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Preface

Driven by the outbreak of COVID-19, this Special Issue reports on novel aspects of COVID-19,

with published 14 papers on the following topics:

Development of diagnosis methods;

Therapeutic effects of new agents;

Improvements in the monitoring and managements of patients;

Characteristics of break-through infection;

Sequelae of COVID-19 infections;

Development of vaccine against COVID-19 infection;

Disasters caused by COVID-19 infection.

In this reprint, we described two types of disaster-related infectious diseases. One is a disease

associated with it, and the other causes the disaster. COVID-19 is of the latter type. We also described

the RNA viruses most commonly causing disaster infectious diseases. Moreover, the outcomes

of persons living with HIV are discussed, and it was concluded that older age and the status of

insurance are associated with more severe outcomes. We also described how Singapore was largely

successful in reducing imported cases. Long-term, palliative, and hospice care strict bans on visits,

particularly during end-of-life care, are associated with a strong emotional burden for patients and

family members alike. Long-term care facility (LTCF), delirium, fever, and low-grade fever, alone or

in clusters, should be considered in identifying and predicting the prognosis of SARS-CoV-2 infection

in older patients. In the study of genitourinary (GU) malignancy, socioeconomic status has also been

highlighted as part of the existing inequality.

For diagnosis, routine serum laboratory tests were examined as potentially diagnostic of

COVID-19. Two PCR kits were compared, and it was clarified that each produced comparable results.

It was also proposed that SARS-CoV-2 infection upregulates GABA, protecting not only the

central nervous system, but also the endothelia, pancreas, and gut microbiota.

Cases of spontaneous pneumothorax have been reported in the setting of coronavirus disease

19 (COVID-19), described as an unlikely complication, mainly occurring in critically ill patients or

as a consequence of mechanical ventilation. Another case report described acute exacerbation of

the disease after tocilizumab (anti-IL-6 receptor antibody) treatment. This reprint reports on the

urgent medical issues brought about by the emergence of COVID-19 from clinical settings in various

countries, and will be useful in responding to future COVID-19 cases that continue to increase.

Toshio Hattori and Yugo Ashino

Editors
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Editorial

Possibility to Open Up New Areas by COVID-19 Infection
Toshio Hattori 1,* and Yugo Ashino 2

1 Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan
2 Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;

ashino-yug@hospital.city.sendai.jp
* Correspondence: hattorit@kiui.ac.jp

The rapid increase of COVID-19 cases has brought the number of patients to 513 mil-
lion. More than 6 million people have died as of 1 May 2022. Until now, epidemics of
febrile infectious diseases such as dengue and malaria have occurred in the tropics. These
mosquito-borne infections are also classified as disaster-related infections because people
are susceptible to mosquito-borne infection when exposed to nature. Unlike these infectious
diseases, COVID-19 cases predominantly spread in Western countries. A total of 15% of
patients and 16% of deaths have occurred in the United States. The death toll of 6 million
people worldwide indicates that COVID-19 is a disaster [1]. On the other hand, COVID-19
in developed countries has made it possible for advanced research to be conducted on
acute febrile illnesses. With the latest technology, significant progress have been made
in diagnosis, treatment, and prevention. In this Special Issue, we will publish the novel
aspects of COVID-19 after a two-year pandemic as follows.

1. Development of diagnosis methods.
2. Therapeutic effects of new agents.
3. Improvements in monitoring and management of patients.
4. Characteristics of breakthrough infection.
5. Sequelae of COVID-19 infections.
6. Development of a vaccine against COVID-19 infection.
7. Disasters caused by COVID-19 infection.

Attempts to detect infected people by RT-PCR tests have already been attempted in
dengue fever [2]. In COVID-19, automated or semi-automated kits were quickly created
with promising results [3]. Since the RNA virus often causes disaster infections, it will
be necessary to proceed with large-scale RT-PCR testing, not only in COVID-19, but also
in other infectious diseases, to identify the risk of infection rates. In other words, the
development of a diagnostic method for infectious diseases that can be performed more
efficiently in disaster-stricken areas is desired. The complexity of the COVID-19 illness
depends on the heterogeneities of the host’s response. Patients might suddenly deteriorate
into severe respiratory failure, necessitating non-invasive ventilation (NIV) or mechanical
ventilation (MV). Early recognition of patients at risk of progressing to severe disease and
the timely onset of targeted treatment is of the utmost importance. The production of
immune mediators such as cytokines and complements is essential to fight the infection;
however, these can be deleterious when produced in excess. The inhibition of virus entry
and proliferation by chemical agents and antibodies may inhibit a subsequent cytokine
storm. Immune therapies targeting the immune mediators of host defenses, such as
corticosteroids, kinase (a Janus tyrosine kinase (JAK)) and IL-1 and IL-6 were developed. It
was proposed that the early administration of a monoclonal antibody against IL-6 receptor
(tocilizumab) prevented pneumonia and kidney injury caused by COVID-19 [4]. However,
there is no clear indicator of which immune drugs should be given to which patients at
what time. It is important to identify the patients with hyper-inflammatory syndrome who
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are suitable for anti-cytokine therapy, but it is not known which bio-makers reflect less
heterogeneity of the host response.

Matricellular proteins such as galectin-9 (Gal-9) and osteopontin (OPN) are known to
be markers of disaster-related febrile illnesses such as dengue, malaria, leptospirosis, and
AIDS/TB [5,6]. The high AUC values of these biomarkers may indicate less heterogeneity
of the host response. Furthermore, the cleaved forms of OPN and Gal-9 could be better
markers in COVID-19, indicating that the proteins that aare produced by interacting
with other inflammatory molecules such as proteases may show better performance as a
biomarker [7]. Furthermore, thrombi occur when hypercoagulability, endothelial injury and
blood stasis converge, and these conditions are frequently encountered in severe COVID-
19. Subsequently, arterial and venous thromboembolisms have been frequently reported.
Hyper-inflammatory syndrome may play an important role in subsequent arterial and
venous thromboembolisms.

Another critical issue is the role of CT and X-ray imaging in diagnosing COVID-19—
particularly those that have applied artificial intelligence to detect the disease or reach a
differential diagnosis between various respiratory infections.

SARS-CoV-2 has a lower mutation rate than other RNA viruses because it encodes
proofreading enzyme genes. Nevertheless, the ongoing rapid transmission between hu-
mans increases the genetic diversity of SARS-CoV-2 genomes, especially the Spike gene (or
the receptor-binding domain, RBD): the latter is advantageous in virus infectivity, immune
escape, and tolerance. The effects of developing vaccines or therapeutics on constantly
mutating viruses need to be carefully observed. It is also interesting to clinically follow the
severity of the breakthrough infection and the effect of antibody treatments.

Follow-up after treatment is also an essential issue because significant physical, psy-
chological, and cognitive deficits following COVID-19–associated critical illness have
been recognized [8]. The influence of venovenous extracorporeal membrane oxygenation
(ECMO) on the outcomes of mechanically ventilated patients with COVID-19 needs to
be clarified.

We are victorious in the fight against this disaster because of continuously advancing
diagnostic methods, and the development of vaccines and excelletnt therapeutic agents.
The technology developed for the purpose of tackling COVID-19 should also be applied to
other disaster-related infectious diseases. Furthermore, it is necessary to explore the social
and medical impact of this pandemic.
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agreed to the published version of the manuscript.
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Review

Seminar Lessons: Infectious Diseases Associated with and
Causing Disaster
Toshio Hattori 1,* , Haorile Chagan-Yasutan 2, Shin Koga 3, Yasutake Yanagihara 4 and Issei Tanaka 5,*

1 Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan
2 Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia,

Hohhot 010065, China; haorile@gjmyemail.gjmyy.cn
3 Public Interest Incorporated Foundation SBS Shizuoka Health Promotion Center, Shizuoka 422-8033, Japan;

s-koga@sbs-smc.or.jp
4 Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; yanagihara@uv.tnc.ne.jp
5 Shizuoka Prefectural Hospital Organization, Shizuoka 420-8527, Japan
* Correspondence: hattorit@kiui.ac.jp (T.H.); issei-tanaka@i.shizuoka-pho.jp (I.T.)

Abstract: Disasters such as the magnitude-9 Great East Japan Earthquake occur periodically. We
considered this experience while developing measures against a predicted earthquake in the Nankai
Trough. This report includes a summary of 10 disastrous infectious diseases for which a counter-
measures seminar was held. Thirty-five speakers from twenty-one organizations performed the
lectures. Besides infectious diseases, conference topics also included disaster prevention and miti-
gation methods. In addition, the development of point-of-care tests, biomarkers for diagnosis, and
severity assessments for infectious diseases were introduced, along with epidemics of infectious
diseases affected by climate. Of the 28 pathogens that became a hot topic, 17 are viruses, and 14 out
of these 17 (82%) are RNA viruses. Of the 10 seminars, the last 2 targeted only COVID-19. It was em-
phasized that COVID-19 is not just a disaster-related infection but a disaster itself. The first seminar
on COVID-19 provided immunological and epidemiological knowledge and commentary on clinical
practices. During the second COVID-19 seminar, vaccine development, virological characteristics,
treatment of respiratory failure, biomarkers, and human genetic susceptibility for infectious diseases
were discussed. Conducting continuous seminars is important for general infectious controls.

Keywords: disaster; infectious diseases; leptospirosis; tuberculosis; dengue; POCT; COVID-19

1. Introduction

In 2019, 396 natural disasters were recorded in the Emergency Events Database (EM-
DAT), with 11,755 deaths, 95 million people affected, and USD 103 billion in economic
losses worldwide. This burden was not shared equally since Asia suffered the highest im-
pact, accounting for 40% of disaster events, 45% of deaths and 74% of the total affected [1].
Japan has historically suffered from large-scale natural disasters. Hojoki, one of the oldest
essays in Japan, describes a great fire (A.D. 1177), a tornado followed by the relocation
of the capital (A.D. 1180), a famine (A.D. 1181–2), and an earthquake (A.D. 1185). Re-
cently, Japan endured the Great East Japan Earthquake and Tsunami (GEJET) of 11 March
2011—a magnitude-9 earthquake that attacked Sendai and neighboring cities, leaving
20,000 people missing. This area was attacked by a tsunami (Jogan) on 13 July 869, indi-
cating that large-scale tsunamis occur within a 1000-year interval [2]. The Nankai Trough
mega-earthquake (NTME) is anticipated as the next major earthquake in Japan, involv-
ing the Shizuoka prefecture. It is anticipated to cause approximately 323,000 deaths and
approximately USD 1.5 trillion in direct impact, with a production and service decline
amounting to approximately USD 0.4 trillion [3]. Sharing our knowledge of the disaster
is one way to initiate effective measures against these disasters. For this purpose, we
decided to share our knowledge with annual seminars about infectious diseases that may

4



Reports 2022, 5, 7

occur due to disasters. The participants were from the International Research Institute
of Disaster Science (IRIDeS) at Tohoku University in Sendai who suffered from GEJET,
and those involved in disaster countermeasures and medical treatment in the Shizuoka
prefecture since 2014. It is important to enhance the resilience of national health systems
for disaster risk reduction. Some approaches include integrating disaster risk management
into primary, secondary, and tertiary healthcare (especially at the local level), developing
health workers’ understanding of disaster risks, applying and implementing disaster risk
reduction approaches to healthcare, promoting and enhancing training in the field of dis-
aster medicine, and training community health groups in disaster risk reduction through
health programs in collaboration with other sectors [4]. During disasters, a lack of safe
water access and inadequate sanitation facilities allow the transmission of water-borne and
food-borne pathogens. Diarrheal diseases such as cholera, typhoid fever, and shigellosis
cause epidemics with high mortality rates. Malaria and other vector-borne diseases in
risk areas include arboviruses, such as dengue, yellow fever, Japanese encephalitis, Rift
Valley fever, and tick-borne illnesses, including Crimean–Congo hemorrhagic fever and
typhus. Diseases associated with overcrowding, such as measles in unvaccinated areas
and tuberculosis, can occur after natural disasters. During the seminars, we discussed
infectious diseases associated with disasters, such as leptospirosis [5], dengue virus in-
fection [6], and tuberculosis [7,8]. We also discussed biomarkers for these diseases that
reflect disease severity [9], and a point-of-care test (POCT) to detect pathogens, including
loop-mediated thermal amplification (LAMP) in tuberculosis [10], single-tag hybridiza-
tion chromatographic-printed array (STH-PAS) [11], and a nanopore technology-based
sequencer called MinION [12]. We proposed that acquired immune deficiency syndrome
(AIDS) co-infected with tuberculosis (TB) (AIDS/TB) constitutes a natural disaster be-
cause the deaths caused by AIDS/TB account for 47% of all deaths in South Africa [13].
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [14] caused a pandemic
in 2019 (COVID-19) with more than 286 million cases and 5,429,617 deaths by the end
of 2021 (https://coronavirus.jhu.edu/) (accessed on 30 December 2021). The expansion
of the pandemic severely damaged society. Therefore, the last two seminars were held
exclusively on SARS-CoV-2 infections. In this manuscript, we introduce 10 seminars on
measures against disaster-related infectious diseases and propose the role seminars play in
combating infectious diseases associated with disasters.

2. Content of Seminars

Table 1 shows the speakers, their lecture titles, and the dates of the seminars in chrono-
logical order. The first seminar was held at Shizuoka General Hospital (SGH), followed
by a second seminar hosted by the Division of Disaster-related Infectious Diseases (DRI)
at IRIDeS. The third seminar was held as part of the third world conference on disaster
risk reduction (DRR) in Sendai (2015) (https://www.un.org/press/en/highlights/wcdrr)
(accessed on 30 December 2021). The following seminars were conducted based on the
Sendai framework for disaster risk reduction [4]. The content of the seminars were classi-
fied into categories (Figure 1). Recalling the 10 seminars, 35 speakers from 21 organizations
performed lectures about infectious diseases, as well as disaster prevention and mitiga-
tion methods. Five of these lectures discussed disaster risk reduction (DRR) from many
aspects, including human security [2,15], the United Nations world conference [4], disaster
prevention, and measures of the Shizuoka prefecture.

5
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Table 1. Conference speakers and their titles in chronological order.

No. Date Speaker Affiliation Title Classification

1 24 February 2014 Sato T JBCL Examination of digestive system required
for disaster infectious diseases E. coli

Koga S U. Shizuoka Disaster infectious diseases, after
earthquakes and tsunamis DRI

Hattori T IRIDeS Human security program against disasters
and infectious diseases DRR

2 19 July 2014 Sato T JBCL Examination of digestive system required
for disaster infectious diseases E. coli

C.-Y. H IRIDeS Disaster-related infectious diseases in
the Philippines Tropical

Ashino Y Tohoku U. Actual condition of HIV infections in the
Tohoku region of Japan HIV

Egawa S IRIDeS Medical response in the Great East
Japan Earthquake DRHM

3 13 March 2015 C.-Y. H IRIDeS Collaborative research on disaster-related
infectious diseases with Philippines Tropical

Sumi A SMU Seasonal tuberculosis epidemic MTB

Ndhlovu LC U. Hawaii Consideration of the HIV epidemic during
disaster related events HIV

Hakamata Y SGH Preparation for disaster-related infectious
diseases in Shizuoka Prefecture DRI

Suzuki Y Hokkaido U. Tuberculosis as a disaster-related disorders MTB

4 4 July 2015 Fukuoka T SSH Experience of outbreak of pathogenic
Escherichia coli O157 E. coli

Kutsuna K NCGM Dengue fever Tropical

Kaji M SCHC About infectious disease measures in
Shizuoka city DRI

Yanagihara Y U. Shizuoka Floods and leptospirosis in the Philippines Tropical

Egawa S IRIDeS Reports of the United Nations world
conference on disaster risk reduction DRR

5 19 November 2016 Nakayama Y SKH “Chain of survival” Kumamoto earthquake,
crisis of life. DRHM

C.-Y. H IRIDeS Actual conditions of mosquito-borne
infectious diseases and its spreading Tropical

Sato T JBCL Countermeasures against norovirus
infection in the event of disaster Norovirus

Kawase M TBA Development of new diagnostic method
STH-PAS for infectious diseases POCT

Koga S U. Shizuoka Current status and countermeasures for
important tick-borne infectious diseases Tick

6 12 December 2017 Suzuki Y Hokkaido U. Tuberculosis; never-ending threat MTB

Kawamori F U. Shizuoka Tick-born infectious diseases in Shizuoka
prefecture Tick

Hakamata Y SGH Summary of pet infectious diseases of
concern at evacuation center Pet infection

Matsui T NIID

Risk assessment method for infectious
disease at evacuation center—to facilitate

‘common language’ between infection
control specialists and public health sectors

DRHM

Iwata K Shizuoka U. From disaster mitigation to disaster
prevention society DRR

6
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Table 1. Cont.

No. Date Speaker Affiliation Title Classification

7 1 December 2018 Nakagawa S Tokai U. How to utilize the portable DNA/RNA
sequencer MiniON for disaster medical care POCT

Mori K SGH Kidney disease biomarkers in disaster
infectious diseases Biomarker

Kaji M SCHC Measures against infectious diseases in the
event of a disaster DRI

Hattori T KIUI Disaster measures learned from South
East Asia Resilience

Ueda T CMDS Earthquake and tsunami countermeasures
in Shizuoka prefecture DRR

8 16 November 2019 Goka K NIES
Fire ants, ticks, mosquitoes–biological risks

caused by environmental disturbances
and globalization

DRI

Kawaguchi T KHSU
Infection prevention and control during

natural disaster: lessons learned from the
Kumamoto Earthquake

DRI

Tosaka N SGH Repones of medical institutions in infectious
disease crisis management DRHM

Ueda T CMDS Shizuoka prefecture disaster prevention drill DRR

9 20 March 2021 Miyasaka M Osaka U. What did we learn from a novel
coronavirus infection? COVID-19

Takahashi A KIUI Japanese immune strategy and measures
against medical collapse COVID-19

Yano K HMC About new coronavirus information
from CDC COVID-19

Iwai K ShCH COVID-19 from the medical side COVID-19

10 27 November 2021 Ishii K IMS
Disruptive innovation in vaccine
development research advancing

COVID-19 disaster
COVID-19

Iwatani Y NMC Characteristics and mutations in
SARS-CoV-2 COVID-19

Fujimi S OGMC Response of the critical care center in Osaka
during the COVID-19 pandemic COVID-19

Ashino Y SDCH COVID-19 treatment recommendations from
Sendai city hospital COVID-19

Terao C SGH Cloned cell proliferation and infection COVID-19

We must strengthen the sustainable use and management of ecosystems and im-
plement integrated environmental and natural resource management approaches that
incorporate disaster risk reduction. Through their experience and traditional knowledge,
indigenous peoples provide an important contribution to the development and implemen-
tation of plans and mechanisms, including early warning and water safety [4,16]. Therefore,
to increase resilience from disaster-related damage, learning to live in harmony with nature
was advocated by Thai indigenous Karen peoples. The hill people can only live with intact
forest. An intact forest must have seven layers, which include four aboveground layers.
A tree in an intact forest must always follow this pattern: the large tree is at the center,
while saplings and bushes—the living quarters of birds and insects—surround this tree.
Just below the center and above the bushes and saplings are trees whose branches orchids
attach to, drawing nutrients from the trees. At the lower levels are grasses and mushrooms.
As for the sub-surface layers, there are roots, tubers, worms, snakes, sweet potatoes, and
taros. However, if one element is missing, the system is degraded and cannot survive [17].
Living with nature appears to help recovery from disaster (Figure 2).
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that occurred about 28 h earlier [18]. How the disaster base hospitals worked against these 
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Figure 2. Lives of indigenous people at Ban Huai Hin Lat Nai in Chaing rai. (A) Houses are protected
by tropical rainforest. (B) Houses being built by villagers. (C) Self-sufficiency and cultivation while
protecting the forest. (D) Stilt food storage. (Photos are courtesy of Mr. Kunio Miyairi and Prof.
Tatsuhiko Kawashima, GONGOVA, 2018).

Four lectures on disaster risk health management were also performed to understand
the medical system’s approach to disasters. In the Kumamoto area of Kyushu, Japan, an
Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock
that occurred about 28 h earlier [18]. How the disaster base hospitals worked against
these disasters was also presented. Six lectures on disaster-related infectious diseases (DRI)
shared knowledge on these diseases, including bacillary dysentery after floods [5] and
norovirus outbreaks after Hurricane Katrina despite intensive public health measures [19].
Oysters in the Tohoku area carry norovirus, which causes food poisoning. Oyster contami-
nation correlates with food poisoning and diarrhea outbreaks caused by Escherichia coli in
Shizuoka [20].
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Tetanus occurrence after the Aceh earthquake and tsunami in 2004 [21] and tubercu-
losis outbreaks after the Haiti earthquake were mentioned in another lecture [7,8]. Un-
derstanding the seasonality of tuberculosis (TB) epidemics may help identify potentially
modifiable risk factors. Sumi et al. confirmed differences in the seasonality of the preva-
lence data for sputum smear-positive (SSP) and sputum smear-negative (SSN) pulmonary
TB cases in Wuhan [22]. To control SSP pulmonary TB cases, they suggested investigating
the periodic structures of SSP and SSN pulmonary TB cases’ temporal patterns individually.
Attendants often talked about each of these diseases. Twenty pathogens (Table 2) were
described in this seminar. For early diagnosis of DRI, biomarkers’ roles were presented,
including galectin-9 (Gal-9) in dengue fever (DF) [9], malaria [23], and osteopontin (OPN)
in leptospirosis [24]. Neutrophil gelatinase-associated lipocalin (Ngal) and other tubular
dysfunction markers were also introduced to diagnose acute kidney injury (AKI) [25,26].

Table 2. Pathogens discussed at the seminars.

Classification (No.) and Pathogens

Virus infection (17) RNA (14)

Human Immunodeficiency Virus (HIV);
Coronavirus type 1, type 2;
Middle east respiratory virus syndrome;
Ebola virus;
Dengue virus;
Zika virus;
Severe fever with thrombocytopenia syndrome
virus;
Rabies;
Lyssavirus;
Influenza virus;
Norovirus;
Hepatitis C virus;
Measles virus;
Rubella virus.

DNA (3)

Human papilloma virus;
Hepatitis B virus;
Varicella zoster virus;
Chickenpox virus.

Bacteria (8)

Mycobacterium tuberculosis;
Escherichia coli;
Clostridium tetani;
Legionella;
Leptospira spp.;
Bartonella henselae;
Coxiella burnetii;
Chlamydia psittaci.

Fungi (1) Chytrid fungi

Parasite (2) Plasmodium falciparum Malaria;
Trypanosoma cruzi;

Table 2 lists the pathogens discussed at the conference. Interestingly, 17 out of 28
(about 60%) are viruses, and 14 out of 17 (82%) are RNA viruses. It is worth mentioning
that representative zoonotic pathogens, such as Coronavirus, Influenza virus, Ebola virus,
Rabies lyssavirus, and Leptospira, were discussed. Therefore, it is necessary to set human
and animal life as countermeasure targets for preventing disaster-related infectious diseases.
At the same time, it is necessary to further in vivo research on pathogens such as RNA
viruses, as described here.

3. Disaster-Related Infectious Diseases
3.1. Leptospirosis

Leptospirosis is zoonotic, often occurs after floods, and is mainly endemic to subtropi-
cal or tropical countries. It has not been reported since 2009 in the Tohoku region (northern
Japan). However, four patients with leptospirosis were found in the region between 2012
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and 2014. These cases imply that leptospirosis has reemerged in the region, probably due
to global warming [27]. In the Philippines, leptospirosis occurs after floods caused by
typhoons or heavy rainfall. The main pathogens consist of numerous serovars (>250). The
case fatality rate is 10–20%, and the majority of patients, about 85%, are young males. In
addition to rats, its main reservoirs are animals such as wild rodents, herbivores, livestock,
and pets, which transmit leptospires through Leptospira-colonized water with urinary
excretion in the environment [28,29]. Dominant Leptospira serovars with high virulence
include L. interrogans serovar Manilae, L. interrogans serovar Losbanos, L. interrogans serovar
Ratnapura, and L. borgpetersenii. After a storm surge during the super typhoon Haiyan
(Yolanda), pathogenic Leptospira survived in coastal soil in Leyte. Metrological factors
showed that leptospirosis occurrence is associated with floods following monsoons in
Manila. Besides rainfall, leptospirosis is also associated with relative humidity and tem-
perature in the Philippines. The peak occurrence of leptospirosis preceded DF by only
one month, despite occurring 2–3 months later than the peak occurrence of dengue in
Thailand [6].

We conducted a biomarker analysis of leptospirosis using two representative matricel-
lular proteins, OPN and Gal-9, in plasma. Both the full-length Gal-9 (FL-Gal9) and OPN
(FL-OPN) had increased levels of leptospirosis. Compared to other infectious diseases,
pFL-Gal-9 levels showed an inverse correlation with pFL-OPN levels (r = −0.24, p < 0.05),
but no correlation with other markers. By contrast, pFL-OPN levels correlated significantly
with other markers of kidney injury, indicating that FL-OPN levels reflect kidney injury in
leptospirosis. N-gal was associated with tubular dysfunction in AKI [25].

3.2. Tick-Borne Disorders

Scrub typhus or “Tsutsugamushi disease” was recognized in Japan as a Japanese flood
fever with high mortality [30]. A recent study in Laos suggested that O. tsutsugamushi
infection is an important cause of central nervous system infections in Laos [31]. Global
warming causes changes to all living things on earth. Tick-borne Lyme disease is increasing
annually in the United States and Canada [32], and tick-borne encephalitis (TBE), Lyme
borreliosis (LB), and emerging borrelial relapsing fever are widespread in Russia [33,34].
The increased number and distribution of ticks, vulnerability to rain, and increased wild
animals, which are sources of blood-sucking for ticks, are involved. Tick and tick-borne
pathogen surveillance efforts improve our understanding of geographic variation in risk
factors for tick-borne diseases, and efforts to build such programs have increased in recent
years [35].

3.3. Mosquito-Borne Disorders

Disasters change the behaviors of vectors and increase the incidence of vector-borne
diseases, including malaria and DF [36]. Unlike the immediate impacts of flooding, malaria
epidemics emerge after the acute phase of the crisis has passed. Heavy precipitation is
thought to flush established larval habitats; however, malaria vectors rapidly reestablish,
and a surge in disease may occur months after the disaster. Chemo-prevention is useful
for reducing the excess disease burden associated with a severe flood [37]. It has also been
suggested that DF cases in Manila are influenced by monsoon occurrence, contemporaneous
with high temperature, high relative humidity, and heavy rainfall. Heavy rainfall precedes
the occurrence of DF cases by two months. This timing can be attributed to the life-cycle
of mosquitoes and an adequate number of cases for transmission, which is affected by
population density [6]. An epidemic from imported DF occurred in Japan in 2014 and
200 cases were diagnosed. According to the analysis of virus strains, it was found that
a single strain may have caused Dengue virus (DENV) cases in Tokyo. It should be
noted that the plasma levels of Gal-9 are elevated in both DF and malaria. In malaria,
Gal-9 levels were higher at day 0 compared with day 7 and day 28 (p < 0.0001). Gal-9
levels were significantly higher in severe malaria (SM) cases than uncomplicated (UM)
cases on days 0 and 7. Therefore, Gal-9 is released during acute malaria and reflects its
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severity in malaria infections [23]. In DENV infection, Gal-9 levels in the critical phase
were significantly higher in DENV-infected patients compared with healthy patients or
those with non-dengue febrile illness. The highest Gal-9 levels were observed in dengue
hemorrhagic fever (DHF) patients. Gal-9 levels significantly declined from peak levels in
DF and DHF patients in the recovery phase. Gal-9 levels tracked viral load and reflected
the severity of DENV infection [9]. Finally, a dipstick DNA chromatography assay, a
single-tag hybridization-printed array strip (STH-PAS), was evaluated for its efficacy in
detecting DENV. PCR amplified reverse-transcribed DNA, and the amplified DNA was
detected using the STH-PAS system. In clinical studies, the STH-PAS system showed
100% sensitivity with 88.9 and 86.6% specificities compared to Taqman RT-PCR and the SD
Dengue Duo NS1 test, respectively. The STH-PAS system was found to have a superior
sensitivity to the Taqman system [11].

4. COVID-19 Caused a Disaster

The COVID-19 outbreak is primarily a human tragedy, affecting countless people. Thus,
many countries have undergone lockdowns, restricting their economic agents from mobiliz-
ing from one country to another, even nationally, due to the communicable COVID-19. The
virus has had a growing impact on the global economy; unfortunately, the global health
crisis has become a global economic crisis due to the cancellation of flights, restriction of
labor mobility, volatility in stock markets, and so on. For vulnerable families, loss of income
due to the outbreak translates to spikes in poverty, missed meals for children, and reduced
access to healthcare beyond COVID-19 [38]. It also affects the education of surgeons in the
medical community. Residents and young surgeons have shown a substantial decrease
in clinical experience, affecting resident education and practice, and variable access to
personal protective equipment (PPE). These wasteful efforts have resulted in emotional
problems and burnout [39]. Internationally, governments have been enforcing travel bans,
quarantine, isolation, and social distancing. Extended periods spent at home have resulted
in reduced physical activity, changes in dietary intake with the potential to accelerate
sarcopenia, deterioration of muscle mass and function (especially in older populations),
as well as increases in body fat [40]. It was also revealed that SARS-CoV-2 has a lower
mutation rate than other RNA viruses because it encodes proofreading enzyme genes.
Nevertheless, ongoing rapid transmission between humans increases the genetic diversity
of SARS-CoV-2 genomes, especially the Spike gene (or the receptor-binding domain, RBD);
the latter is advantageous in virus infectivity, immune escape, and tolerance [41]. Inter-
estingly, these glocally occurring viral genetic changes display a convergent evolution of
the SARS-CoV-2 genome worldwide [42]. Therefore, worldwide surveillance of the SARS-
CoV-2 genome is important to understanding future epidemics and may help us control
COVID-19. The historical background of mRNA-based vaccine development was also
introduced during the seminar [43]. Furthermore, immunogenicity and BNT162b2, a lipid
nanoparticle-formulated, nucleoside-modified RNA (modRNA) encoding the SARS-CoV-2
full-length spike, modified by two proline mutations that lock it in the prefusion confor-
mation, were proven to be safe and effective [44]. Identifying risk factors for COVID-19
infection is critical to public health importance. Mosaic chromosomal alteration (mCA), a
clonal expansion of leukocytes with somatic chromosomal abnormalities, is associated with
an increased risk of many infectious diseases, including severe COVID-19 infection [45].
mCA is strongly associated with males and the elderly; however, the association was
significant even after controlling for covariates such as age and sex. The presence of cancer
enhanced this association. There was also a trend that the higher the patient’s fraction of
mCA, the higher the infection rate, suggesting that the expansion of cells with large muta-
tions resulted in abnormal immune dysfunction. This mechanism is interesting; targeting
abnormally expanded cells may present a new treatment for many infections, including
COVID-19. It would be reasonable to stratify people by the presence or absence of mCA,
carefully monitor the infections of those with mCA, and provide appropriate advice ac-
cording to infection risk inferred from the presence or absence of mCA. SARS-CoV-2 RNA
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in concentrated and purified saliva specimens was detected 37 days after onset, using
sugar chain-immobilized gold nanoparticles. It was suggested that early morning saliva
specimens are more likely to show positive results than those obtained later in the day [46].

An intravenous administration of the anti-interleukin-6 receptor antibody tocilizumab
(TCZ; 400 mg) effectively treated a patient with COVID-19 pneumonia and a kidney injury.
An early administration of TCZ was proposed to prevent pneumonia and kidney injury
caused by COVID-19 from progressing to hyperinflammatory syndrome [47]. Plasma
levels of FL-Gal9 and FL-OPN and their truncated forms (Tr-Gal9, Ud-OPN, respectively)
represent inflammatory biomarkers. For COVID-19 infection, Spearman’s correlation
analysis showed that Tr-Gal9, Ud-OPN, but not FL-Gal9 and FL-OPN, were significantly
associated with laboratory markers for lung function, inflammation, coagulopathy, and
kidney function in CP patients. It was proposed that the cleaved forms of OPN and Gal-9
can be used to monitor the severity of pathological inflammation and therapeutic effects of
TCZ in CP patients [48].

5. Discussion

Three times more natural disasters occurred from 2000 to 2009 than 1980 to 1989.
Climate-related events have increased, accounting for nearly 80% [49]. It is urgent and
critical to anticipate, plan for and reduce disaster risk to protect persons, communities, and
countries, their livelihoods, health, cultural heritage, socioeconomic assets, and ecosystems
effectively, thus strengthening their resilience [4]. We must initiate measures against Nankai
Trough Mega Earthquake [3]. In this manuscript, we summarized 10 consecutive seminars
on disaster-related infectious diseases. Various topics, including disaster risk reduction,
were discussed. Speakers mentioned various pathogens associated with disasters; about
60% of them (17 out of 28) are viruses, and 14 out of 17 (82%) are RNA viruses. RNA
viruses evolve rapidly. The high mutation frequency in RNA virus populations is one
source of their ability to rapidly change. A high mutation frequency is a central tenet of the
quasi-species theory. Unlike RNA viruses, DNA-based organisms generally have lower
mutation frequencies and do not exist near the error threshold [50].

Among the many disaster-related infectious diseases, we proposed that AIDS asso-
ciated with TB (AIDS/TB) is a disaster because deaths caused by AIDS and tuberculosis
(TB) account for 47% of all deaths in South Africa [13]. The encroachment of HIV into
TB endemic areas may expand AIDS/TB. We have been researching novel biomarkers to
detect AIDS/TB in patients from India [51] and have continued our study as part of a JICA
grass-roots project.

The recent COVID-19 pandemic caused by SARS-CoV2 is a global crisis. Genome
sequencing early in the pandemic showed that single nucleotide mutations, multi-base
insertions and deletions, recombination, and variation in surface glycans all generate the
variability that, guided by natural selection, enables both HIV-1′s extraordinary diversity
and SARS-CoV-2′s slower pace of mutation accumulation. Although SARS-CoV-2′s diver-
sity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations with
important phenotypic consequences in antibody resistance and enhanced infectivity [52].
This rate of change is about half that of influenza, and one-quarter of HIV owing to the
error-correcting enzyme coronaviruses possess, rare among other RNA viruses. There are
probably thousands of viral particles in any given infection, each with unique single-letter
mutations; however, few if any of these cause the virus to be more infectious. Omicron’s
rise may be largely due to its ability to infect people immune to Delta through vaccination
or previous infection [53].

At the seminar discussed here, we shared our knowledge about the clinical manifes-
tations of various infectious diseases, pathogens, and progress in diagnostic methods. In
addition, the significance of matricellular proteins such as OPN and Gal-9, which were re-
ported as markers of severity for tropical infectious diseases, was reconfirmed in COVID-19
infection. Further examination revealed that protease cleaves these proteins, suggesting
that cleaved products exert new pathological functions and become new severity mark-
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ers [54,55]. On the other hand, the countermeasures against COVID-19, which caused the
disasters worldwide, have introduced a great deal of knowledge about the pathophysiology
and infectious mode of disaster-related infectious diseases. Furthermore, measures against
infectious diseases are different for each country. Therefore, it is necessary to conduct such
disaster-related infection control seminars on an international scale and share knowledge
from each country.
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Abstract: Reported coronavirus disease 2019 (COVID-19) outcomes in persons living with HIV
(PLWH) vary across cohorts. We examined clinical characteristics and outcomes of PLWH with
COVID-19 compared with a matched HIV-seronegative cohort in a mid-Atlantic US healthcare sys-
tem. Multivariate logistic regression was used to explore factors associated with hospitalization and
death/mechanical ventilation among PLWH. Among 281 PLWH with COVID-19, the mean age was
51.5 (SD 12.74) years, 63% were male, 86% were Black, and 87% had a HIV viral load <200 copies/mL.
Overall, 47% of PLWH versus 24% (p < 0.001) of matched HIV-seronegative individuals were hospital-
ized. Rates of COVID-19 associated cardiovascular and thrombotic events, AKI, and infections were
similar between PLWH and HIV-seronegative individuals. Overall mortality was 6% (n = 18/281) in
PLWH versus 3% (n = 33/1124) HIV-seronegative, p < 0.0001. Among admitted patients, mortality
was 14% (n = 18/132) for PLWH and 13% (n = 33/269) for HIV-seronegative, p = 0.75. Among PLWH,
hospitalization associated with older age aOR 1.04 (95% CI 1.01, 1.06), Medicaid insurance aOR 2.61
(95% CI 1.39, 4.97) and multimorbidity aOR 2.98 (95% CI 1.72, 5.23). Death/mechanical ventilation
associated with older age aOR 1.06 (95% CI 1.01, 1.11), Medicaid insurance aOR 3.6 (95% CI 1.36,
9.74), and multimorbidity aOR 4.4 (95% CI 1.55, 15.9) in adjusted analyses. PLWH were hospitalized
more frequently than the HIV-seronegative group and had a higher overall mortality rate, but once
hospitalized had similar mortality rates. Older age, multimorbidity and insurance status associated
with more severe outcomes among PLWH suggesting the importance of targeted interventions to
mitigate the effects of modifiable inequities.

Keywords: HIV; COVID-19; SARS-CoV-2; complications; outcomes

1. Introduction

Data are mixed regarding the severity and clinical outcomes of coronavirus disease
2019 (COVID-19) among persons living with HIV (PLWH) and there are reports of both
similar and worse clinical outcomes among different populations of PLWH co-infected
with SARS-CoV-2. Early studies indicated a similar COVID-19 illness severity among
PLWH and HIV-seronegative counterparts, but many of these reports were case series
and/or had no matched controls [1–11]. There are also reports of higher rates of death
and/or more severe disease among PLWH internationally and domestically [11–15]. Much
of the literature describing COVID-19 in PLWH is limited to case series, single-center
studies, includes mostly individuals on antiretroviral therapy (ART), and/or does not have
matched control cohorts [1,3,9,16]. However, even among population-based or registry
studies, there is variability in reported outcomes, with some reporting increased mortality
risk or hospitalizations and others not noting this association [14,15,17,18]. Thus, additional
data across are needed to describe the impact of COVID-19 on PLWH.

There are consistent reports of higher disease severity or worse outcomes among
PLWH with COVID-19 who have medical comorbidities such as diabetes, cardiovascular
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disease, obesity and/or chronic lung disease [19,20]. COVID-19-associated complications
such as acute kidney injury (AKI), cardiac events/myocardial injury, thrombosis, and
stroke are well reported in the literature, and risk factors for these events include pre-
existing disease and/or other medical comorbidities [21–33]. However, the occurrence
of these COVID-associated events have not yet been described in PLWH, a population
with high prevalence of medical comorbidities including diabetes, obesity, hypertension,
and dyslipidemia [34–37]. These COVID-19-associated events can account for significant
morbidity, mortality, and healthcare expenditure among persons affected by COVID-19.
Thus, an assessment of COVID-19 related outcomes and infection associated events is
needed among PLWH.

We conducted a retrospective analysis of all PLWH diagnosed with COVID-19 seen in
the MedStar Healthcare system. The MedStar Healthcare system is the largest healthcare
provider in the Maryland and Washington, DC area that includes 10 hospitals and provides
ambulatory care services in the hospitals and at free standing sites in the surrounding
communities. These facilities serve urban, suburban, and rural populations [38]. The
District of Columbia and Maryland have some of the highest rates of HIV in the country
with 2360.8 and 652.9 diagnoses per 100,000, respectively [39]. Our sampling provides a
representative sample of PLWH in the Mid-Atlantic region who sought clinical care. This
allows for a detailed analysis of clinical characteristics of PLWH compared to a matched
cohort as well as examination of COVID-19 associated events as we sought to characterize
clinical characteristics of PLWH who were infected with COVID-19 as well as outcomes as
compared to the HIV-seronegative.

2. Methods

Cohort Population and Data Sources: All persons with a diagnosis of HIV, deter-
mined either via International Classification of Diseases (ICD-10) coding or laboratory
testing with a diagnosis of COVID-19, who received care in the Medstar Healthcare sys-
tem were included in this analysis. Individuals were considered to have a diagnosis of
COVID-19 if an ICD-10 diagnosis code for COVID-19 or positive laboratory testing for
SARS-CoV-2 by polymerase chain reaction (PCR) was documented between January 2020
and November 2020. In addition, an age- and sex/gender-frequency-matched control
group of HIV-seronegative individuals with a diagnosis of COVID-19 was generated in
a 1:4 ratio for comparison. There were no required standardized hospital protocols for
hospital admission or COVID treatment and patient care decisions were based on the
discretion of individual care providers.

Variable Selection: Demographic and clinical data were extracted from the Electronic
Health Data Warehouse (MedStar Analytics Platform). Clinical data for this analysis in-
cluded laboratory testing, medications/therapeutics, comorbid diagnoses as determined
by ICD-10 coding, socio-demographics, oxygen requirements, and hospital length of stay.
Individuals were considered to have multimorbidity (e.g., the co-occurrence of two or more
chronic conditions) [40] if they had more than one of the following diagnoses: cardiovascu-
lar disease, obesity, diabetes, chronic renal disease, malignancy, or transplant. To determine
accuracy of ICD-10 coding diagnoses, 25% of participants with each reported comorbid di-
agnosis were verified by manual chart review and the overall accuracy rate was 79% which
is similar to other reports of discharge coding accuracy in the literature [41]. For those hos-
pitalized, all laboratory data during the hospital admission were extracted. HIV viral load
and CD4 + T lymphocyte count were obtained from the time most proximal to admission
and/or COVID-19 diagnosis and viral loads were obtained until November 2020.

Analytic Plan: Descriptive statistics were used to describe cohort characteristics.
Chi-square or Fisher’s exact tests were used for categorical variables and t-tests or Kruskal–
Wallis tests were used for continuous variables to determine group differences [42] We
examined differences in PLWH diagnosed with COVID-19 and PLWH without a diagnosis
of COVID-19 as well as PLWH and HIV-seronegative individuals with a diagnosis of
COVID-19. Univariate and multivariate logistic regression was used to explore factors
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associated with hospitalization and incident death/mechanical ventilation requirement
among PLWH. Variables with a p-value < 0.05 in the univariate analysis or selected based
on known effect on SAR-CoV-2 outcomes were included in the multivariate analysis [43].
Data utilized for these analyses are included in the manuscript text and tables. All analyses
were completed in R 4.0.0.

3. Results

In total, 1632 PLWH were tested for SARS-CoV-2 infection among the 20,662 who
received care within the MedStar healthcare system, Figure 1. Characteristics of PLWH
who tested for SARS-CoV-2 versus those who did not test for SARS-CoV-2 are outlined in
Table S1. A total of 249 PLWH had a SARS-CoV-2 PCR confirmed infection, and an addi-
tional 32 had an ICD-10 coded COVID-19 diagnosis for a total of 281 PLWH with COVID-19.
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Figure 1. PLWH seen in the MedStar healthcare system with and without SARS-CoV-2 Testing.
Flow chart of persons living with HIV seen in the MedStar Healthcare system. Abbreviations: HIV,
Human Immunodeficiency Virus; PLWH, Persons Living with HIV; SARS-CoV-2, Severe Acute
Respiratory Syndrome Coronavirus 2.

The mean age of PLWH with COVID-19 was 51.5 (SD 12.7) years, 63% (n = 177) were
male, and 86% (n = 237) were African American/Black. The median CD4 + T lymphocyte
count was 623 cells/mm3 [IQR 383, 938] and 87% had a HIV viral load <200 copies/mL.
Characteristics of tested PLWH with COVID-19 versus without COVID-19 are described in
Table S2. Among those tested for SARS-CoV-2, PLWH who tested positive had lower rates
of chronic renal disease (11% versus 12%, p = 0.030), higher rates of obesity (40% versus 33,
p = 0.046), and higher median nadir CD4 + T lymphocyte counts (533 versus 413, p = 0.036).
Among those tested, mean age in years, sex at birth, healthcare insurance status, CD4+ T
lymphocyte count, and total number with HIV viral load <200 copies/mL were similar
between those with and without SARS-CoV-2 infection.

Incident inpatient and outpatient SARS-CoV-2 infections among PLWH and HIV-
seronegative individuals are depicted in Figure 2. Compared to age- and sex-matched
HIV-negative individuals, more PLWH were hospitalized at 47% (n = 132) versus 24%
(n = 269), p < 0.001. Characteristics of PLWH and the matched cohort of HIV-seronegative
individuals with COVID-19 are outlined in Table 1. The majority of PLWH, 86% (n = 237)
were Black/African American versus 44% (n = 388) in the matched HIV-negative control
group, p < 0.001. There were more privately insured persons in the HIV-negative group at
75% (n = 818) versus 58% (n = 161), p < 0001 among PLWH. Comorbid conditions were more
common among PLWH including chronic liver disease at 24% (n = 70) versus 6% (n = 62),
p < 0.001; hypertension 59% (n = 165) versus 36% (n = 403), p < 0.001; cardiovascular disease
62% (n = 174) versus 38% (n = 423), p < 0.001; malignancy 10% (n = 28) versus 2% (n = 19),
p < 0.001; chronic lung disease 31% (n = 86) versus 12%(n = 134), p < 0.001; chronic renal
disease 25% (n = 69) and 10% (n = 117), p < 0.001; and diabetes 33% (n = 92) versus 20%
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(n = 226), p < 0.001. However, rates of post-COVID-19 cardiovascular, thrombotic, AKI,
and infection events were similar between HIV-seropositive and HIV-seronegative groups
overall as well among individuals who required hospitalization.

Reports 2022, 5, x FOR PEER REVIEW 4 of 13 
 

 

group, p < 0.001. There were more privately insured persons in the HIV-negative group at 

75% (n = 818) versus 58% (n = 161), p < 0001 among PLWH. Comorbid conditions were 

more common among PLWH including chronic liver disease at 24% (n = 70) versus 6% (n 

= 62), p < 0.001; hypertension 59% (n = 165) versus 36% (n = 403), p < 0.001; cardiovascular 

disease 62% (n = 174) versus 38% (n = 423), p < 0.001; malignancy 10% (n = 28) versus 2% 

(n = 19), p < 0.001; chronic lung disease 31% (n = 86) versus 12%(n = 134), p < 0.001; chronic 

renal disease 25% (n = 69) and 10% (n = 117), p < 0.001; and diabetes 33% (n = 92) versus 

20% (n = 226), p < 0.001. However, rates of post-COVID-19 cardiovascular, thrombotic, 

AKI, and infection events were similar between HIV-seropositive and HIV-seronegative 

groups overall as well among individuals who required hospitalization. 

 

Figure 2. Persons with COVID-19 seen in the MedStar Healthcare system. Figure of persons living 

with HIV and HIV-seronegative individuals seen in the MedStar Healthcare system with COVID-

19. Abbreviations: HIV, Human Immunodeficiency Virus; COVID-19, coronavirus disease 2019. 

Table 1. Comparison of age and sex matched PLWH and age/sex matched HIV-seronegative indi-

viduals with COVID-19. 

Characteristic 
HIV-Seronegative  

(n = 1124) 

HIV-Seropositive  

(n = 281) 

p-

Value  

Age mean years (SD)  51.2 (13.7) 51.5 (12.7)  1 

Sex at Birth, n (%)     

Male  708 (63) 177 (63) 1 

Female  416 (37) 104 (37)  

Race, n (%)     

African American/Black 388 (44) 237 (86) <0.001 

White 341 (39) 20 (7)  

Other  157 (18) 18 (7)  

Ethnicity     

Non-Hispanic  813 (92) 258 (98) 0.001  

Hispanic  69 (8) 6 (2)  

Insurance, n (%)    

Private 818 (75) 161 (58) <0.001 

Medicaid 79 (7) 67 (24)  

Medicare 146 (13) 45 (16)  

Figure 2. Persons with COVID-19 seen in the MedStar Healthcare system. Figure of persons living
with HIV and HIV-seronegative individuals seen in the MedStar Healthcare system with COVID-19.
Abbreviations: HIV, Human Immunodeficiency Virus; COVID-19, coronavirus disease 2019.

Table 1. Comparison of age and sex matched PLWH and age/sex matched HIV-seronegative individ-
uals with COVID-19.

Characteristic HIV-Seronegative (n = 1124) HIV-Seropositive (n = 281) p-Value
Age mean years (SD) 51.2 (13.7) 51.5 (12.7) 1

Sex at Birth, n (%)

Male 708 (63) 177 (63) 1

Female 416 (37) 104 (37)
Race, n (%)

African
American/Black 388 (44) 237 (86) <0.001

White 341 (39) 20 (7)
Other 157 (18) 18 (7)

Ethnicity

Non-Hispanic 813 (92) 258 (98) 0.001

Hispanic 69 (8) 6 (2)
Insurance, n (%)

Private 818 (75) 161 (58) <0.001
Medicaid 79 (7) 67 (24)
Medicare 146 (13) 45 (16)

Non-Insured 46 (4) 6 (2)
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Table 1. Cont.

Characteristic HIV-Seronegative (n = 1124) HIV-Seropositive (n = 281) p-Value
Co-Morbid

Conditions, n (%)

Cardiovascular
Disease 423 (38) 174 (62) <0.001

Hypertension 403 (36) 165 (59) <0.001

Obesity 280 (25) 111 (40) <0.001

Diabetes Mellitus 226 (20) 92 (33) <0.001

Chronic Renal
Disease 117 (10) 31 (11) <0.001

Chronic Liver Disease 62 (6) 70 (25) <0.001

Malignancy 19 (2) 28 (10) <0.001

Transplant 14 (1) 8 (3) 0.062
Post-Infection Events,

n (%)
Thrombotic 2 (1) 1 (0.4) 0.489
Infections 14 (1) 7 (2) 0.206

Cardiovascular 22 (2) 9 (3) 0.253
Acute Kidney Injury 6 (1) 4 (1) 0.120

INPATIENT N = 269 N = 132
Median Length of
Stay, days (IQR) 6 (3, 11) 5.5 (3, 11) 0.889

ICU Median Length
of Stay, days (IQR) 7 (3, 15) 3 (1, 7.25) 0.008

Deceased, n (%) 33 (13) 18 (14) 0.750
Comorbid Conditions,

n (%)
Diabetes Mellitus 110 (41) 50 (38) 0.589
Cardiovascular

Disease 67 (35) 35 (27) 0.716

Chronic Renal
Disease 30 (11) 22 (17) 0.154

Chronic Liver Disease 10 (4) 21 (16) <0.001
Malignancy 19 (7) 25 (18) <0.001

Post-Infection Events,
n (%)

Thrombotic 1 (0.4) 1 (0.4) 0.551

Infections 12 (5) 3 (2) 0.421

Cardiovascular 20 (7) 5 (4) 0.190

Acute Kidney Injury 4 (2) 1 (1) 1
COVID Treatments a,

n (%)
Remdesivir 39 (15) 18 (14) 0.880

Dexamethasone 65 (24) 32 (24) 1
Azithromycin 120 (45) 58 (44) 0.915

Hydroxychloroquine 49 (18) 22 (17) 0.781
Tocilizumab 18 (7) 6 (5) 0.504
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Table 1. Cont.

Characteristic HIV-Seronegative (n = 1124) HIV-Seropositive (n = 281) p-Value
Supplemental
Oxygen, n (%)

Room Air 38 (18) 27 (25)

Nasal Cannula 82 (39) 33 (30) 0.097

Non-
Rebreather/HFNC 29 (14) 25 (23)

Ventilator 53 (25) 21 (19)
Laboratory Data

(Admission b), (IQR)
Median WBC

(×103 cells/µL) 7 (5.3, 9.6) 6.80 (4.60, 9.20) 0.060

Median Absolute
Lymphocyte count

(×103 cells/µL)
1.05 (0.80, 1.50) 1.30 (0.80, 1.80) 0.032

Mean Hemoglobin
(gm/dL) 12.98 (12.98) 12.23 (2.40) 0.006

Mean Platelets
(×103 cells/µL) 233 (95.52) 211.07 (91.78) 0.036

Median Creatinine
(mg/dL) 1.11 (0.83, 1.71) 1.17 (0.89, 2.48) 0.175

Mean eGFR
(mL/min/1.73 m2) 50.07 (17.96) 46.10 (20.67) 0.062

Median ALT (IU/L) 37.00 (23, 58.50) 33.00 (22, 49.50) 0.224
Median CPK

(units/L) 148.50 (78.25, 326) 142 (75, 394) 0.834

Median Troponin
(ng/mL) 0.02 (0.01, 0.03) 0.02 (0.01, 0.04) 0.248

Median Procalcitonin
(ng/mL) 0.19 (0.10, 0.73) 0.34 (0.10, 0.86) 0.398

Median Ferritin
(ng/mL) 592 (300, 1330.40) 565.15 (262.40, 1367.22) 0.573

Median Lactate
Dehydrogenase

(units/L)
343.50 (264.50, 460.50) 312.50 (238.5, 161.5) 0.477

Median D-Dimer
(mcg/mL FEU) 1.66 (0.78, 3.06) 1.44 (0.78, 3.46) 0.902

Median C-Reactive
Protein (mg/L) 82.80 (35.05, 127.50) 93.70 (53.50, 161.50) 0.285

Laboratory Data
(Peak), (IQR)

Median WBC
(×103 cells/µL) 10.20 (6.93, 14.97) 8.90 (6, 12.70) 0.010

Median Platelets
(×103 cells/µL) 307 (236.75, 417.75) 263 (194, 371) 0.008

Median Procalcitonin
(ng/mL) 0.22 (0.10, 2.30) 0.39 (0.10, 1.70) 0.498

Median Ferritin
(ng/mL) 896.1 (373.45, 1817.15) 707.40 (345, 1798.20) 0.420
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Table 1. Cont.

Characteristic HIV-Seronegative (n = 1124) HIV-Seropositive (n = 281) p-Value

Median Lactate
Dehydrogenase

(units/L)
400.50 (284.50, 574) 355.5 (271, 576.75) 0.615

Median D-Dimer
(mcg/mL FEU) 1.88 (1.09, 5.07) 1.94 (0.93, 3.83) 0.655

Mean C-Reactive
Protein (mg/L) 109 (47.40) 121.50 (61.70, 172.25) 0.573

Median Interleukin-6
(pg/mL) 12.10 (5, 43.50) 9 (5, 18.60) 0.412

Abbreviations: PLWH, persons living with HIV; N, number; SD, standard deviation; IQR, interquartile range;
HFNC, high-flow nasal cannula; WBC, white blood cell count; mcL, microliters; gm, gram; dL, deciliter; eGFR,
estimated glomerular filtration rate; mg, milligrams; mL, milliliter; min, minute; m, meter; IU, CPK, creati-
nine phosphokinase; international units, L, liter; ng, nanogram; mcg, micrograms; pg, picogramss. a Other
investigational treatments/treatments included vagepant (n = 0, HIV-seronegative; n = 1, HIV-seropositive) and
extracorporeal membrane oxygenation (ECMO) (n = 0, HIV-seronegative; n = 1, HIV-seropositive). b Laboratory
data are from admission or first available.

Among those hospitalized, the PLWH had higher prevalence of liver disease at
16% (n = 21) versus 4% (n = 10), p < 0.001) and malignancy 19% (n = 25) versus 7%
(n = 19), p = 0.001. The oxygen requirements and treatments were similar between the
HIV-seropositive and HIV-seronegative groups. A total of 33% (n = 44) PLWH versus 31%
(n = 83), p = 0.648, of HIV-seronegative individuals were admitted to the ICU. Among those
admitted to the ICU, median length of stay was shorter among PLWH at 3 [IQR 1, 7.25]
days versus 7 [IQR 3, 15] days. A total of 33% (n = 44) PLWH versus 31% (n = 83), p = 0.648,
of HIV-seronegative individuals were admitted to the ICU. Inpatient mortality was similar
for PLWH (n = 18/132) and HIV-seronegative individuals (n = 33/269) at 14% versus 13%,
respectively, p = 0.750. The median length of hospital stay was 6 days [IQR 3, 11] for PLWH
and 5.5 days [IQR 3, 11] for HIV-seronegative individuals, p = 0.889. Overall mortality
was 6% (n = 18/281) in PLWH versus 3% (n = 33/1124) in HIV-seronegative individuals,
p < 0.0001.

In analyses adjusted for age, sex, insurance status and multimorbidity, hospitalization
among PLWH associated with older age aOR 1.04 (95% CI 1.01, 1.06), Medicaid insurance
aOR 2.61 (95% CI 1.39, 4.97) and multimorbidity aOR 2.98 (95% CI 1.72, 5.23) (Table 2).
Death/mechanical ventilation requirement was associated with older age aOR 1.06 (95%
CI 1.01, 1.11), Medicaid insurance aOR 3.6 (95% CI 1.36, 9.74), and multimorbidity aOR 4.4
(95% CI 1.55, 15.9) in analyses adjusted for age, sex, insurance status and multimorbidity
(Table 3).

Table 2. Factors associated with hospitalization among persons living with HIV with COVID-19.

Characteristic OR p-Value aOR * p-Value
Age, years 1.05 (1.03, 1.07) <0.001 1.04 (1.01, 1.06) 0.002
Sex at Birth

Female (reference) − − − −
Male 1.12 (0.69, 1.83) 0.646 1.5 (0.87, 2.62) 0.152
Race

White (reference) − − − −
African

American/Black 0.6 (0.23, 1.5) 0.278 − −
Other 0.26 (0.06, 0.96) 0.051 − −
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Table 2. Cont.

Characteristic OR p-Value aOR * p-Value
Ethnicity

Non-Hispanic
(reference) − − − −
Hispanic 1.13 (0.21, 6.22) 0.88 − −

HIV Viral Load
<200 (reference) − − − −

>200 1 (1, 1) 0.34
CD4 + T Lymphocyte

>200 (reference) − − − −
<200 0.98 (0.91, 1.06) 0.624 − −

Insurance
Private (reference) − − − −

Medicaid 2.22 (1.25, 4) 0.007 2.61 (1.39, 4.97) 0.003
Medicare 2.4 (1.23, 4.77) 0.011 1.41 (0.67, 3.01) 0.362

Uninsured/Self-Pay 0.8 (0.11, 4.22) 0.798 0.78 (0.09, 5.39) 0.803
Multimorbidity ** 3.74 (2.29, 6.21) <0.001 2.98 (1.72, 5.23) <0.001

Abbreviations: SARS CoV-2, severe acute respiratory syndrome coronavirus 2; OR, odds ratio; aOR, adjusted odds
ratio. * Multivariable model adjusted for age, sex, insurance status, and multimorbidity, ** Multimorbidity = two
or more comorbidities including cardiovascular disease, obesity, diabetes mellitus, chronic renal disease,
or malignancy.

Table 3. Factors associated with death/mechanical ventilation among hospitalized PLWH with
COVID-19.

Characteristic OR (CI 95%) p-Value aOR * p-Value
Age, years 1.06 (1.03, 1.1) <0.0001 1.06 (1.01, 1.11) 0.013
Sex at Birth

Female (reference) − − − −
Male 0.87 (0.4, 1.93) 0.72 0.97 (0.42, 2.34) 0.94
Race

White (reference) − − − −
African American/Black 2.34 (0.46, 42.92) 0.416 − −

Other 0 (0, 2.44 × 1015) 0.987 − −
Ethnicity

Non-Hispanic (reference) − − − −
Hispanic 1.95 (0.1, 12.76) 0.55 − −

HIV Viral Load
<200 (reference) − − − −

>200 0.97 (0.84, 1) 0.592 − −
CD4 + T Lymphocyte

>200 (reference) − − − −
<200 1.05 (0.86, 1.31) 0.64 − −

Insurance
Private (reference) − − − −

Medicaid 2.97 (1.19, 7.49) 0.019 3.6 (1.36, 9.74) 0.01
Medicare 2.78 (0.95, 7.73) 0.051 1.33 (0.42, 3.99) 0.614

Uninsured/Self-Pay 7.55 (0.97, 43.98) 0.029 12.09 (1.17, 1.26 × 102) 0.027
Multimorbidity ** 6.55 (2.47, 22.68) <0.001 4.4 (1.55, 15.9) 0.011

Abbreviations: OR, odds ratio; aOR, adjusted odds ratio. * Multivariable model adjusted for age, sex, insurance
status, and multimorbidity, ** Multimorbidity = two or more comorbidities including cardiovascular disease,
obesity, diabetes mellitus, chronic renal disease, or malignancy.

4. Discussion

In a clinical cohort of PLWH seeking healthcare in the mid-Atlantic US, 281 were
diagnosed with COVID-19 between March 2020 and November 2020. Patients were seen in a
variety of care settings including ambulatory and inpatient. This group was predominantly
African American/Black, carried a heavy burden of prevalent medical comorbidities, and
had mostly virologically well controlled HIV. PLWH were admitted to the inpatient setting
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more frequently than an age- and sex-matched cohort and had a higher overall mortality
rate, but once admitted, had similar mortality to their HIV-seronegative counterparts.
Despite more frequent hospital admissions, more comorbid illnesses, and higher overall
mortality COVID-19 associated complications including AKI, thrombosis, cardiovascular
events, and other infections were similar between PLWH and the matched HIV-seronegative
control group. As in the general population, older age and multimorbidity are associated
with more severe outcomes. Differences in outcomes were also noted by insurance status,
some of which may be attributed to age but may also reflect social determinants of health.
This study adds to the existing studies that suggest that older age, multiple medical
comorbidities, and social determinants of health influence on COVID-19 outcomes.

COVID-19-associated complications such as cardiovascular events, AKI, and throm-
botic events are frequently noted in the literature. AKI frequently complicates SARS-CoV-2
infection, and incidence rates are variable, but rates of up to 57% are reported among
those hospitalized and/or admitted to an intensive care unit [21] AKI in the setting of
COVID-19 is associated with Black/African American or Hispanic race, male sex, older age
and other comorbidities such as diabetes, cardiovascular disease, hypertension, or baseline
chronic kidney disease [21–24]. Further, myocardial injury is commonly reported among
hospitalized patient with COVID-19, with risk factors being older age and a history of
cardiovascular disease [25]. Thrombotic events are also common in persons with COVID-19
and pulmonary emboli and deep venous thrombosis have been reported in 20 to 30% of
persons with COVID-19 with risk factors of older age and cardiovascular disease [30,31,44].
Persons with deep venous thrombosis and COVID-19 were older, had higher rates of
cardiac injury, and oxygenation index [45]. HIV is a known risk factor for chronic kidney
disease, cardiovascular disease, and venous thrombosis [46–49]. PLWH also have known
higher rates of medical comorbidities, which was reflected in our cohort [34–37]. Thus,
we initially hypothesized higher rates of COVID-19 associated complications. Studies are
limited regarding COVID-19-associated complications among PLWH, but Durstenfeld et al.
reported that hospitalized PLWH did not have elevated risk of major adverse cardiac events,
mortality, or severity of disease.18 Although the methodology was different, these findings,
combined with our study findings of similar rates of COVID-19-related complications,
suggest the need for additional study. Potential insights may be gained by further examin-
ing the immunologic response to disease among both PLWH as immune dysregulation is
thought to contribute to SARS-CoV-2 pathogenesis including end organ disease such as
myocardial injury, other cardiovascular dysfunction, or kidney dysfunction [50].

As other studies have reported, hospitalization rates were higher among PLWH in
our cohort [14,51,52]. As more PLWH were admitted to the inpatient setting, overall
mortality among all COVID-19 positive individuals, hospitalized and non-hospitalized was
higher among PLWH versus the HIV-seronegative cohort. However, inpatient mortality
was similar between PLWH and the HIV seronegative cohort. Differential hospitalization
rates between the two groups may be reflective of differential admission practices and
burden of comorbid disorders among PLWH. Our study corroborates the excess morbidity
related to COVID-19 among PLWH found in other studies; however, our analysis may
overestimate the mortality differences between PLWH and the HIV-seronegative group as
we assume patients not admitted to our healthcare system survived infection and there may
be unaccounted deaths in the outpatient group. Our study adds to the existing literature
exploring the effect of COVID-19 on mortality among PLWH, yet additional work is needed
to determine the effect of COVID-19 in PLWH as studies in various populations show
differing outcomes [8,12,15,17,18,52–56].

We determined risk factors related to hospitalization for SARS-CoV-2 or death/mechanical
ventilation and found they were associated with age, insurance status, and multimorbid-
ity. These findings are similar to those noted in the general HIV-seronegative population
where known risk factors for hospitalization or severe disease include older age, or the
presence of other comorbid disorders [57–59]. This is corroborated in other studies of
PLWH with COVID-19 older PLWH or those with multiple comorbidities have more severe
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disease/worse outcomes [19,20,54,60–62]. However, we did not observe more severe dis-
ease among ethnic/racial minorities as previously reported [14,60,63]. Our population was
skewed with a majority of African American PLWH; thus, the assessment of the influence
of race/ethnicity on COVID-19 severity is limited in our analysis. To our knowledge, the
association of insurance type with hospitalization for COVID-19 or death/mechanical
ventilation among PLWH has not been reported in the literature. However, those that
are uninsured/self-pay and Medicaid recipients are socially and economically vulnerable
populations [64,65], and the higher rates of severe COVID-19 disease may be reflective of
differences in health seeking behavior, health service delivery, or other social determinants
of health that are confounders in the relationship. The association of social determinants of
health and COVID-19 outcomes has been described in the literature and access and delivery
of care may be targets for intervention [66,67].

5. Limitations

Our study utilized the data available in the Medstar Health electronic medical reg-
istry, so we are unable to account for care sought outside this healthcare system, HIV
treatment history, or duration of HIV infection. Additionally, all comorbid diagnoses were
determined by ICD-10 codes. These codes were developed for administrative use and
have their own inherent bias, but they are used by public health organizations to conduct
surveillance and have also successfully been used by researchers including in large studies
of COVID-19 [52,68–70]. To ensure the data accuracy we conducted manual abstraction of
a subset of the population and the data accuracy was consistent with that of the published
literature [41]. The majority of the participants in this study were virologically suppressed
and sought healthcare. Thus, our findings may not be representative of persons with
advanced HIV or not receiving care. Additionally, the therapeutic approaches to treatment
and prevention of COVID-19 changed over the duration of the study which likely impacted
outcomes and ability to compare our results with that of studies performed early in the
pandemic. We utilized electronic health records that do not capture genomic surveillance
data, but the data analyzed for this study included individuals diagnosed with COVID-19
between March 2020 and November 2020. The alpha (B.1.1.7.) variant was first reported
in the United Kingdom in December of 2020. Thus, individuals in our cohort likely were
likely infected with the original COVID-19 strain. The emergence of the alpha, delta, and
omicron variants likely affected disease severity and outcomes and our findings may not
be generalizable to those infected with other variants. Our cohort was predominantly
African American/Black, and although representative of the HIV-epidemic in the area, this
may have affected our outcomes as other studies have noted differences in outcomes by
race. Other studies noted differences by race and COVID-19 outcomes, our population was
predominantly African American and this may have influenced outcomes [71–73]. We were
not able to fully assess difference by race given the unequal racial population distribution
Additional studies are needed to identify emerging trends in hospitalizations, morbidity,
and mortality among PLWH with more recent SARS-CoV-2 variants, and contemporary
SARS-CoV-2 prevention and treatment modalities.

6. Conclusions

Our findings suggest disparities in COVID-19 morbidity among PLWH in the form of
excess hospitalizations and higher mortality when including both inpatients and outpatient
COVID-19 diagnoses. Despite higher burdens of baseline comorbid illness, PLWH did not
experience more cardiovascular, acute kidney injury, or thrombotic events. Similar to other
studies, older age, multimorbidity, and Medicaid insurance were associated with more
severe outcomes among PLWH. Ongoing assessments of these findings and COVID-19
prevention efforts are needed among PLWH, especially socially or economically vulnerable
populations, those with advanced age, or multiple comorbidities.
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Abstract: The first coronavirus disease 2019 (COVID-19) case was detected in Singapore on 23 January
2020. Over the two years, Singapore witnessed tightening and easing of policies in response to and
in anticipation of new variants, stress on the healthcare sector, and new waves of infection. Upon
confirming the reliability of the data using Benford’s analysis, the collated COVID-19 data and trends
were analyzed alongside the policies between 2020 and 2021 in Singapore. Due to the proactive nature
of these policies, Singapore was largely successful in reducing the imported cases that would spill
over and result in community waves of infection and death. The government has taken necessary
steps to support the citizens and reduce the impact of the pandemic on the economy of the country.
Furthermore, there were policies that were more responsive and there are lessons to be learned
from neighboring countries on their management of the pandemic. Given the endemic approach
the government has adopted, the efficacy of these policies comes down to its sustainability. Since
the pandemic requires frequent revisiting of these policies, Singapore’s long-term management of
the pandemic (or endemic) and its impact comes down to the ability of the government to introduce
sustainable policies and update these according to new developments in treatments, variants, and
vaccines, bearing in mind the socioeconomic condition of the country.

Keywords: SARS-CoV-2; COVID-19; Benford’s Law; Singapore; pandemic management

1. Introduction

In December 2019, a novel coronavirus named severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) causing serious pneumonia was first reported in Wuhan,
China. Coronavirus disease 2019 (COVID-19) was a novel disease with major respiratory
symptoms with no effective treatment schemes then. Singapore reported its first COVID-
19 case on 23 January 2020 [1]. The Singapore government swiftly implemented various
policies to combat COVID-19 while maintaining the economic competitiveness of Singapore.
One such example is the Disease Outbreak Response System Condition (DORSCON)
framework which serves as a simple way to communicate the level of severity of the
current disease situation [2]. The efficient and immediate updates ensured credibility and
timeliness of information, which supports the country in recovering from the pandemic
crisis. In addition, the COVID-19 multi-ministry taskforce of Singapore also reacted swiftly
to the situation and commenced tracking of the global situation from 2 January 2020.

The following months witnessed a rise and fall of cases that were imported, prevalent
in the community and within the migrant worker dormitories. This resulted in an all-time
peak of cases in May 2020 leading to circuit breaker measures being implemented on 7th
April and extended until early June 2020 [3]. This period of increasing cases was met
with stricter restrictions imposed by the government. These measures included travel
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restrictions, compulsory mask mandate, and digital contact tracing systems like Trace
Together. Travel restrictions were imposed in February 2020 and became stricter as the cases
increased. With increasing community cases, compulsory mask mandate was established
in April 2020. To facilitate better contact tracing and early detection of cases, Trace Together
was also implemented first in March 2020 [4].

As the number of cases stabilized and the economic repercussions of tighter restrictions
were considered, safe and progressive reopening was carried out gradually in three phases.
Phase I—Safe Re-opening was implemented on 2 June 2020, and Phase II—Safe Transition
was initiated on 19 June 2020. Phase III—Safe Nation started from 28 December 2020
onwards [5]. This approach was designed considering the impact of COVID-19 on the
national economy while also being cautious of community spread.

However, following these phases, Singapore witnessed an oscillation between restrict-
ing and easing of policies, either in response to or in anticipation of latest developments
regarding the pandemic. These developments were often in the form of new variants
or sub-variants, new clusters, rise in imported cases or scientific developments such as
vaccinations. The situation stabilized by the second half of 2021 as the government adopted
an endemic approach when dealing with the pandemic. Recognizing that COVID-19 will
continue to exist in the society, the focus was on stabilizing the cases with minimum
restrictions using vaccination differentiated measures (VDM) [6].

Throughout the circuit breaker period and the subsequent phases, the cases have
displayed interesting patterns that were influenced by policies and reveal how three
components of the total cases—imported, community, and dormitory cases—changed over
time. This paper revisits the COVID-19 policies over the course of 2020 and 2021 and
discusses the consequences of these policies in Singapore.

2. Materials and Methods
2.1. Data Collation

For this study, data were collected from a combination of the situation reports from
Ministry of Health (MOH) News Highlights and the Interactive Situation Report with
the epidemic split curve. The situation reports with data from the most recent 14 days
was utilized for collating the linked and unlinked cases. However, since the published
reports cannot be updated in the same table, the interactive situation report was used.
This situation report, updated daily, allowed collection of updated data for imported,
community, and dormitory cases as well as the cases that were isolated before detection
and detected through surveillance. Additionally, this facilitated cross-checking of the
situation report data which may have been later altered due to contact tracing developments
(www.moh.gov.sg/covid-19, accessed on 10 July 2022) [6].

2.2. Benford’s Law Analysis

To determine the accuracy and reliability of our COVID-19 data collated from MOH,
we need to show if the dataset obeys Benford’s Law, and if there is anomaly in our readings.
Benford’s Law, also known as the Newcomb-Benford Law or the First-digit Law, was first
observed by Newcomb and popularized by Benford. After extensive research about this
distribution phenomenon, Benford’s law remains an interesting methodology for finding
anomalies in data. The law is considered an empirical gem of statistical folklore used for
fraud detection in many naturally occurring datasets such as financial reports, election data,
macroeconomics data, and scientific data [7]. The same technique has also been deployed
in the modeling of behavioral features for social network users. Research conducted by
Anran Wei et al. in September 2020 studied the application of Benford’s Law to COVID-19
datasets where they targeted data readings of total confirmed cases, total deaths, and daily
confirmed cases. They obtained numbers from nineteen countries and the general results
showed that COVID-19 data readings follow Benford’s Law [8]. The idea behind Benford’s
Law is that the leading digits 1, 2, . . . , 9 of any naturally occurring data follow a certain
probability distribution where the probability of digit 1 occurring is approximately 30% of
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the time and decreases monotonically to less than 5% for digit 9. More precisely, the exact
law is given by:

P(d) = log10 (d + 1) − log10 (d) = log10 (1 + 1/d), for all (d = 1, . . . , 9)

Here, d denotes the first significant of the decimal digit, e.g.,

P(d = 1) = log10 (2/1) = 0.3010, P(d = 2) = log10 (3/2) = 0.1760, . . . ,

P(d = 9) = log10 (10/9) = 0.04575

2.3. Policy Evaluation

The policies were collected from the MOH website (www.moh.gov.sg/covid-19, ac-
cessed on 10 July 2022), where daily updates are posted since 2 January 2020 [6]. The
updates include the daily new cases, grants given out by the government, trade agreements
with other countries other updates on the COVID-19 situation in Singapore. There are
multiple updates per day, hence, multiple hyperlinks will be shown under the same date.
A table was created to facilitate referencing of the policies updated. These policies were
analyzed alongside the COVID-19 data to understand the impact of the pandemic on these
policies and vice versa.

3. Results
3.1. Benford’s Law Analysis

In our study, we superimpose our readings onto the Benford’s Law curve and deter-
mine whether it will yield a good fit. If the datasets match closely to the Benford’s Law
curve, then the COVID-19 dataset can be considered reliable for our subsequent analysis.
The graph of the first digit of daily cases from 2020–2021 plotted against frequency (in %)
seems to follow Benford’s distribution closely. The frequency of the first digits obeys the
law, more accurately among the higher digits than the lower digits. The shape of the graph
matches the expected shape of Benford’s distribution. Given that no anomaly was detected
(Figure 1), the variation of empirical measurements from the expected values may not be
statistically significant.

Figure 1. First digit distribution and second order test for COVID-19 data from 2020–2021 in Singapore
(Benford’s test).

Slight deviations in data are acceptable since the Benford’s distribution is an ideal case
scenario and the real-world examples deviate slightly from the ideal model [3]. Given that
Benford’s law has been used widely to detect fraudulent reporting and the data largely
follow the distribution, it can thus be concluded that the data for COVID-19 cases in
Singapore are largely accurate and reliable for further analysis [9].

The digit distribution second order test in Figure 1, related to Benford’s Law, could also
be used to detect if there are any inconsistencies in the internal pattern of our COVID-19
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data. A formal definition of the second order Benford test is as follows: Let x1, . . . , xN be a
data set comprising observations drawn from a continuous distribution, and let y1, . . . , yN
be the xi’s in increasing order. Then, for many natural data sets, for large N, the digits of the
differences between adjacent observations (yi+1 − yi) are close to Benford’s Law. Therefore,
this test helps to detect the relationship and anomaly in our data based on the digits of
the difference between the largest number of cases and the smallest number of cases after
sorting. As observed in Figure 1, these digit patterns also seem to be closely approximated
by the digit frequencies of Benford’s Law using the second-order digit distribution test [10].

3.2. COVID-19 Trends in Singapore

Singapore reported its first imported case of COVID-19 on 23 January 2020 and con-
tinued to report imported cases until March. Imported cases peaked by end March when
there was a significant increase in cases. However, this decreased toward the second half of
March and April. Ever since travel restrictions were eased by mid-June, imported cases
resurfaced and gradually increased until the end of December 2020. Furthermore, the
first community case was detected in Singapore during February and steadily increased
until April, peaking during the second week of April. With two periods of circuit breaker
measures, community cases gradually decreased by June 2020. However, Singapore wit-
nessed what was possibly a second wave of much weaker intensity in July. This could be
attributed to the easing of circuit breaker measures in June, which increased community
transmission. However, most of the dormitories were only cleared in August, while the
second wave is seemed to have started as early as July. Another possible explanation is
from an immunological standpoint. In his paper on the second wave of COVID-19, O
Hossein argues that the second wave of the pandemic in several countries is likely a cause
of pathogen–host interaction pattern rather than relaxed social distancing measures [11].
Healthy individuals infected with the virus possibly cleared the viral load before adaptive
immune response could be initiated. Thus, making them more susceptible to a second
round of infection due to a lack of memory cells. Eventually the community cases tapered
out and was negligible by November of 2020 (Figure 2).

Figure 2. COVID-19 cases and phases in Singapore (2020–2021).

Meanwhile, the dormitory cases, first detected in March 2020, experienced a dramatic
rise in cases, peaking in April 2020. This could be attributed to two reasons. First, the sig-
nificant number of community cases that were prevalent at the time and infected dormitory
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workers. Second and possibly of greater importance is the high density of dorm workers
living within small spaces under poor living conditions that favored rapid transmission
within the dormitories [12]. With frequent testing and isolation, the number of dorm cases
decreased subsequently. However, there was still a significant number of cases resurfacing
in September owing to a second peak that emerged in August. When the dorms were
intended to be cleared on 7 August, the number of cases leading to this day reached a
three-month high [13]. Eventually, all dormitories were cleared and there were practically
no dorm cases reported by December 2020.

Taken together, the data for imported, community, and dormitory cases together make
it evident that a spike in imported cases was followed by community cases within two
weeks during the first half of the year. The first wave of community cases seemed to
follow Farr’s Law, tapering off owing to circuit breaker measures [10]. The second wave
of community cases is about a month after phase 1 was initiated and was possibly due
to a lax in restrictions. Once travel restrictions and quarantine were imposed, while the
imported cases started increasing, community cases remained low. This is because most of
the imported cases became isolated before detection, decreasing the chances of it spilling
into the community, thereby decreasing the percentage of imported cases that turned into
community cases. However, this did not prevent community cases from spilling into dorm
once again in July/August 2020—a week after the community peak of the second wave
since most dorms were open by then. By the end of December 2020, both community and
dormitory cases were close to zero and only newly imported cases were prevalent.

However, in 2021, Singapore witnessed several new challenges in management of
the pandemic. More COVID-19 cases started to resurface, and Singapore reverted to a
heightened alert in Phase 3 during May. This was followed by several rounds of tightening
and subsequent easing of measures. In July 2021, the government announced several
measures tightening the restrictions within Phase 3 (heightened alert). Following this
announcement, Singapore witnessed the largest wave it had seen since the beginning of
the pandemic.

To understand the evolution of pandemic management from 2020 to 2021, these
policies enforced during this period are sufficient. The government clearly adopted an
endemic approach to managing the pandemic—accepting that COVID-19 will remain in
the society and measures must focus on gradual reopening without placing a burden on the
healthcare system rather than complete restrictions on activities. Recognizing the impact
that COVID-19 has had on the economy of Singapore, it was crucial to strike a balance
between the cost of the infections, its impact on the healthcare system, and the economic
consequences of a zero-COVID strategy.

As Singapore’s largest COVID-19 wave placed an immense burden on healthcare
workers, the stabilization phase was announced on 27 September 2021 when Singapore
reported 1641 daily cases. The aim of this phase was to stabilize the cases and ease the
burden on the healthcare system. Hence, this period was further extended until November
2021. In November 2021, when cases were still high, Singapore exited the stabilization
phase and entered the transition phase. This period was characterized by lifting of several
restrictions that were imposed for stabilization. A significant difference between this wave
and the COVID-19 wave in 2020 was the nature of the cases. Most of these reported cases
were imported cases and unlike 2020, the government managed to contain these cases
without spilling over into the community. Hence, community transmission was less severe
compared to 2020 and is further a testament to the success of pandemic management
in Singapore.

4. Discussion
4.1. What Has Singapore Done Well?
4.1.1. Information Transparency

As a role model to some countries, the Singapore government tackled the pandemic
effectively, be it reducing the economic impacts as much as possible or slowing down
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community spread. Singapore’s success in effectively managing the pandemic can be
largely attributed to the public willingness to cooperate and adherence to the policies that
were enforced. This can be attributed to the transparency from the government regarding
the COVID-19 situation in Singapore as well as the rationale behind all of the policies
enforced [14]. The Singapore government communicated daily developments and situation
updates through press releases and situation reports. The Gov.sg WhatsApp channel
was a medium to disseminate important announcements to the public in an accessible
manner daily [15]. This was done to disseminate information, reduce panic, and debunk
misinformation that was spreading throughout the Internet [16]. This level of transparency
has been crucial in solidifying the public trust in the government, contributing to their role
in pandemic management.

4.1.2. Efficient Screening

To curb the spread of cases, liberal testing was conducted on the population, with
Singapore being one the countries with one of the greatest numbers of swab tests done [17].
On top of the testing done, contact tracing and the SafeEntry were implemented to break
the chain of transmission, with the contact tracing being widely commended for its effi-
ciency [18]. The Public Health Preparedness Clinic (PHPC) was also activated. The PHPCs
are clinics across the country that are activated during public health emergencies which
dispense medications, administer vaccinations, and provide subsidized treatments. The
PHPCs are adequately prepared since they have been receiving constant training before
the pandemic [19]. By serving as the intermediary between the community and hospitals,
these PHPCs help to increase the efficiency and reduce the stress on hospitals by supple-
menting manpower to screen for patients and categorize them into low-risk and high-risk
groups [20].

4.1.3. Vaccination

One of the most important factors that shaped Singapore’s response to the pandemic
in 2021 has been its vaccination campaign. With an aggressive campaign, the Singapore
government aimed to ease restrictions largely allowing vaccinated individuals to return
to almost pre-COVID-19 levels of activity while protecting the unvaccinated population.
Singapore initiated the vaccination rollout on 30 December 2020, prioritizing health care
workers who are most at risk. The subsequent phases of the campaign targeted senior
citizens and the vulnerable before reaching the young adult population and children. As
of 29 December 2021, 87% of the population had been fully vaccinated. To attain this,
the government mobilized several clinics as centers where walking vaccinations were
encouraged. As a result, vaccination-differentiated measures were introduced in 2021
wherein vaccinated individuals could carry out activities to greater level of freedom in
comparison to non-vaccinated individuals allowing easing of restrictions while protecting
the unvaccinated [21].

This campaign is frequently updated based on latest scientific developments and
expert advice on the types of vaccines and doses required as the pandemic progresses
and variants like Delta are identified. Booster vaccine doses were encouraged and were
determined as necessary to be considered fully vaccinated. The Singapore government
has been largely transparent regarding the vaccination situation in Singapore and even
prepared the public for a possibility of taking booster shots periodically to maintain their
fully vaccinated status according to the vaccinated differentiated measures [22]. Vaccination
has been crucial in the stabilization that was achieved in 2021 while avoiding a strain on
the health care system as well as protecting the vulnerable senior citizens in Singapore.

4.1.4. Providing Grants

To protect the economy from the consequences of the COVID-19 pandemic, different
grants and packages were distributed. For instance, the Unity Budget, Resilience and
Solidarity Budget, and the Fortitude Budget were approved to help offset the costs and
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protect the livelihood of many [23]. These budgets were targeted toward employment-
related issues, sectors that were affected by COVID-19, and stimulating the economy. For
example, the SGUnited Jobs and Skills package aids jobseekers in looking for a job and
grants such as the self-employed person income relief scheme (SIRS) help to ease the
costs for the self-employed. Industries such as the Arts & Culture sector and the tourism
sector received $55 million and $90 million respectively as they were hit hard by the
impact of COVID-19 [24]. Besides the different subsidies for businesses and industries, the
government also provided subsidies to offset the costs of healthcare. This is important,
especially in times when healthcare is most needed by the people. Through the one-off
COVID-19 subsidy and additional support to the lower and middle income, as well as the
elderly of the Merdeka and Pioneer generation, Singaporeans can now receive healthcare
without worrying about the costs [25]. As a country that is heavily reliant on imported
products, Singapore has been constantly stockpiling its supplies and is well-prepared for a
disruption in the supply chain. Even though production and exports were reduced by many
countries during the pandemic, the Singapore government had months’ worth of essential
items and food for the country. These stockpiles allowed more time for the government to
source for alternative productions [26].

4.2. What Could Have Been Done Better?
4.2.1. Electronic Tracking

To date, there are different ways of tracking the places a person has visited in Singapore.
This includes the SafeEntry, Trace together application, and the Trace Together token. The
SafeEntry was implemented on 12 May 2020, the Trace together application was launched
on 20 March 2020, and the Trace together token was distributed from 14 September 2020
onwards [27–29]. Prior to the implementation of electronic tracking, contact tracing was
done manually and involved greater time and manpower. This process included monitoring
the movement of the patient for the past 14 days, investigation and identification of close
contacts, and notifying the close contacts [30]. Interviewing the patient was also the most
crucial process in identifying potential clusters and hence, a patient’s memory and integrity
are vital to identifying close contacts. While the contact tracing methods in Singapore has
been commended for its high accuracy and persistence in tracking, some lapse in contact
tracing is inevitable as patients could lie about their history or suffer from recall biases
especially when these patients are already unwell [18,19,31]. Therefore, the use of electronic
tracking in the earlier phase could have been implemented to a greater extent to prevent
such lapses.

While SafeEntry is compulsory, downloading of the Trace together application is
voluntary. The Trace together application acts like the Trace together token where it tracks
whether a person had been in close proximity to an infected individual. Short-distance
Bluetooth signals that are exchanged between the application or the token mean that these
individuals are near each other [32]. Therefore, the Trace together application is much more
accurate in determining whether a person is in close contact with the patient compared to
SafeEntry, which only tracks whether a person has entered a certain premise. Furthermore,
SafeEntry could be less accessible to elderly who are not proficient in technology since it
requires the use of smartphones [4]. Even though the National Registration Identity Card
(NRIC) could replace our smart phones for SafeEntry, not all places are equipped with the
NRIC scanner. Thus, the Trace Together token, which tracks the location more accurately
and is simpler in terms of usage, would be more convenient and appropriate for contact
tracing. However, owing to the lack of time, the tokens could not be manufactured in time.
Thus, earlier implementation of the SafeEntry could have made the contact tracing process
more efficient.

4.2.2. Mask Mandate

Policies regarding mask wearing are a crucial element of the pandemic, which if
managed more closely, could have prevented the outbreak from spreading within the
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community in Singapore. Singapore confirmed the first case of COVID-19 on 23 January
2020. At that time, only sick persons (with obvious symptoms) were required to wear
masks and the public was specifically instructed by the government to not wear masks
unless they were sick. This was to prevent any shortage of mask supply due to excessive
use. Until 5 June, the World Health Organization (WHO) did not encourage the public to
wear masks at all times. However, as of now, WHO announced that mask wearing may
become a part of normal life. [33]

The Singapore Government only enforced compulsory mask wearing from 15 April
2020 onwards. According to the policies, individuals who did not wear a mask could be
fined $300 the first time and $1000 the second time. Based on medical recommendation,
children below two years of age and adults doing strenuous exercise were exempted
from mask wearing [34]. For evidence that the decrease in community spread was due to
compulsory mask enforcements, Singapore has to look no further than Vietnam. The first
case of COVID-19 was detected in Vietnam on 17 January 2020. The government made
wearing masks on public transport and all public places compulsory on 21 February and 16
March respectively [35]. Vietnam’s limited community spread and well-controlled second
wave is likely due to these policies [36].

Furthermore, Taiwan’s success in managing COVID-19 has been attributed to its
compulsory mask wearing policies and medical care [37]. M. T Leffler et al. found that
the per capacity mortality of countries where mask wearing was practiced diligently was
significantly lower than other countries that did not strictly enforce mask wearing [38].
Scientifically, this is attributed to masks acting a barrier, preventing almost all droplets from
an infected person being suspended in the atmosphere [39]. Epidemiologically, the impact
of mask wearing of daily COVID-19 cases has been established. A Health Affairs study
on the COVID-19 spread in 15 U.S. states has found that there was a significant decline
in the growth of daily COVID-19 cases in states with strict mask mandates [40]. These
evidence illustrate that an early intervention to make masks compulsory while securing
mask supplies could have significantly decreased community cases in Singapore.

4.2.3. Travel Restrictions

Since the outbreak of COVID-19 in Wuhan, Singapore has consistently been monitoring
its epidemiological spread and imposing travel advisories and restrictions to Wuhan. All
inbound flights from Wuhan, China were ceased when the first COVID-19 case in Singapore
was confirmed [41]. By February 2020, all travel to Hubei province in mainland China, and
non-essential travel to the rest of mainland China, Iran, Japan, and the Republic of Korea
were issued travel advisories. Thereafter, Singapore continued to impose travel restrictions
and advisories on countries with very high numbers of cases such as Italy, France, Spain
and Germany [42]. On 23 March 2020, all short-term visitors were not allowed entry or
transit through Singapore [43].

In the early stages of a pandemic outbreak, mobility plays a significant role in the
spread of a disease [44]. This was demonstrated in a recent study on the outbreak of
COVID-19 which showed that mobility is indeed a strong contributor to the global spread
of the virus [44]. As a country that is highly connected to the rest of the world, there
would naturally be visitors from many countries. Inevitably, there were imported cases
which led to a few clusters. Two clusters were linked to tourists from China while another
was the Grand Hyatt cluster which involved several overseas cases [45]. Although the
clusters were closed, there were other unlinked cases which emerged. These could be linked
to undetected imported cases since air travel was still active in March, when Singapore
received the greatest number of visitors from Indonesia, UK and Australia [46]. In these
three countries, COVID-19 cases started increasing since the start of March [47–49]. Since
some travelers could be asymptomatic or pre-symptomatic, those that were in Singapore
before 23 March 2020 might have already been infected with the virus. Furthermore, there
were cases in Indonesia that went unreported due to low testing rate [50,51]. Hence, cases
in Indonesia could be higher than recorded. Moreover, European countries and the USA
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had high number of cases as well [52]. Even though Singapore received fewer visitors
from these countries, there could be higher chance of having an infected visitor from these
countries. This was especially so in Europe, where cases in Italy multiplied more than
nine times in ten days within the period when Singapore was still receiving travelers from
Europe [46]. Cases also escalated in USA and was as high as that in China in mid-March [52].
Hence, the Singapore government could have prevented the sudden spike in the number
of cases if stricter travel restrictions were implemented earlier.

5. Conclusions

In summary, Singapore has tackled the pandemic effectively, balancing restrictions
with economic impact. The government has constantly updated the public on the COVID-
19 situations through different platforms. To curb the spread of cases, extensive testing was
conducted. To protect the economy from the consequences of the COVID-19 pandemic, dif-
ferent grants and packages were distributed as well. However, there were several policies
and measures that could have been more effectively established. For instance, the late estab-
lishment of a compulsory mask mandate due to limited mask supply may have contributed
to the spread during the early months of the pandemic. Furthermore, restricting travelers
earlier could have decreased the imported cases that enter the community. However, with
emerging nature of the pandemic, the success of these policies eventually comes down
to the government’s ability to be flexible and responsive to latest developments, whether
regarding new variants or vaccines.
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Abstract: Background: This study aims to describe COVID-19–related clinical outcomes after im-
munotherapies (ICIs) for cancer patients. Methods: In this meta-analysis, we searched databases
to collect data that addressed outcomes after immunotherapies (ICIs) during the COVID-19 pan-
demic. The primary endpoint was COVID-19–related mortality. Secondary endpoints included
COVID-related hospital readmission, emergency room (ER) visits, opportunistic infections, respi-
ratory complications, need for ventilation, and thrombo-embolic events. Pooled event rates (PERs)
were calculated and a meta-regression analysis was performed. Results: A total of 262 studies were
identified. Twenty-two studies with a total of forty-four patients were eligible. The PER of COVID-
19–related mortality was 39.73%, while PERs of COVID-19–related ER visits, COVID-19–related
pulmonary complications, and COVID-19–related ventilator needs were 40.75%, 40.41%, and 34.92%,
respectively. The PER of opportunistic infections was 34.92%. The PERs of the use of antivirals,
antibiotics, steroids, prophylactic anticoagulants, and convalescent plasma were 62.12%, 57.12%,
51.36%, 41.90%, and 26.48%, respectively. There was a trend toward an association between previous
respiratory diseases and COVID-19–related mortality. Conclusion: The rates of COVID-19–related
mortality, ER visits, pulmonary complications, need for a ventilator, and opportunistic infections
are still high after ICIs during the COVID-19 pandemic. There was a trend toward an association
between previous respiratory diseases and COVID-19–related mortality.

Keywords: ICIs; COVID-19; cancer; mortality; meta-analysis

1. Introduction

Cancer patients could be more susceptible to COVID-19 infection because of their
vulnerable immunity status due to the cancer itself, as well as the cancer treatment [1].
Administering immune checkpoint inhibitors (ICIs) during the COVID-19 era comes with
challenges [2,3]. However, the data addressing the impact of ICIs on COVID-19–related
outcomes are unclear [4,5], considering the known fact that ICIs restore immune compe-
tency [6]. Some data showed that receipt of ICIs does not negatively impact the outcomes
after COVID-19 infection [5]. Thus, such challenges, debatable outcomes, and limited
existing data necessitate a systematic review.
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The challenges of administering ICIs during the COVID-19 era include the potential
overlap between COVID-19–related interstitial pneumonia and possible ICI-induced lung
injury [2,3,7]. The overall incidence rate of ICI-induced pneumonitis ranges from 2.5% to
10%; yet, it could be fatal, accounting for 35% of ICI-related mortality [2,8]. This challenge
is greater in lung cancer patients receiving ICIs with or without local radiotherapy who are
at risk for COVID-19 infection [9]. The immune hyperactivation induced by ICIs initiates
cytokine release syndrome (CRS) (elevated interleukins and cytokines with subsequent
organ failure and death). Similar cytokine storms have been observed after COVID-19
infection with similarly fatal outcomes of organ failure and death [10,11]. Given the
similarity of the presentations of underlying COVID-19–induced and ICI-induced lung
injury, diagnostic difficulty or delay and the synergistic effect of ICI- and COVID-19–
induced lung injury could add to the fatality of the outcomes [12]. Fortunately, ICI-induced
CRS is quite rare, and a COVID-19–induced cytokine storm is not an early event in the
COVID-19 trajectory [7]. Such observations leave space for early intervention and careful
patient screening/selection and monitoring to allow cancer patients in need of ICIs to
receive their treatment safely and effectively during the COVID-19 era.

Given that the duration of the pandemic and the trajectory of COVID-19 infections
are still unknown and unpredictable, we undertook a systematic review to obtain solid
data showing patient characteristics and COVID-19–related outcomes after ICIs during the
COVID-19 era. Care providers need these data to create effective, tolerable ICI treatment
plans without compromising safety or outcomes. The objective of this systematic review
was to address the clinical outcomes after ICIs for cancer patients during the COVID-19
era. The primary endpoint was COVID-19–related mortality and the secondary endpoints
included COVID-19–related therapy, readmission to the hospital, ER visits, opportunistic
infections, respiratory complications, need for ventilation, need for tracheostomy, and
thrombo-embolic events.

2. Methodology

This study was conducted according to the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guidelines. The Newcastle–Ottawa Quality
Assessment Scale for cohort studies was used [13].

2.1. Literature Search

We searched the Ovid MEDLINE, Ovid Embase, Clarivate Analytics Web of Science,
PubMed, and Wiley-Blackwell Cochrane Library databases for publications in the En-
glish language from 1 December 2019 to 15 October 2020. The following concepts were
searched for using subject headings and keywords as needed: “COVID-19”, “severe acute
respiratory syndrome coronavirus 2”, “SARS-CoV-2”, “coronavirus infections”, “novel
coronavirus”, “cancer”, “neoplasms”, “tumor”, “leukemia”, “lymphoma”, “melanoma”,
“carcinoma”, “sarcoma”, “oncology”, “checkpoint inhibitors”, “programmed cell death 1”,
“programmed death ligand 1”, “PD-1”, “PD-L1”, “cytotoxic T lymphocyte associated
antigen 4”, “CTLA 4”, “ipilimumab”, “pembrolizumab”, “nivolumab”, “atezolizumab”,
“durvalumab”, “avelumab”, “cemiplimab”, “chimeric antigen receptor t-cell therapy”,
“adoptive immunotherapy”, etc. The search terms were combined by “or” if they repre-
sented similar concepts and combined by “and” if they represented different concepts. The
complete search strategies are detailed in Tables S1–S4.

2.2. Study Selection

Eligible studies were required to evaluate measurable outcomes related to COVID-19
infection in cancer patients on ICIs during the COVID-19 pandemic. Owing to limited
publications in this unique cohort, we included case presentations and case studies. To
ensure inclusion of all available data, all bibliographies were searched for potential eligible
studies (i.e., backward snowballing). Nevertheless, abstracts, reviews, and expert opinions
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were excluded, as were studies that were not exclusively of ICI-treated patients and studies
with insufficient information about the characteristics or outcomes (listed below).

2.3. Data Extraction and Endpoints

Two reviewers (M.K. and A.Q.) independently assessed the eligibility. Then M.K.,
A.Q., and J.J. extracted the data from the eligible studies and tabulated the data using Excel
software (Microsoft Corporation, Redmond, WA, USA).

Data on study period, study center, country, type of cancer, type of study, and sample
size were retrieved. We abstracted age, gender, presence of hypertension, diabetes mellitus,
renal insufficiency, smoking history, pre-existing chronic obstructive pulmonary disease,
cerebrovascular accident, and dyslipidemia.

We also collected information about previous and current cancer treatments, type
of cancer and ICI(s), cancer status, in-hospital COVID-19 infection, onset of COVID-19
infection in relation to receipt of ICIs, and laboratory and pulmonary findings at diagnosis
of COVID-19 infection and their follow-up data if presented. To assess COVID-19–related
therapy use, we recorded use of steroids (yes/no, dosage, and duration), use of antivirals,
antibiotics, convalescent plasma, prophylactic coagulations, and antibodies. Finally, we
assessed the following outcomes when they occurred because of COVID-19 infection: rates
of readmission, emergency room (ER) visits, intensive care unit (ICU) admission, need for
tracheostomy, need for ventilation, mortality, and complications, for instance pulmonary
problems, thrombo-embolic events, and fungal and other opportunistic infections.

The primary endpoint of the analysis was COVID-19–related mortality. Secondary end-
points included COVID-19–related therapy, readmission to the hospital, ER visits, oppor-
tunistic infections, respiratory complications, need for ventilation, need for tracheostomy,
and thrombo-embolic events.

2.4. Statistical Analysis

Pooled event rates (PERs) with 95% confidence intervals (CIs) were calculated for
the study outcomes. Meta-regression was performed to explore the relationship between
COVID-19–related mortality and clinical characteristics. These results were reported as
a regression coefficient (i.e., beta). In all analyses, studies were weighted by the inverse
of the variance of the estimate for that study, and between-study variance was estimated
with the DerSimonian–Laird method with a random-effects model. Studies with zeros
were included in the meta-analysis, and treatment arm continuity correction was applied
in studies with zero cell frequencies.

Heterogeneity was based on the Cochran Q test, with I2 values. In the case of hetero-
geneity I2 > 50%, individual study inference analysis was performed through a “leave-one-
out” sensitivity analysis. Funnel plots by graphical inspection and Egger regression test
were used for assessment of publication bias. In the case of asymmetry positivity, visual
assessment and Duval and Tweedie’s “trim and fill” method were used for further assessment.

Hypothesis testing for equivalence was set at the two-tailed 0.05 level. All analyses
were performed using R version 4.1.0 (R Project for Statistical Computing) and RStudio
version 1.4.1717, using the “meta” and “metafor” packages.

3. Results

A total of 262 studies were identified in the databases. After exclusion of duplicates,
162 studies were screened. Then, we excluded 122 non-eligible studies. Forty full-text
articles were assessed for eligibility. Finally, 22 studies with a total of 44 patients met the eli-
gibility criteria. Supplementary Figure S1 shows the PRISMA flow diagram. Table 1 shows
the studies’ characteristics and patient demographics. Supplementary Table S5 shows the
overall baseline patient demographics. Patients’ average age was 57.2 ± 17.4 years. A
total of 66% were men, and 53% were current/former smokers. Totals of 61%, 36%, 30%,
and 15% had hypertension, pre-existing chronic obstructive pulmonary disease, diabetes
mellitus, and cerebrovascular accident, respectively. A total of 58% of patients had previous
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cancer therapy before receipt of ICIs. The top presenting COVID-19 symptoms were fever
(74%), cough (57%), and dyspnea (52%), while ground glass opacity (64%), infiltrate (27%),
and consolidation (27%) were the top radiologic findings. The Newcastle–Ottawa Quality
Assessment Scale for cohort studies is shown in Supplementary Table S6 [13].

The PER of COVID-19–related mortality was 39.73% (95% CI: 26.32–54.87%) (Figure 1),
while the PER of COVID-19–related ER visits, pulmonary complications, and need for
ventilation were 40.75% (95% CI: 19.63–65.95%), 40.41% (95% CI: 21.81–62.25%), and 34.92%
(95% CI: 17.34–57.86%), respectively (Figures 2 and 3, Supplementary Figure S2). The
PER of opportunistic infections was 34.92% (95% CI: 17.34–57.86%) (Supplementary Figure
S3). Table 2 and Supplementary Figures S4–S8 show the PERs of the use of antivirals
(62.12%), antibiotics (57.12%), steroids (51.36%), prophylactic anticoagulants (41.90%), and
convalescent plasma (26.48%). As shown in Table 2, none of the patients in the included
studies received antibodies, needed readmission, needed tracheostomy, or developed
thrombo-embolic events due to COVID-19 infection. Nevertheless, 27% of patients had
airway problems after COVID-19 infection in the nine included studies that assessed
this outcome.

Reports 2022, 5, x FOR PEER REVIEW 5 of 10 
 

 

Wu 2020 

Zhongnan Hospital of 

Wuhan University and 

the Tongji Hospital of 

Huazhong University 

of Science and Technol-

ogy 

China 
Case se-

ries 
11 56 8 5 NA NA NA NA NA NA 

Smith 2021 
Baylor College of Med-

icine 
USA 

Case re-

port 
1 23 0 NA NA NA NA NA NA NA 

HTN = hypertension; DM = diabetes; CKD = chronic kidney disease; CVA = cerebrovascular acci-

dent. 

The PER of COVID-19–related mortality was 39.73% (95% CI: 26.32–54.87%) (Figure 

1), while the PER of COVID-19–related ER visits, pulmonary complications, and need for 

ventilation were 40.75% (95% CI: 19.63–65.95%), 40.41% (95% CI: 21.81–62.25%), and 

34.92% (95% CI: 17.34–57.86%), respectively (Figures 2 and 3, Supplementary Figure S2). 

The PER of opportunistic infections was 34.92% (95% CI: 17.34–57.86%) (Supplementary 

Figure S3). Table 2 and Supplementary Figures S4–S8 show the PERs of the use of antivi-

rals (62.12%), antibiotics (57.12%), steroids (51.36%), prophylactic anticoagulants (41.90%), 

and convalescent plasma (26.48%). As shown in Table 2, none of the patients in the in-

cluded studies received antibodies, needed readmission, needed tracheostomy, or devel-

oped thrombo-embolic events due to COVID-19 infection. Nevertheless, 27% of patients 

had airway problems after COVID-19 infection in the nine included studies that assessed 

this outcome. 

 

Figure 1. Forest plot of the primary endpoint of COVID-19–related mortality. Figure 1. Forest plot of the primary endpoint of COVID-19–related mortality.

45



R
ep

or
ts

20
22

,5
,3

1

Ta
bl

e
1.

C
ha

ra
ct

er
is

tic
s

of
th

e
el

ig
ib

le
st

ud
ie

s
an

d
de

m
og

ra
ph

ic
s

of
th

e
pa

tie
nt

s
in

th
e

in
cl

ud
ed

st
ud

ie
s.

A
ut

ho
r

Ye
ar

In
st

it
ut

io
n

C
ou

nt
ry

St
ud

y
Ty

pe
N

M
ea

n
A

ge
M

al
e

Sm
ok

in
g

H
is

to
ry

H
T

N
D

M
D

ys
li

pi
de

m
ia

C
K

D
R

es
pi

ra
to

ry
C

on
di

ti
on

s
C

V
A

Yu
20

20
Z

ho
ng

na
n

H
os

pi
ta

lo
fW

uh
an

U
ni

ve
rs

it
y

C
hi

na
C

as
e

se
ri

es
2

N
A

2
N

A
N

A
N

A
N

A
N

A
N

A
N

A

Fi
gu

er
o-

Pe
re

z
20

20
U

ni
ve

rs
it

y
of

Sa
la

m
an

ca
Sp

ai
n

C
as

e
re

po
rt

1
76

1
N

A
N

A
N

A
N

A
N

A
1

N
A

D
am

at
o

20
20

O
nc

ol
og

ic
o

e
Te

cn
ol

og
ie

A
va

nz
at

e,
A

zi
en

da
U

SL
—

IR
C

C
S

R
eg

gi
o

Em
ili

a
It

al
y

C
as

e
se

ri
es

3
60

.3
2

2
N

A
N

A
N

A
N

A
N

A
N

A

Sc
hm

id
le

20
20

Te
ch

ni
ca

lU
ni

ve
rs

it
y

of
M

un
ic

h
G

er
m

an
y

C
as

e
re

po
rt

1
47

0
N

A
N

A
N

A
N

A
N

A
N

A
N

A

K
al

in
sk

y
20

20
C

ol
um

bi
a

U
ni

ve
rs

it
y

Ir
vi

ng
M

ed
ic

al
C

en
te

r
U

SA
C

as
e

re
po

rt
1

32
0

0
N

A
N

A
N

A
N

A
N

A
N

A

Sh
av

er
di

an
20

20
M

em
or

ia
lS

lo
an

K
et

te
ri

ng
C

an
ce

r
C

en
te

r
U

SA
C

as
e

se
ri

es
1

73
0

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
in

g
20

20
Th

e
U

ni
ve

rs
it

y
of

Te
xa

s
M

D
A

nd
er

so
n

C
an

ce
r

C
en

te
r

U
SA

C
as

e
se

ri
es

2
61

.5
1

N
A

N
A

N
A

N
A

N
A

N
A

N
A

R
ol

fo
20

20
M

ar
le

ne
an

d
St

ew
ar

tC
om

pr
eh

en
si

ve
C

an
ce

r
C

en
te

r
U

SA
C

as
e

se
ri

es
2

65
1

2
N

A
N

A
N

A
N

A
N

A
N

A

Sp
ot

o
20

20
U

ni
ve

rs
it

y
C

am
pu

s
Bi

o-
M

ed
ic

o
of

R
om

e
It

al
y

C
as

e
re

po
rt

1
55

0
0

0
1

0
0

0
0

D
iG

ia
co

m
o

20
20

U
ni

ve
rs

it
y

H
os

pi
ta

lo
fS

ie
na

It
al

y
C

as
e

se
ri

es
2

62
.5

1
0

0
0

0
0

0
0

W
ei

20
20

H
ua

zh
on

g
U

ni
ve

rs
it

y
of

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
C

hi
na

C
as

e
se

ri
es

1
30

1
N

A
N

A
N

A
N

A
N

A
N

A
N

A

O
K

el
ly

20
20

M
at

er
M

is
er

ic
or

di
ae

U
ni

ve
rs

it
y

H
os

pi
ta

l
Ir

el
an

d
C

as
e

re
po

rt
1

22
0

0
0

0
0

0
0

0

So
uz

a
20

20
H

os
pi

ta
lI

sr
ae

lit
a

A
lb

er
tE

in
st

ei
n

Br
az

il
C

as
e

se
ri

es
2

78
.5

1
N

A
N

A
N

A
N

A
N

A
N

A
N

A

D
iN

oi
a

20
20

C
lin

ic
he

H
um

an
it

as
G

av
az

ze
ni

It
al

y
C

as
e

re
po

rt
1

53
1

N
A

N
A

N
A

N
A

N
A

N
A

N
A

G
ue

ri
ni

20
20

U
ni

ve
rs

it
à

de
gl

iS
tu

di
di

Br
es

ci
a

It
al

y
C

as
e

re
po

rt
1

75
1

1
1

0
0

0
1

0

da
C

os
ta

20
20

Br
az

il
C

as
e

re
po

rt
1

66
1

1
N

A
N

A
N

A
N

A
N

A
N

A

Ye
ke

dü
z

20
20

Tu
rk

ey
C

as
e

re
po

rt
1

75
1

N
A

1
1

0
0

1
1

Sz
ab

ad
os

20
20

U
K

C
as

e
se

ri
es

4
64

.5
4

2
4

1
0

0
0

0

Be
rs

an
el

li
20

20
82

It
al

ia
n

ce
nt

er
s

It
al

y
C

as
e

se
ri

es
3

71
.7

3
3

2
N

A
N

A
N

A
2

1

G
ro

ve
r

20
20

U
SA

C
as

e
re

po
rt

1
54

0
N

A
N

A
N

A
N

A
N

A
N

A
N

A

W
u

20
20

Z
ho

ng
na

n
H

os
pi

ta
lo

fW
uh

an
U

ni
ve

rs
it

y
an

d
th

e
To

ng
ji

H
os

pi
ta

lo
fH

ua
zh

on
g

U
ni

ve
rs

it
y

of
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

C
hi

na
C

as
e

se
ri

es
11

56
8

5
N

A
N

A
N

A
N

A
N

A
N

A

Sm
it

h
20

21
Ba

yl
or

C
ol

le
ge

of
M

ed
ic

in
e

U
SA

C
as

e
re

po
rt

1
23

0
N

A
N

A
N

A
N

A
N

A
N

A
N

A

H
TN

=
hy

pe
rt

en
si

on
;D

M
=

di
ab

et
es

;C
K

D
=

ch
ro

ni
c

ki
dn

ey
di

se
as

e;
C

VA
=

ce
re

br
ov

as
cu

la
r

ac
ci

de
nt

.

46



Reports 2022, 5, 31

Reports 2022, 5, x FOR PEER REVIEW 6 of 10 
 

 

 

Figure 2. Forest plot of COVID-19–related ER visits. 

 

Figure 3. Forest plots of pulmonary complications due to COVID-19 infection. 

Table 2. Outcomes summary. 

Outcome No. of Studies Estimate 95% CI Heterogeneity: I2, p-Value Egger Test (p-Value) 

Steroid use 14 51.36% 34.99–67.44 0%, p = 0.757 p = 0.6754 

Antiviral use 10 62.10% 41.04–79.41 0%, p = 0.5467 p = 0.1625 

Antibiotics use 13 57.12% 37.03–75.10 0%, p = 0.9824 p = 0.0017 

Convalescent plasma use 8 26.48% 10.59–52.28 0%, p = 0.9470 NA 

Prophylactic anticoagulant use 10 41.90% 21.35–65.72 0%, p = 0.7297 p = 0.6215 

Antibody treatment 6 0% NA NA NA 

Readmission to hospital 5 0% NA NA NA 

ER visit 9 40.75% 19.16–65.95 0%, p = 0.8221 NA 

COVID-19–related mortality 19 39.73 26.32–54.87 0%, p = 0.9077 p = 0.7214 

Airway problem 9 27.28% 11.79–51.30 0%, p = 0.8272 NA 

Pulmonary complication 10 40.41% 21.81–62.25 0%, p = 0.5596  

Need for ventilator 11 34.92% 17.34–57.86 0%, p = 0.7252 p = 0.0030 

Need for tracheostomy 9 0% NA NA NA 

Thrombo-embolic event 8 0% NA NA NA 

Opportunistic infection 9 29.45% 12.84–54.18 0%, p = 0.8681 NA 

The meta-regression (Table 3) indicated a trend toward association between previous 

respiratory diseases and COVID-19–related mortality (p = 0.0861). No other characteristic 

Figure 2. Forest plot of COVID-19–related ER visits.

Reports 2022, 5, x FOR PEER REVIEW 6 of 10 
 

 

 

Figure 2. Forest plot of COVID-19–related ER visits. 

 

Figure 3. Forest plots of pulmonary complications due to COVID-19 infection. 

Table 2. Outcomes summary. 

Outcome No. of Studies Estimate 95% CI Heterogeneity: I2, p-Value Egger Test (p-Value) 

Steroid use 14 51.36% 34.99–67.44 0%, p = 0.757 p = 0.6754 

Antiviral use 10 62.10% 41.04–79.41 0%, p = 0.5467 p = 0.1625 

Antibiotics use 13 57.12% 37.03–75.10 0%, p = 0.9824 p = 0.0017 

Convalescent plasma use 8 26.48% 10.59–52.28 0%, p = 0.9470 NA 

Prophylactic anticoagulant use 10 41.90% 21.35–65.72 0%, p = 0.7297 p = 0.6215 

Antibody treatment 6 0% NA NA NA 

Readmission to hospital 5 0% NA NA NA 

ER visit 9 40.75% 19.16–65.95 0%, p = 0.8221 NA 

COVID-19–related mortality 19 39.73 26.32–54.87 0%, p = 0.9077 p = 0.7214 

Airway problem 9 27.28% 11.79–51.30 0%, p = 0.8272 NA 

Pulmonary complication 10 40.41% 21.81–62.25 0%, p = 0.5596  

Need for ventilator 11 34.92% 17.34–57.86 0%, p = 0.7252 p = 0.0030 

Need for tracheostomy 9 0% NA NA NA 

Thrombo-embolic event 8 0% NA NA NA 

Opportunistic infection 9 29.45% 12.84–54.18 0%, p = 0.8681 NA 

The meta-regression (Table 3) indicated a trend toward association between previous 

respiratory diseases and COVID-19–related mortality (p = 0.0861). No other characteristic 

Figure 3. Forest plots of pulmonary complications due to COVID-19 infection.

Table 2. Outcomes summary.

Outcome No. of Studies Estimate 95% CI Heterogeneity:
I2, p-Value

Egger Test
(p-Value)

Steroid use 14 51.36% 34.99–67.44 0%, p = 0.757 p = 0.6754
Antiviral use 10 62.10% 41.04–79.41 0%, p = 0.5467 p = 0.1625

Antibiotics use 13 57.12% 37.03–75.10 0%, p = 0.9824 p = 0.0017
Convalescent plasma use 8 26.48% 10.59–52.28 0%, p = 0.9470 NA

Prophylactic anticoagulant use 10 41.90% 21.35–65.72 0%, p = 0.7297 p = 0.6215
Antibody treatment 6 0% NA NA NA

Readmission to hospital 5 0% NA NA NA
ER visit 9 40.75% 19.16–65.95 0%, p = 0.8221 NA

COVID-19–related mortality 19 39.73 26.32–54.87 0%, p = 0.9077 p = 0.7214
Airway problem 9 27.28% 11.79–51.30 0%, p = 0.8272 NA

Pulmonary complication 10 40.41% 21.81–62.25 0%, p = 0.5596
Need for ventilator 11 34.92% 17.34–57.86 0%, p = 0.7252 p = 0.0030

Need for tracheostomy 9 0% NA NA NA
Thrombo-embolic event 8 0% NA NA NA
Opportunistic infection 9 29.45% 12.84–54.18 0%, p = 0.8681 NA

The meta-regression (Table 3) indicated a trend toward association between previ-
ous respiratory diseases and COVID-19–related mortality (p = 0.0861). No other charac-
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teristic showed a significant association with COVID-19–related mortality in the meta-
regression analysis.

Table 3. Meta-regression of COVID-related mortality.

Variable No. of Studies Beta ± SE p-Value

Mean age 18 −0.0073 ± 0.0211 0.7300
Male sex 19 0.0034 ± 0.0089 0.7009

Respiratory disease 7 0.0220 ± 0.0128 0.0861
History of smoking 10 0.0078 ± 0.0114 0.4917

Diabetes 5 0.0166 ± 0.0189 0.3813
Hypertension 6 0.0131 ± 0.0144 0.3634
Dyslipidemia 5 −0.6263 ± 0.7086 0.3768

Chronic kidney disease 5 −0.6263 ± 0.7086 0.3768
Cerebrovascular accident 6 0.0236 ± 0.0178 0.1858
Previous cancer treatment 8 0.0043 ± 0.0121 0.7194

Results are expressed as β ± standard error, p-value. Positive beta reflects an increase in the event when the
frequency of the variable increases, while negative beta reflects a decrease in the event with the increase in the
frequency of the variable. SE = standard error.

4. Discussion

Our systematic review of COVID-19–related outcomes after ICIs reported the rates
of COVID-19–related mortality, ER visits, pulmonary complications, need for a ventilator,
and opportunistic infections in cancer patients on ICIs during the COVID-19 pandemic.
While there was a trend toward association between previous respiratory diseases and
COVID-19-related mortality, no other characteristic was associated with COVID-19-related
mortality in the meta-regression analysis.

Immunotherapies have revolutionized cancer care. Nevertheless, immunotherapies
modulate the immune system, induce unique adverse events, and are usually administered
for long durations. Further, managing the resultant, potentially fatal morbidities after
immunotherapies is a clinical challenge, especially during the pandemic [1,14]. However,
the exact impact of COVID-19 infection on the risk of mortality and morbidities after
immunotherapies is still uncertain. Our data showed that the PER of COVID-19–related
mortality was 39.73% in cancer patients treated with ICIs during the pandemic. Similarly
high COVID-19–related mortality rates in patients on ICI therapy during the pandemic
were reported by Dai et al. (33%) [1] and Robilotti et al. (36%). Yet, Robilotti et al. [15]
highlighted that receiving ICIs did not impact the death rate during the COVID-19 era.

While patients on ICIs have a certain level of risk for developing infectious dis-
eases [16], the risk of COVID-19 infection after ICIs increased only after the use of corticos-
teroids and/or TNF-α inhibitors [17]. However, other studies reported that COVID-19 in-
fection rates are low after ICIs and that receipt of ICIs did not increase the risk of COVID-19
infection [18]. These low rates have been attributed in part to the high compliance with
social distancing and mask-wearing in cancer-setting care. Additionally, the immunosup-
pressive effect of ICIs modulates the cytokine release syndrome associated with severe
COVID-19 infection [19–22]. For these reasons, some ICI-treated patients with COVID-19
infection are asymptomatic and subsequently do not seek to be tested for COVID-19. Fur-
ther, at certain stages of the treatment course, ICIs restore cellular immunocompetence,
which makes patients on ICIs less prone to infection [6,23]. However, close monitoring is
still needed.

Based on the data from this meta-analysis, the top presenting COVID-19 symptoms
were fever (74%), cough (57%), and dyspnea (52%), while ground glass opacity (64%), infil-
trate (27%), and consolidation (27%) were the most common imaging findings. Considering
the high rate of pulmonary complications and need for ventilators (40% and 35%), close
and cautious monitoring is warranted [24], with particular focus on excluding bacterial
co-infection, which has been found to increase the risk of poor outcomes. The similarities
in presentation, response to steroids/antibodies, chest imaging findings, and pathologi-
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cal characterization between the lung injury induced by COVID-19 and ICIs are clinical
challenges in the management of cases treated with ICIs during the COVID-19 era [2,11,12].
The massive amount of activated immune cells after ICI therapy may delay the diagnosis of
COVID-19 infection, as these cells are very hypermetabolic on fluorodeoxyglucose positron
emission tomography [25]. Further, steroids could relieve both COVID-19– and ICI-induced
lung injury. On the basis of pathological findings after COVID-19 infection (hyaline mem-
brane formation and pulmonary edema), steroids could resolve COVID-19–induced lung
injury. However, steroid use should be timely optimized to treat severe respiratory stress
after COVID-19 infection [11]. Additionally, monoclonal antibodies showed improvement
in levels of organ toxicity induced by either ICIs or COVID-19 [26,27]. Yet, the efficacy of
monoclonal antibodies in treating COVID-19–induced injury is still under investigation.
Further, the granulocyte colony-stimulating factor and erythropoietin play important roles
whenever indicated [28,29].

Managing COVID-19–related complications in patients on ICIs is another challenge.
We found that the PER of opportunistic infections was 34.92%. Nevertheless, none of the
patients in the included studies needed readmission, needed tracheostomy, or developed
thrombo-embolic events due to COVID-19 infection. However, 27% of the patients in
nine included studies had airway problems after COVID-19 infection. We also presented
PERs of the use of antivirals (62.12%), antibiotics (57.12%), steroids (51.36%), prophylactic
anticoagulants (41.90%), and convalescent plasma (26.48%) after COVID-19 infection. Most
cancer care centers agree on continuing ICIs after COVID-19 infection [4,30], and Amin et al.
advised continuing the standard management of immunotherapy-induced adverse events
in these patients as long as protective measures are closely adhered to [21]. Nevertheless,
timing is key; since most patients experience immunotherapy-induced adverse events
within the first 6 months of treatment [7], patients who are going to start ICIs during the
pandemic must be carefully selected and monitored. Furthermore, pathological activation
of immune response usually occurs during the late stage of COVID-19 infection [11].

Some authors have explored the effect of treatment frequency and time elapsed after
ICIs on COVID-19 infection severity. Robilotti et al. [15] mentioned that ICIs were one of
the predictors of the need for hospitalization and developing severe COVID-19 infection,
while others did not observe any statistically significant association between receipt of
ICIs and the severity of COVID-19 infection [18,31]. We may better explain these findings
when we have a better understanding of the crosstalk between the respective immune
activation pathways that are secondary to ICI treatment and COVID-19–induced cytokine
release syndrome. Nevertheless, modulating the dosage and schedule of ICIs may benefit
individual patients [32]. On the other hand, the severity of COVID-19 infection has been
observed to be high in patients with lung cancer [33,34], especially after ICIs, as reported by
Robilotti et al. [15]. However, Robilotti et al. [15] mentioned that the severity of COVID-19
infection was similarly high in non-lung-cancer patients who had ICIs. Nevertheless, other
studies did not find an association between receipt of ICIs and poor outcomes of COVID-19
infection [4,18,33]. Of note, Robilotti et al. attributed the difference between their findings
and other studies to their inclusion of more patients and their assessment of infection
severity in terms of significant oxygen need rather than death, which was the outcome
evaluated by studies that did not show any association between severity and outcomes.

We found a trend toward the association between previous respiratory diseases and
COVID-19–related mortality. No other characteristic showed a significant association
with COVID-19–related mortality in the meta-regression analysis. Our systematic review
provides essential information to guide the care after ICIs during the COVID-19 era. Yet,
we acknowledge that the existing data are still limited. Global, harmonized data collection
is exceptionally needed to support solid guidelines. We believe that further understanding
of the COVID-19- and ICI-induced lung injury will improve our management of patients
during the COVID-19 era.
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Abstract: Background: Long-term care facility (LTCF) residents often present asymptomatic or
paucisymptomatic features of SARS-CoV-2 infection. We aimed at investigating signs/symptoms,
including their clustering on SARS-CoV-2 infection and mortality rates associated with SARS-CoV-2
infection in LTCF residents. Methods: This is a cohort study of 586 aged ≥ 60 year-old residents at risk
of or affected with COVID-19 enrolled in the GeroCovid LTCF network. COVID-19 signs/symptom
clusters were identified using cluster analysis. Cluster analyses associated with SARS-CoV-2 infection
and mortality were evaluated using logistic regression and Cox proportional hazard models. Results:
Cluster 1 symptoms (delirium, fever, low-grade fever, diarrhea, anorexia, cough, increased respiratory
rate, sudden deterioration in health conditions, dyspnea, oxygen saturation, and weakness) affected
39.6% of residents and were associated with PCR swab positivity (OR = 7.21, 95%CI 4.78–10.80;
p < 0.001). Cluster 1 symptoms were present in deceased COVID-19 residents. Cluster 2 (increased
blood pressure, sphincter incontinence) and cluster 3 (new-onset cognitive impairment) affected 20%
and 19.8% of residents, respectively. Cluster 3 symptoms were associated with increased mortality
(HR = 5.41, 95%CI 1.56–18.8; p = 0.008), while those of Cluster 2 were not associated with mortality
(HR = 0.82, 95%CI 0.26–2.56; p = 730). Conclusions: Our study highlights that delirium, fever, and
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low-grade fever, alone or in clusters should be considered in identifying and predicting the prognosis
of SARS-CoV-2 infection in older LTCF patients.

Keywords: COVID-19; long term care facilities; gerocovid observational study; symptoms cluster

1. Introduction

Clinical presentations of coronavirus disease-19 (COVID-19) can significantly vary
from asymptomatic infection to severe respiratory failure [1]. In adults, common clinical
manifestations of COVID-19 include nasal secretions, cough, dyspnea, fever, myalgia,
and occasionally diarrhea. Approximately 15% have developed acute respiratory distress
syndrome that may last from 5 to 14 days [2]. Reflecting that COVID-19 infection symp-
toms particularly vary in older LTCF adults, numerous atypical manifestations including
delirium, falls, muscle wasting, anorexia, and cachexia have been shown to be associ-
ated with COVID-19 infection [3]. Therefore, the need to quickly recognize COVID-19
infection in these residents in order to protect against negative prognostic outcomes as
well as rapidly reduce the spread of the infection in this setting remains crucial. Indeed,
older residents commonly suffer from multiple comorbidities that may mimic SARS-CoV-2
infection, thus underlining clinical difficulties related to identifying COVID-19 in this
setting. Recent literature has underlined that older residents with three or more chronic
diseases, such as dementia or cognitive impairment, malnutrition, or central and peripheral
arterial disease have a higher risk of an infection from SARS-CoV-2 [4]. Interestingly, these
authors also found that mortality was significantly higher in SARS-CoV-2-positive resi-
dents than in SARS-CoV-2-negative residents with suspicious symptoms (21.6% vs. 10.8%,
respectively) [4]. At the moment, implications and clinical relevance of asymptomatic and
paucisymptomatic COVID-19 residents remain unclear as well as specific treatment options
and type of clinical monitoring in LTCF residents [5]. The prevalence of asymptomatic
cases greatly varies, from 16% to 69.7% in populations worldwide [6].

Even though anti-SARS-CoV-2 vaccines have shown to significantly lower mortality
rates, infection rates in LTCFs remain high. It also is still unclear why clinical presenta-
tions of COVID-19 infection in older patients largely vary (asymptomatic, typical clinical
symptoms or atypical symptoms), thus underlining an urgent need to identify which
presentations may be significantly related to negative clinical outcomes. In this study, we
aimed at identifying signs or symptoms, as well as the clustering of signs/symptoms,
associated with a SARS-CoV-2 infection and evaluate the related risk on negative outcomes
including mortality.

2. Materials and Methods

GeroCovid LTCFs is a part of the GeroCovid Observational Study, a multi-center
and multi-setting study evaluating the impact of the COVID-19 pandemic on the health
outcomes of older patients in numerous clinical settings of acute and long-term care [7,8].

2.1. Participants

The GeroCovid LTCF cohort included 39 sites from 6 Italian regions (n = 2380). For
this study analysis, we included nine study sites that reported positive COVID-19 cases
from 1 March 2020 to 31 December 2020. For study purposes, we included 586 residents
aged ≥ 60 years with suspicious signs or symptoms or who were considered at a high risk
of a COVID-19 infection.

Onset symptoms included: (i) “typical” (cough, nasal congestion, hoarseness, sore
throat, wheezing, sneezing, loss of sense of smell or taste, or high temperature); (ii) “atypi-
cal” (diarrhea, vomiting, anorexia, delirium, weakness). High-risk contacts were defined as
residents who had direct physical contact with a COVID-19 confirmed case or were in a
closed environment with a COVID-19 confirmed case in the absence of suitable personal
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protective equipment. Furthermore, all new residents admitted to the LTCF or readmitted
after a period of hospitalization were considered at risk of infection. Residents with suspi-
cious signs and/or symptoms or at risk of COVID-19 infection were isolated and tested for
SARS-CoV-2 positivity using PCR–RNA testing. According to swab results, residents were
then categorized as positive or negative for SARS-CoV-2 infection [4].

Mobility assessments over the last month were determined using data from the Frailty
Anamnestic Criteria [9]. Low-grade fever was defined as a body temperature ranging from
37 ◦C to 37.5 ◦C, while high-grade fever was defined as a body temperature higher than
37.5 ◦C.

2.2. Measures and Data Collection

Data on sociodemographic variables, comorbidities, polypharmacy, mobility, symp-
toms, SARS-CoV-2 swab testing, and outcome (clinical course, transfer to a different setting,
death) were collected.

The Campus Bio-Medico University Ethical Committee approved the overarching proto-
col of the GeroCovid Observational study on 3 April 2020 (Trial Registration: NCT04379440).
All participating investigational sites gained approval from their local Ethical Committee
review board. Informed consent was aquired and the data were collected using a national
de-identified electronic registry provided by BlueCompanion.

2.3. Statistical Analysis

The clinical characteristics of the study participants are reported as means ± standard
deviation (SD) or median [25–75th percentile] for quantitative measures and as counts or
percentages for categorical variables. The normality of the distributions was evaluated
using the Shapiro–Wilk test. Clinical characteristics were summarized and compared
among groups (positive vs negative SARS-CoV-2 swab) using the chi-squared or Fisher’s
exact tests for the categorical variables and the generalized linear model or the Wilcoxon
rank-sum test for the quantitative ones. A multivariable logistic regression model adjusted
for age, sex, and comorbidity (defined as having three or more comorbidities, according to
the median of the sample distribution) evaluated the correlation of having a positive swab
with reported signs and symptoms. A stepwise analysis on symptoms was performed
with a p-value of 0.15 to entry and a p-value 0.20 to be retained in the model. Tjur R2 was
calculated to evaluate the predictive power of the model [10]. The results are presented as
adjusted odds ratios (OR) and 95% confidence intervals (95%CI).

The presence of clusters among COVID-19 symptoms was evaluated using a hier-
archical cluster analysis (McQuitty method) as a similarity measure of the proportion of
observations when two symptoms were simultaneously present. A dendrogram (a tree-like
diagram that illustrates the relationships between symptoms according to the measure
of similarity chosen) obtained from cluster analysis was evaluated. The horizontal axis
represents the similarity between clusters, while the vertical axis represents the considered
symptoms, and each joining of two clusters is represented by the splitting of a horizontal
line into two horizontal lines. This analysis started with individual symptoms, and clusters
of the most similar symptoms were progressively formed, joining symptoms and clusters
until all symptoms were joined into a single large cluster. The association between each
cluster and a positive SARS-CoV-2 swab was evaluated using logistic regression models
adjusted for age and sex.

Cox proportional hazard models were performed to determine probability risk of short-
term mortality, and independent covariates regarding age, sex, number of comorbidities,
and COVID-19 positivity were included in models. Additional Cox models with symptom
clusters as independent variables adjusted for age, sex, and number of comorbidities
were also performed. The results are presented as adjusted hazard ratios (HR) and 95%
confidence intervals (95%CI).

All statistical tests were two-tailed, and statistical significance was assumed for
p-value < 0.05. The analyses were performed using SAS, V.9.4 (SAS Institute, Cary, NC, USA).
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3. Results

The study included 586 residents (mean age 84.8 ± 8.5 years, range 60–100 years, 72.9%
women) based on the presence of suspicious signs and/or symptoms of a SARS-CoV-2
infection and those at a high risk of a SARS-CoV-2 infection. SARS-CoV-2 RNA testing
using RT-PCR was performed in 583 residents and identified 209 positive SARS-CoV-2
residents. As reported in Table 1, the use of polypharmacy (median number of seven
drugs) and having three or more comorbidities were significantly higher in those with
a SARS-CoV-2 infection compared with those without infection. Furthermore, mobility
worsening in the last month was significantly higher in those with SARS-CoV-2 infection
compared with those without (72% vs. 28%) (p < 0.001).

Table 1. Characteristics of older adults from the GeroCovid LTCFs study: overall population and by
SARS-CoV-2 positive or negative swab results.

All
(n = 586)

SARS-CoV-2 +
(n = 209)

SARS-CoV-2 −
(n = 374) p-Value

Age, year, mean ± SD 84.8 ± 8.5 85.5 ± 8.1 84.4 ± 8.6 0.19
Sex, female, n (%) 427 (72.9) 152 (72.7) 273 (73.0) 0.94

Smoking status, n (%)

0.08
Current smoker 11 (3.8) 1 (1.1) 9 (4.6)

Ex-smoker 46 (15.8) 20 (21.3) 26 (13.3)
Non smoker 234 (80.4) 73 (77.7) 160 (82.0)

Number of drugs, median (Q1, Q3) 5 (4, 7) 7 (5, 10) 5 (3, 7) <0.001
Total number of chronic diseases, median (Q1, Q3)

(available for n = 594) 3 (2, 5) 3 (2, 4) 2 (1, 4) 0.002

Chronic diseases, n (%)
<0.0010, 1, 2 224 (38.2) 57 (27.3) 167 (44.7)

3+ 365 (61.8) 152 (72.7) 207 (55.3)
Worsening of mobility in the last month, n (%)

(available for n = 271 residents) 116 (42.8) 67 (72.0) 49 (27.5) <0.001

Abbreviations: SD, Standard Deviation; Q1, Quartile 1; Q3, Quartile 3.

An amount of 503 residents had full data regarding any signs and/or symptoms of
infection. Of these, approximately 30% of SARS-CoV-2-positive residents did not report
any symptoms, while over 70% reported at least one symptom (Table 2). The most common
symptom in older residents with a SARS-CoV-2 infection was delirium (41.2%), followed by
high-grade fever (39.1%), low-grade fever (36.2%), sudden worsening of health status (35%),
weakness (32.1%), low oxygen saturation at rest (SpO2 < 90%) (29.6%), anorexia (27.0%),
dyspnea (26.1%), diarrhea (21.6%), and diuresis contraction (14.2%) (Table 2). According
to logistic regression analyses, clinical features associated with RT-PCR positivity were
delirium (OR = 9.9; 95%CI: 3.5–27.5; p < 0.001), high-grade fever (OR = 7.0; 95%CI: 3.1–16.1;
p < 0.001), low-grade fever (OR = 4.3; 95%CI: 1.5–12.2; p = 0.006), and having three or more
comorbidities (OR = 2.0; 95%CI: 1.0–3.7; p = 0.038) (Figure 1). The prevalence of delirium as
the onset symptom of a SARS-CoV-2 infection was significantly higher in residents with
dementia compared with those without dementia (27.1% and 10.5%, respectively; p = 0.001).
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Table 2. Symptoms of older adults from the GeroCovid LTCFs study, according to SARS-CoV-2 infec-
tion status.

SARS-CoV-2 +
(n = 179)

SARS-CoV-2 −
(n = 324) p-Value

No symptoms, n (%) 53 (29.6) 203 (62.7) <0.001
At least one symptom, n (%) 126 (70.4) 121 (37.3) <0.001

Fever, n (%) 70 (39.1) 21 (6.5) <0.001
Low-grade fever, n (%) 64 (36.2) 8 (2.5) <0.001
Pharyngodynia, n (%) 1 (1.3) 3 (1.0) 1.000

Cough, n (%) 21 (12.4) 16 (5.0) 0.003
Sneezing, n (%) 4 (2.3) 6 (1.9) 0.72
Dyspnoea, n (%) 46 (26.1) 18 (5.7) <0.001

Low oxygen saturation after walking, n (%) 2 (2.0) 6 (2.1) 1.000
Low oxygen saturation at rest (<90%), n (%) 37 (29.6) 15 (4.9) <0.001

S 02 %, mean±SD 95 (93, 96) 97 (96, 98) <0.001
Weakness/Prostration, n (%) 52 (32.1) 41 (12.7) <0.001

Fall or fainted, n (%) 1 (0.9) 7 (2.3) 0.69
Muscles aching, n (%) 10 (6.6) 13 (4.1) 0.24

Delirium, n (%) 49 (41.2) 7 (2.3) <0.001
Conjunctivitis, n (%) 3 (1.8) 5 (1.6) 1.000

Loss of smell (if new), n (%) 0 (0.0) 0 (0.0) –
Loss of taste, n (%) 3 (2.2) 2 (0.6) 0.17

Anorexia, n (%) 30 (27.0) 20 (6.6) <0.001
Nausea/vomiting, n (%) 12 (7.2) 4 (1.3) 0.004

Diarrhea, n (%) 36 (21.6) 12 (3.8) <0.001
Raynaud syndrome, n (%) 4 (3.5) 0 (0.0) 0.005

Cutaneous symptoms, n (%) 6 (5.1) 2 (0.7) 0.007
Sudden worsening of health status, n (%) 43 (35.0) 5 (1.6) <0.001

Aphasia/dysnomia, n (%) 1 (1.0) 6 (2.0) 0.68
Cognitive Impairment, n (%) 27 (30.0) 49 (16.3) 0.004
Diuresis contraction, n (%) 17 (14.2) 5 (1.6) <0.001

Urines of faeces incontinence, n (%) 5 (4.5) 47 (15.9) 0.002
Unable to ask questions, n (%) 3 (4.4) 24 (9.2) 0.21

Unable to fill a self-evaluation questionnaire, n (%) 7 (10.6) 35 (13.6) 0.52
Number of symptoms, median (Q1, Q3) 2 (0, 6) 0 (0, 2) <0.001

Number of symptoms, n (%)

<0.001
0 53 (29.6) 203 (62.7)
1 25 (14.0) 36 (11.1)

2+ 101 (56.4) 85 (26.2)

Abbreviations: Q1, Quartile 1; Q3, Quartile 3.

Cluster analysis identified three symptom clusters (Figure 2): Cluster 1, which included
delirium, fever, low-grade fever, diarrhea, anorexia, cough, increased respiratory frequency,
dyspnea, low oxygen saturation at rest, and weakness/prostration, was present in 39.6%
of the residents; Cluster 2 included recent-onset incontinence, increased blood pressure,
and the inability to fill a self-evaluation questionnaire and was present in 20% of the
residents; Cluster 3 was defined by new-onset cognitive impairment and included 19.8% of
residents. The percentage of residents for each cluster and the association with a positive
or negative SARS-CoV-2 swab test are reported in Figure 3. Only Cluster 1 and Cluster 3
symptoms were significantly associated with an increased probability of having a positive
PCR swab test (OR = 7.21, 95%CI: 4.8–10.8, p < 0.001; OR = 2.05, 95%CI: 1.18–3.56, p = 0.01,
respectively), while symptoms in Cluster 2 did not correlate with a positive PCR test (OR =
0.75, 95%CI: 0.44–1.29, p = 0.295).
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Figure 1. The associations between clinical features and SARS-CoV-2 infection (according to PCR
swab testing). Logistic regression model using stepwise analysis (sle = 0.15; sls = 0.20), adjusted for
age, sex, and comorbidity (defined as having 3+ chronic diseases). Symptoms reported by at least 5%
of study participants (including fever, low-grade fever, cough, dyspnea, low oxygen saturation at
rest, weakness/prostration, delirium, anorexia, diarrhea, sudden worsening of health status, diuresis
contraction, urine or feces incontinence, inability to ask questions, inability to fill a self-evaluation
questionnaire) were considered possible independent variables.
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Figure 2. The dendrogram of symptom clusters (n = 503 participants independent of swab results;
McQuitty method; only symptoms reported for 5% or more of the study participants were included).
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Figure 3. Participants (%) in each cluster and SARS-CoV-2 swab test results.

Residents were observed for a median time of 61 days, and those with positive swab
test had a median duration of RT-PCR positivity for 20 days. At the end of the observation
period, 71.4% of SARS-CoV-2-positive residents who had only one symptom and 47% of
those with two or more symptoms showed clinical improvement. No statistical differences
were found between SARS-CoV-2 positive and negative residents according to outcomes in
all-cause hospitalizations and transfers to different care settings (8% vs 2% respectively;
p = 0.115). Mortality probability rates were 19.6% and 9.6% in SARS-CoV-2 positive
and negative residents, respectively. Cox regression analysis adjusted for sex and age
showed that SARS-CoV-2 positivity (HR = 2.6, 95%CI: 1.8–4.6, p < 0.001) and the number
of comorbidities (HR = 1.3, 95%CI: 1.1–1.3, p < 0.001) were significantly associated with a
higher risk of mortality. In additional Cox regression analyses including symptom clusters,
we found that Cluster 2 was not related to mortality (HR = 0.82, 95%CI: 0.26–2.56, p = 0.730),
while Cluster 3 was significantly associated with an increased mortality rate (HR = 5.41,
95%CI: 1.56–18.8, p = 0.008). All deceased SARS-CoV-2 positive residents had symptoms
found in Cluster 1.

4. Discussion

Our findings confirm recent reports underlining that the clinical presentation of SARS-
CoV-2 infection in older residents differs from those in young and adult individuals [11–13].
Interestingly, we found that older residents often presented atypical and nonspecific symp-
toms, such as delirium, low-grade fever, and anorexia and were less likely to have dyspnea,
ageusia, and anosmia. Indeed, the high prevalence of asymptomatic cases complicates
infection identification, control, and the containment of new SARS-CoV-2 infections in
LTCFs. Standardized assessments of single or multiple atypical signs and/or symptoms
should quickly prompt COVID-19 testing in older LTCF residents. Although high- and
low-grade fevers were common findings in our study, fever was not invariably present
among residents with a SARS-CoV-2 infection. High-grade fever added specificity com-
pared with low-grade fever for COVID-19 screening in our sample (high-grade fever in
39.1% of residents vs. low-grade fever in 36.2%). According to a previous observation [14],
most residents had body temperature elevations when infected with SARS-CoV-2, but
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rarely over 38.0 ◦C. Indeed, low-grade fever should be suspicious of an infection due to
COVID-19 in older LTCF residents.

Delirium was the most prevalent onset symptom for a SARS-CoV-2 infection. Our
finding parallels those of previous studies underlining that environmental and iatrogenic
factors such as immobility, social distancing, use of sedative drugs, and quarantine in-
creased the risk of delirium in older people in acute care [15] and in home-dwelling adults
with dementia [16]. A literature analysis reported that mechanisms related to hypoxia,
inflammation, and hypercoagulability in cerebrovascular events could explain the cor-
relation between SARS-CoV-2 infection and neurological manifestations [17,18]. Along
with delirium, anorexia was another prevalent symptom in our cohort and confirmed to
be an important indicator of acute illness, including SARS-CoV-2 infection, in nursing
home residents [19]. Interestingly, we found that hypoactive delirium in association with
low- or high-grade fever, anorexia, and diarrhea was highly predictive of a SARS-CoV-2
infection. Deceased residents with a SARS-CoV-2 infection experienced more symptoms
found in Cluster 1 compared with survivors. Moreover, multimorbidity (≥3 conditions)
and dementia were significantly associated with SARS-CoV-2 positivity and mortality
among residents. We also found that mortality not related to SARS-CoV-2 was significantly
higher in residents with a negative RT-PCR test who presented with symptoms suspicious
of infection [4]. Similarly, the probability of death was significantly increased in those
with new-onset cognitive impairment. This finding suggests a potential role for the use
of using standardized screening tools to measure cognitive impairment and delirium in
SARS-CoV-2-infected LTCF residents. Future prospective studies are needed to provide
important knowledge to this topic.

An additional finding from our study lies in the remarkable number of asymptomatic
or paucisymptomatic residents who remained positive for several weeks. At the time of
analysis, infected residents underwent prolonged periods of social isolation with negative
consequences for psychological and functional status. At the moment, the European Centre
for Disease Prevention and Control recommends that isolation can be lifted if one of the
following applies: fever no longer present for at least 3 days, symptoms other than fever
improved 20 days after the onset of symptoms, or 2 consecutive negative SARS-CoV-2
RT-PCR tests obtained in a 24-h interval from respiratory specimens [20,21]. Although the
disease prognosis remains difficult to predict, most residents with a SARS-CoV-2 infection
can be treated directly in LTCFs. Expertise in geriatric medicine along with appropriate
staff and resources (including PPE and testing capacity) and health care policy support
should be implemented in order to manage LTFS populations [22].

LTCFs in Italy have shown progressive reductions in severe SARS-CoV-2 cases, iso-
lations, hospitalizations, and deaths since February 2021, which may be explained by the
large implementation of anti-SARS-CoV-2 vaccinations [23]. Despite these encouraging
results, outbreaks of COVID-19 among older vaccinated adults continue both in Italy and
worldwide. Therefore, knowledge of symptoms and cluster-onset symptoms may assist in
early identifying a SARS-CoV-2 infection, especially in older LTCF residents [24].

Due to the observational nature of our study, we cannot identify any cause–effect
relationships between SARS-CoV-2 infection and mortality. However, our study provides
an important basis for future prospective studies on specific clusters related to higher
mortality rates. This research was conducted in LTCF settings, and thus, our findings may
not be applicable in all types of care settings. An important strength of our study was the
use of an electronic registry dedicated to precise clinical data collection in multiple settings
of older persons during the first pandemic wave.

5. Conclusions

LTCF residents commonly present an asymptomatic or paucisymptomatic form of
SARS-CoV-2 infection. In symptomatic patients, we found that key SARS-CoV-2 infection
symptoms included delirium and fever (including low-grade fever), alone or in clusters.
Therefore, these symptoms should be considered in early identifying and potentially
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predicting the prognosis of SARS-CoV-2 infection in LTCF residents. Due to the highly
contagious risk of SARS-CoV-2 spread in LTCFs, early recognition of an atypical COVID-19
presentation is pivotal.
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RSA Estensiva, IHG, Guidonia (RM); RSA Intensiva, IHG, Guidonia (RM)), Valeria Calsolaro, (RSA Villa
Isabella, Pisa), Francesco Antonio Campagna, (Centro di Riabilitazione San Domenico, Lamezia Terme
(CZ)), Sebastiano Capurso, (RSA Bellosguardo, Civitavecchia (RM)), Silvia Carino, (RSA San Domenico,
Lamezia Terme (CZ); Centro di Riabilitazione San Domenico, Lamezia Terme (CZ); RSA Villa Elisabetta,
Cortale (CZ); Casa Protetta Madonna del Rosario, Lamezia Terme (CZ)), Manuela Castelli, (ASP Golgi
Redaelli, Istituto Geriatrico Camillo Golgi, Abbiategrasso (MI)), Arcangelo Ceretti, (ASP Golgi Redaelli,
Istituto Geriatrico Camillo Golgi, Abbiategrasso (MI)), Mauro Colombo, (ASP Golgi Redaelli, Istituto
Geriatrico Camillo Golgi, Abbiategrasso (MI)), Antonella Crispino, (RSA Villa Santo Stefano, S. Stefano
di Rogliano (CS); RSA Villa Silvia, Altilia Grimaldi (CS)), Roberta Cucunato, (RSA Villa Santo Stefano,
S. Stefano di Rogliano (CS); RSA Villa Silvia, Altilia Grimaldi (CS)), Ferdinando D’Amico, (RSA San
Giovanni di Dio, Patti (ME); RSA Sant’Angelo di Brolo (ME)), Annalaura Dell’Armi, (III RSA Geriatria,
IHG, Guidonia (RM)), Christian Ferro, (RSA Sant’Angelo di Brolo (ME)), Serafina Fiorillo, (RSA Madonna
delle Grazie, Filadelfia (VV); Casa di Riposo Mons. Francesco Luzzi, Acquaro (VV); Casa di Riposo Villa
Betania, Mileto (VV); Casa di Riposo Pietro Rosano, Dasà (VV); Casa di Riposo Serena Diocesi, Mileto (VV);
Alloggio per Anziani Villa Amedeo, Francavilla Angitola (VV); Casa Albergo Villa Fabiola, Monterosso Calabro
(VV); Casa di Riposo Villa Sara, San Nicola da Crissa (VV); Casa di Riposo Don Mottola, Tropea (VV); Casa
di Riposo San Francesco, Soriano Calabro (VV); RSA Anziani, Soriano Calabro (VV); Casa di Riposo Suore
Missionarie del Catechismo, Pizzo (VV)), Pier Paolo Gasbarri, (Associazione Nazionale Strutture Territoriali
e per la Terza Età, Roma), Roberta Granata, (RSA Villa Sacra Famiglia, IHG, Roma), Nadia Grillo, (RSA
San Domenico, Lamezia Terme (CZ); Casa di Riposo San Domenico, Lamezia Terme (CZ); RSA Villa Elisabetta,
Cortale (CZ)), Antonio Guaita, (ASP Golgi Redaelli, Istituto Geriatrico Camillo Golgi, Abbiategrasso (MI)),
Marilena Iarrera, (RSA Sant’Angelo di Brolo (ME)), Valerio Alex Ippolito, (Casa Protetta Villa Azzurra,
Roseto Capo Spulico (CS)), Alba Malara, (RSA San Domenico, Lamezia Terme (CZ); Casa di Riposo Villa
Marinella, Amantea (CS); Casa Protetta Madonna del Rosario, Lamezia Terme (CZ); Casa Protetta Villa
Azzurra, Roseto Capo Spulico (CS); Centro di Riabilitazione San Domenico, Lamezia Terme (CZ); RSA Casa
Amica, Fossato Serralta (CZ); RSA La Quiete, Castiglione Cosetino (CS); RSA San Domenico, Lamezia Terme
(CZ); RSA Villa Elisabetta, Cortale (CZ); RSA Villa Santo Stefano, S. Stefano di Rogliano (CS); RSA Villa
Silvia, Altilia Grimaldi (CS)), Irene Mancuso, (RSA San Giovanni di Dio, Patti (ME)), Eleonora Marelli,
(ASP Golgi Redaelli, Istituto Geriatrico Camillo Golgi, Abbiategrasso (MI)), Paolo Moneti, (RSA Villa Gisella,
Firenze), Fabio Monzani, (RSA Villa Isabella, Pisa), Marianna Noale, (RSA AltaVita, Istituzioni Riunite di
Assistenza, Padova), Mariasara Osso, (RSA La Quiete, Castiglione Cosentino (CS)), Agostino Perri, (RSA
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La Quiete, Castiglione Cosentino (CS)), Maria Perticone, (Casa di Riposo Villa Marinella, Amantea (CS)),
Francesco Raffaele Addamo, (RSA San Giovanni di Dio, Patti (ME)), Giovanni Sgrò, (RSA Istituto Santa
Maria del Soccorso, Serrastretta (CZ); RSA San Vito Hospital, San Vito sullo Jonio (CZ); Casa Protetta Villa
Mariolina, Montauro (CZ); Casa Protetta Villa Sant’Elia, Marcellinara (CZ)), Federica Sirianni, (Casa di
Riposo Villa Marinella, Amantea (CS)), Deborah Spaccaferro, (RSA Estensiva, IHG, Guidonia (RM); RSA
Intensiva, IHG, Guidonia (RM)), Fausto Spadea, (RSA Casa Amica, Fossato Serralta (CZ)), Rita Ursino, (I
RSA Geriatria, IHG, Guidonia (RM)).

Conflicts of Interest: The authors have no conflict of interest to declare.

References
1. He, F.; Deng, Y.; Li, W. Coronavirus disease 2019: What we know? J. Med. Virol. 2020, 92, 719–725. [CrossRef] [PubMed]
2. Morley, J.E.; Vellas, B. COVID-19 and older adults. J. Nutr. Health Aging 2020, 24, 364–365. [CrossRef] [PubMed]
3. Morley, J.E. 2020: The Year of The COVID-19 Pandemic. J. Nutr. Health Aging 2021, 25, 1–4. [CrossRef] [PubMed]
4. Malara, A.; Noale, M.; Abbatecola, A.M.; Borselli, G.; Cafariello, C.; Fumagalli, S.; Gareri, P.; Mossello, E.; Trevisan, C.;

Volpato, S.; et al. Clinical Features of SARS-CoV-2 Infection in Italian Long-Term Care Facilities: GeroCovid LTCFs Observational
Study. J. Am. Med. Dir. Assoc. 2022, 23, 15–18. [CrossRef]

5. Tang, O.; Bigelow, B.F.; Sheikh, F.; Peters, M.; Zenilman, J.M.; Bennett, R.; Katz, M.J. Outcomes of Nursing Home COVID-19
Patients by Initial Symptoms and Comorbidity: Results of Universal Testing of 1970 Residents. J. Am. Med. Dir. Assoc. 2020, 21,
1767–1773. [CrossRef]

6. Arons, M.M.; Hatfield, K.M.; Reddy, S.C.; Kimball, A.; James, A.; Jacobs, J.R.; Taylor, J.; Spicer, K.; Bardossy, A.C.; Oakley, L.P.; et al.
Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N. Engl. J. Med. 2020, 382, 2081–2090.
[CrossRef]

7. Trevisan, C.; Del Signore, S.; Fumagalli, S.; Gareri, P.; Malara, A.; Mossello, E.; Volpato, S.; Monzani, F.; Coin, A.; Bellelli, G.; et al.
Assessing the impact of COVID-19 on the health of geriatric patients: The European GeroCovid Observational Study. Eur. J.
Intern Med. 2021, 87, 29–35. [CrossRef]

8. Abbatecola, A.M.; Incalzi, R.A.; Malara, A.; Palmieri, A.; Di Lonardo, A.; Borselli, G.; Russo, M.; Noale, M.; Fumagalli, S.;
Gareri, P.; et al. Disentangling the impact of COVID-19 infection on clinical outcomes and preventive strategies in older persons:
An Ital. Perspective. J. Gerontol. Geriatr. 2021, 70, 1–11. [CrossRef]

9. Pedone, C.; Costanzo, L.; Cesari, M.; Bandinelli, S.; Ferrucci, L.; Incalzi, R.A. Are Performance Measures Necessary to Predict Loss
of Independence in Elderly People? J. Gerontol. Ser. A 2016, 71, 84–89. [CrossRef]

10. Tjur, T. Coefficients of determination in logistic regression models—A new proposal: The Coefficient of Discrimination. Am. Stat.
2009, 63, 366–372. [CrossRef]

11. Bavaro, D.F.; Diella, L.; Fabrizio, C.; Sulpasso, R.; Bottalico, I.; Calamo, A.; Santoro, C.; Brindicci, G.; Bruno, G.;
Mastroianni, A.; et al. Peculiar clinical presentation of COVID-19 and predictors of mortality in the elderly: A multicen-
tre retrospective cohort study. Int. J. Infect Dis. 2021, 105, 709–715. [CrossRef] [PubMed]

12. Carnahan, J.L.; Lieb, K.M.; Albert, L.; Wagle, K.; Kaehr, E.; Unroe, K.T. COVID-19 disease trajectories among nursing home
residents. J. Am. Geriatr. Soc. 2021, 69, 2412–2418. [CrossRef] [PubMed]

13. Ouslander, J.G.; Grabowski, D.C. COVID-19 in Nursing Homes: Calming the Perfect Storm. J. Am. Geriatr. Soc. 2020, 68,
2153–2162. [CrossRef] [PubMed]

14. Rudolph, J.L.; Halladay, C.W.; Barber, M.; McConeghy, K.W.; Mor, V.; Nanda, A.; Gravenstein, S. Temperature in Nursing Home
Residents Systematically Tested for SARS-CoV-2. J. Am. Med. Dir. Assoc. 2020, 21, 895–899. [CrossRef]

15. Kotfis, K.; Roberson, S.W.; Wilson, J.E.; Dabrowski, W.; Pun, B.T.; Ely, E.W. COVID-19: ICU delirium management during
SARS-CoV-2 pandemic. Crit Care 2020, 24, 176. [CrossRef]

16. Gareri, P.; Fumagalli, S.; Malara, A.; Mossello, E.; Trevisan, C.; Volpato, S.; Coin, A.; Calsolaro, V.; Bellelli, G.; Del Signore, S.; et al.
Management of Older Outpatients During The COVID-19 Pandemic: The Gerocovid Ambulatory Study. Gerontology 2021, 28, 1–6.
[CrossRef]

17. Padda, I.; Khehra, N.; Jaferi, U.; Parmar, M.S. The Neurological Complexities and Prognosis of COVID-19. SN Compr. Clin. Med.
2020, 2, 2025–2036. [CrossRef]

18. Spuntarelli, V.; Luciani, M.; Bentivegna, E.; Marini, V.; Falangone, F.; Conforti, G.; Rachele, E.S.; Martelletti, P. COVID-19: Is it just
a lung disease? A case-based review. SN Compr. Clin. Med. 2020, 2, 1401–1406. [CrossRef]

19. Bianchetti, A.; Rozzini, R.; Guerini, F.; Boffelli, S.; Ranieri, P.; Minelli, G.; Bianchetti, L.; Trabucchi, M. Clinical Presentation of
COVID19 in Dementia Patients. J. Nutr. Health Aging 2020, 24, 560–562. [CrossRef]

20. Cento, V.; Colagrossi, L.; Nava, A.; Lamberti, A.; Senatore, S.; Travi, G.; Rossotti, R.; Vecchi, M.; Casati, O.; Matarazzo, E.; et al.
Persistent positivity and fluctuations of SARS-CoV-2 RNA in clinically-recovered COVID-19 patients. J. Infect. 2020, 81, e90–e92.
[CrossRef]

21. European Centre for Disease Prevention and Control. Guidance for Discharge and Ending Isolation of People with COVID-19, 16
October 2020; ECDC: Stockholm, Sweden, 2020.

61



Reports 2022, 5, 30

22. Benvenuti, E.; Rivasi, G.; Bulgaresi, M.; Barucci, R.; Lorini, C.; Balzi, D.; Faraone, A.; Fortini, G.; Vaccaro, G.; Del Lungo, I.; et al.
Caring for nursing home residents with COVID-19: A “hospital-at-nursing home” intermediate care intervention. Aging Clin.
Exp. Res. 2020, 33, 2917–2924. [CrossRef] [PubMed]

23. Ministero della Salute. Vaccinazione Anti SARS-CoV-2 Piano Strategico. Elementi di Preparazione e Implementazione della
Strategia Vaccinale. Available online: https://www.trovanorme.salute.gov.it/norme/renderPdf.spring?seriegu=SG&datagu=24
/03/2021&redaz=21A01802&artp=1&art=1&subart=1&subart1=10&vers=1&prog=001 (accessed on 13 June 2022).

24. Faggiano, F.; Rossi, M.A.; Cena, T.; Milano, F.; Barale, A.; Ristagno, Q.; Silano, V. An Outbreak of COVID-19 among mRNA-
Vaccinated Nursing Home Residents. Vaccines 2021, 9, 859. [CrossRef] [PubMed]

62



Citation: Pacolli, L.; Wahidie, D.;

Erdogdu, I.Ö.; Yilmaz-Aslan, Y.;

Brzoska, P. Strategies Addressing the

Challenges of the COVID-19

Pandemic in Long-Term, Palliative

and Hospice Care: A Qualitative

Study on the Perspectives of Patients’

Family Members. Reports 2022, 5, 26.

https://doi.org/10.3390/

reports5030026

Academic Editors: Toshio Hattori

and Yugo Ashino

Received: 30 May 2022

Accepted: 6 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Strategies Addressing the Challenges of the COVID-19
Pandemic in Long-Term, Palliative and Hospice Care:
A Qualitative Study on the Perspectives of Patients’
Family Members
Latife Pacolli, Diana Wahidie, Ilknur Özger Erdogdu, Yüce Yilmaz-Aslan and Patrick Brzoska *

Health Services Research, School of Medicine, Faculty of Health, Witten/Herdecke University,
58455 Witten, Germany; latife.pacolli@uni-wh.de (L.P.); diana.wahidie@uni-wh.de (D.W.);
ilknur.oezererdogdu@uni-wh.de (I.Ö.E.); yuece.yilmaz-aslan@uni-wh.de (Y.Y.-A.)
* Correspondence: patrick.brzoska@uni-wh.de

Abstract: Patients in long-term, palliative, and hospice care are at increased risk of a severe course
of COVID-19. For purposes of infection control, different strategies have been implemented by the
respective health care facilities, also comprising visitation and other forms of contact restrictions. The
aim of the present study was to examine how these strategies are perceived by family members of
patients in these settings. An exploratory, qualitative approach was used to examine perceptions
of policies and strategies using partially standardized guided interviews analyzed by means of a
thematic approach. Interviews were conducted with 10 family members of long-term, palliative, and
hospice care patients. Interviewees were between 30 and 75 years old. Because of the pandemic-
related measures, respondents felt that their basic rights were restricted. Results indicate that
perceptions of strategies and interventions in long-term, palliative, and hospice care facilities are
particularly influenced by the opportunity to visit and the number of visitors allowed. Strict bans on
visits, particularly during end-of-life care, are associated with a strong emotional burden for patients
and family members alike. Aside from sufficient opportunities for visits, virtual communication
technologies need to be utilized to facilitate communication between patients, families, and caregivers.

Keywords: palliative; hospice; end-of-life; COVID-19; SARS-CoV-2

1. Introduction

During the COVID-19 pandemic, long-term, palliative, and hospice care facilities have
faced numerous challenges [1]. Patients in these health care settings are at an increased
risk for a severe course of COVID-19 because of existing co-morbidity and often advanced
age [2]. To address the pandemic, different infection control measures were implemented
by facilities, including visitation bans and other forms of contact restrictions [3–6].

Visits by family and friends are critical emotional anchors for patients, particularly
for those in palliative care. Visitation bans implemented as infection control measures
may lead to loneliness and increase the emotional burden for both patients and their loved
ones [1,7]. In light of visitation bans, patients in in-patient facilities were encouraged to
maintain contact with family members using digital communication services. Patients who
are not tech-savvy, however, required assistance, which could often not be provided by
staff because of limited personnel resources [1]. In some facilities, this led to patients being
isolated and often dying without their relatives being present [8]. Despite exceptions to
restrictions occasionally granted, for example for patients at the end of their life, the impact
on dying patients was considerable [8]. Additionally, patients’ relatives and friends were
exposed to additional burden by being confronted with social distancing measures and
visitation restrictions in already emotionally tense situations [9]. The grief processes during
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the COVID-19 pandemic were, thus, compounded by the experience of physical distancing
and isolation, as well as feelings of insecurity, anxiety, and frustration affecting their own
mental and physical wellbeing [6,10].

With these issues in perspective, the aim of this paper is to examine how family
members of patients perceive the strategies and measures that have been used by long-
term, palliative, and hospice facilities to address the challenges of the COVID-19 pandemic.
The findings provide insight into family members’ perspectives and allow to formulate
recommendations with respect to how expectations of patients and their families can be
better met during the pandemic and can assist health care providers to adapt existing
strategies for current and future public health crises.

2. Materials and Methods
2.1. Study Design

In the present study, a qualitative research approach was used given that the subjective
perspectives were the focus of analysis [11]. Data collection was conducted by means of partially
standardized guided interviews [12]. The interview guide was developed jointly by all authors
based on existing research in the field. It consisted of four categories and covered, among others,
changes due to the COVID-19 pandemic in medical and nursing care, strategies developed
for addressing challenges of the COVID-19 pandemic, support measures implemented for
patients and relatives, and ethical and social aspects of the strategies developed. Relatives
were recruited through the authors with assistance from staff in the health care facilities. In
addition, study participants were recruited via open online groups using social media. Eligible
participants were 18 years of age or older and relatives of patients who were in long-term
care or palliative/hospice care during the COVID-19 pandemic. As a measure of precaution
and to prevent any additional infection risks for participants, interviews were carried out
via telephone. Interviews were conducted by one of the authors (I.Ö.E.), who has extensive
experience in qualitative research. Interviews took place between October 2020 and March 2021
with 10 family members of palliative care patients aged 30–75 years. Interviewees included
eight women and two men. Four of the individuals interviewed had a relative in hospice
care, three had a relative in palliative care. The other three interviewees had relatives who
were first in a palliative care unit and then in a hospice or were first in a hospital and were
later transferred to a palliative care unit, a hospice, or home care. Interviewees were related
to the palliative/hospice care patients by being daughters (n = 5), wives (n = 3), a husband
(n = 1), or a son-in-law (n = 1). Interviews were conducted until a sufficient level of information
saturation was reached. The duration of the interviews varied between 40 and 80 minutes.
Table 1 provides an overview of the sociodemographic characteristics of the interviewees.

Table 1. Sociodemographic data of the study participants.

Interview ID. Sex Age (Years) Marital Status Relationship between Study Participant and
Patient in Long-Term/Palliative/Hospice Care Facility/Duration of Stay

IP01 female 75 married wife/palliative care husband Hospice

IP02 female 53 married daughter/deceased mother Hospital, rehab facility, and most recently
home care

IP03 female 47 married daughter/deceased mother Palliative care unit
IP04 female 33 married daughter/deceased mother Palliative care unit
IP05 male 43 married son-in-law/ deceased father-in-law Nursing facility/ palliative care unit
IP06 female 46 single daughter/deceased mother Hospital, palliative care, hospice facility
IP07 female 30 married daughter/deceased mother Hospital, hospice facility
IP08 female 68 widowed wife/deceased husband Hospice
IP09 female 42 widowed wife/deceased husband Hospice
IP10 male 66 widowed husband / deceased wife Hospital, palliative care unit

2.2. Data Analysis

The interviews were transcribed by a research assistant, with verbatim transcription
including pauses in the conversation and expressions such as speech disfluency (”ehm”,
”hmm”), sobs, crying, etc. During transcription, the interviews were anonymized. The
data analysis was based on thematic analysis, which enables a mixture of inductive and
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deductive coding procedures [13]. The deductive category system was created with the help
of the main topics of the interview guide and expanded during the analysis with inductive
categories based on the data material. The coding was carried out by two authors (I.ÖE.
and L.P.) independently from each other; during the analysis, the codes were compiled and
discussed among all authors. The analysis was assisted by the software MAXQDA [14].

2.3. Ethical Aspects

The study was approved by the ethics committee of Witten/Herdecke University (No.
153/2020; 31 August 2020). The study participants were informed about the study objectives
and about the voluntary nature and confidentiality of the study and gave verbal and written
informed consent to participate in the study before the interviews were conducted. In
addition, consent was obtained for the recording and transcription of the interviews. Study
participants did not receive any reimbursement for their participation in the study.

3. Results

The analysis allowed to identify central themes with regard to how family members of
patients perceive measures and strategies developed by long-term, hospice, and palliative
care facilities, and what they expect from health care during the time of the pandemic.
Overall, four main themes could be identified. They are presented in the following.

3.1. Contact and Visitation Restrictions

A significant factor contributing to family members’ perceptions of measures and
strategies implemented to address the COVID-19 pandemic were existing contact and
visitation restrictions, which increased feelings of stress and added to already existing
burdens. Contact and visitation restrictions varied by the type of facility. In hospice
and palliative care facilities, restrictions included the number of visitors or the length
of time relatives were allowed to stay in the room, while respondents reported to have
encountered full visitation bans in long-term nursing facilities. In some facilities, exceptions
were allowed so that two or more family members could visit patients simultaneously.
Overnight stays were mainly provided by hospices, where relatives had the possibility
to use an armchair or bed in the palliative care patient’s room. The respondents also
encountered the aforementioned regulations in situation involving dying patients. Some
relatives were not allowed to enter the room of the dying person together with fellow
family members, but had to say their goodbye separately, thus lacking emotional support
from each other. According to the respondents, no time limits were set for the farewell, but
hygiene regulations had to be observed.

”[ . . . ] you had to keep to it [ . . . ] yes we were asked eh, that we keep to it actually only
separately to her in the room to go in, we have of course also done” IP07

”[ . . . ] from the time of the pandemic everything was shut down, so it was allowed eh
there were no more visits allowed ehm even since he had a first floor room, we were not
even allowed to go into the garden of the facility and make contact with him through the
window, absolute ban on visits [ . . . ]” IP05

”[ . . . ] they would have, so if it had only been one night, an armchair, which is not so
comfortable for the duration, but they would also have pushed me a whole bed in [ . . . ]” IP06

3.2. Impact of the COVID-19 Pandemic and Infection Control Measures

Some respondents described that visitation bans caused the physical condition of their
loved ones to deteriorate, contributing to an earlier death. Furthermore, some respondents
had the impression that nursing care was neglected during the pandemic, resulting in
conflicts with doctors and nursing staff. It became evident from the interviews that infection
control measures contributed to emotional strain and stress among family members. In
addition, it was stated that due to the restrictions on the number of visitors and on the
duration of visits, some family members were unable to visit or say goodbye to their loved
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ones. Conflicts arose in facilities because of lack of exceptions with respect to protective
measures or lack of responsiveness and limited possibilities for communication with health
care staff. Some nursing homes also reduced home visits by supervising primary care
physicians and scaled back care to basic services further reinforcing relatives’ impression
about a diminishing quality of health care. However, some respondents also reported being
satisfied with the medical and nursing care their loved ones received. They also indicated
that care was taken to address the subjective needs of patients as best as possible.

As a result of visitation restrictions, most relatives adopted digital communication
tools in order to stay in touch with patients. It was uniformly stated that smartphones,
tablets, or laptops were not provided by the facilities but were purchased by relatives
themselves. Patients who had problems using such digital communication tools relied on
help from nursing staff, who often did not have the time to provide adequate assistance.
Relatives had different experiences in communicating with caregivers. Most respondents
were positive about communicating with caregivers, stating that they received a lot of
support from caregivers, such as being listened to and being offered uplifting words or
prayers. In addition, they noted that they could approach the staff at any time and that
staff took the time to exchange with relatives. Other participants complained about a lack
of proactive communication on the part of the nursing staff.

”Yes, the problem was that many people were not able to say goodbye or were not allowed
to see them again during that time [ . . . ].” IP04

”And that has ultimately certainly contributed to his early death, because ehm when he
had visitors, he ate and drank and ehm as I said, it was very very close contact with his
daughters and that was then suddenly no longer possible” IP05

”Mhm yes, exactly so by phone was possible, we were also used to that before the pandemic
but as I said the handling of the iPad that was, that was already difficult for him because
ehm it was also not possible to find a caregiver who could take the time and together with
him, to make the iPad ready for use [ . . . ]” IP05

”[ . . . ] via WhatsApp we have then communicated with each other, we have seen each
other and that was wonderful, my husband is even, has even in his old days still learned
ehm that just could start video and has seen me then and we could talk twice a day and
that was wonderful” IP08

3.3. Perception of COVID-19 Strategies in Long-Term, Palliative, and Hospice Facilities

According to some of the interviewees, the COVID-19 pandemic containment strategies
were not perceived as a burden. For interviewee IP07, the measures did not play a significant
role as long as visitation was possible—irrespective of other protective measures implemented
in the facility. In addition, some interviewees stated that they had the feeling that the pandemic
”does not exist” in the facility, despite various measures taken by the facility.

Nevertheless, many perceived an overwhelming burden as a result of the pandemic-
related protective measures. Providing contact information as a protective strategy to
allow contact tracing was perceived as ”annoying” because the risk of infection was not
considered to be high. Furthermore, waiting outside the hospital in cold temperatures
was perceived as an ”outrageous” requirement. It became clear from the interviews that
particularly visiting bans resulted in a strong emotional burden for relatives and patients.
By limiting the number of visitors, relatives felt a lack of emotional support, which resulted
in emotional distress.

Respondents uniformly indicated that they felt their basic rights had been restricted
due to pandemic-related policies and strategies. Passing away was regarded to be a special
situation requiring exceptions to all measures that restrict visits. Respondents who were
confronted with a strict ban on visitation perceived it as a strong restriction of their basic
rights as well as those of their loved ones.

”[ . . . ] that ehm yes, the visitor regulations were now limited to one person, maximum 2
on palliative care, I would say yes, it is already very restricted [ . . . ] unfortunately my
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husband had to go out whereby I, where I would have needed him just in the moment, [
. . . ] that was where I had to be strong for my sister, although I myself would have needed
someone [ . . . ]” IP04

”[ . . . ] So he was mentally very unwell and as I said his daughters were very very sad
and depressed as well, that was a huge burden that was actually dominating everyday life
[ . . . ]” IP05

”[ . . . ] Freedom to make decisions and to move freely and to do what you want, that is of
course restricted [ . . . ] what we already felt as very restrictive was just that we were not
allowed to visit them, I would have wished that differently [ . . . ]” IP07

”[ . . . ] she was segregated in a single room and that was a condition that I don’t wish
to happen to anyone, that has shaped me so much [ . . . ] my wife and I were married for
42 years and eh that has affected me, still hits me hard today, that is a condition that is
simply inhumane [ . . . ]” IP10

3.4. Need and Expectations for Better Support

To improve care in long-term, palliative, and hospice facilities, interviewees considered
higher staffing levels to enable nurses to also take the time during care to provide support
to relatives. It was often mentioned that dying is an exceptional situation in which visitors
should be allowed access without restriction and also that the number of visitors should
not be pre-determined by the facility. Relatives stated that they felt left alone. They said
they required more support and preparation, for example by being told what to expect and
what dying will look like. In addition, it was stated that psycho-oncological care and other
palliative services for patients and their relatives should be maintained, especially in times
of pandemics, as the emotional state of relatives and patients can change greatly as a result
of the measures implemented.

Furthermore, continuous staff education and the development of appropriate pan-
demic plans were mentioned as recommendations for care in long-term, palliative, and
hospice facilities. In addition to maintaining visits as well as ensuring support from staff,
it was recommended that no palliative care units be closed, as support by medical and
nursing staff during the dying phase is necessary, especially during the pandemic.

”Maybe a little more staff and a little more . . . Encouragement and a little more comfort
and a nice word [at times] . . . a smile” IP01

”[ . . . ] I would have liked it just that everyone who wants, no matter how many people
there are, as long as the patient wants it and does not explicitly say, [ . . . ] to allow to
receive visitors, just when the person is simply dying, yes he feels alone otherwise. There
are so many people who would like to see my mom [ . . . ] a better concept in this respect
simply ehm I mean clearly there are hygiene concepts everywhere, but this does not have
to be done by only one person per day, so I don’t understand why it has to be throttled
down so much [ . . . ]”. IP04

”So I think, seriously ill and dying, in the palliative situations I think patients must have
unrestricted access to relatives [ . . . ] I think it needs a lot of knowledge and education,
constant education, I also don’t think that this was the last pandemic we had to deal with
and ehm that is actually reason enough to fundamentally think about how we want to
deal with our seriously ill people and that ehm, I hope that we learn the lessons from this
current pandemic that we are smarter next time and ehm do justice to it and and ehm
make sure that people can be adequately cared for in every respect” IP05

4. Discussion

This study used a qualitative research approach to examine how strategies imple-
mented in long-term, palliative, and hospice care facilities during the COVID-19 pandemic
are perceived by family members of patients who receive palliative care. The findings show
that perceptions of strategies are particularly influenced by the extent to which visitation
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restrictions are in place. They highlight that strict bans on visits are associated with a strong
emotional burden for patients and family members. These findings are in line with the
results of a study from the US, in which social workers in hospice facilities were interviewed
about the pandemic situation [15]. The study found that isolation is an additional challenge
and emotional burden for both hospice patients and their families, especially when a ban
on visitation is maintained even during the patients’ dying phase [15]. In another study
from the US, in which the relatives of palliative patients were interviewed, it was shown
that visitation restrictions or bans, poor communication with staff, and inadequate quality
of care resulted in despair among relatives and feelings of anxiety about the patient dying
alone [16]. In a study from the United Kingdom, more than half of the relatives surveyed
stated that they were not allowed to visit their loved ones during the dying phase. The
study also revealed that relatives who were allowed to visit were more likely to feel sup-
ported than those without possibilities for visits [17]. In the present study, it was shown
that by limiting the number of visitors, relatives lack emotional support during their loved
ones’ dying process, corroborating findings from previous research in Germany [18].

High-quality communication with nursing staff during the pandemic is characterized
by two components: (1) easy access to staff to address concerns and questions about the
patient’s care and (2) involvement of family members in decision-making processes about
nursing care [16]. Various studies have highlighted the increased relevance of adequate
communication during pandemic periods when visits are no longer possible or limited
as a result of infection control measures. Staff that is difficult to reach or inaccessible, as
well as lack of information about the health status of patients and the impression that
family members are kept out of decision-making processes, led to fear and uncertainty
among relatives, as well as the perception of inadequate end-of-life care [16,19]. These
findings are consistent with the results of the present study, given that in cases where
interviewees perceived poor communication, they also criticized the quality of nursing care
and support. Pre-pandemic studies show that both family members and patients consider
communication to be essential in palliative care [20–24].

Visitation bans and restricted in-person communication require alternative commu-
nication tools to meet needs of patients and their relatives. Video or at least telephone
calls make it possible for relatives to see or talk to patients when visits are not possible.
Furthermore, video or phone calls allow relatives to receive assurance that their loved ones
are well [25]. Limited access to virtual communication technologies or communication
tools that are difficult to use without assistance can lead to family members’ perception of
inferior care and result in frustration about lack of support and poor exchange [16].

Respondents’ needs and expectations with respect to better support during a pandemic
included more comfort and encouragement from caregivers and the removal of visitation
restrictions and bans. The death of a family member is seen as a special situation in which
family members and friends consider it essential to say goodbye to the patient not only in
person but together with fellow relatives. Saying goodbye together provides resources of
mutual emotional support, which in many cases was not available during the pandemic.
The reported needs of the relatives are in line with results from other studies and are also
reflected in recommendations in national and international guidelines [3,6,17,26,27].

Some limitations of the present study need to be considered. Only two of the ten
interviewees were men and most of the participants were over 40 years old, potentially not
sufficiently covering the perspective of male relatives and younger individuals, respectively.
Insights gained by the present study therefore need to be complemented by investigations
that can provide a contrasting perspective between men and women. Additionally, the
sample was not diverse in terms of culture, ethnicity, and migration status. Considering
that individuals from collectivistic cultures may be more affected by contact restrictions
than individuals from individualistic cultures, and thus, preexisting health disparities
could be further exacerbated, future studies need to examine how well strategies are able
to take into account diversity in the society.
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5. Conclusions

Open communication is an important factor in long-term, palliative, and hospice care.
Since face-to-face interaction between patients, families, and health care staff may be limited as
a result of infection control measures, alternative communication methods need to be used [19].
Different guidelines exist aiming to assist health care facilities with implementation [3,28,29].
Visits by relatives play an important role, particularly in end-of-life care, for both patients as well
relatives themselves and should, therefore, be facilitated during pandemics and balanced with
measures of infection control [30]. In addition, the potential for virtual communication must
be utilized. Representatives of patients and relatives must be involved in the development of
appropriate support strategies in order to ensure that measures implemented consider patients’
and relatives’ needs as best as possible.
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Abstract: Background: The COVID-19 pandemic exploits existing inequalities in the social determi-
nants of health (SDOH) that influence disease burden and access to healthcare. The role of health
behaviours and socioeconomic status in genitourinary (GU) malignancy has also been highlighted.
Our aim was to evaluate predictors of patient-level and neighbourhood-level factors contributing to
disparities in COVID-19 outcomes in GU cancer patients. Methods: Demographic information and
co-morbidities for patients screened for COVID-19 across the Mount Sinai Health System (MSHS) up
to 10 June 2020 were included. Descriptive analyses and ensemble feature selection were performed
to describe the relationships between these predictors and the outcomes of positive SARS-CoV-2
RT-PCR test, COVID-19-related hospitalisation, intubation and death. Results: Out of 47,379 tested
individuals, 1094 had a history of GU cancer diagnosis; of these, 192 tested positive for SARS-CoV-2.
Ensemble feature selection identified social determinants including zip code, race/ethnicity, age,
smoking status and English as the preferred first language—being the majority of significant pre-
dictors for each of this study’s four COVID-19-related outcomes: a positive test, hospitalisation,
intubation and death. Patient and neighbourhood level SDOH including zip code/ NYC borough,
age, race/ethnicity, smoking status, and English as preferred language are amongst the most sig-
nificant predictors of these clinically relevant outcomes for COVID-19 patients. Conclusion: Our
results highlight the importance of these SDOH and the need to integrate SDOH in patient electronic
medical records (EMR) with the goal to identify at-risk groups. This study’s results have implications
for COVID-19 research priorities, public health goals, and policy implementations.

Keywords: COVID-19; SARS-CoV-2; urologic oncology; genitourinary cancer; social determinants
of health

1. Introduction

The current COVID-19 pandemic, caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), represents the third occurrence of widespread disease caused
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by a coronavirus in 20 years [1]. First identified in Wuhan, China, in December 2019, the
rapid spread of SARS-CoV-2 has produced over 7 million cases and over 350,000 deaths
worldwide as of June 2020 [2]. Emerging global data indicates older age, male sex, and
several underlying conditions/diseases are predisposing factors to higher severity COVID-
19 disease [3,4]. Furthermore, immunocompromised patients with cancer appear to be
more susceptible to infection, have a higher risk of severe events, and ultimately poorer
outcomes [5]. Pathogenesis of SARS-CoV-2 infection is mediated, in part, by angiotensin-
converting enzyme 2 (ACE-2) and transmembrane protease serine 2 (TMPRSS2). SARS-
CoV-2 host cell entry is facilitated by viral spike proteins, primed by TMPRSS2-mediated
cleavage, which bind to ACE-2 and gain access [6]. TMPRSS2 is highly expressed in
prostate epithelial cells; a minor percentage of the prostate club and hillock cells express
both ACE-@ and TMPRSS2 [7]. Additionally, prostate adenocarcinoma cells may have the
highest TMPRSS2 expression of all cancers, highlighting the need to further examine the
relationship between genitourinary (GU) cancer and COVID-19 [8].

First described over 100 years ago by sociologists such as W.E.B. DuBois, social deter-
minants of health (SDOH) are conditions in which people are born, raised, and currently
live in, and the greater socioecological systems creating the economic policies, political
systems, and social norms that shape the conditions of daily life. SDOH are primarily
responsible for the severe health inequities seen today [9,10]. Factors such as race and so-
cioeconomic status have been repeatedly linked to differences in overall health and survival
of communities in all medical literature, including in the field of urology [9,11]. Mortality
rates for GU malignancies also vary in rural and urban dwellings [12–14]. Disparities
related to prostate cancer, bladder cancer, and kidney cancer—three of the most commonly
diagnosed malignancies in the United States—are heavily linked to patient and community
(i.e., neighbourhood) levels SDOH. As examples, low SES communities have high prostate
cancer mortality rates (e.g., Appalachian, Kentucky residents) and the mortality rate of
African American men with prostate cancer is 2.4 times higher than White men; men with
less than high school education have a 20% increased risk of bladder cancer compared
to those with postgraduate education; and kidney cancer mortality directly correlates to
lower-ranked healthcare systems and lower healthcare expenditures [15–18].

To explore the potential impact of patient and neighbourhood level SDOH on COVID-
19 outcomes, we propose to adapt Nicholas and colleagues’ Socioeconomic Deprivation
and Chronic Kidney Disease model to examine potential clinical (e.g., comorbidities), be-
havioural (e.g., smoking, obesity), and neighbourhood predictors (zip code), of COVID-19
outcomes. This conceptual framework emphasises the importance of socioeconomic fac-
tors as a mediator of key disease prevention and treatment pathways and highlights its
vast impact on urologic disease outcomes (Figure 1). The figure shows that many of the
determinants of disparities, such as comorbidities including diabetes and hypertension,
may have their foundation in socioeconomic deprivation and its consequences. These in-
clude, but are not limited to, discrimination and segregation, substandard living conditions,
limited access to quality healthcare among the uninsured or underinsured, limited health
literacy, and chronic stress resulting in measurable and quantifiable pathologic factors that
contribute to and enhance the development of urologic disease and eventually premature
mortality [9,11,15]. Increasing evidence from the COVID-19 reports and emerging data
points to potential overlaps in drivers of health disparities in both urologic cancer and
COVID-19, suggested that factors fuelling cancer disparities also rendered this patient
population more vulnerable to worse COVID-19 outcomes (i.e., morbidity and mortality).
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(adapted from Nicholas et al.) [11]. 

This current analysis of a multi-ethnic cohort of GU cancer patients aims to delineate 
the patient- and neighbourhood-level factors contributing to disparities in COVID-19 test 
positivity, morbidity and mortality. 

2. Materials and Methods 
2.1. Patient Data 

Symptomatic patients presenting to the Mount Sinai Healthcare System (MSHS), a 
network of 10 institutes and facilities across New York City, were tested and included in 
this dataset (n = 47,379). SARS-CoV-2 testing was performed by reverse transcriptase PCR 
assay following a nasopharyngeal swab. The MSHS Ethics Committee approved a waiver 
of documentation of informed consent. 

De-identified patient data was obtained from the MSHS Data Warehouse 
(https://msdw.mountsinai.org/). Demographic and social determinants available for anal-
ysis included age, sex, and first language preference being English, as well as race/ethnic-
ity and smoking status. City borough of residence, hereafter referred to as “zip -code”, 
was derived from the first three digits of a patient’s zip code and included in models. 

The MSHS Ethics Committee approved a waiver of documentation of informed con-
sent; de-identified patient data was obtained from the MSHS Data Warehouse 
(https://msdw.mountsinai.org/). 

  

Figure 1. Theoretical framework for the potential of socioeconomic, behavioral, psychosocial and
medical co-morbidities as drivers of GU cancers and COVID-19 disparities in the United States
(adapted from Nicholas et al.) [11].

This current analysis of a multi-ethnic cohort of GU cancer patients aims to delineate
the patient- and neighbourhood-level factors contributing to disparities in COVID-19 test
positivity, morbidity and mortality.

2. Materials and Methods
2.1. Patient Data

Symptomatic patients presenting to the Mount Sinai Healthcare System (MSHS), a
network of 10 institutes and facilities across New York City, were tested and included in
this dataset (n = 47,379). SARS-CoV-2 testing was performed by reverse transcriptase PCR
assay following a nasopharyngeal swab. The MSHS Ethics Committee approved a waiver
of documentation of informed consent.

De-identified patient data was obtained from the MSHS Data Warehouse (https://
msdw.mountsinai.org/). Demographic and social determinants available for analysis
included age, sex, and first language preference being English, as well as race/ethnicity
and smoking status. City borough of residence, hereafter referred to as “zip -code”, was
derived from the first three digits of a patient’s zip code and included in models.

The MSHS Ethics Committee approved a waiver of documentation of informed con-
sent; de-identified patient data was obtained from the MSHS Data Warehouse (https:
//msdw.mountsinai.org/).
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2.2. Statistical Analysis

Continuous data were presented as medians (interquartile range [IQR]) and categorical
data were presented as numbers (percentage). The χ2 test was used to compare differences
in clinical outcomes between COVID test-Positive and COVID test-Negative groups. No
single feature selection methodology seems capable of ensuring optimal results in predictive
performance and stability in medical datasets, therefore, ensemble feature selection (EFS)
was utilised to overcome these limitations. EFS reduces data dimensionality, removing
irrelevant, redundant, or confounding features, leaving only those most relevant to the
outcome [16,17].

Briefly; six feature selection methods for binary classifications were utilised; namely
median, Pearson, Spearman-correlation, logistic regression, and two variable importance
measures embedded in the random forest algorithm. The median method compares
positive samples with negative samples by a Mann–Whitney U Test; the smaller the p-
value, the higher the importance. Spearman-correlation was used to select features that
are highly correlated with the dependent variable, but showed low correlation with other
features and avoids multi-collinearity. Logistic regression involves a pre-processing step (Z-
transformation) to ensure comparability between the different ranges of feature values and
the β-coefficients of the resulting regression equation represent the importance measure.
The random forest are themselves ensembles of multiple decision trees, which gain their
randomness from the randomly chosen starting feature for each tree [19]. The random
forest approach provides an importance measure based on the Gini-index (Gini_RF), which
measures the node impurity in the trees and the error rate-based method (ER_RF) measure
the difference before and after permuting the class variable. Each feature selection method
was normalised to a common scale—an interval from 0 to 1/n—where n is the number of
conducted feature selection methods (Figure 2).

A simple social determinants risk scale was computed by assigning equal weight to
each of the five identified features per respective COVID-19 outcome: testing positive,
hospitalisation, intubation and death. Calculated scores for each patient were determined
and charted against the proportion of patients who experienced each outcome (Figure 3).
All analyses were performed using R software [20].

3. Results

Of 47,379 tested patients, 10,444 (22%) tested positive for SARS-CoV-2. There were
1094 GU cancer patients in this cohort with 192 (17.6%) who tested positive. This cohort
includes 659 prostate cancer patients with 134 (20.3%) who tested positive; bladder cancer
patients (n = 283) with 37 (13.1%) confirmed positive; kidney cancer patients (n = 194)
with 10.3%, 16% (n = 31) tested positive, and testis (n = 29) cancer patients of whom 10.3%
(n = 3) tested positive for SARS-CoV-2. Of all 192 GU cancer patients who tested positive for
SARS-CoV-2, 128 were hospitalised, 19 were intubated, and 39 died of the disease (Table 1).

Of the 1094 GU cancer patients that presented to MSHS for testing, 997 (91.1%) were
male. Regarding their race/ethnicity, 459 (42%) were White, 273 (25.5%) were of African
ancestry, 204 (18.6%) were Hispanic/Latinx, 41 (37.5%) were Asian, and 117 (10.7%) were
Other/Unknown. There was a significant difference in the rate of positive tests between
these groups (p < 0.001), with the highest proportion of positive tests occurring in His-
panic/Latinx patients with GU cancer (31.3%). There were no significant statistical differ-
ences in the rates of hospitalisation, intubation, or death between these groups.
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Table 1. Urologic cancer patient social and clinical demographics. * indicates p < 0.05; † indicates
p < 0.001. Total percentages for prostate, bladder, kidney and testis cancer do not sum to 100% as
patients may have had a diagnosis of more than one malignancy.

COVID-19 Test Hospitalisation Intubation Mortality

Parameter
Negative Positive No Yes No Yes Alive Deceased
(n = 902) (n = 192) (n = 64) (n = 128) (n = 173) (n = 19) (n = 153) (n = 39)

Age (years) * * *

Mean (SD) 69.3 (10.9) 71.9 (11.0) 68.8 (12.9) 73.5 (9.53) 71.6 (11.4) 74.5 (6.18) 71.0 (11.2) 75.5 (9.40)
Median (Min,

Max)
70.0 (26.0,

90.0)
72.5 (32.0,

90.0)
69.0 (32.0,

90.0)
74.0 (39.0,

90.0)
71.0 (32.0,

90.0)
74.0 (67.0,

90.0)
71.0 (32.0,

90.0)
76.0 (55.0,

90.0)
Sex

Female 84 (86.6%) 13 (13.4%) 3 (23.1%) 10 (76.9%) 13 (100.0%) 0 (0%) 10 (76.9%) 3 (23.1%)
Male 818 (82.0%) 179 (18.0%) 61 (34.1%) 118 (65.9%) 160 (89.4%) 19 (10.6%) 143 (79.9%) 36 (20.1%)

Race/Ethnicity †

African ancestry 221 (81.0%) 52 (19.0%) 13 (25.0%) 39 (75.0%) 51 (98.1%) 1 (1.9%) 42 (80.8%) 10 (19.2%)
Asian 35 (85.4%) 6 (14.6%) 2 (33.3%) 4 (66.7%) 6 (100.0%) 0 (0.0%) 4 (66.7%) 2 (33.3%)

Hispanic/Latinx 144 (70.6%) 60 (29.4%) 23 (38.3%) 37 (61.7%) 53 (88.3%) 7 (11.7%) 52 (86.7%) 8 (13.3%)
White 409 (89.1%) 50 (10.9%) 17 (34.0%) 33 (66.0%) 42 (84.0%) 8 (16.0%) 37 (74.0%) 13 (26.0%)

Other/Unknown 93 (79.5%) 24 (20.5%) 9 (37.5%) 15 (62.5%) 21 (87.5%) 3 (12.5%) 18 (75.0%) 6 (25.0%)

Zip code * *

Bronx 53 (81.5%) 12 (41.7%) 5 (58.3%) 7 (5.5%) 12 (100.0%) 0 (0.0%) 9 (75.0%) 3 (25.0%)
Brooklyn 137 (80.1%) 34 (23.5%) 8 (23.5%) 26 (20.3%) 26 (76.5%) 8 (23.5%) 29 (85.3%) 5 (14.7%)

Manhattan 405 (78.9%) 108 (21.1%) 34 (23.5%) 74 (68.5%) 101 (93.5%) 7 (6.5%) 90 (83.3%) 18 (16.7%)
Nassau 24 (96.0%) 1 (4.0%) 0 (0.0%) 1 (100.0%) 1 (100.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)
Queens 180 (86.5%) 28 (13.5%) 13 (46.4%) 15 (53.6%) 26 (92.9%) 2 (7.1%) 16 (57.1%) 12 (42.9%)

Staten Island 23 (88.5%) 3 (11.5%) 1 (33.3%) 2 (66.7%) 3 (100.0%) 0 (0.0%) 2 (66.7%) 1 (33.3%)
Suffolk 21 (95.5%) 1 (4.5%) 1 (100%) 0 (0%) 1 (100.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%)

Outside NYS 19 (82.6%) 4 (17.4%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 2 (50.0%) 4 (100.0%) 0 (0.0%)

English as Preferred 1st Language

777 (83.3%) 156 (16.7%) 55 (85.9%) 101 (78.9%) 143 (91.7%) 13 (8.3%) 127 (81.4%) 29 (18.6%)

Current/Former Smoker

559 (85.2%) 97 (14.8%) 31 (34.0%) 66 (68.0%) 86 (88.7%) 11 (11.3%) 74 (76.3%) 23 (23.7%)
Asthma 41 (74.5%) 14 (25.5%) 6 (42.9%) 8 (57.1%) 14 (100.0%) 0 (0.0%) 12 (85.6%) 2 (14.3%)
COPD 59 (76.6%) 18 (23.4%) 7 (38.9%) 11 (61.1%) 17 (94.4%) 1 (5.6%) 15 (83.3%) 3 (16.7%)

Hypertension 443 (80.3%) 109 (19.7%) 31 (28.4%) 78 (71.6%) 101 (92.7%) 8 (7.3%) 86 (78.9%) 23 (21.1%)
Obesity 61 (73.5%) 22 (26.5%) * 7 (31.8%) 15 (68.2%) 22 (100.0%) 0 (0.0%) 19 (86.4%) 3 (13.6%)
Diabetes 166 (74.4%) 57 (25.6%) † 17 (29.8%) 40 (70.2%) 52 (91.2%) 5 (8.8%) 43 (75.4%) 14 (24.6%)

C.K.D 157 (78.1%) 44 (21.9%) 16 (36.4%) 28 (63.6%) 42 (95.5%) 2 (4.5%) 36 (81.8%) 8 (18.2%)

Prostate Cancer 525 (79.7%) 134 (20.3%) * 39 (29.1%) 95 (70.9%) 120 (89.6%) 14 (10.4%) 101 (75.4%) 33 (24.6%)
*

Bladder Cancer 246 (86.9%) 37 (13.1%) 16 (43.2%) 21 (64.5%) 34 (91.9%) 3 (8.1%) 32 (86.5%) 5 (13.5%)
Kidney Cancer 163 (84.0%) 31 (16.0%) 11 (35.5%) 20 (64.5%) 29 (93.5%) 2 (6.5%) 27 (87.1%) 4 (12.9%)
Testis Cancer 26 (89.7%) 3 (10.3%) 2 (66.7%) 1 (33.3%) 3 (100.0%) 0 (0.0%) 3 (100.0%) 0 (0.0%)

Older age was associated with a significantly higher risk of testing positive (p = 0.002),
being hospitalised (p=0.01) and death due to COVID-19 in this cohort (p = 0.01) but not
intubation (p = 0.09) (Table 1).

The majority of patients (933; 85%) in this cohort spoke English as their preferred
first language. While there were no statistical differences between those who did and did
not speak English as their first language for each of the outcomes on univariate analysis,
English was the preferred first language of 81% of patients who tested positive and 74.4%
who expired due to COVID-19 in this cohort.

The borough of residence was significantly associated with testing positive for COVID-
19 and intubation (p = 0.009), but not hospitalisation or death. Manhattan had the highest
rate of positive tests (108/513; 21.1%) and Queens had the highest mortality rate (12/28;
42.9%). There was a significant difference in ever smokers vs. never smokers receiving
COVID-19 diagnosis (p = 0.004). Additionally, while the rates of hospitalisation (68% vs.
65.3%), intubation (11.3% vs. 8.4%) and death (23.7% vs. 16.8%) were higher amongst ever
smokers, these were not significant.
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Figure 2 outlines the results of EFS analysis, where age, race/ethnicity, diabetes,
current/former smoker and prostate cancer diagnosis were the top five features selected
as the most parsimonious, and biologically reasonable model to describe the relationship
between those testing positive, and the features from social, demographic and medical
co-morbidities. In a similar manner, the identified features in this cohort predicting the risk
of hospitalisation were: older age, prostate and bladder cancer diagnosis, hypertension,
and zip code. For risk of intubation, the identified factors were zip code, age, obesity,
English as the preferred 1st language, and hypertension. For risk of death, the identified
factors were: age, zip code, race/ethnicity, prostate cancer, and smoking status.
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Figure 2. Ensemble feature analysis (EFS) of social, demographic and medical co-morbidities of GU
cancer patients for the risk of (A) Positive COVID-19 test, (B) hospitalisation, (C) intubation and
(D) death from COVID-19. EFS combined six feature selection methods—namely median, Pearson
(P_cor), Spearman-correlation (S_cor), logistic regression (LogReg) and two two variable importance
measures embedded in the random forest algorithm; the Gini index (Gini_RF) and error rate based
detection (ER_RF). Each selection method was normalised to a common scale; a score of 1 indicates
this parameter is the most prominent parameter selected by every method. R.E = race/ethnicity;
DIAB = diabetes mellitus; SMOK= current/former smoker; PROS = prostate cancer diagnosis; BLAD
= bladder cancer diagnosis; HTN = hypertension; OBES = obese; CHRO = chronic HIV infection;
Zp_= zip code; P_ = English as the preferred 1st language; ASTH = asthma; COPD = chronic
obstructive pulmonary disease; KIDN = chronic kidney disease.
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Figure 3 demonstrates progressive increases in the risk for each outcome across the
scale from 0 through to ≥4 for the risk of a positive test, risk of intubation, and risk of death.
Factors comprising each scale are also displayed in Table 2. For GU cancer patients who
scored ≥4 points or more on these scales, more than 30% tested positive for COVID-19,
10% were hospitalised, more than 80% were intubated, and over 50% died. (Figure 3).

Table 2. The most parsimonious parameters as identified EFS analysis for each of this study’s
outcomes: risk of testing positive for SARS-CoV-2 infection and COVID-19-related hospitalisation,
intubation and death in a cohort of patients with genitourinary cancers.

Outcome Positive
COVID-19/SARS-C0V-2 Test Hospitalisation Intubation Death

Parameter Age Age Age Age
Race/Ethnicity Zip code Zip code Zip code

Diabetes Hypertension Hypertension Race/Ethnicity

Ever Smoker Prostate Cancer English as Preferred 1st
Language Ever Smoker

Prostate Cancer Bladder Cancer Obesity Prostate Cancer
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Figure 3. Relationship between social and medical determinants and COVID-19 outcomes:
(A) positive COVID-19 test, (B) hospitalisation, (C) intubation and (D) mortality for patients with uro-
logic cancers. A unique social determinant scale of (A) age, race/ethnicity, diabetes, current/former
smoker, prostate cancer; (B) age, prostate cancer, hypertension, bladder cancer, zip code, (C) zip code,
age, obesity, English as preferred 1st language, hypertension and (D) age, zip code, race/ethnicity,
prostate cancer, current/former smoker was created—in which each determinant was awarded
1 point. Of those urologic cancer patients who scored 4 points on these scales, >30% tested positive
for COVID-19; 10% were hospitalised, >80% were intubated and >50% died.

4. Discussion

This is one of the first studies to report on the impact of SDOH on COVID-19 outcomes
for patients with urologic cancers. Our study findings provide evidence for the effects of
patient and neighbourhood levels of SDOH on COVID-19 test positivity, morbidity, and
mortality. The diverse cohort and geographic variation within New York City allowed
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for novel identification of underlying SDOH patient and neighbourhood-specific factors
influencing COVID-19 outcomes.

Our results show that patient and neighbourhood-SDOH-specific factors (e.g., age,
race, zip Code) play decisive roles in GU cancer morbidity and mortality from COVID-19.
As this data reveals, zip code and race/ethnicity, established proxies for socioeconomic
class, are strongly associated with urologic cancer patient outcomes following COVID-19
diagnosis. These findings highlight the importance of SDOH and the need to comprehen-
sively address individual patient’s risk factors among GU-cancer patients.

4.1. Urological Cancer Outcomes and Social Determinants

The relationship between urologic cancer outcomes and socioeconomic class has been
well described in the literature. In regards to bladder cancer, more patients present with
advanced-stage disease in countries with the highest poverty levels; white-collar workers
with bladder cancer have a longer length of survival than blue-collar workers; and even
when adjusted for smoking status, people with less than high school education have a 20%
higher risk of bladder cancer compared to those with postgraduate education [21–23]. Sim-
ilar data have been published regarding prostate and kidney cancer, ultimately demonstrat-
ing that lower income is a predictor of more advanced-stage cancer and worse postoperative
outcomes [24–26].

Not only is socioeconomic class itself largely impactful on urologic cancer outcomes,
it is also uniquely linked to behavioural factors that also correlate to more severe out-
comes. Behavioural factors such as diet, physical activity, and smoking all contribute to
the development of co-morbidities such as hypertension and obesity, which are associated
with worse outcomes in this analysis. In this cohort, smoking was also associated with
testing positive and death after COVID-19 diagnosis. As one of the largest risk factors
for bladder and kidney cancer diagnosis, smoking is two times more prevalent in those
who are below the poverty level versus those above it [27]. Additionally, poor diet and
nutritional deficiency at the time of cystectomy or nephrectomy predicts perioperative
mortality and 90-day mortality [28]. These health behaviours develop from far more than
just individual decision-making; they are influenced by many systemic, socioeconomic and
cultural factors critical for urologists to recognise.

Large disparities also exist regarding physical and built environments in relation to
urologic cancers. As shown in this analysis as well, location and zip code significantly
impact health outcomes for urologic cancer patients. The role of occupational environment
on urologic cancer diagnosis has been extensively studied. Blue-collar workers such as
car mechanics, construction workers, painters, and factory workers have much higher
exposure to bladder and renal carcinogens [29]. Furthermore, environmental pollutants
such as low levels of arsenic in drinking water have been associated with increased bladder,
prostate, and kidney cancer risk [30,31].

A communities’ built environments are also one of the major factors contributing
to differing access to healthcare. Non-insured patients and those with Medicaid have
60% greater odds of presenting with more locally-advanced cancer and 50–70% greater
mortality, compared to privately insured patients. This may be explained in part by Schrag
and colleagues’ analysis of Medicare/Medicaid data that found that only 40% of non-
privately insured patients received adequate follow-up after bladder cancer diagnosis [32].
Even if patients are insured, factors such as distrust in the medical community, inadequate
transportation, and provider density contribute to treatment delays. Additionally, higher
hospital volume, specifically in New York State, is tied to better outcomes, including
decreased operative mortality and decreased length of stay, after major cancer surgeries
such as prostatectomy and cystectomy [33]. As reflected in this study, where a person with
urologic cancer lives, it significantly impacts their mortality through multiple avenues.
Especially when considering the well-documented differences in geographic access and
availability of care in the COVID-19 era, this analysis further supports that where one lives
directly impacts one’s health.
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4.2. Social Disparities in COVID-19

Understanding COVID-19-related racial/ethnic disparities can be challenging, as they
are often rooted in historic, socio-structural inequalities. Minorities are often subjected to
living in segregated, suboptimal neighbourhoods with poor housing and environmental
conditions, as well as limited economic mobility and access to healthcare—a complex
interplay of factors that may contribute to increased susceptibility and vulnerability to
COVID-19. Racial/ethnic disparities in COVID-19 may also stem from labour inequalities,
lack of workplace protections, and large household size, which decrease the ability to
adhere to social distancing. Additionally, racial/ethnic minorities are more likely to have
respiratory and cardio-metabolic comorbidities due to suboptimal built environments
that reduce opportunities for engaging in health promoting activities and may be in close
proximity to petrochemical and manufacturing plants or superfund sites.

This study also demonstrated that non-modifiable determinants such as age and
race/ethnicity were among the top predictors of worse outcomes following COVID-19
diagnosis. This finding, specifically for urologic cancer patients, echoes numerous recent
reports of racial disparities in COVID-19 outcomes in the general population. In the United
States, African Americans and Hispanic people have experienced significantly higher
COVID-19 mortality than White people [34]. Along with race, increasing age was another
non-modifiable factor found to significantly impact COVID-19 outcomes for urologic
cancer patients. While these older adults are more likely to be diagnosed with a urologic
malignancy, there are other social determinants closely associated with ageing, which
negatively impacts health outcomes for older adults [18]. Differences in employment,
caretaker roles, language barriers, and transportation access are just a few of the many
SDOH that can be attributed to worse health outcomes among older patients. The evident
influence that these non-modifiable individual factors have on health outcomes highlights
the need for the medical field to address these disparities and actively work towards
reducing them.

Our results confirm shared demographic and clinical characteristics between COVID-
19 risk and documented urologic cancer health disparities in the U.S. (e.g., race, older
age, comorbidities). In order to reduce the effect of COVID-19 on existing urologic cancer
disparities and to improve the health of vulnerable patients, healthcare systems must invest
in optimising clinical cancer care and reducing the risk of infection and worse outcomes
of COVID-19. A recent COVID-19 paper argued that parameters for the prediction of the
need for admission to ICUs are urgently needed for patients with nephritis to enable timely
management and appropriate resource allocation [35]. Routine data collection of differential
clinical (morbidity, mortality) and SDOH (socioeconomic factors, healthcare access, physical
environment, individual and collective health behaviours) within electronic medical records
and health equity surveillance systems are necessary to optimise understanding of the
cancer–COVID-19 double burden [36–40]. The surveillance system would benefit from
local knowledge and active involvement of clinical supportive care staff (e.g., oncology and
medical social workers) to facilitate understanding of broader contextual factors that can
drive mortality and morbidity associated with outbreaks, including COVID-19 [35–37,41].

4.3. Strengths and Limitations

Our study presents important findings. With the largest sample size to date, of over
47,000 patients from the epicentre of the pandemic in the U.S., our study is reflective of
a broad patient demographic and outcomes in New York City. However, our study does
have limitations. The specific cancer clinical information (e.g., time since diagnosis and
treatment received) is not available in the dataset, therefore, the severity of the cancer’s
stage cannot be determined. Nor do we have data on the long-term outcomes for these
patients to assess for post-intensive care syndrome [42]. Another limitation is that our
study does not account for cases and deaths outside of the MSHS system, such as patients
who were homebound or in nursing homes and other care facilities.
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5. Conclusions

This large population-based cohort of patients tested for COVID-19 was taken from
the epicentre of the pandemic in the U.S. Our results show that SDOH, including zip
code/ NYC borough, age, race/ethnicity, smoking status, and English as the preferred
language are significant predictors of COVID-19 outcomes in patients with GU cancers.
Our results highlight the importance of taking SDOH into consideration when addressing
each individual patient’s risk factors in patients with GU cancers.

We found that various medical and social determinants, when used together in a
point scoring system, can risk stratify those GU cancer patients susceptible to COVID-
19 diagnosis, hospitalisation, intubation, and death. Urologists, oncologists and others
involved in the care of GU cancer patients should consider and account for the importance
of social determinants when managing patients.
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Abstract: Objectives: COVID-19 has ravaged healthcare systems across the globe. Availability of
and timely results for PCR testing have made diagnosis in the Emergency Department challeng-
ing. Therefore, we sought to determine if routine serum laboratory tests could be diagnostic of
COVID-19. Methods: All patients tested for COVID-19 at an academic hospital in Pennsylvania be-
tween 1 March 2020–28 April 2020, were retrospectively analyzed. Results of COVID-19 PCR testing
and laboratory tests were recorded. Mean difference was used to determine which tests demonstrated
a significant difference, with p < 0.01 used, due to multiple observations. The tests that met these
criteria had ROC curves and sensitivity and specificity determined. Results: Of the patients identified,
553 had had any laboratory test. All tests that showed a statistically significant mean difference were
lower in COVID-19 positive patients. These included white blood cell count, platelets, absolute neu-
trophil count, absolute lymphocyte count, absolute eosinophil count, alkaline phosphatase, albumin,
troponin T, lactic acid, D-DIMER, and procalcitonin. D-Dimer was excluded for only having four
tests completed in COVID-19 positive patients. The remaining tests had a specificity of 88–96%,
with a sensitivity of 5–50%. Discussion: No single serum laboratory test demonstrated sensitivity
for COVID-19. Some tests might be moderately specific, but this was of limited clinical use. Future
research should focus on a combination of tests to diagnose COVID-19, and healthcare systems
should work to obtain rapid and accurate PCR tests to diagnose COVID-19.

Keywords: COVID-19; coronavirus; laboratory; serum markers; diagnostic accuracy; SARS-CoV-2

1. Introduction

The novel coronavirus disease 2019 (COVID-19) has ravaged and overwhelmed many
healthcare systems during its initial pandemic, with over 500 million cases leading to over
6 million deaths worldwide [1]. It is caused by Severe Acute Respiratory Distress Syndrome
Coronavirus 2 (SARS-CoV-2). This novel viral pathogen is associated with high rates of
both infectivity [2,3]. and mortality, which has led to the need to allocate scarce healthcare
resources in many settings [4].

Testing for COVID-19 is typically done via nasopharyngeal, or oral, PCR, or, more
recently, antigen testing. PCR tests do not have rapid turnaround times at many facilities [5],
and antigen tests are known to have limited sensitivity [6]. Even PCR tests are known to
be imperfect, with sensitivities near 73–85% [7,8]. The lack of universally available rapid
and accurate tests leads to a diagnostic dilemma for many clinicians, especially those in
acute care, like emergency medicine, urgent care, and primary care. Incorrect guidance
regarding quarantining and isolation can lead to ongoing spread of this deadly virus.
Recommendations for quarantining that are over-excessive can lead to lack of compliance
and social and financial burdens for patients.

Serum laboratory tests are routinely available in most acute care settings with a rapid
turnaround time. If there is a single or combination of laboratory tests that could strongly
suggest whether a patient had COVID-19, it could allow more accurate quarantine and
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isolation recommendations. Therefore, we sought to determine the diagnostic accuracy of
serum laboratory tests for COVID-19.

2. Methods

We conducted a retrospective review of all patients who had viral testing from 1 March
2020, to 28 April 2020, at a tertiary academic medical center in central Pennsylvania. This
study was approved by the Institutional Review Board of Penn State Milton S. Hershey
Medical Center.

Charts were identified using the specific order for COVID-19 testing. All patients who
met this criterion and had any serum laboratory test result were included.

Availability and policies regarding COVID-19 testing at our hospital have changed
often during the study period. Four different tests have been available: ARUP® Labora-
tories (Salt Lake City, UT, USA), Quest Diagnostics® (Secaucus, NJ, USA), Pennsylvania
Department of Health (Harrisburg, PA, USA), and in-house testing at our clinical laboratory
(Hershey, PA, USA). PCR testing for in house COVID-19, approved under FDA Emer-
gency Use Authorization, was targeted against two different regions of the SARS-CoV-2
genome, ORF1ab and S gene. An RNA internal control is used to detect RT-PCR failure
and/or inhibition.

Data abstracted included age and sex of patients, results of COVID-19 testing, date
of testing, and results of laboratory tests. Mean difference was used to determine which
tests demonstrated a significant difference, with an alpha of 0.01 selected as significant,
due to multiple observations. The tests that met this criterion had receiver-operator charac-
teristic (ROC) curves and sensitivity and specificity determined. Diagnostic accuracy was
determined using standard definitions. Data was managed and statistically analyzed in
Microsoft® Excel (Seattle, WA, USA).

3. Results

Of the 1024 patients identified who had COVID-19 testing during the study period,
553 (54%) had any laboratory testing performed. Of these, 488 (88%) were negative for
COVID-19 and 65 (12%) were positive. The mean age was 54 years (SD = 22 years) and
the average weight was 84 kg (SD = 28 kg). Males were 45% of the sample (248/553).
Of the patients where race was provided, 77% were white (422/549), 10% Other race
(58/549), 9% Black (51/549), and 3% Asian (18/549). Ten percent (59/552) were Hispanic.
Among patients who tested positive for COVID-19, 45% were white (29/64), 31% Other
race (20/64), 14% (9/64) Asian, and 9% (6/64) Black. Among COVID-19 positive patients,
25% were Hispanic (16/64) and 48% were male (32/66). All tests that showed a mean
difference were lower in COVID-19 positive patients (Table 1). These included white
blood cell count, platelets, absolute neutrophil count, absolute lymphocyte count, absolute
eosinophil count, alkaline phosphatase, albumin, troponin T, lactic acid, D-DIMER, and
procalcitonin. D-Dimer was excluded post hoc for only having four tests completed
in COVID-19 positive patients. The remaining tests had a specificity of 88–96% with
a sensitivity of 5–50% (Table 2).

Table 1. Mean Difference of Laboratory Tests for COVID-19.

Laboratory Value COVID (+)
n

COVID (+)
Mean

SD of (+)
Group

COVID (−)
n

COVID (−)
Mean

SD of (−)
Group

SD Both
Groups p Value

White Blood Cell Count 65 6.09 2.54 487 10.46 5.92 3.09 <0.001

Hemoglobin 65 12.87 1.93 487 12.36 2.30 0.36 0.054

Platelet 64 178.47 68.73 480 247.26 106.84 48.64 <0.001

Abs Neutrophil Count 64 4.1 5.30 469 7.7 2.29 2.55 <0.001

Abs Lymphocyte Count 64 0.94 0.61 468 1.72 1.52 0.55 <0.001

Abs Eosinophil Count 64 0.03 0.06 468 0.14 0.19 0.08 <0.001

AST 64 45.59 46.13 436 47.49 115.52 1.34 0.812
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Table 1. Cont.

Laboratory Value COVID (+)
n

COVID (+)
Mean

SD of (+)
Group

COVID (−)
n

COVID (−)
Mean

SD of (−)
Group

SD Both
Groups p Value

ALT 64 33.05 30.69 443 43.7 138.15 7.53 0.162

Alkaline Phosphatase 64 70.94 30.20 443 113.8 93.44 30.31 <0.001

Total Bilirubin 64 0.49 0.67 441 1.39 7.91 0.64 0.02

Albumin 63 3.66 0.48 438 4.02 0.60 0.25 <0.001

Lactate Dehydrogenase 38 330.05 219.38 263 307.81 218.07 15.73 0.562

Troponin T 36 0.01 0.03 240 0.06 0.30 0.04 0.013

Lactate 43 1.38 0.64 299 1.81 1.08 0.30 <0.001

D-DIMER 4 0.43 0.14 81 1.57 2.98 0.81 0.001

INR 4 1.4 0.67 93 1.54 0.76 0.10 0.708

Thromboplastin Time 1 36 36.00 27 31.78 6.72 2.98 -

C Reactive Protein 37 5.32 5.57 306 5.55 8.12 0.16 0.824

Erythrocyte
Sedimentation Rate 37 39.51 22.25 278 42.66 31.11 2.23 0.446

Procalcitonin 52 0.14 0.19 356 1.64 7.11 1.06 <0.001

Ferritin 37 915.49 1125.75 301 542.01 1188.64 264.09 0.065

COVID-19: novel coronavirus disease 2019; AST: aspartate aminotransferase; ALT: alanine transferase;
INR: International Normalized Ratio

Table 2. Diagnostic Accuracy of Select Laboratory Tests for COVID-19.

Direction Sensitivity Specificity Area Under Curve Cutoff

White Blood Cell Decr. 26.7% 95.8% 82.7% 7000 cells/hpf

Platelet Decr. 14.6% 95.0% 73.2% 250,000 cells/hpf

Abs Neutrophil Count Decr. 18.1% 95.6% 77.2% 6000 cellls/hpf

Abs Lymphocyte Count Decr. 13.9% 96.0% 76.8% 2000 cells/hpf

Abs Eosinophil Count Decr. 23.1% 96.1% 94.0% 25 cells/hpf

Alkaline Phosphatase Decr. 50.0% 93.4% 81.4% 80 Units/L

Albumin Decr. 11.9% 88.6% 74.2% 4.0 g/dL

Troponin T Decr. 10.9% 95.3% 96.0% 0.015 ng/mL

Lactate Decr. 13.1% 96.6% 59.2% 2.5 mmol/L

Procalcitonin Decr. 13.6% 93.5% 61.2% 0.16 ug/mL

COVID-19: novel coronavirus disease 2019.

4. Discussion

Our study reviewed the diagnostic accuracy of laboratory testing for COVID-19. Many
specific findings were identified, but none of these findings were sensitive. Statistically
significant findings associated with COVID-19 included leukopenia, thrombocytopenia,
lymphopenia, neutropenia, eosinopenia, low alkaline phosphatase, low albumin, low
troponin T, low lactic acid, and low procalcitonin. These findings were specific, but
not sensitive.

Leukopenia, thrombocytopenia, and lymphopenia have previously been reported
in many viral illnesses and are known to be commonly seen in COVID-19 [9] and have
been shown to be negative prognostic markers [10,11]. Several mechanisms for lym-
phopenia and thrombocytopenia have been proposed. For lymphopenia, the following
mechanisms have been proposed: hyperimmune response to IL-6 may lead to lymphocyte
death, SARS-CoV-2 may directly infect T cells via ACE-2 receptors or ACE-2 independent
pathways, SARS-CoV-2 may directly infect the bone marrow, or COVID-19 infection may
lead to exhaustion of T cells or restrict their expansion [12]. For thrombocytopenia, the
theory of bone marrow infection by SARS-CoV2 remains, but there are also theories of bone
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marrow suppression for hemophagocytic lymphohistiocytosis, like reaction, autoimmune
platelet destruction, or platelet consumption due to microthrombi and lung damage in a
mechanism similar to that seen in disseminated intravascular coagulation [13]. Our study
showed that eosinopenia is associated with COVID-19 diagnosis, which has been reported
previously, but is less widely known [14,15].

Our study is the first study to suggest that low alkaline phosphatase is associated with
the diagnosis of COVID-19. A prior meta-analysis has shown that elevated liver functions
are not associated with diagnosis of COVID-19 at presentation [16]. Interestingly, prior
studies have shown elevated liver enzymes, namely alanine aminotransferase and aspartate
transaminase, to be poor prognostic markers in COVID-19 [10,11]. Acute viral hepatitis
from COVID-19 has also been reported, similar to other viruses [17]. The mechanism of this
viral-associated hepatitis in COVID-19 is unknown, but widely accepted theories include
direct viral injury, micro-thombosis, causing ischemic hepatitis, cholestasis from systemic
inflammation, and non-hepatic causes of elevation in liver enzymes (i.e., muscle damage).
Hypoalbuminemia has previously been reported as a poor prognostic, but not a diagnostic,
marker [18]. This has been suggested to reflect endothelial damage or pulmonary capillary
leakage playing a significant role in the pathogenesis of severe COVID-19 [19].

The fact that low lactate, troponin, and procalcitonin are associated with COVID-19
is likely more reflective of ruling out alternative pathologies for COVID-19 symptoms.
Many patients with COVID-19 have fever, tachycardia, and tachypnea. Thus, a normal
procalcitonin and lactate may be indicative of COVID-19 in a pandemic as it makes bacterial
sepsis unlikely when COVID-19 has high prevalence in the population. Similarly, chest pain
is also a common complaint in patients with COVID-19. During times of high prevalence,
a normal troponin may be specific to COVID-19 because it makes cardiac causes of chest
pain unlikely. While classic understanding of sensitivity and specificity is that they do
not vary with prevalence of disease, more recent analyses have brought this concept into
question [20,21].

Unfortunately, our study did not have enough positive D-DIMER tests to evaluate
this as a diagnostic marker for COVID-19. Elevated D-DIMER has been associated with
COVID-19 diagnosis and prognosis, with markedly elevated levels reported, even in the
absence of known confirmed thrombosis [10,22].

Given the low sensitivity of each laboratory test in isolation, they really have no clinical
value in ruling out COVID-19. In resource limited settings, some of these findings may
suggest COVID-19 as a diagnosis, especially in times of high prevalence of the disease.
Future research should focus on identifying a combination of laboratory markers to aid in
the diagnosis of COVID-19 for settings in which access to rapid direct testing is unavailable.
However, it is important to note that our study was not carried out in this setting, where
the prevalence of other disease processes may affect the accuracy of laboratory tests for this
diagnosis (e.g., malaria and thrombocytopenia). Given the lower prevalence of disease and
increased availability of PCR and antigen tests for COVID-19, there will hopefully not be a
need to use surrogate laboratory markers to assist in diagnosis.

5. Limitations

Our study was a single site retrospective review. It has the inherent limitations of both,
including the possibility of limited generalizability. We included every patient who had
COVID-19 testing, thus we included patients with at least moderate pretest probability of
disease. Our study occurred in the Northeast United States at an academic medical center,
so populations in other settings may be different. As mentioned above, the value of some
tests may vary with lower disease prevalence. Since our COVID-19 testing changed and
we used PCR testing as the reference standard, the differences in the test characteristics
of the different PCR tests may also affect the diagnostic accuracy of laboratory tests in
our analysis.
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6. Conclusions

Based on our data, no single serum laboratory test demonstrates sensitivity for COVID-
19. Some tests may be moderately specific, but are of limited clinical use, given lower
prevalence and increased availability of direct antigen and PCR testing for COVID-19.
Future research should focus on a combination of tests to aid in the diagnosis of COVID-19,
particularly for low resource settings without access to direct rapid COVID-19 testing.
Healthcare systems should work to obtain rapid and accurate PCR tests to diagnose
COVID-19, as relying on laboratory findings alone is inaccurate.
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Abstract: X-ray technology has been recently employed for the detection of the lethal human coro-
navirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis.
The scientific community evaluated deep learning methods to aid in the automatic detection of the
disease, utilizing publicly available small samples of X-ray images. In the majority of cases, the results
demonstrate the effectiveness of deep learning and suggest valid detection of the disease from X-ray
scans. However, little has been investigated regarding the actual findings of deep learning through
the image process. In the present study, a large-scale dataset of pulmonary diseases, including
COVID-19, was utilized for experiments, aiming to shed light on this issue. For the detection task,
MobileNet (v2) was employed, which has been proven very effective in our previous works. Through
analytical experiments utilizing feature visualization techniques and altering the input dataset classes,
it was suggested that MobileNet (v2) discovers important image findings and not only features. It
was demonstrated that MobileNet (v2) is an effective, accurate, and low-computational-cost solution
for distinguishing COVID-19 from 12 various other pulmonary abnormalities and normal subjects.
This study offers an analysis of image features extracted from MobileNet (v2), aiming to investigate
the validity of those features and their medical importance. The pipeline can detect abnormal X-rays
with an accuracy of 95.45 ± 1.54% and can distinguish COVID-19 with an accuracy of 89.88 ± 3.66%.
The visualized results of the Grad-CAM algorithm provide evidence that the methodology identifies
meaningful areas on the images. Finally, the detected image features were reproducible in 98% of the
times after repeating the experiment for three times.

Keywords: deep learning; COVID-19; explainable artificial intelligence

1. Introduction

Deep learning has already demonstrated superiority to conventional methods in a
variety of medical imaging tasks, including the classification of important diseases using
different imaging modalities, such as Computed Tomography (CT), Positron Emission
Tomography (PET), and X-ray [1]. The recent human coronavirus disease (COVID-19)
poses new challenges for deep learning experts, such as the automatic segmentation and
classification of CT or X-ray images that can lead to a timely, accurate, and cost-effective
diagnosis. Limitations related to data scarcity have been a major obstacle in designing deep
and robust frameworks [2]. Since March 2020, the available X-ray image datasets included
no more than 500 images of COVID-19 disease.

Typical imaging findings of COVID-19 lung infection include bilateral, patchy, lower-lobe-
predominant, and peripheral ground-glass opacities and/or consolidation. These are mainly
identified on CT imaging rather than X-ray, which has lower sensitivity for COVID-19 diagnosis
at the level of ≈67–100% [3]. Nevertheless, the scientific community has responded to the
aforementioned challenge and has provided first answers as to whether this disease can
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indeed be detected solely from X-ray images. Several works suggest the utilization of deep
learning models, such as Convolutional Neural Networks (CNNs) for diagnosis [4–10].
In most cases, either handcrafted CNNs, or established CNNs in other domains, yield
precise and promising results, at least in cases where the COVID-19 disease is adequately
visualized in the particular imaging modality. All those networks have been evaluated
utilizing approximately the same image sources.

Deep learning has already demonstrated its effectiveness in distinguishing COVID-19
using the particular image datasets. However, the assumption that through deep learning
it is possible to diagnose COVID-19 solely on the basis of X-ray images is not valid yet.
This is because the available datasets are heavily incomplete due to the following reasons:

a. The samples are too few for deep model training
b. The image information is not accompanied by clinical outcomes.
c. There are few multicenter studies to support the conclusions.
d. The samples commonly illustrate COVID-19 disease of patients showing disease

symptoms. Asymptomatic cases are under-represented.

The above issues motivated the scientific community towards applying data augmen-
tation techniques to expand the training sets, add diversity to the data distributions, and
enable their models to become robust to transformations.. Nevertheless, the data scarcity
issue is not circumvented completely. The question arising at this point is the following:
“Besides their undeniably strong predictive power, are the developed deep learning models
capable of providing explanations regarding their decisions, informing the actual user of
their image findings so as to be trustworthy and accountable?”.

Motivated by our previous studies on the automatic identification of COVID-19 from
X-rays [5,9] and aiming to shed light on the explainability of deep learning, we performed
a deeper analysis on the decision mechanisms of mobile network, a state-of-the-art CNN,
that exhibited promising results in our recent study [5]. In previous work of our group [9],
the effectiveness of training from scratch strategy against transfer learning is demonstrated,
showing that training from scratch may discover potential image biomarkers extracted
from X-ray images. This conclusion is based on the comparison of transfer learning with
training from scratch. The reader should note that with transfer learning, the classification
is mainly based on pre-learned feature extraction knowledge of a particular CNN. This
knowledge is obtained by performing an independent training on large-scale datasets of
a completely different domain task. Although transfer learning also yields good results,
training from scratch improves the classification accuracy. This led the authors to the
conclusion that novel and vital image features were extracted from the latter strategy.

In the present work, the feature extraction capabilities of MobileNet (v2) were further
analyzed by performing extensive experiments and visualizing the output feature maps.
The Grad-CAM algorithm [11] was utilized to reveal the regions where MobileNet (v2)
seeks for important features. In this way, a better understanding of the decision mechanism
of the network is achieved.

The contributions of this paper can be summarized as follows:

• The successful state-of-the-art network (MobileNet v2) was extensively evaluated in
performing multi-class and two-class classification of X-ray images with the aim of
identifying images related to the coronavirus disease. Further, the consistency of the
reported metrics was assessed by running a 25-times 10-fold cross-validation

• The explainability algorithm (Grad-CAM) was employed to inspect the consistency of
the suggested areas of interest across a three-run experiment.

• We present a staged approach for the detection of COVID-19 from X-ray images that
exhibited an accuracy of 89.88 ± 3.66%.

2. COVID-19 Detection Based on X-ray Imaging: Recent Studies

The research community has put an enormous effort in developing deep learning
pipelines for COVID-19 detection from either computed tomography (CT) scans or X-ray
scans. In addition, a large amount of attention has been paid to leveraging explainability
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methods to visualize the suggested areas of interest as proposed by the models. Hence,
model assessment can be based not only on quantitative metrics (such as the accuracy, the
sensitivity, and the specificity scores), but also on qualitative evaluation. In this section, we
briefly describe major findings and trends found in the latest literature.

Hou and Gao [12] proposed a deep CNN-based platform for COVID-19 detection that
could identify COVID-19 cases with an accuracy of 96%. Their model has been trained
using a dataset of 1400 chest X-ray images, which includes 400 normal images, 400 images
of pneumonia infection from bacteria, 400 images of pneumonia infection by other viruses,
and 200 images of pneumonia infection by COVID-19. The authors used the Grad-CAM
algorithm to visualize the suggested areas of interest.

Ahsan et al. [13] proposed the utilization of the state-of-the-art networks named
Virtual Geometry Group (VGG) and MobileNet (v2) to distinguish between COVID-19 and
non-COVID-19 X-rays from an imbalanced dataset of 2191 X-rays. The networks achieved
remarkable accuracy, stretching between 91% and 96% and an AUC score of approximately
0.82. The authors used the local interpretable model-agnostic explanations (LIME) [14]
method for the visualization of important image areas.

Brunese et al. [4] analyzed 6523 X-ray scans and developed a pipeline for an incre-
mental detection of COVID-19. Their framework identifies pulmonary-disease-related
X-rays and then further distinguishes between COVID-19 cases and non-COVID-19 cases.
Their model reached an accuracy of 97%. The authors adopted the Grad-CAM algorithm
to visualize the feature maps and verified that their model did not focus on irrelevant
locations of the image.

In [9], which is a previous study by the authors of this study, a first attempt to evaluate
the extracted features of deep learning methods for COVID-19 detection from X-rays re-
vealed evidence that training MobileNets from scratch can extract problem-specific features
that could be if medical importance. In addition, an accuracy of 99% in distinguishing
between COVID-19 and non-COVID-19 cases from an imbalanced dataset of 3905 scans.

Wang et al. [15] proposed COVID-Net, a tailored CNN trained on a dataset of 13,975 X-ray
scans. They achieved an accuracy of 93.3% in distinguishing between normal, common
pneumonia, and COVID-19-related pneumonia images. The authors employed the GSIn-
quire method [16] to plot the associated critical factors on the image. COVID-Net primarily
leveraged areas in the lungs in the X-ray images as the main critical factors in determining
whether an X-ray image is of a patient with COVID-19.

Thorough interpretation and examination of the explainability methods is missing
from the majority of the related studies, although particular explainability methods have
been employed.

3. Materials and Methods
3.1. Deep Learning with Mobile Networks

The main advantage of CNNs lies in extracting new features from the input data
distributions (i.e., images), thereby bypassing the manual feature extraction process, which
is traditionally performed in image analysis task with machine learning methods [17].

Each convolution layer in a CNN is processing the output of the previous layer by
applying new filters and extracting new features. Due to the fact that the convolutional
layers are hierarchically ordered, features directly from the original image are only extracted
by the first convolutional layer, whereas the other layers process the outputs of each
other [18]. In this way, a slow introduction to large amounts of filters is achieved, whilst
underlying features may be revealed during the later layers. The general rule of thumb
relates the effectiveness of the network with the number of convolutional layers. This is
why deep networks are generally superior, provided that adequate amounts of image data
are present. In cases where the dataset’s size is not large enough to feed a deep network,
three solutions are commonly proposed:

(a) The selection of a simpler CNN, which contains less trainable parameters and fits in
the particular data well.
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(b) Transfer learning [19], utilizing deep and complex CNNs, but freezing their layers,
thereby decreasing the trainable parameters and allowing for knowledge transfer,
following their training on large image datasets.

(c) Data augmentation methods to increase the training set size, such as geometric trans-
formation (rotation, sheer) and pixel-level transformations (equalizations, grey-level
alterations) [20].

In this study, MobileNet (v2) [21] was selected for the classification task, which is a
state-of-the-art CNN and has been recently employed and evaluated by the authors [9]. In
that particular study, MobileNet (v2) was found to be superior for false negative reduction
in COVID-19 detection, in comparison with a variety of famous CNNs, including Inception
(v3) [22] and Xception [23].

The superiority of MobileNet (v2) in reducing the false negatives for the detection
of COVID-19, compared to other famous CNNs, is demonstrated in [5,9]. Moreover, this
CNN introduces a smaller number of parameters compared to other CNNs, which makes
it appropriate for swift training and portable applications. The inventors of this network
made use of depth-wise separable convolution [22] to drastically reduce the number of
learnable parameters in CNNs, thereby reducing the computational cost.

MobileNet (v2) is employed and trained from scratch, letting it fit in the training
set completely and without making any adjustments to its structure. Every parameter is
made trainable. In essence, the obtained weights from its training on ImageNet challenge
dataset [24] are erased. This methodology is selected to allow for problem-specific feature
extraction. At the top of the network, wherein the final feature maps are produced, a global
average pooling [25] layer is applied to reduce overfitting. This layer connects the final
feature map directly to the dense layer at the top of the CNN, which consists of 2500 nodes.
Another dense layer of two outputs is inserted for the binary classification of the inputs.
Batch normalization and dropout layers aid in the reduction of overfitting and are part of
the densely connected layers at the top of the network.

3.2. Image Dataset
3.2.1. COVID-19, Common Bacterial and Viral Pneumonia X-ray Scans

X-ray images corresponding to confirmed cases infected by the virus SARS-CoV-2
were selected. Through extensive research, a collection of 1281 well-visualized, confirmed
pathological X-ray images was created. The final collection included X-rays from a publicly
available repository [26]. Contributing institutions of this repository include the Indian
Institute of Science, the PES University, the M. S. Ramaiah Institute of Technology, and
Concordia University. The publishers of this data did not include important clinical
information, which could be useful for a more robust analysis.

3.2.2. Pulmonary Diseases Detected from X-ray Scans

The National Institutes of Health (NIH) X-ray repository was accessed and analyzed. It
comprises 112.120 frontal-view X-ray images of 30.805 unique patients with the text-mined
14 disease image labels [27].

Those images were extracted from the clinical PACS database at the National Institutes
of Health Clinical Center in USA. The contents of this archive contained 14 common
thoracic pathologies, namely, atelectasis, consolidation, infiltration, pneumothorax, edema,
emphysema, fibrosis, effusion, pneumonia, pleural thickening, cardiomegaly, nodule, mass,
and hernia. This dataset is significantly more representative of the real patient population
distributions and realistic clinical diagnosis challenges than any previous chest X-ray
datasets. The medical reports were analyzed by an automatic text-mining model that
assigned the corresponding labels according to its text-mining procedure. This method has
been initially adopted by the creators of the dataset and is not part of this work.

The final dataset characteristics are summarized in Table 1. In Figure 1, selected
samples from major classes are presented.
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Table 1. Characteristics of the dataset.

Dataset Name Classes Description Total Number of Images

Multiclass 14 Huge dataset including normal, COVID-19, and
12 categories of abnormal X-ray scans. 11,984

Abnormality detection 2
Huge dataset consisting of normal and abnormal

X-ray scans. In the abnormal class, X-rays
corresponding to COVID-19 were also included.

13,320

Abnormality discrimination 13 Dataset containing 13 classes corresponding to
13 abnormalities, including COVID-19. 8714

COVID-19 detection 2
Dataset containing COVID-19 X-ray scans and a
second class of both normal and abnormal X-ray

scans (selected samples).
2935
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Figure 1. Samples of some classes belonging to abnormalities.

For the normal class in the abnormality detection dataset, we added some more images
to make the classes approximately even in terms of number of images included. All image
sizes were adjusted to 400 × 400 pixels (height, width). The resolution of the images varied
from 72 to 150 pixels/inch, and the bit depth if the image was 8 bits.

3.3. Data Augmentation Techniques

Data augmentation is an important method in deep learning applications and research,
mainly utilized for two reasons. The first reason is the data scarcity, which impedes deep
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learning models adoption to the domain of interest. Few images are usually not enough
for a deep learning framework to train on [28], especially in cases where the classification
should be based on deep features and not obvious and low-level characteristics (e.g., colors).
With data augmentation, the initial training set can be broadly expanded by applying a
variety of transformations on the original images. In this way, the model learns to ignore
irrelevant characteristics and improves its spatial capabilities [29]. For example, applying
random rotations directs the model towards seeking for patterns in moving positions.

In the present research, the following augmentations to the training sets to expand
the available data and to increase the generalization capabilities of the experimental deep
learning network were applied:

a. Random rotations;
b. Horizontal flips;
c. Height and width shifts.

The reader should note that data augmentation was performed on-line. During each
10-fold repetition, the augmented images were supplied to the classification model, whilst
the test sets remained untouched. In this way, each training image was augmented to
produce contextual images by performing the abovementioned augmentations.

Random rotations were restricted to −20 to 20 degrees, and height and width shifts
were restricted to ±20 pixels. The ±20 degree of rotation was empirically selected to avoid
excessive rotations, whilst letting the model develop robustness to spatial discrepancies
between the image findings, for example, the position of the lungs.

3.4. Experiments

The initial dataset included 14 classes. On the basis of this dataset, subsets were
created according to Figure 2 and Table 2. The intention of the experimental phases and the
methods utilized are summarized in Table 2.
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Table 2. Overview of the experiments.

Experiment Name Aim Classes Utilized

Multiclass Evaluate the effectiveness of MobileNet (v2)
in multiclass discrimination 13 respiratory infections and the class normal.

Abnormality detection Evaluate the effectiveness of MobileNet (v2)
in abnormality detection

All respiratory infection classes, including
COVID-19, were joined together into a big
class. Normal X-ray scans constituted the

second class.

Abnormality discrimination
Evaluate the effectiveness of MobileNet (v2)
in distinguishing between various diseases,

including COVID-19

13 classes of X-rays corresponding to
13 respiratory infections

COVID-19 detection
Evaluate the effectiveness of MobileNet (v2)

in distinguishing between COVID-19 and
non-COVID-19 X-ray scans

Selected samples from the 12 respiratory
diseases constituted the first class, whereas the

second class referred to COVID-19.

Reproducibility
Evaluate the reproducibility of features when
MobileNet is trained distinguishing between
COVID-19 and non-COVID-19 X-ray scans

Selected samples from the 12 respiratory
diseases constituted the first class, whereas the

second class referred to COVID-19.

For all the experiments, the parameters of the model were retained. The batch size
was 16 and the number of epochs varied from 30 to 40 according to the validation loss. All
experiments were performed in a Python programming language environment making use
of the Tensorflow library. An Intel Core i5-9400F CPU at 2.90 GHz computer equipped with
64 Gb RAM and a GeForce RTX 2060 Super was the main infrastructure for the experiments.
In Figure 2, an overview of the study is presented.

4. Results
4.1. Results of Multiclass Classification

For the multiclass classification, MobileNet (v2) achieved sub-optimal performance, as
presented in Table 3. The model achieved good classification for the bacterial pneumonia,
normal, mass, COVID-19, and consolidation classes (confusion matrix is available in the
Supplementary Material). Especially for COVID-19, 1095 true positives were recorded
(out of 1281), corresponding to 85.48% accuracy. Moreover, only 12 false negatives were
reported. This observation indicates that, despite the overall sub-optimal performance, the
model correctly captured COVID-19 image characteristics that distinguish these images
from the rest. Moreover, the normal class was adequately predicted, with 2439 true normal
predictions and 36 predictions that were mistakenly identified as normal.

Table 3. Classification results. The mean accuracy for the complete 10-fold and standard deviation
for the performance between the 10-fold are also reported.

Dataset Accuracy (%) AUC Score (%)

Multiclass 73.11 ± 2.21 94.07 ± 1.45
Abnormality detection 95.45 ± 1.54 98.92 ± 0.83

Abnormality discrimination 62.26 ± 4.21 90.93 ± 1.57
COVID-19 detection 89.88 ± 3.66 96.26 ± 2.14

Figure 3 illustrates the results of the multiclass classification and selected samples
from the outputs of the Grad-CAM algorithm. The red areas of the image suggest the
region where the model has captured significant features. Blue areas are considered neutral
regions, where no features, or insignificant features, are found. The reader can observe
that COVID-19 features were mainly discovered in the center of the respiratory system
and that those regions indeed contained COVID-19 findings. Moreover, Figure 3 illustrates
misclassified instances. For COVID-19, it was observed that the misclassified image did
not contain any information in the center of the respiratory system, perhaps leading the
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model to falsely recognize specific patterns. In fact, it was observed that the model looked
for patterns in the upper right of the image, which was a completely irrelevant region. This
issue highlights the flaws of the model and its decision mechanism.
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Taking into consideration both the good classification accuracy in distinguishing the
COVID-19 class from the other classes and the Grad-CAM visualizations, it can be assumed
that in the majority of COVID-19 X-rays, potential biomarkers are discovered. However,
this assumption requires further investigation.

4.2. Results of Abnormality Detection (Two-Class)

Abnormality detection tests produce excellent results. As observed in Table 3, 95.45% ac-
curacy was achieved. The total number of false negatives was 211, as the confusion matrix
of Figure 4 suggests. It is clearly concluded that the model achieved great capability in
distinguishing normal from abnormal X-ray scans. In Figure 4, it is observed that the
Grad-CAM results confirmed the assumption that the model seeks for patterns in the
correct regions of the respiratory system.

Due to the fact that all types of infections were grouped together in one class (abnor-
mal), the model learned global features explaining the presence of any disease and did not
learn the visual differences that each disease may display in the image. However, there
are still images were the Grad-CAM exposed some limitations and flaws of the model. In
essence, there were images where the model was unable to locate the region of interest
correctly, despite the correct classification.
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Figure 4. Visualized results for the abnormality detection. Train-validation accuracy and loss over the
training epochs and AUC scores for the classes are presented in the top graph. Selected output images
of the Grad-CAM implementation are visualized. Each dashed-line box presents a true class, while
the green and red boxes distinguish between correctly classified samples and mistakes, respectively.

4.3. Results of Abnormality Discrimination

The abnormality discrimination experiment produced poor performance due to the
presence of many respiratory diseases, many of which produce overlapping X-ray results.
Specifically, 62.26% accuracy was achieved. In the Supplementary Material, the confusion
matrix is provided. It is observed that MobileNet (v2) achieved good classification results
for COVID-19 (1110 true positives, 171 false negatives, 168 false positives), mass (2427 true
positives, 78 false negatives, 14 false positives), and bacterial pneumonia (1108 true posi-
tives, 25 false negatives, 14 false positives). For the rest of the diseases, the discrimination
task performed sub-optimally. As is observed in Figure 5, the validation accuracy did
not improve, despite the improvement in the training accuracy. The same phenomenon
applied to the validation loss. Those results highlighted the inability of the model to capture
and learn discriminant features. Data augmentation has not been beneficial enough to
improve its discrimination ability for the majority of the diseases. However, due to the fact
that the aim of this study was focused on COVID-19, the reason behind the sub-optimal
performance for multi-class classification was not further investigated in terms of the type
of the extracted features. Moreover, the imbalance of the dataset hindered thorough and
extensive evaluation. Several classes were underrepresented. As a result, a deep analysis
on the extracted features of those classes would yield negligible outcomes.
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4.4. Results of COVID-19 Detection

For the COVID-19 detection experiment, top performance was observed, with the
classification accuracy reaching 89.88%. Specifically, as the confusion matrix of Figure 6
suggests, 1154 COVID-19 X-ray images were correctly identified out of 1281. The total
number of false negatives was 127, whilst the total number of false positives was 170.
The Grad-CAM output suggested that the model looked for COVID-19 related features,
focusing on the upper respiratory system. For the non-COVID-19 class, the model based its
predictions on the collection of different features found in various regions of the image.

A significant observation is that in every experiment, COVID-19 images were correctly
classified, either as part of a multiclass dataset or as the major class in a two-class dataset.
There is significant evidence that this stability derives from unique image features discov-
ered by the model in those processes. The results of the upcoming reproducibility test favor
this assumption.

4.5. Results of Feature Reproducibility in COVID-19 Detection

The two-class classification routine has been repeated for 25 times, and the reported ac-
curacy is assessed for statistical significance. A one-sample t-test was performed, assuming
that there is no difference in the mean accuracy score between the 25 runs (i.e., setting the
second variable equal to the first obtained accuracy). Table 4 presents the accuracy of each
run. As can be observed from Table 5, the p-value was greater than 0.05. Hence, there is
no evidence that the mean accuracy obtained from the 25 runs deviated from the expected
values. To summarize, the t-test results suggest that the model is stable in reproducing the
particular results in terms of accuracy.
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Table 4. Classification results of 25-run 10-fold cross-validation when training and testing MobileNet
(v2) using the COVID-19 detection dataset (two classes).

Run Mean Accuracy (%)

1 89.88
2 91.23
3 88.54
4 92.14
5 89.24
6 89.36
7 88.53
8 88.86
9 90.76
10 88.86
11 91.23
12 90.37
13 92.43
14 89.02
15 89.67
16 88.54
17 90.79
18 89.36
19 87.13
20 91.23
21 86.98
22 88.86
24 92.41
24 90.66
25 91.23

Overall 89.89
Std ±1.49
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Table 5. Statistical significance results of 25-run 10-fold cross-validation when training and testing
MobileNet (v2) using the COVID-19 detection dataset (two classes).

Factor Result for Accuracy

Mean 89.89
Variance 2.24

Observations 25
T-statistic 0.0413
p-value 0.4836

It was observed that there was no significant variation of the accuracy over the 25 runs.
As a result, the comparison between the Grad-CAM visualization outputs of the 25 runs
was performed using the outputs of three runs. We performed a case-to-case examination
of the similarity of the produced Grad-CAM images to inspect whether the suggested areas
of interest remained consistent across the three independent trainings. The evaluation was
conducted by two of the authors (J.A. and N.P.) by visually inspecting the suggested areas
in terms of their relative position inside the image. The methodology of this experiment is
better understood in Figure 7. Figure 8 illustrates the Grad-CAM outputs obtained by three
independent trainings of MobileNet (v2). All parameters, hyper-parameters, and image
sets were retained during the three separate trainings.
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Figure 7. Reproducibility of test methodology.

In approximately 98% of the visualized Grad-CAM maps, the features were repro-
duced and the suggested areas remained the same. It was noted that there was a disagree-
ment between the three independent training–testing results for 2% of the images. The
reader should note that Figure 8 illustrates only true positive (true COVID-19) images,
aiming to investigate whether the features were reproduced for the specific examples and
not for the incorrectly classified instances.
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Figure 8. Results of the reproducibility tests. Each dashed-line box presents Grad-CAM results for
10 images of COVID-19 infection. The visualized maps correspond to the same images for each group.
The green tick mark suggests feature reproducibility and the red arrow suggests failure to reproduce
specific features, leading to misclassification.

It was observed that a few discovered features are not always reproducible (2%).
Figure 8 provides regions of specific images where the discovered features in the first
training were not re-discovered during the second or third training. The classification
accuracy remained top-level (approximately 90%) for each repetition. This is a conflicting
situation. The reasons behind this phenomenon can vary:

(a) Some of the COVID-19 images may contain annotations that are recognized by the
model as features. Although the data were tested, the non-official nature of the
dataset source led us to not be completely sure about the origin of the images and the
pre-processing that may have taken place.

(b) The learning capacity of MobileNet (v2) is not enough to capture all significant
features, leading to the exclusion of some of them.

(c) Data augmentation fails to improve the model’s capability in capturing global and
important features completely, thereby allowing for irrelevant feature discovery.
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5. Discussion

Deep Learning enabled the extraction of a massive amount of low- and high-level
features from medical images. Those features may represent important biomarkers, closely
related to the corresponding diseases. However, deep learning methods lack the ability to
specifically assess these features. The extracted features are not well-defined and usually
refer to combinations of findings inside the image. This issue derives from the millions of
complex mathematical procedures incorporated into deep models. Tracking the extracted
features is not an easy task. The above issue raises concern about the trustfulness of such
models for medical image classification tasks. For the recent COVID-19 disease, deep
learning has been proven to be helpful in early detection, utilizing only X-ray scans. Little
has been yet investigated as to why all deep learning models yield top results in a variety
of scientific papers.

This study was focused on revealing evidence supporting the assumption that COVID-
19 imprints specific pattern-stamps on the X-rays, which testify to its existence. The results
provide strong evidence that MobileNet (v2) can capture those underlying signatures
and reveal them. However, in many occasions, the MobileNet (v2) model was unable to
locate the proper regions of interest, even if the classification was correct. In essence, the
decision outcome was not verified on a correct basis. It is fair to assume that the model was
deceived, and the associated features were irrelevant. This behavior raises many questions
and mandates future research. Nevertheless, the majority of samples demonstrated a
correct model reasoning and require further attention.

The experiments were based on the recently introduced Grad-CAM algorithm, which
kept track of the learned weights in a way similar to backpropagation of a trained model.
The experimental tests have been repeated three times to investigate the reproducibility
of those regions, which contained the suggested features. It was found that in 98% of
the samples, the suggested areas remained consistent. Moreover, the model insists on
suggesting specific regions of the image that helped in distinguishing COVID-19 from both
normal X-rays and X-rays corresponding to other respiratory and lung diseases. With the
aid of those experiments, it is fair to assume that, out of the millions of extracted image
features, there are potential features of medical importance.

Besides the demonstrated effectiveness of MobileNet (v2), this network is also suitable
for mobile applications due to its inherently low computational requirements [21]. In the
present work, it took approximately 70 min for a complete 40-epoch training of MobileNet
(v2) using a dataset of 11,984 images (of size 400 × 400) and whilst performing online
data augmentation. The reader shall recall that the experiments were performed using
an ordinary computer. The trained model can process a new image input and provide
both classification and Grad-CAM generation in less than one second. The latter boosts the
significance of our work because limited computational costs and low model complexity are
highly desirable in modern medical technology solutions, which can operate in real time.

This study has a number of limitations. Firstly, due to COVID-19 data scarcity, every
publicly available image dataset related to COVID-19 is incomplete it terms of clinical
data, verification, specific annotations, demographic details, and more. Those issues hinder
the development of models that will approach the problem holistically. For example,
Tartaglione et al. [30] highlight that either missing or imbalanced demographic information
can result in biased models. Moreover, real-life evaluation is mandatory to verify the
validity of the results, due to the above issue. Secondly, the experts’ opinion regarding
each sample of the image involved in this study was also missing from the image datasets.
Hence, it is not possible to compare the model’s decisions with that of the medical experts.
This is an important limitation of the study, and we intend to suggest solutions in future
research. Thirdly, this study used only the Grad-CAM algorithm for visualizing the
suggested areas of interest. Although Grad-CAM is extensively used in related works, its
performance can sometimes be sub-optimal [31]. Future studies can consider employing
more explainability tools, such as saliency maps visualization [31] and the LIME [14]
and the Shapley Additive explanations (SHAP) methods [32]. Moreover, the reader shall
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recall that the model underperformed in abnormality discrimination, failing to provide
acceptable classification metrics for a number of pulmonary defects and diseases. Although
this study is focused on COVID-19 detection rather than abnormality discrimination, the
inability of the model to discriminate other pulmonary diseases is a limitation that cannot
be overlooked.

During the experiments, it has also been revealed that a more accurate diagnosis of
COVID-19 involves a two-stage approach (Figure 9). During the first stage, the input X-ray
is analyzed for pathological findings, with 95.45% certainty. If the image is abnormal, the
second stage takes place. The X-ray is further analyzed for COVID-19 detection, with
89.89% certainty. If the corresponding X-ray is not identified as COVID-19 class, an optional
third stage may take place, where the image is analyzed for other abnormalities. The latter
stage was not further explored in the particular research study.
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The scope of the study is not to present a framework that exhibits classification
metrics superior to the related works but to investigate the extracted image features as to
their validity and importance. Nevertheless, the classification accuracy of the presented
framework competes with the recent literature (Table 6). The reader shall recall that this
work utilizes a large collection of X-ray images that belong to many classes. This poses
additional challenges to the classification model.
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Table 6. Comparison with related studies.

Study Method Test Data Size Classes Accuracy

Hou and Gao [12] Deep CNN 400
4 (normal, bacterial
pneumonia, viral

pneumonia, COVID-19)
96% (COVID-19 vs. ALL)

Ahsan et al. [13] VGG, MobilNet (v2) 518 2 (COVID-19,
non-COVID-19) 95%

Brunese et al. [4] VGG-16 1100 2 (COVID-19, other disease) 97%

Apostolopoulos et al. [5] MobileNet (v2) 1428 3 (normal, pneumonia,
COVID-19) 93%

Apostolopoulos et al. [5] MobileNet (v2) 1428 2 (COVID-19,
non-COVID-19) 93%

Apostolopoulos et al. [9] MobileNet (v2) 3905 2 (COVID-19,
non-COVID-19) 99%

Apostolopoulos et al. [9] MobileNet (v2) 3905 7 (COVID-19, normal,
6 abnormal classes) 87%

Wang et al. [15] tailored CNN
(COVID-Net) 300 3 (normal, pneumonia,

COVID-19) 93%

This study MobileNet (v2) 13,320 2 (COVID-19, other
abnormal X-ray) 90%

This study MobileNet (v2) 11,984 7 (normal, COVID-19,
5 abnormal classes) 73%

6. Conclusions

For the present study, a collection of 11,984 images corresponding to 12 different
respiratory–lung abnormalities, including COVID-19 and normal X-ray scans, was utilized.
Five independent experiments were performed. In the first experiment, the 14-class dataset
is used to evaluate MobileNet (v2) in distinguishing between the complete dataset classes.
MobileNet (v2) was found to be superior to other relative state-of-the-art CNNs in previous
studies conducted by the authoring team [4,8]. In the second experiment, two-class (normal
vs. abnormal) classification was performed. In the third experiment, a 13-class dataset
was utilized to distinguish between abnormal classes. In the fourth experiment, two-class
(COVID-19 vs. non-COVID-19) classification was performed. Finally, the last experiment
was repeated three times in order to investigate the reproducibility of the extracted features
and to assess the explainability of the model. Grad-CAM visualizations and accuracy
metrics yielded strong evidence that COVID-19 image features can be detected with the
deep learning approach, specifically with MobileNet v2. Moreover, it was demonstrated
that MobileNet (v2) is an effective CNN for automatic COVID-19 detection, which could
even be embedded in portable diagnostic systems due to its inherent low computational
cost and its ability to process a new image in less than a second, at least in this particular
study. Finally, a staged classification approach is suggested for diagnosing COVID-19,
which exhibits an accuracy of 89.89%.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/reports5020020/s1, Figure S1: Confusion Matrix for the Multiclass
dataset; Figure S2: Confusion Matrix for the Abnormality discrimination dataset; Table S1: MobileNet
(v2) parameters and hyper-parameters.
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Abstract: The clinical presentation of COVID-19 is non-specific, and to improve and limit the spread
of the SARS-CoV-2 virus, an accurate diagnosis with a robust method is needed. A total of 500 na-
sopharyngeal swab specimens were tested for SARS-CoV-2. Of these, 184 samples were found to
be positive with Allplex™ 2019-nCoV Assay, which is fully automated. All the positive samples
were retested with TaqPath™ COVID-19 CE-IVD RT-PCR Kit (after this, referred to as TaqPath™
COVID-19), semi-automated. The comparison of RT-qPCR for SARS-CoV-2 genes target points shows
only one target point in common, the N gene. Therefore, the N gene was used to compare both
assays. We noticed different Ct values between the tests. Therefore, samples were divided into four
groups depending to the Ct value results: (1) Ct < 25, (2) Ct 25–30, (3) Ct 30–35, (4) Ct > 35. TaqPath™
COVID-19 Kit reconfirmed the results obtained from Allplex™ 2019-nCoV Assay. In conclusion, both
the Allplex™ 2019-nCoV assay and TaqPath™ COVID-19 tests accurately confirm the diagnosis of
SARS-CoV-2 infection. Even if TaqPath™ COVID-19 has a semi-automated workflow, it does not
introduce bias in the diagnostic screening of SARS-CoV-2, and it supports the indirect identification
of variants of concern to undergo sequencing.

Keywords: COVID-19; RNA; Allplex™ 2019-nCoV; TaqPath™ COVID-19; safety of care

1. Introduction

Two years have passed since the first coronavirus disease 2019 (COVID-19) case in
December 2019. According to the exponential progression in the number of infections
globally, COVID-19 has become one of the most significant pandemics in modern history.
The clinical relationship between COVID-19 and symptoms is non-specific, and to improve
and limit the spread of the SARS-CoV-2 virus, an accurate diagnosis through a robust
method is mandatory [1,2]. Molecular epidemiology of SARS-CoV-2 offers new avenues to
investigate associations between genetic and environmental factors of the disease [3]. Real-
time reverse-transcription polymerase chain reaction (RT-qPCR) tests are performed on
respiratory samples. Therefore, nasopharyngeal, nasal, oropharyngeal, and/or, when hos-
pitalized, bronchoalveolar lavage, are analyzed. RT-qPCR represents the gold standard, and
viral presence could appear earlier, even before clinical symptoms [4,5]. The viral genome
consists of several genes encoding non-structural, structural, and accessory proteins. In
the viral genome, genes for four structural proteins (spike surface glycoprotein S, envelope
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E, membrane M, and nucleocapsid N) and several accessory proteins are located [6]. For
diagnostic and screening monitoring, ORF1ab/RdRp, E, N, and S genes are the targets
most frequently used by the RT-qPCR method [6]. However, according to Coronavirus
COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at
Johns Hopkins University (JHU), virus variants of COVID-19 are originating, even in our
region (Figure 1) (accessed on 22 January 2022) [7]. Therefore, in the present study, we
compared two commercial Reverse Transcriptase (RT) polymerase chain reaction (PCR)
kits for COVID-19 diagnosis, all having the N gene in common. Therefore, the N gene was
used to compared both kits, the Allplex™ 2019-nCoV assay, and TaqPath™ COVID-19 tests.
By this latter, a peculiar drop-off of the S gene was evidenced and indicative of a possible
variant of concern (VOC) that was sequenced by whole-genome-based next-generation
sequencing (NGS) [8,9].

Figure 1. Adapted from COVID-19 Map–Johns Hopkins Coronavirus Resource Center (accessed on
22 January 2022).

2. Materials and Methods

We performed a prospective study on specimens referred to the Department of Mi-
crobiology and Virology of Pugliese Ciaccio’s Hospital in Catanzaro from 4 to 24 De-
cember 2021. All study participants underwent a nasopharyngeal swab and real-time
reverse-transcription polymerase chain reaction (RT-PCR) analysis for SARS-CoV-2. This
study is part of the clinical trial recorded in clinicaltrial.gov (accessed on 25 October
2021) (NCT04322513) and was conducted in compliance with the Institutional Review
Board/Human Subjects Research Committee requirements.

Experimental protocol
At the time of the study, for each patient, samples were collected in Universal Transport

Media (UTM), opened in biosafety cabinet class-II, and then 600µL of the UTM were further
processed for viral nucleic acid extraction.

The viral nucleic acid extracted was evaluated through 2 RT-PCR kits specific for
COVID-19:

(i). 200 µL of UTM was extracted for Allplex™ 2019-nCoV Assay (Seegene-Seoul, South
Korea) with the fully Automated Liquid Handling Workstations NIMBUS which also
arrange the PCR plate and the Real-Time PCR System from Bio-Rad CFX96™ Dx
(Bio-Rad, Hercules, CA, USA);

(ii). TaqPath™ COVID-19 CE-IVD RT-PCR Kit (after this referred to as TaqPath™ COVID-
19) with semi-automatic KingFisher Duo Prime by Thermofisher. Briefly, by extracting
a 200 µL aliquot of specimen in UTM using the MagMAX™ Viral/Pathogen Nucleic

108



Reports 2022, 5, 14

Acid isolation kit on the KingFisher Flex Purification system (Thermo Fisher Scientific,
Waltham, MA, USA). Before RNA extraction, 10 µL of Proteinase K was added to each
well in the KingFisher™ Deep 96-well Plate. In addition, 10 µL of the MS2 Phage
Control was added to all specimens together with 10 µL of magnetic beads.

Elution volumes from the two workstations were different, at 100 µL and 50 µL
for the Automated Liquid Handling Workstations NIMBUS and KingFisher Duo Prime,
respectively. For both kits, a final volume of 25 µL was used in the reaction master mix
and dispended as follows: Allplex™ 2019-nCoV Assay 17 µL of its master mix plus 8 µL of
RNA-extracted sample; TaqPath™ COVID-19 15 µL of its master mix and 10 µL of RNA
extracted sample.

2.1. Allplex™ 2019-nCoV Assay

All the samples included in the study were tested using Allplex™ 2019-nCoV Assay,
following the manufacturer’s manual (Ref: RV10284X Lot: RVA321D04). Accordingly, a
sample is considered positive if at least N or RdRp targets amplify with cycle threshold
(Ct) Ct ≤ 40. If only the E gene target is amplified with Ct ≤ 40, the sample is considered
“presumptive positive” [9]. The range of Ct, only for the N gene, is reported in Table 1.

Table 1. Gene target points similarity.

Developer Commercial
Name

Gene Regulatory
ORF1ab RdRP E N S

Seegene, Inc. Allplex™
2019-nCoV

USA EUA;
CE-IVD

Thermo
Fisher

TaqPath™
COVID-19 CE-IVD

2.2. TaqPath™ COVID-19

All the samples included in the study were tested using TaqPath™ COVID-19 CE-
IVD RT-PCR Kit, following the manufacturer’s manual (Ref: A48099 Lot: 2101036). Ac-
cordingly, a sample is considered positive if any of the targets (either ORF1ab, N or S)
amplify with Ct ≤ 37, or the internal control MS2 (Bacteriophage MS2) with amplifying
Ct value ≤ 32 [10]. The range of Ct, for the N gene and MS2, is reported in Table 2.

Table 2. N gene Ct value tested with Allplex™ 2019-nCoV Assay and TaqPath™ COVID-19.

Commercial
Name

N Gene Target
Range Ct

Ct < 25 Ct 25–30 Ct 30–35 Ct > 35

Allplex™
2019-nCoV

22.79 ± 2.66
(n = 31)

28.18 ± 1.45
(n = 55)

33.05 ± 1.54
(n = 42)

37.90 ± 1.43
(n = 56) ≤40

TaqPath™
COVID-19

21.61 ± 2.83
(n = 87)

27.98 ± 1.47
(n = 61)

32.99 ± 1.51
(n = 17)

37.01 ± 0.51
(n = 19)

≤37
with MS2 ≤ 32

2.3. Sequencing SARS-CoV-2

The NGS approach by MiSeq System (Illumina, San Diego, CA, USA), provided
2 × 250 bp read data. The SOPHIA DDM Platform analyzed FASTQ reads. Clade analysis
was performed by ICOGEN Platform. Then, lineage information was described using the
Pangolin nomenclatures [11,12].

2.4. Statistical Analysis

All data were analyzed using the GraphPad 5.0 statistical program (GraphPad Soft-
ware Inc., San Diego, CA, USA) by evaluating the standard deviation (SD). Data were
analyzed by one-way ANOVA analysis of variance followed by Tukey’s multiple compar-
ison test; HSD (honestly significant difference) was used to estimate difference amongst
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groups. The online free software from GraphPad Software Inc., CA-USA, was used
(https://www.graphpad.com/quickcalcs/kappa1/, accessed on 25 January 2022) for the
Cohen’s kappa determination in order to obtain a value of the inter-observer agreement.

3. Results and Discussion

A total of 500 nasopharyngeal swab specimens were tested for SARS-CoV-2. Of these,
184 samples were positive with Allplex™ 2019-nCoV Assay (36.8%), and 316 were negative
(63.2%). Positive samples from Allplex™ 2019-nCoV Assay were re-tested with TaqPath™
COVID-19 and 50 negative pooled samples (coming from 10 of each specimen), which were
negative. The comparison of RT-qPCR for SARS-CoV-2 gene target points is presented in
Table 1 (updated 29 December 2021, online sources) [13,14]. The common gene was the N
gene (Table 1). Therefore, it was used to compare both assays.

The TaqPath™ COVID-19 Kit reconfirmed the results obtained from Allplex™ 2019-
nCoV Assay, but we noticed a different distribution of Ct values. Therefore, samples were
divided into four groups depending on the cycle threshold (Ct) value results: (1) Ct < 25,
(2) Ct 25–30, (3) Ct 30–35, (4) Ct > 35 (Figure 2A,B).

Figure 2. (A) Allplex™ 2019-nCoV Assay and (B) TaqPath™ COVID-19. In red, the average value is
indicated for each group.

Samples that display the N gene with a Ct < 25 (Group 1) are almost three times greater
with TaqPath™ COVID-19 compared to Allplex™ 2019-nCoV Assay, and any significant
difference is highlighted between them (see Figure 3). Both TaqPath™ COVID-19 and
Allplex™ 2019-nCoV Assay have similar samples at Ct 25–30 (Group 2). In contrast,
samples with Ct values > 30 (Groups 3 and 4) were reached with Allplex™ 2019-nCoV
Assay (Table 2). These results are consistent with the difference in elution volume used
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in the two workstations: 50 µL in TaqPath™ COVID-19 and 100 µL in Allplex™ 2019-
nCoV. This difference could result in more diluted nucleic acids in the second kit (Allplex™
2019-nCoV). Another reason could be the different complementarity of the primers’ probe,
crucial for PCR, where mismatch can give up to 7 Ct of difference [15].

Figure 3. Comparison of Ct groups data from Allplex™ 2019-nCoV (A) TaqPath™ COVID-19 (T).

Tukey’s multiple comparison test HSD statistical analysis was performed to evaluate
the differences amongst the groups. No difference was highlighted between groups and
the two analytical tests (see Figure 2).

Both Allplex™ 2019-nCoV Assay and TaqPath™ COVID-19 show similar agreement for
the N genes. Kappa Cohen calculation for both Allplex™ 2019-nCoV Assay and TaqPath™
COVID-19 displays the following data. Number of observed agreements: 500 (100.00% of the
observations) and number of agreements expected by chance: 267.4 (53.48% of the observations),
Kappa = 1.000 and SE of Kappa = 0.000, 95% confidence interval from 1.000 to 1.000. Besides that,
the diagnosis made by the infectious disease specialist shows an overall agreement of 100% and a
Kappa value of 1 for both tests. Furthermore, in the 184 positive samples re-tested with TaqPath™
COVID-19, drop off of the S gene (indicative of VOC) was observed in four samples. Normally
in routine practice, the samples that underwent sequencing are chosen randomly considering
only that the Ct value must be lower than 25. By including TaqPath™ COVID-19 in our clinical
laboratory setting, we were facilitated in this choice. In fact, the four samples with the drop-off S
gene underwent genomic characterization by NGS sequencing, resulting in four Omicron VOC,
as reported in Table 3.

Although the N gene in VOC Omicron presents several mutations, the amplification
curve for this gene was not different between Allplex™ 2019-nCoV Assay and TaqPath™
COVID-19 (data not shown).

It is worth noting that real-time reverse-transcription polymerase chain reaction (RT-
PCR) assays for SARS-CoV-2 RNA detection in clinical specimens are widely used in
COVID-19 diagnostic laboratories as the standard-gold method. Although the Allplex™
2019-nCoV Assay amplifies up to 40 cycles and states that any gene with Ct < 40 is a positive
result, there is increasing appreciation that Ct 30–35 is considered borderline [16–18]. This
issue is almost overcome by TaqPath™ COVID-19, as shown here. On the other hand, it
was also reported that, in effect, the screening depends largely on frequency of testing and
speed of reporting, and is only marginally improved by high test sensitivity, even in acute
infection, therefore even specific biomarker is needed [18–21].
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4. Conclusions

The clinical presentation of COVID-19 is non-specific, and to improve and limit the
spread of the SARS-CoV-2 virus, accurate diagnosis with a robust method is needed [16],
even in light of reinfection [17]. Herein, we show that both, Allplex™ 2019-nCoV Assay and
TaqPath™ COVID-19 tests are accurate enough to confirm the diagnosis of SARS-CoV-2
infection. The two methods tested are similar, with one substantial difference: TaqPath™
COVID-19 is performed in a semi-automated way. Despite this, TaqPath™ COVID-19 does
not introduce bias in the diagnostic screening of SARS-CoV-2 and supports clinicians in the
choice of VOC for NGS determination.
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Abstract: A COVID-19 patient (53-year-old woman from Japan) was admitted to our hospital. She
had a high fever (38.3 ◦C), cough, fatigue, and loss of appetite. She was a smoker and took migraine
medication. A thoracic computed tomography (CT) scan showed no evidence of pneumonia. She was
treated with antibiotics, protease inhibitors, inhalant corticosteroids, and antivirals. Anti-interleukin-
6 receptor antibody tocilizumab (TCZ 400 mg) was added on day 2. On day 4, her temperature
decreased, but her vital signs suddenly worsened, with an SpO2 of 70% in ambient air, a blood
pressure of 70 mmHg (systolic), loss of consciousness, and tachypnea. Her CT showed bilateral lung
consolidation and no pulmonary embolism. She was connected to the ventilator. On day 11, her
respiratory condition improved (PaO2/FIO2 400), and she was able to withdraw from the ventilator.
Her laboratory data (white cell count, ferritin, d-Dimer, C-reactive protein, and β2-microglobulin) did
not increase even at the time of exacerbation, except for Galectin-9 (Gal-9). The plasma Gal-9 levels
increased 2.3 times from before the administration of TCZ, followed by a swift decrease associated
with improvements in respiratory status. She was discharged on day 16. Patients with TCZ-treated
COVID-19 require careful observation.

Keywords: COVID-19; Galectin-9; SARS-CoV-2; acute exacerbation; tocilizumab (TCZ); acute
respiratory distress (ARDS); tissue destruction; recover; ADE

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly
worldwide since 2019. SARS-CoV-2 infection is known as coronavirus 2019 (COVID-19)
and causes varying degrees of illness [1]. Today, pandemics do not end since there are
repeated mutations of the virus genome [2]. This also makes the treatment of COVID-19
complex. For example, the loss of a vaccine effect or elimination of the effects of antibody
treatment has been observed [3].

As one of the characteristics of COVID-19, the sudden onset of lung damage is believed
to be caused by thrombotic events and cytokine release.

A pulmonary embolism consists of immune-mediated thrombotic mechanisms, com-
plement activation, macrophage activation syndrome, antiphospholipid antibody syn-
drome, hyperferritinemia, and renin–angiotensin system dysregulation [4]. On the other
hand, the high severity of acute respiratory distress is dependent on a cytokine storm, most
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likely induced by the interleukin-6 (IL-6) amplifier, which is hyperactivation machinery
that regulates the nuclear factor kappa B (NF-κB) pathway [5]. The administration of drugs
for anticoagulants and anticytokines is recommended for COVID-19 treatment with these
inferences. The anti-interleukin-6 receptor antibody tocilizumab (TCZ) appears to be an
effective treatment option in COVID-19 patients with a risk of cytokine storms [6]. Further-
more, patients with COVID-19 and pneumonia showed that TCZ reduced the risk of death
by 45% [7]. We have proposed that the early administration of TCZ ameliorated pneumonia
and kidney caused by hyperinflammation syndrome in a patient with COVID-19 [8].

However, the exact mechanism by which TCZ improves COVID-19 pneumonia has
yet to be clarified. In addition, the biomarkers of COVID-19 pneumonia are in the middle of
research. We have already reported that the levels of cleavage forms of plasma osteopontin
(OPN) and Galectin-9 (Gal-9) are elevated in COVID-19 patients, and their levels decrease
after TCZ administration. These might be used as an indicator of the therapeutic effect
and the severity of pathological inflammation [9]. They had a significant association with
laboratory markers for lung function, inflammation, coagulopathy, and kidney function in
COVID-19 Pneumonia (CP) patients.

New therapeutic strategies recommend the administration of antibodies, which can
block the interaction of the RBD (receptor-binding domain) and its ACE2 receptor or neu-
tralize the SARS-CoV-2. However, the patients who were recommended for this treatment
were the ones who did not need additional oxygen and were at high risk of progressing
to severe COVID-19 [10]. The benefit-risk profile for patients requiring high-flow oxy-
gen or mechanical ventilation was considered unfavorable [10]. This means these agents
seemed ineffective in advanced cases, and sole virus control cannot save lives in severe
cases. For instance, there was no observed benefit in those on high-flow oxygen, NIV (non-
invasive ventilation), MV (mechanical ventilation), or ECMO (extracorporeal membrane
oxygenation) in a placebo-controlled, double-blind RCT of Remdesivir in hospitalized
patients with COVID-19 [10]. Although the mortality was lower in the TCZ arm than in
the usual care arm on day 28, the effect was not marked [10]. It was speculated that lung
disease had already progressed in the patients treated with TCZ, and it may have been
used too late in previously reported cases. There has been little reporting of the effects of
anti-inflammatories before lung damage.

To find an effective treatment for COVID-19, we need to find a novel biomarker that
accurately reflects the heterogeneous host responses after the administration of TCZ. As
a new method of treatment, the change in the ventral position is usually accompanied
by a marked improvement in the arterial blood gases of both spontaneously breathing
and mechanically vented patients [11,12]. Although the survival rate of patients in prone
positions tends to have a growing trend, the effects of this procedure on outcomes are
still uncertain.

This report describes a case of acute pulmonary exacerbation related to COVID-19
despite the preadministration of anticytokine, anticoagulants, and antiviral therapy drugs
during hospitalization. A patient developed lung damage suddenly during treatment and
did not show an elevation in inflammatory markers other than the plasma Gal-9 level.
The patient was improved by pressurizing mechanical ventilation with dexamethasone
and repositioning.

2. Case Presentation

A middle-aged woman with COVID-19 was hospitalized on 9 December 2020.
She had nine days of a history of high fever, arthralgia, anorexia, and dysgeusia before

admission. A SARS-CoV-2 infection was confirmed by a PCR assay obtained from the
patient’s nasopharyngeal swab as described by us [8].

She had a history of migraine, myasthenia gravis, syringoencephalomyelia, and smok-
ing one pack of cigarettes per day. The patient was not routinely taking any drugs, because
she had no symptoms of these diseases. The patient’s lab data showed neutrophilia
and lymphopenia. It also showed elevated levels of LDH (342 U/mL), C-reactive pro-
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tein (CRP; 3.65 mg/dL), fibrinogen (509 mg/dL), and urinary β2-microglobulin (B2M)
(510 mg/mL) (Table 1).

Table 1. Laboratory data from the patient during hospitalization.

Laboratory Data Reference
Range Day 0 Day 2 Day 5 Day 6 Day 7 Day 8 Day 9 Day 12

Complete Blood Cell count
and differential

White cell unit (/µL) 3700–8500 7400 5300 5700 5400 4400 3900 5500 6700
Neutrophils (%) 44.0–68.0 76.6 # 67.2 73 70.5 62.5 55 61 65

Lymphocytes (%)) 27.0–44.0 16 23.5 13 22.5 29.5 33 31.5 28
Monocytes (%) 3.0–12.0 6.3 7.6 4 3.5 5.5 5.5 5.5 6
Eosinophils (%) 0.0–10.0 0.3 1.3 4 0.5 1.5 2 1.5 0
Basophils (%) 0.0–3.0 0.8 0.4 1 0.5 1 1 0 0

Hematocrit (%) 42.0–53 43.8 38.6 39.1 34.1 30.7 31.1 33.4 37.2
Hemoglobin (g/dL) 13.5–17.5 14.4 13 13.1 11.6 10 10.2 11.1 12.2

Platelet count × 103 (/µL) 150–355 268 21.8 219 263 251 251 308 381
Red cell count × 106 (/µL) 3.90–5.30 5.01 4.55 4.56 4.04 3.55 3.55 3.83 4.33

Biochemical test

Urea nitrogen (mg/dL) 8–20 15 9 7 8 12 12 9 14
Creatinine (mg/dL) 0.42–1.07 0.64 0.6 0.53 0.45 0.47 0.48 0.42 0.41

ALT (U/L) 3–40 23 18 16 14 17 65 70 129
AST (U/L) 8–35 25 21 20 19 22 64 109 53
LDH (U/L) 124–222 342 201 295 346 296 302 331 275

Ferritin (ng/mL) 14–304 104 102 147 158 185 273 298 265
CRP (mg/dL) 0.00–0.3 3.67 7.33 1.64 0.88 0.48 0.31 0.25 0.09

Total protein (g/dL) 6.6–8.4 7.7 6.5 6.3 5.5 5 4.9 5.5 6.2
Albumin (g/dL) 3.8–5.2 4.4 3.4 3.3 2.9 2.7 2.7 3.0 3.4

Coagulation test

PT (s) 10.0–13.5 11.4 11.8 12.1 12.6 13.6 13.7 13.2 11.3
PT(%) 80.0–120.0 100.6 98.7 89.7 82.4 71.8 70.7 75.9 102.4

APTT (s) 24.0–39.0 33.6 37.8 33.5 41 83.1 57.5 53.6 37.9
D-dimer (µg/mL) 0.00–1.00 0.6 0.75 0.65 1.8 0.94 0.93 1.06 0.78

Fibrinogen (mg/dL) 200–400 509 554 389 304 289 253 278 329

Urine test

β2-microglobulin (µg/L) 30–340 510 2249 404 510 296 363 570 313
# Bold indicates the data is not within normal range.

A chest computed tomography (CT) scan on admission did not show ground-glass
opacities (GGOs) in her lungs (Figure 1a). The vital signs of the patient included a heart
rate of 108 beats/min, a respiratory rate of 20 breaths/min, an axillary temperature of
38.3 ◦C, oxygen saturation (SpO2) in ambient air of 94% (Figure 2), and blood pressure of
120/79 mmHg. These were considered only mild diseases. Azithromycin (500 mg/day),
ciclesonide (200 µg inhaler; 2 inhalations per day), nafamostat mesylate (40 mg/day), and
favipiravir (3600 mg on the first day, 1600 mg thereafter) were administered. Despite
these treatments, the patient’s clinical status was not improved on day 2. Specifically,
her high fever and exhaustion persisted. Furthermore, the CRP and urinary B2M levels
were elevated. Because of the lack of improvement in clinical outcomes, 400 mg of TCZ
was given intravenously. The fever disappeared. However, on day 4, a disturbance of
consciousness, associated with tachypnea, appeared suddenly. Her vital signs worsened to
an SpO2 of 70% in ambient air and blood pressure of 70 mmHg (systolic). Her enhanced
chest CT image showed consolidations in both lower lobes of her lungs and GGOs around
the consolidation at this point (Figure 1(b1)). There was no proof of a pulmonary embolism
(Figure 1(b2)). The patient was immediately brought to the ICU with the administration of
adrenalin for endotracheal intubation and mechanical ventilation. In addition, the drugs
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already given were modified as follows: levofloxacin at 500 mg (for 4 days), heparin sodium
at 15,000 units (for 4 days), dexamethasone at 6.6 mg (for 10 days), and remdesivir (200 mg
loading dose on day 1 followed by 100 mg daily for up to 3 additional days). The ventilator
was set to positive airway pressure (initial positive inspiratory pressure of 22 cm H2O and
an expiratory positive airway pressure of 5 cm H2O) under the condition of the fraction of
inspiratory oxygen (FIO2) of 0.6. Arterial blood gas analysis reported an arterial O2 tension
(PaO2) of 74.1 Torr and an arterial CO2 tension (PaCO2) of 46.3 Torr.
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hospitalization. The drug dosing period is shown at the top of the figure. From day 5 to day 10, the
data are from an artificial ventilator in the ICU. The black bordered red square is the SpaO2/FIO2 or
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Lung compliance was greatly decreased at 24 mL/cm H2O (Figure 3).
The change in the right-hand sims’ position was accompanied by a significant im-

provement in PaO2/FIO2 407, but the left-hand PaO2/FIO2 was 267 (Figure 2). Differences
in the respiration status were observed depending on the position. After being placed on a
respirator, her respiratory condition had a lasting improvement from day to day. On day
10, PaO2 and PaCO2 were 90.6 and 48.3 Torr, respectively, after adjusting the ventilation
to the CPAP mode (5 m H2O FIO2 0.3 setting) in the supine position. Then, she withdrew
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from the ventilator. Lung compliance just prior to intubation removal was 96 mL/cm H2O
(Figure 3).
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The consolidation disappeared on the CT after extubation (Figure 1c). The patient’s
LDH, CRP, and urinary B2M decreased. The patient’s ferritin and D-dimer levels were not
extremely in excess of the normal range in the hospital (Table 1). Only Gal-9 was increased
two days (day 2 and 6) after exacerbation. Gal-9 was measured using a human Gal-9
ELISA kit (GalPharma Co., Ltd., Takamatsu, Japan) as described [9]. It was also on the rise
when admitted and had a second increase on day 6 (Figure 4). Gal-9 decreased with the
improvement in the clinical outcomes. On day 16, the patient was discharged.
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3. Discussion

A 53-year-old Japanese COVID-19 patient woman was admitted and given four kinds
of drugs (antibiotics, protease inhibitors, inhalant corticosteroids, and antivirals). However,
there was no response in terms of symptom alleviation and high fever, cough, fatigue,
and loss of appetite persisted. TCZ was administered to improve these clinical findings.
Although TCZ demonstrated an antipyretic effect and an improvement in the patient’s
laboratory data, the consolidation shadow suddenly appeared in both lungs, and SpO2
was lowered. This was consistent with COVID-19 pneumonia rather than a pulmonary em-
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bolism, because the contrast enhancement CT did not show pulmonary artery obstruction.
Seven days after she was connected to the ventilator (11th day after hospitalization), her
respiratory condition improved.

There are reports that COVID-19 can suddenly become severe [13,14]. The reasons
why the case with mild COVID-19 suddenly worsened are not clear. Reports suggest it
is more likely related to immune dysregulation or a cytokine storm after SRAS-CoV-2
infection [14], which leads to respiratory diseases. Moreover, interleukin-6 is regarded as
the perpetrator of the COVID-19 cytokine storm [15]. In this case, we used TCZ to prevent
this transition of COVID-19 to a cytokine storm. Unexpectedly, the onset of respiratory
failure and worsening CT findings were observed, though most of the laboratory data did
not change other than Gal-9. Since various adverse drug effects (ADEs) were reported in
TCZ treatment of COVID-19, including respiratory disorders, it cannot be denied that this
deterioration may be due to TCZ [16,17].

After being connected to a ventilator, her respiratory condition immediately recov-
ered. In particular, the right sims’ position resulted in dramatic improvements. The
prone position can be used as adjuvant therapy for improving ventilation in patients with
acute respiratory distress syndrome (ARDS). Lung damage from the novel coronavirus
SRAS-CoV-2 resembles other causes of ARDS [18]. However, this case differed from ARDS
caused by lung compliance reduced by vascular permeability. Her chest high-resolution
computed tomography (HRCT) findings did not show the traction bronchiolectasis or
bronchiectasis seen in COVID-19 ARDS [19]. Lung compliance was low. However, it
rapidly recovered to the normal range immediately after intubation. Moreover, 7 days later,
the consolidation had disappeared. Six-month follow-up CT showed fibrotic-like changes
in the lung in more than one-third of patients who survived severe coronavirus disease 2019
pneumonia [20]. No fibrotic-like changes were observed in this case. After TCZ treatment
in COVID-19 cases, the patients might have distinct ARDS, which might be different from
COVID-19 ARDS. At least, cytokine storms cannot be positively recognized from a low
CRP. It was considered that CRP levels decreased because TCZ blocks the IL-6 receptor.
Biomarkers for this morbid condition are unknown. In our case, the levels of CRP, ferritin,
D-dimer, and urinary B2M declined or did not increase when she worsened. Only the Gal-9
level was elevated with the deterioration in the respiratory condition and returned to a
normal level with its improvement. We already reported that the plasma level of Gal-9 is a
representative inflammatory biomarker in COVID-19, tuberculosis, and HIV infections [21].
In addition, Gal-9 may reflect the severity of acute and chronic infectious diseases. It has
been discovered that Gal-9 has biological roles in innate and adaptive immune systems.
Gal-9 is expressed in endothelial cells, the epithelium of the gastrointestinal tract, and
several immune cells, including T cells, B cells, macrophages, mast cells, and dendritic
cells. Gal-9 regulates the transduction of intra- and extracellular signals by interacting
with several receptors [21]. While the inflammatory marker was not deregulated in this
case, only Gal-9 was elevated followed by a decline associated with the deterioration and
recovery of the respiratory conditions.

TCZ treatment was found to be associated with rapid, sustained, and significant
clinical improvement [22]. However, there was an inconsistency between this fact and the
changes in the CT image and SpO2. The other reports indicated that fewer patients needed
NIV or MV or died in the TCZ group than the usual-care-alone group [23]. These facts
implicate the heterogenous host responses against TCZ. Additionally, a patient who is not
COVID-19-infected but have CT findings with ground-glass opacities and clinical courses
to this case was reported after TCZ administration [24].

It is of note that this patient recovered in 6 days after connection to a ventilator. Gal-9
can be an indicator for pulmonary regeneration [25,26]. Gal-9 has also been reported to
regulate cell–cell and cell–matrix adhesion [27]. As SARS-CoV-2 targets various cell types of
the proximal airways and the alveolar type 2 cells of the gas exchange region of the distal
lung, the surfactant might be decreased in the lung. The decrease in the surfactant caused
alveolar cell damage [28] and cell to cell adhesion was disabled. The increasing Gal-9 in
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our case indicates tissue destruction. Gal-9 was proposed to be one of the danger-associated
molecules in dengue virus infection [29]. This tissue destruction was different from traditional
ARDS caused by permeable pulmonary edema, because the immediate resuscitated lung
conformance and CT after recovery showed no changes in fibrosis. TCZ terminates the IL-
6-dependent inflammatory reaction. The released Gal-9 may modify the recovery process
of COVID-19 pneumonia because this case recovered swiftly and there was no lung fibrosis
as a sequela. A larger study is necessary for conclusions to be made regarding the clinical
significance of Gal-9 in detecting ADEs in TCZ-treated COVID-19 patients.

In this case, the sims’ position was useful for improving the respiratory state. Prone
position pronation can also recruit the dorsal lung regions and drain airway secretions,
improving gas exchange. The blowing of the decreasing area of the surfactant made the
collapsed alveoli swell and encouraged surfactant secretion [30]. ATP secretion and [Ca(2+)]
(i) oscillations induced by lung stretch could lead to tissue repair [31,32]. After virus
infection, when the suppression of inflammation alone does not cure tissue destruction,
etc., we may need to adopt another treatment method to recover from this destroyed
lung damage.

This is a single-case report; to generate evidence, long-term follow-up studies with
a large sample size will enlighten medical science about unknown ADEs associated with
TCZ in COVID-19 patients.

3.1. Limitations

Since this is a rare case in which the condition of this COVID-19 case changed suddenly
after TCZ administration, a systemic search with similar cases could not be performed.

3.2. Future Direction

It is necessary to also note the involvement of Gal-9 in cases of lung disorders other
than patients with lung disorders related to COVID-19.

4. Conclusions

A 53-year-old COVID-19 patient without pneumonia was treated with TCZ. Her labo-
ratory findings were improved, but acute exacerbation occurred on day 4. Gal-9 increased
simultaneously with the appearance of symptoms; nevertheless, the other biomarkers did
not increase. After positive pressure ventilation, the patient showed a remarkable recov-
ery. We reported unexpected respiratory failure after TCZ treatment. Careful monitoring,
including Gal-9, would be useful for identifying these patients.
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Abstract: Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in
China and quickly spread across the globe. Despite tremendous economic and healthcare devastation,
research on this virus has contributed to a better understanding of numerous molecular pathways,
including those involving γ-aminobutyric acid (GABA), that will positively impact medical science,
including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells
through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2).
Among its many functions, this protein upregulates GABA, protecting not only the central nervous
system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2
usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity
of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this
perspective article, we take a closer look at the pathology emerging from the viral hijacking of
non-neuronal GABA and summarize potential interventions for restoring these systems.

Keywords: GABA; SARS-CoV-2; renin–angiotensin system; microbiome; neuropsychiatric disorders

1. Introduction

The infection with SARS-CoV-2 became a pandemic on 11 March 2020, ushering in
immeasurable economic and healthcare catastrophes. Up until 14 May 2022, more than
517 million people had been afflicted by COVID-19, and more than 6 million had died
(https://covid19.who.int/ (26 May 2022)). However, the extensive research conducted
on this virus in a short period of time has broadened our understanding of its numerous
pathogenetic mechanisms, leading to novel paradigms that will likely bear fruit in the post-
pandemic era. For example, local renin–angiotensin systems (RAS) expressed in the brain
and gastro-intestinal (GI) tract, although previously acknowledged, were poorly defined
prior to the COVID-19 pandemic. Likewise, the crosstalk between host RAS and microbial γ-
aminobutyric acid (mGABA) was seldom considered when explaining the high comorbidity
of inflammatory bowel disease (IBD) and neuropsychiatric conditions, including anxiety,
depression, psychosis, and seizure disorder [1–4]. By the same token, endothelial GABA
(eGABA) and its role in blood pressure homeostasis and neuropsychiatric pathology began
to be examined only after the appearance of COVID-19 [5].

Although neuronal GABA (nGABA) has been studied for several decades, also within
the context of viral infections, its non-neurotransmitter functions were poorly understood
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until very recently [6,7]. For example, the antiviral and anti-inflammatory properties of
GABA were highlighted by recent preclinical studies showing that GABA supplementation
decreased COVID-19 death rates [8–10]. Along this line, a novel study has demonstrated
that Limosilactobacillus fermentum, a GABA-producing gut microbe, thwarts Norovirus
infection, further attesting to the antiviral actions of this biomolecule [11]. In addition,
mGABA was demonstrated to augment host autophagy, including that of pathogen-infected
cells, indicating participation in antimicrobial defenses [12]. Interestingly, gut angiotensin-
converting enzyme-2 (ACE-2), the SARS-CoV-2 entry portal, upregulates mGABA by in-
creasing its release from the gut flora [13]. This is significant, as earlier studies have demon-
strated that angiotensin receptor blockers (ARBs) possess antiepileptic, anti-depressant,
and anti-anxiety properties, suggesting that the functions of RAS and GABA are highly
intertwined [14–16]. Indeed, blood–brain barrier (BBB)-crossing ARBs were reported to
lower CNS inflammation, highlighting the role of RAS in neuropsychiatric pathology and
placing this system on an equal footing with serotonin (5-HT) and dopamine (DA) [17,18].
Furthermore, in the CNS and pancreas, ACE2–GABA crosstalk was reported to optimize
glucose metabolism, probably accounting for the anti-diabetic properties of ARBs [19,20].
As many psychotropic drugs are associated with metabolic dysfunction, using centrally
acting ARBs, such as candesartan, for hypertension may bring additional benefits to psy-
chiatric patients [21].

SARS-CoV-2 depletes host GABA by several mechanisms:

1. The viral spike (S) protein contains a GABA-mimicking sequence or short linear motif
that can directly usurp host GABAergic signaling [22,23].

2. The SARS-CoV-2 proteins nonstructural protein 6 (NSP6), open reading frame 8
(ORF8), and open reading frame 3 (ORF3a) interact directly with host mammalian
target of rapamycin complex 1 (mTORC-1), interleukin 17 (IL-17), and transmem-
brane protein 16F (TMEM16F), inducing premature EC senescence, a phenotype
characterized by low GABA [24–29] (Figure 1).

3. SARS-CoV-2/ACE-2 binding disrupts the function of the protective renin–angiotensin
system (RAS) branch, including Mas receptor (MasR) signaling, lowering GABA [14,30].

4. The viral protein ORF3a interacts with toll-like receptor 4(TLR4), triggering EC senes-
cence and lowering GABA [31].

5. The SARS-CoV-2 viral proteins nonstructural protein 4 (NSP4), nonstructural protein
8 (NSP8), and open reading frame 9c (ORF9c) decrease GABA by disrupting the
mitochondria, triggering vascular senescence [32] (Figure 1).Reports 2022, 5, x FOR PEER REVIEW 3 of 22 
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–protein interactions) and indirectly (via mitochondrial dysfunction and ANG II upregulation). A
dysfunctional endothelial barrier facilitates microbial translocation from the GI tract, where the
flora is immunologically tolerated, into the systemic circulation, where it evokes inflammation
and immunogenicity. Legend: NSP6, nonstructural protein 6, ORF8, open reading frame 8, IL-17,
interleukin 17, TMEM16F, transmembrane protein 16F, TLR4, toll-like receptor 4, NSP4, nonstructural
protein 4, NSP8, nonstructural protein 8, ORF9C, open reading frame 9C, ORF3a, open reading frame
3a, LPS, lipopolysaccharide.

SARS-CoV-2-mediated GABA depletion likely explains the neuropsychiatric manifes-
tations of COVID-19, including anxiety, depression, posttraumatic stress disorder (PTSD),
cognitive impairment, and seizure disorder [33–37].

In this perspective article, we take a closer look at the viral hijacking of endothe-
lial, pancreatic, and gut GABA and the associated pathology. We also discuss potential
interventions for GABAergic system restoration.

2. Two Senescence Mechanisms in SARS-CoV-2 Infection

SARS-CoV-2 is a single-stranded, enveloped RNA virus that contains four structural
proteins: spike (S), nucleocapsid (N), membrane (M), and envelope (E). The S protein is
composed of two subunits, S1 and S2. The former engages ACE-2, while the latter (FCS)
interacts with furin, merging viral envelope and host plasma membrane as well as cells,
thus forming syncytia [38]. The viral attachment to ACE-2 disrupts the physiological
function of this protein, leading to the unchecked accumulation of angiotensin II (ANG II),
a mitochondrial toxin linked to premature EC senescence [39,40].

2.1. S1/ACE-2 Attachment and ANG II-Induced Senescence

The SARS-CoV-2 envelope protein S1 binds ACE-2, contributing to the loss of this en-
zyme’s biological function as well as to the shutting down of the anti-inflammatory/antioxidant
(protective) RAS (Figure 2). The unchecked accumulation of ANG II enhances the proinflam-
matory/prooxidative RAS branch, which, under normal circumstances is counterbalanced
by the protective axis. The imbalance between the two RAS arms results in ANG II-driven
hyperinflammation or “cytokine storm” [41,42] (Figure 2). Depletion of ACE-2 and loss of
anti-inflammatory/antioxidant RAS induce premature cellular senescence, lowering eGABA,
which in return may trigger a neuropsychiatric pathology [43–46].

2.2. S2/Furin Attachment and Syncytia-Induced Senescence

Enveloped viruses are known for generating multinuclear giant cells by inducing
cell–cell fusion or syncytia formation. Cell–cell fusion is a physiological or pathological
process in which neighboring cells merge their plasma membranes, sharing intracellular
organelles, including cytoplasm and nuclei [47,48].

SARS-CoV-2 entry into host cells requires furin cleavage of the S antigen at the S1/S2
site to initiate membrane fusion [49]. The insertion of the polybasic PRRAR motif at FCS
is crucial for fusing viral envelopes with host plasma membrane, as well as the host cells
with each other [50]. PRRAR is a triple-arginine motif that forms cell membrane pores via
its guanidinium side chains, compelling the cells to fuse for protection [51,52].

Taken together, the SARS-CoV-2 virus induces cellular senescence via ANG II and/or
syncytia formation, downregulating the antiviral amino acid GABA [53,54].

2.3. Molecular Mechanisms of Syncytia Formation

The subunit β3 of GABA-A receptors contains a triple-arginine motif (RRR) that
interacts with the endocytic pathway (EP) protein AP2, likely disrupting SARS-CoV-2
endocytosis [55]. On the other hand, the triple arginine (PRRAR) in the S antigen of SARS-
CoV-2 may counteract this GABA action, usurping the EP and opening it for viral ingress.
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Figure 2. Human RAS consists of two opposing branches, the proinflammatory/prooxidative (driven
by ANG II) branch and the anti-inflammatory/antioxidant (driven by ANG 1-7) one. ANG II, acting
via AT-1Rs, induces EC senescence. ARBs and GABA negatively regulate AT-1Rs, opposing ANG II.
The protective RAS branch, comprised of ANG 1-7, alamandine, and their respective receptors Mas
and MrgD, inhibit inflammation and oxidative stress. SARS-CoV-2 engagement with ACE-2 disrupts
the entire anti-inflammatory/antioxidant branch, leading to unchecked ANG II accumulation and
premature EC senescence. Legend: ANG I, angiotensin I, ACEi, angiotensin-converting enzyme
inhibitors, ANG II, angiotensin II, ARBs, angiotensin receptor blockers, AT-1r, angiotensin receptor
type 1, ROS, reactive oxygen species, ANG1-7, angiotensin 1-7, MasR, Mas receptor, MrgD, MrgD
receptor, NO, nitric oxide.

A human endogenous retrovirus W (HERV-W) was identified in the regulatory region
of GABA-B receptor subunit 1 gene, suggesting that this ancestral retrovirus can be acti-
vated by exogenous viruses, including SARS-CoV-2 [56]. HERV-W activation and increased
GABA-B expression likely depresses the antiviral GABA-A, facilitating SARS-CoV-2 replica-
tion [57]. We surmise that the triple-arginine FCS of SARS-CoV-2 has retrovirus-activating
properties, switching on HERVs and human immunodeficiency virus-1 (HIV-1) [58,59]
(please see section Ancient and modern viruses disrupt GABAergic signaling).

The SARS-CoV-2 proteins ORF3a and S activate TMEM16F, a calcium-dependent
phospholipid scramblase that executes the fusion of both viral envelope with plasma
membrane and host cells with each other [60]. In addition, SARS-CoV-2 can deplete
GABA by disrupting the mitochondria, which in turn activate the cellular senescence
program [24,61] (Figure 1). Furthermore, ORF3a stimulation of TLR4 can induce EC
senescence and TMEM16F activation, forming syncytia [31,60,62].

2.4. Biological Barrier Dysfunction

Senescent endothelia may disrupt the BBB and the gut barrier, facilitating the translo-
cation of GI tract microbes and/or their molecules, including LPS, into the systemic circu-
lation, as reported in COVID-19 critically ill patients [63,64] (Figure 1). In addition, the S
protein of SARS-CoV-2 can bind directly to circulating LPS, triggering a hyperinflammatory
pathology [65]. Interestingly, ANG II upregulates TLR4, the main LPS sensor, augmenting
inflammation and neuropsychiatric pathology [43,66–68]. As GABA is a negative regulator
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of TLR4, it likely inhibits both cell–cell fusion and premature senescence, counteracting
not only the “cytokine storm” but also neuroinflammation [62,69]. Indeed, low GABA
and elevated LPS were demonstrated in the brains of patients with Alzheimer’s disease
(AD), suggesting BBB dysfunction and poor LPS suppression [70,71]. Moreover, several
studies have demonstrated that LPS can induce pathology by fusing cells into multinuclear
structures [72]. For example, brain cells can merge, forming physiological or pathological
syncytia that alter both neuronal networks and information processing [73,74] (Figure 3).
For example, neuron–neuron fusion occurs during normal aging as well as in the presence
of viral infections, multiple sclerosis (MS), AD, and following radiation exposure and
chemotherapy [75].
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Figure 3. Neuronal cell–cell fusion occurs physiologically, in normal aging, or pathologically, in
various conditions, including viral infections, Alzheimer’s disease (AD), multiple sclerosis (MS),
radiation exposure, or chemotherapy [76] Neuronal syncytia formation likely accounts for previously
unexplained phenomena, such as aneuploidy, somatic mosaicism, and neuronal cell cycle reactivation,
documented in various neuropsychiatric conditions.

Cell–cell fusion is a major cause of genome destabilization and generation of aneu-
ploidy, somatic mosaicism, and reactivation of the cell cycle in postmitotic cells [61,75–78]
(Figure 3).

Taken together, SARS-CoV-2 may precipitate premature vascular aging via ACE-2
depletion and syncytia formation. Senescent ECs downregulate eGABA, predisposing to
neuropsychiatric disorders.

3. Cellular Senescence in Psychopathology

Psychiatric disorders have been associated with shorter-than-average patient lifespan
and high comorbidity with age-related diseases, suggesting that premature cellular senes-
cence plays a major role in the pathogenesis of these conditions [79,80]. SARS-CoV-2, like
many other viruses, induces premature tissue aging, a phenomenon also demonstrated in
depression, anxiety, schizophrenia, and seizure disorder, indicating that GABA depletion
may be the common denominator of these pathologies [81–84]. On the other hand, GABA
supplementation was associated with less inflammaging and improved sleep and mood,
pointing to a potential therapeutic modality [85,86]. In addition, as GABA promotes au-
tophagic elimination of damaged and virus-infected cells, GABA supplementation may
benefit not only COVID-19-affected patients but also those with age-related diseases [5,12].
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Adult Neurogenesis and SARS-CoV-2 Infection

The COVID-19 pandemic has highlighted the role of RAS dysfunction, especially
ANG II, in the pathogenesis of neuropsychiatric disorders [87]. On the other hand, ARBs
and ACEi showed promising results in the treatment of these conditions, emphasizing
the pathological role of dysregulated ANG II [88,89]. Moreover, recent epidemiological
studies found that COVID-19 survivors may be at increased risk of several neuropsychiatric
disorders, further emphasizing the role of RAS in this pathology [30,90,91].

COVID-19-induced premature cellular senescence may engender neuropathology by
suppressing adult neurogenesis in the hippocampal subgranular zone (SGZ) and cerebral
subventricular zone (SVZ) [92,93]. Unlike in the adult CNS, GABA is an excitatory neuro-
transmitter in immature neurons; therefore, the loss of GABAergic signaling may disrupt
adult neurogenesis [92,94–96]. Interestingly, TLR4 was reported to play a key role in the
conversion of immature into mature neuronal cells, linking viral exploitation of this protein
to dysfunctional neurogenesis [97,98].

Taken together, virus-induced senescence lowers eGABA, contributing to neuropsy-
chiatric pathology by precipitating premature vascular aging and disrupting neurogenesis.

4. GABA, Neuronal and Non-Neuronal Information Processing

GABA is a non-protein amino acid present in almost all life forms, including plants,
bacteria, and gut microbes. In the central nervous system (CNS), GABA, signaling via
inotropic (GABA-A) and metabotropic (GABA-B) receptors, functions as an inhibitory
neurotransmitter and participates in numerous physiological processes, including cognition,
wakefulness, and self-awareness [99–101].

Neuronal and non-neuronal GABA are synthesized from glutamate via glutamic acid
decarboxylase (GAD), an enzyme located in all GABA-generating cells, including the gut
microbes [102,103]. This is significant, as autoantibodies against GAD were documented in
COVID-19 patients, suggesting molecular mimicry between this enzyme and SARS-CoV-2
proteins [104,105]. Dysfunctional GABAergic systems were associated with neuropsychi-
atric illness and disorders of consciousness [106–111]. For example, the GABAergic system
was linked to gamma oscillations on electroencephalogram (EEG), a self-awareness pattern,
disrupted in many neuropsychiatric disorders, including epilepsy, schizophrenia, autism,
anxiety, and depression [112–114]. The EEG gamma-band (25–90 Hz) was positively corre-
lated with resting GABA concentration as well as with the cerebral blood flow, emphasizing
the potential of eGABA as a biomarker [115,116].

During development and early life, GABA is an excitatory neurotransmitter that
matures gradually throughout childhood and early adolescence [117]. During this time, the
partial or total loss of GABA causes circulatory abnormalities and inhibits the migration
and placement of cortical interneurons [118]. In adolescence, GABA reaches sufficient
levels to initiate microglia-mediated synapse elimination and axonal pruning, characteristic
of mature cognition [119]. Indeed, recent studies have shown that GABA-sensing microglia
are required for synapse remodeling in adolescence and the installment of adult information
processing [120]. On the other hand, dysfunctional GABA signaling may contribute to the
pathological reactivation of microglia known to eliminate healthy neurons and synapses, a
phenomenon documented in both psychopathology and neurodegeneration [121]. These
microglial functions can be hijacked by intracellular pathogens, especially those linked to
mental illness [122–124].

4.1. Non-Neuronal Information Processing

Recent studies have shown that EC can form cellular networks and communicate
via Ca2+ waves, suggesting that information processing may take place at the vascular
level [125,126]. Likewise, astrocytes form physiological syncytia, a finding consistent with
the Ca2+ wave hypothesis of information processing [127]. In addition, the dysfunctional
eGABA association with altered cortical circuits and behavior likely highlights the role of
ECs in cognition [118]. Indeed, ECs communicate with and shadow neurons throughout
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the brain, likely participating in cognitive processes mediated by Ca2+. Moreover, as Ca2+
drives the rudimentary memory of plants and unicellular organisms, an ancient modality of
non-neuronal information processing is emphasized [128–130]. Along this line, the antide-
pressant action of ketamine, based, at least in part, on its impact on calcium/calmodulin-
dependent protein kinase II (CaMKII), likely implicates Ca2+ in emotional intelligence and
cognition [131]. This is important, as virtual screening studies documented the existence
of a CaMKII system in the S protein of SARS-CoV-2, linking this pathogen to affective
disorders [132]. Moreover, non-neuronal information processing was reported in skeletal
muscle, heart, and fascia, indicating that neuronal cells do not hold the exclusive monopoly
on cognitive processes [133,134]. Along this line, the acquisition of donor personality
characteristics following heart transplantation, documented by numerous studies, may
reflect EC-mediated cognition [135–137]. This is in line with the hemo-neural hypothesis
that connects information processing to endothelial blood flow [138].

In the following sections, we take a closer look at the COVID-19 influence on non-
neuronal GABAergic systems, especially the endothelial, microbial, and pancreatic path-
ways, emphasizing their potential participation in neuropsychiatric pathology.

4.2. eGABA

ECs line the inner layer of the circulatory system and regulate the vascular function via
membrane-bound receptors that interact with various neurotransmitters, hormones, and
metabolites. While previously conceptualized as passive components of membranes and
biological barriers, ECs are now known to play an essential role in vascular homeostasis and
the pathogenesis of thrombosis and inflammation [139]. Under normal circumstances, ECs
synthesize and secrete eGABA, a molecule depleted in the virus-induced cellular senescence
phenotype [118,140,141]. Aside from viral infections, EC senescence and low eGABA
were associated with PTSD, anxiety, depression, autism, schizophrenia, and epilepsy,
suggesting that the viral manipulation of this neurotransmitter may initiate or exacerbate
neuropsychiatric pathology [35,142–146]. Moreover, as human ECs express abundant ACE-
2, a positive regulator of eGABA, SARS-CoV-2 could disrupt the GABAergic signaling
directly [20]. Indeed, ACE-2 variants with depleted GABA were linked to major depressive
disorder, schizophrenia, bipolar disorder, and epilepsy, emphasizing the importance of
RAS/GABA crosstalk for central nervous system (CNS) homeostasis [14,87,91,147].

4.3. pGABA

Recent studies have identified another GABA pool in pancreatic β cells that may
be altered by SARS-CoV-2 infection, promoting metabolic dysfunction [148,149]. On the
other hand, the administration of exogenous GABA was demonstrated to improve glu-
cose tolerance in rodents, indicating that this biomolecule may play a key role in β cell
homeostasis [150,151].

Excessive ANG II was associated with diabetes mellitus type 2 (DMT2), indicating that
SARS-CoV-2 can trigger dysmetabolism by disrupting RAS [152]. In addition, the S and
ORF3a antigens of SARS-CoV-2 were shown to activate TMEM16F, promoting cell–cell fu-
sion, a phenotype associated with premature cellular senescence and low GABA [53,54,153].
Moreover, premature senescence of β cells and depleted pGABA may drive DMT2 and the
neuropsychiatric pathology-linked dysmetabolism [154,155]. So far, several neuropsychi-
atric disorders and psychotropic drugs have been associated with impaired metabolism,
suggesting that exogenous GABA may benefit individuals with these conditions [82]. In-
deed, in a previous article, we discussed the relationship between obesity and impulsivity
in psychiatric patients, emphasizing that attaining optimal results requires the concomitant
treatment of both conditions [156].

4.4. mGABA

SARS-CoV-2 affinity for ACE-2 suggests that tissues with high expression of this
protein, such as intestinal epithelial cells (IECs), are more vulnerable to infection [157]. As
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ACE-2 protects the beneficial GI tract microbes, many of which generate mGABA, the viral
exploitation of this protein may trigger intestinal dysbiosis [158,159]. Interestingly, gut
ACE-2 is co-expressed with L-dopa decarboxylase (DDC), an enzyme required for microbial
DA generation; thus, the viral exploitation of ACE-2 likely affects the brain dopaminergic
system (DAS) [160]. As elevated DDC was demonstrated in patients with schizophrenia,
the importance of RAS and DAS crosstalk is further emphasized [161].

In the GI tract, ACE-2 heterodimerizes with broad neutral amino acid transporter 1
(B0AT1) that participates in tryptophan (Trp) absorption, indicating that SARS-CoV-2 infec-
tion may deplete this amino acid [162] (Figure 4). For example, ACE2-deficient mice display
low Trp blood levels, emphasizing the role of this protein in Trp homeostasis [163,164]. As
Trp is crucial for serotonin biosynthesis, the viral exploitation of this essential amino acid
may trigger neuropsychiatric symptoms, including depression [165]. Moreover, the gut
microbes involved in tryptophan (Trp) metabolism are also implicated in adult neurogene-
sis via aryl hydrocarbon receptor (Ahr), a protein usurped by COVID-19 [166,167]. Ahr is
a cytoplasmic ligand and xenobiotic sensor that regulates the microbiota population and
the host–microbe crosstalk [168,169]. In our earlier work, we discussed the role of Ahr in
psychotropic drugs-induced metabolic dysfunction and suggested that various microbial
products, including indole-3-propionic acid, could ameliorate glucose tolerance [170]. As
recent studies have linked Ahr to cellular senescence, it is likely that impaired Trp ab-
sorption may predispose to this low mGABA phenotype [171,172]. Moreover, mGABA
enhances the expression of T helper 17 cells (Th17) characterized by the release of IL-17, an
mTORC1-activating antiviral biomolecule [173–175]. Interestingly, SARS-CoV-2 exploits
mTORC-1 and IL-17, disrupting both host antiviral defenses and the gut barrier [176,177]
(Figure 1).
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Figure 4. In the GI tract, ACE-2 dimerizes with the neutral amino acid transporter B0AT1 involved in
Trp absorption. Trp, an Ahr ligand, coordinates host–microbiota interaction and local metabolism.
Dysfunctional Trp absorption and defective Ahr may contribute to barrier disruption and microbial
translocation into the systemic circulation. Legend: Trp, tryptophan, B0AT1, neutral amino acid
transporter, AHR, aryl hydrocarbon receptor.
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5. Ancient and Modern Viruses Disrupt GABAergic Signaling

The syncytia-forming S2 protein of SARS-CoV-2 is crucial for infectivity, as highlighted
by its presence in several highly contagious viruses [178,179]. Indeed, FCS, absent in
other SARS-linked coronaviruses, usurps host furin, enhancing COVID-19 transmissibil-
ity [180]. On the other hand, loss of FCS was shown to attenuate SARS-CoV-2 virulence
and pathogenicity, emphasizing the utmost importance of S2 for the pandemic spread of
this viral infection [181].

Aside from SARS-CoV-2, arginine-rich FCSs were identified in HIV-1 protein GP160
ENV, as well as in syncytin-1, a physiological placental fusogen encoded by HERV-W,
suggesting that COVID-19 can activate dormant viral fossils [58,182,183]. This is significant,
as it connects COVID-19 to retroviruses as well as to the reproductive pathology [184,185].

HERVs are ancient viruses, comprising about 8% of the human DNA, that under
normal circumstances are not transcribed. However, various pathologies, including exoge-
nous viral infections, can reactivate HERVs, and translate their DNA into proteins, such
as syncytin-1, a molecule that generates trophoblast syncytia during placentation [186].
Pathologically, syncytin-1 promotes cell–cell fusion, hyperinflammation, and autoimmunity,
as well as the psychopathology linked to defective GABA [187].

Posttranslational cleavage of syncytin-1 is executed by furin, a host protein usurped by
viral FCS, disrupting both CNS and placental GABA [188]. Indeed, a recent meta-analysis
connected SARS-CoV-2 infection during pregnancy to preeclampsia, linking this condition
to usurped syncytin-1 [189]. Dysregulated GABA was previously reported in patients with
preeclampsia, implicating the furin–syncytin-1 axis in reproductive pathologies [190,191].
Moreover, in the first trimester of pregnancy, GABA upregulates human chorionic go-
nadotropin (hCG), a key hormone for prenatal brain development, suggesting that the viral
exploitation of GABA may trigger a developmental pathology [192,193].

5.1. Syncytia Inhibitors

Over the past decade, a considerable effort was devoted to the development of syncytia-
blocking agents, including furin inhibitors [194]. The finding that arginine repeats play a
major role in virus-induced cell–cell fusion, contributed to the development of FCS-attached
arginine mimetics, including phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide, to inhibit
the formation of syncytia [195,196]. As furin is highly expressed in ECs and involved in
vascular aging and dysmetabolism, furin inhibitors may be capable of averting premature
EC senescence and disrupt viral replication [197,198] (Table 1).

Aside from inhibiting furin, syncytia formation can be blocked by lowering the expres-
sion of TMEM16F. TMEM16F is a Ca2+-driven phospholipid scramblase that maintains
phosphatidylserine (PS) in the inner leaflet of the cell membrane, allowing its externaliza-
tion only when the cell is ready for apoptosis or fusion [199,200]. Since externalized PS
(ePS) is indispensable for syncytia formation, TMEM16F inhibitors may block pathological
cell–cell fusion [201]. For example, niclosamide, a TMEM16F-targeting drug, was reported
to inhibit both SARS-CoV-2 syncytia and viral transmissibility [202]. Niclosamide is an
anthelmintic compound with demonstrated antiviral properties that is currently being
evaluated for the treatment of COVID-19 [203]. Several recent studies show that TMEM16F
interacts with inositol 1,4,5-triphosphate receptor 1 (IP3R1) in many cell types, including the
GABAergic interneurons, implicating this protein in cell–cell fusion [204,205]. Interestingly,
IP3R1 was associated with psychopathology, including schizophrenia, neurodegenerative
disorders, and epilepsy, suggesting that niclosamide may have a therapeutic value in the
treatment of these conditions [206–208]. Indeed, lithium and valproic acid, drugs rou-
tinely utilized in the treatment of bipolar disorder, alter IP3R1 expression, indicating that
TMEM16F inhibitors could have a place in neuropsychiatry [209]. As lithium, valproate,
and niclosamide alter the Wnt/β-catenin signaling, the latter may possess mood-stabilizing
properties. Interestingly, a valproic acid/niclosamide combination was found therapeutic
in some cancers, emphasizing the pleotropic role of the Wnt/β-catenin pathway [210,211].
Furthermore, dysfunctional TMEM16F–IP3R1–GABA signaling was found to pathologi-
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cally activate the microglia, probably leading to aberrant phagocytosis of healthy neurons
and synapses, documented in neuropsychiatric pathologies [212].

It has been known for several decades that diazepam displays anti-syncytial properties,
as it inhibits the fusion of myoblasts during musculoskeletal system development [213]. In
contrast, as arginine enhances myoblast fusion and abolishes the anxiolytic effects of di-
azepam, benzodiazepines may be able to counteract FCS-mediated cell–cell fusion [214,215].
Interestingly, ivermectin binds GABA-A receptors at the diazepam site, highlighting this
drug’s anti-syncytial mechanism of action [216].

Taken together, the TMEM16F–IP3R1–GABA axis comprises a signaling hub involved
in viral infections, cancer, and neuropsychiatric illness. GABA upregulation may inhibit
TMEM16F and the formation of pathological syncytia.

5.2. GABA, Autophagy, and Blood Pressure

The antiviral properties of GABA—the elimination of virus-infected cells—highlight
the autophagy-activating role of this amino acid [217,218]. Indeed, GABA interferes with
host EP that many viruses, including SARS-CoV-2, exploit to enter host cells [12,219]. Viral
FCS usurps GABA-mediated autophagy by inhibiting subunit β3 interaction with the
clathrin endocytosis AP2 protein [55].

Autophagy modulation may account for the other beneficial properties of GABA,
including anti-hypertension, anti-diabetes, antioxidant, and anti-inflammatory actions,
suggesting that supplementation with this amino acid may be salutary for patients with
these disorders [220,221]. Exogenous GABA may or may not cross the BBB, as conflict-
ing results were reported by different studies. However, CNS-reaching GABA ligands
are routinely utilized for the treatment of neuropsychiatric diseases [222,223]. For exam-
ple, GABA-enhancing anticonvulsants, including tiagabine, gabapentin, and topiramate
not only increase neuronal GABA but also augment the non-neuronal GABAergic path-
ways [224]. For example, gabapentin and tiagabine lower blood pressure in patients with
hypertension, while topiramate decreases intracranial pressure, connecting eGABA to the
homeostasis of extracellular compartments [225,226]. Interestingly, diazepam displays both
antihypertensive and antiretroviral properties (against HIV-1), further emphasizing the
beneficial effects of GABA signaling [227,228]. Furthermore, due to their antiretroviral
function, benzodiazepines may suppress HERV activation by exogenous viral infections,
including SARS-CoV-2 [228,229].

Table 1. Potential syncytia-inhibiting drugs and mechanisms of action.

Drug Mechanism References

Arginine mimetics Furin inhibition [195,196]
Niclosamide TMEM16F inhibition [202]
Ivermectin GABA upregulation [36,37]

ARBs/ACEi GABA upregulation [14–16]
Benzodiazepines GABA upregulation [213]

Taken together, the syncytia-inducing FCS of SARS-CoV-2 activates HERV-W and
lowers retrovirus-inhibiting GABA. GABA and its agonists likely inhibit S2-mediated
HERV activation.

6. Conclusions

The COVID-19 pandemic has stimulated research highlighting numerous molecular
pathways that were poorly defined prior to the arrival of this virus. The viral predilection
for ACE-2 has shed light on RAS and the importance of balancing its two branches to
prevent pathology, including neuropsychiatric diseases. As SARS-CoV-2 has been exten-
sively studied in a relatively short period of time, several cellular mechanisms relevant for
psychiatry have been highlighted, including:

1. ACE-2 is protective for the GABAergic signaling in both neuronal and non-neuronal pathways.
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2. Inhibition of protective RAS promotes cellular senescence, lowering neuronal and
non-neuronal GABA.

3. Virus-induced syncytia formation is a major trigger of premature cellular senescence
and related pathology.

4. Aside from functioning as a neurotransmitter, GABA displays anti-hypertension,
anti-senescence, anti-diabetes, antioxidant, and anti-inflammatory properties.

5. ARBs and ACEi upregulate GABA, promoting adult neurogenesis that prevents
senescence-mediated psychopathologies.

6. The S2 protein of SARS-CoV-2 contains a triple-arginine insert that activates HERVs,
promoting hyperinflammatory pathologies.

7. SARS-CoV-2 alters Trp catabolism and the GABA-producing gut flora, facilitating
microbial translocation from the GI tract into various tissues and organs, including
the brain.

8. Furin and TMEM16F inhibitors suppress syncytia formation, while ARBs and ACEi
upregulate GABA, lowering ANG II-induced senescence.
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Abstract: Spontaneous pneumothorax in the setting of coronavirus disease 19 (COVID-19) has
been first described as an unlikely complication, mainly occurring in critically ill patients or as a
consequence of mechanical ventilation. We report a case with COVID-19 pneumonia followed by a
spontaneous pneumothorax in a young non-smoker without any predisposing pathology.

Keywords: COVID-19; pneumonia; spontaneous pneumothorax

1. Introduction

The first cases of Coronavirus disease 2019 (COVID-19) were described in Wuhan,
China, and quickly spread around the world to become a threat to public health, the
economy, and other areas [1]. According to JHU CSSE COVID-19 data, since the outbreak
of COVID-19, more than 136 million cases have been confirmed, with nearly 3 million fatal
outcomes. The WHO declared the disease as a pandemic.

It seems that COVID-19 does not spare a system: Even though the disease mainly
affects the respiratory tract, manifesting as viral pneumonia with common symptoms of
dyspnea or respiratory failure. Additionally, the nervous, cardiovascular, gastrointestinal,
and/or renal systems can be involved [2,3].

Most of the patients present with a mild course of the disease—the mortality ranges
from less than 1% to 8% depending on the country [4,5]. Additionally, new variants have
been reported showing differences in infection rate, severity, and mortality [5,6].

Most cases present with a relatively mild symptoms, yet severe complications have
been observed, with even fatal outcomes—cytokine release syndrome, responsible for
acute respiratory distress syndrome; acute kidney failure; or severe myocardial damage,
as well as secondary infections with septic shock [7,8]. According to some literature data,
approximately 20% of patients progressed to acute respiratory distress syndrome requiring
mechanical ventilation [9,10]. Decreased pulmonary compliance and alveolar inflammation
demand higher levels of airway pressure and fraction of inspired oxygen in order to achieve
adequate ventilation and gas exchange. Higher levels of airway pressure are among the
most probable causes for a number of pulmonary complications, including secondary
spontaneous pneumothorax.

Pneumothorax or pneumomediastinum development during the course of COVID-19
disease was first described as a rather unlikely complication (1% of cases), usually affecting
critically ill patients or those with mechanical ventilation [11–14]. However, recent data
suggest that pneumothorax could also occur in patients without ventilation support [15–17].

We report on a case with COVID-19 pneumonia followed by a spontaneous pneumoth-
orax in a young non-smoker, no alcohol abuse, and HIV-negative, without any predispos-
ing pathology.
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2. Case Report

A 35-year-old male patient presented with suspected COVID-19 pneumonia. He
complained about fever (up to 38.5 ◦C), headache, cough, shortness of breath, and chest
tightness for the last 2 days. No comorbidities were known, except for ulcerative colitis
in remission. The patient denied smoking, as well as alcohol abuse; there were no data
about other drug abuses(e.g., steroids, 5-ASA, etc.). No family history of respiratory tract
diseases was available or other specific lung anomalies.

His vitals on admission were as follows: heart rate of 98/min, respiratory rate of
24/min, and peripheral oxygen saturation of 90%.

The laboratory results (Table 1) showed an elevation of the c-reactive protein (CRP:
106 mg/L; normal range: <5 mg/L) with a normal procalcitonin level (PCT: 0.08 ng/mL;
normal range: <0.5 ng/mL). Creatinine was normal (Crea: 0.8 mg/dL; normal range
0.7–1.2 mg/dL), while lactate dehydrogenase was elevated (LDH: 367 U/L; normal range:
<250 U/L). D-dimer was also elevated (d-dimer: 310 ng/mL; normal range: <250 ng/mL).

Table 1. Laboratory findings on admission.

Laboratory Evaluation Patient’s Result Normal Range

CRP 106 mg/L <5 mg/L

PCT 0.08 ng/mL <0.5 ng/mL

Crea 0.8 mg/dL 0.7–1.2 mg/dL

LDH 367 U/L <250 U/L

d-dimer 310 ng/mL <250 ng/mL

Chest X-ray showed bilateral interstitial infiltrates (Figure 1). Positive reverse tran-
scriptase polymerase chain reaction (RT-PCR) test with nasal swab (Genexpect system)
confirmed COVID-19 infection. The patient was admitted to the isolation ward and re-
ceived supportive treatment. Oxygen supplementation was also necessary—poly mask
was applied (his pO2 increased to 98%), with no mechanical ventilation. The patient was
discharged in a stable condition at day +5 after admission. A chest CT was performed,
revealing no bulla present at the time of discharge.
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Figure 1. Chest X-ray on admission—showing bilateral interstitial infiltrates without blebs.
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Twenty days after discharge, the patient presented again in the emergency department
with severe chest pain and shortness of breath. CT chest revealed a significant pneumoth-
orax on the right side (Figure 2). A chest tube was inserted with subsequent drainage,
leading to a re-expansion of the right lung.
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Figure 2. CT chest—showing pneumothorax on the right side.

The patient was followed-up once again a month later. He could walk a kilometer
distance without getting breathless. Clinically, there was a normal expansion of the both
lungs with normal percussion margins. There was no need for new X-rays as the patient
was clinically stable, asymptomatic, and was feeling fine.

3. Discussion

Approximately 1% of patients with COVID-19 pneumonia develop pneumothorax,
presumably due to the barotrauma caused by positive pressure ventilation [12,18].

In the case presented, no such trauma could be suspected. Other possible “cul-
prits” (emphysema, cystic fibrosis, necrotizing pneumonia, severe asthma, lung inflam-
mation/malignancy, as well as Marfan syndrome and alpha 1-antitrypsin deficiency) also
cannot be taken in consideration [19,20]. The patient is a non-smoker and in good physical
condition (could walk for 5 km prior to the COVID-19 infection); he was tested for alpha
1-antitripsin deficiency (negative). The control CT scan before the discharge did not show
any bulla or emphysema. The patient denies having significant cough—thus, the so-called
Maclin effect (occurs due to extensive cough in an area that the alveolar walls are weakened)
should also be excluded.

There are a few possibilities to explain the complication described:

• Small (micro) sub pleural bleb formation in the course of the disease that broke later
into the pleural space [20];
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• Given the hypercoagulable state observed in COVID-19 patients, a microembolus
leading to infection with subsequent alveolar wall damage and leakage in the pleural
compartment could be suspected [21,22];

• Diffuse alveolar damage leading to alveolar rupture and air leak [17].

4. Conclusions

It is obvious that there is only a thin burden between the mild course of the disease
and full-blown respiratory failure (with life-threatening consequences), as well as between
the “really recovered” patient after the discharge and the patient with unsuspected risk for
ulterior complications.

Increasing evidence of spontaneous pneumothorax in non-ventilated patients after
COVID-19 should make clinicians aware of the “rare” possibility for a spontaneous pneu-
mothorax to cause acute worsening dyspnea or acute clinical deterioration in patients with
a recent COVID-19 history.
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