
mdpi.com/journal/mathematics

Special Issue Reprint

Recent Advances of Disсrete
Optimization and Scheduling

Edited by

Alexander A. Lazarev, Frank Werner and Bertrand M.T. Lin

Recent Advances of Discrete
Optimization and Scheduling

Recent Advances of Discrete
Optimization and Scheduling

Editors

Alexander A. Lazarev

Frank Werner

Bertrand M.T. Lin

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Editors

Alexander A. Lazarev

Institute of Control Sciences

Russian Academy of Sciences

Moscow

Russia

Frank Werner

Otto-von-Guericke-University

Magdeburg

Germany

Bertrand M.T. Lin

National Yang Ming Chiao

Tung University

Taipei

Taiwan, China

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/recent advances discrete optimization and scheduling).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0673-7 (Hbk)

ISBN 978-3-7258-0674-4 (PDF)

doi.org/10.3390/books978-3-7258-0674-4

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.

Contents

About the Editors . vii

Preface . ix

Alexander A. Lazarev, Frank Werner and Bertrand M.T. Lin

Special Issue “Recent Advances of Discrete Optimization and Scheduling”
Reprinted from: Mathematics 2024, 12, 793, doi:10.3390/math12060793 1

Jae Won Jang, Yong Jae Kim and Byung Soo Kim

A Three-Stage ACO-Based Algorithm for Parallel Batch Loading and Scheduling Problem with
Batch Deterioration and Rate-Modifying Activities
Reprinted from: Mathematics 2022, 10, 657, doi:10.3390/math10040657 4

Dinesh Karunanidy, Subramanian Ramalingam, Ankur Dumka, Rajesh Singh,

Mamoon Rashid, Anita Gehlot, et al.

JMA: Nature-Inspired Java Macaque Algorithm for Optimization Problem
Reprinted from: Mathematics 2022, 10, 688, doi:10.3390/math10050688 30

Alexander Alekseevich Lazarev, Darya Vladimirovna Lemtyuzhnikova and

Mikhail Lvovich Somov

Decomposition of the Knapsack Problem for Increasing the Capacity of Operating Rooms
Reprinted from: Mathematics 2022, 10, 784, doi:10.3390/math10050784 58

Tatiana Makarovskikh and Anatoly Panyukov

Special Type Routing Problems in Plane Graphs
Reprinted from: Mathematics 2022, 10, 795, doi:10.3390/math10050795 76

Lev G. Afraimovich and Maxim D. Emelin

Complexity of Solutions Combination for the Three-Index Axial Assignment Problem
Reprinted from: Mathematics 2022, 10, 1062, doi:10.3390/math10071062 98

Vladimir Galuzin, Anastasia Galitskaya, Sergey Grachev, Vladimir Larukhin,

Dmitry Novichkov, Petr Skobelev, et al.

Autonomous Digital Twin of Enterprise: Method and Toolset for Knowledge-Based
Multi-Agent Adaptive Management of Tasks and Resources in Real Time
Reprinted from: Mathematics 2022, 10, 1662, doi:10.3390/math10101662 108

Navid Behmanesh-Fard, Hossein Yazdanjouei, Mohammad Shokouhifar and Frank Werner

Mathematical Circuit Root Simplification Using an Ensemble Heuristic–Metaheuristic
Algorithm
Reprinted from: Mathematics 2023, 11, 1498, doi:10.3390/math11061498 135

Man-Ting Chao and Bertrand M. T. Lin

Scheduling of Software Test to Minimize the Total Completion Time
Reprinted from: Mathematics 2023, 11, 4705, doi:10.3390/math11224705 157

Shuhui Shen and Xiaojun Zhang

Several Goethals–Seidel Sequences with Special Structures
Reprinted from: Mathematics 2024, 12, 530, doi:10.3390/math12040530 174

Alexander Lazarev, Nikolay Pravdivets and Egor Barashov

Approximation of the Objective Function of Single-Machine Scheduling Problem
Reprinted from: Mathematics 2024, 12, 699, doi:10.3390/math12050699 187

v

About the Editors

Alexander A. Lazarev

Alexander A. Lazarev was born in 1958. In 1980, he graduated from Kazan University. In

1990, he defended his PhD thesis in Minsk under the scientific supervision of Academician V.S.

Tanaev. In 2007, he defended his doctor Habilitation dissertation in Moscow. He has been acting as a

professor since 2009. He got married in 1983 (in Moldova) and has three children. Area of scientific

interests: scheduling theory and discrete optimization, construction of effective metrics for these

problems, with the help of which algorithms are constructed for finding approximate solutions with

a guaranteed absolute error of the objective function. These methods were practically utilized for the

Cosmonaut Training Center and the Russian Railways company.

Frank Werner

Frank Werner studied mathematics from 1975 to 1980 and graduated from the Technical

University of Magdeburg (Germany) with a distinction. He received a Ph.D. degree (with summa

cum laude) in Mathematics in 1984 and defended his habilitation thesis in 1989. From this, he

worked at the Faculty of Mathematics at the Otto-von-Guericke University Magdeburg in Germany,

and since 1998, as an extraordinary professor. In 1992, he received a grant from the Alexander

von Humboldt Foundation. He was a manager of several research projects, supported by the

German Research Society (DFG) and the European Union (INTAS). Since 2019, he has been the

Editor-in-Chief of the journal Algorithms. He is also an Associate Editor of The International Journal

of Production Research since 2012, and of The Journal of Scheduling since 2014, as well a member of the

editorial/advisory boards of 18 further international journals. He has been a guest editor of Special

Issues in ten international journals, and has served as a member of the program committee of more

than 140 international conferences. Frank Werner is an author/editor of 14 books, among them, the

textbooks Mathematics of Economics and Business and A Refresher Course in Mathematics. In addition, he

has co-edited three proceedings volumes of the SIMULTECH conferences and published more than

300 journal and conference papers, e.g., in The International Journal of Production Research, Computers &

Operations Research, The Journal of Scheduling, Applied Mathematical Modelling, or The European Journal

of Operational Research. He received Best Paper Awards from The International Journal of Production

Research (2016) and IISE Transactions (2021). His main research subjects are scheduling, discrete

optimization, graph theory, and mathematical problems in operations research.

vii

Bertrand M.T. Lin

Bertrand M.T. Lin is a professor (and the director) at the Institute of Information Management

at the National Yang Ming Chiao Tung University, Taiwan. Dr. Lin received his B.S. in Computer

Science (1986), M.S. in Computer and Information Science (1988), and Ph.D. in Computer Science and

Information Engineering (1991), all from National Chiao Tung University, Taiwan. After his Ph.D.

study, Dr. Lin served military duty as a second lieutenant at ROC (Taiwan) Air Force Headquarters.

In 1994, his academic career started at the Department of Information Management at Ming Chuan

University, where he later founded the Department of Computer Science. In 2001, Dr. Lin joined the

Department of Information Management, National Chi Nan University. He also acted as the director

of the Office of Extension Education and Industrial Development and the Chair of the Department

of Computer Science. Dr. Lin joined the National Chiao Tung University in 2004. He visited several

institutions, such as the Hong Kong Institute of Advanced Studies, IBM Watson Research Center,

New Jersey Institute of Technology, The Hong Kong Polytechnic University, University of Technology

Sydney, the University of Michigan, and Warwick Business School as a visiting scholar/professor.

Dr. Lin’s research interests are mainly in scheduling theory and discrete optimization, in terms of

both theory and applications. Dr. Lin serves the professional community as an Associate Editor

of The Journal of Scheduling, The Journal of Industrial and Management Optimization, and The Asia

Pacific Journal of Operational Research, and an Area Editor of Computers and Industrial Engineering and

NTU Management Review. He has published over 100 papers in such professional journals as IIE

Transactions, Management Science, Naval Research Logistics, SIAM Journal on Optimization, among others.

viii

Preface

This is the printed edition of a Special Issue published in the Mathematics journal. We received

20 submissions for this issue, representing a broad spectrum in the field of discrete optimization and

scheduling. In addition to the Editorial, this book contains ten research papers focusing on these

issues. Among the subjects addressed in this book, we can mention nature-inspired optimization

algorithms, routing problems in plane graphs, decomposition approaches for scheduling surgeries,

the three-index axial assignment problem, autonomous digital twins, or single machine scheduling

problems, to name a few.

Finally, we extend our gratitude to all who have contributed to the success of this issue,

including, but not limited to, authors from eight countries, many referees from all over the world, and

the staff of the Mathematics journal. I hope that the readers of this Special Issue find many stimulating

ideas for their own future research in this challenging field of discrete optimization and scheduling.

Alexander A. Lazarev, Frank Werner, and Bertrand M.T. Lin

Editors

ix

Citation: Lazarev, A.A.; Werner, F.;

Lin, B.M.T. Special Issue “Recent

Advances of Discrete Optimization

and Scheduling”. Mathematics 2024,

12, 793. https://doi.org/10.3390/

math12060793

Received: 29 February 2024

Accepted: 1 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Special Issue “Recent Advances of Discrete Optimization
and Scheduling”

Alexander A. Lazarev 1, Frank Werner 2,* and Bertrand M. T. Lin 3

1 V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya Street,
117997 Moscow, Russia; jobmath@mail.ru

2 Faculty of Mathematics, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
3 Institute of Information Management, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;

bmtlin@nycu.edu.tw
* Correspondence: frank.werner@ovgu.de; Tel.: +49-391-675-2025

MSC: 90B35; 90C27; 90C10

This Special Issue of the journal Mathematics is dedicated to new results on the topic
of discrete optimization and scheduling. We particularly invited submissions for articles
aimed at solving problems in practical applications, e.g., optimization problems related to
the management of medical institutions, cargo transportation, or production planning, to
name a few. Both structural investigations as well as investigations on algorithm efficiency
were welcome.

After a careful peer-review process, 10 papers were selected for this Issue, which
represent a broad spectrum of research fields in discrete optimization and scheduling. As a
rule, all submissions were reviewed by two or more experts from the corresponding area.
Subsequently, the papers were then surveyed in increasing order of their publication dates.

The first accepted paper, written by Jang et al., deals with a batch loading and schedul-
ing problem on parallel machines with the objective to minimize the makespan. In particu-
lar, the authors suggest a three-stage ant colony algorithm which can find optimal solutions
for instances of small size. For large-sized instances, the algorithm was found to be superior
to a genetic algorithm as well as a particle swarm algorithm.

The second paper of this Issue, written by Karunanidy et al., suggests a novel Java
macaque algorithm, which mimics the natural behaviour of the Java macaque monkeys
and uses a promising social hierarchy-based selection process. The algorithm presented in
this paper is extensively tested on various benchmark functions for a continuous optimiza-
tion problem and on the traveling salesman problem as a frequently considered discrete
optimization problem. The presented algorithm was found to be efficient compared to
existing dominant optimization algorithms.

In contribution 3, Lazarev at al. conducted a study concerning scheduling surgeries
in operating rooms. They suggested a model that uses a variation of the bin packing
problem with the primary goal of increasing patient throughput. Since the suggested
mixed-integer model is computationally extensive, two approximation algorithms based on
decomposition are also presented. Using the Gurobi solver, experiments were performed
using real historical data for surgeries in a Russian neurosurgical center.

Makarovskikh and Panyukov carried out research pertaining to routing problems on
plane graphs with the goal to solve the industrial control problems of cutting machines.
Polynomial algorithms were developed to determine listed routes with the minimum
number of covering paths and the minimum length of transitions, between the end of
the current path and the beginning of the next path. It was concluded that the obtained
solutions can improve the quality of the technological preparation of such cutting processes
in CAD/CAM systems.

The work of Afraimovich and Emelin concerns the three-index axial assignment
problem, which is NP-hard. The problem of combining feasible solutions is investigated,

Mathematics 2024, 12, 793. https://doi.org/10.3390/math12060793 https://www.mdpi.com/journal/mathematics
1

Mathematics 2024, 12, 793

and approaches for the solution of such combination problems are considered. It is proven
that the resulting problem is already NP-hard in the case of combining four solutions.

The sixth published paper by Galuzin et al. presents an autonomous digital twin of an
enterprise with the goal to provide the knowledge-based multi-agent adaptive allocation,
scheduling, optimization, monitoring, and control of tasks and resources in real time.
Formalized ontological and multi-agent models for developing such digital twins are
presented. The developed approaches and toolset were found to be successful in terms of
efficiency as well as savings in time and delivery costs.

Behmanesh-Fard et al. present a mathematical model for symbolic pole/zero simplifi-
cation in operational transconductance amplifiers. After solving the circuit symbolically
and applying an improved root-splitting method, a hybrid algorithm is used and combined
with a simulated annealing metaheuristic method for the simplification of the derived
symbolic roots. The developed approach is tested on three amplifiers, and the approach
determines accurate simplified expressions with low complexity.

In the next paper, Chao and Lin attempt to solve a single-machine scheduling problem
with shared common setup operations resulting from a software test. The authors suggest
sequence-based and position-based integer programming models as well as a branch
and bound algorithm. To obtain an upper bound for the latter algorithm, an ant colony
algorithm is used. Detailed numerical results for a dataset with up to 50 jobs and 45 setup
operations are presented.

Shen and Zhang present a novel method to construct so-called Goethals–Seidel se-
quences with special structures. They present significant results that allow users to poten-
tially construct all of such sequences more efficiently. Moreover, some of their examples are
considered to verify the obtained theoretical results.

In contribution 10, as the last accepted paper, Lazarev et al. target the single-machine
scheduling problem so as to minimize total weighted completion times. They assume
that the objective coefficients are unknown, but the set of optimal schedules is given. The
problem can be reduced to a system of linear inequalities for the coefficients. For the case
of simultaneous job release times, the authors present an algorithm for solving this system,
which is the base for a polynomial algorithm to find the weight coefficients belonging to
the given optimal schedules.

It is our pleasure to thank all authors for submitting their recent works, all reviewers
for their timely and insightful reports, and the staff of the Editorial Office for their support
in preparing this Issue. We hope that the readers of this Issue will find stimulating ideas to
initiate new research in this challenging research field.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions

1. Jang, J.W.; Kim, Y.J.; Kim, B.S. A Three-Stage ACO-Based Algorithm for Parallel Batch Loading
and Scheduling Problem with Batch Deterioation and Rate-Modifying Activities. Mathematics
2022, 10, 657.

2. Karamanidy,D.; Ramalingam, S.; Dumka, C.; Singh, R.; Rashid, M.; Gehlot, A.; Alshamrani,
S.S.; AIGhamdi, A.S. JMA: Nature-Inspired Java Macaque Algorithm for Optimization Problem.
Mathematics 2022, 10, 688.

3. Lazarev, A.A.; Lemtyuzhnikova, D.V.; Somov, M.L. Decomposition of the Knapsack Problem
for Increasing the Capacity of Operating Rooms. Mathematics 2022, 10, 784.

4. Makarovskikh, T.; Panyukov, A. Special Type Routing Problems in Plane Graphs. Mathematics
2022, 10, 795.

5. Afraimovich, L.G.; Emelin, M.D. Complexity of Solutions Combination for the Three-Index
Axial Assignment Problem. Mathematics 2022, 10, 1062.

6. Galuzin, V.; Galitskaya, A.; Grachev, S.; Larukhin, V.; Novichkov, D.; Skobelev, P.; Zhilyaev, A.
Autonomous Digital Twin of Enterprise: Method and Toolset for Knowledge-Based Multi-Agent
Adaptive Management of Tasks and Resources in Real Time. Mathematics 2022, 10, 1662.

2

Mathematics 2024, 12, 793

7. Behmanesh-Fard, N.; Yazdanjouei, H.; Shokouhifar, M.; Werner, F. Mathematical Circuit Root
Simplification Using an Ensemble Heuristic-Metaheuristic Algorithm. Mathematics 2023, 11,
1498.

8. Chao, M.-T.; Lin B.M.T. Scheduling of Software Test to Minimize the Total Completion Time.
Mathematics 2023, 11, 4705.

9. Shen, S.; Zhang, X. Several Goethals-Seidel Sequences with Special Structures. Mathematics
2024, 12, 530.

10. Lazarev, A.A.; Pravdivets, A.N.; Barashov, E.B. Approximation of the Objective Function of
Single-Machine Scheduling Problem. Mathematics 2024, 12, 699.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

3

Citation: Jang, J.W.; Kim, Y.J.; Kim,

B.S. A Three-Stage ACO-Based

Algorithm for Parallel Batch Loading

and Scheduling Problem with Batch

Deterioration and Rate-Modifying

Activities. Mathematics 2022, 10, 657.

https://doi.org/10.3390/

math10040657

Academic Editors: Alexander

A. Lazarev, Frank Werner and

Bertrand M. T. Lin

Received: 23 January 2022

Accepted: 16 February 2022

Published: 20 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Three-Stage ACO-Based Algorithm for Parallel Batch
Loading and Scheduling Problem with Batch Deterioration and
Rate-Modifying Activities

Jae Won Jang, Yong Jae Kim and Byung Soo Kim *

Department of Industrial and Management Engineering, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Korea; 8chris8@inu.ac.kr (J.W.J.); yongjae@inu.ac.kr (Y.J.K.)
* Correspondence: bskim@inu.ac.kr

Abstract: This paper addresses a batch loading and scheduling problem of minimizing the makespan
on parallel batch processing machines. For batch loading, jobs with compatible families can be
assigned to the same batch process even if they differ in size; however, batches can only be formed
from jobs within the same family, and the batch production time is determined by the family. During
the batch scheduling, the deterioration effects are continuously added to batches processed in each
parallel machine so that the batch production times become deteriorated. The deteriorated processing
time of batches can be recovered to the original processing times of batches by a maintenance or
cleaning process of machines. In this problem, we sequentially determine the batching of jobs and the
scheduling of batches. Due to the complexity of the problem, we proposed a three-stage ant colony
optimization algorithm. The proposed algorithm found an optimal solution for small-sized problems
and achieved near-optimal solutions and better performance than a genetic algorithm or a particle
swarm optimization for large-sized problems.

Keywords: scheduling; batching; ant colony optimization; mixed linear integer programming;
deterioration; rate-modifying activity

1. Introduction

Batch-processing machines (BPMs) have been applied to numerous manufacturing
industries such as ceramics, steel, and integrated circuits industries to enhance the pro-
ductivity of production. Due to this reason, several BPM scheduling problems have been
studied in recent years. In general, the BPM sequentially processes batches, a group of jobs
processed together in the same machine. The job is the smallest unit of an order requested
by a customer. In this paper, we deal with the batch loading and scheduling problem
(BLSP) at the diffusion operation in the semiconductor industry [1,2]. In addition to general
batching, the concept of job family processing the same operation is adopted. Owing to
the chemical nature of the diffusion operation in the semiconductor industry, only jobs
with the same family can be assigned to the same batch. Thus, in this manufacturing
environment, the batch production time is determined by the family type. In most batch
scheduling studies, the batch production time is assumed to be constant. However, for a
real-world scheduling problem, the batch production times increase due to the inclusion of
activities such as the loading/unloading of jobs and alignment/calibration of tools. The
increased batch production times can be recovered to the original production times of each
batch by a maintenance or cleaning process of machines. The recovering process is called
rate-modifying activity (RMA) [3]; multiple RMAs are considered in the schedule. The
RMA time is assumed to be constant, and the RMA can be scheduled between batches. In
this paper, the deterioration of batch production time linearly depends on the consecutive
batch production runs without the RMA. Thus, it can be formulated as a linear function
of the interval between the starting time of the first batch after the previous RMA and

Mathematics 2022, 10, 657. https://doi.org/10.3390/math10040657 https://www.mdpi.com/journal/mathematics
4

Mathematics 2022, 10, 657

the completion time of the last batch before the recent RMA. The interval between RMAs
including periods before the first and after the last RMAs is called a bucket, which is
defined in Joo and Kim [4].

In this paper, we address BLSP with incompatible job families in parallel BPMs subject
to time-dependent batch deterioration and RMAs applied between batches. The BLSP can
be decomposed into the two sub-problems of batch loading and batch scheduling [5–7].
In the example of a batch loading problem shown in Figure 1a, 11 jobs belonging to three
families are shown. All of the jobs must be formed in batches, which can only be assigned
to batches within the same family. For example, batch 1 is formed from jobs 1 and 6, which
have the same family type. The sum of their job sizes does not exceed the batch capacity.
In Figure 1a, job 1–4, 5–8, and 9–11 belong to family 1, 2, and 3, respectively. The size of
job is (0.43, 0.49, 0.34, 0.40, 0.49, 0.54, 0.43, 0.66, 0.37, 0.40, 0.46). The machine capacity is 1.
The sum of job sizes in a batch does not exceed the batch capacity. For example, the sum of
job sizes of job 1 and 4 is 0.83 (S1 + S4 = 0.43 + 0.40 = 0.83 ≤ 1). After batches have been
formed from all of the jobs, the batches must be scheduled to machines, which is referred
to as the batch scheduling procedure.

Here, the problem with batch deterioration and RMAs during batch scheduling is
considered. An illustrative example of the batch scheduling problem is shown in Figure 1b.
As the batch production time including the deterioration increases, the assigning of RMAs
between batches should be considered. Since the problem becomes complex, the batch
scheduling problem is decomposed into three stages using buckets. The bucket is the set
of batches between RMAs. The first stage is to determine the number of buckets. The
second stage is to assign batches to each bucket. The last stage is to schedule the buckets
to machines. In Figure 1b, the number of buckets is set to 3. The processing time for
family is (44, 36, 52). Since batch 1–2, 3–5, and 6–7 consist of jobs for family 1, 2, and 3,
respectively, the processing time of batch 1–2, 3–5, and 6–7 is 44, 36, and 52, respectively.
The number of machines is 2. The deterioration rate is 0.25 and the processing time of
RMA is 30. As a batch is processed, time is added equally to the difference between the last
RMA completion time and the batch start time multiplied by the deterioration rate. For
example, when batch 4 is processed in bucket 1, since the processing time of batch 2 has
elapsed without RMA, 11 (= 44 × 0.25) is added to the original processing time of batch
4. On the other hand, batch 6 of bucket 3 is not affected by deterioration because there is
an RMA immediately before it. Once the batches have been assigned and sequenced in
three buckets, the buckets are scheduled to the corresponding machines. As a result, the
makespan can be calculated.

(a)

Figure 1. Cont.

5

Mathematics 2022, 10, 657

(b)

Figure 1. Batch loading and scheduling problem. (a) Batch loading procedure. (b) Batch scheduling
procedure.

The BLSP with no deterioration was addressed by Jia et al. [2], who proposed ant
colony optimization (ACO) and the multi-fit (MF) algorithm for solving the batch loading
and batch scheduling problems, respectively. We proposed the same algorithm for the
batch loading problem, but the MF algorithm cannot be used in our problem because batch
deterioration and RMAs impose complexity on the batch scheduling problem. Therefore,
we decompose the batch scheduling problem into the three stages mentioned above. In
the first stage, the number of buckets is determined between the lower and upper bounds.
The fixed number of buckets determines the positions of the RMAs and helps to reduce
the search space. In the second stage, a rule-based ACO is applied to assign batches to
the buckets defined in the preceding stage. In the last stage, the buckets are scheduled to
machines using a dispatching rule.

The remainder of this paper is organized as follows. A previous related work is
reviewed in Section 2. Section 3 presents our mixed-integer programming (MIP) model. In
Sections 4–6, the overall batch scheduling algorithm is proposed, with the MF algorithm
applying the RMA scheduling rule developed in Section 4, the ACO-based three-stage
algorithm proposed in Section 5, and the genetic algorithm (GA) and particle swarm
optimization (PSO) approaches proposed in Section 6. Section 7 presents our experimental
results and, finally, the conclusions are presented in Section 8.

2. Literature Review

To enhance productivity, many BPM studies have attracted the attention of various
production areas such as ceramics, steel, and integrated circuit industries. For reviewing
the related studies on BPM, we divided BPM studies into seven categories: manufacturing
system, production methods, family constraint, job sizes, deterioration constant, recovering
process, method, and objective function. The initial studies on BPMs assumed the size
of jobs in a batch to be identical. The batch scheduling problem was first introduced by
Ikura and Gimple [8]. They proposed a polynomial-time algorithm for minimizing the
makespan under an assumption of identical job sizes. In this problem, the total job size
in each batch must not exceed the batch capacity. For solving the BLSP with identical job
sizes, Lee et al. [9] proposed dynamic programming algorithms to minimize the maximum

6

Mathematics 2022, 10, 657

tardiness and the number of tardy jobs. Cheng et al. [10] proposed a novel ACO for
minimizing the makespan. Subsequent studies have extended this approach to single
BPMs with non-identical job sizes. Uzsoy [11] proposed the use of heuristics and a B&B
algorithm to minimize the total weighted completion time. Two heuristics for solving
this problem were proposed by Dupont and Ghazvini [5]. Later studies extended this
to the problem of parallel BPMs with non-identical job sizes. Jia et al. [12] considered
parallel BPMs with arbitrary capacities carrying out jobs of arbitrary sizes with dynamic
arrival times. They proposed the use of two meta-heuristics based on ACO to minimize the
makespan. Ozturk et al. [13] considered the problem of parallel BPMs with identical job
sizes and release dates. They proposed a branch and bound (B&B) algorithm to minimize
the makespan. Zhou et al. [6] considered parallel BPMs with arbitrary release times and non-
identical job sizes. They presented different heuristics for solving batch loading and batch
scheduling problems. The batch loading problem is tractable under the application of GA,
ACO, and greedy randomized adaptive search procedure algorithms. Jia et al. [14] proposed
a fuzzy ACO for minimizing the makespans for parallel batch processing machines with
jobs having non-identical sizes and fuzzy processing times. Parallel BPM studies have also
been extended to unrelated parallel BPMs. Arroyo and Leung [15,16] considered unrelated
parallel batch machines with different capacities processing jobs with arbitrary sizes and
non-zero ready times. They proposed several heuristics based on rules applying best-fit,
first-fit, and meta-heuristic-based iterated greedy algorithms. Arroyo et al. [17] considered
the use of unrelated parallel BPMs to minimize the total job flow time. They proposed a
simple and effective iterated greedy algorithm and compared them to three meta-heuristic
algorithms. Gao and Yuan [18] considered unbounded parallel batch scheduling problems
involving jobs with agreeable release dates and processing times. They demonstrated that
such problems are binary NP-hard. Zhou et al. [19] considered unrelated parallel BPM
processing jobs with non-identical sizes and arbitrary release times. They proposed using a
GA with a random key to schedule batches to the machines in such cases.

The studies described above focused on problems in which all jobs were compatible.
However, the issue of incompatible jobs has occurred in actual situations. For instance,
incompatibilities arise from a non-empty intersection on intervals and two-dimensional
volumes for individual jobs [20,21]. Uzsoy [1] considered the problem of single BPM with
incompatible families. He developed B&B and polynomial-time dynamic programming
algorithms to minimize the makespan, lateness, and total weighted completion time. Azi-
zoglu and Webster [22] considered a BPM with incompatible families, identical processing
times, arbitrary job weights, and arbitrary job sizes. They proposed a B&B algorithm that
can solve this problem with less than 25 jobs in a reasonable time. Dupont and Dhaenens-
Flipo [7] considered a BPM with non-identical job sizes for minimizing the makespan. To
solve problems with large numbers of jobs, they added two rules to a B&B algorithm to
minimize the makespan. Yao et al. [23] considered single BPMs with incompatible job fami-
lies and dynamic arrivals. They proposed a decomposed B&B algorithm for minimizing
the total batch completion time and makespan. Jolai [24] considered BPMs with identical
job sizes and incompatible families and applied a polynomial-time dynamic programming
algorithm to minimize the number of tardy jobs. Parallel BPMs with incompatible families
have also been extensively examined. Balasubramanian et al. [25] considered the problem
of identical parallel BPMs with incompatible families. They proposed an approach in which
the batch processing time is determined based on the family and developed two GAs for
scheduling jobs to batches and machines, respectively. Li et al. [26] further considered
the problem of incompatible families and proposed a method for determining the batch
processing time based on the length of the longest job. For parallel BPMs with incompat-
ible job families and release times, constraint programming and apparent tardiness cost
approaches were presented [27,28].

In previous studies on the BLSP, the processing time was assumed to be constant and
known in advance. In several real-world industry situations, however, the processing time
increases due to the deterioration phenomenon. The concept of a deteriorating job was

7

Mathematics 2022, 10, 657

introduced by Gupta and Gupta [29], who considered a single BPM governed by a linear
deterioration function. The literature on deterioration follows two general tracks: sequence-
and time-dependent deterioration. The case of parallel machine scheduling under sequence-
dependent deterioration was addressed by Ding et al. [30], who proposed an ejection chain
algorithm for minimizing the completion-time-based criteria. The case of time-dependent
deterioration was first introduced by Browne and Yechiali [31]. Soleimani et al. [32]
proposed cat swarm optimization on unrelated parallel machine scheduling problems
with time-dependent deterioration. In general, the degree of deterioration increases with
the length of the job process. To recover the inefficient execution of processes under
deterioration, it is necessary to carry out the recovering processes called RMAs by Lee and
Leon [3]. RMAs return a machine to its initial state. Joo and Kim [33] considered a single
BPM with time-dependent deterioration to which RMAs are applied and proposed hybrid
meta-heuristic algorithms to minimize the makespan. Woo et al. [34] considered unrelated
parallel BLSPs with time-dependent deterioration and RMAs, proposing a GA with a
random key to solve the problem. Abdullah and Süer [35] considered the decision-making
on the selection of a manufacturing strategy between the classical assembly line and seru
according to the skill levels of the operator. Liu et al. [36] proposed exact solutions and
heuristic algorithms to minimize the makespan and balance the worker’s workload of
divisional and rotating seru in the seru production system. Gai et al. [37] presented an
accurate dimensionality reduction algorithm to minimize makespan. It is also compared to
the greedy algorithm to verify it.

As a problem becomes more complex, it becomes increasingly important to decompose
it. The meta-heuristic approaches developed in previous studies generally decompose a
BLSP into sub-problems. Dupont and Dhaenens-Flipo [7] considered unrelated parallel
BPMs with non-identically sized jobs. They developed an approach for decomposing the
BLSP into two sub-problems of forming and scheduling batches to improve performance.
Determining which algorithm to apply to each sub-problem following division is another
important challenge. Dupont and Ghazvini [5] assessed GA, ACO, and greedy adaptive
search heuristic algorithms as methods for addressing the batch scheduling problem and
compared their performances on batch loading situations fixed using the same algorithm.
Similarly, Zhou et al. [19] proposed a GA with a random key for solving the batch schedul-
ing problem. In this paper, the BLSP for processes with time-dependent batch deterioration
for which RMAs are applied between batches is considered. To the best of our knowledge,
this is the first paper to address this problem.

A list of recent studies on BLSPs and scheduling problems under deterioration is pro-
vided in Table 1. The recent studies are categorized by manufacturing system, production
methods, family constraint, job sizes, deterioration constant, recovery process, method,
and objective function. To the best of our knowledge, none of the studies dealt with the
BLSP simultaneously considering parallel BPMs, incompatible job families, non-identical
job sizes, time-dependent deterioration, and RMAs. Among the research, Jia et al. [2] pro-
posed the ACO and MF algorithm for addressing, respectively, the batch loading and batch
scheduling problems for parallel BPMs with incompatible families and arbitrary job sizes.
For our problem, we adopted the ACO by Jia et al. [2] to solve the batch loading problem.
However, the MF algorithm cannot provide the near-optimal makespan during the batch
scheduling because time-dependent deterioration and RMAs increase the complexity of
the problem. Therefore, in this paper, we decompose the batch scheduling problem into
three stages and propose an ACO-based three-stage algorithm for solving the scheduling
problem.

8

Mathematics 2022, 10, 657

T
a

b
le

1
.

Th
e

co
m

pa
ri

so
ns

be
tw

ee
n

re
ce

nt
st

ud
ie

s.

M
fg

.
S

y
st

e
m

P
ro

d
u

ct
io

n
M

e
th

o
d

s
F

a
m

il
y

C
o

n
st

ra
in

t
Jo

b
si

z
e

s
D

e
te

ri
o

ra
ti

o
n

C
o

n
st

ra
in

t
R

e
co

v
e

ry
P

ro
ce

ss
M

e
th

o
d

O
b

je
ct

iv
e

W
oo

et
al

.
[3

4]
Pa

ra
lle

l
Si

ng
le

N
o

fa
m

ily
N

/A
Ti

m
e-

de
pe

nd
en

t
de

te
ri

or
at

io
n

R
M

A
G

A
M

ak
es

pa
n

D
in

g
et

al
.

[3
0]

Pa
ra

lle
l

Si
ng

le
N

o
fa

m
ily

N
/A

Se
qu

en
ce

-d
ep

en
de

nt
de

te
ri

or
at

io
n

N
o

re
co

ve
ry

EC
A

C
om

pl
et

io
n

ti
m

e

So
le

im
an

ie
ta

l.
[3

2]
Pa

ra
lle

l
Si

ng
le

N
o

fa
m

ily
N

/A
Ti

m
e-

de
pe

nd
en

t
de

te
ri

or
at

io
n

N
o

re
co

ve
ry

G
A

,C
SO

,
IA

BC
M

ea
n

w
ei

gh
te

d
ta

rd
in

es
s

O
zt

ur
k

et
al

.
[1

3]
Pa

ra
lle

l
Ba

tc
h

N
o

fa
m

ily
Id

en
ti

ca
l

N
o

de
te

ri
or

at
io

n
N

o
re

co
ve

ry
B&

B
M

ak
es

pa
n

Ji
a

et
al

.[
14

]
Pa

ra
lle

l
Ba

tc
h

N
o

fa
m

ily
N

on
-

id
en

ti
ca

l
N

o
de

te
ri

or
at

io
n

N
o

re
co

ve
ry

A
C

O
M

ak
es

pa
n

Ji
a

et
al

.[
12

]
Pa

ra
lle

l
Ba

tc
h

N
o

fa
m

ily
N

on
-

id
en

ti
ca

l
N

o
de

te
ri

or
at

io
n

N
o

re
co

ve
ry

A
C

O
M

ak
es

pa
n

A
rr

oy
o

et
al

.
[1

7]
Pa

ra
lle

l
Ba

tc
h

N
o

fa
m

ily
N

on
-

id
en

ti
ca

l
N

o
de

te
ri

or
at

io
n

N
o

re
co

ve
ry

It
er

at
ed

gr
ee

dy
To

ta
lfl

ow
ti

m
e

Li
et

al
.[

26
]

Pa
ra

lle
l

Ba
tc

h
In

co
m

pa
ti

bl
e

fa
m

ily
N

on
-

id
en

ti
ca

l
N

o
de

te
ri

or
at

io
n

N
o

re
co

ve
ry

LB
La

te
ne

ss

Ji
a

et
al

.[
2]

Pa
ra

lle
l

Ba
tc

h
In

co
m

pa
ti

bl
e

fa
m

ily
N

on
-

id
en

ti
ca

l
N

o
de

te
ri

or
at

io
n

N
o

re
co

ve
ry

A
C

O
M

ak
es

pa
n

T
h

is
p

a
p

e
r

P
a

ra
ll

e
l

B
a

tc
h

In
co

m
p

a
ti

b
le

fa
m

il
y

N
o

n
-

id
e

n
ti

ca
l

T
im

e
-d

e
p

e
n

d
e

n
t

d
e

te
ri

o
ra

ti
o

n
R

M
A

A
C

O
M

a
k

e
sp

a
n

9

Mathematics 2022, 10, 657

3. Mixed-Integer Programming Model

The BLSP is the problem of scheduling jobs to machines. In this problem, we have to
make two decisions. We need to determine which jobs to assign in which batches and then
schedule the assigned batches and RMA to machines. This is called batch loading problem
and batch scheduling problem. In this section, the BLSP for time-dependent deterioration
with rate-modifying activities and incompatible families for minimizing the makespan is
formulated using MIP. The following parameters and decision variables are used in the
mathematical formulation:

Parameters

J set of jobs
F set of families
B set of batches
K set of buckets
M set of machines
Jf set of jobs not belongings to family f ∈ F
Fj family type of job j ∈ J
Fb family type of batch b ∈ B
Sj size of job j ∈ J
Pb processing time of batch b ∈ B
Q processing time of RMA

DR deterioration rate
L large number

SC size of machine
Decision variables

Xjb Equals 1 if job j ∈ J is assigned in batch b ∈ B
Ybkm Equals 1 if batch b ∈ B is assigned to bucket k ∈ K from machine m ∈ M
Zabkm Equals 1 if batch a ∈ B precedes batch b ∈ B in bucket k ∈ K from machine m ∈ M

Dependent variables

MS Makespan
Ck Completion time of bucket k ∈ K
Cm Completion time of machine m ∈ M
Tb Time gap between starting time of batch b ∈ B and completion time of recent RMA

Based on parameters and decision variables, the MIP is formulated as follows:

Minimize MS

Subject to
∑
b∈B

Xjb = 1 , ∀j ∈ J (1)

Xjb = 0, ∀b ∈ B, ∀j ∈ JFb , (2)

∑
j∈J

Sj·Xjb ≤ SC, ∀b ∈ B (3)

∑
j∈J

Xjb ≤ L· ∑
k∈K

∑
m∈M

Ybkm , ∀b ∈ B (4)

∑
k∈K

∑
m∈M

Ybkm ≤ 1, ∀b ∈ B (5)

∑
k∈K

∑
m∈M

Zbbkm ≤ 1, ∀b ∈ B (6)

∑
a∈B

Zabkm = Ybkm, ∀b ∈ B, ∀k ∈ K, ∀m ∈ M (7)

10

Mathematics 2022, 10, 657

∑
b ∈ B
b �= a

Zabkm ≤ Yakm, ∀b ∈ B, ∀a ∈ B, ∀k ∈ K, ∀m ∈ M (8)

∑
b∈B

Zbbkm ≤ 1, ∀k ∈ K, ∀m ∈ M (9)

Ta·(1 + D) + Pa ≤ Tb + L·
(

1 − ∑
k∈K

∑
m∈M

Zabkm

)
, ∀a, b ∈ B, a �= b (10)

Tb·(1 + D) + Pb ≤ Ck + L·(1 − Ybkm), ∀b ∈ B, ∀k ∈ K, ∀m ∈ M (11)

∑
k∈K

Ck + Q·(∑
k∈K

∑
b∈B

Zbbkm)− Q ≤ MS, ∀m ∈ M (12)

The first decision we have to make is which job should be assigned to which batch by
Constraint (1), (2) and (3). One job can be assigned to only one batch, and to be assigned
to the same batch, the type of family must be the same and the size must not exceed the
capacity. Constraints (1) and (2) confirm that each job is assigned to only one batch and that
each batch comprises jobs within the same family. Constraint (3) ensures that the total job
sizes assigned to each batch do not exceed the capacity of the batch. After all, once batches
have been assigned, the assigned batches should be scheduled to the machine considering
the RMA by constraint (4) to constraint (9). There are two ways to consider RMAs, i.e.,
considering scheduling between all batches, and assuming that RMAs are scheduled only
between buckets. The bucket means a set of batches between buckets; hence the RMA
does not exist between batches in the same bucket. In the batch scheduling problem, we
determine which batch should be assigned to which bucket and the order of the batches
in the bucket by constraint (4) to constraint (9). Constraints (4) and (5) ensure that each
assigned batch is sequenced in one bucket. Constraints (6) and (8) ensure that there cannot
be two first-sequence batches in a given bucket. Constraint (7) ensures that, except for the
first batch in each bucket, any batches assigned to a bucket must be immediately preceded.
Similarly, constraint (8) ensures that if a batch is assigned to a bucket, at most one batch can
be performed immediately afterward. When all batches are scheduled, the makespan can
be calculated by constraint (10) to constraint (12). Constraint (10) ensures the precedence
relation among assigned batches in a bucket and calculates the starting time for each
batch. Constraint (11) calculates the completion time of each bucket by computing the
maximum time needed to complete each batch in the bucket. Constraint (12) determines
the completion times of the machines needed to calculate the makespan.

4. Multi-Fit Batch Scheduling Algorithm with the RMA Scheduling Rule

The MF algorithm has demonstrated good performance in solving the batch scheduling
problem with no deterioration [2]. Unlike previous approaches, however, the scheduling
of RMAs must be considered in our problem. One of the ways to do so is to consider the
scheduling between all batches. Whenever a batch is scheduled one by one, scheduling
the RMA should be considered. To determine whether an RMA should be scheduled, an
RMA scheduling rule is used. The RMA scheduling rule is that an RMA is scheduled if
the deterioration is longer than the RMA processing time. The MF algorithm using this
RMA scheduling rule is proposed in Algorithm 1 and the initial lower and upper bounds
on completion time, LBct and UBct, can be calculated as

LBct = max

{
max
b∈B

Pb,

⌊
∑
b∈B

Pb
M

⌋
}, (13)

UBct = max

{
max
b∈B

Pb,

⌈
∑
b∈B

Pb + Q
M

⌉
}. (14)

11

Mathematics 2022, 10, 657

Algorithm 1. Multi-fit algorithm with the RMA scheduling rule for the batch scheduling problem

Input: The set of assigned batches B.
Output: The makespan.

Begin:

Sort B in non-increasing order of processing times and obtain a batch set B′.
Compute LBct and UBct, respectively.
Let iteration h = 1.
While (h < 8)

A = (UBct + LBct)/2
Let batch index b = 1.
While (b ≤ |B′ |)

Select a batch with a sequence b in B′.
Schedule the batch to the machine according to the first-fit rule if the
completion time does not exceed A.
If (Completion time of machine when the batch is scheduled > Completion time
of machine when additionally scheduled RMA precedes the batch) then

Schedule the RMA to precede the batch.
b = b + 1.

End While

If (All batches in B′ are scheduled) then

UBct = A.
Else

LBct = A.
h = h + 1.

End While

Output the makespan of the global best solution.

Because the positioning of the RMAs and batches has a significant influence on the
makespan, the MF algorithm does not perform well in solving this problem; therefore,
we divide the batch scheduling problem into three stages and propose an ACO-based
three-stage batch scheduling algorithm for solving it.

5. Ant Colony Optimization-Based Three-Stage Algorithm for Batch Scheduling
Problem

The batch loading part of the BLSP referred to the solution of Jia et al. [2], and this
section deals with the batch scheduling part. Determining the positioning of RMAs be-
tween all batches requires lots of calculations. If the number of buckets is pre-determined,
however, the RMA positioning will be fixed between buckets. To reduce the computational
complexity, we divide the batch scheduling problem into three stages, in which (1) the
number of buckets is determined, (2) batches are assigned to the respective buckets, and
(3) the buckets are dispatched to the machines.

5.1. Determining the Number of Buckets

In stage 1, the number of buckets is determined. Determining it fixes the positions of
the RMAs between the buckets and it can range from zero to |B| − 1 in each machine. To
reduce the range of this number, we calculate LBk and UBk, the lower and upper bounds,
respectively, for the number of buckets during batch scheduling with the dispatching rule.
The dispatching rule is the rule that selects the bucket with the shortest tentative completion
time. Tentative completion time in each machine means the completion time if the current
batch is assigned to the machine. The dispatching rule helps to search for the solution with
good quality. A detailed explanation of the dispatching rule is given in Algorithm 2.

12

Mathematics 2022, 10, 657

Algorithm 2. The dispatching rule

Input:
The processing time of batch Pb.
The current completion time of buckets Ck.

Output: Selected bucket k′, which must be assigned by batch b
Begin: Let bucket index k = 1

While (k ≤ |K|)
Calculate the tentative completion time using the RMA rule
k = k + 1

End While

Select the bucket k′ with the smallest tentative completion time

To calculate the LBk and UBk in subsequent algorithm, we must calculate the minimum
and the maximum numbers of batches that can be scheduled on one machine. We assume
that the batch processing time can be determined between Pmin and Pmax during batch
scheduling with the dispatching rule, then the minimum number of batches on a machine
is calculated in Algorithm 3. Pmin and Pmax are the longest and shortest processing time
of the given batches, respectively. In determining the minimum number of batches that
can be scheduled to the first machine, the first machine should be assigned a minimum
number of batches and the rest of the machines should be assigned as many batches as
possible. To assign a small number of batches to the machine under the dispatching rule,
the completion time of the machine should be tentatively set to a large value. Since the
dispatching rule schedules a batch on a machine with a small tentatively completion time,
the allocated batches in the first machine must be given the longest processing time as Pmax.
The lower bound on the number of batches input to the first machine is calculated using
the dispatching rule in Algorithm 3.

Algorithm 3. Calculating the lower bound on the number of batches input to a machine

Input: Pmin; Pmax; The number of batches; The number of machines.
Output: Lower bound on the number of batches input to a machine.

Begin:
Let batch index b = 1
While(b ≤ |B|)

Select a machine m′ using the dispatching rule.
If(m′ = 1) then

Assign a batch assuming the processing time is Pmax.
Else

Assign a batch assuming the processing time is Pmin.
b = b + 1.

End While

Output the number of batches in machine 1

Before calculating the LBk using Algorithm 4, the batch deteriorations must be repre-
sented in order. A time-dependent batch deterioration can be represented as the product of
DR and Pi. In this section, Pk and Dk represent the processing time and deterioration of a
batch in sequence k, respectively. Dk and Dk−1 can be represented by the processing time
and the deterioration of previous batches as

Dk = DR ×
(

k−1

∑
i=1

Pi +
k−1

∑
i=1

Di

)
, (15)

Dk−1 = DR ×
(

k−2

∑
i=1

Pi +
k−2

∑
i=1

Di

)
. (16)

By subtracting Dk−1 from Dk, Dk can be given in terms of the processing time and the
deterioration of the preceding batch as

Dk − Dk−1 = DR × (Pk−1 + Dk−1), (17)

13

Mathematics 2022, 10, 657

and then Dk can be represented as

Dk = (1 + DR)× Dk−1 + DR × Pk−1. (18)

Using the above equations, the situation in which an RMA must be scheduled is
defined through Proposition 1.

Proposition 1. If the deterioration portion of a batch exceeds the processing time of an RMA,
scheduling an RMA before the batch will reduce the completion time of the bucket.

Proof. Let B̃ be a set of scheduled batches with no RMAs, which comprises B1, B2 . . . , Bn.
Let B̃′ be a set of the same scheduled batches with one RMA, comprising
B′

1, B′
2 . . . , B′

l−1, RMA, B′
l , . . .,B′

n. Deterioration of B′
i can be represented as D′

i. Ex-
cept for the RMA in B̃′, the processing time of batches in the same sequence as B̃ are equal.
Thus, the sums of the deteriorations up to l − 1 will be equal in both B̃ and B̃′ as follows:

l−1

∑
i=1

Di =
l−1

∑
i=1

D′
i. (19)

As we assume that Dl is greater than Q, the sum of D′
l and Q is less than Dl :

Dl > D′
l + Q. (20)

From Equation (19), the deteriorations of Dl+1 and D′
l+1 can be obtained as, respec-

tively,
Dl+1 = (1 + DR)× Dl + DR × Pl , (21)

D′
l+1 = (1 + DR)× D′

l + DR × Pl (22)

Because the processing time of each batch is the same and D′
l = 0, D′

l+1 is larger than
Dl+1, repeating the above reasoning, D′

l+2 is larger than Dl+2, D′
l+3 is larger than Dl+3,

. . . , and D′
n is larger than Dn. Adding these deteriorations, we obtain

n

∑
i=l+1

Di >
n

∑
i=l+1

D′
i. (23)

From Equations (20), (21) and (24), D1 + D2 + . . . + Dl + . . . + Dn is larger than
D′

1 + D′
2 + . . . + Q + D′

l + . . . + D′
n. Hence, the deterioration period of B̃ is longer than

that of B̃′. �

The above proof gives the condition under which scheduling an RMA reduces the
makespan. This can be used to find the minimum number of RMAs. If we set the processing
time of each scheduled batch as Pmin, then we can use Proposition 1 to schedule the RMAs
starting from the first batch. The lower bound on the number of buckets can then be
calculated based on the number of RMAs scheduled per machine using Algorithm 4.

Using these algorithms and propositions, we can obtain the LBk for a machine. In a
similar manner, UBk can be calculated. Assuming a batch processing time of Pmin for the
first machine and Pmax for the remaining machines in Algorithm 3, the upper bound on the
number of batches per machine can be applied in Algorithm 4.

14

Mathematics 2022, 10, 657

Algorithm 4. Calculating the lower bound on the number of buckets (LBk)

Input: Pmax; the lower bound on the number of batches in a machine;
Output: the lower bound on the number of RMAs required by a machine

Begin:

Let batch index b = 1
Let RMA index r = 0
While (b ≤ The lower bound on the number o f batches in a machine)

Calculate a tentative deterioration proportional to the gap between the
preceding RMA and Cb−1
If (Tentative deterioration > Processing time of RMA) then

Schedule RMA after Cb−1.
r = r + 1.

Else

Cb = (DR + 1)× Cb−1 + Pmax
b = b + 1.

End While

Output (r + 1)× |M|

5.2. Assigning Batches to Buckets

In stage 2, an ACO algorithm is used to assign batches to each bucket and then a rule
is applied to determine the sequencing of the batches. Unlike the problem of assigning
batches, the individual buckets do not have size capacities, and the objective function is the
makespan. In this case, the batch deterioration has a significant influence on the makespan.
Based on the number of buckets determined from stage 1, the batches must be scheduled
using a load balancing among buckets.

To assign batches, an ACO algorithm called the min-max ant system (MMAS) is used.
MMAS is a constructive meta-heuristic algorithm that builds solutions sequentially, i.e.,
to solve the batch assignment problem, the batches are assigned one by one. During the
batch assignment, we make a probabilistic choice based on pheromone trails and heuristic
information until no further batches are available. After assigning the batches, the minimum
completion time of each bucket can be calculated using Proposition 2 (Section 5.2.5).

5.2.1. Pheromone Trails

The desirability of unscheduled batches can be calculated using a pheromone trail
that gives the relationship between assigned batches. There is a pheromone trail value
between all batches and a higher pheromone trail value indicates a higher probability that
two batches will be allocated to the same bucket. Defining τil(t) as the pheromone trail
between Bi and Bl in iteration t, τil(1) is initialized as

τil(1) = ((1 − ρ)× LBτ)
−1, (24)

where ρ means evaporation rate and LBτ is the lower bound given by

LBτ = ∑
bεB

Pb
|M| (25)

The desirability of a given batch is calculated using the pheromone trails between the
given batch and batches, Bk(t), that have already been assigned to the selected bucket in
iteration t. The desirability of assigning batch i into the current bucket k during iteration t
can be represented as

θik(t) = ∑
BlεBk(t)

τil(t)
|Bk(t)|

. (26)

15

Mathematics 2022, 10, 657

5.2.2. Heuristic Information

The load balance of each bucket is important because the deterioration increases
rapidly when many batches are allocated per bucket. The heuristic information between
batch i and bucket k during iteration t can be represented by

ηik(t) =
1

|max{ck(t)} − ck+i(t)|+ pmax
, (27)

where ck+i(h) is the completion time of bucket k calculated after assigning batch i to it
during iteration t.

5.2.3. Forming the Buckets

The pheromone trails and heuristic information are used together to calculate the
probability that each batch can be formed. The probability that batch i can be assigned to
bucket k during iteration t is expressed as Pik(t), which represents the desirability of the
batches assigned to bucket k as follows:

Pik(t) =

⎧⎨⎩
θik(t)×ηik(t)

β

∑Bl εUk
θik(t)×ηik(t)

β , i f BiεUk

0, otherwise
, (28)

where β represents the relative importance of heuristic information and Uk represents the
set of unscheduled batches.

5.2.4. Updating the Pheromone Trails

In MMAS, the use of pheromone trails leads to solutions based on experience. Thus,
updating the pheromone trails has a significant effect on the performance of the algorithm.
Global- and iteration-best solutions are used to update the pheromone trails. Representing
the frequency with which jobs i and l are placed in the same batch as mil , the pheromone
trail updating process can be defined as follows:

τil(t + 1) = (1 − ρ)× τil(t) + mil × Δτil(t), (29)

Δτil(t) =
Q

Makespaniteration best(t)
. (30)

The solutions corresponding to pheromone trails that are too extreme cannot be
found easily. Under MMAS, pheromone trail lower and upper bounds are defined as
τmin and τmax, respectively, and when the trails are updated, they are modulated as follows:

τil(t + 1) =

⎧⎨⎩
τmin, τil(t + 1) < τmin

τil(t + 1), τmin ≤ τil(t + 1) ≤ τmax
τmax, τil(t + 1) > τmax

, (31)

τmax =
(
(1 − ρ)× Makespanglobal best(t)

)−1
, (32)

τmin =
τmax ×

(
1 − |B|√0.05

)
(|B|2 − 1)× |B|√0.05

. (33)

5.2.5. Rule-Based Batch Sequencing

After assigning the batches to the buckets, the completion time of each bucket can be
minimized using Proposition 2.

Proposition 2. Let B be the set of batches in one bucket. Then, scheduling B in ascending order of
processing time minimizes the completion time of each bucket.

16

Mathematics 2022, 10, 657

Proof. As the starting time of the first batch is zero, we have

D1 = 0. (34)

By applying the previous deterioration to Equation (16), we obtain

D2 = DR × P1 + (1 + DR)× D1
= DR × P1,

(35)

D3 = DR × P2 + (1 + DR)× D2
= DR × P2 + (1 + DR)× DR × P1,

(36)

D4 = DR × P3 + (1 + DR)× D3

= DR × P3 + (1 + DR)× DR × P2 + (1 + DR)2 × DR × P1,
(37)

Dn = DR × Pn−1 + (1 + DR)× DR × Pn−2 + . . . + (1 + DR)n−2 × DR × P1

=
n−1
∑

i=1
(1 + DR)n−1−i × DR × Pi.

(38)

By using the generalized formula above, Dn, the sum of the deteriorations, can be
represented as

n
∑

i=1
Di = D2 + D3 + D4 + . . . + Dn

= [DR × P1] + [DR × P2 + (1 + DR)× DR × P1] + . . .

+
n−1
∑

i=1
(1 + DR)n−1−i × DR × Pi

=
[
1 + (1 + DR) + (1 + DR)2 + . . . + (1 + DR)n−2

]
× DR × P1

+
[
1 + (1 + DR) + (1 + DR)2 + . . . + (1 + DR)n−3

]
× DR × P2

+ . . . + [1 + (1 + DR)]× DR × Pn−2 + DR × Pn−1

=
n−2
∑

i=0
(1 + DR)i × DR × P1 +

n−3
∑

i=0
(1 + DR)i × DR × P2 + . . .

+
1
∑

i=0
(1 + DR)i × DR × Pn−2 + DR × Pn−1

(39)

In Equation (39), Pk, the processing time of a batch in sequence k, is multiplied by
∑n−1−k

i=0 (1 + DR)i. ∑n−1−k
i=0 (1 + DR)i increases as the sequence become slower. As the batch

we have to schedule is fixed, the total deterioration can be minimized by scheduling the
batches with longer processing times in faster sequences. �

Using the above proof, we can obtain the shortest completion for each bucket. After
all, once the shortest completion time of buckets is calculated, buckets must be scheduled
to the machines.

5.3. Scheduling Buckets to Machines

In stage 3, buckets are scheduled to machines using the dispatching rule. Tentative
timings are used to determine the completion time at which the current batch is scheduled
using the RMA rule as Algorithm 2 (Section 5.1). To balance the load among the machines,
therefore, the current batch should be scheduled to the machine with the shortest tentative
completion time.

5.4. Overall Algorithm

Using the algorithms defined for the three stages in the preceding sections, the ACO-
based three-stage algorithm can be defined as Algorithm 5.

17

Mathematics 2022, 10, 657

Algorithm 5. ACO-based three-stage algorithm for batch scheduling problem

Input: The set of assigned batches.
Output: The makespan

Begin:

Compute the LBK and UBK , respectively.
Compute the LBτ and τil(1), respectively.
Initialize pheromone trails.
Let index of iteration t = 1
While(t ≤ tmax)

Let index of iteration a = 1
While (a ≤ amax)

Select the number of buckets between LBK and UBK .
While(UB �= ∅)

Select bucket k using the dispatching rule.
If (Bucket k has no assigned batches) then

Select a batch b randomly.
Assigned the batch b to bucket k.

Else

Select a batch b using pheromone trail and heuristic
information.
Assign the batch b to bucket k.

End While

Minimize the completion time of the buckets by sequencing the batches.
Dispatch the buckets to machines.
Calculate the makespan.
Update the iteration and global best solutions
a = a + 1

End While

Compute τmax and τmin.
Update Δτil(h) and τil(h).
t = t + 1

End While

Output the makespan of the global best solution

The algorithm divides the batch scheduling problem into three-stage. In stage 1,
LBK and UBK are used for fast convergence. To demonstrate that LBK and UBK affect the
performance of the algorithm, an ACO with no bound (ACO_NB) is proposed.

6. Genetic Algorithm- and Particle Swarm Optimization-Based Batch Scheduling
Algorithms

In this section, two population-based meta-heuristic algorithms for solving the batch
scheduling problem—a GA-based three-stage algorithm and a PSO-based three-stage
algorithm—are proposed. Unlike constructively generated ACO solutions, these two
algorithms search solutions to develop an encoded solution that is represented using a
random key. The two proposed population-based meta-heuristic algorithms (Algorithms 6
and 7) are defined as follows.

18

Mathematics 2022, 10, 657

Algorithm 6. GA-based three-stage algorithm for batch scheduling problem

Input: The set of assigned batches from the batch loading problem
Output: The makespan

Begin:

Compute the LBK and UBK respectively.
Set the initial decoded solution.
Let index of generation t = 1
While (t ≤ tmax)

Let index of chromosome c = 1
While (c ≤ cmax)

Select the number of buckets between LBK and UBK .
Let random value r1 = Uni f (0, 1).
Let random value r2 = Uni f (0, 1).
Select two parent chromosomes, c, and c + 1, in sequence.
If (r1 < Crossover rate) then

Do one-point crossover operations.
If (r2 < Mutation rate) then

Do swap mutation operation.
Decode the offspring chromosome c and calculate the makespan.
c = c + 1

End While

Reproduce the next generation parents from current-generation offspring
Update the iteration and global best solutions
t = t + 1

End While

Output the makespan of the global best solution

Algorithm 7. PSO-based three-stage algorithm for batch scheduling problem

Input: The set of assigned batches from the batch loading problem
Output: The makespan

Begin:

Compute the LBK and UBK , respectively.
Set the initial solution.
Let index of iteration t = 1
While (t ≤ tmax)

Let index of particle p = 1
While (p ≤ pmax)

Select the number of buckets between LBK and UBK
Update the factor velocity
Update the factor position
Decode the particle p.
p = p + 1

End While

Decode the particles.
Update the iteration and global best solutions;
t = t + 1

End While

Output the makespan of global best solution

7. Computational Experiments

To evaluate the performance of the ACO-based three-stage batch scheduling algorithm,
extensive computational experiments were conducted using the solutions obtained by an
ACO-based batch loading algorithm presented in Jia et al. [2]. In the first experiment, the
absolute differences between the optimal solutions produced by CPLEX and the solutions
produced by the ACO, ACO_NB, GA, PSO, and MF algorithms were compared for small-
sized problems. In the second experiment, ACO and ACO_NB were compared to validate
the LBk and UBk used in the proposed algorithm. In the third experiment, the relative
differences between the solutions obtained by ACO and other meta-heuristic algorithms,

19

Mathematics 2022, 10, 657

GA and PSO, were compared for large-sized problems. All meta-heuristic algorithms are
implemented in C#.

7.1. Problem Parameter Settings

In the experiments, BLSPs corresponding to the batch scheduling problem with vary-
ing complexity were randomly generated. The complexity of a batch scheduling problem
with batch deterioration and RMAs is highly dependent on |M|, |K|, |B|, and |F| [24–26].
Therefore, four problem parameters, |M|, |K|/|M|, |B|/|K|, and |F|, were used to generate
problems with different complexities, where |K|/|M| is the average number of buckets
per machine and |B|/|K| is the average number of batches per bucket. The machines and
families were generated as |M| and |F|, respectively, and the batches were generated using
|M| × |K|/|M| × |B|/|K|. To assign |B|/|K| batches to each bucket, Q was generated as
Qmin+Qmax

2 . As Q decreases, RMAs will occur more frequently and the number of batches per
bucket will be reduced. To assign |B|/|K| batches to each bucket, Q should be adjusted so
that it falls between Qmin and Qmax, where those values mean the minimum and maximum
sums of deteriorations that occur when there are |B|/|K| batches, respectively. The sums
can be calculated by assuming the processing time of batches as Pmin and Pmax, respectively.
Pf is randomly generated in [Pmin, Pmax] with Pmin and Pmax fixed at 40 and 60, respectively.
D and Sj are fixed at 0.2 and 0.4, respectively. Using the four problem parameters defined
above, two groups of problems (small-sized problems with fewer than 10 batches and
large-sized problems with more than 10 batches) were randomly generated.

7.2. Algorithm Parameter Settings

To find the major parameters that affect the performance of algorithms, the Taguchi
method was applied in this section. The method can be used to conduct experiments more
rapidly than a full factorial experiment because the method can carry out experiments using
fewer scenarios. Using the Taguchi method, five control factors for the ACO-based batch
scheduling algorithm were analyzed. The levels of each control factor are listed in Table 2.
The first factor, A, is the number of ants (Antmax). When a problem becomes more compli-
cated, more ants are needed to solve it. Therefore, we set Antmax to increase according to the
complexity of the problem; as the complexity was proportional to |B|, Antmax is varied over
the range {1.0 × |B|, 1.5 × |B|, 2.0 × |B|, 2.5 × |B|, 3.0 × |B|}. The second factor, B, is the
evaporation rate (ρ), which is used to calculate the initial pheromone trails and update later
trails. Because the evaporation must be a real value between [0, 1] and values lower than 0.5
are relatively insignificant to the parameter settings, ρ is varied over {0.5, 0.6, 0.7, 0.8, 0.9}.
The third factor, C, is the iteration limit (G), which indicates how many iterations are needed
to reset a pheromone trail in the ACO. If there is no change in the global solution over G
iterations, the trail must be reset and, therefore, smaller values of G mean that trails must be
more often reset. In this paper, G is varied over {10, 30, 50, 70, 90}. The fourth factor, D,
is the updating parameter (δ), which is used to update the pheromone trails. In a previous
paper [2], δ performs better when it is based on LBτ rather than a constant parameter.
Therefore, δ is varied over {0.5 × LBτ , 1.0 × LBτ , 1.5 × LBτ , 2.0 × LBτ , 2.5 × LBτ}. The
final factor, E, is the relative importance of heuristic information (β), which is used in
calculating desirability. β is varied over {4, 6, 8, 10, 12}.

20

Mathematics 2022, 10, 657

Table 2. Factors levels for MMAS based three-stage batch scheduling algorithm.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Number of Ants Evaporation Rate Iteration Limit Updating Parameter
Relative Importance of Heuristic

Information

Antmax (A) ρ (B) G (C) δ (D) β (E)

A (1): 1.0 × |B| B (1): 0.5 C (1): 10 D (1): 0.5 × LBτ E (1): 4
A (2): 1.5 × |B| B (2): 0.6 C (2): 30 D (2): 1.0 × LBτ E (2): 6
A (3): 2.0 × |B| B (3): 0.7 C (3): 50 D (3): 1.5 × LBτ E (3): 8
A (4): 2.5 × |B| B (4): 0.8 C (4): 70 D (4): 2.0 × LBτ E (4): 10
A (5): 3.0 × |B| B (5): 0.9 C (5): 90 D (5): 2.5 × LBτ E (5): 12

Using the control factors described above, an experiment involving 25 scenarios was
conducted. The number of scenarios was chosen so that the best-fit design for five factors
with five levels. Table 3 shows L25

(
55) orthogonal array. In each scenario, 12 test problems

were solved three times each for a total of 900 runs for the experiment. Under the Taguchi
method, variation in performance is measured using the mean signal-to-noise (S/N) ratio.
Generally, the S/N ratio is expressed as −10 log(objective f unction)2, but this formula was
not directly applicable to this case because the experimental tests had varying objective
functions and sizes. Therefore, we adopted the relative percentage deviation (RPD) of the
objective function as follows:

RPD(%) =
OBJsol − OBJbest

OBJbest
× 100, (40)

where OBJsol is the objective function given by an algorithm and OBJbest is the objective
function of the best solution. Using the RPD, the S/N ratio can be computed as follows:

S/N ratiok = −10 log

(
1

12

4

∑
i=1

3

∑
j=1

RPD2
ijk

)
∀k ∈ 1, 2, . . . , 2, D h the 12525. (41)

Table 3. Factor levels of array L25.

Scenario No.
Factor Levels

A B C D E

1 A (1) B (1) C (1) D (1) E (1)
2 A (1) B (2) C (2) D (2) E (2)
3 A (1) B (3) C (3) D (3) E (3)
4 A (1) B (4) C (4) D (4) E (4)
5 A (1) B (5) C (5) D (5) E (5)
6 A (2) B (1) C (2) D (3) E (4)
7 A (2) B (2) C (3) D (4) E (5)
8 A (2) B (3) C (4) D (5) E (1)
9 A (2) B (4) C (5) D (1) E (2)
10 A (2) B (5) C (1) D (2) E (3)
11 A (3) B (1) C (3) D (5) E (2)
12 A (3) B (2) C (4) D (1) E (3)
13 A (3) B (3) C (5) D (2) E (4)
14 A (3) B (4) C (1) D (3) E (5)
15 A (3) B (5) C (2) D (4) E (1)
16 A (4) B (1) C (4) D (2) E (5)
17 A (4) B (2) C (5) D (3) E (1)
18 A (4) B (3) C (1) D (4) E (2)
19 A (4) B (4) C (2) D (5) E (3)

21

Mathematics 2022, 10, 657

Table 3. Cont.

Scenario No.
Factor Levels

A B C D E

20 A (4) B (5) C (3) D (1) E (4)
21 A (5) B (1) C (5) D (4) E (3)
22 A (5) B (2) C (1) D (5) E (4)
23 A (5) B (3) C (2) D (1) E (5)
24 A (5) B (4) C (3) D (2) E (1)
25 A (5) B (5) C (4) D (3) E (2)

To analyze statistically significant factors, analysis of variance (ANOVA) was per-
formed using the S/N ratio data. The factor D, which had the smallest sum squares (SS),
was selected as the error term. After pooling this factor, ANOVA was performed, the results
of which are listed in Table 4. Factors B and E exceeded the significance level, indicating
that they had a large effect on the algorithm performance. The levels of these factors with
the highest S/N ratios—B (5) and E (5)—were identified based on an examination of the
S/N results in Figure 2. The factors and levels A (4), C (3), and D (1) had the least effect on
the performance, as reflected by the RPD values shown in Figure 3. From these results, we
identified an optimal combination of A (4), B (5), C (3), D (1), and E (5).

Table 4. Analysis of variance for the S/N ratio.

Factor SS df V F0 p-Value

A 0.2593 4 0.0648 2.6456 0.1844
B 1.4578 4 0.3644 14.8721 0.0114
C 0.1809 4 0.0452 1.8459 0.2836

D(Error) 0.0980 0.0245

E 0.2144 4 0.5360 21.8756 0.0055

Total 4.1404 20

Figure 2. The mean S/N ratio plot for each level of the factor.

22

Mathematics 2022, 10, 657

Figure 3. The mean RPD plot for each level of the factors.

The GA and PSO parameters were also set using the Taguchi method. For the GA, the
parameters population size = 3 × |B|, crossover rate = 0.9, and mutation rate = 0.2 were
set. For the PSO, the parameters population size = 3 × |B|, inertia weight = 0.9, social
cognitive 1= 1.0, and social cognitive 2 = 0.5 were set.

7.3. Experimental Results

Three experiments were conducted to validate the ACO-based three-stage batch
scheduling algorithm. All of the experiments were carried out on a PC with an Intel Core
i7-7700 CPU running at 3.6 GHz with 16 GB of memory. In each experiment, the batch
scheduling problem with the same problem instance was solved using the same given
solution obtained from the ACO-based batch loading algorithm. All the algorithms were
run until iteration reached 1500 or performance did not increase for 100 iterations.

In the first experiment, the ACO, ACO_NB, GA, PSO, and MF algorithms were
validated by comparing their solutions with optimal solutions produced by ILOG CPLEX.
The experiment was conducted on eight small-sized problems with 30 replications, with the
results summarized in Table 5. To compare the performance of the respective algorithms,
the RPD values were calculated using the optimal solution obtained from CPLEX. In the
table, “N/A” denotes cases in which CPLEX was unable to obtain the optimal solution
before 7200s. The problems with more than eight batches could not be solved by ILOG
CPLEX. For problems with fewer than eight batches, the average RPD values of ACO,
ACO_NB, GA, and PSO were zero whereas the average for the MF algorithm was 2.16. The
result indicates that the meta-heuristic algorithms provided optimal solutions to small-sized
problems. However, the MF algorithm performed poorly even on small-sized problems.

In the second experiment, the relative performances of ACO and ACO_NB in solving
large-sized problems were compared to validate the LBk and UBk values obtained in stage 1.
The experiment was conducted on 36 large-sized problems with 30 replications. The results
are summarized in Table 6. To validate the results, a paired t-test (α = 0.05) was conducted
to statistically evaluate the differences in performance between ACO and ACO_NB. The
results of the paired t-tests are listed in Table 7. ACO significantly outperformed ACO_NB
because it is seen from the table that all of the p-values are less than 0.05. The differences
between the results obtained by ACO and ACO_NB are dependent upon the calculated
values of LBk and UBk, respectively. To demonstrate that the use of LBk and UBk quickly

23

Mathematics 2022, 10, 657

converge |K| and the makespan, the performance improvements obtained at different
levels of |F| are shown in Figure 4, in which the average makespan and |K| are presented
for five iterations of ACO and ACO_NB, respectively. The results demonstrate that the
makespan converges faster under ACO than under ACO_NB because the |K| from ACO
rapidly converges to an optimal value between LBk and UBk.

Table 5. The test results of small-sized problems.

|M| |K|
|M|

|B|
|K|

CPLEX ACO ACO_NB GA PSO MF

Opt. Time RPD Time RPD Time RPD Time RPD Time RPD

1 1 1 65 0.02 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.00
1 1 2 217.2 0.24 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.73
1 2 1 149 0.14 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.00
1 2 2 423 5.93 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 3.30
2 1 1 136 0.12 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.01 0.73
2 1 2 246 8.85 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.01 9.75
2 2 1 219 9.412 0.00 0.01 0.00 0.01 0.00 0.03 0.00 0.01 2.73
2 2 2 N/A 7200+ N/A N/A N/A N/A N/A

Avg. 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01 2.16

Table 6. The test results of large-sized problems.

|F| |M| |K|
|M|

|B|
|K|

Best
ACO ACO_NB GA PSO

RPD Time RPD Time RPD Time RPD Time

4 3 3 3 964.68 0.08 0.50 0.08 0.48 0.59 0.22 2.16 0.15
4 3 3 4 1458.448 0.00 1.09 0.00 1.10 0.96 0.42 1.10 0.28
4 3 4 3 1402.04 0.29 1.19 0.29 1.17 0.07 0.55 1.55 0.39
4 3 4 4 1776.96 1.36 2.62 1.39 3.37 0.15 1.03 1.89 0.56
4 4 3 3 859.28 0.00 0.65 0.00 0.69 0.43 0.38 0.47 0.27
4 4 3 4 1498.52 0.22 3.49 0.30 3.23 0.48 1.21 2.73 0.60
4 4 4 3 1218.04 0.00 1.40 0.00 1.48 1.54 0.53 1.28 0.54
4 4 4 4 1806.64 0.51 7.96 0.53 6.81 0.14 2.34 1.80 1.28
4 5 3 3 953.6 0.00 1.00 0.00 1.14 0.39 0.72 0.39 0.46
4 5 3 4 1383.896 0.00 3.50 0.00 3.19 1.08 1.01 1.07 0.92
4 5 4 3 1324.6 0.64 3.72 0.67 3.74 0.10 1.97 1.96 0.94
4 5 4 4 1924.68 0.00 7.12 0.00 6.75 0.73 2.62 0.82 1.76
5 3 3 3 944 0.00 0.28 0.00 0.31 0.79 0.22 0.91 0.14
5 3 3 4 1347.904 0.08 1.28 0.09 1.30 0.32 0.53 2.29 0.25
5 3 4 3 1168.44 0.12 1.12 0.14 1.08 0.27 0.54 1.58 0.29
5 3 4 4 1922.64 0.00 3.32 0.01 2.91 0.86 1.17 1.03 0.58
5 4 3 3 966 0.00 0.64 0.00 0.78 0.56 0.43 0.59 0.27
5 4 3 4 1583.16 0.61 3.52 0.60 3.26 0.27 1.31 1.27 0.53
5 4 4 3 1206.48 0.00 1.86 0.00 1.94 1.42 0.56 1.13 0.55
5 4 4 4 1733.96 0.00 5.08 0.00 4.52 1.54 1.68 1.67 1.03
5 5 3 3 977.6 0.73 1.80 0.78 2.18 0.22 0.89 3.51 0.52
5 5 3 4 1360.248 0.06 5.22 0.10 5.39 1.05 2.51 2.31 0.97
5 5 4 3 1152 0.00 2.76 0.00 2.98 1.06 0.89 0.73 0.90
5 5 4 4 1827.6 0.11 15.07 0.16 14.06 0.10 4.65 1.64 2.09
6 3 3 3 990.92 0.72 0.55 0.73 0.57 0.36 0.31 2.20 0.16
6 3 3 4 1449.64 0.06 1.47 0.07 1.52 0.31 0.66 0.92 0.27
6 3 4 3 1300.6 0.00 0.62 0.00 0.71 0.45 0.39 0.52 0.28
6 3 4 4 1932.56 0.02 3.25 0.02 2.99 0.80 1.43 0.95 0.53
6 4 3 3 915.04 0.08 1.14 0.11 0.95 0.25 0.54 1.72 0.26
6 4 3 4 1382.528 0.26 3.27 0.27 3.73 1.48 1.35 2.98 0.52
6 4 4 3 1286.6 0.00 1.52 0.00 1.67 0.35 0.93 0.41 0.66
6 4 4 4 1959.84 0.06 8.84 0.08 7.50 1.33 3.27 2.65 1.33
6 5 3 3 962.8 0.00 1.35 0.01 1.66 0.64 0.73 0.67 0.47
6 5 3 4 1437.832 0.32 5.16 0.38 5.81 1.74 1.83 2.33 0.90
6 5 4 3 1306.64 0.06 4.24 0.06 4.35 0.21 1.90 1.19 1.02
6 5 4 4 1919.76 0.08 13.48 0.09 12.55 0.40 4.64 1.88 1.91

Avg. 0.18 3.36 0.19 3.27 0.65 1.29 1.51 0.68

24

Mathematics 2022, 10, 657

Table 7. Paired t-test between ACO_NB-ACO.

. N Mean
St.

Dev.
St. e.

Mean
Lower t-Value p-Value

Paired t-test
for

ACO_NB-ACO
0.16 3.75 0.001

ACO_NB 36 1386.2 337.0 56.2
ACO 36 1385.8 336.8 56.1

Difference 36 0.35 0.56 0.09

In the third experiment, the results produced by ACO, GA, and PSO in solving large-
sized problems were relatively compared. The experiment was conducted on the same
large-sized problems used in the second experiment, and the average RPD values obtained
by ACO, GA, and PSO were 0.18, 0.65, and1.51 in Table 6, respectively. These results indicate
that ACO obtained better RPD values than GA and PSO. However, it took more computing
time for it to obtain the best feasible solutions because, despite the fact that the algorithm
generally converges quickly to the best solution, ACO requires a considerable amount of
computing time to execute the proposed MMAS algorithm within one pheromone search
iteration. In our batch scheduling problem, the calculation of desirability under the MMAS
algorithm exponentially increases the algorithm running time when |B|/|K| increases.

To determine whether the application of GA or PSO could result in an improved
solution, an additional experiment in which the computing times for GA and PSO were
extended until the ACO solution converged was conducted. Using the input data from the
large-sized problem, GA and PSO were retested, with the results summarized in Table 8.
The average RPD values produced by ACO, GA, and PSO were 0.33, 0.48, 1.55, respectively,
indicating that applying GA and PSO could not improve the ACO solution quality even if
they were provided with additional computing time. To statistically validate the results in
Table 8, t-tests were conducted to verify the differences in performance between ACO and
the other meta-heuristics. As the same instance of the problem was used in each case, a
paired t-test (α = 0.05) was conducted. The results of paired t-testing between PSO-ACO
and GA-ACO are shown in Table 9. In both cases, the p-values are less than 0.05, suggesting
that ACO performed significantly better than either PSO or GA.

Table 8. The mean RPD of large-sized problems with an equal running time.

|F| ACO GA PSO

4 0.35 0.51 1.36
5 0.40 0.42 1.66
6 0.23 0.51 1.63

Average 0.33 0.48 1.55

25

Mathematics 2022, 10, 657

(a)

(b)

(c)

Figure 4. Convergence of ACO and ACO_NB in each level for |F|. (a) Convergence of algorithms with
the instance as |F| = 4. (b) Convergence of algorithms with the instance as |F| = 5. (c) Convergence of
algorithms with the instance as |F| = 6.

26

Mathematics 2022, 10, 657

Table 9. Paired t-test between PSO-ACO and GA-ACO.

N Mean
St.

Dev.
St. e.

Mean
Lower t-Value p-Value

Paired t-test for
PSO-ACO 15.577 18.04 0.000

PSO 180 1403.6 339.0 25.3
ACO 180 1386.1 332.6 24.8

Difference 180 17.490 13.009 0.970

Paired t-test for
GA-ACO 0.209 2.21 0.029

GA 180 1388.1 332.5 24.8
ACO 180 1386.1 332.6 24.8

Difference 180 1.987 12.090 0.901

8. Conclusions

In this paper, we considered a BLSP for parallel BPMs with batch deterioration and
applied RMAs. In the proposed BLSP, the time-dependent deterioration occurring during
batch processing and the need to schedule RMAs between all batches increases the complex-
ity of the batch scheduling problem. As an MF algorithm from a previous paper could not
find an optimal solution to even small-sized versions of this problem, we solved the batch
scheduling problem by dividing it into three stages, determining the number of buckets,
assigning the batches to buckets, and scheduling the buckets to machines. Determining the
number of buckets fixes the position of the RMAs and reduces the complexity of the batch
scheduling problem. The lower and upper bounds of the number of buckets, LBk and UBk,
respectively, are calculated to improve the solution performance and increase the speed of
convergence. To schedule batches into a fixed number of buckets, an ACO is used to assign
batches and a derived rule is used to sequence the batches. In solving the batch assignment
problem, the ACO outperformed both GA and PSO. Finally, a dispatching rule is used to
schedule buckets to the machines. Using this three-stage ACO-based batch scheduling
algorithm, the proposed method finds optimal solutions for small-sized problems and
provides better-quality solutions for large-size problems than can be obtained using other
meta-heuristics.

Author Contributions: Conceptualization, B.S.K.; methodology, J.W.J.; software, J.W.J.; validation,
B.S.K.; formal analysis, J.W.J.; investigation, B.S.K. and J.W.J.; resources, B.S.K.; project administration:
B.S.K.; data curation, J.W.J.; writing—original draft preparation, J.W.J.; writing—review and editing,
B.S.K. and Y.J.K.; visualization, J.W.J. and Y.J.K.; supervision, B.S.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning
(grant number NRF-2019R1F1A1056119).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Uzsoy, R. Scheduling batch processing machines with incompatible job families. Int. J. Prod. Res. 1995, 33, 2685–2708. [CrossRef]
2. Jia, Z.; Wang, C.; Leung, J.Y.T. An ACO algorithm for makespan minimization in parallel batch machines with non-identical job

sizes and incompatible job families. Appl. Soft Comput. 2016, 38, 395–404. [CrossRef]
3. Lee, C.Y.; Leon, V.J. Machine scheduling with a rate-modifying activity. Eur. J. Oper. Res. 2001, 128, 119–128. [CrossRef]
4. Joo, C.M.; Kim, B.S. Genetic algorithms for single machine scheduling with time-dependent deterioration and rate-modifying

activities. Expert Syst. Appl. 2013, 40, 3036–3043. [CrossRef]

27

Mathematics 2022, 10, 657

5. Dupont, L.; Ghazvini, F.J. Minimizing makespan on a single batch processing machine with non-identical job sizes. J. Eur. Des
Systèmes Autom. 1998, 32, 431–440.

6. Zhou, S.; Chen, H.; Li, X. Distance matrix based heuristics to minimize makespan of parallel batch processing machines with
arbitrary job sizes and release times. Appl. Soft Comput. J. 2017, 52, 630–641. [CrossRef]

7. Dupont, L.; Dhaenens-Flipo, C. Minimizing the makespan on a batch machine with non-identical job sizes: An exact procedure.
Comput. Oper. Res. 2002, 29, 807–819. [CrossRef]

8. Ikura, Y.; Gimple, M. Efficient scheduling algorithms for a single batch processing machine. Oper. Res. Lett. 1986, 5, 61–65.
[CrossRef]

9. Lee, C.Y.; Uzsoy, R.; Martin-Vega, L.A. Efficient algorithms for scheduling semiconductor burn-in operations. Oper. Res. 1992, 40,
764–775. [CrossRef]

10. Cheng, B.; Wang, Q.; Yang, S.; Hu, X. An improved ant colony optimization for scheduling identical parallel batching machines
with arbitrary job sizes. Appl. Soft Comput. J. 2013, 13, 765–772. [CrossRef]

11. Uzsoy, R. Scheduling a single batch processing machine with non-identical job sizes. Int. J. Prod. Res. 1994, 32, 1615–1635.
[CrossRef]

12. Jia, Z.; Li, X.; Leung, J.Y.T. Minimizing makespan for arbitrary size jobs with release times on P-batch machines with arbitrary
capacities. Future Gener. Comput. Syst. 2017, 67, 22–34. [CrossRef]

13. Ozturk, O.; Begen, M.A.; Zaric, G.S. A branch and bound algorithm for scheduling unit size jobs on parallel batching machines to
minimize makespan. Int. J. Prod. Res. 2017, 55, 1815–1831. [CrossRef]

14. Jia, Z.; Yan, J.; Leung, J.Y.T.; Li, K.; Chen, H. Ant colony optimization algorithm for scheduling jobs with fuzzy processing time on
parallel batch machines with different capacities. Appl. Soft Comput. J. 2019, 75, 548–561. [CrossRef]

15. Arroyo, J.E.C.; Leung, J.Y.T. Scheduling unrelated parallel batch processing machines with non-identical job sizes and unequal
ready times. Comput. Oper. Res. 2017, 78, 117–128. [CrossRef]

16. Arroyo, J.E.C.; Leung, J.Y.T. An effective iterated greedy algorithm for scheduling unrelated parallel batch machines with
non-identical capacities and unequal ready times. Comput. Ind. Eng. 2017, 105, 84–100. [CrossRef]

17. Arroyo, J.E.C.; Leung, J.Y.T.; Tavares, R.G. An iterated greedy algorithm for total flow time minimization in unrelated parallel
batch machines with unequal job release times. Eng. Appl. Artif. Intell. 2019, 77, 239–254. [CrossRef]

18. Gao, Y.; Yuan, J. Unbounded parallel-batch scheduling under agreeable release and processing to minimize total weighted
number of tardy jobs. J. Comb. Optim. 2019, 38, 698–711. [CrossRef]

19. Zhou, S.; Xie, J.; Du, N.; Pang, Y. A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines
with different capacities and arbitrary job sizes. Appl. Math. Comput. 2018, 334, 254–268. [CrossRef]

20. Li, X.; Zhang, K. Single batch processing machine scheduling with two-dimensional bin packing constraints. Int. J. Prod. Econ.
2018, 196, 113–121. [CrossRef]

21. Fu, R.; Tian, J.; Li, S.; Yuan, J. An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities.
J. Comb. Optim. 2017, 34, 1187–1197. [CrossRef]

22. Azizoglu, M.; Webster, S. Scheduling a batch processing machine with incompatible job families. Comput. Ind. Eng. 2001, 39,
325–335. [CrossRef]

23. Yao, S.; Jiang, Z.; Li, N. A branch and bound algorithm for minimizing total completion time on a single batch machine with
incompatible job families and dynamic arrivals. Comput. Oper. Res. 2012, 39, 939–951. [CrossRef]

24. Jolai, F. Minimizing number of tardy jobs on a batch processing machine with incompatible job families. Eur. J. Oper. Res. 2005,
162, 184–190. [CrossRef]

25. Balasubramanian, H.; Mönch, L.; Fowler, J.; Pfund, M. Genetic algorithm based scheduling of parallel batch machines with
incompatible job families to minimize total weighted tardiness. Int. J. Prod. Res. 2004, 42, 1621–1638. [CrossRef]

26. Li, X.L.; Li, Y.P.; Huang, Y.L. Heuristics and lower bound for minimizing maximum lateness on a batch processing machine with
incompatible job families. Comput. Oper. Res. 2019, 106, 91–101. [CrossRef]

27. Ham, A.; Fowler, J.W.; Cakici, E. Constraint programming approach for scheduling jobs with release times, non-identical sizes,
and incompatible families on parallel batching machines. IEEE Trans. Semicond. Manuf. 2017, 30, 500–507. [CrossRef]

28. Vimala Rani, M.; Mathirajan, M. Performance evaluation of ATC based greedy heuristic algorithms in scheduling diffusion
furnace in wafer fabrication. J. Inf. Optim. Sci. 2016, 37, 717–762. [CrossRef]

29. Gupta, J.N.D.; Gupta, S.K. Single facility scheduling with nonlinear processing times. Comput. Industiral Eng. 1988, 14, 387–393.
[CrossRef]

30. Ding, J.; Shen, L.; Lü, Z.; Peng, B. Parallel machine scheduling with completion-time-based criteria and sequence-dependent
deterioration. Comput. Oper. Res. 2019, 103, 35–45. [CrossRef]

31. Browne, S.; Yechiali, U. Scheduling deteriorating jobs on a single processor. Oper. Res. 1990, 38, 495–498. [CrossRef]
32. Soleimani, H.; Ghaderi, H.; Tsai, P.W.; Zarbakhshnia, N.; Maleki, M. Scheduling of unrelated parallel machines consider-

ing sequence-related setup time, start time-dependent deterioration, position-dependent learning and power consumption
minimization. J. Clean. Prod. 2020, 249, 119428. [CrossRef]

33. Joo, C.M.; Kim, B.S. Machine scheduling of time-dependent deteriorating jobs with determining the optimal number of rate
modifying activities and the position of the activities. J. Adv. Mech. Des. Syst. Manuf. 2015, 9, JAMDSM0007. [CrossRef]

28

Mathematics 2022, 10, 657

34. Woo, Y.B.; Jung, S.W.; Kim, B.S. A rule-based genetic algorithm with an improvement heuristic for unrelated parallel machine
scheduling problem with time-dependent deterioration and multiple rate-modifying activities. Comput. Ind. Eng. 2017, 109,
179–190. [CrossRef]

35. Abdullah, M.; Süer, G.A. Consideration of skills in assembly lines and seru production systems. Asian J. Manag. Sci. Appl. 2019, 4,
99–123. [CrossRef]

36. Gai, Y.; Yin, Y.; Tang, J.; Liu, S. Minimizing makespan of a production batch within concurrent systems: Seru production
perspective. J. Manag. Sci. Eng. 2020, in press. [CrossRef]

37. Liu, F.; Niu, B.; Xing, M.; Wu, L.; Feng, Y. Optimal cross-trained worker assignment for a hybrid seru production system to
minimize makespan and workload imbalance. Comput. Ind. Eng. 2021, 160, 107552. [CrossRef]

29

Citation: Karunanidy, D.;

Ramalingam, S.; Dumka, A.; Singh,

R.; Rashid, M.; Gehlot, A.;

Alshamrani, S.S.; AlGhamdi, A.S.

JMA: Nature-Inspired Java Macaque

Algorithm for Optimization Problem.

Mathematics 2022, 10, 688. https://

doi.org/10.3390/math10050688

Academic Editors: Alexander A

Lazarev, Frank Werner and Bertrand

M.T. Lin

Received: 25 December 2021

Accepted: 12 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

JMA: Nature-Inspired Java Macaque Algorithm for
Optimization Problem

Dinesh Karunanidy 1, Subramanian Ramalingam 2, Ankur Dumka 3, Rajesh Singh 4, Mamoon Rashid 5,*,

Anita Gehlot 4, Sultan S. Alshamrani 6 and Ahmed Saeed AlGhamdi 7

1 Department of Computer Science & Technology, Madanapalle Institute of Technology and Science,
Madanapalle 517325, India; drdineshk@mits.ac.in

2 Department of Computer Science & Engineering, Pondicherry University, Puducherry 605014, India;
drrajakumarr@mits.ac.in

3 Department of Computer Science and Engineering, Women’s Institute of Technology, Dehradun 248007, India;
ankurdumka2@gmail.com

4 Department of Research and Development, Uttaranchal Institute of Technology, Uttaranchal University,
Dehradun 248007, India; drrajeshsingh004@gmail.com (R.S.); dranitagehlot@gmail.com (A.G.)

5 Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University,
Pune 411048, India

6 Department of Information Technology, College of Computer and Information Technology, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia; susamash@tu.edu.sa

7 Department of Computer Engineering, College of Computer and Information Technology, Taif University,
P.O. Box 11099, Taif 21994, Saudi Arabia; asjannah@tu.edu.sa

* Correspondence: mamoon.rashid@vupune.ac.in; Tel.: +91-7814346505

Abstract: In recent years, optimization problems have been intriguing in the field of computation
and engineering due to various conflicting objectives. The complexity of the optimization problem
also dramatically increases with respect to a complex search space. Nature-Inspired Optimization
Algorithms (NIOAs) are becoming dominant algorithms because of their flexibility and simplicity in
solving the different kinds of optimization problems. Hence, the NIOAs may be struck with local
optima due to an imbalance in selection strategy, and which is difficult when stabilizing exploration
and exploitation in the search space. To tackle this problem, we propose a novel Java macaque
algorithm that mimics the natural behavior of the Java macaque monkeys. The Java macaque
algorithm uses a promising social hierarchy-based selection process and also achieves well-balanced
exploration and exploitation by using multiple search agents with a multi-group population, male
replacement, and learning processes. Then, the proposed algorithm extensively experimented with
the benchmark function, including unimodal, multimodal, and fixed-dimension multimodal functions
for the continuous optimization problem, and the Travelling Salesman Problem (TSP) was utilized for
the discrete optimization problem. The experimental outcome depicts the efficiency of the proposed
Java macaque algorithm over the existing dominant optimization algorithms.

Keywords: continuous optimization problem; discrete optimization problem; grey wolf optimizer;
Java macaque algorithm; nature-inspired algorithm

MSC: 68U01

1. Introduction

Nature-Inspired Optimization Algorithms (NIOAs) are one of the dominant techniques
used due to their simplicity and flexibility in solving large-scale optimization problems [1].
The search process of the nature-inspired optimization algorithms was developed based
on the behavior or processes encountered from nature. Notably, the NIOAs have empha-
sised the significant collection of algorithms, like the evolutionary algorithm (EA), swarm
intelligence (SI), physical algorithm, and bio-inspired algorithm. These algorithms have

Mathematics 2022, 10, 688. https://doi.org/10.3390/math10050688 https://www.mdpi.com/journal/mathematics
30

Mathematics 2022, 10, 688

illustrated their efficiency in solving wide variants of real-world problems [2]. A variety of
nature-inspired optimization algorithms, such as the Genetic Algorithm (GA) [3], Differen-
tial Evolution (DE) [4], Ant Colony Optimization (ACO) [5] Artificial Bee Colony (ABC) [6],
Particle Swarm Optimization (PSO) [7], Firefly Algorithm (FA) [8], Cuckoo Search (CO) [9],
Bat Algorithm [10], Monkey Algorithm (MA) [11], Spider Monkey Algorithm (SMO) [12],
Reptile Search Algorithm (RSA) [13], Membrane Computing (MC) [2], and whale optimiza-
tion [14] use simple local searches for convoluted learning procedures to tackle complex
real-world problems.

The complexity of real-world problems increases with the current scenario. Hence,
the nature-inspired optimization algorithm has to find the best feasible solution with
respect to the decision and objective space of the optimization problem. The increase
in a decision variable may directly increase the size of the problem space. Then the
complexity of the search space is also exponentially increased due to an increase in decision
variables. Similarly, the search space will also increase due to an increase in the number
of objectives [1]. Thus, the performance of the optimization algorithms will depend on
two major components, as follows [15]: (i) the exploration used to generate the candidate
solution to explore the search space globally; and (ii) the exploitation used to focus on
exploiting the search space in the local region to find the optimal solution in the particular
region. Thus, it is of essential importance for the optimization algorithm to acquire an
equilibrium between the exploitation and exploration for solving different kinds of the
optimization problem [16].

2. Literature Survey

Many optimization algorithms in the literature have been modified from the initial
version to a hybrid model in order to tackle the balance between exploration and exploita-
tion [17,18]. For example, we consider the most famous nature-inspired optimizations, such
as GA, PSO, DE, ABC, and the most recent algorithms, such as the grey wolf-optimizer, rep-
tile search algorithm, Spider Monkey Algorithm, and whale optimization algorithm. The
main operators of the genetic algorithm are selection, crossover, and mutation [19]. Many
authors [20] in the literature have proposed novel crossover operators in order to adjust
the exploration capability of the genetic algorithm. Then, the selection process [21] and
mutation operators [22,23] have been modified by authors in order to maintain a diverse
and converged population. The author in the Ref. [24] proposed a special chromosome
design based on a mixed-graph model to address the complex scheduling problem, and
this technique enhances the heuristic behaviour of a genetic algorithm. Further, the genetic
algorithm is combined with other techniques in order to improve its performance, such
as a self-organization map [25,26], adaptive techniques [27], and other optimization algo-
rithms [28]. These operators help to attain a balance over convergence and randomness to
find the optimal results [29]. However, the convergence depends on the mutation operator
because of its dual nature, that is, it either slows down the convergence or attains the
global optima. Thus, fine-tuning the operators concerning the optimization problem is
quite difficult [30].

The next feasible approach for solving the optimization problem is differential evo-
lution. It also uses vector-based operators in the search process. However, the mutation
operator shows its dominance over the search process by contributing to the weighted di-
vergence between two individuals. The selection procedures of the DE have a crucial impact
on the search process and also influences diversity among the parents and offspring [31].
However, the author in the Ref. [32] developed a new technique based on self-adaptive
differential evolution with weighted strategies to address these large-scale problems. In the
Particle Swarm Optimizer (PSO) [7], the selection process of a global best seems to play a
vital role in finding the global optimal solution—that is, it can accelerate the convergence,
or it can lead to premature convergence. ACO is based on the pheromone trails, such as
trail-leaving and trail-after practices of ants, in which every ant sees synthetic pheromone
fixations on the earth, and acts by probabilistic selecting bearings focused around the

31

Mathematics 2022, 10, 688

accessible pheromone fixation. However, the search process of the ACO is well-suited for
exploration, whereas the exploitation has considerably lower importance [33].

The Artificial Immune System (AIS) [34] is mimicked by the biological behavior of the
immune system. The AIS uses the unsupervised learning technique obtained from the im-
mune cell over the infected cells. Hence, the algorithm suits cluster-oriented optimization
problems well, and strong exploitation and learning processes are intensified at the poor
level [35]. The bacterial foraging algorithm (BFA) was developed by Passino [36], which
works on the basic principle of the natural selection of bacteria. It is also a non-gradient
optimization algorithm that mimicks the foraging behavior of the bacteria from the land-
scape towards the available nutrients [37]. However, the algorithm has different kinds of
operators, where it depicts less convergence over complex optimization problems [38]. The
Krill Herd (KH) is a bio-inspired optimization algorithm which imitates the behavior of
krill [39]. The basic underlying concept of a krill herd is to reduce the distance between
the food and each individual krill in the population. However, the author of the Ref. [40]
stated that the KH algorithm does not maintain a steady process between exploration
and exploitation.

The dominant author in the field of NIA, Yang [41], proposed the Firefly Algorithm
(FA). The lighting behavior of fireflies during the food acquirement process is the primary
ideology of the firefly algorithm [42]. Thus, the search process of the firefly algorithm is
well-suited for solving multi-model optimization using a multi-population [8]. However,
the cuckoo search well-utilises the random walk process that explores the search in an
efficient manner, which may lead to slow convergence [43]. Further, the bat algorithm finds
difficulty in the optimal adjustment of the frequency for an echo process, which helps to
attain the optimal solution in the search process [9].

The various types of algorithms evolved in the literature based on the behavior of
monkeys, such as the monkey algorithm (MA), monkey king evolution (MKO), and spider
monkey algorithm (SMO).The initial solution was brought into existence via a random
process, and it completes the local search process using the limb process and also performs
a somersault process for the global search operation. Further, an improved version of the
monkey algorithm was proposed in the Ref. [11], which includes the evolutionary speed
factor to dynamically change the climb process and aggregation degree to dynamically
assist somersault distance. The Spider Monkey Algorithm (SMO) was developed based on
the swarm behavior of monkeys, and performs well with regard to the local search problem.
The SMO also incorporates a fitness-based position update to enhance the convergence
rate [44]. The Ageist Spider Monkey Algorithm (ASMO) includes features of agility and
swiftness based on their age groups, which work based on the age differences present in
the spider monkey population [12]. However, the algorithm performance decreases during
the global search operation.

An empirical study from the literature [45] clearly shows the importance of a diverse
population to attain the best solutions worldwide. Hence, a recent advancement in the field
of an optimization algorithm incorporated multi-population methods where the population
was subdivided into many sub-populations to avert the local optima and maintain diversity
among the population [46]. Thus, multi-population methods guide the search process
either in exploiting or exploring the search space. The significance of a multi-population
has been incorporated in several dominant optimization algorithms [8,47].

Though multi-population-based algorithms have attained viable advantages in explor-
ing and exploiting the search space, it has some consequences in designing the algorithm,
such as the number of sub-populations, and communication and strategy among the sub-
population [48]. Firstly, the number of sub-populations helps to spread the individuals
over the search space. In fact, the small number of sub-populations leads to local optima,
whereas the increase in the number of sub-populations leads to a wastage of computa-
tion resources and also extends the convergence [49]. The next important issue is the
communication handling procedure between sub-populations, such as communication
rates and policy [50]. The communication rate determines the number of individuals in a

32

Mathematics 2022, 10, 688

sub-population who have to interact with other sub-populations, and a communication
policy is subjected to the replacement of individuals with other sub-populations.

The above discussion clearly illustrates the importance of balanced exploration and
exploitation in the search process. Most of the optimization algorithms have problems in
tuning the search operators and with diversity among the individuals. On the other hand,
the multi-population-based algorithm amply shows its efficiency in maintaining a diverse
population. However, it also requires some attention towards communication strategies
between the sub-population. Hence, this motivated our research to develop a novel
optimization algorithm with well-balanced exploration and exploitation. In particular, the
Java macaque is also the vital primitive among the monkeys family and is widely available
in South-Asian countries. Thus, the Java macaques have suitable behavior for balancing
the exploration and exploitation search process.

The novel contribution of the proposed Java macaque algorithm is described
as follows:

(1) We introduced the novel optimization algorithm based on the behavior of Java
macaque monkeys for balancing the search operation. The balance is achieved by
modeling the behavioral nature of Java macaque monkeys, such as multi-group be-
havior, multiple search agents, a social hierarchy-based selection strategy, mating,
male replacement, and learning process.

(2) The multi-group population with multiple search agents as male and female monkeys
helps to explore the different search spaces and also maintain diversity.

(3) This algorithm utilises the dominance hierarchy-based mating process to explore the
complex search spaces.

(4) In order to address the communication issues in a multi-group population, the Java
monkeys have unique behavior, called male replacement.

(5) The exploitation phase of the proposed algorithm is achieved by the learning process.
(6) This algorithm utilises a multi-leader approach using male and female search agents,

which consists of an alpha male and alpha female in each group, and also remains
as the best solution globally. Thus, the multi-leader approach assists in a smooth
transition from the exploration phase to exploitation phase [50]. Further, the social
hierarchy-based selecting strategy helps in maintaining both an improved converged
and diverse solution in each group, as well as in the population.

Further in this paper, Section 3 describes the brief behavior analysis of the Java
macaque monkey. Section 4 formulates the algorithmic compounds using the Java macaque
behavior model. Then, Section 3.1 explores the stability of Java macaque behavior, and
Section 4 introduces the generic version of the proposed Java macaque algorithm for the
optimization problem. Further, Section 5 provides a brief experimentation of the continuous
optimization problem, and Section 6 illustrates the detailed experimentation of discrete
optimization. Finally, the paper is concluded in Section 8.

3. Behavior Analysis of the Java Macaque Monkey

The Java macaque monkey is an essential native breed that lives with a social structure,
and it has almost 95% of gene similarity when compared with human beings [51]. The
basic search agent of the java monkey is divided into male and female, where males are
identified with a moustache and females with a beard. The average number of male and
female individuals is 5.7 and 9.9 in each group, respectively. Usually, the Java macaque
lives (with a group community of 20–40 monkeys) in an environment where macaques try
to dominate over others in their region of living. Age, size and fighting skills are the factors
used to determine social hierarchy among macaques [52]. The structure of social hierarchy
has been followed among the java monkey groups where the lower-ranking individuals are
dominated by the higher-ranking individuals when accessing food and resources [51,53].
The higher-ranking adult male and female macaques of a group are called the “Alpha Male”
and “Alpha Female”. Further, studies have shown that the alpha male has dominant access
to females, which probably sires the offspring.

33

Mathematics 2022, 10, 688

The number of female individuals is higher in comparison with the male individual
for every group. The next essential stage of the java monkey culture is mating. The mating
operator depends on the hierarchical structure of the macaques, that is, the selection of male
and female macaques is based on the social rank [54]. The male macaque attracts the female
by creating a special noise and gesture for the reproduction. The higher-ranking male
individuals are typically attracted to the female individual due to their social power and
fitness. The male individual reaches sexual maturity approximately at the age of 6 years,
while the female matures at the age of 4 years [55]. The newborn offspring or juvenile’s
social status depends on the parent’s social rank and matrilineal hierarchy, which traces
their descent through the female line. In detail, the offspring of the dominant macaque have
a higher level of security when compared with offspring of lower-ranking individuals [56].

The male offspring are forced to leave their natal group after reaching sexual maturity
and become stray males, whereas the female can populate in the same group based on their
matrilineal status [53]. Hence, stray males have to join another social group, otherwise they
are subjected to risk in the form of predators, disease, and injury. Male replacement is a
process in which stray males can reside in another group in two ways—they either have to
dominate the existing alpha male or sexually attract a female, and that way the macaque
can convince another member to let the stray male into the group. Hence, the behavior of
the Java macaque shows excellent skill in solving real-world problems in order to protect
their group from challenging circumstances. Thus, the stray male can continuously learn
from the dominant behavior of other macaques. Thus, the improvement in the ability of the
Java macaque enhances its social ranking and provides higher access to food and protection.
Further, the monkey can improve its ranking via a learning process and can also become
the alpha monkey, which leads to the attainment of higher power within the group.

The behavior of Java macaque monkeys illustrates the characteristics of an optimiza-
tion algorithm, such as selection, mating, maintaining elitism, and male replacement,
finding the best position via learning from nature. The Java macaque exhibits population-
based behavior with multiple groups in it and also adapts a dominant hierarchy. Then, each
group can be divided into male and female search agents, which can be further divided into
an adult, sub-adult, juvenile, and infant based on age. Next, an important characteristic of
a java monkey is mating. In particular, the selection procedure for mating predominantly
depends on the fitness hierarchy of the individuals. Further, the dominant individuals
in a male and female population are maintained in each group of the population, known
as the alpha male and female. The ageing factor is also considered to be an important
deciding factor. The male monkey which attains sexual maturity at the age of 4 is forced to
leave its natal group, and becomes a stray male. Thus, the stray male has to find another
suitable group based on fitness ranking, and this process is known as male replacement.
In addition to the above behavior, the monkey efficiently utilises the learning behavior
from dominant individuals in order to attain the dominant ranking. The behavior of java
monkeys does well to attain global optimal solutions in real-world problems. According
to the observations from the above discussion, the behavior of java monkeys exhibits the
following features: (1) the group behavior of individuals with different search agents helps
in exploring a complex search space; (2) exploration and exploitation is performed using
selection, mating, male replacement, and learning behavior; and (3) dominant monkeys are
maintained within the group using an alpha male and female.

3.1. State Space Model for Java Macaque

Over the centuries, Java macaque monkeys have survived in this world because of their
well-balanced behavior. This amply shows that the behavior of Java macaque monkeys has
stability within the population. Then, the state space model for the Java macaque monkey
in Figure 1 was designed using the demographic data shown in Table 1, obtained from the
Ref. [57]. The demographic composition of the monkey population over the period of 1978
to 1982 was used to develop the state space model of the java monkey.

34

Mathematics 2022, 10, 688

Table 1. Demographic composition of the monkey population (1978–1982).

Class
Age

Years
1978 1979 1980 1981 1982

Adult Male ≥7 19 25 30(1) 39(3) 63(2)
Adult Female ≥5 51(1) 57(1) 68(1) 76(1) 91(1)

Subadult Male 4–6 25 45 48(1) 54 43
Subadult Female 4 7 12 9 16 25

Juvenile Male 1–3 55 43(2) 47(1) 54 75
Juvenile Female 1–4 39 50(2) 71(2) 82(1) 82(2)

Infant Male <1 16(3) 15(3) 25(3) 36(2) 37(5)
Infant Unsexed <2 25(1) 32(2) 28(1) 27(1) 38(5)
Infant Female <3 0 0(2) 0(1) 0 0

Total 237 279 326 384 454

Infant Mortality 2 8.89 12.96 7.02 4.54 11.76
Noninfant Mortality 1 0.51 2.11 2.15 1.23 1.31

Figure 1. State space model of the Java macaque monkey.

The generalized equation for female individuals in the state space models are repre-
sented as:

AF∗ = −αAF + γ1SF (1)

SF∗ = δ1 JF − γ1SF − αSF (2)

JF∗ = ε1 IF − δ1 JF − αJF (3)

IF∗ = η1 AM + μ1 AF − ε1 IF − βIF (4)

η1 =
2
3

μ1, (5)

where β, α are the death rate of the Infant (Offspring) and Non-Infant. Input variables
u(t) are AF, SF, JF, IF, and the output variables y(t) are AF∗, SF∗, JF∗, IF∗ with respect to
the state variable α1, β1, γ1, δ1, ε1, μ1, η1. Additionally, AF, SF, JF and IF indicates the adult,
sub-adult, juvenile and infant females.

35

Mathematics 2022, 10, 688

Similarly, the generalized equation for male individuals in the population are pre-
sented as:

AM∗ = −αAM + γ2SM (6)

SM∗ = δ2 JM − γ2SM − αSM (7)

JM∗ = ε2 IM − δ2 JM − αJM (8)

IM∗ = η2 AM + μ2 AF − ε2 IM − βIM (9)

η2 =
2
3

μ2, (10)

where β, α are the death rate of the Infant (Offspring) and Non-Infant. Input variables u(t)
are AM, SM, JM, IM and the output variable y(t) are AM∗, SM∗, JM∗, IM∗ with respect to
state variable α2, β2, γ2, δ2, ε2, μ2, η2. Additionally, AM, SM, JM and IM indicate the adult,
sub-adult, or stray, juvenile, and infant males.

By using the state space model, we generated the transition matrix, which helps in
proving the stability of the population using the α- diagonally dominant method, which
has been clearly explained in the supplementary documents.

4. Java Macaque Monkey Algorithm Modeling

The Java Macaque Algorithm (JMA) is a meta-heuristic algorithm based on the ge-
netic and social behavior of the java monkey. Initially, it starts with a population of the
random solution and explores the search space to find the optimal. The life cycle of the
Java macaque consists of selecting, mating, male replacement, and learning. Hence, the in-
telligent behavior of the java monkey does well to solve large-scale optimization problems.
Moreover, it also demonstrates the behavior of Java macaques, and exhibits their adaptive
learning, genetic, and social behavior and how they often respond according to changes in
their environment, which maintains the global order emerging from the interaction of the
java monkey. Thus, the life cycle of the java monkey could be transformed as the algorithm
model for solving the real-world optimization problem.

4.1. JMA—Preamble

In the primitive of the Java macaque monkey, the search agents are divided into two
types, known as the ‘Male’ and ‘Female’ Java macaque. The nature of male and female
search agents is to produce different cooperative behavior depending on its gender. Then,
the Java macaque exhibits a multi-group population that is utilized to achieve the best
performance.

The population of a Java macaque leaves in g-groups and N-individuals in the group.

POP ={Gi}i=1,2,. . . ,g

={Mj}j=1,2,. . . ,Msize

⋃
{Fk}k=1,2,. . . ,Fsize

s.t (Gi ⊃ M, F : M /∈ F),

(11)

where Gi presents the group i with Msize of male individuals and Fsize of female individuals
in the population. The initialization process starts with a minimum number of individuals
in the group with respect to the problem size. Then the casual system is utilized to control
the size of the population in every group. |Gi|, with a population size which consists of a
number of male individuals Msize and female individuals Fsize, is defined as:

Msize = f loor[0.9 − rand(0.25, 0.4) ∗ |Gi|] (12)

Fsize = f loor[0.9 − rand(0.45, 0.6) ∗ |Gi|] (13)

Msize + Fsize ⇒ Actsize : Actsize ∈ R
∗. (14)

36

Mathematics 2022, 10, 688

4.2. JMA—Fitness Evaluation

The Java macaque depends on the genetic and social behavior in which dominant
individuals are likely to be a winner in a problem space. The fitness evaluation indicates
how far the individual is converged concerning the problem space. Fitness evaluation
predicts the probability and survival rate of the individual to be transferred to the next
generation of the population and is defined as:

minimize F(Ψ)

s.t Ψ ∈ G,
(15)

where ψ denotes an individual of x-dimensional integer vector ψi = (ψ1, ψ2, . . . , ψx), G rep-
resent the feasible region of the search space, and F ∈ R, where F is the optimization value.

4.3. JMA—Categorization

The basic structure of the java monkey follows the dominant hierarchy where the
higher-ranking individuals dominate the remaining lower-ranking individuals in the group.
The dominant male of the group also shows its dominance in accessing food, places, and
other resources. Likewise, the dominant female of the group receives more access to
resources and protection from a dominant male. Thus, the dominance hierarchy is based on
evaluations of fitness value. Hence, the individuals are subdivided into higher-ranking or
non-dominated (dominant) individuals and lower-ranking or dominated (non-dominant)
individuals. Therefore, the individual ranking is based on the fitness value.The best
individual in the group is known as the “Alpha” individual. Then, the ‘Alpha Male’ is the
best male, and the ‘Alpha Female’ is the best female individual in the group. These are
represented as follows:

AMi = min {F(Ψj |j ∈ {M}i, i ∈ {Gi}} (16)

AFi = min {F(Ψj |j ∈ {F}i, i ∈ {Gi}}, (17)

where AMi and AFi are the local optimal solution for the problem X from the group {Gi}.
Therefore, the AMi, AFi ∈ X, and it is better than other individuals from the set {M}i and
{F}i, where (∀AMi, AFi ∈ G ⇒ (∀AM, AF ∈ X : F(AMi) < {M}i, F(AFi) < {F}i)).

The global best individual from the set {AM} and {AF} are selected using:

[GM, GF] = min{{AM}, {AF}}, (18)

where GM, GF ∈ X are globally the best solution for the individual from the POP.
Then the set of dominant and non-dominant (subordinate) male and female individu-

als in the group can also be formulated using the fitness value.

Ψ, Ψ∗ ∈ {M}then =

{
Ψ ∈ {DS}, i f F(Ψ) > F(Ψ∗)
Ψ∗ ∈ {DS}, Ψ ∈ {NDS}, otherwise,

(19)

Ψ, Ψ∗ ∈ {F}then =

{
Ψ ∈ {NDS}F, i f F(Ψ) > F(Ψ∗)
Ψ∗ ∈ {NDS}F, Ψ ∈ {DS}F, otherwise,

(20)

where both Ψ and Ψ∗ are either distinct male or female individuals from the Gi. The non-
dominant set of male and female individuals are represented as {NDS}M and {NDS}F.
Similarly, the dominant male and female individuals are presented as {DS}M and {DS}F.

4.4. JMA—Mating

Mating is an important operator in the Java macaque algorithm that ensures group
survival and also enables the exchange of genetic information and social behavior between
individuals. In particular, the dominant males have the privilege of mating with dominant
females. Hence, non-dominant males may also have a lesser chance of mating due to the

37

Mathematics 2022, 10, 688

special prerequisite of dominance. The selection of individuals in the mating process plays
an important role in generating populations for the next generation. Specifically, if the
selection process depends only on a dominant individual, this may lead to local optima
and reduce population diversity. Thus, the non-dominant individuals are also selected to
perform mating operations with the probability ratio, which maintains diversity among
individuals. Mating is the search process which is used to exploit the problem space X.
Mating between males Ψm and females Ψ f is either from the set {NDS} or {DS}. Then, new
offspring Ψo f f are generated as follows:

Ψo f f = Mating(Ψm, Ψ f) s.t Ψm, Ψ f ∈ Gi, (21)

where the uniform crossover is used for the discrete optimization problem, and the simu-
lated binary crossover for the continuous optimization problem.

The age of the Infant Male (IM) and Infant Female (IF) is set at 0, who then undergo a
learning process to improve their fitness. The offspring generated in each {Gi} from the
mating process reaches sexual maturity S. Then the SM, SF and AF represent the Stray
Male (subadult male), Subadult Female, and Adult Female, defined as the following:

ΨIM =

{
ΨIM ∈ {JM}, i f Age = 1
ΨIM ∈ {IM}, otherwise.

(22)

ΨJM =

{
ΨJM ∈ {SM}, i f Age = 4
ΨJM ∈ {JM}, otherwise.

(23)

ΨIF =

{
ΨIF ∈ {JF}, i f Age = 1
ΨIF ∈ {IF}, otherwise.

(24)

ΨJF =

{
ΨJF ∈ {SF}, i f Age = 3
ΨJF ∈ {JF}, otherwise;

(25)

ΨSF =

{
ΨSF ∈ {AF}, i f Age = 5
ΨSF ∈ {SF}, otherwise,

(26)

where Age indicates the age of the individual. Similarly, if the Age = 5, then the Juvenile
Female (JF) is moved to the set of Adult Females (AFs).

4.5. JMA—Male Replacement

The new offspring generated from the mating operation undergo a learning process
from the dominant individual and the circumstances of the environment. Male replacement
plays an important role in the Java macaque algorithm where the stray male chooses
another group to reside in and replace the existing dominant male in the group. This is
also considered as swarm behavior, where the stray male has to find a suitable position
in the ruling hierarchy of the male. On the contrary, if a stray male cannot find a suitable
position, then it is subjected to the risk of death. According to the fitness of the stray male,
the replacement strategy variation plays out in a different manner. The male replacement
can be defined as:

MR =

{
REPLACE(Ψsm, Ψm), i f F(Ψsm) > F(Ψm)

Ψsm ∈ {ES}, otherwise;
(27)

∃Ψsm ∈ Gi||Ψm ∈ {DS}M : (Ψm ∈ {Gj}j=1,2,. . . ,M)|i �= j,

where REPLACE(Ψsm, Ψm) is the replacement process with the stray Ψsm and dominant
Ψm male. Then {ES} is the elimination set where the individuals are eliminated from
the population.

38

Mathematics 2022, 10, 688

4.6. JMA—Learning

In this stage, the individuals in the population set can improve their fitness to reach
the dominant individual set. The efficiency of the individual is improved based on the
environment and social behavior. However, the potential of this learning process is to
increase efficiency when compared with the current dominant hierarchy. Exploration is
achieved by the learning method which enhances the fitness of an individual and also
attains the optimal solution. The learning method is applied to the Java macaque algorithm
to attain the desired results in global optimum, and this can be represented as follows:

Learning = {PoP,G, δ, L(Ψ), F(Ψ),X}, (28)

where POP represents the set of the individual, G is the feasible search space of the solution,
F(Ψ) is the fitness function, X is the problem space of the optimization problem, and δ is
referred to as the learning rate of the individual which is uniformly distributed (0 ≤ δ ≤ 1).
Then, the learning process is L(Ψk, i, j) : ∀Ψ ∈ G|∃x ∈ X.

5. Continuous Optimization Problem

In the continuous optimization problem, each decision variable may take any value
between the range of constraints. Thus, the search space of continuous optimization may
exponentially increase with the associated constraints. The initial difference between the
continuous and discrete optimization is the representation of the individual with regard to
a continuous search space.The java macaque for the continuous optimization algorithm
consists of significant features selection, categorization, mating, male replacement and
learning behavior. The Algorithm 1 clearly describes the computational methodology of
java macaque optimization algorithm.

Definition 1. The individuals are mapped (map : G → X) between the dimension vector of the
search space G to a dimensional vector in the problem space X. In the continuous optimization
problem, the individuals are mapped to the number of decision variables (NOD) and represented as
the dimension vector of the problem space.

−→
Ψ = {ψ1, ψ2, . . . , ψNOD}

−→
Ψ .ψ ∈ Gi, ∀i ∈ 1, 2, . . . , NOD, (29)

∃−→Ψ .x ∈ X : map(
−→
Ψ .ψ) =

−→
Ψ .x

where
−→
Ψ is a vector of decision variable {ψ1, ψ2, . . . , ψNOD} in the search space G. Each indi-

vidual for the continuous function is represented as Ψ ∈ R and G = X ⊆ R. Then the next
level of difference in the continuous optimization problem is the evaluation of the fitness value of
the individual.

Definition 2. The generic form of the fitness evaluation is presented as follows:

Minimize F(
−→
Ψ) (30)

S.t ∀−→Ψ ∈ X,

where F(
−→
Ψ) is the fitness value of individuals with respect to the continuous optimization problem,

and X is the decision space {F : X → RNOC :
−→
lbi ≤

−→
Ψi ≤

−→
ubi} with the upper bound (ub) and

the lower bound (lb) of individual
−→
Ψ .

Then the remaining processes, like selecting the alpha male, alpha female, global best individual,
and subdividing the population into dominated and non-dominated individuals, are completed using
the fitness value.

Definition 3. Mating is an important search process of JMA which is used to exploit the continuous
search space G. Thus, the mating process is redefined with respect to the continuous search space.
Mating between males

−→
Ψm and females

−→
Ψ f is either from the set {DS} or {NDS}. Therefore, Ai and

39

Mathematics 2022, 10, 688

Ii are obtained from max(ψm
i , ψ

f
i) and min(ψm

i , ψ
f
i). Then, new offspring

−−→
Ψo f f are generated as

follows [58–60]: −−→
Ψo f f = Mating(

−→
Ψm,

−→
Ψ f) s.t

−→
Ψm,

−→
Ψ f ∈ Gi (31)

|o f f | = {P(A) ∗ (|Gi| − Actsize}
−−→
Ψ0

o f f = 0.5[(Ai + Ii)− θ0 × (Ai − Ii)] (32)

−−→
Ψ1

o f f = 0.5[(Ai + Ii) + θ1 × (Ai − Ii)], (33)

where
−−→
Ψ0

o f f and
−−→
Ψ1

o f f are two new offspring generated from the crossover, and θj(j = 0, 1) can be
incurred as

θj =

⎧⎨⎩ (Cj × Dj)
1

ζ+1 , i f Cj ≤ 1/Dj

(1
2−Cj×Dj

)
1

ζ+1 , otherwise,
(34)

where Cj is a uniformly distributed random number between [0,1] and θ is the distributed crossover
index of offspring related to the parent’s natal code. Then Dj(j = 0, 1) is generated by the assumption
Ai �= Ii:

Dj =

{
2 − (Ai−Ii

Ai+Ii−2lbi
)(ζ+1) j = 0

2 − (Ai−Ii
2ubi−Ai−Ii

)(ζ+1) j = 1,
(35)

where lbi and ubi indicate the upper and lower bound of the decision variable.

Definition 4. The learning process is adopted to improve the fitness value of the individual with
respect to the problem space. Then, the learning process of the Java macaque may change with respect
to the environment. Then the learning model for the continuous optimization problem is defined
as follows:

Learning = {PoP,G,
−→
δ , L(

−→
Ψk), F(

−→
Ψ),X} (36)

where POP represents the set of individuals, G is the feasible search space of solutions, F(
−→
Ψ) is

the fitness function, and
−→
δ indicates the learning rate of the individual in linear decreasing order

(0 ≤ −→
δ ≤ 1). Then, the learning process of the individual is given by

−→
L1(

−−→
ΨGM,

−→
Ψk) :=

−−→
ΨGM − (2 · −→δ · −→r1 −−→

δ)|2 · −→r2 · −−→ΨGM −−→
Ψk|, (37)

where −→r1 ,−→r2 are the random vectors between [0,1]. Similarly, the learning process of the individual−→
Ψk is performed between the global best female

−→
L2(

−−→
ΨGF,

−→
Ψk), alpha male

−→
L3(

−−→
ΨAM,

−→
Ψk) and alpha

female
−→
L4(

−−→
ΨAF,

−→
Ψk). Then, the individual

−→
Ψk is modified as follows:

−→
Ψk =

−→
L1 +

−→
L2 +

−→
L3 +

−→
L4

4
, (38)

where
−→
Ψi is the individual obtained from the learning process and replaced in the POP.

40

Mathematics 2022, 10, 688

Algorithm 1 JMAC: Java Macaque Algorithm for Continuous Optimization Problem.

Input: N number of individuals, g number of groups, F is the fitness function.
Output: GBAM, GBFM, POP
Step 1: [Initialization] The initial Population is initialized using a random seeding
technique using Equation (29).
Step 2: [Evaluation] Each individual in the population is evaluated using the fitness
function, as represented in Equation (30).
Step 3: The various categories of search agents are classified as:

(a) [Alpha Individual] Determine the AlphaMale and AlphaFemale in each group
using Equations (16) and (17).

(b) [GB-Alpha Individual] Select the best individual from the AlphaMale and Al-
phaFemale sets using Equation (18).

(c) [NDS and DS] Male and Female individual sets are further divided into dominant
and non-dominant solutions using Equations (19) and (20).
Step 4: [Mating] Then the new offsprings are generated using the mating process, defined
as in Equation (31).
Step 5: [Evaluation of Offspring] The fitness values of offspring are evaluated and the
stray male and female are determined.
Step 6: [Male Replacement] The stray male finds a suitable group to replace the dominant
male.
Step 7: [Learning] The fitness value of the individual is improved by moving the global
best and alpha individuals by Equation (36).
Step 8: [Termination] The population is maintained by using Equation (11) and the above
process is repeated from Step 2 until termination criteria are satisfied.

5.1. Experimentation and Result Analysis of Continuous Optimization Problem

In this section of experimentation, the benchmark function is taken from the popular
literature [61,62] and used for analyzing the performance of the Java macaque algorithm.
The performance of the proposed Java macaque algorithm is measured on 23 benchmark
functions. The benchmark function utilized for the experimentation process consists of
the 7 unimodal functions, 6 multimodal functions, and 10 fixed-dimension multimodal
functions, where the dimension of the function is indicated in Dim, the upper and lower
bound of the search space is referred to using Range, and finally, the optimal value of the
benchmark function is indicated using the fmin.

In the experimentation process, the proposed JMA is compared with the dominant
algorithm from the literature, such as the grey wolf optimization (GWO) technique [61]
and spider monkey algorithm (SMO) [12]. For all the algorithms, the population size was
fixed as 200, stopping criteria were set as 100 iterations, and the primary population was
produced using the random population seeding techniques. Every algorithm executed the
30 independent runs for each benchmark function, and the evaluation of the algorithm was
measured using statistical measures such as the mean and standard deviation, as referred
to in the literature [61,62]. Further, the best result is mentioned in bold font for reference in
the respective table.

5.1.1. Result Analysis for Unimodal Benchmark Functions

The unimodal benchmark functions are suitable for analyzing the exploitation capabil-
ity of the algorithm because it contains only one global optimum. Table 2 clearly shows a list
of unimodal benchmark functions which is used for the experimentation process, and the
function has different properties, like convex and non-convex shaped, non-differentiable,
discontinuous, scalable, separable, and non-separable properties. Table 3 clearly shows the
results of SMO, GWO and JMA on the unimodal benchmark functions. The performance of
the proposed Java macaque optimization algorithm has clear dominance over the other
two algorithms. In particular, the JMA attains the best results in both means and standard
deviation on all the unimodel instances. GWO typically performs well in F5 and F6 in
terms of means value, but struggles to outperform JMA. The Figure 2 facilitates the clear

41

Mathematics 2022, 10, 688

illustration that JMA dominates the other algorithm in terms of better convergence. The
JMA has a dominant exploitation capability and can achieve a well-converged population.
Further, it can clearly be depicted via standard deviations.

Table 2. Benchmark Function.

Function Dim Range fmin

f1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

f2(x) = ∑n
i=1 |xi|+ ∏n

i=1 |xi| 30 [−10, 10] 0

f3(x) = ∑n
i=1

(
∑i

j=1 xj

)2
30 [−100, 100] 0

f4(x) = maximumi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) = ∑n
i=1

∣∣∣100
(

xi+1 − x2
i
)2

+ (xi − 1)2
∣∣∣ 30 [−30, 30] 0

f6(x) = ∑n
i=1 (|xi + 0.5|)2 30 [−100, 100] 0

f7(x) = ∑n
i=1 ix4

i + U(0, 1) 30 [−1.28, 1.28] 0

Table 3. Experimental results of unimodal benchmark function.

Function Technique
Optimal

Value
Best SD

F1

SMO

0

9.64E-02 1.09E+04
GWO 1.21E-07 7.92E+03
JMA 1.06E-30 1.47E+03

F2

SMO

0

8.96E-01 2.45E+10
GWO 3.18E-05 9.84E+08
JMA 2.50E-17 1.40E+02

F3

SMO

0

1.28E+02 1.83E+04
GWO 3.28E-01 1.67E+04
JMA 5.43E-24 5.21E+03

F4

SMO

0

1.15E+00 1.93E+01
GWO 3.31E-02 1.75E+01
JMA 4.75E-14 6.63E+00

F5

SMO

0

8.85E+01 2.67E+07
GWO 2.58E+01 2.20E+07
JMA 2.81E+01 1.80E+06

F6

SMO

0

1.21E-01 1.23E+04
GWO 3.89E-04 7.57E+03
JMA 3.98E-04 2.09E+03

F7

SMO

0

3.15E-01 1.78E+01
GWO 1.76E-03 7.61E+00
JMA 1.15E-03 6.35E-01

42

Mathematics 2022, 10, 688

Figure 2. Convergence Curve for Schwefel 2.21 Function (F4).

5.1.2. Multimodal Benchmark Function

The next important set of test functions used for the experimentation process is
multimodal benchmark functions. The multimodal functions are utilized for analyzing the
exploration potential of the algorithm because of its multiple local minima. Further, the
benchmark function measures the global exploration capability of the algorithm, and an
increase in dimension exponentially increases the number of local optima in the search
space. Table 4 shows the list of multimodal benchmark functions for the experimentation.

Table 4. Multimodal benchmark function.

Function Dim Range fmin

f8(x) = ∑n
i=1 −xisin

(√
|xi |

)
30 [−500, 500] −418.9829

× 5

f9(x) = ∑n
i=1

∣∣x2
i − 10cos(2πxi) + 10

∣∣ 30 [−5.12, 5.12] 0

f10(x) = −20exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e 30 [−32, 32] 0

f11(x) = 1
4000 ∑n

i=1 x2
i − ∏n

i=1 cos
(

xi√
i

)
+ 1 30 [−600, 600] 0

f12(x) = π
n

{
10sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑n

i=1 u(xi , 10, 100, 4)

yi = 1 + xi+1
4 u(xi , a, k, m) =

⎧⎨⎩ k(xi − a)mxi > a
0 − a < xi < a

k(−xi − a)mxi < −a
30 [−50, 50] 0

f13(x) = 0.1
{

sin2(3πx1) + ∑n
i=1

(xi − 1)2∣∣1 + sin2(3πxi + 1)
∣∣+ (xn − 1)2[

1 + sin2(2πxn)
] }

+ ∑n
i=1 u(xi , 5, 100, 4) 30 [−50, 50] 0

The result illustrated in Table 5 and Figure 3 exhibits the performance of existing and
proposed algorithms in terms of means and standard deviation. From the table observation,
it is clearly shown that the performance of JMA rules out the other two algorithms. The JMA
demonstrates its significance in mean value as 0.00E+00, 8.88E-16, 0.00E+00, 3.87E-05 and
3.21E-04 for the instance of F9 to F13, whereas the GWO achieves only 8.74E+00, 7.69E-05,
1.45E-07, 6.52E-03 and 4.83E-04. Similarly, the performance of standard deviation also
demonstrates the dominance of the proposed algorithm over the GWO and SMO. Hence,
this observation clearly provides the proof that the exploring capability of the proposed
algorithm is superior to the existing algorithms.

43

Mathematics 2022, 10, 688

Table 5. Experimental results of the multimodal benchmark function.

Function Technique
Optimal

Value
Best SD

F8

SMO

−12569.5

−4706.47 2.60E+02
GWO −4374.35 1.18E+03
JMA −3384.65 1.26E+01

F9

SMO

0

7.81E+01 6.70E+01
GWO 8.74E+00 9.46E+01
JMA 0.00E+00 5.04E+01

F10

SMO

0

3.78E-01 3.77E+00
GWO 7.69E-05 4.85E+00
JMA 8.88E-16 2.94E+00

F11

SMO

0

2.78E+00 1.76E+02
GWO 1.45E-07 6.94E+01
JMA 0.00E+00 1.46E+01

F12

SMO

0

1.36E-03 5.15E+07
GWO 6.52E-03 7.12E+07
JMA 3.87E-05 2.61E+06

F13

SMO

0

5.45E-02 1.07E+08
GWO 4.83E-04 9.37E+07
JMA 3.21E-04 9.53E+06

Figure 3. Convergence curve for the Ackley function (F10).

5.1.3. Fixed-Dimension Multimodal Benchmark Function

The final experimentation for a continuous Java macaque algorithm is experimented
with using the fixed-dimension multimodal benchmark functions. In this test function, the
dimension of the benchmark function is fixed, which is used to analyze the performance of
the algorithm in terms of exploration, exploitation, and also to avoid the local minima. The
list of benchmark functions used for experimentation is shown in Table 6.

The results described in Table 7 clearly show that the JMA attains better values for the
performance measures by comparing the GWO and SMO. The mean values of JMA and
GWO are same as 1 for the instance F14, but the JMA shows its dominance in the SD value
as 0.194221, whereas the GWO reaches only 1.737368. Similarly, Table 7 portrays how the
performance of the three algorithms are almost the same as for the instance F18, but the
proposed algorithm dominates in standard deviation. On the other hand, the performance
of JMA lacks in terms of standard deviation for the instances F20 and F22 by GWO, and
F17 and F21 by SMO. However, the JMA algorithm outperformed the GWO and SMO in
terms of mean value for instances like f14, F16, F18, F19, F20, F21, F22 and F23. The fixed-
dimension multi-modal benchmark function is utilized for analysis in the performance of
the algorithm due to its multiple local minima, exploitation, and exploration capabilities.

44

Mathematics 2022, 10, 688

Table 6. Fixed-dimension multimodal benchmark function.

Function Dim Range fmin

f14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6

)−1

2 [−65, 65] 1

f15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2

4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1 − 1

8π

)
cosx1 + 10 2 [−5, 5] 0.398

f18(x) =
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

2 [−2, 2] 3
×
[
30 + (2x1 − 3x2)

2 ×
(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)]

f19(x) = −∑4
i=1 ciexp

(
−∑3

j=1 aij
(
xj − pij

)2
)

3 [1, 3] −3.86

f20(x) = −∑4
i=1 ciexp

(
−∑6

j=1 aij
(
xj − pij

)2
)

6 [0, 1] −3.32

f21(x) = −∑5
i=1

[
(X − ai)(X − ai)

T + ci

]−1
4 [0, 10] −10.1532

f22(x) = −∑7
i=1

[
(X − ai)(X − ai)

T + ci

]−1
4 [0, 10] −10.4028

f23(x) = −∑10
i=1

[
(X − ai)(X − ai)

T + ci

]−1
4 [0, 10] −10.5363

Table 7. Experimental results of the fixed-dimension multimodal benchmark function.

Function Technique Optimal Value Best SD

F14

SMO

1

1.08E+00 1.13E+00
GWO 1.00E+00 1.74E+00
JMA 1.00E+00 1.94E-01

F15

SMO

0.0003

4.26E-04 4.18E-03
GWO 3.08E-04 5.26E-04
JMA 3.23E-04 9.30E-03

F16

SMO

−1.0316

−1.03E+00 1.87E-02
GWO −1.03E+00 6.11E-02
JMA −1.03E+00 7.90E-03

F17

SMO

0.398

3.98E-01 3.81E-02
GWO 3.98E-01 7.42E-02
JMA 3.98E-01 4.15E-02

F18

SMO

3

3.00E+00 8.54E-01
GWO 3.00E+00 1.85E+00
JMA 3.00E+00 6.43E-01

F19

SMO

−3.86

−3.86E+00 3.67E-02
GWO −3.86E+00 3.11E-02
JMA −3.86E+00 2.45E-02

F20

SMO

−3.22

−3.32E+00 1.28E-01
GWO −3.32E+00 5.63E-02
JMA −3.07E+00 1.43E-01

F21

SMO

−10.1532

−1.02E+01 2.13E+00
GWO −1.01E+01 2.38E+00
JMA −1.02E+01 2.65E+00

F22

SMO

−10.4028

−1.04E+01 3.40E+00
GWO −1.04E+01 2.42E+00
JMA −1.04E+01 3.03E+00

F23

SMO

−10.5363

−1.05E+01 2.71E+00
GWO −1.05E+01 2.87E+00
JMA −1.05E+01 2.52E+00

The result shown in Table 8 and sample Figure 4 helps to analyze the experimentation
in terms of convergence. The means value of 30 independent runs for the best convergence

45

Mathematics 2022, 10, 688

value in iterations 1, 10, and 25 illustrates the search ability of algorithms. The best value
obtained from the iteration limit of 1 clearly demonstrated stronger convergence behavior
of the JMA over the GWO and SMO in terms of all the unimodal instances. Further,
the JMA was able to attain a near-optimal value in just 25 iterations for instances like
F1, F2, F3, F4 and F7 with respective values 8.56E-04, 1.09E-02, 2.76E-01, 1.16E-01,and
7.76E-04, respectively. Additionally, in the case of the multimodal benchmark function, the
proposed JMA led to the existing algorithm by all means. Correspondingly, in terms of
the fixed dimensional multimodal function, the proposed JMA outperforms the existing
algorithm in almost all instances, except F17, F21, and F22. The SMO algorithm shows
better performance in terms of F17 and F21, whereas the GWO dominates only in F22.
This observation shows that the potential behavior of the proposed JMA prevails over the
existing algorithm in terms of avoiding local optima and achieving exploitation, exploration,
and strong convergence in minimum iteration.

Table 8. Best values obtained by JMA, GWO and SMO in Iterations 1, 10, and 25.

Function Technique
Iteration

Function Technique
Iteration

1 10 25 1 10 25

F1

SMO 5.66E+04 1.28E+04 2.29E+02

F13

SMO 9.37E+08 3.10E+05 3.31E+01
GWO 5.73E+04 2.23E+03 1.84E+00 GWO 8.34E+08 6.01E+04 2.27E+00
JMA 1.11E+04 2.58E+01 8.56E-04 JMA 9.58E+07 7.49E+00 2.52E+00

F2

SMO 2.46E+11 6.32E+01 3.81E+01

F14

SMO 1.04E+01 1.00E+00 9.98E-01
GWO 9.89E+09 1.34E+01 3.73E-01 GWO 1.09E+01 2.07E+00 9.99E-01
JMA 1.41E+03 2.11E+00 1.09E-02 JMA 2.10E+00 1.20E+00 9.98E-01

F3

SMO 1.01E+05 2.45E+04 2.97E+03

F15

SMO 4.12E-02 4.70E-03 8.52E-04
GWO 1.05E+05 2.27E+04 2.25E+03 GWO 3.47E-03 1.05E-03 7.26E-04
JMA 3.93E+04 1.56E+03 2.76E-01 JMA 9.36E-02 7.02E-04 7.02E-04

F4

SMO 8.89E+01 4.00E+01 7.37E+00

F16

SMO −8.52E-01 −1.03E+00 −1.03E+00
GWO 7.72E+01 3.25E+01 4.02E+00 GWO −4.18E-01 −1.03E+00 −1.03E+00
JMA 4.18E+01 5.90E+00 1.16E-01 JMA −9.76E-01 −1.03E+00 −1.03E+00

F5

SMO 2.51E+08 8.24E+05 7.85E+04

F17

SMO 7.74E-01 4.00E-01 3.98E-01
GWO 1.90E+08 4.18E+05 1.34E+02 GWO 6.84E-01 5.56E-01 3.99E-01
JMA 1.71E+07 1.44E+03 2.88E+01 JMA 6.49E-01 4.49E-01 4.02E-01

F6

SMO 6.48E+04 1.06E+04 1.59E+02 F18 SMO 1.16E+01 3.14E+00 3.00E+00
GWO 5.74E+04 7.93E+02 2.20E+00 GWO 2.16E+01 3.01E+00 3.00E+00
JMA 2.00E+04 4.51E+01 3.43E+00 JMA 9.42E+00 3.00E+00 3.00E+00

F7

SMO 8.82E+01 4.04E+01 4.04E+01 F19 SMO −3.50E+00 −3.85E+00 −3.86E+00
GWO 6.81E+01 5.55E-01 6.53E-03 GWO −3.67E+00 −3.84E+00 −3.85E+00
JMA 5.17E+00 1.10E-02 7.76E-04 JMA −3.63E+00 −3.84E+00 −3.86E+00

F8

SMO −3.25E+03 −3.70E+03 −4.15E+03 F20 SMO −2.13E+00 −3.01E+00 −3.11E+00
GWO −2.85E+03 −3.83E+03 −3.83E+03 GWO −2.92E+00 −3.11E+00 -3.18E+00
JMA −2.83E+03 −2.96E+03 −2.96E+03 JMA −2.22E+00 −3.23E+00 −3.29E+00

F9

SMO 4.03E+02 3.25E+02 3.18E+02 F21 SMO −7.42E-01 −4.67E+00 −9.36E+00
GWO 4.11E+02 2.12E+02 6.19E+01 GWO −7.32E-01 −2.91E+00 −6.09E+00
JMA 3.08E+02 7.21E+01 5.99E-03 JMA −5.13E-01 −3.82E+00 −4.25E+00

F10

SMO 2.04E+01 1.04E+01 6.81E+00 F22 SMO −9.54E-01 −1.95E+00 −5.23E+00
GWO 2.05E+01 1.04E+01 6.82E-01 GWO −8.49E-01 −3.89E+00 −6.45E+00
JMA 1.77E+01 2.73E+00 5.31E-03 JMA −8.38E-01 −2.38E+00 −4.20E+00

F11

SMO 5.89E+02 4.79E+02 3.15E+02

F23

SMO −1.11E+00 −4.74E+00 −7.82E+00
GWO 5.56E+02 1.04E+01 9.28E-01 GWO −1.49E+00 −6.06E+00 −8.27E+00
JMA 1.25E+02 1.17E+00 7.83E-04 JMA −1.39E+00 −2.96E+00 −3.93E+00

F12

SMO 4.65E+08 2.10E+01 4.39E+00
GWO 6.06E+08 2.46E+04 2.70E-01
JMA 2.62E+07 1.23E+00 5.28E-01

46

Mathematics 2022, 10, 688

Figure 4. Convergence curve for Shekel 7 Function (F22).

6. Discrete Optimization Problem

The problem space of a discrete optimization problem is represented as the set of
all feasible solutions that satisfy the constraint and the fitness function, which maps each
element to the problem space. Thus, the discrete or combinatorial optimization problem
searches for the optimal solution from the set of feasible solutions.

The generic form of the discrete optimization problem is represented as follows [63]:

Minimize F(Ψ) (39)

subject to ∀Ψ ∈ G,

where F : G → Z is the objective function with discrete problem space, which maps each
individual in the search space G to the problem space X and the set of feasible solutions is
G ⊂ X.

The individuals were generated with the mapping (map : G → X) between the
dimensional vector of the search space G to the dimensional vector in the problem space X.
In the discrete optimization problem, the total number of elements (NOC) is represented
as the dimensional vector of the problem space, and it must be mapped as the element of
search spaces of individual.

Ψ = {c1, c2, . . . , cNOC} ∀Ψ.c ∈ G, ∃Ψ.x ∈ X : map(Ψ.c) = Ψ.x, (40)

where Ψ is an individual, represented as a tuple (Ψ.c, Ψ.x) of a dimensional vector Ψ.c in the
search space G and the corresponding dimensional vector Ψ.x = Ψ.c in the problem space
X. Gi presents the group i with Msize of male individuals and Fsize of female individuals in
the population. The initialization process starts with a minimum number of individuals in
the group with respect to the problem size.

The learning process is a mechanism which adapts the learning model for enhancing
individual fitness. However, it increases individual fitness by exploiting the search space
with respect to the problem space. The individual Ψ in the POP should improve its fitness
value F(Ψ) via learning and increase the probability of attaining a global optimum. Then,
the learning for discrete optimization is defined as:

Learning = {PoP,G, δ, L(Ψk, i, j), F(Ψ),X}, (41)

where POP represents the set of individuals, G is the feasible search space of solutions,
F(Ψ) is the fitness function, and δ is referred to as the learning rate of the individual
between (0 ≤ δ ≤ 1).

Then, L(Ψk, i, j) is the learning process L(Ψk, i, j) : Ψ → G, ∀i, j ∈ Ψ.

[i, j] = sort[ceil(x ∗ rand(δ, 2))], (42)

47

Mathematics 2022, 10, 688

where the two values are randomly generated for i and j. Thus, the x is in linear decreasing
order, generated between max to 3 (max ⇐= G).

(Case 1) :L1(Ψ, [i, j]) = L(Ψ, [j, i]) (43)

(Case 2) :L2(Ψ, i, j) = L(Ψ, j : −1 : i) (44)

(Case 3) :L3(Ψ, i, j) = L(Ψ, [i + 1 : ji]) (45)

(Case 4) :L4(Ψ, i, j) = L(Ψ, i, j) (46)

Ψ∗ = best{F(L1), F(L2), F(L3), F(L4)} where Ψ∗ ∈ POP, (47)

where Ψ∗ is the best individual obtained from the different learning process and replaced
Ψk in the POP.

6.1. Experimentation and Result Analysis of Travelling Salesman Problem

The mathematical model for the travelling salesman problem is formulated as:

F = min
NOC−1

∑
i=1

D(Ci, Ci+1) + D(CNOC, C1), (48)

where D(Ci, Ci+1) is the distance between two cities Ci and Ci+1 and D(CNOC, C1) indicate
the tour between the last city CNOC and first city C1.

The standard experimental setup for the proposed Java macaque algorithm is as
follows: (i) the initial population was randomly generated with 60 individuals in each
group (m = 60); (ii) the number of groups (n = 5); (iii) executed up to 1000 iterations. The
performance of the proposed JMA is correlated with an Imperialist Competitive Algorithm
with a particle swarm optimization (ICA-PSO) [64], Fast Opposite Gradient Search with
Ant Colony Optimization (FOGS-ACO) (Saenphon et al., 2014 [65]), and effective hybrid
genetic algorithm (ECOGA) (Li and Zhang, 2007 [66]). Each algorithm was run on each
instance 25 times, and hence, the best among the 25 runs was considered for analysis and
validation purposes.

6.2. Parameter for Performance Assessment

This section briefly explains the list of parameters which evaluates the performance
of the proposed Java macaque algorithm with the existing algorithm. It also helps to
explore the efficiency of the proposed algorithm in various aspects. The various types
of investigation parameters are the convergence rate, error rate, convergence diversity,
and average convergence from the population. Thus, the parameter for the performance
assessment is summarized as follows [3,67]:

Best Convergence Rate: In the experimentation, the best convergence rate measures
the quality of the best individual obtained from the population in terms of percentage with
regard to the optimal value. It can be measured as follows:

BestConv.(%) = 1 − F(Ψbest)− Opt.Fit.
Opt.Fit.

× 100, (49)

where F(Ψbest) is the fitness of the best individual in the population and Opt.Fit. indicates
the optimal fitness value of the instances.

Average Convergence Rate: The average percentage of the fitness value of the indi-
vidual in the population with regard to the optimal fitness value is known as the average
convergence rate. This can be calculated as:

AvgConv.(%) = 1 − F(POPavg)− Opt.Fit.
Opt.Fit.

× 100, (50)

where F(POPavg) indicates the average fitness of all the individuals in the population.

48

Mathematics 2022, 10, 688

Worst Convergence Rate: This parameter measures the percentage fitness of the worst
individual in the population with regard to optimal fitness. It can be represented as:

WorstConv.(%) = 1 − F(Ψworst)− Opt.Fit.
Opt.Fit.

× 100, (51)

where F(Ψworst) indicates the worst fitness value of the individual in the population.
Error rate: The error rate measures the percentage difference between the fitness value

of the best individual and the optimal value of the instances. It can be given as:

Errorrate(%) =
F(Ψbest)− Opt.Fit.

Opt.Fit.
× 100. (52)

Convergence diversity: Measures the difference between the convergence rate of the
dominant individual and worst individuals found in the population. It can be represented as

Conv.Div(%) = BestConv. − WorstConv. (53)

7. Result Analysis and Discussion

The computational results of the experimentation results are illustrated in this section.
The Table 9 consists of the small-scale TSP instance, Table 10 has the results of the medium-
scale TSP instance, and finally, Table 11 shows the results of large-scale instances. Thus,
the experimentation were directed to evaluate the performance of the proposed JMA with
other existing FOGS–ACO, ECO–GA and ICA–PSO. Consider, the sample instance eil51
for the result evaluation. The best convergence rate for ICA–PSO is 94.35%, FOGS–ACO
is 92.88%, and ECO–GA is 97%, but the convergence rate of JMA is 100% for the instance
eil76. Then the average convergence rate for ICA–PSO, FOGS–ACO, ECO–GA, and JMA
are 65.64%, 80.39%, 70.94%, and 85.5%, respectively. On the other hand, this pattern of
dominance is maintained in terms of error rate for all instances in Table 9. Further, the
Table 11 depicts that the convergence rate of the proposed algorithm is above 99% for all
the large-scale instances except rat575, whereas the existing ICA–PSO, FOGS–ACO, and
ECO–GA are achieved above 90%, 93%, and 96% for the same. It can be observed from the
Tables that the existing algorithm values for the average convergence rate is lower than
the proposed JMA in most of the instances.The examination of the proposed algorithm
dominated the existing ones in all the performance assessment parameters, except that the
convergence diversity of ECO–GA is better than the proposed algorithm, but the proposed
algorithm maintained well-balanced diversity in order to achieve optimal results.

Table 9. Small-scale TSP instances.

S. No TSP Instance Technique Optimum
Fitness Convergence Rate (%) Error Rate (%)

Convergence

Value Best Average Worst Best Average Worst Best Average Worst Diversity

1 eil51

ICA-PSO

426

510.94 558.26 614.47 80.06 68.95 55.76 19.94 31.05 44.24 24.30
FOGS–ACO 441.78 488.62 543.04 96.30 85.30 72.53 3.70 14.70 27.47 23.77

ECO-GA 426.00 544.48 608.42 100.00 72.19 57.18 0.00 27.81 42.82 42.82
JMA 426.00 485.84 538.78 100.00 85.95 73.53 0.00 14.05 26.47 26.47

2 eil76

ICA-PSO

538

568.42 722.84 773.84 94.35 65.64 56.16 5.65 34.36 43.84 38.18
FOGS–ACO 576.28 643.52 694.00 92.88 80.39 71.00 7.12 19.61 29.00 21.88

ECO-GA 554.14 694.32 767.32 97.00 70.94 57.38 3.00 29.06 42.62 39.62
JMA 538.00 616.00 691.00 100.00 85.50 71.56 0.00 14.50 28.44 28.44

3 pr76

ICA-PSO

108159

145,811.11 162,142.84 179,175.19 65.19 50.09 34.34 34.81 49.91 65.66 30.85
FOGS–ACO 142,578.34 147,127.58 159,215.06 68.18 63.97 52.80 31.82 36.03 47.20 15.38

ECO-GA 139,373.57 161,178.25 176,905.82 71.14 50.98 36.44 28.86 49.02 63.56 34.70
JMA 136,028.80 145,945.99 157,854.23 74.23 65.06 54.05 25.77 34.94 45.95 20.18

4 pr144

ICA-PSO

58,537

66,674.33 76,240.43 85,508.90 86.10 69.76 53.92 13.90 30.24 46.08 32.18
FOGS–ACO 65,018.22 68,055.25 76,407.75 88.93 83.74 69.47 11.07 16.26 30.53 19.46

ECO-GA 63,225.11 75,659.14 83,172.31 91.99 70.75 57.91 8.01 29.25 42.09 34.08
JMA 61,496.00 67,479.88 74,562.87 94.95 84.72 72.62 5.05 15.28 27.38 22.32

49

Mathematics 2022, 10, 688

Table 10. Medium-scale TSP instances.

S. No TSP Instance Technique Optimum
Fitness Convergence Rate (%) Error Rate (%)

Convergence

Value Best Average Worst Best Average Worst Best Average Worst Diversity

5 tsp225

ICA-PSO

3919

4217.98 5084.07 5782.75 92.37 70.27 52.44 7.63 29.73 47.56 39.93
FOGS–ACO 4164.41 4547.41 5199.74 93.74 83.97 67.32 6.26 16.03 32.68 26.42

ECO-GA 4056.84 5015.69 5671.25 96.48 72.02 55.29 3.52 27.98 44.71 41.19
JMA 3979.27 4477.03 5121.15 98.46 85.76 69.33 1.54 14.24 30.67 29.14

6 pr264

ICA-PSO

49201

59,574.21 64,837.84 73,339.96 78.92 68.22 50.94 21.08 31.78 49.06 27.98
FOGS–ACO 51,675.05 57,959.70 66,105.45 94.97 82.20 65.64 5.03 17.80 34.36 29.33

ECO-GA 49,254.00 63,845.90 72,011.25 99.89 70.23 53.64 0.11 29.77 46.36 46.25
JMA 49,215.00 56,967.00 65,121.15 99.84 84.06 67.46 0.16 15.94 32.54 32.37

7 lin318

ICA-PSO

42,029

53,514.61 58,841.06 63,104.28 72.67 60.00 49.86 27.33 40.00 50.14 22.82
FOGS–ACO 52,319.74 52,967.00 55,780.78 75.52 73.98 67.28 24.48 26.02 32.72 8.23

ECO-GA 51,091.87 58,861.06 61,755.46 78.44 59.95 53.06 21.56 40.05 46.94 25.37
JMA 49,797.00 52,957.00 54,785.00 81.52 74.00 69.65 18.48 26.00 30.35 11.87

8 fl417

ICA-PSO

11,861

14,331.81 15,644.21 17,201.57 79.17 68.10 54.97 20.83 31.90 45.03 24.19
FOGS–ACO 12,448.05 13,973.67 15,458.00 95.05 82.19 69.67 4.95 17.81 30.33 25.38

ECO-GA 11,861.00 15,535.60 17,118.54 100.00 69.02 55.67 0.00 30.98 44.33 44.33
JMA 11,861.00 13,845.06 15,458.00 100.00 83.27 69.67 0.00 16.73 30.33 30.33

9 d493

ICA-PSO

35,002

44,419.18 49,475.36 54,273.86 73.10 58.65 44.94 26.90 41.35 55.06 28.15
FOGS–ACO 43,449.12 44,565.08 48,190.98 75.87 72.68 62.32 24.13 27.32 37.68 13.55

ECO-GA 42,389.06 48,025.28 53,152.86 78.90 62.79 48.14 21.10 37.21 51.86 30.75
JMA 41,358.00 43,134.00 47,364.00 81.84 76.77 64.68 18.16 23.23 35.32 17.16

Table 11. Large-scale TSP instances.

S. No TSP Instance Technique Optimum
Fitness Convergence Rate (%) Error Rate (%)

Convergence

Value Best Average Worst Best Average Worst Best Average Worst Diversity

10 rat575

ICA-PSO

6773

8294.57 9630.68 10,568.23 77.53 57.81 43.97 22.47 42.19 56.03 33.57
FOGS–ACO 8083.38 8687.46 9436.00 80.65 71.73 60.68 19.35 28.27 39.32 19.97

ECO-GA 7884.19 9489.22 10,511.34 83.59 59.90 44.81 16.41 40.10 55.19 38.79
JMA 7686.00 8537.00 9436.00 86.52 73.96 60.68 13.48 26.04 39.32 25.84

11 u724

ICA-PSO

41910

45,757.90 56,315.70 62,157.88 90.82 65.63 51.69 9.18 34.37 48.31 39.13
FOGS–ACO 44,512.60 50,428.30 55,927.52 93.79 79.67 66.55 6.21 20.33 33.45 27.24

ECO-GA 43,251.30 55,138.40 60,126.32 96.80 68.44 56.53 3.20 31.56 43.47 40.26
JMA 41,988.00 49,161.00 54,248.00 99.81 82.70 70.56 0.19 17.30 29.44 29.25

12 pr1002

ICA-PSO

259,045

313,554.45 358,324.65 413,357.62 78.96 61.67 40.43 21.04 38.33 59.57 38.53
FOGS–ACO 272,002.25 322,458.35 375,264.00 95.00 75.52 55.14 5.00 24.48 44.86 39.86

ECO-GA 259,121.00 350,743.30 411,544.30 99.97 64.60 41.13 0.03 35.40 58.87 58.84
JMA 259,145 314,587.00 375,264.00 99.96 78.56 55.14 0.04 21.44 44.86 44.83

13 u1060

ICA-PSO

224,094

245,345.46 292,904.92 316,853.79 90.52 69.29 58.61 9.48 30.71 41.39 31.91
FOGS–ACO 237,510.64 261,491.76 283,448.30 94.01 83.31 73.51 5.99 16.69 26.49 20.50

ECO-GA 231,877.82 283,841.16 310,468.10 96.53 73.34 61.46 3.47 26.66 38.54 35.07
JMA 225,165 252,428.00 278,945.00 99.52 87.36 75.52 0.48 12.64 24.48 24.00

7.1. Analyzes Based on Best Convergence Rate

The best convergence rate reflects the effectiveness of the population-generated by
optimization algorithm. Figure 5 depicts a comparison of the proposed algorithm to the
existing algorithm in terms of convergence rate. The JMA holds lesser value as 74.23%
for pr76 in small-scale instances. For medium-scale instances, the JMA holds 100% for
the instance fl417. Then, the ECO–GA has the highest value of 99.97%, and JMA achieves
convergence of 99.96% for the instance pr1002. As a result, on a medium scale, the instance
lin318 has the lowest value of a 72.67% convergence rate in the ICA–PSO and the highest of
81.52 % for the JMA and 75.52 % for the FOGS–ACO, while the ECO–GA comes in second
with a value of 78.44 %. In terms of convergence rate, the proposed Java macaque algorithm
outperforms the existing algorithm.

50

Mathematics 2022, 10, 688

Figure 5. Best convergence rate.

7.2. Analyzes Based on Average Convergence Rate

Figure 6 depicts the results of an average convergence rate comparison between the
proposed algorithm and existing algorithms. As an outcome, the investigation in terms
of average convergence for JMA revealed that it outperformed the other algorithm. The
average convergence rate of JMA has to attain a value above 65%, but the FOGS–ACO,
ECO–GA, and ICA–PSO obtained values above 64%, 51%, and 50%. The JMA achieved a
maximum value of 87.36% for u1060, while the FOGS–ACO achieved 88.74% for pr144, and
ECO–GA reached an average convergence of 73.34% for u1060, and lastly, the ICA–PSO
attained a maximum of 70.02%, for instance, tsp225, respectively. While comparing the
performance of JMA and FOGS–ACO for the average convergence rate, both algorithms
perform quite well, but JMA dominates in many cases.

Figure 6. Average convergence rate.

7.3. Analyzes Based on the Worst Convergence Rate

Figure 7 shows the performance of the experimentation with regard to the worst
convergence rate. The proposed Java macaque algorithm dominated the existing algorithm
by all means. For example, by acknowledging the occurrence of instance pr144, the
ICA–PSO, FOGS–ACO, ECO–GA, and JMA obtained the worst convergence rates of 53.92%,
69.47%, 57.21%, and 72.62%, respectively. Then, by considering the pr1002 instance from
a large-scale dataset, the proposed JMA and FOGS–ACO held an equal value of 55.14%,
which was followed by an ECO–GA value of 41.13%, and the lowest value of 40.43%
was attained by ICA–PSO. Further, in terms of medium–scale instances, the proposed
Java macaque algorithm also shows its superiority over the existing algorithm, such as
FOGS–ACO, ECO–GA, and ICA–PSO.

51

Mathematics 2022, 10, 688

Figure 7. Worst convergence rate.

7.4. Analyzes Based on Error Rate

Figure 8 depicts the algorithm’s performance in terms of error rate. The best error rate
shows how far the best individual’s convergence rate deviates from the optimal fitness
value, whereas the worst error rate shows the difference between the worst individual’s
convergence rate and the optimal solution.

Figure 8. Error rate.

Consequently, the maximum error rate of 25.83 percent for particle swarm optimiza-
tion, 24.14 percent for ant colony optimization, 22.37 percent for genetic algorithm, Java
macaque algorithm is 20.52 percent, and in that order. Meanwhile, the least error rate value
for JMA was 0% for instances such as eil51, eil76, tsp225, pr264, fl417, u724, pr1002 and
u1060, whereas the genetic algorithm had 0% for instances eil51, fl417 and the particle
swarm optimization had an approximate value of 8% for instances eil76, tsp225 and u724,
and FOGS–ACO has less than 3% for instance eil51, respectively. JMA obtained better
performance compared with the existing algorithm.

7.5. Analyzes Based on Convergence Diversity

One of the important assessment criteria that provides a concrete evidence of the
optimal solution is convergence diversity. According to Figure 9, the performance of the
existing ECO–GA surpassed the other algorithms in terms of diversity. For the sample
instance u1060, the exisiting FOGS–ACO has a convergence diversity of 10.58%, the JMA
has a convergence diversity for the instance as 12.19%, then the ICA–PSO has a value
of 22%, whereas the ECO–GA achieved a highest value of 23.31%. The proposed JMA
dominated the existing FOGS–ACO and was dominated by the other existing techniques,

52

Mathematics 2022, 10, 688

such as ECO–GA and ICA–PSO. Thus, the proposed JMA maintained the satisfactory level
of convergence diversity among the population, and also achieved the best performance in
terms of convergence with the existing algorithm.

Figure 9. Convergence diversity.

8. Conclusions

The research proposed in this paper was motivated by the natural behavior of Java
macaque monkeys and is suitable for solving real-world optimization problems. Thus, the
Java macaque poses peculiar behavior with natural intelligence and a social hierarchy in
an optimized way that well-suits the modeling of the novel Java macaque optimization
algorithm. It was developed using the selection, categorisation, mating, male replacement,
and learning behavior of the Java macaque. The important strategy exhibited by the
population of the Java macaque is a dominance hierarchy, and that was incorporated with
the JMA as a selection process. Hence, the individuals with higher social ranking dominated
other individuals in the population and mostly gained preference in the mating process.
Further, it helped the individuals with dominant status to gain a higher probability of
generating new infants when considered with low-ranking individuals. Then, the algorithm
also utilises the male replacement model, which increases the adaptive search capability of
the JMA. Further, the JMA utilises the learning model that enhances the performance of the
individual by increasing fitness, which proportionally upgrades social status. Hence, the
JMA utilises the different search operations, which maintains well-balanced exploration and
exploitation in finding the optimal solution. The performance of the proposed algorithm
was analyzed with discrete and continuous optimization problems. The experimentation
of continuous optimization was extensively conducted on 23 benchmark functions with
unimodal, multimodal and fixed-dimension multimodal functions, and the proposed
JMA depicts its dominant performance over the GWO and SMO. The outcomes of the
experimentation were discussed as follows: (1) The unimodal functions are suitable for
analyzing the exploitation capability of the algorithm because they contain only one global
optimum. Thus, the result from Table 3 clearly depicts the dominance of JMA over other
techniques. Hence, the JMA is well-suited for solving problems with exploitation behavior.
(2) The multimodal functions are utilized for analyzing the exploration potential of the
algorithm because of its multiple local minima, that is, the global exploration capability
of the algorithm increases with an exponential increase in the number of local optima
in the search space. Further, the performance of the experimentation illustrated from
Table 5 also shows the dominance of the proposed system. (3) The final experimentation
for the continuous Java macaque algorithm was experimented using the fixed-dimension
multimodal benchmark functions. In this, the dimension of the benchmark function is
fixed, which is used to analyze the performance of the algorithm in terms of exploration
and exploitation. The results described in Table 7 clearly show that the JMA is well-suited

53

Mathematics 2022, 10, 688

to maintain the balance between exploration and exploitation. Further, the experimentation
conducted over a discrete optimization problem by using the travelling salesman problem
has to maintain balanced exploration and exploration with a quality selection process to
achieve an optimal result. Thus, the results evidently show the performance of JMA over
the existing dominant algorithm, such as FOGS–ACO, ECO–GA and ICA–PSO. Thus, the
robustness of the JMA over the continuous and discrete search space clearly illustrates its
potential over the optimization problem.

9. Future Enhancements

Future research will be focused on the development of the novel Java macaque al-
gorithm with a hyper-optimization-based parameter-controlling casual system which
efficiently explores and exploits the search space. Hence, the algorithm utilises social
hierarchy-based selection, mating, male replacement, and a learning process as the opera-
tion of JMA. On the other hand, the grooming behavior of females and aggression behavior
of males can also be incorporated with the JMA for enhancing the search process in the
future. This algorithm enhancement may indeed improve the efficiency of the proposed
algorithm for solving different kinds of real-world problems.

Author Contributions: Conceptualization, S.R.; methodology, A.D.; validation, R.S. and M.R.; formal
analysis, D.K.; writing—original draft preparation, D.K.; writing—review and editing, M.R. and A.G.;
supervision, S.S.A. and A.S.A.; funding acquisition, S.S.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Taif University, Research Supporting Project Number
(TURSP-2020/215), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

NIOAs Nature-Inspired Optimization Algorithms
TSP Travelling Salesman Problem
EA Evolutionary Algorithm
SI Swarm Intelligence
GA Genetic Algorithm
DE Differential Evolution
ACO Ant Colony Optimization
ABC Artificial Bee Colony
PSO Particle Swarm Optimization
FA Firefly Algorithm
CS Cuckoo Search
MA Monkey Algorithm
SMO Spider Monkey Algorithm
ASMO Ageist Spider Monkey Algorithm
GWO Grey Wolf Optimization
JMA Java macaque Algorithm
KH Krill Herd
BFA Bacterial foraging algorithm
AIS rtificial Immune System
CA Culture Algorithm

54

Mathematics 2022, 10, 688

RA Reptile Algorithm
ICA-PSO Imperialist Competitive Algorithm with particle swarm optimization
FOGS-ACO Fast Opposite Gradient Search with Ant Colony Optimization
ECOGA SEffective hybrid genetic algorithm
AM Adult Male
SM Sub-Adult Male
JM Juvenile Male
IM Infant Male
AF Adult Female
SF Sub-Adult Female
JF Juvenile Female
IF Infant Female
α Death rate of Infant
β Death rate of Non-Infant
POP Population of Java macaque
{Gi} presents the Group i
Msize Male individuals in the population
Fsize female individuals in the population
F(Ψ) Fitness evaluation individuals
GM, GF Global best male and female
{DS} Dominant set of individuals
{NDS} Non-Dominant set of individuals
δ Learning rate of the individual

References

1. Uniyal, N.; Pant, S.; Kumar, A.; Pant, P. Nature-inspired metaheuristic algorithms for optimization. Meta-Heuristic Optim. Tech.
Appl. Eng. 2022, 10, 1. [CrossRef]

2. Alsalibi, B.; Mirjalili, S.; Abualigah, L.; Gandomi, A.H. A Comprehensive Survey on the Recent Variants and Applications of
Membrane-Inspired Evolutionary Algorithms. Arch. Comput. Methods Eng. 2022, 1–17. [CrossRef]

3. Dinesh, K.; Amudhavel, J.; Rajakumar, R.; Dhavachelvan, P.; Subramanian, R. A novel self-organisation model for improving the
performance of permutation coded genetic algorithm. Int. J. Adv. Intell. Paradig. 2020, 17, 299–322. [CrossRef]

4. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

5. Liu, C.; Wu, L.; Huang, X.; Xiao, W. Improved dynamic adaptive ant colony optimization algorithm to solve pipe routing design.
Knowl.-Based Syst. 2022, 237, 107846. [CrossRef]

6. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

7. Latchoumi, T.; Balamurugan, K.; Dinesh, K.; Ezhilarasi, T. Particle swarm optimization approach for waterjet cavitation peening.
Measurement 2019, 141, 184–189. [CrossRef]

8. Cao, L.; Ben, K.; Peng, H.; Zhang, X. Enhancing firefly algorithm with adaptive multi-group mechanism. Appl. Intell. 2022, 1–21.
[CrossRef]

9. Tang, C.; Song, S.; Ji, J.; Tang, Y.; Tang, Z.; Todo, Y. A cuckoo search algorithm with scale-free population topology. Expert Syst.
Appl. 2022, 188, 116049. [CrossRef]

10. Yılmaz, S.; Küçüksille, E.U. A new modification approach on bat algorithm for solving optimization problems. Appl. Soft Comput.
2015, 28, 259–275. [CrossRef]

11. Ahmed, O.; Hu, M.; Ren, F. PEDTARA: Priority-Based Energy Efficient, Delay and Temperature Aware Routing Algorithm Using
Multi-Objective Genetic Chaotic Spider Monkey Optimization for Critical Data Transmission in WBANs. Electronics 2022, 11, 68.
[CrossRef]

12. Tarawneh, H.; Alhadid, I.; Khwaldeh, S.; Afaneh, S. An Intelligent Cloud Service Composition Optimization Using Spider
Monkey and Multistage Forward Search Algorithms. Symmetry 2022, 14, 82. [CrossRef]

13. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]

14. Jain, S. Mammals: Whale, Gray Wolf, and Bat Optimization. In Nature-Inspired Optimization Algorithms with Java; Apress: Berkeley,
CA, USA, 2022; [CrossRef]

15. Yang, X.S. Mathematical Analysis of Nature-Inspired Algorithms. In Nature-Inspired Algorithms and Applied Optimization; Springer:
Cham, Switzerland, 2018; Volume 744. [CrossRef]

16. Karunanidy, D.; Ramalingam, R.; Dumka, A.; Singh, R.; Alsukayti, I.; Anand, D.; Hamam, H.; Ibrahim, M. An Intelligent
Optimized Route-Discovery Model for IoT-Based VANETs. Processes 2021, 9, 2171. [CrossRef]

55

Mathematics 2022, 10, 688

17. Qin, S.; Pi, D.; Shao, Z.; Xu, Y. Hybrid collaborative multi-objective fruit fly optimization algorithm for scheduling workflow in
cloud environment. Swarm Evol. Comput. 2022, 68, 101008. [CrossRef]

18. dos Anjos, J.C.S.; Gross, J.L.G.; Matteussi, K.J.; González, G.V.; Leithardt, V.R.Q.; Geyer, C.F.R. An Algorithm to Minimize Energy
Consumption and Elapsed Time for IoT Workloads in a Hybrid Architecture. Sensors 2021, 21, 2914. [CrossRef]

19. Dinesh, K.; Subramanian, R.; Dweib, I.; Nandhini, M.; Mohamed, M.Y.N.; Rajakumar, R. Bi-directional self-organization technique
for enhancing the genetic algorithm. In Proceedings of the 6th International Conference on Information Technology: IoT and
Smart City, Hong Kong, 29 December 2018–31 December 2019; pp. 251–255. [CrossRef]

20. Jana, S.; Dey, A.; Maji, A.K.; Pal, R.K. Solving Sudoku Using Neighbourhood-Based Mutation Approach of Genetic Algorithm. In
Advanced Computing and Systems for Security: Volume 13; Springer: Singapore, 2022; pp. 153–167. [CrossRef]

21. Al-Sharhan, S.; Bimba, A. Adaptive multi-parent crossover GA for feature optimization in epileptic seizure identification. Appl.
Soft Comput. 2019, 75, 575–587. [CrossRef]

22. Manicassamy, J.; Karunanidhi, D.; Pothula, S.; Thirumal, V.; Ponnurangam, D.; Ramalingam, S. GPS: A constraint-based gene
position procurement in chromosome for solving large-scale multiobjective multiple knapsack problems. Front. Comput. Sci.
2018, 12, 101–121. [CrossRef]

23. Zhang, P.; Yao, H.; Li, M.; Liu, Y. Virtual network embedding based on modified genetic algorithm. Peer-to-Peer Netw. Appl. 2019,
12, 481–492. [CrossRef]

24. Gholami, O.; Sotskov, Y.N.; Werner, F. A genetic algorithm for hybrid job-shop scheduling problems with minimizing the
makespan or mean flow time. J. Adv. Manuf. Syst. 2018, 17, 461–486. [CrossRef]

25. Karunanidy, D.; Amudhavel, J.; Datchinamurthy, T.S.; Ramalingam, S. A Novel Java macaque Algorithm For Travelling Salesman
Problem. IIOAB J. 2017, 8, 252–261.

26. Dinesh, K.; Rajakumar, R.; Subramanian, R. Self-organisation migration technique for enhancing the permutation coded genetic
algorithm. Int. J. Appl. Manag. Sci. 2021, 13, 15–36. [CrossRef]

27. Santos, J.; Ferreira, A.; Flintsch, G. An adaptive hybrid genetic algorithm for pavement management. Int. J. Pavement Eng. 2019,
20, 266–286. [CrossRef]

28. Luan, J.; Yao, Z.; Zhao, F.; Song, X. A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm
and ant colony optimization. Math. Comput. Simul. 2019, 156, 294–309. [CrossRef]

29. Bujok, P.; Tvrdík, J.; Poláková, R. Comparison of nature-inspired population-based algorithms on continuous optimisation
problems. Swarm Evol. Comput. 2019, 50, 100490. [CrossRef]

30. Ramos-Figueroa, O.; Quiroz-Castellanos, M.; Mezura-Montes, E.; Kharel, R. Variation operators for grouping genetic algorithms:
A review. Swarm Evol. Comput. 2021, 60, 100796. [CrossRef]

31. Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyzes. Swarm Evol. Comput. 2019, 44, 546–558. [CrossRef]
32. Wang, X.; Wang, Y.; Wong, K.C.; Li, X. A self-adaptive weighted differential evolution approach for large-scale feature selection.

Knowl.-Based Syst. 2022, 235, 107633. [CrossRef]
33. Müller, F.M.; Bonilha, I.S. Hyper-Heuristic Based on ACO and Local Search for Dynamic Optimization Problems. Algorithms

2022, 15, 9. [CrossRef]
34. Mahmoodi, L.; Aliyari Shoorehdeli, M. Comments on “A Novel Fault Diagnostics and Prediction Scheme Using a Nonlinear

Observer With Artificial Immune System as an Online Approximator”. IEEE Trans. Control. Syst. Technol. 2017, 25, 2243–2246.
[CrossRef]

35. Coulter, N.; Moncayo, H. Artificial Immune System Optimized Support Vector Machine for Satellite Fault Detection. In
Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1713. [CrossRef]

36. Passino, K.M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control. Syst. 2002, 22, 52–67.
37. Hernández-Ocaña, B.; Chávez-Bosquez, O.; Hernández-Torruco, J.; Canul-Reich, J.; Pozos-Parra, P. Bacterial Foraging Optimiza-

tion Algorithm for menu planning. IEEE Access 2018, 6, 8619–8629. [CrossRef]
38. Awad, H.; Hafez, A. Optimal operation of under-frequency load shedding relays by hybrid optimization of particle swarm and

bacterial foraging algorithms. Alex. Eng. J. 2022, 61, 763–774. [CrossRef]
39. Wang, G.G.; Gandomi, A.H.; Alavi, A.H.; Deb, S. A hybrid method based on krill herd and quantum-behaved particle swarm

optimization. Neural Comput. Appl. 2016, 27, 989–1006. [CrossRef]
40. Saravanan, D.; Janakiraman, S.; Harshavardhanan, P.; Kumar, S.A.; Sathian, D. Enhanced Binary Krill Herd Algorithm for

Effective Data Propagation in VANET. In Secure Communication for 5G and IoT Networks; Springer: Cham, Switzerland, 2022;
pp. 221–235. [CrossRef]

41. Yang, X.S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50. [CrossRef]
42. Cheng, Z.; Song, H.; Chang, T.; Wang, J. An improved mixed-coded hybrid firefly algorithm for the mixed-discrete SSCGR

problem. Expert Syst. Appl. 2022, 188, 116050. [CrossRef]
43. Mohanty, P.P.; Nayak, S.K. A Modified Cuckoo Search Algorithm for Data Clustering. Int. J. Appl. Metaheuristic Comput. (IJAMC)

2022, 13, 1–32. [CrossRef]
44. Kumar, S.; Kumari, R. Modified position update in spider monkey optimization algorithm. Int. J. Emerg. Technol. Comput. Appl.

Sci. (IJETCAS) 2014, 2, 198–204.
45. Wu, G.; Mallipeddi, R.; Suganthan, P.N.; Wang, R.; Chen, H. Differential evolution with multi-population based ensemble of

mutation strategies. Inf. Sci. 2016, 329, 329–345. [CrossRef]

56

Mathematics 2022, 10, 688

46. Ma, H.; Shen, S.; Yu, M.; Yang, Z.; Fei, M.; Zhou, H. Multi-population techniques in nature inspired optimization algorithms: A
comprehensive survey. Swarm Evol. Comput. 2019, 44, 365–387. [CrossRef]

47. Xu, Z.; Liu, X.; Zhang, K.; He, J. Cultural transmission based multi-objective evolution strategy for evolutionary multitasking. Inf.
Sci. 2022, 582, 215–242. [CrossRef]

48. Warwas, K.; Tengler, S. Multi-population Genetic Algorithm with the Actor Model Approach to Determine Optimal Braking
Torques of the Articulated Vehicle. In Intelligent Computing; Springer: Cham, Switzerland, 2022; Volume 283, pp. 56–74. [CrossRef]

49. Hesar, A.S.; Kamel, S.R.; Houshmand, M. A quantum multi-objective optimization algorithm based on harmony search method.
Soft Comput. 2021, 25, 9427–9439. [CrossRef]

50. Zhang, Y.; Li, J.; Li, L. A Reward Population-Based Differential Genetic Harmony Search Algorithm. Algorithms 2022, 15, 23.
[CrossRef]

51. Van den Bercken, J.; Cools, A. Information-statistical analysis of factors determining ongoing behaviour and social interaction in
Java monkeys (Macaca fascicularis). Anim. Behav. 1980, 28, 189–200. [CrossRef]

52. Veenema, H.C.; Spruijt, B.M.; Gispen, W.H.; Van Hooff, J. Aging, dominance history, and social behavior in Java-monkeys
(Macaca fascicularis). Neurobiol. Aging 1997, 18, 509–515. [CrossRef]

53. Dewsbury, D.A. Dominance rank, copulatory behavior, and differential reproduction. Q. Rev. Biol. 1982, 57, 135–159. [CrossRef]
[PubMed]

54. Engelhardt, A.; Pfeifer, J.B.; Heistermann, M.; Niemitz, C.; van Hooff, J.A.; Hodges, J.K. Assessment of female reproductive status
by male longtailed macaques, Macaca fascicularis, under natural conditions. Anim. Behav. 2004, 67, 915–924. [CrossRef]

55. Sprague, D.S. Age, dominance rank, natal status, and tenure among male macaques. Am. J. Phys. Anthropol. 1998, 105, 511–521.
[CrossRef]

56. Dasser, V. A social concept in Java monkeys. Anim. Behav. 1988, 36, 225–230. [CrossRef]
57. Paul, A.; Thommen, D. Timing of birth, female reproductive success and infant sex ratio in semifree-ranging Barbary macaques

(Macaca sylvanus). Folia Primatol. 1984, 42, 2–16. [CrossRef]
58. Durillo, J.J.; Nebro, A.J. jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 2011, 42, 760–771. [CrossRef]
59. Deb, K.; Beyer, H.G. Self-Adaptive Genetic Algorithms with Simulated Binary Crossover. Evol. Comput. 2001, 9, 197–221.

[CrossRef]
60. Lin, Q.; Chen, J.; Zhan, Z.H.; Chen, W.N.; Coello, C.A.C.; Yin, Y.; Lin, C.M.; Zhang, J. A hybrid evolutionary immune algorithm

for multiobjective optimization problems. IEEE Trans. Evol. Comput. 2016, 20, 711–729. [CrossRef]
61. Meidani, K.; Hemmasian, A.; Mirjalili, S.; Barati Farimani, A. Adaptive grey wolf optimizer. Neural Comput. Appl. 2022, 1–21.

[CrossRef]
62. Zhang, L.; Liu, L.; Yang, X.S.; Dai, Y. A novel hybrid firefly algorithm for global optimization. PLoS ONE 2016, 11, e0163230.

[CrossRef] [PubMed]
63. Di Gaspero, L.; Schaerf, A.; Cadoli, M.; Slany, W.; Falaschi, M. Local Search Techniques for Scheduling Problems: Algorithms and

Software Tool. Ph.D. Thesis, Università degli Studi di Udine, Udine, Italy, 2003.
64. Idoumghar, L.; Chérin, N.; Siarry, P.; Roche, R.; Miraoui, A. Hybrid ICA–PSO algorithm for continuous optimization. Appl. Math.

Comput. 2013, 219, 11149–11170. [CrossRef]
65. Saenphon, T.; Phimoltares, S.; Lursinsap, C. Combining new fast opposite gradient search with ant colony optimization for

solving travelling salesman problem. Eng. Appl. Artif. Intell. 2014, 35, 324–334. [CrossRef]
66. Li, L.; Zhang, Y. An improved genetic algorithm for the traveling salesman problem. In International Conference on Intelligent

Computing; Springer: Berlin/Heidelberg, Germany, 2007; Volume 2, pp. 208–216. [CrossRef]
67. Paul, P.V.; Moganarangan, N.; Kumar, S.S.; Raju, R.; Vengattaraman, T.; Dhavachelvan, P. Performance analyzes over population

seeding techniques of the permutation-coded genetic algorithm: An empirical study based on traveling salesman problems. Appl.
Soft Comput. 2015, 32, 383–402. [CrossRef]

57

Citation: Lazarev, A.A.;

Lemtyuzhnikova, D.V.; Somov, M.L.

Decomposition of the Knapsack

Problem for Increasing the Capacity

of Operating Rooms. Mathematics

2022, 10, 784. https://doi.org/

10.3390/math10050784

Academic Editors: Ripon Kumar

Chakrabortty and Alfredo Milani

Received: 22 November 2021

Accepted: 21 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Decomposition of the Knapsack Problem for Increasing the
Capacity of Operating Rooms†

Alexander Alekseevich Lazarev 1, Darya Vladimirovna Lemtyuzhnikova 1,2 and Mikhail Lvovich Somov 1,*

1 Institute of Control Sciences, 65 Profsoyuznaya Street, 117997 Moscow, Russia; jobmath@mail.ru (A.A.L.);
darabbt@gmail.com (D.V.L.)

2 Moscow Aviation Institute, 4, Volokolamskoe Shosse, 125993 Moscow, Russia
* Correspondence: somovml1999@gmail.com
† This paper is an extended version of our paper published in Proceedings of the International Conference on

Learning and Intelligent Optimization, Springer: Cham, Germany, 2020; pp. 289–302.

Abstract: This paper is aimed at the problem of scheduling surgeries in operating rooms. To solve
this problem, we suggest using some variation of the bin packing problem. The model is based
on the actual operation of 10 operating rooms, each of which belongs to a specific department of
the hospital. Departments are unevenly loaded, so operations can be moved to operating rooms in
other departments. The main goal is to increase patient throughput. It is also necessary to measure
how many operations take place in other departments with the proposed solution. The preferred
solution is a solution with fewer such operations, all other things being equal. Due to the fact
that the mixed-integer linear programming model turned out to be computationally complex, two
approximation algorithms were also proposed. They are based on decomposition. The complexity
of the proposed algorithms is estimated, and arguments are made regarding their accuracy from
a theoretical point of view. To assess the practical accuracy of the algorithms, the Gurobi solver is
used. Experiments were conducted on real historical data on surgeries obtained from the Burdenko
Neurosurgical Center. Two decomposition algorithms were constructed and a comparative analysis
was performed for 10 operating rooms based on real data.

Keywords: health scheduling; approximation algorithms; decomposition; capacity increase; bin
packing problem; scheduling problem

1. Introduction

Health scheduling is an essential component for medicine automation. The develop-
ment of scheduling models and algorithms has gained particular relevance in connection
with the COVID-19 pandemic. In particular, there is a high demand for scheduling op-
erating rooms. In Russia, many operations can be done free of charge according to a
government quota. If the operation is considered urgent, the patient might agree to a
paid service and later apply for compensation. Each surgical department has its own
peculiarities of functioning. This is the time and principles of the work of anesthesiologists,
the possibility of performing operations in other departments and associated overlays,
the scheduling and rotation of doctors, and much more. For a multidisciplinary surgical
hospital, an unbalanced operation of the surgical department is a limiting factor for the
overall functioning of the organization. This is especially important for neurosurgical
clinics, where individual surgical rooms are specialized and equipped to carry out certain
types of surgery.

Due to modern technology, medical care is becoming automated. Therefore, the
study of optimizing service processes is relevant. There are many publications on health
scheduling. Let us consider some papers for the investigated problem of optimizing surgery
rooms. The papers [1,2] are dedicated to an analysis of OR (operating room) and surgery

Mathematics 2022, 10, 784. https://doi.org/10.3390/math10050784 https://www.mdpi.com/journal/mathematics
58

Mathematics 2022, 10, 784

scheduling. They highlight three decision levels in OR scheduling and planning: strategic,
tactical, and operational. The strategic level covers long-term decisions, such as capacity
planning and allocation, which typically take a long time. In such problems, the amount
of time a given OR is dedicated to a surgical specialty is determined in order to optimize
profit/cost over a long period. Problems with cyclic OR schedules, such as master surgical
scheduling, are categorized at the tactical level. Moreover, the last decision level, the
operational level, is the shortest and involves decisions such as resource allocation, surgical
cases, and advanced scheduling. Our problem belongs to the operational level, our main
goal is to distribute elective surgeries in operating rooms. There are also three well-known
scheduling strategies/booking systems that dedicate OR-time to surgical groups: open
scheduling strategy, block scheduling strategy, and modified block scheduling strategy.
In reference [3], the authors used the block scheduling strategy, and tried to maximize
the occupation of the ORs and respect the order of patients in the waiting list as much as
possible. They used normal distribution for the duration of surgeries and cleaning time.
In an objective function, the authors identified three criteria. The first is to maximize the
expected surgery time in each block. The second criteria sets the probability that the total
work duration of each time block does not exceed the available time. Furthermore, the last
criteria ensures that preference is given to the first patients in the waiting list. However,
they do not take into account differences between operating rooms. We also put patients
from the waiting list to ORs using a block scheduling strategy but in our model different
ORs belong to different departments, and we have to take this into account. Paper [4] shows
the operating room scheduling problem, such as the bin packing problem. The authors look
for a schedule with all n activities programmed to run in a container such that the container
capacity is not exceeded and the downtime is minimal. Since the number of possible
schedules grows exponentially, the complexity of solving these problems is due to the
number of combinations that a large set of activities generate. This fact often leads to delays
in the scheduling process, as the ease of finding an efficient schedule is reduced. To solve the
problem, they developed a genetic algorithm. Genes are used to model time spaces in which
jobs can be scheduled. Each gene has a length that cannot be exceeded. A chromosome
contains a group of genes. In other words, each chromosome represents a possible schedule
of work. In this representation, chromosomes may vary in size depending on the number
of operating rooms used in the solution. We decided to use the bin packing problem with a
homogeneous capacity in our model. The authors of paper [5] compare batched and online
scheduling in surgery scheduling; in our model we use batched scheduling, the waiting list
is updated every week, and patients are scheduled for the following week. The policy in
batch schedules works as follows: it ignores new arrivals when the schedule is over. Thus,
this class only cares about the result within the time horizon. Optimal solution methods
for such schedules may include mixed-integer linear programming (MILPs) solvers. These
can be optimal solvers based on branching and cutting methods or metaheuristics. Batch
scheduling works as follows: when a certain number of people in a batch is recruited, a
schedule is made for the current day. People who have already been enrolled are removed
from the upcoming batch, and new patients and those not yet enrolled are put into the next
batch scheduling for the next day. Batch scheduling problems are often simpler, but can
involve many different constraints. Paper [6] solves a problem close to ours. In that paper,
the authors present an optimization framework for batch scheduling within a block-booking
system that maximizes the expected utilization of operating room resources subject to a set
of probabilistic capacity constraints. To understand whether a given schedule is feasible
or not, the scheduler uses an estimate provided by the surgeon and an estimate based on
historical data. If the sum of the point estimates of the duration of the operations assigned
to the same schedule block and the intermediate cleaning time does not exceed the block
length, then the block assignment is considered feasible. Note that we use historical data of
a hospital too. The main purpose of this strategy is to ensure that all scheduled surgeries can
be finished within the allotted block length, avoiding overtime. They solved the problem
with mixed-integer programming and we also use this method. The authors develop an

59

Mathematics 2022, 10, 784

algorithm based on a normal approximation for the sum of the surgery duration to provide
near-optimal solutions to the stochastic scheduling problem. The primary aim of paper [7]
is the effective and balanced use of equipment and resources in hospital operating rooms.
In this context, datasets from a state hospital were used via the goal programming and
constraint programming methods. Now, we consider more contemporary papers in surgery
scheduling. In research [8] from 2021, the authors use a weekly surgery schedule with an
open scheduling strategy. In our work, we also construct a weekly schedule. The objective
is to minimize the total operating cost while maximizing the utilization of the operating
rooms, while also minimizing overtime use. Their mathematical model can provide optimal
solutions for a surgery size of up to 110 surgical cases. Furthermore, the authors proposed
two modified heuristics, based on the earliest due date and longest processing time rules, to
quickly find feasible solutions. In article [9] from 2021, the authors find the optimal schedule
of surgeries by minimizing operating rooms’ idle times (in our paper we minimizing idle
times too) while maximizing the number of scheduled surgeries during the most effective
and desirable time windows. Surgeries during ideal time windows are encouraged by
assigning bonus weights in the objective function. The stated and implied benefits of this
strategy include mitigating financial loss, complications, and death rate due to a reduction
in surgery delays. They introduce a binary programming model for scheduling operating
rooms and a mixed-integer binary program for planning and scheduling both operating
and recovery rooms for elected patients under deterministic conditions. The authors apply
an open scheduling strategy for assigning operating rooms to surgeons and a Lagrangian
relaxation method for finding promising solutions. Consider another article, namely [10]
from 2021, which is similar to ours. In this paper, the authors allocate elective patients and
resources (i.e., operating rooms, surgeons, and anesthetists) to days, assign resources to
patients, and sequence patients in each day. They consider patients’ due dates, resource
eligibility, the heterogeneous performances of resources, downstream unit requirements,
and lag times between resources. The goal is to create a weekly surgery schedule that
minimizes fixed and overtime costs. To efficiently and effectively solve the problems of
MILP models, the authors develop new multi-featured logic-based Benders decomposition
approaches. Furthermore, a lot of works, such as [11–13], have an uncertain duration of
surgery, and we plan to include this complication. In this paper, we do not consider the
uncertainty. Our work is organized as follows: We consider the mathematical model in
Section 2. Section 3 reviews the computational experiments. The decomposition algorithms
are shown in Section 4. Section 5 presents the results of the algorithms compared to the
MILP. Furthermore, some remarks are presented in the Conclusion section.

2. Mathematical Model

2.1. Problematic

The goal is to increase throughput according to two factors: reducing gaps in schedules
and increasing the operation time in ORs. We can use the information system of the
Burdenko Neurosurgical Center and doctors’ expert evaluations to solve the problem.
Experts identify subproblems such as hospitalization, surgical department manipulations,
and the monitoring of surgery rooms. The problem is divided into three subproblems: The
first is the problem of allocating specialists to the appropriate rooms at a certain time. The
second problem is to create a schedule for receiving patients for surgery. The third one is
the problem of predicting the idle times of surgery rooms.

In this paper, we consider only assignment patients to ORs. There are 10 departments
in the Burdenko Neurosurgical Center, and each department has its own operating room.
Incoming patients are always assigned to one of these departments. We will consider
only elective patients. The Burdenko Neurosurgical Center information system includes
information about a patient’s hospitalization, the principles of their treatment, and the
work of the department, including occupied beds and the work of the surgical department,
etc. For each patient, information about their operations is generated in the system. This
creates a table that consists of the following columns: number of the patient; date; the host

60

Mathematics 2022, 10, 784

department; surgery room ID; complexity category of surgery; start of surgery; end of
surgery. Based on this table, we can conclude that the usage periods of ORs usually have
gaps, which greatly reduces the efficiency of ORs. According to examples for each surgery,
we know the duration, number, and the department in which it should be performed.
By using these examples, we created the frequency dictionary of various parameters and
used it in the generation. Each department has its operating room. However, we can
try to allocate some operations of the busy departments to the operating rooms of less
busy departments.

2.2. Model

Let M = 1, 2, ..., m–set of operating rooms, O = 1, 2, ..., o–set of departments, and
J = 1, 2, ..., n–set of surgeries. We consider 10 operating rooms mi ∈ M that work 4 days a
week for 11 h every day (from 9:00 to 20:00). Our main goal is to decrease the gaps in these
operating rooms. Gaps there mean that the operating room is not busy at these moments.
Analyzing the hospital report, we can see that the duration of surgeries is quite long. Let us
assume that if the surgery ends at 17:00, then there will be no others after it because there is
a high risk of overtime work. Because of this, there are gaps in the schedule. To solve this
problem, we suggest using some variation of the bin packing problem, as containers will
be operating rooms, the capacity of which is determined by the number of hours during
which the surgeries can be performed (11 h). This model does not include urgent patients.
We receive a patient waiting list at the end of each week and make a schedule for the next
working week. In this case, the schedule is not a specific time for the start of operations,
but only the distribution of surgeries in the ORs and days. The main goal is to decrease
the number of gaps in the OR’s schedule for the whole working week. Furthermore, an
important criterion is a department where the patient is treated, because each department
oi ∈ O has its own OR mi (10 departments), and it is undesirable to operate the patient in an
external OR. In our previous work on this topic [14], we approached this problem in terms
of schedule theory, and we assigned patients strictly to their operating rooms. However,
in this work, for this purpose, a weight matrix W has been added to the model, where
wij = w0 (w0 > 1), if the surgery j is performed in “its” OR mi, and wij = 1 in the other case.
The definition of a guest surgery and a home surgery is introduced; we will call the surgery
“home” if it is performed in “its” operating room, and we will call the surgery “guest” if
it is performed in another operating room. Let us construct a mathematical model. The
parameters of the model are:

• pj—processing time of surgery j, ∀j ∈ J;
• wij—weight of surgery j, if it is being performed in OR i, ∀i ∈ M;
• D—set of days when you can perform the surgery. In our case it is d = 1, 2, 3, 4

(Monday, Tuesday, Wednesday, Thursday);
• A—operating room hours per day (11 h).

The variables of the model are:

• xd
ij = 1, iff surgery j assigned to OR i on day d, and equal 0 otherwise.

Objective function:
∑

d∈D
∑

i∈M
∑
j∈J

xd
ij pjwij → max (1)

Subject to:
∑

d∈D
∑

i∈M
xd

ij ≤ 1, ∀j ∈ J; (2)

∑
j∈J

pjxd
ij ≤ A, ∀i ∈ M, ∀d ∈ D. (3)

The objective function (1) maximizes the weighted number of operating hours during
the week, which, accordingly, minimizes gap hours. Constraint (2) ensures that one
operation is not scheduled more than once. Furthermore, constraint (3) guarantees that the

61

Mathematics 2022, 10, 784

total duration of all surgeries in one OR on one day does not exceed the operating time
of that room; in our case all operating rooms work the same number of hours. It is also
necessary to note that this problem is NP-hard and cannot be solved in polynomial time.

3. Computational Experiments

Experiments will be conducted on pseudo-real data. Surgical data were provided to
us by Burdenko Neurosurgical Center. The Burdenko National Medical Research Center
for Neurosurgery is the leading neurosurgical hospital in the Russian Federation and the
world’s leading neurosurgical clinic, with a rich history, state-of-the-art equipment, and a
unique professional team. Every year the National Center performs about 10,000 neuro-
surgical surgeries for the widest range of diseases of the nervous system. The structure of
the center includes 10 clinical departments with 10 main operating rooms. We have data
on all surgery operations made in 2014. It is also important to note that some operating
rooms are busier than others. In other words, operations are assigned to operating rooms
unevenly. The duration of surgical operations is generated randomly, with a variation of
one hour from the average duration of surgeries in a given department. Thus, our dataset
contains the department to which the surgery is attached and the duration of this surgery.
The MILP model in all experiments is solved using Gurobi with an academic license in a
Python environment. We decided to use Gurobi since it is the most powerful mathematical
optimization solver.

The simulation scheme is as follows:

1. At the beginning of the week, N of generated surgeries is added to the waiting list;
2. The problem of mixed-integer linear programming with the above-described con-

straints and objective functions is solved by Gurobi in Python. That is, the optimal
schedule for a given week is made, and the surgeries that could not be assigned
remain in the waiting list and are transferred to the next week;

3. Furthermore, this cycle is repeated.

The number of surgeries N that we add to the waiting list every week is important.
On average, about 130–140 surgeries are performed per week. Accordingly, if we take N
much more than this value, the operations will accumulate in the waiting list, and with
each week the gaps will become smaller because there will be a large selection of surgeries
to schedule. However, the queue will keep steadily growing.

We need to minimize the total gap hours concerning the fact that guest surgeries are
undesirable. Then, we need to check the dependency of OR’s gap hours, and the number
of guest surgeries, depending on the choice of weight w0. The planning period is chosen to
be two weeks and the number of surgeries N = 150, so that a large number of surgeries
would not accumulate. We tested the experiments on five different generated data, where
only the duration of surgeries changes randomly. We took the average values of the total
gap duration and the number of guest surgeries for each experiment.

Figure 1 shows a sharp jump at the beginning. In Figure 2 with the increased scale, you
can see that the jump occurs when the weight coefficients w0 are from 1 to 4. Next, with the
further increasing of weights, the value of the total gaps stabilizes at approximately 11 h.

62

Mathematics 2022, 10, 784

Figure 1. The dependency of the total duration of all schedule gaps on the weight w0, 1 ≤ wo ≤ 100.

Figure 2. More detailed dependency diagram of the total duration of all schedule gaps on the weight
w0, 1 ≤ wo ≤ 10.

Now, let us consider the graph of dependence of the number of guest surgeries on the
same w0 weighting coefficients (Figures 3 and 4). This graph behaves almost in the same
way; there is a sharp jump down with small values of w0. Next, with the further increasing
of weights, the number of the guest surgeries becomes stable, starting with the same values
of w0 as in the previous graph. The following conclusion can be drawn from these graphs:
Even if it is very important to perform home surgeries (w0 � 1), we need to assign some
guest surgeries (Figure 4) to make an optimal schedule. Furthermore, it appeared that the
total duration of gaps also does not change at large values of w0. The problem appeared
to be computationally difficult for weights, at which there is a sharp jump in the graphics.
That is the reason for adding a time limit to the experiment. If for a certain weight w0 it
takes a long time to calculate the result, then we skip this value and proceed with the next
value of weight.

63

Mathematics 2022, 10, 784

Figure 3. The dependency of the number of guest surgeries on the weight w0, 1 ≤ wo ≤ 100.

Figure 4. More detailed dependency diagram of the number of guest surgeries on the weight w0,
1 ≤ wo ≤ 10.

4. Algorithms

Since our MILP model is computationally difficult, we consider two approximate
algorithms and compare them with each other. First, the algorithm constructs a schedule
for each department separately, and after that, it changes some surgeries to more opti-
mal solutions. In the second algorithm, we construct a decomposition graph to divide
departments into groups and solve the MILP problem for each group.

4.1. Vertex Decomposition with Balanced Distribution

Vertex decomposition with balanced distribution further in the text will be called
Algorithm 1. The main idea of this algorithm is to assign patients to ORs in their depart-
ments at first. This is the first stage. After this distribution, we have a schedule without
guest surgeries and some patients remained on the waiting list. Next, at the second stage,
we check if the patients from the waiting list can be assigned to any OR on any day of
the week. Next, at the third stage, our algorithm checks if it is possible to assign patients

64

Mathematics 2022, 10, 784

from the waiting list to the OR if the surgery with the minimum duration is removed from
it. Removed surgeries are added back to the waiting list and all steps of the algorithm
are repeated for these surgeries. The third stage of the algorithm may be repeated several
times. We look at the maximum value of the following values for all operation rooms and
for all days: the remaining hours in the operating room if we remove the surgery with the
minimum duration. Furthermore, this value is compared to the duration of the minimal
surgeries on the waiting list; if it is more than the duration of two or one surgeries, we
repeat the third stage twice or once, respectively. In our case, we always get one repetition
of the third stage. As a reminder, our main goal is to minimize gaps in all ORs during the
week. At first, we need to set a problem for the first step, whereby we construct a schedule
without guest surgeries. It is a MILP model with the following parameters, objective
functions, and constraints:

• pj—processing time of surgery j, ∀j ∈ J;
• D—set of days when you can perform the surgery. In our case it is d = 1, 2, 3, 4

(Monday, Tuesday, Wednesday, Thursday);
• A—operating room hours per day (11 h).

The variables of the model are:

• xd
j = 1, iff surgery j assigned to OR on day d, and equal 0 otherwise.

Objective function:
∑

d∈D
∑
j∈J

xd
j pj → max (4)

Subject to:
∑

d∈D
xd

j ≤ 1, ∀j ∈ J; (5)

∑
j∈J

pjxd
j ≤ A, ∀d ∈ D. (6)

The solution of this MILP model presents an optimal weekly schedule for one depart-
ment if there are no guest surgeries. We solve this problem 10 times for each department
(for each OR) and put all unassigned patients in the general waiting list. For a better
understanding, we present the pseudocode of our Algorithm 1.

In our first experiment, we constructed a schedule for two weeks. Now we need to
construct a schedule for two weeks for this algorithm. To achieve this, it is necessary to use
the algorithm twice, but the second time the waiting list will not be empty, it will remain
from the previous week. Furthermore, we can construct a schedule for N weeks, we just
need to perform this algorithm N times and add unscheduled surgeries from previous
weeks to the waiting list.

Remark 1. At the third stage, we have restriction remains_hours[i] > T, which means that we
consider only ORs with more than T hours left for surgeries. Here, we took T = 1 h, but in
future works, we will find the cost of an operational hour and the cost of one guest surgery, and
then calculate T based on these considerations, because T affects gap hours and the number of
guest surgeries.

65

Mathematics 2022, 10, 784

Algorithm 1: pseudocode
Departments = 10
surgeries = []
remains_hours = []
waiting_list = []
guest_surgeries = 0
for i = 1 to Departments do

// The first stage:
Solve MILP model with Gurobi for department i;
surgeries += surgeries[i]
remains_hours += remains_hours[i]
waiting_list += waiting_list[i]
// Solution of MILP model return remains_hours[i], it is an array with four

elements, and each element shows the unused hours of the operating room on
one day of the work week (4 working days per week). It also returns
waiting_list[i], which have the durations of surgeries that are not scheduled
for this week. Furthermore, it returns surgeries[i]; it is the array with four
arrays inside that contain surgeries, which are scheduled on one day(four
arrays because of 4 working days per week).

end

for j = 1 to waiting_list.length do
// For each surgery on the waiting list:
for i = 1 to remains_hours.length do

// for each day in each department
// The second stage:
if waiting_list[j] ≤ remains_hours[i] then

remains_hours[i] − = waiting_list[j]
// If the surgery can be put on that day in the OR of this department,

we deduct from the remaining unused time of that OR on that day’s
duration of surgeries:

guest_surgeries + = 1
// We add one to the counter of guest surgeries because this surgery is

not scheduled in its department:
waiting_list[j] := 0

else

end

// The third stage:
if waiting_list[j] ≤ remains_hours[i] + min(surgeries[i]) AND

waiting_list[j] ≥ min(surgeries[i]) AND remains_hours[i] ≥ 1 hour then
remains_hours[i] − = waiting_list[j]
// Do the same things, but now we remove the surgery with the

minimum duration, which was scheduled on that day in this OR.
Furthermore, the last restriction in the condition is needed so that
there are not many guest surgeries in the final schedule.

guest_surgeries + = 1
waiting_list[j] := 0
waiting_list + = min(surgeries[i])
// We need to add removed surgery to the waiting list.

else

end

end

end

66

Mathematics 2022, 10, 784

4.2. Graph Decomposition

Graph decomposition further in the text will be called Algorithm 2. Furthermore,
we consider another approach to solve this problem. It is based on the mathematical
model (1)–(3) (our exact approach); however, there, we break down the departments into
groups. In other words, we solve several of the same problems with a smaller set of
variables instead of one big problem with 10 departments. We can use the historical data of
surgeries of each department and see which departments are overloaded and which are
not, and combine them into groups. It can be represented with a graph (Figure 5): vertexes
are the departments, one department can operate on patients from another department if
there is an edge between them. We also solve this problem for N times to do the schedule
for N weeks. In our case N = 2.

Figure 5. Decomposition graph.

So we need to solve our MILP model for every component of this graph. Now, we
can compare three approaches on the same generated data in terms of the number of guest
operations, the amount of unused work time in two weeks, and computing time. Below is
the pseudocode of this algorithm.

Algorithm 2: pseudocode

Departments_blocks = [[1], [2], [3, 4, 5, 6], [7, 8, 9, 10]]
gaps_hours = []
waiting_list = []
guest_surgeries = 0
for i in Departments_blocks do

// Solve MILP model with Gurobi for Departments_blocks[i]
gaps_hours += gaps_hours[i]
waiting_list += waiting_list[i]
guest_surgeries += guest_surgeries[i]
// Solution of MILP model return objective function in gaps_hours[i] for a

given block of operating rooms, It also returns waiting_list[i], which have the
duration of surgeries that are not scheduled for this week. Furthermore, it
returns guest_surgeries[i] – a number of guest surgeries in a given block of
ORs.

end

4.3. Complexity of the Algorithms

In general, the upper bound of the efficiency of our MILP problem using the exact
approach is brute force: 2n. In our case, n is equal to the number of binary variables xd

ij,
n = N · M · D, where N—the number of the surgeries, M—the number of the operation
rooms, and D—the number of workdays in a week. Let the efficiency estimate of the
algorithm for solving a discrete optimization problem with n binary variables be:

φ(n) = 2n. (7)

67

Mathematics 2022, 10, 784

Furthermore, let there be a tree that divides the problem into r blocks. It is argued that
when decomposing the problem into blocks, the efficiency estimate of the entire problem
will be equal to:

∑
i∈r

φ(ni) = ∑
i∈r

2ni , (8)

where n = n1 + n2 + ... + nr.

Property 1. The estimate (8) is better than (7).

Proof. Using the well-known inequality 2x+y > 2x + 2y, x, y > 1 we can write the following
chain of inequalities:

2n1+n2+...+nr > 2n1 + 2n2+...+nr > ... > 2n1 + 2n2 + ... + 2nr . (9)

As a result, we observe that the decomposition increases the efficiency of the algorithm.

In Algorithm 2, we decompose our problem into four subproblems: n = n1 + n2 +
n3 + n4. Furthermore, the MILP problem becomes much easier, because the efficiency
estimate now is equal to 2n1 + 2n2 + 2n3 + 2n4 , and with Property 1, it is better than 2n. In
Algorithm 1, we decompose the problem into 10 subproblems n = n1 + n2 + ... + n10, but
in each subproblem the dimension of the variable is reduced by one: xd

ij → xd
j . n1 = D · N1,

n2 = D · N2, ... ,n10 = D · N10, where Ni is the number of surgeries in i-th department and
N = ∑i∈I Ni. So let us find the complexity of Algorithm 1 exclusive of the complexity of
Gurobi. At the first stage, we solve the MILP problem by Gurobi for each department. At
the second stage, we check for each surgery on the waiting list to see if it can be placed
in an operating room on any given day. In the worst case, the number of surgeries on
the waiting list can be N, then the complexity of the second stage is O(D · M · N). At the
third stage, we check for each surgery on the waiting list to see if it can be changed with
the scheduled surgery with a minimum duration in an operating room on any given day.
Furthermore, the complexity of this stage is the same as the second stage. The complexity
of Algorithm 1, exclusive of the complexity of Gurobi, is O(D · N · M) and it is less than
∑i∈I 2D·Ni . Therefore, the efficiency estimate of Algorithm 1 is equal ∑i∈I 2ni and with
Property 1, it is better than 2n.

4.4. Algorithms Accuracy Estimation

Now, let consider evaluating the accuracy of our algorithms. Let us discuss this
question using the following examples:

Example 1. To illustrate the accuracy of Algorithm 1, consider a simple example. Let p1 = [2, 5, 2],
p2 = [4, 3, 4], p3 = [3, 4, 3], and p4 = [2, 1, 3], where pi is the processing time in hours of surgeries
that are related to department i. There are a total of four departments and four operating rooms.
Let each operating room work only 9 h and only one day. The total duration of all surgeries is 36
h. The optimal solution of this problem using model (1)–(3) constructs the schedule without gaps,
all operations are scheduled, all 36 of the 36 h of operating time is used, and the number of guest
surgeries is equal to three. To use Algorithm 1 for this example, we construct a schedule for each
department using model (4)–(6) and then rearrange some surgeries if they will increase the objective
function, according to Algorithm 1. We get the following results: 33 of the 36 h of operating time is
used and only one guest surgery. Thus, the relative error of the objective function of Algorithm 1 for
this example is 8.3%.

Example 2. To illustrate the accuracy of Algorithm 1, consider the same example as for the
Algorithm 1. To use Algorithm 2 for this example, we break down the departments into groups and
solve model (1)–(3) for each group. In this example, the total processing time of the surgeries for
each department are 9 h, 11 h, 10 h, and 6 h, respectively. Thus, in the worst case we can divide the
departments into the following groups: [1, 4] and [2, 3]. Let me remind you that this means that

68

Mathematics 2022, 10, 784

surgeries can only be transferred from one department to another within its group. After scheduling
each group using model (1)–(3), we get the following results: only 32 of the 36 h of operating time
were used and the number of guest surgeries is equal to two. Since our main criterion is the total
duration of surgeries, Algorithm 2 gives a relative error equal to 11.1% of the optimal solution in
this example.

In order to measure the accuracy of Algorithm 2, it is necessary to take the model (1)–(3),
and according to the decomposition in Figure 5, construct a special example using addi-
tional parameters. These parameters must be related to the number of generated operations
N described in the beginning of Section 3. It is necessary to describe these parameters in
such a way that this special case is the worst case for the Algorithm 2. The estimate of the
accuracy in the worst case will be the accuracy of the algorithm. For Algorithm 1, every-
thing is done similarly, but instead of a decomposition graph, each operation is considered
separately and then there is a balancing process according to Steps 2 and 3 of Algorithm 1.

Worst case of Algorithm 1. The problem of calculating the absolute error for the
NP-hard problem is quite time consuming. The study of this problem is planned to be
covered in future papers. However, let us show a rough estimation of the algorithm
accuracy without taking into account some restrictions existing in practice. Let us neglect
the restriction on the total number of operations and the number of operations that are
assigned to each operation to construct the worst case of the problem. The exact algorithm
allows for an even distribution of operations between operations, so we will construct the
worst-case example so that the distribution of operations is unequal. Furthermore, the exact
algorithm allows you to go through all possible combinations, to construct the worst case
so that the approximate algorithm works least accurately due to the order of operations
of the different durations. To increase the error of the approximate algorithm we will use
only the minimum and maximum operations. In our case, the minimum duration of the
operation is h = 1 h, and the maximum is H = 6 h. We took these durations based on
historical data. Furthermore, we use the restriction on the size of one day in the operating
room–A = 11 h of work. We construct the jobs in such a way that by using the largest
duration of the surgery in each working day we get the gaps of a maximum size. Let the
next set of surgeries be assigned to the first department for this week: eight surgeries with
a duration of A/2 h, 180 surgeries with a duration of h hours, and 36 surgeries with a
duration of H hours. Furthermore, the rest of the departments are empty. Following the
exact approach, the schedule will be constructed as follows: all surgeries of A/2 h will be
assigned to the first operating room (two surgeries for each day). Furthermore, the rest
of the operating rooms will have one surgery of a duration of H and five surgeries of a
duration of h on each day. Thus, there will be no gaps in the schedule at all. Applying
the first algorithm to this example yields the following results: Since at the first step of
the algorithm we construct the schedule for all departments separately, all surgeries of
A/2 h will be assigned to the first operating room, but then all other surgeries will be on
the waiting list. According to the second and third steps of Algorithm 1 on page 9, the
operations from the waiting list will be distributed as follows: operating rooms number
2, 3, 4, and 5 will be “packed” with surgeries of a duration of h = 1 h, this will require
4·A·D

h = 176 surgeries, where D = 4 days. The remaining four surgeries of a duration of
h will be assigned to OR six on the first day. Finally, one surgery of a duration of H will
be assigned to operating room numbers 6, 7, 8, 9, and 10 for each day. So, it turns out that
the number of gap hours is equal to M′ · D · (A − H)− 4 = 96 h, where M′ = 5 it is the
number of not-fully-filled operating rooms. As a result, we obtain that a rough estimate of
the absolute error of Algorithm 1 is 96 h.

Worst case of Algorithm 2. To construct the worst case for Algorithm 2, we introduce
an additional restriction: 10 to 20 patients must be admitted to each department. Without
this restriction, Algorithm 2 does not make much sense for extreme cases. To construct the
worst case, we distribute the surgeries as follows: In each department of the first subgraph
of the decomposition graph in Figure 5, we place 10 surgeries of duration (A − H) = 5 h.

69

Mathematics 2022, 10, 784

Furthermore, in each department of the second subgraph we place 10 surgeries of duration
H = 6 h. We also place 10 surgeries of duration (A − H) hours and 10 surgeries of duration
H hours, respectively, in department one and two. Thus, the exact approach would give
an optimal solution with the number of gap hours equal to zero: each operating room
would have one surgery of duration (A − H) and one surgery of duration H on each day.
Furthermore, following Algorithm 2, we obtain that half of the operating rooms for each
day have one surgery of duration H, and the other half of the operating rooms for each
day have two surgeries of duration (A − H). We get the following estimate of the absolute
error of gap hours for Algorithm 2:

Gapabs =
M
2

· D · (A − H) +
M
2

· D · (A − 2(A − H)) =
M
2

· D · H = 120, (10)

where M = 10—the number of operating rooms.
The result is that a rough estimate of the absolute error of Algorithm 2 is 120 h.

However, although Algorithm 2 has a worse accuracy estimate, Algorithm 1 performs
worse on average, as will be shown in the results below.

Our problem is a generalization of the 0–1 multiple knapsack problem. This problem is
NP-hard, and it is shown in [15], where our problem is called LEGAP—a special case of the
generalized assignment problem. Since it is NP-hard, it is not possible to obtain theoretical
estimates for these algorithms. To estimate the practical accuracy of the algorithms, the
extreme cases of the examples were constructed. In the first case, the surgeries with the
minimum variation in the duration of surgeries were taken, and in the second case, with
the maximum variation. As shown in [16,17], for examples with a large scatter of surgery
duration, the core-type algorithms work badly, and for examples with a small scatter of
surgery duration, the graphical-type algorithms work badly. For this experiment, the data
were divided into two types. In the first case, the duration of the surgeries varies from 1.5 h
to 9 h, with a uniform distribution. That is, the duration of surgeries has a very large scatter.
In the second case, the duration of surgeries varies from 4.5 to 5.5 h, also with a uniform
distribution. Using this experiment, we analyze the accuracy estimate of our algorithms
depending on the width of the range of the duration of the surgeries. The other parameters
of data remained the same as for the previous experiments. The assignment of surgeries
to each of the 10 departments for each case is the same. However, in this experiment, half
of the working week was taken, i.e., 2 days. Accordingly, half as many surgeries were
taken. This was done so that the MILP solver could solve all the examples in a reasonable
time. For each type, 100 examples were generated and tested for each of our approaches.
Figures 6 and 7 show a graph of the dependence of the gap hours in the examples with
a small variation of the duration of surgeries and on the examples with a large variation
of the duration, accordingly. In Figure 6, it can be seen that Algorithm 1 performs better
in almost all examples compared to Algorithm 2. The absolute error of the algorithms
compared to the exact approach is not very large for surgeries with a small scatter, while
it is already significantly larger for surgeries with a large scatter. Furthermore, it can be
noticed that the scatter of the gap hours in Figure 6 is smaller than in Figure 7, which is
quite logical, since the examples in Figure 6 are close to each other.

70

Mathematics 2022, 10, 784

Figure 6. Graph of the dependence of the gap hours on the examples with a small variation of
the duration.

Figure 7. Graph of the dependence of the gap hours on the examples with a large variation of
the duration.

The average values of the objective function and the number of guest surgeries are
shown in Table 1. In the case of surgeries with a wide variation of duration, the absolute
error of the gap hours for Algorithm 1 is 7.2 h, and for Algorithm 2 it is 8.9 h, while the
number of guest surgeries for each approach is about the same. Now consider the case
of surgeries with a small variation of duration. The absolute error of the gap hours for
Algorithm 1 is only 0.2 h, and for Algorithm 2 it is 2.1 h. However, the average number of
guest surgeries is different for each approach. For the exact approach, the average number
of guest surgeries is equal to one. This can be explained by the fact that in each department
the duration of the surgeries is almost the same. In Algorithm 2, the number of guest
surgeries is not too large either, but Algorithm 1 has an average of 12 guest surgeries. This
is due to the fact that in the second and third steps of Algorithm 1, surgeries are transferred
from one department to another, even with a small improvement in the objective function.
To summarize, our approaches work better for surgeries with a wide range of duration.
This is a good factor for us, since in real life, the durations of surgeries are very different.

71

Mathematics 2022, 10, 784

Table 1. Average values.

Data Type Average Exact Approach Algorithm 1 Algorithm 2

Surgeries with a wide Gap hours, hours 5.7 12.9 14.6
variation in duration Guest surgeries 10.2 12.1 8.8

Surgeries with a small Gap hours, hours 17.7 17.9 20.8
variation in duration Guest surgeries 1.0 11.9 4.0

5. Results

Now we need to compare all approaches on the same data. All results are present
in Tables 2–5; “-” means that the solve time limit is exceeded. The time limit is 30 min.
All 10 examples were generated in the same way described in Section 3. Furthermore, we
present an example schedule with the help of Gantt charts in Figure 8. Guest surgeries are
marked in black.

Figure 8. Example of schedule for exact approach.

Figure 8 presents that there are not many guest surgeries, and the duration of the
surgeries is widely scattered.

Table 2. Computing Time.

Experiment Exact Approach, sec Algorithm 1, sec Algorithm 2, sec

1 1500 1.92 7
2 340 1.97 13
3 1350 2.35 31
4 310 2.99 21
5 150 1.91 9
6 - 2.16 13
7 - 2.15 7
8 - 2.3 11
9 - 2.2 48

10 - 2.5 15

Table 2 shows the computing times for each approach for different examples. The
computational time for the exact approach is extremely data-dependent. Furthermore,
some examples cannot be solved at all within the time limits we set. Furthermore, the

72

Mathematics 2022, 10, 784

examples that are solved are solved long enough. Algorithms 1 and 2 solve the problem
faster. In particular, Algorithm 1 is on average several times faster than Algorithm 2.

Table 3. Gap hours (objective function).

Experiment Exact Approach, Hours Algorithm 1, Hours Algorithm 2, Hours

1 8 18.5 9
2 6 23 16
3 7.7 22 13
4 7 20.5 11.5
5 4.8 16 9
6 - 21.5 12.5
7 - 15.5 7
8 - 17 12.5
9 - 25 13

10 - 23 8

Table 3 compares the total number of gap hours for each approach. The results
obtained by the exact algorithm show that the gaps range from 4.8 to 8 h for the groups of
examples considered, but the results obtained by Algorithm 1 on average differ by 13.1 h
compared to the exact approach. At the same time, the gaps obtained for the examples that
the exact algorithm was unable to calculate averaged 20.4 h for Algorithm 1. Algorithm 2
in turn differs from the exact solution by 5.1 h for the first five examples. Furthermore, for
the following examples, which do not have an exact solution, the gaps average 10.6 h for
Algorithm 2.

Table 4. Guest surgeries.

Experiment Exact Approach Algorithm 1 Algorithm 2

1 17 15 9
2 12 20 13
3 16 26 13
4 13 16 13
5 14 26 7
6 - 31 12
7 - 22 13
8 - 20 13
9 - 18 8

10 - 19 10

Table 4 shows the number of guest surgeries. We have chosen the parameters so that
the number of guest surgeries would be acceptable for each approach. It can be seen that
for Algorithm 2, guest surgeries on average turn out even less than the exact approach;
this is due to the decomposition of the problem into several groups of departments, while
Algorithm 1 has more guest surgeries than the exact approach, because in it we transfer
surgeries from one department to another at steps 2 and 3 of the algorithm.

Table 5. Average values.

Average Exact Approach Algorithm 1 Algorithm 2

Computing time, sec 730 2.2 17.5
Gap hours, hours 6.7 20.2 11.1
Guest surgeries 14.4 21.3 11.2

73

Mathematics 2022, 10, 784

It can be seen that the exact approach can not find the optimal solution within the time
limit for all generated examples. Thus, it can be observed that algorithms have a much
shorter computation time, and at the same time do not lose much in the objective function.
As we can see in Table 4, Algorithm 1 is the fastest, but Algorithm 2 has a running time
not much longer and the objective function is half the size of Algorithm 1. However, pay
attention to the gap hours relative to all available work times of all ORs in these two weeks.
There are 880 h of work time. Furthermore, even in Algorithm 1, the gap hours are only
2.3% of all work time. It is not much different from the optimal solution with 0.8%.

6. Conclusions

This paper presents a formal statement of the problem of the predictive planning of
surgery units in a large medical hospital and outlines the methods for its optimal solution.
The experiments were carried out on real data that was generated based on data provided
by the Burdenko Institute. The managerial insights of this work are to implement a program
for scheduling operating rooms to automate this process and increase patient throughput
at the Burdenko Neurosurgical Center. To achieve this, the plan is to make the existing
model more complex, so that it is as similar as possible to the real situation in the hospital.
In future works, we plan to add the uncertainty of the duration of surgery, urgent patients,
and the work of anesthesiologists.

The hospital report shows some departments are busier than others. Furthermore, our
model implies the possibility of transferring the patients to the operating rooms of other
departments if they are not busy. Our main goal was to increase patient throughput. This
can be achieved by maximizing the number of operating hours. Operating rooms should be
out of work for as little time as possible. The MILP model allows us to construct a long-term
schedule with fewer gaps. Since we have to make a new schedule every time a patient is
removed or added to the waiting list, a new schedule should be made in a short period
of time. Furthermore, since our model is computationally complex, two decomposition
algorithms were presented that significantly reduce the time calculations.

This paper shows that the complexity of the proposed algorithms is significantly
reduced compared to the complexity of the exact approach. This thesis is confirmed in
practice: the exact solution was obtained only in half of the cases. The problem with
the exact approach is that for cases with the same number of applications but different
distributions of surgery durations across operating rooms this approach may not find an
exact solution in an acceptable time. Discussions are carried out regarding the theoretical
estimation of the accuracy of the algorithms. For those examples for which the exact
solution was obtained, the relative error of the solution was calculated. It can be seen that
the first algorithm is further from the exact solution than the second. For further examples,
in the accuracy of which has not been estimated we can also see this pattern. The objective
function value obtained by the first algorithm is much higher than for the second. At the
same time, we see that the computation time for the first algorithm is much less than for
the second. This paper contributes to solving the problem of scheduling operating rooms.
The peculiarity of the problem is that the operating rooms are multidisciplinary. That is,
the operating rooms are assigned to certain departments where patients are admitted. The
MILP model was invented for this problem. This problem is NP-hard. Therefore, it took a
long time to construct the schedule. To solve this problem, two decomposition algorithms
were developed to reduce the solution time. Furthermore, the complexities and rough
estimates of the accuracies of these algorithms are given. In the future, we plan to expand
the model for emergency patients and to add uncertainty, and we also will try a metric
approach [18] for this case.

Author Contributions: Conceptualization, A.A.L. and D.V.L.; methodology, D.V.L.; software, M.L.S.;
validation, M.L.S., D.V.L.; formal analysis, D.V.L.; investigation, A.A.L.; resources, M.L.S.; data
curation, M.L.S.; writing—original draft preparation, D.V.L. and M.L.S.; writing—review and editing,
M.L.S.; visualization, M.L.S.; supervision, A.A.L.; project administration, D.V.L.; funding acquisition,
A.A.L. All authors have read and agreed to the published version of the manuscript.

74

Mathematics 2022, 10, 784

Funding: This research was partially supported by Russian Foundation for Basic Grants, number
20-58-S52006.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The pseudo-real data were generated from real data provided by the
Burdenko Neurosurgical Center.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MILP Mixed-integer linear problem
OR Operating rooms

References

1. Zhu, S.; Fan, W.; Yang, S.; Pei, J.; Pardalos, P.M. Operating room planning and surgical case scheduling: A review of literature. J.
Comb. Optim. 2019, 37, 757–805. [CrossRef]

2. Rahimi, I.; Gandomi, A.H. A Comprehensive Review and Analysis of Operating Room and Surgery Scheduling. Arch. Comput.
Methods Eng. 2021, 28, 1667–1688. [CrossRef]

3. Clavel, D.; Mahulea, C.; Albareda, J.; Silva, M. A decision support system for elective surgery scheduling under uncertain
durations. Appl. Sci. 2020, 10, 1937. [CrossRef]

4. Rivera, G.; Cisneros, L.; Sánchez-Solís, P.; Rangel-Valdez, N.; Rodas-Osollo, J. Genetic algorithm for scheduling optimization
considering heterogeneous containers: A real-world case study. Axioms 2020, 9, 27. [CrossRef]

5. Allen, T.T.; Hernandez, O.K.; Roychowdhury, S.; Patterson, E.S. Practical Optimal Scheduling for Surgery. In Proceedings of the
International Symposium on Human Factors and Ergonomics in Health Care; Sage: Los Angeles, CA, USA, 2020; Volume 9, pp. 1–14.
[CrossRef]

6. Shylo, O.V.; Prokopyev, O.A.; Schaefer, A.J. Stochastic operating room scheduling for high-volume specialties under block
booking. INFORMS J. Comput. 2013, 25, 682–692. [CrossRef]

7. Gür, Ş.; Eren, T.; Alakaş, H.M. Surgical operation scheduling with goal programming and constraint programming: A case study.
Mathematics 2019, 7, 251. [CrossRef]

8. Lin, Y.K.; Li, M.Y. Solving Operating Room Scheduling Problem Using Artificial Bee Colony Algorithm; Healthcare Multidisciplinary
Digital Publishing Institute: Basel, Switzerland, 2021; Volume 9, p. 152. [CrossRef]

9. Kayvanfar, V.; Akbari Jokar, M.R.; Rafiee, M.; Sheikh, S.; Iranzad, R. A new model for operating room scheduling with elective
patient strategy. INFOR Inf. Syst. Oper. Res. 2021, 59, 309–332. [CrossRef]

10. Naderi, B.; Roshanaei, V.; Begen, M.A.; Aleman, D.M.; Urbach, D.R. Increased surgical capacity without additional resources:
Generalized operating room planning and scheduling. Prod. Oper. Manag. 2021, 30, 2608–2635. [CrossRef]

11. Hans, E.; Wullink, G.; Van Houdenhoven, M.; Kazemier, G. Robust surgery loading. Eur. J. Oper. Res. 2008, 185, 1038–1050.
[CrossRef]

12. Pang, B.; Xie, X.; Song, Y.; Luo, L. Surgery scheduling under case cancellation and surgery duration uncertainty. IEEE Trans.
Autom. Sci. Eng. 2018, 16, 74–86. [CrossRef]

13. Liu, H.; Zhang, T.; Luo, S.; Xu, D. Operating room scheduling and surgeon assignment problem under surgery durations
uncertainty. Technol. Health Care 2018, 26, 297–304. [CrossRef] [PubMed]

14. Lazarev, A.A.; Lemtyuzhnikova, D.V.; Mandel, A.S.; Pravdivets, N.A. The Problem of the Hospital Surgery Department
Debottlenecking In International Conference on Learning and Intelligent Optimization; Springer: Cham, Germany, 2020; pp. 289–302.
[CrossRef]

15. Ohlsson, M.; Pi, H. A study of the mean field approach to knapsack problems. Neural Netw. 1997, 10, 263–271. [CrossRef]
16. Hans, K.; Ulrich, P.; David, P. Knapsack Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004;

ISBN 10:3540402861/ISBN 13:9783540402862.
17. Lazarev, A.A.; Werner, F. A graphical realization of the dynamic programming method for solving NP-hard combinatorial

problems. Comput. Math. Appl. 2009, 58, 619–631. [CrossRef]
18. Lazarev, A.A.; Lemtyuzhnikova, D.V.; Werner, F. A metric approach for scheduling problems with minimizing the maximum

penalty. Appl. Math. Model. 2021, 89, 1163–1176. [CrossRef]

75

Citation: Makarovskikh, T.;

Panyukov, A. Special Type Routing

Problems in Plane Graphs.

Mathematics 2022, 10, 795. https://

doi.org/10.3390/math10050795

Academic Editor: Alexander A

Lazarev

Received: 10 February 2022

Accepted: 26 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Special Type Routing Problems in Plane Graphs

Tatiana Makarovskikh *,† and Anatoly Panyukov †

Department of System Programming, South Ural State University, 454080 Chelyabinsk, Russia;
paniukovav@susu.ru
* Correspondence: makarovskikh.t.a@susu.ru
† These authors contributed equally to this work.

Abstract: We considered routing problems for plane graphs to solve control problems of cutting
machines in the industry. According to the cutting plan, we form its homeomorphic image in the
form of a plane graph G. We determine the appropriate type of route for the given graph: OE-
route represents an ordered sequence of chains satisfying the requirement that the part of the route
that is not passed does not intersect the interior of its passed part, AOE-chain represents OE-chain
consecutive edges which are incident to vertex v and they are neighbours in the cyclic order O±(v),
NOE-route represents the non-intersecting OE-route, PPOE-route represents the Pierce Point NOE-
route with allowable pierce points that are start points of OE-chains forming this route. We analyse
the solvability of the listed routing problems in graph G. We developed the polynomial algorithms
for obtaining listed routes with the minimum number of covering paths and the minimum length of
transitions between the ending of the current path and the beginning of the next path. The solutions
proposed in the article can improve the quality of technological preparation of cutting processes in
CAD/CAM systems.

Keywords: routing; plane graph; polynomial algorithm

1. Introduction

Simulation of some control and automation design problems [1,2] explains interest in
routing problems for CAD/CAM systems. Lots of them devoted to finding the routes satis-
fying certain constraints have arisen from specific practical situations. All kinds of trajectory
problems are universal mathematical models of optimization and control tasks. The exam-
ples of them are the following: (1) heuristic algorithms for constructing routes (N.A. Eapen
and R.B. Heckendorn [3], S.Q. Xie [4], Y. Jing and C. Zhige [5], M.K. Lee and K.B. Kwon [6],
J. Hoeft and U.S. Palekar [7]); (2) trajectory stabilization of mobile robots (V.A. Utkin [8]);
(3) management of routing process and optimization (A.A. Lazarev [9]); (4) problems of
obtaining the routes in graphs (H. Fleischner [10]); (5) the routing problem for cutting
blanks from sheet material (V.M. Kartak [11], A.A. Petunin [12,13], A.G. Chentsov [14,15],
I. Landovskaya [16]).

The capabilities of modern equipment for cutting sheet material allow using the
cutting plans with the combining of contours for cut-out of separate parts. This combining
of cuts allows reducing the material loss, the cutting length and the number of idle passes.

Algorithms for obtaining the cutting plans for tasks with combined cuts do not funda-
mentally differ from algorithms that do not allow any combining. However, the algorithms
for finding the routes of the cutter moving are fundamentally different. Therefore, the de-
velopment of algorithms for finding the route of the cutter for plans allowing the combining
of the cut parts contours is still an open task.

In this paper, we consider the routing problems in plane graphs. These graphs are
homeomorphic images of cutting plans. The cutter path is defined as a path covering all
the boundaries of the cut parts. The main constraint on this path is that the faces of the
route’s initial part do not intersect with the edges of the remaining part. For flame cutting,

Mathematics 2022, 10, 795. https://doi.org/10.3390/math10050795 https://www.mdpi.com/journal/mathematics
76

Mathematics 2022, 10, 795

we need the following additional constraints on a path: (1) absence of self-intersections of
the cutting path (NOE-condition), and (2) allowance to start cutting from allowable pierce
vertices (PPOE-condition).

In practice, the most common approach does not involve a combination of the contours
of the cut parts. This method is material and energy-consuming [13,17,18]. In one of such
papers [3], the shapes are considered to be polygons. There are two different ways to
cut each polygon: (1) entirely (complete cutting approach) or (2) partially (partial cutting
approach) before cutting the next one. The authors of [3] proposed the approximation
algorithm that uses such concepts as matching, spanning tree, and triangulation (MASTRI).
This algorithm runs a time not greater than O(n log n), where n is the total number of all
the polygons vertices. The cutting path computed by algorithm [3] is guaranteed to be
within a factor of 3/2 of the optimum distance of the cutter. Hence, MASTRI algorithm
can be used for computing cutting paths in industries like sheet metal cutting. It should be
noted that the possibility of using concepts of matching, spanning tree, and triangulation
was noted in our article [19].

The first attempts of constructing the routes in which the passed part of the route
does not cover the edges of the remaining part were made in the work of U. Manber and
S. Israni [20] where the image of the cutting plan is represented as an equivalent graph. The
objective of this research is to cover this graph with a minimum number of chains starting
in the pierce points or breakthroughs. Since the graph has 2k vertices of odd degree, then k
pierce points are necessary and sufficient to traverse the graph. The cutter path problem
formulation includes such parameters as manufacturing cost, efficiency, and distortion
considerations. Some algorithms solving this task are considered in [20]. However, these
algorithms do not have sufficient formalization, and the formulation of the problem does
not take into account some technological constraints for flame cutting. Later, U. Manber
and S.W. Bent [21] noted the need to construct a self-intersecting route and provided proof
that this task belongs to the N P class. This proof is a compilation H. Fleischner’s results [22]
introducing the concept of an A-chain. This chain has the allowed transitions between
edges, that are specified in a cyclic order at each vertex of the graph. H. Fleischner also
proved that the task of constructing the A-chain is NP-hard in general, but there are some
special cases for which this task is solvable in polynomial time. One of such cases is a
4-regular graph. U. Manber and S.W. Bent in fact use A-chain instead of a self-intersecting
chain. If we consider the partial case when the cutting plan is a plane Euler graph, then
it is known that its dual face graph is bichromatic. For this case, S.B. Bely [23] proved the
existence of an Euler cycle homeomorphic to a plane Jordan curve without self-intersections.
However, it is unclear how to use this possibility for CAD/CAM systems for technological
preparation of cutting processes.

The listed above problems have been solved by the authors. A rigorous formaliza-
tion of these problems in terms of OE-chains is given in our paper [24]; however, the
OE-chain allows the possibility of self-intersection of the trajectory. Representation of a
plane Euler graph in the form of a self-intersecting Jordan curve has been announced at
conferences [25,26]. We proved the necessary and sufficient conditions of PPOE-routes ex-
istence and built the polynomial algorithm PPOE-routing constructing such routes for any
plane graph. The correctness of this algorithm has been announced at the conference [27].
The purpose of this article is to present the results obtained using a single terminology.

2. Methods

2.1. Abstracting the Cutting Plan to a Plane Graph

The information on the part shape is not used when we determine the sequence of
cutting the fragments of the cutting. Hence, all the curves without self-intersections and
contacts on the plane, representing the shape of the parts, are interpreted as the edges of the
graph. All the points of intersection and contact are represented as the vertices of the graph.
So, it is necessary to introduce additional functions on the set of vertices, faces and edges
of the resulting graph to analyse the implementation of the given technological constraints.

77

Mathematics 2022, 10, 795

We consider a plane S as a model of cutting plan, then a plane graph G(V, E) with
outer face f0 ⊂ S be the cutting plan model. The set of edges E(G) ⊂ S of this graph is
the Jordan curves with pairwise disjoint interiors and homeomorphic to open segments.
Hence, the set of vertices V(G) ⊂ S is the set of bounding points of these segments. For any
part of the graph J ⊆ G, we denote the set-theoretic union of its interior faces (the union of
all connected components of S \ J that do not contain an outer face) by Int(J). Then, Int(J)
can be interpreted as a part cut off a sheet. The sets of vertices, edges and faces of the graph
G we denote as V(G), E(G) and F(G), respectively. Since we consider graph G as a model
of a cutting plan, there is no case when G is non-planar.

Theorem 1. The topological representation of plane graph G = (V, E) on plane S up to homeo-
morphism is defined by the following functions for each edge e ∈ E, k = 1, 2:

• vk(e) is the pair of vertices incident to e,
• lk(e) is the edges obtained by rotating edge e counter-clockwise around a vertex vk,
• rk(e) is the edges obtained by rotating edge e clockwise around a vertex vk,
• fk(e) is the face placed on the left when moving along the edge e from the vertex vk(e) to the

vertex v3−k(e).

Proof. An illustration of the functions from the Theorem 1 is given in Figure 1.

Figure 1. Functions representing graph edges.

Since functions vk(e), fk(e), lk(e), k = 1, 2 for graph G edges define incident vertices,
faces, and adjacent edges for each e ∈ E(G) this statement is obvious.

Figure 2 illustrates an example of a cutting plan. Its homeomorphic image is given in
Figure 3 and the named functions for its computer representation are given in Table 1. We
can interpret any path obtained in graph G as a trajectory of the cutter since we know the
inverse images of all the vertices.

Figure 2. Example of cutting plan.

Figure 3. Geomorphic image of cutting plan in Figure 2.

78

Mathematics 2022, 10, 795

Table 1. Encoding of the plane graph in Figure 3.

e v1(e) v2(e) l1(e) l2(e) r1(e) r2(e) f1(e) f2(e)

e1 v2 v9 e4 e21 e3 e23 f0 f1
e2 v4 v6 e3 e8 e7 e9 f1 f2
e3 v2 v4 e1 e5 e4 e2 f1 f3
e4 v2 v3 e3 e6 e1 e5 f3 f0
e5 v3 v4 e4 e7 e6 e3 f3 f5
e6 v3 v7 e5 e23 e4 e13 f5 f0
e7 v4 v1 e2 e13 e5 e8 f2 f5
e8 v6 v1 e10 e7 e2 e11 f7 f2
e9 v6 v5 e2 e15 e10 e20 f1 f12
e10 v6 v10 e9 e11 e8 e15 f12 f7
e11 v1 v10 e8 e16 e12 e10 f7 f8
e12 v1 v12 e11 e14 e13 e16 f8 f6
e13 v1 v7 e12 e6 e7 e14 f6 f5
e14 v7 v12 e13 e17 e23 e12 f6 f4
e15 v5 v10 e20 e10 e9 e19 f11 f12
e16 v10 v12 e18 e12 e11 e17 f9 f8
e17 v12 v11 e16 e22 e14 e18 f9 f4
e18 v10 v11 e19 e17 e16 e22 f10 f9
e19 v10 v8 e15 e22 e18 e20 f11 f10
e20 v5 v8 e9 e19 e15 e21 f1 f11
e21 v9 v8 e23 e20 e1 e22 f4 f1
e22 v8 v11 e21 e18 e19 e17 f4 f10
e23 v9 v7 e1 e14 e21 e6 f0 f4

2.2. OE-Routing
2.2.1. Basic Definitions

Let us consider the formulation and solution of the problem for constructing the routes
in a plane graph that satisfy the condition that the interior faces of any their initial parts
do not intersect with the edges of the remaining part. Formally, such routes are defined as
an ordered sequence of OE-chains (ordered enclosing chains) of the graph G = (V, E) and
form a class of OE-paths. The definitions, proofs and notations of the theory of routes with
ordered enclosing (OE-routes) are introduced in [19]. Let us give these definitions to avoid
the loss of generality.

Definition 1. Chain C = v1e1v2e2 . . . vk in plane graph G has ordered enclosing (is an OE-chain),
if for any its initial part Cl = v1e1v2e2 . . . el, l ≤ (|E|) the condition Int(Cl) ∩ E = ∅ holds.

Theorem 2 ([19]). Let G = (V, E) be a plane Euler graph. For any vertex v ∈ V(G) incident to
outer (infinite) face of graph G there exists Euler OE-cycle C = ve1v1e2v2 . . . v|E|−1e|E|v.

The proof of this theorem gives the recursive algorithm of OE-cycle constructing.
This algorithm has computing complexity O(|E|2). However, there exists non-recursive
approach with computing complexity O(|V| · log |E|) [28].

Let’s generalize Definition 1 up to the notion of OE-route plane graphs (it is possible
non-Eulerian and disconnected).

Definition 2. The ordered sequence of edge-disjoint OE-chains

C0 = v0e0
1v0

1e0
2...e0

k0
v0

k0
, C1 = v1e1

1v1
1e1

2...e1
k1

v1
k1

, . . . ,

Cn−1 = vn−1en−1
1 vn−1

1 en−1
2 ...en−1

kn−1
vn−1

kn−1
,

covering graph G and such that

(∀m : m < n),
(⋃m−1

l=0
Int(Cl)

)
∩
(⋃n−1

l=m
Cl
)
= ∅

79

Mathematics 2022, 10, 795

is a route with ordered enclosing (OE-route).

Definition 3. Let a route consisting of a minimal (in cardinality) ordered sequence of edge-disjoint
OE-chains in a plane graph G be called an Euler route with ordered enclosing (Euler OE-route),
and OE-chains forming it be the Euler OE-cover.

Theorem 3 ([27]). Let G connected plane graph, Vodd(G) be the set of its odd vertices, then the
cardinality N of Euler OE-cover of G satisfies the inequality

k =
|Vodd(G)|

2
≤ N ≤ |Vodd(G)| = 2k

holds. The upper and lower bounds are reachable.

The cover capacity is significantly influenced by the presence of bridges in the graph.
In their absence, the lower bound is reached, in the case of the existence of vertices of odd
degree incident to the outer face; or, if there are no such vertices, the cardinality of the cover
is one higher than the lower bound.

The construction of the OE-route of the graph G solves the considered cutting problem
in the absence of restrictions on self-intersections and the placement of starting (i.e., pierce)
points for all chains.

2.2.2. Algorithms Constructing OE-Chains for Connected Graph G

Algorithms for constructing OE-routes in plane Eulerian graphs are known [28]. The pos-
sibility of constructing an OE route in an arbitrary plane graph demonstrates Theorem 4 [24].

Theorem 4. Let G = (V, E) be plane connected graph without bridges on S. There exists the set of
edges H : (H ∩ S)\V = ∅ so that graph Ĝ = (V, E ∪ H) be Euler, and there exists Euler cycle in
graph Ĝ, such that C = v1e1v2e2...env1, n = |E|+ |H|, for any its initial part Cl = v1e1v2e2...vl,
l ≤ |E|+ |H| the condition Int(Cl) ∩ G = ∅ holds.

We use the concept of the edge e rank while considering the algorithms of OE-routes
constructing.

Definition 4. The rank of edge e ∈ E(G) be the value of function rank(e) : E(G) → N

recursively defined as following:

• let E1 = {e ∈ E : e ⊂ f0} be the set of edges bounding outer face f0 of graph G(V, E), then
(∀e ∈ E1)(rank(e) = 1);

• let Ek(G) be the set of edges of rank 1 for graph

Gk

(
V, E\

(
k−1⋃
l=1

El

))
,

then (∀e ∈ Ek)(rank(e) = k).

Definition 5 ([28]). Let rank of face f ∈ F(G) be a value of function rank : F(G) → N0:

rank(f) =
{

0, if f = f0,
mine∈E(f) rank(e), otherwise,

where E(f) be a set of edges incident to outer face f ∈ F.

Definition 6 ([28]). Let rank of vertex v ∈ V(G) be a value of function rank : V(G) → N:
rank(v) = mine∈E(v) rank(e) where E(v) is a set of edges incident to vertex v ∈ V.

80

Mathematics 2022, 10, 795

We developed the following polynomial time algorithms for constructing OE-routes
for plane graphs:

• Euler OE-cycle in plane Euler graph (algorithm OE-CYCLE, computing complexity
O(|V|2) [29]);

• connected OE-route of Chinese postman for any plane connected graph; removing re-
traversed edges will result in a OE-route; this route is not optimal either in terms of the
number of covering chains or the length of idle passes (algorithm CPP_OE, computing
complexity O(|E(G)| · |V(G)|) [30]);

• a route in plane connected graph without bridges being the OE-cover optimal by the
number of chains, the length of idle passes may not be optimal (algorithm OECover,
computing complexity O(|E| · log |V|) [19]);

• OE-route in plane connected graph without bridges with additional edges, connecting
the odd vertices (algorithm M-COVER with computing complexity O(|E| · log |V|)); this
algorithm appended by algorithm of finding the shortest matching between odd
vertices allows to obtain OE-cover with minimal summary length of additional edges
(computing complexity O(|E| ·

√
|V|)) [19].

In this paper, we describe in details those of them that are not published in open access
for the convenience of the reader.

Algorithm 1 OECover covers the plane graph G by an ordered sequence of OE-chains.
The graph G is encoded by the list of edges, and for each edge e the functions considered in
Theorem 1 are defined.

Algorithm 1 Algorithm OECover

Require: G = (V, E) be a plane graph; Vodd ⊆ V be the set of odd vertices;
Ensure: f irst ∈ E, last ∈ E, mark1 : E → E;

1: Initiate(); � Assign the initial values of all used variables
2: Order(); � Define the ranks of edges, and form the ordered lists for vertices
3: SortOdd(); � Sorting of odd vertices by decreasing of their rank
4: if {∃v ∈ Vodd| v ∈ f0} then � Define the starting value of a chain
5: v0 ← arg max

v∈Vodd
rank(v); Vodd ← Vodd\{v0};

6: else v0 ← v| v ∈ f0;
7: end if
8: while (true) do
9: v ← FormChain(v0); � Form a chain from the defined vertex

10: Vodd ← Vodd\{v}; � Exclude the starting vertex of current chain from the list
11: if (thenVodd = ∅) � Check the possibility to construct one more chain
12: break;
13: end if
14: v0 ← arg max

v∈Vodd
rank(v);

15: end while

In the body of the procedure Initiate, the initial values of all used variables are
assigned, and the first edge e0 ∈ E belonging to the boundary of the outer face f0 is defined.

Procedure Order Algorithm 2 functional purpose of the Order procedure is in:
(1) defining the value rank(e) for each edge e ∈ E (note that the rank of any edge of a

plane graph can be determined in time O(|E|) using this procedure);
(2) forming the list Q(v) of incident edges for each vertex (the edges are ordered in

descending order of the rank() value).

81

Mathematics 2022, 10, 795

Algorithm 2 Procedure Order
1: procedure ORDER
2: while f irst �= ∞ do
3: while (mark(ne) = ∞) and (last �= ne) do
4: M1: � Forming the queue of M1-marked edges
5: rank(ne) ← k; � Define the rank of an edge
6: mark1(last) ← ne;
7: if v2(ne) �= v then
8: REPLACE(ne);
9: end if

10: v ← v1(ne); last ← ne; ne ← l1(ne);
11: end while
12: e ← f irst; f irst ← mark1(f irst); v ← v2(e); ne ← l2(e);
13: M2: � Placing the M1-marked edges to the lists of the corresponding vertices
14: k ← rank(e) + 1; mark1(e) ← Stack(v1(e)); mark2(e) ← Stack(v);
15: if mark1(e) �= 0 then
16: � Form queue of M1-marked edges of all unmarked edges bounding f1(e)
17: if v1(e) = v1(mark1(e)) then
18: prev1(mark1(e)) ← e;
19: else
20: prev2(mark1(e)) ← e;
21: end if
22: end if
23: if mark2(e) �= 0 then � Pushing of edge to stacks of vertices v1(e) and v2(e)
24: if v = v1(mark2(e)) then
25: prev1(mark2(e)) ← e;
26: else
27: prev2(mark2(e)) ← e;
28: end if
29: Stack(v) ← e; Stack(v1(e)) ← e;
30: end if
31: end while
32: end procedure

After executing the Initiate and Order procedures, the odd vertices v ∈ Vodd are
ordered in ascending order of their rank using the SortOdd procedure. The rank of the
vertex v is the value of the function rank(Stack(v)). Then, the loop do...while is executed
using the FormChain procedure (see Algorithm 3). This cycle constructs a sequence of
|Vodd|/2 simple paths between pairs of odd vertices. If none of the odd vertices is adjacent
to the outer face, then it is necessary to construct a |Vodd|/2 + 1 chain, where the first of the
constructed paths C0 starts at vertex of even degree v0 ∈ f0, adjacent outer face, and ends
at an odd vertex. All the chains of the cover C1, . . . Cn−1 are connecting the odd vertices,
and the last one Cn starts at odd vertex, and ends at vertex v0 ∈ f0.

The aim of FormChain procedure is to obtain the OE-chain starting in a given vertex
w and ending in some odd vertex v ∈ Vodd, v �= w. As a result of the procedure, a simple
chain will be obtained Ci = vi

0ei
1vi

1ei
2 . . . ei

kvi
k, for which vi

1, vi
2, ...vk−1 /∈ Vi

odd, and for i �= 0
and i �= n vertices vi

0, vi
k ∈ Vodd, if i = 0 vertex vi

k ∈ Vodd, and if i = n vertex vi
0 ∈ Vodd,

ei = arg max
e∈E(vi)\{el |l<i}

rank(e), vi+1 = v1(ei), i = 1, 2, . . . , k,

moreover, for any initial part Cl = v0e1v1e2v2 . . . el , l ≤ k and for any vertex v ∈ V
the inequality

min
e∈E(v)

⋂
E(Cl)

rank(e) > max
e∈E(v)\E(Cl)

rank(e)

holds.

82

Mathematics 2022, 10, 795

Algorithm 3 Procedure FormChain
1: procedure FORMCHAIN(In: w starting vertex of a chain; Out: v ending vertex of a chain)
2: v ← w; e ← Q(v);
3: do
4: e1 = arg maxe∈Q(v) rank(e);
5: e2 = arg maxe∈Q(v): f1(e)= f2(e) rank(e);
6: if rank(e1) = rank(e2) then � Find the edge of maximal rank, a bridge if possible
7: e = e2;
8: else
9: e = e1;

10: end if
11: if v = v1(e) then
12: REPLACE(e); � Change the indexes of functions for edge e from k to 3 − k, k = 1, 2
13: end if
14: E(G) ← E(G) \ {e}; � Delete edge e and delete faces divided by edge e
15: Trail ← Trail ∪ {e};
16: v ← v1(e);
17: while (v �∈ Vodd&Q(v) �= ∅);
18: return v;
19: end procedure

Theorem 5. Let G = (V, E) be a plane connected bridgeless graph on S, and Vodd ⊂ V be the set
of odd vertices. For any matching M on set VOdd in graph Ĝ = (V, E ∪ M), there exists Euler
cycle C = v1e1v2e2...env1, n = |E|+ |M|, for any initial part Cl = v1e1v2e2...vl, l ≤ |E|+ |M|
of which, the condition Int(Cl) ∩ G = ∅ holds.

The proof of Theorem 5 is constructive and consists in proving the efficiency of the
algorithm M-Cover (see Algorithm 4) for constructing a cover for any matching on the set
of odd vertices [19].

Algorithm 4 Algorithm M-Cover

Require: plane connected graph G, functions vk(e), lk(e), e ∈ E(G), k = 1, 2; vertex v0 ∈ V(G)
incident to outer face; matching M on set of odd vertices VOdd; boolean function IdleM : VOdd →
{false, true} on set of odd vertices VOdd;

Ensure: almost ordered set C of OE-chains of graph G, being the OE-cover of graph G;
1: Order (G); � Define rank() for all e ∈ E(G), v ∈ V(G)
2: v := v0; � Constructing
3: while Q(v) �= ∅ do
4: FormChain(v, v);
5: if IdleM(v) ∨ (Q(v) = ∅) then
6: u ← M(v); � Vertex u is a pair for vertex v in matching M
7: VOdd ← VOdd \ {u, v} � Delete vertices u, v from VOdd
8: v ← u; � Finish constructing the current chain
9: end if

10: end while
11: End of algorithm

The main difference of this algorithm from OE-Cover is that for each vertex v ∈ VOdd
the next one u = M(v) ∈ VOdd is fixed. It is the vertex to which the transition is made.
Algorithm M-Cover can finish constructing the current chain both at the first visit to the
vertex v ∈ VOdd, and at the moment when the vertex becomes dead-end (i.e., Q(v) = ∅).
To determine at what moment to finish the constructing of the chain, the values of

83

Mathematics 2022, 10, 795

IdleM(v) = (rank(v) ≤ rank(M(v))) ∧
(

fM(v) � fv
)
, v ∈ VOdd,

are used, where fw = arg min f :v∈ f⊂F(G) rank(f), w ∈ VOdd. Here � is partial ordering on
F(G) induced by tree TG′

f 0 of shortest paths to vertex f0 ∈ F:

(fi � f j) ↔
(

f j belongs to chain TG′
f0

between fiand f0

)
.

To construct the optimal cover (i.e., cover with a minimal length of additional edges)
it is enough to take the shortest matching on set of odd vertices Vodd as M. This task is
realized by the following Algorithm 5.

Algorithm 5 OptimalCover

Require: plane graph G represented by the list of edges with defined functions vk(e), lk(e), fk(e),
k = 1, 2

Ensure: cover of graph G by OE-chains Cj, j = 1, ..., |Vodd|/2
1: Define the shortest matching M on set Vodd
2: Run algorithm M-Cover for graph G and matching M
3: Stop

Obviously, Algorithm 5 allows us to construct the optimal OE-cover, and its computing
complexity is not greater than O(|V|3) (but by using special data structures and algorithms,
it is possible to run this algorithm by the time not exceeding O(|E(G)| ·

√
|V(G)|)). This

estimation is defined by the computing complexity of Step 1.

2.3. Constructing of Routes Satisfying the Combination of Constraints

During the technological preparation of the cutting process, various constraints on the
trajectory of the cutting tool may appear. One of them is the task considered above, where
the cut off part of the sheet of the obtained route does not require additional cuts. However,
in practice, it is required to fulfil additional constraints on the absence of intersection of
cuts and on allowable pierce points that are start points of OE-chains forming this route.

To solve a problem of the cuts intersection absence at each vertex of the graph, a cyclic
order of traversing the edges is specified, and the continuation of the traversal along the
chain is carried out only by this cyclic order. In the general case, the problem of finding such
a chain in a graph belongs to the class of NP-complete problems, but there are effective
algorithms of its solution for some special cases.

2.3.1. AOE-Routs

Let us consider Euler chain

T = v0, k1, v1, . . . , kn, vn, vn = v0

in graph G = (V, E). Let we know the cyclic order O±(v) defining the transitions system
AG(v) ⊆ O±(v) for each vertex v ∈ V. In the case when ∀v ∈ V(G) AG(v) = O±(v) the
transitions system AG(v) is called the full transitions system, and chain satisfying this
system is AG-compatible.

Definition 7. AG-compatible chain T is called A-chain. Thus, consecutive edges in the chain T
incident to vertex v are the neighbours in the cyclic order O±(v) [31].

Definition 8. The chain is called AOE-chain if it is OE-chain and A-chain simultaneously [32].

84

Mathematics 2022, 10, 795

Theorem 6. If there is A-chain in a plane graph G then there is also AOE-chain in this graph [32].

Theorem 7. Plane connected 4-regular graph G has AOE-chain.

To prove this theorem, we need to introduce some definitions and prove some propositions.

Definition 9. The partial graph Gk of graph G for which E(Gk) = {e ∈ E(G) : rank(e) ≥ k} is
called partial graph of rank k.

Preliminarily, the “correct” splitting of all cut-vertices of partial graphs Gk is performed,
so that as a result of the splitting, we get a graph for which any partial graph Gk has no
cut-vertices. The vertices splitting is a local operation, hence the sequence of splitting does
not affect the total result. The “correct” transition is one between arcs corresponding of a
cyclic order and incident to the different pairs of faces (see Figure 4b)). The splitting result,
in this case, is shown in Figure 4b).

(a) (b)

Figure 4. Splitting of cut-vertices of rank k. (a) The correct transitions system for splitting the cut-
vertex of partial graph Gk. (b) Splitting according to the transitions system in cut-vertex for partial
graph Gk.

These propositions imply the effectiveness of the CUT-POINT-SPLITTING Algorithm 6
running in time not greater than O(|E(G)| log |V(G)|).

Theorem 8. Algorithm AOE-CHAIN constructs AOE-chain for plane connected 4-regular graph
G any partial graph Gk, k = 1, 2, . . . of which has no cut-vertices. Algorithm solves the problem by
the time O(|E(G)| · log |V(G)|).

The proof of this algorithm’s effectiveness [32] finishes the proof of Theorem 7.

Proposition 1. Vertex incident to four edges bounding outer face is cut-vertex.

Proposition 2. The outer face of a partial graph Gk is the union of all faces of rank k in graph G.

Let us consider the Algorithm 7 for constructing the AOE-chain for plane connected
4-regular graph [32,33].

85

Mathematics 2022, 10, 795

Algorithm 6 CUT-POINT-SPLITTING

Require: plane connected 4-regular graph G = (V, E) represented for all e ∈ E(G) by functions
vs, ls, rs , s = 1, 2.

Ensure: homeomorphic image of graph G = (V, E) for which any partial graph Gk has no cut-
vertices.
Supplementary data ∀v ∈ V(G):
point(v) is the array of pointers to one of edges incident to vertex v;
rank(v) is the array of vertices ranks;
count(v) is the counter of incident edges of one rank for each vertex;
Supplementary data ∀ f ∈ F(G): array rank(f).

1: Initiate():
2: for all v ∈ V(G) do � Zero the counter of edges of the same rank incident to a vertex
3: point(v) := 0; count(v) := 0
4: end for
5: Ranking(G) � Determining the rank of all vertices, edges and faces of a graph
6: Finding(): � Defining the cut-vertices
7: for all e ∈ E(G) do
8: point(v1(e)) : point(v2(e)) := e = e
9: end for

10: for all v ∈ V(G) do � To look through all the vertices
11:
12: e := point(v); k := rank(v) � Save the rank value k of the incident edge e
13: if v = v1(e) then � Define the direction of edge e
14: s := 1
15: else
16: s := 2
17: end if
18: e := ls(e) � Counting the number of rank k edges incident to vertex v
19: for i = 1 up to 4 do
20: if rank(e) = k then
21: count(v) := count(v) + 1
22: if i < 4 then
23: e := ls(e)
24: end if
25: end if
26: end for
27: if count(v) = 4 then � Split the vertex if it is cut-vertex
28: if (fs(e) = fs(ls(e)) and f3−s(e) = f3−s(ls(e))) or
29: or (fs(e) = f3−s(ls(e)) and f3−s(e) = fs(ls(e))) then
30: e∗ := ls(e), ls(e) := rs(e), rs(rs(e)) := e,
31: rs(e∗) := ls(e∗), ls(ls(e∗)) := e∗

32: else
33: e∗ := rs(e), rs(e) := ls(e), ls(ls(e) := e,
34: ls(e∗) := rs(e∗), rs(rs(e∗)) := e∗

35: end if
36: end if
37: end for

2.3.2. NOE-Routes

Algorithm 6 AOE-CHAIN is used for running the algorithm NOE-CHAIN (see Algorithm 8)
to obtain the non-intersecting OE-chain for plane connected graph [26].

Definition 10 ([26]). Let Eulerian cycle C of plane graph G be non-intersecting if it is homeomor-
phic to a closed Jordan curve without intersections obtained from graph G by applying of O(|E(G)|)
splittings of its vertices.

86

Mathematics 2022, 10, 795

Algorithm 7 Algorithm AOE-CHAIN

Require: plane connected 4-regular graph G = (V, E) defined by functions vk, lk, rk, k = 1, 2 (see
Theorem 1); starting vertex v ∈ V(f0).

Ensure: AChain – output stream containing AOE-chain obtained by the algorithm.
1: Initiate(G, v0);
2: Ranking(G);
3: CUT_POINT_SPLITTING (G); � Deleting of cut-vertices in partial graphs of each rank
4: � Constructing
5: e = arg maxe∈E(v) rank(e) � Choose the edge of maximal rank incident to vertex v
6: repeat
7: if v �= v1(e) then
8: REPLACE(e)
9: end if � If necessary, adjust the numbering of functions for the edge e

10: AChain ←Print(v, e) � Add edge e to the resulting sequence AChain
11: mark(e) := false; counter:=counter+1; v := v2(e) � Mark the current edge as passed
12: if (rank(r2(e)) ≥ rank(l2(e))) then � Choose the next edge of maximal possible rank
13: if mark(r2(e)) then � Check if the chosen edge is already passed
14: e := r2(e) � The passed edges have False value in the arra mark
15: else
16: e := l2(e)
17: end if
18: else
19: if (mark(l2(e)) then � Choose the not passed edge
20: e := l2(e)
21: else
22: e := r2(e)
23: end if
24: end if
25: until (counter > |E(G)|) � Finish the cycle when all the edges are scanned
26: End of Algorithm

Algorithm 8 NOE-CHAIN (G)

Require: plane Euler graph G defined by functions vk(e), lk(e), rk(e), fk(e), k = 1, 2 (see Theorem 1)
and rank(e);

Ensure: C as NOE-chain in graph G;
1: Ĝ = NonIntersecting(G); � Split all vertices of degree higher than 4
2: C∗=AOE_CHAIN(Ĝ); � Obtain AOE-chain in graph G̃
3: C=Absorb(C∗); � Absorb all split vertices and obtain the resulting NOE-chain

Its execution means transforming the initial graph to a plane connected 4-regular
graph by splitting the vertices of degree greater than 4. To obtain the Euler NOE-cycle in a
plane Euler graph without given transitions system, we can act as follows. Let us define
boolean function

Checked(v) =
{

true, if the vertex is viewed;
false, otherwise;

on the set of vertices V(G). When performing initialization, declare all vertices not viewed.
Function NonIntersecting (G) (Algorithm 9) splits all vertices v ∈ V(G) of degree more
than 2k − 1 (k ≥ 3) to k fictive vertices of degree 4 and introduces k fictive edges incident to
the vertices obtained as a result of splitting and forming a cycle (see Figure 5).

87

Mathematics 2022, 10, 795

Figure 5. Splitting of vertex (the edges of graph G are bold lines, and the fictive ones are thick lines)
and modification of the pointers according to the splitting processed.

Algorithm 9 Function NonIntersecting (G)

Require: plane Euler graph G defined by functions vk(e), lk(e), rk(e), fk(e), k = 1, 2 (see Theorem 1)
and rank(e);

Ensure: plane connected 4-regular graph G∗ defined as the same;
1: for all v ∈ V(G) do � Initialization of Checked(v) function
2: Checked(v) := false;
3: end for
4: for all (e ∈ E(G)) do � Searching of vertices of degree greater than 4 and their splitting
5: k := 1; � Consider vertex with index 1, then vertex with index 2
6: while (k ≤ 2) do
7: if (! Checked(vk(e))) then � Process only a previously unprocessed vertex
8: if (k = 2) then � Improve the indexes
9: REPLACE(e); � Process vertices v1(e)

10: end if
11: Handle (e); � Call the function to process vertex v1(e)
12: Checked(v1(e)) := true; � Mark the vertex as considered
13: end if
14: k := k + 1;
15: end while
16: end for

End of function

In the body of function we use the procedure Handle (e, vk(e), k), which processes
each unconsidered graph vertex.

Procedure Algorithm 10 during cycle repeat–until (lines 6–11) counts the degree d of
current vertex v. If d > 4, then the second cycle repeat–until (lines 12–23) runs. Here the
handled vertex is split to d/2 fictive vertices, and d fictive edges incident to these vertices.
There fictive edges form a cycle.

In lines 18–23, we not only change the pointers to edges, but also create a new (fictive)
face F, incident to all fictive vertices and edges, and also define the ranks of fictive edges [26].

Definition 11. The rank of fictive edge (line 20) is equal to the rank of the initial graph face incident
to the entered fictive edge.

The introduced by Handle procedure k/2 fictive vertices and k fictive edges incident to
these vertices are forming a cycle. As a result of processing all graph G vertices, we obtain
the modified plane connected 4-regular graph G∗. Algorithm AOE-CHAIN() constructing
AOE-chain T∗ can be implemented to graph G∗. The considered procedure is realized in
algorithm NonIntersecting (see Algorithm 9). If then in T∗ all the fictive edges and the
incident vertices obtained by splitting the vertex v are replaced by v, then we obtain the
NOE-chain T in the original graph G.

88

Mathematics 2022, 10, 795

Algorithm 10 Procedure Handle (e)
1: procedure HANDLE(e)
2: v := v1(e); � Splitting vertex
3: e f irst := e; � Save the first considered edge
4: d := 0; � Initialization of a counter for vertex degree d
5: F := FaceNum() + 1; � Define the number of a new face
6: repeat � Pass 1: Defining the degree of v
7: le := l1(e);
8: if (v1(le) �= v) then REPLACE(le);
9: end if � Change the indexing of functions if necessary

10: e := le; d := d + 1; � Consider the edge when calculating the degree and move on to the
next one

11: until (e = e f irst); � Repeat until all edges incident v have been considered
12: if (d > 4) then � If the degree of current vertex is greater than 4
13: e := e f irst; � Begin from the first considered edge
14: le := lk(e); � Define the number of its left neighbour
15: enext := lk(le); � Save the edge for the next iteration
16: f l := new EDGE; f le := f l; e f irst := e; � Introduce a fictive edge adjacent to le
17: repeat � Put the pointers for edges
18: e := enext; le := lk(e); f r := f l;
19: f1(f l) := F; f2(f l) := f2(e); � Define faces adjacent to a fictive edge
20: rank(f l) := facerank(f2(f l)); � Define ”rank” of fictive edge
21: � Function facerank() defines the rank of a face according to the definition
22: f l := new EDGE; enext := lk(le);
23: until (lk(le) = e f irst);
24: end if
25: end procedure

Theorem 9. Algorithm NOE-CHAIN solves the task of constructing the NOE-chain for plane Euler
graph by the time O(|E(G)|2) [26].

Note that this algorithm constructs a NOE-chain in a plane Euler graph. In the case of
a plane non-Euler (generally disconnected) graph G, it is necessary to split all vertices of
degree higher than 4 by the Algorithm 10. As a result, we get a graph with vertex degrees
equal to 3 or 4. For this graph, we apply the algorithm for constructing an AOE-cover. In
the chains of the resulting cover, remove all artificial edges and absorb all split vertices. As
a result, we get NOE-cover.

2.3.3. PPOE-Routes

Let us consider a problem arising in the case of intrusion of constraints on the location
of pierce points. Obviously, the number of pierce points is determined by the number of
covering chains. According to Theorem 3, the number of pierce points is at least |Vodd|/2.
This problem can be formalized as following.

• Let faces Fin(G) ⊂ F(G) allow piercing.
• Let odd vertices v− ∈ Vin(G) ⊂ V(G) be incident to face Fin(G).
• Let for odd vertices v+ ∈ Vout = Vodd \ Vin piercing is forbidden.

If the constructed route in the graph is an OE route and all the initial vertices of the
covering chains belong to Vin(G), then this route can be used as a basis for constructing
a route for the cutter trajectory for laser cutting process. Let these routes be called PPOE-
routes [27].

89

Mathematics 2022, 10, 795

Definition 12. Let chain C = v1e1v2e2 . . . vk be called PPOE-chain, if it is OE-chain and starts
from vertex v1 ∈ Vin(G).

Definition 13. Let PPOE-cover of graph G be such an OE-cover of G, consisting of PPOE-
chains.

Definition 14. An ordered sequence of edge-disjoint PPOE-chains in a plane graph G of the
minimal cardinality is called an Euler PPOE-cover.

The problem of determining the realizability of a cutting plan can be formulated as
determining the existence of an Euler PPOE-cover for a plane graph that is a homeomorphic
image of the corresponding cutting plan. Following the existing restrictions, we can
formulate the following necessary condition for the existence of a PPOE-cover.

Theorem 10. Plane connected graph G(V, F, E) without bridges has PPOE-cover if and only if
the cardinality of minimal {Vin, Vout}-cut is at least |Vout|.

Proof. The validity of the necessary condition is obvious, sufficiency follows from the
effectiveness of Algorithm 11 solves the problem of constructing PPOE-cover for a plane
graph G(V, E) without bridges.

To find minimal {Vin, Vout}-cut let us construct a network

N(V ∪ {w}, A ∪ ({w} × Vin))

(i.e., directed graph with source w), in which

• a pair of arcs (u, v), (v, u) ∈ A(N) of capacity 1 corresponds to edge e = {u, v} ∈
E(G);

• vertices v+ ∈ Vout(N), i.e., points of possible end of chain, are the sinks of a unit
power flow;

• vertices v− ∈ Vin(N), i.e., possible pierce points, may be source of the unit.

Cardinality of minimal {Vin, Vout}-cut can be obtained as optimal value of problem

∑
(u,v)∈A(N)

x(u, v) → min, (1)

∑
v: (u,v)∈A(N)

x(u, v)− ∑
v: (v,u)∈A(N)

x(v, u) = 1, u ∈ Vout(N), (2)

− ∑
v: (u,v)∈A(N)

x(u, v) + ∑
v: (v,u)∈A(N)

x(v, u) = −x(w, u), u ∈ Vin(N), (3)

∑
v: (u,v)∈A(N)

x(u, v)− ∑
v: (v,u)∈A(N)

x(v, u) = 0, u ∈ V\(Vout(N) ∪ Vin(N)), (4)

∑
v∈Vin(N)

x(w, v) = |Vout(N)|, (5)

0 ≤ x(u, v) ≤ 1, (u, v) ∈ A(N), (6)

0 ≤ x(w, u) ≤ 1, u ∈ Vin(N), (7)

where w is a common source with capacity |Vout| adjacent to all v ∈ Vin to network N.

90

Mathematics 2022, 10, 795

Let x : A → {0, 1} be optimal solution of problem (1)–(7). Let us construct a sequence
of disjoint chains C1, C2, . . . C|Vout |, containing all the flow holders of x and only them. It
is possible to «correctly» split each vertex v ∈ V(G) to the dummy vertices with «correct»
union of active arcs lists, while it is possible (i.e., taking into account the cyclic order on the
set of arcs and their orientations). The examples of «correct» splitting and uniting are shown
in Figure 6. The result of this step is a sequence of disjoint chains C1, C2, . . . C|Vout |, contain-
ing all the flow holders and only them. The above allows us to propose the Algorithm 11
PPOE-covering.

(a) (b)

Figure 6. Example of the «correct» splitting, where → is flow hold arc, and ��� is arc without flow.
(a) A vertex and arcs incident to it. (b) The «correct» splitting.

Algorithm 11 Algorithm PPOE-covering

Require: plane graph G(V, F, E) without bridges, defined for all e ∈ E(G)
functions vk(e), lk(e), rk(e), fk(e), k = 1, 2 (see Theorem 1) rank(e),
functions rank(v), v ∈ V(G), rank(f), f ∈ F(G);
subsets Vout, Vin ⊂ V : |Vin| ≥ |Vout|;
subset {Fin ⊂ F} of faces that allow piercing.

Ensure: PPOE-cover of graph G(V, E): C̃1, C̃2, . . . C̃|Vout |, C|Vout |+1, . . . , CM.

1: Construct a network N(V ∪ {w}, A ∪ ({w} × Vin)).
2: if (Vout = ∅) then
3: Run Algorithm 5 OptimalCover for graph G
4: Return(Cover of graph G by OE-chains Cj, j = 1, ..., |Vodd(G)|/2)
5: end if
6: if problem (2)–(7) is unsolvable then
7: Rteurn(PPOE-cover does not exist)
8: else
9: Let x : A(N) → {0, 1} be optimal solution of problem (2)–(7)

10: For each active arc (u, v) : x(u, v) = 1 create a list, including this arc and only it
11: Find a sequence of disjoint chains C1, C2, . . . C|Vout |, containing all the flow holders and only

them with usage for each vertex v ∈ V(G) of «correctly» splitting to the dummy vertices (see
Figure 6)

12: Construct a partial graph

G̃ = G \ (
|Vout |⋃
i=1

Ci), E(G̃) =

⎛⎝E(G) \

⎛⎝|Vout |⋃
i=1

Ci

⎞⎠⎞⎠,

in which all vertices v ∈ Vout, for which piercing is forbidden, are the vertices of even degree.
13: end if
14: For G̃ run algorithm OptimalCover 5. The result of this step is a sequence of disjoint chains

C|Vout |+1, . . . , C|Vout |+|M|.

15: Return(C̃1, C̃2, . . . C̃|Vout |, C|Vout |+1, . . . , CM.)
16: End of algorithm

91

Mathematics 2022, 10, 795

Theorem 11. Algorithm PPOE-covering solves the problem of constructing PPOE-cover for a
plane graph G(V, E) without bridges by the time not exceeding O(|V|3).

Proof. The route consisting of chains C1, C2, . . . C|Vout | is the edge-disjoint OE-route (due
to unit carrying capacity of arcs). Partial graph G̃ does not contain any edges belonging to
chains Ci, i = 1, . . . , |Vout| by definition. All graph G̃ vertices avoiding piercing have even
degree due to constructions. As a result of running Step 9, we get the continuation

C|Vout |+1, . . . , C|Vout |+|M|

of route which is the OE-route in graph G̃ covering all edges of graph G̃, and starting vertex
v ∈ Vin of each chain Ci, i = |Vout|+ 1, . . . |Vout|+ |M| is permissible for piercing. Hence,
the route

C1, C2, . . . C|Vout |, C|Vout |+1, . . . , C|Vout |+|M|

is PPOE-cover of initial graph G.
Let us estimate the computing complexity of this algorithm. Step 1 allows to get

the network by time O(|E|). Step 2 verifies the condition and it is completed in O(1).
Circulation in step 3 may be obtained by time not exceeding O(|V|3) [34]. Step 4 verifies the
condition and it is completed in O(1). In step 5, we introduce a sequence of chains along
with a set of active arcs. This operation is performed at a time not exceeding O(|E|). In step
6, at each vertex v, a ”merging” of lists is performed in a time not exceeding O(|V| ·deg(v)).
Thus, the computing complexity of step 6 does not exceed the value O(|V| · |E|). Step 7
runs by time not exceeding O(|E|). The complexity of Step 7 is defined by the complexity
of algorithm OE-Cover [19] and amounts to O(|E(G)| · log2 |V(G)|). Obtaining the partial
graph G̃ at Step 7 claims the time not exceeding O(|E|). The complexity of Step 9 does not
exceed O(|V|3) used for the shortest matching obtaining. Thus, the complexity of algorithm
PPOE-routing does not exceed the value of O(|V|3).

Let us consider the application of algorithm PPOE-Routing to cutting plan in Figure 2
with geomorphic image presented in Figure 3 and in Table 1. We have Vout(N) =
{v1, v5, V11}, Vin(N) = {v2, v3, v7, v9}, V(N)\(Vout(N) ∪ Vin(N)) = {v4, v6, v8, v10, v12}.
Figure 7 demonstrates network N(V ∪ {w}, A ∪ ({w} × Vin)) constructed in Step 1 and
optimal solution of problem (1)–(7) found in Step 2. Bold lines highlight carriers of non-
zero flow.

Figure 7. Network N for graph in Figure 3.

92

Mathematics 2022, 10, 795

After running steps 3–6, we obtain the chains C1 = e3e2e9, C2 = e21e22, C3 = e13.
Partial graph constructed by step 7 is shown in Figure 8.

Figure 8. Rest of network N after running steps 3–6.

In this graph algorithm M-Cover constructs the only chain

C4 = e5e7e11e16e12e8e10e15e20e19e18e17e14e23e1e4e6.

So, the PPOE-cover for this graph is {C1, C2, C3, C4}.
Thus, the construction of the PPOE -cover of the G graph allows us to solve the

problems of the cutter movement routing for a realizable cutting plan with restrictions on
possible pierce points.

2.4. Algorithms for Disconnected Graphs

The problem of constructing OE-routes in disconnected graphs is also of practical
value. In this case, the task of finding the OE-covering of the graph by chains can be
reduced to several tasks of lower dimension (to construct a cover for each connected
component separately). This approach is reasonable if the resulting graph does not con-
tain nested components. However, in the presence of nesting of the connected compo-
nents, the problem becomes somewhat more complicated and the following restrictions
on the order of traversing the connected components arise: the connected components
consisting of edges of higher rank must be traversed before the components consisting
of edges of lower rank. To solve the problem in common for plane disconnected graph
algorithms MultiComponent (computing complexity O(|E(G)| · log2 |V(G)|)), Bridging,
DoubleBridging) and FaceCutting (Figure 9) are developed.

The proofs of these results [19] are constructive and, in fact, are reduced to describing
and proving the effectiveness of algorithms for constructing the desired cycles (routes).

Algorithms Bridging and DoubleBridging use the approach of reducing the initial
disconnected graph to a connected one.

Definition 15. Let face f ∈ F(G) be called separating, if it is incident to two or more connected
components.

Let graph G̃ be obtained from graph G by adding bridges belonging to separating
faces between the components. Obviously, the obtained graph G̃ be a plane connected
graph and it is possible to construct the OE-route R(G̃) for it. This OE-route R(G) can be
obtained from route R(G̃) if vertices incident to the introduced bridges are to be the ends
of the current chain and the beginnings of the next ones (i.e., introduced bridges are the
idle passes).

93

Mathematics 2022, 10, 795

Let us consider the way of constructing the bridges connecting graph G and having a
minimal summary length (see Algorithm 12).

(a) (b) (c)

Figure 9. Examples of combining separated components. (a) Bridging; (b) DoubleBridging; (c) Face-
Cutting.

Algorithm 12 Bridging

Require: plane disconnected graph G
Ensure: plane connected graph G̃ and set B of introduced bridges

1: G̃ := G; B = ∅;
2: Define the set CF of all separating faces.
3: for all f ∈ CF do
4: Find the set S(f) of connected components of graph G incident to face f .
5: Construct the full abstract graph T the vertices of which are the components S(f), and lengths

of edges are equal to the distance between the components.
6: Obtain the minimal spanning tree T(T) in T .
7: Add the edges of the obtained spanning tree to graph G̃: E(G̃ := E(G̃) ∪ E(T(T)), B :=

B ∪ E(T(T)).
8: end for
9: end

Plane graph G̃ obtained by algorithm Bridging contains bridges, hence it is possible
to apply only algorithm CPP_OE [30] constructing the Chinese postman OE-route for plane
graph [30]. Note that both the OECover algorithm and the M-Cover algorithm require no
bridges in the graph. To avoid errors in the execution of the algorithms, it is necessary to
add the edges of the spanning tree T(T) to the graph twice (see line 6 of the Algorithm 12).
The algorithm adjusted in this way is called DoubleBridging. The complexity of the
Bridging and DoubleBridging algorithms is polynomial, depending on the method used
to determine the distances between the connectivity components. If the distances are given
it can be estimated as O(|E(G)| · log |V(G)|).

Theorem 12. If, for each component Gk of graph G, the degrees of vertices incident to separating
faces of G are even, then the path of the minimal length of additional edges can be realized by
algorithm DoubleBridging.

Algorithm FaceCutting [35] is one other way to obtain graph G̃ without bridges. It
consists in splitting the separating face using the Hamiltonian cycle. In fact, if for abstract
graph T we use the minimal weight Hamiltonian cycle H(T) instead of spanning tree
T(T), then the resulting graph G̃ does not contain any bridges and, hence, we can use
algorithm M-Cover (see Algorithm 4) to obtain the OE-route with a minimal length of
idle passes.

94

Mathematics 2022, 10, 795

3. Discussion

In our article, we provide an overview of the plane graph routing problem statements
since the 1980s. In the early works [20,21], the formalization of the tasks posed is not
accurate enough, there is no classification of routes by the type of restrictions imposed.
In this regard, mainly heuristic algorithms were developed. In the works of the authors
(2007–2020), an exact formalization of some previously considered statements is given,
classes of routes in plane graphs satisfying constraints are introduced, and polynomial
exact algorithms for solving these problems are described.

Of particular note is the proof of the NP-completeness of the problem of finding non-
intersecting Euler chains [21], where the author takes an A-chain as a self-non-intersecting
Euler chain. The authors have shown the existence of a polynomial algorithm for finding
an Euler self-non-intersecting chain in a plane graph. The question of NP-completeness of
the problem of finding a self-non-intersecting chain remains open.

4. Conclusions

In our paper, we introduced a class of routes with ordered enclosing (OE-routes) in
plane graphs. The routes of this class represent an ordered sequence of paths that satisfy
the requirement that the inner edges of the traversed part of the route do not intersect with
the edges of its non-traversed part.

We showed that the presence of bridges in the graph has a significant effect on the cover
cardinality. If there are no bridges in a graph, the minimum number of OE-chains covering
the graph is equal to the minimum number of paths covering the given graph (in the case
of the existence of vertices of odd degree incident to the outer face). If there are no vertices
of odd degree adjacent to the outer face, then the cardinality of the covering is one higher
than the minimum number of paths covering the given graph. In general, the cardinality N
of Euler OE-cover of graph G satisfies the inequality k = |Vodd(G)|

2 ≤ N ≤ |Vodd(G)| = 2k.
The upper and lower bounds are reachable.

We discussed the polynomial algorithms for constructing the OE-cover for different
cases: plane Euler graph, any plane connected graph (CPP and OE-cover constructing
problems), any disconnected plane graph. We developed the polynomial time algorithm
for obtaining an OE-route with the minimum number of covering paths and an algorithm
for constructing an OE-route with a minimum length of transitions between the end of the
current path and the beginning of the next path.

To discover the chains with the complex groups of restrictions we introduced classes of
AOE-chains, NOE-chains, and PPOE-chains. (1) Class of AOE-chains includes the chains
with additional local restriction according to which the neighbouring edges need to satisfy
the transitions system of A-chain. Algorithm AOE-CHAIN allows obtaining a chain belonging
to class AOE for a plane connected 4-regular graph. The algorithm allows to obtain it
by the time O(|E(G)| · log |V(G)|). (2) Class of NOE is the extension of class AOE and
contains all OE-chains with non-intersecting transitions. Algorithm Non-intersecting

allows obtaining such a chain. Its implementation consists in reducing the original plane
graph to a plane connected 4-regular graph by splitting vertices of degree higher than 4 and
further executing the AOE-CHAIN algorithm. (3) Class of PPOE-chains contains OE-chains
with fixed sets of starting and ending vertices, and algorithm PPOE-covering allows for
correctly solving the problem of constructing this type of cover for a plane graph G(V, E)
without bridges by the time not exceeding O(|V|3) [36].

All our algorithms are implemented using the C++ programming language, and the
initial data can be read either from text files with the table of functions for edges (see
Theorem 1) or by conversion of JSON-files used in known CAD/CAM systems to the table
of these functions [36].

Author Contributions: Conceptualization, T.M. and A.P.; Formal analysis, A.P.; Methodology, T.M.;
Software, T.M.; Validation, A.P.; Writing—original draft, T.M.; Writing—review & editing, A.P. All
authors have read and agreed to the published version of the manuscript.

95

Mathematics 2022, 10, 795

Funding: The work was supported by Act 211 Government of the Russian Federation, contract No.
02.A03.21.0011. The work was supported by the Ministry of Science and Higher Education of the
Russian Federation (government order FENU-2020-0022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Velayutham, K.; Waran, V.; Gurusamy, S. Optimisation of laser cutting of SS 430 plate using advanced Taguchi entropy
weighted-based GRA methodology. Int. J. Mechatron. Manuf. Syst. 2018, 11, 148. [CrossRef]

2. Liang, F.; Kang, C.; Fang, F. Tool path planning on triangular mesh surfaces based on the shortest boundary path graph. Int. J.
Prod. Res. 2021, 1–20. [CrossRef]

3. Eapen, N.A.; Heckendorn, R.B. Cutting path optimization for an automatic cutter in polynomial time using a 3/2 approximation
algorithm. Int. J. Adv. Manuf. Technol. 2021, 113, 3667–3679. [CrossRef]

4. Xie, S.; Gan, J. Optimal process planning for compound laser cutting and punch using Genetic Algorithms. Int. J. Mechatron.
Manuf. Syst. 2009, 2, 20–38. [CrossRef]

5. Jing Y.; Chen, Z.C. An Optimized Algorithm of Numberical Cutting-Path Control in Garment Manufacturing. Adv. Mater. Res.
2013, 796, 454–457. [CrossRef]

6. Lee, M.K.; Kwon, K.B. Cutting path optimization in CNC cutting processes using a two-step genetic algorithm. Int. J. Prod. Res.
2006, 44, 5307–5326. [CrossRef]

7. Hoeft, J.; Palekar, U.S. Heuristics for the plate-cutting traveling salesman problem. IIE Trans. 1997, 29, 719–731. [CrossRef]
8. Kochetkov, S.A.; Utkin, V. Method of decomposition in mobile robot control. Autom Remote Control 2011, 72, 2084–2099. [CrossRef]
9. Arkhipov, D.; Battaia, O.; Lazarev, A. Long-term production planning problem: Scheduling, makespan estimation and bottleneck

analysis. IFAC-PapersOnLine 2017, 50, 7970–7974. [CrossRef]
10. Fleischner, H. Eulerian Graphs and Related Topics. Part 2. Ann. Discret. Math. 1991, 50, 336.
11. Kartak, V.M.; Ripatti, A.V.; Scheithauer, G.; Kurz, S. Minimal proper non-IRUP instances of the one-dimensional Cutting Stock

Problem. Discret. Appl. Math. 2015, 187, 120–129. [CrossRef]
12. Tavaeva, A.; Petunin, A.; Ukolov, S.; Krotov, V. A Cost Minimizing at Laser Cutting of Sheet Parts on CNC Machines. In

Mathematical Optimization Theory and Operations Research, Proceedings of the 18th International Conference, MOTOR 2019, Ekaterinburg,
Russia, 8–12 July 2019; Springer International Publishing: New York, NY, USA, 2019; Volume 1090, pp. 422–437. [CrossRef]

13. Petunin, A.A.; Polishchuk, E.G.; Ukolov, S.S. On the new Algorithm for Solving Continuous Cutting Problem. IFAC-PapersOnLine
2020, 52, 2320–2325. [CrossRef]

14. Chentsov, A.G.; Khachay, M.Y.; Khachay, D.M. Linear Time Algorithm for Precedence Constrained Asymmetric Generalized
Traveling Salesman Problem. IFAC-PapersOnLine 2016, 49, 651–655. [CrossRef]

15. Chentsov, A.G.; Grigoryev, A.M.; Chentsov, A.A. Solving a Routing Problem with the Aid of an Independent Computations Scheme.
Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 2018, 11, 60–74. [CrossRef]

16. Landovskaya, I. A processing algorithm of fabric particle interaction with solid object faces during computer simulation. Proc.
Russ. Higher Sch. Acad. Sci. 2016, 2, 78–93. (In Russian) [CrossRef]

17. Dewil, R.; Vansteenwegen, P.; Cattrysse, D.; Laguna, M.; Vossen, T. An improvement heuristic framework for the laser cutting
tool path problem. Int. J. Prod. Res. 2015, 53, 17611776. [CrossRef]

18. Dewil, R.; Vansteenwegen, P.; Cattrysse, D. A review of cutting algorithms for laser cutters. Int. J. Manuf. Technol. 2016,
87, 1865–1884. [CrossRef]

19. Panyukov, A.V.; Makarovskikh, T.A.; Savitskiy, E.A. Mathematical models and routing algorithms for economical cutting tool
paths. Int. J. Prod. Res. 2018, 56, 1171–1188. [CrossRef]

20. Manber, U.; BentIsrani, S. Pierce Point Minimization and Optimal Torch Path Determination in Flame Cutting. J. Manuf. Syst.
1984, 3, 1. [CrossRef]

21. Manber, U.; Bent, S.W. On Non-intersecting Eulerian Circuits. Discret. Appl. Math. 1987, 18, 87–94.
22. Fleischner, H.; Beineke, L.; Wilson, R. Selected Topics in Graph Theory. Part 2; Academic Press: London, UK, 1983.
23. Bely, S. On self-non-intersecting and non-intersecting chain. Math. Notes 1983, 34, 625–628.
24. Panioukova, T. Eulerian cover with ordered enclosing for flat graphs. Electron. Notes Discret. Math. 2007, 28, 17–24. [CrossRef]
25. Makarovskikh, T.A.; Panyukov, A.V. The Cutter Trajectory Avoiding Intersections of Cuts. IFAC PapersOnLine 2017, 50, 2284–2289.

[CrossRef]
26. Makarovskikh, T.A.; Panyukov, A.V. Mathematical model for a cutting path avoiding intersections. IFAC-PapersOnLine 2020,

53, 10455–10460. [CrossRef]

96

Mathematics 2022, 10, 795

27. Makarovskikh, T.A.; Panyukov, A.V. Construction of a Technologically Feasible Cutting with Pierce Points Placement Constraints.
Commun. Comput. Inf. Sci. 2020, 1340, 186–197. [CrossRef]

28. Panioukova, T. Chain sequences with ordered enclosing. J. Comput. Syst. Sci. Int. 2007, 46, 83–92. [CrossRef]
29. Panioukova, T.A.; Panyukov, A.V. Algorithms for Construction of Ordered Enclosing Traces in Planar Eulerian Graphs. In

Proceedings of the International Workshop on Computer Science and Information Technologies’ 2003, Ufa, Russia, 16–18
September 2003; Ufa State Technical University: Ufa, Russia, 2003; Volume 1, pp. 134–138.

30. Panyukova, T.A. Constructing of OE-postman Path for a Planar Graph. Bull. South Ural State Univ. Ser. Math. Model. Program.
Comput. Softw. 2014, 7, 90–101. [CrossRef]

31. Fleischner, H. Eulerian Graphs and Related Topics; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1990; 450p.
32. Makarovskikh, T.A.; Panyukov, A.V. AOE-Trails Constructing for a Plane Connected 4-Regular Graph. In Proceedings of the

Supplementary Proceedings of the 9th International Conference on Discrete Optimization and Operations Research and Scientific
School (DOOR 2016), Vladivostok, Russia, 19–23 September 2016; Volume 1623, pp. 62–71.

33. Makarovskikh, T.A.; Panyukov, A.V. Algorithm for constructing AOE circuit in a connected flat 4-regular graph. In Proceedings of
the XII International Scientific Seminar “Discrete Mathematics and Its Applications” Academician Lupanov; Mechanics and Mathematics
Faculty of Moscow State University: Moscow, Russia, 2016, p. 293296. (In Russian)

34. Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optimization. Algorithms and Complexity, Unabridged edition; Dover Publications:
Mineola, NY, USA, 1998.

35. Makarovskikh, T.A.; Panyukov, A.V.; Savitskiy, E.A. Mathematical Models and Routing Algorithms for CAD Technological
Preparation of Cutting Processes. Autom. Remote Control 2017, 78, 868–881. [CrossRef]

36. Makarovskikh, T.; Panyukov, A.; Savitsky, E. Software Development for Cutting Tool Routing Problems. Procedia Manuf. 2019,
29, 567–574. [CrossRef]

97

Citation: Afraimovich, L.G.; Emelin,

M.D. Complexity of Solutions

Combination for the Three-Index

Axial Assignment Problem.

Mathematics 2022, 10, 1062. https://

doi.org/10.3390/math10071062

Academic Editors: Alexander

A Lazarev, Frank Werner and

Bertrand M. T. Lin

Received: 4 March 2022

Accepted: 23 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Complexity of Solutions Combination for the Three-Index
Axial Assignment Problem

Lev G. Afraimovich * and Maxim D. Emelin

Institute of Information Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny
Novgorod, Nizhny Novgorod 603022, Russia; makcum888e@mail.ru
* Correspondence: lev.afraimovich@itmm.unn.ru

Abstract: In this work we consider the NP-hard three-index axial assignment problem. We formulate
and investigate a problem of combining feasible solutions. Such combination can be applied in a
wide range of heuristic and approximate algorithms for solving the assignment problem, instead of
the commonly used strategy of selecting the best solution among the found feasible solutions. We
discuss approaches to a solution of the combination problem and prove that it becomes NP-hard
already in the case of combining four solutions.

Keywords: axial assignment problem; multi-index problem; approximate algorithms; NP-hardness

MSC: 90C10; 90C27; 90C59

1. Introduction

Multi-index axial assignment problems arise when it comes to solving a multitude
of applied problems in the logistics and planning area [1–3]. An overview of the results
obtained through analysis of the subclasses of multi-index assignment problems is given
in [1]. The class of multi-index axial assignment problems is known to be NP-hard even in
the three-index case [4]. In [5] it was proved that no polynomial ε-approximate algorithms
for solving a three-index axial assignment problem (here ε is an arbitrary constant) exist,
otherwise P = NP.

There are known approximate and heuristic algorithms for solving the NP-hard axial
assignment problem [2,6–11]. As a rule, such algorithms construct a series of feasible solu-
tions to the problem. The general approach in the final step of the algorithms is choosing
the best solution from the constructed feasible solutions. As an improvement of the final
step of such algorithms we propose building an optimal combination of the found feasible
solutions instead of commonly applied selection of the best solution. The optimal combi-
nation of feasible solutions is an optimization problem where the fragments of the found
feasible solutions need to be optimally combined. Obviously, such an optimal combination
is no worse than a standard selection of the best solution. But, as we will demonstrate later,
solutions combination outperforms (based on computational experiments) selection of the
best solution while having comparable computational complexity.

The solutions combination problem was first formulated in our earlier paper [12].
In this work a linear complexity algorithm for optimal combining of a pair of feasible
solutions was constructed. Heuristic algorithms for combining of three and a larger number
of solutions were proposed in [13]. These heuristics are based on successive combination of
pairs of solutions. An efficient algorithm for optimal combining of three and larger number
of solutions was an open problem.

In this work we have proved that the solution combination problem is already NP-
hard in the case of combining four solutions. Which means that there is already no
polynomial algorithm for optimal combination in the case of four solutions, otherwise

Mathematics 2022, 10, 1062. https://doi.org/10.3390/math10071062 https://www.mdpi.com/journal/mathematics
98

Mathematics 2022, 10, 1062

P = NP. An efficient algorithm for optimal combining in the case of three solutions remains
an open problem.

Further the article is organized as follows. In Section 2 we formulate the axial assign-
ment problem and the corresponding solutions combination problem. Section 3 deals with
the results of designing the algorithms for combining feasible solutions. Finally, in Section 4
the NP-hardness of combining four solutions is proved.

2. Solutions Combination Problem

Let I, J, K be the disjoint index sets, I ∩ J = ∅, I ∩ K = ∅, J ∩ K = ∅ and
|I| = |J| = |K| = n; cijk, i ∈ I, j ∈ J, k ∈ K is the three-index cost matrix; and xijk, i ∈ I,
j ∈ J, k ∈ K is the three-index matrix of the variables. Then the three-index axial assignment
problem is formulated as the following integer linear programming problem:

∑
i∈I

∑
j∈J

xijk = 1, k ∈ K, (1)

∑
i∈I

∑
k∈K

xijk = 1, j ∈ J, (2)

∑
j∈J

∑
k∈K

xijk = 1, i ∈ I, (3)

xijk ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K, (4)

∑
i∈I

∑
j∈J

∑
k∈K

cijkxijk → min. (5)

Next, let a set W ⊆ I × J × K be given that defines a subset of the allowed assignments:

xijk = 0, (i, j, k) /∈ W. (6)

Then we consider an optimization problem with objective (5) subject to constraints
(1)–(4) and denote it by Z(W) for the given subset W. It is obvious that problem (1)–(5)
corresponds to the problem Z(I × J × K).

In the general case problem Z(W) is NP-hard [1]. Moreover, the problem of feasibility
check of system (1)–(4), (6) for an arbitrary set W is NP-complete [1]. We will further
consider subsets W such that correspond to the assignments set of some feasible solutions
of the problem (1)–(5).

We introduce auxiliary notations. Let x be a feasible solution to the system of con-
straints (1)–(4). Then W(x) will be used to denote the following set of allowed assignments:

W(x) = {(i, j, k)| xijk = 1, i ∈ I, j ∈ J, k ∈ K
}

.

Let x1, x2, . . . , xm be some arbitrary feasible solutions of the system (1)–(4). Denote
W
(
x1, x2, . . . , xm) = Um

t=1W
(
xt). Then the problem of optimal combining of m feasible

solutions x1, x2, . . . , xm takes the form Z
(
W
(
x1, x2, . . . , xm)).

A large number of known heuristic and approximate algorithms for solving the axial
assignment problem yield, in the course of their operation, a certain set of feasible solutions
(for convenience denoted by x1, x2, . . . , xm). Denote C(x) = ∑

i∈I
∑
j∈J

∑
k∈K

cijkxijk. The general

approach in the final step of these algorithms is choosing the best solution from the con-
structed feasible solutions, i.e., C′ = mint=1,mC

(
xt). As an improvement on the final step

of such algorithms, i.e., selection of the best solution, we propose building an optimal com-
bination of the found feasible solutions through solving the problem Z

(
W
(
x1, x2, . . . , xm)).

In other words, we propose building a solution by combining the components of the found
feasible solutions rather than only choosing the best one.

99

Mathematics 2022, 10, 1062

3. Solution Combination Algorithms

Let us consider algorithms for solutions combination problem Z
(
W
(
x1, x2, . . . , xm)).

In our earlier paper [12] we constructed a linear complexity algorithm for solutions combi-
nation problem for the case m = 2.

It was proved in [12] that Algorithm 1 finds solution of the problem Z
(
W
(
x1, x2))

and requires O(n) computational operations. Thus, in accordance with step 5 of Al-
gorithm 1, the optimal value of the criterion for problem Z

(
W
(
x1, x2)) is defined as

q
∑

l=1
min

(
∑(i,j,k)∈D1

l
cijk, ∑(i,j,k)∈D2

l
cijk

)
.

Algorithm 1. Ref. [12]. Solution of problem Z
(
W
(

x1, x2))
Step 1. Construct graph G = (V, A), where

V = {I ∪ J ∪ K}, A =
{
(i, j), (i, k), (j, k)

∣∣(i, j, k) ∈ W
(

x1, x2)}.
Step 2. Find the connectivity components Vl , l = 1, q, of graph G and build subgraphs

Gl = (Vl , Al), l = 1, q, induced by the corresponding components of connectivity.
Step 3. Now, we build the following sets:

D1
l =

{
(i, j, k)

∣∣(i, j, k) ∈ W
(

x1), (i, j), (i, k), (j, k) ∈ Al
}

,
D2

l =
{
(i, j, k)

∣∣(i, j, k) ∈ W
(

x2), (i, j), (i, k), (j, k) ∈ Al
}

.
Step 4. The optimal value of criterion of the problem Z

(
W
(

x1, x2)) is defined as

c∗ = ∑
q
l=1 min

(
∑

(i,j,k)∈D1
l

cijk, ∑
(i,j,k)∈D2

l

cijk

)
.

Step 5. The optimal solution to the problem Z
(
W
(

x1, x2)) is constructed as follows. Initially
let xijk0, i ∈ I, j ∈ J, k ∈ K. Further, for each l = 1, q perform

xijk1, (i, j, k) ∈ Dp∗

l , where p∗ = argmin
p∈{1,2}

∑
(i,j,k)∈Dp

l

cijk.

We have demonstrated in [13] that an algorithm based on successive optimal com-
bination of feasible solutions pairs does not ensure an optimal solution for the problem
Z
(
W
(
x1, x2, . . . , xm)) when m = 3. However, such a successive combination technique can

be used as a heuristic algorithm for the problem Z
(
W
(
x1, x2, . . . , xm)) when m ≥ 3. We

provide the results of the computation experiments for a variety of successive combination
strategies, which demonstrate the advantage of the proposed approach over the commonly
used step of choosing the best feasible solution [13].

In [12,13] we presented comprehensive computational experiments for solutions com-
bination algorithm for m = 2 and for solutions combination strategies for m ≥ 3. Below
we will giving a brief description of these computational results. In [5] an approximate
algorithm was constructed for the axial assignment problems satisfying triangle inequality.
This approximate algorithm constructs three feasible solutions and chooses the best among
them. A collection of test problems for n ∈ {33, 66} with the cost matrices satisfying trian-
gle inequality was proposed in [5]. For the collection of the problems presented in [5] the
solution combination algorithm gives 0.148% improvement compared to the original step
of choosing the best solution by the approximate algorithm; for more details please see [12].
For a set of cost matrices whose entries were generated with integer values uniformly
distributed at the interval [0, 300] and for n ∈ {10, 11, . . . , 19} we randomly generated n3

feasible solutions and applied the local optimization algorithm proposed in [6]. Based on
computational results we demonstrated that applying of successive combination strategies
to the locally optimized solution gives approximately 4–8% improvement compared to a
standard approach of choosing the best solution; for more details please see [13].

4. Solutions Combination NP-Hardness

We will now show that the class of problems of the optimal combination of m feasible
solutions is NP-hard even when m = 4. The proof is based on polynomial reduction
of the well-known NP-hard class of 3-CNF problems [4]. Here 3-CNF is the problem of
determining if a Boolean formula is satisfiable, where the Boolean formula is in conjunctive
normal form with three variables per conjunct.

100

Mathematics 2022, 10, 1062

Theorem 1. The class of 3-CNF problems is polynomially reduced to the class of 3-CNF problems
without repeating variables in each clause.

Proof of Theorem 1. Let us consider an arbitrary 3-CNF and apply the following algorithm
to each clause of 3-CNF:

a. If a clause does not contain any repeating variables, it remains unchanged.
b. If a repeating variable is included into a clause only with or only without negation

then a clause has the form (x ∪ x ∪ y) or (x ∪ x ∪ x), where x, y are the literals.
A clause u(x, y) = (x ∪ x ∪ y) is replaced by u′(x, y, z) = (x ∪ y ∪ z) ∩ (x ∪ y ∪ z),
where z is the new Boolean variable. It is obvious that u(x, y) = u′(x, y, z), ∀z. A
clause u(x) = (x ∪ x ∪ x) is replaced by u′(x, z, w) = (x ∪ z ∪ w) ∩ (x ∪ z ∪ w) ∩
(x ∪ z ∪ w) ∩ (x ∪ z ∪ w), where z, w are the new Boolean variables. It is obvious that
u(x) = u′(x, z, w), ∀z, w.

c. If a repeating variable is included into a clause simultaneously with and without
negation, this clause has the form (x ∪ x ∪ y), where x is the Boolean variable, y is
the literal. Then (x ∪ x ∪ y) ≡ 1, and the clause can be discarded from 3-CNF.

At this point we polynomially reduced the class of 3-CNF problems to the class of
3-CNF problems without repeating variables in each clause. The lemma is proved. �

Theorem 2. The class of optimal combination of four solutions problems is NP-hard.

Proof of Theorem 2. To prove the theorem, we will show that NP-hard class of 3-CNF
problems [4] can be polynomially reduced to a class of optimal combination of four feasible
solutions problems. �

Consider an arbitrary 3-CNF problem with N Boolean variables and M clauses. Let
L = {1, . . . , N} be the set of indices of Boolean variables of the 3-CNF. According to theorem 1,
without loss of generality we assume that there are no repeating variables in each clause.
For convenience, we introduce the following notations:

• l1(s), l2(s), l3(s) are the indices of Boolean variables in the s-th clause;
• L(s) = {l1(s) ∪ l2(s) ∪ l3(s)} is the set of indices of the Boolean variables included

into the s-th clause;
• L+(s) ⊆ L(s) is the set of indices of the Boolean variables included without negation

into the s-th clause;
• L−(s) ⊆ L(s) is the set of indices of the Boolean variables included with negation into

the s-th clause;
• L(s) = {1, . . . , N}\L(s) is the set of indices for the Boolean variables that are not

included into the s-th clause,

s = 1, M.

Then we construct disjoint sets of indices I, J, K as follows; see Figure 1 for visualization
of these sets:

• I =
{

a1
ls

∣∣l = 1, N, s = 1, M
}
∪
{

d1
s , q1

s , w1
s
∣∣s = 1, M

}
∪
{

e1
ls

∣∣l ∈ L(s), s = 1, M
}

,
• J =

{
a2

ls

∣∣l = 1, N, s = 1, M
}
∪
{

d2
s , q2

s , w2
s
∣∣s = 1, M

}
∪
{

e2
ls

∣∣l ∈ L(s), s = 1, M
}

,
• K =

{
b1

ls, b2
ls

∣∣l = 1, N, s = 1, M
}

.

101

Mathematics 2022, 10, 1062

Figure 1. Scheme demonstrating subsets of indices I, J, K corresponding to a fixed s. A set of indices
as a subscript of a node on the scheme (e.g., a1

Ls) corresponds to a set of nodes.

According to above construction, |I| = |J| = NM + 3M + (N − 3)M = 2NM,
|K| = 2NM. Hence, |I| = |J| = |K| = 2NM.

Next, build a set R ⊆ I × J × K to be used for defining a multi-index cost matrix of the
axial assignment problem in the following form:

• R1 =
{
(a1

ls, a2
ls, b1

ls
)

, (a1
l(s mod M+1), a2

ls , b2
ls)
∣∣∣l = 1, N, s = 1, M

}
;

• R2 =
{
(d1

s , d2
s , b1

ls)|l ∈ L−(s), s = 1, M
}
∪
{
(d1

s , d2
s , b2

ls)|l ∈ L+(s), s = 1, M
}

;

• R3 =
{(

q1
s , q2

s , b1
l1(s)s

)
,
(

q1
s , q2

s , b2
l1(s)s

)
,
(

q1
s , q2

s , b1
l2(s)s

)
,
(

q1
s , q2

s , b2
l2(s)s

)∣∣∣s = 1, M
}

;

• R4 =
{(

w1
s , w2

s , b1
l2(s)s

)
,
(

w1
s , w2

s , b2
l2(s)s

)
,
(

w1
s , w2

s , b1
l3(s)s

)
,
(

w1
s , w2

s , b2
l3(s)s

)∣∣∣s = 1, M
}

;

• R5 =
{
(e1

ls, e2
ls, b1

ls
)

, (e1
ls, e2

ls, b2
ls)
∣∣l ∈ L(s), s = 1, M

}
;

• R = R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5.

Now we can define the three-index cost matrix as

cijk =

{
0, (i, j, k) ∈ R
1, otherwise

, i ∈ I, j ∈ J, k ∈ K.

The constructed sets I, J, K and three-index cost matrix ‖cijk‖ define the three-index
axial assignment problem (1)–(5).

Further we build four subsets P1, P2, P3, P4 ⊆ I × J × K, that will determine four
feasible solutions to problem (1)–(5); see Figures 2–5 for visualization of the sets P1–P4.:

•
P1 =

{
(a1

ls, a2
ls, b1

ls)|l = 1, N, s = 1, M
}
∪
{
(q1

s , q2
s , b2

l2(s)s
), (w1

s , w2
s , b2

l3(s)s
)
∣∣∣s = 1, M

}
∪{

(d1
s , d2

s , b2
l1(s)s

)
∣∣∣s = 1, M

}
∪
{(

e1
ls, e2

ls, b2
ls
)∣∣l ∈ L(s), s = 1, M

} ;

•
P2 =

{
(a1

l(s mod M+1), a2
ls, b2

ls

) ∣∣l = 1, N, s = 1, M
}
∪
{
(q1

s , q2
s , b1

l2(s)s
), (w1

s , w2
s , b1

l3(s)s
)
∣∣∣s = 1, M

}
∪
{
(d1

s , d2
s , b1

l1(s)s
)
∣∣∣s = 1, M

}
∪
{(

e1
ls, e2

ls, b1
ls
)∣∣l ∈ L(s), s = 1, M

} ;

•

P3 =
{
(q1

s , q2
s , b2

l1(s)s
), (w1

s , w2
s , b2

l2(s)s
),
(

a1
l1(s)s

, a2
l1(s)s

, b1
l1(s)s

)∣∣∣s = 1, M
}
∪{

(d1
s , d2

s , b1
l2(s)s

)
,
(

a1
l2(s)s

, a2
l2(s)s

, b1
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L−(s), s = 1, M
}
∪{

(d1
s , d2

s , b1
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L+(s), l3(s) ∈ L−(s), s = 1, M
}
∪{

(d1
s , d2

s , b2
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b1
l3(s)s

)∣∣∣l2(s) ∈ L+(s), l3(s) ∈ L+(s), s = 1, M
}
∪{

(a1
l2(s)s

, a2
l2(s)s

, b1
l2(s)s

)
∣∣∣l2(s) ∈ L+(s), s = 1, M

}
∪{(

a1
ls, a2

ls, b1
ls
)
,
(
e1

ls, e2
ls, b2

ls
)∣∣l ∈ L(s), s = 1, M

}
;

•
P4 =

{
(q1

s , q2
s , b1

l1(s)s
), (w1

s , w2
s , b1

l2(s)s
),
(

a1
l1(s)s

, a2
l1(s)s

, b2
l1(s)s

)∣∣∣s = 1, M
}
∪{

(d1
s , d2

s , b2
l2(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b1
l3(s)s

)
,
(

a1
l2(s)s

, a2
l2(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L+(s), s = 1, M
}
∪

102

Mathematics 2022, 10, 1062

{
(d1

s , d2
s , b1

l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b2
l3(s)s

)∣∣∣l2(s) ∈ L−(s), l3(s) ∈ L−(s), s = 1, M
}
∪{

(d1
s , d2

s , b2
l3(s)s

)
,
(

a1
l3(s)s

, a2
l3(s)s

, b1
l3(s)s

)∣∣∣l2(s) ∈ L−(s), l3(s) ∈ L+(s), s = 1, M
}
∪{(

a1
l2(s)s

, a2
l2(s)s

, b2
l2(s)s

)∣∣∣l2(s) ∈ L−(s), s = 1, M
}
∪
{(

a1
ls, a2

ls, b2
ls
)
,
(
e1

ls, e2
ls, b1

ls
)∣∣l ∈ L(s),

s = 1, M
}

.

The corresponding four feasible solutions x1, x2, x3, x4 will be defined as follows:

xt
ijk =

{
1, if (i, j, k) ∈ Pt

0, otherwise
, i ∈ I, j ∈ J, k ∈ K,

where t ∈ {1, 2, 3, 4}.
It is obvious that the criterion of the constructed solutions combination problem

Z
(
W
(
x1, x2, x3, x4)) is nonnegative. Now we show that the optimal criterion value of

Z
(
W
(
x1, x2, x3, x4)) is 0 if and only if the corresponding 3-CNF is satisfiable.

Figure 2. Scheme demonstrating the subset of triples of the set P1, corresponding to a fixed s.

Figure 3. Scheme demonstrating the subset of triples of the set P2, corresponding to a fixed s.

103

Mathematics 2022, 10, 1062

Figure 4. Scheme demonstrating the subset of triples of the set P3, corresponding to a fixed s such
that l2(s) ∈ L−(s).

Figure 5. Scheme demonstrating the subset of triples of the sets P4, corresponding to a fixed s such
that l2(s) ∈ L−(s), l3(s) ∈ L−(s).

1. Let x∗ be the optimal solution to problem Z
(
W
(
x1, x2, x3, x4)) and C(x∗) = 0. We

build a set
W(x∗) =

{
(i, j, k)

∣∣∣x∗ijk = 1, i ∈ I, j ∈ J, k ∈ K
}

. Since x∗ satisfies the system of constraints
(1)–(4), we get
|W(x∗)| = 2NM.

Now it is easily seen that for each l ∈ {1, 2, . . . , N} one of the following two conditions
holds: (

a1
ls, a2

ls, b1
ls

)
∈ P(x∗), s = 1, M, (7)

or (
a1

l(s mod M+1), a2
ls, b2

ls

)
∈ P(x∗), s = 1, M. (8)

104

Mathematics 2022, 10, 1062

Indeed, let us assume that for some l ∈ {1, 2, . . . , N} the condition
(
a1

ls, a2
ls, b1

ls
)
∈

W(x∗) holds, but
(

a1
l(s mod M+1), a2

l(s mod M+1), b1
l(s mod M+1)

)
/∈ W(x∗). By construction,

P ∩
{(

a1
(l mod M+1)s, j, k

)∣∣∣j ∈ J, k ∈ K
}

=
{(

a1
l(s mod M+1), a2

l(s mod M+1), b1
l(s mod M+1)

)
,
(

a1
l(s mod M+1), a2

ls, b2
ls

)}
Since

(
a1

ls, a2
ls, b1

ls
)
∈ W(x∗) and x∗ satisfies the system of constraints (1)–(4), then(

a1
l(s mod M+1), a2

ls, b2
ls

)
/∈ W(x∗). Given W(x∗) ⊆ P, we finally obtain

W(x∗) ∩
{(

a1
l(s mod M+1), j, k

)∣∣∣j ∈ J, k ∈ K
}
= ∅.

Then, |W(x∗)| < 2NM, which leads to contradiction and the above assumption is wrong.
Hence, if

(
a1

ls, a2
ls, b1

ls
)
∈ P(x∗), we get

(
a1

l(s mod M+1), a2
l(s mod M+1), b1

l(s mod M+1)

)
∈ W(x∗).

From here we conclude that, if
(
a1

ls, a2
ls, b1

ls
)
∈ W(x∗) for some l, then condition (7) holds for

l. If
(
a1

ls, a2
ls, b1

ls
)

/∈ W(x∗) for some l, then
(

a1
l(s mod M+1), a2

ls, b2
ls

)
∈ W(x∗) and, similarly,

we can prove that condition (8) holds for l.
Now we define vector X of the Boolean variables for the initial 3-CNF:

Xl =

{
true, if condition (7) holds for l
f alse, if condition (8) holds for l

, l = 1, N.

By construction, each s ∈ {1, . . . , M} has a corresponding

l ∈ L−(s) that (d1
s , d2

s , b1
ls) ∈ W(x∗),

or
l ∈ L+(s) that (d1

s , d2
s , b2

ls) ∈ W(x∗).

Hence for each s ∈ {1, . . . , M} there exists

l ∈ L+(s) that Xl = true,

or
l ∈ L−(s) that Xl = f alse.

From this it follows that each clause takes the true value on Boolean vector X. Hence 3-CNF
takes the true value on Boolean vector X and is satisfiable.

2. Let 3-CNF be satisfiable and X be the Boolean variables vector on which 3-CNF
takes the true value. Then we build a set of allowed assignments, P(X), that is to define
the optimal solution to the combination problem Z

(
W
(
x1, x2, x3, x4)). Set P(X) will be

constructed by the following Algorithm 2:

105

Mathematics 2022, 10, 1062

Algorithm 2. Constructing P(X)

Step 1. Initialize P(X) := ∅.
Step 2. For each l = 1, N :
I f Xl = true, then

P(X) := P(X)∪
{(

a1
ls, a2

ls, b1
ls
)∣∣s = 1, M

}
∪
{(

e1
ls, e2

ls, b2
ls
)∣∣l ∈ L(s), s = 1, M

}
;

else

P(X) := P(X) ∪
{(

a1
l(s mod M+1), a2

ls, b2
ls

)∣∣∣s = 1, M
}
∪
{(

e1
ls, e2

ls, b1
ls
)∣∣l ∈ L(s), s = 1, M

}
.

Step 3. For each s = 1, M:
If Xl1(s) = true, l1(s) ∈ L+(s) or Xl1(s) = f alse, l1(s) ∈ L−(s), then

P(X)P(X)∪
∪
{(

d1
s , d2

s , b2
l1(s)s

)∣∣∣Xl1(s) = true
}
∪
{(

d1
s , d2

s , b1
l1(s)s

)∣∣∣Xl1(s) = f alse
}
∪

∪
{(

q1
s , q2

s , b2
l2(s)s

)∣∣∣Xl2(s) = true
}
∪
{(

q1
s , q2

s , b1
l2(s)s

)∣∣∣Xl2(s) = f alse
}
∪

∪
{(

w1
s , w2

s , b2
l3(s)s

)∣∣∣Xl3(s) = true
}
∪
{(

w1
s , w2

s , b1
l3(s)s

)∣∣∣Xl3(s) = f alse
}

;

else if Xl2(s) = true, l2(s) ∈ L+(s) or Xl2(s) = f alse, l2(s) ∈ L−(s), then
P(X)P(X)∪

∪
{(

d1
s , d2

s , b2
l2(s)s

)∣∣∣Xl2(s) = true
}
∪
{(

d1
s , d2

s , b1
l2(s)s

)∣∣∣Xl2(s) = f alse
}
∪

∪
{(

q1
s , q2

s , b2
l1(s)s

)∣∣∣Xl1(s) = true
}
∪
{(

q1
s , q2

s , b1
l1(s)s

)∣∣∣Xl1(s) = f alse
}
∪

∪
{(

w1
s , w2

s , b2
l3(s)s

)∣∣∣Xl3(s) = true
}
∪
{(

w1
s , w2

s , b1
l3(s)s

)∣∣∣Xl3(s) = f alse
}

;

else if Xl3(s) = true, l3(s) ∈ L+(s) or Xl3(s) = f alse, l3(s) ∈ L−(s), then
P(X)P(X)∪

∪
{(

d1
s , d2

s , b2
l3(s)s

)∣∣∣Xl3(s) = true
}
∪
{(

d1
s , d2

s , b1
l3(s)s

)∣∣∣Xl3(s) = f alse
}
∪

∪
{(

q1
s , q2

s , b2
l1(s)s

)∣∣∣Xl1(s) = true
}
∪
{(

q1
s , q2

s , b1
l1(s)s

)∣∣∣Xl1(s) = f alse
}
∪

∪
{(

w1
s , w2

s , b2
l2(s)s

)∣∣∣Xl2(s) = true
}
∪
{(

w1
s , w2

s , b1
l2(s)s

)∣∣∣Xl2(s) = f alse
}

.

Next, we define a multi-index matrix of variables x∗ = ‖x∗ijk‖:

x∗ijk =
{

1, if (i, j, k) ∈ P(X)
0, otherwise

, i ∈ I, j ∈ J, k ∈ K.

In step 2 there are NK + (N − 3)K elements included into the set P(X). Since the
3-CNF takes true value on X, in step 3 there are 3K elements included into P(X). Hence,
|P(X)| = 2NK. For any pair p1, p2 ∈ P(x), that p1 �= p2, the following condition holds

p1 = (i1, j1, k1),p2 = (i2, j2, k2), i1 �= i2, j1 �= j2, k1 �= k2.

Therefore, x∗ satisfies the system of constraints (1)–(4).
By construction, P(X) ⊆ P, since in step 2 only elements from the sets P1, P2 may be

included into P(X), then in step 3 only elements from P1, P2, P3, P4 may be included into
P(X). Hence, x∗ is a feasible solution of the combination problem Z

(
W
(

x1, x2, x3, x4)).
Further, by construction, P(X) ⊆ R, since in step 2 only elements from R1, R5 may be
included into set P(X), then in step 3 only elements from R2, R3, R4 may be included into
P(X). From this it follows that C(x∗) = 0. And hence, x∗ is the optimal solution to problem
Z
(
W
(
x1, x2, x3, x4)), and the optimal criterion value for this problem is 0.

Thus, the optimal criterion value of the constructed problem Z
(
W
(
x1, x2, x3, x4)) is

equal to 0 if and only if the 3-CNF is satisfiable. The above procedure of constructing
the problem Z

(
W
(
x1, x2, x3, x4)) requires a polynomial time in the size of the initial 3-

CNF. Therefore, the class of problems of optimal combination of four feasible solutions is
NP-hard. The theorem is proved.

5. Conclusions

Approximate and heuristic algorithms for solving an NP-hard axial assignment prob-
lem are well known in literature. Usually, such algorithms construct a series of feasible

106

Mathematics 2022, 10, 1062

solutions to the problem and, in the final step, select the best solution among those con-
structed. As an improvement of this commonly used approach of selecting the best solution
in the final step of the algorithm we propose solving the problem of optimal combination
of constructed m solutions. The case m = 2 (i.e., optimal combination of a pair of feasible
solutions) can be handled using a linear complexity algorithm. For m ≥ 3 it is impossible
to find an optimal solution to the combining problem via successive combination of pairs.
Nevertheless, in practice the strategy of sequential combination of pairs proves to produce
better results than are obtainable with the conventional technique of selecting the best
solution. In this paper we demonstrated that the solutions combination problem turns out
to already be NP-hard when m = 4. The combination complexity in the case m = 3 remains
an open problem.

Author Contributions: Conceptualization and methodology L.G.A., formal analysis and investiga-
tion M.D.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank anonymous reviewers for their suggestions
and comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Spieksma, F.C.R. Multi Index Assignment Problems. Complexity, Approximation, Applications. In Nonlinear Assignment Problems:
Algorithms and Applications; Pardalos, P.M., Pitsoulis, L.S., Eds.; Kluwer Acad. Publishers: Dordrecht, The Netherlands, 2000;
pp. 1–11.

2. Afraimovich, L.G. A Heuristic Method for Solving Integer-Valued Decompositional Multiindex Problems. Autom. Remote Control
2014, 75, 1357–1368. [CrossRef]

3. Afraimovich, L.G.; Prilutskii, M.K. Multiindex Optimal Production Planning Problems. Autom. Remote Control 2010, 71, 2145–2151.
[CrossRef]

4. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman: San Francisco, CA,
USA, 1979.

5. Crama, Y.; Spieksma, F.C.R. Approximation Algorithms for Three-Dimensional Assignment Problems with Triangle Inequalities.
Eur. J. Oper. Res. 1992, 60, 273–279. [CrossRef]

6. Huang, G.; Lim, A. A Hybrid Genetic Algorithm for the Three-Index Assignment Problem. Eur. J. Oper. Res. 2006, 172, 249–257.
[CrossRef]

7. Karapetyan, D.; Gutin, D. A New Approach to Population Sizing for Memetic Algorithms: A Case Study for the Multidimensional
Assignment Problem. Evol. Comput. 2011, 19, 345–371. [CrossRef] [PubMed]

8. Medvedev, S.N.; Medvedeva, O.A. An Adaptive Algorithm for Solving the Axial Three-Index Assignment Problem. Autom.
Remote Control 2019, 80, 718–732. [CrossRef]

9. Gabrovšek, B.; Novak, T.; Povh, J.; Rupnik, P.D.; Žerovnik, J. Multiple Hungarian Method for k-Assignment Problem. Mathematics
2020, 8, 2050. [CrossRef]

10. Gimadi, E.K.; Korkishko, N.M. An Algorithm For Solving the Three-Index Axial Assignment Problem on One-Cycle Permutations.
Diskretnyi Anal. Issled. Oper. Ser. 1 2003, 10, 56–65.

11. Balas, E.; Saltzman, M.J. An Algorithm for the Three-Index Assignment Problem. Oper. Res. 1991, 39, 150–161. [CrossRef]
12. Afraimovich, L.G.; Emelin, M.D. Combining solutions of the axial assignment problem. Autom. Remote Control 2021, 82, 1418–1425.

[CrossRef]
13. Afraimovich, L.G.; Emelin, M.D. Heuristic Strategies for Combining Solutions of the Three-Index Axial Assignment Problem.

Autom. Remote Control 2021, 82, 1635–1640. [CrossRef]

107

Citation: Galuzin, V.; Galitskaya, A.;

Grachev, S.; Larukhin, V.; Novichkov,

D.; Skobelev, P.; Zhilyaev, A.

Autonomous Digital Twin of

Enterprise: Method and Toolset for

Knowledge-Based Multi-Agent

Adaptive Management of Tasks and

Resources in Real Time. Mathematics

2022, 10, 1662. https://doi.org/

10.3390/math10101662

Academic Editors: Frank Werner,

Alexander A Lazarev and Bertrand

M.T. Lin

Received: 21 March 2022

Accepted: 5 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Autonomous Digital Twin of Enterprise: Method and Toolset
for Knowledge-Based Multi-Agent Adaptive Management of
Tasks and Resources in Real Time

Vladimir Galuzin 1,2, Anastasia Galitskaya 2, Sergey Grachev 1,2, Vladimir Larukhin 1,2,3, Dmitry Novichkov 1,

Petr Skobelev 3,* and Alexey Zhilyaev 2

1 Information Technology Faculty, Samara State Technical University, Molodogvardeyskaya Str. 244,
443100 Samara, Russia; vladimir.galuzin@gmail.com (V.G.); sergey.grachev@gmail.com (S.G.);
larukhin@gmail.com (V.L.); d.novichkov@kg.ru (D.N.)

2 Knowledge Genesis Group, Skolkovo, Bolshoy Bulv. 42, 121205 Moscow, Russia;
galitckaya@smartsolutions-123.ru (A.G.); zhilyaev.alexey@gmail.com (A.Z.)

3 Samara Federal Center of Russian Academy of Science, Studenchesky Str., 3A, 443001 Samara, Russia
* Correspondence: petr.skobelev@gmail.com; Tel.: +7-902-372-3202

Abstract: Digital twins of complex technical objects are widely applied for various domains, rapidly
becoming smart, cognitive and autonomous. However, the problem of digital twins for autonomous
management of enterprise resources is still not fully researched. In this paper, an autonomous
digital twin of enterprise is introduced to provide knowledge-based multi-agent adaptive allocation,
scheduling, optimization, monitoring and control of tasks and resources in real time, synchronized
with employees’ plans, preferences and competencies via mobile devices. The main requirements for
adaptive resource management are analyzed. The authors propose formalized ontological and multi-
agent models for developing the autonomous digital twin of enterprise. A method and software
toolset for designing the autonomous digital twin of enterprise, applicable for both operational
management of tasks and resources and what-if simulations, are developed. The validation of
developed methods and toolsets for IT service desk has proved increase in efficiency, as well as
savings in time and costs of deliveries for various applications. The paper also outlines a plan for
future research, as well as a number of new potential business applications.

Keywords: autonomy; digital twin; enterprise; resource management; ontology; multi-agent technology;
adaptability; real time

MSC: 68T20; 68T30

1. Introduction

The concept of “digital twin” [1,2] was introduced not long ago, but it is already
expanding very quickly in many directions. Starting with digital shadows and computer
models, they have evolved to more complex, adaptive, smart and cognitive digital twins.
The future holds intelligent digital twins, which will integrate cyber-physical systems with
knowledge bases, machine learning and collective decision-making.

However, in spite of this progress, digital twins have been mainly applied for complex
technical objects. The problem of designing digital twins for autonomous management of
enterprise resources is still not fully researched.

In this paper, we will introduce digital twins for autonomous enterprise resource
management, applying mobile devices for synchronization of orders, tasks and resources
of an enterprise with its computer knowledge-based multi-agent model. The proposed
autonomous digital twin of enterprise is aimed at implementation of fully autonomous
Deming cycle of adaptive allocation, scheduling, optimization, monitoring and control of

Mathematics 2022, 10, 1662. https://doi.org/10.3390/math10101662 https://www.mdpi.com/journal/mathematics
108

Mathematics 2022, 10, 1662

tasks and resources in real time. This solution must make this routine work with minimum
involvement of humans or, in the future, without them at all.

The autonomous digital twin of enterprise is designed as an intelligent cyber-physical
decision-making system which provides convergence of cyber-physical and AI technolo-
gies, including ontologies and multi-agent technology. The knowledge-based resource
management means that the focus is given on semantic specification of tasks and use of
decision-making rules for their matching with required resources. Application of ontolo-
gies and knowledge-based reasoning makes it possible to formalize the enterprise domain
and create its ontological models, which specify classes of orders, processes and tasks,
resources, products and tools, competencies of employees, etc. Application of multi-agent
technology makes it possible to provide initial multi-objective planning and adaptive
re-planning of tasks to resources by processing events in real time using mobile devices.
Multi-agent resource management also means that the system takes into consideration the
balance of interests, preferences and constraints of all parties involved in decision making,
including not only humans, managers and employees, but also orders, machines, products,
equipment, etc.

As a result, an autonomous digital twin of enterprise could be considered as the next
step of smart cyber-physical enterprise resource planning (Smart ERP) or, more specifically,
advanced planning and scheduling (Smart APS) systems.

The paper formalizes ontology-based multi-agent models and methods for scheduling
and optimization of resources, as well as proposing a method and toolset for creating
autonomous digital twins of enterprise. The developed models, methods and toolset are
applied to different domains, including aircraft and electric cars manufacturing, gas and oil
drilling, IT help desk service, etc.

The paper is organized as follows. The second section discusses modern trends in
resource management. The third section introduces the concept of the autonomous digital
twin of enterprise. The fourth section presents more formally developed ontological and
multi-agent models and methods for resource management in the autonomous digital twins
of enterprises, which can be customized for a specific enterprise. The fifth section is focused
on the method for developing autonomous digital twins of enterprises. The sixth section
presents functionality and architecture of the software toolset for developing autonomous
digital twins of enterprises. It fully automates business processes of resource allocation,
scheduling, optimization, monitoring and control of tasks and resources in real time. The
seventh section contains applications of developed method and toolbox for implementing
autonomous digital twins of enterprise for different domains, including manufacturing of
airplanes, electric cars, gas-oil drilling, etc. The eighth section demonstrates an example of
application for IT help desk service and shows the effect and value for business. The ninth
section gives an outlook on future research and potential applications.

Application of the developed models, methods and tools is intended to solve complex
problems of resource management in real time, reduce peaks, idle-runs and lack of resources,
increase business efficiency and decrease man-efforts, time and costs for development and
maintenance of autonomous digital twins of enterprise.

2. The Modern View on the Resource Management Problem

Modern enterprise resource management requires high adaptability of scheduling
and optimization because of high uncertainty and turbulence on global and local markets,
when a number of unpredictable events take place very often and constantly ruin the
previously agreed plans. Some examples of such unforeseen events include a new order,
broken equipment, an unavailable worker, delay in supply, etc.

The discussed complexity and high turbulent dynamics lead to the fact that traditional,
centralized, hierarchically organized, sequential methods and algorithms of combinatorial
search or heuristics cannot effectively solve the problem of adaptive resource management
with acceptable quality and within the available time.

109

Mathematics 2022, 10, 1662

According to [3], many existing software solutions for resource management (for
example, IBM i-Log, SAP, i2, j-Log, Quintiq, Maximal Software, FICO, etc.) are still primar-
ily based on traditional linear, dynamic or constraint programming methods with high
computational complexity and a number of restrictions.

To reduce the complexity and provide more efficient search of options in decision
making space, a number of new methods are based on heuristics and meta-heuristics,
providing near-to-optimal (not fully optimal) solutions of the problem:

• Greedy local search algorithms based on rules of the problem domain;
• Neural networks and fuzzy logic;
• Bio-inspired methods: genetic algorithms, ant colony and particle swarm optimization, etc.;
• Tabu search;
• Simulated annealing;
• Stochastic methods (such as the Monte Carlo method);
• Metaheuristics: combination of heuristic algorithms of optimization, etc.

Unfortunately, these methods and tools also become not fully applicable for modern
enterprises. The developed methods and tools work very well in centralized and hierarchic
environment, assuming that all orders and resources are given in advance, have the same
objectives and do not change during execution of plans. They ignore individual prefer-
ences and constraints and do not support real-time networking, including communication,
coordination and negotiations for conflict resolving between all participants. However,
the progress of cyber-physical systems and mobile devices already made all assets and
participants visible in real time and able to participate in decision making.

As a result, in case of unpredictable events, modern enterprises usually involve
additional staff, delay their reaction, freeze a bigger number of products in storages, etc.
Such extensive and slow reaction further requires the enterprises to cover costs and increase
prices for clients. As a result, enterprises end up losing orders and wasting resources, which
leads to a decrease of quality, efficiency of services and competitive advantages.

The objective of this paper is to develop new models, methods and toolsets of tasks
and resource management for modern enterprises with the main focus on adaptive resource
allocation, scheduling, optimization, monitoring and control in real time, when all orders
and resources are not given in advance and can change at any time.

3. The Concept of the Autonomous Digital Twin of Enterprise

The concept of digital twin was introduced about 20 years ago in the context of
cyber-physical systems and Industry 4.0 [4,5].

At the moment, it is still not fully defined and formalized (the new standard ISO
23247 “Digital Twin framework for manufacturing” is on the way), but in practice, one can
define [2] the following three main properties of digital twins:

(1) Being a virtual representative of the physical object, which can be applied for planning
and simulations;

(2) Providing ongoing self-synchronization between the model and real object;
(3) Supporting the autonomy of a virtual object compared to the real object.

This vision of digital twin reflects the fast-going convergence of modern information
technologies to create holistic virtual model of object, which can operate autonomously, in
parallel with the real object.

The number of applications of digital twins is also growing promptly and Gartner
includes digital twins in the most perspective technologies [6]. The key software providers,
including Siemens, IBM, Oracle, SAP, Autodesk, ANSYS and many others, are currently
developing IoT platforms and solutions for creating digital twins of various objects.

The market of digital twin solutions already has an increase of 20% annually [7] and,
as expected, it will continue to grow from 3.1 billion USD in 2020 to 48.2 billion USD in
2025 (an approximate 15-fold increase). The number of research papers (according to Web
of Science) has increased 10 times in the last 5 years [7].

110

Mathematics 2022, 10, 1662

At the current stage of research and development, digital twins are mainly associated
with models of technical objects [1,2,4,5]. However, recently, digital twins have also been
applied for enterprise modeling [8–14]. For example, one paper [14] focused on designing
digital twins of new post offices in France based on the cooperation of humans and robots.
The developed models and methods of digital twins for enterprise modeling include
machine learning, simulations, surrogate models, etc.

As a result, digital twins are now considered as a new paradigm of digitalization and
automation of enterprises which integrate virtual models of objects (including enterprises)
with partially or fully autonomous decision making.

In this paper, we introduce the autonomous digital twin of enterprise as a hybrid
knowledge-based multi-agent cyber-physical system which can contain a cyber-physical
subsystem, including sensors, computers, communication units and executors, and an
intelligent decision-making subsystem, which contains a knowledge base and a multi-agent
decision making system, synchronized with enterprise equipment via sensors and with
employees via mobile devices.

Autonomous systems are considered goal-driven knowledge-based systems which
are able to analyze problems, use knowledge base and plan their activities to solve prob-
lems and control results. In the domain of resource management, autonomous systems
can provide planning, optimization and control of trucks, factories or supply chains, all
without the involvement of people. In the future, autonomous systems will provide un-
manned management not only for humans as employees, but also for driverless trucks, fully
robotic factories or supply chains, fully working without humans. Autonomous systems
integrate many modern information technologies such as cyber-physical systems [15,16],
classical planning and optimization [17], multi-agent technologies [18–20], model-driven
simulations [21–24], knowledge-based decision making and reasoning [25], etc.

The fast-going convergence of these technologies has resulted in the different concepts
and archetypes of autonomous digital twins of things [26,27].

The functionality of the autonomous digital twin of enterprise (autonomous enterprise)
for task and resource management will include:

• Ontological specification of enterprise structure, products, business processes and
resources in a knowledge base;

• Loading of enterprise model specifications from knowledge base to take into account
its characteristic aspects;

• Reaction to events, decomposition of processes to the level of tasks, allocation of tasks
to resources, planning and optimization of resources;

• Communication of plans and results with employees;
• Approve and coordinate plans for employees;
• Monitoring and control of plan execution;
• In case of growing gap between plan and reality, adaptive re-scheduling is triggered

automatically;
• Evaluation of enterprise productivity and efficiency.

The main steps in synchronization procedure between real and autonomous enter-
prises are illustrated in Figure 1, where real enterprise is shown on the left side and its
autonomous digital twin, which is mirroring its current state, is on the right side.

Processes of synchronization of real and virtual enterprises presuppose the following
kinds of communication:

• The flow of new unpredictable events is coming from the real enterprise to the au-
tonomous digital twin of enterprise and each event triggers an adaptation of the plans;

• New allocation, scheduling and optimization of resources take place and new dynamic
schedules become available for employees, i.e., managers and workers;

• Managers and workers approve schedules or change them according to their own
preferences and constrains;

• The resulting collectively formed schedules are sent to all affected employees
as instructions;

111

Mathematics 2022, 10, 1662

• The execution of each task is confirmed by employees via their mobile devices or using
factory sensors;

• In case the task is not confirmed in time, the autonomous digital twin of enterprise
checks the availability of the employees and starts adaptive re-scheduling of resources
or escalates the issue onto the next level for managers.

Figure 1. Synchronization between real and virtual enterprises.

Let us define Stwin = {sI}, where si = (modeli, plani, kpii), where Stwin is the state of
a digital twin of the actual enterprise, modeli is an ontological model of the enterprise, plani
is the schedule of orders and resources, kpii is a key performance indicators (for example,
service level, profit, time of delivery, etc.) and I = 1, . . . , n is the number of states.

Whenever a disruptive event
(

Event(k)
)

occurs in the actual enterprise, the schedule
of the virtual enterprise must change as quickly as possible to a new state in order to
achieve adaptation:

S(k+1)
twin = F

(
S(k)

twin, Event(k)
)

This means that a new k + 1 state S(k+1)
twin of a virtual enterprise is formed by processing

of the new coming event Event(k) by the functionality of the virtual enterprise, which
has at the moment the current state S(k)

twin; F is the functionality of adapting the enterprise
schedule in case of event Event.

Let us define D as a function describing the difference between the actual and virtual
enterprise schedules. It is essential that the state of the actual enterprise Sreal and the state
of its digital twin (virtual enterprise) Stwin are always as close as possible.

Then the key objective of the autonomous digital twin of enterprise is to minimize
difference in KPIs between real and virtual enterprises at every moment of time k:

D
(

S(k)
real , S(k)

twin

)
→ 0

where D is the difference in KPI between real and virtual enterprises, S(k)
twin is the state of

the virtual enterprise and S(k)
real is the state of the real enterprise.

The same description can be granulated to the states of each department, employee,
process, task, machine, product, equipment or other resource of the enterprise: let us define
s (O) as a state of the object O in the business process of the enterprise.

112

Mathematics 2022, 10, 1662

We assume that all objects in the developed approach will have their own dynamic
personal schedules and KPIs. These schedules are not pre-defined and can change depend-
ing on events, at any time. For example, the task can be unsatisfied with its KPI, leave the
plan of a certain worker or equipment and find a more suitable one for its execution.

The autonomous digital twin of enterprise must be also applicable for real-time simu-
lations of enterprise for modeling such events as modernization of equipment, changing
the number of workers, reorganization of daily shifts, etc.

4. Formal Model of Domain Knowledge and Multi-Agent Decision Making in the
Autonomous Digital Twin of Enterprise

4.1. Basic and Extended Domain Ontology of Resource Management and Ontological Model
of Enterprise

Formalization of collective decision making in the autonomous digital twin of enter-
prise is based on the application of ontologies and multi-agent technology.

Ontology is defined as conceptualization and formal specification of the domain
knowledge [28–30]. Usually, ontology consists of the most generic and abstract classes of
concepts and relations which form semantic networks. Instances of concepts and relations
form a knowledge base, which can additionally contain rules of reasoning.

One of the first applications of ontologies is Semantic Web, used for the annotation
of Internet pages, but it is also applied for various smart services, data management,
etc. [31,32]. Recently, ontologies have been applied for specifying manufacturing capaci-
ties [33] and digital twins in manufacturing [34], but they were not granulated to the task
level of operations.

The idea of using ontologies in this paper is to automate the development of the
autonomous digital twin of enterprise by creating and customizing ontological models
of enterprises at the level of tasks and resources, which can be loaded into a unified
multi-agent system for autonomous task and resource management.

This process requires basic ontology of resource management, which was not available
in the literature. As a result of interviews with experts, a review of a number of publications
and a systematic analysis of a number of software solutions for resource management, the
following basic classes of concepts were extracted: “order”, “business process”, “product”
or “service”, “resource”, “tool”, “part” or “material” and some others. Besides such
concepts, it will also require basic classes of relations, such as that an order “requires” a
business process, a business process “consists” of “tasks”, a task “requires” an employee,
an employee “has” competencies, etc. The idea was to select such concepts and relations
which can help to specify wide spectrum of situations with resources in real enterprises.

Using these concepts and relations, it becomes possible to create ontological specifica-
tion of different enterprises in one language (“dictionary”), which is “understandable” for
the unified multi-agent system for adaptive resource management.

Let us define ontology as the following set:

O = (C, R, F),

where C is a subset of object classes or concepts, R is a subset of properties and relations
and F is a subset of procedures to operate with concepts and relations, including:

1. Concepts = φ1(c)—get a set of all concepts Concepts ⊆ C, which are produced from
c∈C;

2. Relations = φ2(c)—get a set of all relations Relations ⊆ R, which are produced from
r∈R;

3. Instances = φ3(c)—get a set of all Instances of Class c ∈ C (including instances);
4. AreRelated = φ4(c1, c2)—check if concept c_1 ∈ C is produced from c_2 ∈ C;
5. AreRelated = φ5(r1, r2)—check if relation r_1 ∈ R is produced from r_2 ∈ R;
6. IsPart = φ6(i, set)—find out if instance i belongs to the given set, by comparing

attributes and relations of instance with the given set;
7. Tasks = φ7(p)—find all tasks, which produce the given product p ∈ ProducedProduct;

113

Mathematics 2022, 10, 1662

8. Resources = φ8(t)—find all resources which are required for the given task t ∈ Task;
9. Products = φ9(t)—find all products for the given task t ∈ Task.

The developed interpretation Φ provides possibility for more complex requests, for
example, Resources = φ8(φ7(p)), to find a set or resources which are required for manufac-
turing product p.

These components are implemented as Java services and are available for decision
making and reasoning of agents.

Let us define an ontology for adaptive resource management as basic ontology, Ob,
which contains objects (see Table 1), and its extension, domain ontology, Od, which will
contain concepts and relations specific to enterprises, operating in the following domain:

Od ⊇ Ob.

Table 1. Basic ontology concepts for managing resources.

Order Specification of the required product, quantity of these products and the time
interval of order execution

Product Specification of products which can be consumed or produced

Task Specification of input and output objects, next and previous tasks, composition
of tasks and required resources for the action

Resource Specification of human, physical or financial resources required

Ob, the basic ontology, will be supported by unified multi-agent system for adaptive
resource management, which will have hardcoded basic classes of agents, providing access
to ontology through an interpretation function F.

Extensions of the concepts and relations of domain ontology, Od, are inherited from
concepts and relations of the basic ontology, Ob, to establish a link between the two parts
of ontology and, thus, enable agents to manage enterprise specifics. If some of the concepts
and relations in Od, required for solving domain problems, are not inherited from Ob, it
will require introduction of new specific agents in unified multi-agent system for adaptive
resource management.

The main idea of the developed ontological models of enterprises can be described
in a following way. The designed basic classes of agents (will be described below) are
pre-programmed and hardcoded for processing concepts and relations of basic ontology
only (order, object, task, resource, etc.). These concepts do not represent any specific
domain knowledge, which is always required for enterprises’ planning and scheduling.
The specifics are given in domain ontology, which is designed as an extension of basic
ontology. In the domain ontology, one can specify concrete types of orders, structure of
manufactured products, equipment or competencies of workers which are required for
scheduling specific objects, for example, to assemble the airplane. Agents read this domain
knowledge from the knowledge base, when new order arrives, and apply this knowledge
for reasoning and decision-making. For example, the agent of each task can find all types
of resources using the “require” relation: equipment, workers, etc. Then, the agent of
the task, using the types of required resources, can find concrete equipment and concrete
workers, which are in full or partial match with these requirements. As a result, new types
of requirements can be added to the knowledge base “on the fly” during computations and
do not require system stop and re-programming of the system.

Concepts of the basic ontology described in Table 1 can be formally specified as:

Ob = {Order, Product, Task, Resource}.

Each order creates a product connected to an appropriate task:

∀x∃y (Order(x) → Product(y) ∧ create(x, y)).

114

Mathematics 2022, 10, 1662

The products are separated into produced products and utilized ones. The relation
between a task and these two types is given by the following formulas:

∀x∃y (ProducedProduct(x) → Product(x) ∧ Task(y) ∧ produce(y, x)),

∀x∃y (ConsumedProduct(x) → Product(x) ∧ Task(y) ∧ consume(y, x)).

Each task can be specified as subsets of the atomic tasks or the group tasks.
The main classes of relations between tasks are “to be part of” and one task “is

followed” by another task. The discussed relations help agents find the previous and the
next task whenever a need occurs to change the sequence of tasks due to occurrence of a
disruptive event:

∀x,y (parto f (x, y) → Task(x) ∧ Task(y)),

∀x,y (f ollow(x, y) → Task(x) ∧ Task(y)),

∀x∃y (GroupTask(x) ↔ Task(x) ∧ Task(y) ∧ parto f (y, x)),

∀x (AtomicTask(x) ↔ ¬GroupTask(x)).

The basic classes of tasks are given in Table 2 and classes of resources-in Table 3.

Table 2. Types of basic tasks.

Atomic task with fixed task duration Specification of the task which must be
completed within a specified interval of time

Atomic task with fixed work volume Specification of the task, the duration of which
depends on resources and/or product volume

Atomic task (hammock) Specification of the task, which must be
accomplished in a correct sequence

Composite task Specification of the task, the duration of which
equals the sum duration of sub-tasks

Table 3. Types of basic resources.

Consumable resource Specification of the resource, which is
consumed during the task fulfilment

Reusable resource
Specification of the resource, which is available
for the next task immediately after completion
of its use

The key class of relations is “require”, which describes the type of resources required
for fulfillment of a task; for example, it could be a human with competencies and experience,
some equipment or tools and materials.

One task can require many different types of resources of different kinds.

∀_(x,y) (require(x,y) → Task(x) ∧ (ResourceRequirenment(y) ∨ Resource(y)))

Products may need to be “stored”:

∀_(x,y) (stored(x,y) → Product(x) ∧ ReusableResource(y))

A set of basic relations can be formally described as the following:

R_b = {create, consume, produce, partof, follow, require, stored}

115

Mathematics 2022, 10, 1662

Note that it is possible to introduce new concepts and relations in the domain ontology
Od, which are linked to the basic ontology, Ob, whenever required, and it will not change
the agents’ logic and behavior.

This essential feature is enabled through appropriate F interpretations of concepts
and relations. For example, in the manufacturing domain, new types of products could
be introduced, for example, “components”, “assembly elements” and “final products”. Tasks
could be specified as a “process” and “operation”, and resources as “equipment”, “tool” or
“employee”, and it will not require changes in agents logic if F provides an opportunity to
make the required reasoning:

∀x (Product(x) → Component(x) ∨ AssemblyElement(x) ∨ FinalProduct(x)),

∀x (Task(x) → Process(x) ∨ Operation(x)),

∀x (Resource(x) → Equipment(x) ∨ Tool(x) ∨ Employee(x)).

The enterprise ontological model, M, is built from the basic ontology, Ob, and domain
ontology, Od, as follows:

M = {Od(Ob), I},

where I is a subset of instances of the previously entered concepts, such as “equipment
units” with inventory numbers.

The enterprise scene, S, which represents an instantaneous state of the enterprise and
contains values of attributes of all instances of enterprise concepts and relations at time t, is
built in the following way:

S = M(t). (1)

The enterprise scene is implemented as a database of interconnected instances of con-
cepts and relations that enable agents to easily find a task specification and use the topology
of complex schedules to rapidly select an appropriate group of agents for every collective
decision making, substantially reducing the time required for considering decision options
and performing calculations.

Figures 2 and 3 illustrate the basic and domain ontologies, respectively, for a manufac-
turing enterprise.

Figure 2. The basic ontology: key concepts and relations.

116

Mathematics 2022, 10, 1662

Figure 3. Domain ontology for manufacturing: concepts and relations (in blue) which provide
extension to basic ontology (in yellow).

As was already mentioned, the main element of ontologies for any adaptive scheduler
is the concept of “task”, which defines what resources are required, which is the previous
and next “task” and some other relations.

An example of a concrete task for assembling aircraft MC-21 in the Irkut factory is
presented in Figure 4.

Figure 4. An example of one concrete task for assembling of aircraft MC-21 in the Irkut factory.

The highlighted relations (in circles) play the following roles for task specification:

1. Previous Task—specifies the link to the previous task;
2. Input Objects—specifies the set of objects that can trigger the task in case they all

are available;
3. Upper Technology Process—specifies the Technology Process, which must receive the

information about successful implementation of planning or execution or to which
some issues may be escalated;

4. Required Resources—specifies all human, equipment or other resources required for
task planning or execution;

5. Next Task—specifies the link to the next task;
6. Output Objects—specifies the set of resulting objects;

117

Mathematics 2022, 10, 1662

7. Who performed this task in the past?—specifies the person who is an expert in this
task implementation and can provide consultation in case of any issues.

The basic agent of the “task” class can read this information and create instances of
this agent for this specific task, which will represent interests of this task and work on its
behalf. For example, if a delay is identified in the current task, then the agent will find the
next task and send a message to it with a warning. This message may trigger re-planning
of the next task in case of shortage of time and its re-allocation to some other resources.

The last relation is not implemented in the core part of this basic agent of task and
may need additional work for supporting this relation in the unified multi-agent system
for adaptive resource management.

The number of such kind of relations for each and every task, hundreds and thousands
of which are usually required, helps formalize and utilize domain- and enterprise-specific
semantics of tasks for better quality and efficiency of scheduling and optimization.

In this case, the ontology and ontological models specify the directions for agents’
negotiations, significantly reducing the number of options in the decision-making space
and the number of computations in the process of conflict resolving.

4.2. Multi-Agent Model and Method of Adaptive Allocation, Scheduling, Optimization,
Monitoring and Control of Tasks and Resources

Multi-agent technology is a new paradigm for developing autonomous, distributed
and self-organized systems [35]. Multi-agent technology complements digital twin concept
by decision making mechanisms and applied for BIM modeling [36], control of quality of
manufacturing [37], process optimization [38], collaborative decision making in mainte-
nance [39], etc.

An agent is defined as an autonomic software object which is able to react to events,
make decisions and communicate and coordinate these decisions with other agents. How-
ever, despite the fact that multi-agent technology is a very attractive paradigm for software
engineering, up until recently, it was mainly well known in the academic community.
The main reason for this is that multi-agent systems are hard to develop and are lacking
adequate models, methods and tools for collective decision-making, particularly in the
domain of complex resource scheduling and optimization problems.

The hypothesis of this paper is a new research and development paradigm, in which
the solution to any complex problem can be formed by self-organization of goal-driven
autonomous agents, which have conflicting objectives but are able to continuously negotiate
and solve conflicts by finding trade-offs.

In our previous research, we have already developed multi-agent models, methods
and tools for solving various complex problems in industry, including resource manage-
ment, text understanding, clustering, etc. [40,41]. It was experimentally proved that the
developed multi-agent methods for collective decision making provide benefits for adaptive
scheduling of resources for transportation, factories, supply chains and logistics.

In this paper, we will make the next step and develop new multi-agent models and
methods to cover a full Deming cycle by combining resource allocation, scheduling and
optimization with monitoring and control of the states of tasks and resources in real time.
The problem is complex enough and requires taking into consideration a lot of domain-
specific semantics, which will be represented by ontology-based models of enterprises.

For solving resource management problems, we are proposing the Order-Technology-
Process-Task-Product-Resource-Staff agent model (OTPTPRSA-model), which will extend
the Product-Resource-Order-Staff-Agent model (PROSA-model) developed in [42]. In the
proposed approach, each type of agent has its individual goal, preferences and constraints
and is constantly trying to achieve better results. Instances (clones) of basic agents can also
have individually defined settings of goals, for example, as a liner combination of service
level, time, cost and risk functions [43].

The process of forming plans of resources in the developed approach is based on the
Virtual Market (VM) concept, in which agents can buy and sell time slots in the enterprise

118

Mathematics 2022, 10, 1662

schedule. The origins of VM concept can be found in works on electronic auctions, but
the most fundamental results are presented in [44,45]. It was proved that VM methods
and algorithms in some cases are equal to linear programming, for example, in solving the
assigning problem, and many good properties of these methods were identified: flexible,
efficient, well parallelized, easy to understand, stable to specification changes, etc.

In the developed VM approach, the main agents are task agents, which are looking
for the required time slots of resources and book these time slots, whereas resource agents
are looking for the most suitable orders and tasks to cover their costs. Agents of tasks
and resources compete and cooperate not only for free time slots, but also for already
booked ones. If a conflict is detected, for example, a resource is already occupied by a
task, an agent of the task that brings less value to the system gives way, but may receive
compensation from the resource or from the system as a whole. This compensation is
calculated during new allocation of this task with the use of individual satisfaction and
bonus penalty functions. As a result, the problem solution is self-organized in a step-by-step
way by collective, parallel and asynchronous processes of detecting and solving conflicts
between orders, products, processes, tasks and resources. Developed protocols of solving
conflicts among agents implement methods of negotiations for finding elastic trade-offs
using penalties and bonuses in very concrete situations. The solution is found when a
“competitive equilibrium” (“consensus”) is reached and no agent can improve its KPIs in
the given situation. Due to self-organization by autonomous collective decision-making
principle, the whole schedule can flexibly adapt itself in case of unforeseen events.

Let us assume that VM is triggered by disruptive events coming from the real enter-
prise. The purpose of the multi-agent system for adaptive resource management will be to
minimize the negative consequences of this disruption and achieve this goal by initiating a
wave of changes in the self-organized schedule. This wave triggered by the first affected
agent that received information on disruption. Decisions on the change are made through
negotiation of affected agents to resolve conflicts and achieve a new consensus.

As was stated above, the enterprise state is defined as a sum of states of all objects
and agents participating in the enterprise technology or business processes, including
orders, technology or business processes, tasks, products, human resources, equipment
and materials. Whenever a disruptive event occurs in the actual enterprise, the schedule of
the virtual enterprise must change as quickly as possible to a new state.

For every basic ontological object, si, a corresponding digital agent, ai, exhibits the
object’s behavior, as shown in Table 4.

An instantiation of the developed agent classes for the example of the factory workshop
is presented in Figure 5.

Figure 5. An instantiation of the agent classes for the example of the factory workshop.

119

Mathematics 2022, 10, 1662

Table 4. Objectives, preferences and constraints of the agents.

Agent Type Objectives, Preferences and Constraints Attributes

Order agent
To be realized with minimum delay, c,
and cost, p,

Yi = w1

(
1 − C

Cкр

)
+w2

(
1 − p

pкр

) Deadlines, volume, unit costs

Technology/Task agent
(atomic, composite)

To be realized using appropriate resource,
before deadline, in time
(τi = f inishi − starti)

Yi =

{
1, τi < τoпт

τi−τкр
τoпт−τкр

, otherwise

Features of resources, products;
Deadlines for beginning and ending;
connections with other tasks

Resource agent (humans, equipment, etc.)

To be engaged to its max capacity
To minimize idle and readjustment times

Yi =

{
0, ui < uкр
ui−uкр

uoпт−uкр
, otherwise

Schedule, periods of unavailability,
rules for servicing and
readjustments, productivity

Product agent

To arrange its own storage
To minimize intervals between
production and consumption, e
Yi = 1 − ei

eкр

Storage specifications, the time required
for delivery, production or consumption

Enterprise (staff) agent Coordination of agent activities Planning time, depth of
modification chains

Figure 5 shows that new Order B is arriving when Order A has already successfully
been scheduled. Order B reads the technological process from the Knowledge Base and
created agents of Tasks 1, 2, . . . , N. Agents of the tasks start looking for required resources
and a new process of agent collective negotiations is triggered. As a result, two conflicts
between Order A and Order B are discovered on workers and equipment. The conflicts
can be solved by shifts, swaps and drops of tasks with the view on objectives of these and
other agents.

Objectives for every software agent are defined using an agent satisfaction function,
Yi(plani), which is specified as a linear combination (weighted sum) of M elements belong-
ing to kpii and calculated based on the current schedule, plani, related to the object agent
as the following:

Yi =
M

∑
j=1

wijyij,

where yij, is an element of satisfaction function defined by criterion j = 1, M and wij is
weighting coefficient 0 ≤ wij ≤ 1 and ∑M

j=1 wij = 1 ∀i.
As discussed, the task agents on the VM can purchase time slot from resource agents

and resolve conflicts in case several task agents request the same usage time from a resource
agent by paying compensation to agents giving up their requests. For this reason, agents
can use bonuses awarded for good performance or provide fines for underperforming.
Performance is measured by its satisfaction function defined above. For this purpose, each
agent has a bonus (fine) function, Bi (Yi). Virtual money received or expected can be used
to compensate to those agents that are losing in negotiations.

VM can have diverse agents with different satisfaction and bonus/fines functions and
a facility that allows for an agent instance assigned to every enterprise ontology object
instance. Functions of satisfaction and bonuses/fines are introduced to motivate agents to
perform as close as possible to their specified KPIs. Resource agents have an additional
feature, a cost function, related to the cost of tasks.

Allocation of resources to orders is done in the following way:

120

Mathematics 2022, 10, 1662

1. Following the current state of the abstract world, Stwin, instances of order agents,
resource agents and product agents are created and receive permission from the
enterprise agent to act and take decisions.

2. Agent of an active order, Ak, picks up from the knowledge base the business process
for the appropriate product and triggers the required task agents that are connected
by nesting or sequencing relations.

3. A high-level task agent checks that relevant products and resources are available and
ensures task performance in the specified time.

4. The task solution process starts from generating options by analyzing required re-
sources, comparing task requirements and resource capabilities, resolving resource
access timing issues and selecting by the branch and bound method.

5. The computation is based on identification of the set of conflicting orders which
substantially reduce the number of solution options:{

ai
∣∣ i �= k, plan′

k ∩ plani �= ∅
}

,

6. The next step is to allocate resources to tasks. Constituent agents allocate resources
following the procedure described above. The results are delivered to the relevant
group agents, which may accept or reject them and, in the latter case, request a
new solution.

7. The group reports to the order agent on the proposed allocation of resources.
8. The order agent negotiates with conflicting orders to resolve conflicts.

The resulting chain of schedule modifications produces losses suffered by agents who
agreed to change their requirements to resolve the conflict ΔBi.

9. This chain of modifications is successfully dimmed if the corresponding order agent
can compensate losses of conflicting agents from the gains earned by its bonuses, ΔBk:

ΔBk ≥ ∑n
i �=k ΔBi

10. If this is the case, the schedule is accepted; if not, a new round of negotiations
is performed.

11. The order agent then identifies all products linked to it by the “produces” relation
and informs their agents when they must be delivered to appropriate stores.

12. The activity ends when a consensus is reached; in other words, when every agent
ak reaches a state in which no further adjustment of the schedule plan′

k can improve
their satisfaction function ΔYk, and consequently, increase their bonus function ΔBk
or when the time available for negotiations runs out:

ΔBk + ∑n
i �=k ΔBi < 0 ∀k.

13. Once a consensus is reached, the VM stops working and is switched to a standby
mode, awaiting the next disruptive event.

The fragment of the discussed scheme is illustrated in Figure 6, where it is shown how
agents adaptively change the schedule.

121

Mathematics 2022, 10, 1662

Figure 6. A fragment of agent negotiations for resolving ‘task-resource’ conflicts.

The time required to find the optimal schedule is substantially reduced if the order
agents only resolve conflicts in an adaptive manner without full combinatorial search.

If changes in the basic ontology are required, the VM must be re-developed. In contrast,
no re-developing is needed if only domain ontology is expanded.

5. The Method of Designing Autonomous Digital Twins of Enterprises for Adaptive
Task and Resource Management

The developed method for designing Autonomous Digital Twins of Enterprises for
adaptive task and resource management has the following procedure.

1. In the first step, the basic ontology is formalized with the help of experts in ontology
editor and basic functionality is implemented in a unified multi-agent system for
adaptive resource management covering the Deming cycle.

2. In the second step, the basic ontology is extended by domain-specific concepts and
relations for different domains of applications. For example, for the aviation industry,
one can introduce aviation ontology, which will specify typical parts of an aircraft,
basic assembly processes and tasks, competencies of workers, etc. For the gas and oil
drilling industry, the domain ontology will specify typical oil equipment, technological
processes, etc.

3. In the third step, the domain ontology can be applied for building ontological models
of concrete enterprises specifying its departments, business processes, persons and
their roles and competencies, etc. Two different enterprises, working in one domain,
can have the same domain ontology or can expand and modify their copies of common
domain ontology to make it more suitable for their business aspects.

4. Ontological models of enterprise can be loaded into the unified multi-agent system for
resource management. A set of such models can form a collection in the knowledge
base for the domain of enterprises and play a role of standards in future.

5. To launch the Autonomous Digital Twins of Enterprises, users only need to load the
selected ontological model of enterprise and to specify the initial scene or state of the
enterprise, including the values of object attributes.

As a result, the proposed method provides the opportunity to formalize domain-
specific knowledge of enterprises, which is usually “out of consideration” in traditional
methods and tools of planning and optimization. For example, ontological specifications
of the domain can help take into consideration what kind of resources is required for this
particular task (operation), what input objects can trigger this task, what is the previous
and the next task, etc.

The structure of ontological specifications of the method is given in Figure 7.

122

Mathematics 2022, 10, 1662

Figure 7. Structure of the ontological specifications of the enterprises.

In this case, this domain-specific knowledge and logic can be separated from the source
code of the system, which will become more generic and unified for various applications.

There is a number of ontologies developed for many different domains, including
manufacturing, transport or agriculture.

However, applications for task-centric resource management and customization of
multi-agent systems are not yet known and researched.

When the ontological enterprise model is loaded, agents make copies (clones) of their
basic classes and use the formalized knowledge from ontology to specify behavior of agents
of each task; for example, under what conditions can each task be launched, what are the
previous and next tasks, what kind of resources this task requires, etc.

The design of a typical agent, is presented in Figure 8, including the components:

• State machine of agent—the set of states and transition rules which are connected and
triggered by scene events or messages from other agents;

• Agent services—a number of software components to get input data, make computa-
tions, store data, etc.;

• Communication tools—software components to send/receive messages;
• Access to Knowledge Base—software components for accessing the Knowledge Base,

reasoning and navigation through semantic networks.

123

Mathematics 2022, 10, 1662

Figure 8. Typical agent structure.

Agent World is a software component for running and dispatching instances of agent
classes, for example, the schedule of middle-size workshop with 300 equipment units and
150 workers for the 3–6-month horizon may require more than 5 thousand interconnected
instances of Task Agents, and all these instances of agents will be individually customized
by the ontological model of enterprise.

The other core part of the autonomous digital twin of enterprise is the ontology-driven
knowledge base, which will provide knowledge graph methods and tools to collect, digital-
ize, formalize and systemize domain-specific knowledge of enterprise, including detailed
specifications of orders, business or technology processes, tasks and required resources,
humans, machines and equipment, competencies of employees, etc. The granularity of
formal specifications of business or technology processes will provide possibility to spec-
ify each task in enterprise operation and automatically find the required resources more
semantically, individually, adaptively and dynamically.

The discussed concept of the autonomous digital twin of enterprise requires modi-
fication of the previously developed methods and tools and integration of ontologies to
support the full cycle of resource management, with detailed granulation of specifications
to each and every task in business or technology processes.

6. Architecture of Knowledge-Based Multi-Agent Toolset for Designing the
Autonomous Digital Twin of Enterprise

The described method was implemented in a Knowledge-Based Multi-Agent Toolset
for developing the Autonomous Digital Twins of Enterprise.

The architecture of the Knowledge-Based Multi-Agent Toolset includes the following
main components (Figure 9):

• Basic Ontology of Resource Management—contains basic classes of concepts and
relations for resource management;

• Domain Ontology of Enterprise—contains domain-specific classes of concepts and
relations for the concrete enterprise;

• Ontological Models of Enterprises 1, 2, . . . , N—fully specified enterprise, including
types of orders, technology or business processes, employees and other resources;

• Scenes of Enterprise, synchronized with the state of real enterprise 1, 2, . . . ,
N—ontological models of enterprises with concretization of attributes of properties
and relations in the initial moment of time;

• Ontology, Knowledge Base and Scene Editors—software components for modifying
ontologies, knowledge bases and scenes;

• Events—event queue for registering input events and sending them for processing in
multi-agent system;

124

Mathematics 2022, 10, 1662

• Ontology-Based Multi-Agent System for Adaptive Resource Management—the unified
software component for loading ontological models of enterprises;

• User Interface—web interface and mobile application for communication with users
and coordinating decisions.

Figure 9. Architecture of a Toolset for Developing Autonomous Digital Twins of Enterprises.

The core parts of Autonomous Digital Twins of Enterprises are the Knowledge Base
and Ontology-Based Multi-Agent System for Adaptive Resource Management.

The loading of the Ontological Model of Enterprise in the Ontology-Based Multi-Agent
System triggers the creation of a new virtual world, which represents and mirrors tasks
and resources of the real enterprise. In this sense, the developed Multi-Agent System is
unified for a wide range of enterprises and it significantly reduces the time and cost of
the developments.

At any moment of time, the Ontology-Based Multi-Agent System can be copied and
the separate scene can be used for real-time simulations and what-if games; for exam-
ple, entering new potential order, changing technological processes or shifts of workers,
modernization of equipment, etc.

The Autonomous Digital Twins of Enterprises can be delivered to client as a stand-
alone software solution or it can be integrated as a service with any other digital platforms
or the cyber-physical system.

The developed tools can speed up development and save human effort, time and costs
of developments and maintenance of the solution.

7. Evaluation of the Efficiency of the Method and Toolset for the Autonomous Digital
Twins of Enterprises Development Process

To evaluate efficiency of the discussed method and toolset for developing Autonomous
Digital Twins of Enterprises, the following resource management applications were considered:

• Aircraft assembly process for MC-21 for the Irkut Corporation (Irkutsk, Russia);
• Assembly of electric cars using robotic line for the TPA Company (Saint Petersburg,

Russia);
• Oil drilling process for the Gaspromneft-Yamal enterprise (Saint Petersburg, Russia);
• Wheat crowing for the Rassvet agrofarm (Rostov region, Russia);
• Group of satellites for Earth remote sensing for the Rocket and Space Corporation

“Progress” (Samara, Russia).

The Autonomous Digital Twins of Enterprises were prototyped independently for
each of these domains, including collecting and formalizing domain knowledge, creating

125

Mathematics 2022, 10, 1662

an ontological model of enterprise and implementing modifications of basic ontology and
a unified multi-agent system.

The idea of experiment was to measure the scope and total amount of development
work (man-hours), including ontological and multi-agent features only:

• Changes in basic ontology (if needed);
• Extension of domain ontology;
• Changes in agent class logic;
• Addition of new agent classes.

During the experiment, the number of agents and size of ontologies was measured.

Aircraft assembly process for MC-21 for the Irkut Corporation

Input data: set of orders and list of events, in real time, storage of products.
Knowledge Base: product structure breakdown, technological processes with speci-

fication of each task, matching rules between tasks and resources, equipment, materials,
number of workers and their competencies.

Criteria: just-in-time order production, minimization of order execution time and
usage of resources, balanced load of workers.

Assembly of electric cars using robotic line for the TPA Company

Input data: set of orders and list of events, coming in real time, storage of products,
plan and tariff of DHL deliveries of car parts.

Knowledge Base: product structure breakdown, technological processes with speci-
fication of each task, matching rules between tasks and resources, equipment, materials,
number of robots and their functionality.

Criteria: just-in-time order production, minimization of order execution time and
usage of resources, balanced load of robots.

Oil drilling process for the Gaspromneft-Yamal enterprise

Input data: requirements for oil drilling, storage of required materials.
Knowledge Base: best practices and technological processes of oil drilling with speci-

fication of each task, matching rules between tasks and resources, equipment, materials,
number of workers and their competencies.

Criteria: minimization of oil drilling time and usage of resources.

Wheat crowing for the Rassvet agrofarm

Input data: wheat variety, the number of fields and days of wheat seeding, weather
forecast and actual data.

Knowledge Base: stages of plant growth with specification of each phase, matching
rules between stages, weather conditions and available resources.

Criteria: minimization of time for stages and maximization of harvest forecast.

Group of satellites for Earth remote sensing for the Rocket and Space Corporation “Progress”

Input data: the state of satellites and ground stations, set of orders for remote Earth
observation.

Knowledge Base: satellites break-down structure, ballistics, technological processes of
data imaging with specification of each task, matching rules between tasks and resources
of satellites and their equipment functionality.

Criteria: minimization of reaction time and maximization of image resolution.
The results of discussed developments are shown in Table 5.

126

Mathematics 2022, 10, 1662

Table 5. Results of using the developed method and toolset for developing prototypes of Autonomous
Digital Twins of Enterprises in different domains (KB—Knowledge Base and MAS—Multi-Agent System).

Domain of
Enterprise

Size of Basic
Ontology

Size of Domain
Ontology

Size of Ontological
Model of Enterprise

Number of Agents
Development Time (Man * Months)

KB MAS

Aircraft Assembly

61

152 925 >350 3 3.5

Electro-Cars
Assembly 89 382 >520 1 2

Oil Drilling 85 441 >5000 2 3

Digital Twin of
Plant 42 236 >100 1 1

Swarm of Satellites 112 304 >450 1 4

The basic ontology Ob was stabilized with about 60 main concepts and relations.
Domain ontologies expand this basic ontology up to 2–3 times. Ontological models of
enterprises, which include instances of concepts and relations, may differ very much and
include from 236 to 925 instances. These ontological moles were loaded into the unified
multi-agent system and automatically created instances of basic classes of agents. The
required development and customization of the unified multi-agent system for these new
applications took about 2–4 months.

Compared with the traditional approach for developing smart solutions, when the
process of development takes 9–12 months [35], the application of the developed method
and toolset makes it possible to significantly (up to 3–4 times) reduce complexity, cost and
time of development process.

More detailed results and examples of applications can be found in [46].

8. Example of the Method and Toolset Application

Let us consider an example of the application of the presented method and toolset for
the development of the autonomous digital twin of enterprise for the Service Desk Center
of the Russian National Railways.

The Service Desk Center serves about 2500 information systems by 4500 employees,
which have competencies in different software solutions.

At the moment, the Service Desk Center of the Russian National Railways has an old-
fashioned IT system which is planned to be replaced by a more advanced and intelligent
decision-making system for scheduling employees and chat bots for users.

The existing system has a module of auto-allocation of new orders to employees in an
empiric manner “First In—First Out” and up to 10 orders per employee (other orders are
staying in the queue and can lose their service level). This module has no adaptability, so
new orders cannot change allocation of the previously allocated resources. Moreover, this
module serves orders without any knowledge about semantics of the detected problem,
service level for specific system, time zones, competencies of employees and their planned
load and other preferences and constraints.

The autonomous digital twin of enterprise for the Service Desk Center was proposed
as a solution of the problem and the pilot project was started in the summer of 2021.

The developed new system reads orders and creates their semantic descriptors, ana-
lyzes its content and adaptively schedules and optimizes tasks more individually, taking
into consideration all the above parameters, including employee competencies. However, it
also combines scheduling and optimization with monitoring and control of task execution.
For example, if one task is significantly delayed by an employee and has a risk to break ser-
vices, the next tasks in the schedule of this employee will automatically become active and
start searching for other options. As a result of such negotiations for solving conflicts, these
tasks can be reallocated and re-scheduled to other employees, for example, who fulfilled
the planned tasks faster than expected, and have the needed spare time and competencies.

The difference between two systems is shown in Figure 10: in the existing system
(left), new orders are staying in the queue waiting for allocation. In the new system (right),

127

Mathematics 2022, 10, 1662

new orders are immediately adaptively allocated and scheduled by solving conflicts in the
schedules of employees. Red circles here identify the detected conflicts and re-scheduling
of the previously scheduled orders.

Figure 10. The difference between the existing (left) and developed (right) systems.

The prototype of the autonomous digital twin of the Service Desk Center was devel-
oped in 3 months and researched for one group of 34 employees working with 25 software
systems in the domain of logistics.

To evaluate the efficiency of the solution, the data records from Service Desk Center
for Q1 2021 were collected and analyzed.

The basic ontology was applied and domain ontology and ontological model of the
selected logistics group of employees were created, which includes about 100 technological
processes (Figure 11) and the matrix of employees’ competencies (Figure 12).

Figure 11. A fragment of domain ontology and ontological model of logistics group of employees
(yellow—issues of IT systems, green—technological processes, red—tasks).

128

Mathematics 2022, 10, 1662

Figure 12. The fragment of competencies matrix (darker blue color—better employee competencies
and faster task implementation).

The validation of the developed solution was made with the use of pre-selected real
data on 1 September 2021. The test run included 34 employees from the selected team,
which processed 304 orders in about 5 h.

The adaptive schedule of employees of the logistics group is presented in Figure 13.
One can see here that every employee has tasks with the same color. It means that the
system schedules only those tasks that match with the competencies of this employee.

Figure 13. Adaptive schedule of employees of the logistics group.

Figure 14 shows how multi-agent technology works by presenting the satisfaction
function and bonus-penalty functions of the system (as a whole), the number of agents
involved and the number of changes in the schedule.

129

Mathematics 2022, 10, 1662

Figure 14. Characteristics of the multi-agent decision-making process.

Here, 304 agents of tasks were allocated to 34 agents of employees. During the
negotiation process, the schedule was changed 1429 times and some tasks were allocated at
the first attempt, while other tasks changed their positions a few times.

Figure 15 presents results of work of the existing system versus the new one and helps
compare these results and evaluate the advantages of the new system.

Figure 15. Comparison of results of the existing system and the new one.

The left diagram shows that the developed solution provides an increase of 9.36%
compared to the existing solution for resource allocation: the new solution requires 80.72 h
of work to process requests and the old solution requires 88.27 h for the same requests.
The right diagram shows that the new solution (blue) processes many more orders in the
beginning compared to the existing one (yellow). One can see that the new solution has
a bigger number of pending requests in the beginning of a day, i.e., the 1st of September

130

Mathematics 2022, 10, 1662

(blue line on diagram), compared with the existing scheduler (yellow line). This means that
the scheduler found and scheduled employees with required competencies for solving the
problem. Moreover, at the end of the day, the biggest part of all requests was successfully
executed and the rest of the scheduled (pending) requests was much lower. This means
that the found employees have a bigger productivity and efficiency and are able to process
the number of requests much faster than in the existing solution.

The external radiuses of circle diagrams show what tasks are scheduled (in different
colors) and their allocation to employees, teams and departments accordingly (internal
radiuses). The achieved resource allocation now (on the left) is not so random and frag-
mented (on the right)—the new solution performs allocation and scheduling of orders more
smoothly, using the semantics of the requests and the competencies of employees.

The results of the prototype were analyzed and a number of new opportunities
were identified, specifically how to provide a better service for customers, increase the
productivity and efficiency of staff, motivate employees to acquire new competencies and
reduce risks and penalties.

9. The Discussion and Outlook of Future Developments

The main contribution of this paper is to propose the autonomous digital twin of
enterprise based on ontology and multi-agent technology for implementing a full Deming
cycle of adaptive resource management, including real-time resource allocations, planning
and optimization, monitoring and control of plan execution.

The developed ontology-driven multi-agent approach and software toolset for design-
ing autonomous digital twins of enterprises provides high adaptability for businesses and
increases the efficiency of resources under conditions of high uncertainty and turbulent
dynamics of demand and supply. The implementation of domain ontology can be done by
knowledge engineers for customization of the solution for different enterprises, and this
process does not require re-programming of the unified multi-agent system. In case of new
types of enterprises, the multi-agent system needs to be modified by new classes of agents
and protocols of their communications.

The limitations of the approach are related to egoistic behavior of agents (myopia),
which can block the system in local optimums, but this is mitigated by mutual compensa-
tions. As a next step, the following modifications can be made: advanced virtual market
models, non-deterministic collective decision making with dynamically balanced positive
and negative feedback mechanisms, proactivity of both demand and resource agents, etc.

Machine learning/data-driven methods could also be applied for digital twins of
enterprises when big data are available and in a situation where orders and resources are
not changing during the time period. However, if an enterprise does not have big data or
the if situation with orders and resources is continuously changing, these methods cannot
be fully applied. However, in the future, these methods could be efficiently combined in a
new hybrid method.

Another issue of the developed approach is the scalability for large enterprises and
supply chains. The solution could be based on holonic and network-centric architectures for
cooperation and competition of autonomous digital twins of enterprises. For example, the
autonomous digital twin of one workshop can interact with the autonomous digital twin of
another workshops. Autonomous digital twins of workshops can populate autonomous
digital twins of factory, etc.

The plans for future research and developments include the following:

- Analysis of non-deterministic decision making in self-organized multi-agent systems
and phenomena of emergent intelligence;

- Collection of pre-built ontologies and ontological models of enterprises and basic
classes of agents for a wide range of different domains;

- Distributed knowledge base for supporting automatic decision making in specific
teams of employees;

131

Mathematics 2022, 10, 1662

- Digital platform and digital ecosystems for p2p competition and cooperation between
Autonomous Digital Twins of Enterprises;

- Integration with chat bots and software robots for business processes;
- Integration with Internet of Things (IoT) platforms.

The autonomous digital twin of enterprise can be applied for automatic resource
management synchronized with real enterprise or as a real-time simulation tool.

The results could be used for academic research and industry, including potential
business applications for project management, agile programming, remote work from
home in pandemic times and other cases.

Author Contributions: Conceptualization, P.S.; Formal analysis, V.L.; Investigation, D.N.; Methodol-
ogy, S.G.; Software, A.G.; Writing—original draft, V.G. and A.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is funded by a grant of the Russian Science Foundation No. 22-41-08003,
https://rscf.ru/project/22-41-08003/.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In
Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.-J., Flumerfelt, S., Alvesm, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2017; pp. 85–113.

2. Barricelli, B.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications.
IEEE Access 2019, 7, 167653–167671. [CrossRef]

3. Proceedings of the 31st European International Conference on Operational Research, Athens, 11–14 July 2021. Available online:
https://euro2021athens.com/ (accessed on 5 March 2022).

4. Qi, Q.; Tao, F. Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison. IEEE Access
2018, 6, 3585–3593. [CrossRef]

5. Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big
data. Int. J. Adv. Manuf. Technol. 2018, 94, 3563–3576. [CrossRef]

6. Panetta, K. Gartner Top 10 Strategic Technology Trends for 2019. Available online: https://www.gartner.com/smarterwithgartner/
gartner-top-10-strategic-technology-trends-for-2019/ (accessed on 5 March 2022).

7. Shen, Z.; Wang, L.; Deng, T. Digital Twin: What It Is, Why Do It, Related Challenges and Research Opportunities for Operations
Research. 2 February 2021, p. 53. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3777695 (accessed on
6 March 2022).

8. Kuehn, W. Digital twins for decision making in complex production and logistic enterprises. Int. J. Des. Nat. Ecodynamics 2018, 13,
260–271. [CrossRef]

9. Kuliaev, V.; Atmojo, U.D.; Erla, S.S.; Blech, J.O.; Vyatkin, V. Towards Product Centric Manufacturing: From Digital Twins to
Product Assembly. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Espoo,
Finland, 22–25 July 2019; pp. 164–171. [CrossRef]

10. Bao, J.; Guo, D.; Li, J.; Zhang, J. The modelling and operations for the digital twin in the context of manufacturing. Enterp. Inf.
Syst. 2018, 13, 534–556. [CrossRef]

11. Kulkarni, V.; Barat, S.; Clark, T. Towards Adaptive Enterprises Using Digital Twins. In Proceedings of the 2019 Winter Simulation
Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; pp. 60–74. [CrossRef]

12. Bárkányi, Á.; Chován, T.; Németh, S.; Abonyi, J. Modelling for Digital Twins—Potential Role of Surrogate Models. Processes 2021,
9, 476. [CrossRef]

13. Yildiz, E.; Møller, C.; Bilberg, A. Demonstration and evaluation of a digital twin-based virtual factory. Int. J. Adv. Manuf. Technol.
2021, 114, 185–203. [CrossRef]

14. Niati, A.; Selma, C.; Tamzalit, D.; Bruneliere, H.; Mebarki, N.; Cardin, O. Towards a Digital Twin for Cyber-Physical Production
Systems: A Multi-Paradigm Modeling Approach in the Postal Industry. In Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems: Companion Proceedings (MODELS ′20 Companion), Virtual
Conference, Canada, 12–23 October 2020; pp. 1–7.

15. Leitão, P.; Colombo, A.W.D.; Karnouskos, S. Industrial automation based on cyber-physical systems technologies: Prototype
implementations and challenges. Comput. Ind. 2016, 81, 11–25. [CrossRef]

132

Mathematics 2022, 10, 1662

16. Karnouskos, S.; Leitao, P.; Ribeiro, L.; Colombo, A.W. Industrial Agents as a Key Enabler for Realizing Industrial Cyber-Physical
Systems: Multiagent Systems Entering Industry 4.0. IEEE Ind. Electron. Mag. 2020, 14, 18–32. [CrossRef]

17. Lazarev, A.; Pravdivets, N.; Werner, F. On the Dual and Inverse Problems of Scheduling Jobs to Minimize the Maximum Penalty.
Mathematics 2020, 8, 1131. [CrossRef]

18. Alkhabbas, F.; Spalazzese, R.; Davidsson, P. An Agent-Based Approach to Realize Emergent Configurations in the Internet of
Things. Electronics 2020, 9, 1347. [CrossRef]

19. Hrabia, C.-E.; Lützenberger, M.; Albayrak, S. Towards adaptive multi-robot systems: Self-organization and self-adaptation. Knowl.
Eng. Rev. 2018, 33, e16. [CrossRef]

20. Chopra, A.K.; Singh, M.P. An Evaluation of Communication Protocol Languages for Engineering Multiagent Systems. J. Artif.
Intell. Res. 2020, 69, 1351–1393. [CrossRef]

21. Dalpiaz, F.; Chopra, A.K.; Giorgini, P.; Mylopoulos, J. Adaptation in Open Systems: Giving Interaction Its Rightful Place. In
Conceptual Modeling—ER 2010; LNCS 6412; Springer: Berlin/Heidelberg, Germany, 2010; pp. 31–45.

22. Dalpiaz, F.; Giorgini, P.; Mylopoulos, J. Adaptive socio-technical systems: A requirements-based approach. Requir. Eng. 2013, 18,
1–24. [CrossRef]

23. Bures, T.; Gerostathopoulos, I.; Hnetynka, P.; Keznikl, J.; Kit, M.; Plasil, F. DEECO: An ensemble-based component system. In
Proceedings of the 16th International ACM Sigsoft Symposium on Component-Based Software Engineering, Vancouver, BC,
Canada, 17–21 June 2013; ACM: New York, NY, USA, 2013; pp. 81–90.

24. Gascueña, J.M.; Navarro, E.; Fernández-Caballero, A. Model-driven engineering techniques for the development of multi-agent
systems. Eng. Appl. Artif. Intell. 2012, 25, 159–173. [CrossRef]

25. García-Sánchez, F.; Valencia-García, R.; Martínez-Béjar, R.; Breis, J.T.F. An ontology, intelligent agent-based framework for the
provision of semantic web services. Expert Syst. Appl. 2009, 36, 3167–3187. [CrossRef]

26. Van der Valk, H.; Haße, H.; Möller, F.; Otto, B. Archetypes of Digital Twins. Bus. Inf. Syst. Eng. 2021. [CrossRef]
27. Eramo, R.; Bordeleau, F.; Combemale, B.; van Den Brand, M.; Wimmer, M.; Wortmann, A. Conceptualizing Digital Twins, hal-

03466396, Version 1; IEEE Software; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2021; pp. 1–7. Available
online: https://hal.inria.fr/hal-03466396 (accessed on 3 March 2022).

28. Gruber, T. Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum. Comput. Stud. 1995, 43,
907–928. [CrossRef]

29. Lemaignan, S.; Siadat, A.; Dantan, J.Y.; Semenenko, A. MASON: A proposal for an ontology of manufacturing domain. In
Proceedings of the IEEE Workshop on Distributed Intelligent Systems—Collective Intelligence and Its Applications (DIS 2006),
Prague, Czech Republic, 15–16 June 2006; pp. 195–200.

30. Usman, Z.; Young, R.I.M.; Chungoora, N.; Palmer, C.; Case, K.; Harding, J. A Manufacturing Core Concepts Ontology for Product
Lifecycle Interoperability. In Proceedings of the International IFIP Working Conference on Enterprise Interoperability IWEI 2011,
Stockholm, Sweden, 22–23 March 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 5–18.

31. Minhas, S.U.H.; Berger, U. Ontology Based Environmental Knowledge Management—A System to Support Decisions in Manu-
facturing Planning. In Proceedings of the 6th International Conference on Knowledge Engineering and Ontology Development
(KEOD), Rome, Italy, 21–24 October 2014; pp. 397–404.

32. Sormaz, D.; Sarkar, A. SIMPM—Upper-level ontology for manufacturing process plan net-work generation. Robot. Comput. Integr.
Manuf. 2019, 55, 183–198. [CrossRef]

33. Järvenpää, E.; Siltala, N.; Hylli, O.; Lanz, M. The development of an ontology for describing the capabilities of manufacturing
resources. J. Intell. Manuf. 2018, 30, 959–978. [CrossRef]

34. Bao, Q.; Zhao, G.; Yu, Y.; Dai, S.; Wang, W. Ontology-based modeling of part digital twin oriented to assembly. Proc. Inst. Mech.
Eng. Part B J. Eng. Manuf. 2020, 236, 16–28. [CrossRef]

35. Marik, V.; Gorodetsky, V.; Skobelev, P. Multi-Agent Technology for Industrial Applications: Barriers and Trends. In Proceedings
of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2020), Toronto, ON, Canada, 11–14 October
2020; pp. 1980–1987.

36. Lu, Q.; Xie, X.; Heaton, J.; Parlikad, A.K.; Schooling, J. From BIM towards digital twin: Strategy and future development for
smart asset management. In Proceedings of the International Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing, Valencia, Spain, 3–4 October 2019; Springer: Cham, Switzerland, 2019; pp. 392–404.

37. Zheng, X.; Psarommatis, F.; Petrali, P.; Turrin, C.; Lu, J.; Kiritsis, D. A quality-oriented digital twin modelling method for
manufacturing processes based on a multi-agent architecture. Procedia Manuf. 2020, 51, 309–315. [CrossRef]

38. Nie, Q.; Tang, D.; Zhu, H.; Sun, H. A multi-agent and internet of things framework of digital twin for optimized manufacturing
control. Int. J. Comput. Integr. Manuf. 2021, 1–22. [CrossRef]

39. Lorente, Q.; Villeneuve, E.; Merlo, C.; Boy, G.A.; Thermy, F. Development of a digital twin for collaborative decision-making,
based on a multi-agent system: Application to prescriptive maintenance. INCOSE Int. Symp. 2022, 32, 109–117. [CrossRef]

40. Rzevski, G.; Skobelev, P. Managing Complexity, 1st ed.; WIT Press: London, UK; Boston, MA, USA, 2014; p. 216.
41. Skobelev, P. Towards Autonomous AI Systems for Resource Management: Applications in Industry and Lessons Learned. In

Proceedings of the 16th International Conference on Practical Applications of Agents and Multiagent Systems (PAAMS 2018),
Toledo, Spain, 20–22 June 2018; LNAI 10978. pp. 12–25.

133

Mathematics 2022, 10, 1662

42. Van Brussel, H.; Wyns, J.; Valckenaers, P.; Bongaerts, L.; Peeters, P. Reference Architecture for Holonic Manufacturing Systems:
PROSA. Comput. Ind. 1998, 37, 255–274. [CrossRef]

43. Skobelev, P.; Zhilyaev, A.; Larukhin, V.B.; Grachev, S.; Simonova, E.V. Ontology-based open multi-agent systems for adaptive
resource management. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020),
Valetta, Malta, 22–24 February 2020; SciTePress: Setúbal, Portugal, 2020; Volume 1, pp. 127–135.

44. Shoham, Y.; Leyton-Brown, K. Multi-Agent Systems: Alghoritmic, Game Theoretic and Logical Foundations; Cambridge University
Press: Cambridge, UK, 2009. Available online: http://www.masfoundations.org (accessed on 8 March 2022).

45. Easley, D.; Kleinberg, J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World; Cambridge University Press: Cam-
bridge, UK, 2010. Available online: http://www.cs.cornell.edu/home/kleinber/networks-book/ (accessed on 8 March 2020).

46. Grachev, S.P.; Zhilyaev, A.A.; Laryukhin, V.B.; Novichkov, D.E.; Galuzin, V.A.; Simonova, E.V.; Maiyorov, I.V.; Skobelev, P.O.
Methods and Tools for Developing Intelligent Systems for Solving Complex Real-Time Adaptive Resource Management Problems.
Autom. Remote Control 2021, 82, 1857–1885. [CrossRef]

134

Citation: Behmanesh-Fard, N.;

Yazdanjouei, H.; Shokouhifar, M.;

Werner, F. Mathematical Circuit Root

Simplification Using an Ensemble

Heuristic–Metaheuristic Algorithm.

Mathematics 2023, 11, 1498. https://

doi.org/10.3390/math11061498

Academic Editor: Ioannis G.

Tsoulos

Received: 8 February 2023

Revised: 15 March 2023

Accepted: 16 March 2023

Published: 19 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mathematical Circuit Root Simplification Using an Ensemble
Heuristic–Metaheuristic Algorithm

Navid Behmanesh-Fard 1, Hossein Yazdanjouei 2, Mohammad Shokouhifar 3,* and Frank Werner 4,*

1 Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran 1435661137, Iran
2 Microelectronics Research Laboratory, Urmia University, Urmia 5756151818, Iran
3 Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
4 Faculty of Mathematics, Otto-Von-Guericke-University, 39016 Magdeburg, Germany
* Correspondence: m_shokouhifar@sbu.ac.ir (M.S.); frank.werner@ovgu.de (F.W.)

Abstract: Symbolic pole/zero analysis is a crucial step in designing an analog operational amplifier.
Generally, a simplified symbolic analysis of analog circuits suffers from NP-hardness, i.e., an expo-
nential growth of the number of symbolic terms of the transfer function with the circuit size. This
study presents a mathematical model combined with a heuristic–metaheuristic solution method for
symbolic pole/zero simplification in operational transconductance amplifiers. First, the circuit is sym-
bolically solved and an improved root splitting method is applied to extract symbolic poles/zeroes
from the exact expanded transfer function. Then, a hybrid algorithm based on heuristic information
and a metaheuristic technique using simulated annealing is used for the simplification of the derived
symbolic roots. The developed method is tested on three operational transconductance amplifiers.
The obtained results show the effectiveness of the proposed method in achieving accurate simplified
symbolic pole/zero expressions with the least complexity.

Keywords: operational transconductance amplifiers; symbolic circuit analysis; pole/zero extraction;
root splitting; simplification; simulated annealing

MSC: 90-08; 90C59

1. Introduction

Symbolic analysis is a method of analyzing analog circuits in which the circuit equa-
tions are expressed in terms of symbolic variables. This technique is useful for designing
and analyzing complex analog circuits (especially those with nonlinear components) as
it provides engineers with a deep insight into the relations between the circuit variables
rather than simply relying on numerical methods. Therefore, this method can help circuit
designers to quickly evaluate different design alternatives by allowing them to manipulate
circuit equations algebraically, enabling the study of the effects of different component
values on the circuit performance. One of the major applications of symbolic analysis is to
determine the location and characteristics of circuits’ poles and zeroes, which is needed to
analyze the stability and frequency response of the circuit [1].

Recently, multi-stage operational transconductance amplifiers (OTAs) have become
widely applied in modern microelectronics, as OTAs can provide a large output swing
and high gain with very low overdrive voltage [2]. However, as each stage has its own
poles and zeroes, the bandwidth may be reduced. In addition to the poles and zeroes
of each additional stage, the compensated capacitors may add some extra poles and
zeroes [3]. One of the main challenges in the design of multi-stage OTAs is to devise a
frequency compensation procedure capable of providing wide bandwidth and high gain
with appropriate stability margins [4]. In this regard, a simplified extraction of symbolic
poles and zeroes can give better analytical expressions and assist designers in making a
straight decision when designing an OTA and a frequency compensation circuit [5].

Mathematics 2023, 11, 1498. https://doi.org/10.3390/math11061498 https://www.mdpi.com/journal/mathematics
135

Mathematics 2023, 11, 1498

Generally, an exact symbolic analysis of OTAs is error-prone and time-consuming
if performed by hand, even for circuits with a small number of components [6]. In this
regard, a computer-aided automatic symbolic analysis can be helpful by solving the circuit
equations with mathematical solvers such as Cramer’s rule [7]. It can be performed by
exploiting symbolic analysis solvers using software tools such as MATLAB, GNU Octave,
and MAPLE [8]. The main drawbacks of a symbolic analysis are that the derived symbolic
equations are very complex and cannot effectively guide the circuit designer [9]. Although
various symbolic simplification techniques have been introduced, simplified expressions
are not provided in a factorization form. Thus, it is difficult to evaluate the effects of roots
on the behavior of the circuit.

Although the existing symbolic pole/zero analysis methods incorporate some types
of approximations during the calculation of the transfer function, they suffer from some
drawbacks which limit their effectiveness for use in real-world OTAs. First, these methods
are inefficient in the case of overall generated error rates in terms of magnitude, phase,
poles and zeroes [10]. Second, the correlation between eliminated terms in different poly-
nomials is not effectively considered in polynomial-oriented methods. Third, pole/zero
displacements due to approximations are not under control [7]. Fourth, those closely spaced
pole/zero pairs may disappear due to a magnitude-/phase-oriented approximation, which
can generate high error rates at points other than the nominal ones [8].

Over the past years, metaheuristics have also been presented for use in the parameter
selection and symbolic simplification in electrical circuits. Shokouhifar and Jalali [10]
presented a combined algorithm based on the genetic algorithm (GA) and simulated
annealing (SA) as a metaheuristic-based optimization technique for symbolic term selection
in the symbolic voltage gain of analog circuits containing transistors. Akbari et al. [3]
proposed a symbolic analysis for the design of analog integrated circuits using an ant
colony optimization (ACO) algorithm which takes noise optimization into account. Another
technique, outlined in [11], involved performing GA, SA, and particle swarm optimization
(PSO) to simplify the symbolic expressions for the common-mode rejection ratio (CMRR)
and power supply rejection ratio (PSRR) of the analog amplifier. Sathasivam et al. [12]
presented a combined metaheuristic algorithm based on GA and tabu search (TS) with
restricted neural symbolic integration for solving the maximum k-satisfiability problem.
Ali et al. [13] proposed a new hybrid metaheuristic algorithm based on the marine predator
algorithm and sine cosine algorithm for selecting the best parameters for hybrid active
power filters.

Although various metaheuristics have been presented for circuit simplification, they
mostly present symbolic expressions in expanded forms. The existing symbolic root
simplification techniques typically use simple criteria which are separately applied to
each polynomial of the exact symbolic roots. Thus, these techniques do not guarantee a
good match of the simplified root expressions compared to the exact ones. Although the
maximum error of each simplified polynomial is limited, the displacement of poles and
zeroes is not under control [7]. Therefore, despite the simplicity of the traditional methods,
they may generate large errors in the simplified root expressions.

In this study, a simplified symbolic pole/zero extraction technique is presented based
on an extension of the root splitting technique [14] and SA [15]. In this regard, we first
introduce an enhanced root splitting (named ERS) for the symbolic pole/zero extraction
from the exact transfer function. In this method, pole/zero displacements cannot exceed
a pre-specified threshold. Then, we apply a metaheuristic-driven simplification method
based on SA (named PZSA) to simplify the derived pole/zero expressions. Our main
motivation is to mathematically formulate the pole/zero simplification problem in analog
circuits as a multi-objective constrained optimization problem. The established problem
can be solved by the use of optimization algorithms such as heuristics, single-solution
metaheuristics, or population-based evolutionary and swarm intelligence algorithms. Thus,
this paper applies a combined heuristic–metaheuristic algorithm based on the heuristic

136

Mathematics 2023, 11, 1498

information available in the circuit model and SA to solve the symbolic root simplification
problem. The key contributions outlined in this study can be characterized as follows:

• Introducing a combined mathematical modeling and optimization technique for the
extraction and simplification of symbolic poles and zeros in OTAs.

• Proposing an enhanced root splitting technique, named ERS, to accurately extract the
exact pole/zero expressions.

• Applying a combined heuristic–metaheuristic optimization algorithm to solve the
proposed symbolic root simplification problem, utilizing the heuristic knowledge
available in the circuit model and SA.

• Programming the proposed method in a MATLAB m-file, wherein simplified root
equations are automatically generated from the circuit netlist.

• Successfully driving symbolic pole/zero expressions for three OTAs.

The rest of this study is organized as follows: In Section 2, the existing literature for
a symbolic simplification and symbolic pole/zero extraction is reviewed. In Section 3,
the proposed methodology is presented with details, and then the developed method in
MATLAB is evaluated in Section 4. Finally, in Section 5, some concluding remarks are made
and future directions are addressed.

2. Literature Review

Over recent years, along with the increasing advancement and development in analog
circuit design, various symbolic simplification techniques and symbolic pole/zero extrac-
tion methods have been proposed. According to the existing literature, these methods can
be described in the following manners outlined below.

2.1. Symbolic Simplification Techniques

The symbolic analysis of OTAs suffers from NP-hardness [7]. For instance, the μA741
amplifier has approximately 1034 terms within its voltage transfer function [16]. Therefore,
symbolic analysis tools must rely on simplification techniques to tackle the complexity
and hardness of real-world circuits. Based on the steps taken in the simplification process,
simplification algorithms can be categorized into SAG (simplification-after-generation),
SDG (simplification-during-generation), and SBG (simplification-before-generation) [17].
It is worth noting that the proposed PZSA algorithm in this study is an SAG technique.
An SAG is performed once the symbolic circuit analysis is done and, as a result, the
exact symbolic expressions have been obtained. Therefore, simplified functions can be
constructed from some terms of the exact expressions. In the following section, we discuss
the details of the SAG technique used in the proposed method.

The small-signal transfer function of a linear or linearized circuit can be represented
as a function of the frequency s and the circuit parameters x, according to Equation (1) [8],
where each polynomial f́i(x) or fi(x) is a sum-of-product (SOP) of x. This is expressed
as hk(x) = hk1(x) + hk2(x) + . . . + hkT(x), where hk(x) is the k-th polynomial within the
circuit transfer function H(s, x), comprising T terms.

H(s, x) =
N(s, x)

D(s, x)
=

f ′0(x) + f ′1(x)s + f ′2(x)s
2 + . . . + f ′n′(x)sn′

f0(x) + f1(x)s + f2(x)s2 + . . . + fn(x)sn (1)

The simplification method in [18] finds the largest term in terms of the magnitude,
hkm(x), for the polynomial hk(x). Then, all other terms within the polynomial hk(x) are
considered one by one. The condition for which the term hkl(x) can be discarded from the
polynomial hk(x) is |hkl(x)| ≤ ε × |hkm(x)|. Here, ε (0 < ε < 1) is a user-specified threshold
to limit the maximum error. The main drawback of this method is that the error may be
accumulated. To overcome this drawback, the reported criterion in [19] sorts the terms
within hk(x) based on their magnitude obtained in the nominal point. Afterwards, P terms
with the least accumulated magnitude are discarded from the polynomial if the error is

137

Mathematics 2023, 11, 1498

below ε. The condition on the P terms for which they could be discarded can be expressed
as Equation (2): ∣∣∣∣∣ P

∑
l=1

hkl(x)

∣∣∣∣∣ < ε ×
∣∣∣∣∣ T

∑
l=1

hkl(x)

∣∣∣∣∣ (2)

Although this method achieves more accurate expressions at the nominal point, it may
cause significant errors for other values of the parameters. To avoid the elimination of the
mutually canceling terms, the method in [20] presented an enhanced condition for which
the P terms with the lowest magnitude can be discarded if:

P

∑
l=1

|hkl(x)| < ε ×
T

∑
l=1

|hkl(x)| (3)

In the above-mentioned techniques, the maximum error is limited for each polynomial.
However, the obtained error in the poles and zeroes is not under consideration. If the
same error (εM) occurs in all polynomials, no pole and/or zero displacement can be
observed [21]. To overcome this drawback, an adaptive ε can be used, in which the term
elimination process is performed step by step while displacements in poles and zeroes are
monitored at every step. Thus, the term pruning procedure can be finished if the obtained
displacements are beyond a pre-determined threshold [19].

Recently, various swarm and evolutionary metaheuristic algorithms in [7,10,22–26]
have been applied for the simplified symbolic analysis of OTAs. In these techniques,
different criteria (such as the magnitude error, phase error, and pole/zero displacements)
have been used to evaluate feasible solutions generated by the metaheuristic algorithm.
Although these methods achieve a low mean error rate, the worst cases of the displacements
in the poles and zeroes are not accurately under consideration. The common drawback of
the existing techniques is that the simplified function is achieved in either expanded or
nested form. In other words, the transfer function is not derived in a factorization form,
which makes it difficult to evaluate the contribution of roots.

2.2. Symbolic Pole/Zero Extraction Techniques

The symbolic pole/zero analysis also suffers from NP-hardness as some operations
have to be performed between the polynomials. Generally, a direct calculation of the
roots from the expanded transfer functions yields very complex results in the form of
polynomials with degrees larger than two [7]. Since the numerator and denominator of a
transfer function in practical OTAs generally have degrees much larger than 2, it is rarely
possible to mathematically find the exact symbolic pole/zero expressions [27].

In the following section, the existing pole/zero extraction methods are discussed,
including root spitting, time-constant analysis, and eigenvalue analysis. Root splitting [14]
is one of the well-known root extraction techniques. It extracts poles, assuming them to be
reciprocally dominant. By factorization, the denominator of the exact function in Equation
(1) can be re-written as a function of the poles pi as follows:

D(s, x) = f0 ·
(

1 − s
p1

)
·
(

1 − s
p2

)
· · ·

(
1 − s

pn

)
(4)

It follows from Equation (1) that

f1 = f0 ·
n

∑
i=1

(
− 1

pi

)
(5)

Therefore, assuming p1 is the dominant pole within the denominator, the first pole
can be approximately expressed as:

p1 ≈ − f0

f1
(6)

138

Mathematics 2023, 11, 1498

Consequently, with a similar approach, considering pi to dominate the other poles,
pi can be given by the negative quotient of the two consecutive coefficients fi−1 and
fi [8]. Similar argumentations can be performed to calculate simplified zeroes in the
numerator of the transfer function. The root splitting method is not appropriate for manual
pole/zero calculations (hand-and-paper analysis), as some estimations and simplifications
should be developed to allow the circuit designer to extract approximate the dominant
poles and zeroes manually. The most popular approach in such techniques is the time-
constant method [27–30], which is expressed in Equation (7), where τk can be achieved by
multiplying the resistance Rk by the capacitance Ck.

p1 ≈ −
(

∑
k

τk

)−1

(7)

This technique is error-prone, as there is no information about the accuracy of the
obtained symbolic results. Moreover, zeroes and higher-order poles cannot be determined
by this approach at all. A more general approach in this context was reported in [29], one
which also has the ability to extract the higher-order poles. This method is based on the use
of open-circuits and short-circuits analysis to calculate the time constants of the circuit.

There are also some pole/zero extraction methods, which operate on the basis of the
solution derived from the eigenvalue problem. A positive feature of these methods is that
the simplification is no longer driven by the magnitude and the phase errors but by the
pole/zero position, allowing improved error control. For example, a modified signal flow
graph (MSFG) was recently developed to represent the equivalences between the system
and SPICE outcomes of static nonlinear OTAs [31]. In this method, the circuit is firstly
converted into an MSFG. Then, the graph is simplified in particular polynomials by mini-
mizing the MSFGs. In [32], the implementation of some simplification procedures during
the eigenvalue computation via a symbolic LR algorithm was addressed, in which the LR
method is applied to compute the reduced matrix corresponding to the eigenvalue cluster.
This technique is followed in [33] by the use of an algorithm to reduce the circuit matrix
into a row echelon format. After determining the symbolic state matrix, the approximated
poles and zeroes are achieved using the LR algorithm.

The main drawback of the existing symbolic pole/zero analysis methods is that the
simplified expressions of poles and zeroes are not so compact that no SAG is applied to the
final expressions. Thus, in this study, we utilize a combined heuristic–metaheuristic SAG
algorithm to ensure the obtention of simplified symbolic pole/zero expressions with the
least achievable complexity.

3. Proposed Method

The overall flowchart of the proposed symbolic pole/zero analysis can be seen in
Figure 1. The list of indices, sets, parameters, and decision variables used in the following
equations of this section are provided in Table 1. To sum up, the main steps of the proposed
methodology can be summarized as follows:

• The input circuit netlist is loaded as a text file (in .txt format).
• All transistors are replaced via proper small-signal modeling.
• The symbolic circuit is solved via a modified nodal analysis (MNA).
• The exact transfer function (TF) is achieved in the expanded symbolic form.
• The exact expressions of poles and zeroes are derived using ERS.
• The numerical results of the exact symbolic pole/zero expressions are stored.
• A heuristic algorithm is performed to generate a near-optimal solution, utilizing the

circuit-based knowledge available in the exact poles and zeroes.
• SA is performed to improve further the quality of the heuristic solution in order to

generate the final simplified symbolic pole/zero expressions.
• The numerical results of the obtained simplified symbolic pole/zero expressions

are calculated.

139

Mathematics 2023, 11, 1498

• The numerical results of the exact and simplified poles/zeroes are compared against
HSPICE and other simplification algorithms.

Figure 1. Overall flowchart of the proposed methodology.

140

Mathematics 2023, 11, 1498

Table 1. Notations.

Sets/Parameters Definition

i Index of poles, i = 1, 2, . . . , n
j Index of zeroes, j = 1, 2, . . . , ń
n Degree of the denominator within the exact expanded TF
ń Degree of the numerator within the exact expanded TF
k Index of the symbolic terms, k = 1, 2, . . . , L
L Number of symbolic terms within all pole/zero expressions

[fmin, fmax] Defined frequency bound range for the pole/zero extraction
Sk A binary parameter: 1 if the k-th term is presented; 0 otherwise
En Percentage of the selected symbolic terms

PoleSet Set of poles in the frequency range of [fmin, fmax]
ZeroSet Set of zeroes in the frequency range of [fmin, fmax]

pE,i i-th pole within the exact expanded TF
pERS,i i-th extracted pole via ERS
pSA,i i-th simplified pole via SA
Ep Mean pole displacements
zE,j j-the zero of the exact expanded TF

zERS,j j-th extracted zero via ERS
zSA,j j-th simplified zero via SA

Ez Mean zero displacements
TERS Maximum allowable pole/zero extraction error via ERS
TSA Maximum allowable pole/zero simplification error via SA

3.1. Symbolic Pole/Zero Extraction via ERS

After the netlist pre-processing, the circuit is solved using MNA [1], and consequently,
the exact symbolic TF is achieved in expanded form. Then, the obtained exact pole/zero
expressions are approximately calculated using the proposed ERS method, which is an
enhanced version of the traditional root splitting algorithm. Generally, an expanded TF
could be converted into the factorized form according to Equation (8), where Z(s, x) is a
function of ń (real or complex conjugate) zeroes z1, z2, . . . , zń, and P(s, x) is a function of n
(real or complex conjugate) poles p1, p2, . . . , pn.

(s, x) ≈ f ′0 · Z(s, x)

f0 · P(s, x)
(8)

In the ERS algorithm, only poles and zeroes located in the interval [fmin, fmax] are
extracted, where fmin and fmax are the minimum and maximum user-specified frequencies
for the pole/zero extraction, respectively. If the user does not specify the frequency range,
it is considered as the default range of [0, 10 fT], where fT is the unity gain frequency of
the exact expression in the nominal point. In the following section, the pole extraction
procedure for P(s, x) is described. By comparing Equations (1) and (8), P(s, x) can be
calculated as:

P(s, x) =
D(s, x)

f0
= 1 +

(
f1

f0

)
s +

(
f2

f0

)
s2 +

(
f3

f0

)
s3 + · · ·+

(
fn

f0

)
sn (9)

Assuming p1 to be dominant and all other poles (typically occurred in OTAs) to be
located at much higher frequencies, i.e., ‖p1‖ << ‖p2‖, ‖p3‖, . . . , ‖pn‖, the first pole can
be split, and thus, P(s, x) can be approximately written as:

P(s, x) =
(

1 − s
p1

)
·
(
1 + g1s + g2s2 + · · ·+ gn−1sn−1)

= 1 +
(
− 1

p1
+ g1

)
s +

(
− g1

p1
+ g2

)
s2 +

(
− g2

p1
+ g3

)
s3 + · · ·+

(
− gn−2

p1
+ gn−1

)
sn−1 +

(
− gn−1

p1

)
sn

(10)

141

Mathematics 2023, 11, 1498

By equating the s coefficients of P(s, x) in Equation (10) to those in Equation (9), the
dominant real pole p1 can be approximated given as:

p1 ≈ − f0

f1
(11)

Consequently, by assuming the condition in Equation (12), we can simplify the right-
most expression of Equation (10) as Equation (13). By equating the s coefficients of
Equation (13) to the same s coefficients in Equation (9), the parameters gi can be calculated
as Equation (14). ∣∣∣∣ 1

p1

∣∣∣∣ >> |g1|,
∣∣∣∣ gi−1

p1

∣∣∣∣ >> |gi| ∀i ∈ {2, 3, . . . , n − 1} (12)

P(s, x) ≈ 1 +
(
− 1

p1

)
s +

(
− g1

p1

)
s2 +

(
− g2

p1

)
s3 + · · ·+

(
− gn−1

p1

)
sn (13)

gi =
fi+1

f1
∀i ∈ {1, 2, . . . , n − 1} (14)

and thus, the leftmost expression in Equation (10) can be expressed as:

P(s, x) ≈
(

1 +
f1

f0
s
)
·
(

1 +
f2

f1
s +

f3

f1
s2 + · · ·+ fn

f1
sn−1

)
(15)

The circumstances of s coefficients in the original denominator D(s, x), for which
Equation (15) is valid, are: ∣∣∣∣ f1

f0

∣∣∣∣ >>

∣∣∣∣ fi
fi−1

∣∣∣∣ ∀i ∈ {2, 3, . . . , n} (16)

Equation (15) shows that P(s, x) can be simplified into a product of a first-order
polynomial (i.e., first dominant pole) and a high-order polynomial corresponding to other
high-frequency poles. In a more general case, assuming the first m poles (1 < m < n) to
be successively dominant in pairs (i.e., p1 dominates p2, p2 dominates p3, and so on, pm−1
dominates pm), P(s, x) can be approximated as follows:

P(s, x) =
(

1 − s
p1

)
·
(

1 − s
p2

)
· · ·

(
1 − s

pm

)
·
(
1 + g1s + g2s2 + · · ·+ gn−msn−m)

= 1 +
(
−

m
∑

i=1

1
pi
+ g1

)
s +

(
m−1
∑

i=1

m
∑

j=i+1

1
pi pj

− g1
m
∑

i=1

1
pi
+ g2

)
s2

+

(
−

m−2
∑

i=1

m−1
∑

j=i+1

m
∑

k=j+1

1
pi pj pk

+ g1
m−1
∑

i=1

m
∑

j=i+1

1
pi pj

− g2
m
∑

i=1

1
pi
+ g3

)
s3 + · · ·

+

(
(−1)mgn−m−1

m
∏
i=1

1
pi
+ (−1)m−1gn−m

2
∑

i1=1

3
∑

i2=i1+1
· · ·

m
∑

im−1=im−2+1

1
pi1 pi2 pim−1

)
sn−1 +

(
(−1)mgn−m

m
∏
i=1

1
pi

)
sn

(17)

By similar approximations as performed in the previous case, P(s, x) can be simplified
according to:

P(s, x) ≈ 1 +
(
− 1

p1

)
s +

(
1

p1 p2

)
s2 +

(
− 1

p1 p2 p3

)
s3 + · · ·+

(
(−1)m

m
∏
i=1

1
pi

)
sm + · · ·

+

(
(−1)mg1

m
∏
i=1

1
pi

)
sm+1 + · · ·+

(
(−1)mgn−m−1

m
∏
i=1

1
pi

)
sn−1 +

(
(−1)mgn−m

m
∏
i=1

1
pi

)
sn

(18)

By equating the s coefficients of Equations (18) and (9), the m first poles are derived
as Equation (19). Additionally, the parameters gi can be expressed as Equation (20). Thus,
P(s, x) can be simplified into the multiplication of m+1 polynomials: m first-order polyno-
mials (representing the m first poles) and a high-order polynomial, as Equation (21). The

142

Mathematics 2023, 11, 1498

conditions on s coefficients of D(s, x), for which Equation (21) is valid, can be expressed as
Equations (22) and (23).

pi = − fi−1

fi
∀i ∈ {1, 2, . . . , m} (19)

gi =
fm+i
fm

∀i ∈ {1, 2, . . . , n − m} (20)

P(s, x) =

(
1 +

f1

f0
s
)
·
(

1 +
f2

f1
s
)
· · ·

(
1 +

fm

fm−1
s
)
·
(

1 +
fm+1

fm
s +

fm+2

fm
s2 + · · ·+ fn

fm
sn−m

)
(21)

∣∣∣∣ fi
fi−1

∣∣∣∣ >>

∣∣∣∣ fi+1

fi

∣∣∣∣ ∀i ∈ {1, 2, . . . , m − 1} (22)

∣∣∣∣ fi
fi−1

∣∣∣∣ >>

∣∣∣∣∣ f j

f j−1

∣∣∣∣∣ ∀i ∈ {1, 2, . . . , m}, j ∈ {m + 1, m + 2, . . . , n} (23)

In the general case, let us extend the above formulations to the case that all the n poles
are dominant reciprocally, in which P(s, x) can be approximated as follows:

P(s, x) =
(

1 − s
p1

)
·
(

1 − s
p2

)
·
(

1 − s
p3

)
· · ·

(
1 − s

pn

)
= 1 +

(
−

n
∑

i=1

1
pi

)
s +

(
n−1
∑

i=1

n
∑

j=i+1

1
pi pj

)
s2 +

(
−

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

1
pi pj pk

)
s3

+ · · ·+
(
(−1)n−1

2
∑

i1=1

3
∑

i2=i1+1
· · ·

n
∑

in−1=in−2+1

1
pi1

pi2 pin−1

)
sn−1 +

(
(−1)n

n
∏
i=1

1
pi

)
sn

(24)

Under the assumption that all poles are dominant in pairs (i.e., p1 dominates p2, p2
dominates p3, and so on), the following conditions are satisfied:∣∣∣∣ fi

fi−1

∣∣∣∣ >>

∣∣∣∣ fi+1

fi

∣∣∣∣ ∀i ∈ {1, 2, 3, . . . , n − 1} (25)

Therefore, the rightmost expression in Equation (24) can be approximated as Equation (26).
By equating s coefficients of Equation (26) and Equation (9), P(s, x) can be approximately
expressed as Equation (27), where each pole pi can be calculated according to Equation (28).

P(s, x) ≈ 1 +
(
− 1

p1

)
s +

(
1

p1 p2

)
s2 + · · ·+

(
(−1)n−1

n−1

∏
i=1

1
pi

)
sn−1 +

(
(−1)n

n

∏
i=1

1
pi

)
sn (26)

P(s, x) ≈
(

1 +
f1

f0
s
)
·
(

1 +
f2

f1
s
)
·
(

1 +
f3

f2
s
)
· · ·

(
1 +

fn

fn−1
s
)

(27)

pi = − fi−1

fi
∀i ∈ {1, 2, . . . , n} (28)

The interesting point is that all poles are derived from s coefficients of the denominator
of the transfer function. The above formulations operate under the assumption that all
poles are real. In other words, the approach fails for closely spaced or complex conjugate
poles. Therefore, the method should be extended to cases where two consecutive poles are
located in a cluster. Assuming that pi and pi+1 constitute a pair of poles (real or conjugate),
they remain split off in the expression P(s, x) and can be expressed via a second-order
polynomial

(
1 + as + bs2), where a and b can be calculated as follows:

a =
fi

fi−1
+

fi+1

fi
, b =

fi+1

fi−1
(29)

143

Mathematics 2023, 11, 1498

The condition for which the poles pi and pi+1 are real is a2 ≥ 4b. If the condition has
been satisfied, the real poles pi and pi+1 can be expressed as Equation (30). Otherwise,
these poles can be represented as complex conjugate poles according to Equation (31).

pi = −a +

√
a2 − 4b

2b
, pi+1 = −a −

√
a2 − 4b

2b
(30)

pi,i+1 = −a ± j

√
4b − a2

2b
(31)

It should be emphasized that all the above formulations could be used to extract
simplified zeroes Z(s, x) from the numerator N(s, x) of the expanded TF. In ERS, the pole
pi (or zero zj) can be separated using Equation (27) if the conditions in Equations (32) and
(33) are met, where pERS,i (zERS,j) is the absolute of the numerical value of i-th pole (j-th
zero) extracted via the ERS method and pE,i (zE,j) is the absolute of the i-th pole (j-th zero)
of the exact function of Equation (1). These are numerically achieved by the calculation of
the roots of the transfer function. PoleSet (ZeroSet) refers to the set of poles (zeroes) which
are in the range of the interval [fmin, fmax]. Additionally, TERS is a pre-determined constant
parameter used to specify the maximum allowable root displacement for each ERS root
compared with the exact one.∣∣∣∣ pERS,i − pE,i

pE,i

∣∣∣∣ ≤ TERS ∀pE,i ∈ PoleSet (32)

∣∣∣∣∣ zERS,j − zE,j

zE,j

∣∣∣∣∣ ≤ TERS ∀zE,j ∈ ZeroSet (33)

The ERS pole/zero extraction method comprises evaluation and extraction steps. In
the evaluation step, all poles and zeroes within the interval [fmin, fmax] are assumed to
be reciprocally dominant. Thus, their ERS values are numerically obtained according to
Equation (27). In the extraction step, the conditions of Equations (32) and (33) are checked
for all extracted poles and zeroes. Then, each pole (zero) that has satisfied the mentioned
condition can be symbolically extracted according to Equation (27). Otherwise, a pair
of real or complex conjugate poles (zeroes) remains split off, and the condition a2 ≥ 4b
is checked for them. If the condition has been satisfied, the poles (zeroes) are a pair of
real poles (zeroes) and can be calculated by Equation (30); otherwise, they are considered
as complex conjugate poles (zeroes) which are extracted by means of Equation (31). To
gain further insight into the details of the ERS method, the pseudo-code of the symbolic
pole/zero extraction method is provided in Algorithm 1.

3.2. Symbolic Pole/Zero Simplification via PZSA

The extracted symbolic pole/zero expressions cannot provide analytical information
about the circuit behavior due to their high complexity. Thus, a pole/zero simplification
based on PZSA is used to simplify the exact pole/zero expressions. SA is a single-solution
metaheuristic method inspired by metallurgy annealing, which involves heating and then
slowly cooling a material to reduce its defects [15]. Generally, SA starts its search from
a fully random solution and then iteratively updates the solution until arriving at the
stopping criterion [34]. However, to improve the quality and speed of the search process in
SA, we utilize the knowledge from the exact circuit expressions as heuristic information to
guide the SA algorithm by starting from a near-optimal solution. After generating the initial
solution using the heuristic algorithm, SA is performed to further improve the solution’s
quality using local search operators in an iterative procedure. In the following section, the
main steps of the PZSA algorithm are described.

144

Mathematics 2023, 11, 1498

Algorithm 1. Symbolic Pole/Zero Extraction using ERS

Inputs:

Symbolic exact expanded transfer function
Numerical values of the circuit parameters in the nominal point
Maximum allowable root displacement (TERS)

Output:

Symbolic expressions of poles and zeros
Numerical Analysis:

1. Extract coefficients of the numerator
(

f́0 , f́1, . . . , f́ń) and the denominator (f0 , f1, . . . , fn)

2. Numerically evaluate the exact expanded transfer function in the nominal point
3. Numerically find roots of the numerator and the denominator in [fmin, fmax]

4. Sort the exact numerical zeroes
(

zE,j) and poles
(

pE,i) by their magnitude

Extraction of Symbolic Zeros:

5. for j ∈ ZeroSet
6. Numerically estimate the position of zero j as zERS,j = − f́ j−1/ f́ j

7. if
∣∣∣(zERS,j − zE,j

)
/zE,j

∣∣∣ ≤ TERS

8. Extract the real zero j as zj = f́ j−1/ f́ j
9. else

10. Consider zj and zj+1 in one cluster

11. Calculate a =
(

f́ j/ f́ j−1

)
+
(

f́ j+1/ f́ j

)
and b = f́ j+1/ f́ j−1

12. if a2 ≥ 4b
13. Extract the real zero j as zj = −a +

(√
a2 − 4b/2b

)
14. Extract the real zero j + 1 as zj+1 = −a −

(√
a2 − 4b/2b

)
15. else

16. Extract the complex conjugate zeroes j and j + 1 as

zj,j+1 = −a ± j
(√

a2 − 4b/2b
)

17. end if

18. end if

19. end for

Extraction of Symbolic Poles:

20. for i ∈ PoleSet
21. Numerically estimate the position of pole i as pERS,i = − fi−1/ fi
22. if

∣∣(pERS,i − pE,i
)
/pE,i

∣∣ ≤ TERS
23. Extract the real pole ias pi = fi−1/ fi
24. else

25. Consider pi and pi+1 in one cluster
26. Calculate a = (fi/ fi−1) + (fi+1/ fi) and b = fi+1/ fi−1
27. if a2 ≥ 4b
28. Extract the real pole ias pi = −a +

(√
a2 − 4b/2b

)
29. Extract the real pole i + 1 as pi+1 = −a −

(√
a2 − 4b/2b

)
30. else

31. Extract the complex conjugate poles i and i + 1 as

pi,i+1 = −a ± j
(√

a2 − 4b/2b
)

32. end if

34. end if

35. end for

145

Mathematics 2023, 11, 1498

3.2.1. Solution Encoding/Decoding

A possible solution to the pole/zero simplification problem, as shown in Figure 2, is a
binary vector of length L, where L is the number of original terms, which can be calculated
as follows:

L = (Lz1 + Lz2 + · · ·+ Lzn′) +
(

Lp1 + Lp2 + · · ·+ Lpn

)
=

n′

∑
j=1

Lzj +
n

∑
i=1

Lpi (34)

where LK, Lzj , and Lpi are the number of symbolic terms within the DC-gain K, j-th zero,
and i-th pole, respectively.

Figure 2. Encoding of a solution: If Si = 1, the i-th symbolic term is present in the solution; otherwise,
if Si = 0, the i-th term has been discarded from the solution.

3.2.2. Generation of the Initial Solution

To construct the initial solution of SA, we utilize heuristic information available in
the circuit via a ranking algorithm (RA). This not only improves the convergence speed of
SA as it utilizes a near-optimal solution but can also effectively enhance the quality of the
final solution. An RA comprises an evaluation step and a selection step. In the first step,
each term is eliminated, and accordingly, the generated error rate is measured and stored.
After the evaluation of all terms, they are sorted into a list from the best to the worst. In the
selection phase, an empty solution is considered, after which the terms within the list are
added one by one until all constraints have been satisfied.

3.2.3. Objective Function Evaluation

To evaluate the performance of each solution, an objective function is formulated which
compares the simplified pole/zero expressions with the exact ones in terms of the number
of terms and mean pole/zero displacements. Moreover, each pole/zero displacement
should not exceed the user-specified margin TSA. In this direction, the objective function
is expressed as a weighted average of three sub-objectives. The first sub-objective (En)
demonstrates the proportion of the selected symbolic terms to the total number of exact
terms extracted by the ERS method. Additionally, the second and third sub-objectives (Ep
and Ez) express the mean displacements of the simplified poles and zeroes, respectively.
According to Equation (35), these three sub-objectives are merged into a single objective
function (OF) to be minimized by the PZSA method, where the sub-objectives En, Ep, and
Ez are calculated via Equations (36)–(38), respectively.

minimize OF =
{

wnEn + wpEp + wzEz
)}

(35)

En =
1
L

L

∑
k=1

Sk (36)

Ep =
1
n

n

∑
i=1

(∣∣∣∣ pSA,i − pE,i

pE,i

∣∣∣∣) (37)

146

Mathematics 2023, 11, 1498

Ez =
1
n′

n′

∑
j=1

(∣∣∣∣∣ zSA,j − zE,j

zE,j

∣∣∣∣∣
)

(38)

subject to: ∣∣∣∣ pSA,i − pE,i

pE,i

∣∣∣∣ ≤ TSA ∀pE,i ∈ PoleSet (39)∣∣∣∣∣ zSA,j − zE,j

zE,j

∣∣∣∣∣ ≤ TSA ∀zE,j ∈ ZeroSet (40)

In Equation (35), wn, wp, and wz, are constant parameters (wn + wz + wz = 1) that
specify the relative impacts of the three objectives. As the worst-case pole/zero displace-
ments are limited by Equations (39) and (40), wn is set as being much larger than wp and
wz to ensure achieving the simplest expressions.

3.2.4. Generation of a New Solution

In each iteration, a neighbor solution, Snew, is constructed in the vicinity of the current
solution, Scurrent. We adopt swap (Figure 3) and an exchange (Figure 4) operators as neigh-
borhood search strategies in SA. The reason behind using these operators is to introduce
randomness into the optimization process, allowing it to escape from local optima and
search for better solutions in the search space. The swap operator adds or removes a term
in the exact pole/zero expression, and the exchange operator selects from the available
terms while preserving the total number of terms constant. To generate a new solution,
an operator is randomly selected with a probability of 50%, and then it operates on the
solution Scurrent.

Figure 3. Swap: a symbolic term is randomly selected and inverted.

Figure 4. Exchange: a term “0” and a term “1” are randomly selected and exchanged.

3.2.5. Acceptance Rule Checking

In each iteration, if OFnew < OFcurrent, the new solution is accepted. Otherwise, if
OFnew ≥ OFcurrent, the new solution (worse solution) has a chance to be accepted with the
probability of Pw, which can be calculated according to the current temperature T and the
differences between the objective function values of the two solutions as follows:

Pw = exp
(
−Enew − Ecurrent

T

)
(41)

where T is considered to be linearly decreasing during the execution of SA from Tinitial
(initial temperature) to Tf inal (final temperature), as follows:

T = Tinitial +
t

iter

(
Tf inal − Tinitial

)
(42)

147

Mathematics 2023, 11, 1498

4. Performance Evaluation

All simulations are conducted on a PC with a 2.6 GHz CPU and 6 GB RAM. The
presented tool has been successfully coded in an MATLAB R2020b m-file running on
Windows 10. In order to analyze the performance of the proposed method, we have applied
it to three different circuits. All MOS transistors in these circuits are modeled via a small-
signal model, as shown in Figure 5. The parameters of the proposed tool have been divided
into two categories: Model parameters and SA parameters.

Figure 5. Small signal representation of MOS transistors.

Table 2 provides the selected values for the model parameters. As shown in this table,
the model parameters include fmin, fmax, TSA, TERS, wn, and wpz, which engineers should
determine based on the desired specifications of the circuit’s application. To perform the
experiments in this study, we deploythe typical values for the model parameters which are
generally used in the circuit design process. In this regard, the frequency range in which
the poles/zeroes are analyzed equals 1 Hz to 10 times the unity gain bandwidth of the
active components (10 × fT). The reason for choosing a final frequency of 10 × fT is to
ensure that the circuit response is analyzed up to a frequency where the active components,
such as transistors or amplifiers, are still able to provide reasonable gain. At frequencies
beyond 10 × fT , the gain of the active components typically drops significantly, and the
circuit response may be dominated by the passive components [35]. Additionally, TERS has
been set to 10%, and thus, the poles and zeroes with no more than 10% displacement can
be simplified via first-order polynomials, while the other poles and zeroes are expressed
via second-order polynomials. Moreover, TSA is selected so that the displacements of the
poles/zeroes in the simplified expressions derived by SA are confined to 20%. Eventually,
since the maximum displacements of the poles/zeroes are limited by TSA, the weight of
the term related to the compactness of the symbolic expressions in OF (wn) is set to be
much larger than the weight of the average pole/zero displacement (wpz). Therefore, the
values wn and wpz are set as 0.99 and 0.01, respectively. As mentioned above, it should be
emphasized that the choice of the model parameters depends on the specific circuit and
should be modified by the circuit designers according to the application requirements.

Table 2. Model parameter settings.

Phase Parameter Value/Description

Model Parameters

fmin 1 Hz
fmax 10 × fT

TERS in Equations (32) and (33) 10%
TSA in Equations (39) and (40) 20%

wn in Equation (35) 0.99
wp in Equation (35) 0.005
wz in Equation (35) 0.005

148

Mathematics 2023, 11, 1498

Additionally, in the case of the SA parameters, the Taguchi method is utilized to
adjust the controllable parameters of SA, comprising maximum iterations, local search
operators, Tinitial , and Tf inal . In this study, the value of the objective function (OF) is used
to evaluate the effectiveness of the algorithm. In order to implement the Taguchi method,
we have conducted each experiment 10 times, and the mean and standard deviation values
of the objective function are considered as signal and noise values in the Taguchi method,
respectively. Table 3 presents the analyzed levels for each SA parameter and the optimal
level obtained by the Taguchi method.

Table 3. SA parameter settings using the Taguchi method.

Phase Parameter Parameter Levels Selected Value

SA Parameters

Maximum iterations L 5 × L 10 × L 5 × L
Local search operators Swap Exchange Swap/Exchange Swap/Exchange
Tinitial in Equation (42) 10−5 10−4 10−3 10−5

Tf inal in Equation (42) 0 10−8 10−10 0

To justify the proposed methodology, we compare it against a time-constant ap-
proach [29], an eigenvalue technique [31], and an evolutionary-based algorithm using
a genetic algorithm [26].

4.1. Results for a Three-Stage Amplifier in the RCgm Model (Circuit 1)

The block diagram of a three-stage compensation OTA is shown in Figure 6. The
circuit is described by the RCgm model. First, the exact expanded TF is derived according
to Equation (43) using the MNA technique. Next, by applying the simplification algorithm
in [26], the simplified expanded TF is obtained according to Equation (44). By performing
PZSA, 3 poles and 2 zeroes can be achieved as Equations (45)–(49).

Figure 6. A three-stage amplifier in the RCgm model.

The comparison of the different methods is summarized in Table 4. According to the
obtained results, the exact expanded TF has a total of 40 symbolic terms. The simplification
method in [26] obtained an expanded TF according to Equation (44) containing 10 terms.
However, even in the simplified form, it cannot give effective insights for the circuit
designer to evaluate the positions of the poles and zeroes. By performing the proposed ERS
method, 3 poles and 2 zeroes with 10, 26, 25, 3, and 4 terms, resulting in a total of 68 terms,
have been extracted. Finally, the proposed PZSA algorithm has reduced the number of
terms within these roots to 1, 3, 3, 2, and 2 terms, i.e., totaling 11 terms. Moreover, the
numerical results of the different methods are provided in Table 5, where the last four rows
illustrate the error of the simplified equations in terms of the pole and zero displacements
when compared to the exact expressions. According to the obtained results, all pole/zero
displacements in the derived simplified expressions by the proposed method are less than
TSA = 20%. Although in some cases the existing methods have achieved less pole/zero
displacements, the resulting expressions are not as compact as the proposed method. This
occurs due to the selection of a much larger value for wn compared to the values wp and wz

149

Mathematics 2023, 11, 1498

in the defined objective function. However, as previously mentioned, these values can be
modified by the circuit designer based on the desired application requirements.

HE(s) =
−RLR1Gm1

(
(C2R2Cm2 + Cm1R2Cm2)s2 − (Gm2R2Cm1 + Cm2)s − Gm2R2GmL

)(
Cm1R2CLRLC1R1 + Cm1R2CLRLCm2R1 + C2R2Cm1RLCm2R1 + C2R2CLRLCm2R1
+C2R2Cm1RLC1R1 + C2R2Cm2RLC1R1 + Cm1R2Cm2RLC1R1 + C2R2CLRLC1R1

)
s3

+

⎛⎜⎜⎝
C2R2Cm1RL + Cm1RLCm2R1 + Cm1R2RLGmLC1R1 − Cm1R1RLGm2Cm2R2
+CLRLC1R1 + C2R2Cm2R1 + Cm1RLCm2R1 + C2R2C1R1 + Cm2R2Cm1R1
+C2R2RLCm2 + C2R2RLCL + Cm1R2RLCm2 + Cm1R2RLCL + Cm2RLC1R1

+Cm1R2C1R1 + Cm1R2RLGmLCm2R1 + CLRLCm2R1 + Cm1RLC1R1

⎞⎟⎟⎠s2

+

(
RLCL + RLCm2 + RLCm1 + R2Cm1 + R2C2 + R1C1
+R1Cm2 + R1Cm2RLGm2R2GmL + Cm2RLR2GmL

)
s + 1

(43)

HS,E(s) =
−(C2R1R2RLCm1Cm2 + Gm1R1R2RLCm1Cm2)s2 + (Gm1Gm2R1R2RLCm1)s + Gm1Gm2GmLR1R2RL

(Cm1R2CLRLCm2R1)s3 + (Cm1R2RLGmLC1R1 + Cm1R1R2RLGmLCm2 − Cm1Cm2R1R2RLGm2)s2

+(R1Cm2RLGm2R2GmL)s + 1

(44)

P1 = − 1
R1Gm2R2GmLRLCm2

(45)

P2 = − Gm2GmL
Cm1(GmL − Gm2)

(46)

P3 = − (GmL − Gm2)

CL
(47)

Z1 =
GmL
Cm1

(48)

Z2 = −Gm2

Cm2
(49)

Table 4. Number of terms within simplified symbolic poles/zeroes in Circuit 1.

Expression Expanded TF (Exact) Ref. [26] Ref. [29] Ref. [31] Proposed Exact (ERS) Proposed Simplified (SA)

P1 - - 1 10 10 1
P2 - - 4 26 26 3
P3 - - 5 25 25 3
Z1 - - 2 9 3 2
Z2 - - 2 9 4 2

Overall TF 40 10 - - - -

Table 5. Numerical results for Circuit 1.

Parameter HSPICE
Expanded TF

(Exact)
Ref. [26] Ref. [29] Ref. [31]

Proposed
Exact

Proposed
Simplified

P1 (Hz) −12.8 −12.8 −13.3 −13.2 −12.8 −12.8 −13.2
P2 (MHz) −3.19 −3.19 −3.49 −3.19 −2.96 −2.96 −3.18
P3 (MHz) −40.6 −40.6 −36.3 −43.9 −43.8 −43.8 −39.8
Z1 (MHz) 2.72 2.72 2.72 3.18 3.36 3.18 3.18
Z2 (MHz) −18.6 −18.6 −18.6 −15.9 −17.5 −15.9 −15.9

Mean pole
displacement (%) - - 7.8 3.8 5 5 1.9

Max pole
displacement (%) - - 10.6 8.36 7.9 7.9 3.5

Mean zero
displacement (%) - - 0.03 15.9 14.7 15.8 15.9

Max zero
displacement (%) - - 0.04 17.1 23.6 17.1 17.1

150

Mathematics 2023, 11, 1498

4.2. Results for a Two-Stage Miller Compensated Amplifier (Circuit 2)

The second circuit is a folded cascode two-stage OTA with compensation, as shown
in Figure 7. The exact expanded TF obtained by MNA contains 134 symbolic terms. By
performing the simplification method outlined in [26], the simplified TF has been obtained
according to Equation (50). As shown in Table 6, the proposed ERS method has extracted
2 poles and 1 zero with 104, 82, and 18 terms, respectively. Subsequently, the proposed
PZSA method has simplified these roots based on Equations (51)–(53), resulting in 5, 2,
and 2 terms, respectively. Additionally, a comparison of the numerical results is shown in
Table 7, which shows that all pole/zero displacements do not exceed TSA = 20%.

H(s) =
−gm1(gm1ro1ro3ro6ro7Cc + gmb1ro1ro3ro6ro7Cc)s + (gm1gm6ro1ro3ro6ro7 + gm6gmb1ro1ro3ro6ro7)

ro1(gm1ro3ro6ro7CcCL + gmb1ro3ro6ro7CcCL)s2 + (gm1gm6ro3ro6ro7Cc + gmb1gm6ro3ro6ro7Cc)s
+(gm1ro6 + gm1ro7 + gm1ro3ro7/ro1)

(50)

P1 = − (ro1ro6 + ro1ro7 + ro3ro6 + ro3ro7)

gm6ro1ro3ro6ro7Cc
= − 1

gm6(ro1‖ro3)(ro6‖ro7)Cc
(51)

P2 = − gm6

CL
(52)

Z =
gm6

Cc
(53)

Figure 7. Two-stage compensation amplifier.

Table 6. Number of terms within the simplified symbolic poles/zeroes in Circuit 2.

Expression Expanded TF (Exact) Ref. [26] Ref. [29] Ref. [31] Proposed Exact (ERS) Proposed Simplified (SA)

P1 - - 5 104 104 5
P2 - - 7 82 82 2
Z - - 4 18 18 2

Overall TF 134 11 - - - -

Table 7. Numerical results for Circuit 2.

Parameter HSPICE Expanded TF (Exact) Ref. [26] Ref. [29] Ref. [31] Proposed Exact Proposed Simplified

P1 (KHz) −177.1 −178.5 −192 −152.8 −178.4 −178.4 −152.8
P2 (MHz) −377.4 −435.4 −409.1 −341 −435.6 −435.6 −409.3
Z (MHz) 407.2 409.3 409.3 409.3 409.3 409.3 409.3

Mean pole displacement (%) - - 6.8 18 0.04 0.04 10.2
Max pole displacement (%) - - 7.5 21.7 0.04 0.04 14.4

Zero displacement (%) - - 0.01 0.01 0 0 0.01

151

Mathematics 2023, 11, 1498

4.3. Results for a Three-Stage Amplifier in Transistor Model (Circuit 3)

The last circuit is a transistor-level three-stage amplifier with miller compensation, as
shown in Figure 8. The exact expanded TF of this circuit contains 1320 symbolic terms.
Considering the approximation algorithm in [26], the simplified expanded TF with 18 symbolic
terms is shown in Equation (54). The ERS method extracted 3 poles and 2 zeroes with a total
of 2061 terms. As shown in Equations (55)–(59), applying PZSA to the exact extracted roots
reduced them to only a total of 19 terms. The number of simplified terms and numerical
results of the different algorithms are summarized in Tables 8 and 9, respectively.

H(s) =

−(gm1gm8ro1ro3ro6ro7ro8ro9ro10ro11Cm1Cm2)s2 − (gm1gm6gm9ro1ro3ro6ro7ro8ro9ro10ro11Cm2)s
+gm1gm6gm9gm11ro1ro3ro6ro7ro8ro9ro10ro11(

gm8ro1ro6ro7ro8ro10 + gm8ro3ro6ro8ro9ro10 + gm8ro1ro6ro8ro9ro10 + gm8ro3ro6ro8ro9ro11
+gm8ro3ro6ro7ro8ro10 + gm8ro1ro6ro7ro8ro11 + gm8ro3ro6ro7ro8ro11 + gm8ro1ro6ro8ro9ro11

)
+(gm8ro1ro3ro6ro7ro8ro9ro10ro11Cm1Cm2CL)s3 + (gm6gm9gm11ro1ro3ro6ro7ro8ro9ro10ro11Cm1)s

+

⎛⎝ gm8ro1ro3ro6ro7ro8ro9ro10Cm1Cm2 − gm6gm9ro1ro3ro6ro7ro8ro9ro10ro11Cm1Cm2
+gm11ro1ro3ro7ro8ro9ro10ro11Cm1Cm2 + gm11ro1ro3ro6ro7ro9ro10ro11Cm1Cm2

+gm8gm11ro1ro3ro6ro7ro8ro9ro10ro11Cm1Cm2

⎞⎠s2

(54)

P1 = − gm8(ro1 + ro3)(ro7 + ro9)(ro10 + ro11)

gm6gm9gm11ro1ro3ro7ro9ro10ro11Cm1
= − gm8

gm6gm9gm11Cm1(ro1‖ro3)(ro7‖ro9)(ro10‖ro11)
(55)

P2 = − gm6gm9gm11

(gm8gm11 − gm6gm9)Cm2
(56)

P3 = − (gm8gm11 − gm6gm9)

gm8CL
(57)

Z1 =
gm11

Cm2
(58)

Z2 = − gm6gm9

gm8Cm1
(59)

Figure 8. A three-stage amplifier in the transistor model.

152

Mathematics 2023, 11, 1498

Table 8. Number of terms within the simplified symbolic poles/zeroes in Circuit 3.

Expression Expanded TF (Exact) Ref. [26] Ref. [29] Ref. [31] Proposed Exact (ERS) Proposed Simplified (SA)

P1 - - 29 714 714 9
P2 - - 21 837 837 3
P3 - - 23 330 330 3
Z1 - - 15 75 75 2
Z2 - - 13 105 105 2

Overall TF 1320 18 - - - -

Table 9. Numerical results for Circuit 3.

Parameter HSPICE
Expanded TF

(Exact)
Ref. [26] Ref. [29] Ref. [31]

Proposed
Exact

Proposed
Simplified

P1 (Hz) −27.7 −27.9 −20.6 −20.5 −27.9 −27.9 −22.8
P2 (MHz) −1.84 −1.84 −2.03 −2.16 −1.76 −1.76 −2.07
P3 (MHz) −36.6 −40.2 −36.3 −36.1 −42.1 −42.1 −35.7
Z1 (MHz) 1.4 1.4 1.4 2.23 1.62 1.62 1.62
Z2 (MHz) −10.3 −10.2 −10.5 −7.37 −8.81 −8.81 −9.1

Mean pole displacement (%) - - 15.6 18 3 3 14.2
Max pole displacement (%) - - 26.4 26.5 4.6 4.6 18.4

Mean zero displacement (%) - - 1.7 43.5 14.8 14.8 13.5
Max zero displacement (%) - - 2.9 59.3 15.9 15.9 16.1

4.4. Discussion

Generally, in the reported simplified symbolic pole/zero expressions, three types of
errors can be observed:

Error-1: the first type of error may occur by comparing HSPICE with the exact ex-
panded TF achieved by MNA. This error may be observed for OTAs described at the
transistor level, as HSPICE considers a more accurate small-signal transistor model than
the simple model in our program.

Error-2: the second type of error may be observed when comparing the exact TF
with the exact extracted poles/zeroes because of the simplifications induced by the root
extraction process in the ERS method.

Error-3: the third error may occur between exact pole/zero expressions and the
simplified ones due to the simplifications done by PZSA.

As mentioned above, Error-1 is inevitable in symbolic analysis, which is observed
in all symbolic tools. However, Error-2 and Error-3 may occur because of our pole/zero
extraction and simplification methods, respectively. Therefore, in the results shown in
Tables 5, 7 and 9, we have reported these errors for each algorithm by comparing them
with the exact expanded TF. Thus, the numerical results of the poles and zeroes in the exact
TF were considered as references to justify the performance of the different techniques.

Table 10 reports the obtained values of the three sub-objectives (En, Ep, and Ez) for
the different circuits. As previously mentioned, the total number of terms in the exact
poles/zero expressions extracted by the ERS method are 68, 204, and 2061 for circuits 1,
2, and 3, respectively. Subsequently, these expressions are then simplified by the PZSA
method resulting in a total of 11, 9, and 19 terms. As a result, the first sub-objective (En)
equals the proportion of the number of simplified terms to the exact terms for each circuit.
Additionally, the obtained results for the sub-objectives Ep and Ez demonstrate that all
pole/zero displacements do not exceed the pre-specified threshold of TSA = 20%.

Table 10. Sub-objective values for different circuits.

Circuit/Objective En Ep Ez

Circuit 1 0.1617 0.019 0.159
Circuit 2 0.0441 0.102 0.0001
Circuit 3 0.0092 0.142 0.135

153

Mathematics 2023, 11, 1498

In addition, since SA is a non-deterministic algorithm that produces different results in
each run, its performance was assessed by running it on each circuit 10 times. The resulting
objective function values and their average and standard deviation are summarized in
Table 11. According to the obtained results, the proportion of the standard deviation to
the average values equals 5.1%, 3.6%, and 4.7% for circuits 1, 2, and 3, respectively, which
demonstrates the robustness of the proposed PZSA.

Table 11. Overall objective function values in 10 successive runs for different circuits.

Circuit/Objective Circuit 1 Circuit 2 Circuit 3

Run 1 0.1619 0.0447 0.0119
Run 2 0.162 0.0451 0.013
Run 3 0.1618 0.0448 0.0128
Run 4 0.1766 0.045 0.0123
Run 5 0.162 0.0447 0.0114
Run 6 0.1767 0.0445 0.0115
Run 7 0.1617 0.0446 0.012
Run 8 0.1616 0.0449 0.0129
Run 9 0.1473 0.0398 0.0117
Run 10 0.1621 0.0447 0.0121

Average 0.1634 0.0443 0.0122
Standard Deviation 0.0083 0.0016 0.0006

5. Conclusions

This paper presented a mathematical technique for symbolic circuit pole/zero extrac-
tion, followed by a combined heuristic–metaheuristic algorithm to simplify the extracted
expressions. In the proposed method, a mathematical model was presented for extracting
the exact poles and zeroes from the original expanded expression of OTA. Then, an en-
semble heuristic–metaheuristic approach was proposed to obtain the simplest symbolic
pole/zero equations from the exact ones. In the proposed ensemble method, a near-optimal
solution was constructed using the knowledge-based heuristic information available in
the circuit model. Subsequently, a metaheuristic algorithm based on simulated annealing
was used to obtain the simplest pole/zero expressions with the best achievable quality.
The proposed tool has been coded in an m-file of MATLAB to extract simplified pole/zero
equations directly from the circuit netlist. Simulations on three OTAs demonstrated the
effectiveness and superiority of the proposed technique against the existing algorithms in
the literature.

Besides the advantages mentioned above, the proposed method has some limitations
that can be addressed in future studies. The proposed methodology relies on a single
nominal point for the circuit parameters, and thus, the simplified root expressions are valid
around the nominal point. As a future work, the proposed method can be extended to deal
with the uncertainties of the circuit parameters using robust optimization techniques, Monte
Carlo simulation, fuzzy arithmetic, etc. Another limitation of this study is that the suggested
method is a simplification-after-generation technique, in which the symbolic expressions
should be generated exactly before the simplification process. Since circuit simplification
is an NP-hard problem, the computational complexity of the exact expressions increases
exponentially with the circuit size. Thus, the use of metaheuristic algorithms is challenging
for large-size circuits from the time complexity point of view. As an interesting future
research direction, the proposed method can be hybridized with simplification-before-
generation approaches to deal with larger circuits. Moreover, we suggest performing other
metaheuristics and their hybridizations with other soft computing techniques [36,37] in
order to solve the root simplification problem.

154

Mathematics 2023, 11, 1498

Author Contributions: Conceptualization, N.B.-F., H.Y. and M.S.; methodology, M.S.; software, M.S.;
validation, M.S. and F.W.; investigation, M.S.; data curation, N.B.-F., H.Y. and M.S.; resources, N.B.-F.
and H.Y.; writing—original draft preparation, N.B.-F. and M.S.; writing—review and editing, M.S.,
H.Y. and F.W.; visualization, N.B.-F.; formal analysis, F.W.; supervision, M.S. and F.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in the study is available with the authors and can be
shared upon reasonable requests.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gielen, G.; Sansen, W.M. Symbolic Analysis for Automated Design of Analog Integrated Circuits; Springer Science + Business Media:
Berlin, Germany, 2012; Volume 137.

2. Riad, J.; Soto-Aguilar, S.; Estrada-López, J.J.; Moreira-Tamayo, O.; Sánchez-Sinencio, E. Design Trade-Offs in Common-
Mode Feedback Implementations for Highly Linear Three-Stage Operational Transconductance Amplifiers. Electronics 2021,
10, 991. [CrossRef]

3. Akbari, M.; Shokouhifar, M.; Hashemipour, O.; Jalali, A.; Hassanzadeh, A. Systematic design of analog integrated circuits using
ant colony algorithm based on noise optimization. Analog. Integr. Circuits Signal Process. 2016, 86, 327–339. [CrossRef]

4. Rodovalho, L.H.; Toledo, P.; Mir, F.; Ebrahimi, F. Hybrid Inverter-Based Fully Differential Operational Transconductance
Amplifiers. Chips 2023, 2, 1–19. [CrossRef]

5. Akbari, M.; Hussein, S.M.; Hashim, Y.; Khateb, F.; Kulej, T.; Tang, K.T. Implementation of a Multipath Fully Differential OTA in
0.18-μm CMOS Process. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022, 31, 147–151. [CrossRef]

6. Aminzadeh, H.; Grasso, A.D.; Palumbo, G. A methodology to derive a symbolic transfer function for multistage amplifiers. IEEE
Access 2022, 10, 14062–14075. [CrossRef]

7. Shokouhifar, M.; Jalali, A. Simplified symbolic transfer function factorization using combined artificial bee colony and simulated
annealing. Appl. Soft Comput. 2017, 55, 436–451. [CrossRef]

8. Grasso, A.D.; Marano, D.; Pennisi, S.; Vazzana, G. Symbolic factorization methodology for multistage amplifier transfer functions.
Int. J. Circuit Theory Appl. 2015, 44, 38–59. [CrossRef]

9. Shi, G.; Tan, S.X.D.; Tlelo-Cuautle, E. Advanced Symbolic Analysis for VLSI Systems; Springer: Berlin, Germany, 2014.
10. Shokouhifar, M.; Jalali, A. An evolutionary-based methodology for symbolic simplification of analog circuits using genetic

algorithm and simulated annealing. Expert Syst. Appl. 2015, 42, 1189–1201. [CrossRef]
11. Shokouhifar, M.; Jalali, A. Simplified symbolic gain, CMRR and PSRR analysis of analog amplifiers using simulated annealing.

J. Circuits Syst. Comput. 2016, 25, 1650082. [CrossRef]
12. Sathasivam, S.; Mamat, M.; Kasihmuddin, M.S.M.; Mansor, M.A. Metaheuristics approach for maximum k satisfiability in

restricted neural symbolic integration. Pertanika J. Sci. Technol. 2020, 28, 545–564.
13. Ali, S.; Bhargava, A.; Saxena, A.; Kumar, P. A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid

Active Power Filter. Mathematics 2023, 11, 598. [CrossRef]
14. Dziedziewicz, S.; Warecka, M.; Lech, R.; Kowalczyk, P. Self-Adaptive Mesh Generator for Global Complex Roots and Poles

Finding Algorithm. IEEE Trans. Microw. Theory Tech. 2023, 66, 7198–7205. [CrossRef]
15. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
16. Hennig, E. Symbolic Approximation and Modeling Techniques for Analysis and Design of Analog Circuits; Shaker Verlag: Herzogenrath,

Germany, 2000.
17. Toumazou, C.; Moschytz, G.S.; Gilbert, B. Trade-Offs in Analog Circuit Design: The Designer’s Companion; Kluwer Academic

Publishers: New York, NY, USA, 2014.
18. Wierzba, G.; Srivastava, A.; Joshi, V.; Noren, K.; Svoboda, J. SSPICE-A symbolic SPICE program for linear active circuits. Midwest

Symp. Circuits Syst. 1989, 2, 1197–1201.
19. Fernández, F.V.; Rodríguez-Vázquez, A.; Huertas, J.L. Interactive AC modeling and characterization of analog circuits via

symbolic analysis. Kluwer J. Analog. Integr. Circuits Signal Process. 1991, 1, 183–208.
20. Gielen, G.; Walscharts, H.; Sansen, W. ISAAC: A symbolic simulator for analog integrated circuits. IEEE J. Solid-State Circuits 1989,

24, 1587–1597. [CrossRef]
21. Fakhfakh, M.; Cuautle, E.T.; Fernandez, F.V. Design of Analog Circuits through Symbolic Analysis; Bentham Science Publishers:

Sharjah, United Arab Emirates, 2012.
22. Shokouhifar, M.; Jalali, A. Automatic Simplified Symbolic Analysis of Analog Circuits Using Modified Nodal Analysis and

Genetic Algorithm. J. Circuits Syst. Comput. 2015, 24, 1–20. [CrossRef]

155

Mathematics 2023, 11, 1498

23. Shokouhifar, M.; Jalali, A. Evolutionary based simplified symbolic PSRR analysis of analog integrated circuits. Analog. Integr.
Circuits Signal Process. 2016, 86, 189–205. [CrossRef]

24. Panda, M.; Kumar Patnaik, S.; Kumar Mal, A.; Ghosh, S. Fast and optimised design of a differential VCO using symbolic technique
and multi objective algorithms. IET Circuits Devices Syst. 2019, 13, 1187–1195. [CrossRef]

25. Panda, M.; Patnaik, S.K.; Mal, A.K. An efficient method to compute simplified noise parameters of analog amplifiers using
symbolic and evolutionary approach. Int. J. Numer. Model. Electron. Netw. Devices Fields 2021, 34, e2790. [CrossRef]

26. Zhou, R.; Poechmueller, P.; Wang, Y. An Analog Circuit Design and Optimization System with Rule-Guided Genetic Algorithm.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2022, 41, 5182–5192. [CrossRef]

27. Hayes, M. Lcapy: Symbolic linear circuit analysis with Python. PeerJ Comput. Sci. 2022, 8, e875. [CrossRef] [PubMed]
28. Guerra, O.; Rodriguez-Garcia, J.D.; Fernandez, F.V.; Rodríguez-Vázquez, A. A symbolic pole/zero extraction methodology based

on analysis of circuit time-constants. Analog. Integr. Circuits Signal Process. 2002, 31, 101–118. [CrossRef]
29. Gomes, J.L.; Nunes, L.C.; Gonçalves, C.F.; Pedro, J.C. An accurate characterization of capture time constants in GaN HEMTs.

IEEE Trans. Microw. Theory Tech. 2019, 67, 2465–2474. [CrossRef]
30. Cao, H.; Zhang, Y.; Han, Z.; Shao, X.; Gao, J.; Huang, K.; Shi, Y.; Tang, J.; Shen, C.; Liu, J. Temperature compensation

circuit design and experiment for dual-mass MEMS gyroscope bandwidth expansion. IEEE/ASME Trans. Mechatron. 2019,
24, 677–688. [CrossRef]

31. Coşkun, K.Ç.; Hassan, M.; Drechsler, R. Equivalence Checking of System-Level and SPICE-Level Models of Linear Circuits. Chips
2022, 1, 54–71. [CrossRef]

32. Evnin, O. Melonic dominance and the largest eigenvalue of a large random tensor. Lett. Math. Phys. 2021, 111, 66. [CrossRef]
33. Gheorghe, A.G.; Constantinescu, F. Pole/Zero Computation for Linear Circuits. In Proceedings of the 2012 Sixth UKSim/AMSS

European Symposium on Computer Modeling and Simulation, Valletta, Malt, 14–16 November 2012; pp. 477–480.
34. Sohrabi, M.; Zandieh, M.; Shokouhifar, M. Sustainable inventory management in blood banks considering health equity using a

combined metaheuristic-based robust fuzzy stochastic programming. Socio-Econ. Plan. Sci. 2022, 86, 101462. [CrossRef]
35. Razavi, B. Fundamentals of Microelectronics; John Wiley & Sons: New York, NY, USA, 2021.
36. Ghasemi Darehnaei, Z.; Shokouhifar, M.; Yazdanjouei, H.; Rastegar Fatemi, S.M.J. SI-EDTL: Swarm intelligence ensemble deep

transfer learning for multiple vehicle detection in UAV images. Concurr. Comput. Pract. Exp. 2022, 34, e6726. [CrossRef]
37. Aziz, R.M.; Mahto, R.; Goel, K.; Das, A.; Kumar, P.; Saxena, A. Modified Genetic Algorithm with Deep Learning for Fraud

Transactions of Ethereum Smart Contract. Appl. Sci. 2023, 13, 697. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

156

Citation: Chao, M.-T.; Lin, B.M.T.

Scheduling of Software Test to

Minimize the Total Completion Time.

Mathematics 2023, 11, 4705. https://

doi.org/10.3390/math11224705

Academic Editor: Ripon Kumar

Chakrabortty

Received: 9 October 2023

Revised: 11 November 2023

Accepted: 15 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Scheduling of Software Test to Minimize the Total
Completion Time †

Man-Ting Chao and Bertrand M. T. Lin *

Institute of Information Management, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
manting417@gmail.com
* Correspondence: bmtlin@nycu.edu.tw
† This document is based upon the thesis of Man-Ting Chao submitted for her master degree.

Abstract: This paper investigates a single-machine scheduling problem of a software test with shared
common setup operations. Each job has a corresponding set of setup operations, and the job cannot be
executed unless its setups are completed. If two jobs have the same supporting setups, the common
setups are performed only once. No preemption of any processing is allowed. This problem is known
to be computationally intractable. In this study, we propose sequence-based and position-based
integer programming models and a branch-and-bound algorithm for finding optimal solutions. We
also propose an ant colony optimization algorithm for finding approximate solutions, which will be
used as the initial upper bound of the branch-and-bound algorithm. The computational experiments
are designed and conducted to numerically appraise all of the proposed methods.

Keywords: single-machine scheduling; shared common setups; total completion time; integer
programming; branch-and-bound; ant colony optimization

MSC: 68M20; 90B35; 90C57

1. Introduction

Scheduling is the decision-making process used by many manufacturing and service
industries to allocate resources to economic activities or tasks over he planning horizon [1,2].
This paper studies a scheduling model that is inspired by real-life applications, where
supporting operations need to be prepared before regular jobs are processed. The specific
application context is the scheduling of asoftware test at an IC design company, where the
software system is modular and can be tested module by module and level by level. Before
starting a module test, we need to install software utilities and libraries as well as adjust
system parameters to shape an appropriate system environment. The setup operation
corresponds to the installation of utilities and libraries, which are supporting tasks for the
job. Different tests may require part of the same environment settings. If two jobs have
common supporting tasks, the common setups are performed only once. The abstract
model was also studied by Kononov, Lin, and Fang [3] as a single-machine scheduling
problem formulated from the production scheduling of multimedia works. In the context
of multimedia scheduling, when we want to play multimedia, we need to download their
content first, including audio tracks, subtitles, and images, which can correspond to setup
operations and jobs for this study, respectively. Once the setup operations of the multimedia
objects are prepared, they can be embedded in upper-level objects without multiple copies,
as in physical products. This unique property is different from the manufacture of tangible
products, such as vehicles and computers. Following the standard three-field notation [4],
we denote the model by 1|bp − prec|∑j Cj, where the one indicates the single-machine
setting, bp − prec indicates the bipartite precedence relation between shared setups and
test jobs, and ∑j Cj is the objective to minimize the total completion time.

Mathematics 2023, 11, 4705. https://doi.org/10.3390/math11224705 https://www.mdpi.com/journal/mathematics
157

Mathematics 2023, 11, 4705

This paper is organized into seven sections. In Section 2, the problem definition
is presented with a numerical example for illustrations. The literature review follows.
Section 3 introduces two integer programming models based on different formulation
approaches. Section 4 is dedicated to the development of a branch-and-bound algorithm,
including the development of upper bound, lower bound, and tree traversal methods.
In Section 5, an ant colony optimization algorithm is proposed. Section 6 presents the
computational experiments on the proposed methods. Finally, conclusions and suggestions
for future works are given in Section 7.

2. Problem Definition and Literature Review

2.1. Problem Statements

We first present the notation that will be used in this paper. Note that all parameters
are assumed to be non-negative integers.

n number of jobs;
m number of setup operations;
T = {t1, t2, . . . , tn} set of jobs to be processed;
S = {s1, s2, . . . , sm} set of setup operations;
R = {(si, tj)|si ∈ S supports tj ∈ T} relation indicating whether the setup operation si

is required for each job tj;
pj processing time of job tj on the machine;
spi processing time of setup si on the machine;
σ = (σ1, σ2, ..., σn) particular sequence of the jobs;
σ∗ optimal schedule sequence;
Cj completion time of job tj;
Z(σ) = ∑j∈T total job completion time under schedule σ.

The subject of our research is dedicated to studying the single-machine scheduling
problem with shared common setup operations. The objective is to minimize the total
completion time of the jobs, i.e., ΣCj. The problem can be described as follows:

From time zero onwards, two disjoint sets of activities S and T are to be processed on
a machine. Each job tj has a set of setup operations that job tj can only start after its setups
are completed. All setup operations and jobs can be performed on the machine at any time.
Although all setup operations need to be processed once, they do not contribute to the
objective function because their role is only the preparatory operations for jobs under the
priority relation. At any time, the machine can process at most one setup operation or job.
No preemption of any processing is allowed. In software test scheduling, jobs tj represent
the software to be tested, and setups si refers to the preparation of a programming language
or compilation environment that needs to be installed in advance so that the test software
can be executed. For example, if t1 is an Android application that needs to be tested, and
t1 needs setups s1 and s4, then s1 could be JAVA, s4 could be Android Studio, etc.

To illustrate the problem of our study, we give numerical examples of four setup
operations, five test jobs, the relation R, and its corresponding graph. The parameters and
relation are shown in Figure 1.

Two example schedules are produced and shown below in the form of Gantt charts.
The feasible schedule shown in Figure 2 is σ = (t1, t2, t3, t4, t5) with a total completion
time of 115. Setups s2, s3 precede job t1. The order of s2 and s3 is immaterial. Figure 3
shows schedule σ∗ = (t4, t2, t1, t3, t5) associated with a total completion time of 101, which
is optimal for the given instance. While both are feasible solutions, the objective value of
Figure 3 will be better than that of Figure 2.

158

Mathematics 2023, 11, 4705

activities s1 s2 s3 s4 t1 t2 t3 t4 t5
length 2 4 3 2 5 3 6 2 7

R(si, tj) t1 t2 t3 t4 t5

s1 0 1 0 1 0
s2 1 1 0 0 1
s3 1 0 0 1 0
s4 0 0 1 0 1

(a) Parameters of five jobs.

s1 s2 s3 s4

t1 t2 t3 t4 t5

(b) Bipartite relation.

Figure 1. Example of 4 setups and 5 jobs.

Machine
Cj 0

∑ Cj 0

s2
4

4

s3
3

7

t1
5

12

12

s1
2

14

t2
3

17

29

s4
2

19

t3
6

25

54

t4
2

27

81

t5
7

34

115

Figure 2. Feasible solution.

Machine
Cj 0

∑ Cj 0

s1
2

2

s3
3

5

t4
2

7

7

s2
4

11

t2
3

14

21

t1
5

19

40

s4
2

21

t3
6

27

67

t5
7

34

101

Figure 3. Optimal solution.

2.2. Literature Review

The scheduling problem studied by Kononov, Lin, and Fang [3] has a single machine
that performs all setup operations and testing jobs. Referring to Brucker [5] and Leung [1],
we know that precedence constraints play a crucial role in scheduling problems, especially
when complexity status or categories are involved. Existing research works in the literature
consider precedence relations presented in various forms. Bipartite graphs are often studied
in graph theory. The graph shown in Figure 1 is bipartite because edges exist between
nodes on one side and nodes on the other. Linear allocation problems can also be visualized
by both supply and demand. Unfortunately, scheduling theory rarely addresses precedence
constraints in bipartite graphs.

After formulation, Kononov, Lin, and Fang [3] studied two minimum sum objective
functions, namely the number of late jobs and the total weighted completion time of jobs. As
for the minimization of the total weighted completion time (∑j wjCj), Baker [6] is probably
the first paper to address the existence of precedence constraints. Adolphson and Hu [7]
proposed a polynomial time algorithm for the case in which rooted trees give priority. A
fundamental problem for the jobs-per-unit execution time is 1|prec, pi = 1|∑ wjCj, where
wj ∈ 1, 2, 3 has been proven to be strongly NP-hard by Lawler [8]. The minimum latency
set cover problem studied by Hassin and Levin [9] is the most relevant. The minimum

159

Mathematics 2023, 11, 4705

latency set cover problem involves a subset of several operations. A subset is complete
when all of their operations are finished. The objective function is the total weighted
completion time of subsets. The minimum latency set cover problem is a special case of
our 1|bp − prec|∑ wjCj problem, and the correspondence is as follows: In our problem, an
operation is mapped to a setup operation (si), and a subset is interpreted as a testing job (tj).
Furthermore, Hassin and Levin [9] showed that the minimum delay set cover problem is
strongly NP-hard even if all operations require the unit execution time (UET). Subsequently,
the 1|bp − prec|∑ wjCj problem is hard as well. By performing a pseudo-polynomial time
reduction in Lawler’s result about 1|prec, pj = 1|∑ wjCj, where wj ∈ 1, 2, 3, Kononov, Lin,
and Fang [3] proved 1|bp − prec, si = tj = 1|∑ Cj is strongly NP-hard. In other words, it is
very difficult to minimize the total weighted completion time in our model, even though
all setup operations and all testing jobs require unit execution time and all weights are one.

To solve the scheduling problem, Shafransky and Strusevich [10]; Hwang, Kovalyov,
and Lin [11]; and Cheng, Kravchenko, and Lin [12] studied several special cases with
fixed job sequences and solved these problems in polynomial time. Moreover, the branch-
and-bound algorithm is an enumeration technique that can be applied to combinatorial
optimization problems. Brucker and Sievers [13] deploy branch-and-bound algorithms
on the job-shop scheduling problem and Hadjar, Marcotte, and Francois [14] do the same
on the multiple-depot vehicle scheduling problem. To find approximate solutions to
a hard optimization problem, various meta-heuristics have been designed. Kunhare,
Tiwari, and Dhar [15] used particle swarm optimization for feature selection in intrusion
detection systems. Kunhare, Tiwari, and Dhar [16] further used a genetic algorithm to
compose a hybrid approach to intrusion detection. For solving a worker assignment bi-level
programming problem, Luo, Zhang, and Yin [17] designed a two-level algorithm, which
simulated annealing as the upper level to minimize the worker idle time and the genetic
algorithm as the lower level to minimize the production time. For more general coverage,
the reader is referred to Ansari and Daxini [18] and Rachih, Mhada, and Chiheb [19].
Ant colony optimization (ACO) is a meta-heuristic algorithm that can be used to find
approximate solutions to difficult optimization problems. Many research studies in the
literature also use ACO to solve scheduling problems, such as Blum and Sampels [20]
on group shop scheduling problems; Yang, Shi, and Marchese [21] on generalized TSP
problems; and Xiang, Yin, and Lim [22] on operating room surgery scheduling problems.
According to the above, it is known that the branch-and-bound algorithm and ACO may
be effective in solving the scheduling problem in our study.

3. Integer Programming Models

In this section, to mathematically present the studied problem 1|bp − prec|ΣjCj, we
formulate two integer programming models. Since the problem’s nature is set on permuta-
tions of jobs, we deploy two common approaches, sequence-based decision variables and
position-based decision variables, for shaping permutation-based optimization problems.
The models will be then implemented and solved by the off-the-shelf Gurobi Optimizer.

3.1. Position-Based IP

In the section, we focus on the decision that assigns m + n activities at m + n positions.
Activities 1, 2, . . . , m are setups and activities m+ 1, m+ 2, . . . , and m+ n are jobs. Therefore,
an activity could be either a job or a setup operation. In the model, there are six categories
of constraints; (m + n)2 binary variables x; and two subsets of m + n integer variables, el
and Ck. Index k ∈ {1, 2, . . . , m + n} indicates the positions. We use the binary relation
(i, j) ∈ R to indicate whether the setup i should finish before the job j starts. The variables
used in the model are defined in the following:
Decision variables:

xi,k = 1 if the activity i is in the position k; 0, otherwise.

160

Mathematics 2023, 11, 4705

Auxiliary variables:

pl : processing time of the activity l;

Ck : completion time of the job in the position k.

Note that extra variables, C′
k, are introduced for extracting the completion times of jobs. If a

position k is loaded with a setup, then C′
k ≥ −M, where M is a big number.

Position-based IP:

min
m+n

∑
k=1

C′
k

s.t.
m+n

∑
k=1

xl,k = 1, activity l ∈ {1, . . . , m + n} is assigned to a position; (1)

m+n

∑
l=1

xl,k = 1, position k accommodates one activity; (2)

m+n

∑
k=1

xi,k · k ≤
m+n

∑
k=1

xj,k · k, (i, j) ∈ R, 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n; (3)

C1 =
m+n

∑
l=1

xl,1 · pl , completion time of the first position; (4)

Ck ≥ Ck−1 +
m+n

∑
l=1

xl,k · pl , completion time of position k ∈ {1, . . . , m + n}; (5)

C′
k ≥ Ck − (

m

∑
i=1

xi,k)M, (6)

xl,k ∈ {0, 1}, 1 ≤ l, k ≤ m + n; (7)

Ck ≥ 0, C′
k ≥ 0, 1 ≤ k ≤ m + n. (8)

The goal is to minimize the total completion time of jobs. Constraint (1) lets each
position accommodate exactly one job or one setup. Constraint (2) lets each activity be
assigned to exactly one position. Constraint (3) ensures that any job j can start only after
its setup operations, i, are all finished. Constraint (4) lets the completion time of the first
position be greater than or equal to the processing time of the event that occupied the
first position. Constraint (5) defines the completion time of the position k to be greater
than or equal to the completion time of k − 1 plus the processing time of the event that is
processed in the position k. Constraint (6) defines the completion time k′ if the position k
contains a job. The reason we added a variable is that if the objective function computes
the completion time of jobs in ∑m+n

k=1 ∑m+n
j=m+1 Ck · xjk; it becomes quadratic. Therefore, we

add an extra variable, C′, to make the objective function linear, i.e., ∑m+n
k=1 C′

k.

3.2. Sequence-Based IP

In this section, the formulation approach is to determine the relative positions between
each two activities. The model consists of five categories of constraints; (m + n)2 binary
variables x; and two subsets of m + n integer variables, pj and Ck.

Decision variable:

xi,j = 1 if activity i precedes the activity j; 0, otherwise.

161

Mathematics 2023, 11, 4705

Auxiliary variables:

pl : processing time of the activity l;

Ck : completion time of the activity k.Sequence-based IP:

min
m+n

∑
k=m+1

Ck

s.t. xi,j + xj,i = 1, i �= j ∈ {1, . . . , m + n}; (9)

xj,i = 0, (i, j) ∈ R, 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n; (10)

Cj ≥ Ci + pj + (xi,j − 1)M, i �= j ∈ {1, . . . , m + n}; (11)

Ci ≥ spi, 1 ≤ i ≤ m; (12)

Cj ≥ pj + ∑
(i,j)∈R

spi, m + 1 ≤ j ≤ m + n; (13)

xi,j ∈ {0, 1}, 1 ≤ i, j ≤ m + n; (14)

Ck ≥ 0, 1 ≤ k ≤ m + n. (15)

The objective value is to minimize the total completion time of jobs except for setup
operations. Constraint (9) limits the precedence between the two events. Constraint (10)
means that if job j needs setup i, then setup i should come before job j. Constraint (11) lets
the completion time of job j be greater than or equal to the completion time of job i plus the
processing time of job j if job i precedes job j. Constraint (12) defines the completion time
of event i if it is a setup. Constraint (13) defines the completion time of event j if it is a job.

4. Branch-and-Bound Algorithm

In this section, we explore a search tree that generates all permutations of jobs. In the
branch-and-bound algorithm, there will be an upper bound representing the current best
solution during the search process. In the process of searching, each node will calculate the
lower bound once, and if the lower bound calculated is not better than the upper bound,
the subtree of the node will be pruned to speed up the search. Therefore, we propose an
upper bound as the initial solution, a lower bound for pruning non-promising nodes, and a
property to check whether each node satisfies the condition when pruning the tree.

4.1. Upper Bound

First, we use an ACO algorithm coupled with local search to find an approximate
solution as an upper bound, sorted by the settings of pheromone and visibility. Details
about the ACO algorithm will be introduced in Section 5. Implementing a branch-and-
bound algorithm with tight upper bounds helps converge the solution process faster.

4.2. Lower Bound

Lower bounds can help cut unnecessary branches that will never lead to a solution
better than the incumbent one. Different approaches can be used to derive lower bounds.
In our study, we compute a lower bound by sorting the remaining processing times of
unscheduled jobs. We can express it as the 1|rj|ΣCj problem. When the setup operations of
the scheduled jobs are complete, we can release these setup times. Then, we denote the
unfinished setup operations as the release date of each job and implement the shortest
remaining processing time (SRPT) method. The process with the least amount of time
remaining before completion is selected to execute. Finally, we add the total current
completion time of scheduled jobs and the result of the SRPT mentioned above as a lower
bound. The Lower Bound algorithm is shown in Algorithm 1.

162

Mathematics 2023, 11, 4705

Algorithm 1: LowerBound

1 Function LowerBound(σ):
2 LB = 0;
3 if length(σ) == n then
4 LB = sum(σ);
5 else
6 sort the unscheduled jobs by the shortest remaining processing time;
7 LB = sum(σ)+SRPT(σunscheduled);

8 return LB.

4.3. Dominance Property

In this section, after we use the lower bound to prune nodes, we also propose a
property of the branch-and-bound algorithm (Algorithm 2), which can also speed up node
pruning and reduce tree traversal time. The content description and proof of the property
are as follows:

Lemma 1. Let J = {j1, j2, ..., jk} be the unscheduled jobs at a node X in the branch-and-bound
tree. For any unscheduled job ja, if there is another unscheduled job jb such that the setups of jb are
all scheduled and pb ≤ pa, then the subtree X + ja by choosing ja as the next job to schedule can be
pruned off because jb precedes ja in some optimal solution.

Proof. Let σ be the sequence of scheduled jobs. Assume that there is an optimal solution
(σ, ja, L, jb), where L is a sequence of the unscheduled jobs. When the setups of job ja are
not yet completed, its completion time Ca would be Cσ + ∑m

i→a
i∈un f inished

spi + pa, and, when

the setups of job jb are completed, its completion time Cb would be Cσ + Ca + CL + pb,
where CL is the completion time of all jobs of L. Assuming the positions of jb and ja are
swapped as (σ, jb, L, ja), we denote their completion times as C′

b,C′
L, and C′

a. At this point,
C′

b will be Cσ + pb, and C′
a will be Cσ + C′

b + C′
L + ∑m

i→a
i∈un f inished

spi + pa. Suppose that if

pb is less than pa, it makes C′
b less than Cb, which also makes the completion time of L

shorter, to the benefit of both job jy and L. When both C′
y and C′

L move forward, the result
of C′

a will also decrease accordingly. According to the assumption, we know that the total
completion time of (σ, jb, L, ja) will be smaller than that of (σ, ja, L, jb). Therefore, we can
prune off the branch of node ja, which will not lead to a better solution without sacrificing
the optimality.

Algorithm 2: Check Property

1 Function CheckProperty(J):
2 forall ja ∈ J do
3 forall jb ∈ J and ja �= jb do
4 if the setups of jb have finished and pb ≤ pa then
5 return False;

6 return True.

4.4. Tree Traversal

In this section, we use three different tree traversal methods, depth-first search (DFS),
breadth-first search (BFS), and best-first search (BestFS), to perform the branch-and-bound
algorithm. Moreover, we also added the upper bound, lower bound, and property men-
tioned above into our branch-and-bound algorithm.

163

Mathematics 2023, 11, 4705

4.5. Depth-First Search (DFS)

DFS is a recursive algorithm for searching all the nodes of a tree and can generate the
permutations of all the solutions. It starts at the root node and traverses along each branch
before backtracking. The advantage of DFS is that the demand for memory is relatively
low, but the disadvantage is that because of recursion, there will be a heavier loading in the
stack operation, and it will take more time to find all the solutions. The DFS algorithm is
shown in Algorithm 3.

First, the algorithm will obtain the upper bound from Line 15 and call the recursive
DFS function. When we encounter the deepest node or have visited all of its children, we
move backward along the current path to find the unvisited node to traverse. In the search
process, we use LowerBound() and CheckProperty() to test whether we should continue
to search down or not. If the lower bound is greater than or equal to the upper bound, or if
the property is not met, we will prune the branch because it does not yield a better solution
than the current one. This method can reduce the number of search nodes.

Algorithm 3: Depth-First Search

1 Function DFS(sequence, ub, σ, σ∗):
2 if length(σ) == n then
3 if sum(σ) < ub then
4 ub = sum(σ);
5 σ∗ = σ;

6 return ub, σ∗;

7 forall tj ∈ sequence do

8 σ.append(tj);
9 denote sequenceunscheduled as sequence without tj;

10 if LowerBound(σ)< ub then
11 if CheckProperty(tj, sequenceunscheduled) then

12 ub, σ∗ =DFS(sequenceunscheduled, ub, σ, σ∗);

13 return ub, σ∗;

14 ub =UpperBound(sequence);
15 ub, σ∗ =DFS(sequence, ub, [], σ∗);

4.6. Breadth-First Search (BFS)

BFS is a tree traversal algorithm that satisfies given properties. It starts at the root of
the tree, traverses all nodes at the current level, and moves to the next depth level. Unlike
DFS, which will find a solution first, it will wait until the last level is searched to find all
suitable solutions. In particular, this method uses a queue to record the sequence of visited
nodes. The advantage of BFS is that each node is traversed by the shortest path, but the
disadvantage is that it requires more memory to store all of the traversed nodes. It thus
takes more time to search deeper trees.

The BFS algorithm is shown in Algorithm 4. First, the algorithm will obtain the upper
bound by UpperBound() from Line 25. The BFS function starts from Line 2; we create a
queue that uses the First-In-First-Out strategy. Lines 3 through 5 are the initial settings that
we use to set a root. From Lines 6 to 24, we enqueue the root node and then dequeue the
values in order. Then, we enqueue the unvisited nodes and recalculate the lower bound un-
til there is no value in the queue. Before each enqueue, it is necessary to use LowerBound()

and CheckProperty() to check whether the lower bound is smaller than the upper bound
and whether it satisfies the property. It can reduce the number of visited nodes and shorten
the execution time. In Line 12, we use the Without() function to obtain the nodes that have
not been visited yet. The loop stops when the queue is empty, indicating that all nodes

164

Mathematics 2023, 11, 4705

have been traversed.

Algorithm 4: Breadth-First Search

1 Function BFS(sequence, ub):
2 Let Q be a queue;
3 forall tj ∈ sequence do

4 if LowerBound(tj)< ub then

5 Q.enqueue(tj);

6 while Q is not empty do
7 σ = Q.dequeue();
8 while LowerBound(σ)≥ ub do
9 if Q is empty then

10 break;

11 σ = Q.dequeue();

12 forall tk ∈ Without(σ) do
13 σ.append(tk);
14 if length(σ) == n then
15 if sum(σ) < ub then
16 ub = sum(σ);
17 σ∗ = σ;

18 else
19 if LowerBound(σ)< ub then
20 if CheckProperty(tk, σ) then
21 Q.enqueue(tj);

22 if Q is empty then
23 break;

24 return ub, σ∗;

25 ub =UpperBound(sequence);
26 ub, σ∗ =BFS(sequence, ub);

4.7. Best-First Search (BestFS)

BestFS works as a combination of depth-first and breadth-first search algorithms. It is
different from other search algorithms that blindly traverse to the next node, it uses the
concept of a priority queue and heuristic search, using an evaluation function to determine
to which neighbor node is the best to move. It is also a greedy strategy because it always
chooses the best path at the time, rather than BFS using an exhaustive search. The advantage
of BestFS is that it is more efficient because it always searches through the node with the
smaller lower bound first. On the other hand, the disadvantage is that the structure of the
heap is difficult to maintain and requires more memory resources. Since each visited node
will be stored in the heap, we can directly obtain the node with the smallest lower bound
bound by heapsort. Therefore, when the amount of data is large, there will be too many
nodes growing at one time, which will occupy a relatively large memory space.

The concept of the BestFS algorithm is the same as Algorithm 4. The difference is that
in the BestFS function, we change the queue to a priority queue by using a min-heap data
structure, where the priority order is sorted using the calculated lower bound, instead of
using the FIFO order. The smaller the lower bound is, the higher the priority. When we
use a heap to pop or push values, we will perform the function of heapify at the same time
to ensure the heap is in the form of a min-heap. Heapify is the process of creating a heap
data structure from a binary tree. Similarly, before each element is pushed into the heap,

165

Mathematics 2023, 11, 4705

we use LowerBound() and CheckProperty() to check whether the lower bound is smaller
than the upper bound and whether it satisfies the property.

5. Ant Colony Optimization (ACO)

Ant colony optimization (ACO) was proposed by Dorigo et al. [23] and Dorigo [24].
It is a meta-heuristic algorithm based on probabilistic techniques and populations. ACO
is inspired by the foraging behavior of ants, where the probability of an ant choosing a
path is proportional to the pheromone concentration on the path, that is, a large number of
ant colonies will give positive feedback. When ants are looking for food, they constantly
modify the original path through pheromones and, finally, find the best path. Initially, Ant
System (AS) was used to solve the well-known traveling salesman problem (TSP). Later,
many ACO variants were produced to solve different hard combinatorial optimization
problems, such as assignment problems, scheduling problems, or vehicle routing problems.
In recent years, some researchers have focused on applying the ACO algorithm to multi-
objective problems and dynamic or stochastic problems. In ant colony optimization, each
ant constructs its foraging path (solution) node by node. When determining the next node
to move on, we can use dominance properties and exclusion information to rule out the
nodes that are not promising. In comparison with other meta-heuristics, this feature may
save the time required for handling infeasible or inferior solutions. The pseudo-code of
ACO that we adopt is shown in Algorithm 5.

Algorithm 5: Ant Colony Optimization

1 Function ACO():
2 initialize the ACO parameters;
3 while stopping criteria is not met do
4 foreach ants in population do
5 generate the first job randomly;
6 foreach unselected job do
7 choose next job by the transition rule;

8 update local pheromone;

9 LocalSearch(sequencelbest);
10 update pheromone based on the best solution.

State transition rule: We treat each job as a node in the graph and all nodes are connected.
To choose the next edge, the ant will consider the visibility of each edge available from
its current location, as well as the pheromones. The formula for calculating the visibility
value is given by ηij =

1
∑

i→j
spi+pj

, where ηij is the visibility value from node i to node j

defined as the inverse of the processing time of job j plus its unfinished setup operations.
Then, we will calculate the probability of each feasible path; the probability formula is

given as pk
ij =

τα
ij∗η

β
ij

∑
k∈unselectedi

τα
ik∗η

β
ik

, where τij is the pheromone on the edge from node i to node

j, α ≥ 0 is a parameter for controlling the influence of the pheromone, and β ≥ 0 is a
parameter for controlling the influence of invisibility. The next node is determined by a
roulette wheel selection.
Pheromone update rule: When all ants have found their solutions, the pheromone trails are
updated. The formula for updating the pheromones is defined as τij = (1 − ρ) ∗ τij +�τk

ij,

where ρ is the pheromone evaporation rate, and �τk
ij, the incremental of the pheromone

from node i to node j by the kth ant, is τk
ij =

Q
ΣCk

if the ant k traverses edgei,j; 0, otherwise,
where ΣCk is the total completion time in the solution of the kth ant, and Q is a constant.
Stopping criterion: We set a time limit of 1800 s for the ACO execution. Once the course
reaches the time limit, the ACO algorithm will stop and report the incumbent best solution.

166

Mathematics 2023, 11, 4705

To close the discussion of ACO features, we note that local search algorithms can
improve on the ACO solution at each iteration and make the result closer to the global
optimal solution. At the end of each ACO generation, we deploy a 2-OPT local search
procedure to the best solution of each generation so as to probabilistically escape the
incumbent solution away from the local optimum.

6. Computational Experiments

In this section, we generate test data for appraising the proposed methods. The
solution algorithms were coded in Python, and the integer programming models are
implemented on Gurobi 9.1.2 interfaced with Python API. The experiments were performed
on a desktop computer with Intel Core(TM) i7-8700K CPU at 3.70GHz with 32.0 GB RAM.
The operating system is Microsoft Windows 10. We will describe the data generation design
and parameter settings in detail and discuss the experimental results.

6.1. Data Generation Scheme

In the experiments, datasets were generated according to the following rules, and all
parameters are integers:

1. Six different numbers of jobs n ∈ {5, 10, 20, 30, 40, 50} and different numbers of setup
operations m ∈ {4, 8, 18, 25, 35, 45}.

2. A binary support relation array R of a size n ∗ m is randomly generated. If (si, tj)
belongs to R, denoted by rij = 1, then job tj cannot start unless setup si is completed.
The probability for rij = 1 is set to be 0.5, i.e., if a generated random number ≤ 0.5,
then rij = 1. Note that when rij = 1 for all i and j, the problem can be solved by
simply arranging the job in the shortest processing time (SPT) order.

3. The processing times of jobs pj were generated from the uniform distribution [1, 10].
4. The processing times of setups spi were generated from the uniform distribution [1, 5].
5. For each job number, three independent instances were generated. In total, 18 datasets

will be tested, as shown in Table 1.

Table 1. Categories of datasets.

Datasets n m

D1,D2,D3 5 4
D4,D5,D6 10 8
D7,D8,D9 20 18

D10,D11,D12 30 25
D13,D14,D15 40 35
D16,D17,D18 50 45

6.2. Results of Integer Programming Models

In the experiments of the integer programming models, we ran two integer program-
ming models on the dataset with a time limit of 1800 s. The results are shown in Table 2. If
an IP model did not complete its execution of a dataset in 1800 s, its run time is denoted as
”−”. In the table, the gap column indicates the relative difference between the feasible solu-
tion found upon termination and the best proven lower bound. The gap values were in the
output of Gurobi. The gap value is defined as: gap(%) = |ObjBound−ObjVal|

|ObjVal| × 100%, where
ObjBound and ObjVal are a lower bound and the incumbent solution objective, respec-
tively. When the gap is zero we have demonstrated optimality. The column best solution
represents the best result of all our proposed methods on the same dataset.

When nk is 10, the sequence-based IP takes more than 1800 s, even though both
methods can obtain the optimal solution. The position-based IP takes less time and ends up
with a gap of 0%. When nk is greater than or equal to 20, neither model can find the optimal
solution within 1800 s, but there are still some solutions that can find the same solution as
the best solution, such as D17 of the position-based IP and D13 of the sequence-based IP. As

167

Mathematics 2023, 11, 4705

nk increases, the gap of the position-based IP will be greater than that of the sequence-based
IP. However, when we compare it with the best solution, even if the objective value is the
same as the best solution, the gap value is still very large, such as the position-based IP of
D17 and the sequence-based IP of D7 to D9. It means that their lower bounds are not tight,
i.e., they have a significant deviation from the final feasible solution.

Table 2. Results of different IP models.

nk Datasets
Position-Based Sequence-Based

Best Solutionobj. Time gap obj. Time gap

5

D1 101 0.09 0% 101 0.10 0% 101
D2 128 0.09 0% 128 0.10 0% 128
D3 122 0.08 0% 122 0.10 0% 122

10

D4 461 246.11 0% 461 - 19% 461
D5 423 46.10 0% 423 - 21% 423
D6 457 355.95 0% 457 - 25% 457

20

D7 2055 - 44% 2052 - 53% 2052
D8 1822 - 34% 1820 - 58% 1820
D9 1670 - 46% 1662 - 57% 1662

30

D10 3609 - 50% 3602 - 61% 3597
D11 3985 - 50% 4007 - 62% 3985
D12 4448 - 62% 4469 - 66% 4424

40

D13 8196 - 72% 8168 - 66% 8168
D14 7395 - 68% 7402 - 67% 7390
D15 7975 - 70% 7935 - 66% 7935

50

D16 12,882 - 76% 12,963 - 66% 12,880
D17 12,305 - 73% 12,374 - 67% 12,305
D18 10,891 - 72% 10,953 - 66% 10,871

6.3. Results of Branch-and-Bound Algorithm

Table 3 shows the results of the branch-and-bound algorithm with three different
tree traversal methods. We set the time limit to 1800 s. In this table, the column node_cnt
represents the number of visited nodes. The dev column is an abbreviation for deviation,
expressed as a percentage of the difference between the objective value and the best solution.
The calculation formula is as dev(%) = (obj−best solution)

best solution × 100%.
When nk is less than 20, DFS and BestFS successfully find the optimal solutions, but

their execution times and the number of visited nodes of BFS are much larger than others.
Even if nk is 20, BFS cannot find the optimal solution within the time limit. In addition,
we can see that the execution time of BestFS is faster than that of DFS for a small number
of jobs. When nk is greater than or equal to 30, the three methods fail to find the optimal
solution within the time limit. The number of visited nodes and the deviation of DFS are
clearly lower than those of BFS and BestFS. The results indicate that DFS is more efficient
than BFS and BestFS because the DFS algorithm is not a layer-order traversal but will
backtrack after finding the solution. Therefore, BFS and BestFS may not be able to find any
feasible solution within the time limit. To sum up, the performance of DFS is better than
those of BFS and BestFS, so we will analyze the experimental results of DFS in detail in the
next section.

168

Mathematics 2023, 11, 4705

Table 3. Results of different tree traversal methods.

nk Datasets
DFS BFS BestFS

obj. node_cnt Time dev obj. node_cnt Time dev obj. node_cnt Time dev

5

D1 101 25 0.00 0.00 101 67 0.00 0.00 101 16 0.00 0.00
D2 128 22 0.00 0.00 128 44 0.00 0.00 128 12 0.00 0.00
D3 122 27 0.00 0.00 122 68 0.01 0.00 122 20 0.00 0.00

10

D4 461 203 0.06 0.00 461 4141 0.39 0.00 461 283 0.04 0.00
D5 423 246 0.04 0.00 423 2518 0.27 0.00 423 128 0.02 0.00
D6 457 1055 0.25 0.00 457 34,646 2.57 0.00 457 1788 0.18 0.00

20

D7 2052 34,798 69.07 0.00 7839 1,940,323 - 2.82 2052 33,393 22.62 0.00
D8 1820 44,844 77.49 0.00 6651 2,081,103 - 2.65 1820 44,166 22.03 0.00
D9 1662 201,418 314.67 0.00 6211 2,078,269 - 2.74 1662 172,094 96.32 0.00

30

D10 3605 440,015 - 0.00 18,533 1,482,922 - 4.15 18,533 1,903,404 - 4.15
D11 4053 385,433 - 0.02 22,005 1,083,532 - 4.52 22,055 1,064,974 - 4.53
D12 4470 392,869 - 0.01 22,990 1,165,534 - 4.20 22,990 1,423,640 - 4.20

40

D13 8357 189,796 - 0.02 51,610 846,721 - 5.32 51,610 769,918 - 5.32
D14 7564 176,723 - 0.02 44,779 873,638 - 5.06 44,779 1,112,645 - 5.06
D15 8074 185,522 - 0.02 49,102 888,079 - 5.19 49,102 1,094,652 - 5.19

50

D16 13,007 74,873 - 0.01 106,541 856,905 - 7.27 106,541 954,605 - 7.27
D17 12,527 84,980 - 0.02 97,383 933,536 - 6.91 97,383 1,047,559 - 6.91
D18 11,255 90,908 - 0.04 87,545 1,055,329 - 7.05 87,545 1,181,533 - 7.05

6.4. Results of DFS Algorithm

In the experiment, we compare three different cases, including the original DFS
algorithm, DFS with the lower bound, and DFS with the dominance property. Table 4
shows the experimental results of the different cases and also compares their objective
values (obj.), numbers of visited nodes (node_cnt), execution times (time), and deviations
(dev) from the best solution.

We can find that when the lower bound and properties are incorporated into DFS, the
number of visited nodes is significantly reduced. Since this method will cut off unhelpful
branches, it can also speed up the traversal, making it easier to find better solutions. Even
when nk is greater than or equal to 30, none of the three cases can find the best solution
within the time limit. However, compared with the original DFS, DFS with a lower bound
and DFS with a dominance property attained smaller deviations, indicating the capability
of finding solutions closer to the best solution.

Table 4. Results of DFS algorithm.

nk Datasets
DFS DFS + LB DFS + LB + Property

obj. node_cnt Time dev obj. node_cnt Time dev obj. node_cnt Time dev

5

D1 101 325 0.00 0.00 101 28 0.00 0.00 101 25 0.00 0.00
D2 128 325 0.00 0.00 128 48 0.00 0.00 128 22 0.00 0.00
D3 122 325 0.00 0.00 122 27 0.00 0.00 122 27 0.00 0.00

10

D4 461 9,864,100 173.53 0.00 461 614 0.11 0.00 461 203 0.07 0.00
D5 423 9,864,100 174.60 0.00 423 626 0.09 0.00 423 246 0.05 0.00
D6 457 9,864,100 182.09 0.00 457 2381 0.51 0.00 457 1055 0.25 0.00

20

D7 2174 27,177,572 - 0.06 2052 135,187 230.35 0.00 2052 34,798 69.07 0.00
D8 2145 28,810,807 - 0.18 1820 287,087 429.71 0.00 1820 44,844 77.49 0.00
D9 1904 29,472,356 - 0.15 1662 1,006,390 1405.52 0.00 1662 201,418 314.67 0.00

30

D10 4229 14,013,551 - 0.18 3679 426,340 - 0.02 3605 440,015 - 0.00
D11 4757 13,668,237 - 0.19 4211 462,562 - 0.06 4053 385,433 - 0.02
D12 5087 14,077,620 - 0.15 4530 443,418 - 0.02 4470 392,869 - 0.01

169

Mathematics 2023, 11, 4705

Table 4. Cont.

nk Datasets
DFS DFS + LB DFS + LB + Property

obj. node_cnt Time dev obj. node_cnt Time dev obj. node_cnt Time dev

40

D13 9557 7,184,349 - 0.17 8405 169,550 - 0.03 8357 189,796 - 0.02
D14 8505 7,327,087 - 0.15 7645 210,938 - 0.03 7564 176,723 - 0.02
D15 9131 7,111,936 - 0.15 8250 210,891 - 0.04 8074 185,522 - 0.02

50

D16 14,629 4,136,372 - 0.14 13,196 104,445 - 0.02 13,007 74,873 - 0.01
D17 14,272 4,189,689 - 0.16 12,911 119,416 - 0.05 12,527 84,980 - 0.02
D18 12,901 4,254,099 - 0.19 11,522 114,774 - 0.06 11,255 90,908 - 0.04

6.5. Results of ACO Algorithm

In this section, we performed the ACO algorithm on the 18 datasets and set the time
limit to 1800 s. Tables 5–7 summarize the results of the three branch-and-bound algorithms
with ACO upper bounds. The results include objective values (obj.) and deviation (dev)
of the ACO. The execution time of the ACO algorithm is much shorter than that of the
branch-and-bound algorithm. In addition, we will compare the objective value (obj.),
the number of visited nodes (node_cnt), and the execution times, (time), of the original
algorithm and the algorithm with ACO as the upper bound. The ACO parameters used
in the experiments are shown as follows: generation = 300; population = 20; α = 3; β = 1;
and ρ = 0.1.

As can be seen from the experimental table, the deviation of the ACO is small and an
even better solution can be found than IP models within 1800 s. Therefore, we can use the
ACO as the initial value of the upper bound (ub) to speed up the tree traversal time.

When the branch-and-bound algorithm is executing with the test lb < ub, the ACO
can make ub smaller, cutting more unnecessary branches. According to the tables, when nk
is less than or equal to 20, the algorithm with an upper bound finds the best solution in a
shorter time and visits fewer nodes; especially for the ACO in BFS, this is more obvious.
As the value of nk becomes larger, it increases the probability of the algorithm finding the
best solution within the same time limit. In summary, using the ACO solution as an upper
bound can make the branch-and-bound algorithm perform better.

Table 5. Results of DFS with ACO upper bounds.

nk Datasets
DFS ACO DFS + ACO

obj. node_cnt Time obj. dev obj. node_cnt Time

5

D1 101 25 0.00 101 0.00 101 5 0.00
D2 128 22 0.00 128 0.00 128 7 0.00
D3 122 27 0.00 122 0.00 122 4 0.00

10

D4 461 203 0.06 461 0.00 461 112 0.06
D5 423 246 0.04 427 0.01 423 75 0.04
D6 457 1055 0.25 464 0.02 457 954 0.25

20

D7 2052 34,798 69.07 2058 0.00 2052 32,861 64.83
D8 1820 44,844 77.49 1868 0.03 1820 43,257 72.69
D9 1662 201,418 314.67 1668 0.00 1662 157,071 243.59

30

D10 3605 440,015 - 3616 0.01 3597 433,789 -
D11 4053 385,433 - 3986 0.00 3985 373,573 -
D12 4470 392,869 - 4424 0.00 4424 357,690 -

40

D13 8357 189,796 - 8282 0.01 8282 159,727 -
D14 7564 176,723 - 7390 0.00 7390 131,500 -
D15 8074 185,522 - 7967 0.00 7967 145,476 -

50

D16 13,007 74873 - 12,880 0.00 12,880 69,077 -
D17 12,527 84,980 - 12,587 0.02 12,527 83,440 -
D18 11,255 90,908 - 10,871 0.00 10,871 71,311 -

170

Mathematics 2023, 11, 4705

Table 6. Results of BFS with ACO upper bounds.

nk Datasets
BFS ACO BFS + ACO

obj. node_cnt Time obj. Deviation obj. node_cnt Time

5

D1 101 67 0.00 101 0.00 101 4 0.00
D2 128 44 0.00 128 0.00 128 3 0.00
D3 122 68 0.01 122 0.00 122 4 0.00

10

D4 461 4141 0.39 461 0.00 461 96 0.04
D5 423 2518 0.27 427 0.01 423 118 0.03
D6 457 34,646 2.57 464 0.02 457 2578 0.40

20

D7 7839 1,940,323 - 2058 0.00 2052 43,231 33.67
D8 6651 2,081,103 - 1868 0.03 1868 3,185,673 -
D9 6211 2,078,269 - 1668 0.00 1662 79,117 124.83

30

D10 18,533 1,482,922 - 3616 0.01 3616 782,158 -
D11 22,005 1,083,532 - 3986 0.00 3986 394,009 -
D12 22,990 1,165,534 - 4424 0.00 4424 485,726 -

40

D13 51,610 846,721 - 8282 0.01 8282 649,800 -
D14 44,779 873,638 - 7390 0.00 7390 532,584 -
D15 49,102 888,079 - 7967 0.00 7967 702,847 -

50

D16 106,541 856,905 - 12,880 0.00 12,880 682,047 -
D17 97,383 933,536 - 12,587 0.02 12,587 927,886 -
D18 87,545 1,055,329 - 10,871 0.00 10,871 820,528 -

Table 7. Results of BestFS with ACO upper bounds.

nk Datasets
BestFS ACO BestFS + ACO

obj. node_cnt Time obj. Deviation obj. node_cnt Time

5

D1 101 16 0.00 101 0.00 101 4 0.00
D2 128 12 0.00 128 0.00 128 3 0.00
D3 122 20 0.00 122 0.00 122 4 0.00

10

D4 461 283 0.04 461 0.00 461 96 0.04
D5 423 128 0.02 427 0.01 423 61 0.02
D6 457 1788 0.18 464 0.02 457 1333 0.18

20

D7 2052 33,393 22.62 2058 0.00 2052 13,380 24.48
D8 1820 44,166 22.03 1868 0.03 1820 39,031 25.69
D9 1662 172,094 96.32 1668 0.00 1662 71,082 100.10

30

D10 18,533 1,903,404 - 3616 0.01 3616 1,350,098 -
D11 22,055 1,064,974 - 3986 0.00 3986 518,619 -
D12 22,990 1,423,640 - 4424 0.00 4424 648,245 -

40

D13 51,610 769,918 - 8282 0.01 8282 790,216 -
D14 44,779 1,112,645 - 7390 0.00 7390 971,168 -
D15 49,102 1,094,652 - 7967 0.00 7967 1,087,057 -

50

D16 106,541 954,605 - 12,880 0.00 12,880 888,985 -
D17 97,383 1,047,559 - 12,587 0.02 12,587 1,078,245 -
D18 87,545 1,181,533 - 10,871 0.00 10,871 1,181,376 -

To summarize the computational study, we note that the two proposed integer pro-
gramming approaches and the branch-and-bound algorithm, aimed at solving the problem
to optimality, can complete their execution courses for 20 jobs or less. For larger instances,
these exact two approaches become inferior. When reaching the specified time limit, the
reported solutions are not favorable. Another observation is about the three traversal strate-
gies. DFS has its advantages in its easy implementations (by straightforward recursions)
and minimum memory requirement. The BFS and BestFS strategies are known to show

171

Mathematics 2023, 11, 4705

their significance in maintaining acquired information about the quality of the unexplored
nodes in a priority queue. On the other hand, they suffer from the memory space and heap
manipulation work for the unexplored nodes. BFS and BestFS would be preferred when a
larger memory is available and advanced data structure manipulations are available.

7. Conclusions and Future Works

In this paper, we studied the scheduling problem with shared common setups of the
minimum total completion time. We proposed two integer programming models and the
branch-and-bound algorithm, which incorporates three tree traversal strategies and the
initial solutions yielded from an ACO algorithm. A computational study shows that the
position-based IP outperforms the sequence-based one when the problem size is smaller. As
the problem grows larger, the gap values for the sequence-based IP are smaller than those
of the position-based IP. Similar to the branch-and-bound algorithm, the DFS performs
best, regardless of whether lower bounds and other properties are used or not. Finally,
we also observed that using ACO to provide an initial upper bound indeed speeds up the
execution course of the branch-and-bound algorithm.

For future research, developing tighter lower bounds and upper bounds could lead to
better performance. More properties can be found to help the branch-and-bound algorithm
curtail non-promising branches. For integer programming models, tighter constraints
can be proposed to reduce the execution time and optimality gaps to reflect a real-world
circumstance in which multiple machines or servers are available for a software test project.
In this generalized scenario, a setup could be performed on several machines if the jobs
that it supports are assigned to distinct machines.

Author Contributions: Conceptualization, M.-T.C. and B.M.T.L.; methodology, M.-T.C. and B.M.T.L.;
software, M.-T.C.; formal analysis, M.-T.C. and B.M.T.L.; writing—original draft preparation, M.-T.C.
and B.M.T.L.; writing, M.-T.C. and B.M.T.L.; supervision, M.-T.C. and B.M.T.L.; project administration,
B.M.T.L.; funding acquisition, B.M.T.L. All authors have read and agreed to the published version of
the manuscript.

Funding: Chao and Lin were partially supported by the Ministry of Science and Technology of
Taiwan under the grant MOST-110-2221-E-A49-118.

Data Availability Statement: The datasets analyzed in this study are be available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Leung, J.Y.T. Handbook of Scheduling: Algorithms, Models, and Performance Analysis; CRC Press: Boca Raton, FL, USA, 2004.
2. Pinedo, M. Scheduling; Springer: Berlin/Heidelberg, Germany, 2016.
3. Kononov, A.V.; Lin, B.M.T.; Fang, K.T. Single-machine scheduling with supporting tasks. Discret. Optim. 2015, 17, 69–79.

[CrossRef]
4. Graham, R.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling: A

survey. Ann. Discret. Math. 1979, 5, 287–326.
5. Brucker, P. Scheduling Algorithms; Springer: Berlin/Heidelberg, Germany, 2013.
6. Baker, K.E. Single Machine Sequencing with Weighting Factors and Precedence Constraints. Unpublished papers, 1971.
7. Adolphson, D.; Hu, T.C. Optimal linear ordering. Siam J. Appl. Math. 1973, 25, 403–423. [CrossRef]
8. Lawler, E.L. Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Ann. Discret. Math.

1978, 2, 75–90.
9. Hassin, R.; Levin, A. An approximation algorithm for the minimum latency set cover problem. In Lecture Notes in Computer

Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3669, pp. 726–733.
10. Shafransky, Y.M.; Strusevich, V.A. The open shop scheduling problem with a given sequence of jobs on one machine. Nav. Res.

Logist. 1998, 41, 705–731. [CrossRef]
11. Hwang, F.J.; Kovalyov, M.Y.; Lin, B.M.T. Scheduling for fabrication and assembly in a two-machine flowshop with a fixed job

sequence. Ann. Oper. Res. 2014, 27, 263–279. [CrossRef]
12. Cheng, T.C.E.; Kravchenko, S.A.; Lin, B.M.T. Server scheduling on parallel dedicated machines with fixed job sequences. Nav. Res.

Logist. 2019, 66, 321–332. [CrossRef]

172

Mathematics 2023, 11, 4705

13. Brucker, P.; Jurisch, B.; Sievers, B. A branch and bound algorithm for the job-shop scheduling problem. Discret. Appl. Math. 1994,
49, 107–127. [CrossRef]

14. Hadjar, A.; Marcotte, O.; Soumis, F. A branch-and-cut algorithm for the multiple sepot Vehicle Scheduling Problem.Oper. Res.
2006, 54, 130–149. [CrossRef]

15. Kunhare, N.; Tiwari, R.; Dhar, J. Particle swarm optimization and feature selection for intrusion detection system. Sādhanā 2020,
45, 109. [CrossRef]

16. Kunhare, N.; Tiwari, R.; Dhar, J. Intrusion detection system using hybrid classifiers with meta-heuristic algorithms for the
optimization and feature selection by genetic algorithms. Comput. Ind. Eng. 2022, 103, 108383. [CrossRef]

17. Luo, L.; Zhang, Z.; Yin, Y. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with
worker assignment in seru production systems. J. Ind. Manag. Optim. 2021, 17, 779–803. [CrossRef]

18. Ansari, Z.N.; Daxini, S.D. A state-of-the-art review on meta-heuristics application in remanufacturing. Arch. Comput. Methods
Eng. 2022, 29, 427–470. [CrossRef]

19. Rachih, H.; Mhada, F.Z.; Chiheb, R. Meta-heuristics for reverse logistics: A literature review and perspectives. Comput. Ind. Eng.
2019, 127, 45–62. [CrossRef]

20. Blum, C.; Sampels, M. An ant colony optimization algorithm for shop scheduling problems. J. Math. Model. Algorithms 2004, 3,
285–308. [CrossRef]

21. Yang, J.; Shi, X.; Marchese, M.; Liang, Y. An ant colony optimization method for generalized TSP problem. Prog. Nat. Sci. 2008, 18,
1417–1422. [CrossRef]

22. Xiang, W.; Yin, J.; Lim, G. An ant colony optimization approach for solving an operating room surgery scheduling problem.
Comput. Ind. Eng. 2015, 85, 335–345. [CrossRef]

23. Dorigo, M.; Maniezzo, V.; Colorni, A. Positive Feedback as a Search Strategy; Technical Report 91–016; Dipartimento di Elettronica,
Politecnico di Milano, Milan, Italy, 1991.

24. Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, Dipartimento di Elettronica, Politecnico di Milano,
Milan, Italy, 1992. (In Italian)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

173

Citation: Shen, S.; Zhang, X. Several

Goethal–Seidel Sequences with

Special Structures. Mathematics 2024,

12, 530. https://doi.org/10.3390/

math12040530

Academic Editors: Alexander A.

Lazarev, Frank Werner and Bertrand

M. T. Lin

Received: 12 January 2024

Revised: 4 February 2024

Accepted: 6 February 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Several Goethals–Seidel Sequences with Special Structures

Shuhui Shen * and Xiaojun Zhang

School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China; sczhxj@uestc.edu.cn
* Correspondence: shshen@std.uestc.edu.cn

Abstract: In this paper, we develop a novel method to construct Goethals–Seidel (GS) sequences with
special structures. In the existing methods, utilizing Turyn sequences is an effective and convenient
approach; however, this method cannot cover all GS sequences. Motivated by this, we are devoted
to designing some sequences that can potentially construct all GS sequences. Firstly, it is proven
that a quad of ±1 polynomials can be considered a linear combination of eight polynomials with
coefficients uniquely belonging to {0,±1}. Based on this fact, we change the construction of a quad
of Goethals–Seidel sequences to find eight sequences consisting of 0 and ±1. One more motivation is
to obtain these sequences more efficiently. To this end, we make use of the k-block, of which some
properties of (anti) symmetry are discussed. After this, we can then look for the sequences with the
help of computers since the symmetry properties facilitate reducing the search range. Moreover, we
find that one of the eight blocks, which we utilize to construct GS sequences directly, can also be
combined with Williamson sequences to generate GS sequences with more order. Several examples
are provided to verify the theoretical results. The main contribution of this work is in building a
bridge linking the GS sequences and eight polynomials, and the paper also provides a novel insight
through which to consider the existence of GS sequences.

Keywords: Goethals–Seidel sequences; k-block and k-partition; symmetry and antisymmetry

MSC: 05B05; 05B20

1. Introduction

A square matrix H of order n is called a Hadamard matrix (HM) if its entries are ±1
and any two different rows (columns) are orthogonal. The order n satisfies n = 1, 2, 4m
with m being a positive integer, and a well-known conjecture related to HMs is whether a
Hadamard matrix of order 4m exists for any m. HMs are widely applied in many fields,
including signal processing, coding and cryptography, while the smallest order of an
unconstructed HM is 668. More interesting properties and applications of HMs can be
found in [1–4] and the references therein.

The construction of HMs is a classic problem in combinatorics, and many works have
been devoted to it in past decades, such as Kronecker products [5], orthogonal designs [6],
difference families [7] and many other methods [1,8–13]. In the existing methods, many are
required to construct circulant matrices and then plug these constructed circulant matrices
into some type of arrays such as the Williamson array and GS array [3,14]. In this paper,
we will make use of a GS array taking the form of

G =

⎛⎜⎜⎝
A BR CR DR

−BR A DT R −CT R
−CR −DT R A BT R
−DR CT R −BT R A

⎞⎟⎟⎠,

Mathematics 2024, 12, 530. https://doi.org/10.3390/math12040530 https://www.mdpi.com/journal/mathematics
174

Mathematics 2024, 12, 530

where A, B, C and D are four circulant matrices of order n satisfying

AAT + BBT + CCT + DDT = 4nIn, (1)

and R is the back-diagonal identity matrix of order n. The fact that A, B, C and D are
circulant matrices implies that they are sufficient for the purposes of constructing the
first rows of them, which are denoted by four sequences, i.e., a, b, c and d, respectively.
If matrices A, B, C and D with entries ±1 satisfy condition (1), then a, b, c and d are called a
quad of GS sequences, and they are particularly said to be a quad of Williamson sequences
if A, B, C and D are also symmetrical.

In [15], Goethals and Seidel conducted pioneering work on the GS array and obtained
the HMs of a GS type with orders of 36 and 52. In [16,17], Whiteman utilized the Parseval
relation to theoretically construct GS sequences of order q1+1

4 and Williamson sequences
of order q2+1

2 in a finite field GF(q2
1) and GF(q2

2), respectively, where q1 ≡ (3mod8) and
q2 ≡ (1mod4) are both prime powers. With the help of computers by exhaustive search,
Doković studied the GS array and GS sequences in numerous works, where many different
orders were obtained, as seen in [18–21] et al. Making use of Lagrange identity for polyno-
mials (LIP), Yang—in [22]—proved that a quad of Williamson sequences of order n and a
four-symbol δ-code of order m can be used to construct a quad of GS sequences of order mn.
Yang also presented some other results [23–26], where the construction of GS sequences
was mainly based on using two groups of sequences that were known beforehand.

In addition to the methods mentioned above, utilizing T-sequences directly is an
alternative method, where a quad of GS sequences could be considered a linear combination
of a quad of T-sequences, as shown in, e.g., [27]. The existing methods, however, have a
slight drawback that not each GS sequences can be represented by a linear combination of
T-sequences, as seen in Remark 1.

Motivated by this, we firstly defined the k-block and k-partition in this paper, which
aid in dividing a quad of sequences into k parts. Next, we proved that a quad of ±1
polynomials {Fi(ξ)}4

i=1 associated with sequences { fi}4
i=1 can uniquely be considered a

linear combination of eight polynomials {Gi(ξ)}8
i=1 that are associated with sequences

{gi}8
i=1 consisting of 0 and ±1. For now, all of the GS sequences could be taken into

consideration compared with the construction method by using T-sequences. In other
words, the construction of GS sequences { fi}4

i=1 could be transformed into finding a
group of k-partition {gi}8

i=1. Then, by supposing that { fi}4
i=1 are a quad of GS sequences,

some relationships between associated polynomials {Gi(ξ)}8
i=1 were revealed. To reduce

the complexity of discussion, it is natural and necessary to impose some constraints on
{Gi(ξ)}8

i=1, e.g., the properties of symmetry or antisymmetry. Finally, by using k-partitions
or k-blocks directly, we obtained some types of GS sequences with different symmetrical
structures of Gi(ξ). One was established by utilizing an eight partition, where three were
based on nine partitions, and two used nine blocks. As an additional application, the eight
partition mentioned above of order n, when combined with a quad of Williamson sequences
of order m, can also lead to a quad of GS sequences with order mn. The theoretical results
proposed in this paper are validated by some examples. This paper represents the first
time that a quad of ±1 sequences have been considered a combination of eight blocks,
which ensures that all the “existing” GS sequences can be taken into consideration and that
consequently more GS sequences can be potentially discovered. Moreover, when comparing
with the results in [28] (where a rough discussion of GS sequences and k-partition was
presented and there was no rigorous proof to reveal the bijective relation), in this paper,
we extended the results that we not only proved the uniqueness of the linear combination,
but also investigated some of the necessary conditions for the existence of these sequences.

The rest of the paper is organized as follows. In Section 2, we introduce some of
the necessary notations and definitions needed in later analysis. In Section 3, it is proven
that a quad of ±1 sequences can be considered a linear combination of an eight block
uniquely. Then, based on a k-block with (anti)symmetry properties, we constructed several

175

Mathematics 2024, 12, 530

GS sequences and presented some examples to verify the theoretical results. In Section 4,
by combining a quad of Williamson sequences of order m and an eight partition of order n
(which was obtained above), a quad of GS sequences of order mn was constructed. Some
conclusions will be made in Section 5.

2. Preliminaries

For a sequence a = (a0, a1, . . ., an−1), its periodic autocorrelation function Ra(τ) is
defined as

Ra(τ) =
n−1

∑
i=0

ai āi+τ , τ = 0, 1, . . ., n − 1,

where āi is the conjugate of ai, and the sum i + τ is evaluated as modulo-n. A polynomial

Φa(ξ) = a0 + a1ξ + a2ξ2 + · · ·+ an−1ξn−1

is called the associated polynomial of sequence a, where ξ is the n-th root of unity e
2π
n I

and I =
√
−1. The finite Parseval relation [17], also named the Wiener–Khinchin theo-

rem [29,30], between Ra(τ) and Φa(ξ) is presented in the following identity

Ra(τ) =
1
n

n−1

∑
j=0

‖Φa(ξ
j)‖2ξ jτ , τ = 0, 1, . . ., n − 1,

and its inverse form is

‖Φa(ξ
j)‖2 =

n−1

∑
τ=0

Ra(τ)ξ
−jτ , j = 0, 1, . . ., n − 1.

For the HMs of a GS type, their four circulant matrices possess the following property.

Lemma 1 ([16]). Let A, B, C and D denote four circulant matrices of order n whose first rows are
four sequences a = {ai}n−1

i=0 , b = {bi}n−1
i=0 , c = {ci}n−1

i=0 and d = {di}n−1
i=0 , respectively. Then,

AAT + BBT + CCT + DDT = 4nIn if and only if

‖Φa(ξ
j)‖2 + ‖Φb(ξ

j)‖2 + ‖Φc(ξ
j)‖2 + ‖Φd(ξ

j)‖2 = 4n,

j = 0, 1, . . ., n − 1, where ξ is the n-th root of unity.

Hereafter, without special clarification, a capital letter such as Fi(ξ) denotes the asso-
ciated polynomial, the bold letter fi represents the sequence and the lower case letter fij
denotes the j-th element in fi, where i and j rely on different cases. Before the discussion,
some definitions are necessary to give.

Definition 1 (GS sequences, [22]). Four ±1 sequences qi = (qi0, qi1, . . ., qi,n−1), i = 1, 2, 3, 4
are said to be a quad of GS sequences of order n if their associated polynomials Qi(ξ) satisfy

4

∑
i=1

‖Qi(ξ
j)‖2 = 4n,

where ξ is the n-th root of unity for j = 0, . . ., n − 1.

Motivated by the definition of L-matrices ([3], Definition 4.15), we define a k-block
and k-partition as follows.

176

Mathematics 2024, 12, 530

Definition 2 (k-block and k-partition). A class of sequences gi = (gi0, . . ., gi,n−1), i = 1, . . ., k,
is said to be a k-block of order n, if it holds

(i) gij ∈ {0,±1}, j = 0, 1, . . ., n − 1, i = 1, 2, . . .k,

(ii)
k
∑

i=1
|gij| = 1, j = 0, 1, . . ., n − 1.

(2)

If a k-block {gi}k
i=1 of order n additionally satisfies

(iii)
k
∑

i=1
Rgi (τ) = n, τ = 0, . . ., n − 1, (3)

we call {gi}k
i=1 a k-partition, where ξ is the n-th root of unity.

Definition 3 (symmetry and antisymmetry, [22]). Let Fi(ξ) be a polynomial associated with
sequences fi = (fi0, . . ., fi,n−1). Fi(ξ) is symmetrical (or antisymmetrical) if it satisfies

Fi(ξ) = Fi(ξ) (or Fi(ξ) = −Fi(ξ)),

where ξ is the n-th root of unity. In other words, the coefficients (fi0, . . ., fi,n−1) satisfy fij = fi,n−j
(or fij = − fi,n−j), j = 1, 2, . . ., n − 1.

3. Main Results

Inspired by [27], we extended the construction of GS sequences from four sequences
to eight sequences. Then, we obtained the main result that a quad of ±1 sequences
can be uniquely considered a linear combination of an eight block, as stated in the
following lemma.

Lemma 2. The associated polynomials of sequences { fi}4
i=1 and {gi}8

i=1 are denoted by {Fi(ξ)}4
i=1

and {Gi(ξ)}8
i=1, respectively. Then, given a quad of ±1 sequences { fi}4

i=1 of order n, there exists
a unique eight block {gi}8

i=1 of order n such that the associated polynomials {Fi(ξ)}4
i=1 can be

uniquely written as a linear combination of the associated polynomials {Gi(ξ)}8
i=1 that

F1(ξ) = G1(ξ) + G2(ξ) + G3(ξ) + G4(ξ) + G5(ξ) + G6(ξ) + G7(ξ)− G8(ξ),

F2(ξ) = G1(ξ) + G2(ξ)− G3(ξ)− G4(ξ) + G5(ξ) + G6(ξ)− G7(ξ) + G8(ξ),

F3(ξ) = G1(ξ)− G2(ξ) + G3(ξ)− G4(ξ) + G5(ξ)− G6(ξ) + G7(ξ) + G8(ξ),

F4(ξ) = G1(ξ)− G2(ξ)− G3(ξ) + G4(ξ)− G5(ξ) + G6(ξ) + G7(ξ) + G8(ξ),

(4)

where ξ is the n-th root of unity.

Proof. We first prove the existence. In (4), it is evident that the coefficients on the left and
right hand sides are equal to each other correspondingly. Thus, we can equivalently rewrite
(4) in the form of the matrix multiplication

F =
(

Ĥ H̃
)(Ĝ

G̃

)
,

where we denote

177

Mathematics 2024, 12, 530

F =

⎛⎜⎜⎝
f1
f2
f3
f4

⎞⎟⎟⎠, Ĝ =

⎛⎜⎜⎝
g1
g2
g3
g4

⎞⎟⎟⎠, G̃ =

⎛⎜⎜⎝
g5
g6
g7
g8

⎞⎟⎟⎠,

Ĥ =

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞⎟⎟⎠, H̃ =

⎛⎜⎜⎝
1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

⎞⎟⎟⎠.

Then, we split F into F = F̂ + F̃ satisfying

F̂ = ĤĜ and F̃ = H̃G̃,

which implies

Ĝ =
1
4

ĤF̂ and G̃ =
1
4

H̃F̃

since both Ĥ and H̃ are symmetrical Hadamard matrices.
Denote by Fj the j-th column of a Matrix F, and by p(j) the number of 1 in Fj. Taking

the structure of Ĥ and the property of k-block (2) into consideration, it follows that p(j) ∈
{0, 2, 4}, and similarly we get p(j) ∈ {1, 3} for H̃. Then, it is natural to define

F̂j =

{
Fj, p(j) ∈ {0, 2, 4},
0, p(j) ∈ {1, 3},

and F̃j =

{
Fj, p(j) ∈ {1, 3},
0, p(j) ∈ {0, 2, 4},

(5)

j = 1, 2, . . ., n, which then guarantees the existence of the eight block {gi}8
i=1.

Further, we proceeded with the proof of uniqueness. Supposing that there exists
another

G∗ =

(
Ĝ∗

G̃∗

)
,

then we have

F̂∗ = ĤĜ∗ and F̃∗ = H̃G̃∗.

Still, we considered it in view of each column. For a given j, either Ĝ∗
j or G̃∗

j is equal to

0, because G∗ also consists of an eight block {g∗i }8
i=1, which means only one of Ĝ∗

j or G̃∗
j

contains a non-zero element. This fact yields that either F̂∗
j or F̃∗

j is equal to 0, and it must

correspond to the splitting (5). Otherwise, the converse case F̂j = F̃∗
j and F̃j = F̂∗

j could

not guarantee that the entries of G∗ belong to {0,±1}. As a result, we know F̂ = F̂∗ and
F̃ = F̃∗, which eventually ensures the uniqueness of splitting (5).

Next, we investigated the relationships between G1(ξ), G2(ξ), . . ., G8(ξ). From (4), we
arrive at

4

∑
i=1

‖Fi(ξ)‖2 = 4
8

∑
i=1

‖Gi(ξ)‖2 + 2U(ξ) + 2U(ξ)

with
U(ξ) = G1(ξ)G5(ξ) + G1(ξ)G6(ξ) + G1(ξ)G7(ξ) + G1(ξ)G8(ξ)

+ G2(ξ)G5(ξ) + G2(ξ)G6(ξ)− G2(ξ)G7(ξ)− G2(ξ)G8(ξ)

+ G3(ξ)G5(ξ)− G3(ξ)G6(ξ) + G3(ξ)G7(ξ)− G3(ξ)G8(ξ)

− G4(ξ)G5(ξ) + G4(ξ)G6(ξ) + G4(ξ)G7(ξ)− G4(ξ)G8(ξ).

(6)

178

Mathematics 2024, 12, 530

Further, if f1, . . ., f4 are a quad of GS sequences of order n, then we obtain

4n =
4

∑
i=1

‖Fi(ξ)‖2 = 4
8

∑
i=1

‖Gi(ξ)‖2 + 2U(ξ) + 2U(ξ). (7)

Remark 1. Note that the definition of the k-partition is actually the special case of L-matrices ([3],
Definition 4.15). The reason why we emphasize it specifically in this paper is due to the important
role it plays in the construction of GS sequences. After such construction has taken place, then it
will be convenient to describe them. In particular, a quad of T-sequences [14] is a four partition.

Remark 2. In the existing works, e.g., [27], the method for constructing GS sequences is based on
a quad of a four partition and the structure H̃. In the proof of Theorem 2, it is seen that this method
could not guarantee that all GS sequences can be taken into consideration. The result is extended
that we construct the GS sequences from using a four partition into an eight partition.

3.1. GS Sequences Based on a k-Partition

In this subsection, we begin with the identities (4) and (7) to construct GS sequences.
From the definition of an eight partition, it is natural to obtain the following lemma.

Lemma 3. For an eight partition {gi}8
i=1, { fi}4

i=1 are a quad of GS sequences if and only if

U(ξ) + U(ξ) = 0,

with ξ being the n-th root of unity, where U(ξ) and U(ξ) are defined in (6).

Proof. A combination of (3) and (7) leads to the results immediately.

Thus, we only need to construct an eight partition satisfying U(ξ) + U(ξ) = 0. How-
ever, it is still challenging to find an eight partition directly, and—as a reduction—we
imposed some conditions on the polynomials Gi(ξ), i = 1, 2, . . ., 8, such as properties of
symmetry or antisymmetry. We first recall an existing result.

Lemma 4 ([28]). Let {gi}8
i=1 be an eight partition of order n and their associated polynomials

{Gi(ξ)}8
i=1 satisfy the following symmetry properties

G1(ξ) = G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = G3(ξ), G4(ξ) = G4(ξ),

G5(ξ) = −G5(ξ), G6(ξ) = −G6(ξ), G7(ξ) = −G7(ξ), G8(ξ) = −G8(ξ),
(8)

where ξ is the n-th root of unity. Then, there exist a quad of GS sequences { fi}4
i=1 that are associated

with the polynomials F1(ξ), . . ., F4(ξ) generated by (4).

It is evident that there exist a great deal of polynomial groups satisfying U(ξ)+U(ξ) =
0. Here, we simply provide one more condition with different types of {Gi(ξ)}8

i=1.

Theorem 1. For an eight partition {g1}8
i=1, if their associated polynomials {Gi(ξ)}8

i=1 satisfy the
following symmetry properties

G1(ξ) = G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = −G3(ξ),

G4(ξ) = −G4(ξ), G5(ξ) = −G6(ξ), G7(ξ) = −G8(ξ),
(9)

with ξ being the n-th root of unity, then f1, . . ., f4 are a quad of GS sequences formed in (4).

Proof. It is easy to verify U(ξ) + U(ξ) = 0 from (6) and (9).

179

Mathematics 2024, 12, 530

Two following groups of sequences are shown to verify Theorem 1. For n = 8,

g1 = (+, 0, 0, 0,−, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 0, 0, 0, 0, 0), g4 = (0, 0,+, 0, 0, 0,−, 0),

g5 = (0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0,−, 0, 0, 0,−), g8 = (0,+, 0, 0, 0,+, 0, 0),

by (4), the GS sequences of order eight are

f1 = (+,−,+,−,−,−,−,−), f2 = (+,+,−,+,−,+,+,+),

f3 = (+,+,−,−,−,+,+,−), f4 = (+,+,+,−,−,+,−,−), ,

for n = 9, they are

g1 = (+, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g4 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0,+,−, 0, 0), g6 = (0, 0, 0,+,−, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0,−,−), g8 = (0,+,+, 0, 0, 0, 0, 0, 0),

and the GS sequences are

f1 = (+,−,−,+,−,+,−,−,−), f2 = (+,+,+,+,−,+,−,+,+),

f3 = (+,+,+,−,+,+,−,−,−), f4 = (+,+,+,+,−,−,+,−,−)..

In the process of creating the constructions above, discovering the relations between
g1, g2, . . ., g8 still seemed complex. As such, we next changed the structure of {Gi(ξ)}8

i=1
further. For a quad of Williamson sequences [31] wi = (wi0, wi1, . . ., wi,n−1), i = 1, 2, 3, 4,
it holds w10 = w20 = w30 = w40 = 1 and the associated polynomials potentially take the
form of

W1(ξ) = 1 − G1(ξ) + G2(ξ) + G3(ξ) + G4(ξ),

W2(ξ) = 1 + G1(ξ)− G2(ξ) + G3(ξ) + G4(ξ),

W3(ξ) = 1 + G1(ξ) + G2(ξ)− G3(ξ) + G4(ξ),

W4(ξ) = 1 + G1(ξ) + G2(ξ) + G3(ξ)− G4(ξ),

where ξ is the n-th root of unity and the coefficients of {Gi(ξ)}4
i=1 are of a four block.

The associated polynomials W1(ξ), W2(ξ), W3(ξ), W4(ξ) satisfy

4n =
4

∑
i=1

‖Wi(ξ)‖2 =
4

∑
i=1

‖2Gi(ξ) + 1‖2.

Inspired by this, it is reasonable to assume that the constant in (4) is contained in G1(ξ)
and is 1, and following the analogous manner we can separate the constant 1 out. As a
result, and slightly different from (4), the associated polynomials F1(ξ), . . ., F4(ξ) can be
rewritten as

F1(ξ) = 1 + G1(ξ) + G2(ξ) + G3(ξ) + G4(ξ) + G5(ξ) + G6(ξ) + G7(ξ)− G8(ξ),

F2(ξ) = 1 + G1(ξ) + G2(ξ)− G3(ξ)− G4(ξ) + G5(ξ) + G6(ξ)− G7(ξ) + G8(ξ),

F3(ξ) = 1 + G1(ξ)− G2(ξ) + G3(ξ)− G4(ξ) + G5(ξ)− G6(ξ) + G7(ξ) + G8(ξ),

F4(ξ) = 1 + G1(ξ)− G2(ξ)− G3(ξ) + G4(ξ)− G5(ξ) + G6(ξ) + G7(ξ) + G8(ξ),

(10)

180

Mathematics 2024, 12, 530

where ξ is the n-th root of unity and the coefficients of G1(ξ), . . ., G8(ξ) are of an eight block.
Then, we have

4

∑
i=1

‖Fi(ξ)‖2 = 4 + 4
8

∑
i=1

‖Gi(ξ)‖2 + 2U(ξ) + 2U(ξ) + 2V(ξ) + 2V(ξ), (11)

with
U(ξ) = G1(ξ)G5(ξ) + G1(ξ)G6(ξ) + G1(ξ)G7(ξ) + G1(ξ)G8(ξ)

+ G2(ξ)G5(ξ) + G2(ξ)G6(ξ)− G2(ξ)G7(ξ)− G2(ξ)G8(ξ)

+ G3(ξ)G5(ξ)− G3(ξ)G6(ξ) + G3(ξ)G7(ξ)− G3(ξ)G8(ξ)

− G4(ξ)G5(ξ) + G4(ξ)G6(ξ) + G4(ξ)G7(ξ)− G4(ξ)G8(ξ)

and
V(ξ) = G5(ξ) + G6(ξ) + G7(ξ) + G8(ξ) + 2G1(ξ).

Consequently, we only need to construct the eight block {gi}8
i=1 of order n, which together

with e := (1, 0, . . ., 0) of order n actually makes up a nine partition.
Analogous to Lemma 3, { fi}4

i=1 are a quad of GS sequences if and only if U(ξ)+U(ξ)+

V(ξ) + V(ξ) = 0. In this case, an observation of the structure of V(ξ) led to some more
concrete relationships between G1(ξ) and G5(ξ)-G8(ξ). We still added some symmetry
properties, as shown in the theorems below, and omitted the proof for compactness.

Theorem 2. For a nine partition e, g1, . . ., g8 of order n, if the associated polynomials Gi(ξ) of
sequences gi, i = 1, . . ., 8, satisfy

G1(ξ) = −G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = G4(ξ),

G5(ξ) = −G5(ξ), G6(ξ) = −G6(ξ), G7(ξ) = −G7(ξ), G8(ξ) = −G8(ξ),

then we obtain a quad of GS sequences generated by (10).

In this case, note that all polynomials Gi(ξ), i = 5, 6, 7, 8, are antisymmetrical. The fol-
lowing two examples are shown to verify Theorem 2. For n = 10, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0,+,−,+, 0, 0, 0),

g3 = (0, 0, 0, 0, 0, 0, 0,+,+, 0), g4 = (0, 0,+,+, 0, 0, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0,+, 0, 0, 0, 0, 0, 0, 0,−),

which together with (10) lead to a quad of GS sequences of order 10 as follows

f1 = (+,−,+,+,+,−,+,+,+,+), f2 = (+,+,−,−,+,−,+,−,−,−,),

f3 = (+,+,−,−,−,+,−,+,+,−), f4 = (+,+,+,+,−,+,−,−,−,−).

For n = 12,

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0,+, 0, 0, 0,+, 0, 0, 0,+, 0),

g3 = (0,+, 0, 0, 0,−, 0, 0, 0,+, 0, 0), g4 = (0, 0, 0,+, 0, 0, 0,−, 0, 0, 0,+),

g5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0,+, 0, 0, 0,−, 0, 0, 0),

we can obtain a quad of GS sequences of order 12

f1 = (+,+,+,+,−,−,+,−,+,+,+,+), f2 = (+,−,+,−,+,+,+,+,−,−,+,−),

f3 = (+,+,−,−,+,−,−,+,−,+,−,−), f4 = (+,−,−,+,+,+,−,−,−,−,−,+).

181

Mathematics 2024, 12, 530

Similarly, we can construct two more types of GS sequences in view of V(ξ).

Corollary 1. For e, g1, . . ., g8 of order n being a nine partition, the associated polynomials satisfy

G1(ξ) = −G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = −G4(ξ),

G5(ξ) = −G5(ξ), G6(ξ) = −G6(ξ), G7(ξ) = −G8(ξ),

with the n-th root of unity ξ. Then, we obtain a quad of GS sequences { fi}4
i=1 defined by (10).

Here, in Gi(ξ), i = 5, 6, 7, 8, we obviously choose two of them as they were antisymmet-
rical and another two as they were antisymmetrical with each other. Again two examples
are illustrated to verify Corollary 1. For n = 6, we have

g1 = (0, 0, 0, 0, 0, 0), g2 = (0, 0, 0,+, 0, 0),

g3 = (0, 0, 0, 0,−, 0), g4 = (0, 0,+, 0, 0, 0),

g5 = (0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0,−), g8 = (0,+, 0, 0, 0, 0),

which together with (10) leads to a quad of GS sequences of order 6

f1 = (+,−,+,+,−,−), f2 = (+,+,−,+,+,+),

f3 = (+,+,−,−,−,−,), f4 = (+,+,+,−,+,−).

For n = 9, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 0, 0,+,−, 0, 0), g4 = (0, 0, 0,+,−, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0,−,−), g8 = (0,+,+, 0, 0, 0, 0, 0, 0),

which we can use to obtain a quad of GS sequences of order 9

f1 = (+,−,−,+,−,+,−,−,−), f2 = (+,+,+,−,+,−,+,+,+),

f3 = (+,+,+,−,+,+,−,−,−), f4 = (+,+,+,+,−,−,+,−,−).

Corollary 2. For a nine partition e, g1, . . ., g8 of order n, the associated polynomials Gi(ξ) satisfy

G1(ξ) = −G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = G4(ξ),

G5(ξ) = −G6(ξ), G7(ξ) = −G8(ξ),

where ξ is the n-th root of unity. Then, the { fi}4
i=1 defined in (10) is a quad of GS sequences.

The last case is that in these four polynomials, two pairs are antisymmetrical with
each other. We also provide two examples to verify Corollary 2. For n = 6, we have

g1 = (0, 0, 0, 0, 0, 0), g2 = (0, 0, 0,+, 0, 0),

g3 = (0, 0, 0, 0,+, 0), g4 = (0,+, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0,−), g6 = (0,+, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0, 0, 0).

182

Mathematics 2024, 12, 530

(10) yields a quad of GS sequences of order 6

f1 = (+,+,+,+,+,−), f2 = (+,+,−,+,−,−),

f3 = (+,−,−,−,+,−), f4 = (+,+,+,−,−,+).

For n = 9, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 1, 0, 0, 0, 1, 0), g4 = (0, 0, 1, 0, 0, 0, 1, 0, 0),

g5 = (0, 0, 0, 0, 1, 0, 0, 0,−1), g6 = (0, 1, 0, 0, 0,−1, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

which together with (10) results in a quad of GS sequences of order 9

f1 = (+,+,+,+,+,−,+,+,−), f2 = (+,+,−,−,+,−,−,−,−),

f3 = (+,−,−,+,+,+,−,+,−), f4 = (+,+,+,−,−,−,+,−,+).

3.2. GS Sequences Based on a Nine Block

In addition, if we only discuss the term U(ξ) + U(ξ) in (11), then we can obtain some
results related to GS sequences.

Corollary 3. For a nine block e, g1, . . ., g8, the associated polynomials mentioned in (10) satisfy

G1(ξ) = −G1(ξ), G2(ξ) = −G2(ξ), G3(ξ) = G3(ξ),

G4(ξ) = G4(ξ), G5(ξ) = G6(ξ), G7(ξ) = G8(ξ),

and
4

∑
i=1

‖Fi(ξ)‖2 = 4
4

∑
i=1

‖Gi(ξ)‖2 +
8

∑
i=5

‖2Gi(ξ) + 1‖2 = 4n,

where ξ is the n-th root of unity. Then, we have a quad of GS sequences by (10).

There is an example through which to verify Corollary 3. For n = 5, we have

g1 = (0, 0, 0, 0, 0), g2 = (0, 0,−,+, 0),

g3 = (0, 0, 0, 0, 0), g4 = (0, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0),

g7 = (0,+, 0, 0, 0), g8 = (0, 0, 0, 0,+),

which together with (10) leads to a quad of GS sequences

f1 = (+,+,−,+,−), f2 = (+,−,−,+,+),

f3 = (+,+,+,−,+), f4 = (+,+,+,−,+).

Corollary 4. For a nine block e, g1, . . ., g8, the associated polynomials satisfy

G1(ξ) = G2(ξ), G3(ξ) = G4(ξ), G5(ξ) = −G6(ξ), G7(ξ) = G8(ξ)

and
4

∑
i=1

‖Fi(ξ)‖2 = 4
6

∑
i=3

‖Gi(ξ)‖2 + ∑
i∈{1,2,7,8}

‖2Gi(ξ) + 1‖2 = 4n,

where ξ is the n-th root of unity. Then, a quad of GS sequences are generated by (10).

183

Mathematics 2024, 12, 530

One example is presented to verify the results of Corollary 4. For n = 9, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),
g3 = (0, 0, 0,+,−, 0, 0, 0, 0), g4 = (0, 0, 0, 0, 0,−,+, 0, 0),
g5 = (0,+,+, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0,−,−),
g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0, 0, 0, 0, 0, 0).

which also yields a quad of GS sequences

f1 = (+,+,+,+,−,−,+,−,−), f2 = (+,+,+,−,+,+,−,−,−),
f3 = (+,+,+,+,−,+,−,+,+), f4 = (+,−,−,−,+,−,+,−,−).

Remark 3. In order to construct the GS sequences, we transformed it into the construction of
eight polynomials G1(ξ), . . ., G8(ξ). For some special cases, we were able to obtain Gi(ξ) via
a four partition such as through T-sequences and, in actuality, we also searched them directly
with computers in some more general cases, where utilizing known symmetry and antisymmetry
properties may significantly reduce the search range.

4. GS Structures of Two Groups of Polynomials

We analyzed a quad of GS sequences with different structures in Section 3, and we
now intend to utilize two groups of polynomials {Ei(ξ)}8

i=1 and {Gi(ξ)}8
i=1, which are

associated with sequences {ei}8
i=1 and {gi}8

i=1 to construct several different GS sequences.
We changed the conditions from an eight partition to a four partition, which produced

the following result.

Theorem 3. Let {Ei(ξ)}4
i=1 be the associated polynomials of Williamson sequences {ei}4

i=1 of
order m, and let G1(ξ), G2(ξ), G7(ξ), G8(ξ) of order n be chosen in Theorem 1, i.e., satisfying

G1(ξ) = G1(ξ), G2(ξ) = G2(ξ), G7(ξ) = −G8(ξ).

Then, the four new polynomials, which are defined by

F1(ξ) = E1(ξ)G1(ξ) + E2(ξ)G2(ξ) + E3(ξ)G7(ξ) + E4(ξ)G8(ξ),

F2(ξ) = E1(ξ)G2(ξ)− E2(ξ)G1(ξ) + E3(ξ)G8(ξ)− E4(ξ)G7(ξ),

F3(ξ) = E1(ξ)G7(ξ)− E2(ξ)G8(ξ)− E3(ξ)G1(ξ) + E4(ξ)G2(ξ),

F4(ξ) = E1(ξ)G8(ξ) + E2(ξ)G7(ξ)− E3(ξ)G2(ξ)− E4(ξ)G1(ξ),

(12)

satisfy
4

∑
i=1

‖Fi(ξ)‖2 =
4

∑
i=1

‖Ei(ξ)‖2
4

∑
i=1

‖Gi(ξ)‖2 = 4mn.

Moreover, if (m, n) = 1, then the sequences f1, . . ., f4 made up of the coefficients of F1(ξ), . . ., F4(ξ)
are a quad of GS sequences.

Proof. Since Williamson sequences {ei}4
i=1 are symmetrical, it is easy to verify the results

4
∑

i=1
‖Fi(ξ)‖2 = 4mn. Further, (m, n) = 1 guarantees that { fi}4

i=1 consists of ±1.

We now give an example for the sequences g1, g2, g7, g8 of the associated polynomials
G1(ξ), G2(ξ), G7(ξ), G8(ξ) in Theorem 3 of order n = 8,

g1 = (+, 0, 0, 0,+, 0, 0, 0), g2 = (0, 0,+, 0, 0, 0,+, 0),
g7 = (0, 0, 0,+, 0, 0, 0,−), g8 = (0,+, 0, 0, 0,−, 0, 0)

184

Mathematics 2024, 12, 530

and a quad of Williamson sequences ei of order m = 7

e1 = (+,+,−,−,−,−,+), e2 = (+,−,+,+,+,+,−),
e3 = (+,+,−,+,+,−,+), e4 = (+,+,−,+,+,−,+).

As the application of (12), we can obtain a quad of GS sequences of order mn = 56
as follows

f1 = (+,−,+,−,−,−,−,+,+,+,+,−,−,+,+,+,−,−,+,+,+,+,−,−,−,−,+,−,
+,+,+,+,−,+,−,−,+,−,+,+,−,−,+,−,−,+,+,−,+,−,−,+,−,+,+,+),

f2 = (+,−,+,+,+,−,−,−,−,+,+,+,+,+,−,−,+,−,+,−,−,+,−,+,+,−,+,+,
+,+,+,−,+,+,−,+,−,−,+,−,+,−,−,+,+,+,+,+,−,−,−,−,+,+,+,−),

f3 = (+,+,+,−,+,+,−,+,+,−,−,−,−,−,−,−,−,−,−,−,+,−,−,+,+,−,+,+,
+,−,+,+,+,−,−,−,+,+,−,+,−,+,−,+,−,+,−,+,+,+,−,−,+,+,+,−),

f4 = (+,−,−,−,+,−,+,−,+,+,+,−,−,+,+,−,−,+,+,−,+,−,+,+,+,+,−,+,
+,+,−,+,+,+,+,+,+,−,+,+,−,−,+,+,−,−,+,+,+,+,+,−,+,−,−,−).

5. Conclusions

In this paper, we studied several special structures of a quad of GS sequences by
using k-partitions or k-blocks with different symmetry properties. It has been rigorously
proven that a quad of ±1 sequences can be determined uniquely by an eight block. Then,
we can write a quad of GS sequences into two forms (4) or (10), and we can then let
U(ξ) + U(ξ) = 0 in (7) or U(ξ) + U(ξ) + V(ξ) + V(ξ) = 0 in (11), respectively. This,
consequently, reveals some of the relationships between these k-partitions or k-blocks,
which are based on whether we can add some symmetry properties to obtain GS sequences
with different structures. Moreover, through making use of some of the special structures
of {Gi(ξ)}8

i=1 of order n and Williamson sequences of order m, we managed to construct a
quad of GS sequences of order 4mn.

For now, to obtain the k-partitions and k-blocks, we completely made use of the com-
puter by using an exhaustive search based on the symmetry and antisymmetry properties,
which reduced the degree of computational consumption significantly. In the future, we
will be devoted to discussing more sufficient or necessary conditions for the existence
of a k-block in order to obtain more of the relationships between a k-block serving for
the purposes of improving searching efficiency, and we will also try to determine the
k-partition theoretically.

Author Contributions: Conceptualization, X.Z.; methodology, X.Z.; data curation, S.S.; writing—
original draft, S.S.; writing—review & editing, S.S. and X.Z.; supervision, X.Z.; funding acquisition,
X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
62371094.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: We declare that we have no financial and personal relationships with other
people or organizations that can inappropriately influence our work, there is no professional or
other personal interest of any nature or kind in any product, service and/or company that could be
construed as influencing the position presented in, or the review of, this paper.

References

1. Colbourn, C.J.; Dinitz, J.H. (Eds.) Handbook of Combinatorial Designs, 2nd ed.; Discrete Mathematics and Its Applications, Chapman
& Hall/CRC: Boca Raton, FL, USA, 2007; pp. xxii+984.

2. Horadam, K.J. Hadamard Matrices and Their Applications; Princeton University Press: Princeton, NJ, USA, 2007; pp. xiv+263.
3. Seberry, J. Orthogonal Designs; Hadamard Matrices, Quadratic Forms and Algebras, Revised and Updated Edition of the 1979

Original [MR0534614]; Springer: Cham, Germany, 2017.

185

Mathematics 2024, 12, 530

4. Seberry, J.; Yamada, M. Hadamard Matrices Constructions Using Number Theory and Algebra; John Wiley & Sons, Inc.: Hoboken, NJ,
USA, 2020; pp. xxx+321.

5. Craigen, R. Constructing Hadamard matrices with orthogonal pairs. Ars Combin. 1992, 33, 57–64.
6. Baumert, L.D.; Hall, M., Jr. A new construction for Hadamard matrices. Bull. Am. Math. Soc. 1965, 71, 169–170. [CrossRef]
7. Turyn, R.J. A special class of Williamson matrices and difference sets. J. Combin. Theory Ser. A 1984, 36, 111–115. [CrossRef]
8. Farouk, A.; Wang, Q. Construction of new Hadamard matrices using known Hadamard matrices. Filomat 2022, 36, 2025–2042.

[CrossRef]
9. Fitzpatrick, P.; O’Keeffe, H. Williamson type Hadamard matrices with circulant components. Discret. Math. 2023, 346, 113615.

[CrossRef]
10. Harada, M.; Ishizuka, K. Hadamard matrices of order 36 formed by codewords in some ternary self-dual codes. Discret. Math.

2024, 347, 113661. [CrossRef]
11. Kratochvíl, J.; Nešetřil, J.; Rosenfeld, M. Graph designs, Hadamard matrices and geometric configurations. In Graph Theory and

Combinatorial Biology (BAlatonlelle, 1996); Bolyai Society Mathematical Studies; János Bolyai Mathematical Society: Budapest,
Hungary, 1999; Volume 7, pp. 101–123.

12. Seberry, J. A résumé of some recent results on Hadamard matrices, (v, k, λ)-graphs and block designs. In Combinatorial Structures
and Their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969); Gordon and Breach: New York, NY, USA; London, UK;
Paris, France, 1970; pp. 463–466.

13. Xia, T.; Zuo, G.; Lou, L.; Xia, M. Hadamard matrices of composite orders. Trans. Comb. 2024, 13, 31–40.
14. Seberry, J.; Yamada, M. Hadamard matrices, sequences, and block designs. In Contemporary Design Theory; John Wiley and Sons:

Hoboken, NJ, USA, 1992; pp. 431–560.
15. Goethals, J.M.; Seidel, J.J. A skew-Hadamard matrix of order 36. J. Aust. Math. Soc. 1970, 11, 343–344. [CrossRef]
16. Whiteman, A. Skew Hadamard matrices of Goethals—Seidel type. Discret. Math. 1972, 2, 397–405. [CrossRef]
17. Whiteman, A. An infinite family of Hadamard matrices of Williamson type. J. Comb. Theory A 1973, 14, 334–340. [CrossRef]
18. Doković, D.V. Construction of some new Hadamard matrices. Bull. Aust. Math. Soc. 1992, 45, 327–332. [CrossRef]
19. Doković, D.V. Ten new orders for Hadamard matrices of skew type. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 1992, 3, 47–59.
20. Doković, D.V. Two Hadamard matrices of order 956 of Goethals-Seidel type. Combinatorica 1994, 14, 375–377. [CrossRef]
21. Doković, D.V.; Kotsireas, I. Goethals-Seidel difference families with symmetric or skew base blocks. Math. Comput. Sci. 2018,

12, 373–388. [CrossRef]
22. Yang, C.H. Hadamard matrices, finite sequences, and polynomials defined on the unit circle. Math. Comp. 1979, 33, 688–693.

[CrossRef]
23. Yang, C.H. Hadamard matrices and δ-codes of length 3n. Proc. Am. Math. Soc. 1982, 85, 480–482. [CrossRef]
24. Yang, C.H. A composition theorem for δ-codes. Proc. Am. Math. Soc. 1983, 89, 375–378. [CrossRef]
25. Yang, C.H. Lagrange identity for polynomials and δ-codes of lengths 7t and 13t. Proc. Am. Math. Soc. 1983, 88, 746–750.

[CrossRef]
26. Yang, C.H. On composition of four-symbol δ-codes and Hadamard matrices. Proc. Am. Math. Soc. 1989, 107, 763–776.
27. Cooper, J.; Wallis, J. A construction for Hadamard arrays. Bull. Aust. Math. Soc. 1972, 7, 269–277. [CrossRef]
28. Shen, S.; Zhang, X. Constructions of Goethals–Seidel Sequences by Using k-Partition. Mathematics 2023, 11, 294. [CrossRef]
29. Doković, D.V.; Kotsireas, I. Compression of periodic complementary sequences and applications. Des. Codes Cryptogr. 2015,

74, 365–377. [CrossRef]
30. Fletcher, R.; Gysin, M.; Seberry, J. Application of the discrete Fourier transform to the search for generalised Legendre pairs and

Hadamard matrices. Australas. J. Combin. 2001, 23, 75–86.
31. Williamson, J. Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 1944, 11, 65–81. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

186

Citation: Lazarev, A.; Pravdivets, N.;

Barashov, E. Approximation of the

Objective Function of Single-Machine

Scheduling Problem. Mathematics

2024, 12, 699. https://doi.org/

10.3390/math12050699

Academic Editor: Javier Alcaraz

Received: 31 January 2024

Revised: 21 February 2024

Accepted: 23 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Approximation of the Objective Function of Single-Machine
Scheduling Problem

Alexander Lazarev 1, Nikolay Pravdivets 1,2,* and Egor Barashov 1

1 V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya Street,
117997 Moscow, Russia; jobmath@mail.ru (A.L.); barashov.eb@gmail.com (E.B.)

2 Department of Mathematics, Faculty of Economic Sciences, HSE University, 11 Pokrovsky Boulevard,
109028 Moscow, Russia

* Correspondence: pravdivets@ipu.ru

Abstract: The problem of the approximation of the coefficients of the objective function of a scheduling
problem for a single machine is considered. It is necessary to minimize the total weighted completion
times of jobs with unknown weight coefficients when a set of problem instances with known optimal
schedules is given. It is shown that the approximation problem can be reduced to finding a solution
to a system of linear inequalities for weight coefficients. For the case of simultaneous job release times,
a method for solving the corresponding system of inequalities has been developed. Based on it, a
polynomial algorithm for finding values of weight coefficients that satisfy the given optimal schedules
was constructed. The complexity of the algorithm is O(n2(N + n)) operations, where n is the number
of jobs and N is the number of given instances with known optimal schedules. The accuracy of the

algorithm is estimated by experimentally measuring the function ε(N, n) = 1
n ∑n

j=1
|wj−w0

j |
w0

j
, which is

an indicator of the average modulus of the relative deviation of the found values wj from the true
values w0

j . An analysis of the results shows a high correlation between the dependence ε(N, n) and a
function of the form α(n)/N, where α(n) is a decreasing function of n.

Keywords: scheduling theory; single machine scheduling; total weighted completion times; approximation

MSC: 90B35

1. Introduction

Scheduling theory is a branch of discrete optimization devoted to planning oper-
ations over time. The problems of scheduling theory are diverse, including, but not
limited to, production scheduling, including human-robot collaborations [1], classical
Resource-Constrained Project Scheduling Problem (RCPSP) [2], creating smart planning
eco-systems [3], distributed scheduling problems [4], and dynamic systems [5]. However,
classical problems for a single machine remain relevant, still capture the attention of the
scientific community [6] and are also used in modern approaches of Industry 4.0 [7].

In the classical single-machine scheduling problem, there is a set of jobs with given
release times, processing times and due dates. The goal is to schedule the jobs to proceed
on the machine, minimizing some objective functions. A wide variety of studies of this
problem can be found for such objective functions as the total or maximum lateness [8,9],
the weighted number of tardy jobs [10], the total (weighted) completion time [11,12] or any
arbitrary non-decreasing function of the completion time [13]. The idea is that the objective
function is known and should be maximized or minimized.

In practice, the quality criterion and, therefore, the objective function are not defined
for some applied scheduling problems. Let some optimal schedules be pre-given. The
goal is to construct an optimal schedule for the new input data and to estimate unknown
objective function. To apply the methods of scheduling theory to this problem, it is necessary

Mathematics 2024, 12, 699. https://doi.org/10.3390/math12050699 https://www.mdpi.com/journal/mathematics
187

Mathematics 2024, 12, 699

to determine the objective function. The task of the objective function approximation arises
as a sub-task in the scheduling automation process, so the approximation algorithm must
be fast enough compared to the required frequency of scheduling. An indicator of the
quality of the approximation algorithm is the quality of the schedule obtained for the
approximated objective function.

A linear approximation for a single-machine scheduling problem is considered: it is
assumed that there exists an objective function that is linear in job-weighted completion
times, and the previously constructed schedules are optimal with respect to this objective
function. The initial problem is reduced to solving a system of linear inequalities with
respect to the unknown values of the weight coefficients of the objective function. A detailed
review of the results of the algebraic theory of linear inequalities was given by [14], which
also includes an algorithm for finding a general formula for non-negative solutions of [15],
based on the principle of boundary solutions. General results on this topic were also
presented by [16,17], who also used some properties of convex cones in the solution space.
Refs. [18,19] obtained results for a set of solutions (redundancy and dimension) of a certain
class of systems of inequalities–normal systems.

The main contribution of this paper is an algorithm for approximating the weight
coefficients for the case of simultaneous job release times. The system of linear inequalities
in this case has a sparse matrix (most of the elements are zero), which contains a significant
number of dependent inequalities. The solution method is primarily based on the exclusion
of dependent inequalities from the system and using some general properties of linear
inequality systems.

The structure of this paper is organized as follows. In Section 2 the mathematical formu-
lation of the problem 1 || ∑ wjCj will be given and thereupon mathematical statement of the
problem of approximation of objective function weight coefficients is formulated; in Section 3 a
method for solving the problem is proposed; in Section 4 a numerical study of the constructed
approximation algorithm is carried out and its final complexity is calculated. Section 5 contains
a brief conclusion.

2. Mathematical Problem Formulation

The problem studied in this article is in some way the inverse of one of the classic
problems in scheduling theory, the problem of minimizing the total weighted completion
time 1 | rj | ∑ wjCj. To describe the main problem, problem 1 | rj | ∑ wjCj should be
introduced first. There is a single machine and a set J = {1, 2, . . . , n} of n jobs that need
to be processed on the machine. For each job j ∈ J, the release time rj and processing
time pj are given. There are no precedence relations of jobs, and interruptions of the job
processing are prohibited. The order in which the jobs (j1, . . . , jn) are processed is called a
schedule. In problem 1 | rj | ∑ wjCj, it is necessary to find a schedule π0 minimizing the
total weighted completion time ∑ wjCj, where Cj is the completion time of job j, and wj > 0
is a weight coefficient of the completion time of the corresponding job j. Completion times
of jobs under schedule π = (j1, . . . , jn) are defined as follows:

Cj1(π) = rj1 + pj1 ;

Cjk (π) = max{rjk , Cjk−1
(π)}+ pjk , k = 2, . . . , n.

Remark 1. The case of problem 1 | rj | ∑ wjCj with zero weight coefficients can be solved trivially:
all corresponding jobs are processed last and are excluded from the consideration. The case with
negative weight coefficients does not make sense from a practical point of view. In this regard, it is
assumed in this paper that all weight coefficients are positive.

Remark 2. Note, that the problem 1 | rj | ∑ wjLj about the total weighted lateness Lj = Cj − dj,
where dj is the due date for job j ∈ J, is equivalent to problem 1 | rj | ∑ wjCj and the optimal
schedule π0 in problem 1 | rj | ∑ wjLj does not depend on the values of due dates dj. Further,

188

Mathematics 2024, 12, 699

the problem 1 | rj | ∑ wjCj will be considered, implying that all the results obtained can be applied
to the problem 1 | rj | ∑ wjLj.

Definition 1. A set of job release times and processing times I = {r1, . . . , rn, p1, . . . , pn} is called
a problem instance I of problem 1 | rj | ∑ wjCj.

The general case of problem 1 | rj | ∑ wjCj with weight coefficients wj is NP-hard in
the strong sense [20]. An analysis of the approaches and methods for solving single-machine
scheduling problems can be found in [21]. According to generalized Smith theorem [22],
a polynomially solvable special case of problem 1 | rj | ∑ wjCj is problem 1 || ∑ wjCj,
in which, despite the general case, a simultaneous release times r1 = . . . = rn = r are
assumed. An optimal schedule in this case will be a schedule constructed in order of
non-decreasing values pj/wj, j ∈ J.

Definition 2. A set of job processing times I = {p1, . . . , pn} is called a problem instance I of
problem 1 || ∑ wjCj.

Now, the problem of approximation of objective function weight coefficients can be
formulated as follows.

Problem 1. N instances Ik, k = 1, . . . , N, of the problem 1 || ∑ wjCj (or the problem 1 | rj |
∑ wjCj in the general case) are given, and corresponding optimal schedules π0

k are known. The goal
is to approximate values of unknown weight coefficients wj, j ∈ J.

Thus, the problem considered in this paper is inverse to the problem 1 || ∑ wjCj. A
linear approximation is considered for the problem for a single machine: it is assumed that
there is an objective function that is linear with respect to the completion times, the optimal
schedule is known, but the weight coefficients of the objective function are unknown. This
problem may arise, for example, at the initial stages of automating individual processes
at enterprises where there is a long experience in scheduling “manually”, but modeling
the entire production process and the analytical formulation of the optimality criterion is,
for some reason, impossible or not obvious.

3. Approximation Problem Solving Method

The method for solving the problem of approximating weight coefficients (both for
general and for particular cases) is based on determining the optimality of schedules
π0

k , k = 1, 2, . . . , N:
n

∑
j=1

Ck
j (π)wj ≥

n

∑
j=1

Ck
j (π

0
k)wj, ∀π.

Therefore,
n

∑
j=1

(
Ck

j (π)− Ck
j (π

0
k)
)

wj ≥ 0, ∀π, k = 1, 2, . . . , N. (1)

Thus, the values of wj are generally determined by a system of N(n! − 1) inequalities
of the form (1), i.e., the dependence of the number of inequalities in the system on the
number of jobs is not polynomial, because for any instance there are n! possible schedules.
The non-polynomial complexity of the approximation algorithm can be avoided if among
the N(n! − 1) inequalities there is a polynomial number m of independent ones, while the
remaining inequalities are consequences of these m inequalities.

In case N = 1 the following approximation problem can be considered: one instance I
of problem 1 | rj | ∑ wjCj of dimension n is given, i.e., for n jobs, the release times rj and

189

Mathematics 2024, 12, 699

processing times pj are defined, and the optimal schedule π0 is also known. Then, for an
arbitrary acceptable schedule π the following inequality holds:

n

∑
j=1

(
Cj(π)− Cj(π

0)
)

wj ≥ 0. (2)

Repeating the arguments about the non-polynomial number of inequalities, the fol-
lowing proposition can be formulated. The proposition is sufficient for the polynomial
approximation algorithm.

Proposition 1. For an arbitrary instance I of problem 1 | rj | ∑ wjCj in a system of (n! − 1)
inequalities of the form (2) there is a subsystem of m inequalities, the solution of which coincides
with the solution of the initial system, and the number m depends polynomially on n.

Each of the strict inequalities of the form (2) corresponds to some non-optimal sched-
ule π. In this case, Proposition 1 means that among (n! − 1) non-optimal schedules there
are m schedules Π = {π1, . . . , πm} such that the solution of this system of inequalities of
the form (2) corresponding to the schedules πi, i = 1, . . . , m, coincides with the solution of
the initial system, and the number m depends polynomially on n. In other words, for any
schedule π /∈ Π, an inequality of the form (2) corresponding to schedule π is a consequence
of the system of inequalities corresponding to schedules πi, i = 1, . . . , m. Finding proof (or
inconsistency) of the Proposition 1 is the key to solving the approximation problem for the
1 | rj | ∑ wjCj.

3.1. The Initial and Efficient System of Inequalities for the Problem 1 || ∑ wjCj

Consider approximating the weight coefficients of the problem 1 || ∑ wjCj. According
to the generalized Smith theorem [22], for problem instance I = {p1, . . . , pn} of 1 || ∑ wjCj
there exists an optimal schedule π∗ = (j1, j2, . . . , jn), for which

pj1
wj1

≤
pj2
wj2

≤ . . . ≤
pjn
wjn

. (3)

Remark 3. If one or more adjacent non-strict inequalities of set (3) turn into equality, that is,
the ratios

pj
wj

are equal for jobs j ∈ {jk, . . . , jk+l}, all those schedules π̃∗ are also optimal, in which

the jobs jk, . . . , jk+l are placed in any other arbitrary order σ(jk, . . . , jk+l):

π∗ =
(

j1, . . . , jk−1, jk, . . . , jk+l , jk+l+1, . . . , jn
)

,

π̃∗ =
(

j1, . . . , jk−1, σ(jk, . . . , jk+l), jk+l+1, . . . , jn
)

,

∑ wjCj(π̃
∗) = ∑ wjCj(π

∗) = min
π

∑ wjCj(π).

An inequality of the form (3) is valid for all N given instances Ik = {pk
1, . . . , pk

n} of the
problem and the corresponding optimal schedules π0

k = (jk
1, jk

2, .., jkn), k = 1, . . . , N.

Definition 3. The system of inequalities for weight coefficients wj

pk
j1

wjk1

≤
pk

j2
wjk2

≤ . . . ≤
pk

jn
wjkn

, k = 1, . . . , N, (4)

we will call the initial system of inequalities of the problem of approximation of weight coefficients
for the case r1= . . . = rn.

190

Mathematics 2024, 12, 699

The initial system (4) contains N(n − 1) inequalities. To reconstruct the system to a
more convenient form for solving, the following notation will be used.

Let K = {1, . . . , N} be the set of indices k ∈ K corresponding to the given pairs (Ik, π0
k)

of problem instances and their optimal schedules, and let K̃ ⊂ K be some subset of the set
K. Further, the record of the form

min
k∈K̃

(or max
k∈K̃

)

will mean the minimum (maximum) for all possible pairs (Ik, π0
k) such that k ∈ K̃.

For an arbitrary pair of jobs i, j ∈ {1, . . . , n}, i �= j, the set K can be divided into two
subsets Ki,j and Kj,i depending on the relative position of the jobs i, j in the schedule π0

k :

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)},

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)}.

Then, from the inequalities (4) of the initial system for the corresponding weight coefficients
wi, wj the following inequalities can be constructed:

pk
i

wi
≤

pk
j

wj
, k ∈ Ki,j,

pk
j

wj
≤ pk

i
wi

, k ∈ Kj,i,

or, more conveniently,
wj

wi
≤

pk
j

pk
i

, k ∈ Ki,j, (5a)

wj

wi
≥

pk
j

pk
i

, k ∈ Kj,i. (5b)

Remark 4. Obviously, Ki,j ∩ Kj,i = ∅, Ki,j ∪ Kj,i = K for all i, j ∈ J, i �= j. Consequently,
in inequalities (5a) and (5b) all inequalities of the initial system related to wi, wj occurred.

Let

Y(i, j) = min
k∈Ki,j

(pk
j

pk
i

)
,

X(i, j) = max
k∈Kj,i

(pk
j

pk
i

)
,

then the system of inequalities (5a) and (5b) for the chosen i, j is equivalent to the double
inequality:

X(i, j) ≤
wj

wi
≤ Y(i, j). (6)

Remark 5. Consider the case when one of the sets Ki,j, Kj,i is empty. Let, for example, Ki,j = ∅,
that is, there were no inequalities of the form (5a) in the initial system. In this case, it will be
assumed that Y(i, j) = ∞ for the uniformity of the algorithm, and the inequality (6) will have form

X(i, j) ≤
wj

wi
< ∞.

191

Mathematics 2024, 12, 699

Similarly, if Kj,i = ∅, then it will be assumed that X(i, j) = 0 and the inequality (6) will have form

0 ≤
wj

wi
≤ Y(i, j).

Jobs i, j were chosen arbitrarily; therefore, the inequality (6) can be written for any pair
of different jobs i, j ∈ J.

Definition 4. A system of inequalities

X(i, j) ≤
wj

wi
≤ Y(i, j), (7)

where:

X(i, j) = max
k∈Kj,i

(pk
j

pk
i

)
,

Y(i, j) = min
k∈Ki,j

(pk
j

pk
i

)
,

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)},

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)},

i, j ∈ J, i �= j,
we call the efficient system of inequalities of the weight coefficient approximation problem for the
case r1= . . . = rn.

Lemma 1. The initial and efficient systems of inequalities (4) and (7) are equivalent.

Proof. The efficient system is the result of equivalent transformations of the inequalities of
the initial system and, taking into account the Remark 4, includes all the inequalities of the
initial system related to wi, wj for all possible pairs i, j ∈ J, i �= j, that is, it contains all the
inequalities of the initial system. Therefore, the efficient system of inequalities is equivalent
to the initial system.

Thus, the solution sets of the efficient and initial systems will coincide. Lemma 1
allows us to turn to the efficient system consisting of n(n − 1) inequalities of the form (6)
from the initial system consisting of N inequalities of the form (4). To find solutions to an
efficient system, the following two lemmas are necessary.

Lemma 2. The set of solutions of the initial (and efficient) system is a convex polyhedral cone in
n-dimensional space.

Proof. The initial system for the case rj = r, j ∈ J, consists of inequalities of the form (4):

pk
j1

wjk1

≤
pk

j2
wjk2

≤ . . . ≤
pk

jn
wjkn

, k = 1, . . . , N.

Thus, the initial system of inequalities is a system of N(n − 1) linear inequalities. The gen-
eral solution of this system, as well as a solution of any system of linear inequalities, is a
convex cone with a finite number of faces.

Corollary 1. Any plane section of the set of solutions is also a convex set as the intersection of two
convex sets: the solution of the initial system and the cutting plane.

Lemma 3. Let P be a rectangular parallelepiped in n-dimensional space Rn, n ∈ N. Let a convex
set M ⊂ Rn of hyperspace points touch each face of P . Then, the center O of the parallelepiped P is
an interior point of the set M.

192

Mathematics 2024, 12, 699

Proof. Obviously, the proof must be based on the property of convexity of the set M. If the
assertion of Lemma 3 for the subset M′ of the set M, which is limited only by the tangency
points of the hyperspace by the initial set will be proved, then it will also be proved for the
whole set M. Next, consider arbitrary n tangency points of the hyperspace by the set M′.
The hyperplane drawn through these points will always “cut off” part of the hyperspace
without its center. Thus, no matter what points are chosen, the center of the hyperspace
will always be in the “non-cut-off” part, and therefore, will be an internal point of the set
M′. Figure 1 shows an illustration for the lemma in space R3. The statement of the lemma
in this case takes the following form: the center of the parallelepiped, inside which there is
a convex figure touching each of the sides of the parallelepiped, is an interior point of this
figure. As can be seen from the figure, the points of contact of the convex set K, L and M
form a plane that “cuts” the initial parallelepiped into two parts, one of which contains its
center O. Since the convex set is tangent to each side of the parallelepiped, the point O will
always be interior.

Figure 1. Illustration for Lemma 3 in space R3.

3.2. Method for Solving the Efficient System of Inequalities

Details of the efficient system of inequalities solution method are described in this
section. Input is a system n(n−1)

2 of double inequalities of the form

X(i, j) ≤
wj

wi
≤ Y(i, j), i, j ∈ J, i �= j. (8)

This system can also be written as n(n − 1) simple linear inequalities:{
wj − Y(i, j)wi ≤ 0,
−wj + X(i, j)wi ≤ 0,

i, j ∈ J, i �= j,

193

Mathematics 2024, 12, 699

Thus, the approximation problem has been reduced to a system of linear homogeneous
inequalities. For such systems, there are many algorithms for finding a system of generating
vectors sufficient to write a general formula for non-negative solutions. However, the re-
sulting system has a special form, significantly different from the general one. In addition,
the goal of the approximation problem is not to find all possible solutions to the system.
Thus, a fast algorithm for finding a particular solution to the system of inequalities of the
obtained form will be described.

The inequality (8) for three pairs formed from the jobs { f , g, h} will take the follow-
ing form:

X(f , g) ≤ wg

w f
≤ Y(f , g), (9a)

X(g, h) ≤ wh
wg

≤ Y(g, h), (9b)

X(h, f) ≤
w f

wh
≤ Y(h, f). (9c)

The idea of the method is that one or more of the inequalities from (9a)–(9c) can be
strengthened using the others. For example, multiplying the inequalities (9a) and (9b) gives:

X(f , g)X(g, h) ≤ wh
w f

≤ Y(f , g)Y(g, h)

or
1

Y(f , g)Y(g, h)
≤

w f

wh
≤ 1

X(f , g)X(g, h)
. (10)

So, the inequality (10), which is a consequence of the inequalities (9a) and (9b), can
improve the estimate of the ratio w f /wh in the inequality (9c). Indeed, if the values
X(h, f), Y(f , g), Y(g, h) are such, that

X(h, f) ≤ 1
Y(f , g)Y(g, h)

,

then the inequality (9c) can be transformed by setting

X(h, f) =
1

Y(f , g)Y(g, h)
.

We use the definition of matrices from the efficient system of inequalities:

1
X(i, j)

=
1

max
k∈Kj,i

(pk
j

pk
i

) = min
k∈Kj,i

(pk
i

pk
j

)
= Y(j, i). (11)

If X(h, f) ≤ X(h, g)X(g, f), then, taking into account the ratio (11), the inequality
(9c) can be strengthened, setting X(h, f) = X(h, g)X(g, f), as a result of which the set of
solutions of the system (9) and the efficient system of inequalities remain unchanged.

Similarly, all the inequalities of the efficient system can be strengthened:

X(i, j) := max
{

X(i, j); max
l=1,...,n,l �=i,l �=j

{X(i, l)X(l, j)}
}

, i, j ∈ J, i �= j. (12)

The procedure (12) must be repeated for all possible pairs of jobs i, j. On some steps after
the change of X(i, j) it can appear that some of X(k, j) or X(i, k) can also be updated, and the
inequality with X(i, j) can be strengthened again, where k = 1, . . . , n, i �= k �= j. Therefore, it
is necessary to repeat the procedure (12) until none of the inequalities of the efficient system can
be strengthened during the whole iteration. As will be shown in Section 4.3.3, this procedure

194

Mathematics 2024, 12, 699

will need to be repeated not more than O(n3) times. After that, the values of Y(j, i) must also
be updated according to the relation (11). The matrices X, Y obtained after a sufficient number
of repetitions of the procedure (12) will be denoted by X̃, Ỹ.

Thus, if wj/wi = z ∈ [X̃(i, j); Ỹ(i, j)] for any pair i, j ∈ J, i �= j, then among the
inequalities of the system remaining after the corresponding simplifications, there are
no pairs that contradict each other. Therefore, for each z ∈ [X̃(i, j); Ỹ(i, j)] there exists a
solution to the initial system (4) of inequalities such that wj/wi = z.

The solution of the system, as shown in Lemma 2, is a convex cone. Therefore,
the weight coefficients can be scaled: problems 1 || ∑ wjCj and 1 || ∑(γwj)Cj, where γ > 0,
are equivalent, and if the set of coefficients w = {w1, . . . , wn} is a solution of a system
of inequalities (initial or efficient), then the coefficients γw = {γw1, . . . , γwn} are also
a solution to this system. Due to this fact, one of the weight coefficients can be chosen
arbitrarily, then the system can be solved for the remaining weight coefficients, and the
resulting solution can be scaled. The resulting solution will correspond to the solution of
the initial system of inequalities.

Let, for example, w1 = 1. By Corollary 1 the cross section of the set of solutions of the
initial system by the plane w1 = 1 is also a convex set. Then, for arbitrary j ∈ {2, . . . , n} a
parallelepiped in a hyperspace of dimension (n − 1) can be described:

X̃(1, j) ≤ wj ≤ Ỹ(1, j). (13)

Moreover, as was proved above, for all wj and z ∈ [X̃(1, j); Ỹ(1, j)] there exists a
solution to the system such that wj/w1 = z or wj = z. In particular, for w1 = 1 there exists
a solution such that wj = X̃(1, j) and such that wj = Ỹ(1, j). In other words, the section
of the set of solutions by the plane w1 = 1 lies inside the parallelepiped described by
the inequalities (13) and has at least one common point with each of its faces. Therefore,
by Lemma 3 the center of this parallelepiped is an interior point of the set of solutions to
the initial system of inequalities and is a solution to the initial system.

The discussion given above can be summarized as the following theorem.

Theorem 1. A vector w = (w1, . . . , wj, . . . , wn), where

wj =

{
1, j = l;
(X̃(l, j) + Ỹ(l, j))/2, j �= l,

is a solution of the efficient system (7) of inequalities (index l can be chosen arbitrarily).

Any value within the interval [X̃(l, j); Ỹ(l, j)] can be taken as wj, j ∈ J. We used the
value in the middle of the interval wj = (X̃(l, j) + Ỹ(l, j))/2.

3.3. Algorithm for Solving the Approximation Problem

This section describes the algorithm for solving the problem 1 || ∑ wjCj, j ∈ J, with
unknown weight coefficients wj. N instances of this problem are given: Ik = {pk

1, . . . , pk
n},

k ∈ N, and for each instance the optimal schedule π0
k = (jk1, jk

2, .., jk
n) is known. It is

necessary to approximate unknown values of the weight coefficients wj, j ∈ J.
The algorithm for approximating the weight coefficients of the objective function is

based on solving the efficient system of inequalities:

X(i, j) ≤
wj

wi
≤ Y(i, j), (14)

195

Mathematics 2024, 12, 699

where:

X(i, j) = max
k∈Kj,i

(pk
j

pk
i

)
, (15)

Y(i, j) = min
k∈Ki,j

(pk
j

pk
i

)
, (16)

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)}, (17)

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)}, (18)

i, j ∈ J, i �= j.

To approximate the coefficients wj it is necessary:

1. construct sets Ki,j, Kj,i according to Formulas (17) and (18);
2. construct matrices X and Y according to Formulas (15) and (16);
3. calculate matrices X̃ and Ỹ by repeating procedure (12) as it is described in Section 3.2;

4. calculate wj =

{
1, j = l
(X̃(l, j) + Ỹ(l, j))/2, j �= l

, where index l is chosen arbitrarily.

4. Numerical Study

4.1. Description of Numerical Experiment

To study the efficiency of the constructed method for approximating the objective
function of problem 1 || ∑ wjCj, the solution algorithm described in Section 3.3 was
programmed in a Python environment and computational experiments were carried out
for various numbers of jobs n and numbers of given instances N with known optimal
schedules. For each experiment, n ∈ {10, 50, 100, 150, 200, 250} weight coefficients w0

j , j ∈ J

and N ∈ [5, 100] (with a step of 5) problem instances Ik = {pk
1, . . . , pk

n}, k=1, . . . , N, (values
pk

j and w0
j have a uniform distribution on the interval [0; 1]) were generated, and the

constructed approximation algorithm was executed. The algorithm output is a set of the
weight coefficients wj, j ∈ J. To compare the found values of wj and the true weight
coefficients w0

j , both sets are normalized (scaling is allowed due to the linearity of the
objective function):

|| w ||=
√√√√ n

∑
j=1

w2
j ,

wj :=
wj

|| w || , w0
j :=

w0
j

|| w0 || .

Measure of efficiency ε(N, n) of the algorithm is the modulus of the relative deviation of
the found normalized values wj (averaged over j ∈ J) from their true normalized values w0

j :

ε(N, n) =
1
n

n

∑
j=1

| wj − w0
j |

w0
j

. (19)

The results of a series of experiments for the dependence of the approximation effi-
ciency measure ε(N, n) on N for different values of n are shown in Figures 2–5.

196

Mathematics 2024, 12, 699

Figure 2. Modelling results, n = 10.

Figure 3. Modelling results, n = 50.

197

Mathematics 2024, 12, 699

Figure 4. Modelling results, n = 100.

Figure 5. Modelling results, n = 250.

4.2. Analysis of Experiment Results

Function ε(N, n) decreases as the number of known optimal schedules N increases.
Moreover, the least squares (LSM) approximation of the dependence of 1/ε on N by the line
y = ax in all cases with a sufficiently large number of repetitions of the experiment, gives
a high linear correlation coefficient r > 0.9. In Figure 6 a graphical representation of the
result of a linear approximation with a linear correlation coefficient of r = 0.93 is presented.

198

Mathematics 2024, 12, 699

Figure 6. Modelling results, n = 200.

Due to the described correlation, the following hypothesis about the type of depen-
dence ε(N, n) is made:

ε(N, n) =
a(n)

N
. (20)

This hypothesis possibly depends on the distribution of the input parameters with the
growth of the number n of jobs and number N of given instances with known optimal sched-
ules.

Moreover, as can be seen from the diagrams above, with a greater number of jobs n,
more accurate results of the algorithm can be obtained. That is, the function a(n) tends
to be decreasing. For accurate statistical verification of the hypothesis, it is necessary to
conduct a large number of computational experiments.

4.3. Computational Complexity Estimation

The approximation algorithm consists of four sequential procedures:

1. construction of sets Ki,j, Kj,i;
2. calculation of matrices X and Y;
3. calculation of matrices X̃ and Ỹ;
4. calculation of wj.

The computational complexity of each of these procedures will be as follows.

4.3.1. Construction of Sets Ki,j, Kj,i

As it was described in Section 3.1, sets Ki,j and Kj,i are defined as follows:

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)},

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)}.

199

Mathematics 2024, 12, 699

To construct these sets, it is necessary to determine the position of each requirement j ∈ J in
each schedule π0

k , k=1, . . . , N. Then, for each pair of different jobs i, j ∈ J it is necessary to
compare their positions in schedule π0

k . Therefore, the construction of sets Ki,j, Kj,i requires
the following number of operations:

N ·
(

O(n) + O
(n(n − 1)

2
))

= O(n2N),

where n is a number of jobs, N is a number of schedules.

4.3.2. Calculation of Matrices X and Y

The n × n matrices X and Y are calculated as follows:

X(i, j) = max
k∈Kj,i

(pk
j

pk
i

)
, Y(i, j) = min

k∈Ki,j

(pk
j

pk
i

)
, i, j ∈ J, i �= j.

For each instance Ik of the problem and all possible pairs (i, j), i �= j, the ratio pk
j /pk

i is
calculated, which requires O

(
Nn(n − 1)

)
operations. Then, for each set Kj,i, the largest

value is chosen, which is placed in X(i, j), which requires O
(
n(n − 1) · O(N)

)
operations.

After all, finding Y(i, j) taking into account the relation (11) requires O
(
n(n− 1)

)
operations.

Therefore, to calculate the matrices X and Y, it is required to perform the following number
of operations:

O
(

Nn(n − 1)
)
+ O

(
n(n − 1) · O(N)

)
+ O

(
n(n − 1)

)
= O(n2N).

4.3.3. Calculation of Matrices X̃ and Ỹ

Calculation of the matrices X̃ and Ỹ is the most time-consuming part of the algorithm
in terms of computational complexity. Indeed, a procedure of the form (12):

X(i, j) := max
{

X(i, j); max
l∈J,i �=l �=j

{X(i, l)X(l, j)}
}

, i, j ∈ J, i �= j, (21)

for each pair i, j involves (n − 2) computing the product X(i, l)X(l, j) and finding the
maximum of (n − 1) values. Thus, the number of operations required to perform the
procedure (12) once is

O
(
(n − 2) + (n − 1)

)
= O(n).

To find the matrices X̃ and Ỹ, it is necessary to repeat the procedure (12) in a loop for all
possible pairs of jobs i, j until there will be no such pair i, j so that the element X(i, j) can
be increased. However, after each repetition of the procedure, the element X(i, j) either is
increased or unchanged, so the number of repetitions of the procedure can be significantly
reduced. This can be conducted by choosing a special order in which the pairs i, j ∈ J
are considered such that the procedure (12) will be executed for each pair of jobs no more
than two times. In this case, the number of operations required to calculate the matrices
X̃ and Ỹ, is

O
(

2 · n(n − 1)
2

· n
)
= O(n3).

4.3.4. Calculation of wj

Computational complexity of finding all values

wj =

{
1, j = l;
(X̃(l, j) + Ỹ(l, j))/2, j �= l,

j ∈ J,

is O(n) operations.

200

Mathematics 2024, 12, 699

4.3.5. Resulting Complexity

Thus, the computational complexity of the algorithm can be estimated with the fol-
lowing number of operations:

O(n2N) + O(n2N) + O(n3) + O(n) = O
(
n2N + n3) = O

(
n2(N + n)

)
.

5. Conclusions

The result of the work is an algorithm for approximating the values of the weight
coefficients of the problem 1 || ∑ wjCj using N given instances of the problem with known
optimal schedules. The result of the algorithm is a set of weight coefficients wj, j ∈ J such
that for each of the N given instances, the optimal schedule found for the approximate
values of the weights either is equal to the given optimal schedule corresponding to the
unknown true set of weights w0

j , or has the same objective function value with it. The results
described in this paper are also relevant to the problem 1 || ∑ wjLj.

The computational complexity of the algorithm is limited to O(n2(N + n)) opera-
tions, where n is the number of jobs and N is a number of initial instances with known
optimal schedules.

A numerical experiment was carried out to study the efficiency of the method. All
shown examples have N ∈ [5, 100] given instances of the problem 1 || ∑ wjCj, where
the number of jobs n is the same for all instances in each set and were given from the
interval [10, 250] to check the correlation. The accuracy of the algorithm is estimated by

experimentally measuring the function ε(N, n) = 1
n ∑n

j=1
|wj−w0

j |
w0

j
, which is an indicator of

the average modulus of the relative deviation of the found values wj from the true values
w0

j . An analysis of the results shows a high correlation between the dependence ε(N, n)
and a function of the form α(n)/N, where α(n) is a decreasing function of n. So, based
on the result of the experiment, it is clear that a greater number of jobs n, more accurate
results of the algorithm can be obtained. In Section 4.2 it is shown that the dependence of
1/ε on N is approximated by the line y = ax; the least squares method shows a high linear
correlation coefficient r > 0.9 in all cases with a sufficiently large number of repetitions of
the experiment.

Based on the current results, further work is planned in the following areas:

• searching for a formal proof of the hypothesis about the form of dependence ε(N, n)
from Section 4.2 when rj = const, j ∈ J;

• continue studying the general case 1 | rj | ∑ wjCj, where jobs can have different release
times; it is necessary to find either a subsystem of inequalities with a polynomial
number of inequalities, equivalent to the original system, or the strongest subsystem
with a polynomial number of inequalities with an estimate of the approximation error;

• trying to adapt the results to solve the problem of approximating more complex
objective functions.

Author Contributions: Conceptualization, A.L.; methodology, A.L. and N.P.; software, E.B.; val-
idation, A.L. and N.P.; formal analysis, A.L. and N.P.; investigation, E.B and N.P.; data curation,
E.B.; writing—original draft preparation, E.B. and N.P.; writing—review and editing, A.L. and N.P.;
visualization, E.B.; supervision, A.L.; project administration, A.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The paper describes a theoretical research. No new data were created
or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments: Authors gratefully thank Nikolay A. Loginov, who took an active part at the
initial stage of the work.

Conflicts of Interest: The authors declare no conflicts of interest.

201

Mathematics 2024, 12, 699

References

1. Vahedi-Nouri, B.; Tavakkoli-Moghaddam, R.; Hanzálek, Z.; Dolgui, A. Production scheduling in a reconfigurable manufacturing
system benefiting from human-robot collaboration. Int. J. Prod. Res. 2024, 62, 767–783. [CrossRef]

2. Lazarev, A.A.; Nekrasov, I.; Pravdivets, N. Evaluating typical algorithms of combinatorial optimization to solve continuous-time
based scheduling problem. Algorithms 2018, 11, 50. [CrossRef]

3. Rzevski, G.; Skobelev, P.; Zhilyaev, A. Emergent Intelligence in Smart Ecosystems: Conflicts Resolution by Reaching Consensus
in Resource Management. Mathematics 2022, 10, 1923. [CrossRef]

4. Lei, D.; Liu, M. An artificial bee colony with division for distributed unrelated parallel machine scheduling with preventive
maintenance. Comput. Ind. Eng. 2020, 141, 106320. [CrossRef]

5. Zhao, X.; Liu, H.; Wu, Y.; Qiu, Q. Joint optimization of mission abort and system structure considering dynamic tasks. Reliab. Eng.
Syst. Saf. 2023, 234, 109128. [CrossRef]

6. Koulamas, C.; Kyparisis, G.J. A classification of dynamic programming formulations for offline deterministic single-machine
scheduling problems. Eur. J. Oper. Res. 2023, 305, 999–1017. [CrossRef]

7. Martinelli, R.; Mariano, F.C.M.Q.; Martins, C.B. Single machine scheduling in make to order environments: A systematic review.
Comput. Ind. Eng. 2022, 169, 108190. [CrossRef]

8. Tanaka, K.; Vlach, M. Minimizing maximum absolute lateness and range of lateness under generalized due dates on a single
machine. Ann. Oper. Res. 1999, 86, 507–526. [CrossRef]

9. Mosheiov, G.; Oron, D.; Shabtay, D. Minimizing total late work on a single machine with generalized due-dates. Eur. J. Oper. Res.
2021, 293, 837–846. [CrossRef]

10. Hermelin, D.; Karhi, S.; Pinedo, M.; Shabtay, D. New algorithms for minimizing the weighted number of tardy jobs on a single
machine. Ann. Oper. Res. 2021, 298, 271–287. [CrossRef]

11. Janiak, A.; Kovalyov, M. Single machine group scheduling with ordered criteria. Ann. Oper. Res. 1995, 57, 191–201. [CrossRef]
12. Rudek, R. The single machine total weighted completion time scheduling problem with the sum-of-processing time based models:

Strongly NP-hard. Appl. Math. Mod. 2017, 50, 314–332. [CrossRef]
13. Lazarev, A.; Pravdivets, N.; Werner, F. On the dual and inverse problems of scheduling jobs to minimize the maximum penalty.

Mathematics 2020, 8, 1131. [CrossRef]
14. Chernikov, S. Linear Inequalities. In Itogi Nauki i Tekhniki. Series ’Algebra. Topology. Geometry’; VINITI: Moscow, Russia, 1968.

(In Russian)
15. Chernikova, N.V. Algorithm for finding a general formula for the non-negative solutions of a system of linear inequalities. USSR

Comput. Math. Math. Phys. 1965, 5, 228–233. [CrossRef]
16. Zhu, Y. Generalizations of some fundamental theorems on linear inequalities. Acta Math. Sin. 1966, 16, 25–40.
17. Fan, K. On infinite systems of linear inequalities. J. Math. Anal. Appl. 1968, 21, 475–478. [CrossRef]
18. Eckhardt, U. Theorems on the dimension of convex sets. Linear Algebra Appl. 1975, 12, 63–76. [CrossRef]
19. Eckhardt, U. Representation of Convex Sets. In Extremal Methods and Systems Analysis; Springer: New York, NY, USA, 1980.
20. Lenstra, J.; Rinnooy Kan, A.; Brucker, P. Complexity of Machine Scheduling Problems. Ann. Discret. Math. 1977, 1, 343–362.
21. Lazarev, A. Scheduling Theory: Methods and Algorithms; ICS RAS: Moscow, Russia, 2019. (In Russian)
22. Smith, W. Various optimizers for single-stage production. Nav. Res. Logist. Q. 1956, 3, 59–66. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

202

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.

Academic Open

Access Publishing

mdpi.com ISBN 978-3-7258-0674-4

