without meditation on myocardial blood flow using quantitative positron emission tomography: A pilot study. J. Nucl. Cardiol.
2019, 28, 1596–1607. [CrossRef]

11. Nelles, G.; Jentzen, W.; Jueptner, M.; Müller, S.; Diener, H.C. Arm Training Induced Brain Plasticity in Stroke Studied with Serial
Positron Emission Tomography. NeuroImage 2001, 13, 1146–1154. [CrossRef] [PubMed]

12. Nishida, D.; Mizuno, K.; Yamada, E.; Hanakawa, T.; Liu, M.; Tsuji, T. The neural correlates of gait improvement by rhythmic
sound stimulation in adults with Parkinson’s disease–A functional magnetic resonance imaging study. Parkinsonism Relat. Disord.
2021, 84, 91–97. [CrossRef] [PubMed]

13. Boyne, P.; Doren, S.; Scholl, V.; Staggs, E.; Whitesel, D.; Maloney, T.; Awosika, O.; Kissela, B.; Dunning, K.; Vannest, J. Functional
magnetic resonance brain imaging of imagined walking to study locomotor function after stroke. Clin. Neurophysiol. 2020, 132,
167–177. [CrossRef] [PubMed]

14. Du, Y.; Zaidi, H. Single-Photon Emission Computed Tomography: Principles and Applications. In Encyclopedia of Biomedical
Engineering; Narayan, R., Ed.; Elsevier: Oxford, UK, 2019; pp. 493–506. [CrossRef]

15. Dorraji, E.S.; Oteiza, A.; Kuttner, S.; Martin-Armas, M.; Kanapathippillai, P.; Garbarino, S.; Kalda, G.; Scussolini, M.; Piana, M.;
Fenton, K.A. Positron emission tomography and single photon emission computed tomography imaging of tertiary lymphoid
structures during the development of lupus nephritis. Int. J. Immunopathol. Pharmacol. 2021, 35, e005772. [CrossRef]

16. Khan, H.; Nazeer, H.; Engell, H.; Naseer, N.; Korostynska, O.; Mirtaheri, P. Prefrontal Cortex Activation Measured during
Different Footwear and Ground Conditions Using fNIRS—A Case Study. In Proceedings of the 2021 International Conference on
Artificial Intelligence and Mechatronics Systems (AIMS), Delft, The Netherlands, 12–16 July 2021.

17. Khan, H.; Naseer, N.; Yazidi, A.; Eide, P.K.; Hassan, H.W.; Mirtaheri, P. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based
BCI System: A Review. Front. Hum. Neurosci. 2021, 14, 613254. [CrossRef]

18. Hamid, H.; Naseer, N.; Nazeer, H.; Khan, M.J.; Khan, R.A.; Khan, U.S. Analyzing Classification Performance of fNIRS-BCI for
Gait Rehabilitation Using Deep Neural Networks. Sensors 2022, 22, 1932. [CrossRef]

19. Khan, R.A.; Naseer, N.; Qureshi, N.K.; Noori, F.M.; Nazeer, H.; Khan, M.U. fNIRS-based Neurorobotic Interface for gait
rehabilitation. J. Neuroeng. Rehabil. 2018, 15, 7. [CrossRef]

20. Abdalmalak, A.; Milej, D.; Yip, L.; Khan, A.R.; Diop, M.; Owen, A.M.; Lawrence, K.S. Assessing Time-Resolved fNIRS for
Brain-Computer Interface Applications of Mental Communication. Front. Neurosci. 2020, 14, 105. [CrossRef]

21. Nazeer, H.; Naseer, N.; Mehboob, A.; Khan, M.J.; Khan, R.A.; Khan, U.S.; Ayaz, Y. Enhancing classification performance of
fNIRS-BCI by identifying cortically active channels using the z-score method. Sensors 2020, 20, 6995. [CrossRef]

22. Naseer, N.; Qureshi, N.K.; Noori, F.M.; Hong, K.-S. Analysis of different classification techniques for two-class functional
near-infrared spectroscopy-based brain-computer interface. Comput. Intell. Neurosci. 2016, 2016, 5480760. [CrossRef]

23. Zhu, Z.; Yin, H.; Chai, Y.; Li, Y.; Qi, G. A novel multi-modality image fusion method based on image decomposition and sparse
representation. Inf. Sci. 2018, 432, 516–529. [CrossRef]

24. Sreeja, S.; Samanta, D. Distance-based weighted sparse representation to classify motor imagery EEG signals for BCI applications.
Multimed. Tools Appl. 2020, 79, 13775–13793. [CrossRef]

25. Miao, M.; Zhao, F.; Liu, F.; Zeng, H.; Wang, A. Index finger motor imagery EEG pattern recognition in BCI applications using
dictionary cleaned sparse representation-based classification for healthy people. Rev. Sci. Instrum. 2017, 88, 094305. [CrossRef]
[PubMed]

128



Sensors 2022, 22, 2575

26. Miao, M.; Wang, A.; Liu, F. A spatial-frequency-temporal optimized feature sparse representation-based classification method for
motor imagery EEG pattern recognition. Med. Biol. Eng. Comput. 2017, 55, 1589–1603. [CrossRef] [PubMed]

27. Shin, Y.; Lee, S.; Ahn, M.; Cho, H.; Jun, S.C.; Lee, H.-N. Noise robustness analysis of sparse representation based classification
method for non-stationary EEG signal classification. Biomed. Signal Process. Control 2015, 21, 8–18. [CrossRef]

28. Gratton, G.; Brumback, C.R.; Gordon, B.; Pearson, M.A.; Low, K.A.; Fabiani, M. Effects of measurement method, wavelength, and
source-detector distance on the fast optical signal. NeuroImage 2006, 32, 1576–1590. [CrossRef] [PubMed]

29. Delpy, D.T.; Cope, M.; van der Zee, P.; Arridge, S.; Wray, S.; Wyatt, J. Estimation of optical pathlength through tissue from direct
time of flight measurement. Phys. Med. Biol. 1988, 33, 1433–1442. [CrossRef]

30. Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. NeuroImage
2009, 44, 428–447. [CrossRef]

31. Noori, F.M.; Naseer, N.; Qureshi, N.K.; Nazeer, H.; Khan, R. Optimal feature selection from fNIRS signals using genetic algorithms
for BCI. Neurosci. Lett. 2017, 647, 61–66. [CrossRef]

32. Santosa, H.; Hong, M.J.; Hong, K.-S. Lateralization of music processing with noises in the auditory cortex: An fNIRS study. Front.
Behav. Neurosci. 2014, 8, 418. [CrossRef]

33. Rojas, R.F.; Huang, X.; Ou, K.L.; Lopez-Aparicio, J. Cross Correlation Analysis of Multi-Channel Near Infrared Spectroscopy.
Comput. Sci. Inf. Technol. 2016, 6, 23–33. [CrossRef]

34. Zhang, H.; Patel, V.M. Sparse representation-based open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1690–1696.
[CrossRef]

35. Li, Y.; Ngom, A. Sparse representation approaches for the classification of high-dimensional biological data. BMC Syst. Biol. 2013,
7, S6. [CrossRef] [PubMed]

36. Zhang, Z.; Xuelong, L.; Yang, J.; Li, X.; Zhang, D. A Survey of Sparse Representation: Algorithms and Applications. IEEE Access
2015, 3, 490–530. [CrossRef]

37. Cleophas, T.J.; Zwinderman, A.H. Statistical Analysis of Clinical Data on a Pocket Calculator; Springer: Berlin/Heidelberg, Germany, 2011.
38. Qureshi, N.K.; Naseer, N.; Noori, F.M.; Nazeer, H.; Khan, R.; Saleem, S. Enhancing Classification Performance of Functional

Near-Infrared Spectroscopy- Brain–Computer Interface Using Adaptive Estimation of General Linear Model Coefficients. Front.
Neurorobotics 2017, 11, 33. [CrossRef] [PubMed]

39. Zafar, A.; Hong, K.-S. Neuronal Activation Detection Using Vector Phase Analysis with Dual Threshold Circles: A Functional
Near-Infrared Spectroscopy Study. Int. J. Neural Syst. 2018, 28, 1850031. [CrossRef]

40. Zafar, A.; Ghafoor, U.; Yaqub, M.; Hong, K.-S. Initial-dip-based classification for fNIRS-BCI. In Neural Imaging and Sensing; SPIE:
Bellingham, WA, USA, 2019.

41. Nazeer, H.; Naseer, N.; Khan, R.A.; Noori, F.M.; Qureshi, N.K.; Khan, U.S.; Khan, M.J. Enhancing classification accuracy of
fNIRS-BCI using features acquired from vector-based phase analysis. J. Neural Eng. 2020, 17, 056025. [CrossRef]

42. Naseer, N.; Noori, F.M.; Qureshi, N.K.; Hong, K.-S. Determining Optimal Feature-Combination for LDA Classification of
Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application. Front. Hum. Neurosci. 2016, 10, 237.
[CrossRef]

43. Hong, K.-S.; Santosa, H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spec-
troscopy. Hear. Res. 2016, 333, 157–166. [CrossRef]

44. Nguyen, H.-D.; Hong, K.-S. Bundled-optode implementation for 3D imaging in functional near-infrared spectroscopy. Biomed.
Opt. Express 2016, 7, 3491–3507. [CrossRef]

45. Petrantonakis, P.C.; Kompatsiaris, I. Single-Trial NIRS Data Classification for Brain–Computer Interfaces Using Graph Signal
Processing. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1700–1709. [CrossRef] [PubMed]

46. Muthukrishnan, R.; Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. In Proceedings
of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24 October 2016.

47. Varsehi, H.; Firoozabadi, S.M.P. An EEG channel selection method for motor imagery based brain–computer interface and
neurofeedback using Granger causality. Neural Netw. 2020, 133, 193–206. [CrossRef] [PubMed]

48. Naseer, N.; Hong, K.-S.; Bhutta, M.R.; Khan, M.J. Improving classification accuracy of covert yes/no response decoding using
support vector machines: An fNIRS study. In Proceedings of the 2014 International Conference on Robotics and Emerging Allied
Technologies in Engineering (iCREATE), Islamabad, Pakistan, 22–24 April 2014.

129



Citation: Hamid, H.; Naseer, N.;

Nazeer, H.; Khan, M.J.; Khan, R.A.;

Shahbaz Khan, U. Analyzing

Classification Performance of

fNIRS-BCI for Gait Rehabilitation

Using Deep Neural Networks. Sensors

2022, 22, 1932. https://

doi.org/10.3390/s22051932

Academic Editor: Ki H. Chon

Received: 28 January 2022

Accepted: 25 February 2022

Published: 1 March 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Analyzing Classification Performance of fNIRS-BCI for Gait
Rehabilitation Using Deep Neural Networks

Huma Hamid 1, Noman Naseer 1,*, Hammad Nazeer 1, Muhammad Jawad Khan 2, Rayyan Azam Khan 3

and Umar Shahbaz Khan 4,5

1 Department of Mechatronics and Biomedical Engineering, Air University, Islamabad 44000, Pakistan;
humahamid244@gmail.com (H.H.); hammad@mail.au.edu.pk (H.N.)

2 School of Mechanical and Manufacturing Engineering, National University of Science and Technology,
Islamabad 44000, Pakistan; jawad.khan@smme.nust.edu.pk

3 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
rayyan.khan@usask.ca

4 Department of Mechatronics Engineering, National University of Sciences and Technology,
Islamabad 44000, Pakistan; u.shahbaz@ceme.nust.edu.pk

5 National Centre of Robotics and Automation (NCRA), Rawalpindi 46000, Pakistan
* Correspondence: noman.naseer@mail.au.edu.pk

Abstract: This research presents a brain-computer interface (BCI) framework for brain signal classifi-
cation using deep learning (DL) and machine learning (ML) approaches on functional near-infrared
spectroscopy (fNIRS) signals. fNIRS signals of motor execution for walking and rest tasks are ac-
quired from the primary motor cortex in the brain’s left hemisphere for nine subjects. DL algorithms,
including convolutional neural networks (CNNs), long short-term memory (LSTM), and bidirectional
LSTM (Bi-LSTM) are used to achieve average classification accuracies of 88.50%, 84.24%, and 85.13%,
respectively. For comparison purposes, three conventional ML algorithms, support vector machine
(SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA) are also used for classi-
fication, resulting in average classification accuracies of 73.91%, 74.24%, and 65.85%, respectively.
This study successfully demonstrates that the enhanced performance of fNIRS-BCI can be achieved
in terms of classification accuracy using DL approaches compared to conventional ML approaches.
Furthermore, the control commands generated by these classifiers can be used to initiate and stop the
gait cycle of the lower limb exoskeleton for gait rehabilitation.

Keywords: functional near-infrared spectroscopy; brain-computer interface; convolutional neural
network; long short-term memory; neurorehabilitation

1. Introduction

The world has been striving to create a communication channel based on signals
obtained from the brain. A brain-computer interface (BCI) is a communication system
that provides its users with control channels independent of the brain’s output channel to
control external devices using brain activity [1,2]. The BCI system was first introduced by
Vidal in 1973 in which he proposed three assumptions regarding BCI, including analysis of
complex data in the form of small wavelets [3]. A typical BCI system consists of five stages,
as shown in Figure 1. The first stage is the brain-signal acquisition using a neuroimaging
modality. The second is preprocessing those signals as they contain physiological noises
and motion artefacts [4]. The third stage is feature extraction in which meaningful features
are selected [5]. These features are then classified using suitable classifiers. The final stage is
the application interface in which the classified BCI signals are given to an external device
as a control command [6].

Researchers have been using different techniques to acquire brain signals [7]. These
techniques include electroencephalography (EEG), functional near-infrared spectroscopy
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(fNIRS), magnetoencephalography (MEG), and functional magnetic resonance imaging
(fMRI) [8]. EEG is a technique used to analyze brain activity by measuring changes in the
electrical activity of the active neurons in the brain [9], while MEG measures the changes in
magnetic fields associated with the brain’s electrical activity changes [10]. fMRI is another
modality for analyzing brain function by measuring the localized changes in cerebral blood
flow stimulated by cognitive, sensory, or motor tasks [11,12]. In this study, we will only
be dealing with fNIRS-BCI. fNIRS is a non-invasive optical neuroimaging technique that
measures the concentration changes of oxy-hemoglobin (ΔHbO) and deoxy-hemoglobin
(ΔHbR) that are associated with the brain activity stimulated, when participants perform
experiments, such as arithmetic tasks, motor imagery, motor execution, etc. [13]. It is a
non-invasive, portable and easy-to-use brain imaging technique that helps study the brain’s
functions in the laboratory, naturalistic, and real-world settings [14]. fNIRS consists of
near-infrared light emitter detector pairs. The emitter emits light with several distinct
wavelengths absorbed in the subject’s scalp, consequently causing scattered photons; while
some of them are absorbed, the others disperse and pass through the cortical areas where
HbO and HbR chromophores absorb the light and have different absorption coefficients.
The concentration of HbO and HbR changes along the photon path in consideration of the
modified Beer-Lambert law [15].

Figure 1. Basic design and operation of the brain-computer interface (BCI)-based control.

In the recent decade, the research on fNIRS-BCI has increased enormously, and new
diverse techniques, particularly in its applications, may grow exponentially over the follow-
ing years [16]. One of the significant fields of fNIRS application is cognitive neuroscience,
particularly in real-world cognition [17], neuroergonomics [18], neurodevelopment [19],
neurorehabilitation [20], and in social interactions. fNIRS-BCI can provide a modest input
for BCI systems in the real time, but improvements are required for this system as there is
the difficulty faced with the collection and interpretation of the data for classifiers due to
noise in the data and subject variations [21].

Well-designed wearable assistive devices for rehabilitation and performance augmen-
tation purposes have been developed that run independently of physical or muscular
interventions [22–24]. Recent studies focus on acquiring the user’s intent through brain
signals to control these devices/limbs [25–27]. In assistive technologies, the fNIRS-BCI
system is a suitable technique for controlling exoskeletons and wearable robots by using
intuitive brain signals instead of being controlled manually by various buttons in order to
get the desired postures [28]. In addition, it has a better spatial resolution, fewer artefacts,
and acceptable temporal resolution, which makes it a suitable choice for rehabilitation and
mental task applications [29].

To find the best machine-learning (ML) method for fNIRS-based active-walking classi-
fication, a series of experiments with various ML algorithms and configurations were con-
ducted; the classification accuracy achieved was above 95% [30] for classifying 1000 samples
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using different ML algorithms, such as random forest, decision tree, logistic regression, sup-
port vector machine (SVM) and k-nearest neighbor (k-NN). In order to achieve minimum
execution delay and minimum computation cost for an online BCI system, linear discrimi-
nant analysis (LDA) was used with combinations of six features for walking intention and
rest tasks [31].

The traditional method of extracting and selecting acceptable features can result in
performance degradation. In contrast, deep neural networks (DNNs) can extract different
features from raw fNIRS signals, nullifying the need for a manual feature extraction stage
in the BCI system development, but limited studies are available so far [32,33].

Convolutional neural network (CNN) is a deep-learning (DL) approach that can
automatically learn relevant features from the input data [34]. In a study, CNN architecture
was compared to conventional ML algorithms, and CNNs performed better in terms of
classification with an average classification accuracy of 72.35 ± 4.4% for the four-class motor
imagery fNIRS signals [35]. CNN-based time series classification (TSC) methods to classify
fNIRS-BCI are compared with ML methods, such as SVM. The results showed that the
CNN-based methods performed better in terms of classification accuracy for left-handed
and right-handed motor imagery tasks and achieved up to 98.6% accuracy [36].

Time-series data can be handled more precisely using long short-term memory (LSTMs)
modules. In a study, four DL models were evaluated including multilayer perceptron
(MLP), forward and backward long short-term memory (LSTMs), and bidirectional LSTM
(Bi-LSTM) for the assessment of human pain in nonverbal patients, and Bi-LSTM model
achieved the highest classification accuracy of 90.6% [37]. Using the LSTM network, large
time scale connectivity can be determined with the help of the InceptionTime neural net-
work, which is an attention LSTM neural network utilized for the brain activations of mood
disorders [38]. A recent study assessed four-level mental workload states using DNNs,
such as CNNs and LSTM for fNIRS-BCI system, with average classification accuracies of
87.45% and 89.31% [39].

This study contributes to the development of a neurorehablitation tool in the gait
training of elderly and disabled people. The main objective of this study is to compare two
classification approaches, ML and DL, to achieve high performance in terms of classification
accuracy on the time-series fNIRS data. The complete summary of the methods employed
in this research is depicted in Figure 2.

Figure 2. Time-series functional near-infrared spectroscopy (fNIRS) signal classification for walking
and rest tasks using conventional machine-learning (ML) and DL algorithms. Signal processing and
feature engineering followed by classification using ML and DL approaches.
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2. Materials and Methods

2.1. Experimental Paradigm

Nine healthy right-handed male subjects of 27 ± 5 median age were selected. The
subjects had no history of motor disability or any visual neurological disorders affecting
the experimental results. fNIRS-based BCI signals were acquired from the primary motor
cortex (M1) in the left hemisphere for self-paced walking [40]. Before the start of each
experiment, the subjects were asked to take a rest for 30 s in a quiet room to establish the
baseline condition; it was followed by 10 s of walking on a treadmill, followed by 20 s of
rest while standing on the treadmill. At the end of each experiment, a 30 s rest was also
given for baseline correction of the signals. Each subject performed 10 trials, as shown
in Figure 3. Excluding the initial (30 s) and final (30 s) of rest, the total length of each
experiment was 300 s for each subject. All the experiments were conducted in accordance
with the latest Declaration of Helsinki and approved by the Institutional Review Board of
Pusan National University, Busan, Republic of Korea [41].

Figure 3. Experimental paradigm with experimental 10 trials with initial and final 30 s rest.

2.2. Experimental Configuration

In this study a multi-channel continuous-wave imaging system (DYNOT: Dynamic
Near-infrared Optical Tomography; NIRx Medical Technologies, NY, USA) was used to
acquire the brain signals, which operate on two wavelengths, 760 and 830 nm, with a
1.81 Hz sampling frequency. Four near-infrared light detectors and five sources (total of
nine optodes) were placed on the left hemisphere of the M1 with 3 cm of distance between
a source and a detector [42]. A total of twelve channels were formed in accordance with the
defined configuration, as shown in Figure 4.

Figure 4. Optode placement on the left hemisphere of the motor cortex with channel configuration
using 10–20 international system.
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2.3. Signal Acquisition

The acquired light intensity signals from the left hemisphere of the M1 were first
converted into oxy- and deoxy-hemoglobin concentration changes (ΔcHbO(t), and ΔcHbR(t))
using the modified Beer-Lambert law [43].

[
ΔcHbO(t)
ΔcHbR(t)

]
=

[
αHbO(λ1) αHbR(λ1)
αHbO(λ2) αHbR(λ2)

]−1[ ΔA(t, λ1)
ΔA(t, λ2)

]
d ∗ l

(1)

where ΔcHbO(t) and ΔcHbR(t) are the concentration changes of HbO and HbR in [μM],
A(t, λ1) and A(t, λ2) are the absorptions at two different instants, l is the emitter–detector
distance (in millimeters), d is the unitless differential path length factor (DPF), and αHbO( λ)
and αHbR(λ) are the extinction coefficients of HbO and HbR in [μM−1 cm−1].

2.4. Signal Processing

After obtaining oxy-hemoglobin concentration changes (ΔcHbO(t) and ΔcHbR(t)), the
brain signals acquired were filtered with suitable filters using the modified Beer-Lambert
law. In order to minimize the physiological or instrumental noises, such as heartbeat
(1–1.5 Hz), respiration (~0.5 Hz), Mayer waves (blood pressure), artefacts, and others, the
signals were low-pass filtered at a cut-off frequency of 0.5 Hz and a high-pass filter with
cut-off frequency of 0.01 Hz [44]. The filter used for ΔcHbO(t) signals were hemodynamic
response (hrf) using NIRS-SPM toolbox [45]. The averaged ΔcHbO(t) signal for task and
rest of subject 1 after filtering is shown in Figure 5.

Figure 5. Averaged ΔcHbO(t) signal for task and rest of subject 1.

2.5. Feature Extraction

For the conventional ML algorithms, five different features of filtered ΔcHbO(t) signals
were extracted using the spatial average for all 12 channels. Five statistical properties
(mean, variance, skewness, kurtosis, and peak) of the averaged signals were calculated
for the entire task and rest sessions. In this study, a feature combination of signal mean,
signal peak, and signal variance a was used for the ML classifiers. This specific combination
was selected based on the higher classification accuracies that were obtained using these
features [46,47].
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For the mean, the equation was as follows:

X =
1
N

N

∑
i=1

(Zi) (2)

where N is the total number of observations, and Zi is the ΔcHbO(t) across each observation.
For signal variance, the calculation was as follows:

σ2 =
∑N

i=1
(
Xi − X

)
n − 1

(3)

where n is the sample size, Xi is the ith element of the sample, and X is the mean of the
sample. To calculate signal peak, the max function in MATLAB® was used.

3. Classification Using Machine-Learning Algorithms

3.1. Support Vector Machine (SVM)

SVM is a commonly used classification technique suitable for fNIRS-BCI systems for
handling high-dimensional data [48,49]. In supervised learning, the SVM classifier creates
hyperplanes to maximize the distance between the separating hyperplanes and the closest
training points [50]. The hyperplanes, known as the class vectors, are called support vectors.
The separating hyperplane in the two-dimension features space is given by:

f (x) = r · x + b (4)

where b is a scaling factor, and r, x ∈ R2 and b ∈ R1. The optimal solution, r*, that is
the distance between the hyperplane and the nearest training point(s) is maximized by
minimizing the cost function. The optimal solution, r* is given by the equation.

Minimize
1
2
||w||2 + C

n

∑
i=1

ξi (5)

Subject to
yi

(
wT xi + b

)
≥ 1 – ξi, ξi ≥ 0 (6)

where yi represents the class label for the ith sample, T is the transpose, and n is the
total number of samples, ||w||2 = wTw. where wT and xi ∈ R2, b ∈ R1, C is the trade-off
parameter between the margin and error, and ξi is the training error.

3.2. k-Nearest Neighbor (k-NN)

k-NN predicts the test sample’s category; the k value represents the number of neigh-
bors considered and classifies it in the same class as its nearest neighbor based upon the
largest category probability [51]. Euclidean distance is the distance between the trained
and the test object given by the equation.

DE (p, q) =

√
n

∑
i=1

(pi − qi)
2 (7)

where n is the n-space, p and q are two points in the Euclidean n-space, and pi, qi are the
two vectors, stating from the origin of the space.

k-NN is a widely used efficient classification method for BCI applications because of
its low computational requirements and simple implementation [52,53].

3.3. Linear Discriminant Analysis (LDA)

LDA has discriminant hyperplanes to separate classes from each other. LDA performs
well in various BCI systems because of its simplicity and execution speed [54]. It minimizes
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the variance of the class and maximizes the separation between the mean of the class by
maximizing the Fisher’s criterion [55]. The equation for Fisher’s criterion is given by:

J (v) =
vT Sbv
vT Swv

(8)

where Sb and Sw are the between-class and within-class scatter matrices given as:

Sb = (m1 − m2)(m1 − m2)
T , (9)

Sw = ∑
xn∈ C1

(xn − m1)(x − m2)
T + ∑

xn∈ C2

(xn − m1)(x − m2)
T

where xn denotes samples, m1 and m2 are the group means of classes C1 and C2, respectively.

4. Classification Using Deep-Learning Algorithms

fNIRS signal classification with conventional ML methods is composed of local and
global feature extraction, e.g., independent component analysis (ICA) and principal compo-
nent analysis (PCA), selection of possible features, their combinations, and dimensionality
reduction, which leads to the biasness and overfitting of the data [56]. It is because of these
limitations a large amount of time is consumed in the mining and preprocessing of the
data [57].

The BCI classification task can avoid local filtering, noise removal, and manual local
feature extraction by utilizing DL algorithms as an alternative to avoid the need for manual
feature engineering, data cleaning, analysis, transformation, and dimensionality reduction
before feeding it to the learning machines [58]. Extracting and selecting appropriate features
is critical with fNIRS-BCI signals, and the multi-dimensionality and complexity of fNIRS
signals make it ideal for DL algorithms to work with.

4.1. Convolutional Neural Networks (CNNs)

CNNs are a type of neural networks that are capable of automatically learning ap-
propriate features from the input fNIRS time-series data. CNNs consist of several layers,
such as the convolutional layer, pooling layer, fully connected layer, and output layer [59].
The input fNIRS time-series data (the changes in the HbO concentrations) across all the
channels are passed through CNN layers. The convolutional layer contains filters that are
known as convolution kernels to extract features. CNN minimizes the classification errors
by adjusting the weight parameters of each filter using forward and backward propagation.

The convolution operation is the sliding of a filter over the time series, which results
in activation maps also known as feature maps that stores the features and patterns of the
fNIRS data [60]. Convolution operation for time stamp t is given by the equation:

Ct = f (ω ∗ Xt−l/2:t+l/2 + b) | ∀ t ∈ [1, T ] (10)

where C is the output of a convolution (dot product) on a time series, X, of length, T, with a
filter, ω, of length, l, b is a bias parameter, and f is a non-linear function, such as the rectified
linear unit (ReLU).

After the convolutional layer, we have a pooling layer that downsamples the spatial
size of the data and also reduces the number of parameters in the network [61]. The pooling
layer is followed by a fully connected layer, as shown in Figure 6 in which each data point
is treated as a single neuron that outputs the class scores, and each neuron is connected to
all the neurons in the previous layer [62].
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Figure 6. Convolutional neural network (CNN) model with convolutional layer, dropout layer,
pooling layer, flatten layer, fully connected layer, and output layer.

The proposed CNN model consists of the input layer, three one-dimensional convolu-
tional layers, max-pooling layers, dropout layers, a fully connected layer, and an output
layer. The three convolutional layers contain filters 128, 64, 32 with a kernel size of 3, 5, 11,
respectively. A dropout layer of 0.5 ‘dropout ratio’ was added after each convolutional layer
to avoid overfitting, followed by a pooling layer with a stride of two. The input fNIRS time-
series data after passing through a number of convolutional, max-pooling, and dropout
layers is flattened and fed into the fully connected layers for the purpose of classification.
The fully connected layer of 100 units is incorporated with ReLU activation. The output
layer consists of two neurons corresponding to the two classes with Softmax activation. The
optimization technique used was Adam with a batch size of 150 and 500 number of epochs.

4.2. Long Short-Term Memory (LSTM) and Bi-LSTM

LSTM is a DL algorithm that can achieve high accuracies in terms of classification,
processing, and forecasting predictions on the time-series fNIRS data. LSTMs have internal
mechanisms called gates that can regulate the flow of information [63]. These gates, such as
forget gate, input gate, and output gate, can learn which data in a sequence are necessary
to keep or throw away [64]. By doing that, it can pass relevant information down the long
chain of sequences to make predictions. The equations for forget gate ( ft), input gate (it)
and output gate (ot) are given by:

ft = σ
(

Wf · [ht−1, xt ] + b f

)
(11)

it = σ(Wi · [ht−1, xt ] + bi) (12)

ot = σ(Wo · [ht−1, xt ] + bo) (13)

where Wf , Wi, and Wo are the weight matrices of forget, input, and output gates, respec-
tively, and ht−1 is the hidden state.
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These gates contain sigmoid and Tanh activations to help regulate the values flowing
through the network [65]. General sigmoid function is given by:

f (x) =
1

1 + e−k(x−xo)
(14)

where xo is the x-value of the sigmoid midpoint, e is the natural logarithm base, and k is the
growth rate.

For LSTM the data has to be reshaped because it expects the data in the form of
(m × k × n), where m is the number of samples, n refers to the number of fNIRS channels
(12 ΔcHbO(t) channels), and k refers to the time steps. The proposed LSTM model consisted
of an input layer, four LSTM layers, a fully connected layer, and an output layer, as shown
in Figure 7. A dropout layer of 0.5 ‘dropout ratio’ was added after the LSTM layers to avoid
overfitting. The output from the dropout layer is flattened and fed to the fully connected
layer of 64 units, also known as the dense layer, and incorporated with ReLU activation.
Finally, an output layer consists of two neurons corresponding to the two classes with
Softmax activation. The early-stopping technique was used to avoid overfitting with the
patience of 50; a batch size of 150 over 500 epochs with Adam optimization technique.

Figure 7. Long short-term memory (LSTM) model with four LSTM layers, dropout layer, flatten layer,
fully connected layer, and output layer.

Bi-LSTM models are a combination of both forward and backward LSTMs [66]. These
models can run inputs in two ways, from past to future and from future to past and have
both forward and backward information about the sequence at every time step [67]. Bi-
LSTM differs from conventional LSTMs as they are unidirectional, and with bidirectional,
we are able at any point in time to preserve information from both past and future, which
is why they perform better than conventional LSTMs [68].

The proposed Bi-LSTM model consisted of two Bi-LSTM layers with 64 hidden units,
a fully connected layer, and an output layer, as shown in Figure 8. The fully connected
layer of 64 units is employed with ReLU activation, and the output layer consists of two
neurons corresponding to the two classes with Softmax activation.
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Figure 8. Bidirectional LSTM (Bi-LSTM) model with two Bi-LSTM layers with 64 units, fully connected
layer, and output layer.

5. Results

The results evaluated for all the methods used in this study are presented in this
section, including the validation of the methods. ML algorithms (SVM, k-NN, and LDA)
were performed on MATLAB® 2020a Classification Learner App, whereas DL algorithms
(CNN, LSTM, and Bi-LSTM) were performed on Python 3.7.12 on Google Colab using
Keras models with TensorFlow.

5.1. Classification Accuracy of Machine-Learning Algorithms

For ML algorithms, five features (signal mean, signal variance, signal skewness, signal
kurtosis, and signal peak) across all 12 channels of filtered ΔcHbO(t) signals were spatially
calculated. Three feature combinations that were signal mean, signal variance, and signal
peak yielded the best results. The manually extracted features from fNIRS data of walking
and rest states of nine subjects are fed to the three conventional ML algorithms, SVM, k-NN,
and linear LDA, and the highest accuracies obtained were 78.90%, 77.01%, and 66.70%
across 12 channels, respectively, as given in Table 1.

Table 1. Accuracy of conventional machine-learning (ML) algorithms, k-nearest neighbor (k-NN),
support vector machine (SVM), and linear discriminant analysis (LDA) for all nine subjects.

Classifier Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

SVM 78.90% 76.70% 66.70% 71.50% 72.00% 72.80% 73.50% 75.70% 77.40%
k-NN 77.01% 74.40% 68.30% 70.60% 73.50% 74.10% 72.02% 73.50% 84.80%
LDA 64.30% 66.30% 63.70% 66.30% 66.70% 65.20% 65.60% 67% 67.60%

To curb overfitting, 10-fold cross-validation was used for the training of the models.
The accuracy of conventional ML algorithms for all nine subjects is shown in a bar graph in
Figure 9.
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Figure 9. Machine-learning (ML) classifier accuracies (in %) for nine subjects. The ML classifiers are
support vector machine (SVM), k-nearest neighbor (k-NN), and linear discriminant analysis (LDA).

5.2. Classification Accuracy of Deep Learning Algorithms

To evaluate the deep-learning models, the dataset was initially split into an 80:20 ratio,
the training set (80%) and the testing set (20%). The training set used for DL methods in this
study has 12 feature dimensions. The learning performance of the algorithm is affected by
the size of the training set, which is why 20% of the validation set were employed for each
subject since the larger training set usually provides higher classification performance [69].
Although, for CNN, a smaller number of samples after the 30%validation set also attained
classification accuracy reaching 90%. The pre-processed fNIRS data of walking and rest
states of nine subjects is fed to the three DL algorithms, CNN, LSTM, and Bi-LSTM;
the highest classification accuracies obtained were 95.47%, 95.35%, and 95.54% across 12
channels, respectively. The classification accuracy of DL algorithms for all nine subjects is
shown in a bar graph in Figure 10.

Figure 10. Deep-learning (DL) classifier accuracies (in %) for nine subjects. The DL classifiers are
convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional LSTM
(Bi-LSTM).
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All the DL models (CNN, LSTM, and Bi-LSTM) were compiled with the metric “accu-
racy”, which is the measure of the number of correct predictions from all the predictions that
were made. To further evaluate the effectiveness of the model, model “precision”, which is
the number of positive predictions divided by the total number of positive predicted values
and model “recall”, which is the number of actual positives divided by the total number
of positive values were also calculated. Accuracy, precision, and recall of DL algorithms
are summarized in Tables 2–4. The loss function used for the models was “categorical
cross-entropy” which is a measure of prediction error, and the optimization technique used
was “Adam optimizer”. In order to avoid overfitting, early-stopping technique was used
to halt the training when the error during the last 50 epochs is not reduced. Learning rate
of 0.001 and decay factor of 0.5 were used in all DL models.

Table 2. Accuracy, precision, and recall of deep-learning (DL) algorithm, convolutional neural
network (CNN) for all nine subjects.

CNN Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

Accuracy 95.47% 88.10% 85.71% 87.72% 95.29% 85.63% 85.70% 87.37% 85.52%
Precision 90.78% 86.65% 88.28% 82.94% 93.72% 86.18% 79.32% 85.23% 83.79%

Recall 87.88% 80.74% 84.37% 85.63% 90.49% 82.87% 82.60% 88.06% 81.63%

Table 3. Accuracy, precision and recall of deep learning (DL) algorithm, long short-term memory
(LSTM) for all nine subjects.

LSTM Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

Accuracy 83.81% 82.84% 82.72% 81.83% 95.35% 83.04% 81.72% 82.00% 84.81%
Precision 78.24% 83.36% 80.92% 80.83% 90.76% 85.49% 80.29% 81.43% 82.45%

Recall 80.04% 82.32% 81.75% 81.25% 93.45% 84.35% 81.82% 83.63% 79.83%

Table 4. Accuracy, precision and recall of deep learning (DL) algorithm, bidirectional LSTM (Bi-LSTM)
for all nine subjects.

Bi-LSTM Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Sub8 Sub9

Accuracy 95.54% 83.55% 81.81% 82.42% 93.28% 81.67% 81.85% 82.62% 83.42%
Precision 90.74% 80.23% 82.45% 81.72% 95.56% 80.48% 84.90% 80.53% 85.37%

Recall 92.38% 82.08% 80.76% 83.62% 91.49% 82.43% 83.73% 84.29% 80.97%

To evaluate the statistical significance of ML and DL methods, a t-test was performed
for the best performing DL method (CNN) and all the other five classifiers accuracies, as
shown in Table 5 The results of these statistical tests showed significant improvement of
classification accuracy for the proposed DL method (p < 0.008) and the null hypothesis,
meaning no statistical significance was rejected.

Table 5. Statistical significance between CNN and all other five classifiers accuracies.

Classifiers Bonferroni Correction Applied (p < 0.008)

CNN vs. SVM 1.42 × 10−5

CNN vs. k-NN 8.63 × 10−5

CNN vs. LDA 4.01 × 10−12

CNN vs. LSTM 5.35 × 10−9

CNN vs. Bi-LSTM 2.19 × 10−8

5.3. Validation

For the purpose of validation of the proposed methods, the analysis was also per-
formed on an open-access database containing fNIRS brain signals (ΔcHbO(t) and ΔcHbR(t))
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for the dominant foot tapping vs. rest [70]. The analysis was performed for 20 subjects
with 25 trials for each subject. By applying the ML methods (SVM, k-NN, and LDA) on
the fNIRS dataset for the dominant foot tapping vs. rest tasks, the average classification
accuracies were estimated at 66.63%, 68.38%, and 65.96%, respectively, while for DL meth-
ods (CNN, LSTM, and Bi-LSTM) the average classification accuracies were estimated at
79.726%, 77.21%, and 78.97%, respectively. The students’ t-test showed significantly higher
performance (p < 0.008) for the proposed DL method. The results obtained from the valida-
tion dataset also confirmed the high performance of the proposed DL methods over the
conventional ML methods.

6. Discussion

Around the world, there are a substantial number of people that have gait impairment
and permanent disability in their lower limbs [71]. In the recent decade, the development
of wearable/portable assistive devices for mobility rehabilitation and performance aug-
mentation focuses on acquiring the user’s intent through brain signals to control these
devices/limbs [72]. In the field of assistive technologies, the fNIRS-BCI system is a rel-
atively suitable technique for the control of exoskeletons and wearable robots by using
intuitive brain signals instead of being controlled manually by various buttons to get the
desired postures [28,31]. It has a better spatial resolution, fewer artefacts, and acceptable
temporal resolution, which makes it a suitable choice for rehabilitation and mental task
applications [29,73]. High accuracy BCI systems are to be designed in order to improve
the quality of life of people with gait impairment since any misclassification can probably
result in a serious accident [56]. To achieve this, the proposed DL and conventional ML
methods are investigated for a state-of-the-art fNIRS-BCI system. The control commands
generated through these models can be used to initiate and stop the gait cycle of the lower
limb exoskeleton for gait rehabilitation.

Researchers have been exploring different ways to improve the classification accuracies
by using different feature extraction techniques, feature combinations, or by using different
machine-learning algorithms [30]. In a study, six feature combinations, signal mean (SM),
signal slope (SS), signal variance (SV), slope kurtosis (KR), and signal peak (SP) have
been used for walking and rest data, and the highest average classification accuracy of
75% was obtained from SVM using the hrf filter [31]. In this study, we used three feature
combinations of the signal mean, signal variance, and signal peak, and the accuracy
obtained from SVM using these features were 73.91%. In a recent study, four-level, mental
workload states were assessed using the fNIRS-BCI system by utilizing DNNs, such as
CNN and LSTM, and the average accuracy obtained using CNN was 87.45% [39]. Our
study achieved almost the same average classification accuracy for CNN with 87.06% for
two-class motor execution of walking and rest tasks.

CNN generally refers to a two-dimensional CNN used for image classification, in
which the kernel slides along two dimensions on the image data. Recently, researchers
have started using deep learning for fNIRS-BCI and bioinformatics problems and have
achieved good performances using 2-D CNNs [35,74]. However, in this study, we have
considered the one-dimensional CNN for time series fNIRS signals of motor execution
tasks and reached a satisfactory classification accuracy. The highest average classification
accuracy obtained in this study is 88.50%. For time-series fNIRS data, LSTMs and Bi-LSTMs
can achieve high accuracy in terms of classification, processing, and forecasting predictions.
In a study for assessing human pain in nonverbal patients, LSTM and Bi-LSTM models
were evaluated, and the Bi-LSTM model achieved the highest classification accuracy of
90.6% [37]. In another study, the LSTM based conditional generative adversarial network
(CGAN) system was analyzed to determine whether the subject’s task is left-hand finger
tapping, right-hand finger tapping, or foot tapping based on the fNIRS data patterns, and
the classification accuracy obtained was 90.2%. In the present study, the highest accuracy
achieved on any subject with LSTM and Bi-LSTM is 95.35% and 95.54%, respectively, across
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all 12 channels. The comparison of the average accuracies obtained using ML and DL
approaches is shown in a bar graph in Figure 11.

Figure 11. Comparison between machine-learning (ML) classifiers (support vector machine (SVM),
k-nearest neighbor (k-NN), and linear discriminant analysis (LDA)) and deep-learning (DL) classifiers
(convolutional neural network (CNN), long short-term memory (LSTM), and bidirectional LSTM
(Bi-LSTM)) based on average accuracies.

7. Conclusions

In this study, two approaches, ML and DL, are investigated to decode two-class data
of walking and rest tasks to obtain maximum classification accuracy. The DL approaches
proposed in this study, CNN, LSTM, and Bi-LSTM, attained enhanced performance of
the fNIRS-BCI system in terms of classification accuracy as compared to conventional ML
algorithms across all nine subjects. The highest average classification accuracy of 88.50%
was obtained using CNN. CNN showed significantly (p < 0.008) better performance as
compared to all other ML and DL algorithms. The control commands generated by the
classifiers can be used to start and stop the gait cycle of the lower limb exoskeleton which
can effectively assist elderly and disabled people in the gait training.
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Abstract: Brain-computer interface performance may be reduced over time, but adapting the classifier
could reduce this problem. Error-related potentials (ErrPs) could label data for continuous adaptation.
However, this has scarcely been investigated in populations with severe motor impairments. The aim
of this study was to detect ErrPs from single-trial EEG in offline analysis in participants with cerebral
palsy, an amputation, or stroke, and determine how much discriminative information different brain
regions hold. Ten participants with cerebral palsy, eight with an amputation, and 25 with a stroke
attempted to perform 300–400 wrist and ankle movements while a sham BCI provided feedback
on their performance for eliciting ErrPs. Pre-processed EEG epochs were inputted in a multi-layer
perceptron artificial neural network. Each brain region was used as input individually (Frontal,
Central, Temporal Right, Temporal Left, Parietal, and Occipital), the combination of the Central
region with each of the adjacent regions, and all regions combined. The Frontal and Central regions
were most important, and adding additional regions only improved performance slightly. The
average classification accuracies were 84 ± 4%, 87± 4%, and 85 ± 3% for cerebral palsy, amputation,
and stroke participants. In conclusion, ErrPs can be detected in participants with motor impairments;
this may have implications for developing adaptive BCIs or automatic error correction.

Keywords: error-related potentials; brain-computer interface; cerebral palsy; amputation; stroke;
neurorehabilitation; artificial neural network

1. Introduction

Brain-computer interfaces (BCIs) provide individuals with severe motor impairments
the possibility to control external devices using only brain activity [1–3]. Examples of such
devices could be wheelchairs and robotic manipulators for mobility restoration, speller
devices for communication, and electrical stimulators or rehabilitation robots for motor
rehabilitation after e.g., stroke [1,4,5]. Various control signals can be used to control BCIs,
such as steady-state visually evoked potentials [2,6], P300, movement-related cortical
potentials, and sensorimotor rhythms. These control signals are recorded from the electrical
activity of the brain and processed to enhance the signal-to-noise ratio, after which they are
detected/classified and translated into device commands. To ensure good performance
of the BCI, several factors need to be attended to such as proper electrode montage and
impedances for recording the brain activity and good calibration data for the classifier [7,8].
The calibration data that often are recorded prior to the actual use of the BCI may not
represent the actual brain activity well after the BCI has been used for some time, e.g., due
to changes in electrode impedance or if the user starts to fatigue. This problem could be
accounted for if the classifier in the BCI is continuously updated. Error-related potentials
(ErrPs) have been proposed as a means for this [9]. An ErrP is elicited when a person
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realizes an error e.g., the output of the BCI is different than expected. With proper ErrP
detection, erroneously classified data can be correctly labelled and the classifier in the BCI
can be correctly updated based on the most recent data. Another application of ErrPs
within BCI is error correction, where an erroneous action of the BCI, e.g., in a P300 speller
or movement of a robotic arm, can be detected and the incorrect action can be reverted
automatically [9,10]. If the ErrPs are properly detected, the performance of the BCI can be
improved, since the potential errors do not need to be corrected manually (see e.g., [11–13]).
It has been shown in several studies that ErrPs can be detected from single-trial EEG [9,10],
primarily from able-bodied individuals, but only a few studies have investigated the
detection of ErrPs in individuals with movement disabilities. It has previously been shown
how various factors modulate the ErrP in stroke patients [14,15], and that ErrPs in stroke
patients can be detected from single-trial EEG [16]. In addition, it has been reported
that ErrPs can be elicited and detected in individuals with spinal cord injury [13,17,18],
amyotrophic lateral sclerosis [19], and epilepsy [20,21]. Lastly, error processing has been
investigated in individuals with Parkinson’s disease [22] and cerebral palsy [23], but
detection of ErrPs in these conditions has not been performed. ErrPs have generally been
detected using temporal waveform features of a bandpass filtered epoch (~0–1 s after the
feedback of the outcome) from electrodes on the scalp in the proximity of the anterior
cingulate cortex amongst other neural generators (roughly around FCz according to the
10–20 EEG system) [9,10]. ErrPs can be detected from a single or few electrodes around
FCz [24,25], but studies have reported that additional discriminative information can be
obtained from using more electrodes covering other parts of the brain [24,26–35]. The aim
of this study was twofold; first it was investigated whether ErrPs could be detected in
individuals with motor disabilities after cerebral palsy, an amputation, or stroke in offline
analysis, and secondly, how much discriminative information different brain regions bring
to the detection of ErrPs.

2. Materials and Methods

2.1. Participants

In this study, ten participants with cerebral palsy (for clinical characteristics see Table 1),
eight amputees (see Table 2), and 25 participants with a stroke (see Table 3) were recruited.
The experiments were conducted at Allied Hospital, Faisalabad, Pakistan. All participants
or their parents provided written informed consent before the experiment. The procedures
were approved by the local ethical committee at Allied Hospital and were conducted
according to the Helsinki Declaration. The cerebral palsy participants were recruited
through the Department of Pediatrics, amputees were enlisted through the Department
of Orthopedics, and stroke participants were recruited at the Department of Neurology at
Allied Hospital Faisalabad. All the cerebral palsy participants were diagnosed between ages
of 1–3 years. The cerebral palsy participants’ motor abilities were assessed by a pediatrician
at Allied Hospital in terms of the gross motor function classification system (GMFCS),
(I = ambulatory, II = some limitations in motor functions, III = dependent on others or
some assistive devices). The motor abilities of the stroke participants were assessed by
a Neurologist in terms of the Bruunstrom Stage classification. The data from the stroke
patients have been presented in a recent study, but the experimental details are described
in detail in the following sections [16].

2.2. Data Recording

EEG was recorded from 64 channels with active electrodes with a sampling rate of
1200 Hz (g.HIamp and g.GAMMASYS, G.Tec, Graz, Austria). The electrodes were placed
according to the 10-10 system and were grounded to AFz and referenced to a linked
ear reference. During the experiment the electrode impedances were below 10 kΩ. The
EEG was synchronized to visual cues through an Arduino controller from a custom-made
MATLAB script (MathWorks®, Natick, MA, USA) which sent a trigger to the EEG amplifier.
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The external triggers were used to divide the continuous EEG into epochs containing error
and correct responses.

2.3. Experimental Details

The participants were seated in a comfortable chair in front of a computer screen
which displayed the visual cues throughout the experiment. The experiment consisted of
15 runs for the participants with cerebral palsy and 20 runs for the amputees and stroke
participants, where each run consisted of 20 trials. Each trial started with an idle phase
lasting five seconds where the participant could relax, this was followed by a preparation
phase lasting three seconds where the participant was cued to bring the attention back to
the screen and prepare to attempt to perform a movement. In the movement phase a picture
of the hand or foot was shown pointing to the left or right indicating that a wrist extension
of the right or left hand should be performed or a dorsiflexion of the right or left foot. The
movement phase lasted three seconds for the amputees and stroke participants and five
seconds for the participants with cerebral palsy to allow them more time to process what
intended movement that should be attempted. The amputees were instructed to imagine
the movement of their amputated limb. A single movement attempt was performed in each
movement phase. After the movement phase, visual feedback with a ratio of 70/30 (for
correct/ incorrect) was presented as a green coloured tick mark or a red coloured cross sign
indicating whether the movement was correctly or incorrectly detected based on the brain
activity. No actual detection of movements was performed, but it was conveyed to the
participant that a BCI classified the movements [16,36]. During the feedback monitoring
the participant was instructed to avoid unnecessary movements and eye blinks. An equal
number of 75, 100, and 100 movements were performed for the left/right hand and foot
for the cerebral palsy, amputees, and stroke participants respectively, i.e., 300, 400, and
400 movements in total. At the end of each run a break was given until the participant
was comfortable with resuming the experiment. The experiments were completed in
approximately 100–180 min.

Table 1. Characteristics of the participants with cerebral palsy. Gender, age, and diagnosis (diplegia
or hemiplegia) as well as the affected side, and gross motor function classification system (GMFCS)
score are presented.

Participant Gender Age (Years) Diagnose GMFCS

01 F 12 Diplegia II
02 F 10 Diplegia II
03 F 10 Hemiplegia-right II
04 M 16 Hemiplegia-left II
05 M 11 Hemiplegia-left I
06 M 9 Hemiplegia-right II
07 F 14 Hemiplegia-right II
08 M 12 Hemiplegia-right III
09 M 13 Diplegia III
10 M 15 Diplegia III

2.4. Signal Processing
2.4.1. Pre-Processing

The continuous EEG data were bandpass filtered between 1–10 Hz with an 8th order
zero phase-shift Butterworth filter. After the filtering, bad channels and epochs were
rejected from the analysis. Channels having a mean amplitude more than three standard
deviations above the overall mean amplitude across all channels were defined as bad
channels and removed. Next, the filtered data were divided into 0.7 s epochs (starting from
0.1 s after the presentation of the visual feedback, i.e., green tick mark or red plus sign, until
0.8 s after) to capture the negative and positive peaks of the error and correct responses. Bad
epochs were defined as an epoch with peak-peak amplitude exceeding ±150 μV. To have
an equal number of error and correct responses, random correct responses were selected
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for the further data analysis to match the number of error responses. The data analysis was
performed in MATLAB (MathWorks®).

Table 2. Characteristics of the participants with an amputation. Gender, age, time since amputation,
the level of amputation, and affected side are presented.

Participant Gender Age (Years)
Time Since

Amputation (Years)
Amputation Level Amputation Side

01 M 13 3 Hip disarticulation Left
02 F 45 2 Transfemoral Left
03 M 32 5 Wrist disarticulation Right
04 M 27 1 Transfemoral Right
05 M 30 2 Shoulder disarticulation Left
06 M 32 5 Transcredial Right
07 M 53 7 Knee disarticulation Right
08 M 12 5 Hip disarticluation Left

Table 3. Characteristics of the participants with an amputation. Gender, age, time since amputation,
the level of amputation and affected side are presented.

Participant Gender Age (Years) Affected Side Type of Stroke Time Since Injury (Days) Bruunstrom Stage

01 M 48 Right Haemorrhage 91 II
02 M 55 Right Ischemic 172 V
03 M 41 Left Ischemic 70 III
04 M 50 Left Haemorrhage 90 III
05 M 57 Right Haemorrhage 52 V
06 M 52 Right Ischemic 188 V
07 M 24 Left Haemorrhage 180 IV
08 F 32 Left Ischemic 25 II
09 F 26 Left Haemorrhage 20 I
10 M 60 Right Ischemic 87 IV
11 M 54 Left Ischemic 220 VII
12 M 46 Left Ischemic 42 III
13 M 58 Right Ischemic 84 III
14 M 37 Right Haemorrhage 36 II
15 M 42 Left Haemorrhage 118 V
16 M 24 Left Haemorrhage 45 IV
17 F 26 Right Ischemic 12 I
18 M 62 Right Haemorrhage 118 III
19 M 30 Right Ischemic 60 III
20 F 53 Left Ischemic 93 IV
21 F 38 Right Haemorrhage 45 VI
22 F 28 Left Ischemic 27 V
23 M 45 Left Ischemic 90 IV
24 M 35 Left Haemorrhage 17 II
25 M 45 Right Haemorrhage 280 VI

2.4.2. Classification

For the classification of error and correct responses a multi-layer perceptron artificial
neural network (MLP ANN) was used. In a recent study [16], we found that MLP ANN
performed better than a linear discriminant analysis classifier, which is often used for
classifying ErrPs. Therefore, we chose to perform the classification with MLP ANN.

The input for the MLP ANN was the entire pre-processed epoch. The MLP ANN had
5 layers where the input, layer 1, was the data points in the epoch for the channels of interest
(dimension: number of channels x number of samples in epoch). Three hidden layers were
used, they had a size of 100-50-25, whereas the output layer was of size 1 with a sigmoid
activation function. The MLP ANN was trained using the scaled conjugate gradient descent
method, and the performance of the MLP ANN was validation checked with cross-entropy.
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The classification was performed with different electrode configurations to investigate how
well error responses can be discriminated from correct responses. The electrodes were
divided into six specific brain regions: Frontal, Central, Parietal, Occipital, Temporal Left,
and Temporal Right (see Figure 1). Initially, each region was used as input for the MLP
ANN individually. We had a hypothesis about ErrP classification being highest at the
Central brain region based on existing ErrP literature and the proximity of the anterior
cingulate cortex. Thus, the classification was performed again with the Central region as
input combined with each of the adjacent brain areas (i.e., Frontal, Parietal, Temporal Left,
and Temporal Right). Next, the classification was performed with all brain regions except
the Occipital region, and lastly, the classification was performed with all brain regions
combined. In all the classification scenarios, 10-fold cross-validation was used, the same
folds were used across the different classification scenarios. The analyses were performed
using MATLAB (MathWorks®).

 
Figure 1. The electrodes were divided into Frontal, Central, Parietal, Occipital, Temporal Left, and
Temporal Right brain regions. Note that there is a different number of electrodes in the different
brain regions.

3. Results

On average, 0.6 ± 0.7 channels (range: 0–2) and 65 ± 56 epochs (range: 9–141)
were excluded for the cerebral palsy participants, 0.5 ± 1.4 channels (range: 0–4) and
59 ± 71 epochs (range: 0–191) were excluded for the amputees, and 0.3 ± 0.5 channels
(range: 0–1) and 72 ± 64 epochs (range: 2–228) were excluded for the stroke participants.

The average error and correct responses are presented in Figure 2 for participants with
cerebral palsy, participants with an amputation, and participants with a stroke. From the
averages it can be seen that there was a consistent negative peak between 0.3 and 0.4 s after
the presentation of the feedback and a positive peak 0.1 s after the negative peak. Based on
the grand averages, there was a slightly higher peak-peak amplitude between the negative
and positive peaks for the error responses compared to the correct responses. In Figure 3,
topographical plots are shown from representative participants. It can be seen that the
Central and Frontal channels show the most negative and positive peaks, although most
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other channels also show a similar negative or positive peak, but with smaller amplitudes.
In the following sections, the classification accuracies are presented as mean ± standard
error across participants.

 
Figure 2. Grand average of error and correct responses from FCz across the ten participants with
cerebral palsy (top), eight participants with an amputation (middle), and 25 participants with a stroke
(bottom). The solid line is the mean across participants and the shaded area represents the standard
error.
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Figure 3. Topographical plot of the negative (top) and positive (bottom) peaks of the error responses
for a representative participant with cerebral palsy (left column), a participant with an amputation
(middle column), and a participant with a stroke (right column). The unit of the color bar is in μV.

The classification results for participants with cerebral palsy are presented in Figure 4.
With a single brain region as input, the highest classification accuracies between error
and correct responses were obtained with the electrodes from the Frontal region (87 ± 3%)
followed by the Central region (84 ± 3%). The lowest classification accuracies were obtained
from the Occipital region (78 ± 5%). The classification accuracies did not increase when
combining different regions.

The classification results for participants with a stroke are presented in Figure 6. Like
the cerebral palsy and amputation participants, the highest classification accuracies with a
single brain region as input were obtained with the electrodes from the Frontal (84 ± 2%)
and Central region (84 ± 3%). The lowest classification accuracies were obtained from the
Parietal region (79 ± 3%). The classification accuracies increased slightly when combining
the Frontal and Central region (85 ± 3%).

The classification results for participants with an amputation are presented in Figure 5.
As with the cerebral palsy patients, the highest classification accuracies with a single
brain region as input were obtained with the electrodes from the Frontal region (84 ± 5%)
followed by the Central region (83 ± 5%). The lowest classification accuracies were obtained
from the Parietal region (78 ± 7%). The classification accuracies increased when adding the
Frontal region to the Central region (87 ± 4%); however, when adding more regions, the
classification accuracies decreased (85 ± 4%).
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Figure 4. Classification between error and correct responses. The bars represent the mean across
participants with cerebral palsy, and the standard error is shown as well. The top of the figure
shows the classification accuracies obtained using each brain region individually, and the bottom
of the figure shows the classification accuracies when combining different brain regions. F: Frontal,
TR: Temporal Right, TL: Temporal Left, C: Central, P: Parietal, and O: Occipital.
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Figure 5. Classification between error and correct responses. The bars represent the mean across
participants with an amputated limb, and the standard error is shown as well. The top of the figure
shows the classification accuracies obtained using each brain region individually, and the bottom
of the figure shows the classification accuracies when combining different brain regions. F: Frontal,
TR: Temporal Right, TL: Temporal Left, C: Central, P: Parietal, and O: Occipital.
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Figure 6. Classification between error and correct responses. The bars represent the mean across
participants with a stroke, and the standard error is shown as well. The top of the figure shows the
classification accuracies obtained using each brain region individually, and the bottom of the figure
shows the classification accuracies when combining different brain regions. F: Frontal, TR: Temporal
Right, TL: Temporal Left, C: Central, P: Parietal, and O: Occipital.

4. Discussion

In this study it was shown that error responses can be discriminated from correct
responses from single-trial EEG recordings in participants with cerebral palsy, an ampu-
tation, and a stroke. The highest classification accuracies were obtained from the Frontal
and Central brain regions from all participant groups with average classification accuracies
of 84 ± 4%, 87 ± 4%, and 85 ± 3% for cerebral palsy, amputees, and stroke participants,
respectively. This was also expected, since the Frontal and Central electrodes from the
scalp are closest to the main neural generators associated with error processing such as the
anterior cingulate cortex [37]. The classification accuracies only increased slightly when
information from other brain areas were added to the Frontal and Central region. However,
the classification accuracies from the different regions individually were all significantly
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higher than chance level, calculated with a significance level of 5% (between 62 and 66% for
amputees/stroke and cerebral palsy, respectively) [38]. This could indicate that there is a
high correlation between electrodes, which could be due to the fact that the EEG correlates
of the error/correct responses are widely distributed over the scalp, potentially due to
volume conduction.

The findings agree with several other studies that have reported the midline electrodes
(especially FCz and Cz) to contain the highest error-related activity [24,28–31,34,35,39,40],
but also Parietal areas [24,26–28,31–33,35] and the Occipital cortex have been associated
with error-related activity [27,28,33,35]. It has been reported that the ErrP has the highest
amplitudes around the midline channels but is still visible in the channels in the periphery
furthest away from the midline, with a smaller amplitude though [27,33–35]. This may
explain why all brain regions individually provide enough discriminative information to
provide classification accuracies that are significantly higher than chance level; however, it
has also been reported that the channels in the periphery lead to classification accuracies
around chance level [29]. The fact that the ErrP can be observed in all channels, but with
smaller amplitudes in the periphery, may also explain why adding additional regions to the
Frontal and Central regions does not provide much additional discriminative information
to the classification. This finding is also supported by previous studies that have found
similar marginal increments/decrements in classification accuracies when multiple brain
regions are used as input for classification [28,30]. It should also be noted that there is a
different number of electrodes in the different brain regions in this study, which in itself
could affect the classification accuracies although their spatial distribution probably matters
most. It has been reported that the classification accuracies increase with a higher number
of electrodes used for classification of ErrPs and motor imagery [29,33,41].

Despite this focus on populations with motor impairments, cerebral palsy, amputation,
and stroke, it was still possible to decode ErrPs with accuracies similar to what has been
reported previously in studies with able-bodied participants and participants with other
types of motor impairments. This could be expected since the ErrP is elicited by the
perception of an error, although the motor impairment could potentially cause lower
expectations of one’s own performance and hence affect the elicitation of the ErrP if the
participant does not expect to be able to succeed in the task. However, this was not
probed in the current study. The classification accuracies in similar studies have been
reported to be in the range of 70–90% see e.g., [16,24,30,36,39,42–48]. However, it should
be noted that bad epochs were rejected as part of the pre-processing in the current study,
which is likely to have improved the decoding. These results may be optimistic as to
what can be obtained in online decoding of errors. The approach of using MLP ANN has
previously been shown to be useful for decoding ErrPs in stroke patients [16], and with
this approach it is not necessary to extract features, since the entire epoch is used as input
for the classifier. However, this classifier showed poor between-day and across-participant
transfer [16], which suggests that calibration data for the classifier need to be collected
every time it is going to be used. This can be a time-consuming process and it should be
considered whether other, more generic approaches should be used [43,49–51], that can be
individualized/adapted [17,52] to the user while an error monitoring/correction system
is in use. Alternatively, it should be considered or whether a type of ErrP should be used
in which multiple trials can be obtained more rapidly, such as observational ErrPs [53], or
with higher error/correct ratios [25,54]. These considerations should be tested in future
studies where online control of a BCI with error correction should be evaluated e.g., for
error correction in myoelectric prosthetic control for people with an amputation, control of
assistive devices such as wheelchairs, speller devices, or games for people with cerebral
palsy or for adaptation of BCIs for stroke rehabilitation to account for fatigue or shifts
in attention.

In future studies it could be relevant to perform source localization to better un-
derstand the origin of the error-related activity and investigate how it differs from the
processing of feedback in general: i.e., the correct responses. It would also be relevant to
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perform channel selection to identify the optimal channels for identifying error-related
activity and to investigate how much the relevant channels differ between users and across
conditions. Another aspect that could be investigated is how to further optimize the decod-
ing of ErrPs, which could be done using various techniques such as signal decomposition
techniques and blind source separation for pre-processing the signals [55,56]. In this study,
we only employed one specific type of neural network, but it is likely that other neural
networks or tuning of them could yield better performance [57,58]. This could be tested
systematically with different neural networks with inherent feature extraction, so no fea-
ture extraction with a priori knowledge is needed. Ideally, the classifier should have good
generalization properties across days and users to avoid extensive calibration of it with
user-specific data.

The results in this study also indicated that ErrPs could be decoded from the periphery,
e.g., from non-hairy electrode locations around the ear. It could potentially allow the use
of a more aesthetically appealing headset/electrode setup that also would not require
hair wash after each use, which would be an important consideration for permanent BCI
users [59,60]. This could be investigated in future studies.

5. Conclusions

In this study it was shown that ErrPs can be detected from single-trial EEG in partici-
pants with cerebral palsy, participants with an amputation, and participants with a stroke.
The Frontal and Central brain regions were the most important ones, but it was also shown
that other brain regions contributed with some discriminative information that increased
the classification accuracy slightly. It was also shown that other brain regions beside the
Frontal and Central regions could be used to classify ErrPs, this could be important in BCI
applications where headsets are used that do not cover the Frontal or Central brain areas
e.g., for more aesthetically pleasing headsets. Offline analyses were performed, but the
findings should be validated with online error detection in future studies.
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Abstract: Prosthetic arms are designed to assist amputated individuals in the performance of the
activities of daily life. Brain machine interfaces are currently employed to enhance the accuracy as
well as number of control commands for upper limb prostheses. However, the motion prediction
for prosthetic arms and the rehabilitation of amputees suffering from transhumeral amputations
is limited. In this paper, functional near-infrared spectroscopy (fNIRS)-based approach for the
recognition of human intention for six upper limb motions is proposed. The data were extracted
from the study of fifteen healthy subjects and three transhumeral amputees for elbow extension,
elbow flexion, wrist pronation, wrist supination, hand open, and hand close. The fNIRS signals were
acquired from the motor cortex region of the brain by the commercial NIRSport device. The acquired
data samples were filtered using finite impulse response (FIR) filter. Furthermore, signal mean, signal
peak and minimum values were computed as feature set. An artificial neural network (ANN) was
applied to these data samples. The results show the likelihood of classifying the six arm actions with
an accuracy of 78%. The attained results have not yet been reported in any identical study. These
achieved fNIRS results for intention detection are promising and suggest that they can be applied for
the real-time control of the transhumeral prosthesis.

Keywords: artificial neural network (ANN); functional near-infrared spectroscopy (fNIRS); machine
learning; upper-limb prosthesis; transhumeral amputee

1. Introduction

Amputation refers to the removal of a human limb due to an illness, accident, or
trauma. To overcome human limb loss, an artificial device (prosthetics) is provided [1]. The
upper limb amputation is divided into five major types, as indicated in Figure 1. Amputees
wear transhumeral prosthetic arms to substitute for the loss of elbow and lower portion of
arm [2]. A human upper limb can perform seven different motions associated with joints in
the arm. Three arm motions are mandatory for transhumeral prosthesis, including elbow
extension–flexion, wrist supination–pronation, and hand opening and closing. Advances
in the field of biomechatronic have opened new doors to expand the use and applications
of prosthetic devices for amputees. However, the control of such prosthetic arms is new
area for researchers to explore. Bio signals are preferably used for intention detection that
further triggers the implementation of control.
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Figure 1. Levels of upper limb amputation [3].

For a long time, upper limb prostheses have been largely controlled using electromyo-
graphic (EMG) signals from remnant muscles. Various research studies [4] have considered
sEMG for motion intention assessment and used in upper limb prosthetic control. In [5],
a DEKA arm with three modular configurations was proposed for people suffering from
transradial, transhumeral, and shoulder disarticulations. It utilizes sEMG along with a
feet controller and pneumatic bladder for arms control. Lenzi et al. [6] proposed a 5-DoF
transhumeral prosthesis for elbow, forearm, wrist, and grasping motions that used an EMG-
based low-level controller. Researchers have additionally utilized many other biosensors to
control prosthetic arms, such as mechanomyography (MMG) [7], inertial measurement unit
(IMU) [8] and near-infrared spectroscopy (NIRS) [9]. Regardless of the above-mentioned
developments, a gap exists in the simultaneous control of motions of multi-dimensional
transhumeral prostheses.

Signal acquisition and processing are a great challenge in the control of above elbow
amputation due to few or no amount of residual muscle and weak muscle activity [4,10,11].
Furthermore, remaining muscle sites for the prosthetic control are not physiologically
identified to the distal arm functions [12]. In the past few years, the brain-machine interface
(BMI) has appeared as a potential alternative that can offer an incredible opportunity
to amputated individuals by empowering them to play out their daily routine [13,14]. It
evades the muscles intentions. BMI systems are also implemented to restore motor functions
called neuro-prosthesis. The latter assists motor disabled individuals achieve simple
everyday tasks [15–17]. Quite a few modalities, EEG, MEG, and fMRI, have been considered
for BMI applications for their capability to measure brain activities noninvasively. Optical
brain imaging has been recently practiced in the BMI field, recognized as functional near-
infrared spectroscopy (fNIRS) [18].

fNIRS is useful over the other mentioned modalities for BMI as portability, safety,
low noise, and no susceptibility to electrical noise adds to the easy utilization of the
system [19]. fNIRS measures hemodynamic response in the cerebral cortical tissue of the
brain. The principle of fNIRS uses oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR). The optodes are sensitive to two dissimilar wavelengths in the near-
infrared range, 700–1000 nm. This is known as an “optical window”. The biological tissue
is somewhat clear to light in this window. The light absorption by water molecules and
hemoglobin is relatively low in this region. Henceforth, sensing the light pass through
the brain tissue employing noninvasive signal acquisition is performed using an optical
source/detector pair, which is placed on the scalp. A relative change in the concentration
of HbO and HbR indicates neuronal activation relevant to the executed motion [13]. The

162



Sensors 2022, 22, 726

attained brain responses relative to distinct motion may comprise of noises that pollute
these recorded signals. The noise can be classified as physiological, experimental and
instrumental noise [20]. These noises are removed from samples before converting them
to magnitude by implementing the modified Beer–Lambert law [21]. The noise recorded
because of a computer or neighboring environment is recognized as instrument noise.
This noise typically has a high frequency (HF). The HF is separated by applying a low-
pass filter. Experimental noise contains motion artefacts, such as head motions or optode
dislocation from allotted positions. This generates spikes caused by a variation in light
intensities. A study [18] used regularly advanced filtering techniques arbitrarily for noise
reduction. Noise is physiologically fashioned [22] as a result of Mayer wave (~0.1 Hz),
respiration (0.2~0.5 Hz), and heartbeat (1~1.5 Hz) This is large because of oscillations in
blood pressure [23]. One of the chief BMI uses is to extract useful information from raw
brain responses for a control–command generation [14]. The captured signals are refined
in the four phases: signal preprocessing, feature extraction, classification, and control–
command generation. In pre-processing, physiological and instrument artifact and noise
are removed. Afterwards the filtration phase, feature extraction step in to gather detailed
traits of the signal. Next, the extracted features are classified. The trained classifier is
deployed generating control commands using the previously trained data samples [24,25].

Several researchers have embarked on the design and development of robotic arms.
The configurations of robotic arms depend on the tasks to be performed by the human
arm. The distinct comprehension of actuation approaches is employed. Earlier design
approaches have focused on the mechanical issues of structures and the operation of
the prosthetic arms [2]. Most of these prosthetic devices are controlled using unnatural
methods, such as using the contraction of muscles of the opposite arm [4].

This research attempts to lay a foundation for a framework that offers functionality
similar to the human arm, with an intuitive scheme of control. Therefore, by analyzing
fNIRS signals to generate control commands for upper limb prosthetic devices, this current
study proposes an ANN-based signal classification framework to recognize the intention
of six upper limb motions of both healthy and transhumeral amputees. The novelty of
the presented research is to generate six control commands using fNIRS for transhumeral
amputees. To the best of the authors’ knowledge, there is no existing literature for mo-
tion intention detection of six control commands using fNIRS for upper-limb prosthesis
applications [1,2,7,14,26].

This paper is organized as follows. Section 2 describes the materials and methods
deployed for this study. This includes data acquisition and signal processing. Section 3
consists of feature extraction and classification methods, whereas in Section 4, results are
presented and discussed. This includes, filtration, channel selection, and classification
accuracies. Section 5 is the conclusion.

2. Materials and Methods

In this section, details regarding the experimental procedure followed by the methodol-
ogy used in signal acquisition and processing, feature extraction, classification, and control
command generation are included. A block diagram representation of the methods used is
presented in Figure 2.

Figure 2. Methodology of the study.
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2.1. Subject Information

The study included 15 healthy and three transhumeral amputated subjects among
which the healthy subjects were dominant right-hand males. Female amputees are not
included simply due to their unavailability. No subject had any psychological, neuro-
logical, or optical affliction in the past, as per the recommendation given in [27,28]. The
subjects signed a written consent after being briefed about the experimental process. The
demographics of transhumeral amputees are given in Table 1. The experiments were
allowed by the Human Research Ethics Committee (HREC) of Air University Islamabad.
The experiments were performed as per the standards issued by the recent declaration of
Helsinki [29].

Table 1. Demographic characteristics of amputee subjects.

Amputee Title A1 A2 A3

Gender Male Male Male
Age 23 32 42

Amputated Side Right Left Right
Residual Limb Length 14 cm 18 cm 10 cm

Time since Amputation 7 Months 24 Months 145 Months

2.2. Optode Placement

The fNIRS data were recorded from the NIRx Imager system, NIRsport (NIRx Medical
Technologies, Germany), using an 8 × 8 sensor array positioned on the motor cortex region
of the human head scalp. The fNIRS signals were acquired for six arm motions: elbow
extension (E.E), elbow flexion (E.F), wrist pronation (W.P), and wrist supination (W.S),
hand open (H.O), and hand close (H.C). The optodes were precisely placed on the motor
cortex related areas on the 10–20 system that yielded 20 fNIRS channels (10 channels in
each hemisphere). Figure 3a shows the position of fNIRS optodes on a healthy subject.
Easy cap by NIRx technologies is specially made for optical brain imaging according to
international standards [18]. The standard distance between source and detector is 3 cm, as
illustrated in Figure 3b [8,22].

(a) (b) 

Figure 3. Signal acquisition environment and optode placement. (a) Experiment setup showing
optode placement on the motor cortex of a healthy subject. (b) Eight sources (S) and eight detectors
(D) were positioned on the subject’s motor cortex region of the brain to record fNIRS signals with a
separation of 3 cm resulting in twenty channels.

2.3. Experimental Procedure

The experimental procedure was designed for subjects to perform six motor imagery
(MI) tasks. During MI tasks, subjects were instructed to think of performing one of the arm
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movements and refrain from any other action, such as muscle twitches. The individual
subject was asked to perform MI, guided by the experimental team before starting the trials
to make them aware of the experimental protocol [29]. During these tasks, the subjects were
seated on a comfortable chair to remain relaxed. The chair was placed at an approximate
distance of 90 cm from the screen so that the arm motion indications are noticeable and the
computer screen backlight does not obstruct the optical sensors [18,30,31].

The experiment session began with an initial rest duration of 30 s to generate a baseline.
After that, the routine for the motion was displayed on a computer monitor for subjects to
follow. The experiment had two sessions. At first, all tasks were performed in sequence
such that the arm motions were pre-defined. However, in the second step, all subjects
performed similar arm motions but executed with random intentions. fNIRS logged all six
tasks (E.E, E.F, W.P, W.S, H.O, and H.C). Each task/action comprised of ten-second trials
with a rest session of 20 s. Each motion was repeated 10 times while in total 12 motions
were performed by each subject. An experimental paradigm used in this study is described
in Figure 4. A framework of the proposed study is illustrated in Figure 5.

Figure 4. After an initial 30 s rest, each functional near-infrared spectroscopy block consists of 10 s
activations and 20 s rests. The total experiment duration for acquiring fNIRS signals is 11 min and
includes 12 trials in total.

Figure 5. Flow diagram of fNIRS-based motion intention recognition for the transhumeral prosthesis.

After the signal acquisition, the signals were filtered using FIR filter. These filtered
signals were then used to compute the hemodynamic responses using MBLL. Signal mean
and peaks were extracted as a feature. The minimum values were also extracted to set
the threshold for channel selection. These hemodynamic responses were then fed to the
classifying network. Based on the training, the network predicted the motion class. All
the details with mathematical equations and numeric values are briefly described in the
next section.

2.4. Data Acquisition and Processing

This section includes signal acquisition, signal preprocessing, and statistical feature
extraction. The signal classification algorithm is also contained within this section.

Before signal recording in fNIRS, an optical imaging technique, the light intensity
values were recorded during the oxygenation and deoxygenation of human blood cells of
the brain [32]. By using NIRx dual-tip optodes, the light concentration was measured at
two values of wavelengths: 760 nm and 850 nm. The acquired light intensities are then
processed in nirslab Using this application, one can truncate/remove unwanted data as well
as infrequent gaps captured earlier during the acquisition process [2,33]. The dataset can
be filtered and hemodynamic states can be computed in the same application as well [34].
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2.4.1. Signal Acquisition

The fNIRS signals were acquired using a headset, a flexible cap made of a soft cloth
with optodes referred to as EasyCap [35,36]. The experiments were performed with headset
placement on the motor cortex in three ways: in the first setting, simply placing the cap;
then, the optodes (on the cap) were fixed with spring grommet; and lastly, a complete black
cap on top of second set was placed such that the optodes are not visible [35–37]. As soon
as a subject was wearing the sensor cap, the optodes were calibrated. The results of the first
setup are given in Figure 6b, while Figure 6a represents the outcome of the second set.

(a) 

 
(b) 

Figure 6. Optode status window. (a) Flawless optode connection with head scalp; (b) faulty optode
connection. The signal quality class can be read from a color bar shown along with the optode
status window.

The rectangles/boxes are the representation of the optodes whether source or detector.
The intensity bar on the right is an indication of the optode data quality status. The box
changes its color according to the physical status of the sensor to give an idea about which
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optode to settle on for better signals [38]. The “white color” portrays that there exists
no connection between the optodes and the subject scalp. The “red color” indicates a
“critical” connection, which directs that it requires the optodes to be adjusted. Commonly,
an anomaly is detected because thick hair may be caught in the EasyCap cavity, and just
putting the fNIRS optodes again helped to form a better connection. A “yellow color”
represents an acceptable connection and the brain signals can be attained. The fNIRS data
acquisition system settings were attuned by the system itself. It enhances the gain factor of
each optode when the connection is acceptable. The system further saves these numeric
values in a “conditions” file. This file can be of help later in the optode selection process.
Finally, the “green color” demonstrates that the fNIRS optodes are flawlessly positioned on
the subject’s head. This also indicates that an outstanding tie is recognized between the
sensing element and the scalp for data acquisition [38].

For the third case, when the data was continuously bad, although connections were
fixed by giving a green signal during placement calibration, the dark noise tests were
conducted [39]. This test examines the intensity of light that is incident on the optodes from
the environment. Keeping in mind, the black covering cap cannot always be worn, dark
noise was tested initially with a hypothesis that these special grommets make sure that the
least amount of noise is induced to the sensors [40].

2.4.2. Signal Processing

As soon as the optodes were calibrated, the signal acquisition was started [34]. After
that, the nirslab software comes with a fNIRS headset to differentiate between bad and
good channels based upon the gain values as illustrated in Figure 7. The gain setting
allows the exclusion of all channels that have a higher value than a specified value. The
nirslab label ‘bad’ to any channel shows that it has a value, at either wavelength, equal to
or greater than the threshold value that was specified [34,40]. This value is related to the
light intensity of the environment in which the experiment is conducted. Then, the black
covering cap was used to address the issue [41].

Figure 7. List of good/bad channels to remove bad channels from the analysis and signal classification.

The discontinuities/spikes caused by the cap placement are removed as illustrated
in Figure 8. The number of lines indicates the signal acquired from each optode. Hence, a
clean signal can be fed for further processing. The disturbed/noisy and clean signals can
be seen in Figures 9 and 10, respectively.
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Figure 8. Visualization of recorded raw light intensity of each optode.

Figure 9. Disturbed/noisy signal before grommets and covering head cap is incorporated. Blue lines
represent the data acquired from the detector while the red line represents the source signal.

Figure 10. Clean signal after incorporation of grommets incorporated with covering head cap.

nirslab further provide an artifact removal method.
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An acquired hemodynamic response after noise/spike artefact removal from a healthy
subject is illustrated in Figure 11.

Figure 11. The fNIRS data obtained from a healthy subject according to the experimental protocol.
The upper signal is from the source of 760 nm, and the lower one represents the 850 nm wavelength.

Additionally, the unwanted or disturbing segments in the signal can be removed
according to the values of the threshold or depending on the gain factor incorporated by
the machine earlier [8]. A band-pass filter was applied to further smooth the samples
to compute hemodynamic states [42]. Filtered data at wavelength 750 nm are illustrated
below in Figure 12.

Figure 12. The filtered sample after the implementation of band-pass filter in a range of 0.01 Hz–0.2 Hz.

nirslab used “firls” and “filtfilt” MATLAB® instructions for filtering purposes. The
“firls” proceeds parameters of linear-segment filtration [8]. The “filtfilt” employs filter
parameters to samples. Then, a FIR is introduced. For FIR, a roll-off value states the size of
the transition frequency band [34]. The mathematical formation of the filter is given in a
set of equations, which are the Fourier transform of the truncated filter and are given in
Equations (1) and (2):

H(ω) =
1

2π

∫ π

−π
Hd(λ)W(ω − λ)dλ (1)

h(n) = hd(n)w(n) (2)

The width of transition region between the band pass limits H increases with the width
of main lobe W. It decides the steepness of transition amongst frequencies [43]. This value
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was by default set to 15 by the nirslab according to signal condition [44]. After filtration,
hemodynamic states are computed and are then set to extract features from them.

3. Feature Extraction and Classification of Motion Intention Signals

The method of signal feature extraction performs a crucial part in the identification of
the discriminatory information carried by the bio signals [32,44–46]. This section details
the features extracted from the dataset and the details of the applied machine learning
algorithm for motion classifications.

3.1. Feature Extraction

To execute control commands for six arm motions, features for the signal classification
were extracted. For fNIRS brain signals, signal means (SM), signal peak (SP), and signal
minimum (min) [43,47] were extracted for thresholding purposes. The signal mean was
calculated as (3):

SM =
1
N ∑N

i=1Xi (3)

where N represents the total data points and Xi represents the signal amplitude value. The
signal peak was calculated using a signal amplitude variation between two head-to-head
sections that exceeds a pre-defined threshold value to cut noise. It is given by (4):

SP = ∑N
i=1f(|Xi − Xi+1|) (4)

As per the existing literature [38], SM and SP offer improved control performance for
fNIRS-based systems. However, regarding the stated possibility of an initial fNIRS signal
dip, a (min) signal value was added as a feature [43]. The features were calculated from
only selected optodes based on criteria described earlier in this section using a 2 s moving
window. MATLAB® was employed to execute all the features computation.

3.2. Artificial Neural Network (ANN)

For the evaluation of the performance of acquired fNIRS signals, a widely used [38]
classifier in pattern recognition was implemented, namely, artificial neural network (ANN).
It uses various neuron layers to plan information starting with one circulation then onto
the next one for better and enhanced results, i.e., returning less error [46,48]. A system
called backpropagation assists ANN to form a bridge between input and output layers in
which the corresponding labels/indicators are present [49]. The machine learning toolbox
designed by MATLAB® for neural networks came into play for training the samples [50].
When using the toolbox, all you need to set is the number of hidden neurons in the layer
of this artificial neural network [51]. The designed model then estimates the error of the
probable output in contrast with the actual output. The network further explores the
error to variate to adjust the weightage, to minimize the generated error for the next cycle,
and this process continues unless the error approaches zero [46]. For the network, the
rule activation function was applied, and the weights were randomly assigned by the
toolbox. The results and ANN training particulars are presented in the next section. The
comprehensive flow diagram of the ANN classifier is shown in Figure 13.

The ANN network had 2 hidden layers with 12 and 6 neurons. The output layer will
give one definitive class, i.e., motion class, as defined in Figure 14. First, preprocessed
information is passed through the first layers, which contain 128 filters with a kernel size
of 12. The output from the first layer is 24 × 128 [52]. The second layer contains the same
number of filters and a kernel size of six. The output from the second layer is 12 × 128.
Subsequently, the global average pooling is applied between the output layer for which the
Adam optimization method was deployed [53,54].
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Figure 13. Flow diagram of the ANN classifier.

 

Figure 14. ANN network architecture.

After classifying the fNIRS signals, the trained model was tested. The obtained results
are discussed in the next section.
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4. Results and Discussion

In this study, fNIRS signals were acquired to generate control commands of human arm
motions for the transhumeral amputee. The fNIRS hemodynamic responses are acquired
employing optical sensors, i.e., optodes. These responses are used to drive a prosthetic
arm for transhumeral amputees. For optical sensors, dark noise plays an important role.
The NIRx Technologies designed a high-functioning device that can be used for real-time
purpose. However, the difficulties have never been addressed before. For this study, the
results were not only analyzed based upon the accuracy of the motion classification, but also
the sustainability for real-time applications. The optode placement problem was addressed
and researched upon and is detailed in previous sections. This section specifically presents
the experimental results achieved using the proposed framework. Window sizing of various
lengths and durations has been observed in the literature to detect fNIRS signals [31]. The
period of 0–0.5 and 0–1 s was selected [55,56]. This split time window was used to inspect
hemodynamic response. This then determines the optimal window, which then generates a
command with a minimum amount of time.

4.1. Channel Selection

The electrical gain component that was adjusted to the absorption spectra is shown
by number 6 in Figure 7. The photocurrent generated by the optical wave is amplified
to a greater extent since this factor rises in value [41]. As the gain component increases,
the signal-to-noise ratio of the input drops [42]. As a result, nirslab may identify channels
with gain factors greater than a preset value and reject them from further processing and
analysis. The ordered pair (1.8477 1.7928) reflects the values of a metric we employed to
quantify the raw data’s signal-to-noise ratio [45,46]. The coefficient of variation (CV) is the
measure. Since there are different measuring wavelengths, two CV values are reported.
The sampling frequency is 78.1 Hz. After the analysis presented earlier, a framework is
presented here to overcome the issues contributing to the bad and unsteady signals from
the fNIRS sensor [8,34].

4.2. Motion Classification Accuracy

The classification results were then analysed subject-wise and then the average accu-
racy of all subjects was calculated. The difference in the classification accuracy is evidence
of the importance of signal acquisition and processing procedure. The reliability of the re-
sults is very well dependant on how the signals were acquired and further processed [8,47].
A noisy and disturbing signal resulted in error, while the refined signals were easy to
handle by the classifier algorithms and hence a minimum error was generated [47,52,57].
Furthermore, a t-test was applied to student participants. This test checks the statistical
significance of the attained results [54]. The confidence interval is specified at 95% (p < 0.05).
A quantifiable comparison between healthy subjects and amputees was not possible due to
a restricted number of amputees. However, the computed p-value is 0.0248, with a 95%
confidence interval within healthy subjects.

The network used a sigmoid function for gradient descent. A total of 60% of the
samples were fed for training and 20% samples were utilized by the network for testing and
validation each. Each step was calculated in 320 μs with a 3 s epoch completion time. Then,
a confusion matrix was extracted as soon as the training ends, which not only indicates the
number of samples, those that were accurately classified, but also the false samples that
generated an error. The number of hidden neurons was set to 20. Twelve neurons were
present in each of the transitional hidden layers. The neuron number in the output layer is
specified as six.

The healthy subject-wise accuracy is illustrated in Table 2, whereas Table 3 represents
the accuracy of amputed subjects.
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Table 2. Offline classification accuracies of fifteen healthy subjects using single features signal mean
(SM), signal peak (SP), signal minimum (SMin) and waveform length features for EMG and fNIRS
using LDA and ANN Classifiers.

Features S1 S2 S3 S4 S5

SM 72.88 61.1 74.89 68.63 69.63
SP 67.85 68.89 76.9 69.03 70.03

SMin 74.99 63.84 73.49 68.13 69.13
S6 S7 S8 S9 S10

SM 75.04 75.38 77.15 67.86 74.56
SP 72.22 72.28 65.38 75.77 69.76

SMin 77 74.44 71.15 71.75 66.62
S11 S12 S13 S14 S15

SM 66.78 64.76 60.37 71.54 79.6
SP 69.74 69.56 65.47 71.94 59.81

SMin 66.87 70.61 64.74 69.22 67.6

Table 3. Offline classification accuracies of three amputee subjects using single features signal mean
(SM), signal peak (SP), signal minimum (SMin), and waveform length features for EMG and fNIRS
using LDA and ANN Classifiers.

Features A1 A2 A3

SM 69.26 61.65 57.05
SP 68.91 60.18 57.72

SMin 55.1 50.05 51.93

As stated in Section 1, no work has been conducted for transhumeral amputees in non-
invasive manner to generate six number of control commands. However, the studies that
used fNIRS for some other applications are presented below in tabular form for accuracy
and number of control commands comparison. The study comparison is illustrated in
Table 4.

Table 4. Performance evaluation and comparison with existing classification models.

Technique Learning Method Time Response Number of Control Commands Classification Accuracy

TD features [58] LDA 5.5 s 2 72.82%
FD features [59] LDA/SVM 15 s 2 83%
Raw fNIRS [22] ANN 4 s 4 58%
TD features [60] SVM 0.5 s 6 68.1%

Proposed
framework ANN 320 μs 6 78.65%

It can be seen from the studies above that, as the number of control commands increase,
the accuracy decrease. However, the time response of classifiers has no trend. It is due
to the fact that these studies have been conducted on the signal set acquired by third
parties via online forums. In the proposed framework, the signals were acquired and then
analyzed. Based on the conditions during the signal acquisition process, further steps were
taken, such as filtration and channel selection. This makes a difference, as documented
by [22,58]. The results show the potential usability of the presented framework in real-time
applications and is a step towards enhanced motion prediction in BMI applications.

5. Conclusions

In this research study, an fNIRS-based approach was investigated to recognize the
motion intention of the human upper limb. The fNIRS signals are acquired from the
motor cortex region of the brain using NIRSport from NIRx Technology. The fNIRS signals
were acquired for six arm motions. These motions included elbow extension (E.E), elbow
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flexion (E.F), wrist supination (W.S), wrist pronation (W.P), hand open (H.O), and hand
close (H.C). Channel selection was conducted based on the gain values computed during
signal acquisition. An FIR filter was applied to filter the samples. Signal mean, signal
peak and minimum value were computed as a feature set. ANN classifier was trained
for motion intention prediction. On average, the motion intention prediction was 78%
(p < 0.05) and 64% accurate for healthy and amputated subjects, respectively. The highest
accuracy for an individual subject was recorded as 79.6%. A possible extension of the
presented work includes the framework design for accuracy enhancement and eliminating
the channel selection complications. The application of the presented approach with the
increased number of arm motions, incorporating individuals of different age groups, and
the implementation of generated control commands to control a prosthetic arm device in a
real-time setting are some other directions for future work.
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Abstract: Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive,
portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as
individual finger-tapping, particularly using one hand, have been not investigated using fNIRS
technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment.
Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this prelim-
inary study, we applied standard fNIRS data processing pipeline, i.e. optical densities conversation,
signal processing, feature extraction, and classification algorithm implementation. Physiological
and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order
Savitzky–Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum,
Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin
changes. Sophisticated machine learning algorithms were applied, such as support vector machine
(SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA),
Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XG-
Boost). The average classification accuracies achieved were 0.75 ± 0.04, 0.75 ± 0.05, and 0.77 ± 0.06
using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and
XGBoost classifiers performed exceptionally well on such a high-class problem. The results need
to be further investigated. In the future, a more in-depth analysis of the signal in both temporal
and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved
are promising results and could open up a new research direction leading to enrichment of control
commands generation for fNIRS-based brain-computer interface applications.

Keywords: functional near-infrared spectroscopy (fNIRS); finger-tapping; classification; motor cortex;
machine learning

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a portable and non-invasive brain
imaging modality for continuous measurement of haemodynamics in the cerebral cortex of
the human brain [1]. Over the last decade, the method has gained popularity due to its
acceptable temporal and spatial resolutions, and its easy-to-use, safe, portable, and afford-
able monitoring compared to other neuroimaging modalities [2]. fNIRS has been used to
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monitor a variety of cognitive activities, such as attention, problem-solving, working mem-
ory, and gait rehabilitation [3]. The underlying theory behind fNIRS functionality is based
on optical spectroscopy and neurovascular coupling [1,4]. Optical spectroscopy uses the
interaction of light with matter to measure certain characteristics of molecular structures,
while neurovascular coupling defines the relationship between local neuronal activity and
subsequent changes in cerebral blood flow due to cerebral activity [5–7]. It is known that
most of the biological tissue is transparent to the near-infrared range (700–900 nm). The
near-infrared window commonly used in fNIRS is 690–860 nm [8]. Haemoglobin is a pro-
tein that is responsible for delivering oxygen throughout the body via red blood cells. This
protein is the major absorbent within the near-infrared range of light ( def. 700–1100 nm).
In summary, the continuous-wave fNIRS machine uses two near-infrared wavelengths
to measure the relative change in oxygenated haemoglobin (ΔHbO) and deoxygenated
haemoglobin (ΔHbR) in cerebral activation.

The most common brain areas studied in neuroimaging are the cerebral prefrontal
and motor cortex, particularly for cognitive and motor tasks [9,10]. Since the beginning of
the 19th century, the finger-tapping test has been used in various brain studies to assess the
motor abilities and accessory muscular control [11]. Various brain and non-brain signals
were obtained during the finger-tapping task to access the motor abilities and differentiated
movements. Investigating finger movements is particularly important in the field of the
brain-computer interface to decode the neurophysiological signal and generate control
commands for external devices [9,12]. Individual finger movements were classified with
an average accuracy of 85% using electromyogram (EMG) bio-signals while performing
finger-tapping tasks [13]. Similarly, in another study using surface EMG, individual and
combined finger movements were classified with an average accuracy of 98% on healthy
and 90% in below-elbow amputee persons [14]. These higher classification accuracies
of finger movements may be best for prosthetic hand development. Other modalities
predicting dexterous individual finger movements include ultrasound imaging from the
forehand and differentiating finger movements with a higher precision of 98% accuracy [15].
Most brain imaging modalities are limited to the movement of larger body parts, such
as the upper and lower limbs. However, it is essential to decode dexterous functions
from brain signals in case where other types of brain imaging are difficult to implement.
Among invasive brain signals, electrocorticography (ECoG) was shown to differentiate
between individual finger movements with acceptable classification accuracies [12,16,17].
However, to the best of the author’s knowledge, only one study was found during a
literature review that utilized noninvasive brain signals, i.e., electroencephalography (EEG)
signals, to decode individual finger movements. The study found a broadband power
increase and low-frequency-band power decrease in finger flexion and extension data when
EEG power spectra were decomposed in principal components using principal component
analysis (PCA). The average decoding accuracy over all subjects was 77.11% obtained with
the binary classification of each pair of fingers from one hand using movement-related
spectral changes and a support vector machine (SVM) classifier.

The prevalent motor execution task in fNIRS-based studies includes tapping of one
or more fingers, single hand-tapping, both hand-tapping, right and left finger-tapping
and hand-tapping. In the study, left and right index finger-tapping was distinguished
with a classification accuracy of 85.4% using features from the vector-based phase and
linear discriminant analysis [18]. In [19], three different tasks, i.e. right and left-hand
unilateral complex finger-tapping, and foot-tapping, were performed. The classification
accuracy achieved using SVM was 70.4% for the three-class problem. In single-trail clas-
sification for a motor imaginary with thumb and complex finger-tapping task achieves
an average accuracy of 81% by simply changing the combination of a set of channels,
time intervals, and features [20]. In [21] thumb and little finger were classified with an
accuracy of 87.5% for ΔHbO data. Deep learning approaches are also becoming popular
for the classification of these complex finger movements. In a study [22], using conditional
generative adversarial networks (CGAN) in combination with convolutional neural net-
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works (CNN), the left finger, right finger, and foot-tapping tasks were differentiated with
higher classification accuracy of 96.67%. In one of the recent studies, left and right index
finger-tapping were distinguished with a different tapping frequency using multilabeling
and deep learning [23]. Different labels were assigned to right and left finger-tapping
with different tapping frequencies labels such as rest, 80 bpm, and 120 bpm. With this
complex combination using deep learning approach the average classification accuracy
achieved was 81%. The aforementioned studies are difficult to compare since different
models and finger-tapping exercises were conducted. However, according to the literature,
the differentiation of finger movement patterns is very challenging using fNIRS. This fact
is supported by legacy studies that show that there is no significant statistical difference
between fNIRS signals recorded from primary- and pre-motor cortices during sequential
finger-tapping and whole-hand grasping [24]. Furthermore, the dynamic relationship be-
tween the simultaneously activated brain regions during the motor task is becoming better
understood. An interesting study conducted by Anwar et al. [25,26] describes the effective
connectivity of the information flow in the sensorimotor cortex, premotor cortex, and
contralateral dorsolateral prefrontal cortex during different finger movement tasks using
multiple modalities such as fNIRS, fMRI, and EEG. It was found that there is an adequate
bi-directional information flow between the cortices mentioned above. The study also
concluded that, compared to fMRI, fNIRS is an attractive and easy to use alternative with
an excellent spatial resolution for studying connectivity. In this perspective, multi-modal
fNIRS-EEG is also an appealing alternative to fMRI. Hence, it is essential to study the
flow and connectivity of individual finger movement from the motor cortex using fNIRS
or multi-model integration of EEG-fNIRS. The multi-model EEG-fNIRS integration was
shown to enhance classification accuracy [27], increase the number of control commands,
and reduce the signal-processing time [4,28].

It has been unclear whether fNIRS signals have enough information to differentiate
between individual finger movements. Some underlying limitations of fNIRS may be the
reason for this drawback, such as comparatively low temporal resolution (1–10 Hz for com-
mercially available portable devices), depth sensitivity of about 1.5 cm (depending upon
source-detector distance, which is typically 3 cm), and spatial resolution up to 1 cm [29].
To shed light on this research area, the study is conducted to investigate the detection of
individual finger-tapping tasks using fNIRS. Also, the study is a step forward towards
understanding the dynamic relationship between the brain regions that are simultaneously
activated during motor tasks. We believe that the advances made in sophisticated machine
learning algorithms could help to identify individual finger movements from potential
fNIRS signals. This study is structured and reported in accordance with the guidelines
published in [30]. The following sections will address materials and methods (Section 2),
results and discussion (Section 3) and conclusion (Section 4).

2. Materials and Methods

The section on materials and methods describes procedure followed during experi-
mental design, data collection, and processing.

2.1. Participants

Twenty-four healthy right-handed participants, 18 males (M) and 6 females (F), se-
lected from random university population participated in the experiment. The ages of the
participants were for male (mean age ± standard deviation; range) (M = 30.44± 3.03; range:
24–34 years), and female (F = 29.17 ± 3.06; range: 24–34 years). The healthy young partici-
pants were selected in the age range of 25–35 years because the frequency of finger-tapping
can vary between different age groups. The inclusion criterion for right-handedness was
that the participants had to write with the right hand. The participants had normal vision or
corrected to normal vision. Exclusion criteria include neurological disorders or limitation
of motor abilities in any hands or finger. For ethical statements, please see Section 4.
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2.2. Instrumentation

A continuous-wave optical tomography machine NIRScout (NIRx Medizintechnik
GmbH, Germany) was used to spontaneously acquire brain data at one of the labora-
tories under the ADEPT (Advanced intelligent health and brain-inspired technologies)
research group at Oslo Metropolitan University, Norway. The data acquisition used two
wavelengths, i.e., 760 nm (λ1) and 850 nm (λ1) with a sampling rate of 3.9063 Hz.

2.3. Experimental Setup and Instructions

The experiment was performed in a relatively controlled environment. The environ-
mental light, including monitor screen brightness, was shielded to minimise any influences
during stimuli changes in the presentation. A black over-cap was used to further reduce
the effect of surrounding light further, as shown in Figure 1C. The experiment was con-
ducted in a noise-free room. A visual presentation of resting and task (finger-tapping
corresponding to each finger) was displayed on the computer monitor to the participants.
Before starting the actual experiment, the participants were given implicit instructions
about the experimental protocol and procedure. Practice sessions were conducted before
the experiment. The finger-tapping task was performed at a medium-to-fast pace but not
with any specific frequency. The number of repetitions of experiments for each participant
was dependent upon the comfort and convenience of the participants. No investigation
was conducted during any inconvenience and discomfort experienced by the participant,
resulting in unwanted signals such as frustration interference in brain signals. Data were
acquired using commercial NIRx software NIRStar 15.1. The complete experimental setup
is shown in Figure 1.

Figure 1. (A) Experimental setup; (B) optodes arrangement; (C) overcap to reduce external light;
(D) optodes holder.

2.4. Experimental Design

The experiments were designed using blocks of rest (initial rest, final rest, and inter-
stimulus rest) and task (thumb, index middle, ring, and little finger-tapping) of the right
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hand as shown in Figure 2. An optimal baseline period of 30 s was set up before and
after the first and last task, respectively. The stimuli duration necessary to acquire an
adequate and robust haemodynamic response corresponding to finger-tapping activity
was set to 10 s [31]. The single experimental paradigm consists of three sessions of each
finger tapping trial. The total length of an experiment was 350 s. The single trial includes
10 s rest followed by 10 s of the task. Experiments were repeated for each participant from
one to three times in a single day depending upon his/her comfortability. The rest and task
blocks were presented using NIRX stimulation software NIRStim 4.0.

Figure 2. Experimental paradigm visualization. Single experiment consists of three sessions of each
finger tapping trail. Single trial consists of 10 s task and 10 s finger tapping.

2.5. Brain Area and Montage Selection

Before placing the NIRScap on the participant’s head, cranial landmarks (inion and
nasion) were marked to locate Cz. The emitter and detector were placed in accordance
with 10-5 international positioning layout. The distance between source and detector was
kept at 3 cm using optode holders. Sixteen emitters and sixteen detectors were placed over
the motor cortex in accordance with standard motor16x16 montage available in NIRStar
v15.2, as shown in Figure 3A,B. The source-detectors were placed over the frontal lobe
(F1, F2, F3, F4, F5, F6, F7, and F8), frontal-central sulcus lobe (FC1, FC2, FC3, FC4, FC5,
and FC6), central sulcus lobe (C1, C2, C3, C4, C5, C6), central-parietal lobe (CP1, CP2, CP3,
CP4, CP5, and CP6), and the temporal-parietal lobe (T7, T8, TP7 and TP8). The data were
collected from both the left and right hemispheres for further research work. However,
in this particular work, only the channels of the left hemisphere were only further analysed.

Figure 3. (A) Source-detector placement over motor cortex. Figure 3A Colour code: Red (source),
Blue (detector), Green (channels), and black colour represent channel numbers. (B) Demonstration of
total haemoglobin changes over motor cortex during index finger tapping.
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2.6. Signal Prepossessing

Signal processing was performed using commercial fNIRS data processing software
nirsLAB (v2019014) [32] and Matlab®. Signal were pre-processed in nirsLAB, for diverse
tasks such as removing discontinuities, spikes, and truncation of the data points before and
after the first and last stimuli appeared, respectively. Bad channels were identified using
the criterion of the gain setting of three and coefficient of variation (CV) of 7.5% in nirsLAB.
The coefficient of variation is equal to a hundred times the standard deviation divided by
the mean value of the raw data measurements. A large value for CV is an indication of
high noise. The gain setting was set to eight for all the data processed. Optical densities
were converted into haemoglobin concentration change using Modified Beer–Lambert Law
in nirsLAB (see details in Section 2.7).

2.7. Modified Beer–Lambert Law (MBLL)

The changes in optical densities were converted using MBLL into ΔHbO (Equation (1a))
and ΔHbR (Equation (1b)). The parameter for MBLL, such as the differential path length
factor (DPF) and molar extinction coefficients (using standard W.B Gratzer spectrum) for
ΔHbO and ΔHbR, are shown in Table 1. The molar concentration and MVO2Sat value are
set as 75 μM and 70%, respectively.

ΔHbOi(k) =

(
ε

λ1
ΔHbR

ΔODλ2 (k)
DPFλ2

)
−

(
ελ2

ΔHbR
ΔODλ1 (k)

DPFλ1

)
li
(

ε
λ1
ΔHbRελ2

ΔHbO − ελ2
ΔHbRε

λ1
ΔHbO

) (1a)

ΔHbRi(k) =

(
ελ2

ΔHbO
ΔODλ1 (k)

DPFλ1

)
−

(
ελ1

ΔHbO
ΔODλ2 (k)

DPFλ2

)
li
(

ε
λ1
ΔHbRελ2

ΔHbO − ελ2
ΔHbRελ1

ΔHbO

) (1b)

where, ΔHbOi and ΔHbRi: concentration changes of ΔHbO and ΔHbR, ε(λ): extinction
coefficient corresponding to wavelengths and haemoglobin concentrations, ΔOD: variation
in optical density at kth sample, DPF(λ): differential path length factor, i: ith channel
pair representation of emitter-detector, λ1 and λ2: two working wavelengths of fNIRS
system, ελ1

HbR,ελ2
ΔHbO, ελ2

ΔHbR and ελ1
ΔHbO: extinction coefficients of ΔHbO and ΔHbR at two

different wavelengths.

Table 1. Parameters for Modified Beer–Lambert Law (MBLL).

Wavelength
(nm)

DPF
(cm)

ΔHbO
(1/cm) (moles/L)

ΔHbR
(1/cm) (moles/L)

760 7.25 1466.5865 3843.707

850 6.38 2526.391 1798.643

2.8. Signal Filtration

The spontaneous contamination from physiological and non-physiological noise in
fNIRS data, such as heart rate (�1 Hz), respiration (�0.2 Hz), Mayer waves (�0.1 Hz),
and very low frequency (≤0.04, VLF) was removed by applying subsequent filters. Non-
physiological noise refers to motion artefacts, measurements noise and machine drift
due to the temperature changes in the optical system. The stimulation frequency for
the given experimental paradigm was (1/20 s = 0.05 Hz). The stable 4th order band-
pass Butter-worth filter with a low and high cut-off frequency of 0.01 Hz and 0.15 Hz,
respectively [33], was applied to remove the noises. To avoid phase delay in filtering,
the built-in MATLAB® command ’filtfilt’ was used. Furthermore, smoothing of the fNIRS
signal was done by applying the Savitzky-Golay filter with the optimal order and frame
size recommended in [34]. In [34], the recommended filter order and frame size is three
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and nineteen, respectively, for a frequency band of 0.03–0.1 Hz. We used the same order
and frame size because our band of frequencies are quite similar.

2.9. Feature Extraction

The most common statistical features (descriptive and morphological) used in fNIRS
are signal mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-
peak [35–38]. The window length was set to 10 s, which is equal to the task period.
The descriptions of the extracted features are shown in Table 2 from ΔHbO data.

Table 2. Spatial feature extracted from ΔHbO.

Sr.
No.

Statistical Feature Mathematical Formulation/Description

1. Signal Mean Signal mean is calculated as:
μw = 1

Nw
∑kU

k=kL
	HbXw where,

μw: Mean of window
w: sample window
Nw : Number of sample in the window
kL: Lower limit of the window
kU : Upper limit of the window
	HbXw: Stands for ΔHbO or ΔHbR

2. Signal Peak (Signal
maximum)

The feature select the maximum value in the win-
dow.

3. Signal Minimum The feature minimum value in the window.
4. Signal Skewness Signal skewness is calculated as:

skeww = Ex(ΔHbXw−μw)3

σ
3

where, Ex is the expectation, μ is the mean, and σ is
the standard deviation of the haemoglobin ΔHbXw

5. Signal Kurtosis Signal Kurtosis is calculated as:

Kurtw = Ex(ΔHbXw−μw)4

σ
4

where, Ex is the expectation, μ is the mean, and σ is
the standard deviation of the haemoglobin ΔHbXw

6. Signal Variance Signal variance is the measure of signal spread.
7. Signal Median Median is the value separating the higher half from

the lower half of values in the time window.
8. Peak-to-peak Peak-to-peak is computed as the difference between

the maximum to the minimum value in the time win-
dow.

2.10. Classification

Eight commonly used classifiers were evaluated to check the robustness of modern
machine learning algorithms for decoding dexterous finger movements. The classifiers
included Support vector machine (SVM), Random Forest (RF), Decision tree (DT), Ad-
aboost, Quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest
neighbours (kNN), and Extreme Gradient Boosting (XGBoost). The different classifiers’
parameters are shown in Table 3.

183



Sensors 2021, 21, 7943

Table 3. Classifier parameters.

Classifiers Parameters Setting

QDA priors = None, reg_param = 0.0

AdaBoost n_estimator = 10, random_state = 0, learning_rate = 1.0

SVM Kernal = rbf, degree = 3, random_state = None

ANN hidden layers = (5, 2), solver = ‘lbfgs’, random_state = 1, max_liter = 300,

Decision Tree criterion = entropy, random_state = 0

kNN n_neighbors = 5

Random Forest n_estimators = 10, criterion = entropy, random_state = 0

XGBoost booster = gbtree, verbosity = 1, nthread = maximum number of threads

2.11. Performance Evaluation

Each classifier was mostly evaluated using different performance measures, like
accuracy, precision, recall, F1 score, receiver operating characteristic curve/ROC curve,
and confusion matrix [39]. All these measures can be derived from the so-called true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). Reporting
single metrics does not give us a complete understanding of the classifier behavior. Hence,
it is important to at-least report a few of these parameters to gain a complete understanding
of the classifier behaviour. In this study, we have reported accuracy, precision, recall and F1
score. Accuracy is the ratio between correctly classified points to the number of total point.
The accuracy gives the probability of correct predictions of the model. However, in the
case of highly imbalanced data sets, the model that deterministically classifies all the data
as the majority class will yield higher classification accuracy, which makes this measure
unreliable. The confusion matrix summarizes the predicted results in table format with
visualisation of all the above-mentioned four parameters (TP, FP, TN, FN) of the classifiers.
Precision and recall give us an understanding of how useful and complete are the results,
respectively. F1 score is the harmonic mean of precision and recall. All these parameters
are discussed in the results section, where we discuss the performance of the classifier in
decoding individual finger-tapping.

3. Results and Discussion

In this study, we classified individual finger tapping of right-handed people using
fNIRS signals. For that purpose, eight different spatio-statistical features were extracted
from ΔHbO, as shown in Table 2. Furthermore, we also compared and evaluated the
performance of different classifiers, such as SVM, RF, DT, Adaboost, QDA, ANN, kNN
and XGBoost, as shown in Figure 4. Table 4 shows the four important performance
measures among all of the subjects for the respective classifiers. It was noted that the
kNN, RF and XGBoost classifiers yielded maximum classification accuracies, 0.75 ± 0.04,
0.75 ± 0.05, and 0.77 ± 0.06, respectively. We applied the student’s t-test to validate whether
or not these classifier’s accuracies were statistically discriminant or not with respect to
the rest of the classifiers. The p-values obtained among kNN, RF, and XGBoost were not
statistically significant, since all the classifiers yielded a similar accuracy. On the other hand,
the p-values using either classifiers kNN, RF or XGBoost versus all of the other classifiers
were less than 0.05 for all ΔHbO signals, which establish the statistical significance of
these classifiers performance. Previous studies showed that thumb finger-tapping gives a
higher level of cortical activation among other fingers [40], which is also supported by our
current study as shown in Figure 5f–h. Moreover, the highest peaks in ΔHbO signal which
corresponds to higher brain activity during thumb finger-tapping can be seen in Figure 6.
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Figure 4. Comparison of different classifiers on basis of performance parameters (accuracy, precision,
recall F1score).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. Confusion metrics for all classifiers for subject one (S01); Classes are labeled as ‘0’, ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’,
which stands for ‘Rest’, ‘Thumb’, ‘Index’, ‘Middle’, ‘Ring’, and ’Little’ finger-tapping classes, respectively. (a) Quadratic
discriminant analysis (QDA). (b) AdaBoost. (c) Support vector machine (SVM). (d) Decision tree (DT). (e) Artificial neural
networks (ANN). (f) k-nearest neighbors (kNN). (g) Random forest (RF). (h) Extreme Gradient Boosting (XGBoost).
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Overall, it was noted that most of the classes were misclassified as a rest class, and
KNNs were therefore unable to classify the index finger correctly. We tested kNNs on
different neighbours (such as 5, 10, and 15), five of which performed better than others,
whereas RFs performed poorly on classifying the middle finger. Similarly, like kNNs, we
also tested RFs on different estimators and got the best results at 10 number of estimators.
On the other hand, XGBoost only classified little fingers poorly. In general, KNNs, RFs,
and XGBoost performed well.

One of the core objectives of the brain-computer interface is to achieve a maximum
number of commands with good classification accuracy. If we look at the previous literature
in the field of fNIRS demonstrates that most of the work utilized either two-class, three-
class, or four-class classification . While classifying two commands using fNIRS-based brain
signals Power et al. achieved an average classification accuracy of 0.56 for two tasks [41].
Hong et al., achieved an average classification accuracy of 0.75 for three commands [42].
Similarly, several studies have reported classification results for four-class classification
as well [43]. To the best of the author’s knowledge, this is the first work that has reported
good accuracies for five class-classification in the field of fNIRS. In this work, the achieved
classification accuracies are far above the chance level (i.e., 0.2), which shows that machine
learning can result in a potential increase in the number of commands in the field of
fNIRS-based brain imaging.

In future, the signals will be studied in depth to gain a better understanding and
more precise understanding of the cortical hemodynamics response precisely. After all,
the attributes of different brain regions and with repetition of trails could vary for the
same experimental paradigm [44]. Selection of trails or active channels using the 3-gamma
function, changing the window length, detection of initial dip, vector phase analysis,
and optimal feature extraction are the future directions for data analysis that could help to
increase the classification accuracy. Furthermore, deep learning approaches, including deep
belief and convolutional neural networks models, could also help to increase classification
accuracy [45]. Moreover, activation of the left and right finger-tapping is dominant in
premotor and SMA areas comparative to motor execution finger-tapping [46]. In future
work, we will focus on averaging over this region of interest to gain a better idea of which
activation regions corresponding to different finger-tapping. Trail-to-trail variability in
fNIRS signal for finger-tapping tasks could be reduced using seed correlation methods
that can enhance the classification accuracy [47]. We also envisage to using estimation
algorithms such as the q-step-ahead prediction scheme and the kernel-based recursive
least squares (KRLS) algorithm to reduce the onset delay of the ΔHbO changes due to
finger-tapping for real-time implementation in the BCI system [21,48–50]. In the study,
we considered only ΔHbO data. The reason for selecting ΔHbO is that in the field of
fNIRS-based brain imaging, although both ΔHbO and ΔHbR are indicators of cerebral
blood flows. However, ΔHbO is more sensitive than ΔHbR [51,52]. As far as ΔHbT and
cerebral oxygen exchange COE are concerned, the quantities are dependent on HbO and
HbR [53]. In future, ΔHbR and total haemoglobin changes ΔHbT changes will also be
considered in ordered to achieve understanding. Moreover, only left hemisphere channels
were considered in the study. Investigating the dynamic relationship between the brain
regions simultaneously activated during finger-tapping would be an interesting direction
for the future study. In recent studies, different stimulation durations were investigated to
find the appropriate duration that can shorten the command generation time [54]. Keeping
in mind the findings of these studies, shorter stimulation durations will also be investigated
in the future.
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Figure 6. Oxygenated haemoglobin Signal for complete experimental trail.

4. Conclusions

Despite the outstanding performance of modern machine-learning algorithms, using
functional near-infrared spectroscopy to classify movements from delicate anatomical
structures, such as individual finger movements, is very challenging. This work presents
a classification of individual finger movements (six classes) from the motor cortex. We
have applied eight different classifiers, ranging from simple to sophisticated machine-
learning algorithms. Quadratic discriminant analysis (QDA), AdaBoost, Support vector
machine (SVM), Artificial neural networks (ANN), and Decision tree (DT) performed
poorly, with an average classification accuracy of below 60%. On the other hand, other
classifiers such as k-nearest neighbours (kNN), Random forest (RF) and Extreme Gradient
Boosting (XGBoost) performed exceptionally well for such high-order data, with an average
classification accuracy of 0.75 ± 0.04, 0.75 ± 0.05 and 0.77 ± 0.06, respectively. These are
preliminary results from this novel research direction. In future, more in-depth analysis
of the temporal and spatial domain will be conducted to understand the signals better.
Achieving better classification accuracy could be a quantum leap for control command
enrichment in brain-computer interface applications.
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Abbreviations

The following abbreviations are used in this manuscript:

fNIRS Functional Near-Infrared Spectroscopy
SVM Support Vector Machine
RF Random forest
DT Decision Tree
QDA Quadratic Discriminant Analysis
ANN Artificial Neural Networks (ANN)
KNN K-Nearest Neighbors (kNN)
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