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Preface

Ice and snow are important elements of the earth’s hydrosphere, playing significant roles in

the climate and in our daily lives through hydrology, ecology, and engineering. This is a reprint

of the articles gathered through a Special Issue on the topic of “Cold Regions Ice/Snow Actions

in Hydrology, Ecology, and Engineering”. The aim of the Special Issue is to collect articles on the

physical, thermal, mechanical, optical, and electrical properties of crystal ice/snow, the melting water

from ice/snow, as well as permafrost. The scope also includes theoretical studies and practical

applications in remote sensing, experiments and numerical modeling in cold regions, snow/ice

forming and melting processes in water bodies and permafrost, contributions to ecosystems, and

behaviors in engineering and entertainment. In total, 12 articles have been published in the Special

Issue, covering topics including identification of snow and ice through image analysis, snow and

sea ice formation processes, physical and mechanical properties of snow and ice, ice flood disasters,

changes in sea ice characteristics, and ecosystems under ice. The authors would like to thank all the

authors for their high-quality contribution to this Special Issue, which promotes our understanding

of ice and snow and our capability to cope with problems related to ice and snow. This reprint could

be taken as a textbook or training material for postgraduate students and researchers. We hope to

motivate readers to explore more about ice and snow in cold regions.

Zhijun Li, Fang Li, Sasan Tavakoli, Xuemei Liu, and Changlei Dai

Editors
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1. Introduction

In the Earth’s hydrosphere, 96.50% of the total mass is composed of seawater, while the
remaining 3.50% is freshwater. Much of the sea water freezes into sea ice, either seasonally
as first-year ice, or over the long term as multi-year ice. Among fresh water, 77.44% exists
in the form of ice/snow at the polar regions [1]; comparatively little ice/snow is found in
other inland cold regions. Throughout the course of human development, the ice/snow
from the Quaternary glacial period has played an essential role in changing and evolving
human life, involving handling and accommodating with ice/snow via multiple means.
Some scholars consider the climatic changes at the end of the Quaternary ice age as essential
prerequisites for the development of Homo sapiens civilization [2]. Scholars have also
connected the fluctuations in grain production caused by modern climate variations with
dynastic changes [3]. This is because ice/snow is an integral part of human activities,
closely linked to water sources, food, transportation, entertainment, and eventually human
development [4]. With the progress of science and technology, human understanding
of nature and the ability to handle ice/snow has improved, prompting research into the
various phenomena and essence of ice/snow that serve human activities. These indicate
that ice and snow research has been standing as a critical frontier in the context of hydrology,
ecology, and engineering.

According to IPCC WGI AR4 (2007), the main components of the cryosphere are snow,
river and lake ice, sea ice, glaciers and ice caps, ice shelves, ice sheets, and frozen ground,
which are all changing under global warming [5]. As the freezing point of ice/snow
(−12.8–0 ◦C) falls into the variation range of atmospheric temperature, phase changes
happen along with the temperature varying between minus and plus degrees Celsius,
exhibiting sensitivity to temperature. During recent years, as global warming continues,
challenges have emerged regarding frozen landscapes following the change in snow/ice.
Currently, global warming profoundly alters ice and snow dynamics worldwide, accelerat-
ing the melting of glaciers, diminishing polar ice caps, and reducing snow cover. Ice in the
polar region becomes more dynamic and more multiyear ice drifts to lower altitude due to
melting. The ice cover in the cold regions becomes warmer and its mechanical properties
significantly change [6].

In the past, humans primarily used glaciers for agriculture, domestic water supply,
and, as an exclusive form of luxury consumption, for tourism and exploration. As human
activities extended to Greenland and the Antarctic interior, the role of glaciers have become
further elevated, connected to records of climate change. Notably, ice core research has
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become a crucial aspect of this [7]. These polar expeditions and studies require ice structures,
roads, airports, and other logistical support closely related to supply chains [8]. The
instability of ice caps caused by climate warming has motivated scientists to link ice caps,
ice shelves, and icebergs to ocean circulation, forming a larger-scale atmosphere–ice–water
system. Atmospheric circulation, ocean circulation, biological migration, and more are
all encompassed within this system. Scientifically subdividing the atmosphere–ice–water
system into different scales has given rise to emerging fields such as ice meteorology,
oceanography, and sea ice science. Meanwhile, humanity’s desire to rationally utilize
fisheries, mining, and transportation in ice-covered regions has sparked enthusiasm for
ice engineering. New research topics, such as offshore wind power generation and solar
panels in ice-covered areas, have emerged in addition to traditional navigation and drilling
in ice. Moreover, the ocean, covering two-thirds of the Earth, is considered a crucial carbon
sink, resulting in great potential in polar fishery.

The extensive expansion of human activities and resource utilization needs has reached
more ice/snow areas. Scientific understanding and technology development are necessary
to cope with the challenges posed by ice/snow. Engineers working on projects ranging
from buildings and bridges to power lines and transportation systems must stand with
the mechanical properties of ice, ensuring structures are resilient in the face of evolving
climates. The ice cover above polar waters exerts a profound influence on the underwater
ecosystem, shaping the conditions for marine life. Climate change-induced alterations
to ice cover disrupt these dynamics, affecting species’ behavior, migration patterns, and
overall ecosystem health. The delicate balance between ice cover and the underwater
environment underscores the vulnerability of polar ecosystems in the face of global climate
change. The threat of ice flood disasters is big in regions prone to freezing conditions.
Understanding the triggers and patterns of ice-related flooding is crucial for engineering
effective preventive measures and emergency response strategies. Balancing the need for
sustainable development with the risks posed by changing ice dynamics requires a holistic
approach that integrates climate science, ecology, and cutting-edge engineering solutions.

To understand the implications of climate change to our ecosystem to maintain sus-
tainability, and its effect on the engineering world to guarantee safety and mitigate risks, it
is important to understand the change in the physical, thermal, mechanical, optical, and
electrical properties of crystal ice/snow and the melting water from ice/snow, as well as
permafrost. After our previous Special Issue, “Sea, River, Lake Ice Properties and Their
Applications in Practice” [9], this Special Issue, entitled “Cold Regions Ice/Snow Actions
in Hydrology, Ecology and Engineering”, intends to continue research under this context.
It invites researchers from different fields to investigate ice/snow-related problems in
hydrology, ecology and engineering and publish their results. In this Special Issue, we
focus on the physical and mechanical properties of ice and snow, as well as their impact
on hydrology, ecology, and engineering. This Special Issue can guide future ice science
and engineering in polar regions under climate change. The scope also includes theoret-
ical studies and practical applications of various snow/ice properties in remote sensing,
investigation, experiments, and numerical modeling in cold region snow/ice formation
and melting processes in water bodies and permafrost, its contributions to the ecosystem,
and behaviors in engineering and entertainment.

2. List and Summaries of the Contributions

This Special Issue received 15 manuscripts and all of them were subject to the rigorous
Water review process. In total, 12 papers were finally accepted for publication and inclusion
in this Special Issue. The contributions are listed in List of Contribution.

As shown in Table 1, the contributions covered wide perspectives concerned with
ice. The contents of these published papers are snow and ice identification, snow and
ice growth, the mechanical properties of ice and snow, the thermal diffusivity of ice, ice
condition monitoring, ice flood disaster, and ecosystems under ice.
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Table 1. Analysis of the published contributions in the Special Issue.

Number of
Contribution Research Area Focus Research Methods Potential

Applications

1 River ice characteristics Real-time monitoring of river surface
ice dynamics Image processing Hydrology

2 Sea ice characteristics Polar objects, e.g., ice floe, identification from
remote sensing and onboard images Image processing Sea ice engineering

3 Snow characteristics Cloud removal to recover snow coverage by
machine learning from remote sensing image Image processing Remote sensing

and new technology

4 Snow formation Snow Crystal Necks and the Effect on Hardness Experiment Snow engineering

5 Sea ice formation Temperature and ice growth Data collection
and statistics Sea ice engineering

6 Ice thermal properties Review of research on thermal diffusivity of ice Literature review Ice engineering

7 Model ice mechanical properties Mechanical property of model ice Experiment
and simulation Ice engineering

8 Snow mechanical properties Mechanical property of snow Experiment Snow engineering

9 Snow/ice mechanical properties Property and topology of brash ice and its effect
on mechanics Experiment Ice engineering

10 River ice engineering conditions Risks of ice flood disaster Catastrophe theory River ice engineering

11 Sea ice engineering
design conditions Change of ice characteristics in the Bohai Bay Data statistics Sea ice engineering

12 Ecosystem under ice Productivity of the ecosystem under ice cover Simulation Ecological service in
cold regions

3. An Overview of Published Articles

As listed in Section 2, research topics related to ice/snow in the field of hydrology,
ecology and engineering are all covered by the published articles. An overview of these
articles is provided here.

Ice/snow engineering problems are often investigated through experimental or nu-
merical modeling methods, e.g., [10,11], which usually assume an idealized ice field. To
support engineering applications, it is of equal importance to identify and understand
complex ice/snow fields in nature. Image technology has been developed a lot over recent
years for real ice/snow conditions [12]. In-depth understanding of measurement data, in
addition to theoretical analysis, has seen a rise in artificial intelligence (AI) and machine
learning as new technologies. AI and machine learning are now widely applied to analyze
the patterns, mechanisms, and trends in various natural phenomena with a certain level
of randomness. As temperature-sensitive materials, ice/snow can benefit from AI and
machine learning to assist in extracting valuable insights from available data resources,
exploring the relationships between ice behavior and the main controlling factors, as well
as numerous secondary controlling factors [13]. Three papers were published on the topic
of snow and ice identification using machine learning or artificial intelligence. Yang et al.
(Contribution 1) presented a comprehensive approach to the real-time monitoring of river
surface ice dynamics using deep learning methods and camera imagery. Focusing on
the Nenjiang River in China, the study introduces a four-step methodology. First, image
preprocessing involves calibrating camera images to real-world coordinates. Subsequently,
a lightweight semantic segmentation network is employed to identify ice and water pixels,
facilitating the calculation of ice concentration and area. The motion detection process
is enhanced using the segmentation results, and the particle video tracking algorithm is
adapted for ice velocity measurement through a novel tracking point generation strategy.
The research, encapsulated in the IPC_RI_IDS dataset, contributes to our understanding of
ice break-up processes. The goal is to support real-time short-term forecasts of ice floods
by analyzing surface ice data and predicting the stages of the ice break-up process. The
innovation of this approach is to address previous limitations in tracking river ice velocity,
providing valuable insights for mitigating risks associated with ice blockages in water
routes. In addressing the safety concerns of ship navigation in polar regions, Ding et al.
(Contribution 2) emphasize the need for the prompt detection of sea ice, icebergs, and
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passing ships. Recognizing the limitations of individual data sources, they construct a com-
prehensive polar multi-target local-scale dataset with categories such as sea ice, icebergs,
ice melt ponds, icebreakers, and inter-ice channels. Using a single-shot detector (SSD), they
achieved a final mean average precision (mAP) value of 70.19%. The study further presents
a remote sensing sea ice dataset with 15,948 labels, enhancing the You Only Look Once
(YOLOv5) model with advanced features. Through ablation experiments, the improved
YOLOv5 demonstrated notable enhancements, surpassing other models like YOLOv3 in
performance. This facilitates the detection of multiple targets on various scales in polar re-
gions, promoting data fusion and providing valuable support for polar ship path planning.
Zhu et al. (Contribution 3) presented a novel approach for fine-spatiotemporal-resolution
snow monitoring at the watershed scale, crucial for effective snow water resource manage-
ment. They proposed a cloud removal algorithm based on snow grain size (SGS) gap-filling
using a space–time extra tree. This addresses the limitation of cloud occlusion in long-time-
series snow products, enhancing coverage and time resolution. The study focused on the
Kaidu River Basin (KRB) and incorporated spatiotemporal information into dimensional
data to characterize geomorphic features and snow duration. By training a spatiotemporal
extreme tree model, the nonlinear mapping relationship between multidimensional inputs
and SGS was simulated. This method demonstrated effectiveness, particularly when cloud
cover was below 70%, achieving satisfactory SGS estimation and successful snow cover re-
construction. Compared to traditional methods, the proposed approach exhibited superior
detail characterization and performance in complex mountainous environments, resulting
in a significant reduction in cloud coverage and an increase in snow coverage from 2000 to
2020. This advancement in cloud removal significantly improved the time resolution of
snow cover data without compromising accuracy.

The growth of ice/snow is an important topic relating meteorology to engineer-
ing. Ice/snow is a product of a cold environment. Its formation is closely related to
hydrological and meteorological conditions. New research results have continuously
emerged on the freezing processes of different types of water bodies in different envi-
ronments, and even beyond natural environmental conditions [14,15]. This Special Issue
published two relevant articles, focusing on the current natural environmental condi-
tions of snow morphology and the processes of ice formation and melting. Two papers
focus on the topic of snow and ice growth. Wei et al. (Contribution 4) conducted a
constant-density (200 kg/m3) snow metamorphism experiment to investigate the snow
microstructure at different metamorphism times and isolate the snow neck area. Their
findings highlighted the significant influence of temperature, solar radiation, snow density,
and specific humidity on the neck region, with wind speed having a minimal effect. In re-
sponse to atmospheric forcing, the authors developed a multiple linear regression equation,
“S = 288T + 2E + 189ρ + 12,194V − 20,443RH − 42,729”, where solar radiation (E), temper-
ature (T), snow density (ρ), specific humidity (RH), and wind speed (V) collectively ex-
plained 84% of the neck area variability. Notably, the correlation between snow hardness
and the neck area reached 71%, potentially rising to 91% in later metamorphic stages. A
predictive model for hardness based on the neck area, “H = 0.002764S + 67.922837”, was
established. This study provides insights into the growth variations in the metamorphic
snow cover’s neck region, illustrating how external factors impact both microstructure
and macroscopic physical characteristics. During the winters of 2009/2010 and 2020/2021,
Ma et al. (Contribution 5) conducted observations at an eastern port of Liaodong Bay to
investigate variations in sea ice thickness and atmospheric conditions. Two main observa-
tion items, daily ice thickness (DIT) and cumulative ice thickness (CIT), were studied. For
DIT, sea ice thickness gradually decreased with rising temperatures, with a freezing rate of
1.48 cm/(◦C·d)1/2. Concerning CIT, at −12 ◦C, the maximum growth rate decreased from
3.5 cm/d to 1.5 cm/d as ice thickness increased from 0 to 20 cm. The study applied the resid-
ual method to calculate oceanic heat flux, a crucial parameter in ice modeling. Both analytic
(Stefan’s law) and numerical models (high-resolution thermodynamic snow-and-ice model)
were employed. Results indicated a high simulation accuracy with a growth coefficient in
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the analytic model. The numerical model, with an oceanic heat flux of 2 W·m−2, showed a
maximum error of 60% in 2010 and 3.7% in 2021. Using the calculated oceanic heat flux,
errors were significantly reduced to 4.2% in the winter of 2009/2010 and 1.5% in 2020/2021.
Furthermore, the oceanic heat flux in Liaodong Bay exhibited a decreasing trend with
increasing ice thickness and air temperature.

In ice/snow engineering, the mechanical properties and response of materials form the
basis of engineering mechanics. The thermodynamics of ice are the first factor determining
its mechanical properties. As a material formed through natural process, the mechanical
properties of ice and snow have long been a challenging problem yet to be solved. Ex-
ploring the properties and behaviors of multiphase ice/snow with phase transitions is
crucial, especially under the influence of climate change, particularly in the case of global
warming [6]. Thorough research on the thermodynamics and mechanical behaviors of
ice/snow in these contexts is still necessary [16]. Ongoing studies in this area continue
to explore and advance our understanding. In this Special Issue, one paper focuses on
the physical properties of ice, specifically the thermal conductivity, and three papers re-
late to the mechanical properties of snow and ice. Li et al. (Contribution 6) presented a
review of ice thermal parameters, essential for accurately simulating ice phenology, distri-
bution, and thickness—a facet considered a “vulnerable group” in ice research. Despite
the perceived technical simplicity, the authors emphasized the complexity of obtaining
accurate ice thermal property parameters, necessitating a rigorous research process. While
progress in understanding the thermal conductivity of ice in China stagnated after ex-
plorations in the 1980s, the current century introduced mathematical methods. In this
study, inversion identification and analysis utilized time-series data from in situ testing
of vertical temperature profiles in ice layers to derive thermal diffusivities for different
natural ices. Cross-validation demonstrated variations in thermal diffusivity due to impuri-
ties within unfrozen water among ice crystals. The paper highlighted the importance of
parameterizing thermal diffusivity in the phase transition zone of ice under the influence
of global warming trends. Future research directions were envisioned, encompassing the
physical mechanisms, application value, and parameterization schemes for the thermal
diffusivity of natural ice. Tian et al. (Contribution 7) presented a study on the flexural
strength of columnar saline model ice, crucial for designing structures in ice-infested wa-
ters. Conducted at the China Ship Scientific Research Center, circular plate center loading
tests explored varied loading rates and ice temperatures. Using FEM and LS-DYNA, a
numerical model validated and compared the results, unveiling crack propagation, stress
distribution, and failure modes. The model ice exhibited typical brittle failure, with flexural
strength linearly linked to temperature and no significant correlation with loading rate.
Porosity influenced load response and failure time, but not the failure mode. Specifically,
7% porosity resulted in a 7.8% reduction in load response compared to nonporous ice. This
research establishes a method for analyzing model ice flexural strength, laying a foundation
for the further exploration of structure–ice sheet interactions. Han et al. (Contribution 8)
addressed the limited understanding of snow’s mechanical properties, crucial for polar
infrastructure construction. Uniaxial compression tests under step loading were conducted
to investigate snow behavior in cold regions. Using the Maxwell model, constitutive
equations were developed, incorporating different temperatures, densities, and loading
rates. Findings revealed that loading rates had no significant impact on snow’s elastic
modulus and viscosity coefficient. Both parameters exhibited an exponential relationship
with density, increasing with higher density. As temperature decreased, the elastic modulus
and viscosity coefficient initially declined and then increased, though no specific functional
relationship was identified. Notably, a novel constitutive equation, accounting for snow
density, was derived based on the Maxwell model, contributing to a more comprehensive
understanding of snow mechanics in polar environments. Zhaka et al. (Contribution 9)
conducted a comprehensive study to address the critical differences between brash ice and
surrounding level ice, crucial for understanding full-scale brash ice channel development.
This research, spanning the winters of 2020–2021, 2021–2022, and 2023, focused on channels
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near the Bay of Bothnia, Luleå, Sweden. Measurements included snow, slush, and total ice
thickness, along with analyses of ice microstructure and strength. Notably, this is the first
paper reporting on the influence of snow in brash ice channels. The study revealed that
snow covered the channels between ship passages, submerging and forming slush-filled
voids after each passage. These voids then transformed into snow ice (SI) clusters frozen
with columnar ice. Image analyses estimated SI content in brash ice, highlighting varying
percentages in different locations, providing valuable insights into the complex dynamics
of brash ice channels.

To cope with the impact of ice and snow on human activities, structural or non-
structural measures have been adopted. This is the common practice in ice and snow
engineering. Many research outcomes have been achieved for various engineering types,
covering aspects related to both ice and snow and the use of structures, such as ice nav-
igation, offshore wind farms, ports, reservoir dams, and more [17–19]. These studies
encompass research on both ice conditions and the types of structures involved. This
Special Issue published two articles with a specific focus on ice conditions. In the field of
hydrology, one research article focuses on the ice flood disaster. Li et al. (Contribution 10)
established a risk evaluation system for ice flood disasters, prevalent in frigid high-latitude
and high-altitude regions, posing threats to personal and property safety through ice dam
or ice jam flooding. Utilizing catastrophe theory and the Pearson correlation coefficient, the
study aims to provide a comprehensive and necessary risk assessment for preventing ice
flood disasters. The system incorporates hierarchical cluster analysis to simplify indicators
and select typical years based on correlations. Results reveal catastrophe membership
values in the Mohe, Tahe, and Huma regions from 2000 to 2020 ranging from 0.86 to 0.93.
The evaluation system, coupled with actual disaster situations, yielded a four-level classi-
fication of risk ratings. A comparison with the fuzzy comprehensive evaluation method
demonstrates similar risk levels, affirming the effectiveness and practicality of applying
catastrophe theory to ice flood risk evaluation. This study introduces a novel method
for studying and understanding ice floods. One research article focuses on the change
in ice characteristics in the Bohai Bay. Li et al. (Contribution 11) investigated the safety
of winter activities in the Bohai Sea, emphasizing the need for more detailed informa-
tion on ice characteristics and a refined ice zone division. Utilizing a 1/12◦-resolution
sea ice characteristic dataset derived from the NEMO-LIM2 ice-ocean coupling model,
which assimilated MODIS satellite sea ice observations spanning 2005 to 2022, new sea ice
hindcasting data was obtained. These data facilitated the analysis of ice period, thickness,
concentration, temperature, salinity, and design ice thickness for various return periods in
a 1/4◦-resolution refined zoning. The findings, compared with the previous 21-ice-zone
standard, revealed a significant reduction in ice conditions along the west coast of the Bohai
Sea, emphasizing the importance of updated information for enhancing safety measures in
winter maritime activities.

Under meteorological conditions, especially driven by solar radiation flux penetrating
through the ice, understanding how the ecological environment under ice responds and
how changes in the ice cover, influenced by climate change, correlate with the water ecolog-
ical environment under ice has become an important issue in the context of recent climate
change [20,21]. This has received lots of attention, and this Special Issue also published a
relevant article. In the field of ecology, one research article focuses on the ecosystem under
ice cover. Zhang et al. (Contribution 12) employed a Vertically Generalized Production
Model (VGPM) suitable for ice-covered periods to investigate the complete change process
of primary productivity in a temperate lake, shedding light on the connection between
ice physical characteristics and biological production. Despite the significance of primary
productivity in understanding the impact of global warming on temperate lake ecosystems,
few studies have delved into the entire change process during the ice-covered period.
The study focused on Hanzhang Lake, revealing a substantial primary productivity level
(189.1 ± 112.6 mg C·m−2·d−1) under the ice. Contrary to common assumptions, phyto-
plankton production under the ice was not severely restricted by light; instead, water
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temperature emerged as a more crucial factor influencing primary productivity changes
compared to light conditions. The research provided insights into the variability of pri-
mary productivity throughout the entire ice-covered age, enhancing understanding of how
warmer temperatures affect the aquatic environment of lakes in seasonal ice-covered areas.
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Abstract: The real-time derivation of the concentration, area, and velocity of river surface ice based
on camera imagery is essential for predicting the potential risks related to ice blockages in water
routes. The key lies in the continuous tracking and velocity measuring of river ice, and reliable
ice motion detection is a prerequisite for the dynamic perception of tracking targets. Previous
studies did not utilize motion tracking for measuring ice velocity, and particle image velocimetry and
feature point matching were used. This study aimed to use deep learning methods to address the
challenging problems of deriving the ice concentration, area, and velocity based on camera imagery,
and the focus was on measuring the ice velocity and drawing trajectories using the particle video
tracking algorithm. We built a dataset named IPC_RI_IDS and collected information during the
ice cover break-up process in the Nenjiang River (China). Our suggested approach was divided
into four steps: (1) image preprocessing, where the camera image was calibrated to real-world
coordinates; (2) determining the ice and water pixels in the camera image using the lightweight
semantic segmentation network and then calculating the ice concentration and area; (3) enhancing and
optimizing motion detection using the semantic segmentation results; and (4) adapting the particle
video tracking algorithm to measure ice velocity using the proposed tracking points generation
strategy. Finally, we analyzed the surface ice data in the study area and attempted to predict the stage
of the ice break-up process to provide support for the real-time short-term forecasts of ice floods.

Keywords: river ice; ice regime; ice velocity; ice tracking; particle video; deep learning

1. Introduction

Large-scale floating ice collisions cause significant damage to hydraulic structures and
inland transportation along rivers, and the accumulation of floating ice can quickly raise
water levels, leading to ice-jam floods [1]. River ice hazards cause substantial economic
losses. In 2017, during the spring melt, ice-jam floods cost approximately USD 300 million
in North America alone [2]. In 2021, a large floating ice mass hit and destroyed the Xinxing
Bridge in the Ant River, Fangzheng County, Harbin, China [3]. Real-time river ice regime
recognition can provide practical information and support for the early warning of ice
floods to reduce disaster losses. Based on computer vision technology with deep learning
techniques, the pixel distributions of ice and water in a camera image were identified
to extract additional high semantic information, such as ice concentration, area, velocity,
distribution, and change process, which provided essential data support for the analysis
and prediction of ice floods. This paper studies river ice regime recognition based on
camera images, as shown in Figure 1.

River ice break-up forming an ice run is a river’s short-term natural behavior, and it
often occurs in one day or over several days. It is necessary to study this change process
by recognizing river ice regimes through real-time monitoring. Researchers mainly use
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three types of river ice images. The first is a high-spatial-resolution remote sensing image
(satellite imagery) [4–6]. The advantage is that it can observe and calculate the overall river
ice regime over an extensive range. However, only coarse-grained river ice changes can be
captured due to the long image-shooting interval. The second is unmanned aerial vehicle
imaging (UAV imagery) [7–9], which has the advantage of its relatively low cost and ability
to capture hourly data for river ice changes occurring anywhere. However, it is challenging
to capture the long-term data for river ice changes. The third is a fixed-position camera
image with an oblique perspective (camera imagery) [10–12], which has the advantage of
monitoring the long-term continuous changes in a river ice regime from a fixed perspective,
and it more accurately captures the details of river ice in a river section and is convenient for
locking the measurement condition variables to analyze the changes in a river ice regime.
Aiming to address the suddenness of river ice hazards, a real-time monitoring camera
presents more advantages for short-term forecasting.
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velocity.

Previous studies have provided some methods for river ice regime recognition. Related
to this paper, Daigle et al. (2013) [13] used an artificial neural network and a particle image
velocimetry method to measure the concentration and velocity of river ice on a camera,
and this was a relatively early and comprehensive study on river ice recognition. The
shortcoming was that it could not continuously track ice and measure ice velocity. Wang
et al. (2022) [7] took UAV images from a high-altitude, overlooking a river, during ice
flood periods in the Heilongjiang Basin in China, and they selected two images with an
interval of one second, extracted and matched similar feature points of the river ice using
the scale-invariant feature transform (SIFT) algorithm and the brute force (BF) algorithm,
and then measured the river ice velocity according to the displacement difference. A
shortcoming was the inability to monitor the river ice for a long time by UAV. Zhang et al.
(2020–2023) [8,14,15] conducted a series of studies on the semantic segmentation of river
ice on oblique UAV images. Finally, they achieved real-time semantic segmentation while
ensuring high accuracy, and they further calculated and analyzed the concentration of the
river ice. This method required a lot of image calibration work to recognize the river ice
parameters. Xin et al. (2023) [10] used the boundary rectangle method and Harris corner
detection method to measure a river’s ice surface area and velocity on camera images from
the Huma River Basin in the Daxing’an Mountains. The author mentioned that ice velocity
measurements required manual operation. Li et al. (2023) [11] collected river ice images
based on a fixed camera at the Yellow River. Their main work was to estimate the Gaussian
distribution of the sizes and shapes of the river ice and establish the relationship function
between the river ice concentration and the ice drift velocity, which helped to understand
and analyze the freezing and thawing mode of the river ice. The semantic segmentation of
the river ice was manually completed, and their work was not automated.
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In summary, camera imagery is of more practical significance for the real-time moni-
toring of and risk early warnings for river ice. Research on multi-target continuous tracking
and velocity measurements of river ice is still lacking. Under these motivations, this paper
studies river ice regime recognition using camera imagery, including the ice concentration,
area, and velocity. The difficulties were as follows: (1) there was a need for a river ice
dataset of camera imagery; (2) in practice, we found that ice motion detection results could
be more precise; (3) the continuous and accurate river ice tracking and velocimetry; and
(4) forecasting the possibility of ice hazards through ice concentrations and velocity was
not enough, and it also required the parameter of ice motion intensity (i.e., a visual scale of
the surface ice motion, similar to the volume of ice flow in three-dimensional space). This
work began with building the dataset, enhancing motion detection, and improving the ice
velocimetry to solve the above problems.

The main contributions of this study are as follows:

1. It addressed the motion detection problem caused by the color similarity of river ice
to river water. Compared with traditional methods, motion detection using the results
of the semantic segmentation of river ice can extract a more significant and precise
binary map of river ice motion, and then it can use the river ice mask to further modify
the binary map of motion, which can be used to obtain a reliable binary map of the
motion of the river ice.

2. We proposed a novel continuous ice velocity measurement method based on particle
video tracking. The difference between the velocity measurement method and previ-
ous works (e.g., the PIV-based method from 2013 [13] and the SIFT-based matching
method from 2023 [7]) is the continuous tracking, and the features of the regions
adjacent to the points were extracted using the feature method and the optical flow
method without global image matching.

3. The relationship between river ice concentration, area, velocity, and motion intensity
in the ice cover break-up process was analyzed. We proposed the calculation of the
motion intensity of the ice run and designed a feed-forward neural network to predict
the stage of the ice cover break-up process using the above ice parameters.

4. We built a dataset named IPC_RI_IDS of river ice regime recognition that contained
the complete ice cover break-up process. We annotated 113 dataset images with
semantic segmentation and provided preliminary numerical information, such as
ice concentration, area, velocity, and motion intensity, for each image. Subsequent
research on river ice regime recognition will be supported by this research.

2. Study Area and Materials
2.1. Study Area

The Nenjiang River, located in Northeast China, is a tributary of the Songhua River.
The river is 1370 km long, with an average flow of 823.4 m3/s. At medium and high water
levels, the maximum water surface width is 450–8000 m, and the maximum water depth is
6–13 m. At low water levels, the maximum water surface width is 170–180 m, the maximum
water depth is 1.6–7.2 m, and 300–500 ton ships can navigate the middle and lower reaches.
The freezing period is from mid-November to mid-April of the following year.

The observation location in this study was located in Baishatan Village, Dandai Town-
ship, Zhenlai County, Jilin Province, at the entrance of the Nenjiang River in Jilin Province
(as shown in Figure 2). The river’s surface was 150 m in width. Monitoring and early
warning points were set here to ensure the safety of the downstream river. We set up a
nine-meter-high network camera on the right bank facing the opposite river to monitor the
ice cover break-up in real time, and it captured the complete ice cover break-up process on
31 March 2023. The ice cover break-up started at 10 a.m. Beijing time. The ice run began at
2 p.m. and ended at 5 p.m. The ice cover, frozen for several months, broke up in one day
and flowed downstream. The data collection of the ice cover break-up process is significant
for the real-time short-term forecasting of ice floods.
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Figure 2. Schematic diagram of the observation geographical location. The base map is from
Tianditu.com [16] accessed on 1 November 2023.

2.2. Materials

A dataset of the ice cover break-up process of the Nenjiang River or other similar rivers
was needed. Therefore, we collected a monitoring video of the ice cover break-up process
of the Nenjiang River in the study area on 31 March 2023, and we saved 43 video clips
(data size of 43 GB). We divided the ice cover break-up process into five stages according
to the morphology and intensity of the ice cover and ice run, namely, (1) the ice frozen
stage, (2) the ice break-up beginning stage, (3) the ice drifting stage, (4) the ice break-up
ending stage, and (5) the ice-free stage. According to each stage’s characteristics and river
ice morphologies, we extracted 26 one-minute short video clips from the five stages (1, 6,
10, 6, and 3), each with a frame rate of 10 fps, and we were able to extract 600 sequence
images. Therefore, there were 15,600 sequence images, as shown in Table 1. This dataset
was named IPC_RI_IDS, as shown in Figure 3, and we annotated it with refined semantics,
as shown in Figure 4.
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(c) ice drifting stage; (d) ice break-up ending stage; and (e) ice-free stage.
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Table 1. The number of images in each stage.

No. The Stage of Ice Break-Up The Number of
Videos

The Number of
IMAGES

1 ice frozen 1 600
2 ice break-up beginning 6 3600
3 ice drifting 10 60,000
4 ice break-up ending 6 3600
5 ice-free 3 1800

Total 26 15,600
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In the first stage, one video clip was selected where the river ice had no change during
the freezing stage, and each video clip was the same. In other stages, only the ice-drifting
stage had a significant image change. We extracted 10 video clips, and we also made
refined annotations on them in terms of semantic segmentation. A total of 113 images were
annotated; on average, each image annotation took 2 h.

By observing the river ice video, it was found that in the ice drifting stage, the shape of
the floating ice was complex, and the mixture of fragmented ice residue and water brought
difficulties to semantic segmentation and motion detection. The drift velocity of the floating
ice was too fast, and the shapes changed too fast, bringing significant challenges to the
subsequent ice velocity measurement task.

3. Methods

In this study, the suggested approach was divided into six main steps. The goal was to
extract the river ice concentration, area, velocity, and motion intensity to predict the stage
of the ice cover break-up process, as shown in Figure 5.

13



Water 2024, 16, 58Water 2024, 15, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 5. Process overview of the proposed approach. The contents in the green boxes are the main 
contributions of this study. 

First, the camera image was calibrated to real-world coordinates during the image 
preprocessing step. Second, the lightweight depth convolution neural network was used 
to perform semantic segmentation on the river surface ice, extracting the ice pixels from 
the camera imagery to calculate the ice concentration and area. Third, we innovatively 
used the semantic segmentation results to improve the motion detection to enhance the 
significance of the motion binary map and optimize it to calculate the motion intensity. 
Fourth, the tracking point generation strategy was proposed, in which the tracking points 
were dynamically controlled by dividing the 16 × 16 grid patches of the motion binary 
map of the river ice. Fifth, the particle video tracking method was adjusted to adapt to the 
dynamic tracking of the river ice, and when measuring the ice velocity, the maximum 
velocity and average velocity were recorded. Finally, the five parameters of concentration, 
area, maximum velocity, average velocity, and motion intensity were input into the feed-
forward neural network to predict the stage of the ice cover break-up process. The pro-
cessing procedures in each step are introduced individually in subsequent sections. 

3.1. Image Preprocessing and Calibration 
In the image preprocessing step, the input camera images were resized to 1280 pixels 

wide × 720 pixels high × 3 RGB channels and then cropped to 960 × 660 × 3 by aligning the 
bottoms and centers. 

Figure 5. Process overview of the proposed approach. The contents in the green boxes are the main
contributions of this study.

First, the camera image was calibrated to real-world coordinates during the image
preprocessing step. Second, the lightweight depth convolution neural network was used
to perform semantic segmentation on the river surface ice, extracting the ice pixels from
the camera imagery to calculate the ice concentration and area. Third, we innovatively
used the semantic segmentation results to improve the motion detection to enhance the
significance of the motion binary map and optimize it to calculate the motion intensity.
Fourth, the tracking point generation strategy was proposed, in which the tracking points
were dynamically controlled by dividing the 16 × 16 grid patches of the motion binary
map of the river ice. Fifth, the particle video tracking method was adjusted to adapt to
the dynamic tracking of the river ice, and when measuring the ice velocity, the maximum
velocity and average velocity were recorded. Finally, the five parameters of concentra-
tion, area, maximum velocity, average velocity, and motion intensity were input into the
feed-forward neural network to predict the stage of the ice cover break-up process. The
processing procedures in each step are introduced individually in subsequent sections.

3.1. Image Preprocessing and Calibration

In the image preprocessing step, the input camera images were resized to 1280 pixels
wide × 720 pixels high × 3 RGB channels and then cropped to 960 × 660 × 3 by aligning
the bottoms and centers.
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Projective Transform

The camera images were calibrated to obtain the vertical-looking non-deformed im-
ages to calculate more accurate river ice parameter values. We used the projective transform
method [17] to convert the camera images to real-world coordinates and used the actual
widths and heights of the pixels to calculate the ice concentration, area, velocity, and motion
intensity (see Figure 6).
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If we let x and y represent the pixel coordinates of the original images, x’ and y’
represent the pixel coordinates of the converted images, and h represent the transformation
coefficient, then the formulas for computing the transformation of x’ and y’ are as follows:
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x′ =
h11x + h12y + h13

h31x + h32y + 1
, y′ =

h21x + h22y + h23

h31x + h32y + 1
. (2)

We selected four point-pairs according to the distance parameters (the blue ‘×’ in
Figure 6a) to calculate the transformation coefficient, as set out in Equations (3) and (4)
below:
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270 130
0 660
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,
[
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400 500
400 2000
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600 2000


 and (3)
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0.7692 1.8690 152.0306
0.1585 11.7309 −814.4399

0.00008 0.0038 1


. (4)

We proposed PW (the actual pixel width) and HW (the actual pixel height) to easily
calculate the pixel actual area. For the pixel Pxy, the coordinates were x and y in the image.
We let PW represent the actual width of the pixel Pxy in the projection coordinates, and PH
represented the actual height of the pixel Pxy in the projection coordinates, as set out in
Equations (5) and (6) below:

PW = (x + 1)′ − x′ and (5)

PH = (y + 1)′ − y′. (6)
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3.2. River Ice Semantic Segmentation

Semantic segmentation is a popular and mature image recognition task. The goal is
to classify each pixel in an image. As shown in Figure 4b, the green color represents the
ice, the yellow color represents the water, and the red color represents the background.
Since Long et al. [18] proposed using a full convolutional neural network, the effect of the
semantic segmentation task has been qualitatively improved. Excellent examples of this
method include DeepLabV3+ [19], K-Net [20], and Mask2Former [21]. In our previous
work [22], we conducted a special study on the zero-shot semantic segmentation of river
ice in this scene.

This work was more concerned with the processing efficiency of semantic segmenta-
tion. We trained several lightweight semantic segmentation methods on IPC_RI_IDS. The
selected models were FastScnn [23], MobileSeg [24], PPLiteSeg [25], and PPMobileSeg [26].
The codes were from the open-source project PaddleSeg [27] repository. The model with
the best efficiency and precision would be the final semantic segmentation model.

After the semantic segmentation step, the ice concentration and area were calculated
as follows:

Ice Concentration. We calculated the ice concentration according to the category of each
pixel. We let Pice represent the pixel classified as river ice and Pwater represent the pixel
classified as water, as set out in Equation (7) below:

Ice Concentration =
Count(Pice)

Count(Pice) + Count(Pwater)
. (7)

Ice Area. We calculated the ice area according to the actual area corresponding to each
ice pixel Pice, and then we summed them. IS_ICE meant 1 when Pxy was the Pice category;
otherwise, it meant 0, as set out in Equation (8) below:

Ice Area = ∑IMG_H
y=0 ∑IMG_W

x=0 PW × PH × IS_ICE. (8)

3.3. Motion Detection

A motion detection algorithm identifies pixels with motion changes in continuous
images, and it usually includes background subtraction, temporary differences, optical
flows, and so on [28].

This work used the classic and efficient ViBe [29] algorithm to obtain the motion binary
map of the surface ice. The traditional strategy of a motion detection algorithm cannot
achieve accurate results when directly applied to an original image. Therefore, we proposed
a novel strategy for improving motion detection based on the semantic segmentation map,
and the obtained motion binary map was more prominent. To distinguish the motion of
the ice water, we used the river ice region in the semantic segmentation map to trim the
motion binary image, and we modified the river ice motion binary map.

The purpose of obtaining the motion binary maps was to calculate the motion intensity
parameters of the surface ice, and the scale of the surface ice movement was crucial for
forecasting the possibility of an ice hazard.

Motion Intensity. To express the scale of the surface ice movement, we used the
concentration of the motion binary map multiplied by the standard deviation of the motion
pixels to obtain the Motion Intensity. Pmotion represents the moving pixel, and std () represents
the “numpy·std ()” method in Python to calculate the standard deviation, as set out in
Equation (9) below:

Motion Intensity =
count(Pmotion)

IMG_W × IMG_H
× std(Pmotion)

max(IMG_W, IMG_H)
. (9)
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3.4. Tracking Points Generation

To dynamically control and generate new river ice tracking points, we proposed a
tracking point generation strategy based on grid patches. The strategy was to divide the
image into n × n (n = 16 in this paper) grids, and then the tracking points were taken
from the geometric center of the maximum motion contour in each patch. The goal was
to generate, at most, one tracking point per grid patch each time the tracking points were
generated, as shown in Figure 7. For the steps, see Algorithm 1.

Algorithm 1: Strategy for the tracking point generation
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3.5. Particle Video Tracking

The standard global image motion estimation method is PIV (particle image velocime-
try) [30]. By calculating the velocity field between two images, a velocity field can describe
the motion mode of an image’s content. Since Sand and Teller [31] proposed the particle
video, the particle tracking effect has been more accurate and smooth. Harley et al. [32]
proposed the persistent independent particles (PIPs) method based on deep learning, and
this method makes the similarity template more reliable and further improves the point-
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tracking performance. In this study, the PIPs method was adjusted to adapt the river ice
tracking, and the advantage was that it could obtain accurate river ice trajectories and
velocities, as shown in Figure 8. For the ice tracking and velocimetry steps, see Algorithm 2.

Algorithm 2: The algorithm steps for the particle video tracking and velocimetry
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Ice Velocity. If we let Pxy’ represent the current real-world coordinate of the tracking
point, Px1y1’ represents the real-world coordinate of the next frame of the tracking point,
and duration represents the frame time interval (100 ms). Then, in each frame, only the
velocity of tracking points tracked for more than five consecutive frames was included in

18



Water 2024, 16, 58

the statistics, where the maximum velocity was recorded as MAX velocity, and the average
velocity was recorded as AVG velocity, as set out in Equation (10) below:

Ice Velocity =

√(
Px
′ − Px1

′)2 −
(

Py
′ − Py1

′)2

duration× 1000
. (10)

3.6. Prediction of the Ice Cover Break-Up Stages

In this study, the process of ice cover break-up was divided into the following five
stages: (1) ice frozen stage, (2) ice break-up beginning stage, (3) ice drifting stage, (4) ice
break-up ending stage, and (5) ice-free stage. The real-time short-term warning of ice
floods would be realized by predicting the current stage of the ice cover break-up process.
A three-layer feed-forward neural network was designed to predict the stage. The first
layer was the input layer, which inputs the following five values of river surface ice:
concentration, area, MAX velocity, AVG velocity, and motion intensity; so there were five
input neurons in total. The second layer was the hidden layer with ten neurons, followed
by a Sigmoid activation function. The third layer was the output layer, with five neurons
representing the five stages of the ice cover break-up process, as shown in Figure 9. The
loss function adopted cross-entropy loss, and the optimizer adopted the Adam (adaptive
moment estimation) method.
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Figure 9. The architecture of the feed-forward neural network.

Data Preprocessing. We analyzed and handled missing or abnormal values in the
dataset to ensure that the data could be correctly read by the model. We visualized the data
distribution through box plots and observed any abnormal values in the data. Records
with missing values were removed, and abnormal values were modified to limit values.
Then, data normalization was deemed necessary since neural network models are sensitive
to data scales. The ice area and velocity values were normalized to [0, 1] based on min–max
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normalization. The min–max normalization was calculated using the equation established
in reference [33], as follows:

Wi =
Xi −min(X)

max(X)−min(X),
(11)

where Xi is the number of features required to be normalized, and Wi represents the
normalized features [33].

4. Results and Analysis

This experiment used the deep learning frameworks PaddlePaddle 2.5.1, PaddleSeg
2.8, Python 3.8.17, CUDA 11.7, and CUDNN 8.4.1.50. The experimental equipment included
an NVIDIA GPU GeForce RTX 3070 laptop (NVIDIA Corporation., Santa Clara, CA, USA)
with 8 GB of VRAM, 32 GB of RAM, an AMD Ryzen 7 5800 H CPU (Advanced Micro
Devices, Inc., Santa Clara, CA, USA), and the Windows 11 operating system.

Because of the discontinuity of each video clip, it was not easy to obtain data on
the river ice motion and velocity in the 20 frames at the beginning of the video clip.
Therefore, the data from the first 20 frames were removed during the data extraction of
the experimental results, and the total data were reduced from 15,600 (23 × 600) frames to
15,080 (26 × 580) frames.

4.1. Ice Concentration and Area

The ice concentration and area were calculated based on the semantic segmentation
results. We tested four lightweight semantic segmentation methods on our IPC_RI_IDS
dataset, and PPMobileSeg [26] had the best effect, as shown in Table 2.

Table 2. Comparison of the different methods on the IPC_RI_IDS dataset.

Methods mIoU Acc Time

FastScnn [23] 0.9687 0.9821 112 ms
MobileSeg [24] 0.9666 0.9810 115 ms
PPLiteSeg [25] 0.9672 0.9813 121 ms

PPMobileSeg [26] 0.9762 0.9865 121 ms

Through the pixel area calculation of the semantic segmentation results for each frame,
the curves of the ice concentration and area were obtained, as shown in Figures 10 and 11. It
can be seen that as the ice breaking progressed, the ice concentration and ice area gradually
decreased, and the ice concentration and ice area were linearly correlated.
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Figure 10. Ice concentration curve. The different colors represent the different stages. The ice
concentration decreased continuously over time, and the floating ice from upstream increased the
concentration.
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were enlarged 50 times to [0, 1]. As shown in Figure 13, the ice drifting stage had the 
highest motion intensity, and there was also a short section with high motion intensity at 
the ice break-up ending stage. The zigzag curve was because each video clip was not con-
tinuous, resulting in constant changes in motion intensity from low to high. 

  

Figure 11. Ice area curve. The different colors represent the different stages. Similar to the ice
concentration, the ice area decreased continuously over time, and the floating ice from upstream
increased the area.

4.2. Motion Intensity

The motion intensity of the surface ice was calculated based on the results of the
motion detection. The experiment demonstrated that the motion detection method directly
applied to the original image could not obtain effective results, as shown in Figure 12b. The
motion detection on the semantic segmentation maps achieved more prominent outcomes,
as shown in Figure 12c. After revision by the semantic segmentation maps, only the motion
of the river ice was retained in the motion binary map. The white part represents the
moving ice, as shown in Figure 12d.
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Figure 12. The motion detection based on the semantic segmentation map was more prominent than
the original image motion detection. (a) Original image. (b) Motion detection on the original image.
(c) Motion detection on the segmentation map. (d) Motion detection revision by the segmentation map.

The motion intensity of the river ice was calculated according to the ice concentration
and dispersion of the motion binary map. Because the values were relatively small, they
were enlarged 50 times to [0, 1]. As shown in Figure 13, the ice drifting stage had the
highest motion intensity, and there was also a short section with high motion intensity
at the ice break-up ending stage. The zigzag curve was because each video clip was not
continuous, resulting in constant changes in motion intensity from low to high.
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4.3. Ice Velocity

The ice velocity was calculated using particle video velocimetry, and the maximum
velocity (MAX velocity) and average velocity (AVG velocity) were counted for each frame.
As shown in Figures 14 and 15, the maximum velocity was approximately 3 m/s, and the
average velocity was approximately 0.5 m/s. The ice velocity in the ice break-up ending
stage was higher than it was in other stages, which was related to the absence of ice jams
after river dredging.
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4.4. Prediction of the Ice Cover Break-Up Stages
4.4.1. Data Preprocessing

A total of 15,080 frames in the dataset were preprocessed using the following steps:
(1) missing values processing, (2) abnormal values processing, and (3) data normalization.
The data before preprocessing are shown in Table 3. All data were correctly read, and the
Python interface’s ‘pandas.isna ()’ method was used to check for missing values. The box
plot was used to analyze the abnormal values, as shown in Figure 16. It was found that
there were abnormal values greater than 10 m/s and 5 m/s in the maximum velocity and
average velocity, respectively, of the ice. In this work, the abnormal values were processed
by modifying them to the nearest normal value, and then we normalized the ice area and
velocity to [0, 1], as shown in Figure 17.
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Table 3. Partial data for the ice regime parameters in the IPC_RI_IDS dataset.

No. Stage Ice
Concentration Ice Area Motion

Intensity
Maximum
Velocity

Average
Velocity

2 1 0.9761 4857.9570 0.0100 0.0 0.0
4 1 0.9760 4857.3160 0.0050 0.0 0.0
5 1 0.9775 4865.0730 0.0200 0.0 0.0
6 1 0.9764 4860.0120 0.0050 0.0 0.0

. . . 1

3037 2 0.8705 4264.3650 0.0400 0.3904 0.1946
3040 2 0.8698 4259.4620 0.0350 0.3884 0.0971
3041 2 0.8707 4263.4260 0.0400 0.4136 0.2005
3042 2 0.8707 4264.1170 0.0350 0.4136 0.2010

. . .
6121 3 0.8171 3857.9760 0.4800 2.8409 0.4689
6122 3 0.8165 3854.6580 0.4750 3.3266 0.5130
6124 3 0.8159 3850.7420 0.4800 2.9883 0.2939
6125 3 0.8165 3854.5810 0.4800 2.8676 0.4193

. . .
10,531 4 0.4162 1655.6450 0.0550 1.2755 0.4717
10,533 4 0.4150 1652.1780 0.0450 1.2076 0.3242
10,536 4 0.4136 1638.5600 0.0400 2.8678 1.1598
10,537 4 0.4140 1645.8530 0.0400 2.9536 0.5697

. . .
14,547 5 0.0074 51.8180 0.0100 0.4564 0.4551
14,548 5 0.0062 43.3105 0.0050 0.4564 0.2282
14,549 5 0.0071 49.8568 0.0150 0.9077 0.6820
14,550 5 0.0085 59.5084 0.0300 0.0 0.0

Note: 1 Omit data.
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intensity. (d) Ice maximum velocity. (e) Ice average velocity.
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4.4.2. Training Network

To balance the data distribution on the 15,080 frames dataset, the training set, verifi-
cation set, and test set were extracted from each video clip in the ratio of 6:2:2. A total of
9047 frames were divided into the training set, 2985 into the verification set, and 3048 into
the test set. The Adam optimizer was adopted, the learning rate was set to 0.01, cross-
entropy was adopted as the loss function, and the iterations were set to 2000 times. The
curves of the training accuracy and loss are shown in Figure 18.
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verged slower but was stable. Both the 0.01 and 0.1 learning rates ultimately achieved the 
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Figure 18. Training log curve. Accuracy and loss on the training set and validation set, respectively.

The optimization of hyperparameters in neural networks has a significant impact on
the performance of a model. We conducted experiments on the network at three learning
rates, with learning rates of 0.1, 0.01, and 0.001, respectively. It was found that a larger
learning rate converged faster but was unstable on the curve, while a smaller one converged
slower but was stable. Both the 0.01 and 0.1 learning rates ultimately achieved the highest
accuracy of 0.9990 on the validation set, as shown in Figure 19. We saved the optimal model
parameters with the highest accuracy of 0.9990 on the 1871st iteration of the validation set.
The accuracy of the optimal model was 0.9984 on the test set.
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4.4.3. Experimentation Comparison

The softmax regression [34] and support vector machine (SVM) [35] methods were
used for the comparison. Logistic regression is a commonly used linear model for handling
binary classification problems, and softmax regression is an extension of logistic regression
in multi-classification problems. SVM handles binary classification problems through hy-
perplanes, and combining multiple SVM classifiers can be extended to multi-classification
problems.

The softmax regression method used five-dimensional feature inputs and five-dimensional
category outputs in this experiment. The Gradient Descent method was used as the optimizer.
Cross entropy was the loss function, and the iterations were set to 2000 times. It was found that
setting the learning rate to five would achieve faster convergence. The best model was saved at
the 1720th iteration, with the highest accuracy (0.9005) of the validation set. The SVM method
used the implementation from the sklearn model of the Python package, set the hyperparameter
C to 1.0, and tested four kernel functions on the dataset.

The comparison results of the three methods on the test set are shown in Table 4.
The feed-forward neural network outperformed the other methods in terms of overall
performance. The future prediction of the ice break-up process would introduce more
hydrological features such as water level, water flow velocity, discharge, temperature, wind
speed, etc., and the feed-forward neural network would be more suitable for this task.

Table 4. Comparison results of the three methods.

Methods Kernel Accuracy Loss

Softmax regression - 0.9008 0.2782

SVM

Linear 0.8967 -
Poly (degree = 5) 0.9646 -

RBF 0.9190 -
Sigmoid 0.2684 -

Ours - 0.9813 0.0173

4.5. Real-Time Monitoring of the River Ice Regime

Combining all the above steps as a single pipeline achieved the real-time monitoring
of the river ice regime, and then the short-term early warning of ice floods was realized
through the prediction of the stage of the ice cover break-up process. An early warning
prompt could be issued when the ice cover break-up process entered the ice break-up
beginning stage. As shown in Figure 20 and Video S1, our method accurately predicted
different ice cover breaking stages and real-time displays of river ice regime information.
The significance of the stage prediction was the short-term risk early warning prompts. In
this work, the river ice-related risk warning level of the five stages is shown in Table 5.

Table 5. River ice-related risk warning level of the five stages.

No. The Stage of Ice
Break-Up Warning Level Note

1 Ice frozen Medium Observe if there is an ice jam

2 Ice break-up
beginning High Ice run is about to occur

3 Ice drifting High Pay attention to blockage and
collisions

4 Ice break-up ending Low The risk is minimal
5 Ice-free None The river has been opened
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Figure 20. Real-time monitoring of the river ice regime in each break-up stage. The images were 
captured from the tenth-second frame of the corresponding video clip. The blue color represents the 
Figure 20. Real-time monitoring of the river ice regime in each break-up stage. The images were
captured from the tenth-second frame of the corresponding video clip. The blue color represents the
medium warning level; the red color represents the high warning level; the green color represents the
low warning level; the grey color represents the none warning level.

5. Discussion

This work addressed the ice tracking and velocimetry problem on camera imagery
and used the derivation of the concentration, area, and motion intensity to realize river ice
regime monitoring and short-term ice flood warnings. There are still many shortcomings.

5.1. Uncertainty Quantification

Uncertainty quantification has been proven to effectively assist decision-makers in
understanding the uncertainty associated with the prediction results of neural networks
and taking appropriate action [36]. This study was no exception; the neural network
mechanically predicted any input image into five stages without creating uncertainty.
Sometimes, highly uncertain prediction results can mislead decision-makers into making
incorrect decisions.

In future work, we will estimate the uncertainty of neural networks from two aspects.
Meanwhile, uncertainty quantification can help us improve the network.
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Aleatoric uncertainty is the uncertainty caused by noisy data. Therefore, the network
must estimate the error of the samples during inference to obtain uncertainty. We can
modify a neural network’s estimation of probability distribution instead of using a simple
prediction.

Epistemic uncertainty is the uncertainty caused by a noisy model. Uncertainty can
be estimated through multiple model results. In this work, we needed to estimate the
uncertainty for the classification using the probability distribution of the softmax regression
to estimate the uncertainty.

5.2. Capability Expansion

The task of river ice regime recognition involves not only the monitoring of surface ice
but also the monitoring of underwater ice. It is significant to realize the three-dimensional
monitoring of river ice. Xin et al. [10] proposed the estimation of river ice thickness. River
ice regime identification is still facing many challenges that need to be further addressed,
as listed below:

1. The estimation of river ice thickness;
2. The integration of hydrological monitoring elements such as temperature, water level,

water flow velocity, discharge, wind speed, and evaporation;
3. Joint monitoring and predictions using multiple cameras;
4. Joint monitoring by fusing satellite remote sensing and ground camera images.

By solving the above four problems, systematic river ice regime recognition can be
realized, and then comprehensive river ice flood warning and prediction can be realized.

6. Conclusions

The success of the river ice recognition method based on camera imagery in this paper
lies in the following: first, it addressed the motion detection problem caused by the color
similarity of the river ice to the water to extract a more accurate and precise motion binary
map of the river ice. Second, a novel ice velocity measurement method was proposed. By
dividing the 16 × 16 grid patches of the river ice motion binary map into dynamic control
points, the particle video tracking method could be based on deep learning to adapt the
continuous tracking scene of the river ice, which made the river ice velocity measurement
more accurate. Finally, the ice concentration, area, motion intensity, and velocity were
extracted to predict the stage of the ice cover break-up process to realize the short-term
early warning of ice floods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16010058/s1, Video S1: River ice monitoring based on web
cameras.
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Abstract: When ships navigate in polar regions, they may collide with ice masses, which may cause
structural damage and endanger the safety of their occupants. Therefore, it is essential to promptly
detect sea ice, icebergs, and passing ships. However, individual data sources have limits and should
be combined and integrated to obtain more thorough information. A polar multi-target local-scale
dataset with five categories was constructed. Sea ice, icebergs, ice melt ponds, icebreakers, and
inter-ice channels were identified by a single-shot detector (SSD), with a final mAP value of 70.19%. A
remote sensing sea ice dataset with 15,948 labels was constructed. The You Only Look Once (YOLOv5)
model was improved with Squeeze-and-Excitation Networks (SE), Funnel Activation (FReLU), Fast
Spatial Pyramid Pooling, and Cross Stage Partial Network (SPPCSPC-F). In the detection stage, a
slicing operation was performed on remote sensing images to detect small targets. Simulated sea
ice data were included to verify the model’s generalization ability. Then, the improved model was
trained and evaluated in an ablation experiment. The mAP, recall (R), and precision (P) values of
the improved YOLOv5 were 75.3%, 70.3, and 75.4%, with value increases of 3.5%, 3.4%, and 1.9%,
respectively, compared to the original model. The improved YOLOv5 was also compared with other
models such as YOLOv3, Faster-RCNN, and YOLOv4-tiny. The results indicated that the performance
of the proposed model surpassed those of the other conventional models. This study achieved the
detection of multiple targets on different scales in a polar region and realized data fusion, avoiding the
limitations of using a single data source, and provides a method to support polar ship path planning.

Keywords: computer vision; single-shot detector (SSD); You Only Look Once (YOLOv5); multi-source
data; polar object; remote sensing image; sea ice

1. Introduction

Ice along the Arctic shipping waterways is gradually thawing under the influence of
global warming, and new shipping routes to polar areas are becoming available [1]. This
could greatly reduce the navigation time and increase safety [2]. Glacial surges, fog, and ice
flow will affect the navigation safety and may result in collisions with ice and ship damage.
Therefore, it is important to promptly detect sea ice, icebergs, and passing ships to avoid
ship–ice and ship–ship collisions [3]. A detection system should provide information about
the position and size of the objects on navigation routes, so as to support polar ship path
planning and make ship navigation safer and more energy efficient.

Field observation focuses mostly on ships and buoys. As described, visual observation
was combined with field measurements [4], determining for instance, ice thickness through
the on-site drilling of ice samples. However, on-site detection in the harsh polar environ-
ment is challenging, and data collection is limited [5,6]. In recent years, image processing
and remote sensing technology have been applied to the acquisition of polar information,
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and indirect detection techniques have been developed [7]. Methods such as ship walk
observation, shipborne radar observation, and unmanned aircraft observation are used for
local-scale detection, while active and passive microwave remote sensing is mainly used
for large-scale observations [8].

For local-scale environmental information, shipboard cameras are commonly used
to acquire and analyze optical images. Weissling et al. [9] developed a ship-based, ice
condition imagery acquisition, processing, and analysis system. Worby et al. [10] evaluated
the ice distribution characteristics in the Antarctic based on 20,000 images acquired during
Antarctic ship voyages. In addition, researchers are studying how to apply machine
learning and deep learning to polar target detection. Li et al. [11] proposed a two-stream
radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface
was determined and then its spectrum was transformed into RGB color space. Cai et al. [12]
employed convolutional neural networks to detect sea ice by instance segmentation using
a simulation ice pool dataset and estimated ice size and concentration.

For large-scale ice detection, passive and active microwave remote sensing images are
mostly used. Some algorithms for calculating ice concentration were proposed, including
NASA Team (National Aeronautics and Space Administration), Bootstrap, and ASI (ARTIST
Sea Ice) [13]. For the identification and classification of sea ice, techniques such as the
maximum likelihood method, SVM (support vector machines), Markov random field
model, and neural networks have been utilized. Belchansky et al. [14] used SSM/I (Special
Sensor Microwave/Image) bright temperature data and remote sensing ice images acquired
by the ERS and Okean satellites as inputs to train neural networks. Karvoven et al. [15]
segmented and classified six types of ice from Synthetic Aperture Radar (SAR) images
using an impulse-coupled neural network. Ressel et al. [16] utilized an artificial neural
network to classify ice, and the results demonstrated that the method was resistant to image
noise. However, generally, the models used were not modified and improved according to
the characteristics of the remote sensing ice images to be analyzed.

The detection based on shipboard optical images is characterized by high resolution,
rapidity, and the ability to provide rich information [17], but it cannot allow a continuous
monitoring of the environment and is affected by adverse weather conditions. The detection
based on remote sensing images can be applied to wide polar regions and is independent of
the weather conditions, but its spatial distribution is relatively low, and it is not sufficiently
accurate to distinguish small targets. Most studies focused on ship detection rather than on
ice detection, and those that investigated ice detection systems mainly used a single data
source consisting of remote sensing or optical images.

In this paper, we combined data of local-scale optical images and remote sensing im-
ages to integrate their specific strengths. Polar datasets at different scales were constructed.
The SSD model was used for polar target detection at the local scale. For remote sensing
detection, the YOLOv5 model was improved according to the characteristics of the sea
ice, and ablation and comparison experiments were conducted to verify the model. We
performed a slicing operation on the images to ensure that small sea ice targets could be
detected and we constructed hybrid datasets to verify the proposed model.

2. Polar Multi-Target Detection at the Local Scale
2.1. Target Detection

The region proposal method and the end-to-end method are based on two primary
detection deep learning algorithms. Overfeat, R-CNN (Region-CNN), Faster R-CNN [18],
etc., are involved in the region proposal-based method while YOLO and SSD are part of
the end-to-end-based method [19]. The region proposal-based method has a significant
advantage in detection accuracy with respect to the end-to-end-based method because it
includes “two steps” and is more accurate for target localization and classification. On the
other hand, it has a significant disadvantage in the detection of speed because it requires a
long time to generate the region proposal. The end-to-end-based detection method directly
extracts features for object localization and classification using convolution. The SSD relies
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on the RPN (Region Proposal Network) mechanism of the Faster R-CNN, which combines
the detection speed of the end-to-end method with the detection accuracy of the region
nomination method. Therefore, in this paper, we chose the SSD model for polar multi-target
detection on the local scale.

2.2. SSD Model

The SSD model consists of two major components, a base network and additional net-
work layers, as shown in Figure 1. The base network uses the structure of Visual Geometry
Group (VGG 16) and converts the last two fully connected layers into convolutional layers,
Conv4_3 and Fc7. The additional network layers include four sets of convolutional layers:
Conv6_2, Conv7_2, Conv8_2, and Conv9_2. The SSD detection model operations are as
reported below.
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Firstly, the input image is converted to a three-channel RGB (Red Green Blue) image
with a resolution of 300 × 300 or 500 × 500. The image is fed into the network to extract
multi-scale feature information, and the scales of each feature layer are 38 × 38, 19 × 19,
10 × 10, 5 × 5, 3 × 3 and 1 × 1.

Then, target feature extraction is performed through six feature layers of different
scales. Default boxes are generated for each point of the feature map, and the number of
default boxes is different for each layer.

Finally, all the generated default boxes are integrated, analyzed by non-maximum
suppression (NMS) and filtered with an intersection over union (IOU) higher than 0.5.
The final output contains information about the location, category, and confidence level of
the target.

The SSD is characterized by its efficiency as a single-stage detector, performing detec-
tion directly in a single forward pass without the need for region proposals, which results
in a faster detection compared to other models. It leverages multi-scale features and default
boxes and can detect objects of various sizes. These advantages make SSD an effective
model widely applied in practical scenarios.

2.3. Construction of a Local-Scale Polar Multi-Target Dataset

Due to the lack of a publicly accessible dataset for polar targets, constructing a new
dataset is an important step. A total of 650 images were obtained through searching, de-
weighting, annotation, and review to create a local-scale polar multi-objective dataset. Some
of the images were downloaded from The Norwegian Institute (https://icewatch.met.no,
accessed on 19 August 2022). The dataset was divided into 5 categories, namely, sea ice (first-
year ice), icebreakers, icebergs, inter-ice waterways, and melting pools on ice. Labellmg, an
image annotation tool, was used to label the images as fy, icebreaker, iceberg, channel, and
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pool, respectively [20,21]. Finally, the dataset is randomly divided into training and testing
sets at the ratio of 8:2. The details are shown in Table 1.

Table 1. Local-scale polar multi-target dataset.

Category Name Label Name Image Number Label Number

Sea ice fy 150 2446
Icebreakers icebreaker 150 160

Icebergs iceberg 150 167
Inter-Ice Waterways channel 100 100
Melting pools on ice pool 100 558

The majority of the images were captured by shipboard cameras and UAVs (Un-
manned Aerial Vehicles), and the photographed scenes corresponded to polar ship naviga-
tion scenarios. Some of the sample images are shown in Figure 2.
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Figure 2. Local-scale polar multi-target dataset. (a) Sea ice; (b) icebergs; (c) icebreakers; (d) melt pond
and inter-ice waterway.

2.4. Results

The model training and testing configurations are shown in Table 2. The detailed
training parameters are shown in Table 3.

Table 2. Configurations and versions.

Configuration Version

Operating System Window10
Central processing unit CPU Intel Xeon W-2255

Graphics GPU NVIDIA Quadro P620
Deep Learning Platform Pytorch

Pytorch version 1.10.2
CUDA version 11.3

CUDNN version 8.2.1
Python version 3.9

Table 3. Training parameters.

Parameters Values

num_calsses 4
learning_rate_base 0.002

batch_size 4
momentum 0.937

num_workers 4
epoch 1000

weight_decay 0.0005
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The steps in the training were as follows. Firstly, the training process was mainly used
to predict the results and calculate the loss value by the forward propagation algorithm.
Secondly, the parameter gradient value was calculated by backward propagation, and the
parameters were optimized and updated. Finally, the training was completed by iterating
the gradient descent algorithm to the maximum number of iterations. The process was
stopped when the model reached loss convergence; then, a model was generated for the
subsequent training and target detection tasks.

Average precision (AP), F1 score, and mean average precision (mAP) were determined
to evaluate the detection accuracy [22]. The precision (P) value can quantify the effectiveness
of sample classification, and the recall (R) value can evaluate the capacity to detect positive
samples. Considering only precision or only recall is not sufficient to evaluate a model;
so, the F1 score was used to harmonize P and R. The calculation of mAP can be divided
into two steps: the first step consists of the calculation of the AP (average precision) of
each category, while the second step involves determining the sum of the average precision
values of each category and then its average value to obtain mAP. These parameters were
calculated according to Equations (1)–(5):

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2
P · R

P + R
(3)

AP =
∫ 1

0
P · RdR (4)

mAP =
∑k

i=1 APi
k

(5)

where TP (true positives) is the number of correctly classified positive samples, FP (false
positives) is the number of incorrectly classified positive samples, TN (true negatives) is
the number of correctly classified negative samples, and FN (false negatives) is the number
of incorrectly classified negative samples; k is the category number.

After training, the model was applied to the test set, and finally, an mAP value of
70.19% was obtained. The accuracy of the icebreaker category was the highest at 92%,
followed by those of the iceberg category, which was 85%, and of the fy (first-year ice)
category, which reached 77%. The accuracies of channel and pool were the lowest, 52%
and 45%, respectively, due to the low number of images or labels for these two categories.
The detection results for each category are shown in Figure 3. Some of the test results are
shown in Figure 4. The SSD model works well for the detection of large targets at close
range, but it is not effective in detecting small targets at a distance.
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3. Sea Ice Detection by Remote Sensing

The detection on a local scale does not fully meet the requirements of navigating
in polar regions, and using a single data source has certain limitations. The ship optical
cameras cannot obtain large-scale and long-time series images and cannot monitor non-
navigable areas. If sea ice in remote sensing images can be identified and located, and
data fusion between local-scale and large-scale data can be performed, the advantages of
different data sources can be fully utilized [23].

3.1. Introduction of the YOLOv5 Model

In remote sensing images, the ice masses appear very small and densely clustered, and
the SSD model is not able to analyze them. After improving its accuracy and efficiency, the
YOLOv5 model was applied to the detection of ice through remote sensing. The backbone,
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neck, and head are the three basic structural components of the YOLOv5 model, as shown
in Figure 5.
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The YOLOv5 backbone utilizes CSPDarknet as the backbone for extracting features
from images, which is composed of cross stage partial networks. The focal module is
responsible for efficiently downsampling the images. It is designed to transmit the images
through the channel while maintaining primitive information. The backbone layer incor-
porates the utilization of the C3, C3_F, and Spatial Pyramid Pooling Fast (SPPF) modules.
The C3 and C3_F modules can enhance the extraction of image features and augment the
overall speed.

The neck module in YOLOv5 utilizes PANet to produce a feature pyramid network.
These aggregated features are subsequently forwarded to the head module for prediction.
The neck layer integrates the structures of the feature pyramid network (FPN) and the
path aggregation network (PAN). Deep-feature images possess a higher degree of semantic
information but a lower degree of location information, whereas shallow-feature images
exhibit the reverse characteristics. The FPN model can transmit semantic information from
a deep-feature image to a shallow-feature image. In contrast, PAN can transmit location
information from a shallow-feature image to a deep-feature image. The integration of FPN
and PAN enables the consolidation of parameters across various detection layers.

The YOLOv5 head is composed of layers that produce predictions from the anchor box.
The head can be categorized into the loss function and non-maximum suppression (NMS).
The binary cross entropy loss function is employed for the computation of classification
loss and confidence loss, whereas the complete IoU (CIoU) loss function is utilized for the
estimation of location loss. The CioU loss function incorporates three crucial parameters:
the overlap area, the distance from the center, and the aspect ratio. NMS is employed to
eliminate redundant detection while retaining the candidate box with the highest prediction
probability as the ultimate prediction box.
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3.2. Improved YOLOv5 Model

The YOLOv5 model was improved in three aspects. Firstly, the Squeeze-and-Excitation
Networks (SE) attention module was added to the backbone of the original model. Secondly,
the Fast Spatial Pyramid Pooling and Cross Stage Partial Network module (SPPCSPC-F)
were used to augment the characterization capabilities. Finally, Funnel Activation (FReLU)
was introduced to replace the Sigmoid-Weighted Linear Unit (SiLU) and improve the
accuracy of ice detection.

3.2.1. Squeeze-and-Excitation Networks (SE) Attention Mechanism

Due to the large size of the remote sensing images and the small size of the ice targets,
it is easy to lose some useful information. The Squeeze-and-Excitation Networks (SE)
attention mechanism was added to the YOLOv5 backbone [24]. The SE module was
inserted after the convolutional layers. The module consists of two operations: squeeze and
excitation. It is integrated to adaptively adjust the importance of each channel by learning
their weights. The structure of the SE attention mechanism is shown in Figure 6.
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In the squeeze phase (Fsq), global average pooling is applied to the input feature
map, compressing it from three dimensions to one dimension. This one-dimensional tensor
captures global information for each channel. In the excitation phase (Fex), a set of fully
connected layers operates on the output of the squeeze phase. These layers model the
importance of each channel and generate a channel attention vector. Finally, a rescale
operation (Fsc) normalizes the weights and multiplies them onto each feature channel.

3.2.2. SPPCSPC-F

The Spatial Pyramid Pooling Fast (SPPF) is a module designed to enhance feature
representation. SPPF is the improved version of Spatial Pyramid Pooling (SPP) and is faster
than SPP under the same conditions. The structure of the SPPF module is shown in Figure 7.
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The input feature map passes through three 5 × 5 maximum pooling layers, and three
different sizes of receptive fields are obtained. Although maximum pooling can expand the
receptive field, it will reduce the resolution of the feature map and cause the loss of some
useful information. SPPCSPC is a structural module that combines the concepts of SPP and
Cross Stage Partial Network (CSP) [25]. In this paper, we present the SPPCSPC-F to replace
the SPPF concerning the idea of SPPCSPC. The structure of SPPCSPC-F is shown in Figure 8.
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The input feature map is passed through the SPPCSPC-F module, with one path
performing convolutional operations to extract lower-level features, and the other path
preserving the original features. Next, the module performs multi-scale pooling operations
on the feature map to capture features with different receptive fields. Finally, the fused
features are further processed by subsequent convolutional layers. The order of pooling is
modified to increase the speed while keeping the feeling field constant.

3.2.3. FReLU Activation Function

In the YOLOv5, the Sigmoid-Weighted Linear Unit (SiLU) is used as the activation
function. When the input values move away from zero, the derivative of the SiLU can
approach zero, leading to gradient saturation. It is difficult for the network to converge or
cause training instability. The FReLU was used to replace the SiLU. The FReLU activation
function incorporates learnable parameters, enabling the network to adaptively adjust the
shape of the activation function through learning [26]. This flexibility enhanced the model’s
learning capacity and improved its adaptation to the sea ice characteristics. Combining
SE attention with FReLU enables YOLOv5 to extract high-quality features, concentrate on
key objects, reduce overfitting, and improve generalization ability, especially for detecting
small objects in polar regions. The FReLU is defined by Equations (6) and (7):

f (xc, i, j) = max(xc, i, j, T(xc, i, j)) (6)

T(xc, i, j) = xw
c,i,j · pw

c (7)

where T(·) denotes the funnel condition, xw
c,i,j denotes a kh × kw Parametric Pooling Window

centered on xw
c,i,j, pw

c denotes the coefficient on this window which is shared in the same
channel, and (·) denotes dot multiply. The FReLU activation function is shown in Figure 9.
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3.3. Construction of a Remote Sensing Sea Ice Dataset

The remote sensing sea ice dataset was mainly derived from the Google Earth (http:
//earthengine.google.com/, accessed on 25 December 2022) and the Northwestern Poly-
technical University (NWPU) datasets [27]. A total of 600 images, obtained after de-
duplication, annotation, and review, constituted the dataset. The tag name was ice, and the
number of tags was 15,948. It was randomly divided into a training set and a test set at the
data ratio of 8:2. Some of the sample images in the dataset are shown in Figure 10.
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Figure 10. Remote sensing sea ice dataset.

Neural networks need a large amount of data and a high data quality to improve their
performance and robustness. The YOLOv5 uses Mosaic, adaptive cutout, and other data
processing methods for data enhancement [28].

The main idea of Mosaic is to randomly crop and scale several images and then
randomly arrange and splice them to form a single image, to enrich the dataset and
improve the training speed of the network. In the normalization operation, several images
are calculated at one time, which can reduce the demand for computer memory. The data
augmentation process is shown in Figure 11.
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Figure 11. Data augmentation. (a) Mosaic; (b) perspective, flip left–right and rotation processing.

There are many challenges in the detection of remote sensing images, as some targets
are relatively small in size and usually clustered together. If the images are directly sent
into the network for detection, many small targets cannot be effectively identified.

To solve this problem, in the detection stage, a sliding window was used to cut a
specified-size (such as a 416 × 416) image as the input. The cutout adjacent images had a
15% overlap. The slicing operation on the remote sensing image is shown in Figure 12. The
purpose of the overlap is to ensure that every region is completely detected. Although this
causes duplicate detection, overlapping sections can be filtered out by the NMS. Finally,
the results of each cutout image were combined to obtain the detection results.
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In order to verify the accuracy of the improved YOLOv5 model, we combined simu-
lated sea ice images and real sea ice images into a hybrid dataset. The simulated images
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were constructed as follows. Firstly, we built a large flat ice field. Secondly, we fragmented
the flat ice field to obtain a broken ice field. The Voronoi diagram is morphologically similar
to an ice field with large pieces of broken ice and consists of a set of continuous polygons
formed by the perpendicular bisectors of lines connecting two neighboring points. We
used the RayFire plug-in of 3ds Max to fragment the flat ice field according to the Voronoi
diagram, as shown in Figure 13a. Finally, the size of the broken ice field was reduced by
80% to enlarge the gaps between the ice blocks, as shown in Figure 13b.
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3.4. Results
3.4.1. Ablation Study

The ablation study was conducted to facilitate the comparison of the different improve-
ment methods. They were trained with the same configuration used in the local-scale polar
objection. The epoch was set as 300, the initial learning rate was 0.001, the momentum param-
eter was 0.9, the weight decay parameter was 0.0005, and the NMS threshold was 0.5. The
evaluation was carried out after every 30 training epochs. The results are shown in Table 4.

Table 4. Ablation study results.

Method P R F1 mAP

YOLOv5 0.719 0.684 0.701 0.719
YOLOv5+SE 0.731 0.701 0.716 0.738

YOLOv5+CSPCF 0.737 0.688 0.712 0.743
YOLOv5+FReLU 0.723 0.706 0.714 0.747

YOLOv5+SE+SPPCSPC-F+FReLU 0.753 0.703 0.727 0.754

In Table 5, it can be observed that the mAP of the original YOLOv5 model was 0.719,
the lowest among those of the evaluated models. The implementation of SE resulted in
an increase in the mAP to 0.738, i.e., by 1.9%. The inclusion of SPPCSPC-F resulted in a
2.4% increase in the mAP, which reached the value of 0.743. However, the R value was
relatively low, i.e., 0.688. The inclusion of FReLU resulted in a 2.8% increase in the map, to
the value of 0.747. When adding SE, SPPCSPC-F, and FReLU, the mAP was improved by
3.5%, reaching the highest value among those of all the examined models.

Similarly, the P, R, and F1-scores of the original YOLOv5 model were 0.719, 0.684, and
0.701. However, for the proposed method, the P, R, and F1-scores were 0.753, 0.703, and
0.727, that is, they increased by 3.4%, 1.9%, and 1.8%, respectively. Therefore, the improved
YOLOv5 model revealed superior accuracy and enhanced performance in the domain of
remote sensing sea ice detection.
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Table 5. The performance of different models in sea ice detection.

Method P R F1 mAP

YOLOv3 0.858 0.407 0.552 0.604
YOLOv4-tiny 0.757 0.548 0.636 0.648
Faster-RCNN 0.641 0.632 0.636 0.655

YOLOv5 0.719 0.684 0.701 0.719
Ours 0.753 0.703 0.727 0.754

3.4.2. Contrast Study

In order to further validate the advantage benefits and efficacy of the improved
YOLOv5 model, incorporating the three mentioned modules, a comparative experiment
was conducted. We compared the improved model with other conventional models, such
as Faster-RCNN, YOLOv3, and YOLOv4-tiny; the values of loss and mAP are shown in
Figure 14.
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In the first 40 epochs, the loss of each model fell quickly, indicating that the training
did not achieve a stable state. When the training is stable, the loss in the curve is flat rather
than sharp. The loss of our model was lower than that of the others when training reached
a steady stage. The mAP rose sharply in the first 80 epochs. All models tended to become
more stable after 250 training epochs, and the mAP of our model was the highest.

The values of the evaluation indicators are shown in Table 5. Compared with those of
YOLOv3, YOLOv4-tiny, Faster-RCNN, and original YOLOv5, the mAP of YOLOv3 was the
lowest, at 60.4%, whereas the mAP of our model was the highest, at 75.4%. YOLOv3 and
YOLOv4-tiny showed a higher P value but a lower R value, which indicated that these two
models largely miss their ice targets when detecting sea ice. Based on the above results, the
improved YOLOv5 can better perform in sea ice detection.

The improved YOLOv5 was used to test a remote sensing image with a resolution
of 3660 × 3660. Since some sea ice targets were too dense, the confidence degree was
hidden in the results. The detection results of the original YOLOv5 are shown in Figure 15a.
Figure 15b shows zoomed-in local images using the original YOLOv5, in which the number
of detected sea ice masses was 14 and 55. Figure 15c shows zoomed-in local views of the
image detected by the improved YOLOv5, in which the number of detected sea ice masses
was 53 and 88. When using the improved YOLOv5, the number of detected ice targets
increased by 39 and 33 units, and most of them were small.
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Figure 15. Comparison of the detection results. (a) Detection results for the original YOLOv5;
(b) localized zoomed-in views using the original YOLOv5; (c) localized zoomed-in view using the
improved YOLOv5.

The results with the confidence degree are shown in Figure 16. Both a real image
and a simulated sea ice image are presented. The results demonstrated that the improved
YOLOv5 model was able to detect ice targets in simulated sea ice images with strong
generalization ability and robustness.

Water 2023, 15, x FOR PEER REVIEW  14  of  17 
 

 

of the image detected by the improved YOLOv5, in which the number of detected sea ice 

masses was 53 and 88. When using the improved YOLOv5, the number of detected  ice 

targets increased by 39 and 33 units, and most of them were small. 

The results with the confidence degree are shown in Figure 16. Both a real image and 

a  simulated  sea  ice  image are presented. The  results demonstrated  that  the  improved 

YOLOv5 model was able  to detect  ice  targets  in  simulated  sea  ice  images with  strong 

generalization ability and robustness. 

(a)  (b)  (c)   

Figure 15. Comparison of the detection results. (a) Detection results for the original YOLOv5; (b) 

localized  zoomed-in views using  the  original YOLOv5;  (c)  localized  zoomed-in view using  the 

improved YOLOv5. 

(a)  (b)   

Figure 16. Test detection results using the hybrid dataset. (a) Detection result for a real ice image; 

(b) detection result for a simulated ice image. 

Local  scale  detection  covers  from  tens  to  hundreds  of meters.  Correspondingly, 

remote  sensing  scale  detection  covers  from  tens  to  hundreds  of  kilometers.  If  a  ship 

navigates  in  the  polar  regions  using  only  local-scale  data,  the  planned  path may  be 

optimal at the local scale but not on the whole, as it could be unnecessarily long. If only 

remote sensing data are used, the planned path may be the best on a large scale, but  it 

may miss some obstacles that will jeopardize the safety of ship navigation on a local scale. 

In  this paper,  local-scale and remote sensing data were combined  to  take advantage of 

their respective strengths. Our results indicated that the use of this combination for the 

detection of obstacles can improve the safety and efficiency of polar navigation. 

   

Figure 16. Test detection results using the hybrid dataset. (a) Detection result for a real ice image;
(b) detection result for a simulated ice image.

Local scale detection covers from tens to hundreds of meters. Correspondingly, remote
sensing scale detection covers from tens to hundreds of kilometers. If a ship navigates in
the polar regions using only local-scale data, the planned path may be optimal at the local
scale but not on the whole, as it could be unnecessarily long. If only remote sensing data
are used, the planned path may be the best on a large scale, but it may miss some obstacles
that will jeopardize the safety of ship navigation on a local scale. In this paper, local-scale
and remote sensing data were combined to take advantage of their respective strengths.
Our results indicated that the use of this combination for the detection of obstacles can
improve the safety and efficiency of polar navigation.

4. Discussion

The instability of polar condition makes navigation difficult. Sea ices which float on
the surface are difficult to detect and are prone to collision with the hull or the propeller. In
this paper, polar datasets at different scales were constructed. The SSD model was used for
multi-target detection at the local scale. For remote sensing images, hybrid datasets were
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constructed and a slicing operation was performed, the YOLOv5 model was improved and
tailored to detect sea ices. Ablation and comparison experiments were conducted to verify
the proposed model.

For the source of data, most studies mainly adopt remote sensing or optical image as a
single data source. For example, Li et al. [29] who developed a novel method to extract sea
ice cover using Sentinel-1 data based on the support vector machine (SVM). Xu et al. [30]
proposed a Recurrent Attention Convolutional Neural Network (RA-CNN) to classify
different ships. In this paper, the fusion of remote sensing and optical images is used to
take advantage of the complementary strengths.

For ice detection, some studies did not change their model according to the character-
istic of ices. Moreover, many studies used only real datasets to verify the accuracy of their
model. For example, Frederik et al. [31] proposed a deep learning model based on YOLOv3
for distinguishing icebergs and ships. Markus et al. [32] detected the ice on rotor blades. In
this paper, the YOLOv5 mode was improved to ensure that small ices can be detected. The
hybrid dataset was constructed to verify the proposed model and the results showed that
the model had a good generalization ability.

Although this study successfully detected multi-scale polar objects, it still has some
limitations. The lower detection accuracy of some categories on the local scale was due to
the small amount of data. The datasets used can be expanded to increase the accuracy [33].
This study focused on rectangular detection boxes; if more detailed sea ice information is
needed, in the future, the ice images can be processed with instance segmentation [34].

5. Conclusions

In order to avoid the limitations caused by the use of a single dataset, we constructed
multi-scale datasets by combining data from different sources. The SSD model was used
to detect local-scale targets, and the improved YOLOv5 model was used to detect remote
sensing sea ice targets. The following conclusions can be drawn:

1. The SSD model can be used for the detection of polar targets on a local scale. The
dataset it uses includes sea ice, icebergs, icebreakers, ice melt ponds, and inter-ice
waterways; the mAP can reach 70.19%; icebergs and icebreakers were detected with
the highest average accuracy of 84% and 81%.

2. An improved YOLOv5 model was obtained through Squeeze-and-Excitation Net-
works (SE), Funnel Activation (FReLU), Fast Spatial Pyramid Pooling, and Cross
Stage Partial Network (SPPCSPC-F). The utilization of SE and SPPCSPC-F allowed the
characteristics of objects to be strengthened, thereby augmenting the overall detection
efficacy and precision of the model. The FReLU activation function was used to
enhance the learning capacity and enable better adaptation to sea ice characteristics. A
slicing operation was performed on remote sensing images to detect small ice masses.
Simulated ice images were included to verify the precision of the proposed model.

3. In comparison to other conventional models such as Faster-RCNN, YOLOv3, and
YOLOv4-tiny, the proposed model demonstrated higher accuracy, with an mAP of
up to 75.4%, which verified its generalization ability and robustness. The proposed
method is tailored to detect remote sensing sea ice, compared to the original model,
the mAP value increased 3.5%.

4. For future research, large and diverse polar datasets need to be established. These
datasets should contain polar images from different seasons, weather conditions,
and periods, so that the model can better adapt to changes in the polar environment.
Additionally, improved detection can provide support to avoid polar ship collision
with ice masses and improve navigation path planning. It can also provide some help
for the calculation of the ice pressure load for ships [35,36].
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Abstract: Fine spatiotemporal resolution snow monitoring at the watershed scale is crucial for the
management of snow water resources. This research proposes a cloud removal algorithm via snow
grain size (SGS) gap-filling based on a space–time extra tree, which aims to address the issue of
cloud occlusion that limits the coverage and time resolution of long-time series snow products. To
fully characterize the geomorphic characteristics and snow duration time of the Kaidu River Basin
(KRB), we designed dimensional data that incorporate spatiotemporal information. Combining
other geographic and snow phenological information as input for estimating SGS. A spatiotemporal
extreme tree model was constructed and trained to simulate the nonlinear mapping relationship
between multidimensional inputs and SGS. The estimation results of SGS can characterize the snow
cover under clouds. This study found that when the cloud cover is less than 70%, the model’s
estimation of SGS meets expectations, and snow cover reconstruction achieves good results. In
specific cloud removal cases, compared to traditional spatiotemporal filtering and multi-sensor
fusion, the proposed method has better detail characterization ability and exhibits better performance
in snow cover reconstruction and cloud removal in complex mountainous environments. Overall,
from 2000 to 2020, 66.75% of snow products successfully removed cloud coverage. This resulted in a
decrease in the annual average cloud coverage rate from 52.46% to 34.41% when compared with the
MOD10A1 snow product. Additionally, there was an increase in snow coverage rate from 21.52% to
33.84%. This improvement in cloud removal greatly enhanced the time resolution of snow cover data
without compromising the accuracy of snow identification.

Keywords: reconstruction; snow cover; cloud removal; snow grain size; machine learning

1. Introduction

Snow cover monitoring with fine spatial–temporal resolution has important guiding
significance for watershed-scale snow water resource management and sustainable utiliza-
tion, natural disaster assessment, and early warning in pastoral areas. Spaceborne optical
and microwave sensors are important platforms for snow monitoring. However, an optical
remote sensing image is sensitive to cloud cover, and it is not possible to obtain information
of snow cover under clouds. Exploring the cloud removal algorithm has great significance
for restoring the snow condition under the cloud [1,2].

A large number of studies have shown that snow cover monitoring using optical
remote sensing performs with high accuracy. The principle is that snow shows high reflec-
tivity in visible and infrared bands but low reflectivity in the shortwave infrared (SWIR),
which is different from other land covers [3]. The normalized difference snow index (NDSI)
distinguishes snow pixels by measuring the relative magnitude of the reflectance difference
between the visible band (GREEN) and SWIR. The moderate resolution imaging spectrora-
diometer (MODIS) mounted on Terra and Aqua satellites has provided worldwide stable
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daily snow cover data for nearly 20 years with its excellent spatial–temporal resolution
and good stability [4–6]. However, the similar spectral reflection characteristics of snow
and cloud in the visible and near-infrared bands, especially the similar spectral response
of cirrus cloud and snow in the whole infrared spectrum, results in the misjudgment of
snow and cloud [7,8]. In addition, there are still a large number of cloud pixels in the
daily snow cover data of MODIS, which affects the spatial scope of snow monitoring,
the accuracy of snow cover mapping, and the temporal resolution of snow, and limits
the further application of optical remote sensing snowpack products. Therefore, many
scholars have carried out a lot of research on cloud removal of snow remote sensing to
improve the temporal resolution of snow cover [9,10]. At present, four major methods of
cloud removal from snow cover using satellite remote sensing are summarized, the first is
temporal filtering-based cloud removal, the second is spatial filtering-based cloud removal,
the third is the cloud removal algorithm based on multi-sensor fusion, and the fourth is the
cloud removal using snowline elevation.

Gafuov and Bárdossy proposed a cloud removal algorithm from MODIS snow cover
products based on temporal filtering [11,12], which assumes that the snow will not melt
quickly in a short time, but the clouds will move quickly. By synthesizing the snow products
from Terra and Aqua, the moving clouds are filtered to maximize the snow cover extent.
Cloud removal based on temporal filtering can be deduced and calculated without other
satellite or ground auxiliary data. For areas lacking multi-source satellite data or relevant
geographical parameters, the real snow cover extent can also be calculated.

The aforementioned studies have proved that selecting the appropriate time window
and synthetic days to conduct temporal filtering cloud removal can obtain snow cover
recognition results with high accuracy, but the step of “Filtering cloud removal during
snow accumulation and melting” will cause many false or missed judgments of snow pixels
that are fragmented in time series, thus reducing the accuracy of snow cover recognition.
Furthermore, the appropriate time window and synthetic days are uncertain and different
for different regions and periods. Therefore, large errors will occur when this method is
applied to regions with a wide spatial range, strong snow heterogeneity, and long-time
series snow data sets. There will be large errors, and the applicability of the algorithm
will be greatly reduced. The core of the spatial filtering cloud removal method is to select
cloud-free pixels in the spatial neighborhood to estimate the ground coverage under the
cloud. In the spatial filtering cloud removal strategy proposed by Gafurov and Bárdossy,
there are the “Near four-pixel method”, “Near eight-pixel method”, and other methods [6].
The cloud removal algorithm based on spatial filtering can be deduced and calculated
without other satellite data. Simultaneously, in practical application, although the amount
of cloud removal of this algorithm is less, it also maintains the lowest error.

The cloud removal method based on temporal filtering and spatial filtering mainly
uses the temporal and spatial variation of snow cover of the same optical remote sensor to
extract the ground information under the cloud. In contrast, another cloud removal method
based on multi-source data fusion uses complementary information between different data
sources, such as optical remote sensing observation, microwave remote sensing observation,
and station observation [13–16]. But the distribution and number of meteorological stations
limit the prediction ability of this method for snow reconstruction. However, the above
research can only qualitatively infer the distribution of snow cover under clouds, lacking
quantitative characterization of snow cover parameters under clouds.

In recent years, researchers have been striving to use spatiotemporal information
for one-step cloud removal algorithm research. Xia et al. [17] introduced variational
interpolation to construct a three-dimensional implicit function containing five consecutive
day data, which can easily obtain the shape of the snow cover boundary. The cloud
removal method proposed by Poggio and Gimona [18] is a combination of a generalized
additive model (GAM) and a geostatistical spatiotemporal model. The multidimensional
spatiotemporal GAM models binary variables, and geostatistical kriging methods are used
to explain spatial details. This method utilizes auxiliary data such as surface temperature,
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land cover, and soil type to effectively simulate the spatiotemporal correlation of snow cover
and can achieve satisfactory reconstruction accuracy even under high cloud cover. The
adaptive spatiotemporal weighting method [19] estimates the snow cover of cloud pixels
by combining adaptive weights based on the probability of snow cover in space and time,
which can completely remove the cloud layer. Huang et al. [20] established a hidden Markov
random field framework to remove cloud pixels from MODIS binary snow cover data. This
method effectively utilizes spatiotemporal information and achieves an overall accuracy
of 88.0% for the restored snow cover range under the cloud. Additionally, the conditional
probability interpolation method [13] can effectively calculate the conditional probability
of snow pixels being covered by clouds and meteorological data to remove clouds, but this
method has limited capacity for removing clouds in areas with few in situ observations.
Furthermore, Chen [21] proposes a conditional probability interpolation method based on a
space–time cube (STCPI), which takes the conditional probability as the weight of the space–
time neighborhood pixels to calculate the snow probability of the cloud pixels, and then
the snow condition of the cloud pixels can be recovered by the snow probability. However,
existing one-step cloud removal algorithms that utilize spatiotemporal information have
significant time computational costs and require multiple auxiliary data, which to some
extent limits the application of the algorithm. In addition, the progress of machine learning
and deep learning technology has also led to new developments in remote sensing snow
cover mapping. Luan et al. proposed an m-day dynamic training strategy, which divides
a long-term snow cover mapping task into multiple short-term tasks with consecutive m
days and reduces the problems caused by changes in snow cover over time. This strategy
is applied to random forest models for binary snow cover (BSC) mapping and fractional
snow cover (FSC) mapping, achieving higher accuracy than other training strategies [22].
A new algorithm based on a machine learning method was designed to improve FSC
retrieval from brightness temperature, considering other auxiliary information, including
soil property, land cover, geography information, and the overall accuracy of the above
method reached 0.88 [23]. Guo [24] trained the DeepLap v3+ model using a transfer
learning strategy to overcome the computational time and resource consumption of deep
learning models. The feasibility and effectiveness of automatically extracting snow cover
were demonstrated on high-resolution remote sensing images. Hu trained random forest
models using combinations of multispectral bands and normalized difference indices and
generated sub-meter and meter-level snow maps based on very-high-resolution images [25].
Liu introduced a highly accurate snow map acquired by unmanned aerial vehicles as a
reference to machine learning models, which significantly improved the MODIS fractional
snow cover mapping accuracy [26]. Yang et al. are committed to designing a cloud snow
recognition model based on a lightweight feature map attention network (Lw-fmaNet) to
ensure the performance and accuracy of the cloud snow recognition model [27].

We propose a new strategy for reconstructing snow cover under clouds to achieve
the following objectives: (a) exploring the correlation between snow particle size and
geographic and meteorological information at the watershed scale, and (b) improving
the temporal resolution of snow cover at the watershed scale by filling gaps in SGS and
achieving snow mapping for the entire watershed. The organization of the entire article
is as follows. After introducing the study area and data preprocessing in Section 2, the
methodology for cloud removal and snow cover reconstruction is expounded in Section 3.
The results of accuracy verification and mapping will be presented in Section 4. Ultimately,
a summary of the research will be described in Section 5.

2. Study Area and Data Preprocessing
2.1. Study Area

The Kaidu River originates from the southern slope of the Central Tianshan Mountain
in the northwestern region of China (Figure 1c), traverses through the Small Urdus Basin to
the Bayanbulak hydrological station, then turns towards the southeast and passes through
Husitaixili and the Big Urdus Basin and along a canyon, and finally flows through Yanqi
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basin into Bosten Lake. The KRB through which it flows is an important sub-basin of the
Tarim River Basin and covers an area of approximately 1.9 × 104 km2, with an elevation
ranging from 1348 to 4709 m above sea level (m a.s.l). The KRB is located in the hinterland
of Eurasia and features a typical warm temperate desert climate. The daily precipitation,
temperature, and snow depth data were obtained from the Bayanbulak meteorological
station at an elevation of 2458.9 m a.s.l. and were provided by the National Meteorological
Information Center of the China Meteorological Administration (http://data.cma.cn/en
(accessed on 26 August 2023)). The mean monthly precipitation, temperature, and snow
depth for the normal period of 2000–2019 for Bayanbulak are presented in Figure 1a.
In this period, the mean annual precipitation was 308.84 mm. The precipitation was
mainly concentrated in summer (June, July, and August). More than two-thirds of the
precipitation occurred in this season. Because the mean monthly Tmin was above 0 ◦C,
precipitation was liquid precipitation. However, the sum of the mean monthly precipitation
was only 32.1 mm from October to March. Because the mean monthly Tmax was below
0 ◦C, solid precipitation was mainly concentrated in this period. The snow depth of ground
observations was measured manually with a wooden ruler at 8 o’clock every day when
more than half of the ground in the field of view around the meteorological station was
covered by snow. The measurements were made three times, and the distance between the
three measurements was more than 10 m. The measured value was accurate to 0.1 cm. The
final snow depth at the station was determined as the average of the three measurements,
and an average snow depth of less than 1 cm was recorded as 0. Figure 1b shows the
Bayanbulak meteorological station time series of daily snow depth from January 2000 to
December 2019. The greatest values of snow depth (35 cm) were found in the winter of
2011. A monthly histogram of the mean snow depth from January 2000 to December 2019 is
shown in the inset figure. There was snow in every month except July. The mean monthly
snow depth increased from 0.06 to 10.62 cm during August to February and decreased from
7.1 to 0.05 cm during March to June [28,29].

2.2. Satellite Remote Sensing Data

SGS is one of the important parameters to describe the microphysical properties of
snow [30,31]. SGS indicates the energy balance state of the snow and is a major input
parameter for the snowmelt runoff model and climate model [32]. In addition, the variation
of SGS helps to discriminate snow melt area, pure ice area, and snow mound, which is
important for the retrieval of snow depth and snow density at the watershed scale. Satellite
remote sensing data in the visible (0.4~0.7 µm), near-infrared (0.7~1.4 µm), and short-wave
infrared (1.4~2.5 µm) have been widely used for SGS estimation [33–36].

In this study, the SGS was selected as an important parameter to characterize snow,
and SGS under a cloud was estimated by a nonlinear relationship between the distribution
of SGS and geographic data. Eventually, the snow information reconstruction under the
cloud is implemented. The SGS data used in this study were estimated based on the snow
grain size and pollution (SGSP) amount algorithm with careful topographic correction in
our previous study [32] for the period of 2000 to 2020 with a spatial resolution of 500 m.
The SGS data is calculated and exported based on the Google Earth Engine (GEE) platform
after deploying the above algorithm. The specific properties are shown in Table 1.
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Figure 1. (a) The monthly mean precipitation and temperature at the Bayanbulak meteorological
station from January 2000 to December 2019; (b) Bayanbulak meteorological station time series of daily
snow depth from January 2000 to December 2019, with a monthly histogram of mean snow depth
from January 2000 to December 2019 in the inset figure; (c) geographical location and topographic
relief of the KRB. The different background colors indicate different elevations. The location of the
Bayanbulak meteorological station and the river system are also shown.

Table 1. Attributes of SGS.

Properties Variable Description

Numerical Range 0–1000 µm (0: Snow-free, Others: Snow)
Data Format GeoTiff
Space Scope 82.33◦ E~88.12◦ E; 42.03◦ N~44.37◦ N

Spatial Resolution 0.005◦ (500 m)
Time Range 27 February 2000~7 May 2020

Time Resolution Daily

The SGS data used in this study have two channels, of which channel 1 is the SGS
data retrieval by SGSP and channel 2 is the image classification data. Combining these two
channels, the details of the channels are shown in Table 2.

Table 2. Interpretation of SGS data channel.

Channel 1 Channel 2 Image Classification

0 0 Cloud
0 1 Snow-free

1~1000 µm 0 Snow-cover
1 1 None
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2.3. Geographic Data

Geographic data includes topographic features such as altitude, slope, aspect, and
land cover used to characterize the underlying surface of the snowpack. Topography will
affect the accumulation and melting rate of snow, which has a significant impact on the
redistribution of snow and the variation of SGS. The digital elevation model (DEM) used
in this study originates from the 004 version of the Shuttle Radar Topography Mission
(SRTM), with a spatial resolution of 90 m. It is drawn based on the Interferometric Radar of
the United States Geological Survey (USGS) and can be downloaded from http://srtm.csi.
cgiar.org/index.asp (accessed on 26 August 2023). In addition, topographic features such
as slope and aspect are calculated from DEM through ArcGIS.

The difference in land cover will also change the size of the snow grain [37]. MODIS
land cover (MCD12Q1) version 6 products are updated year by year for global land cover
type. The product has a spatial resolution of 500 m and a period from 2001 to the present.
According to the MCD12Q1 reclassification strategy for Western China [38], the land cover
in the KRB is reclassified into five types: water, forest, grassland, farmland, and bare land.
As shown in Figure 2c, the major land covers in the KRB are grassland and bare land, of
which grassland accounts for 84.63% and the area of bare land accounts for 15.36%.
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2.4. Ground Observation

The daily snow depth data from 2000 to 2020 observed at Bayanbulak station (Figure 1)
of the China Meteorological Administration was used as the “ground truth” values for
assessing the accuracy of the gridded snow cover reconstruction data [39,40]. The in situ
snow depth measurements are the most accurate record of snow cover, when the snow
depth is greater than or equal to 1 cm, the site is snowy, and vice versa, the site is snow-free.
Thus, they are widely used for evaluating not only satellite-based snow depth products [38]
but also snow cover products [41].

3. Methodology
3.1. Construction of Space–Time Extra Trees Model

Among the current mainstream machine learning algorithms, the random forest (RF)
has outstanding performance in both regression and classification. A RF can effectively
handle thousands of input samples with high-dimensional features without dimensionality
reduction. It is also able to evaluate the importance of each input feature on the objective
function. In the algorithm execution, an unbiased estimate of the internally generated error
is obtained and a high tolerance for certain missing data is obtained. However, extra trees
(ETs) make full use of all samples compared to the Bagging strategy applied with the RF,
only the features are randomly selected due to the random splitting, leading to a better
regression result than the RF [42]. Also, a RF is used to get the best splitting attributes
within a random subset, but ET is used to get the splitting values completely randomly in
the global data.

An ET is an integrated machine-learning method developed from an RF [43]. The
algorithm is denoted by {T(V, X, D)}, where T is the final classifier model, D is the sample
set, and V is the number of base classifiers. Each classifier produces a prediction based on
the input samples. The execution steps of the ET are shown below [44]:

Step 1: Sample selection: Given the original data sample set D, the number of samples
S, and the number of features W. In the ET classification model, each base classifier is
trained using the full set of samples.

Step 2: Feature selection: The Base classifier is generated from the Classification and
Regression Tree (CART) decision tree. At each node splitting, m features are randomly
selected from W features, the optimal attribute is selected for each node for node splitting,
and the splitting process is not pruned. Step 2 is performed iteratively on the subset of data
generated by splitting until a decision tree is generated.

Step 3: Construction of additional trees: Create additional trees and repeat Steps 1 and
2 for V times to generate V decision trees and ET.

Step 4: Regression of result: Test results are generated from test samples based on
designed ET, and the prediction results of all basic classifiers are counted. The final result is
determined according to the average value of all decision tree outputs.

ET is the random bifurcation of rows and columns of data, which will lead to the
generalization ability of ET being stronger than that of RF. At the same time, each regression
tree in the ET makes full use of all the training samples and randomly selects the bifurcation
attributes on the node bifurcation, which enhances the randomness of the node splitting of
the base classifier.

In this study, an SGS filling model based on ET is constructed to implement the
reconstruction of snow cover under clouds at the watershed scale, as shown in Figure 3.
Geographic elements such as altitude, slope, aspect, and land cover are resampled to 500 m
resolution using nearest-neighbor sampling technology as input, and the SGS under a clear
sky is used as a sample label. The nonlinear mapping relationship between multi-source
data is constructed based on ET.
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In the process of model training, importance scores given by the ET can help select the
input factors with high importance, optimize the feature selection process of the model,
reduce the amount of parameter calculation, and overcome the overfitting caused by
parameter redundancy. Simultaneously, considering the spatial distribution information
characterizing the SGS and the variation with time, the input data of two-dimensional
characterized temporal information and two-dimensional characterized spatial information
are designed when training the ET model, and the data about the spatial and temporal
information are elaborated as shown in Section 3.2.

3.2. Design of Temporal and Spatial Dimensional Information

In many previous studies, especially for parameter retrieval at large spatial scales,
latitude and longitude were introduced into the model as spatial information parameters to
characterize the position of a grid in the whole region. However, it is difficult to accurately
quantify the spatial information using latitude and longitude because of the proximity and
fine resolution of the grids in the watershed-scale parameter retrieval. In this study, the
KRB features a topographic landscape with mountains surrounding the basin, and the
Elpin Mountains divide the basin into the Big Urdus Basin and Small Urdus Basins on
the east and west sides, forming a typical geomorphic feature of mountains surrounding
and blocking the basin. Wei et al. calculated the Haversine distance from each rater
point to the upper left corner of the rectangular study area as D1, and analogously, the
distance to the upper right corner as D2, the distance to the lower left corner as D3, the
distance to the lower right corner as D4, and the distance to the center of the matrix
noted as D5, to improve the representation of the model for spatial information [45].
However, the Haversine distance is more suitable for the expression of large-scale spatial
information. The study area of the KRB is characterized by high elevation around and
low elevation in the middle. We divided the KRB into four quadrants and selected the
highest elevation positions of the mountains in four directions in the basin, which are
located at (83.7943◦ E, 43.12466◦ N), (85.43821◦ E, 43.23695◦ N), (83.02624◦ E, 42.68449◦

N), and (85.33491◦ E, 42.54525◦ N). The Euclidean distance from each grid to the four
highest elevation positions was calculated and denoted as D1−1, D1−2, D1−3, and D1−4,
respectively. D1 = D1−1 + D1−2 + D1−3 + D1−4 characterizes the weighted sum of each
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grid to the highest elevation position in the watershed, as shown by the green line in
Figure 4.
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Following a similar idea, the lowest elevation positions in Big Urdus Basin, Small Ur-
dus Basin, and Yanqi Basin, located at (84.30185◦ E, 42.77881◦ N), (84.80490◦ E, 43.07975◦ N),
and (85.72118◦ E, 42.2533◦ N), respectively, were selected, and the Euclidean distances
from each grid to the lowest positions were calculated and denoted as D2−1, D2−2, and
D2−3. D2 = D2−1 + D2−2 + D2−3 characterizes the weighted sum of each grid to the
lowest elevation position in the watershed, as shown by the pink line in Figure 4. The
aforementioned two data D1 and D2 are constructed to improve the model’s representation
of spatial information.

Theoretically, the hydrological year is based on the Earth’s hydrological cycle, which
begins at the point of return of runoff, which is usually the beginning of the flood season and
the end of the dry season. There is some variability in the start and end times in different
regions and between years. In the research of snowpack phenology, the hydrological year
can also be defined by using the day of onset of snowpack accumulation and the day of
final melt as a boundary [46]. In this study, a hydrological year from 1 Sept to 31 Aug of
the following year was delineated, taking into account the snowpack characteristics and
the characteristics of the study area. The hydrological year is divided into four seasons:
spring (March to May), summer (June to August), autumn (September to November), and
winter (December to February). The snow cover days (SCDs) of the hydrological year in
which the single-view data are located are used as one-dimensional, temporal information,
and the SCDs characterize the number of days a grid is covered by snow in a hydrological
year. Areas with high SCDs generally have lower temperatures, more snowfall, and more
abrupt variability in SGS.

The principle of the second-dimensional temporal information construction is as
follows: the grain size of new snow is tiny when in contact with the ground, and the
distribution of its grain size shows obvious distribution characteristics that change with
altitude and slope. Therefore, the second-dimensional data characterizes the number of
consecutive days with snow cover (Snow Duration Index, SDI) at the current moment of a
grid, with daily resolution. Compared with the SCDs, the SDI can better reflect the snow
status at the current moment. As shown in Figure 5, it represents the state presented by a
grid on the time series, where white indicates a snow-free grid and blue indicates a snow
grid. Based on the duration of the presence of snow on the time series, the SDI constructed
from the 1st grid is [0, 1, 0, 1, 2, 3, 0, . . . , 0, 1, 2], the SDI constructed from the 2nd grid is
[1, 2, 3, 0, 0, 1, 0, . . . , 1, 2, 0], the 1, 2, 3, and 4 in arrays indicate that the snow has existed for
1, 2, 3, and 4 days, respectively, at the current moment.
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Figure 5. Construction of snow duration index. White indicates snow-free at this time point, blue
indicates snow-covered at this time point, and the constructed index values are shown in square
brackets.

3.3. Applicability Evaluation and Factor Optimization of the Model

Daily SGS data of the KRB were generated in batches based on the asymptotic radiative
transfer model in the GEE for a long series. However, for the SGS data with too much
cloud, the mapping relationship between geographic, spatial–temporal information, and
SGS cannot be fitted better due to the limited effective training data. Therefore, the training
set and test set are divided according to the ratio of 8:2, and the experiments are conducted
with different data missing rates (i.e., cloud percentage in the watershed). It can be seen
that in Figure 6 the test error increases abruptly when the cloud percentage is greater than
75%. The data missing rate increases to a certain threshold, resulting in too few effective
training samples and causing underfitting in model training. Thus, SGS data with cloud
coverage below 70% are selected for snow reconstruction in this study.
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Figure 6. Loss variation of the model training under cloud coverage change (i.e., Data Loss Rate).

Under the premise of determining the missing data rate applied to the model, the
corresponding altitude, slope, aspect, land cover, spatial dimension data D1 and D2, and
temporal dimension data of SCDs and SDI are extracted according to the latitude and
longitude, and are used to construct an SGS filling model. The points with an SGS of zero,
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(i.e., no snow) are also added to balance the snow cover and snow-free surfaces in the
model.

In the model training phase, the importance scores are used to evaluate the contribu-
tions of the input factors to the results and to optimize the input factors. Since the model is
trained for daily images and fills in the missing SGS information to achieve snow recon-
struction, the difference in snow status and cloud percentage due to the environmental
changes will make the importance scores of input factors ranked differently on each day.
In this study, the ranking of the mean importance scores obtained from model training
for consecutive years was calculated, as shown in Figure 7. It can be seen that altitude,
as the most significant topographic element, is the most important factor influencing the
retrieval results, with a score of 0.192. The importance scores of the SDI and SCDs are
0.14126 and 0.13605, respectively, indicating that the present time of the grid at the current
moment and the distribution of snow accumulation throughout the hydrological year show
a great role in the filling of SGS. While the importance scores of aspects, D1 and land cover
were all closer. The lowest importance score is the slope, which is only 0.077, one order of
magnitude behind other input factors. Therefore, the importance scores of the hydrological
year scale are combined, and altitude, SDI, SCD, D2, aspect, D1, and land cover are finally
selected as the inputs of the model for retrieval of SGS under the cloud layer, to realize
snow reconstruction. Altitude, aspect, and land cover are geographic information inputs
that come into direct contact with snow cover, thereby affecting the SGS through surface
temperature conduction, gravity accumulation caused by terrain, and the amount of solar
radiation received from different aspects. D1 and D2 further characterize the spatiotempo-
ral properties of snow particles within the watershed, which helps to improve the accuracy
of SGS estimation at the watershed scale. SDI and SCD characterize the phenology of snow
cover on short and annual time scales, respectively, especially SDI, which is closely related
to the evolution and size of the snow grain.
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3.4. Snow Recognition of Landsat

Based on the property that both clouds and snow show high reflectance in the visible
band, and the difference between the high reflectance of clouds and the high absorption of
snow in the short-wave infrared band, the SNOWMAP algorithm [47] was used to identify
the snow cover in the Landsat images. In this study, the Normalized Difference Snow Index
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(NDSI) is calculated in the GEE platform for the green band (band 3) and the short infrared
band (band 6) of Landsat-OLI images that have completed radiometric calibration and
atmospheric correction, and the threshold of the NDSI for snow identification is set greater
or equal to 0.4. The calculation method of the NDSI is shown in Equation (1):

NDSI =
band 3− band 6
band 3 + band 6

(1)

Given the low reflectance of the water body in both visible and short-wave infrared
bands, the threshold of band 5 is set as greater than 0.11 as a way to eliminate the inter-
ference of the water body. The combined criterion of NDSI ≥ 0.4 and band 5 > 0.11 can
achieve snow identification at 30 m resolution. In the snow binary map, 1 denotes a snow
element and 0 denotes a snow-free element.

3.5. Metrics for Evaluating the Accuracy of Snow after Cloud Removal

The accuracy evaluation of snow reconstruction is divided into two parts. The first is
the accuracy evaluation of the SGS estimated based on the machine learning model, and
the second is the accuracy evaluation of the snow reconstruction results. The root mean
squared error (RMSE) and mean absolute error (MAE) between the predicted SGS and the
measured SGS are evaluated employing ten-fold cross-validation, and the above indexes
are calculated as shown in Equations (2) and (3):

RMSE =

√
1
m

m

∑
i=1

(yi −
∧
yi)

2
(2)

MAE =
1
m

m

∑
i=1

∣∣∣yi −
∧
yi

∣∣∣ (3)

In the accuracy evaluation system of snow reconstruction, the measured snow depth
at the meteorological station is taken as the ground truth, and the ground is judged
to be snowy when the snow depth is greater than 1 cm, and vice versa. Based on the
aforementioned criteria, the results of snow reconstruction have the following four cases:
True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN), and the
detailed definitions of TP, TN, FP, and FN are described in Table 3. TP refers to both snow
reconstruction data and ground observation being judged as snow, and TN refers to both
being snow-free. FP means that the snow reconstruction data shows snow, while ground
observation is snow-free, which generally occurs when the reconstruction misidentifies
cirrus clouds as snow, and FN means that the ground observation shows snow, while the
snow reconstruction is snow-free, which belongs to snow omission.

Table 3. Four categories of snow reconstruction compared to ground-based observations.

Snow Reconstruction
Ground True

Snow Snow-Free

Snow TP FP
Snow-free FN TN

Based on the four categories of snow reconstruction data compared with ground
observations, a series of performance metrics were introduced to evaluate the accuracy
of snow reconstruction by the algorithm in this study and to compare the accuracy with
existing snow cover products from MODIS. Based on the ground-based meteorological
station observations in the study area, the values of TP, TN, FP, and FN are counted for the
period of hydrological years from 2000 to 2020, and the four perspectives of overall accuracy
(OA), precision, recall and the combined performance index of F1-score are used to evaluate
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the performance of snow reconstruction data. The specific formulas for calculating the
above four types of indicators are shown in Equations (4)–(7):

Overall Accuracy(OA) =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− Score = 2× Precision× Recall
Precision + Recall

(7)

Using the measured snow depth from ground-based meteorological stations as the
ground truth to assess the effect of snow reconstruction will result in the problem of underrep-
resentation due to the sparse stations, taking the KRB as an example, with 20,507 km2, while
there is only one meteorological station in the basin, Bayanbulak (51,542), with an elevation of
2458 m. As a result, there is a lack of ground truth to evaluate the effect of snow reconstruction
in other areas of the basin, especially in high mountain regions. Therefore, after evaluating the
accuracy by ground truth, 30 m resolution snow cover derived from Landsat was also used
to assess the 500 m snow reconstruction data. The Kappa coefficient is used to calculate the
image agreement between snow cover derived from Landsat and snow reconstruction data
derived from MODIS, and the formula is shown in Equations (8)–(10):

K =
Po − Pc

1− Pc
(8)

Po = s/n (9)

Pc = (a1 × b1 + a0 × b0)/(n× n) (10)

where Po is the actual consistency rate and Pc is the theoretical consistency rate. In Equa-
tions (8) and (9), the total pixels of the remote sensing image is n, the number of snow pixels
in the Landsat image representing the real situation of the ground is a1, and the number of
snow-free pixels is a0. In the corresponding snow reconstruction data, the number of snow
pixels is b1, and the number of snow-free pixels is b0, s represents the same number of the
corresponding pixels in the two images.

According to the literature [48], the Kappa test can be used to represent different levels
of consistency using five sets of classifications. Table 4 illustrates the level of consistency of
the two images corresponding to Kappa in different intervals.

Table 4. Comparison of image consistency levels based on Kappa coefficients.

The Value Interval for Kappa The Consistency Level of the Image

0 < Kappa ≤ 0.20 Very low consistency
0.20 < Kappa ≤ 0.40 General consistency
0.40 < Kappa ≤ 0.60 Medium consistency
0.60 < Kappa ≤ 0.80 High consistency
0.80 < Kappa ≤ l Almost complete consistency

4. Results
4.1. Mapping of Snow Cover Reconstruction

The error of SGS estimation will also indirectly affect the result of snow cover recon-
struction under the cloud. Therefore, some known SGS data were randomly masked in the
model training stage, and the size of the masked snow grain data will be estimated and
compared with the original truth. Table 5 lists the RMSE and MAE of SGS based on the
space–time ET model and other mainstream machine learning methods. It can be seen that
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the space–time ET model proposed in this study performs the best result, with the lowest
RMSE and MAE of 52.751 µm and 40.109 µm, respectively.

Table 5. Accuracy comparison of SGS filled by different methods.

Methods RMSE (µm) MAE (µm)

Classification and Regression
Tree, CART 68.048 49.934

K-Nearest Neighbor, KNN 57.108 42.516
Random Forest, RF 55.822 41.692
Ridge Regression, RR 57.054 45.048
Support Vector Regression,
SVR 56.710 42.880

Denoising Autoencoder
Artificial Neural Network,
DAANN

54.186 40.852

Space–Time Extra
Randomized Trees 52.751 40.109

Based on SGS filling, the minimum value of SGS in the image of that day is taken as
the threshold for snow discrimination. If the estimation result is greater than the threshold,
it is judged as snow, otherwise, it is judged as snow-free. Two environments of “more
snow and less bare land” and “less snow and more bare land” are selected to compare
the accuracy of snow cover reconstruction. First, the reconstruction of snow under clouds
in the KRB on 6 March 2014, is taken as an example. It can be seen from Figure 8c that
the cloud accounts for about 45.62% of the KRB, especially in the mountain area, a large
number of pixels are blocked by clouds, and the area of snow accounts for about 47.8%.
The snow product is directly used for the estimation of snow areas, which will lead to
large errors. After filling the SGS, the complete reconstruction of the snow cover under
clouds in the watershed scale is realized, as shown in Figure 8d, and the proportion of
snow area has reached 81.5%, increasing the proportion by 33.79%. The kappa coefficient
is calculated to evaluate the consistency between the reconstructed snow cover and the
Landsat snow cover map. The black part in Figure 8a,b is the area that has not been scanned
by Landsat and does not participate in the calculation of consistency. The Kappa coefficient
between Landsat’s snow cover map and the reconstructed snow cover map is 32.84%,
which is generally consistent but compared with the extremely low consistency of 17.79%,
it has been improved by 15.05%. In addition, the scores of OA and F1-score after snow
reconstruction increased by 16.88% and 14.5%, respectively, compared with those before
cloud removal. The specific accuracy data are listed in Table 6. The snow reconstruction on
21 April 2016, is shown in Figure 8f–j as the second case, with 60.73% cloud coverage. The
Big Urdus Basin and Elpin Mountains are covered by generous continuous clouds, and the
traditional spatiotemporal filtering makes it difficult to achieve snow reconstruction under
a cloud with high accuracy. Based on the SGS filling, the spatial distribution of snow in the
Elpin Mountains and the southwest of the basin is restored, and the proportion of snow
cover has increased from 7.42% to 8.77%, as shown in Figure 8i, which has good consistency
with the Landsat 30 m resolution snow map in Figure 8g. The kappa coefficient of snow
reconstruction results and Landsat snow map increased from 6.83% before cloud removal
to 86.74%, with almost complete consistency, and the OA index and F1-score also increased
by 50.19% and 38.39%, respectively. In addition, this study also selected the snow cover of 2
November 2017 as Case 3. The cloud coverage rate in the KRB region is only 13.08%, which
effectively achieves the reconstruction of snow cover in the watershed under low cloud
conditions. From Figure 8n, it can be seen that the mountains in the eastern part of the KRB
have sustained cloud cover. After filling with SGS, it is estimated that the reconstruction
of snow cover on the eastern mountain of the watershed has been achieved relatively
well. Compared with the snow cover map of Landsat in Figure 8l, it can better match
the spatial details. The kappa coefficients of both, increased from 69.48% to 85.54% after
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reconstruction. This study also added widely recognized snow cover extent (SCE) data [49]
for spatial comparison with the reconstructed snow cover, as shown in Figure 8e,j,o. Taking
the Landsat snow cover map in Figure 8b,g,l as the true value, it can be seen that the snow
cover reconstruction results based on SGS filling have a more detailed representation in
complex mountainous terrain compared to Hao’s SCE and can more accurately depict the
distribution characteristics of snow cover in mountainous environments.
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Table 6. Accuracy comparison between Case 1, Case 2, and Case 3 before as well as after snow cover
reconstruction.

Accuracy (%)

Case 1: 6 March 2014 Case 2: 21 April 2016 Case 3: 2 November 2017

Before
Reconstruction

After
Reconstruction

Before
Reconstruction

After
Reconstruction

Before
Reconstruction

After
Reconstruction

OA 64.15 81.03 38.26 88.45 77.46 85.23
Precision 65.28 82.86 4.38 35.74 82.48 88.53

Recall 85.79 95.28 34.24 65.16 81.24 86.68
F1-Score 74.14 88.64 7.77 46.16 81.86 87.60
Kappa 17.79 32.84 6.83 86.74 81.46 86.93

Based on the above three cases, whether in the environment of “more snow and less
bare land” or “less snow and more bare land”, and under different cloud coverage rates,
the snow cover reconstruction based on the SGS filling has achieved good performance.

4.2. Accuracy of Snow Reconstruction and Cloud Coverage Variations

Cloud removal based on SGS filling can realize complete snow reconstruction under
clouds with cloud coverage of less than 70% and maintain high accuracy. The method
greatly improves the cloud removal rate on the hydrological annual scale. Figure 9 illus-
trates the comparison between the snow cover days of MODIS products and reconstructed
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snow cover days on the hydrological annual scale from 2000 to 2020. The annual snow
cover days of MODIS products are shown in the first and third columns, and the recon-
structed snow cover days are in the second and fourth columns. It can be seen from
the figure that the mountains around the basin and the Elpin Mountains in the middle
are the areas with the most significant increase in snow cover days. As the region with
the most abundant snow resources in the basin, the good performance of cloud removal
in mountains is helpful to the accurate calculation of snow resources. According to the
comprehensive analysis in Table 7, the number of days in the KRB where the daily cloud
coverage is less than 70% ranges from 215 to 256 during the period of 2000~2020, and the
mean days that can be applied to the SGS filling is 243.65, accounting for 66.75% of the
whole year. Bayanbulak (51,542), the only meteorological station in the KRB, has an average
annual snow cover of 115.64 days from 2000 to 2020, while the average annual snow cover
days calculated based on MODIS Snow products are only 51.3 days, which is only 44.36%
of the true observation data. The method in this study only reconstructs the snow cover
under a cloud for an average of 66.75% of the data every hydrological year and increases
the average annual snow cover days of Bayanbulak based on remote sensing observation
to 84.7 days, accounting for 73.24% of the true data. In addition, the difference between
the reconstructed SCD after cloud removal and the SCD before cloud removal is shown in
Figure 10. The SCD difference on the mountains around the KRB and the southeast side
of the watershed is the largest, indicating that snow mapping in complex mountainous
environments is prone to interference from cloud cover. However, the method used in
this study effectively achieves snow removal and reconstruction in complex mountainous
environments.

Table 7. Comparison of SCD before and after snow reconstruction at the hydrological year scale.

Hydrological
Year

Trainable
Days

Un-
Trainable

Days

SCD of
MODIS

SCD of Re-
constructed

Snow

SCD of the
Station

2000–2001 216 149 46 104 159
2001–2002 244 121 22 83 111
2002–2003 234 131 3 3 16
2003–2004 252 114 44 72 78
2004–2005 229 136 59 103 144
2005–2006 246 119 58 108 148
2006–2007 243 122 29 40 49
2007–2008 248 118 31 39 29
2008–2009 227 138 58 75 110
2009–2010 225 140 67 90 127
2010–2011 256 109 78 142 173
2011–2012 238 127 69 77 89
2012–2013 236 129 39 74 124
2013–2014 250 115 69 99 137
2014–2015 225 140 63 87 116
2015–2016 215 150 35 94 134
2016–2017 231 134 64 96 141
2017–2018 229 136 54 92 146
2018–2019 228 137 53 94 136
2019–2020 221 144 85 122 146

Mean days 234.65 130.45 51.30 84.7 115.65
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Based on the analysis of the increase in snow cover days in the whole basin and
meteorological stations on the hydrological annual scale, the accuracy of reconstructed
snow cover data from 2000 to 2020 is further analyzed based on the station data. As shown
in Table 8, compared with the MODIS snow products, the reconstructed snow cover data
only decreased by 0.73% in the OA index, and the precision, recall, and F1-scores increased
by 1.37%, 2.35%, and 1.84%, respectively. Combining 66.75% reconstructed snow cover
data and 33.25% unreconstructed snow cover data, the average annual cloud coverage
decreased from 52.46% to 34.41%, while the average annual proportion of snow cover and
snow-free surface increased to 33.84% and 31.75%, respectively.

Table 8. Comparison of performance of snow data before and after snow cover reconstruction.

Snow Cover
Data

Annual Average Accuracy (%) Average Annual Coverage (%)

OA Precision Recall F1 Snow Cloud Snow-Free

MODIS
Snow 93.69 82.54 86.67 84.55 21.52 52.46 26.02

Reconstructed
snow 92.96 83.91 89.02 86.39 33.84 34.41 31.75

This study focuses on the weekly scale to analyze the cloud removal and snow cover
reconstruction. As shown in Figure 11, it can be seen that the weekly average cloud
coverage ranges from 35% to 65%, reaching the highest around the 30th week (i.e., around
March). After the SGS filling, the weekly average cloud coverage decreased by about 20%.
During the period of mid-November to mid-March, the average snow cover increased by
more than 20%. The rest of the time, the increased proportion of snow cover is limited
due to less snowfall in the KRB. In general, the weekly average cloud coverage decreases
by 20%, while the removed clouds are mainly filled with snow in winter and spring, and
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mainly filled with a snow-free surface in spring and autumn, which is also consistent with
the temporal distribution of snow in the basin.
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Figure 11. Variation in the proportion of weekly average cloud coverage and snow coverage before
and after cloud removal in the KRB.

4.3. Validation of Individual Snow Cover Mapping

Since there is only one ground observation station in the study area, observations
based on one station cannot provide representative evaluations of the advantages and
limitations of the proposed method. The original snow cover data with the least cloud
cover were used for validation purposes [11]. Several days with the least cloud-covered
snow data were filled by clouds of other dense cloud-covered snow data. In this way, we
could generate “observed” snow cover products where the performance of the proposed
method can be validated.

For validation purposes, 8 October 2015 (validation day 1), 20 April 2016 (validation
day 2), 25 April 2018 (validation day 3), and 1 June 2018 (validation day 4) were selected
because of the least cloud coverage observed on these days. For validation day 1, the
original snow cover data from this day with 0.25% cloud coverage was filled by the cloud
cover values of 9 October 2015 snow cover data. The cloud cover fraction of the study area
on 9 October 2015 was 54.62%. For validation day 2, the satellite observed less cloud cover
with only 1.05% over the KRB. The original cloud cover pixels from 21 April 2016 with
60% cloud fraction were assigned to this day for validation purposes. For validation day 3,
the original snow cover data from this day with 3.44% cloud coverage was filled by the
cloud cover values of 24 April 2018 snow cover data. The cloud cover fraction of the study
area on 24 April 2018 was 45.89%. For validation day 4, the satellite observed less cloud
cover with only 0.05% over the KRB. The original cloud cover pixels from 2 June 2018 with
41.58% cloud fraction were assigned to this day for validation purposes. The generated
snow cover maps with assigned cloud cover pixels were used as an input for a proposed
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method and the results were compared with the original snow cover data without cloud
filling. The detailed validation results are shown in Figure 12 and Table 9.

Table 9. Validation of individual snow cover mapping.

Accuracy
(%)

Validation Day 1 Validation Day 2 Validation Day 3 Validation Day 4

Our’s Hao’s Our’s Hao’s Our’s Hao’s Our’s Hao’s

OA 92.89 94.43 86.99 92.58 91.44 89.45 95.77 94.96
Precision 70.12 75.23 87.55 78.54 80.34 69.02 73.13 63.72

Recall 90.40 87.65 54.69 91.52 90.84 96.62 76.21 65.80
F1-Score 78.98 80.97 67.32 84.53 85.27 80.52 74.64 64.75
Kappa 74.78 77.72 59.74 79.69 79.26 73.56 72.33 62.03
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Figure 12. Validation results: (a) original snow cover for 8 October 2015, (b) original snow cover for 9
October 2015, (c) snow cover data from 8 October 2015 filled with cloud values of 9 October 2015 snow
cover data, and (d) snow cover data from (c) after cloud removal; (e) snow cover data from (c) by Hao’s
method; (f) original snow cover for 20 April 2016, (g) original snow cover for 21 April 2016, (h) snow
cover data from 20 April 2016 filled with cloud values of 21 April 2016 snow cover data, (i) snow cover
data from (h) after cloud removal, and (j) snow cover data from (h) by Hao’s method; (k) original snow
cover for 25 April 2018, (l) original snow cover for 24 April 2018, (m) snow cover data from 25 April 2018
filled with cloud values of 24 April 2018 snow cover data, (n) snow cover data from (m) data after cloud
removal, and (o) snow cover data from (h) by Hao’s method; and (p) original snow cover for 1 June 2018,
(q) original snow cover for 2 June 2018, (r) snow cover data from 1 June 2018 filled with cloud values of 2
June 2018 snow cover data, (s) snow cover data from (r) data after cloud removal, and (t) snow cover data
from (h) by Hao’s method.

As can be seen from the table and figure, the validation results reflect that the proposed
cloud removal algorithm achieves or even surpasses Hao’s method. Taking validation day
3 as an example, the proposed method outperforms Hao’s method in all indicators except
Recall. More importantly, the detailed features of the snow cover data reconstructed by the
proposed method for cloud removal are more significant, demonstrating the changes in the
trend of snow cover along mountain ranges. However, traditional spatiotemporal filtering
and multi-sensor fusion methods have achieved good results in cloud removal and snow
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cover reconstruction, but they cannot effectively represent fine snow pixels. The proposed
method is based on the spatiotemporal distribution of SGS within the entire watershed
system, and then it reconstructs the distribution of snow under the cloud. Therefore, the
reconstruction results consider the distribution characteristics of snow within the watershed.
However, the methods of spatiotemporal filtering and multi-sensor fusion only focus on
cloud pixels and their surrounding pixels, lacking large field observations and trade-offs.

Overall, the proposed method is a new exploratory study of the snow cover recon-
struction of cloud removal. Its advantage lies in the accuracy index of snow reconstruction
reaching or even surpassing traditional cloud removal schemes. However, its limitation is
that it is only applicable when the cloud coverage is less than 70%, as excessive cloud cover
can lead to insufficient training samples and affect the cloud removal effect.

5. Discussion

The objective of this study was to remove cloud-covered areas from the original MODIS
snow cover products to obtain snow cover information for data-limited regions such as
the KRB where no abundant snow cover data is available locally. As stated in Section 4.2,
combining 66.75% reconstructed snow cover data and 33.25% unreconstructed snow cover
data, the average annual cloud coverage decreased from 52.46% to 34.41%, while the
average annual proportion of snow cover and snow-free surface increased to 33.84% and
31.75%, respectively. As a comparison, the spatiotemporal filtering method in a previous
study [49] can remove 21.47% of cloud coverage from the KRB, increasing the annual snow
cover rate from 20.34% to 41.81%. The SCE data, which has undergone spatiotemporal
filtering and cloud removal, has an average annual accuracy of approximately 93% based on
site validation in the KRB, slightly higher than the 92% OA of the proposed method. Multi-
sensor fusion can further remove 2.59% of cloud coverage and achieve cloud-free mapping
of the KRB, with an average annual snow cover rate of 44.40%. Under the condition
of complete cloud removal, the overall accuracy based on site verification decreased to
89%, indicating that the uncertainty of multi-sensor cloud removal in complex mountain
environments is relatively high. From this point of view, the proposed method in this study
maintains higher snow recognition accuracy after cloud removal. The limitation of this
study is that it cannot achieve cloud removal of all data on an annual scale.

Except for differences in specific accuracy indicators, the proposed method provides
more detailed and consistent mountain trends in restoring snow cover under clouds, as
shown in the comparison between Figures 12i and 12j. This may be because this method is
based on continuous numerical retrieval, which is then used to obtain the value of SGS and
determine the snow cover. Moreover, the method in the article mainly relies on cloud pixels
themselves or small-scale neighborhood information, lacking overall feature extraction for
watershed scale. Based on the above expression, the snow reconstruction-based method on
SGS gap filling can be extended to the reconstruction of other missing data (continuous
values), such as the reconstruction of ground temperature under clouds and the filling
of soil moisture under clouds. For the reconstruction of snow cover under clouds, the
proposed method can also be extended to use parameters such as snow density and snow
wetness to reconstruct snow cover under clouds [18].

6. Conclusions

The “spatiotemporal” dimensional data that can fully characterize the geomorphic
characteristics of the KRB and temporal characteristics of snow was designed and con-
structed as input data. At the same time, based on the physical characteristics of the
variation of SGS with altitude, slope, aspect, and land cover in the watershed scale, the
daily SGS filling algorithm of the space–time ET model is constructed and trained, so that
the snow cover reconstruction under clouds in the KRB is realized. The algorithm applies
to the daily data with a missing rate of less than 70% (i.e., the cloud coverage is less than
70%). A total of 66.75% of snow products have realized the snow cover reconstruction
under the cloud based on this method from 2000 to 2020. Compared with MOD10A1 snow
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cover products, the average annual cloud coverage rate decreased from 52.46% to 34.41%,
while the snow coverage rate increased from 21.52% to 33.84%. The data source of this
study is SGS data derived from MODIS L1B data. The cloud removal algorithm based
on SGS gap-filling can be applied to daily data with cloud coverage less than 70% and
achieve one-step cloud removal. Daily data with cloud coverage greater than 70% has poor
performance when applying this algorithm. Therefore, this part of the data is not within
the scope of this study. In summary, on a year-round scale, the cloud removal algorithm
reduced the average annual cloud cover rate of the KRB from 52.46% to 34.41%, and 68.25%
of the removed cloud pixels were classified as snow cover, while the remaining 31.75%
were classified as snow-free surface.

The main contribution of this study is to carry out SGS filling based on the physical
characteristics of SGS distribution at the watershed scale for the first time. Different from
the traditional spatiotemporal filtering cloud removal algorithm, the proposed method
focuses on considering the spatial and temporal distribution characteristics of snow cover
across the entire watershed scale and reconstructed snow cover that fits the geographic
and meteorological characteristics of the watershed. Therefore, it better realizes the re-
construction of snow information under continuous large-scale clouds, improves the time
resolution of snow, and realizes the deep integration of physical mechanisms and machine
learning in the field of snow remote sensing. This article is an exploratory study designed
and conducted based on the strong correlation between the spatiotemporal distribution
of SGS within a small-scale watershed (KRB) and the terrain and meteorological elements
of the watershed. On a larger spatiotemporal scale (such as the entire northern Xinjiang),
the strong spatiotemporal heterogeneity of snow grain size can lead to the failure of the
method in this study. Meanwhile, the algorithm in this study relies on training with a large
amount of effective data. When the cloud coverage rate is higher than 70%, the training
effect of the model will deteriorate due to the reduction in data volume, which is also a
limitation of this study. In the future, we will attempt to conduct relevant research on a
broader basin scale and explore the differences in our research methods across different
basin scales to obtain more applicable strategies and methods.
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Abstract: To study the snow microstructure at various metamorphism times and extract the snow
neck area, a constant density (200 kg/m3) snow metamorphism experiment was conducted. The
findings show that the neck region is mostly influenced by temperature, sun radiation, snow density
and specific humidity, with wind speed having little effect. Additionally, we developed a multiple
linear regression equation for the neck area under atmospheric forcing: “S = 288T + 2E + 189ρ +
12,194V − 20,443RH − 42,729”. This equation accounts for solar radiation (E), temperature (T),
snow density (ρ), specific humidity (RH) and wind speed (V). Notably, the above five factors can
account for 84% of the factors affecting the neck area, making it a crucial factor. The relationship
between snow hardness and neck area is correlated at 71%, and in later stages of metamorphism, the
correlation may increase to 91%. Based on the neck area, the following hardness value prediction
is made: “H = 0.002764S + 67.922837”. This study documents the growth variations in the neck
region of the metamorphic snow cover and elucidates the process by which outside factors impact
the microstructure and macroscopic physical characteristics of the snow cover.

Keywords: snow crystals; microstructure; neck growth; metamorphism; hardness

1. Introduction

Snow is a significant part of the cryosphere and serves as a proxy for climate change [1].
As a result of global warming’s effects on the cryosphere, snow’s physical characteristics
have changed. The thermodynamic properties and mechanical strength of snow are mostly
determined by the interior crystal structure of the snow [2]. Complex ice skeletons are
formed by the different shapes and binding interactions of snow crystals, and understand-
ing the microstructure of snow can help with the advancement of snow engineering [3].
The thermal characteristics and mechanical indices of snow are crucial parameters to be
considered in cold-region science and engineering. The process of how snow evolves will
undoubtedly be significantly impacted by changing climate conditions as global warming
progresses [4,5], requiring a careful examination of snow mechanics and snow hazard
issues [6–10]. In the future, a crucial strategy for dealing with snow science and snow risks
will be to link the microstructure and apparent physical properties of snow.

A morphological viewpoint has been used by earlier researchers to study the physical
features of snowpacks, given the significance of these qualities and the impact of meta-
morphism on them. The primary factor impacting the macroscopic physical properties
of snow during snow metamorphism is the modification of the microstructure of snow
crystals, notably the necks. A neck is one of the many microstructural characteristics of
snow. The narrow area between two ice crystal grains is referred to as the neck, and it
starts where the surface curvature changes from being outwardly convex to inwardly
concave [11]. Therefore, the neck area is the region in the connecting point of the two necks
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of two adjacent ice crystals. Hardness is one of the mechanical factors of snow accumu-
lation, and the neck, being the weakest region of the snow crystal, greatly influences its
mechanical properties. According to the earlier definition of hardness as the resistance to
plastic deformation, subsequent research by Mellor [12] and Lee [13] suggested that the
hardness of the snowpack can be thought of as a particular type of compression in the
presence of side limits, with a strong correlation between the hardness value’s magnitude
and the snowpack’s density and the state of its lateral confinement. Lateral confinement
refers to the limitation of lateral displacement of snow by using restraint components
in experiments. Its deformation characteristics are determined by the stresses that are
transferred between the grains and the movement of the grains under natural conditions.
The snow’s continuous densification over time causes the snow hardness value to contin-
uously increase over a certain period of time, with a tendency to increase with the snow
depth [14]. Like other physical characteristics, snow hardness is largely influenced by
the metamorphism between snow crystals. The bonding or necking between adjacent
grains during the metamorphic process results in ice deposition at the contact points, and
with densification and particle coarsening [15], the snow crystal necks become larger, and
the snow becomes denser. Scholars have researched the microstructure of snowpacks,
particularly the necks of snow crystals. Libbrecht et al. [16] conducted experimental studies
on the growth rate of ice crystals on different surfaces, determined the morphology of snow
crystals at different temperatures and supersaturation, and obtained the growth patterns
of snow crystal shapes and neck bonds. Gubler et al. [17] studied chain-shaped snow
crystals and used ice chains to describe the load-bearing capacity of snow by calculating the
length of grain bonds, thus improving the model for analyzing snow intensity using snow
crystal shape and neck bond growth. Edens and Brown et al. [18] examined the reasons
for alterations in the neck area caused by significant deformation as well as the impact of
new bond creation on the neck area. Brown et al. [19] extended the neck growth model
to porous metals and proposed an intrinsic law based on the deformation of grains and
grain bonding to explain the changes in the microstructure of snow under pressure. Snow
deformation behavior was explained by Kry [20] using the idea of chaining, and Hansen
and Brown [21] created a statistical model utilizing bond radii to describe the structure of
snow particles. Less research has been performed on the impact of snow microstructural
changes on snow hardness during metamorphism; however, past studies have concentrated
on the development of an ontological model for snow. An important background for ice
and snow engineering problems is the connection between the microstructure of snow and
its apparent mechanical hardness.

In contrast to previous studies, this study continuously observed snow samples in the
field to determine how their microstructure and macroscopic physical properties, such as
hardness, changed as the snow underwent natural metamorphosis. The results, which were
obtained via the stereology method to analyze the impact of metamorphism on snow from
the viewpoint of microstructure, contribute to a deeper comprehension of snow mechanics
and provide a point of reference for describing changes in snow crystal morphology and
overall strength [22].

2. Materials and Methods
2.1. Overview of the Research Area and Research Equipment

The experiment was carried out at the Songhua River Dadingzi Mountain Hydroelec-
tric Hub Comprehensive Test Site in Harbin City, Heilongjiang Province, China, between
24 December 2022 and 12 February 2023. The site coordinates are 46◦39′ N and 127◦25′ E
(location of the red star marker in Figure 1). For approximately 130 days of the year, the
Harbin section of the Songhua River is frozen over [23], and many snowfall events and
extended periods of cold weather have led to the growth of local snow and ice sports,
including skiing, cold-water fishing, winter fishing, and winter rallies. The thermal and
physico-mechanical characteristics of snow are of guiding significance for the economic
development of the area as well as the prevention and control of natural disasters because
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snow is a significant tourism resource in the region. A temperate monsoon environment
with notable seasonal changes prevails in the research region. In the cold, dry winter, it
is dominated by temperate continental air masses, and in the hot, humid summer, it is
dominated by temperate oceanic air masses or modified tropical oceanic air masses. The
average temperature over the course of the year is 4.3 ◦C, with the average temperature in
January being approximately −18.3 ◦C and the average wind speed being approximately
2.8 m/s. The average temperature and wind speed in February are approximately −14 ◦C
and 3.0 m/s, respectively. The snowfall season is centralized from November to January.
During this period, the greatest snow depth is approximately 41 cm, with an average
precipitation (snowfall) of 23.6 mm [24].
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Figure 1. Location of the research area.

Snow temperature field observations were performed using temperature sensors for
platinum resistance temperature sensors (accuracy of ±0.1 ◦C), while snow depth was
measured using an ultrasonic ranging sensor (SR50A type (Campbell, Logan, UT, USA))
(accuracy of ±1 cm), both of which used a data acquisition instrument (Campbell CR3000
type(Campbell, Logan, UT, USA)) to collect data. The temperature chain layout is shown in
Figure 2a. A JT-H6 industrial microscope(Jingtuo Youcheng Co., Ltd., Shenzhen, China) was
used to observe the snow crystal microstructure, as illustrated in Figure 2b. The magnifying
range of the microscope ranged from 0.7 to 4, and calibration was necessary to establish the
scale before viewing. A dynamic resistive strain gauge (YD-28A type(East China Electronic
Instrument Factory, Shanghai, China)) was used to connect an electronically controlled
penetrometer [25] to the acquisition equipment (VK701H+(Weijingyi Electronics Co., Ltd,
Shenzhen, China)), as illustrated in Figure 2c, to measure the hardness of the metamorphic
snow. Figure 2d illustrates how the ring knife approach was used to sample the whole
snowpack to determine the snowpack density.

2.2. Experimental Design

Drawing upon previous research and with the aim of facilitating a closer examination
of the microstructure of snow crystals, snow was collected from the same snowfall, and its
density was established at 200 kg/m3. The prepared snow samples were compacted layer
by layer in a detachable wooden test box, which had a cross-sectional area of 25 × 25 cm
and a height of 60 cm. To ensure the maximum possible initial uniformity of internal
density in the snow samples, each layer was 10 cm thick. The initial internal density of
the snow specimens was preserved as uniformly as possible through layered compression.
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Snow samples that received solar radiation were placed in an open, unobstructed area for
natural metamorphism, whereas snow samples without solar radiation were placed on the
shaded side of the building and covered with a shading canvas to ensure they were not
influenced by solar radiation.
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arrangement (the uppermost snow surface as the origin); (b) industrial microscope; (c) electronically
controlled penetrometer; (d) ring knife.

Temperature sensors were positioned in holes drilled in the wall of the test chamber
exposed to solar radiation to monitor temperature changes in the vertical direction of the
snow layers. Additionally, a temperature sensor was installed for continuous monitoring
of the air temperature, while a sensor for determining the ambient temperature was placed
in a radiation shield to prevent any temperature increase due to sunlight exposure. Snow
temperature and air temperature were sampled once per minute. The upper boundary of
the specimen was in direct contact with the atmosphere and solar radiation, whereas the
lower boundary was separated by a wooden board and a thick layer of prepacked snow on
top of the soil. A significant amount of snow was accumulated at the bottom and around
the periphery of the test chamber to reduce the impact of temperature variations on the
underlay and to ensure uniformity of the test results.

To observe the microstructure of the snow specimen, it was necessary to open the
sidewall of the wooden box and use an ice scraper to gently remove the snow particles in
layers to avoid destroying the original structure between the snow crystals. The extracted
snow crystals were laid flat on a black acrylic plate after cooling and adjusting the mag-
nification and focal length of the microscope to obtain the best image. The lower end of
the electronically controlled penetrometer penetration rod was connected to a conical cone
with a tip angle of 60◦ and a base diameter of 30 mm, and the penetration rate was set at
15 mm/s. The penetration point was the center of the specimen, which was penetrated
vertically to the bottom of the test box to stop the test, and the test data collected by the
tension transducer were recorded. At the beginning of the metamorphic effect, the snow
crystals changed more rapidly. The test interval was two days, and four days later, the test
interval was changed to five days to ensure that the number of snow samples was sufficient.
The test process and test snow sample storage are shown in Figure 3.

For each test, photographs of the snow crystals were taken in accordance with the four-
layer stratification that occurred during compaction. When processing the photographs,
preference was given to clearer photographs. An industrial microscope magnification scale
was used to measure the actual area, circumference, and equivalent diameter of the neck
region in the photographs. To ensure the accuracy of neck region selection, overlapping and
mixed snow crystals were avoided, and necks with high resolution and obvious features
were chosen. The method of selecting the neck area relied on manual identification and
extraction. First, the area where two ice crystals were connected was found, and the
four inflection points where the edge profile of the ice crystal changed from convex to
concave were identified, i.e., the four points where the curvature of the edge profile of snow
crystals with positive and negative signs changed (e.g., the four yellow dots in Figure 4b).
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Afterwards, the two inflection points between different ice crystals were connected by
smooth curves along the outer contour of the ice crystals (e.g., two red curves in Figure 4b),
and the two inflection points of the same ice crystal were connected by straight lines (e.g.,
two blue straight lines in Figure 4b). The closed area formed by the two curves and two
straight lines was the neck area needed for this test, and finally, the area, perimeter, and
equivalent diameter of the box selected were calculated using image processing software.
During calibration, the pixels occupied by the scale bar were marked as the corresponding
actual length, and then the actual length and area of the selected area could be determined.
Although errors in manual recognition are unavoidable, the change in neck area caused by
incorrectly identifying the inflection point was much smaller than the total neck area, and
the technique of calculating the average value by counting many different neck areas was
also effective in minimizing the error.
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Figure 3. Observation of microstructure of metamorphic snow and penetration hardness test process
and storage of snow samples. (a) New snow compaction; (b) compacted snow sample; (c) observation
of the microstructure of snow crystals; (d) metamorphic snow penetration test; (e) measurement of
temperature and snow depth of deteriorated snow samples from the solar radiation group; (f) storage
of deteriorated snow samples from solar radiation groups.
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3. Results and Discussion
3.1. Snow Metamorphosis

Figure 5 depicts the evolution of the air temperature, solar radiation group snow box
profile temperature, snow density, hardness, and snow crystal neck area observed in the
field over time.
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Figure 5. Changes in physical quantities over time during the experiment (a) neck area of the first layer
of snow; (b) average neck area of snow; (c) density of snow; (d) hardness of snow; (e) temperature;
(f) snow profile temperature of solar radiation group samples.

The test lasted for three months, from December to February of the following year, with
average temperatures of −15.76, −14.48, and −12.86 ◦C, respectively. On the eighteenth
day of the test, the temperature increased significantly, moving to above zero. The average
snow crystal neck area fell over the following three days, and the profile temperatures
inside the snow box climbed to various degrees, but the neck area of the top layer of
snow grew. The diurnal temperature fluctuated significantly from the forty-first day to
the forty-fifth day of metamorphosis, and the temperature of the snow in the snow box
displayed alternating warm and cold oscillations.

The neck area of the snow crystals rose prior to thirty days of metamorphism, and the
hardness values also gradually increased, as can be observed by combining plots a, b, and d
in Figure 5. The first layer’s neck region was more susceptible to the effects of temperature,
particularly when warming caused a decrease in the neck area of the lower snow crystals.
The snow crystal neck area decreased, and the hardness value also decreased at the later
stage of metamorphism or after thirty days. As shown in Figure 5c, the snowpack density
rose over time; however, its rate of change was concentrated in the metamorphic period,
since the collapse rate in the latter phase slowed.

The error bar records the error situation during repeated experiments. For the penetra-
tion test of snow hardness determination, limited by the number of wooden boxes and the
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long metamorphism time, three wooden boxes were used for hardness testing each time. A
single wooden box underwent three to four different penetrations, and its hardness value
was the average of the final results, with relatively small dispersion. When measuring the
neck size of snow crystals, the selected snow crystals came from multiple locations on the
sidewalls of the snow layer. For snow layers at the same depth, we selected three to five
locations parallel to the profile to extract snow crystals. We sprinkled them separately on
the acrylic board and selected clear positions to take photos, extracting about ten images
at a time. After summarizing the snow crystal photos of the same layer, 40–60 neck areas
were selected by framing. Except for a few days when the temperature surged, the error in
the neck area remained within a small range.

3.2. Analysis of Changes in Snow Crystal Neck Area
3.2.1. Effects of Solar Radiation

Figure 5a,b show the differences between the first layer and mean neck area over time
curves for the two control groups, and it is clear that only the first layer, or the neck area of
the 10 cm snow depth on the upper surface, of the snow specimens stored in wooden boxes
was strongly affected by solar radiation (Figure 5a), with a difference of 13,913 µm2 on the
twentieth day. With a difference of 434 µm2 on the twentieth day, the difference between
the sun radiation group and the control group for the mean value of the neck area of each
layer was not significant (Figure 5b).

The capacity of solar radiation to penetrate the snow layer makes it a crucial physical
factor in changing the temperature of snow. Even if 90% of the incident radiation is
reflected by snow, solar radiation will modulate the snow temperature and alter the snow
temperature gradient either directly or indirectly [26]. The most significant and direct
factor determining the warming of the snow specimen is the warming brought on by the
absorption of solar radiation in the snow layer, which is more effective than heat conduction
within the snow layer. This is reflected in the obvious temperature change in the snow in
the upper 20 cm of the snow layer, and the closer to the snow surface it is, the more drastic
the change in temperature is [27]. The borders of the wooden box that were utilized in this
experiment always had a masking effect on the incoming sun radiation due to its height
of 60 cm and initial snow thickness of 40 cm. Only the neck area of the snow crystals in
the top 10 cm of the surface layer fluctuated considerably throughout the experiment, in
contrast to the natural snowpack, which has an open surface without boundaries and solar
radiation can affect a snow depth of up to 20 cm.

3.2.2. Effects of Temperature

Only the snow specimen profile temperature samples that received sun radiation
were monitored for temperature because there were only a restricted number of collection
devices in this experiment. The process of metamorphosis continued until the eighteenth
day, when temperatures climbed above zero (Figure 5e). As a result of the temperature
increase, the temperature of all layers of the snow specimen increased, and sublimation
and condensation intensified. While the area of the surface snow necks rose, the sizes of
the second, third, and fourth snow necks all shrank significantly (Figure 5a). The influence
of heat flow in the underlying land determines temperature changes at the lower boundary
of the snowpack, whereas temperature changes at the upper boundary of the snowpack are
primarily influenced by solar radiation received at the snow surface and heat absorption
and excretion during heat exchange on the snow–atmosphere contact surface [28]. Due to
high-temperature sublimation, all snow layers other than the surface layer have a greater
vapor flux and a contraction of the neck area. When the first snow crystals come into
contact with the rising vapor flux from the lower snow surface, they precipitate, increasing
the neck area of the first snow surface. The decrease in neck area caused by sublimation,
however, is generally significantly greater for the entire snow sample than the rise in neck
area caused by precipitation from adsorbed ice crystals (Figure 5b).
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The curves of the snow crystal neck area relative to the air temperature for the solar
radiation group are shown below, which combine the average neck area and air temperature
during metamorphism in Figure 5b,e. The fitted curves are presented in Figure 6. Since the
power metamorphism at the start of the fresh snow metamorphism is significantly larger
than the temperature metamorphism, the fine snow whose metamorphism was carried
out for up to ten days and beyond was selected for the statistics. Figure 6 shows that
although the temperature and the neck are are adversely associated, the relationship is not
particularly significant.
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Due to the snow layer’s strong insulation properties and low thermal conductivity,
there is a temperature differential between the snow layer and the surrounding air. As a
result, the snow crystal neck area’s response to changes in air temperature lags slightly.
Temperature is still one of the most significant factors influencing snow metamorphosis,
despite the low correlation coefficient between the change in neck area and air temperature
during snow metamorphosis. Lehning [29] considered grain growth and cross-layer mass
transport as two distinct processes, with temperature serving as a crucial physical parameter
that influences the transport of vapor fluxes within the snowpack, which has the potential
to induce the transportation of water vapor, resulting in significant localized sublimation
and precipitation within the snowpack. The growth of ice particles is a result of vapor
diffusion among them, caused by the temperature gradient applied to the snow cover [30].
Furthermore, recrystallization leads to the formation of ice crystals, the strength of which
is significantly influenced by temperature [31]. The impact of the snowpack’s internal
temperature on the neck region will be further examined in Section 3.2.4.

3.2.3. Effects of Snow Density

In the natural world, snow has a wide variety of densities, ranging from 300 to
550 kg/m3. In this field environment, the recorded fresh snow density ranged from 70 to
150 kg/m3 towards the conclusion of the snowstorm, and there were still significant voids
after the snow was compacted with a density of 200 kg/m3. As seen in Figure 5d, the rise
in snow density in the region receiving solar radiation accounted for 45.2% of the overall
density increase in the first ten days following the start of metamorphism, whereas the
necking area quickly rose to 72.9% of the maximum necking area. In addition, the neck
area of the snow in the region without sun radiation expanded to 77.7% of its maximum
neck area, accounting for 51.9% of the overall density increase.

Following the statistics, Figure 7 displays the resulting curve of variation in the neck
area and density of metamorphosed snow. In the thirty days between the start of the
metamorphosis of the new snow and the start of the metamorphosis, the correlation
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coefficients of density and neck area were 0.90 for the solar radiation group and 0.96 for the
no solar radiation group. The correlation coefficients for density and neck area fell after
thirty days of metamorphosis, and throughout the duration of the test, they were 0.77 for
the group that received solar radiation and 0.69 for the group that did not. The necks can
already exist as separate crystal structures in the later phases of metamorphism because of
their long-term growth, and the newly formed crystals interact with the original crystals
to generate new necks. Thus, the overall neck area appears to decrease as the number of
old necks decreases and the number of new necks increases; however, the density of the
snow always rises once the snow collapses, resulting in the opposite pattern of change in
the neck area and density in the late stage of snow metamorphism and a nonmonotonic
trend throughout the process.
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Figure 7. Relationship curve between snow density and the average neck area of each layer of
snow crystals.

During the entire metamorphosis process, the experimental control groups exhibited
the maximum neck area on the thirtieth day. Due to the exposure to light, the solar radiation
group underwent a more intense metamorphosis, resulting in a more rapid elevation in
density compared to that without solar radiation, with the peak in the neck area occurring
at a later time. During the later stage of metamorphosis, the snow crystal morphology
underwent a transformation from coarse snow to deep frost, with a notable decrease in the
rate of density change compared to the initial stage.

3.2.4. Effects of Snow Depth

Based on stratifying the four layers of snow samples on the solar radiation surface
and without the solar radiation surface (Figure 8), the area of the snow neck in each layer
increases sequentially from top to bottom when there is no temperature fluctuation or when
there is only a small amount of temperature fluctuation. The phenomenon described above
in the relationship between temperature and snow neck area occurs when the temperature
rises quickly for a brief period, causing the increase in the first layer’s neck area to display a
different pattern from the other three layers. The growth of the neck is a result of a fusion of
pressure sintering, vapor diffusion, volume diffusion, and grain boundary diffusion. Over
the course of seventeen to twenty-one days, the snow profile undergoes drastic temperature
changes (Figure 5f), during which vapor diffusion takes over, leading to the generation of
vapor from the lower snow crystals beyond the surface layer, which later condenses out
of the surface snow crystals. If the external temperature does not experience significant
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changes, pressure sintering will be the dominant mechanism, where the underlying snow
crystals will carry the load from the self-weight of the upper snow layers. As a result, the
bottom snow crystal neck experiences increased compression, normal force, and shear force
transfer, which causes the grain structure to form early and with a larger area of the neck to
accommodate the above additional strain.
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Figure 8. Changes in the neck area of snow crystals at different depths over time. (a) Changes in the
neck area of snow crystals at different depths under solar radiation; (b) changes in neck area of snow
crystals at different depths without solar radiation over time.

Figure 9a was created by plotting the temperature of the snow layer against the neck
area of the snow crystals as they were measured in stages. The vertical snow pressure on
the snow crystals in each layer was derived from the density and was used to determine
the snow thickness using the snow layer settlement data collected by the ultrasonic range
sensor. The four points from left to right in Figure 9b represent the average of the four
layers of snow crystals in the snow box from the surface to the bottom at all metamorphic
times. The points in Figure 9a cover the temperature and neck area of each layer during
metamorphism, and since the snow layer temperature always varies with air temperature
during metamorphism, the points are more discrete along the transverse axis and cannot be
fitted after averaging the layers. The change in vertical load due to metamorphism is much
smaller than the difference between snow layers, and so it can be calculated by averaging
each snow layer. On the other hand, Figure 9b divides the changes in vertical load and
neck area during metamorphosis of the four-layer snow specimens into four points after
averaging and plots the error lines due to the changes in neck area and vertical load due to
metamorphosis. The correlation in Figure 9a is better than the correlation of temperature in
the neck area in Figure 6, and the snow profile temperature better reflects the effect on the
neck area after accounting for the thermal conductivity of snow. However, the temperature
is still less effective in describing the neck area, mainly because the effect of temperature
on the neck of snow crystals is not an instantaneous process, and the description by the
average value of the temperature does not fully reflect the metamorphic effect caused by
vapor diffusion. Overall, the snow crystal neck area increases with snow depth, and the
increase in vertical pressure contributes to the rise in the snow crystal neck area.

3.3. Relationship between Snow Crystal Neck Area and Total Crystal Area

Snow crystals undergo changes from needle-like, broad slab, and columnar morpholo-
gies to deep frost during metamorphosis, and the size of the snow crystals themselves
constantly changes [32]. In order to explore the effect of snow crystal neck area on snow
crystal size, Figure 10a statistically shows the change in the average size area of snow
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crystals (St) with metamorphosis time (D). It can be seen that, excluding the days at the
beginning of metamorphosis and the days when the temperature increased from the 18th
day, the snow crystal area showed an increasing trend. The surface area of snow crystals
was initially larger because new snow retained the intact dendritic structure. With the onset
of metamorphism, the dendritic structure was compressed and gradually disappeared, and
the snow crystal area contracted. During the days of rapid temperature rise, as analyzed in
Section 3.2.2, the vapor diffusion of the snow crystals increased and the area contracted.
However, for the entire metamorphic period, the individual fine-grained snow crystals
gradually coalesced to display an increasing trend in overall snow crystal area.
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Figure 10. Solar radiation group’s (a) curve of mean snow crystal area with time and (b) curve of
mean snow crystal area versus neck area (yellow and blue backgrounds represent different trends in
the neck area and the snow crystal area).

As shown in Figure 10b, the neck area of snow crystals undergoes two stages with the
variation of snow crystals. In the first stage (points covered by a yellow background in
Figure 10, where the neck area of snow crystals can be described as the rising segment of
S1), the neck area increases with the increase in snow crystal area, and material exchange
occurs between the two snow crystals through the neck. As the snow crystals increase in
size, the neck, which serves as a material exchange channel, also gradually increases in area.
In the second stage (points covered by a blue background in Figure 10, where the neck area
of the snow crystal can be described as the S2 descending segment), the neck area shows a
downward trend as the snow crystal area increases. When the snow neck develops to a
certain extent, its connection with the snow crystal changes, no longer presenting the shape
described in Figure 4, but instead becoming an irregular shape close to the snow crystal.
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More and more snow necks undergo the above evolution, leading to a decrease in neck area,
while snow crystals continue to grow. At this time, the two show a negative correlation.

3.4. Relationship between Snow Crystal Neck Area and Hardness

The snow crystal neck region displayed an overall tendency to grow and then decrease
as the number of metamorphism days increased. The snowpack hardness value peaked at
approximately one month into the metamorphic process, and then it steadily declined as the
neck region shrank, resulting from the formation of new crystals and necks at a later stage
(Figure 5a,b,d). The following Pearson correlation analysis was performed using the snow
hardness of the snow that received solar radiation from day 0 to day 50 of the metamorphic
time, as well as the equivalent snow crystal grain diameter, neck circumference, neck area,
and snow specimen density data, to further investigate the relationship between snow
crystal microstructure and snow hardness (Table 1). With a correlation coefficient of 0.711
and passing the significance test at the 0.05 level, the results demonstrate a positive link
between snow hardness and the neck area of snow crystal particles. To perform additional
regression analysis on the influence of hardness, this article chooses the neck area of the
snow samples.

Table 1. Correlation analysis of the hardness of metamorphic snow with the density and microscopic
parameters of snow crystals.

Snow Hardness
(kPa)

Equivalent Neck
Diameter (µm)

Neck
Circumference

(µm)

Snowpack Density
(kg/m3)

Neck Area
(µm2)

Snow hardness (kPa) / 0.443 0.459 0.041 0.650 *
Equivalent neck Diameter

(µm) 0.443 / 0.997 ** 0.804 ** 0.919 **

Neck circumference
(µm) 0.459 0.997 ** / 0.783 ** 0.926 **

Snowpack density
(kg/m3) 0.041 0.804 ** 0.783 * / 0.688 **

Neck area
(µm2) 0.650 * 0.919 ** 0.926 ** 0.688 ** /

Notes: * p < 0.05.; ** p < 0.01.

Based on a multiple linear regression analysis of the observed data, the correlation
coefficient R between metamorphic snow hardness and the neck area of snow crystals was
0.711 (Figure 10), indicating a strong linear relationship between the two variables and
positive overall regression effects. The regression equation’s p value within 0.01, which
was statistically significant and passed the significance test, showed that the neck area of
the snow crystals in the snow specimens had a substantial impact on the snow hardness.
Consequently, the regression equation for snow hardness in this examination scenario is
presented below:

H = 0.002764S + 67.922837 (1)

where H represents the predicted value of the snow hardness regression equation in kPa
and S represents the snow crystal neck area in µm2.

The snow crystal neck area and snow hardness have a good correlation, as shown in
Figure 11. This finding demonstrates how many of the physical and mechanical charac-
teristics of snow, including hardness and shear strength, are significantly influenced by
the area around the snow crystal neck. The explanation for this is that ice particles may
transfer loads to snow necks without experiencing significant deformation because they
have a higher mass and are more rigid structurally than snow necks. The stresses within
the snow crystals are exposed to the loading peak at the neck, similar to any cohesive
granular material; in other words, the neck region bears the most stress during penetration
tests. On the other hand, snow necks are more likely than ice grains to deform when
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they are put under additional strain and start to give and flow. However, snow triaxial
measurements reveal that the stresses at the snow neck are 5 to 50 times greater than those
at the grains [33], which is sufficient to demonstrate the influence of the neck area on the
physical characteristics of the entire snow body.
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Figure 11. Curve of the relationship between the neck area and hardness of metamorphic snow in
the solar radiation group (red line: fitting curve obtained based on all metamorphism times; black
line: fitting curve obtained after ten days of metamorphism).

The three leftmost points in Figure 11 should be noted as they dramatically diverge
from the general trend. These three measurements are the hardness and neck area taken
on days 0, 2, and 5 at the start of the metamorphosis. The quick slumping and sintering
modifications of the new snow intensify the heterogeneity of the metamorphosis of the
layers and make the three measurements more distinct. If we account for only the metamor-
phism that occurs after ten days, as indicated by the black line, the correlation (r = 0.912)
is noticeably larger when the same method is used to analyze the data. This result better
illustrates how the neck of the snow crystals affects the snowpack’s hardness.

4. Discussion

Combining field measurements and meteorological satellite data from the European
Centre for Medium-Range Weather Forecasts, Table 2 lists the main meteorological condi-
tions and the pertinent physical characteristics in the snow box of the solar radiation group
during the test period. The mean ambient temperature readings, for instance, are based on
the arithmetic mean of the temperature data collected in the field between the two tests.
Two of the atmospheric forcing data for controlling snow cover metamorphism, solar radia-
tion and wind speed, were sourced from the ERA5 Land dataset of the European Centre
for Medium Range Weather Forecasts. The selected grids (46◦36′ N–46◦42′ N, 127◦24′ E–
127◦30′ E) covered the experimental site (46◦39′ N, 127◦25′ E), with a time resolution of one
hour and a spatial resolution of 0.1◦ × 0.1◦. The data were collected by the Copernicus
Climate Change Service (https://cds.climate.copernicus.eu/ (accessed on 1 April 2023))
and distributed at no cost through the Climate Data Store. The data from ERA5-Land
have been applied to northeastern China on several occasions [34], and the data are in
good agreement with the measured values [35]. Snow is a porous three-phase structure,
and air humidity directly affects the surface of snow to change its moisture content and
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affect its metamorphism [36,37]. Considering the lack of humidity data in ERA5 Land, data
from the nearest Bayan County meteorological station (46◦3′ N, 127◦23′ E) were selected,
and the data were collected from the National Meteorological Information Center China
Meteorological Data Network (http://www.nmic.cn/ (accessed on 1 April 2023)).

Table 2. Changes in the neck area of deteriorated snow cover and its influencing factors over time.

Days to Meta-
morphism

(day)

Average
Neck Area

(µm2)

Average
Ambient

Temperature
(◦C)

Cumulative
Solar

Radiation
(W·h/m2)

Snow Density
(kg/m3)

Average Wind
Speed (m/s)

Average Specific
Humidity (g/kg)

0 3593.9 −13.5 1137.4 200.0 2.9 0.9
2 4750.5 −16.3 1668.5 207.9 1.5 0.6
4 7791.9 −17.1 2086.2 249.8 1.8 0.7

10 33,403.8 −15.5 7002.8 254.2 2.8 0.6
15 36,121.9 −16.7 5639.1 261.9 1.9 0.6
20 35,700.4 −8.0 5586.1 270.5 3.3 1.5
25 34,969.3 −18.3 6280.4 272.5 2.3 0.5
30 45,791.3 −16.2 6335.2 300.5 2.3 0.5
35 42,391.0 −13.8 7763.6 302.5 1.8 0.3
40 37,831.3 −12.7 8366.3 307.6 1.8 0.7
45 31,541.3 −12.7 8270.2 311.0 1.7 0.8
50 25,977.3 −12.9 8117.7 317.0 2.1 1.2

After a significance test, the regression equation for the snowpack neck area had a
correlation coefficient of r = 0.919. Below is the multiple linear regression equation for the
test conditions’ snowpack neck area:

S = 287.883T + 2.188E + 188.983ρ + 12, 194.499V− 20, 443.081RH − 42, 729.115 (2)

where S represents the snow crystal neck area in µm2; T represents the average ambient
temperature in ◦C; E represents the cumulative value of solar radiation in W·h/m2; ρ
represents the snow density in kg/m3; V represents the average wind speed in m/s and
RH represents the average specific humidity in g/kg.

Despite the high correlation coefficient of Equation (2), it is not directly evident how
the five variables are correlated with the degree of influence on the neck area. Because
of this rationale, the data analysis below involved a principal component analysis and
factor analysis for the five variables that impact neck area in this statistic. The results of the
principal component analysis that were obtained are presented in Table 3.

Table 3. Principal component results: total variance in explanation.

Ingredient
Initial Eigenvalue Extraction of the Sum of Squares and Load

Total Percentage of
Variance (%)

Cumulative
Percentage (%) Total Variance Cumulative

Percentage (%)

1 2.201 44.024 44.024 2.201 44.024 44.024
2 1.997 39.945 83.970 1.997 39.945 83.970
3 0.524 10.487 94.457 / / /
4 0.213 4.259 98.715 / / /
5 0.064 1.285 100.000 / / /

Table 3 shows that the first two principal components account for 84% of the variance,
demonstrating that the neck region may be evaluated with some degree of certainty as the
two extracted principal components can account for 84% of the five variables indicated
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above. According to the aforementioned study, the two major components were identified
as Y1 and Y2, and the linear combination of Y1 and Y2 was then obtained as follows:

Y1 = 0.613T + 0.286E + 0.273ρ− 0.404V + 0.551RH (3)

Y2 = −0.057T + 0.611E + 0.629ρ− 0.382V− 0.284RH (4)

The four atmospheric forcing factors mentioned above, along with snow density,
responded to 83.97 percent of the variables that determine how much the snow crystals’
necks vary, indicating that they may be the main factors influencing the neck area. Further
factor analysis was carried out on Equations (3) and (4) to determine the normalized
principal component score coefficients based on the coefficient analyses of the mean ambient
temperature (T), cumulative solar radiation (E), snow density (ρ), wind speed (V) and
specific humidity (RH), as shown in Figure 12. From Figure 12, it can be seen that the
three factors with the highest proportion are density, solar radiation, and temperature. The
specific humidity plays a supplementary role in explaining the changes in neck area, with
wind speed contributing the lowest, at only 2.2%, and the neck area is not sensitive to
its influence. Microstructure, temperature, and sedimentation all have intricate feedback
relationships with one another [29]. Four different forms of atmospheric forcing changes
affect the direction and rate of internal microstructural changes. The neck area represents
microstructural changes that are intrinsic to changes in the internal physical properties of
the snowpack. For instance, pressure sintering causes the growth of snow crystal necks
and bonds [38], and the growth of the neck region boosts the thermal conductivity and heat
transmission of snow while allowing the bonding strength between grains to grow and
the settling rate to decrease. Since there is less of a temperature difference in the snow’s
vertical direction because of the enhanced heat transfer, there is less vapor flow, which
prevents the growth of the snow neck. Additionally, when pressure sintering slows due to
the decrease in settling, neck growth will also slow. Then, the aforementioned processes can
be reversed or cycled in response to changes in the ambient temperature, with snow layer
thermal anisotropy being a key factor in temperature gradient metamorphism [39]. The
solar radiation directly heats the snow layer to affect the metamorphism of snow cover, and
its contribution cannot be ignored. Humidity and wind speed also supplement the changes
in the neck. Environmental humidity, as an important factor in the variation of moisture
content in snow, plays a role in the growth of snow crystals. The wind speed directly affects
the particle morphology and bonding mode on the top snow surface, leading to changes in
transmittance and thermal conductivity, affecting the microstructure of surface snow and
altering the energy input of the snow sample from the outside.
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5. Conclusions

(1) The metamorphosis of the snow neck area is influenced by environmental factors
including temperature, solar radiation, humidity and wind stress. The change in neck
area is significantly affected by solar radiation and temperature, with the surface neck
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region absorbing water vapor from lower layers, resulting in an increase in area during
temperature surges. Conversely, the remaining snow necks undergo varying degrees of
decrease due to vapor diffusion. The overall neck area displayed a declining pattern, which
accounts for the fluffy appearance of the snow samples and the reduction in hardness
numbers as the surrounding temperature rose. Humidity complemented the change in the
neck area, while wind speed had the least effect.

(2) After ten days of metamorphosis, snow hardness had a strong positive association
with the snow crystal neck area (r = 0.912). The weak link in the snow crystal linkage is
the neck area, and one of the key determinants of the snow’s mechanical properties is the
area of the neck. The neck region better explains the anomaly that the metamorphosed
snow’s hardness initially rises and then falls, in contrast to the snow density, which con-
stantly grows throughout the metamorphic process. Additionally, this demonstrates how
modifications in the snowpack microstructure are inextricably linked to modifications in its
macroscopic physical attributes.

(3) When atmospheric forcing is more steady, the neck area of each layer of the
snowpack grows with snow depth. Pressure sintering, or the impact of the snowpack’s
makeup on the neck area, is the primary source of this phenomenon. The electronically
controlled penetrometer hardness test further revealed that the hardness value increased
as the depth of penetrated snow increased. After penetration, there was no discernible
accumulation in the hole’s vertical direction, indicating that the increase in hardness value
was primarily brought on by an expansion of the snow neck’s surface area in the depth
direction as opposed to compression brought on by the vertical accumulation of snow
during the penetration process.

In contrast to previous studies on snow microstructure, the present experiment was
conducted to investigate the statistical changes in neck area during snow metamorphosis
and the meteorological factors that affect it. Furthermore, the experiment aimed to elucidate
how the snow neck area is affected by density, ambient temperature, wind speed, and
solar radiation, as well as how the neck area affects snow hardness. In the future, further
recording of more detailed environmental meteorological data and more microstructural
parameters can be conducted. In addition, it is necessary to use improved methods to
observe the snow accumulation during the melting period. At this stage, the nature of
snow changes rapidly and is complex, which is of great significance for studying snow
metamorphism.
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Abstract: During the winters of 2009/2010 and 2020/2021, observations were carried out at an eastern
port of Liaodong Bay to examine the variations in sea ice thickness and atmospheric conditions.
The daily ice thickness (DIT) and the cumulative ice thickness (CIT) are the two main observation
items related to the thickness of sea ice. For DIT, the sea ice thickness gradually decreases as the
temperature increases, and the freezing rate a is 1.48 cm/(◦C·d)1/2. For CIT, when the temperature is
−12 ◦C, the maximum growth rate of ice thickness decreases from 3.5 cm/d to 1.5 cm/d as the ice
thickness increases from 0 to 20 cm. The residual method was applied to calculate the oceanic heat
flux, which is an important parameter of ice modeling, and both the analytic model (Stefan’s law) and
numerical model (high-resolution thermodynamic snow-and-ice model) were utilized in this work. It
was found that the accuracy of the simulation results was high when the growth coefficient of the
analytic mode was 2.3 cm/(◦C·d)1/2. With an oceanic heat flux of 2 W·m−2, the maximum error of
the numerical model approached 60% in 2010 and 3.7% in 2021. However, using the oceanic heat
flux calculated in this work, the maximum error can be significantly reduced to 4.2% in the winter
of 2009/2010 and 1.5% in 2020/2021. Additionally, the oceanic heat flux in Liaodong Bay showed a
decreasing trend with the increase in ice thickness and air temperature.

Keywords: Liaodong Bay; sea ice thickness; Stefan’s law; HIGHTSI; oceanic heat flux

1. Introduction

Global climate change is altering the movement of salts, gases, and nutrients in the
ocean–ice–atmosphere system [1–5]. Over the past 70 years, the severity of sea ice in the
Bohai Sea has weakened [6–10], and the increased volatility has led to a greater risk of
sea ice hazards [11,12]. In order to clarify the relationship between climate change and
sea ice in the Bohai Sea and improve the prediction of sea ice thickness, it is important to
carry out both direct observations and numerical simulations of sea ice mass balance in
this area [13–15].

At present, most observations and numerical simulations of the ice mass balance
process focus on the polar and sub-polar regions [16,17]. Researchers observed the ice
thickness, ice temperature, and ice salinity of sea ice during both the ice growth and
melting periods [18], and the collected data were used to optimize the classical sea ice
thermodynamic model [19]. In addition, the data were used to determine the parameters
of thermodynamic modes. It was found that the oceanic heat flux plays a significant and
important role in the accurate simulation of ice, and the oceanic heat flux has different
characteristics depending on region and season [20,21]. However, due to climate change,
the Arctic sea ice is gradually shifting from multi-year ice to first-year ice [22], and the
research priority will become seasonal sea ice in the future. As the southern boundary of
the frozen sea area in the Northern Hemisphere, the research on Bohai Sea ice can be an
important reference for Arctic first-year ice. At present, the research works on Bohai Sea ice
have mainly focused on the ice extent in recent years; for example, Zhang [23] used machine

89



Water 2023, 15, 943

learning methods to develop a novel empirical model with the aim to predict the sea ice
area. However, the thermodynamic process of landfast ice has not been carried out. The
last thermodynamic observations of landfast ice can be traced to the winter of 1989/1990,
when China and Finland conducted field surveys of meteorology, sea ice temperature, and
thickness in the Bayuquan Port, and obtained 8 days of continuous hourly data [24]. Based
on these data, Cheng [25,26] carried out the test of the high-resolution thermodynamic
snow-and-ice model (HIGHTSI), in which the oceanic heat flux was chosen as a constant
5 W/m2. Because the oceanic heat flux has its own characteristics in each sea area, Ji
and Yue used floating ice thickness and meteorological data collected from the Liaodong
Bay JZ20-2 platform and calculated the oceanic heat flux in the 1997/1998 ice season. It
was found that the largest value was 200 W/m2 during the initial ice period, which then
decreased to 0 during the melting period [27]. The disadvantage is that the observed data
of Ji and Yue were affected by dynamic factors, and we are still lacking knowledge about
the oceanic heat flux of landfast ice, although it has been identified to have an important
influence on the numerical simulation of sea ice in Liaodong Bay [28–32]. Therefore, the
continuous mass balance observation of landfast ice in the Bohai Sea is of great significance
for seasonal sea ice research.

In this study, the relationship between sea ice thickness and air conditions was ob-
served in Jiangjunshi Port during the winters of 2009–2010 and 2020–2021. The residual
method was applied to calculate the oceanic heat flux and to analyze the factors that affect
the flux. Furthermore, based on the observed sea ice thickness and meteorological data
as inputs, the sea ice growth and decay were evaluated using both an analytic model and
numerical simulation.

2. Observation Area and Data
2.1. Observation Area

The state of sea ice in the Bohai Sea is influenced by global climate change, and
Liaodong Bay usually has the maximum ice conditions in terms of ice extent, thickness,
concentration, and duration [33]. Meanwhile, ice can be observed every winter season in
Liaodong Bay.

Prior to carrying out air–ice–water observations in Liaodong Bay, the primary chal-
lenge was to locate a suitable landfast ice site that meets specific criteria. The selected area
must allow seawater to flow under the sea ice while remaining stationary under the ocean
current. Accordingly, Jiangjunshi Port, which has severe ice conditions, was selected as
the observation site. Figure 1 shows the location of Jiangjunshi Port in Liaodong Bay, with
coordinates of 39◦55′7.72′′ N, 121◦40′40.77′′ E. There is a small port that is approximately
0.16 km2 in Jiangjunshi Port. The water depth is 8 m, and the seawater salinity is 28‰. This
location is ideal for observing the thermodynamic process of sea ice in Liaodong Bay, as it
is sheltered from the dynamic factors such as currents and waves. Usually, the ice season
begins in December and extends until the end of March [34].

2.2. Sea Ice Thickness and Atmospheric Conditions in the Winter of 2009–2010

Atmospheric data were collected during the winter of 2009–2010 using the automatic
meteorological equipment positioned 10 m above the ice surface. The collected elements
included wind speed, wind direction, air temperature, humidity, and pressure, with data
recorded every 10 min. The measurement accuracies of wind speed, wind direction, and air
temperature were 0.01 m/s, 0.01 degrees, and 0.01 ◦C, respectively. The observation period
covered the entire ice season, as presented in Figure 2. On 5 January, the air temperature
hit a lowest value of −17.99 ◦C.
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Figure 2. Time series (2009/2010) of (a) hourly measured air temperature, (b) hourly measured wind
speed, (c) hourly measured humidity.

During the 2010 ice season, two sea ice observation options were available at the port
covered with landfast ice. The following observation steps were taken: (1) Two areas of
2 × 2 m were cut into the landfast ice, and the ice within these areas was removed. To
ensure that the two areas did not affect each other, they were placed 50 m apart and named
ice zone 1 (IZ1) and ice zone 2 (IZ2), respectively. (2) The growth thickness was observed in
IZ1 for 24 h. After measuring the ice thickness each day, the thickness was recorded as H1
and then all the sea ice in IZ1 was removed. (3) The CIT was observed in IZ2, which was
measured at 9 a.m. every day and recorded as H2.

In addition, it was observed that the sea ice occasionally broke due to the tide. The
broken sea ice drifted out of the port, and it interrupted the observation of sea ice thickness.
According to our observations, the first period of interruption occurred from 11 January
to 19 January 2010 for a total of 9 days, with an average air temperature of −7.9 ◦C. The
second period of interruption occurred from 23 January to 15 February 2010 for a total of
24 days, with an average air temperature of −5.8 ◦C. Throughout the observation period,
the temperature remained low, and the sea ice growth was rapid.
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2.3. Sea Ice Thickness and Atmospheric Conditions in the Winter of 2020–2021

Atmospheric conditions were also observed during the observation period using
automatic meteorological equipment. The installed sensor was the MaxiMet series GMX500,
and the observed elements included air temperature, wind speed, wind direction, humidity,
and air pressure. The measurement resolution for wind speed was 0.01 m/s, for wind
direction it was 0.01◦, for humidity it was 1%, and for temperature it was 0.01 ◦C. The
data were recorded every 5 s, and the recording period was from 27 December 2020 to
1 March 2021. Figure 3 presents the time histories of those meteorological data. The wind
speed data contain some missing parts, which were caused by the heavy frozen state of the
sensor. In the third section of the model calculation, the missing data are replaced by ERA5
reanalysis data.
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On 31 December 2020, the sea ice entered the port and froze completely. On 3 January,
the measurement of ice thickness started. The measurement was conducted using an ice
ruler, and the thickness was observed at 8:00 and 17:00 during the ice period. On 4 February,
the tide caused the sea ice to break and the measurement of ice thickness was completed.

3. Methods
3.1. Thermodynamic Model of Sea Ice
3.1.1. Stefan’s Law of Ice Growth

There are two types of thermodynamic models for sea ice: an analytical model and
numerical simulation. For the analytical model, Stefan established a formula to calculate
ice thickness, which only considers the heat balance at the ice–water interface. The heat
released from the freezing occurring at the bottom of the ice layer is transferred to the
surface of the ice layer through a constant temperature gradient. This formula is based
on 4 basic assumptions: (1) under rapid temperature changes, the lag in ice temperature
change is ignored; (2) the solar radiation absorbed by ice is ignored; (3) the heat flux at the
bottom of the ice is ignored; and (4) the surface temperature is a function of time [35–37].
The calculation formula is:

ρiL f
dhi
dt

=
ki

(
Tf − T0

)

hi
(1)
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where ki is the thermal conductivity of the ice; ρi is ice density; L f is freezing latent
heat; Tf is the freezing temperature; and T0 is the ice surface temperature. According to
Formula (1), the ice thickness can be calculated. The initial ice thickness is h0 at the initial
time t = 0, and both sides of Formula (1) are integrated simultaneously:

hi =
√

h2
0 + a2FDD (2)

a =
√

2ki/ρiL f (3)

FDD =
∫ t

0

(
Tf − T0

)
(4)

3.1.2. High-Resolution Thermodynamic Snow-and-Ice Model (HIGHTSI)

Most numerical models of sea ice were developed by combining the principles of
energy balance and heat conduction. In this study, the high-resolution thermodynamic
snow-and-ice (HIGHTSI) model [38–43] proposed by Maykut and Untersteiner [44] was
applied to simulate the growth of sea ice thickness. The HIGHTSI model follows the
classical one-dimensional sea ice model, and its core is the partial differential thermal
conductivity equation which considers the vertical heat and mass balance through the
snow–ice–ocean system. The HIGHTSI model has been widely applied to simulate the ice
thermodynamics in various locations, such as, e.g., the Bohai Sea, Antarctic sea, Arctic sea,
Baltic Sea, and Finnish lakes. The key processes include the surface heat and mass balance
(Equation (5)), the snow and ice temperature (Equation (6)), and the ice bottom heat and
mass balance (Equation (7)):

(1− αi,s)Qs − I(z)0 + εQd −Qb

(
Ts f c

)
+ Qh

(
Ts f c

)
+ Qle

(
Ts f c

)
+ Fc

(
Ts f c

)
− Fm = 0 (5)

where Qs is the downward solar radiation for all sky conditions; α is the surface albedo;
I(z) is the solar radiation penetrating below the surface layer; Qd and Qb are the downward
and upward longwave radiation under all sky conditions; ε is surface emissivity; Qh and
Qle are turbulent sensible and latent heat fluxes; Fc is the conductive heat flux of the surface
layer; Fm is the surface melting of snow or ice; and Tsfc is surface temperature.

(ρc)i,s
∂Ti,s(z, t)

∂t
=

∂

∂z

(
ki,s

∂Ti,s(z, t)
∂z

− q(z, t)
)

(6)

where T is temperature; t is time; z is the vertical coordinate below the surface; ρ is density;
c is specific heat; k is thermal conductivity (function of Ti and si); q(z,t) is the absorbed solar
radiation below the surface layer; and the subscripts s and i are snow and ice, respectively.

ρiLi
dhi
dt

+ Fw =

(
ki

∂Ti
∂z

)

bot
(7)

where hi is sea ice thickness; Li is the latent heat of fusion; and Fw is the oceanic heat flux.
The inputs of the mode are wind speed (Va); temperature (Ta); relative humidity (Rh);

precipitation; and solar radiation (parameterized). The outputs of the mode are the time
series of ice thickness (hi) and ice temperature.

3.2. Statistical Method
3.2.1. Least Squares Method

The least squares method is commonly used for parameter estimation, system identi-
fication, and prediction. In this study, the least squares method was used to estimate the
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parameters in the relationship between the sea ice thickness and the air temperature data.
According to the least squares method, the minimization value is:

L = min ∑max(n)
n=1

(
y(n)− y(n)′

)2
(8)

where y(n)′ is the result of sea ice thickness to be fitted, n is air temperature, and y(n) is
the observed data of ice thickness.

3.2.2. Coefficient of Determination (R2)

The coefficient of determination is a statistical measure of the goodness of fit. It
represents the proportion of variance in the dependent variable that can be explained by
the independent variables included in the model. The value of R2 ranges from 0 to 1, where
a higher value indicates a better fit between the observed data and the model.

R2 = 1− RSS/TSS (9)

where RSS is the sum of squared residuals and TSS is the total sum of squares.

4. Results

Sea ice thickness is an important characteristic of sea ice severity in Liaodong Bay,
and its accurate evaluation is crucial for biogeochemical cycle research. The thickness of
sea ice is affected by various factors, such as atmospheric conditions, solar radiation, and
oceanic heat flux. Previous studies have demonstrated that the temperature is the main
factor affecting the sea ice severity in Liaodong Bay. Against this backdrop, this study
analyzed the changes in sea ice thickness under meteorological effects.

4.1. Sea Ice Thickness Analysis Based on Stefan’s Law
4.1.1. Statistical Law of Sea Ice Growth Rate and Temperature

During the growth and melting of sea ice, the air temperature was found to have
a significant influence on the sea ice’s temperature profile. When the air temperature
drops rapidly, the temperature profile of sea ice shows a linear distribution along the
ice; meanwhile, when the air temperature becomes high, the ice temperature is low in
the middle but high on the surface layer and bottom layer. Therefore, the growth rate of
sea ice only shows statistical regularities during the period of rapid growth. Hence, the
relationship between sea ice thickness and atmospheric temperature was evaluated only
for the winter of 2009–2010.

Based on the observation area IZ1, the analysis focused on the daily ice thickness (DIT),
which represents the thickness of sea ice growth starting from 0 cm over a 24 h period. To
evaluate the growth law of DIT, Equations (2)–(4) were used to calculate sea ice thickness,
where h0 = 0, hi = a

√
FDD, and a represents the freezing rate. Based on these equations,

the relationship between DIT and daily average temperature was plotted (Figure 4). The
regression analysis equation is:

hi = 1.48
√

FDD (10)

where FDD is the cumulative temperature (◦C·d) and hi is the thickness of sea ice (cm).
The coefficient of determination is 0.38.

The results indicate that as the temperature increases, the DIT of sea ice decreases, with
a freezing rate of 1.48 cm/(◦C·d)1/2. For instance, at an average temperature of −12 ◦C,
the average DIT was 5.3 cm, whereas at an average temperature of −2 ◦C, the average
DIT was about 2.5 cm. Additionally, there is still an increase in ice thickness of 2 cm at
temperatures close to 0 ◦C, which may be attributed to the varying sea temperatures on
different days. Notably, the freezing rate of DIT is significantly smaller than the theoretical
value of 3.3 cm/(◦C·d)1/2.
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Figure 4. Statistical relationship between DIT and temperature.

In addition to DIT, the cumulative ice thickness (CIT) of sea ice, which was measured
every day at 9 am, is another important observational parameter to consider. In Liaodong
Bay, it was observed that the sea ice growth is significantly dominated by the cold fronts
from Siberia. When the cold air reaches the ice area, the low temperature moves downward
in the form of a cold front. It freezes the surface of sea water under the sea ice. As the cold
air leaves, both the atmospheric temperature and the ice temperature increase, leading to a
stable trend of increasing sea ice thickness. Obviously, the increase in sea ice thickness is
affected by the amount of heat consumed by the cold front reaching the bottom of the ice.
As the sea ice thickness increases, the same cold front with the same energy intensity can
only cause a smaller increase in ice thickness.

To clarify the influence of air temperature and sea ice thickness on the sea ice growth
rate, a three-dimensional fitting was performed, and the relationship between the average
temperature, sea ice thickness, and sea ice growth rate (cm/d) was plotted, as shown in
Figure 5. It can be seen that at a temperature of −12 ◦C, the maximum growth rate of ice
thickness decreases from 3.5 cm/d to 1.5 cm/d as the ice thickness increases from 0 to
20 cm. The regression analysis equation is:

dh/dt(T, h) = 1.643− 0.158T − 0.101h (11)

where T is the temperature (◦C), h is the thickness of sea ice (cm), and dh/dt is the growth
rate of sea ice (cm/d). The coefficient of determination is 0.65.
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4.1.2. The Sea Ice Freezing Rate

In Stefan’s law, the most important factor is the freezing rate. Based on Equations (2)–(4),
the freezing rate is hi/

√
FDD. For Jiangjunshi Port, the DIT and air temperature were used

to calculate the freezing rate of first-day ice growth. The results showed that the freezing
rate increased with higher atmospheric temperature and thicker sea ice (Figure 6). The
regression analysis equation is:

a = 1.459 + 0.170 T + 0.394 h (12)

where T is temperature and h is DIT. The coefficient of determination is 0.812.
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Figure 6. The freezing rate varies with DIT and temperature.

An accurate freezing rate is important for assessing the cumulative growth thickness
of sea ice. To calculate the freezing rate of the CIT, the observation data from 23 January
to 15 February 2010 were utilized. The data from 12 January to 19 January 2010 were
not selected due to a short observation period. The initial ice thickness was 25 cm from
4 January to 4 February 2021. The freezing rate for each day was calculated by using
hi/
√

FDD, and the results are presented in Figure 7. Apparently, except for the two days
when the sea ice started to grow, the freezing rate remained stable, with an average of
2.3 cm/(◦C·d)1/2.

4.1.3. Stefan’s Law of Ice Growth

When the integration time step dt = 1 d, FDD represents the cumulative freezing degree
days. ki is 2.03 W/(m·K); ρi is 917 kg/m3; L f is 333.4 kJ/kg; Tf is the freezing temperature
(−1.4 ◦C); and T0 is the ice surface temperature, which is approximately equal to the air
temperature. According to Equation (3), the theoretical value of a is 3.3 cm/(◦C·d)1/2, and
the unit is calculated from the units of ki, ρi, and L f .The oceanic heat flux in this study was
calculated based on the residual method, which was ineffective to optimize the calculation
model based on the same principle. Based on the background, the theoretical values of
1.8 cm/(◦C·d)1/2, 1.71 cm/(◦C·d)1/2, 2.3 cm/(◦C·d)1/2, and 2.7 cm/(◦C·d)1/2 were used to
simulate the thickness of sea ice.

Since Stefan’s law assumes a linear ice temperature profile, this method is mainly
suitable for the period of rapid sea ice growth caused by low temperatures. Thus, the
observation data from the winter of 2009–2010 were used for the simulation, as shown
in the results in Figure 8. Comparing with the measured data, the simulation results
show that the ice thickness is significantly overestimated when the growth coefficient is
3.3 cm/(◦C·d)1/2 and 2.7 cm/(◦C·d)1/2, and significantly underestimated when the growth
coefficient is 1.71 cm/(◦C·d)1/2 and 1.8 cm/(◦C·d)1/2. Based on the measured data and
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cumulative freezing days, a sea ice growth rate of 2.3 cm/(◦C·d)1/2 is recommended for
Jiangjunshi Port, and the corresponding calculation results are shown in Figure 8. The
calculation errors were analyzed and presented in Table 1. The results indicate that when
the growth coefficient is 1.71 cm/(◦C·d)1/2, the calculation error is over 18%; when it is
1.8 cm/(◦C·d)1/2, the error is over 13.4%; and when it is 2.7 cm/(◦C·d)1/2, the error is over
16.4%. However, when the growth coefficient is 2.3 cm/(◦C·d)1/2, except for in the initial
stage, the calculation error is less than 2.8%. The theoretical value of 3.3 cm/(◦C·d)1/2

yields a calculation error of over 42.2%.
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Table 1. Simulation error at different growth coefficients.

a = 1.71 a = 1.8 a = 2.3 a = 2.7 a = 3.3

Difference Error Difference Error Difference Error Difference Error Difference Error

SD1 *-15 January −2.56 18.1% −1.88 13.4% 1.51 10.7% 4.22 30.0% 8.30 58.8%
SD1-19 January −4.37 25.1% −3.61 20.7% 0.22 1.3% 3.29 18.9% 7.89 45.3%
SD2-27 January −2.11 26.7% −1.77 22.4% −0.07 0.8% 1.30 16.4% 3.34 42.3%

SD2 *-6 February −3.19 18.9% −2.38 14.1% 1.65 9.7% 4.87 28.8% 9.71 57.5%
SD2-11 February −4.93 24.7% −4.05 20.2% 0.38 1.9% 3.93 19.6% 9.24 46.2%
SD2-15 February −5.52 24.0% −4.50 19.5% 0.65 2.8% 4.76 20.7% 10.92 47.5%

Note(s): * SD1 is 12 January–19 January in winter 2009–2010; SD2 is 23 January–15 February in winter 2009–2010.

It was found that the calculation errors were due to two main factors: the negative
accumulated temperature in the early stage and the different growth coefficients at different
locations. The growth coefficient was measured to be 1.8 cm/(◦C·d)1/2 in the waters of
Huludao on the west coast of Liaodong Bay, 1.71 cm/(◦C·d)1/2 in the northern waters of
Liaodong Bay, and 2.7 cm/(◦C·d)1/2 on the platform in Liaodong Bay [32]. For the negative
accumulated temperature in the early stage, Cao simulated lake ice using Stefan’s law and
found that predicting ice thickness two weeks in advance was more accurate [36]. In the
case of Jiangjunshi Port on the east coast of Liaodong Bay, the measurements showed that
the sea ice started to grow from 0 cm, and the growth coefficient given in this study is
2.3 cm/(◦C·d)1/2.

4.2. High-Resolution Thermodynamic Snow-and-Ice Model (HIGHTSI)
4.2.1. Oceanic Heat Flux

In 1982, McPhee and Untersteiner proposed a method for calculating oceanic heat
flux using the sea ice energy balance, which relies on the observed data of the sea ice mass
balance and temperature profile [45]. This method only requires data of the thermodynamic
parameters of sea ice, such as ice bottom position, ice temperature, and ice salinity. In cases
where the observation data of the sea ice temperature are not available, the oceanic heat
flux can still be calculated by combining the thermodynamic numerical model with the
measured thickness data of sea ice. This method is called the residual method and is also
known as the method of measuring oceanic heat flux using ice thickness. The residual
method has been extensively applied to calculate the oceanic heat fluxes under the pack ice
in east Antarctica [46,47], under the pack ice in the Alaskan Beaufort Sea [48], and under
the landfast ice in McMurdo Sound [49]. The relationship between the energy balance of
ice bottom ablation or accretion can be expressed as:

Fw = Fc + FL (13)

where Fw is oceanic heat fluxes; Fc is the conductive heat flux; and FL is the latent heat
flux. The sign convention is that upward and melting are positive, whereas downward and
freezing are negative. The calculation formula of conductive heat flux and latent heat flux
can be expressed as:

Fc = ki·∂Ti/∂z (14)

FL = −ρi·L·∂zi/∂t (15)

where (∂Ti/∂z) is the temperature gradient in ice; (∂zi/∂t) is the growth rate of sea ice;
and the thermal conductivity, latent heat of fusion, and density of the ice are ki, L, and ρi,
respectively, with values of 2.03 W/(m·◦C), 333.4 kJ/kg, and 917 kg/m3.

Oceanic heat fluxes were calculated for three different time periods (twice in 2010 and
once in 2021). Sea ice surface temperature was similar to the air temperature, where the
freezing point of sea ice is−1.4 ◦C. The temperature profile in the ice was assumed to be lin-
ear from top to bottom. Sea ice thickness was measured daily, and the interval of the sea ice
growth rate was set to 1 day. To reduce the errors in the thickness observations, a 4-day run-
ning average was used to calculate oceanic heat flux. Figure 9 shows the calculated oceanic
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heat fluxes for the three time periods (12 January–19 January; 23 January–15 February in
the winter of 2009–2010; and 4 January–4 February in the winter of 2020–2021).
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From 12 January to 17 January 2010, the oceanic heat flux decreased rapidly from a
peak value of 170.6 W/m2 to almost 0 W/m2. From 23 January to 15 February 2010, the
oceanic heat flux showed a fluctuating trend with two peaks on the 10th and 19th days,
and the maximum value gradually decreased: the first maximum was 95.4 W/m2, the
second maximum was 59.3 W/m2, and the minimum value of the oceanic heat flux was
almost 0 W/m2. From 4 January to 4 February 2021, the oceanic heat flux was relatively
large during the first 10 days of observation and remained low thereafter, with a peak of
37.9 W/m2 and a minimum value close to 0 W/m2. The oceanic heat flux was averaged
over three time periods. The average oceanic heat flux for the two periods in the winter
of 2010 was 60 W/m2 and 35 W/m2, respectively. The average oceanic heat flux during
the rapid growth of sea ice in the winter of 2021 was 15 W/m2, and the oceanic heat flux
approached 0 W/m2 after the sea ice thickness stabilized.

The time series of oceanic heat flux were analyzed, which revealed that it was directly
affected by both ice thickness and air temperature. When the ice thickness is the same,
the intensity of the ice front at the ice–water interface increases with a decreasing air
temperature, leading to stronger heat exchange between the ice and water. On the other
hand, when the air temperature is the same, thicker ice results in a smaller amount of cold
front energy reaching the ice–water interface, leading to a weaker energy exchange between
the ice and water.

4.2.2. High-Resolution Thermodynamic Snow-and-Ice Model

The model requires several input parameters, including air temperature (Ta), wind
speed (Uz), relative humidity (Rh), and solar radiation (parameterized). The initial input
value is the ice thickness measured on the first day, and the calculation step size is 1 h. The
values for the physical properties of sea ice are: thermal conductivity of 2.03 W/(m·K),
specific heat capacity of 2093 J/(kg·K), latent heat of freezing of 333.4 kJ/kg, ice density
of 917 kg/m3, and freezing point of −1.4 ◦C. The snow was not included as an input
parameter in this study because the snow was very thin in the Bohai Sea, and strong winds
blew the snow away from the observation area.

The growth process of sea ice thickness was simulated using the meteorological data
from the winters of 2009–2010 and 2020–2021. To investigate the influence of the oceanic
heat flux on the model results, two simulations were conducted: one with a fixed oceanic
heat flux of 2 W/m2 and the other with the measured oceanic heat flux. The accuracy
of the simulation results was evaluated by comparing them with the observation data of
ice thickness.
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The sea ice growth process during two time periods in 2010, 11–19 January and 23
January–15 February, was simulated, and the results are presented in Figure 10. Table 2
shows the error between the calculation results and the measured maximum ice thickness.
When the oceanic heat flux was assumed to be 2 W/m2, the ice thickness was significantly
overestimated, and the overestimation increased over time. On 19 January, the maximum
error of ice thickness was 26.1%. Similarly, when the oceanic heat flux was 2 W/m2 during
the second period, the overestimation of the ice thickness calculation was more severe, with
an error of 60% on 15 February 2010. However, by using the oceanic heat flux calculated in
Section 4.2.1 in the model calculation, the final errors of the calculation were significantly
reduced to 4.2% and 0.8%, as listed in Table 2. This finding indicates that an accurate
assessment of the oceanic heat flux is crucial for the accuracy of prediction during the
period of rapid sea ice growth.
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2009–2010; 23 January–15 February in winter 2009–2010).

Table 2. Simulation errors at different oceanic heat fluxes.

19 January (2010 Ice Season) 15 February (2010 Ice Season) 4 February (2021 Ice Season)

Difference Error Difference Error Difference Error

Fw = 2 4.7 cm 26.1% 13.8 cm 60% 1.9 cm 3.7%
Section 3.2 Fw 0.76 cm 4.2% 0.2 cm 0.8% 0.8 cm 1.5%

In the winter of 2010, the initial ice thickness was 0 cm, and the maximum thickness
was about 20 cm. However, the 2021 ice season was different from 2010, with an initial ice
thickness of 27 cm and a maximum thickness of 51 cm, as observed from 31 December 2020.
The model calculations were initiated from 31 December 2020. The sea ice thickness in 2021
was much higher than that in 2010. Figure 11a shows the calculation results of ice thickness
from 4 January to 4 February 2021, and the measured maximum ice thickness, along
with the calculation error, is presented in Table 2. The difference between the maximum
calculated value and the measured value was insignificant when the oceanic heat flux was
assumed to be 2 W/m2. This is because, as the ice thickness increased, the impact of the
cold front at the ice–water interface was reduced, leading to a decrease in the oceanic heat
flux. However, when the ice thickness was small and growing rapidly, the actual value of
oceanic heat flux differed significantly from the assumed value of 2 W/m2. This indicates
that the oceanic heat flux has a significant impact on the accuracy of the model.
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4.2.3. Sensitivity Analysis

Sea ice growth and melting processes are primarily driven by air and hydrological
factors, with air temperature being considered the most important driver of sea ice thermo-
dynamic growth. While Stefan’s law uses cumulative temperatures for sea ice thickness
calculations, the sea ice numerical model adds the heat balance of the sea ice surface, heat
conduction within the ice, and heat balance at the bottom of the ice, providing a more
detailed understanding of the underlying physical processes. In addition to air temperature,
the model also takes into account wind speed and humidity elements at the ice surface, as
well as the oceanic heat flux at the bottom of the ice.

The sensitivity analysis of the oceanic heat flux to the sea ice thickness was completed
in Section 4.2.2, while this section analyzes the sensitivity of wind speed and humidity.
Since wind and humidity affect processes such as turbulent fluxes of sensible and latent
heat, the lack of wind and humidity can result in the overestimation of the simulated ice
thickness. For instance, on February 4, the ice thickness was calculated as 50.1 cm for all
parameters, as 55.7 cm without wind, and as 57.9 cm without humidity, respectively. The
corresponding errors compared with the measured data were 1.5%, 9.1%, and 13.6%.

Comparing Figure 11a,b, we observed that the simulated thickness error without wind
and relative humidity is greater than the thickness error observed when the oceanic heat
flux is set to 2 W/m2. These results highlight the importance of including wind speed and
relative humidity in the sea ice numerical model, especially in cases where their influence
is significant.

5. Discussion

The state of sea ice in Liaodong Bay is influenced by both thermodynamic and dynamic
factors. Due to the influence of dynamic factors, the thermodynamic observations of sea ice
had not been effectively carried out in Liaodong Bay, which has hindered the development
of appropriate thermodynamic models for Liaodong Bay. To address this, field observations
were conducted on sea ice thickness, temperature, and wind speed in Jiangjunshi Port
during the ice seasons of 2009/2010 and 2020/2021. The observed data were used to
evaluate the relationship between air temperature and sea ice thickness, and to calculate
the oceanic heat flux at Jiangjunshi Port. Additionally, Stefan’s law and the HIGHTSI
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method were applied for evaluating the sea ice growth and melting process based on the
observed data.

The average oceanic heat flux during the two ice seasons of 2010 was 60 W/m2 and
35 W/m2, while the average oceanic heat flux during the 2021 ice season was 6.1 W/m2.
This trend in oceanic heat flux is consistent with the observations made by Ji [27] during
the 1997/1998 ice season in Liaodong Bay on the JZ-20 platform. Ji concluded that the
oceanic heat flux gradually decreased throughout the ice season and remained at 0 W/m2

during the melting period. However, since the observations made in this study do not
cover the melting period, calculation of the melting period cannot be provided. It is known
that during the melting period, seawater temperature and sea ice temperature gradually
increase, and the brine volume fraction (BVF) will increase, resulting in a decrease in latent
heat [50–54]. As a result, the heat will gradually decompose the sea ice, and during the
melting period, the oceanic heat flux should be greater than 0. Therefore, further studies
on oceanic heat flux need to be conducted in combination with the evolution of sea ice
temperature and salinity.

To investigate how temperature and ice thickness affect the oceanic heat flux in
Liaodong Bay, the analysis of the relationship between ice thickness and oceanic heat flux
was carried out, as shown in Figure 12a. Under the same air conditions, the difference in
ice temperature distribution between thin and thick ice can affect the oceanic heat flux. It
was revealed that the oceanic heat flux was higher during the rapid growth of thin sea ice,
but as the sea ice thickness stabilized, the influence of cold fronts on the ice–water interface
weakened, resulting in a low oceanic heat flux. Moreover, lower temperatures led to a
larger temperature gradient in the ice, causing the sea ice to grow rapidly due to the cold
front. It increased the discharge of salt, which in turn, increased the salinity of the seawater
and continuously reduced the sea temperature. As a result, the oceanic heat flux became
significantly large. Based on these findings, the relationship between air temperature and
oceanic heat flux was determined (as shown in Figure 12b), and the heat flux during the
rapid growth process of thin ice was calculated. Table 3 shows the statistical results.
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Table 3. The oceanic heat flux during the rapid growth process of ice thickness.

Interval Number 1 2 3 4 5

Temperature (◦C) −6~−4 −8~−6 −10~−8 −12~−10 −14~−12
Average Fw (W·m−2) 35.8 41.6 38.2 78.4 104.8
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Based on the measured air conditions and ice thickness, the growth of sea ice thick-
ness in Jiangjunshi Port was evaluated using Stefan’s law and the HIGHTSI model. The
maximum error of Stefan’s law was found to be over 50% using the growth coefficients
from other sea areas, and thus, a recommended growth coefficient of 2.3 cm/(◦C·d)1/2 was
proposed. The HIGHTSI model was used to calculate ice thickness with an oceanic heat
flux of 2 W/m2, and the maximum errors were 26.1%, 60%, and 5.4% in three different
periods. The largest errors occurred with a small initial ice thickness. Using the oceanic
heat flux evaluated in Section 4.2.1, the ice thickness errors of the HIGHTSI model were
4.2%, 0.8%, and 0.2% in the same three periods. In 1998, Cheng used sea ice observation
data from Liaodong Bay to evaluate the accuracy of the HIGHTSI simulation results and
found that the model accurately simulated the growth of sea ice. This paper presents the
oceanic heat flux on the east coast of Liaodong Bay and verifies the results of the numerical
and analytical models, providing important support for the calculation of ice thickness in
the region.

6. Conclusions

Due to the movement of sea ice, there is a serious lack of thermodynamic observations
of landfast ice in Liaodong Bay. The insufficient observation data hinder the development
of sea ice thermodynamic models in this area. To address this issue, this study presented
the observation works carried out in Jiangjunshi Port, with discussions on the oceanic heat
flux and the models of the sea ice growth process. The following conclusions can be drawn:

(1) The daily growth of ice thickness from 0 cm decreases with the temperature, and
the decrease rate is 0.26 cm/◦C. The daily increase in cumulative ice thickness is influenced
by air temperature and sea ice thickness. When the sea ice thickness reaches 20 cm, the
growth rate decreases to around 1 cm/d.

(2) The error of Stefan’s law and the HIGHTSI model was evaluated. It was found
that a growth coefficient of 2.3 cm/(◦C·d)1/2 is more consistent with the measured value.
Meanwhile, the HIGHTSI model is strongly dependent on the oceanic heat flux value when
the ice is thin.

(3) The residual method was used to calculate the oceanic heat flux of Jiangjunshi Port.
The average oceanic heat flux in the first period of the 2010 ice season was 60 W/m2, and
in the second period, it was 35 W/m2. In the ice season of 2021, the average oceanic heat
flux was 6.1 W/m2.

Nowadays, global climate change has resulted in unpredictable changes in ice condi-
tions in Liaodong Bay, which has a significant impact on human economic activities. Due
to the limitations in observation conditions, numerical simulations of sea ice have become
an important approach for the continuous evaluation of the ice conditions in Liaodong
Bay. Therefore, the work carried out in this study can provide valuable data for assessing
the ice thickness here. However, this study also has some limitations, including a lack of
observations of sea ice temperature and salinity. Considering more physical and mechanical
properties of sea ice in field experiments would provide a more optimized and accurate
thermodynamic model for Liaodong Bay.
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Abstract: The ice thermal parameters are the key to reasonably simulating ice phenology, distribution,
and thickness, but they have always been a “vulnerable group” in ice research. Technically, it may
seem simple to obtain accurate ice thermal property parameters, but in reality, there are numerous
impact factors, requiring a rigorous research process. In the 1980s, the thermal conductivity of ice
was explored in the field and laboratory, after which there has been no significant progress in China.
In this century, mathematics is introduced, after which the inversion identification and analysis with
the time-series data of the vertical temperature profiles of ice layers by in situ testing are carried out.
The in situ thermal diffusivities of different natural ices were obtained and cross-validated with the
inversion identification results. Both natural freshwater ice and sea ice exhibited differences in the
thermal diffusivity of the pure ice chosen for the current simulations due to impurities within the
unfrozen water among the ice crystals, but the trends are consistent with the results of a small number
of laboratory tests on different types of saltwater frozen ice. In this paper, the inversion identification
results of the thermal diffusivity of typical ice were selected, and the factors constraining the thermal
diffusivities were analyzed. The importance of parameterizing the thermal diffusivity in the phase
transition zone of ice under the trend of global warming was illustrated. Future research ideas on the
physical mechanism, application value, and parameterization scheme of the thermal diffusivity of
natural ice were envisaged.

Keywords: natural ice; thermal diffusivity; inversion identification; vertical temperature profile;
research status

1. Introduction

Thermal conductivity indicates the thermal conduction properties of materials, while
thermal diffusivity not only reflects their thermal conduction properties but also takes into
account the effects of specific heat and density. In steady-state heat conduction, the thermal
conductivity determines the capacity of heat transmission because the inner temperature
of the materials does not change with time. Conversely, in unsteady state conduction,
the temperature of the materials changes with time, so the thermal diffusivity determines
the temperature distribution. The temperature in natural ice changes constantly due to
unsteady heat conduction [1,2], so the thermal diffusivity of ice plays an important role.
The accuracy of the ice thermal diffusivity improves the water-ice-air coupling model.
In most previous studies, especially when simulating large-scale fresh ice, the thermal
conductivity, specific heat, and density of pure and clear ice were set as constants [3,4]. For
sea ice, only the thermal conductivity is parameterized, while specific heat and density
are considered constants [5,6]. These methods are feasible for simulating the evolution of
large-scale ice, but there will be a bias for small-scale ice. First of all, the unfrozen water in
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fresh ice contains trace impurities, and the freshwater ice can be regarded as a three-phase
composite material composed of pure ice bubbles and low salinity unfrozen water. Due to
the low ice temperature, most of the unfrozen water around the ice crystal is frozen, and a
two-phase composite material of pure ice bubbles can be seen. However, if freshwater ice
contains sediment (e.g., the Yellow River ice), a four-phase composition of pure ice bubbles
unfrozen water sediment depending on the amount of sediment that appears in the ice [7].
Sea ice is recognized as a four-phase composite material composed of pure ice brine cells,
bubbles, and solid salt. The distribution, size, shape, and total volume ratio of each phase
component control the various properties of the ice for both freshwater ice and sea ice.
Secondly, ice-unfrozen water is sensitive to temperature within the temperature range of
phase transition, and small temperature changes will alter the ratio of phase components.
Research has focused on “low-temperature” ice, where the volume ratios of phases in the
ice are stable, particularly the low bubble ratio, and the brine volume ratio has become
a key physical indicator for evaluating the properties of sea ice [8]. However, the sea ice
temperature in the Bohai Sea is higher than that in the polar regions, with a large bubble
ratio in the ice, and it was found in the 1980s and 1990s that the only use of the brine volume
ratio would limit the correct evaluation of the mechanical properties of sea ice during the
spring ice-melt period [9]. Therefore, porosity, the sum of the brine bubble volume ratio,
is a perfect indicator for evaluating its properties [10]. It is also applied in the evaluation
of the thermal and mechanical properties of high-latitude ice at present [11,12], but the
brine volume ratio is still used as an indicator for evaluating thermal and mechanical
properties [13,14]. Finally, as the climate warms, natural ice has increased in temperature
in addition to the macroscopic phenomena of thinner ice thickness and shorter ice ages,
leading to an increase in the spatial and temporal ratio of ice temperatures in the phase
transition zone relative to high temperatures, including polar ice [15]. It may be ineffective
to continue to simulate current conditions of ice using the thermal properties of ice as a
constant or in a relationship where the relatively low-temperature zone varies only with ice
temperature. In particular, the bias will be greater when simulating ice conditions during
ice-melting periods.

There are basic models for the thermal conductivity of porous materials in simple
structural forms. If the natural ice is viewed as a two-phase composite material, the
distribution relationship between the two materials can be normalized and assumed to
provide a thermal conductivity model of the two-phase composite material. A report on
the application to natural ice and a comparative analysis of different models are shown
in the literature [16]. In fact, the composition of other composite materials can be solids
containing gases or static or dynamic liquids, but their solid components generally do not
undergo a phase transition. Natural ice, however, has a temperature-dependent variation
in the volume ratios of the solid, gaseous, and liquid phases, with a significant variation in
the phase transition temperature zone. In addition, since the chemical molecular formula
of ice is the same as that of water, the total mass of the two remains basically unchanged
during the phase transition process, but the volume ratios change, suggesting that natural
ice with phase transition is much more complicated than composite materials without
phase transition. Although there are few research results on natural ice, the research ideas
on the thermal properties of solution-containing composite materials and soil can be used
as references [17–19]. In particular, research results on thermal property parameters of
frozen soil or ice-containing composite materials with ice phase transition, such as testing
technology [20,21], composite material modeling [22], and the evolution process and
mechanism of the frozen soil temperature field [23], are presented. For time-series survey
data of on-site ice temperature, mathematical inversion identification of the corresponding
thermal diffusivity based on the measured temperature field data under ideal conditions is
also a basic method for research in similar fields [24–26].

As to the establishment of an accurate thermal property evaluation model of natural
ice, the support of measured ice thermal property parameters is needed first. Huang
et al. (2013) studied the thermal conductivity of natural freshwater ice using laboratory
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conditions. Based on the measurements of ice crystals and bubbles, the structure of bubbles
in ice is found to be quite complex. At present, a single basic model and empirical equations
are difficult to achieve the desired precision, so simple structural models can be improved
to form empirical and semi-empirical models [16]. Besides, using the time-series data of
the vertical temperature profile within ice layers of the measured natural ice, the inversion
identification of the thermal diffusivity of natural ice can be conducted with the finite
difference method [27]. Specifically, a one-dimensional ice thermodynamic non-linear
distributed parameter system is constructed to identify the thermal diffusivity of ice based
on the one-dimensional heat conduction equation of ice. With the theoretical trend and
ranges of thermal diffusivity of natural ice as constraints and the bias between the simulated
and observed ice temperature as the objective function, an inversion identification model
of a discontinuous or non-linear distributed parameter system is established via the small
interval refinement stratification of the studied ice layers. Then, the statistical relationship
between the inversion-identified thermal diffusivity of ice and freshwater ice temperature
or sea ice porosity is established to express the effects of ice temperature, density, and
salinity on the thermal diffusivity of natural ice. In this paper, the research results are
summarized, especially the problems in the interpretation of physical mechanisms, and the
direction of future efforts is reflected.

2. Fundamentals of Physics and Mathematics
2.1. Physical Background of the Thermal Diffusivity of Ice

Ice physics is essential to controlling the thermal diffusivity of ice, and the type of
ice crystals only determines which one to choose when applying the composite material
model. For freshwater ice, ice temperature and density are necessary, and for sea ice, ice
salinity should be added. These physical parameters can describe the thermal conductivity
of ice, specific heat, latent heat, etc. [5,28], Thermal diffusivity is the function of thermal
conductivity, density, and specific heat. In physical essence, the thermal diffusivity is
determined by the ice temperature, density, and salinity as well, i.e.,

λ =
k

ρ · c , (1)

where λ is the thermal diffusivity of ice, m2 s−1, k is the thermal conductivity of ice,
W m−1 ◦C−1, ρ is the ice density, kg m−3, and c is the ice specific heat, J g−1 ◦C−1.

The relationships among the thermal conductivity of pure ice, specific heat, and
ice temperature, proposed by Yen (1981). Then researchers achieved similar or further
development results based on Yen (1981) [29].

kpi(T) = 2.0733e−0.0057T , (2)

cpi(T) = 2096.806 + 7.122T, (3)

Equation (4) can be used when the density of pure ice changes with the ice temperature [30].

ρpi(T) =
916.8

1 + (158T + 0.54T2)× 10−6 , (4)

where kpi is the thermal conductivity of pure ice, W m−1 ◦C−1, T is the ice temperature, ◦C,
cpi is the specific heat of pure ice, J kg−1 ◦C−1, and ρpi is the density of pure ice, kg m−3.

Schewerdtfecer (1963) assumed that the bubbles in the sea ice were spherical and
applied the thermal conductivity model of classic Maxwell composite materials to derive
the equations for the specific heat and thermal diffusivity of sea ice [28], where the effective
specific heat of sea ice is Equation (5).

csi,e f f (z) =
Ssi(z)

αT(z)2 L +
Ssi(z)
αT(z)

(cw − cpi) + cpi, (5)
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where factor α = −0.0182◦C−1, z is the sea ice layer depth, m, and Ssi(z) and T(z) are sea
ice salinity (‰) and temperature (◦C). L means latent heat of ice freezing, J g−1, and it is
Lpi = 334 J g−1, and when Ssi = 8 ‰, Lpi = 264 J g−1. cw = 4.19 J g−1 ◦C−1, which is the
specific heat of pure water. Equation (3) was not used to calculate the specific heat of pure
ice, and cpi = 2.09 J g−1 ◦C−1 was taken directly.

The corresponding effective thermal conductivity of sea ice is given by Equation (6).

ksi,e f f (z) = kpi − (kpi − kb)
Ssi(z)ρsi
αρwT(z)

, (6)

where ρsi is the density of sea ice, kg m−3, kb is the thermal conductivity of brine,
W m−1 ◦C−1, kb(T) = 0.52 + 0.023T2, and ρw = 1000 kg m−3, which is the density of
pure water. The thermal conductivity of pure ice was not calculated by Equation (2), and
kpi = 2.1 W m−1 ◦C−1 was taken.

Therefore, the calculation of freshwater ice is simpler than that of sea ice. However,
the thermal diffusivity of pure ice calculated by Equations (1)–(4) is a far cry from that
in the phase transition zone of natural ice. According to Chen et al. (2005), the thermal
diffusivity of KCl and NaCl saltwater frozen ice in the ice temperature zone of −3 ◦C to
0 ◦C varies non-linearly and is the same as the thermal diffusivity of water near the freezing
point [31]. Physically, pure ice completes the phase transition at 0◦C, with the thermal
diffusivity varying directly between 10.0 × 10−7 m2 s−1 and 1.35 × 10−7 m2 s−1 [32],
while all others are transitioning in the phase transition zone. This reflects the significant
variation in the pure ice, water, and bubble volume ratios in the ice in the phase transition
zone, and the thermal diffusivity of ice is mainly determined by the volume ratio of
pure ice and water. Only in the low-temperature zone without phase transition, the ice’s
thermal diffusivity is mainly determined by the volume ratio of pure ice and bubbles. For
a unified representation of the effect of the water and bubble volume ratio in the ice, the
porosity v is introduced, which is the sum of the bubble volume ratio in the ice and the
unfrozen water (brine) volume ratio, expressed as a thousand (‰). As for sea ice, Cox and
Weeks (1983) fitted the statistical equation of sea ice porosity in the temperature range of
−2 ◦C to−22.9 ◦C according to the sea ice phase diagram with the required sea ice physical
parameters of temperature, density, and salinity [33]. Later, Leppäranta and Manninen
(1988) supplemented the equation for calculating the porosity of low-salinity sea ice at
temperatures higher than −2 ◦C [34]. If the salinity is 0 for freshwater ice, the porosity is
the bubble volume ratio of natural freshwater ice, which is only a function of ice density.

2.2. Non-Linearly Distributed Parameter System

The heat transfer in the ice layers is expressed by the classical one-dimensional heat
conduction equation [35], as shown in Equation (7).

ρc
∂

∂t
T(z, t) =

∂

∂z

(
k

∂T(z, t)
∂z

− I(z, t)
)

, (7)

where z is the vertical coordinate of the ice layer depth, m, with the downward direction
defined as the positive direction; t is the time; and I denotes the heat source item, W·m−2,
which is equivalent to the radiation component reaching the depth z.

In the inversion identification, the part of the ice surface greatly affected by solar
radiation and the bottom layer greatly affected by heat flux from water were removed, or
the nighttime data without solar radiation were selected, and the identified ice layer system
can be regarded as an ideal situation without external heat sources. In addition, the values
of the time and space step lengths used were very small, and interpolation processing was
required for the time and space intervals of measured data.

For freshwater ice, its thermal diffusivity decreases with the increase of ice temperature
over a range [21]. When the ice temperature changes very little, the change in thermal
diffusivity is also small. In the inversion identification, it was assumed that there is a linear
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relationship between the thermal diffusivity and ice temperature, i.e., λ(T) = ai + biT, and
the heat conduction equation describing the thermal diffusivity of freshwater ice for a small
range of ice temperature changes and the corresponding initial-boundary conditions can
be expressed as Equation (8).





∂
∂t T(z, t) = λ(T; ai, bi)

∂2

∂z2 T(z, t) (z, t) ∈ Ω× I
T(z, 0)|t=0 = T0(z) z ∈ Ω
T(z, t)|z=z1 = T1(t) t ∈ I
T(z, t)|z=z2 = T2(t) t ∈ I

, (8)

where λ(T; ai, bi) represents the thermal diffusivity of ice, which is a function of the
ice temperature T as determined by the parameters ai and bi. The position of the first
temperature probe near the ice surface was taken as the origin of the coordinates, and
vertically downward was taken as the positive direction of the oz axis. The starting position
of the inversion identified ice temperature range was set as z1, and the end as z2, i.e., the
inversion identification zone Ω = [z1, z2], time variable t ∈ I = (0, tm], and 0 < tm < +∞ is
the observation time.

The thermal diffusivity of sea ice decreases with increasing porosity. Similarly, after a
variety of simple function calculations [36], in the inversion identification, a simple function
λ(v) = asi(1 + v)bsi was used to describe the relation between the thermal diffusivity
of sea ice and porosity over a small range of temperature variations, so that the heat
conduction equation describing the thermal diffusivity of sea ice and the corresponding
initial boundary conditions can be expressed as Equation (9).





∂
∂t T(z, t) = λ(v; asi, bsi)

∂2

∂z2 T(z, t) (z, t) ∈ Ω× I
T(z, t)|t=0 = T0(z) z ∈ Ω
T(z, t)|z=z1 = T1(t) t ∈ I
T(z, t)|z=z2 = T2(t) t ∈ I

, (9)

where v is the ice porosity, ‰, and λ (v; asi, bsi) represent the thermal diffusivity of sea ice,
which is a function of the porosity v determined by the parameters asi and bsi.

Based on the research results on the ice thermal diffusivity [4,29,31], the inversion
identification model of the non-linear system for the ice thermal diffusivity is Equation (10).

min f (z, t; a, b) =
∫

t∈I

∫
z∈Ω (T(z, t; a, b)− T(z, t))2dzdt

s.t. T(z, t; a, b) ∈ SUad

(10)

where f (z, t; a, b) is the objective function calculating the absolute deviation between calcu-
lated and measured ice temperatures, which tries to make the calculated ice temperature
close to the measured ice temperature. T(z, t; a, b) is the fitting function for the temperature
calculation obtained by the numerical calculation method through Equations (8) or (9), and
T(z, t) refers to the fitting function of the measured temperature. Uad denotes the allowable
set of parameters (a, b), which was obtained from the analysis of relevant research [27,37],
and SUad is the set of solutions T(z, t; a, b) of Equations (8) or (9) depending on parameters
(a, b) ∈ Uad. Applying the parameter identification theory of the distributed parameter
system, the optimal parameters a and b were obtained by computer programming with an
improved genetic algorithm. The relevant theoretical analysis of the parameter identifica-
tion model is detailed in the literature [27,37].

3. Field Survey of the Vertical Temperature Profile of Natural Ice

Since the 1980s, fixed-point temperature vertical profile surveys of natural freshwater
ice and sea ice have been carried out, and the survey sites in China are shown in Figure 1.
The inversion identification of thermal diffusivity had been conducted for some of the
survey data, while some were yet to be carried out. In some of these surveys, both
ice crystals and density were measured, while in others, the thermal conductivity was
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measured. Research of the ice thermal properties was performed in Hongqipao Reservoir,
the Thermakarst Lake of Beiluhe on the Qinghai-Tibet Plateau, the estuary of the Yellow
River, the Fen River Reservoir II, Bayuquan in the Bohai Sea, and Zhongshan Station in
Antarctica, the survey sites shown in Table 1. In addition, the inversion identification of
the thermal diffusivity of ice has not yet been carried out at the following sites: Hanzhang
Lake, Wuliangsu Lake, Qinghai Lake, Ngoring Lake, and Shisifenzi of the Yellow River.
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From January to February 2004, a survey of the temperature vertical profile of river
ice and the formation and dissipation processes of ice was carried out in a shady place on
the Fen River Reservoir II. Specifically, the air temperature at a height of 1.5 m from the
ice surface, the ice temperature every 5 cm within 0.55 m vertically downward from the
ice surface, and the water temperature at 100 cm and 150 cm below the ice surface were
measured. Temperature data were automatically collected every 15 min [38,39]. The PT100
(JUMO, Germany) was used as the temperature probe, with a precision of ±0.1◦C and a
resolution of 0.01◦C.

From December 2008 to April 2009 and from October 2009 to April 2010, a field
survey on the formation and dissipation process of ice was carried out in Hongqipao
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Reservoir [40–42] to obtain the air temperature, ice temperature, and water temperature
at 150 cm above the ice surface. The ice or water temperature probes were placed at 2, 7,
12, 17, 32, 47, 62, 77, 92, 107, 122, 152, 182, 212, and 242 cm below the ice surface. Besides
solar radiation, wind speed, wind direction, ice thickness, ice crystals, bubbles in ice, and
ice density were measured. The PT100 (JUMO, Germany) was adopted as the temperature
probe, and the TRM-ZS1 polar wind direction and wind speed gradient monitoring recorder
was used for radiation measurement, with a resolution of 1 W m−2 and each sampling
interval of 1 min.

From October 2010 to July 2011, a set of temperature chains was installed in the
Thermakarst Lake of Beiluhe on the Qinghai-Tibet Plateau [16,42], and the PT100 system
(Campbell CR10) developed by the State Key Laboratory of Frozen Soil Engineering, Cold
and Arid Region Environment and Engineering Research Institute, Chinese Academy of
Sciences, was used, with a resolution of 0.1 ◦C. The temperature sensor probes installed
every 5 cm automatically recorded the temperature every 30 min. An array of data, such as
air temperature, ice temperature, and water temperature under the ice, was obtained.

From April to October 2006, a field survey of overwintering sea ice physics was carried
out near the Zhongshan Station in Prydz Bay, Antarctica. A series of ice core salinity, density
vertical profiles, and continuous ice temperature vertical profiles were measured, as well
as time-series data on ice thickness. The temperature probe PT100 (JUMO, Germany) was
placed every 6 cm, and the sampling interval was 30 min [43].

In the 1980s, the ice thermodynamic properties in Bayuquan in the Bohai Sea and the
Yellow River estuary were studied [44]. The ice temperature vertical distribution profile
was measured in the Bayuquan harbor basin from 5 to 23 January 1987. There are two
sections formed at five temperature measurement points that are parallel and perpendicular
to the harbor basin wall, respectively. A total of 12 layers of temperature measurement
probes with a copper-composite thermocouple were buried vertically at each temperature
measurement position at the depths of 3, 8, 13, 18, 23, 28, 33, 38, 43, 53, 78, and 103 cm
below the ice surface. The temperature value was converted based on the thermal potential
measured with an UJ33a potentiometer with a precision of 1 microvolt. The precision was
±0.1 ◦C within the measured temperature range of 0 to −25 ◦C, calibrated by a secondary
standard thermometer [45]. Two CN-9L heat flux sensors (prod. Japan) were inserted at
8 cm and 23 cm, which are highly responsive and allow instantaneous dynamic changes
to be measured. The heat flux passing through the heat flux sensor was converted based
on the potential values measured at the two poles of the sheet, after which the thermal
conductivity was calculated from the calibration coefficient of the heat flux sensor [44].
Meanwhile, samples were taken to measure the salinity (3.2‰), density (876 kg m−3), and
crystal (grain size of 2.1–32 mm) vertical profiles of the ice. On January 28, 1988, the ice
slabs were collected at the No. 3 Drainage and Irrigation Station of Gudong Oilfield on the
north side of the Yellow River estuary, about 1500 m from the shore. Its thickness was 11 cm,
the mean salinity of the sea ice was 0.400‰, and the sea ice density was 961 kg m−3. The
upper and lower incubators were prepared in the laboratory, and the thermal conductivity
of ice samples in the low-temperature zone was tested [44].

Generally, there is less snow accumulation on the ice surface in arid and semi-arid
areas of China. Even if some snow falls, it is difficult to remain on the ice surface due to
the strong winds. Therefore, snow accumulation has little effect on the ice and the water
temperature under the ice. Among the survey sites, only the Hongqipao Reservoir had
continuous snow accumulation, which can reduce the effect of radiation on ice and water
temperature, but the snow accumulation is not enough to cause changes in ice and water
temperature characteristics. The air temperature, some ice temperature, and radiation
values of Hongqipao Reservoir from 5 to 10 January 2009 were taken as an example
(Figure 2) [46], and the lake ice evolution was analyzed. The ice temperature increases with
depth, and the variation decreases and stabilizes in Figure 2. In other words, the influence
of ice temperature on air temperature reduces with increasing depth, and the restriction of
the water temperature under the ice is generally reflected. Furthermore, the temperature
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characteristics of river ice and sea ice measured in situ are basically the same as those of lake
ice [39,40,42,43,45]. The total solar radiation and reflected solar radiation flux in northern
China typically start to increase around 6:30 each day, reach a peak near 12:30, and then
start to decrease. There is no total solar radiation or reflected solar radiation between 17:00
each day and 6:30 the next day. In addition, the moment of air temperature/ice temperature
peaks shows a certain lag with the radiation peak [40,41].
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appears due to sublimation [47]. Granular ice appears crosswise only at the Zhongshan 
Station, Antarctica, where sea ice is highly dynamic [36]. 
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Figure 2. Measured process curves of air temperature, total solar radiation, reflected solar radiation,
and ice/water temperature of Hongqipao Reservoir from 1 to 5 January 2009 (modified from Ref. [46]).

The sites selected for the field survey are all flat and stable ice layers with growth
caused by thermodynamic processes, so the crystal structure is relatively simple no matter
if it is lake ice, river ice, or sea ice. Generally, granular ice is found near the ice surface,
followed by columnar ice. If snow falls during the initial freezing period, the granular
ice will account for more [42]. A sample of ice crystals from surface to bottom is shown
in Figure 3. In the arid area of the Qinghai-Tibet Plateau, granular ice on the ice surface
disappears due to sublimation [47]. Granular ice appears crosswise only at the Zhongshan
Station, Antarctica, where sea ice is highly dynamic [36].
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Figure 3. Crystals of reservoir ice from the surface to the bottom in Hongqibao Reservoir (a total
length of 85 cm) (modified from Ref. [42]).

Low-temperature ice samples, especially those frozen after sampling, have a low
ratio of unfrozen water in the ice. The density of low-temperature ice samples can reflect
the bubble volume ratio in natural ice. Bubbles in natural freshwater ice are generally
visible but are relatively rare, such as the sword-headed bubbles in Hongqipao Reservoir
(Figure 4a) [42]. The lake ice of Beiluhe on the Qinghai-Tibet Plateau has a higher porosity
and larger bubbles [47]. Figure 4b,c show spine-shaped and linear granular bubbles in the
lake ice of Beiluhe, respectively. The spine-shaped bubbles are larger in size, pancake-like,
approximately 1 cm to 5 cm in diameter horizontally, and up to 1 cm to 2 cm thick vertically,
with a flat top and bottom and an irregular spherical shape. In contrast, the linear granular
bubbles are smaller, generally 0.3–2.5 mm in diameter, with individual bubbles appearing
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to be spherical, but with some connected in series to form a cylindrical-like shape, and the
slenderness ratio (ratio of the width and height of the longitudinal section of the bubble) is
100–200 [47].

Table 1. Basic information about the site for the survey and research on ice thermal properties.

Information Hongqipao
Reservoir

Thermakarst
Lake, Beiluhe

Estuary, Yellow
River

Fen River
Reservoir II

Bayuquan,
Bohai Sea

Zhongshan
Station,

Antarctica

Latitude and
longitude/◦

112.27◦ E,
37.60◦ N

92.92◦ E,
34.83◦ N

119.12◦ E,
37.88◦ N

112.38◦ E,
37.98◦ N

122.07◦ E,
40.28◦ N

76.37◦ E,
69.37◦ S

Elevation/m 140 4640 2 800–1400 2 11
Duration of

freezing
period/d

150–180 150–210 80–100 80–100 110–120 300

Ice thickness at
severe ice
period/m

1.0–1.2 0.7–1.0 0.1–0.2 0.4–0.5 0.3–0.4 1.6–1.8

Mode of Ice
Formation Thermodynamics Thermodynamics Thermodynamics Thermodynamics Thermodynamics Thermodynamics

Ice
classification Lake Ice Lake Ice Saltwater ice River ice Sea ice Sea ice

Ice crystals Granular/columnar Columnar Columnar Granular/
columnar

Granular/columnar
mixture

Ice physical
indicators Density Density,

bubbles Salinity, density Salinity,
Density Salinity, density

Ice thermal
indicators

Laboratory
thermal

conductivity,
identified
thermal

diffusivity

Laboratory
thermal

conductivity,
identified
thermal

diffusivity

Laboratory
thermal

conductivity

Identified
thermal

diffusivity

Thermal
conductivity in

situ

Identified
thermal

diffusivity

Literatures [40,41] [16] [44] [38,39] [44] [43]
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Figure 4. The bubbles in different freshwater ice in China are (a) sword-headed bubbles in 
Hongqibao Reservoir, 28 December 2008 (modified from Ref. [42]); (b) spine-shaped bubbles in the 
Thermakarst Lake of Beiluhe on the Qinghai-Tibet Plateau, 9 December 2010 (modified from Ref. 
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Figure 4. The bubbles in different freshwater ice in China are (a) sword-headed bubbles in Hongqibao
Reservoir, 28 December 2008 (modified from Ref. [42]); (b) spine-shaped bubbles in the Thermakarst
Lake of Beiluhe on the Qinghai-Tibet Plateau, 9 December 2010 (modified from Ref. [47]); and
(c) linear granular bubbles in the Thermakarst Lake of Beiluhe on the Qinghai-Tibet Plateau,
9 December 2010 (modified from Ref. [47]).

4. Thermal Diffusivity Characteristics of Natural Freshwater Ice and Sea Ice
4.1. Thermal Diffusivity Characteristics of Freshwater Ice

The time-series data of the ice temperature vertical profile of Fen River Reservoir II,
measured from 0:00 on 23 January to 0:00 on 5 February 2004, were grouped into daily
mean temperatures −6 ◦C, which were recorded −6 to −3 ◦C and −3 to 0 ◦C, and then
the inversion identification of thermal diffusivity was calculated, respectively. During the
inversion identification, the high-temperature section of the river ice was cryptographically
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divided into several small temperature sections and periods to explore the fine relationship
between the thermal diffusivity and temperature near the freezing point. The inversion-
identified thermal diffusivity of ice in Fen River Reservoir II is shown in Figure 5a [39].
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Figure 5. Relationship between inversion-identified thermal diffusivity of different freshwater
ice survey data in China and temperature: (a) Fen River Reservoir II (modified from Ref. [38]),
(b) Hongqibao Reservoir (modified from Ref. [46]), (c) Hongqibao Reservoir (modified from Ref. [48]),
and (d) Beiluhe on the Qinghai-Tibet Plateau (modified from Ref. [27]). Some data used in the (a–d)
are from Refs. [29–31].

According to Figure 5a, when the temperature of natural river ice ranges from 0 ◦C
to −0.76 ◦C, its thermal diffusivity increases sharply from a small value in a non-linear
manner. When the temperature is lower than −0.76 ◦C, the thermal diffusivity of natural
ice is close to the thermal diffusivity of pure ice proposed by Yen (1981) [29]. When the
temperature is lower than −2.12 ◦C, the error between the thermal diffusivity of natural
ice and the experimental results of Koubyshkin and Sazonov (1988) [30] is less than 0.035.
Therefore, the inversion-identified thermal diffusivity characteristics of freshwater ice in
Fen River Reservoir II were summarized as follows: (1) When the temperature of the entire
ice layer is low, especially when the ice surface temperature is significantly lower than the
melting point, i.e., no phase transition occurs at the ice surface, the results are all closer to
the previous experimental ones. (2) When the air and ice surface temperatures are high
(above or reach 0 ◦C), the inversion identification results are smaller than the thermal
diffusivity of pure ice calculated by Yen (1981) [29] or Koubyshkin and Sazonov (1988) [30].

Based on the measured ice temperature from the Hongqipao Reservoir, the time
and space step length used in the inversion identification were interpolation data of 10 s
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and 0.5 cm, respectively, and the inversion identification was calculated by layers. The
inversion-identified thermal diffusivity of reservoir ice and temperature in the winter of
2008–2009 are shown in Figure 5b, and all the data from the two winters of 2008–2009 and
2009–2010, the thermal diffusivity of ice obtained by inversion identification, are shown
in Figure 5c. In the low ice temperature range (−15 ◦C to −3 ◦C), the inversion-identified
thermal diffusivity of reservoir ice is similar to the results reported in the literature, i.e.,
the thermal diffusivity reduces slowly with increasing ice temperature. In the high ice
temperature range (−3 ◦C to 0 ◦C), the inversion-identified thermal diffusivity of reservoir
ice decreases significantly with the increasing ice temperature and approaches the thermal
diffusivity of water. It suggests that the ice is in the phase transition stage; the ratio of pure
ice crystals in the ice decreases and the ratio of unfrozen water increases, ensuring that
the thermal diffusivity of ice converges with the thermal diffusivity of water due to the
increased water volume ratio [46,48]. On the other hand, the high thermal diffusivity of
bubbles cannot be manifested at this stage due to their small ratio.

Based on the measurements of the ice temperature vertical profile in the Thermakarst
Lake of Beiluhe on the Qinghai-Tibet Plateau, the inversion identification was calculated
by layers with an interpolated time and space step length of 10 s and 0.5 cm, respectively,
to obtain the scatter diagram of thermal diffusivity changing with ice temperature, as
shown in Figure 5d. In the relatively low ice temperature range (−15 ◦C to −3 ◦C), the
thermal diffusivity varies slowly with ice temperature. Similarly, in the relatively high ice
temperature range (−3 ◦C to 0 ◦C), the thermal diffusivity changes drastically, dropping
rapidly with the increasing ice temperature and converging to the thermal diffusivity value
of fresh water [27].

Researchers have adopted different non-linear fitting methods when establishing the
relationship between the inversion identification results and ice temperature in Figure 5.
The results of the low-temperature section of the Fen River Reservoir II in Figure 5a are
similar to those of previous studies. Bai (2006) suggested using previous results based
on actual conditions but introduced a statistical Equation (11) for the high-temperature
section [38]. The results supported the inversion-identified thermal diffusivity of other
freshwater ice in China [27,36].

λ(T) = (12.6 +
2.7

T − 0.12

)
× 10−7 T ∈ [−0.19,−2.12], (11)

Figure 5b shows the inversion identification results of Hongqipao Reservoir in the
winter of 2008–2009 without the fitting expression of scattered points (93 points). Figure 5c
presents the inversion identification results of Hongqipao Reservoir in the two winters of
2008–2009 and 2009–2010 [46]. The results were used for the ice temperature evaluation in
Kanas Lake, Xinjiang, China [49]. The adjustment of the calculation method used in this
identification results in 204 identification results for 87 identification temperature intervals.
Despite the scattered results, a new piecewise Equation (12) of thermal diffusivity with
temperature is given on this basis [48].

λ(T) =

{ (
T

0.08T−0.01

)
× 10−7 −0.85 ≤ T < −0.1

10.83× 10−7 · e−0.009T −15 ≤ T < −0.85
, (12)

The thermal diffusivity of lake ice in the Thermakarst Lake of Beiluhe on the Qinghai-
Tibet Plateau varies with ice temperature (Figure 5d) and is calculated as Equation (13) [27].
It was part of a contribution to one of the Norway-China collaboration projects [50].

λ(T) = [2.61× ln(−T + 0.11) + 6.35]× 10−7 T ∈ [−15, 0), (13)

The symbols in Equations (11)–(13) are the same as the above ones.
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To compare the difference between the inversion identification results of freshwa-
ter and the thermal diffusivity calculated from pure ice, the results of Yen (1981) [29],
Koubyshkin, and Sazonov (1988) [30] were plotted in Figure 5. These results for pure
ice are consistent with those for the thermal diffusivity of pure ice in the laboratory [21].
However, the phase transition of natural freshwater ice is not complete at 0 ◦C, and there is
a phase transition temperature range. The thermal conductivity of any impure ice decreases
rapidly from a high value in the phase transition zone as the ice temperature approaches
the freezing point [41,44,51]. Chen (2005) used KCl and NaCl saltwater freezing to measure
the process of thermal diffusivity change in the phase transition zone (−3 ◦C to 0 ◦C)
by temperature wave analysis (TWA) and to obtain the thermal diffusivity that rapidly
decreases in value for water as it approaches the freezing point [31]. However, the results
from the piecewise function are also marked in Figure 5. In comparison, the results of Chen
(2005) confirmed the correctness of the inversion identification results of natural ice.

In addition, according to Figure 5d, when the ice temperature ranges from
−15 ◦C to −5 ◦C, the inversion-identified thermal diffusivity value of lake ice in Beiluhe
is significantly higher than other inversion identification results of lake ice and literature
reports [31]. While the temperature is higher than−5 ◦C, the inversion identification results
are almost the same as the experimental results [31]. It indicates that when the temperature
of a large number of spine-shaped bubbles in the lake ice of Beiluhe (Figure 4b) is lower
than −5 ◦C and the phase transition is stable, the bubbles begin to contribute. Since the
thermal diffusivity of gas is much greater than that of pure ice, ice with more bubbles has
a greater thermal diffusivity. In most cases, as the size and content of bubbles in river
ice and reservoir ice are smaller [42], their impact on thermodynamic properties is often
neglected. However, such bubbles in ice as in the Beiluhe cannot be overlooked, and even
the combined effects of bubble content, size, and shape on the thermal diffusivity of ice
may need to be considered [16].

4.2. Thermal Diffusivity Characteristics of Sea Ice

Sea ice is distinguished from freshwater ice by the presence of salt. The unfrozen water
among ice crystals, known as brine, is both saltier and denser than seawater. When the sea
ice temperature is high, the edges of the crystalline grains begin to melt, the brine channel
widens, and the brine in the ice drains downward by gravity, after which it may be left to
fill with gas. It results in both liquids and gases of complex chemical compositions in the
ice, and their volume ratios vary with temperature, causing a more complex mathematical
expression of the change in the thermal diffusivity of sea ice. Theoretically, instead of
establishing a relationship with ice temperature, the thermal diffusivity of sea ice has to
be introduced as a function of density and salinity. The porosity of sea ice is a function
of temperature, density, and salinity, but when the porosity is introduced and there is
a lack of salinity and density vertical profiles for online monitoring, sampling tests will
be conducted at different times, resulting in no corresponding porosity even though the
inversion-identified thermal diffusivity of sea ice is obtained using ice temperature.

In 2006, during the continuous survey of the formation and dissipation of sea ice
and the ice temperature vertical profile at Zhongshan Station, Antarctica, seven ice cores
were sampled to test the ice density and salinity. Assuming that the porosity of the ice
core did not change for 24 h on the day of sampling [37], the inversion-identified thermal
diffusivity of the ice and the porosity at the corresponding location during this period were
plotted as a scatter diagram (Figure 6) [36,37] to obtain a statistical relationship Equation
(14) between the thermal diffusivity and porosity of Antarctic sea ice. Figure 6 also shows
that the thermal diffusivity of each ice core varies significantly.

λ(v) = 10.8× 10−7(1 + v)−0.302 v ∈ (0, 275], (14)
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5. Future Working Directions and Considerations on the Relation between Thermal
Conductivity and Ice Physical Parameters

Both in freshwater lake (or reservoir) ice and in river ice and sea ice, the thermal
diffusivities of ice are all dominated by three physical parameters that can be quantified: the
ice temperature, ice density, and salinity. With regard to pure ice frozen from pure water, its
freezing point and melting point are the same, which are 0 ◦C. Thus, the phase transition is
also finished at 0 ◦C. However, natural water usually contains a certain amount of dissolved
chemicals, which will result in a concentration of the unfrozen water’s salinity and a lower
freezing point. Especially when there are different chemicals at different levels, the freezing
and melting points are also diversified [31,52]. This leads to an irreversible phenomenon
in the thermodynamics of natural ice as well as in saline frozen soil [53]. In fact, these
small changes usually bring deviations from the accurate thermodynamic processes on a
small scale. Therefore, researchers must reflect on what exactly the determinants describing
the thermal diffusion in ice are and build a parameterization program for the thermal
diffusivity of natural freshwater ice or sea ice. Some considerations open for discussion are
as follows:

1. The thermal diffusivities in Figure 5 are obtained based on measured data of ice
temperature from different fields. The heat conduction equation was solved for nu-
merical solutions during the inversion identification process, which relies on the
initial boundary value conditions. Hence, different schemes and the initial conditions
will generate various results of thermal diffusivity. The optimal parameters of the
inversion identification model of the non-linearly distributed parameter system are
not absolutely the best solution. However, comprehending from the measured data’s
precision, on which the study is based, it will not make a difference in the identified
thermal diffusivity. Figure 5a shows the results of a segmented discontinuous ap-
proach, which is to divide the temperature into multiple small ranges according to the
measured ice temperature. It deems that the thermal diffusivity of ice varies as a linear
variation or a power function variation with temperature within small temperature
ranges, and the thermal diffusivity was recalculated again in the next temperature
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range. Although the results of these two calculations have the same function, their
thermal diffusivities are different. Compared with other approaches, this method
requires a lot of computation, but the resulting thermal diffusivities perform well
in the sensitive high-temperature zone of phase transition, and even the smaller the
temperature ranges, the better the results. Consequently, the points in the resulting
scatter plot in Figure 5a are rather more concentrated, while the results in Figure 5b–d
are relatively dispersed for the expansion of the selected temperature range in identifi-
cation. Moreover, factors such as the time and space step length, interpolation method,
and programming algorithm adopted in the identification calculation process can also
influence the identification results in varying degrees. Figure 5b,c show the results
from different scholars on account of the measurements taken at the same test site in
different years, especially the data in Figure 5c covering the measured temperature
data applied in Figure 5b. Nevertheless, the dispersion of the two identification results
is apparently different because of the different methods. The steps, including how
to unify the step length, interpolation, algorithm, etc., also need to be explored to
acquire optimal results;

2. As the global warming develops, lake ice, river ice, and sea ice are all reducing. In
the Arctic area, except for the shortening of the freezing period on a macro level,
thinner ice thickness, and a decline in the proportion of multi-year ice, there are also
phenomena including an increase in ice temperature, a decrease in ice salinity, a reduc-
tion in ice density, and a widening of the varying range of ice density [15]. Likewise,
the ice conditions in the Bohai Sea and inland China are also decreasing [54,55]. As
the spatial and temporal proportions of comparatively “high-temperature” ice are
growing worldwide, the simulation effects will be reduced in reality if the previous
data on the relation between the thermal diffusivity of ice and temperature with no
regard to the phase transition or constants are adopted for numerical simulations. If
the thermal diffusivity of ice reduces, the heat storage capacity of the ice body will be
strengthened, and it will cause an increase in entropy in the phase transition process
from ice to water or from water to ice, which can moderate the melting or freezing
rate of ice. In other words, despite the fact that the thermal conductivity of ice in
the phase transition zone of the sea ice in the Bohai Sea was also relatively small
in the 1980s [44], the ice in the Bohai Sea covers a comparatively small percentage
of the global situation of sea ice, so that it is covered by a large amount of other
low-temperature ice. However, the spatial and temporal proportions of ice within
the phase transition zone have increased. In this case, previously adopted methods
may still be fairly feasible on large-scale issues, but they may no longer be proper to
describe the thermodynamic behavior of ice on a finite microscale;

3. In the inversion identification of thermal diffusivity, only the time-series data of ice
temperature vertical profiles are used, without counting the types of ice crystals at
the temperature measurement positions since these types cannot be expressed by
numerical values directly. The crystals of ice frozen in calm waters (e.g., reservoir and
lake ice) have a pattern of granular ice on the surface and then columnar ice [42]. While
this is more complicated in the crystals of ice frozen from rivers and oceans. Granular
ice’s properties are basically isotropic, while columnar ice exhibits anisotropy. This can
result in a difference between the mathematical models and the calculated results, such
as the spread velocity of radar waves in the ice as determined by permittivity [7,56].
Research shows that the thermal conductivities of natural columnar lake ice range
from 1.60 W·m−1·◦C−1 to 2.20 W·m−1·◦C−1 in both the vertical and parallel long axes
and are slightly higher (about 5%) in the vertical long axis, showing that the thermal
conductivity of ice crystals only has weak anisotropy [16]. From the perspective of the
dispersion of inversion-identified ice thermal diffusivities, the differences among the
fitted curves and the data points are over 5%. The uncertainty in inversion-identified is
larger than the difference in the anisotropy of ice crystals. If 5–10% of the error caused
by thermal diffusivity can be accepted on the large scale simulated, the influence of ice
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crystals can be ignored. In the cases of transformation of ice crystals and overlapping
or mixing of granular ice and columnar ice due to dynamics and thermodynamics,
the differences of ice crystals can also be neglected. Otherwise, thermal diffusivity
models of ice corresponding to various crystal structures should be selected. The
ice crystal in the inversion identification of the thermal diffusivity is basically the
columnar ice in China;

4. If unfrozen water among ice crystals undergoes a phase transition, its mass will
remain the same, but its volume ratio will be different, which is the same as the
study of frozen soil [53]. If unfrozen water discharges under gravity, it is likely that
the partial space originally occupied by unfrozen water will be replaced by gas. In
general, the higher the content of bubbles, the lower the ice density. Therefore, ice
density can reveal the content of bubbles [56,57] and is an ideal indicator reflecting
the effect of bubbles on the thermal diffusivity of ice. If the content of bubbles is less
than 3%, the laboratory-tested thermal conductivity of freshwater ice is close to the
value [16] calculated by Hamilton and Crosser’s (1962) model [58]. When the content
of bubbles is over 16%, any model of the porous medium’s thermal conductivity
cannot accurately compute the thermal conductivity [16]. A joint computing model
of the thermal diffusivity of lake ice must be built by introducing a shape factor that
includes the content and shape of bubbles in the ice. In future ice investigations,
promoting the ice density test is indispensable for all models. Meanwhile, focusing
on ice density can also reflect two potential scientific issues: First, the ice temperature
in the phase transition zone is relatively high, and the bubble content is high because
of the discharge of unfrozen water. Secondly, as global warming develops, the plants
under shallow lakes in mid-latitudes have higher activity, releasing gases under the
ice in winter, and greenhouse gases contained in lake bottoms at high latitudes or high
altitudes may be released, such as in the thermokarst lake ice of the Qinghai-Tibet
Plateau. Since the thermal diffusivity of bubbles is much higher than that of pure ice,
the thermal diffusivity of lake ice with bubbles is larger than the theoretical thermal
diffusivity of pure ice. Particularly, the thermal diffusivity of bubble-containing lake
ice with a relatively low temperature is more obviously higher than the value of pure
ice because the content of unfrozen water reduces;

5. Natural freshwater ice contains impurities, and the freezing temperature of unfrozen
water is dynamic [31]. Meanwhile, the freezing and melting temperatures of ice with
saline water. This shows an irreversible phenomenon in thermodynamics [31,59].
The salinity of sea ice is much higher than that of freshwater ice, and its influence is
unmissable. When it comes to freshwater ice, the thermal diffusivity of ice can also be
described as the relation between temperature and density if the influence of salinity is
ignored, while this is impossible for sea ice because it might need to be an expression
of the volume ratio of brine (temperature, salinity, density) and the volume ratio of
bubbles (temperature, density). However, the inversion identification result for the
thermal diffusivity of Antarctic sea ice (Figure 6) indicates that it is not that simple. It
suggests that the refinement of the parameterization for the thermal diffusivity of sea
ice is relatively difficult if the thermodynamic irreversible phenomenon is neglected,
especially for sea ice in the melting period;

6. The previous results of experimental [31] and inversion identification [48] are ex-
pressed as segmented functions instead of continuous functions for ice temperature.
Since the thermal diffusivity of natural ice is mainly controlled by the thermal dif-
fusivity of pure ice, bubbles, and saline or pure unfrozen water, with the thermal
diffusivity of unfrozen water as the lower limit and the thermal diffusivity of bubbles
as the upper limit. It is suggested that future development should be based on the
logistic functional form, and the suggested Equation (15) form is as follows:

λ =
C

1 + AeBT+D + E, (15)
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where E is the lower limit of Equation (15), and it is close to the thermal diffusivity
of unfrozen water (λw), which is 1.38 × 10−7 m2·s−1 at 0 ◦C. C + E is the upper limit
of Equation (15), and it is close to the thermal diffusivity of bubbles (λa). Since the
bubble volume ratio is related to the ice density, its expression is Equation (16) [56,57].

va =
ρpi − ρ

ρpi
× 1000‰, (16)

where ρpi is the density of pure ice, 916.8 kg·m−3, and ρ is the density of natural ice. C
is a nonlinear relation because the shape factor should be introduced when the bubble
in ice is high in content and large in size. According to the model reported in the
literature [17], the form of the power function (17) is suggested as follows.

C = α(1 + βva
γ), (17)

In (15) to (17), B is the maximum growth rate of the thermal diffusivity of natural
ice at a certain temperature, A is also related to salinity, D/B is the ice-water phase
transition temperature, which is also relatively complicated for unfrozen saline water
not closed in the freezing and melting process, α, β, γ are fitting coefficients.

7. This consideration is not proved by examples yet because of the sparse density
data obtained from natural ice in the field. However, there were measured thermal
conductivities at different temperatures (−5,−10,−15,−20, and−25 ◦C) and different
densities (300, 350, 400, and 450 kg.m−3) of snow samples in the laboratory. Hence,
this consideration was utilized to make a fitting (R2 = 0.906) analysis of 152 groups
of data for the thermal conductivity of snow, indirectly proving the feasibility of this
consideration. We look forward to continuing to accumulate field density test data on
freshwater ice to confirm the validity of this research orientation;

8. The expression of the relation between the thermal diffusivity and porosity of sea ice in
Figure 6 is simple, but it exhibits great differences among ice cores. It is hard to explain
the physical origin of these differences, either from the aspect of ice ages or bubble
volume ratio. Maybe it is incorrect to use temperature and porosity to evaluate the
thermal diffusivity of sea ice. The thermal diffusivity probably needs to be expressed
as a multi-relation of ice temperature and the volume ratios of brine and bubbles.
If this orientation is correct, it will be necessary to collect data on both salinity and
density of sea ice. Here, the salinity is computed with electrical conductivity rather
than being decided by a chemical analysis of specific substance composition. The
laboratory measurements have found that the substance composition also influences
thermal diffusivity [31]. The density of sea ice has been an indispensable factor in
contemporary physical investigations of sea ice. In the future, we will be developing
online measurement technologies for ice salinity and density and discovering refined
expressions of the relation between the thermal diffusivity and physical indicators
(e.g., temperature, salinity, and density of sea ice).
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Abstract: The properties of ice strength have a significant impact on the design and safety of structures
in ice-infested waters. To analyze the flexural strength of columnar saline model ice, we conducted
circular plate center loading tests at the Small Ice Model Basin of the China Ship Scientific Research
Center (CSSRC SIMB) in China. The tests involved varying the loading rate and ice temperature, and
a numerical model was developed using FEM and LS-DYNA for validation and comparison. The
results of the tests revealed the crack propagation process, stress distribution, load response, and
failure mode of the model ice. The model ice displayed typical brittle failure, and the flexural strength
was linearly related to ice temperature but not significantly correlated with loading rate. The porosity
of the model ice affected the load response and time of failure but not the failure mode. The model
ice with 7% porosity had a 7.8% reduction in load response compared to the nonporous model ice.
This study provides a reliable method for measuring and analyzing the flexural strength of model ice.
It also serves as a foundation for further research on the interaction between structures and ice sheets.

Keywords: ice model basin; columnar saline model ice; circular plate; flexure strength; crack propa-
gation; porosity

1. Introduction

In regions where ice is present, such as beneath a floating object, the ice sheet may
fracture under vertical forces. This circumstance has gained significance in the fields of
polar exploration and engineering [1]. The durability of the ice plays a crucial role in the
design and assessment of structures regarding safety. The upward pressure exerted by the
floating entity can trigger a range of failures, including shearing, bending, and flexural
failure, which is the most frequently observed [2,3]. Conducting tests to determine flexural
strength is essential for accurately predicting ice loads on structures and ensuring their
safety. This information is critical in developing and assessing structures for floating objects
under ice.

There exist three primary methods to assess ice strength: in situ cantilever tests, simply
supported beam tests, and circular plate center loading tests [4–6]. An in situ cantilever test
involves obtaining an ice beam directly from the ice layer and conducting the test while the
ice remains in its natural environment [7]. Frederking and Timco executed in situ cantilever
tests on model ice at the National Research Council Hydraulics Laboratory, discovering
no significant relationship between loading rate and flexural strength [8]. Krupina also
conducted in situ cantilever tests on sea ice in the Barents Sea, obtaining the distribution of
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sea ice flexural strength in the region [9]. Gang of CSSRC conducted an in situ cantilever
beam test on model ice, revealing that the flexural strength of model ice remains constant
as the loading rate changes but decreases with increased rewarming time [10]. The simply
supported beam test can be split into three-point bending and four-point bending tests [11].
Ji et al. executed an indoor three-point bending test on the flexural strength of Bohai sea ice
and found that the sea ice flexural strength had a linear relationship with the loading rate [4].
Gagnon conducted a four-point bending test on iceberg ice and found that the flexural
strength of ice decreases with increased ice temperature [12]. Barrette et al. performed a
four-point bending test on iceberg ice and found that the larger the average grain size inside
the ice, the smaller its flexural strength [13]. Lastly, in circular plate center loading tests,
icicles are cut from the ice layer and then shaped into disks according to predetermined
thickness–diameter ratios. Krupina conducted an extensive series of circular plate center
loading tests on sea ice situated in both southeastern and northeastern regions of the
Barents Sea. The study aimed to investigate the effects of different ice properties, such as
temperature, salinity, and brine volume, on flexural strength. Furthermore, the plate test
outcomes were juxtaposed with those of the cantilever test, and a suitable correlation was
established between the two [9]. Marchenko conducted circular plate center loading tests
on sea ice in the northwest Barents Sea and found that flexural strength depends on ice
temperature [6].

In conclusion, ice is a complex crystalline material, and its flexural strength is influ-
enced by factors such as the structure, temperature, and external loading conditions of ice
crystals [14].

In addition to experimental studies, numerical simulations can also be utilized to
investigate the flexural strength of ice. The discrete element method, the finite element
method, and the peridynamics method are the most popular simulation methods used to-
day. The discrete element method is suitable for the mechanics of discontinuous media [15],
but its application for dynamic failure problems is limited due to result deviation in the con-
tinuum stage [16]. On the other hand, the finite element method has advantages in terms
of fast calculation efficiency and high accuracy and is widely used to simulate ice–structure
interaction [17]. However, the simulation accuracy of the finite element method depends
on the material model chosen [18]. The peridynamics method analyzes the mechanics of
a continuum with the help of the point method of matter and the idea of molecular dy-
namics. It constructs the object’s motion equation in the form of an integral [19]. However,
compared with other numerical calculation methods, the peridynamics method also has
the problem of low computational efficiency. When simulating the interaction between sea
ice and structure, most scholars consider ice as a continuum, considering its elasticity and
plasticity. For example, Li used an isotropic elastoplastic fracture model to simulate ice
based on LS-DYNA [20]. Some scholars incorporated the effects of temperature and strain
rate and constructed a numerical model of ice based on the multi-surface failure criteria
of sea ice. Still, there were some differences between the test and simulation results [21].
Other scholars considered the existence of pores inside the ice, such as Von Bock und
Polach et al., who applied LS−DYNA and selected the Lemaitre damage model to simulate
ice and analyzed the dependence of the load response on the microstructure of ice [22].
To maintain the quality and energy of the model, some scholars used the node-splitting
technique instead of the commonly used elemental erosion technique [23].

Despite the wealth of experimental and numerical data on in situ cantilever and simply
supported beam tests, there has been limited research conducted on circular plate center
loading tests. The International Towing Tank Conference’s mechanical properties test
method for model ice also lacks relevant specifications for circular plate center loading tests,
indicating the need for improvement in this area. As mentioned earlier, the flexural strength
of ice is influenced by various factors, such as temperature and loading rate, and further
experimental exploration is necessary. Additionally, there is a need for expanded research
based on the material model, particularly regarding the influence of internal porosity on
ice strength.
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In this paper, the influence of loading rate and temperature on the flexural strength
was explored by using a saline model ice under a circular plate center loading test, and
the simulation of the porosity of ice was also realized to study the influence of the internal
porosity of the model ice. The results of center loading on a circular plate of ice were
discussed, and, in particular, the physical mechanisms of crack propagation were analyzed.
This study provides a reference for the prediction of the ice’s mechanical characteristics.

2. Methods

Both laboratory experiments and numerical simulations were conducted in the present
study, and the implementation of the two methods is briefly summarized below.

2.1. Laboratory Experiments
2.1.1. The Columnar Saline Model Ice

The SIMB of the CSSRC is an ice water tank with 8 m in length, 2 m in width, and 1 m
in depth, as shown in Figure 1 [24]. The ice-making process used in the SIMB is similar to
but partly improved from the method by the Evers [25,26] of the Hamburg Tank (HSVA)
in Germany. Cooling fans are suspended from the roof, ceiling panels with tiny holes are
installed underneath to exhaust cooling air, and circulating fans with guide plates are set
on the side walls to suck the air used for cooling; thus, forced cooling air circulation is
formed [27].
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Figure 1. Interior scene of CSSRC SIMB.

Model ice is made of sodium chloride solution, and the preparation process is divided
into precooling, crystallization, and ice making. To control the density and to lower
the strength, an underwater air bubbling system is used to produce tiny bubbles that
are trapped in the model ice during the freezing process. Its mechanical properties can
be adjusted by rewarming and underwater microbubble generation systems [10]. After
rewarming, the temperature of model ice is usually around −0.8 ◦C.

Through a series of experimental measurements, the mechanical properties of model
ice in the SIMB were statistically analyzed. The fresh model ice’s main characteristic param-
eters (−0.8 ◦C) in the SIMB are summarized in Table 1. With the continuous exploration
of the experimenters, it was found that after adding bubbles to the saline model ice, the
brittleness of the ice was greatly improved. The flexural fracture mode of the ice and the
distribution ratio of the crushed ice flakes of various scales were consistent with natural sea
ice, and the similarity could be maintained in terms of physical and mechanical properties
and fracture behavior patterns [28].
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Table 1. The main physical and mechanical performance parameters of model ice in SIMB [24].

Parameter Value

Density/g·cm−3 0.89~0.91
Thickness/mm 10~100

Flexural strength/kPa 94.7
Compressive strength/kPa 80~150

Elastic modulus/MPa 250~450
Elastic modulus/flexural strength 800~1500

2.1.2. Circular Plate Center Loading Tests

In a circular ice plate indentation test, vertical loads are exerted on the central area
of the disk ice specimen under the circumferentially uniform support, as shown on the
schematic diagram in Figure 2.
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Figure 2. Circular plate center loading test: (a) schematic diagram; (b) partial schematic diagram.

When the plate is thin enough, it belongs to a typical plate–shell structure according to
the theory of shell mechanics [29]. The maximum bending moment of the circular plate is
at the center of the circular plate with radius R when the load q is uniformly distributed in
a circle of radius r. By integrating the deflection caused by the load on the torus plane with
radius b and width db (Figure 2b), the deflection of the center of the plate can be obtained,
and then the bending moment Mmax at the center of the plate can be determined [28]:

Mmax = q
∫ r

0

(
1−v

4
R2−b2

R2 − 1+v
2 ln b

R

)
bdb

= F
4π

[
(1 + v) ln R

r + 1 − (1−v)r2

4R2

] (1)

where F represents the total load πr2q. ν = 0.33, is the Poisson’s ratio [30]. The relationship
between the bending moment and stress is:

σ =
6M
h2 (2)

In the above equation, h is the thickness of the plate, so the maximum tensile stress in
the plate, that is, the flexural strength σf, is:

σf =
3F

8πh2

[
4 − (1 − v)

( r
R

)2
− 4(1 + v) ln

( r
R

)]
(3)

The relationship between the central bending moment and curvature obtained from
the pure bending hypothesis is the basis of the above derivation, and the effect of shear
forces on the flexural strength in a plane parallel to the plate surface is not considered. The
value of σf so far is only an approximate solution, and its accuracy depends on the ratio of
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the thickness of the disk to the outer diameter [31]. When the thickness–diameter ratio is
less than 0.15, the effect of shear force on the bending strength is negligible [6].

2.1.3. Test Conditions

The test was carried out in a small cold laboratory adjacent to the ice water basin. The
flexural strength of ice is affected by a variety of factors [1], and the loading rate and ice
temperature were selected as the control factors of the present test. Different test conditions
are listed in Table 2. The peak force and failure time of the circular plate indentation test
are two important measurements. The average temperature of the newly made model ice
was about −0.8 ◦C, the density was 0.91 g·cm−3, and the salinity was 2.75 ppt.

Table 2. Summary of plate specimen size and testing conditions in laboratory experiments.

Diameter/Thickness
(mm/mm)

Specimen
Number

Loading Rate
(mm/min)

Ice Average
Temperature (◦C)

Laboratory
Temperature (◦C) Measurements

140/20 20

100, 150, 200, 250,
300

−0.8 −0.8

Peak force
Failure time

140/20 15 −2.0 −2.0
140/20 15 −4.0 −4.0
140/20 15 −6.0 −6.0
140/20 15 −8.0 −8.0

The test process was divided into three phases: the test preparation stage, the plate
specimen sampling and storage freezing stage, and the measurement and data recording
stage. In the test preparation stage, the small cold laboratory was first cooled to reach the
target air temperature, and the high-speed camera, electronic universal testing machine,
thermometer, and other related instruments were precooled. In the plate sampling and
storage freezing stage, a total of 80 plate specimens were drilled from the flat model ice
sheet. The diameter of the ice plate specimen was 140 mm, and the thickness was 20 mm
(Figure 3). It produced a thickness–diameter ratio of less than 0.15, agreeing with the
calculation requirements. After sampling, 20 newly made model ice specimens were placed
in a small cold laboratory for test measurement, and the rest were stored in a refrigerator for
subsequent tests. In the last test and measurement stage, the loading rate of the electronic
testing machine was first adjusted according to the requirements of the test conditions.
Then the force curve of the ice specimen from the initial bearing to the flexural failure
was recorded. The high-speed camera was also used to capture the failure details of the
ice specimen. The thickness and temperature of model ice were quickly measured and
recorded after failure.
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In the data recording stage, the force curve of the ice specimen from the initial loading
to the flexural failure was recorded with a force measurement system, and the flexural
strength was obtained according to the peak force. At the same time, the failure details of
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the ice specimen were documented with a high-speed video camera. The overall layout
scheme of the instruments is shown in Figure 4, and the parameters of the test instrument
are shown in Table 3.
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Table 3. Test instrument parameter table.

Instrument Accuracy

Thermometer 0.01 ◦C
Electronic testing machine 1 mm/min

High-speed cameras Frame rate: 2800
Sensor 0.01 N

Vernier calipers 0.01 mm
Ice density measurement instruments

Salinity meter
0.01 g/cm3

±3% (FS)

2.2. Numerical Modeling
2.2.1. Numerical Model of Ice Material

A big advantage of the finite element method is that many contact algorithms allow
the coupling of ice and structural models. Therefore, in this paper, the finite element
solver LS-DYNA was used to establish a model ice failure model. The circular plate center
loading tests were used to vertically load the central area of the disk ice specimen under
the circumferentially uniform support. The contact between the indenter and the ice disk
specimen occurred during loading, and the explicit nonlinear finite element method can be
used to solve such contact problems. The calculation method used by the nonlinear finite
element program is the explicit integration method [32].

When using the finite element method to simulate the model ice mechanical test, it is
necessary to determine the material model parameters that match the macroscopic charac-
teristics of the material. Standard model ice constitutive models include the elastoplastic
model, elastic brittleness model, etc. According to Karr and Choi [33], model ice materials
are considered isotropic in their undeformed state. This assumption was adopted in this pa-
per, so the isotropic elastoplastic fracture model (*MAT_ISOTROPIC_ELASTIC_FAILURE)
in LS-DYNA was selected to simulate the model ice. The failure criterion for the material is
the Von Mises yield criterion [34].

The material parameters of the model ice are shown in Table 4. The specific parameters
of density, plastic hardening modulus, and plastic failure strain were obtained by the model
ice mechanical test [1]. According to the relevant ice mechanics numerical simulation, the
ranges of other material parameters were obtained, and finally, the specific parameters
were given by trial and error.
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Table 4. Model ice material parameters.

Material Properties Value

Density/g·cm−3 0.92
Shear modulus /MPa 76.9

Plastic hardening modulus /MPa 94.7
Yield stress/kPa 83

Bulk modulus/MPa 75
Plastic failure strain

Failure pressure/kPa
0.05
−110

According to von Bock und Polach [22], the air pores inside the model ice can be
simulated by deleting elements by using a random algorithm, and the number of deleted
elements depends on the porosity. This is another advantage of numerical simulation as
compared with the experiments in Section 2.1, because ice porosity is difficult to control
according to predetermined values, although an underwater air bubbling system has been
placed already. The so-called K file of the model ice numerical model was employed and
set the random number function, which was used to delete a part of the model ice elements
according to the input value of porosity. The flow chart is shown in Figure 5. There are
several key points in this program. First, read the K file, defining each line of information
in it as a string. Determine whether each line string represents the coordinate information
of the cell; if so, proceed to the next step, and vice versa, and output to a K file. Secondly,
enter the sampling rate, combine the random function to obtain a set of unit numbers that
need to be deleted, correspond them one-to-one with the read unit string, replace the unit
numbers that need to be deleted with spaces, and output them to a new K file.
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The corrected ice model with a different porosity is shown in Figure 6. Since the
elements used in this model were hexahedral, the resulting pore shape was also hexahedral.
In fact, model ice with different porosities differs in the number of pores, but the size of
the individual pores does not change, which is the same as Von Bock und Polach [22].
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The intervals between pores are random in Figure 6 and may be different from the actual
internal pore distribution of ice because the brine channels of actual sea ice tend to be
vertical and continuous, but the pores in numerical models cannot guarantee continuity. In
addition, the distribution of pores is different from the actual sea ice, the pores of the actual
sea ice tend to exist only in the interior, and the surface is continuous. Still, the pores in this
paper also exist on the surface. The resulting difference in loading force is hard to evaluate
at present, but it is supposed to be ignorable because the given porosity is small (≤7%).
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2.2.2. Numerical Simulation of Circular Plate Center Loading Tests

In the numerical calculation, the ice specimen was loaded similarly to that shown in
Figure 2. During modeling, the annular support below the ice specimen was set as a fixed
boundary, the cone indenter had only the degrees of freedom in the Z direction, and the
load was applied downward on the upper surface of the ice specimen at a constant loading
rate. The main parameters of the numerical model are shown in Table 5. To simulate the
fragmentation phenomenon of the model ice, a fine mesh was used in the central area of
the model ice, and a large gradient mesh was used in the outer part, as shown in Figure 7a.
Through the circular plate center loading tests, the numerical calculation condition was
determined. Combining this with the pore simulation principle of Section 2.2.1, a model ice
with a porosity of 3% can also be obtained, as shown in Figure 7b.

Table 5. Main parameters of the numerical model of the circular plate center loading test.

Ice Specimen
Radius
(mm)

Ice Specimen
Thickness

(mm)

Ring Support Outer
Diameter

(mm)

Ring Support
Inner Diameter

(mm)

The Radius of the Lower Surface
of the Tapered Indenter

(mm)

70 20 70 60 5
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A rigid body model was selected to simulate the annular support and cone indenter,
and the material parameters were defined using the keyword *MAT_RIGID, as shown in
Table 6.

Table 6. Ring support and indenter material parameters.

Material Properties Value

Density/g·cm−3 7.83
Elastic modulus/GPa 207

Poisson’s ratio 0.33

LS-DYNA provides a variety of contact algorithms for explicit analysis, divided into
single-sided contact, point-to-face contact, and face-to-face contact [35]. The contact be-
tween the subglacial surface of the model and the upper surface of the annular support
had a large contact area and symmetrical shape, so the surface contact was selected. Since
the ring support was modeled using shell elements, the Automatic Contact Algorithm in
surface contact was chosen. It can consider the influence of element thickness, allowing
contact to appear on both sides of the shell element, making it more accurate when calcu-
lating contact forces. The contact between the upper surface of the model ice and the lower
surface of the cone table indenter also adopted surface contact, and the erosion contact
algorithm in surface contact was selected because the ice breakage effect of the erosion
contact simulation model is good. Erosion contact was employed to control time steps. It
automatically invoked negative volume failure criteria for all solid elements in the model,
which circumvents procedural errors due to negative volumes by removing solid elements
that produce negative volumes.

Different test conditions in numerical simulations are listed in Table 7. Compared with
the test conditions in laboratory experiments (Table 2), the impact of ice temperature was
ignored. In fact, the influence of temperature on the properties of ice materials is difficult to
achieve by numerical simulation. Therefore, to reduce the influence of temperature on the
results, the input parameters of the ice material in the numerical model were the average
mechanical parameters of the model ice at a specific temperature (−0.8 ◦C). Similarly,
in numerical simulation, the flexural strength as an input quantity, and the influence of
external parameters’ (porosity) changes on the flexural strength cannot be reflected, and the
influence of external parameters on bending performance can only be analyzed through
the change in load response.
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Table 7. Summary of plate specimen size and testing conditions in numerical simulations.

Diameter/Thickness
(mm)

Specimen
Number

Loading Rate
(mm/min)

Ice Porosity
(%) Measurements

140/20 4

150

0
Peak force

Failure time
140/20 4 3
140/20 4 5
140/20 4 7

3. Results and Analysis

The test results and the numerical simulation results were compared from the two
aspects of the time history curve and damage phenomenon.

3.1. Time History Curve and Failure Mode of Model Ice

The numerically calculated time history curve was compared with the model ice
mechanics test time history curve in Figure 8. During the bending process of the ice
specimen, both time history curves showed linear changes without an obvious yield stage
and increased sharply from 0, reaching the maximum value Pmax within only 0.8 s, and it
can be seen that the failure mode of the ice specimen was an obvious brittle failure. The
flexural strength σf of the model ice can be calculated from Pmax according to Equation
(3). The peak force of the two was similar, the loading time difference was 0.01 s, and the
absolute error did not exceed 5 N, so the rationality of the calculation model can be verified
from the changing trend of the time history curve. However, due to differences in material
properties and test conditions, the downward trend of the test curve and the numerical
curve was not the same. The downward trend of the test curve was faster because in the
model test, when the sensor read the maximum force peak, the indenter stopped pressing
down and upward, and the numerical calculation did not simulate this behavior, but
this did not affect the numerical model’s simulation of the mechanical properties of the
model ice.
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mm/min). A–G denote the different loading pictures shown in Figures 9 and 10.

A high-speed camera was used to observe the state of the model ice at the four
moments A, B, C, and D in Figure 8, and the flexural failure process of the model ice was
captured, as shown in Figure 9. It is clear that the model ice broke along the diameter,
and the crack propagation was rapid, with an expansion time of less than 0.06 s. The
model ice had no prominent yield stage, and there was no obvious plastic deformation
at the failure location. It can be deduced that the failure of the model ice belongs to a
brittle failure. Compared with the experimental phenomenon in the breakthrough loads of
floating ice sheets carried out by Sodhi [36], the model ice disk did not have holes in the
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middle area but just failed cracks along the radial direction. This may be because of the
different constraints.
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Figure 10. Crack propagation during model ice breakage (a) 0.77 s, (b) 0.78 s, and (c) 0.79 s (−0.8 ◦C,
150 mm/min), corresponding to points E, F, and G in Figure 8.

The experiment could not observe the failure pattern of the bottom during the model
ice fracture failure, but numerical simulations supplemented this part of the study. By
observing the bottom of the model ice at the three moments E, F, and G in Figure 8, it was
found that the model ice started to crack from the center of the bottom (Figure 10). The
crack extended firstly along the radius direction to the bottom boundary, and then extended
along the thickness direction to the top surface until the model completely failed, as shown
in Figure 10. The flexural failure of the model ice was essentially the tensile failure of the
bottom of the model ice, consistent with the flexural failure of the sea ice proposed by
Lainey [37]. It indicates that the numerical model of the model ice can better reflect the
crack propagation during model ice breakage.

Meanwhile, the damage phenomenon of the model ice was compared between numer-
ical simulations with the picture captured by the high-speed camera in Figure 11. When
the ice specimen failed, under the action of the cone indenter, there was a significant deflec-
tion change at the center position of the model ice, and the crack propagation was more
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consistent. It can be considered that the numerical simulation results and the experimental
results have good similarity, and the conclusions obtained can confirm each other’s results.
The impact factors on model ice flexural strength are discussed in two different ways, and
these conclusions are considered to apply to both methods.
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Figure 11. Comparison of failure phenomenon: (a) numerical simulation, (b) test result (−0.8 ◦C,
150 mm/min).

The numerical simulation also studied the stress distribution of the model ice at the
time of cracking, and the stress distribution is shown in Figure 12. The stress on the top
was 249.6 kPa, and the stress on the bottom was 71.3 kPa. The stress on the top was about
3.5 times the stress on the bottom. In fact, under the vertical action of the indenter, the
stress on the top was caused by extrusion, and the stress on the bottom was caused by
tension. Figure 10 shows that the destruction of the model ice occurred firstly on the
bottom surface because the model ice is a brittle material: its tensile strength is much lower
than its compressive strength [38]. Thus, the failure usually occurs at the stretch of the
bottom surface.
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Figure 12. Stress distribution of disk model in failure: (a) stress on the top—249.6 kPa; (b) stress on
the bottom—71.3 kPa (−0.8 ◦C, 150 mm/min).

3.2. Impact Factors on Flexural Strength
3.2.1. The Effect of Loading Rate

Discussions in this section are based on model test results because the behavior of
the indenter was not fully represented in numerical simulations, considering that this
may interfere with the conclusions drawn for the variable loading rate. Figure 13 shows a
typical time history curve for model ice at different loading rates (−0.8 ◦C). Under different
loading rates, the loading force of the model ice failure did not change much. When the
loading force increased to the peak point, the time history curve decreased rapidly, and
the downward trend was basically the same, which further indicates that the failure of the
model ice was a brittle failure. It can be seen from the figure that the time difference between
the peaks of the time history curves at different loading rates was obvious, followed by the
insignificant change in the peak of the time history curve.
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Figure 13. Time history curves of flexural strength experiments (−0.8 ◦C).

Based on experimental data, the correlation between loading rate and flexural strength
was analyzed using the Pearson correlation coefficient and the Spearman correlation co-
efficient. Among them, the Pearson correlation coefficient can reflect the degree of linear
correlation between two random variables; the Spearman correlation coefficient measures
the strength of monotonicity between variables. Through calculation, it was found that the
Pearson correlation coefficient between the flexural strength and loading rate of the model
ice was 0.33, and the p-value was greater than 0.05, indicating that there was no significant
linear correlation between the loading rate and the flexural strength of the model ice. The
Spearman correlation coefficient between the flexural strength and loading rate was 0.37,
and the p-value was greater than 0.05, indicating that there was no significant monotonic
correlation between the loading rate and the flexural strength of the model ice, as shown in
Figure 14. Therefore, it can be judged that there was no obvious correlation between the ice
flexural strength and the loading rate of the model. In fact, in the other four test groups at
temperatures of −2 ◦C, −4 ◦C, −6 ◦C, and −8 ◦C, the relationship between loading rate
and flexural strength also showed no significant correlation, and thus was not shown here.
This agrees with the conclusion of Frederking et al. in an ice basin [8]. Similarly, in polar sea
ice observations, it has been found that the loading rate has less influence on the flexural
strength of the ice [39].
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3.2.2. The Effect of Ice Temperature

As mentioned above, since it is difficult to show the influence of temperature on the
mechanical properties of ice materials in numerical simulations, this section is also based
on the experiments. This section quantifies the relationship between model ice flexural
strength and model ice temperature. The temperature range of the model ice was −0.8 ◦C
to −9 ◦C, as can be seen from Section 3.2.1.
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According to the statistical test data, the Pearson correlation coefficient between ice
temperature and flexural strength was −0.89, and the p-value was 3.15 × 10−24. The
Spearman correlation coefficient was −0.78, and the p-value was 7.1 × 10−13. Curve fitting
to the experimental data was conducted, with a 95% confidence band, as shown in Figure 15,
and the regression equation is as follows:

σf = 192.24 − 204.36·T (4)

where σf is the model ice flexural strength in kPa, and T is the model ice temperature. It is
clear from Figure 15 that in the temperature range from −0.8 ◦C to −9 ◦C, the model ice
flexural strength decreased linearly with ice temperature, consistent with previous results
of sea ice. Ding et al. measured the flexural strength of Bohai sea ice, and the experimental
data showed that the flexural strength increased with the decrease in ice temperature, and
the relationship between the two was linear [40]. It is worth noting that in the −2 ◦C
to −6 ◦C range, there are some data points that deviate from the 95% confidence band,
possibly due to errors in the measurement of ice temperature. Marchenko [6] tested the
flexural strength of sea ice in the northwestern part of the Barents Sea and obtained the
relationship between flexural strength in MPa and temperature and salinity, as follows:

σf = 0.236 − 0.095·S − 0.0134·T (5)

where S is the salinity of sea ice. The empirical formulas for the flexural strength of Barents
Sea ice also show ice temperature has an approximate linear relationship with the flexural
strength if a constant or average salinity is given. However, it should be especially noted
that the model results and the results of the flexural strength measurement in marine
conditions in absolute values cannot coincide, as well as other strength characteristics.
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3.2.3. The Effect of Ice Porosity

Since ice crystal observation experiments are labor-intensive and time-consuming, and
the expected porosity is difficult to control artificially, this section is based on numerical
simulation results. The relationship between porosity, the model ice load response, and
the model ice failure mode were studied through four sets of numerical simulations with
different porosities, as listed in Table 7. As mentioned earlier, the flexural strength was used
as a parameter input to the numerical model, so the influence of porosity on the bending
properties of the model ice cannot be discussed in this section through the flexural strength
but only by the load response. It was found that the load response of the model ice flexural
failure was in the range of 24.44 N~26.5 N, as shown in Figure 16. The greater the porosity,
the smaller the load response of the model ice, and the earlier the time for failure to occur.
Statistics show that the load response of model ice with 7% porosity was 0.04 s earlier than
model ice without porosity. In addition, the peak load decreases gradually with increasing

138



Water 2023, 15, 3371

porosity, and this conclusion is similar to Wang’s conclusions about sea ice at Prydz Bay,
East Antarctic [41].
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The final failures of model ice at different porosities are also shown in Figure 17. A
crack extending along the diameter appeared on the surface of the model ice under different
porosities. There was a significant deflection change at the center of the model ice, and there
was a gap in the thickness direction. This indicates that within the range of porosity < 7%,
porosity had little effect on the failure mode of the model ice. Compared with nonporous
model ice, model ice with pores was more likely to develop microcracks around the pores
or further expand the pores. There was a certain crush failure near the indenter, but the
failure mode of the model ice was still dominated by flexural failure.
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4. Conclusions

In this paper, both laboratory experiments and numerical modeling were carried out
to investigate the flexural strength of a columnar saline model ice under circular plate
central loading. The influence of different factors on the flexural strength of model ice was
analyzed and the crack propagation law of the model ice flexural fracture failure was found.
The main conclusions are as follows:

1. The experimental and numerical results were compared from two aspects including
the time history curve and damage phenomenon, and their results agree well; these
could reflect the flexural strength characteristics of the model ice and confirm each
other’s results.

2. According to the time history curve of the ice specimen from the initial bearing to the
flexural failure, it was found that the ice specimen had no obvious yield stage. The
high-speed camera observed no obvious plastic deformation at the failure location.
The model ice began to crack from the center of the bottom surface, and the crack
extended along the radius direction to the lower surface boundary, then extended
along the thickness direction to the top surface until complete failure. The failure
process of the model ice was judged to be a typical brittle failure.

3. There was no significant correlation between the loading rate and the flexural strength.
A significant linear correlation between the model ice temperature and the flexural
strength was explored, and the flexural strength of the model ice increases continu-
ously with the continuous decrease in the model ice temperature in the range from
−0.8 ◦C to −9 ◦C. The larger the porosity, the smaller the load response of the model
ice, and the earlier the time of failure. Compared with the nonporous model ice, the
load response of model ice with 7% porosity was reduced by 7.8%, and the failure
time was 0.04 s earlier. Within the range of 7%, ice porosity had little effect on the
failure mode of the model ice.

This paper provided a feasible means to measure and predict the mechanical properties
of model ice and realized the simulation of the internal pores of the model ice, forming a
preliminary foundation for the research of the mechanism of ice loading under the vertical
interaction between the structure and the ice cover. In the future, the results obtained by
different methods such as circular plate center loading tests, in situ cantilever tests, and
simply supported beam tests will be enriched and compared with each other, to establish
a systematic ice flexural strength measurement and analysis technology. In addition, the
numerical model will continue to be optimized and improved to reflect the influence of
temperature and brine, especially the internal structure and anisotropic characteristics of
the model ice.
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Abstract: Snow, as an important component of the cryosphere, holds a crucial role in the construction
of polar infrastructure. However, the current research on the mechanical properties of snow is
not comprehensive. To contribute to our understanding of the mechanical behaviors of snow in
cold regions, uniaxial compression tests under step loading were performed on the snow. With the
Maxwell model as the basis, different temperatures, densities, and loading rates were set to establish
constitutive equations of snow. The changes in the elastic modulus and viscosity coefficient of snow
with respect to three variables were investigated. The results show that the loading rate has no
obvious effect on the elastic modulus and viscosity coefficient of snow. Both the elastic modulus and
viscosity coefficient of snow follow an exponential function with respect to density, with an increase
in density, resulting in a higher value. As temperature decreases, the elastic modulus and viscosity
coefficient initially decrease and then increase, whereas no specific functional relationship between
them was observed. Additionally, a new constitutive equation considering snow density is derived
based on the Maxwell model.

Keywords: snow; step loading; constitutive equation; Maxwell model

1. Introduction

Snow affects the replenishment of water resources, the occurrence of natural disasters,
and the changes in air quality [1]. Approximately 98% of the global seasonal snow cover is
found in the Northern Hemisphere [2], of which about 60–65% is in Europe and Asia [3].
Extreme snowfall often occurs in the French Alps due to geographical location [4]. In
the western United States, snowfall serves as a major source of domestic and agricultural
water supply [5]. Similarly, winter snowfall provides water recharge in arid regions of
Iran [6]. Snowfall in Southern China increases in winter due to the presence of the Tibetan
Plateau, which leads to high relative humidity and discomfort in the south [7]. In recent
years, the polar route has attracted significant interest as increasingly more countries
have set up scientific research stations in Antarctica for observation and research. Given
the extremely cold weather and geographical location of the Antarctic region, the mode
of delivering supplies and personnel to these research stations is limited to sea and air
transportation. However, sea transportation is time-consuming and subject to seasonal
restrictions, leading many countries to initiate airport construction in Antarctica to facilitate
research. According to the construction location and runway type, they can be categorized
as sea ice runways, blue ice runways, sled runways, and compacted snow runways [8,9].
Challenges faced by the first three types of airport runways include high construction
costs, limited available areas, and insufficient snow-layer strength. In contrast, compacted
snow runways make full use of Antarctic snow resources and offer low maintenance costs,
becoming the preferred choice for airport construction in many countries [10]. Nevertheless,
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existing research on snow mechanics remains incomplete due to the spatial anisotropy of
snow and its continuous metamorphism over time [11,12]. Consequently, analyzing the
deformation behavior and mechanical properties of snow is of great interest when it comes
to engineering construction.

Snow is composed of three phases of water, air, and ice connected together in the form
of particles, and has a certain strength [13]. Subsequently, many experimental studies on
snow have been conducted and various constitutive equations have been developed to
understand snow deformation under loading conditions [14,15]. At present, the constitu-
tive equations of snow can be divided into two kinds. One is to describe the deformation
characteristics of snow from a macroscopic perspective, which is also called the phenomeno-
logical method. The other takes a microscopic viewpoint by observing the changes in ice
particles and bonds within the snow under the external loads and then deducing the
overall deformation.

Mishra and Mahajan [14] considered that snow deformation consists of elastic de-
formation and creep deformation, ignoring time-hardening and microstructural changes.
They described the constitutive relationship of snow based on a complementary power
potential, which also predicted volume changes in snow samples. Snow can be regarded
as a geotechnical material whose internal microstructure determines the overall stress–
strain relationship. Birkeland et al. [16] and Bobillier et al. [17] developed discrete element
models to simulate the propagation saw test, aiming to understand the microstructural
changes during snow failure. Nicot [18] assumed that the mechanical behavior of snow
primarily depends on the mechanical properties of internal bonds. They constructed a
probability density function to describe the microstructure of snow. Using a nonlinear
Kelvin model and a fabric description as constitutive equations, the overall mechanical be-
havior is deduced from the local properties of snow. Mahajan and Brown [19] constructed a
multi-axial constitutive equation for snow, which pointed out that the deformation of snow
was divided into different mechanisms. The deformation of the entire snow sample under
external load was deduced based on this determined mechanism. Brown [20] constructed
a volume constitutive equation of snow based on the changes in bond size and ice grain
diameter. However, the accuracy of the equation is reduced at high snow densities because
the interactions between adjacent bonds are not considered. Recent efforts have aimed to
combine tomography technology with the discrete element method to build microscopic
numerical models of snow and simulate its deformation behavior under load [21–24].
Singh et al. [25] assumed snow to be an orthotropic elastoplastic material and constructed
an equation to predict the constitutive relationship of snow with different densities and
types. X-ray microtomography combined with the finite element method was used to
determine the parameters in the constitutive equation and verify the results. Chandel
et al. [26] determined the deformation of ice particles under load based on the damage
elastic–plastic constitutive equation of ice. They used X-ray tomography technology and
finite element software to simulate the stress–strain relationship of RVE and derived the
overall macroscopic constitutive behavior of snow. From the perspective of the relationship
between airflow and compaction, a compacted snow constitutive model was proposed un-
der confined compression tests. This model was consistent with laboratory measurements,
indicating that air inside the snow sample would be discharged from the pores during
testing [27]. During the cold winter months, rivers and lakes begin to freeze and snowfall
occurs. The abundant snow and ice resources are often used as building materials. Such
as the utilization of ice and snow for constructing airstrips in the Antarctic region [28],
creating snow and ice sculptures, constructing distinctive buildings, and the construction
of snow and ice roads to facilitate transportation on ice [29]. In construction, snow needs to
be crushed and other operations need to be carried out to improve its strength to ensure
the safety of buildings and roads. The relevant features of the mechanical behavior of snow
need to be fully understood, and constitutive equations should be used to describe the
stress–strain relationship of snow.
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In previous studies, the constitutive model of snow is frequently investigated using
relative theoretical derivations or numerical simulation methods [14,26], and then verified
by experimental data. However, the numerous parameters and complex formulas involved
in these methods make them difficult to compute. Questions still remain regarding the
accurate interpretation of the deformation behavior of snow. In this paper, the constitutive
equations of snow obtained by combining laboratory tests and theoretical derivations can
more truly reflect the mechanical behavior of snow, which is an extension and supplement
to the previous research. In general, the main objective of this paper is to provide a novel
constitutive model aimed at representing the most relevant aspects of the overall macro-
behavior of snow while retaining adequate simplicity so that a feasible application is
achieved in practical (large-scale, long-duration) engineering cases. The derivation method
of the constitutive law for solid materials is used to obtain the constitutive law of snow.
This study focused on investigating the constitutive equation and mechanical behavior of
snow by conducting step-loading uniaxial compression tests on cylindrical snow specimens.
Sections 2 and 3 detail the preparation of the snow samples and the uniaxial compression
test procedure. After some preliminary notes on the Maxwell model, the derivation process
of the elastic modulus and viscosity coefficient through it is introduced. The changes
in the elastic modulus and viscosity coefficient of snow in response to changes in snow
density, loading rate, and temperatures are studied and discussed in Section 4. A new
constitutive equation is proposed to link the elastic modulus and viscosity coefficient of
snow to its density, temperature, and loading rate. Section 5 discusses the trends of elastic
modulus and viscosity coefficient obtained in this paper with respect to different variables
in comparison with the results of other studies in the literature. Finally, the major results
and implications of this paper are emphasized in the conclusion.

2. Sample Preparation and Experimental Procedure
2.1. Sample Preparation

The snow samples used in this study are fresh natural snowfall from the top layer of
the ground at the Water Conservancy Comprehensive Test Site of Northeast Agricultural
University in Harbin, Heilongjiang Province, China. As one of the three main snow areas
in China, low temperatures and abundant snow are the primary characteristics of the
northeastern region during winter due to the temperate monsoon climate and high latitude.
In general, the main snowfall period is from October to March of the following year, and
the stable snowfall period is from November to February of the following year. Commonly,
fresh snowfall grains are loose and uniform in size, without any bonding for easy com-
paction. Referring to the snow sample preparation method of [30], from 26 November to
1 December 2022, fresh snow was collected and poured into the compaction equipment
by manual layering to achieve uniform density and to minimize errors. The compaction
instrument consists of a guard cylinder, a compaction hammer, and a compaction cylinder
to compact the snow into a 100 mm diameter, 200 mm high cylinder (height-to-diameter
ratio of 2:1), as depicted in Figure 1. It is provided by Suzhou Tuo Testing Instrument
Equipment Co., Ltd. located in Suzhou, Jiangsu Province, China. Snow samples with
densities of 350 kg/m3, 400 kg/m3, 450 kg/m3, 500 kg/m3, and 550 kg/m3 were created
using different masses of snow. To prevent the snow samples from sublimating during
storage and to maintain integrity, they were wrapped tightly in cling film and stored in a
refrigerator at a constant temperature of −25 ◦C. As the tests were carried out at different
temperatures, the snow samples were stored in a refrigerator at the required temperature
for 24 h prior to each test to ensure uniform temperature throughout the entire sample.
Before the test began, the mass and height of the snow samples were measured using an
electronic scale and tape measure to calculate the actual density, ensuring that the error
between it and the experimental density was less than ±20 kg/m3. Through measuring the
mass and volume of snow, the natural density of fresh snow was derived to be 128 kg/m3.
The above operations can reduce the error to the tolerable range.
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Figure 1. Compacting tools and snow sample: (a) Compaction equipment, from left to right, the
protective cylinder, the compactor hammer, and the compaction cylinder are followed; (b) sample.

2.2. Test Procedure

The uniaxial compression tests were carried out on snow samples using a load-
controlled step loading method at temperatures of −5 ◦C, −10 ◦C, −15 ◦C, and
−20 ◦C, with loading rates of 5 N/s, 10 N/s, 20 N/s, 30 N/s, 40 N/s, and 50 N/s, respec-
tively. The force difference between the two adjacent steps was set to 300 N, and each
step lasted for more than 200 s. As shown in Figure 2, the experimental equipment in
this study includes a WDW–100 electronic universal testing machine and two infrared
sensors. The WDW–100 machine is made up of a compression device, a control system,
and a low-temperature test chamber. It comes from Changchun Kexin Testing Instrument
Co., Ltd. located in Changchun city, China. The low-temperature test chamber is used to
control the temperature inside the testing machine, so that the snow sample can be tested at
a preset temperature, with a minimum temperature of −30 ◦C. Two infrared sensors were
placed inside the testing machine to record the diameter expansion of the snow sample
in real-time during compression. One sensor was located near the middle of the snow
sample, and the other near the end of the snow sample. Before the test, the upper and
lower pressure plates of the testing machine were wrapped with cling film to avoid the
end effect impacting the test results during compression. Furthermore, upon setting the
internal temperature of the testing machine to the desired test temperature, the sample was
put into it when the internal temperature was uniform. During the test, the central axis of
the specimen was aligned in a straight line with the center of the upper and lower pressure
plates to ensure uniform force distribution. To minimize errors in the recorded diameter
growth value, the infrared light emitted by the sensor was directed as closely as possible to
the center of the snow sample.
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3. Constitutive Model
3.1. Maxwell Model

The stress–strain curve is a complete macroscopic response to a series of change
processes such as the deformation of snow under external force, the rearrangement of
internal grains, and the breakage and peeling of the exterior. The constitutive equation is
the mathematical expression describing this curve, which is the main basis for studying
and analyzing snow’s bearing capacity and deformation. There are two main methods
to establish the constitutive model of crystalline materials, at present. One of which is to
describe the constitutive equation of materials by a series-parallel combination of elastic,
viscous, and plastic elements. The other is to synthesize empirical formula to describe
the constitutive equation of materials according to the stress–strain change law obtained
from experiments. This study adopts the method of component combination to construct
the constitutive equation of snow. The widely used classic constitutive models currently
include the Maxwell model, Burgers model, and Kelvin model. This study assumes that
snow is a kind of viscoelastic material and chooses the Maxwell model as the basis. Three
constitutive equations are derived to describe the mechanical behavior of snow to show the
effects of temperature, density, and loading rate on the viscoelasticity of snow.

The Maxwell model comprises a Hooke body and a Newtonian body connected in
series, as illustrated in Figure 3. When stress is applied to the snow, both elastic strain
and plastic strain are generated. The Hooke body represents the instantaneous elastic
deformation that occurs upon the application of stress, which can be recovered immediately
after the stress is removed. In contrast, the Newtonian body represents the viscous behavior
of the material, which produces irreversible deformation under stress. After the stress is
unloaded, the deformation remains. A brief description of the Maxwell model is presented
as follows.

Water 2023, 15, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. WDW–100 universal testing machine: 1. compression device; 2. cryogenic test chamber; 
3. control system. 

3. Constitutive Model 
3.1. Maxwell Model 

The stress–strain curve is a complete macroscopic response to a series of change pro-
cesses such as the deformation of snow under external force, the rearrangement of internal 
grains, and the breakage and peeling of the exterior. The constitutive equation is the math-
ematical expression describing this curve, which is the main basis for studying and ana-
lyzing snow’s bearing capacity and deformation. There are two main methods to establish 
the constitutive model of crystalline materials, at present. One of which is to describe the 
constitutive equation of materials by a series-parallel combination of elastic, viscous, and 
plastic elements. The other is to synthesize empirical formula to describe the constitutive 
equation of materials according to the stress–strain change law obtained from experi-
ments. This study adopts the method of component combination to construct the consti-
tutive equation of snow. The widely used classic constitutive models currently include the 
Maxwell model, Burgers model, and Kelvin model. This study assumes that snow is a 
kind of viscoelastic material and chooses the Maxwell model as the basis. Three constitu-
tive equations are derived to describe the mechanical behavior of snow to show the effects 
of temperature, density, and loading rate on the viscoelasticity of snow. 

The Maxwell model comprises a Hooke body and a Newtonian body connected in 
series, as illustrated in Figure 3. When stress is applied to the snow, both elastic strain and 
plastic strain are generated. The Hooke body represents the instantaneous elastic defor-
mation that occurs upon the application of stress, which can be recovered immediately 
after the stress is removed. In contrast, the Newtonian body represents the viscous behav-
ior of the material, which produces irreversible deformation under stress. After the stress 
is unloaded, the deformation remains. A brief description of the Maxwell model is pre-
sented as follows. 

 
Figure 3. Maxwell model. 

The total strain consists of elastic and viscous strains: 

Figure 3. Maxwell model.

147



Water 2023, 15, 3271

The total strain consists of elastic and viscous strains:

ε = εE + εη (1)

Instantaneous elastic strain is inversely proportional to the elastic modulus, E:

εE =
σE
E

(2)

Viscous strain rate is inversely related to the viscosity coefficient, η:

.
εη =

ση

η
(3)

When the elements are connected in series, they are subjected to the same stresses:

σ = σE = ση (4)

Substituting these relationships (Equations (2)–(4)) into Equation (1), the constitutive
equation is derived:

.
ε =

.
εE +

.
εη =

.
σ

E
+

σ

η
(5)

Integrating Equation (5) over time, the deformed coordination equation is obtained as:

ε = εE + εη =
σE
E

+ t
ση

η
= σ(

1
E
+

t
η
) (6)

3.2. Parameter Calculation

The stress of the snow sample under the uniaxial compression test with step loading
remains constant in the horizontal step when the stress rate is 0. Substituting this condition
into Equation (5), the expression for the viscosity coefficient of snow can be obtained as:

η =
σ
.
ε

(7)

The elastic modulus can be obtained using Equation (6):

E =
1

( ε
σ − t

η )
(8)

where σ is the constant stress at the step (MPa); ε is the strain;
.
ε is the strain rate (s−1); t

is the time (s); E is the elastic modulus of snow (MPa); and η is the viscosity coefficient of
snow (MPa·s).

4. Results

The stress–strain curves of the snow samples obtained by step loading are shown in
Figure 4. The uniaxial compression test under step loading is completed alternately by the
normal uniaxial compression test and creep test. Indeed, the data of the first and last steps
are not involved in the calculation of parameters. Because there had been a pre-pressure
adjustment in the first stage, the measured displacement value is greater than the actual
deformation, resulting in a relatively small and inaccurately calculated viscosity coefficient.
In the final step stage, as the density of the snow sample gradually increases, the bonds
between the ice particles begin to deform, break, and rearrange, which cause an increase in
deformation of the snow sample under loading. The calculated viscosity coefficient is also
relatively small. Due to the low density and the larger internal pores of snow compared
to brittle materials such as rocks and ice, the stress of the snow sample under load will
rapidly decrease after reaching a set value at the beginning of the step. At this point, the
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pores inside the snow collapse, and the ice crystals begin to rearrange and combine. When
a relatively stable structure is reached, the stress will stop decreasing and enter a creep
state as shown in Figure 4. The elastic modulus and viscosity coefficient of compacted
snow under step loading are then calculated using Equations (7) and (8) and the variation
of these mechanical properties are investigated in relation to temperature, density, and
loading rate.
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4.1. Effect of Loading Rate on Elastic Modulus and Viscosity Coefficient of Snow

Uniaxial compression tests were carried out on 400 kg/m3 and 500 kg/m3 snow
samples at a constant temperature of −15 ◦C with step loading rates ranging from 5 to
50 N/s to observe the effect of loading rate on the elastic modulus and viscosity coefficient.
As shown in Figure 5a, the elastic modulus is more scattered for the 500 kg/m3 snow than
for the 400 kg/m3 snow. With increasing loading rate, the value in snow elastic modulus
is significantly greater at high densities than at low densities, which indicates that the
elastic modulus gradually increases with increasing density. At the same time, it is found
that density is a factor that affects the degree of change in elastic modulus, with a greater
impact on the elastic modulus with loading rate at higher densities. For example, the elastic
modulus of the 400 kg/m3 snow with a range of 5 to 50 N/s is 3.39 to 9.33 MPa, and the
difference is 5.94 MPa. The elastic modulus of the 500 kg/m3 snow with a range of 5 to
50 N/s is 7.18 MPa to 26.98 MPa, and the difference is 19.80 MPa. However, the results for
the elastic modulus of snow show no clear tendency for dependence on the loading rate.
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Figure 5b compares the viscosity coefficient versus loading rate for two density snow
samples at −15 ◦C temperature. The viscosity coefficient varies from 3.26 to 32.98 GPa·s
for the 500 kg/m3 snow sample and from 2.57 to 7.27 GPa·s for the 400 kg/m3 snow
sample, showing that the results are more scattered for the high-density snow. The average
value of the viscosity coefficient for 500 kg/m3 snow is larger than for 400 kg/m3 snow,
which suggests that the viscosity coefficient tends to increase gradually with an increase in
density. Density also influences the change degree of the viscosity coefficient from Figure 5b.
The difference in viscosity coefficients is 4.70 GPa·s for snow samples at 400 kg/m3, and
29.72 GPa·s for snow samples at 500 kg/m3. It is shown that the higher the density,
the more intense the change in viscosity coefficient. When the loading rate is less than
10 mm/min, the mean values of the viscosity coefficients at both densities tend to decrease
with an increase in loading rate. However, the mean values of viscosity coefficients at the
two densities show different trends with increasing loading rate. The mean value of snow
viscosity coefficient tends to be a constant at 400 kg/m3, while the mean value of viscosity
coefficient tends to increase, then decrease, and then increase again at 500 kg/m3.

4.2. Effect of Temperature on Elastic Modulus and Viscosity Coefficient of Snow

As shown in Figure 6a, the change in elastic modulus of snow samples with different
densities is shown for various temperatures (−5 ◦C, −10 ◦C, −15 ◦C, and −20 ◦C) under a
loading rate of 10 N/s. A trend is observed at temperatures of −15 ◦C and −20 ◦C, where
the elastic modulus increases as the density increases. However, at −5 ◦C and −10 ◦C,
the average value of elastic modulus for the 550 kg/m3 snow samples is lower than that
of the 500 kg/m3 snow samples, which reverses the previous results. It is found that the
average value of the elastic modulus first decreases and then increases with decreasing
temperature above 500 kg/m3 and fluctuates in a very narrow band with a density at
400 kg/m3. This concludes that the temperature has an impact on the change of the elastic
modulus in the density range above 500 kg/m3. However, more experiments need to be
conducted at densities below 500 kg/m3 to uncover the exact density range within which
temperature has an impact.
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As shown in Figure 6b, the variation of viscosity coefficient with temperature is shown
for snow samples at each density. The dispersion degree of viscosity coefficients is lower
for low-density snow samples and higher for high-density snow samples. At the density of
400 kg/m3, the viscosity coefficient of snow varies from 3.36 to 7.77 GPa·s, and the differ-
ence is 4.41 GPa·s. At the density of 500 kg/m3, the viscosity coefficient of snow varies from
11.04 to 21.78 GPa·s, and the difference is 10.74 GPa·s. The mean value of the viscosity coef-
ficient generally decreases and then increases with decreasing temperature. Furthermore, it
is noted that the density of the snow samples affects the degree of variation in the mean
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viscosity coefficient with temperature. We also analyze the changes in the average value of
viscosity coefficient under three densities. It is found that the minimum viscosity coefficient
of snow at the density of 400 kg/m3 is 3.98 GPa·s at −15 ◦C, and the maximum value is
6.64 GPa·s at −20 ◦C, with a difference of 2.66 GPa·s. The minimum viscosity coefficient
of snow at the density of 500 kg/m3 is 12.71 GPa·s at −15 ◦C, the maximum value is
20.13 GPa·s at −20 ◦C, and the difference is 7.42 GPa·s. Similarly, the minimum viscosity
coefficient of snow at a density of 550 kg/m3 is 22.24 GPa·s at −10 ◦C, and the maximum
value is 33.68 GPa·s at −20 ◦C, with a difference of 11.44 GPa·s. It can be observed that
from the above results, the viscosity coefficient of high-density snow samples fluctuates
significantly more than that of low-density snow samples as the temperature decreases.
Previous research results have shown that the viscosity coefficient can vary with tempera-
ture by four to five orders of magnitude, which was concluded via uniaxial compression
tests [31].

4.3. Effect of Density on Elastic Modulus and Viscosity Coefficient of Snow

Figure 7 shows the effect of density on the elastic modulus and viscosity coefficient
at constant temperature and loading rate. It should be noted that the elastic modulus of
compacted snow increases as the density increases, which is consistent with the trend
obtained by the authors of [32]. The elastic modulus of snow with the same density is
relatively concentrated, ranging from 3.32 to 21.19 MPa. Using the least square method to
fit these data in this study, the functional relationship between the elastic modulus and
density is obtained, according to Equation (9). It can be concluded that the elastic modulus
is an exponential function relationship with the density, and the coefficient of determination
(R2) is 0.76, indicating a good correlation between both.

E = 0.396 exp(0.007ρ) (9)

where E is the elastic modulus of the snow sample (MPa) and ρ is the density of the snow
(kg/m3).
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As shown in Figure 7b, it is observed that the relationship between the viscosity coeffi-
cient and density of snow is similar to that between the elastic modulus and density, both
exhibiting an increasing trend with increasing density. In the range of 350 ~ 550 kg/m3, the
viscosity coefficient of snow varies from 1.38 to 31.22 GPa·s, which has a relatively poor
repeatability compared with the elastic modulus. Furthermore, as the snow density gradu-
ally increases, the dispersion of the viscosity coefficient also increases. Taking the results for
350 kg/m3 and 550 kg/m3 as examples, the viscosity coefficient of the 350 kg/m3 snow
is from 1.38 to 3.75 GPa·s, and the difference is 2.37 GPa·s. The viscosity coefficient of the
550 kg/m3 snow is from 13.68 to 31.22 GPa·s, and the difference is 17.54 GPa·s. This indi-
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cates that the difference in the viscosity coefficient of snow becomes larger with increasing
density, emphasizing the need to consider multiple measurements and calculate the average
value for accurate results in practical applications. The functional relationship between
the viscosity coefficient and density is obtained by the least square method, according to
Equation (10). The relationship between the viscosity coefficient and the density of snow is
an exponential function, and the coefficient of determination (R2) is 0.78, indicating a good
correlation between both.

η = 0.075 exp(0.011ρ) (10)

where η is the viscosity coefficient of the snow sample (GPa·s) and ρ is the density of snow
(kg/m3).

This study has simplified snow as a viscoelastic material and neglected the plastic
effect of ice grains, employing a simple Maxwell model to develop constitutive models for
snow. The experimental results show that despite the presence of multiple variables such
as loading rate, temperature, and density, the elastic modulus and viscosity coefficient of
snow exhibits a significant exponential functional relationship only with density. It has
incorporated the relationship between elastic modulus and density (Equation (9)) and the
relationship between viscosity coefficient and density (Equation (10)) into the Maxwell
constitutive equation (Equation (5)). These results are applied in a constitutive model
(Equation (11)) for natural snow that considers the influence of density. The R2 values of
both fitted equations are above 0.70, indicating that the fitted curves are closer to the actual
data and the derived constitutive equations are more accurate.

.
ε =

.
σ

0.396 exp(0.007ρ)
+

σ

0.075 exp(0.011ρ)
(11)

where ρ is the density of snow in which 350, 400, 450, 500, and 550 kg/m3 are taken in the
article; σ is the compressive strength of snow (MPa); and

.
ε is the strain rate (s−1).

5. Discussion
5.1. Elastic Modulus

Indeed, the effect of various external environmental variables on the elastic modulus of
snow samples has received limited attention in previous research [33,34]. The relationship
between the elastic modulus and the loading rate obtained in this study is compared with
those in the literature [15,35,36]. It is found to be the same as previous reports from [15,36],
yet the opposite in conclusion to that obtained in [35]. Lintzén and Edeskär [36] found that
the elastic modulus of both artificial snow materials is independent of the loading rate.
They performed uniaxial compression tests on coarse-grained snow and fine-grained snow
to calculate elastic modulus at the test temperature of −10 ◦C and loading rates from 0.5 to
40 mm/min. Scapozza and Bartelt [15] conducted triaxial compression tests at −12 ◦C on
fine-grained dry snow and found the same trend. On the other hand, Kry [35] performed
uniaxial compression tests on alpine snow samples with different densities and strain rates
(250~450 kg/m3; 1 × 10−4~2 × 10−3 s−1). A weak correlation between normalized Young’s
modulus and strain rate was found, indicating that the elastic modulus of snow increases
with strain rate. This result was attributed to the relationship between the elastic modulus
of ice and the strain rate. In conclusion, this discrepancy may be attributed to differences
in the microstructure of the snow samples, as well as variations in test conditions and
methods. To compare and verify these results, standardized test methods for evaluating
the viscoelastic properties of snow are required.

Figure 8 compares the elastic modulus versus density for this and other papers [31,37–40].
The results show that the elastic modulus of data F is in the same trend as data B and
data D in exponential increase with increasing density. It is worth noting that data B, C, E,
and F represent measurements obtained via uniaxial compression test under quasi-static
conditions, where the values are relatively concentrated and range from 0.2 to 200 MPa.
According to this trend, the value of data F is smaller than that of the other three data,
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which may be because step loading includes uniaxial compression and uniaxial creep
tests. During the creep test, the stress remains unchanged, and there is a certain time
for the rearrangement of the snow grains to achieve a relatively dense spatial structure.
Compared with the normal uniaxial compression test, greater deformation is generated
under the same stress, so that the obtained elastic modulus is smaller. The data A from [37]
represent the dynamic modulus obtained by uniaxial compression tests at high strain rates
(3 × 10−3~2 × 10−2 s−1), which is much higher than the elastic modulus value of other
data. Köchle and Schneebeli [40] utilize X-ray microcomputer tomography to construct the
three-dimensional microstructure of snow and calculate the elastic modulus D using finite
element simulation, ranging from 0.3 to 1000 MPa. This value is also higher than the elastic
modulus obtained using quasi-static measurements at the same density. This is because
the quasi-static measurement of the elastic modulus inevitably takes the viscous strain into
account, which leads to the measured elastic modulus not representing the true value.
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(A) Uniaxial compression, −25 ◦C [37]; (B) triaxial compression, −20 ◦C < T < −2 ◦C [38];
(C) triaxial compression, −12 ◦C [41], published in [39]; (D) finite element simulation, the data
fit curve [40]; (E) uniaxial compression and tension, −25 ◦C < T < −12 ◦C [31]; (F) uniaxial compres-
sion under step loading, −5 ◦C (in this study).

5.2. Viscosity Coefficient

Observations of the relationship between the viscosity coefficient and the density of
snow showed an exponential growth trend, which is consistent with the results of other
studies. For example, Kojima [42] conducted a quasi-static creep test on natural snow
with densities ranging from 150 to 350 kg/m3 at −7 ◦C to −10 ◦C and found a positive
correlation between the viscosity coefficient and density. It was concluded that the viscosity
coefficient gradually increased with increasing density through triaxial compression tests
and uniaxial compression creep tests from [15,35].

The results obtained in this study show an exponential relationship between the
elastic modulus and the density of natural snow. Linear regression analysis was used to
approximately quantify whether relations existed between elastic modulus and loading
rate; however, no tendency for dependence was observed. The functional dependency of
the moduli toward temperature was also not observed. Similarly, the viscosity coefficient
also increases exponentially with increasing density, and first decreases and then increases
with decreasing temperature, but its relationship with loading rate is not clear. Based on
these findings, we use the Maxwell model as a framework to present a constitutive equation
that take into account the density.
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In order to increase and improve the reliability of the constitutive equation, field
tests of snow using uniaxial compression equipment may be conducted in future studies.
Some field penetration tests have become popular in recent years. Zhao et al. [43] used an
Improved Motor-driven Snow Penetrometer to measure the hardness of seasonal snow in
Northeast China. The influence of different variables on snow hardness was analyzed using
orthogonal tests. Zhuang et al. [44] conducted 74 penetration experiments on seasonal
snow in Harbin, China, using a modified Rammsonde. The penetration strength of snow
was determined, and its influencing factors were discussed. However, the hardness and
the compressive strength obtained from the compression test are two different mechanical
parameters and cannot be directly compared.

Snow is made up of countless ice crystals with irregular shapes and sizes. The
mechanical properties of snow and ice are similar, but there are also some differences.
The elastic modulus of ice increases with decreasing temperature [45]. However, in the
present study, the decreasing and then increasing elastic modulus of snow with decreasing
temperature was observed only at temperatures greater than 500 kg/m3. Additionally,
the tendency of the elastic modulus to change with density is only indirectly affected at
higher temperatures (−5 ◦C and −10 ◦C). The effect of temperature on the elastic modulus
of snow is relatively complex [46]. Furthermore, the test also shows that the viscosity
coefficient of snow increases exponentially with increasing density, first decreasing and
then increasing with temperature. Limited by the test conditions, the variable range set in
this test was relatively small. For example, the temperature range was only −5~−20 ◦C,
the density range was only 350 kg/m3~550 kg/m3, and the loading rate range was only
5~50 N/s. Although the results showed that the elastic modulus and viscosity coefficient
varied with temperature and density. A reasonable physical model could not be built to
describe the response of elastic modulus and viscosity coefficient to different influencing
factors. Therefore, the subsequent temperature and density range should be expanded
in an effort to explore its physical phenomenon, which is beneficial for the application of
snow in different aspects, for example, in the construction of snow roads in cold regions,
runways, and polar infrastructure. The constitutive equations are used to describe the
deformation behavior of snow under different loading conditions, which can provide
important mechanical parameters and technical support for the design, construction, and
maintenance of these snow-related projects.

6. Conclusions

In order to investigate the relationship between the elastic modulus and viscosity
coefficient of snow with temperature, density, and loading rate, uniaxial compression
tests under step loading were adopted in this study. The constitutive equations of snow
were further derived by combining the Maxwell model and the functional relationship
between viscoelastic properties and different factors. For practical engineering problems
represented by polar airport runways, this study can provide some valuable information
for their design, construction, and building. Specifically, the major findings in this study
are as follows:

1. The elastic modulus of natural snow increases exponentially with increasing density.
Temperature has a certain influence on the elastic modulus of snow. The elastic
modulus first decreases and then increases with decreasing temperature, and this
relationship is more obvious at high densities. There is no correlation between the
elastic modulus and the loading rate.

2. Density is an important factor in the change in the viscosity coefficient of snow. The
viscosity coefficient increases exponentially as density increases. The snow viscosity
coefficient is affected by temperature, that is, the viscosity coefficient first decreases
and then increases as the temperature decreases. The loading rate is weakly correlated
with the viscosity coefficient of snow.
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3. A new constitutive equation considering snow density is derived by introducing the
functional relation between elastic modulus, viscosity coefficient, and the density of
snow based on the Maxwell model.
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Abstract: The thickness and properties of brash ice are usually compared with the properties of the
surrounding level ice. The differences between these ice types are important to understand since the
consolidated brash ice layer is typically assumed to have the same properties as level ice. Therefore,
significant effort in the measurement campaign during the winters of 2020–2021, 2021–2022, and 2023
was made to develop a better understanding of the full-scale brash ice channel development. The
channels were located near the shore in the Bay of Bothnia, Luleå, Sweden. The main parameters
investigated were the snow, slush, and total ice thicknesses, including ice formed from freezing water
and from freezing slush as well as the ice microstructure and strength. To our knowledge, this is the
first paper to report the influence of snow in brash ice channels. It was observed that a significant
amount of snow covered the brash ice channels between the ship passages. After each ship passage,
the snow was submerged and formed slush-filled voids, which thereafter transformed into snow ice
(SI) clusters frozen together with columnar ice. The SI content in the brash ice and side ridges was
estimated from image analyses. The analyses showed that the snow ice content was 73% in level
ice in the vicinity of the ship channel, 58% in the side ridges of the channel, and 21% in the middle
of the test channel, whereas in the main channel, the SI contents were 54%, 43%, and 41% in each
location, respectively.

Keywords: brash ice; side ridges; snow ice; ship channels; compressive strength

1. Introduction

Navigation in fast ice usually occurs in the same ship track by ice breakers and vessels
without ice-breaking capabilities [1]. Frequently navigated ship channels are filled with
broken ice pieces called brash ice. During navigation, fragments of the brash ice pieces are
expelled sideways to form piles of broken ice under the level ice on both sides of a channel,
and these side piles are typically called side ridges. The shapes, sizes, and total ice volumes
of the broken ice depend on meteorological parameters such as freezing cumulative air
temperatures [2–4], the frequencies and speeds of navigation, vessel geometries, and ice
strengths [5,6].

The physical and mechanical brash ice properties are often presumed to be similar to
level ice properties, for example, when estimating the growth of brash ice (e.g., density)
or when simulating a vessel’s performance in broken or consolidated brash ice (e.g., ice
strength). These assumptions may not be accurate for all situations, and only a few studies
have reported full-scale measurements on brash ice properties, e.g., [7,8]. In addition to
the most studied effects such as air temperature and frequency of navigation, other effects,
including radiation or snowfall, may also influence the brash ice development in ship
channels [9,10].
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The incoming snow has a dual effect on the ice growth. Firstly, snow has low con-
ductivity and insulates the surface of ice from the atmosphere, thus decreasing the ice
growth rate [11]. Secondly, snow transforms to slush when submerged, which freezes to
snow–ice [12–14].

Natural flooding of the ice’s surface occurs when two main conditions are met. Firstly,
the snow mass exceeds the buoyancy of the ice, and, secondly, thermal or mechanical cracks
are present [15–17]. During flooding, the bottom of the snow submerges below the water
level, forming a fully saturated slush layer. Capillary pressure will force some water to rise
in the snow pores and form a partly saturated slush layer above the water level [18–21].
Slush is a mix of fresh or saline water, snow melt, and snow crystals, which have water-
and air-filled pores. Slush freezes into snow ice, which has granular equiaxed crystals on a
random direction of the c-axis [22].

There are some results on natural snow–slush–snow ice phase changes in the case
of level ice [23,24], and, to our knowledge, the effect of snow on deformed ice, particu-
larly in brash ice formed in frequently navigated ship channels, has not been previously
addressed [8]. In comparison to fast sea ice, river and lake ice is not always exposed to
mechanical deformation; the level ice adjacent to ship channels is exposed to frequent
mechanical breaking during navigation. Thus, the cracks formed after each passage can
enhance the flooding of adjacent level ice and increase the thickness of the level ice.

The main objective of this study was to develop a better understanding and investigate
the influence of incoming snow on the properties of level ice adjacent to ship channels, as
well as its contribution to the formation of brash ice and side ridges. This is a descriptive
article that aims to further the insight into the processes related to brash ice formation and
growth in ship channels, as well as to better understand the impact of navigation on the
surrounding level ice. To our knowledge, this is the first paper to report the influence of
snow ice in brash ice channels. Different research activities, including field observations
and measurements in four different channels, were conducted during three consecutive
winters in the fast sea ice in the Bay of Bothnia. These activities provided insight into
different aspects of brash ice formation and development, as well as into snow–slush–snow
ice transformation phenomena in level ice and brash ice channels. Image analyses of brash
ice, ridge ice, and level ice microstructures were carried out to investigate and determine
their properties and differences in snow–ice contents. The microstructures, microporosities,
and strengths of the ice from the channel and level ice were analyzed and compared. The
following chapter details the field investigations, laboratory measurements, and analytical
methods applied. The results and analysis are divided into two chapters. The first one
(Section 3) discusses the snow–slush–snow ice transformation process in level ice adjacent
to the ship channels, and the second chapter (Section 4) investigates and discusses the snow
contribution in the ship channels. Finally, the main results and impacts of the paper are
summarized in the conclusions.

2. Measurements and Methods

The following subsections present the research location, the in situ research activities,
and the laboratory as well as analytical methods that were applied to estimate the snow ice
content for different ice types.

2.1. Study Site

This research was carried out in the Bay of Bothnia in the Swedish coastal fast ice
between the Icebreaker and Luleå ports, Luleå, Sweden. The Bay of Bothnia consists of
brackish water, and, in this particular location, the ice salinity measured in the winter
season was zero due to the Luleå River discharge. Luleå Airport’s weather station is located
approximately 3 km from the research site; see Figure 1.

A channel was created and maintained by Tug Viscaria to be used exclusively for
research purposes for two consecutive winters: January–March 2021 and December 2021–
March 2022. These channels were located 200 m from the shoreline and are referred to
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throughout the paper as the test channels TCh01 and TCh02. Another frequently navigated
channel, which is established yearly and used by icebreakers and merchant vessels, was
located 400 m from the shore and 200 m apart from the test channels. We refer to it as the
main channel (MCh), and the brash ice properties from the main channel were studied
during 2021 and 2023. Meteorological data, including the air temperature, shortwave
radiation, precipitation, snowfall, humidity, and wind, were continuously recorded by
the meteorological weather station of SMHI (Swedish Meteorological and Hydrological
Institute) in Luleå Airport. The air temperatures and snow thicknesses for the winters
2020–2021, 2021–2022, and 2022–2023 are presented in Figure 2.

Water 2023, 15, x FOR PEER REVIEW 3 of 22 
 

 

March 2022. These channels were located 200 m from the shoreline and are referred to 

throughout the paper as the test channels TCh01 and TCh02. Another frequently navi-

gated channel, which is established yearly and used by icebreakers and merchant vessels, 

was located 400 m from the shore and 200 m apart from the test channels. We refer to it as 

the main channel (MCh), and the brash ice properties from the main channel were studied 

during 2021 and 2023. Meteorological data, including the air temperature, shortwave ra-

diation, precipitation, snowfall, humidity, and wind, were continuously recorded by the 

meteorological weather station of SMHI (Swedish Meteorological and Hydrological Insti-

tute) in Luleå Airport. The air temperatures and snow thicknesses for the winters 2020–

2021, 2021–2022, and 2022–2023 are presented in Figure 2. 

 

Figure 1. The locations of the research site. The test (TCh) and main channels (MCh) are shown with 

orange and blue location markers, and the SMHI meteorological station at Luleå Airport is shown 

with a black location marker. Modified optical (Sentinel) satellite image. 

 

Figure 2. Air temperatures (TA in °C), and snow thicknesses (HS in m) were recorded at the SMHIs 

weather station in Luleå. 

2.2. Field Site 

The field study was divided into four main activities: 1) observations of the test chan-

nels’ development instantly after each ship passage through images and video recordings; 

2) cross-section measurements of the test channels (TCh01 and TCh02); 3) thickness meas-

urements of the unbroken level ice in the shoreside of the test channels; and 4) mechanical 

and material property analyses of cores sampled from level ice, brash ice, and side ridges 

Figure 1. The locations of the research site. The test (TCh) and main channels (MCh) are shown with
orange and blue location markers, and the SMHI meteorological station at Luleå Airport is shown
with a black location marker. Modified optical (Sentinel) satellite image.

Water 2023, 15, x FOR PEER REVIEW 3 of 22 
 

 

March 2022. These channels were located 200 m from the shoreline and are referred to 

throughout the paper as the test channels TCh01 and TCh02. Another frequently navi-

gated channel, which is established yearly and used by icebreakers and merchant vessels, 

was located 400 m from the shore and 200 m apart from the test channels. We refer to it as 

the main channel (MCh), and the brash ice properties from the main channel were studied 

during 2021 and 2023. Meteorological data, including the air temperature, shortwave ra-

diation, precipitation, snowfall, humidity, and wind, were continuously recorded by the 

meteorological weather station of SMHI (Swedish Meteorological and Hydrological Insti-

tute) in Luleå Airport. The air temperatures and snow thicknesses for the winters 2020–

2021, 2021–2022, and 2022–2023 are presented in Figure 2. 

 

Figure 1. The locations of the research site. The test (TCh) and main channels (MCh) are shown with 

orange and blue location markers, and the SMHI meteorological station at Luleå Airport is shown 

with a black location marker. Modified optical (Sentinel) satellite image. 

 

Figure 2. Air temperatures (TA in °C), and snow thicknesses (HS in m) were recorded at the SMHIs 

weather station in Luleå. 

2.2. Field Site 

The field study was divided into four main activities: 1) observations of the test chan-

nels’ development instantly after each ship passage through images and video recordings; 

2) cross-section measurements of the test channels (TCh01 and TCh02); 3) thickness meas-

urements of the unbroken level ice in the shoreside of the test channels; and 4) mechanical 

and material property analyses of cores sampled from level ice, brash ice, and side ridges 

Figure 2. Air temperatures (TA in ◦C), and snow thicknesses (HS in m) were recorded at the SMHIs
weather station in Luleå.

2.2. Field Site

The field study was divided into four main activities: (1) observations of the test chan-
nels’ development instantly after each ship passage through images and video recordings;
(2) cross-section measurements of the test channels (TCh01 and TCh02); (3) thickness mea-
surements of the unbroken level ice in the shoreside of the test channels; and (4) mechanical
and material property analyses of cores sampled from level ice, brash ice, and side ridges
from the first test channel; and the main channels during 2021 and 2023 were investigated
in LTU’s cold laboratory.
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2.2.1. Observation in the Test Channel

The first field activity included brash ice surface and underwater morphology obser-
vations after each ship passage in test channels. A GoPro camera was used for underwater
observations and recordings. These observations provided insights into the different factors
that influence brash ice formation and growth.

2.2.2. Brash Ice Thickness Measurements

The thicknesses of brash ice, side ridges, and level ice up to a distance of 10 m from the
channel edge were measured along the cross-section of the channel using a ruler stick with
a protrusion in the end. Holes were drilled every 1 m along the cross-section using an auger
drill with a diameter of 50 mm. Table 1 summarizes the number of ship passages, dates,
and times when the cross-section measurements were carried out. This article discusses
only the results of level ice measurements from the vicinity of TCh01. The cross-section
results are further analyzed and will be reported in two companion articles. The first article
will discuss the brash ice macroporosities and piece size distributions from three brash
ice channels located in Luleå. The second article will validate various models for brash
ice growth.

Table 1. The date and time of the breaking events and field measurement.

Test Chanel #01

BE BE Date BE Time Cross-Section Measurements Level Ice Measurements
1 2021-01-14 23:00 2021-01-23/26/30 -
2 2021-02-01 10:00 - -
3 2021-02-02 07:00 - -
4 2021-02-03 12:00 2021-02-06/08 -
5 2021-02-10 21:00 - -
6 2021-02-11 11:00 2021-02-13/15/20 -
7 2021-02-21 10:00 2021-02-22/24 2021-02-27
8 2021-03-03 23:00 2021-03-05/06/09/10 -
9 2021-03-12 20:30 2021-03-15/17/18 2021-03/04-13/23/27/01/10

Test Chanel #02

1 2021-12-10 21:30 - 2021-12-12/18
2 2021-12-21 17:30 2021-12-23/27 -
3 2021-12-27 16:30 - -
4 2022-01-05 05:00 2022-01-11 -
5 2022-01-12 10:30 2022-01-16 2022-01-15
6 2022-01-20 00:00 2022-01-22 -
7 2022-01-28 08:30 2022-02-01 2022-01/02-29/05
8 2022-02-06 09:45 2022-02-16 2022-02-12/19
9 2022-02-19 18:00 2022-02-23 -

10 2022-03-06 05:00 2022-03-09 2022-03/04-06/12/19/03/10

2.2.3. Level Ice Measurements

The thicknesses of the level ice on the shoreside of channels TCh01 and TCh02 were
measured in two consecutive winters: February–April 2021 and December 2021–April 2022;
see Table 1. During the first winter, the level ice thickness measurements were placed in
a grid of 30 m along the channel’s length and 20 m towards the shore, starting from a
minimum distance of 5 m from the channel edge. Approximately 15 cores were drilled
each time, as shown in Figure 3. In the second winter, the measurements were carried out
in a grid of 60 m along the channel’s length and 40 m towards the shore. Twelve cores were
drilled each time.

On-site measurements included the snow thickness, followed by drilling an ice core
of 200 mm in diameter. The snow ice, congelation ice, and total level ice thicknesses
were investigated and recorded for each core. In addition, the freeboard, slush, and ice
thicknesses were measured from all drilled holes. The thickness measurements were carried
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out with a millimeter-scale ruler. The measurement technique’s error was below 5 mm,
whereas discrepancies could be present due to spatial thickness variations in slush, snow,
or ice. This field study aimed to detect any possible slush formation due to flooding or
melting and its subsequent freezing to snow ice.
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Figure 3. The study location for the investigation level ice was adjacent to the test channel (TCh01
27 March 2021), where cores were examined from a test grid, starting approximately 5 m from the
channel edge, and extending up to 30 m towards the shoreline. Cores were also collected along the
channel direction for a distance of 30 m. The spacing between cores was 5 m.

2.2.4. Brash Ice and Level Ice Cores

The final group of activities involved sampling ice cores to investigate and analyze the
fractions of snow ice and congelation ice. Two brash ice cores were sampled from TCh01 on
the 8 February 2021, and two side ridge cores were sampled on the 23 March 2021. On the
6 March 2021, five cores were sampled at different locations along half of the cross-section
of TCh01. The first core was drilled in the middle of the channel, the second was drilled
between the mid-channel and the edge, the third core was drilled at the edge of the channel,
and the fourth was drilled in the ridge between the edge and the level ice. The fifth core
was drilled in the level ice near the ship channel.

On the 7 March 2021, nine cores were drilled between the test and main channels,
aiming to observe the thickness of snow ice between the two channels. Additionally, cores
were sampled along the side ridge of the main channel. Three cores were sampled in the
level ice (LI) between the test and main channels, three cores were sampled in the vicinity of
the ridge, and the remaining three cores were sampled along the ridge of the main channel.
In each position, the samples were spaced 6 m apart from each other and equidistant from
the edge of the main channel. Immediately after sampling, holes were drilled through
the thickness of each ice core, and a calibrated thermocouple was used to measure the ice
temperature. The temperature profiles of these nine cores are shown in Figure 4.

In addition, 10 cores were sampled along half the cross-section of the main channel
on the 25th and 26th of February 2023. The cores were transported to Luleå University of
Technology and stored in a freezing box with a constant temperature of −20 ◦C. They were
investigated in the cold laboratory during the summer of 2021 and the spring of 2023.
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Figure 4. Temperature profiles of the ice cores were sampled on the main channel on 7 March 2021.
“LI” indicates level ice samples between the test and main channels; “LI R” indicates the cores from
the vicinity of the main channel’s ridge; the ridge cores are denoted with “R”. Three ice cores were
sampled at each location, spaced 6 m from each other (numbers 1–3).

2.3. Methods

This section describes the methods used to determine the ice sample’s snow ice content,
microporosity, density, and uniaxial compressive strength.

2.3.1. Snow Ice Content

Thin ice sections ranging from 2 to 10 mm were observed under cross-polarized light
as well as against dark and bright backgrounds using plain transmitted light. The crystal
structure of ice can be identified under cross-polarized light, whereas the pores and pore
sizes can be observed against a dark or bright background [25]. A total of 28 cores from the
test and main channels were analyzed to determine the quantity of granular ice (snow ice)
based on their microstructure. In the case of level ice cores, the thickness ratios between
snow−ice and the total core thickness were used to quantify both snow−ice and columnar
ice. Snow−ice (SI) resulting from the freezing wet snow (slush) is opaque compared to the
transparent ice formed by freezing water [25]. Different terms are used to characterize ice
formed from freezing, such as columnar ice, which refers to its crystallinity; congelation
ice, which refers to freshwater ice [22]; and clear ice, which refers to the transparency of
freshwater ice with low porosity. The notation CI is used for all these terms.

The SI could not be accurately estimated as a ratio of thicknesses in the ridge and
brash ice samples due to their mixed characteristics. Instead, thin sections of ice were used
to quantify the snow−ice content. Images of thin sections recorded under cross-polarized
light, and under dark and bright backgrounds, were analyzed with ImageJ software. The
boundaries of the thin ice sections and the boundaries of the snow−ice clusters were
manually marked, and their surface areas were examined by the software. The SI content
was calculated by determining the ratio between the surface area of the SI and the total
surface area of the thin ice section. When analyzing images captured under cross-polarized
light, snow ice was identified by its fine granular crystals [22]. On the other hand, for
images captured with a dark and bright background, snow ice was distinguished by its
fine round air pores [26]. Figure 5 provides an example of image analysis, showing a thin
ice section from the channel’s middle photographed under plain-transmitted light and
cross-polarized light. Trapped round air micropores, as depicted in Figure 5, typically form
when slush freezes to snow ice and indicate the presence of SI. Transparent ice with a low
pore concentration, as seen in Figure 5, can be defined as CI.

162



Water 2023, 15, 2360Water 2023, 15, x FOR PEER REVIEW 7 of 22 
 

 

 

Figure 5. Microstructure of brash ice sampled in the middle of the test channel (TCh01) on 8 Febru-

ary 2021 under plain transmitted light and cross-polarized light. The surface area of snow ice is 

underlined with a solid blue line. 

2.3.2. Physical and Mechanical Properties 

Cylindric samples with maximum sizes of 70 mm in diameter and 170 mm in length 

were horizontally sampled from the 200 mm ice cores. The volume (V) of each cylinder 

was determined using the measured length and diameter. The densities of the cylindrical 

samples were calculated using the volume–mass method [27]. The microporosity (p) of 

each cylinder, with a volume V and a measured mass mm, was estimated by comparing 

the measured and the theoretical mass (mth) assuming zero salinity and a density (ρpi) of 

pure ice equal to 917 kg m−3 [28].  

p= 1-(
mm

Vρpi

)  (1) 

A total of 23 cylinders from TCh01 and 22 cylinders from MCh 2021 were subjected 

to unconfined uniaxial compressive strength tests at nominal strain rates of 10−3 s−1. Ad-

ditionally, 32 cylinders from MCh 2023 were tested at nominal strain rates equal to 10−4 

s−1. The setup for the unconfined uniaxial compression tests and the calibration of the de-

formation system were previously described in [8] and [29]. Immediately after carrying 

out the compressive strength tests, the temperature of each ice cylinder was measured 

using a calibrated thermocouple. 

3. Level Ice Results and Discussion 

Observations and results from the snow–slush–snow ice transformation in level ice 

adjacent to the test channels are presented and discussed in the following sub-sections. 

3.1. Flooding of Level Ice 

Earlier studies have indicated that natural flooding does not occur if the ice does not 

have thermal or mechanical cracks or high porosity, even if the snow cover is thick enough 

to allow the water to rise at the snow/ice interface [15–17,30]. However, the flooding of the 

level ice adjacent to ship channels was influenced by both the cracks formed from the ship 

passages and the water pushed onto the ice during each ship passage. In the first channel 

(TCh01), instances of flooding were observed after the second, third, fourth, seventh, and 

eight BEs. 

Figure 6 illustrates a set of photographs that clearly demonstrate the formation of 

slush on the level ice next to TCh02. For example, the first and second images show that a 

9 cm snow layer transformed into a slush layer with 3 cm of slush below the water level 

and the snow thickness significantly decreased after the slush froze into SI. In TCh01, after 

the second BE, the submerged slush layer was 5 cm, and the slush formed above the water 

level due to capillarity was 3 cm, resulting in a total slush thickness of 8 cm. Previous 

Figure 5. Microstructure of brash ice sampled in the middle of the test channel (TCh01) on
8 February 2021 under plain transmitted light and cross-polarized light. The surface area of snow ice
is underlined with a solid blue line.

2.3.2. Physical and Mechanical Properties

Cylindric samples with maximum sizes of 70 mm in diameter and 170 mm in length
were horizontally sampled from the 200 mm ice cores. The volume (V) of each cylinder
was determined using the measured length and diameter. The densities of the cylindrical
samples were calculated using the volume–mass method [27]. The microporosity (p) of
each cylinder, with a volume V and a measured mass mm, was estimated by comparing the
measured and the theoretical mass (mth) assuming zero salinity and a density ($pi) of pure
ice equal to 917 kg m−3 [28].

p = 1 − (
mm

V$pi
) (1)

A total of 23 cylinders from TCh01 and 22 cylinders from MCh 2021 were subjected
to unconfined uniaxial compressive strength tests at nominal strain rates of 10−3 s−1.
Additionally, 32 cylinders from MCh 2023 were tested at nominal strain rates equal to
10−4 s−1. The setup for the unconfined uniaxial compression tests and the calibration of the
deformation system were previously described in [8,29]. Immediately after carrying out
the compressive strength tests, the temperature of each ice cylinder was measured using a
calibrated thermocouple.

3. Level Ice Results and Discussion

Observations and results from the snow–slush–snow ice transformation in level ice
adjacent to the test channels are presented and discussed in the following sub-sections.

3.1. Flooding of Level Ice

Earlier studies have indicated that natural flooding does not occur if the ice does not
have thermal or mechanical cracks or high porosity, even if the snow cover is thick enough
to allow the water to rise at the snow/ice interface [15–17,30]. However, the flooding of the
level ice adjacent to ship channels was influenced by both the cracks formed from the ship
passages and the water pushed onto the ice during each ship passage. In the first channel
(TCh01), instances of flooding were observed after the second, third, fourth, seventh, and
eight BEs.

Figure 6 illustrates a set of photographs that clearly demonstrate the formation of
slush on the level ice next to TCh02. For example, the first and second images show that a
9 cm snow layer transformed into a slush layer with 3 cm of slush below the water level and
the snow thickness significantly decreased after the slush froze into SI. In TCh01, after the
second BE, the submerged slush layer was 5 cm, and the slush formed above the water level
due to capillarity was 3 cm, resulting in a total slush thickness of 8 cm. Previous laboratory
studies have indicated that the capillarity is influenced by the snow permeability, crystal
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size, and snow density [21,31]. It was found that the capillarity increase was higher for fine
pores composed of high-density snow and small round crystals [19].
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Figure 6. The level ice in the vicinity and adjacent to the channel (TCh02) was flooded after the ship
passages. A 1 BE shows the adjacent level ice flooded instantly after the first ship passage, whereas
B 2 BE shows the level ice before the second ship passage, with the slush frozen to snow ice.

Figure 7a shows the measurements of the individual slush thicknesses on the level ice
near and adjacent to both ship channels (TCh01 and TCh02). This graph aims to illustrate
the potential for slush formation and the action of capillarity. The total thickness of slush
(HSL) and the thickness of slush above the water level (HSLa) are plotted against the water
level on top of the ice (WL), which, in this case, is positive if the ice is flooded and the
freeboard (FB) or ice top is negative (underwater). The increase in HSL correlates well
with the increase in WL, as shown by the linear regression function. However, there is
no correlation between HSLa, formed due to capillarity, and the WL. On average, HSla
was 4 cm with a standard deviation of 1.2 cm. The scatter in the data may be attributed to
measurement errors, such as measuring the slush thicknesses before reaching equilibrium
between WL and HSLa.
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Figure 7. (a) The total slush thickness (HSL) and the slush thickness formed above the water line
(HSLa) are plotted against the water level (WL). (b) The plot shows the slush thickness before drilling
or slush thickness in voids (BD and V) and the slush thickness after drilling (AD).

The saturation of snow above the water level differs from the submerged snow and
varies depending on the height of the capillarity rise [19]. As a result, the slush below and
above the water line has different physical properties. It is also anticipated that the freezing
of slush above and below the water line will form snow–ice with different porosities and
densities [12].

Figure 7b differentiates between the sum of the slush layer before drilling, including
unfrozen slush voids measured during drilling (BD), and the total slush formed after
drilling (AD). In TCh02, average slush layer thicknesses of 7 cm, 6 cm, and 6 cm were
measured on the adjacent level ice after the first, fifth, and tenth BEs. These slush thickness
values specifically refer to the slush layer observed on level ice before drilling or to unfrozen
slush voids measured after drilling. After the eighth and ninth BEs, additional slush
was formed on level ice after drilling compared to the slush naturally formed before
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drilling. This suggests that snow mass and ice buoyancy were not in equilibrium, even
in the presence of mechanical cracks. One reason could be the rapid freezing of the
cracks compared to reaching an equilibrium between the ice buoyancy and snow mass.
Additionally, the speed at which flooding progresses spatially at the snow/ice interface
may be another factor [20].

The mass balance calculations between snow mass and ice buoyancy identified four
flooding occasions in the first winter, which lasted from one to several days; see Figure 8.
Two of these flooding events coincided with the measured slush thickness, occurring
between the first and second BEs and after the seventh BE. Slush was also measured after
the fifth, sixth, and eight BE, even though flooding was not detected in the buoyancy
calculations. Seven flooding instances were detected in the second winter. According to the
model, the sixth flooding event following the seventh ship passage lasted for 10 days and
resulted in an 11 cm-thick slush layer.
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Figure 8. The measured and estimated slush thicknesses were obtained (HSL and HSLe) from the
mass balance equation between snow load and ice buoyancy for TCh01 (a) and TCh02 (b). The time
of the breaking events (BE) is illustrated with red crosses.

3.2. Snow–Slush–Snow Ice Transformation

The measured snow thicknesses in both winters did not comply with the land snow
thickness measured by SMHI, which was assumed to represent the incoming snowfall.
Figure 9 illustrates the development of the difference between the measured snow thick-
nesses on level ice and the land snow thickness (∆HS = HS SMHI–HSm) over time. Several
factors were observed that could contribute to this difference. Firstly, the varying wind
actions on the measurement locations may lead to the redistribution of snow, causing un-
even snow thickness compared to the original snowfall position [32]. However, no extreme
wind actions such as dune formations were observed in this study location. Secondly, the
flooding of the snow/ice interface can result in partial melting of snow due to the water
temperature being slightly above the freezing point. Consequently, snowmelt and slush
formation can create a snow–ice layer with a reduced thickness compared to the submerged
snow thickness. Lastly, superimposed ice can form at the snow/ice interface during spring
when the snow melts due to incoming radiation during the day and refreezes at night. Rain
precipitation can also form superimposed ice. We observed the melting of 7 cm of snow and
the formation of 3.5 cm of superimposed ice after March 20th (TCh01). Previous studies on
fast sea ice in Svalbard have reported a lower superimposed ice thickness, such as 23 cm
of snow transformed to 6 cm of ice [33]. In the Baltic Sea, 15 cm of snow transformed into
7 cm of ice [34]. This literature result is consistent with our observations.

During the first winter, the SI measurements were taken after snow melting had
already occurred, as indicated by a decrease in ∆HS, as the snow was melting on both
land and ice. Snow ice reached its maximum thickness (38 cm) on the 27th of March and
thereafter started to melt. In the second winter, the ∆HS remained higher than the HSI until
the melting of snow and SI began after the 3rd of April.
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Figure 9. The difference in the snow thickness (∆HS) between the incoming snow thickness (HS SMHI)
and measured snow thickness on ice (HSm) during the first (a) and the second winters (b).

Figure 10a illustrates the relationship between the snow–ice thickness and the reduc-
tion in the snow thickness (∆HS). The slope of regression line, 0.09, indicates that from
the total snow thickness reduction, about 9 cm of snow did not transform into snow–ice.
Figure 10b shows that on average, 70% of ∆HS and 50% of the incoming snowfall trans-
formed into snow–ice. The remaining part of snow either melted when submerged or was
blown away by the wind. However, these processes were not investigated in this study.
A previous study on snow–ice formation on lake ice reported similar results [24], whereas
another study on lake ice showed that a third of the initial snow layer transformed into
snow–ice [23].
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Figure 10. (a) The difference (∆HS) in the incoming (HS SMHI) and measured (HS) snow thicknesses vs.
the measured snow ice thickness (HSI); (b) the time-dependent ratios of HSI/∆HS and HSI/HS SMHI.

In the first winter, the measured thickness of SI was twice the CI, with a maximum
measured thicknesses of 38 and 19 cm, respectively. The SI fraction ranged from 64 to 75%
of the total level ice thickness on 10 April 2021, as shown in Figure 11a. In the second
winter, the SI fraction reached 50% of the total level ice thickness on April 3rd, as shown in
Figure 11b. Previous studies on snow ice formation in lakes in Finland have reported SI
content ranging between 10 and 43% during the winters of 1993–1999 [23], and between 30
and 50% in the winters of 2009–2012 [16].
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Figure 11. Congelation ice (CI) and snow ice (SI) fractions of total level ice adjacent to the ship
channels TCh01 (a) and TCh02 (b).

4. Brash Ice Results and Discussion

In this section, we present and analyze a series of photographs that exemplify the
snow’s influence on the formation of the brash ice channel. Furthermore, we examine the
snow ice content, the brash ice growth history, and physical and mechanical properties
associated with it.

4.1. Snow–Slush–Snow Ice Transformation

A series of photographs from TCh02 are used to illustrate and discuss the development
and transition in the test channels throughout an increasing number of breaking events,
as shown in Figure 12. Various snow-related phenomena were observed, including snow
accumulation between ship passages, snow submergence between ice pieces, and snow
compression at the edges of the channel. The average snow thickness on the cross-section
of the channel (HS BI), excluding the snow accumulated on the side ridges, the snow
accumulated on level ice in the vicinity of the test channel (HS LIv), and the average snow
thickness on the adjacent level ice (HS LIa), were measured from one to several days before
any breaking event. The results of these measurements are summarized in Table 2.

Table 2. The date and time of the breaking events and field measurement.

Test Chanel #01
Nr. BE HS BI (cm) HS SR (cm) HS LIv (cm)

2 14 16 16
5 1 16 15
7 14 18 16
8 29 34 29
9 5 16 9

Test Chanel #02

2 - -
3 4 6 7
5 5 11 9
6 0 9 6
7 0 1 1
8 5 5 5
9 14 18 18
10 6 28 23

In the first channel (TCh01), the average thickness of snow submerged in the channel
during any breaking event varied from 1 to 29 cm. Despite receiving a significant amount of
snowfall after the seventh BE, as much as 29 cm, the surface of the channel after the eighth
BE was filled with both slush and open water pools. During the eighth ship passage, the
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slush appeared to be in a lower content compared to the slush observed after the seventh
or ninth BEs. This reduction in the slush content was likely due to melting caused by air
temperatures above 0 ◦C.

In TCh02, the first breaking event occurred on the 10th of December. After the ship’s
passage, the channel was predominantly filled with slush and water and the broken ice
pieces were not visible on the surface of the channel, as shown in Figure 12. The channel
was snow covered before the third, fifth, eighth, ninth, and tenth BEs. After the eighth
BE, there was a significant accumulation of snow that acted as insulation and slowed the
freezing of the channel, despite low air temperatures.
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Figure 12. An overview of the ship channel (TCh02) development with breaking events (BE). The
notation “B 2 BE” implies before the second breaking event and “A 1 BE” refers to after the first
breaking event.

4.2. Snow-Ice in the Ship Channels

A series of photographs captured from the surface and underwater in the ship chan-
nels after different breaking events are illustrated in Figures 13 and 14. These images
demonstrate that the brash ice pieces within the channel and along its edges consisted of
both congelation ice and snow ice. Additionally, the images reveal submerged slush and
snow clusters that were partly submerged and partly above the water line. This indicates
the role of snow in the ice formation, as it transforms into slush and subsequently freezes
to snow–ice. Similar types of snow–ice clusters were previously observed in a brash ice
channel with similar characteristics and specifications [35]. The SI pieces merged into a
cohesive layer of brash ice as water froze in between. For distances of several centimeters
between the brash ice pieces the ice grew in a lateral direction, see Figure 13c. This lateral
growth is likely initially driven by the internal heat stored within the ice pieces, as pre-
viously hypothesized for the pressure ridge consolidation [36,37]. The earlier models of
brash ice growth neglected this lateral growth [9,38,39].

168



Water 2023, 15, 2360

Water 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

previously hypothesized for the pressure ridge consolidation [36,37]. The earlier models 

of brash ice growth neglected this lateral growth [9,38,39]. 

Figure 14 displays a series of underwater photographs captured on the edge of TCh01. 

The figures show that instantly after the submergence, the original ice blocks can consist of CI 

and SI. However, as CI grows around the original ice blocks, it becomes challenging to dis-

cern the interface between SI and CI from underwater images. Clusters of submerged 

snow ice frozen together with CI are evident in Figure 14a,c. Figure 14a illustrates ice 

crystal clusters in the form of slush, which were also previously observed and reported 

by [35]. Snow ice originating from submerged level ice is given in Figure 14b,d. 

 

Figure 13. A set of photographs illustrating snow–ice (SI), congelation ice (CI), and slush on the 

surface of the first channel (TCh01). The orange arrow highlights the SI, and the blue arrow high-

lights the CI. In the first and second figures (a,b), pools of submerged slush between ice pieces are 

also evident. 

 

Figure 14. Sub-surface images were recorded at 30 cm depth in the side ridge of TCh01 after the 

sixth BE (a,b); after the ninth BE (c,d). 

4.3. The History of Brash Ice Formation 

The microstructure of ice depends on the ice development process and can indicate 

different formation phenomena. In the current section, the brash ice microstructure is an-

alyzed and the history of the brash ice formation is discussed. 

4.3.1. Ship Channel (TCh01) 

Figure 15 presents the microstructure of two cores sampled from the side ridge of the 

first channel (TCh01) denoted as R1 and R2. The top of the first core consists of approxi-

mately 26 cm of snow−ice. The snow−ice having different layers distinguished by the 

transitional zones may indicate various stages of snow−ice formation. The SI on the CI of 

the first core may have been formed during four separate flooding occasions, as indicated 

by the buoyancy estimations detecting four flooding occasions. In addition, two SI clusters 

were mixed with CI. In Figure 15, the SI layers or clusters are highlighted with orange 

arrows, and the spaces between them represent either a transition zone or thicker layers 

of CI. The second core initially consisted of SI, followed by CI with horizontal growth 

directions, which is common growth pattern observed in lake ice [40]. Similar big colum-

nar crystals were earlier observed in a similar brash ice channel type and may be attributed 

to a slow growth rate [35]. 

Figure 16 shows the cross-section profile of TCh01 on March 6, 2021, along with the 

microstructure of three ice cores sampled on the same day. TCh01 (R) was sampled at the 
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Figure 13. A set of photographs illustrating snow–ice (SI), congelation ice (CI), and slush on the
surface of the first channel (TCh01). The orange arrow highlights the SI, and the blue arrow highlights
the CI. In the first and second figures (a,b) pools of submerged slush between pieces are present,
whereas lateral growth is also evident in the last image (c).
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BE (a,b); after the ninth BE (c,d).

Figure 14 displays a series of underwater photographs captured on the edge of TCh01.
The figures show that instantly after the submergence, the original ice blocks can consist of
CI and SI. However, as CI grows around the original ice blocks, it becomes challenging to
discern the interface between SI and CI from underwater images. Clusters of submerged
snow ice frozen together with CI are evident in Figure 14a,c. Figure 14a illustrates ice
crystal clusters in the form of slush, which were also previously observed and reported
by [35]. Snow ice originating from submerged level ice is given in Figure 14b,d.

4.3. The History of Brash Ice Formation

The microstructure of ice depends on the ice development process and can indicate
different formation phenomena. In the current section, the brash ice microstructure is
analyzed and the history of the brash ice formation is discussed.

4.3.1. Ship Channel (TCh01)

Figure 15 presents the microstructure of two cores sampled from the side ridge of
the first channel (TCh01) denoted as R1 and R2. The top of the first core consists of
approximately 26 cm of snow−ice. The snow−ice having different layers distinguished
by the transitional zones may indicate various stages of snow−ice formation. The SI on
the CI of the first core may have been formed during four separate flooding occasions,
as indicated by the buoyancy estimations detecting four flooding occasions. In addition,
two SI clusters were mixed with CI. In Figure 15, the SI layers or clusters are highlighted
with orange arrows, and the spaces between them represent either a transition zone or
thicker layers of CI. The second core initially consisted of SI, followed by CI with horizontal
growth directions, which is common growth pattern observed in lake ice [40]. Similar big
columnar crystals were earlier observed in a similar brash ice channel type and may be
attributed to a slow growth rate [35].

Figure 16 shows the cross-section profile of TCh01 on 6 March 2021, along with the
microstructure of three ice cores sampled on the same day. TCh01 (R) was sampled at the
side ridge, TCh01 (M−E) was sampled between the mid-channel and the edge, and TCh01
(M) was sampled from the middle of the brash ice channel. Both brash ice cores, measuring
40 cm and 62 cm in thickness, consisted of SI clusters mixed with congelation ice. The
random orientations and varying crystal sizes of CI were a result of the frequent freezing
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and breaking processes. An attempt was made to identify the boundaries between different
merged brash ice pieces in the first 30 cm of the middle−edge core by considering the
direction of the crystal growth. The presumed boundaries are shown with solid blue lines.
However, it is harder to analyze and define the boundaries between ice pieces from the
second brash ice core, as the CI fraction is higher, with inconsistent growth directions, which
ultimately indicates the presence of small brash ice pieces that have been frozen together.
Previous studies on other deformed ice structures have also observed and reported similar
mixed granular and columnar crystalline structures [8,29,41,42].
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Figure 15. The microstructure of two cores (R1 and R2) sampled on the side ridge of TCh01 on
23 March 2021. The orange arrows distinguish different snow ice layers, and the blue arrows indicate
the thickness of the thin sections.

4.3.2. Main Channel (MCh2021)

Nine cores were sampled on 7 March 2021: three cores in the level ice (LI) between
the test and main channels, three cores at the very beginning of the ridge (LI-R), and three
additional cores at the side ridges (R). The distance between LI-R and R was 8 m. The
sampling positions and the microstructure of one core from each position are illustrated
in Figure 17.

The level ice cores sampled between the two channels consisted of CI with vertically
elongated crystals, similar to freshwater ice seeded by granular ice [43]. A thick layer of
SI had formed due to extensive flooding, made possible by mechanical cracks formed at
each ship passage in both channels. Eight different SI layers were identified, suggesting
eight flooding incidents during the winter season. The orange arrows in the level ice
microstructure distinguish the different SI layers, see Figure 17. However, the presence
of eight layers may also indicate four flooding scenarios. This hypothesis is supported
by the capillarity rise above slush after each flooding event, resulting in two SI layers
from one flooding [12,19]. This can be explained by considering that the slush below
and above the water line have different porosities and ice crystal concentrations, leading
to distinguishable microstructures and SI characteristics. A detailed laboratory study is
required to fully understood this process. The mass balance calculations of snow load and
ice buoyancy identified four possible flooding events.

The ice core sampled at the beginning of the ridge (LI R1) consisted of a layered
structure of SI and CI. Surprisingly, the submerged SI layers were homogenous, but at
different depths. Approximately 23 cm of SI had formed on top of CI, originating from
surface flooding. The subsequent 32 cm of CI has formed from bottom growth. This two-
layered structure is believed to be the original level ice. However, beneath this formation,
there was likely a brash ice piece consisting of 4 cm of SI, followed by 1 cm of CI, 6 cm of SI,
and a macropore of 1 cm. This pore suggests the presence of a new ice block that had been
displaced by the ship passages and consolidated beneath the level ice.
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Figure 16. Cross-section profile of the first channel TCh01 measured on 06/03/2021, including the
microstructure, and the location of three cores sampled in TCh01. R indicates the side ridge sample,
M−E is the sample between the middle and the edge of the channel, and M indicates the middle of
the channel.
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Figure 17. The microstructure of three cores sampled: (1) in the level ice (LI 1) between two channels
(TCh01 and MCh01), (2) in the vicinity of the ridge (LI R1), and (3) in the ridge (R3). A scheme of
both channels and the coring locations are given below the microstructure images.
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This ice block consisted of about 7 cm of CI, followed by 2 cm of SI, 5 cm of CI, 2 cm of
SI, and, finally, 1 cm of CI. This structure suggests the freezing of two ice pieces, originating
from the same parental level ice. Once the ice pieces merged, the bottom of the ice grew by
1 cm. Considering the presence of a macropore between the LI and the ice piece beneath
it, the bottom ice growth was probably driven by the heat stored in ice at the time of
submergence. Thus, in this sampling position, the vicinity of the side ridge had three layers
of consolidated broken ice.

The microstructure of R3, sampled from the ridge of the main channel, does not
represent the entire thickness of the ridge but only the top part that could be cored. This
core consisted mainly of a mixed microstructure of granular and columnar ice. The lateral
growth of CI observed from 0 to 40 cm illustrates the consolidation of brash ice pieces.
Additionally, two different thin sections of the first 20 cm show the horizontal variations in
the microstructure of the ridge.

4.4. Brash Ice Physical and Mechanical Properties

The snow ice content, uniaxial compressive strength, microporosity, and density results
are discussed in the following subsections.

4.4.1. Test and Main Channels (2021)

Level ice in the vicinity of TCh01 had the highest SI content, equal to 73%. This core
had an average microporosity of 8% and a density of 846 kg m−3; see Figure 18. The lowest
SI content of approximately 21% was found in the channel’s middle, accompanied by a
density of 897 kg m−3 and a porosity of 2.3%. It is likely that a part of the submerged snow
melted or displaced sideways, resulting in lower SI content in the channel compared to the
ridge and the adjacent level ice.
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Figure 18. (a) The average compressive strength (σ in MPa) and the average snow ice content (SI
in %). (b) The average microporosity (p in%) and ice density ($ in kg m−3). Samples from the level ice
in the vicinity of the ship channel are denoted as TCH LI; the brash ice cores are denoted with TCH
M, and the ridge samples with TCH R. T-MCH LI indicates level ice samples between TCH and MCH;
MCH LI R and MCH R indicate samples from the ridge vicinity and the ridge in the main channel.

The SI fraction in the ridges consists of both snow ice clusters formed in the channel
and displaced under the level ice, as well as SI formed on the surface from flooding.
However, the proportion of SI was lower in the ridge compared to the adjacent level ice,
with values of 58% for the TCh and 53% for MCh. This difference in SI content between
the ridges and level ice may be attributed to snow melting in the side ridges due to water
being pushed sideways during each ship passage.

During the compressive tests, the temperature of the ice cylinders varied from −5 to
−12 ◦C, with an average value of −8 ◦C. The brash ice samples taken from the middle of
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TCh01 displayed the lowest strength (1.8 MPa), whereas the ridge samples from the main
channel exhibited the highest strength. This can be attributed to the continuous breaking
of brash ice, resulting in weaker freezing bonds between brash pieces compared to ridge
structures. The ridge structures, being less affected by breaking, are exposed to a longer
freezing period, thus resulting in stronger bonds. It has been previously observed that the
bonding between two ice pieces depends on factors such as the freezing time, thickness,
shape, temperature of the ice blocks, and surrounding medium [44–47].

On average, the compressive strength in the horizontal direction for level ice and
ridges varied from 3 to 4 MPa for a strain rate of 10−3 s−1, see Figure 18. All the ice
samples exhibited brittle behavior. A previous study showed that deformed ice with a
mixed microstructure, loaded horizontal has higher strength compared to pure columnar or
granular ice [29]. This finding may also explain the difference in strength between samples
of brash ice and ridge samples.

4.4.2. Main Channels 2023

The thicknesses of level ice, side ridge, and brash ice were measured in February
2023 along the half-cross-section profile of the main channel. The results are shown in
Figure 19, where the dark grey bars represent the thicknesses of ice pieces, and the cyan
bars in between show the water- or slush-filled macropores. It should be noted that only
the top layer of the brash ice was cored in the positions where the macropores were present,
limiting the results to the properties of this specific layer. During uniaxial compressive tests,
the ice temperature varied between −6 ◦C and −10 ◦C with an average value of −8.2 ◦C.
Table 3 summarizes the results.

Table 3. The width in m shows the locations where the ice cores were sampled along the brash ice
channel’s cross-section. The width zero represents the channel’s middle and “−45 m” is the position
of the level of ice adjacent to the channel. The core thicknesses, average snow ice content, compressive
strength, standard deviation of the compressive strength, density, and microporosity of the ice cores
in the sampling location are noted as HT, SI, σ, Std, $, and P, respectively.

Width (m) HT (m) SI (%) σ (Mpa) Std (Mpa) $ (kg m−3) p (%)

−45 0.53 44.4 5.2 0.4 883.1 3.8
−35 0.5 64.5 3.3 0.9 829.5 9.6

−25 0.48/0.50 34.8 4.6 0.5 882.9 3.8
−15 0.35 45.6 2.8 0.2 891.2 2.9
−10 0.65 50.0 3.2 1.1 886.2 3.5

−5 0.2/0.23 33.5 2.8 1.2 872.8 4.9
0 0.55/0.24 48.9 4.1 0.7 887.4 3.3

This channel was not always navigated only in the mid position; the side ridges were
often broken by ice breakers. However, based on field observations, the last passages before
the measurement were carried out in the middle of the channel. Assuming that the main
channel was predominantly navigated in the middle (20 m), we have categorized the local
results into three main categories: level ice (LI), ridge (R), and brash ice (BI), as shown
in Figure 19. The completely solidified ice in the vicinity of the channel was classified as
level ice, while the ice between the mid-channel and level ice were considered part of the
ridge. The average compressive strength, snow ice content, density, and microporosity for
each ice group are illustrated in Figure 20. The snow ice content and compressive strength
slightly decreased in the following order: level ice–ridge–brash ice. Similar trends were also
yielded in the test and main channels sampled in 2021 discussed in the previous section.

The average snow ice content was found to be 54%, 43%, and 41% for LI, R, and
BI, respectively. The lowest density (0.78 kg m−3) and highest microporosity (15%) were
recorded in the side ridge, whereas the highest density (0.91 kg m−3) and lowest micro-
porosity (0.85%) were recorded in level ice samples consisting only of columnar ice. The
horizontal compressive strength varied from 2 MPa to 5.7 MPa for LI, 2 MPa to 5.3 MPa for
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R, and 1.2 MPa to 4 MPa for BI locations. Except for the pure columnar ice samples from the
LI cores, all the other samples with a pure snow ice or mixed microstructure showed ductile
behavior. In a previous study conducted on a test channel type with lower navigation
activity, the average horizontal strength of brash ice and level ice from the same location
was between 4 and 6 MPa for a similar strain rate of 10−4 s−1, with most of the samples
displaying a ductile behavior [35]. In January 2013, the average compressive strength of
brash ice was 4.3 MPa, whereas the average compressive strength of level ice was 6.2 MPa.
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Figure 19. Half-cross-section profile of the main channel was measured on 25/26–02/2023. Each
measurement represents the location where the ice cores were sampled. The thickness of each ice
core was equal to the ice thickness until the first water void, as shown in this cross-section.
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Figure 20. (a) The average compressive strength (σ in MPa) and the average snow ice content (SI
in %). (b) The average microporosity (p in %) and ice density ($ in kg m−3). LI, R, and BI imply level
ice, side ridges, and brash ice.

Different results were reported for the average strength of brash ice sampled from
a refrozen ship channel in the Bay of Bothnia, Finland [8]. The compressive strength of
brash ice at a strain rate of 10−4 s−1 was 4.2 MPa, which is relatively similar to the current
test results. However, at a strain rate of 10−3 s−1, the average strength was 6.3 MPa [8],
which was higher than the results obtained from the test and main channel discussed in
the previous section (ranging from 2 to 4 MPa). Similar trends in compressive strengths
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for the same strain rates reported for the refrozen brash ice in [8] were also reported for
pressure ridges located in the Barents Sea [29].

5. Conclusions

This study focused on four main research activities carried out on fast sea ice in the
winters of 2020–2023. Two ship channels were specifically created for research purposes
and maintained by an ice-breaking tug of Luleå port. Thickness measurements were carried
out in the channel’s cross-section and adjacent level ice, together with visual observations
of the channel’s development instantly after each ship’s passage. Cores of level ice, brash
ice, and ridges were collected from both the test channel (TCh01) and an existing frequently
navigated channel (MCh). These cores were further analyzed in LTU’s cold laboratory
during the summer of 2021 and spring of 2023. The main conclusions of this study are:

1. Four flooding events were estimated to have occurred in the ice adjacent to TCh01.
The snow ice microstructure from the level ice in the vicinity of the channel indicated
these flooding events as it consisted of four snow–ice layers. However, the ice sampled
between the test and main channels had eight different snow ice layers. This difference
can be attributed to two possible causes. Firstly, the MCh was navigated more
frequently than TCh01, which can cause additional flooding incidents. Secondly,
considering that the slush formed from capillary action has different properties than
those from four flooding events, eight snow–ice layers could be formed.

2. The total slush thickness measured on level ice adjacent to the ship channels increased
linearly with the water level, whereas the slush thickness formed due to capillarity
showed no correlation with the water level and had an average thickness of 4 cm.
In the second winter, approximately 50% of the incoming snowfall transformed into
slush. About 70% of the difference between the measured and incoming snowfall
transformed into snow–ice. The rest of the snow (30%) was displaced by the wind
or melted when the snow submerged in water. The thickness of snow–ice measured
on the level ice adjacent to the first channel was twice as thick as the columnar
ice, whereas in the second winter, the snow–ice fraction reached 50% of the total
ice thickness.

3. After each ship passage, the snow that accumulated on the channel became submerged
and formed a slush layer. Snow–ice clusters between ice blocks were frozen together
with columnar ice.

4. During 2021, the snow–ice content was found to be higher in the vicinity of the test
channel, reaching 73%. In contrast, the snow ice content was lower in the ridges,
measuring 58%, and significantly lower in the middle of the channel, where it was
21%. During winter 2023, the snow ice content was 54% in the vicinity of the main
channel, 43% in the ridge, and 41% in the mid-channel. This indicates the melting
of snow when submerged in the channel but also some melting of snow on the side
ridges due to water being pushed sideways during the ship passages.

5. In winter 2021, the brash ice samples exhibited the lowest strength while the ridge
samples from the MCh had the highest strength. Similarly, in winter 2023, the brash
ice had the lowest compressive strength, while the level ice in the vicinity of the
channel exhibited the highest compressive strength. This difference in strength can
be attributed to the weaker bonds between brash pieces compared to the side ridges
or level ice, which were exposed to a longer consolidation time. On average, the
compressive strength of level ice and ridges ranged from 3 to 4 MPa for a strain rate
of 10−3 s−1, and from 3 and 5 MPa for a strain rate of 10−4 s−1. Meanwhile, the brash
ice cores had average compressive strengths of 1.8 and 3.4 MPa for strain rates of 10−3

and 10−4 s−1, respectively.
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Abstract: The ice flood phenomenon frequently occurs in frigid locations of high latitude and high
altitude, which triggers ice dam or ice jam flooding thus endangering personal and property safety.
Hence, a scientific risk evaluation with enough consideration of each factor is a basic and necessary
requirement for preventing ice flood disaster risks. This study establishes a risk evaluation system
for ice flood disasters based on the catastrophe theory and utilizes the Pearson correlation coefficient
to screen underlying indicators to evaluate the risk of ice flood in the upper Heilongjiang River
region. Considering the correlation between different indicators, a hierarchical cluster analysis is
invoked to simplify the indicator set and to select typical years. The results of the evaluation system
indicate that the catastrophe membership values in the Mohe, Tahe, and Huma regions from 2000 to
2020 ranged from 0.86 to 0.93. Based on the membership values and the actual disaster situations, a
four-level classification of risk ratings is conducted. The comparison between the results obtained
from the catastrophe theory evaluation method and the fuzzy comprehensive evaluation method
reveals similar risk levels, which verifies the effectiveness and practicality of the catastrophe theory
applied to the ice flood risk evaluation and presents a novel method for the study of ice floods.

Keywords: ice flood disaster; catastrophe theory; indicator preference; risk evaluation; Heilongjiang River

1. Introduction

Ice flooding is a unique hydrological phenomenon that occurs in frigid region rivers.
It is mainly manifested in the flow and evolution of river ice during the winter and spring
seasons, and due to a reduced overflow cross-section, ice jams and dams are formed,
resulting in backwater staging and a high upstream water level, which can rapidly create
a flooding hazard at short notice [1,2]. Due to the high backwater levels, extremely fast
ice flow rates, and complex formation mechanisms of ice-induced floods, showing the
relationship between floodwater levels and the probability of occurrence in hazardous
watersheds becomes more difficult [3]. Therefore, it is significantly important to ensure that
the risk evaluation of ice flood disasters is correct and has enough safety margin in regional
disaster prevention and mitigation capabilities. Ice-jam floods often cause issues such as
farmland submersion, building collapse, and embankment erosion. Additionally, these
disasters can also affect the sedimentation and release of chemical substances in river water
bodies [4,5]. Thus, ice floods are more likely than open-water floods to cause financial
costs and damage to humans and their habitats [6]. In an ice flood risk evaluation, both
the probability of occurrence, commonly quantified as the return period, and the damage
consequences of the flood hazard need to be considered to assess the annual expected
costs [7,8]. This is not only a necessary prerequisite for the prevention and control of natural
disasters in frigid regions but also a crucial assurance for national sustainable development
and the effective execution of significant programs.
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Numerous elements, including environmental changes, water flow conditions, river
borders, human activities, and socioeconomics, impact the evaluation of ice flood risk [8–13].
Due to its complicated hazard-inducing environment, various hazard factors, and fragile
hazard-bearing body, it has been a challenging and popular subject of disaster research. While
open-water flood hazard delineation and risk analysis are commonly used in traditional flood
management approaches, methodologies for ice-related flood hazard delineation and risk
analysis are not yet well established. This is due to the highly unpredictable and complex
nature of ice-related flood events, which present significant challenges for accurate evaluation
and assessment [14]. For this reason, some scholars have conducted a lot of research
on the study of causes of ice floods, the forecasting of ice-jam and ice-dam floods, the
delineation of flooding hazards, and flood risk calculation methods. The formation
and evolution of ice floods are extremely complicated, and most scholars are currently
studying the impact of various factors on the causes and disasters of flooding according
to the geographical environment, hydrology, meteorology, and engineering of rivers [15].
The hydrotechnical approach proposed is the most appropriate method for assessing the
risk of ice-jam floods in river systems when adequate historical and on-site data related
to ice blockage are available [16]. However, the reliability of hydrometric gauge data can
be compromised due to the extreme forces exerted by ice debris and blocks, which may
lead to the unavailability and inaccuracy of the data [17,18]. Meanwhile, due to the harsh
regional environments where severe ice floods occur, it is generally impossible to acquire
real-time, complete, and precise data from field observations [19]. Beltaos [20] used the
distributed-function method (DFM) to determine the frequencies and probabilities of ice-
jam floods. Several studies [21,22] have utilized an ice-jam numerical model (RIVICE) to
evaluate real-time ice-jam flood hazards along the Athabasca River at Fort McMurray, etc.
These studies can establish a basis for real-time ice-jam flood risk analysis and improve
our comprehension of the ice-jam flood risk of both property and inhabitants. Artificial
intelligence techniques, such as neural networks and fuzzy logic systems [13,23], show
promise in modeling the nonlinear processes underlying the formation of ice floods. In
particular, combining multiple models to predict backwater levels can improve accuracy
by 20–30%, albeit at a significant computational cost. Mahabir et al. [24–26] forecasted
breakup water levels using multiple linear regression and based on this evaluated
the application of soft computing in modeling the maximum water level during river
breakout in flood and non-flood event years through fuzzy logic and artificial neural
networks. Through the utilization of projection tracing, fuzzy clustering, and accelerated
genetic algorithm, Wu [27] created a comprehensive evaluation model of the ice disaster
risk that occurred in the Ning-Meng portion of the Yellow River. Luo [28] proposed the
GM (1,1) evaluation model, which introduces three-parameter interval gray numbers, to
simulate and anticipate the development trend of risk vectors. Numerous studies have
already been conducted on flood hazard delineation and risk assessment in the context
of managing the risk of ice floods [8,29–31].

In general, the process of nonlinear changes in ice-flooding behavior is a dynamic and
irreversible evolutionary process under the influence of the realistic environment. Therefore,
the ice flood disruption can be seen as an abrupt state catastrophe phenomenon driven
by the energy of the river ice system. This study focuses on the disaster risk evaluation
of ice floods using the catastrophe theory. Hazard-inducing environment, hazard factor,
hazard-bearing body, and anti-icing capability are considered the criterion layer of the
evaluation system, in order to research the indicators in the process of ice flood damage.
The catastrophe evaluation method is combined with the Pearson correlation coefficient
and hierarchical cluster analysis to solve the problem of index selection and optimization
in the evaluation model. The actual ice flood situations in Mohe, Tahe, and Huma regions
are taken as an example and are used in establishing the classification of the risk level of
the ice flood in the regions. Meanwhile, a comparison is made between the results of the
catastrophe theory evaluation method and the fuzzy comprehensive evaluation method,
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which verifies the efficacy and applicability of the catastrophe theory applied to the ice
flood risk evaluation and introduces a novel concept for the study of ice floods.

2. Materials and Methods
2.1. Catastrophe Evaluation Method

Calculus, as a mathematical tool, is well-suited for modeling and problem-solving in
natural phenomena characterized by continuity and differentiability. It enables the study
of continuous, gradual, and smooth changes, allowing for a deeper understanding of such
processes in nature. However, when a continuous development undergoes a transition
from gradual and quantitative changes to abrupt and qualitative changes, calculus becomes
inadequate for describing and addressing such phenomena. In order to solve the step
change process, René Thom, a French mathematician, initially introduced the catastrophe
theory in 1974 [32] to explore and research discontinuous changes and abrupt variations
in phenomena. He discussed the three basic forms of the system and the mathematical
principles of structural stability, singularity, and topology and described the transition from
continuous asymptotic and quantitative changes to discontinuous jump mutations and
qualitative changes using mathematical methods. The catastrophe theory utilizes potential
functions to classify the critical points of a system and investigates the characteristics
of discontinuous changes near each critical point. The properties of the discontinuous
state that are located around the crucial points are uncovered in order to conduct a more
in-depth investigation of the process underlying discontinuous occurrences [33]. There
are seven different major forms of catastrophe theory [34], as determined by the geometry
of the restriction criteria. Among them, different types of primary catastrophe models
are used which include the cusp catastrophe type, swallowtail catastrophe type, butterfly
catastrophe type, etc. The equilibrium surfaces and singular point sets associated with
these models are shown in Table 1 and Figure 1.

Table 1. Normalization formulae for the catastrophe theory.

Category Potential Function Normalization Formula

Cusp V(x) = x4 + ax2 + bx xa = a1/2, xb = b1/3

Swallowtail V(x) = x5 + ax3 + bx2 + cx xa = a1/2, xb = b1/3, xc = c1/4

Butterfly V(x) = x6 + ax4 + bx3 + cx2 + dx xa = a1/2, xb = b1/3, xc = c1/4, xd = d1/5

Note: The control variables a, b, c, and d can be viewed as factors influencing the system’s behavior state and are
decreasing in importance from a to d.
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It is worth noting that due to the four-dimensional and five-dimensional potential
functions of the swallowtail and butterfly catastrophe types, the equilibrium surfaces in
Figure 1b,c represent the projection of the original functions in three-dimensional space
after constraining the variables.

In the process of risk assessment and judgment, it is important to consider the charac-
teristics of each indicator layer and the actual situation. The choice should be made among
the following three evaluation principles:

1. Non-complementary criterion.

In cases where the control variables of the system cannot be substituted for one another,
the minimum value among the corresponding mutation values of the m control variables
(a, b, . . ., m) is selected as x, as follows:

x = min(xa, xb, . . . , xm) (1)

2. Complementary criterion.

If the variables of a system are mutually substitutable, the corresponding mutation
values of each indicator should be calculated according to the catastrophe model of the
system. Then, the average value of the variables should be computed as follows:

x =
(xa + xb + . . . + xm)

m
(2)

3. Over-threshold complementary criterion.

The over-threshold complementarity criterion is based on the analysis of extreme
events that exceed specific thresholds. It is used to estimate the tail probability or frequency
of events surpassing the threshold. These tail probabilities or frequencies are typically
low and are thus considered extreme events or exceptional circumstances. By analyzing
these extreme events, we can gain a better understanding of the risk characteristics of
the system and take appropriate measures for risk assessment and decision-making. The
control variables of the system must reach a certain threshold before they can complement
each other [33].

2.2. Data Preprocessing

The extreme value method is employed to standardize the preliminary selection
indicators, aiming to mitigate the impact of diverse indicator data and their magnitudes
on the indicator screening process and to enable effective comparison between indicators.
Equation (3) is applicable in situations where larger values of the indicator are more
advantageous for analysis. Equation (4) is applicable in situations where smaller values
of the indicator are more advantageous for analysis. Assuming that the system indicators
can be described by the state variables xij, the following extreme value normalization
transformation formula can be used:

yij =

xij − min
1≤i≤m

{
xij
}

max
1≤i≤m

{
xij
}
− min

1≤i≤m

{
xij
} (3)

yij =

max
1≤i≤m

{
xij
}
− xij

max
1≤i≤m

{
xij
}
− min

1≤i≤m

{
xij
} (4)

where yij represents the normalized value of the state variable xij, min
1≤i≤m

{
xij
}

represents

the minimum value of xij, and max
1≤i≤m

{
xij
}

represents the maximum value of xij, i = 1, 2, 3,

. . ., m (m is the designation of years); j = 1, 2, 3, . . ., n (n is the designation of indicators).
Then yij is the dimensionless data and between 0 and 1.
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2.3. Pearson Correlation Coefficient

The Pearson correlation coefficient is a statistical measure that quantifies the strength
and direction of the linear relationship between two continuous variables and is widely
used in various fields of research and data analysis.

• STEP 1: Determine the constraints of Pearson correlation:

- There is a linear relationship between the two variables;
- The variables are continuous variables;
- The variables are normally distributed, and the binary distribution is also nor-

mally distributed;
- The two variables are independent.

• STEP 2: Calculate the Pearson correlation coefficient between Xi and Yi. The Pearson
correlation coefficient is represented by the symbol “r” and takes values between −1
and 1. The coefficient is calculated based on the covariance between the two variables
and the product of their standard deviations. The formulation of the correlation
coefficient can be described as follows:

r =
∑
(
Xi − X

)(
Yi − Y

)
√

∑n
i=1
(
Xi − X

)2
∑n

i=1
(
Yi − Y

)2
(5)

where Xi and Yi are the individual data points in the two variables, X and Y are the means
of the two variables, and Σ denotes summation over all data points.

The resulting value of “r” indicates the strength and direction of the linear relationship
between the variables:

- If “r” is close to 1, it indicates a strong positive linear relationship, meaning that as
one variable increases, the other variable also tends to increase;

- If “r” is close to −1, it indicates a strong negative linear relationship, meaning that as
one variable increases, the other variable tends to decrease;

- If “r” is close to 0, it indicates a weak or no linear relationship between the variables.

It is noteworthy that in correlation analysis, we typically aim to determine whether the
observed correlation coefficient is significantly different from zero, indicating the statistical
significance of the correlation relationship. These significance tests are designed to evaluate
whether the observed correlation coefficient is sufficiently large to reject the presence of
correlation due to random sampling errors [35]. During significance testing, it is necessary
to choose an appropriate significance level (typically 0.05) to determine whether to reject
the null hypothesis. If the null hypothesis is rejected, it can be concluded that the observed
correlation is significant.

2.4. Hierarchical Cluster Analysis

Cluster analysis is commonly used in scientific research to identify group associations
and assess the affinity among different variables [36–39]. Hierarchical cluster analysis is
a data analysis technique used to identify groups or clusters within a dataset based on
their similarity or proximity. It is a form of unsupervised learning, as it does not rely on
predefined class labels or target variables. Hierarchical cluster analysis, specifically, is used
to determine associations between different parameters and ultimately identify the sources
and processes related to them [40].

Ice flood disasters encompass various parameters from different disciplines, and
there exists a significant correlation among these parameters. This correlation leads to a
substantial increase in the time and computational resources required for data collection
and processing.

In this study, the hierarchical cluster analysis method is employed to demonstrate
the interrelationships among the variables under investigation [41]. Based on the criterion
of the sum of distances, the typical years are selected by identifying the cluster centroids.
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This approach guarantees the comprehensiveness of the evaluation index system while
mitigating potential issues, such as result distortion caused by redundant indicators.

2.5. Fuzzy Comprehensive Evaluation Method

The fuzzy comprehensive evaluation method is a mathematical approach used to
assess complex systems or phenomena that involve uncertainties and imprecise informa-
tion [42,43], including the following steps:

• STEP 1: Assuming that there are n years to be evaluated to form a sample set, and
based on the eigenvalues of m indicators, the eigenvalue matrix of ice flood risk to be
evaluated can be expressed as Equation (6):

X = (xij) =




x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


 (6)

Upon applying data normalization using Equations (3) and (4), we derived the relative
membership matrix R = (rij).

• STEP 2: Construct the index weight set.

In order to account for the varying importance of different factors in evaluating the
objective, it is necessary to establish a set of indicator weights. Weighting techniques fall into
two primary categories: statistical-based methods and participatory-based methods. The
statistical-based methods analyze the indicator data to determine the weights, whereas the
participatory-based methods involve incorporating expert or public opinions to determine
the weights. In this study, the weight is determined using the entropy weight method,
which falls under the statistical-based methods. The index weight set is constructed
according to Equation (7).

A = (w1, w2, . . . , wm) (7)

• STEP 3: Establishing the fuzzy comprehensive evaluation model.

To obtain the result of the fuzzy comprehensive evaluation for each sample, the
evaluation matrix and the index weight set are quantified as shown in Equation (8). The
synthesis operators used for fuzzy synthesis calculations include the dominant factor
determining operator, the dominant factor prominent operator, and the weighted average
operator, among others. Due to the interplay of factors in ice flood risk, this study employs
the weighted average operator for fuzzy synthesis calculations.

B = A ◦ R = (b1, b2, . . . , bn) (8)

where B is the fuzzy comprehensive evaluation risk membership matrix of the assessed object.

3. Ice Flood Risk Evaluation
3.1. Study Area Overview

The main stream of the Heilongjiang River is located in the high latitude and cold
region of the border between China and Russia. The river freezes for a long time and is
prone to ice dam and jam disasters during the open river flow period. The Heilongjiang
River originates from the Erguna River in the Mongolian Plateau, with a total length of
approximately 4440 km and a drainage area of about 1,855,000 square kilometers. The
Heilongjiang River flows through various terrains, including mountains, canyons, and
plains. Within China’s territory, the riverbed is rugged, forming a series of rapids and
waterfalls. Upon entering Russia, the river becomes gentle and flows through vast plains.

This study was conducted along a specific section of the Heilongjiang River, spanning
approximately 800 km from the Mohe region to the Huma region (Figure 2). The three
regions of Mohe, Tahe, and Huma, situated between 50.9◦ N and 53.5◦ N, have histori-
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cally experienced the highest occurrence of spring ice flood disasters and have been the
most severely affected regions [44]. These three regions are part of the Greater Khingan
Mountains region, characterized by a cold temperate continental monsoon climate. The
average temperature in the region has been recorded at −2.1 ◦C over the years, while the
annual average precipitation remains around 460 mm. Between 2000 and 2020, there were
seven years marked by severe ice flood disasters, with no fixed occurrence location. The
average duration of these events ranged from 2 to 3 days, while the longest recorded event
lasted for 15 days. In the springs of 2000 and 2009, the upper sections of the Heilongjiang
River experienced over seven ice dams and jams, resulting in the highest backwater heads
reaching 7.58 and 9.23 m.
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3.2. Analysis of Ice Flood Risk

During the non-ice-blocked period of the ice-flowing period, the flow pattern of
a river remains in a long-term linear relationship with hydraulic parameters such as
channel characteristics, precipitation, snowmelt, and runoff. It exists in an equilibrium
state. With changes in channel parameters, air temperature, and other conditions, ice floe
may accumulate somewhere downstream of the channel or be pushed under the ice sheet,
resulting in ice jams or dams. This disrupts the original balance of the water level in the
river, resulting in a sudden change due to reduced flow velocity or backwater caused by
ice blockages.

However, in the risk evaluation, it is also necessary to consider the differences in ice
flood prevention and disaster resilience capacities in different regions. The above analysis
indicates that the sudden accumulation of ice drains during the transition from stability
to instability is the fundamental characteristic of potential disasters during the ice flood
period. Therefore, it is possible to establish a risk evaluation index system and a model for
evaluating the sudden changes in ice flood risks based on the catastrophe theory.
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Given the challenges faced by certain methods, such as fuzzy evaluation methods
which struggle with accurate weight determination and other issues involving factor
analysis, complex calculations, and a substantial sample size requirement, opting for the
catastrophe theory evaluation method is a reasonable choice to overcome these issues. The
key advantage of this method is that it determines the importance of each indicator based on
the inherent contradictions and mechanisms of various objectives within the normalization
formula itself, without relying on indicator weights. As a result, the evaluation outcomes
are objective in nature.

3.3. Data Acquisition and Processing

The research data used in this study were obtained from multiple sources, in-
cluding the NOAA—National Centers for Environmental Information, ECMWF ERA5-
Land monthly averaged data from 1981 to present, “China County Statistical Yearbook”
(2000–2021), and the China Basic Geographic Information Sharing Website. The data
underwent analysis and processing utilizing various tools such as ArcGIS Pro, SPSS 27.0,
Origin 2022, and Excel 2021.

The risk of ice flood is influenced by multiple factors. This paper categorizes these
factors into four guideline layers: hazard-inducing environment, hazard factors, hazard-
bearing body, and anti-icing capability. Each subsystem plays a distinct role in the evolution
of risk, with varying degrees of influence. Therefore, predicting the evolution of ice flood
risk is a complex and uncertain task. To construct a risk evaluation index system that ad-
heres to the principles of scientific, typical, comprehensive, systematic, and practical criteria,
a four-level ice flood risk evaluation index system is developed. A total of 21 preliminary
indicators are selected by integrating available information, as illustrated in Table 2.

Table 2. Preliminary selection of ice flood risk evaluation index system.

Criterion Layer Index Layer Indicator
Nature Unit

Hazard-inducing
Environment

River length (XQ1) (+) km
River gradient (XQ2) (+) −

Meander coefficient (XQ3) (+) −
Width-to-narrow ratio of sudden contraction in the river channel (XQ4) (+) −

Hazard Factor

Upstream average temperature from October to March (XP1) (−) ◦C
Local average temperature from October to March (XP2) (−) ◦C

Upstream cumulative precipitation from November to March (XP3) (−) mm
Average temperature from April 1 to 20 (XP4) (+) ◦C

Average high temperature from April 1 to 20 (XP5) (+) ◦C
Upstream cumulative insolation from April 1 to 20 (XP6) (+) h

Local cumulative insolation from April 1 to 20 (XP7) (+) h
Snow depth on April 1(XP8) (+) mm

Upstream average ice thickness in March (XP9) (+) m
Local average ice thickness in March (XP10) (+) m

Downstream average ice thickness in March (XP11) (+) m

Hazard-bearing
Body

Population density (XR1) (+) people per km2

Primary industry value-added ratio (XR2) (+) −
GDP per capita coefficient (XR3) (+) −

Anti-icing
Capability

Number of hospital beds per capita (XS1) (−) sheet per
people

Resident deposit amount coefficient (XS2) (−) −
Local fiscal general budget revenue coefficient (XS3) (−) −

Auxiliary Parameters Ice flood hazard coefficient (XM) (+) m·d
Frequency of ice flood (XN) (+) times

Note: “+” in the table represents that the indicator promotes the development of disaster risk in the ice flood and
“−” represents the suppression of the development of disaster risk in the ice flood.
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4. Results and Discussion
4.1. Construct the Ice Flood Risk Evaluation Index System

The risk of an ice flood is influenced by numerous factors, and there exist complex
non-linear relationships among these factors. When these factors undergo changes and
interact with each other, the risk of an ice flood disaster can experience sudden variations.

Figure 3a displays the correlation between hazard-inducing environmental factors
and the frequency of ice floods in the Mohe, Tahe, and Huma regions. It indicates a low
correlation between river length and the occurrence of ice floods. It is important to note that
there is a strong negative correlation between XQ3 and XN, which is due to the small size of
the dataset. Previous studies [9,44–46] have already shown a positive correlation between
the river meander coefficient and the frequency of ice floods. The correlation between the
hazard factor and the ice flood hazard coefficient is depicted in Figure 3b. As the significant
level values for indicators XP3, XP6, and XP7 are greater than 0.05, they are removed from
the analysis. Additionally, there is a strong correlation between indicators XP4 and XP5, as
well as XP10 and XP11, indicating redundancy in these indicators. Therefore, only XP4 and
XP11, which exhibit a higher correlation with XM, are retained.
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Figure 3. Pearson correlation analysis for preliminary selection of indicators. (a) The correlation
between hazard-inducing environmental factors and the frequency of ice flood. (b) The correlation
between the hazard factor and the ice flood hazard coefficient.

The filtered variables XP1, XP2, XP4, XP8, XP9, and XP11 undergo a hierarchical cluster
analysis, resulting in the formation of the temperature element layer C4 and the hydrological
element layer C5, as shown in Figure 4. It is important to highlight that when the clustering
results of indicators lead to a distinct category, it signifies a crucial aspect of the evaluation
system that was directly selected. Examples of such indicators include XR1, XR2, XR3, XS1,
XS2, and XS3. These indicators hold significant value in the evaluation process.

Through the utilization of the Pearson correlation coefficient and hierarchical cluster
analysis, a total of 15 indicators are selected as the final set of ice flood risk evaluation
indicators. The priority ranking of the selected indicator set was determined based on
previous studies [9], correlation coefficients, the vulnerability of the vulnerable entity,
and the capacity for ice flood prevention. Please refer to Table 3 for more details on
these indicators.
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Table 3. Ice flood risk evaluation index system.

Target Layer Criterion Layer Index Layer

Pearson Correlation
Coefficient Whether

to Retain
Clustering
Category

Indicator
Layer

Correlation Significant
Level

Comprehensive
Risk Situation
of Ice Flood

(A)

Hazard-inducing
Environment

(B1)

XQ1 −0.08 0.949 N
XQ2 0.58 0.609 Y 1 C3
XQ3 −0.97 0.154 Y 1 C2
XQ4 0.68 0.526 Y 1 C1

Hazard
Factor

(B2)

Climatic
Elements

(C4)

XP1 0.49 0.025 Y 2 D3
XP2 0.51 0.019 Y 2 D2
XP3 0.23 0.307 N
XP4 0.59 0.005 Y 2 D1
XP5 0.53 0.013 N
XP6 0.18 0.438 N
XP7 0.03 0.893 N

Hydrological
Elements

(C5)

XP8 0.59 0.005 Y 3 D4
XP9 0.55 0.010 Y 3 D5
XP10 0.51 0.018 N
XP11 0.54 0.011 Y 3 D6

Hazard-bearing
Body
(B3)

XR1 Y 4 C6
XR2 Y 4 C7
XR3 Y 4 C8

Anti-icing
Capability

(B4)

XS1 Y 5 C9
XS2 Y 5 C10
XS3 Y 5 C11

Therefore, a four-level evaluation index system is established. The first layer is the
target layer A, which is the evaluation of ice flood risk; the second layer is the criterion
layer B, which is the hazard-inducing environment B1, the hazard factor B2, the hazard-
bearing body B3, and the anti-icing capability B4; the third layer C is the indicators C1
to C11 obtained after screening; and C4 and C5 consist of the bottom indicators D1 to D6,
representing the influence of climatic elements and hydrological elements, as shown in
Table 3.

187



Water 2023, 15, 2724

4.2. Ice Flood Risk Evaluation Results and Grade Classification

In the criterion layer, the hazard-inducing environment, climatic elements, hydrolog-
ical elements, hazard-bearing body, and anti-icing capability (B1, C4, C5, B3, and B4) are
composed of three variables, following a swallowtail catastrophe model. In addition, the
hazard factor (B2) in the criterion layer consists of two variables, following a sharp point
catastrophe model. In the target layer, the ice flood hazard risk (A) is composed of four
variables (B1, B2, B3, and B4), which follow a butterfly catastrophe model.

The data from the indicator layer of Mohe, Tahe, and Huma from 2000 to 2020 were
incorporated into the mutation evaluation method. Over the 20-year period, ice dams and
jams occurred in the upper Heilongjiang River during the ten years. The results of the ice
flood risk evaluation and the classification of each region in the study year can be observed
in Figure 5.
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At present, there is no unified standard for the evaluation of ice flood risk, either
domestically or internationally. Referring to the relevant studies [47,48], the evaluation
criteria of their ice flood hazard evaluation index were determined by combining the actual
situations of ice dam flooding in the upper reaches of the Heilongjiang River. Performing a
hierarchical cluster analysis on the set of indicators for each year, as shown in Figure 6, we
selected the years 2000, 2001, 2008, 2009, 2010, 2011, and 2015 as representative years based
on the results of the clustering analysis. The clustered distances, value-at-risk, and realistic
risk ratings for the typical years in the three regions are shown in Table 4.

The ice flood risk for each year and region was ranked according to the results of
the catastrophe theory evaluation. Based on the historical ice flood data for the upstream
region of the Heilongjiang River during the representative years, the evaluation results
were divided into different levels. By following this approach, we determined the grade
intervals corresponding to the risk levels of ice floods in the upper reaches of Heilongjiang
Province. The specific grade intervals and corresponding details can be found in Table 5.
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Note: Selection method: sum of distances.

Table 5. The classification of ice flood risk.

Typical Years and Regions Evaluation Results
(A)

Grading Results

Year Region Range Grade

2010 Mohe 0.929
0.92~1 I2011 Mohe 0.921

2010 Tahe 0.920
0.91~0.92 II2001 Huma 0.910

2000 Mohe 0.909
0.90~0.91 III2000 Huma 0.900

2008 Tahe 0.899
0~0.90 IV2008 Huma 0.861

4.3. Results Analysis

A comparison of the average risk values in Mohe, Tahe, and Huma from a geographical
perspective indicates that the evaluation level of ice flood risk in the upper main stream of
the Heilongjiang River was highest in Mohe, followed by Tahe, and then Huma, throughout
the period from 2000 to 2020. From the perspective of the hazard-inducing environment,
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the Mohe segment is characterized by the maximum river gradient and width-to-narrow
ratio of sudden contraction in the river channel. The ratio compares the width of the
original river section to the width of a narrowed section. A larger width-to-narrow ratio
implies a more significant change in the width of the river channel. When a significant
amount of ice flows through this section, the width of the channel decreases sharply, and
ice debris is more likely to accumulate and cause congestion. As a result, the hazard risk of
ice flood is higher in this particular segment of the river.

In addition, the Huma segment of the river gradient has a larger meander coefficient,
indicating a steeper course compared to other sections. The river gradient is calculated as
the ratio of the height difference between starting and ending points to the actual length
of the river. Consequently, ice slush tends to accumulate in these bends, obstructing the
water flow and quickly raising water levels. Together, the combination of a larger river
gradient and a higher width-to-narrow ratio in the Mohe section increases the risk of ice
floe accumulation, water flow blockage, and the subsequent occurrence of ice dams or jams.

From a temporal perspective, the risk levels in the Mohe, Tahe, and Huma areas
follow a pattern of initial increase followed by a subsequent decrease. There was a notable
increase in the overall risk index from 2000 to 2010. All three regions increased to the
higher risk level, with the Tahe region showing the greatest increase at 4%. Regarding
the factors contributing to these changes, the average temperature upstream during the
October 2009 to March 2010 period was 3.1 ◦C higher compared to 2000. This period
corresponds to the freeze-up phase of the Heilongjiang River, and the average temperature
during this time directly affects the volume of ice and water in the river during the opening
period. Furthermore, the local fiscal general budget revenue coefficient and the coefficient
of resident savings deposits are generally lower compared to the year 2000. Additionally,
the proportion of agricultural output value is significant. These factors contribute to an
increased potential risk for the occurrence of ice floods.

In comparison to 2009, the risk levels of the three regions escalated in 2010. This
can be attributed to the lower average temperatures experienced along the Heilongjiang
River in April, with Mohe region being 4.68 ◦C lower than previous years, and Huma
maintaining temperatures below zero. Temperature serves as a critical thermal condition
for ice flood formation. In 2010, the Mohe and Huma sections failed to thaw due to
the persistently low average temperatures. As a result, the upstream water carrying a
substantial amount of floating ice exerted pressure on the downstream ice cover, leading
to ice squeezing and accumulating. This scenario created favorable conditions for the
formation of ice dams and jams.

The Heilongjiang River is primarily lined with villages, and a majority of rural res-
idents rely on agriculture as their main source of livelihood. Consequently, during ice
flood disasters, agriculture, in addition to the population, becomes the primary vulnerable
entity. The severity of the consequences resulting from an ice flood disaster is directly
proportional to the population density and per capita food possession. Enhancing the
number of drainage structures and extending the length of embankments will enhance
the region’s capacity to mitigate ice flood disasters. As the proportion of total agricultural
output in the regional GDP increases, the recovery process from the impact of ice flood
disasters becomes more challenging. On the whole, the risk level of ice floods in the upper
reaches of the Heilongjiang River demonstrates a decreasing trend, indicating a yearly
improvement in the economic level and the ice flood prevention capabilities in the region.

4.4. Accuracy Evaluation

In order to examine the accuracy of the catastrophe evaluation method, the entropy
weighting method was used to assign weights to the underlying indicators in the index
system. The fuzzy comprehensive evaluation method was used to evaluate the risk of ice
floods in Mohe, Tahe, and Huma regions from 2000 to 2020. Regression analysis of the
underlying indicators and evaluation results showed that the correlation coefficient (R2)
based on the catastrophe evaluation method was 0.997 and the root mean square error
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(RMSE) was 0.00898; the correlation coefficient (R2) based on the fuzzy evaluation method
was 0.995 and the root mean square error (RMSE) was 0.00002. The root mean square
error of both algorithms is less than 0.05, and the correlation coefficients are significantly
correlated, indicating that the catastrophe theory evaluation method has high accuracy in
the application of ice flood hazard evaluation. The average risk values obtained from the
fuzzy comprehensive evaluation method and the catastrophe theory evaluation method
were compared for the Mohe region as presented in Figure 7 and Table 6. The results
indicate that the two methods yielded relatively similar results, and the levels of risk values
matched perfectly.
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Table 6. The level of value-at-risk for typical years.

Year
Catastrophe Evaluation Method Fuzzy Evaluation Method

Value-at-Risk Level Value-at-Risk Level

2010 0.929 1 0.632 1
2009 0.928 2 0.631 2
2011 0.921 3 0.458 3
2015 0.914 4 0.357 6
2001 0.913 5 0.463 4
2008 0.912 6 0.284 7
2000 0.909 7 0.458 5

5. Conclusions and Future Prospective

This study employed the catastrophe evaluation method to evaluate the risk of ice dam
floods in the upper Heilongjiang River spanning from 2000 to 2020. The evaluation findings
indicated that the Mohe section, characterized by an intricate and steep river topography,
exhibits a higher comprehensive ranking of ice flood risk compared to the other two
regions. Regarding the time series analysis, ice floods tend to occur more frequently
during years with lower upstream temperatures between October and March, coupled
with larger upstream and downstream ice thickness in March. Population, agriculture,
economy, and other factors also affect the risk of the occurrence of floods, resulting in
a trend where ice flood risk initially increases and then decreases. The results obtained
through the catastrophe evaluation method exhibit a similar risk ranking as the fuzzy
evaluation method. Furthermore, the catastrophe evaluation method offers the advantages
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of simplicity in calculation and reduced subjective factors. It eliminates the requirement for
precise weighting of underlying indicators and results in a more rational overall distribution
of risk values.

In addition, this study still has some limitations that need to be addressed and explored
in future research:

1. Problems such as insufficient selection of indicators due to the difficulty of data
accessibility may have some influence on the results of the ice flood disaster risk
evaluation. However, as the construction and enhancement of the big data platform
progress, it will be possible to include a wider range of indicators to enhance the
ice flood disaster risk evaluation system. This improvement will contribute to more
accurate and reliable results in the future.

2. Using the entropy weight method, in the fuzzy comprehensive evaluation method, to
determine the weight of the index may result in distorted evaluation outcomes due to
inaccuracies in some of the weights. In future research, we plan to explore alternative
weighting techniques or enhanced fuzzy theory to obtain more robust and desirable
conclusions. By doing so, we aim to address the limitations and potential distortions
associated with the entropy weight method and improve the overall accuracy and
reliability of our evaluations.
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Abstract: The safety of winter activities in the Bohai Sea requires more detailed information on
ice characteristics and a more refined ice zone division. In the present study, 1/12◦-resolution sea
ice characteristic data were obtained based on the NEMO-LIM2 ice–ocean coupling model that
assimilated MODIS satellite sea ice observations from the years of 2005 to 2022 to acquire new sea ice
hindcasting data. On this basis, the ice period, ice thickness, ice concentration, ice temperature, ice
salinity, and design ice thickness for different return periods in the 1/4◦-resolution refined zoning
were analyzed, which were then compared with the sea ice characteristics in the previous 21-ice-zone
standard. The distribution of ice temperature and ice salinity was closely related to the distribution
of ice thickness. The results of ice period, ice thickness, and ice concentration, as well as design ice
thickness for different return periods, and the comparison with the previous 21-ice-zone standards,
showed that the ice condition on the west coast of the Bohai Sea has significantly reduced.

Keywords: sea ice; ice characteristics; ice zone division; winter; Bohai Sea

1. Introduction

The Bohai Sea, the inland sea in the northern China, has a cold winter climate and
is the southern boundary of the frozen waters in the Northern Hemisphere [1]. In winter,
sea ice in the Bohai Sea poses severe threats to port transportation, offshore oil and gas
exploration, marine fisheries, etc. [2]. To ensure the security of human activities in the
Bohai Sea during winter, it is necessary to know the characteristics of sea ice in the Bohai
Sea in winter [3].

In order to facilitate distinguishing the differences in the ice characteristics in a large-
scale sea area, the target sea area needs to be zoned according to various ice conditions [4].
Unlike the ice in the Arctic Ocean, all the ice in the Bohai Sea is first-year ice. Under the
influence of local thermal and dynamic factors, the sea ice in the Bohai Sea is mainly drift
ice, with significant interannual variations [5]. The engineering sea ice zone division in the
Bohai Sea is primarily based on a series of sea ice parameters, such as ice concentration,
ice thickness, ice type, ice period, etc. In 1984, the ARCTIC Corporation of the USA first
divided the Bohai Sea into three ice zones: the Bohai Bay Ice Zone, the Bozhong Ice Zone,
and the Laizhou Bay Ice Zone [6]. A few years later, Liu et al. divided Liaodong Bay into the
northern and southern ice zones, considering the different sea ice properties and climatic
conditions [7]. Afterward, Shen conducted an ocean survey to investigate China’s sea ice
intensity division in 1992 [6]. He divided the Bohai Sea into nine ice zones, considering
the prospects for offshore oil and gas development. Entering the 21st century, Wu et al.
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divided the nearshore areas of the Bohai Sea and the northern Yellow Sea into 21 ice zones
based on the fundamental characteristics of the distribution and changes of the sea ice in
China, considering the convenience of engineering design and production departments [8].
The 21-ice-zone scheme is currently the most commonly used standard [4,9].

The engineering ice-resistance designs are based on the sea ice characteristic param-
eters [10]. In recent years, the overall ice condition in the Bohai Sea has been milder, but
extreme meteorological events, especially the strong cold waves, have gradually increased
in winter [2]. Along the Bohai coast, the seasonal resources of wind energy [11], solar
thermal energy [12], and wave energy [13] are abundant. With increased economic activity
in the Bohai Sea in winter, potential sea ice disasters have become increasingly prominent.
For the safe operation of industrial activities in Bohai, it is necessary to consider the impact
of sea ice [1,3].

Ice engineering in the Bohai Sea has developed since the 1980s, and Chinese scholars
and engineers have conducted many studies on sea ice problems [14,15]. Li et al. [16]
proposed a division of ice engineering sub-areas based on the ice physical and mechanical
parameter distributions in Bohai. Li et al. [2] studied the effect of porosity on the uniaxial
compressive strength of Bohai sea ice. With global warming, the ice season shortens, the
ice thickness decreases, and the drift ice occupies most of the existing sea ice in winter in
the Bohai Sea [17,18]. The sea ice characteristic parameters and ice zone division obtained
based on marine environmental survey data from decades ago cannot meet the current
engineering ice-resistance designs. There is an urgent need for more detailed information
on ice characteristics to ensure the safety of activities in the Bohai Sea in winter.

In the present study, ice characteristics with a resolution of 1/4◦ in the Bohai Sea in the
winters of 2005–2022 were evaluated using ice–ocean coupling model data that assimilated
satellite data. Firstly, sea ice characteristic data with a resolution of 1/12◦ were obtained
based on the Nucleus for European Modelling of the Ocean, version 3.6 (NEMO3.6) and
the large-scale Louvain-la-Neuve Sea Ice Model, version 2 (LIM2), which assimilated sea
ice satellite remote sensing observations from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) from 2005 to 2022 to acquire new sea ice hindcasting data. The
hindcasting data were then compared and validated using long-term sea ice observations
from coastal ocean stations and the oil platform in the Jinzhou area of Liaodong Bay from
2010 to 2018. Based on the long-time-series hindcasting data, the ice period, ice thick-
ness, ice concentration, ice temperature, ice salinity, and design ice thickness for different
return periods in the 1/4◦-resolution refined zoning were analyzed and compared with
the sea ice characteristics of 21 ice zones in the China National Offshore Oil Corporation
(CNOOC) standard “Regulations for offshore ice condition and application in China sea
(Q/HSn 3000-2002)” [19].

2. Materials and Methods
2.1. Study Area

The Bohai Sea is located in the mid-latitude monsoon region of the Northern Hemi-
sphere (37◦07′ N–41◦00′ N; 117◦35′ E–121◦10′ E). From a geomorphological perspective, the
Bohai Sea is a large bay that extends inland from the Yellow Sea. The Bohai Sea is mainly
composed of five parts: the Liaodong Bay in the north, the Bohai Bay in the west, the
Laizhou Bay in the south, the shallow sea basin in the center, and the Bohai Strait connected
to the Yellow Sea. The Bohai Sea has a coastline length of approximately 3.80 × 103 km, an
area of approximately 8.00 × 104 km2, and an average depth of 18 m. In the Bohai Sea, it is
controlled by the Asian continental high pressure and is dominated by northerly winds
in winter. The changes in water temperature in the Bohai Sea are mainly influenced by
the continental climate. Due to the shallow water in the Bohai Sea, the water temperature
responds quickly to the air temperature. The water temperature in January is lower than in
February, and the water temperature at the top of the three major bays is below 0 ◦C.

In general, the Bohai Sea freezes from north to south in late November or early
December, starting from shallow water areas on the shore to deep water areas. In mid-
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to late-February of the following year, it melts from deep water areas to shallow water
areas from south to north. The ice period is 3–4 months, and by mid-March, all sea ice
disappears. The severe ice period in various sea areas generally occurs from mid-January
to mid-February. Due to significant differences in ice period, ice thickness, ice drift speed
and direction, ice cover range, and geographical environment among different sea areas,
there are significant differences in ice conditions among different sea areas.

To distinguish the differences in the severity of ice conditions for marine engineer-
ing designs, the ice zone division in the Bohai Sea has been conducted in the past few
decades [6–9]. The previously used ice zone division was proposed in the CNOOC standard
“Regulations for offshore ice condition and application in China Sea (Q/Hsn 3000-2002)”.
Based on the actual situation in the Bohai Sea, the design and operation experience of
15 oil and gas fields in the Bohai Sea during 1968–1998 were summarized. The coastal
place names were used as the division names, and the values of general sea ice conditions,
such as ice days and ice thicknesses during ice periods, were set using the survey statistics
of shore stations. The ice zone division in the standard is too rough, and the guidance
and refinement of the zone for offshore platforms and other engineering projects need to
be improved.

Based on completing the hindcasting data from 2005 to 2022, the present study pro-
vides a new division of the sea ice zones in the Bohai Sea area. Figure 1 depicts the new
division scheme. The Bohai Sea (37.125◦ N–40.875◦ N and 117.625◦ E–122.125◦ E) is divided
into a total of 139 ice zones with a spatial resolution of 1/4◦.

Water 2024, 16, x FOR PEER REVIEW 3 of 15 
 

 

by the continental climate. Due to the shallow water in the Bohai Sea, the water tempera-
ture responds quickly to the air temperature. The water temperature in January is lower 
than in February, and the water temperature at the top of the three major bays is below 0 °C. 

In general, the Bohai Sea freezes from north to south in late November or early De-
cember, starting from shallow water areas on the shore to deep water areas. In mid- to 
late-February of the following year, it melts from deep water areas to shallow water areas 
from south to north. The ice period is 3–4 months, and by mid-March, all sea ice disap-
pears. The severe ice period in various sea areas generally occurs from mid-January to 
mid-February. Due to significant differences in ice period, ice thickness, ice drift speed 
and direction, ice cover range, and geographical environment among different sea areas, 
there are significant differences in ice conditions among different sea areas. 

To distinguish the differences in the severity of ice conditions for marine engineering 
designs, the ice zone division in the Bohai Sea has been conducted in the past few decades 
[6–9]. The previously used ice zone division was proposed in the CNOOC standard “Reg-
ulations for offshore ice condition and application in China Sea (Q/Hsn 3000-2002)”. Based 
on the actual situation in the Bohai Sea, the design and operation experience of 15 oil and 
gas fields in the Bohai Sea during 1968–1998 were summarized. The coastal place names 
were used as the division names, and the values of general sea ice conditions, such as ice 
days and ice thicknesses during ice periods, were set using the survey statistics of shore 
stations. The ice zone division in the standard is too rough, and the guidance and refine-
ment of the zone for offshore platforms and other engineering projects need to be im-
proved. 

Based on completing the hindcasting data from 2005 to 2022, the present study pro-
vides a new division of the sea ice zones in the Bohai Sea area. Figure 1 depicts the new 
division scheme. The Bohai Sea (37.125° N–40.875° N and 117.625° E–122.125° E) is di-
vided into a total of 139 ice zones with a spatial resolution of 1/4°. 

 
Figure 1. 1/4°-resolution sea ice zoning in the Bohai Sea. 

2.2. Sea Ice Hindcasting Modelling 
The sea ice hindcasting data used in the current study were acquired from a sea ice 

prediction model for the Bohai Sea established based on the NEMO3.6 ocean model in the 
ORCA configuration coupling the LIM2 sea ice model [20,21]. 

Figure 1. 1/4◦-resolution sea ice zoning in the Bohai Sea.

2.2. Sea Ice Hindcasting Modelling

The sea ice hindcasting data used in the current study were acquired from a sea ice
prediction model for the Bohai Sea established based on the NEMO3.6 ocean model in the
ORCA configuration coupling the LIM2 sea ice model [20,21].

The model domain is located in a spatial range of 35◦ N–41◦ N, 117◦ E–127◦ E, covering
the entire Bohai Sea and the Northern Yellow Sea with a spatial resolution of 1/12◦. The
topographic data in the NEMO model uses the ETOPO1 public data set, with a spatial
resolution of 1 km, which is interpolated into the NEMO model grid through bilinear
interpolation [22]. The ice–ocean coupling model can finely simulate the ocean and sea ice
environments near complex islands and shorelines.
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The ocean module is vertically divided into 36 layers along the z-axis, using the GLS
framework and the k-ε turbulent closure scheme to calculate the vertical vortex viscosity
and diffusion coefficient. The viscosity coefficient in the horizontal direction is set to
50 m2·s−1, and the side boundary is set to a non-sliding boundary. The bottom friction
coefficient varies with space, with a minimum value of 5 × 10−4. The sea ice module
includes two calculation components: sea ice thermodynamics and dynamics, using the
elastic-plastic viscosity (EVP) sea ice rheology calculation concept. The sea ice module
includes a snow layer and two sea ice layers in the vertical direction. The sea ice module
and ocean module perform real-time coupling calculations, exchanging data every 360 s.
To accurately simulate the Bohai sea ice, the sea ice generation parameter is set to 0.3 m.
The sea ice boundary is a non-sliding condition. The model is driven by wind speed, air
temperature, relative humidity, longwave radiation, shortwave radiation, precipitation,
and snow from the National Centers for Environmental Prediction (NCEP) Climate Forecast
System Reanalysis (CFSR) reanalysis data. The initial field and open boundary conditions
are interpolated using data such as seawater temperature, salinity, sea surface height, and
flow velocity in each layer from the global forecast data of the European Copernicus Marine
Environment Monitoring Service (CMEMS).

In order to improve the reliability of the sea ice hindcasting data, satellite remote
sensing observations of sea ice concentration from the MODIS were assimilated into the
NEMO3.6 ocean model using the Ensemble Adjustment Kalman Filter (EAKF) method. The
EAKF method uses the dependency relationship and spatial correlation between variables
in the model to estimate the optimal state variables of the model from a probabilistic
and statistical perspective [23]. Figure 2 shows that the modeled sea ice concentration is
closer to the satellite observation after EAKF assimilation. From the distribution map of
sea ice concentration difference and assimilation adjustment amount (Figure 3), it can be
seen that the assimilation adjustment of sea ice effectively compensates for the relative
observation bias of the model, indicating that the sea ice assimilation method is correct and
the assimilation effect is obvious.
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The assimilation frequency was once a week during the freezing period. Figure 4 com-
pares errors in sea ice concentration before and after the assimilation of MODIS data into
the NEMO3.6 ocean model in the Bohai Sea in the winter of 2021/2022. After assimilating
the MODIS data, model prediction accuracy was significantly improved, with an average
error of 6.7% in sea ice concentration.

Water 2024, 16, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 3. Distribution map of (a) sea ice concentration difference and (b) assimilation adjustment 
amount. 

The assimilation frequency was once a week during the freezing period. Figure 4 
compares errors in sea ice concentration before and after the assimilation of MODIS data 
into the NEMO3.6 ocean model in the Bohai Sea in the winter of 2021/2022. After assimi-
lating the MODIS data, model prediction accuracy was significantly improved, with an 
average error of 6.7% in sea ice concentration. 

 
Figure 4. Errors in sea ice concentration before and after the assimilation of MODIS data into the 
NEMO3.6 ocean model in the Bohai Sea in the winter of 2021/2022. For each column, the blue bar 
represents the sea ice concentration error after the assimilation, and the red bar represents the dif-
ference between the sea ice concentration error before and after the assimilation. 

In order to improve the accuracy of evaluation and reduce the impact of model errors 
on evaluation results, the adjacent grids are usually combined on the basis of subdivision 
grids, and several fine-grid data covered by coarse grids are evaluated by means of aver-
age or extreme value. In this paper, the sea ice data of nine 1/12° grids of the NEMO model 
covered by a 1/4° grid are used to evaluate the sea ice data of the 1/4° grid. That is, the 
maximum ice thickness of the nine 1/12° grids is selected to represent the ice thickness in 
the 1/4° grid. 

2.3. Design Sea Ice Parameters 
Sea ice temperature refers to the temperature inside the ice sheet. In actual natural 

ice sheets, the type of ice and its vertical temperature distribution are very complex, influ-
enced by factors such as air temperature, water temperature, ice thickness, and ice heat 
transfer coefficient. In engineering designs, it is necessary to determine a single ice tem-
perature design value under the most severe condition, i.e., the effective ice temperature. 
The effective ice temperature is the average temperature of the ice sheet under the lowest 

Figure 4. Errors in sea ice concentration before and after the assimilation of MODIS data into the
NEMO3.6 ocean model in the Bohai Sea in the winter of 2021/2022. For each column, the blue
bar represents the sea ice concentration error after the assimilation, and the red bar represents the
difference between the sea ice concentration error before and after the assimilation.

In order to improve the accuracy of evaluation and reduce the impact of model errors
on evaluation results, the adjacent grids are usually combined on the basis of subdivision
grids, and several fine-grid data covered by coarse grids are evaluated by means of average
or extreme value. In this paper, the sea ice data of nine 1/12◦ grids of the NEMO model
covered by a 1/4◦ grid are used to evaluate the sea ice data of the 1/4◦ grid. That is, the
maximum ice thickness of the nine 1/12◦ grids is selected to represent the ice thickness in
the 1/4◦ grid.

2.3. Design Sea Ice Parameters

Sea ice temperature refers to the temperature inside the ice sheet. In actual natural ice
sheets, the type of ice and its vertical temperature distribution are very complex, influenced
by factors such as air temperature, water temperature, ice thickness, and ice heat transfer
coefficient. In engineering designs, it is necessary to determine a single ice temperature
design value under the most severe condition, i.e., the effective ice temperature. The
effective ice temperature is the average temperature of the ice sheet under the lowest air
temperature. Assuming no phase change occurs in the ice, the effective ice temperature can
be calculated according to the following formula [10]:

Ti = (Tia + Tiw)/2 (1)

where Ti is the effective ice temperature (◦C); Tia is the upper surface temperature of the
ice sheet (◦C); and Tiw is the lower surface temperature of the ice sheet (◦C). Tia and Tiw
are related to sea ice thickness, salinity, and air temperature.

Sea ice salinity mainly depends on the salinity and freezing speed of seawater before
freezing. The effective salinity of sea ice can be calculated as follows [24]:

Si = 19.007H−0.387 (2)

where Si is the effective ice salinity (‰); H is the sea ice thickness (cm).
The determination of design ice thickness used the average of estimates by the Pearson-

III (P-III) distribution and the Weibull distribution. When determining the design ice
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thickness, an excessively small estimate may lead to damage to marine structures, while an
excessively large estimate can result in increased costs. The biggest advantage of the P-III
distribution is its large elasticity. In most cases, it can be fitted well with the theoretical curve
and empirical frequency points by repeatedly fitting the line or adjusting the coefficient of
variation and mean appropriately.

The probability density function of P-III distribution is:

f (x) =
βα

Γ(α)
(x− x0)

α−1 exp[−β(x− x0)] (3)

where Γ(α) is the gamma function, and α, β as well as x0 are the shape, scale and position
coefficients, respectively, related to the statistical parameters of the random variables:

α =
4

Cs2 (4)

β =
2

xCvCs
(5)

x0 = x(1− 2Cv

Cs
) (6)

where Cs is skewness coefficient, Cv is variation coefficient, and x is the average.
Therefore, the determination of the probability density function of the P-III distribu-

tion is transformed into the determination of the statistical parameters. In general, the
observations of ice conditions are not long enough; the empirical distribution based on
observations must be extended to determine the design ice thickness. The preliminary
values of the statistical parameters can be obtained using the observation data, and an
empirical distribution curve is depicted. Afterwards, the statistical parameters are adjusted
until the corresponding empirical distribution curve fits well with the observations. The
statistical parameters after adjustment are selected to determine the final P-III distribution,
and the design ice thickness is determined from the corresponding cumulative frequency
density curve according to the return period.

The probability density function of the Weibull distribution is:

f (x) =
β

α
(

x− µ

α
)

β−1
exp[−( x− µ

α
)

β

] (7)

where α, β, and µ are scale, shape, and position coefficients, respectively.
The parameters of the Weibull distribution are determined using the maximum likeli-

hood estimates. After determining the parameters, the design ice thickness is determined
from the corresponding cumulative frequency density curve according to the return period.

3. Results
3.1. Model Verification

The JZ9-3 and JZ20-2 oil platforms are located in the northern waters of Liaodong
Bay in the Bohai Sea, where ice conditions are severe in winter. Figure 5 shows the sea ice
thickness monitoring data from the two oil platforms and the hindcasting sea ice thickness
data from 2010 to 2018. At the location of the JZ9-3 platform, the correlation coefficient
between the hindcasting sea ice thickness and observations is 0.64, with an absolute error
of 3.15 cm. At the location of the JZ20-2 platform, the correlation coefficient between the
hindcasting sea ice thickness and observation is 0.71, with an absolute error of 3.69 cm.
The hindcasting data can better reflect different ice conditions between mild and severe
ice years.
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A comparative analysis of ice periods was conducted in Figure 6 using sea ice ob-
servations from three artificial observation stations along the coast of the Bohai Sea and
hindcasting data from the nearest grid cells. The overall length of the monitoring ice period
at each station is greater than that obtained by the numerical model. It mainly considers
that the sea ice during the initial ice period mainly forms in the shallow shoals and semi-
enclosed bays near the shore and eventually melts in these nearshore areas after warming
up in spring. Therefore, the length of the artificial monitoring ice period conducted near the
shore is generally slightly longer than that reported by the numerical model. At locations
such as Bayuquan Ocean Station and Wentuozi Ocean Station, which are located to the
north, data from ocean stations with longer ice periods are continuous, and the hindcasting
results are consistent with the monitoring of ice periods. The hindcasting data can better
reflect the distribution of ice periods in mild and severe ice years.
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Figure 6. Comparisons of ice period from ocean stations and numerical model. The purple, green,
and orange lines represent the Bayuquan (BYQ), Tanggu (TGU), and Wentuozi (WTZ) ocean stations,
respectively. Lines with triangle and square marks represent observations from ocean stations and
hindcasting data from the grid cell closest to the ocean station, respectively.

Sea ice temperature and salinity were not verified in this study because these two pa-
rameters are calculated by sea ice thickness and air temperature. Therefore, we focused our
verification efforts on the ice thickness, which plays a key role in the estimation of sea ice
temperature and salinity. According to the current standard used for sea ice observation in
China, the sea ice concentration in the conventional shore station is mainly determined as
the proportion of ice in the total observation area, which is different from the calculation
of sea ice concentration in the numerical model (the proportion of ice units to the total
number of units). Therefore, no validation was carried out for sea ice concentration. There
is a good consistency between ice thickness and concentration, so the validation effect of
ice thickness can also represent the accuracy of other sea ice parameters to a certain extent.
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3.2. Ice Period, Thickness, and Concentration

Figure 7 plots the average severe ice period in the Bohai Sea from 2005 to 2022. The
average severe ice period in Liaodong Bay was the longest, which is consistent with the
phenomenon of sea ice accumulation on the east coast caused by the winter northwest mon-
soon. Moreover, influenced by the warm current of the Yellow Sea, the water temperature
on the south coast of Bohai Bay is lower than that on the north coast, resulting in a longer
severe ice period in the south of Bohai Bay compared to the north [25]. The average severe
ice period in Laizhou Bay is shorter than that in Liaodong Bay and Bohai Bay, with only
10 to 20 days.
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Figure 7. Average severe ice period in the Bohai Sea from 2005 to 2022.

Figure 8 shows the maximum sea ice thickness, average sea ice thickness, maximum
sea ice concentration, and average sea ice concentration in the Bohai Sea from 2005 to 2022.
The maximum and average ice thickness show relatively consistent spatial distribution
characteristics. The sea ice thickness in the northeast of Liaodong Bay is the largest, and in
the central area of the Bohai Sea it is the smallest. The sea ice thickness at the bottom of the
bays is larger than that at the bay mouth. The sea ice thickness shows the characteristics of
Liaodong Bay are large in the east and small in the west; those of Bohai Bay are large in the
south and small in the north; and those of Laizhou Bay are large in the east and small in
the west, which is consistent with the distribution of water depth.
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The spatial distribution characteristics of sea ice concentration and thickness are
relatively consistent. The sea ice in Liaodong Bay has the largest freezing range and slowest
heat exchange with the outer sea. In addition, the thermal effect of the cold continent in
winter is conducive to ice growth [26]. Under the influence of the northwest monsoon,
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sea ice accumulates towards the east. When the northward and eastward monsoons blow
continuously in winter, under the action of clockwise reflux, drift ice can always exist in
the areas of Bayuquan and Changxing Island [27].

Figure 9 plots the difference in the average severe ice period between the present study
and the 21-ice-zone standard. Compared with the original 21-ice-zone standard, the latest
average severe ice period in most areas of the Bohai Sea decreased, with the southern and
western coast of the Bohai Sea experiencing more significant shortening, while the eastern
part of Liaodong Bay increased slightly. Both the latest result and the old standard showed
that there was no severe ice period in the central Bohai Sea.
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21-ice-zone standard.

Figure 10 shows the differences in the sea ice thickness and concentration between the
present study and the 21-ice-zone standard. Compared with the original standard values
of the 21 ice zones, the maximum ice thickness in most areas of the Bohai Sea decreased,
while the maximum ice thickness on the eastern side of Liaodong Bay increased, with an
overall increase of about 10 cm. The decrease in sea ice thickness is most significant near
the No. 43 zone in the central Bohai Sea. The average thickness and maximum thickness
distribution of sea ice were similar, except for the eastern part of Liaodong Bay; there was
also a slight increase in the central part of Bohai Bay.
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21-ice-zone standard.

For the sea ice concentration, there were four significantly higher ice zones in the
eastern area of Laizhou Bay, which had a maximum sea ice concentration of 18.5% in the
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No. 20 ice zone in the original standard. By contrast, the maximum sea ice concentration
of the four ice zones was between 80.3% and 97.2% in the latest results, with an average
sea ice concentration of 4.8–9.5%. In extreme years, the ice condition is severe, and there is
some accumulation of sea ice in the eastern part of Laizhou Bay, with a maximum sea ice
concentration of 97.2% occurring in 1969.

3.3. Ice Temperature and Salinity

Figure 11 plots the results of the average ice temperature and salinity in the Bohai Sea
from 2005 to 2022, calculated using Equations (1) and (2). The lower surface temperature of
sea ice is equal to the freezing temperature of seawater. The difference in the lower surface
temperature of sea ice in different ice zones is not significant, and the temperature of the
upper surface of sea ice is mainly affected by air temperature. The average effective ice
temperature of each ice zone in the Bohai Sea showed that the southern ice zone was higher
than the northern ice zone, which is consistent with the air temperature distribution. The
average effective ice temperature at the bottom of Liaodong Bay was the lowest. Because
sea ice salinity is a function of sea ice thickness, the salinity of sea ice is lower in areas with
thicker sea ice. The distribution of average effective salinity showed that the ice zones in
the eastern part of Liaodong Bay, the southern part of Bohai Bay, and the southern part of
Laizhou Bay were lower than other ice zones.
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3.4. Design Ice Thickness

Figure 12 depicts the design ice thickness for different return periods in the Bohai
Sea. The design ice thickness in Liaodong Bay was the thickest, followed by Bohai Bay
and Laizhou Bay. There was no distribution of sea ice in the central area of the Bohai Sea.
The largest design ice thickness for a 100-year return period in the Bohai Sea appeared
in the No. 119 ice zone in the northeast of Liaodong Bay, reaching 62.5 cm. In Bohai Bay
and Laizhou Bay, the largest design ice thicknesses were larger than 40 cm. For design ice
thickness for a 10-year return period in the Bohai Sea, the largest value was larger than
50 cm in Liaodong Bay while smaller than 30 cm in Bohai Bay and Laizhou Bay.
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Figure 12. Design ice thickness for (a) 100-year, (b) 50-year, (c) 25-year, and (d) 10-year return periods
in the Bohai Sea.

Figure 13 depicts differences in design ice thickness for different return periods be-
tween the present study and the 21-ice-zone standard. Compared with the design ice
thickness for different return periods in the original 21-ice-zone standard, the latest results
showed an overall decreasing trend in the Bohai Sea. The design ice thickness for 100-year
and 50-year return periods significantly decreased along the west coast of the Bohai Sea
compared to the original 21-ice-zone standard. The maximum decrease in coastal ice zones
was 15 cm, and the zones with the largest decrease were mainly distributed in the coastal
areas of Tianjin, Tangshan, Qinhuangdao, Jinzhou, and the west coast of Laizhou Bay.
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Compared with the design ice thickness for different return periods in the original
21-ice-zone standard, the eastern sea area of Liaodong Bay increased slightly. There are
two main reasons for the increase in design ice thickness for different return periods in this
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area. Firstly, the increasing trend of distribution of sea ice in Liaodong Bay was mild in the
west and severe in the east, which is caused by the drift and accumulation of sea ice from
west to east [18]. Secondly, the ice zone division in the CNOOC standard often uses coastal
ice conditions to represent the ice conditions of the entire ice zone, and the new refined
zoning method can more prominently depict the changes and differences between coastal
and offshore ice zones.

4. Discussion and Conclusions

In this study, the ice conditions predicted by the numerical modeling were compared
with the information observed at the ocean stations along the coast. As shown in Figure 6,
the agreements between hindcasting data and observations were good in general, but the
ice periods provided by the hindcasting data were shorter than the observed ice periods.
One reason is that, as mentioned earlier, sea ice in the shallow shoals forms earlier and
melts later. The difference also reflects the low applicability of such hindcasting numerical
models for predicting ice conditions in shallow coastal waters. For sea ice forecasts in the
vicinity of ocean stations with long-term observations, the method of artificial intelligence
analysis can be considered, which may be more suitable for modeling the development of
sea ice in shallow areas with complex topography, depth, and tide.

It is also noteworthy from Figure 2 that the sea ice development on the west coast
of the Bohai Sea provided by hindcasting data was later and lighter than the information
drawn from satellite observations. The reason is that the west coast of the Bohai Sea is the
first affected area after the invasion of cold air from Siberia into the Bohai Sea. Therefore,
this area is prone to the growth of large areas of sea ice in the short term. It is necessary to
further adjust the parameter setting of the numerical model on the west coast of the Bohai
Sea in future research work.

Sea ice modeling research is very dependent on the observation of ice conditions for
validation, especially ice thickness. While the accuracy of the sea ice thickness derived
from the satellite images is difficult to validate. In future research, the EM-31 aboard the
ship in ice will be used to accumulate observational data on ice thickness, which is finally
used to improve the accuracy of hindcasting data.

This study applied sea ice observations and hindcast data from the NEMO-LIM2
ice–ocean coupling model to establish a refined sea ice zone division in the Bohai Sea and
analyzed the ice condition characteristics, including ice period, thickness, concentration,
temperature, and salinity, as well as the design ice thickness for different return periods
constructed by the average values of the P-III and Weibull methods. According to the
analysis, the average effective ice temperature of the Bohai Sea shows a distribution trend
of warm southwest and cold northeast, and the average effective ice salinity shows a low
salinity distribution at the bottom of Liaodong Bay, southern Bohai Bay, and southern
Laizhou Bay. The distribution of ice temperature and ice salinity is closely related to
the distribution of ice thickness; that is, there is consistency in the distribution of low
ice temperature, low ice salinity, and large ice thickness areas. The results of ice period,
ice thickness, and ice concentration, as well as design ice thickness for different return
periods and the comparison with the current standards of CNOOC, show that the design
ice thickness on the west coast of the Bohai Sea has significantly decreased. The calculated
values of design ice thickness on the east coast of Liaodong Bay have increased, indicating
that the fine ice zone division has a more refined evaluation conclusion than the coarse
ice zone division. At the same time, it is also a manifestation of the distribution pattern of
mild ice conditions in the west and severe ice conditions in the east of Liaodong Bay. The
analysis methods adopted in this paper can also be utilized in Arctic Sea ice engineering.
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Abstract: The primary productivity of seasonal ice-covered water bodies is an important variable for
understanding how temperate lake ecosystems are changing due to global warming. But there have
been few studies on the complete change process of primary productivity during the ice-covered
period, and the connection between ice physical and associated biological production has not been
fully understood. In this study, a Vertically Generalized Production Model (VGPM) suitable for
the ice-covered period was used to calculate the primary productivity of a temperate lake, and
the key physical controlling factor was analyzed in the process of primary productivity change in
the ice-covered period. The results showed that there was a high level of primary productivity,
(189.1 ± 112.6) mg C·m−2·d−1, under the ice in the study site, Hanzhang Lake. The phytoplankton
production under the ice was not as severely restricted by light as commonly thought. The water
temperature played a more crucial role in the changes of primary productivity than the light beneath
the ice. The study highlighted the variability in primary productivity covering the whole ice-covered
age, and provided a better understanding of how the aquatic environment of lakes in seasonal
ice-covered areas was affected by warmer temperatures.

Keywords: ice-covered period; primary productivity; temperate lakes; VGPM model; climate change

1. Introduction

Temperate lakes with seasonal freezing are considered some of the most sensitive
regions to global warming [1,2]. The warming of lakes affects the growth and melting of ice
sheets [3]. As the ice cover weakens, the light increases and water temperatures rise, which
lead to an increase in the activity of organisms living under the ice [4]. In recent years,
researchers have found that the subglacial water bodies can be quite productive in winter
months, despite the cold temperatures and lack of light, which breaks with the past [5–8].
Another reason why biological activity under the ice is crucial, is that the lake ecology will
change with the alternation of the four seasons in temperate lakes. Each season has its
own characteristics that can affect the lake’s ecosystem, and there is a close relationship
between seasons. For example, the changes in biological activity with the melting of ice
in winter can affect the distribution, structure, and biomass of organisms in the following
spring [9–11]. Therefore, the primary productivity beneath the ice of seasonal ice-covered
water bodies is an important factor for a comprehensive understanding of how temperate
lake ecosystems are changing under the background of global warming.

The model estimation method is one of the main ways of calculating primary pro-
ductivity. This method involves using a mathematical or simulation model to estimate
productivity based on various parameters, including temperature, light, and chlorophyll
over a wide range of timescales. The concentration of chlorophyll on the water surface can
be determined by remote sensing technology, and the Vertically Generalized Production
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Model (VGPM) is a model used to estimate the primary productivity of the water bodies
based on chlorophyll concentrations [12,13]. Lomas [14] confirmed that the VGPM model
can accurately estimate primary productivity by comparing measurement of chlorophyll a
(Chl.a) with radioactive 14C isotope. The depth of the euphotic layer (which is the part of
the water column where light can penetrate) is an input of the VGPM model, as it affects the
amount of light that can reach the bottom layers of the water column. Generally, the depth
at which 1% of the Photosynthetically Active Radiation (PAR) is taken on the water surface
as the standard is typically used to determine the euphotic depths, or the photosynthetically
active layer [15]. Yu calculated the primary productivity [16] below the ice by the amount
of PAR that reaches the ice-water interface. The studies mentioned above have provided a
foundation for the research into primary productivity in lakes with ice cover. But there have
been relatively few studies on the complete change process of primary productivity during
the ice-covered period. It is important to understand the primary productivity throughout
the ice-covered period in order to inform our understanding of how aquatic ecosystems are
responding to environmental changes. In addition, the connection between ice physical
processes and ice ecosystem has not been fully established. For example, water temperature
affects the vertical exchange of water [17], and the shortening of ice growth and melting
lead to increased light availability under the ice, which enhance biological activity [18].
However, the specific effects of these physical factors on primary productivity remains to
be studied. In this study, a VGPM model suitable for the ice-covered period was used to
calculate the primary productivity and analyze key physical controlling factors, in order
to establish the relationship between ice physics and ice ecology during the ice-covered
period of a seasonal frozen temperate lake.

2. Materials and Methods
2.1. Study Site

Hanzhang Lake (40◦40′ N–40◦43′ N, 122◦0′ E–122◦08′ E) is located at the northern
boundary of offshore China (Figure 1a), adjacent to Bohai Sea, with a salinity of 5–7 ppt. The
lake has a surface area of 10 km2 and it is generally shallow with an average depth of 6 m
and a maximum depth of 10 m. The climate in this location is warm temperate continental
semi-humid monsoon, with sufficient sunshine, and an average annual temperature of
10.5 ◦C. Hanzhang Lake generally enters the freeze period in December and melts in March
of the next year, with a maximum ice thickness of 40 cm. The average winter temperature is
approximately −6 ◦C, and the lowest temperature can reach −22 ◦C. The lake is eutrophic
with an average total nitrogen (TN) concentration of 1.15 mg/L and an average total
phosphorus (TP) concentration of 0.16 mg/L between 2019 to 2021.

2.2. Field Methods

The field study was conducted from 12 January to 14 March 2022, when the lake
was covered by ice. The study was divided into two parts: floating remote observation
platform and manual investigation. Ice thickness, PAR, water temperature, turbidity, and
Chl.a were automatically monitored by sensors mounted on a floating remote observation
platform (Figure 1b) [19]. The sensors used were: ultrasonic rangefinders with an accuracy
of ±0.01 m and a monitoring frequency of every 1 min, solar radiation sensors with a
monitoring frequency of every 30 min (two sets of sensors on the ice surface, measuring the
incident light irradiance and the reflected light irradiance of the ice surface, respectively;
one was set at 0.8 m below the ice), and YLS-ZDW chlorophyll and turbidity in situ
monitoring sensors (the water temperature measurement range was −5 ◦C to 50 ◦C, with a
resolution of 0.01 ◦C and an accuracy of ±0.15 ◦C; the turbidity range was 0 to 1000 FTU,
with a resolution of 0.01 FTU and an accuracy of± 2%; the range of Chl.a was 0 to 400 µg/L,
with a resolution of 0.01 µg/L and an accuracy of ±5%; the monitoring frequency was
once every 1 min; there were four sets at the water depth of 0.7 m, 1.5 m, 2.0 m, and 4.4 m,
respectively). The transparency of water was measured by manual investigation with a
Sayer’s plate. Due to safety problems, the manual sampling time was based on the ice
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thickness, starting at 15 cm during the freezing period and ending at 15 cm during the
melting period. The sampling time interval was 5 days.
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2.3. Euphotic Depths

The calculation of euphotic depth (Zeu) in this study refers to the following improved
method [16]. Generally, non-icy water was considered to have uniform properties. Ac-
cording to Lambert-Beer law, the PAR of a beam of light passing through water will
decrease exponentially with increasing depth. The euphotic depth was calculated by the
Formula (1), the maximum depth at which light is still able to penetrate the water, allowing
photosynthesis to occur:

Zeu =
2ln10

Kd(PAR)
=

4.605
Kd(PAR)

(1)

where Kd (PAR) was the diffuse attenuation coefficient of photosynthetically active radiation
(m−1). Holmes [20] defined the relationship between transparency and Kd (PAR) as:

Kd(PAR) =
f

SD
(2)

where SD was the water transparency (in meters), and f was a constant that was determined
by empirical data. Ma [21] investigated and analyzed data from 20 lakes in northern China
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and found that the relationship between Kd(PAR) and SD was relatively stable, with a
generally accepted value of 1.4 for the constant f. It was appropriate to select an f value of
1.4 for this study.

In frozen lakes during the winter months, ice and snow covered the water bodies,
which can absorb and scatter solar radiation, thus affecting the light radiation through water
bodies and altering the calculated euphotic depth. Therefore, the extinction coefficient of
the ice sheet was a necessary factor for calculating the euphotic depth of water bodies in
the ice period. PAR decreased exponentially in the ice sheet, and when combined with the
mirror reflection of light on the ice surface, the extinction coefficient of the ice sheet was
expressed as:

Ki(PAR) =
1
hi

[
(1− Rs)

Ed(0, PAR)
Ed(hi, PAR)

]
(3)

In general, the euphotic depth was defined as the depth where underwater photo-
synthetically active radiation intensity was 14 µmol·m−2·s−1. The extinction coefficient
and photosynthetically active diffuse attenuation coefficient of the ice sheet can be used to
derive the calculation model of the euphotic depth of water in the ice-covered period:

Zeui =
SD

f
ln
(1− Rs)Ed(0, PAR)

14eki(PAR)hi
(4)

where Zeui was the depth of the euphotic layer (m), f was 1.4, SD was water transparency
(m), hi was ice thickness, Ki (PAR) was the extinction coefficient of the ice layer (m−1), Rs was
the reflectance of the surface mirror which was calculated by the ratio of surface reflection
to surface incidence PAR, and Ed (0, PAR) was the ice surface PAR (µmol·m−2·s−1).

2.4. Primary Productivity

The core calculation formula of primary productivity used in this study was the VGPM
model established by Behrenfeld and Falkowski [22], based on large-scale and long-term
monitoring data.

PPeui = 0.66125× PB
opt × Dirr ×

Ei
Ei + 4.1

× Zeui × Copt (5)

In the formula, PPeui was the primary productivity of the water body (measured by
mgC·m−2·d−1) during the ice-covered period. PB

opt was the maximum carbon sequestration
rate of the water column (mgC·mg−1Chl·h−1) during the ice-covered period. Dirr is the
illumination period (in hours) during the ice-covered period. Ei was PAR at the interface
of ice–water mixing (mol·m−2·d−1). In this study, Ei was approximately replaced by PAR
at 0.8 m water depth. Copt was the concentration of Chl.a (µg·L−1) at the depth of the
euphotic layer. In this study, an average value of Chl.a concentration at the water depths of
0.7 m and 1.5 m was used as an approximate replacement of that depth of euphotic layer.

The maximum carbon sequestration rate in the water column was calculated based on
the Equation (6), proposed by Behrenfeld and Falkowski [22]:

PB
opt = 1.2956 + 0.2749T + 0.0617T2 − 0.0205T3 + 2.462× 10−3T4

− 1.348× 10−4T5 + 3.4132× 10−6T6 − 3.27× 10−8T7 (6)

where T was the water surface temperature (◦C). There was a significant difference between
the surface temperature in ice-covered and non-ice-covered water. In non-ice-covered
water, the surface water temperature was usually the highest, and the maximum carbon
sequestration rate of water column usually occurred at the surface water. However, for
ice-covered waters, the water column temperature was lower, so the highest average
temperature 2 m away from the water meter can be used as an approximate alternative.
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The illumination period Dirr indicated the daily length, which was the amount of time
that the site was illuminated each day. The value can be obtained by querying geographic
information about the study site.

2.5. Statistical Analysis

Stepwise linear regression and principal component analysis were used to identify
statistically significant trends in the potential drivers of changing productivity. Statistical
analysis was conducted using SPSS 9.0 and Origin 18.0. Data were considered significant
when the difference was set at p < 0.05.

3. Results
3.1. Ice Thickness, Water Temperature, PAR, Chl.a, and Transparency

The ice thickness, water temperature, incident PAR, ice-water interface PAR, Chl.a,
and transparency were shown in Figure 2, which were detected by sensors on the floating
observation platform. The ice thickness increased during the freezing period, and reached
a maximum peak of 0.43 m on 1 February. The ice water interface PAR fell to its lowest
point due to snow, although the ice incident PAR was still increasing. This prevented
light from entering the water, resulting in a decrease in the ice water interface PAR. As the
temperature rose after 28 February, the ice began to melt gradually. The water temperature
increased sharply from 2 ◦C to 4 ◦C during the end of February, and the lake ice entered a
rapid melting period, melting at a rate of 2–3 cm per day until it had completely melted
on 14 March. The incident irradiance showed an obvious increasing trend during the
observation period as a result of an increase in both the total radiation and light time,
because the time of the experiment was after the winter solstice and the direct solar point
gradually moved northward from the Tropic of Cancer.
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The PAR at the ice-water interface was significantly lower than the incident irradiance
on the ice surface and showed a trend of decreasing first before gradually increasing again.
This was related to the formation and melting of ice. The ice thickness increased and
enhanced the extinction effect during the freezing period. While the temperature rose and
the solar radiation was further enhanced, the ice thinned, resulting in a compensation of
the PAR at the ice-water interface in the melting period. The data showed that the average
total PAR on ice surface was 61.73 W·m−2, and the average PAR at the ice-water interface
was 23.83 W·m−2 without snow cover. The ratios of PAR at the ice-water interface and that
at the ice surface were between 5.76% and 64.84%, respectively, with an average ratio of
35.69%.

During the whole period of ice cover, Chl.a showed a tendency to peak and then
decrease. The average value of Chl.a was 17.89 µg·L−1. The transparency was decreasing
throughout the ice-covered period, and showed a negative correlation with Chl.a, indicating
a relatively high level of phytoplankton productivity during the ice-covered period.

3.2. Primary Productivity

Primary productivity was calculated based on the data of ice thickness, water temper-
ature, PAR, Chl.a, and transparency using the VGPM model, as shown in Figure 3. The pri-
mary productivity of Hanzhang Lake during the ice-covered period showed a trend of fluc-
tuation increase. The minimum primary productivity was 57.77 mgC·m−2·d−1, which ap-
peared on 12 January. The maximum value of primary productivity was 666.9 mgC·m−2·d−1,
which appeared on 13 March. The mean value was (189.1.3 ± 112.6) mgC·m−2·d−1 dur-
ing the whole ice-covered period. In the last days of the ice-covered period, the primary
productivity increased rapidly and reached its maximum value.
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A stepwise linear regression was used to figure out the importance of each calculation
factor in the VGPM model, with transparency, ice thickness, ice surface incident PAR,
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ice-water interface PAR, water temperature, and Chl.a as independent variables, and
primary productivity as the dependent variable. The results showed that predicted values
of linear regression were in good agreement with the calculated values of the VGPM
model (R2 = 0.957, p < 0.001). The linear regression formula was primary productivity =
0.242–0.775 × ice thickness (m)—0.358 × transparency (m) + 0.01 × chlorophyll a (µg·L−1)
+ 0.009 × daily average ice water interface PAR (W·m−2) + 0.021 × water temperature
(◦C), indicating that ice thickness, transparency, Chl.a, ice water interface PAR, and water
temperature have a significant impact on primary productivity. The process of ice growth
and melting, such as ice thickness, affected the dynamics of primary productivity under
the ice.

3.3. Key Physical Factors

In terms of non-frozen open water bodies, there were great differences in physical
factors such as light and water temperature of frozen water bodies, which can have an
impact on the water ecosystem under ice. The water temperature usually affects phyto-
plankton photosynthetic enzyme activity and primary productivity. Changes in euphotic
depth and PAR will be impacted by the light intensity, which in turn affects the photosyn-
thetic intensity of phytoplankton, resulting in a change in primary productivity. Principal
component analysis was performed on a variety of parameters including ice thickness,
water temperature, ice incident PAR, ice-water interface PAR, Chl.a, and transparency in
the VGPM model, as shown in Figure 4. Water temperature had the highest correlation with
primary productivity throughout the ice period (p < 0.05 in the Bartlett test), suggesting
that water temperature was a key factor in affecting primary productivity. At the same
time, the entire ice period was divided into three parts, which was consistent with freezing
and melting periods according to the ice thickness.
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4. Discussion

The primary productivity of the Hanzhang Lake was 57.77–666.9 mg C·m−2·d−1

with an average of (189.1 ± 112.6) mg C·m−2·d−1. The result was comparable to that
of other lakes or rivers calculated by the VGPM model (shown in Table 1), implying
that there was a high level of primary productivity under the ice in Hanzhang Lake
during the winter. The primary productivity of Hanzhang Lake was mainly attributed to
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phytoplankton. Hanzhang Lake was meso-eutrophic with an average Chl.a concentration
of (18.4 ± 7.21) µg·L−1 and an average algae cell density of (5.85 ± 6.24) × 106 cells/L in
water under the ice during the ice-covered period of 2022 [23]. The eutrophication of lakes
changes the community structure of phytoplankton and benthic organisms significantly,
which can lead to a shift in the water energy flow path from the bottom to the top [24,25].
As the phytoplankton was the main primary producer, the impact of environmental factors
in the ice-covered period to the dynamics of phytoplankton was focused on in this study.

Table 1. Previous studies of primary productivity using the VGPM model.

Lakes and Rivers Latitudes Time Primary Productivity
mg C·m−2·d−1 References

Yenicaga Lake 40◦47′ N December 319 [26]
Pearl River Estuary 21◦48′–22◦27′ Winter 224.5 [12]

Taihu 30◦55′40′′–31◦32′58′′ N Annual 207.67–2237.71 [27]
Tanganyika 3◦20′–8◦48′ S Wet and Dry Seasons 110–1410 [28]

Cape Fear River – Annual 18–2580 [29]
Wuliangsuhai 40◦36′–41◦03′ N Winter 86.34–96.34 [16]

The effective light radiation under the ice was the primary limiting factor for aquatic
biological activities [30]. Both the thickness and the structure of ice contribute to the light
attenuation [31,32]. However, some studies suggest that the maximum photosynthetic
efficiency required by phytoplankton was only 30% of that of benthic organisms [33]. Two
pieces of evidence in this study suggested that the phytoplankton under the ice were not
limited by light in Hanzhang Lake. First, it was found that primary productivity did
not decrease with the decrease of light under the ice in the freeing period of this study,
even though ice thickness and snow cover decreased the depth of the euphotic layer.
Observations showed that the lowest depth of the eukaryotic layer was 0.8 m, providing
plenty of space for phytoplankton to undergo photosynthesis. Second, the average daily
ice-water interface PAR of the Hanzhang lake was (21.7 ± 6.9) W·m−2, which met the
lighting requirement for primary production. The quantum irradiance required for primary
productivity was approximately 25 µmol·m−2·s−1, which was equivalent to approximately
5 W·m−2 in terms of irradiance level [34]. Except for on overcast and snowfall days when
light intensity decreased, primary productivity was observed to recover significantly with
the melting of snow as PAR increased. This suggests that although PAR decreased due to
snow and ice, it did not reach a level that limits primary production, possibly due to the
geographic location of Hanzhang Lake.

This research suggests that water temperature is a key factor in determining the level
of primary production in Hanzhang Lake, especially during periods of ice coverage. The
data showed a statistically significant positive correlation between water temperature and
concentration of chlorophyll a (p < 0.05), indicating that the warmer temperatures tend to
lead to higher phytoplankton activities and primary production. The primary production
of phytoplankton in the freezing period was mainly regulated by water temperature but
not light. In addition, primary productivity increased quickly with the rise in tempera-
ture and improved light conditions during the period when the ice was melting. Water
temperature and the duration of the ice cover were considered to be the main drivers
of biological dynamics [35]. Aquatic conditions in winter played an essential role in the
abundance and structure of phytoplankton communities, affecting the growth of phyto-
plankton during spring. Evidence showed change in phytoplankton in a long scale was
linked to temperature rises, for example, phenology changes over a time period of 15 years
in the Bassenthwaite Lake at the northern boundary of the English Lake District [1]. The
dynamics and productivity of phytoplankton under the ice should be paid close attention
to, in the background of global warming.

Convective mixing in the water layer beneath the ice played an important role in phy-
toplankton bioactivity, in addition to light and water temperature. This convective mixing
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can create favorable conditions for bioactivity by increasing nutrient supply and allowing
for more efficient exchanges between the surface and lower layers of water. Among the
stratified water bodies of ice-covered closed freshwater lakes, the convective mixing in
vertical profiles was usually weak. The salty lakes had a typical salt drainage effect when
they froze, which can lead to a concentration and diffusion of the salty water layer beneath
the ice. This can enhance the vertical convection of the water body. Hanzhang Lake was
adjacent to the Bohai Sea, with a salinity of 5 to 7 ppt. The salt of the ice sheet would be
transferred downward, and the nutrients released by the sediments can be more easily
exchanged to the upper water when vertical convection was enhanced [36]. Thus, the
nutrients in the water were accumulated, and the phytoplankton moved freely between the
water layers, which contributed to the growth of phytoplankton populations. The light limi-
tation below the euphotic layer was weakened when vertical convection was enhanced [34],
which can be related to the high chlorophyll concentration in Hanzhang Lake during the
ice-covered period. There was a negative correlation (p < 0.05) between Chlorophyll a
and ice-water interface PAR in this study, and the high-value area of chlorophyll did not
always exist in surface water. The negative correlation of Chl.a and PAR in Hanzhang Lake
was consistent with that in Antarctic Lake Bonney [37], which was due to the self-shading
effect. The shelf-shading effect was that high chlorophyll concentrations attenuated light
radiation.

The results from Hanzhang Lake indicated that the primary productivity was greatly
affected by the ice-covered period. Phytoplankton was the main producer, and water
temperature was the key physical factor driving the dynamics of phytoplankton. The
phytoplankton under the ice was not as light limited as commonly thought. The primary
production level of phytoplankton will not decrease significantly, even though the thick ice
and snow cover can lead to a decrease in light radiation and a decrease in the depth of the
euphotic layer. This study was meant to provide reference for the subsequent evolution of
ice ecological environment.

5. Conclusions

The ice-covered period of Hanzhang Lake lasted approximately 3 months, with a
maximum ice thickness of 0.43 m and an average ice thickness of 0.29 m during winter in
2021–2022. The primary productivity was 57.77–666.9 mg C·m−2·d−1 with an average of
(189.1 ± 112.6) mg C·m−2·d−1 during the ice-covered period, using the VGPM model. The
water temperature played a more critical role in the changes of primary productivity than
light under the ice in Hanzhang Lake. The primary production level did not decrease when
the thick ice and snow cover led to the decrease of light radiation and the depth of the
euphotic layer in the freezing period. In addition, primary productivity increased quickly
with the rise in temperature and improved light conditions in the melting period. It appears
that in regions where there are seasonal changes of icy cover, warmer water temperatures
may be more important for primary productivity than light conditions, providing a better
understanding of the interaction between ice physicals and ecology.

Author Contributions: Investigation, analysis, and writing of the original draft, J.Z.; investigation
and conceptualization, F.X.; analysis and visualization, H.S.; formal analysis, J.M.; writing review
and editing, Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (Grant No. 2019YFE0197600) and the National Natural Science Foundation of China (Grant
No. 42007150, 52211530038).

Institutional Review Board Statement: No human or animal studies involved in this study.

Data Availability Statement: Data from the VGPM model in this study can be downloaded from
https://pan.baidu.com/s/1Lg0Hqa2aoyFI_OUyr3-BYw (code 1952); the meteorological data from
the National Meteorological Data Center can be downloaded from http://data.cma.cn.

217



Water 2023, 15, 918

Acknowledgments: We are grateful to the editor and anonymous reviewers for their comments,
which considerably improved this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Meis, S.; Thackeray, S.J.; Jones, I.D. Effects of recent climate change on phytoplankton phenology in a temperate lake. Freshw. Biol.

2009, 54, 1888–1898. [CrossRef]
2. Ladwig, R.; Appling, A.P.; Delany, A.; Dugan, H.A.; Gao, Q.T.; Lottig, N.; Stachelek, J.; Hanson, P.C. Long-term change in

metabolism phenology in north temperate lakes. Limnol. Oceanogr. 2022, 67, 1502–1521. [CrossRef]
3. Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake responses to climate change.

Nat. Rev. Earth Environ. 2020, 1, 388–403. [CrossRef]
4. Markensten, H.; Moore, K.; Persson, I. Simulated Lake phytoplankton composition shifts toward cyanobacteria dominance in a

future warmer climate. Ecol. Appl. 2010, 20, 752–767. [CrossRef]
5. Kohlb Kohlbach, D.; Graeve, M.; Lange, B.A.; David, C.; Schaafsma, F.L.; van Franeker, J.A.; Vortkamp, M.; Brandt, A.; Flores, H.

Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during
winter. Glob. Chang. Biol. 2018, 24, 4667–4681. [CrossRef]

6. Hampton, S.E.; Galloway, A.W.; Powers, S.M. Ecology under lake ice. Ecol. Lett. 2017, 20, 98–111. [CrossRef]
7. Bramburger, A.J.; Ozersky, T.; Silsbe, G.M.; Crawford, C.J.; Olmanson, L.G.; Shchapov, K. The not-so-dead of winter: Underwater

light climate and primary productivity under snow and ice cover in inland lakes. Inland Waters 2022. [CrossRef]
8. Song, S.; Li, C.Y.; Shi, X.H.; Zhao, S.N.; Tian, W.D.; Li, Z.J.; Bai, Y.L.; Cao, X.W.; Wang, Q.K.; Huotari, J.; et al. Under-ice metabolism

in a shallow lake in a cold and arid climate. Freshw. Biol. 2019, 64, 1710–1720. [CrossRef]
9. Moss, B. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [CrossRef]
10. Yang, F.; Cen, R.; Feng, W.Y.; Zhu, Q.H.; Lepparanta, M.; Yang, Y.; Wang, X.H.; Liao, H.Q. Dynamic simulation of nutrient

distribution in lakes during ice cover growth and ablation. Chemosphere 2021, 281, 130781. [CrossRef]
11. Yang, F.; Li, C.; Shi, X.; Zhao, S.; Hao, Y. Impact of seasonal ice structure characteristics on ice cover impurity distributions in Lake

Ulansuhai. J. Lake Sci. 2016, 28, 455–462.
12. Ye, H.B.; Chen, C.Q.; Sun, Z.H.; Tang, S.L.; Song, X.Y.; Yang, C.Y.; Tian, L.Q.; Liu, F.F. Estimation of the Primary Productivity in

Pearl River Estuary Using MODIS Data. Estuar. Coasts 2015, 38, 506–518. [CrossRef]
13. Zainuddin, M.; Kiyofuji, H.; Saitoh, K.; Saitoh, S.I. Using multi-sensor satellite remote sensing and catch data to detect ocean hot

spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep-Sea Res. Pt. II 2006, 53, 419–431. [CrossRef]
14. Lomas, M.W.; Moran, S.B.; Casey, J.R.; Bell, D.W.; Tiahlo, M.; Whitefield, J.; Kelly, R.P.; Mathis, J.T.; Cokelet, E.D. Spatial and

seasonal variability of primary production on the Eastern Bering Sea shelf. Deep-Sea Res. Pt. II 2012, 65–70, 126–140. [CrossRef]
15. Huang, L.; Zhou, Y.; Zhou, Q.; Wang, W.; Dong, Y.; Li, K.; Chang, J. Temporal-spatial variation in phytoplankton primary

production and its influencing factors in Lake Chenghai on the Yunnan Plateau, China. J. Lake Sci. 2019, 31, 1424–1436.
16. Yu, H.F.; Shi, X.H.; Zhao, S.N.; Sun, B.; Liu, Y.; Arvola, L.; Li, G.H.; Wang, Y.J.; Pan, X.R.; Wu, R.; et al. Primary productivity of

phytoplankton and its influencing factors in cold and arid regions: A case study of Wuliangsuhai Lake, China. Ecol. Indic. 2022,
144, 109545. [CrossRef]

17. Kirillin, G.; Lepparanta, M.; Terzhevik, A.; Granin, N.; Bernhardt, J.; Engelhardt, C.; Efremova, T.; Golosov, S.; Palshin, N.;
Sherstyankin, P.; et al. Physics of seasonally ice-covered lakes: A review. Aquat. Sci. 2012, 74, 659–682. [CrossRef]

18. Hintz, N.H.; Schulze, B.; Wacker, A.; Striebel, M. Ecological impacts of photosynthetic light harvesting in changing aquatic
environments: A systematic literature map. Ecol. Evol. 2022, 12, e8753. [CrossRef]

19. Xie, F.; Lu, P.; Li, Z.J.; Wang, Q.K.; Zhang, H.; Zhang, Y.W. A floating remote observation system (FROS) for full seasonal lake ice
evolution studies. Cold Reg. Sci. Technol. 2022, 199, 103557. [CrossRef]

20. Holmes, R.W. Secchi disk in turbid coastal waters. Limnol. Oceanogr. 1970, 15, 688–694. [CrossRef]
21. Ma, J.H. Inversion of Kd (PAR) and Euphotic Zone Depth of Typical Water Bodys in Northeast China with Remote Imagery; Northeast

Institute of Geography and Agroecology: Changchun, China; Chinese Academy of Sciences: Beijing, China, 2016.
22. Behrenfeld, M.J.; Falkowski, P.G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr.

1997, 42, 1–20. [CrossRef]
23. Wang, H.; Wang, H.; Li, Y.; Ma, S.; Yu, Q. The control of lake eutrophication: Focusing on phosphorus abatement, or reducing

both phosphorus and nitrogen? Acta Hydrobiol. Sin. 2020, 44, 938–960.
24. Alexander, T.J.; Vonlanthen, P.; Seehausen, O. Does eutrophication-driven evolution change aquatic ecosystems? Philos. Trans. R.

Soc. B 2017, 372, 20160041. [CrossRef] [PubMed]
25. Li, H.; Shen, H.; Li, S.; Liang, Y.; Lu, C.; Zhang, L. Effects of eutrophication on the benthic-pelagic coupling food web in

Baiyangdian Lake. Acta Ecol. Sin. 2018, 38, 2017–2030.
26. Saygi-Basbug, Y.; Demirkalp, F.Y. Primary production in shallow eutrophic Yenicaga Lake (Bolu, Turkey). Fresenius Environ. Bull.

2004, 13, 98–104.
27. Wei, J.; Ji, X.N.; Hu, W. Characteristics of Phytoplankton Production in Wet and Dry Seasons in Hyper-Eutrophic Lake Taihu,

China. Sustainability 2022, 14, 11216. [CrossRef]

218



Water 2023, 15, 918

28. Stenuite, S.; Pirlot, S.; Hardy, M.A.; Sarmento, H.; Tarbe, A.L.; Leporcq, B.; Descy, J.P. Phytoplankton production and growth rate
in Lake Tanganyika: Evidence of a decline in primary productivity in recent decades. Freshw. Biol. 2007, 52, 2226–2239. [CrossRef]

29. Kennedy, J.T.; Whalen, S.C. Seasonality, and controls of phytoplankton productivity in the middle Cape Fear River, USA.
Hydrobiologia 2008, 598, 203–217. [CrossRef]

30. Hampton, S.E.; Sharma, S.; Brousil, M.R.; Filazzola, A. Winter and summer storms modify chlorophyll relationships with nutrients
in seasonally ice-covered lakes. Ecosphere 2022, 13, e4272. [CrossRef]

31. Xie, C.; Zhou, L.; Ding, S.F.; Liu, R.W.; Zheng, S.J. Experimental and numerical investigation on self-propulsion performance of
polar merchant ship in brash ice channel. Ocean Eng. 2023, 269, 113424. [CrossRef]

32. Sun, Q.Y.; Zhang, M.; Zhou, L.; Garme, K.; Burman, M. A machine learning-based method for prediction of ship performance in
ice: Part I. ice resistance. Mar. Struct. 2022, 83, 103181. [CrossRef]

33. Rautio, M.; Dufresne, F.; Laurion, I.; Bonilla, S.; Vincent, W.F.; Christoffersen, K.S. Shallow freshwater ecosystems of the
circumpolar Arctic. Ecoscience 2011, 18, 204–222. [CrossRef]

34. Ozkundakci, D.; Gsell, A.S.; Hintze, T.; Tauscher, H.; Adrian, R. Winter severity determines functional trait composition of
phytoplankton in seasonally ice-covered lakes. Glob. Chang. Biol. 2016, 22, 284–298. [CrossRef] [PubMed]

35. Katz, S.L.; Izmest’eva, L.R.; Hampton, S.E.; Ozersky, T.; Shchapov, K.; Moore, M.V.; Shimaraeva, S.V.; Silow, E.A. The “Melosira
years” of Lake Baikal: Winter environmental conditions at ice onset predict under-ice algal blooms in spring. Limnol. Oceanog.
2015, 60, 1950–1964. [CrossRef]

36. Shatwell, T.; Thiery, W.; Kirillin, G. Future projections of temperature and mixing regime of European temperate lakes. Hydrol.
Earth Syst. Sci. 2019, 23, 1533–1551. [CrossRef]

37. Obryk, M.K.; Doran, P.T.; Priscu, J.C. The permanent ice cover of Lake Bonney, Antarctica: The influence of thickness and
sediment distribution on photosynthetically available radiation and chlorophyll-a distribution in the underlying water column. J.
Geophys. Res. Biogeosci. 2014, 119, 1879–1891. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

219





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Water Editorial Office
E-mail: water@mdpi.com

www.mdpi.com/journal/water

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-7258-0627-0


