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Maritime logistics and supply chain management have become more complicated due
to economic globalization development. It is urgent to improve maritime transportation
efficiency to enhance maritime logistics and supply chain management efficacy. Artificial
intelligence (AI) technology has become more sophisticated via the support of varied
real-world application scenarios, large-scale training samples, affordable, yet powerful,
computational powers, etc. AI usage and its success in the maritime field has been signifi-
cantly enhanced due to widely deployed sensors on ships, coastal buildings, etc. (i.e., the
AI models can be trained with sufficient maritime data samples). In this way, the maritime
and computer science communities have attempted to improve the maritime transportation
efficiency by introducing varied cutting-edge AI techniques. The maritime transportation
industry has anticipated more demanding AI methods for the purpose of maritime safety
and environmental protection. In other words, the newly developed AI techniques can
help avoid maritime traffic accidents and environ-mental pollution and improve the safety
and greenness of navigation through the ship’s autopilot, intelligent navigation, real-time
monitoring, etc.

Artificial intelligence can perceive and predict maritime transportation situations by
analyzing the ship’s position, speed, and heading direction by integrating meteorology
and sea current data [1,2]. These data can be used in ship automatic control and ship–
port–vehicle cooperation-related activities. The ship automation control procedure can
be used for autonomous driving, real-time navigation, automatic collision avoidance,
automatous ship berthing, etc. Ships can be aware of potential traffic accidents with the
help of computer vision and deep learning models, which can be further integrated to
improve maritime traffic safety and efficiency [3]. Ship–shore–vehicle collaboration can
achieve the efficient docking between ships and land vehicles using real-time data exchange
and intelligent scheduling algorithms, which improves the cargo transportation efficiency
and reduces congestion.

Ship trajectory optimization deserves the community’s attentions by considering fac-
tors such as the ship’s speed, fuel consumption, sailing time, etc. In this way, the crew can
optimize their trajectory with less energy consumption, higher transportation efficiency,
and on safer travelling routes [4]. The AI technique can be applied to maritime monitoring
and management systems, which can realize the monitoring and early warning of maritime
violations using varied maritime data sources (historical ship trajectory data, navigation
data, and satellite imagery) [5]. Ship berthing and disembarking information, the port
traffic condition, and the quay (yard) crane schedule can be further integrated to optimize
the container terminal productivity. In this way, the cargo loading/unloading efficiency can
be significantly improved, and the waiting time can be reduced as well [6]. AI techniques
can also enable multi-ship collaboration to fulfill the task of cargo transportation via ship
fleets. Based on the above-mentioned analysis, AI techniques can enhance the maritime
transportation efficiency in a more intelligent, automatic, and environmentally friendly
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manner. The primary goal of the Special Issue is to explore typical AI applications and
solutions in the maritime transportation field, which can be described in terms of the
following aspects.

Ship trajectory planning and optimization using automatic identification system (AIS)
data has attracted attention in the maritime field. Sedaghat et al. (Contribution 1) proposed
a novel system to monitor maritime traffic, which can be further used to predict ship
positions in a real-time manner. Zhao et al. (Contribution 2) proposed an encoder–decoder-
based deep learning model to predict long-range ship trajectories. Lee et al. (Contribution 3)
introduced a Dijkstra-based model to efficiently find the shortest ship travelling path using
country-wide AIS data. Zheng et al. (Contribution 4) identified spoofing ship trajec-
tories using large-scale AIS data with an isolation forest based framework. Zhen et al.
(Contribution 5) analyzed the varied influence of environment factors on maritime traffic
safety, which included the current, water depth, traffic volume, etc. A-star related con-
ventional machine learning models were introduced to optimize ship trajectory planning
and optimization tasks (Contributions 6 and 7). Li et al. (Contribution 8) tried to explore
spatial–temporal relationships between ports via the help of a graph neural network. More
specifically, the proposed framework employed a graph attention network to identify the
traffic patterns, which aimed to determine the potential, yet intrinsic, relationship between
two neighboring feature dimensions. Chen et al. (Contribution 9) explored the ship ma-
neuvering performance in polar waters by considering both the static and kinematic ship
information. Arbabkhah et al. (Contribution 10) employed a traditional XGBoost model to
predict the time of arrival to enhance the port operation productivity.

Ship detection, tracking, and identification using maritime surveillance images has
also become a hot topic in the community to fulfill ship visual navigation and intelligent
navigation needs. Chen et al. (Contribution 11) employed a contextual encoder to enhance
the maritime image restoration performance, and a weighted bidirectional feature pyramid
network was further proposed to accurately detect ships in rain and fog-interference
video clips. Zhou et al. (Contribution 12) developed a novel multiple feature fusion-
guided deep learning model to enhance the resolutions of maritime images captured under
adverse weather conditions. The maritime community attempts to obtain ship kinematic
information (i.e., speed and distance) using varied visual sensory data sources. Zhao
et al. (Contribution 13) proposed a novel you only look once (YOLO)-based ship speed
extraction model under hazy weather situations. The framework employed a lightweight
convolutional neural network to suppress the haze interference from maritime images, and
the YOLO V5 model was introduced to detect ships in the haze-free image sequences. The
ship speeds were further exploited by mapping ship imaging displacement in the real world.
In addition, Zhao et al. (Contribution 14) proposed an improved U-Net pixel segmentation
model to identify the shoreline in a pixel-wise manner. Ye et al. (Contribution 15) proposed
an enhanced attention mechanism based a YOLO model to implement a ship detection task
in real time.

Attention has also been given to ship fleet management optimization, ship–port coop-
eration, ship energy consumption reduction, autonomous port management, etc. Cheng
et al. (Contribution 16) developed a novel cooperative unmanned surface vehicle (USV)
unmanned autonomous vehicle system for the purpose of enhancing the USV perception
capability in an underwater environment. Chen et al. (Contribution 17) proposed an
ensemble farmwork to simulate ship autonomous berthing and controlling with a linear
quadratic regulator and a covariance matrix adaptation evolution module. The study
aimed to tackle ship autonomous berthing challenges, which involved with ship route
planning, speed controlling, etc. Yan et al. (Contribution 18) developed a novel framework
to analyze maritime traffic safety in wind farm water areas using a complex network theory.
Li et al. (Contribution 19) proposed a magnetic focusing-related model to quantify the
ship main engine crankshaft angle using inductive angular displacement sensory data.
Bai et al. (Contribution 20) proposed a ship-controlling algorithm by integrating a compo-
site sliding mode observer and a modified feed-forward phase-locked loop. Yang et al.
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(Contribution 21) tried to optimize a double-cantilevered rail crane schedule in a U-shaped
automated container terminal.

Maritime transportation will emit low levels of carbon in the future, and artificial
intelligence techniques will play an increasingly important role in the smart maritime
shipping era. The Special Issue aimed to enhance the maritime transportation efficiency via
artificial intelligence techniques, while typical maritime traffic situations were exploited.
Overall, the AIS data are commonly used for intelligent navigation, and must attention is
paid to suppressing the AIS data outliers, optimizing the ship travelling trajectories, ship
speed control, etc. In addition, intelligent maritime traffic situation awareness was also
exploited via the support of maritime monitoring videos. Ships’ trajectories and speeds
were accurately estimated from the maritime videos via cutting-edge computer vision
models. Moreover, maritime traffic efficiency and safety were further investigated via the
help of varied maritime data sources and AI techniques.
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(52331012, 52102397, 52071200, and 52201401).
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Abstract: A U-shaped automated container terminal (ACT) has been proposed for the first time
globally and has been adopted to construct the Beibu Gulf Port ACT. In this ACT layout, the
double cantilevered rail crane (DCRC) simultaneously provides loading and unloading services for
the external container trucks (ECTs) and the automatic guided vehicles (AGVs) entering the yard.
The DCRC has a complex scheduling coupling relationship with the AGV and the ECT, and its
mathematical model is extremely complex. There is an urgent need to study a practical collaborative
scheduling optimization model and algorithm for the DCRC, the AGV, and the ECT. In this paper,
we optimize the process flow of DCRCs to study the refined collaborative scheduling model of
DCRCs, AGVs and ECTs in U-shaped ACTs. Firstly, we analyze the operation process of the DCRC
and divide the 16 loading and unloading conditions of the DCRC into four operation modes for
process optimization. Secondly, different variables and parameters are set for the DCRC’s four
operating modes, and a refined collaborative dispatching model for the DCRCs with AGVs and
ECTs is proposed. Finally, a practical adaptive co-evolutionary genetic algorithm solves the model.
Meanwhile, arithmetic examples verify the correctness and practicality of the model and algorithm.
The experimental results show that the total running time of the DCRCs is the shortest in the U-shaped
ACT when the number of quay cranes (QC) to DCRC and AGV ratios are 1:2 and 1:10, respectively.
At the same time, the number of QCs and DCRCs has a more significant impact on the efficiency of
the ACT than that of AGVs, and priority should be given to the allocation of QCs and DCRCs. The
research results have essential guidance value for U-shaped ACTs under construction and enrich the
theory and method of collaborative scheduling of U-shaped ACT equipment.

Keywords: U-shaped automated container terminal; double cantilever rail crane; refined collaborative
scheduling; equipment ratio

1. Introduction

With their high efficiency, safety, and low dependence on manual labor, automated
container terminals (ACTs) have become an inevitable trend in transforming the world’s
ports [1]. All the top 10 container terminals reported by Alphaliner in 2021 have ACT
in operation or under construction [2]. In the construction of ACTs, a U-shaped ACT is
proposed for the first time in the world and adopted in the construction of the ACT at
Beibu Gulf Port, attracting widespread attention from academia and industry.

Regarding management, strategic, tactical and operational are three different levels of
decision-making that affect a system’s operational efficiency. To improve the efficiency of a
terminal, the layout and handling technology are key issues that should be considered at the
strategic level, influencing all other decisions [3]. As the terminal’s second-largest source
of carbon emissions, the layout design of the terminal should focus on the yard area [4],
which points us in the direction of studying U-shaped ACTs. Currently, there are two types
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of yard layouts in ACTs: one is a layout where the blocks are parallel to the quay (hereafter
called a parallel layout), and the other is a layout where the blocks are perpendicular to
the quay (hereafter called a perpendicular layout). The loading and unloading scheme is
divided into operating at the end of the block and the side of the block [5].

Loading and unloading in a perpendicular layout at the end of the block is more
common in ACTs because of their relatively simple traffic control logic. When looking
at the evolution of ACTs in the United States and abroad, traditional ACTs have used
a perpendicular layout with end interactions. The representative real-world examples
include the Euromax terminal in Rotterdam, the Yangshan Terminal in Shanghai, and the
Altenwerder terminal in Hamburg. Some studies have suggested that the perpendicular
layout requires fewer automatic guided vehicles (AGVs) than the parallel layout for the
same single-side loading and unloading solution inside the blocks [6]. However, the
perpendicular layout with an end loading and unloading scheme is less efficient because
the yard crane (YC) travels longer distances to the end of the block for each task [7]. In
general, there is no absolute advantage of the yard layout, and each layout has to find its
own suitable loading and unloading solution [8]. Some scholars have noted the necessity
of researching new layouts and loading and unloading schemes for yards [9].

Typically, neither the AGV nor the external container truck (ECT) enter the yard
in established ACTs with the perpendicular layout and end interactions. The AGV is
decoupled from the YC at the seaside end by AGV partners, and the ECT interacts with
the YC at fixed positions at the landside end. According to the needs of the construction of
ACTs with extended depths and to overcome the shortcomings of the perpendicular layout
terminal with end interaction, Zhenhua Company has proposed a U-shaped ACT scheme.
Beibu Gulf Port uses the scheme in the construction of its ACT [10].

However, the new scheme and equipment have created new problems. Firstly, the
double cantilevered rail cranes (DCRC) provide loading and unloading services for both
the ECT and the AGV. In scheduling models, there is a coupling relationship between the
DCRC, the AGV and the ECT which makes the mathematical model more complex. There
has yet to be a practical scheduling optimization model. Secondly, there is no container
staging point in the block, and the DCRC directly couples vehicles on both sides. This
puts higher requirements on collaborative scheduling between equipment, and the model
requires more constraints. Thirdly, the DCRC can be loaded and unloaded at any bay in
the block. The interaction points are tens or even hundreds of times higher than the end
scheme, making the model more difficult to solve [11].

Therefore, the multi-equipment collaborative scheduling problem, with the integrated
consideration of loading and unloading efficiency, and energy consumption as the optimiza-
tion objective, is a unique scheduling problem for U-shaped ACTs. The scientific problem
of multi-equipment collaborative scheduling and the multi-objective optimization of ACTs
induced by the layout scheme design of U-shaped ACTs needs to be specifically studied
based on the actual demand for U-shaped ACT construction, and taking into account its
yard, the core aspect of the U-shaped ACT energy consumption and cost, and the coupling
and complexity of the multi-equipment collaborative scheduling mathematical model. In
this paper, we first select the collaborative scheduling problem of DCRCs, AGVs and ECTs
in the U-shaped ACT, with loading and unloading efficiency as the optimization objective
for research.

The contributions of this study are as follows. (1) A refined collaborative scheduling
model for multi-equipment in U-shaped ACTs has been established for the first time. This
problem is an urgent practical problem in the construction of U-shaped ACTs and an
essential academic issue in management disciplines. It is a universal problem for ACTs
and a unique problem for U-shaped ACTs. However, scholars have already researched
the equipment refinement scheduling model and the port multi-equipment collaborative
scheduling model. However, research on multi-equipment refined collaborative dispatch-
ing models for ACTs has yet to be conducted to date. This thesis firstly analyses the motion
process of the DCRC during loading and unloading at the U-shaped ACT. The 16 loading
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and unloading situations encountered when the DCRC operates both sides of the AGV and
the ECT are grouped into four modes to optimize the loading and unloading process of the
U-shaped ACT. Then, a multi-equipment refinement and collaborative scheduling model
for the U-shaped ACT is established, with the shortest total running time as the target,
based on the four loading and unloading modes of the DCRC. (2) The optimal equipment
ratio of the U-shaped ACT is derived through simulation experiments at different scales to
meet the actual production requirements.

The following is the reminder of this paper: Section 2 provides a review of the cor-
responding references. Section 3 analyses the motion pattern of DCRCs and proposes a
refined collaborative scheduling model for multi-equipment. Section 4 designs a suitable al-
gorithm for the model. Section 5 conducts numerical experiments and performs equipment
rationing analysis. Conclusions are given in Section 6.

2. Literature Review

In this section, we look at the existing research that is relevant to this study. This
research can be divided into four groups: scheduling problems for YCs, collaborative
scheduling problems for YCs and AGVs, collaborative scheduling problems for multi-
equipment, and collaborative scheduling problems for multi-equipment in U-shaped ACTs.

2.1. Scheduling Problems for YCs

Among container handling equipment, YCs play an essential role in the production
of container terminals. Academics have carried out long-term and extensive research
on various aspects. Some scholars have studied the scheduling of tire cranes between
flat-banked blocks, [12–17], a situation more often found in conventional terminals. Some
have studied the scheduling of multiple YCs, taking into account interferences between
YCs [18–24]. Some scholars have studied the YC’s dispatching rules and travel paths.
Ref. [25] compared the rules of the YC serving outbound collectors, such as first-come,
first-served, one-way travel, and minimum processing time rules, to reduce the waiting
time of outbound collectors in the yard. The results showed robust, high-level performance
under the shortest processing time rule. Ref. [26] conducted a preliminary exploration of
container handling theory and proposed a YC spreader loading and unloading route that
balances the length of the travel route and the safety distance. The optimal travel path of
the spreader was determined while determining the scheduling rules of the YC. Ref. [27]
first proposed the refined scheduling of the YC. The study divided the operation cycle of
the YC into the primary motion gantry movement time, the spreader’s vertical movement
(lifting/lowering) time, and the trolley movement time. Moreover, it pointed out that the
expected cycle time of the YC based on the Chebyshev motion pattern is shorter than that
of the YC based on matrix motion. This provided a theoretical basis for subsequent research
into the scheduling of YCs based on the Chebyshev motion.

2.2. Collaborative Scheduling Problems for YCs and AGVs

ACTs are a complex overall system, and studying a single subsystem in isolation does
not fit the reality of ACT operations. Without collaborative scheduling, improvements
in one area may be lost due to inefficiencies in another. Collaborative scheduling holds
great promise for increasing terminal throughput and achieving a high utilization of yard
equipment [28]. The main factor that affects how well ACTs work is how well AGVs and
YCs work together [29].

Some researchers are investigating the synergistic scheduling of AGVs and YCs in
a vertical layout with end operations. Ref. [30] pointed out that previous studies have
usually reduced operation time by increasing the amount of operating equipment but
ignoring the additional cost and energy consumption caused by increasing the number of
pieces of equipment. The paper considered the matching of equipment operation time and
equipment quantity. It established a collaborative scheduling model for AGVs and YCs to
minimize the operating equipment’s total energy consumption. Ref. [31] proposed a new
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method to optimize the scheduling of YCs and AGVs in the YC relay mode, considering
the buffer capacity constraint and the interference of dual YC operations.

The collaborative scheduling of internal vehicles and YCs has been investigated during
loading and unloading processes. For example, Ref. [32] divided individual container
tasks into “unloading,” “loading,” “receiving,” and “delivery.” Ref. [29] investigated the
integrated scheduling problem of YCs and AGVs as a multi-robot collaborative scheduling
problem and proposed a multi-commodity network traffic model with two sets of traffic
balancing constraints. Ref. [33] used four heuristic algorithms for YCs and yard trucks
scheduling. The results showed that the hybrid algorithm is more advantageous. For the
first time, Ref. [34] investigated internal vehicle tasks on both sides of the block of YC
operations in an ACT. It described the motion of the YC loading and unloading process. It
again demonstrated the advantages of a Chebyshev motion-based YC control model for
loading and unloading scenarios.

2.3. Collaborative Scheduling Problems for Multi-Equipment

None of the above studies involved the collaborative scheduling of three different
types of handling equipment. As a result, planning decisions may be suboptimal, and
efficiency improvements may not be as significant as with integrated scheduling methods.
Of the studies conducted, many multi-equipment collaborative scheduling studies have
been performed by adding the study of QCs to YCs and internal vehicles. These studies
have been divided into two categories: loading and unloading at the end, and loading and
unloading at the side.

In the end-loading solution, Ref. [35] considered the problem of overlapping operations
with multiple QCs, dividing and modeling the YC into two cases, from the end buffer
and from inside the block. It was concluded that, for the vertical end layout, the optimal
block parameters required for both side loading and loading are the same. Ref. [36] also
considered the integrated scheduling of the three to minimize the amount of equipment
used and the time taken by the equipment to complete the task.

In the side-loading solution, Ref. [37] considered the uncertainties in the speed of
operation of terminal equipment and developed a collaborative scheduling model for the
QC, YC, and AGV. Ref. [38] was concerned with finding a trade-off between efficiency and
energy consumption among the three. Ref. [39] used a double cycle to handle containers to
minimize the number of empty yard truck loads.

The impact of ECTs on the terminal is additionally considered. This article used a
leave queuing model to describe the co-loading of inbound trucks and ECTs by the YC on
both sides, and modeled the optimization of truck booking quotas to minimize the waiting
costs for both internal and external container trucks [40].

2.4. Collaborative Scheduling Problems for Multi-Equipment in U-Shaped ACTs

As mentioned above, multi-equipment collaborative scheduling methods mainly focus
on the perpendicular layout of ACTs. For U-shaped ACTs, there has yet to be a mature
multi-equipment collaborative scheduling optimization method. Beibu Gulf Port, which is
building the world’s first U-shaped ACT, urgently needs a mature collaborative scheduling
optimization method to solve the problem of collaborative scheduling of multiple pieces of
equipment in ACTs and the optimization of energy consumption and efficiency in the yard.

The U-shaped ACT uses DCRCs to simultaneously load and unload ECTs and AGVs
entering the yard. In contrast to the non-cantilever automatic rail-mounted gantry com-
monly used in ACTs, the DCRC has two cantilevers extending on each side. The spreader
can service vehicles at the operating lane along the cantilever on either side without travel-
ing to the end of the block to interact each time a new task is performed [10].

The U-shaped scheme has many advantages compared with the end-operation scheme.
To begin with, the ECT runs along the U-shaped lanes and the AGV runs along the
straight lanes. This method uses physical segregation to divert internal and external
vehicles, solving the practical problem of simultaneously entering the yard operation [8,11].
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Then, the DCRC can interact with vehicles on both sides at each bay without moving
to the end of the block for each task to hand over the container, which can significantly
reduce the travel distance of the DCRC. Furthermore, installing internal roads in the yard
allows the terminal to accommodate more vehicles, while making the AGVs and ECTs
more drivable and allowing them to be more evenly distributed in the terminal, thus
reducing vehicle congestion. Finally, ECTs can exit along the U-shaped lanes in the same
direction, reducing backup time and making it easier to recruit truck drivers. Refs. [41,42]
addressed the environmental protection issues and related safety concerns in the ocean.
Ref. [43] was conducted to simulate the layout of ACTs from efficiency, economic, and
environmental perspectives. The results showed that the U-shaped scheme outperforms
the terminal with the end scheme regarding operational efficiency and waiting time under
the same conditions.

Our team has carried out some preliminary research on the multi-equipment collab-
orative scheduling optimization problem in U-shaped ACTs. However, the models and
algorithms have yet to reach practicality. Ref. [10] established a hybrid scheduling model
for YCs, AGVs and ECTs in U-shaped ACTs. A scheduling model architecture with the
hierarchical abstraction of scheduling objects was proposed to refine the problem. However,
the study required that only one ECT or AGV can exist in a lane, with AGVs and ECTs
queuing at the entrance to the block before entering the block. This is different from the
multi-vehicle approach in a U-shaped ACT and reduces the flexibility of vehicle scheduling.
Ref. [8] investigated the integrated scheduling of QCs, AGVs and DCRCs. They considered
conflict-free path planning for AGVs and proposed an integrated scheduling optimization
model based on mixed integer planning. However, the study ignored the DCRC’s operation
process and operation time and modeled the ACT loading and unloading process in three
parts, which revealed weaknesses in the model’s holistic nature and collaboration between
equipment. Ref. [11] proposed a decision tree learning method based on a heuristic Monte
Carlo tree search algorithm. This study was based on the U-shaped ACT YC feature al-
lowing it to operate on both sides of the block. Coordinated scheduling with the ECT was
further considered based on the QC, YC and AGV. However, the paper assumed that there
are only four loading and unloading points in each block. After entering the block, AGVs
cannot stop anywhere. This does not break through the limitation of fixed loading and
unloading points in the end loading and unloading mode, and it is a tremendous difference
from how loading and unloading actually work in U-shaped ACTs, where it can happen at
any berth.

Based on a review of the above literature, the following bottlenecks remain:

• As a device that interacts directly with the yard, the impact of the ECT on the overall
scheduling of the terminal is indispensable; however, there are relatively few studies
that consider the ECT as a factor for multi-equipment collaborative scheduling.

• Existing research mostly looks at the movement of the YC as a whole, and there
is no research on the fine-grained collaborative scheduling of multi-equipment in
U-shaped ACTs.

• U-shaped ACTs are a new loading and unloading scheme using new equipment, and
there is no research on the equipment ratios of U-shaped ACTs.

In response to the above problems, this paper analyzes the motion process of DCRCs
in U-shaped ACTs and summarizes the 16 working conditions of DCRCs into four modes.
A multi-equipment refined collaborative scheduling model is established, and the validity
of the model and algorithm is verified using an adaptive collaborative genetic algorithm
(ACGA). In addition, the optimum number of equipment ratios required in the loading
and unloading modes is determined through simulation experiments, solving the practical
challenges of U-shaped ACTs.
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3. Model Establishment

3.1. Process Optimization of DCRCs

The layout of the U-shaped ACT is shown in Figure 1. In the U-shaped scheme, four
AGV lanes are set between every two blocks in the yard. The middle two are overtaking
lanes, and the two near the block are operation lanes. Every other block is provided with
three “U”-shaped ECT lanes. The middle lane is the overtaking lane, and the two lanes
near the block are operation lanes. After loading and unloading the ECT, there is no need
to turn around and the truck leaves the container area directly along the U-shaped lanes.
There are two exit lanes to avoid congestion.

DCRC

Yard

AGV

ECT

AGV line

ECT Line

Ship

QC

Driving 
direction

 

Figure 1. Layout of the U-shaped ACT.

To study the refined collaborative dispatching method of DCRCs with AGVs and ECTs
based on the process optimization of DCRCs, this section is dedicated to optimizing the
loading and unloading process of DCRCs to provide a basis for the refined collaborative
dispatching of multiple devices.

In a U-shaped ACT, DCRCs can work on both sides at any bay with the ECT and
the AGV. As the DCRC operation is continuous, different types of tasks in different states
take different amounts of time to complete. This time needs to be accurately calculated for
different working conditions. To maximize the advantages of U-shaped ACTs and to keep
the gantry of DCRCs moving as little as possible, the operating process of the DCRC needs
to be optimized. Considering the ECT approach, the DCRC has 16 working conditions in
the U-shaped ACT loading and unloading process, as shown in Figure 2.

AGV with 
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container

ECT without 
container

DCRC
operations
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Figure 2. Schematic diagram of the working conditions of the DCRC.
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To reduce the energy consumption of the DCRC movement and to allow the DCRC
gantry to move as little as possible, the above 16 situations are divided into four modes: putting
before putting (PP), putting before taking (PT), taking before putting (TP), and taking before
taking (TT), as shown in Figure 3, of which the solid line shows the trajectory of the AGV
task for the DCRC operation, and the dashed line shows the trajectory of the ECT task for the
DCRC operation. The numbered circles indicate the order of movement for the DCRC gantry
and its spreader.
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Figure 3. Operation process of the DCRC for handling different modes of tasks. (a) “PP” Mode;
(b) “PT” Mode; (c) “TP” Mode; (d) “TT” Mode.

The “PP” mode means that one DCRC has worked on a putting task first, followed by
the next putting task. At this time, the motion process of the DCRC is described as follows:
(1) The gantry and spreader of the DCRC move from the target position of the previous
putting task to the upper edge of the block of the target bay of the next task. (2) The
spreader of the DCRC drops down to take the container from the AGV/ECT, completing
the task for the AGV/ECT. (3) The spreader of DCRC rises to the upper edge of the block.
(4) The spreader of DCRC moves horizontally to the corresponding stack position to put
the container, and the DCRC putting task is completed. This mode includes four cases:
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• The DCRC continuously handles two putting tasks of AGVs.
• The DCRC handles an AGV putting task after handling the putting task of an ECT.
• The DCRC handles an ECT putting task after handling the putting task of an AGV.
• The DCRC continuously handles two putting tasks of ECTs.

The “PT” mode means that one DCRC first handles a putting task and then handles a
taking task. At this time, the motion process of the DCRC is described as follows: (1) The
gantry and spreader of the DCRC move from the target position of the previous putting
task to the target position of the next taking task. (2) The spreader takes the taking task and
moves it to the upper edge of the block. (3) The DCRC’s spreader drops down to place the
taking task on the AGV/ECT, and both the AGV/ECT and the DCRC are completed. This
mode includes four cases:

• The DCRC handles an AGV taking task after handling the putting task of an AGV.
• The DCRC operates the taking task on the AGV after completing the putting task on

the ECT.
• The DCRC operates the taking task on the ECT after completing the putting task on

the AGV.
• The DCRC handles an ECT taking task after handling the putting task of an ECT.

The “TP” mode means that one DCRC first handles a taking task and then handles a
putting task. At this time, the motion process of the DCRC is described as follows: (1) The
DCRC’s spreader ascends from the previous taking task vehicle to the block top. (2) The
DCRC’s gantry and spreader move to the upper edge of the block on the side of the next
putting task. (3) The spreader of the DCRC drops down to pick up the container from the
AGV/ECT, and the AGV/ECT completes its task. (4) The spreader of DCRC rises to the
upper edge of the block. (5) The DCRC’s spreader traverse moves to the target stack and
places the task in the corresponding bay, at which point the taking task of the DCRC is
completed. This model includes four cases:

• The DCRC handles an AGV putting task after handling the taking task of an AGV.
• The DCRC operates the putting task on the AGV after completing the taking task on

the ECT.
• The DCRC operates the putting on the ECT after completing the taking task on

the AGV.
• The DCRC handles an ECT putting task after handling the taking task of an ECT.

The “TT” mode means that one DCRC has worked on a taking task first, followed
by the next taking task. At this time, the motion process of the DCRC is described as
follows: (1) The spreader of the DCRC moves up from the interaction point of the previous
taking task to the upper edge of the block. (2) The gantry and spreader of the DCRC move
to the target position for the next taking task. (3) The spreader picks up the taking task and
moves it to the edge of the block on the taking task side. (4) The DCRC’s spreader drops
down to place the taking task on the AGV/ECT, and the task of the AGV/ECT and the
DCRC is completed. This model includes four cases:

• The DCRC continuously handles two taking tasks of AGVs.
• The DCRC handles an AGV taking task after handling the taking task of an ECT.
• The DCRC handles an ECT taking task after handling the taking task of an AGV.
• The DCRC continuously handles two taking tasks of ECTs.

From the above description, the sequence of operations and target container position
for unloading containers, as well as the target container position and reach time for the
ECT, are known. However, the DCRC’s subsequent operation and which AGV will go
to which QC to operate which container are unknown. Scheduling the AGVs to do the
different container tasks and the DCRCs to handle the right tasks at the right time so that
the total running time of all the DCRCs is as short as possible will make the U-shaped ACT
more efficient. Consequently, we propose a fine-grained collaborative scheduling model
for multiple devices that considers the entry of ECTs into the yard.
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3.2. Assumptions

(1) All the containers discussed are 40-foot standard containers.
(2) The arrival time of the ECT, the target position of the unloading containers, and the

position of the loading containers are known.
(3) The motion of the DCRC is based on the Chebyshev’s motion without considering the

interference between them.
(4) The AGVs, ECTs and DCRCs can work on only one task simultaneously.
(5) The problem of container turnover is not considered.
(6) The traveling speeds of the AGV and the ECT and the moving speeds of the DCRC

gantry and spreader are fixed values.
(7) The time for the spreader to travel vertically between the top and bottom of the block

is a fixed value.
(8) The operation time of the AGVs under the QC, the time required for the spreader to

grasp the container from the AGVs and ECTs, and the time of the spreader putting at
the target position are not counted.

3.3. Notations

(1) Parameters

W Set of ECT tasks, indexed by w ∈ (1, 2, 3, · · · , W)
A Set of AGV tasks, indexed by a ∈ (1, 2, 3, · · · , A)
AL Set of AGV taking tasks, indexed by ALi ∈ (1, 2, 3, · · · , AL)
WL Set of ECT taking tasks, indexed by WLi ∈ (1, 2, 3, · · · , WL)
I Set of AGVs, indexed by i ∈ (1, 2, 3, · · · , I)
C Set of blocks in yards, indexed by c, d ∈ (1, 2, 3, · · · , C)
E Set of bays in a block, indexed by e, s ∈ (1, 2, 3, · · · , E)
F Set of rows in a block, indexed by f , z ∈ (1, 2, 3, · · · , F)
cA Set of tasks in the block c, indexed by cp, cq ∈

(
c1, c2, c3, · · · , cA

)
ecq Bay number of the qth task in block c
fcq Row number of the qth task in block c
v1 Speed of the AGV
v2 Speed of the DCRC’s spreader
v3 Speed of the DCRC’s gantry
M A very large positive number
J Length of a block
K Width of a block
BL Length of a bay
EW Length of a row
TQc Time matrix of AGVs traveling between the QC and block c
Tcd Time matrix of AGVs traveling between the block c and block d
Twc Arrival time of the wth ECT in block c
TT Time required for DCRC’s spreader to travel vertically

(2) Decision variables

ticq
1 The moment when the AGV receives the qth task of block c at the QC

ticq
2 The moment when the AGV transports the qth task of block c to the end of the block

ticq
3 The moment when the AGV arrives at the designated bay of the qth task of block c

ticq

end The moment when the AGV finishes the qth task in block c
tdcq

1 The moment when the spreader moves across to the edge of the block
tdcq

2 The moment the spreader drops to the vehicle interaction position
tdcq

3 The moment the spreader moves up to the edge of the block
tdcq

4 The moment the spreader moves across to the target position
tdcq

end The moment when the DCRC finish the qth task in block c
tidcq

inter The moment of interaction of the AGV with the spreader for the qth task in block c
λcq When the qth task of block c is an AGV task λcq = 1, otherwise λcq = 0
πcq When the qth task of block c is a putting task πcq = 1, otherwise πcq = 0
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θ
cq

dp

When the AGV finishes processing the qth putting task in block c and goes to
process the qth taking task in block d, θ

cq

dp
= 1; otherwise, θ

cq

dp
= 0

∂
cq

dp

When the AGV finishes processing the qth taking task in block c and goes to process
the qth putting task in block d, ∂

cq

dp
= 1; otherwise, ∂

cq

dp
= 0

ε
cpq

i
When the AGV i operates the qth putting task in block c and then continues to
operate the qth taking task in this block, ε

cpq

i = 1;; otherwise, ε
cpq

i = 0

σ
i
cq

When AGV i performs the task of the qth container in block c, σ
i
cq = 1; otherwise,

σ
i
cq = 0

φ
ecq , fcq
ALi

When the task in block c of bay b, row r is the ith taking task of AGV, φ
ecq , fcq
ALi

= 1;

otherwise, φ
ecq , fcq
ALi

= 0

Ω
ecq , fcq
WLi

When the task in block c of bay b, row r is the ith taking task of ECT, Ω
ecq , fcq
WLi

= 1;

otherwise, Ω
ecq , fcq
WLi

= 0.

3.4. Model

To solve the collaborative scheduling problem of DCRCs and AGVs, this paper pro-
poses a mixed-integer programming model with the goal of achieving the minimum total
running time for all DCRCs.

Z = ∑
cq∈cA ,c∈C

max
{

t
cq
end

}
(1)

Equation (1) is the objective function that minimizes the sum of the total occupied
time of all DCRCs.

∑
c,d∈C

∑
cq ∈ cA

dp ∈ d

θ
cq
dp

= 1 ∀i ∈ I (2)

∑
c,d∈C

∑
cq ∈ c

dp ∈ d

∂
cq
dp

= 1 ∀i ∈ I (3)

∑
c∈C

∑
cq∈cA

σ
i
cq = 1 ∀i ∈ I (4)

∑
i∈I

σ
i
cq = 1 ∀c ∈ C, cq ∈ cA (5)

∑
c∈C

∑
cq∈cA

φ
ecq , fcq
ALi

= 1 ∀ALi ∈ AL (6)

∑
c∈C

∑
cq∈cA

Ω
ecq , fcq
WLi

= 1 ∀WLi ∈ WL (7)

Constraints (2)–(7) ensure the uniqueness of the task for the AGV. Constraint (2) pro-
vides for the AGV performing a taking task after completing a putting task. Constraint (3)
requires that the AGV performs a putting task after completing a taking task. Constraints (2)
and (3) guarantee the integrity of the loading and unloading processes. Constraint (4) as-
sures that each task is operated by one and only one AGV. Constraint (5) ensures that
each AGV handles only one task simultaneously. Constraint (6) guarantees that each AGV
taking task has a unique taking sequence corresponding to it. Constraint (7) assures that
each ECT taking task has a unique taking sequence corresponding to it.

ti
cq
1 + TQc − ti

cq
2 +

(
1− πcq

)
·M ≤ 0

∀c ∈ C, cq ∈ cA
∀i ∈ I

(8)

14



J. Mar. Sci. Eng. 2023, 11, 605

ti
cq
2 +

BL · ecq

v1
− ti

cq
3 +

(
1− πcq

)
·M ≤ 0

∀c ∈ C, cq ∈ cA
∀i ∈ I

(9)

ti
cq
end +

(
ecq − ecp

)
· BL

v1
− ti

cq
3 + πcp ·M +

(
1− ε

cpq
i

)
·M ≤ 0

∀c ∈ C, cq, cp ∈ cA
∀i ∈ I

(10)

ti
cq
end +

J + Tcd + ecq · BL
v1

− ti
dp
3 + πdp ·M + εcpq ·M ≤ 0

∀c, d ∈ C, cq ∈ cA
∀dp ∈ dA, i ∈ I

(11)

Constraints (8)–(11) represent the time relationship at the horizontal transport link
when the AGV releases the putting task. Constraint (8) indicates the relationship between
the moment when the AGV receives the qth task from QC to the front end of block c.
Constraint (9) represents the moment the AGV transports the qth task of block c to the front
of the block, concerning the moment the task is delivered to the target bay e. Constraints (10)
and (11) indicate the relationship between the moment the AGV completes the previous
putting task and the moment it starts the next taking task. Constraint (10) represents the
time relationship between the AGV going to the same block to take the container after it has
completed the putting task. Constraint (11) represents the time relationship between the
AGV going to a different block to take a container after it has completed the putting task.

tid
cq
inter +

BL · ecq

v1
− ti

cq
2 +

(
1− πcq

)
·M ≤ 0

∀c ∈ C, i ∈ I
∀cq ∈ cA

(12)

ti
cq
3 + TQc − ti

cq
1 +

(
1− πcq

)
·M ≤ 0

∀c ∈ C, i ∈ I
∀cq ∈ cA

(13)

ti
cq
1 − ti

cq
end = 0

∀c ∈ C, i ∈ I
∀cq ∈ cA

(14)

ti
cq
end +

(
1− πcq

)
·M− ti

dp
1 ·

(
πdp − 1

)
≤ 0

∀c, d ∈ C, i ∈ I
∀cq ∈ cA, dp ∈ dA

(15)

Constraints (12)–(14) indicate the time relationship between the horizontal transport
links when the AGV performs the taking task. Constraint (12) indicates the time relationship
in which the AGV runs the qth task of block c from the block bay position to the front of
the block. Constraint (13) means the relationship between the moment when the AGV runs
the qth task of block c from the front of the block to the QC. Constraint (14) describes the
moment at which the AGV has completed its operation, when it reaches the QC with the
qth task of block c loading onto the vessel. Constraint (15) concerns the time relationship
between when the AGV completes the qth taking task in the previous block e and when it
starts the pth putting task in block d.

⎡⎢⎣td
cq−1
end + max

⎛⎜⎝ BL·
∣∣∣ecq−ecq−1

∣∣∣
v2

,
EW· fcq−1·λctq+

(
K−EW·ecq−1

)
·(1−λctq)

v3

⎞⎟⎠− td
cq
1

⎤⎥⎦ · πcq−1 · πcq ≤ 0
∀c ∈ C,
∀cq−1, cq ∈ cA

(16)

(
td

cq
1 + TT − td

cq
2

)
· πcq−1 · πcq ≤ 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(17)

[
tid

cq
inter −max

(
ti

cq
3 · λcq , Twc ·

(
1− λcq

)
, td

cq
2

)]
· πcq−1 · πcq = 0

∀c ∈ C
∀i ∈ I, w ∈ W
∀cq−1, cq ∈ cA

(18)

(
ti

cq
end − tid

cq
inter

)
· λcq · πcq−1 · πcq = 0

∀c ∈ C, i ∈ I
∀cq−1, cq ∈ cA

(19)

(
tid

cq
inter + TT − td

cq
3

)
· πcq−1 · πcq ≤ 0

∀c ∈ C, i ∈ I
∀cq−1, cq ∈ cA

(20)
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⎡⎣td
ctq
3 +

EW · fcq · λcq +
(

K− EW · fcq

)
·
(

1− λcq

)
v3

− td
cq
4

⎤⎦ · πcq−1 · πcq ≤ 0
∀c ∈ C,
∀cq−1, cq ∈ cA

(21)

(
td

cq
end − td

cq
4

)
· πcq−1 · πcq = 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(22)

Constraints (16)–(22) indicate the time relationship when the DCRC is operating in
“PP” mode. Constraint (16) represents the time relationship between the end of the previous
putting task of the DCRC and the spreader moving across to the edge of the block where the
current putting task is positioned. Constraint (17) describes the time taken for the spreader
to descend from above the block to the interaction point. Constraint (18) shows that the
moment of interaction is the maximum of the moment when the spreader drops to the
interaction point and the arrival time of the AGV or the ECT. Constraint (19) states that the
DCRC and the AGV will interact when the AGV has finished its block delivery putting task.
Constraint (20) means the moment when the spreader returns to the edge of the block after
lifting the container. Constraint (21) represents the time relationship between the spreader
running from the edge of the block on both sides to the specified stack. Constraint (22)
means the moment when the DCRC has completed the current putting task.

td
cq−1
end + max

⎛⎝BL ·
∣∣∣ecq − ecq−1

∣∣∣
v2

,
EW ·

∣∣∣ fcq − fcq−1

∣∣∣
v3

⎞⎠− td
cq
4 · πcq−1 ·

(
1− πcq

)
≤ 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(23)

⎛⎝td
ctq
4 +

BL · fcq · λcq +
(

K− BL · fcq

)
·
(

1− λcq

)
v3

− td
ctq
1

⎞⎠ · πcq−1 ·
(

1− πcq

)
≤ 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(24)

(
td

cq
1 + TT − td

cq
2

)
· πcq−1 ·

(
1− πcq

)
≤ 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(25)

tid
cq
inter −max

(
td

cq
2 , Twc

)
· λcq · πcq−1 ·

(
1− πcq

)
= 0

∀c ∈ C
∀i ∈ I, w ∈ W
∀cq−1, cq ∈ cA

(26)

td
cq
end −max

(
td

cq
2 , Twc

)
· πcq−1 ·

(
1− πcq

)
= 0

∀c ∈ C
∀i ∈ I, w ∈ W
∀cq−1, cq ∈ cA

(27)

Constraints (23)–(27) indicate the time relationship when the DCRC is operating in
“PT” mode. Constraint (23) represents the time relationship between the previous putting
task ending and the spreader reaching the position of the current taking task. Constraint (24)
represents the time relationship between the spreader picking up the putting task and
moving across to the edge of the block where the vehicle is positioned. Constraint (25)
represents the moment when the spreader reaches the edge of the block and drops down to
the AGV or the ECT interaction position. Constraint (26) indicates that if the task is an AGV
taking task, the moment of interaction between the AGV and the DCRC is the maximum
of the moment when the spreader drops to the point of interaction with the AGV and the
moment of arrival of the AGV. Constraint (27) indicates that the end of the taking task of
the AGV/ECT and the DCRC is the maximum of the moment when the spreader reaches
the point of interaction and the moment of arrival of the AGV or the ECT.

td
cq−1
end + TT − td

cq
3 ·
(

1− πcq−1

)
· πcq ≤ 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(28)
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⎡⎣td
cq
3 + max
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∣∣∣
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,
K
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·
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∣∣∣
⎞⎠− td
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1

⎤⎦ · (1− πcq−1

)
· πcq ≤ 0
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cq
1 + TT − td
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2

)
·
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1− πcq−1

)
· πcq ≤ 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(30)

[
tid

cq
inter −max

(
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cq
3 · λcq , Twc ·

(
1− λcq

)
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cq
2

)]
·
(

1− πcq−1

)
· πcq = 0

∀c ∈ C
∀i ∈ I, w ∈ W
∀cq−1, cq ∈ cA

(31)

(
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cq
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cq
inter

)
· λcq ·

(
1− πcq−1

)
· πcq = 0

∀c ∈ C, i ∈ I
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(32)

(
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cq
inter + TT − td

cq
3

)
·
(

1− πcq−1

)
· πcq ≤ 0

∀c ∈ C, i ∈ I
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(33)

⎡⎣td
ctq
3 +

EW · fcq · λcq +
(

K− EW · fcq

)
·
(

1− λcq

)
v3

− td
cq
4

⎤⎦ · (1− πcq−1

)
· πcq ≤ 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(34)

(
td

cq
end − td

cq
4

)
·
(

1− πcq−1

)
· πcq = 0

∀c ∈ C,
∀cq−1, cq ∈ cA

(35)

Constraints (28)–(35) indicate the time relationship when the DCRC is operating in
“TP” mode. Constraint (28) means the moment the spreader is lifted above the block after
completing the previous putting task. Constraint (29) indicates the time relationship after
the spreader has been lifted and the spreader reaches the corresponding bay at the next
task’s block side. Constraint (30) represents the time relationship between the spreader
leaving the block’s edge and interacting with the vehicle. Constraint (31) indicates that the
interaction time is the maximum of the moment when the spreader sags to the interaction
point and the arrival time of the AGV or the ECT. Constraint (32) indicates that, if the task
is an AGV putting task, the moment of interaction between the DCRC and the AGV is
when the AGV discharge task is completed. Constraint (33) represents the moment when
the spreader returns to the edge of the block after picking up the container. Constraint (34)
represents the time relationship when the spreader runs from the edges on the sides of the
block to the designated stack. Constraint (35) indicates the moment when the DCRC has
completed its putting task.(

td
cq−1
end + TT − td

cq
3

)
·
(

1− πcq−1

)
·
(
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)
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·
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tid
cq
inter −max

(
td

cq
2 , Twc

)
· λcq ·

(
1− πcq−1

)
·
(

1− πcq

)
= 0

∀c ∈ C
∀i ∈ I, w ∈ W
∀cq−1, cq ∈ cA

(40)

td
ctq
end −max

(
td

cq
2 , Twc

)
·
(

1− πcq−1

)
·
(

1− πcq

)
= 0

∀c ∈ C, w ∈ W
∀cq−1, cq ∈ cA

(41)

Constraints (36)–(41) indicate the time relationship when the DCRC is operating in
“TT” mode. Constraint (36) represents the relationship between the moment when the
previous taking task ends and the moment when the spreader moves up to the edge of the
block. Constraint (37) represents the time relationship between the arrival of the spreader
from the edge of the block of the previous taking task to the container position to be taken.
Constraint (38) represents the time relationship between the moment when the spreader
takes the taking task to be lifted and the moment when it moves across to the edge of the
block for the taking task to be lifted. Constraint (39) shows when the spreader reaches the
edge of the block and when it drops down to the position where the vehicle can interact
with it. Constraint (40) indicates that, if the task is an AGV taking task, this interaction
moment is the maximum of the moment when the spreader is dropped at the interaction
point of the AGV and the arrival moment of the AGV. Constraint (41) represents that the
greater time between when the spreader drops to the point of interaction and the time of
arrival of the AGV/ECT is the end time of the DCRC task.

ti
cq
1 , ti

cq
2 , ti

cq
3 , ti

cq
end, td

cq
1 , td

cq
2 , td

cq
3 , td

cq
4 , td

cq
end, tid

cq
inter ≥ 0 ∀c ∈ C, cq ∈ cA (42)

Constraint (42) defines the range of parameters of the decision variables.

4. Proposed Algorithm

As the logic of the model studied in this paper is more complex and there are many
optional loading and unloading points, the chosen algorithm needs to be practical. Genetic
algorithms (GA) have good global search capabilities and excellent robustness, and several
scholars have verified the reliability of GA for equipment scheduling problems [36,44,45].

Because each bay of the block in the U-shaped scheme can perform loading and
unloading tasks, the available optional point is dozens of times that of the end operation
scheme. To better fit the actual operation of the port, the refined collaborative scheduling
model of the U-shaped ACT in the loading and unloading process established in this
paper considers more operation modes and more complex logical relationships. This
paper proposes the adaptive co-evolutionary genetic algorithm (ACGA) to solve the model
better. The ACGA uses the idea of two-population coevolution to improve population
diversity, and improves the convergence speed of the algorithm through adaptive dynamic
adjustment of parameters. This paper uses two rules as stop criteria to ensure reasonable
calculation time and accuracy of results: when the optimal fitness value (OFV) remains
unchanged for several generations or the number of iterations reaches the maximum
algebra, the algorithm stops. The flow of the ACGA is shown in Figure 4.

4.1. Chromosome Coding

The algorithm uses an integer coding approach where one chromosome represents
the sequence of operations for a set of AGVs, i.e., a candidate solution. In the above
hypothetical model, the target container position and sequence of operations for each
container are known, and the ECT’s type of operation and arrival time are known. The
order in which AGV will serve the QC and the type of task for the next DCRC operation are
unknown. The task sequence of the AGVs is scheduled to determine the type of operation
of the DCRC in conjunction with the arrival time of the ECTs.

To distinguish between the AGV task, the ECT task, and the DCRC task, this paper
is coded with a multi-layer chromosome in the form of a task assignment. The initial
chromosome is shown in Figure 5. It is assumed that there are two DCRCs and four AGVs.
Eight AGV-putting tasks are denoted by the numbers 0–7. Eight AGV-taking tasks are
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denoted by the numbers 8–15. Four ECT-putting tasks are denoted by the numbers 16–19.
Four ECT-taking tasks are denoted by the numbers 20–23. All odd-numbered tasks are
those of DCRC 1, and even-numbered tasks are those of DCRC 2. The green, purple, orange,
and grey genes indicate the tasks of AGV 1, AGV 2, AGV 3, and AGV 4, respectively.
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Figure 4. ACGA flow.
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AGV-taking 
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Figure 5. Initial chromosome.

As shown in Figure 5, the first chromosome layer is for AGV-putting tasks. The second
chromosome layer is for AGV-taking tasks. Since the AGV always performs a putting task
and then goes to a taking task, the second chromosome layer is inserted sequentially after
the genes in the first chromosome layer. The third chromosome layer is for ECT tasks. The
position in the chromosome of the ECT task at the corresponding position in the third layer
is indicated by the fourth layer of chromosomes. The final obtained initial chromosome
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corresponds to the sequence of jobs, as shown in Figure 6. The task assignments of the
AGV and DCRC for this chromosome are shown in Figure 7.

17 18 19

4 7 10

20 21 22 23

13 16 19 22

0 8 1 9 2 10 3 11

16 17 18 19

1 4 7 10

4 12 5 13 6 14 7 15
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ECT tasks

AGV-putting 
tasks 0
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AGV-taking 
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Figure 6. Sequence of tasks represented by the initial chromosome.

AGV1 0 8 1 9

AGV2 2 10 3 11

AGV3 4 12 5 13

AGV4 6 14 7 15

DCRC1 16 0 8 18 2 10 20 4 12 22 6 14

DCRC2 17 1 9 19 3 11 21 5 13 23 7 15

Figure 7. AGV and DCRC task assignments.

4.2. Coevolution

Coevolution was first proposed by Ehrlich and Raven. In this process, different
populations have different evolutionary goals, and they can complement each other with
information, have strong global search ability, and overcome the phenomenon of a single
population and premature convergence in the later stage of the GA [46–48].

The first illustration of the degree of variation in the task order is given by assuming
that there are V AGVs and Y containers. A population has X task orders, and the degree of
variation between task orders xb and xm is:

Q =
1
Y

Y

∑
y=1

λ i f

{
xb

y = xm
y , λ = 0

xb
y �= xm

y , λ = 1
, xb

y, xm
y ∈ V (43)

xb
y denotes the yth task sequence number of task sequence b, resulting in the shortest

total running time of the current DCRCs. xm
y is the yth task sequence number of the mth

task sequence. The larger the value of Q, the greater the degree of difference between the
total running time of the DCRC represented by that task sequence and the current shortest
total running time.

After generating the initial task order population, as coded above, this task order
population is divided into a sprint population and a supplementary population. The
objective function for the sprint population is Z = ∑

a∈A
∑

w∈W
min(Z1 + Z2), i.e., the shortest

running time for all DCRCs, to guide the population to converge as soon as possible.
The objective function of the supplementary population is Q ∗ Z, which aims to maintain
population diversity, complement the primary population, and avoid premature maturation
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of the algorithm. When the two task sequential populations have completed the crossover
and variation operations, respectively, they are ranked by the shortest operation time
of the respective task populations. The top 2/3 of the sprint population and the top
1/3 of the complementary population are selected from lowest to highest to form a new
task population. The two populations are independent of each other and can be made
computationally more efficient by using parallel computing methods during the calculation.

4.3. Adaptive Crossover and Mutation

The probability of changing the order of tasks determines the richness of the task
population. By adaptively changing the probability of crossover and mutation, faster and
more accurate convergence to the shortest total running time of a DCRC can be achieved.
For example, the probability of crossover and mutation becomes larger when the degree of
variation in the minimum total running time of the task order in the task population is low.
When the degree of variation is high, the probability of crossover and mutation is low. The
adaptive probability adjustment expression for crossover and variation is:

i f arcsin
(

fave

fmax

)
< π/6

⎧⎪⎪⎨⎪⎪⎩
Pc = k1

arcsin
(
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)
π/2

Pm = k2

(
1− arcsin

(
fave
fmax

)
π/2

)
(44)
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)
≥ π/6

⎧⎪⎪⎨⎪⎪⎩
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(
1− arcsin

(
fave
fmax

)
π/2

)

Pm = k2
arcsin

(
fave
fmax

)
π/2

(45)

pc and pm are the crossover probability and mutation probability; k1 and k2 are random
numbers between [0, 1]; and fmax and favg are the maximum and average values of the
DCRC’s shortest operating times in the task population, respectively.

4.3.1. Cross the Task Sequence

The crossover means that the parent task order to be crossed is selected according
to the crossover probability. The crossover probabilities for each layer are obtained by
adaptive adjustment. A partial crossover is applied to the selected task order. Two crossover
points are randomly selected for each chromosome layer, which form a crossover fragment
and are crossed in the same layer. The crossover process is shown in Figure 8.
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Figure 8. Cross the task sequence.
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4.3.2. Mutate the Task Sequence

The mutation means that the parent task order to be crossed is selected according
to the mutation probability. The mutation probabilities for each stratum are obtained by
adaptive adjustment. One to three layers of chromosomes were randomly selected for one
task, and the fourth layers of chromosomes were randomly selected for two tasks. The
selected tasks were all mutated within the allowed range. The mutation process is shown
in Figure 9.
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Figure 9. Mutate the task sequence.

4.4. Repair the Task Sequence

As the new task sequence obtained after crossover or mutation may have duplicated
or missing tasks, the repair operation checks the sequence of tasks obtained after crossover
and mutation, eliminating duplicate tasks and completing missing tasks. The repair process
is shown in Figure 10.
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Figure 10. Repair the task sequence.

5. Simulation Experiments and Analysis

This chapter first compares the proposed ACGA algorithm with the adaptive genetic
algorithms (AGA) [49] and the GA [36] through a small-scale arithmetic example to demon-
strate the correctness and practicality of the AA algorithm for solving the present model.
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Secondly, a sensitivity analysis of the critical factors of the problem is carried out in solving
the large-scale arithmetic case to investigate the reasonable allocation of the amount of
equipment under the U-shaped ACT.

5.1. Parameter Settings

(1) Define 4–500 container tasks as small-scale problems and problems above 500 contain-
ers as large-scale problems.

(2) The number of QCs is one to three, the number of AGVs is two to fifty, the number
of blocks is two to ten, and the number of ECTs reaches twenty every hour and the
arrival times obey a uniform distribution.

(3) The block and position to be taken or put and the operation type of the ECT are all
randomly generated.

(4) Through multiple experiments by controlling variables, in this paper the maximum
number of iterations is set to 20–800 (depending on the number of tasks), the popula-
tion size is 80, and the initial probabilities of crossover and mutation are set to 0.7 and
0.3, respectively.

(5) The experiments are implemented in MATLAB 2016a, and all simulations are per-
formed on a computer with Intel Core TM i5 CPU 2.1 GHz and 64 GB RAM under a
Windows operating system.

(6) In the U-shaped ACT, the width of the horizontal transport area is 80 m. There are
99 bays and nine rows in a block. The containers are 12 m long and 2.5 m wide. The
DCRC’s gantry and spreader move at a speed of 1 m/s, and the AGV travels at 4m/s.
The specific parameters of the ACT are shown in Table 1.

Table 1. ACT parameters.

Parameters Numerical Values

Width of horizontal transportation area 80 m
Bay number in block 80
Row number in block 9

Container length 12 m
Container width 2.5 m

Moving speed of DCRC gantry 1 m/s
Moving speed of DCRC spreader 1 m/s

Driving speed of AGV 4 m/s

5.2. Results and Algorithm Comparison for Small-Sized Problems

This section examines the feasibility of the model and algorithm in small-scale experi-
ments. Different example sizes are compared, and the performance of the proposed ACGA
is analyzed in terms of the OFV, i.e., the total running time of all DCRCs and the required
computation time (CPUT).

Table 2 records the results of the ACGA, GA, and AGA for the case of one QC,
varying the number of containers from 20 to 50 and the number of AGVs from two to ten,
respectively. Where “Containers” indicate the number of containers at the QC for each test,
“AGVs/DCRCs” indicates the number of AGVs and DCRCs used, “CPUT(s)” indicates
the time taken for the calculation, and “OFV(s)” indicates the shortest running time of
the DCRC for each calculation. The experimental results in Table 2 show that, in terms
of CPUT, all three algorithms increase as the problem size increases. The ACGA takes
slightly more time than the AGA and is significantly better than the GA. When there were
50 container tasks, the difference between the ACGA and the AGA was about 5%, and
the performance improvement with the GA was about 12%. In terms of minimum total
running time, the GA, the AGA and the ACGA increase with the number of containers.
However, the advantage of the ACGA is demonstrated. The minimum total runtime with
the ACGA improves by approximately 15% compared to the GA and the AGA.
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Table 2. Comparison table of small-scale problems.

No. Containers AGVs/DCRCs

ACGA AGA GA

CPUT (s) OFV (s) CPUT (s) OFV (s)
Gap Rate (%) CPUT

(s)
OFV (s)

Gap Rate (%)

CPUT OFV CPUT OFV

1 20 2/2 1.28 1129 1.27 1287 −0.72 12.28 1.29 1343 0.78 15.96
2 20 2/4 1.58 2918 1.57 3383 −0.60 13.75 1.54 3502 −2.60 16.66
3 20 4/2 1.69 1031 1.66 1199 −1.59 13.99 1.73 1316 2.31 21.67
4 30 5/5 2.35 4698 2.27 5623 −3.55 16.45 2.49 5546 5.62 15.30
5 30 10/5 2.63 4204 2.51 5047 −4.70 16.70 2.69 5206 5.73 19.25
6 30 2/2 1.74 2025 1.68 2376 −3.47 14.78 1.9 2433 8.42 16.75
7 40 4/2 2.13 3305 2.04 3942 −4.20 16.16 2.36 3836 9.75 13.85
8 40 4/4 2.74 5246 2.62 6317 −4.44 16.95 3.11 6347 11.90 17.35
9 50 8/6 3.49 9315 3.32 10,969 −5.18 15.08 3.88 11,115 10.05 16.19
10 50 9/5 2.90 7324 2.75 8658 −5.27 15.41 3.31 8795 12.39 16.70

Figure 11 shows the convergence effect of Example 10. The blue line shows the
convergence curve of the GA, the green line shows the convergence curve of the AGA,
and the orange line shows the convergence curve of the ACGA. As can be seen from the
graph, the ACGA and the AGA converge at around 50 generations, both converging faster
than the GA, at around 70 generations. At the same time, the ACGA has a significantly
lower DCRC total running time and better solution results. The experimental results show
that the ACGA can find near-optimal solutions in a short time and has better global search
capability. Therefore, the ACGA is used next in solving large-scale algorithms.

 
Figure 11. Comparison of algorithm results.

5.3. Results and Analysis for Large-Sized Problems

This section examines the impact of different equipment ratios on a large-scale task.
Tables 3–5 record the results of varying the number of AGVs from five to fifty and the
number of DCRCs from two to ten when using one, two, and three QCs, respectively.
Figures 12–17 are all plotted from the data in Tables 3–5.
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Table 3. Calculation example of 1 QC.

DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)

2–5 81,437 10.61 3–45 77,369 17.76 5–35 83,845 18.88 7–25 98,135 22.45 9–15 117,514 22.86
2–10 70,641 14.08 3–50 77,372 18.98 5–40 84,128 19.18 7–30 94,163 24.08 9–20 113,673 23.37
2–15 71,087 15.31 4–5 89,359 14.08 5–45 84,088 19.59 7–35 90,694 24.59 9–25 108,831 24.49
2–20 71,196 16.84 4–10 85,068 14.18 5–50 84,019 20.92 7–40 91,394 24.69 9–30 105,287 27.35
2–25 70,967 15.51 4–15 81,336 15.20 6–5 102,691 20.20 7–45 91,215 25.71 9–35 104,370 29.08
2–30 71,095 16.53 4–20 79,421 16.12 6–10 99,994 21.43 7–50 91,271 27.14 9–40 101,227 29.18
2–35 70,959 17.24 4–25 79,772 13.47 6–15 96,735 19.90 8–5 115,317 20.51 9–45 98,227 30.10
2–40 71,173 17.86 4–30 79,922 15.71 6–20 93,679 21.02 8–10 111,492 22.65 9–50 98,800 31.12
2–45 70,193 17.45 4–35 79,944 15.61 6–25 90,243 21.53 8–15 108,638 24.29 10–5 129,741 25.10
2–50 71,400 18.37 4–40 80,160 17.45 6–30 87,068 24.18 8–20 106,512 23.57 10–10 126,531 28.37
3–5 84,375 13.16 4–45 80,827 18.57 6–35 87,141 22.45 8–25 103,965 24.18 10–15 123,334 29.69
3–10 80,296 14.18 4–50 80,172 19.59 6–40 87,155 22.04 8–30 99,803 26.43 10–20 120,691 26.94
3–15 76,367 13.57 5–5 98,897 20.31 6–45 87,927 22.65 8–35 97,010 25.41 10–25 117,998 30.31
3–20 77,177 15.00 5–10 95,671 19.08 6–50 88,119 23.47 8–40 94,945 25.10 10–30 115,575 25.82
3–25 77,293 13.57 5–15 90,630 21.73 7–5 112,536 20.31 8–45 94,976 26.63 10–35 111,534 28.88
3–30 77,331 16.12 5–20 87,074 18.27 7–10 109,049 20.31 8–50 94,862 29.29 10–40 107,767 28.57
3–35 76,464 16.73 5–25 83,949 17.86 7–15 105,849 24.49 9–5 122,217 21.02 10–45 104,866 29.39
3–40 76,553 17.24 5–30 84,268 18.27 7–20 101,038 23.06 9–10 120,147 21.94 10–50 101,849 30.20

Table 4. Calculation example of 2 QCs.

DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)

2–5 77,897 12.37 3–45 57,782 20.39 5–35 51,217 20.26 7–25 68,291 20.26 9–15 96,756 24.08
2–10 61,974 13.03 3–50 57,571 21.58 5–40 51,862 19.74 7–30 65,047 20.00 9–20 94,556 26.84
2–15 62,381 13.82 4–5 72,956 13.95 5–45 51,668 20.79 7–35 62,878 21.84 9–25 90,110 28.42
2–20 62,308 12.89 4–10 66,817 13.95 5–50 51,448 21.05 7–40 62,915 23.03 9–30 87,274 29.21
2–25 62,543 14.08 4–15 58,604 15.53 6–5 62,632 17.11 7–45 62,505 24.87 9–35 83,224 30.26
2–30 61,981 15.13 4–20 50,990 14.21 6–10 60,355 18.95 7–50 61,760 25.79 9–40 80,114 30.39
2–35 62,357 14.21 4–25 51,098 15.00 6–15 59,435 19.61 8–5 99,272 21.45 9–45 76,563 31.97
2–40 63,049 15.00 4–30 50,629 13.95 6–20 57,463 19.61 8–10 96,875 23.16 9–50 76,901 33.42
2–45 62,654 15.79 4–35 50,321 16.71 6–25 56,849 18.16 8–15 92,156 23.16 10–5 117,498 24.08
2–50 62,688 16.58 4–40 50,574 16.32 6–30 55,626 19.61 8–20 89,666 25.66 10–10 113,019 26.18
3–5 73,847 13.55 4–45 50,639 17.89 6–35 56,032 19.87 8–25 83,810 24.21 10–15 108,703 27.24
3–10 63,594 13.82 4–50 51,760 19.08 6–40 56,039 20.13 8–30 79,476 26.32 10–20 105,409 28.16
3–15 57,578 13.03 5–5 61,748 16.58 6–45 55,792 21.32 8–35 74,576 27.63 10–25 102,564 29.47
3–20 58,102 14.21 5–10 58,475 16.84 6–50 55,909 22.63 8–40 70,128 28.29 10–30 98,156 32.50
3–25 57,743 15.66 5–15 55,784 17.89 7–5 85,278 18.03 8–45 70,641 30.66 10–35 95,838 33.95
3–30 57,673 17.37 5–20 53,014 17.63 7–10 81,612 18.42 8–50 69,849 32.63 10–40 92,097 34.34
3–35 57,898 19.08 5–25 51,355 17.63 7–15 77,056 19.47 9–5 103,102 23.16 10–45 88,525 34.87
3–40 57,602 20.92 5–30 51,971 18.55 7–20 72,028 18.55 9–10 99,831 23.68 10–50 84,330 36.05

Table 5. Calculation example of 3 QCs.

DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)
DCRCs-
AGVs

OFV(s) CPUT(s)

2–5 58,467 18.57 3–45 51,769 31.53 5–35 40,283 27.76 7–25 47,874 31.23 9–15 70,497 37.36
2–10 54,852 19.80 3–50 52,043 33.67 5–40 40,579 28.98 7–30 44,406 30.88 9–20 67,450 39.93
2–15 54,966 26.33 4–5 56,334 20.61 5–45 40,051 31.53 7–35 42,727 36.20 9–25 63,971 44.37
2–20 54,914 20.92 4–10 54,639 21.53 5–50 41,128 34.69 7–40 43,246 39.04 9–30 59,847 49.51
2–25 54,827 19.08 4–15 50,224 28.88 6–5 49,512 31.33 7–45 43,264 39.75 9–35 56,566 50.40
2–30 54,869 21.94 4–20 46,184 22.76 6–10 45,777 30.51 7–50 42,654 39.31 9–40 52,259 46.41
2–35 54,773 20.92 4–25 46,922 25.10 6–15 41,263 23.78 8–5 69,864 33.19 9–45 49,608 52.35
2–40 54,828 25.00 4–30 47,520 20.00 6–20 39,835 33.78 8–10 65,199 35.30 9–50 49,713 52.00
2–45 54,883 26.73 4–35 46,011 26.12 6–25 38,032 34.59 8–15 63,669 36.11 10–5 79,906 38.65
2–50 54,796 29.18 4–40 45,934 25.41 6–30 37,734 35.92 8–20 61,748 35.94 10–10 77,083 41.42
3–5 57,723 18.67 4–45 46,639 27.65 6–35 37,932 38.57 8–25 57,940 41.88 10–15 74,329 41.74
3–10 53,654 19.90 4–50 46,007 30.82 6–40 38,365 39.29 8–30 53,056 41.17 10–20 71,833 43.76
3–15 51,246 24.29 5–5 50,231 25.41 6–45 37,486 34.08 8–35 50,825 43.48 10–25 68,519 45.54
3–20 51,303 20.31 5–10 48,678 20.71 6–50 37,593 38.27 8–40 47,064 44.19 10–30 64,965 48.87
3–25 51,271 28.78 5–15 44,377 36.53 7–5 62,884 27.60 8–45 47,748 39.75 10–35 60,289 51.80
3–30 50,993 25.61 5–20 41,747 27.55 7–10 59,611 28.66 8–50 47,649 40.46 10–40 58,568 55.05
3–35 51,096 24.80 5–25 39,495 37.96 7–15 55,589 32.83 9–5 75,614 35.47 10–45 54,050 56.22
3–40 51,244 27.45 5–30 40,036 29.29 7–20 51,165 29.90 9–10 72,052 35.76 10–50 51,630 59.09
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Figure 12. CPUT(s).

 
Figure 13. OFV(s).

 
Figure 14. OFV at 1 QC.
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Figure 15. OFV at 2 QCs.

 
Figure 16. OFV at 3 QCs.

Figure 17. AGV job sequence for 500 container tasks.
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Figure 12 is plotted from the CPUT(s) in Tables 3–5. The aim is to analyze the effect of
the number of QCs on the required calculation time. As can be seen from the figure, the
images are divided into three layers corresponding to the computation time using one to
three QCs, respectively. The computation time for the case using one QC is distributed
at the bottom of the image and ranges from 10.61 s to 30.31 s. The computation time for
the case using three QCs is distributed at the top of the graph and ranges from 18.57 s to
59.09 s. This means that the complexity of the case and the computation time increase with
the number of QCs.

Figure 13 is plotted from the OFV(s) in Tables 3–5. The aim is to analyze the effect of
the number of QCs on the total running time of all DCRCs. It can be seen that the image
is divided into three layers according to the number of QCs. The uppermost layer is the
total DCRC running time for one QC, ranging from 70,193 to 129,741 s. The bottom layer
is the total DCRC running time for three QCs, which ranges from 39,495 s to 72,052 s. It
can be concluded that the higher the number of QCs, the lower the total running time of
the DCRC.

Figures 14–16 show the effect of varying the number of DCRCs and AGVs on the
total running time of the DCRC at different numbers of QCs. The horizontal coordinate is
the number of AGVs, and the vertical coordinate is the OFV. Lines with different colors
correspond to the use of different numbers of DCRCs.

Allocating the correct number of DCRCs for the vessels is one of the issues that must
be considered by the terminal staff, which will directly affect the overall operating costs
and efficiency. As shown in Figure 14, the total running time using two DCRCs is located
at the bottom of the diagram when one QC is used. As the number of DCRCs increases,
their total running time gradually increases until it reaches a maximum with 10 DCRCs.
The case of using two QCs is shown in Figure 15. When the number of DCRCs is increased,
the total running time of the DCRCs first decreases—the line corresponding to using four
DCRCs is at the bottom of Figure 15, where the result is optimal. Then, as the number of
DCRCs increases, the total running time of the DCRC increases rather than decreases. The
same situation occurs when using three QCs, as shown in Figure 16. The total running time
of the DCRC first decreases as the number of DCRCs increases, until it reaches a minimum
when six DCRCs are used, and then gradually increases. It is worth noting that the shortest
total running time of the double cantilever rail cranes is achieved when the number of
DCRCs and QCs is 2:1 rather than more.

The AGV is an essential part of the transport chain on the quay. If the number of AGVs
is too small, it cannot meet the working needs of the horizontal transportation of the quay,
and if the number of AGVs is too large, it will cause a problem of wasted resources. As
can be seen from Figures 14–16, the total running time of the DCRC gradually decreases as
the number of AGVs increases, but the two are not exactly positively correlated. When the
number of QCs is fixed, the minimum total running time of the DCRC is always generated
around a specific number of AGVs and then plateaus. For example, when the number
of QCs is one, the shortest total running time of the DCRC is generated around the AGV
number of 10. When the number of QCs is two, the shortest total running time of the DCRC
is generated at around 20 for the AGV. When the number of QCs is three, the shortest total
running time of the DCRC is generated at around 30 for the AGV. It can be seen that the
number of AGVs and QCs should be kept at around 10:1, when the total running time of
the DCRC is the shortest and the number of AGVs required is the least.

Figure 17 shows the optimal scheduling scheme for 500 container tasks using one QC,
ten AGVs, and five DCRCs. The horizontal axis represents the tasks of the AGVs, and the
vertical axis represents the corresponding DCRCs. This figure is a concrete manifestation
of the case study in our paper, which visually demonstrates the tasks of each device and
further proves the feasibility of our model and algorithm.

The above analysis shows that the calculation time required for scheduling increases
with the number of tasks, QCs and DCRCs. The total running time of the DCRC generally
decreases as the number of QCs, DCRCs, and AGVs increases. However, when the number
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of QCs is fixed, the number of DCRCs and AGVs is not as high as it could be. When the
number of both reaches a certain level, adding more equipment will not effectively reduce
the total running time of the DCRC but may increase it. According to the above analysis,
we can conclude that, in the U-shaped ACT loading and unloading process, a QC equipped
with two DCRCs and ten AGVs will have a total running time of DCRCs. At the same time,
the impact of the change in the number of QCs and DCRCs on the total running time of
the DCRCs is greater than the impact of the change in the number of AGVs. Therefore,
the allocation of resources for QCs and DCRCs should be considered first in the actual
operation of U-shaped ACTs.

6. Conclusions

To improve the operational efficiency of the U-shaped ACT and to fit its actual opera-
tional characteristics, this paper first optimizes the working process of U-shaped ACTs. In
U-shaped ACTs, the movement of the DCRC during loading and unloading is described
in more detail by grouping the 16 working conditions into four operating modes based
on how the DCRC works. Secondly, to minimize the total running time of all DCRCs, a
refined collaborative dispatching model for AGVs and DCRCs, considering the entry of
ECTs into the yard, was developed based on these four operating modes. This improves
the accuracy of the modeling. The model is then solved using the ACGA to verify the
model’s correctness and the algorithm’s practicality. Finally, experimental simulations were
carried out to derive the optimum ratio of each equipment in different environments. The
results show that, in the U-shaped ACT, the optimal ratio of the QC to the DCRC and the
AGV is 1:2 and 1:10, respectively, where the total running time of DCRCs is the shortest.
Simultaneously, the number of QCs and DCRCs has a more significant impact on terminal
efficiency than the AGVs, and priority should be given to the allocation of both. This
addresses the realities of U-shaped ACTs, and provides a reference for the construction.

However, the problem of multi-device scheduling in U-shaped ACTs is a highly
complex one, and this study still has several shortcomings that need to be addressed in
future research to improve and refine its findings.

Firstly, this study focused solely on efficiency-oriented collaborative scheduling, ne-
glecting to consider energy consumption issues. However, energy consumption plays a vital
role in practical applications, and it is crucial to consider optimizing device collaborative
scheduling to strike a balance between economic and environmental factors.

Secondly, this study did not include the QC, which is another critical device with
complex coupling relationships with AGVs. Future research should, therefore, incorporate
the QC into the scheduling to achieve more comprehensive and refined results.

Thirdly, the mutual interference between multiple YCs has not been thoroughly inves-
tigated, which may significantly affect the overall efficiency of the ACT. As such, this area
should be explored in more depth to achieve more efficient and stable ACT operations.

Furthermore, while this study primarily focuses on scheduling issues, it fails to address
the path planning of AGVs, which is a vital component that requires the comprehensive
consideration of various factors, such as time, distance, vehicle speed, and safety, to achieve
optimal results.

Lastly, the study did not consider the charging issue of AGVs, which is essential in
practical operations. To achieve a long-term and efficient operation of AGVs, the charging
issue should also be considered while optimizing scheduling. It is, therefore, suggested
that future research should include these factors in their modeling efforts to develop more
realistic and effective solutions.
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Abstract: The intelligent perception ability of the close-range navigation environment is the basis of
autonomous decision-making and control of unmanned ships. In order to realize real-time perception
of the close-range environment of unmanned ships, an enhanced attention mechanism YOLOv4
(EA-YOLOv4) algorithm is proposed. First of all, on the basis of YOLOv4, the convolutional block
attention module (CBAM) is used to search for features in channel and space dimensions, respectively,
to improve the model’s feature perception of ship targets. Then, the improved-efficient intersection
over union (EIoU) loss function is used to replace the complete intersection over union (CIoU) loss
function of the YOLOv4 algorithm to improve the algorithm’s perception of ships of different sizes.
Finally, in the post-processing of algorithm prediction, soft non-maximum suppression (Soft-NMS) is
used to replace the non-maximum suppression (NMS) of YOLOv4 to reduce the missed detection
of overlapping ships without affecting the efficiency. The proposed method is verified on the large
data set SeaShips, and the average accuracy rate of mAP0.5–0.95 reaches 72.5%, which is 10.7% higher
than the original network YOLOv4, and the FPS is 38 frames/s, which effectively improves the ship
detection accuracy while ensuring real-time performance.

Keywords: water transportation; target detection; unmanned ship; deep learning; attention mechanism

1. Introduction

With the development of artificial intelligence and unmanned driving technology,
unmanned ships have become an important research field in intelligent maritime transporta-
tion. The development of unmanned ships includes four stages: perception, understanding,
decision-making, and control [1–4], among which perception is the basis for autonomous
decision-making and control. Traditional environmental perception methods are affected
by timeliness and cannot meet the requirements of real-time and accuracy of unmanned
ships. Constructing a visible light detection system composed of a panoramic vision system
can enable real-time and intuitive monitoring of dynamic water environments [5–7]. Fur-
thermore, using computer vision and deep learning methods to detect and track ships in the
system can effectively improve the efficiency of unmanned ship environmental perception.
Therefore, the panoramic vision-based visible light ship detection method has received
wide attention from scholars [3].

Currently, ship target detection under visible light can be divided into two categories:
traditional feature-based methods and deep learning-based methods using convolutional
neural networks. Traditional methods mostly rely on modeling based on target shape, back-
ground saliency contrast, and other factors. The algorithm depends on given parameters
that satisfy specific regional conditions, which limits its accuracy and generalization ability
in complex scenes [8]. In recent years, with the development of deep learning technol-
ogy, many scholars have begun to use deep learning frameworks to recognize maritime
targets. Deep learning detection methods can be classified into two categories: one-stage
and two-stage methods [9–11]. Two-stage methods divide the detection process into two
stages: first, generating a series of regions where targets may exist, and then searching
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and identifying targets within these regions. For example, Liu et al. [12] modified the
region extraction network in Fast-RCNN [13] to ResNet-101 [14] and combined the global
and local features of proposed regions using the multi-region feature fusion module to
improve detection performance of ships in different directions. Yu et al. [15] improved
the feature weighting method in Faster-RCNN to provide more suitable feature fusion
for the background differentiation of difficult ships in busy waters. In the far shore scene
with low discrimination between complex background and ship target, ship target can be
recognized. Two-stage methods have high accuracy in detecting ships, but these methods
take longer time and cannot achieve real-time detection. Therefore, to improve detection
speed, many scholars use one-stage methods to improve ship detection efficiency. These
methods use regression analysis principles to obtain the position and category of the target
in a single detection. For example, Liu et al. [16] redesigned ship anchor box size based on
YOLOv3 [17], introduced soft non-maximum suppression, and reconstructed mixed loss
functions to improve the network’s learning and expression ability for ship features. Hong
et al. [18] used a residual network instead of continuous convolution operation in YOLOv4
to solve the problem of network degradation and gradient disappearance, and established
a nonlinear target tracking model based on UKF method, which improved the accuracy of
ship detection.

Although the deep learning method has made some progress, it still cannot solve the
following problems well in practical use, such as: (1) distant ship targets are smaller and
are often obstructed, (2) the background areas typically contain floating objects, shorelines,
and other interferences, leading to occurrences of false positives and false negatives, and (3)
video images captured under fixed monitoring can be easily affected by adverse weather
conditions, such as heavy fog, rain, or snow, further increasing the difficulty of ship
detection. To effectively address the aforementioned problems and further improve the
accuracy of ship detection using deep learning algorithms, this paper proposes a ship
detection algorithm EA-YOLOv4 based on attention mechanism feature enhancement. The
main contributions of the proposed algorithm are as follows:

(1) In order to improve the accuracy of ship type identification and the recall of ships in
bad weather, a CBAM module is embedded in YOLOv4 structure. The spatial attention
mechanism and channel attention mechanism in this module change the search weight
of YOLOv4, making the network structure focus on the unique characteristics and
effective channels of ships.

(2) In terms of loss function, EIoU is used to replace the CIoU of YOLOv4. CIoU performs
well in general target detection, but ship targets have relatively fixed aspect ratio
characteristics. The use of EIoU can better identify the ship position, speed up the
algorithm fitting, and improve the ship positioning ability.

(3) Overlapping of ship targets at sea is common. In order to improve the detection ability
of occluded targets, Soft-NMS is used to replace the NMS of YOLOv4 to post-process
the algorithm output, improve the network’s attention to overlapping targets, and
further improve the ship detection performance while ensuring the solution efficiency.

The rest of this article is organized as follows. In Section 2, the algorithm EA-YOLOv4
in this paper is proposed, including the CBAM to change the network structure, the EIoU
loss function replacement and the improved Soft-NMS. In Section 3, all the improved
algorithms are ablated, and the best set of results are selected as the algorithm EA-YOLOv4
in this paper. EA-YOLOv4 is compared with other similar algorithms, and the advantages of
the algorithm are analyzed. Section 4 presents the conclusions and future research directions.

2. EA-YOLOv4 Algorithm

In this section, we will provide a detailed introduction to the algorithm from four
aspects: algorithm overview, multi-dimensional attention mechanism feature enhancement
extraction, loss function improvement, and non-maximum suppression improvement.
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2.1. Algorithm Overview

The algorithm proposed in this paper is illustrated in Figure 1, with YOLOv4 [19]
selected as the backbone network. To enhance the network’s ability to perceive the scale
features of ships of different sizes, a spatial attention mechanism is adopted to increase the
network’s focus on ship scale features. In order to avoid the network ignoring different di-
mensional channel information, a combination of channel attention mechanisms is inserted
to form the CBAM [20] structure, obtaining f3 − f5 as the feature representation. Next,
in order to improve the detection position optimization problem of traditional CIoU [21]
loss function, which only focuses on aspect ratio, an EIoU [22] loss function is employed
to increase the network’s attention to ship size and enhance its perception of ships of
different sizes. Finally, to enhance the detection ability of overlapping targets, an improved
Soft-NMS [23] is used to perform secondary screening on the output results, while ensuring
detection speed and accuracy. The CBAM, Soft-NMS, and EIoU loss will be discussed in
detail in subsequent sections.

 

Figure 1. Algorithm structure diagram of EA-YOLOv4; (a) improvement of feature extraction
network; (b) improvement of loss function; (c) improvement of loss function.

2.2. Multi-Dimensional Attention Mechanisms and Their Feature Enhancement

To enhance the feature representation capability of ships in complex backgrounds and
improve their salience, this paper inserts attention mechanisms for feature selection in the
network skeleton. Hu et al. [24] proposed using channel attention mechanisms to strengthen
network feature extraction capability, but using only channel attention mechanisms ignores
the spatial semantic information of ships. Since different ships have obvious differences
in spatial representation, searching for ship spatial information can help the algorithm to
quickly and accurately determine the ship type. M et al. [25] introduced a new learnable
module, spatial transformer, which enables the neural network to actively transform the
feature map according to the feature map itself, but this algorithm did not consider the
semantic information of feature map channels, which resulted in too many computing
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resources being occupied by irrelevant channels that negatively affected detection results.
The above research shows that the use of both spatial and feature attention mechanisms
can enhance the algorithm’s recognition capability. To comprehensively consider ship
spatial information and feature map channel information, this paper introduces CBAM as
an embedded module of multi-dimensional attention mechanisms to improve the feature
extraction network’s extraction capability.

As shown in Figure 2, the schematic diagram of CBAM includes a channel attention
mechanism in Figure 2a and a spatial attention mechanism in Figure 2b. The CBAM
attention mechanism combines the advantages of channel and spatial attention mechanisms.
A CBAM unit takes any tensor X = [x1, x2, . . . , xc] ∈ RC×H×W as input and outputs a tensor
Y = [y1, y2, . . . , yc] ∈ RC×H×W of the same size. In order to make CBAM focus on both
channel and spatial information, channel attention mechanism is first implemented on the
input feature map as follows:

Fc = σ{MLP[GAP(X)] + MLP[GMP(X)] (1)

where X is the input feature map, GAP is the global average pooling, GMP is the global
maximum pooling, MLP is the multi-layer perceptron, and σ is the activation function
defined as:

σ =
1

1 + e−x (2)
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Figure 2. Multi-dimensional attention mechanism CBAM; (a) channel attention mechanism;
(b) spatial attention mechanism.

After the channel attention, a vector Fc = (α1, α2, . . . , αc) ∈ RC×1×1 of dimension C is
obtained, where αi, i = 1, 2, . . . , c represents the allocation weights of different channels in
the original feature map. When the detection platform encounters situations such as heavy
fog or water surface reflection, attention tracking on channels helps the algorithm focus on
effective information and reduce the impact of noise on recognition results.

The spatial attention mechanism is added after the channel attention, as shown in
Figure 2b, and is implemented as follows:

Fs = σ

{
f 3×3

[
GAP(Y1)
GMP(Y1)

]}
(3)

where Y1 comes from channel attention mechanism output Yc dot product with the original
feature map X, which reflects the channel region of interest in the original feature map.

35



J. Mar. Sci. Eng. 2023, 11, 625

f 3×3 is the convolutional layer with 3× 3 kernel size, and Fs is the weight matrix obtained
after the spatial attention mechanism, whose expression is:

Fs =

⎛⎜⎜⎜⎝
β1,1 β1,2 · · · β1,w
β2,1 β2,2 · · · β2,w

...
...

. . .
...

βH,1 βH,2 · · · βH,W

⎞⎟⎟⎟⎠ (4)

where βi,j, i = 1, 2, . . . , H; j = 1, 2, . . . , W represents the allocation weights of spatial co-
ordinates, which will be adaptively adjusted according to the search target. Finally, the
matrix is multiplied by Y1 to obtain the final output Y = [y1, y2, . . . , yc] ∈ RC×H×W . The
output can simultaneously resample the spatial structure information of ships on the basis
of focusing on channel information.

2.3. Optimizing the Loss Function

The loss function affects the convergence speed of the model and the fitting perfor-
mance of the evaluated algorithm. In the original YOLOv4 network, the bounding box
regression loss is calculated using the CIoU function, as shown in Equation (5):

LCIoU = 1− CIoU = 1− IoU +
ρ2(b, bgt)

c2 + α
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(5)

In the equation, b, bgt denotes the predicted box and the reference box, where the
reference box is the true target used to guide the model learning. IoU represents the inter-
section over union, which reflects the overlapping area between the two boxes. ρ2(b, bgt)
represents the Euclidean distance between the two boxes.c is the diagonal distance between
the minimum enclosing region containing the two boxes. α is a correction parameter. wgt

hgt

and w
h represent the aspect ratios of the reference boxes and predicted boxes, respectively.
On the basis of IoU, CIoU adds center point distance detection and predicted box

width and height detection, making the relative position between the predicted box and
the reference box more accurate. However, compared with conventional detection tasks,
ship detection in complex marine environments involves many small targets, and the
shapes of marine targets are relatively fixed. Therefore, the aspect ratio used by CIoU
is not suitable for the bounding box regression loss in ship target detection. In order to
analyze the differences between ship targets and traditional targets and optimize the loss
function, this paper compares the objects in the CoCo2017test (CoCo) dataset [26] and the
SeaShips dataset [27]. The data is processed using linear normalization, and the results are
shown in Figure 3. The results show that the aspect ratio distribution of the objects in the
CoCo dataset is relatively balanced, while the aspect ratio distribution of the objects in the
SeaShips dataset is close to a linear function, and the aspect ratios of the SeaShips dataset
objects are relatively close. Therefore, the aspect ratio used by CIoU cannot accurately
locate the ship’s position. To improve this, this paper introduces EIoU, and its formula is
given by Equation (6):

LEIoU = 1− EIoU = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(6)

where b, bgt denotes the predicted box and the reference box, ρ(w, wgt) is the difference in
width between the two boxes, ρ(h, hgt) is the difference in height between the two boxes,
and Cw, Ch is the width and height of the minimum outer box that covers the two boxes.
When the EIoU value is larger, it means that the predicted box is closer to the position of
the reference box, and the network loss is smaller. During network training, the network
parameters are adjusted based on the overlap area, center point, and width and height
values to make the network converge faster.
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(a) (b) 

Figure 3. Relative shape of targets under different data sets; (a) CoCo dataset target box relative
value; (b) relative value of SeaShips dataset target box.

2.4. Improvement of Soft-Non-Maximum Suppression

In object detection algorithms, NMS is used to filter out overlapping detection boxes
for the same object. The specific processing method is as follows:

si =

{
si IoU(M, bi) < Nt
0 IoU(M, bi) > Nt

(7)

where M is the box with the highest score, IoU represents the degree of overlap between
the highest-scoring box and other candidate boxes, and Nt is the threshold. NMS removes
detection boxes within the threshold of the highest-scoring box, but the problem is that it
will force high-scoring detection boxes adjacent to the target box to be removed, resulting
in missed detection of occluded ship targets with high confidence. In order to balance the
problem of repeated detection of targets and missed detection of occluded ship targets,
Soft-NMS is used instead of traditional NMS for post-processing. The Soft-NMS processing
method is shown in the equation below:

si =

{
si IoU(M, bi) < Nt

si[1− IoU(M, bi)] IoU(M, bi) > Nt
(8)

Soft-NMS simultaneously considers the score and overlap degree, and sets a penalty
term for the occluded ship targets with higher scores to avoid missed detection while also
ensuring that the same target is not detected repeatedly. As shown in Figure 4a, the two
ships to be detected are a cargo ship and an occluded target ore ship, and the IoU is about
0.45. When using traditional NMS algorithm, the cargo ship and ore ship detection boxes
are too close, causing the algorithm to consider the detected cargo ship and ore ship as
the same target, thus directly ignoring the cargo ship. Figure 4b uses Soft-NMS to process
the same target, and when the IoU of the cargo ship and ore ship is greater than given
threshold, the score of the smaller cargo ship is reduced by such IoU. At this time, the
algorithm considers the probability of the existence of a cargo ship here to be 0.53, which
meet the set threshold and the occluded target is detected.

(a) (b) 

Figure 4. Processing results of overlapping targets by NMS and Soft-NMS; (a) NMS processing mode;
(b) Soft-NMS processing mode.
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3. Experiment and Analysis

3.1. Experimental Platform and Dataset

The experimental environment in this article is based on the Windows platform, with
an i7-10700F CPU, 32GB of memory, and an NVIDIA® GeForce® RTX 2070 Super GPU
processor with 8GB of video memory. The experimental framework is built using the
Python programming language. The deep learning development environment includes
Python 3.7.8, PyCharm2019, Anaconda3.4.1, TensorFlow-GPU 2.3.0, CUDA 10.1.234, and
cuDNN 7.6.5.

The SeaShips dataset was used to validate the ship detection algorithm. All images
in the dataset come from approximately 1080 real video clips, including 7000 ship images
of six categories. The six categories of images are ore carrier (OC), fishing boats (FB),
container ships (CS), bulk carrier (BC), general cargo ship (GCS), and passenger ships (PS).
The notable challenges include small targets, high overlap between coastline and ships,
changes in brightness, and ship occlusion. The data set is randomly divided into training
set, verification set and test set according to 2:1:1 ratio. That is, 3500 pictures in the training
set, 1750 pictures in the verification set and 1750 pictures in the test set. The validation set
is used to test the model training results. When the loss of the model on the verification
set does not decrease for 20 consecutive rounds, the optimal solution is considered to be
reached. The distribution of ship numbers in each set is shown in Figure 5. The proportion
of the three datasets is consistent across different ship targets, ensuring that the algorithm
has good robustness.

 

Figure 5. Distribution of six categories of ships in training set, verification set and test set.

3.2. Hyperparameters and Evaluation Metrics

The hyperparameters set for the experiment are shown in Table 1, where SGD refers
to stochastic gradient descent. Before training, various data augmentation strategies
were employed, such as horizontal rotation, mosaic, image cropping, and adjustments
to brightness and contrast, to expand the training set. During training, all epochs were
saved, and the epoch with the best performance on the validation set was selected as the
test model for the current model. In the testing phase, the target confidence threshold and
Soft-NMS threshold were both set to 0.5. The maximum training epoch is set to 300.

Table 1. Experiment parameter setting.

Hyperparameter Value

Epoch 300
Batch size 4
Optimizer SGD

First learning rate 1 × 10−4

Last learning rate 1 × 10−5

Learning rate decay rate 0.1
Weight decay 5 × 10−4
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To fully verify the ship detection capability of the model in complex scenes, the mean
average precision (mAP) was used to evaluate the algorithm, which reflects the mean of
AP under different IoU settings. At the same time, the frames per second (FPS) was used
to measure the detection speed of the algorithm, which indicates the number of images
processed per second. The AP can be expressed as:

mAP =
1
N

1
10

N

∑
c=1

0.95

∑
IoU=0.5

APIOU
c (9)

where N is the number of ship categories, APIOU
c is the AP for a given IoU threshold for a

specific ship category, and mAP is the mean AP of the algorithm at 0.5–0.95 IoU thresholds,
reflecting the recognition performance of the algorithm under different configurations.
Specifically, the AP for a specific category can be expressed as:

AP =
∫ 1

0
p(r)dr (10)

where p(r) is the precision-recall curve.

3.3. Experiment
3.3.1. Ablation Study

In order to verify the best location for adding CBAM, this paper embedded CBAM
in the backbone, FPN feature pyramid, and head, respectively, and the three embedding
methods were represented by C1, C2, and C3. C1, C2, and C3 were used for recognition of
six types of ships, and the results are shown in Table 2.

Table 2. Test results of three different embedding methods.

Algorithm
AP0.5–0.95/%

mAP0.5–0.95/% FPS
OC FB CS BC GCS PS

YOLOv4 58.7 56.9 67.6 60.7 64.7 62.0 61.8 45
C1 66.1 62.7 71.1 66.8 70.7 67.6 67.5 40
C2 64.3 62.1 72.4 67.3 69.4 66.3 66.9 42
C3 61.5 60.8 70.3 66.0 68.9 65.7 65.5 43

As can be seen from the results, the addition of CBAM structure in the backbone,
FPN, or head has little effect on the overall recognition speed of the algorithm. The C1
algorithm, which adds CBAM to the backbone, improves the recognition accuracy due
to its use of shallow features. Among them, the highest detection accuracy was achieved
for ore ships, fishing boats, general cargo ships, and passenger ships. The C2 algorithm,
which adds CBAM to the FPN, performed well in recognizing container ships and bulk
cargo ships. The C3 algorithm, which adds CBAM to the head, did not achieve ideal
results because the high-dimensional semantic information of the head feature map was
disrupted by the addition of CBAM, which destroyed the original network representation
of high-dimensional semantic information. Overall, the C1 algorithm performed the best
with the highest average precision of 67.5, which was 5.7 percentage points higher than the
original algorithm without CBAM, and the FPS was only 5 percentage points lower than
the original algorithm.

In order to further investigate the differences in target representation resulting from
adding the CBAM algorithm in different positions, the gradient-weighted class activation
mapping (grad-CAM) method [28] was used to analyze three different attention embedding
methods. The images were related to three common challenges in detection: foggy weather,
small targets, and occluded ships, as shown in Figure 6. The heat map shows the algorithm’s
focus region on the image. By comparing the visualized feature maps of the improved
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networks, it can be observed that: (1) C1 has stronger recognition ability for small targets. In
the scene of recognizing small targets, C1 has a larger interested area for small targets, and
a higher response to the main target area, indicating that C1 can recognize smaller targets
well. (2) C1 enhances recognition ability in foggy weather. Under the foggy conditions, C1’s
response to the target region is more concentrated, while C2, C3 and the original network
have a large amount of dispersed semantics, which means that the channel attention
mechanism used in the backbone network avoids the image noise generated by foggy
weather, enabling the algorithm to focus on ship features. (3) C1 has stronger recognition
ability for overlapping targets. In the highly overlapping target recognition scene, C2, C3,
and the original network have severe feature confusion, while C1 can accurately identify
two different ship categories. This indicates that C1 has a higher focus on the target contour
around it, and retains a large amount of ship’s original spatial semantic information in the
low-level feature map of the backbone, which enables the spatial attention mechanism to
recognize and filter this information, improving the network’s recognition accuracy for
different categories of ships.

 
(a) (b) (c) (d) (e) 

Figure 6. Grad-CAM renderings under three conditions; (a) original drawing; (b) C1; (c) C2; (d) C3;
(e) not embedded.

Therefore, in different situations, the C1 algorithm with CBAM added to the backbone
can improve the network’s recognition ability to a certain extent. In the subsequent com-
parative experiments, this paper uses C1 as the basic framework, and tests the performance
with the addition of Soft-NMS and the use of the improved EIoU loss function, as shown in
Table 3. Comparing the two improved algorithms, the Soft-NMS algorithm (C1-1) improves
the overall mAP by 2.5 percentage points, mainly due to the presence of many overlapping
targets in the navigational ship images. The use of the EIoU improvement algorithm (C1-2)
increases the overall mAP by 3.5 percentage points, indicating that correcting the aspect
ratio of the target box separately can effectively determine the ship’s position and improve
the ship recognition accuracy. Therefore, this paper combines the two (C1-3) to improve
the algorithm, and the final mAP reaches 72.5, which is an improvement of 10.7 percentage
points compared to the original algorithm.
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Table 3. Ablation experiment.

Algorithm Soft-NMS EIoU AP0.5–0.95/% FPS

C1 67.5 40
C1-1

√
70.0 40

C1-2
√

70.7 38
C1-3 (this paper)

√ √
72.5 38

3.3.2. Comparative Experiments

To further demonstrate the superiority of the proposed algorithm, this paper con-
ducted comparative experiments between the deep learning algorithms commonly used
in object detection and EA-YOLOv4, including YOLOv3, SSD [29], Retina-Net [30] for
one-stage methods, and Faster RCNN, Mask-RCNN [31] for two-stage methods. The exper-
imental results are shown in Table 4. It shows that the lowest mAP came from YOLOv3,
which is only 57.3. Faster-RCNN has an AP of 70.2% for container ships, but only 55.7%
for fishing boats. The highest FPS came from SSD, which is 78, and the corresponding AP
for passenger ships is 70.4%, which is only 1.2% lower than that of proposed algorithm,
but its detection performance for other ships is unacceptable. Mask-RCNN has a relatively
average detection performance for six types of ships. The overall performance of the
proposed algorithm is better, and the detection performance for container ships, general
cargo ships, and passenger ships is more prominent, with AP values of 75.7, 74.8, and 72.6,
respectively. At the same time, the FPS of the proposed algorithm is 38, which can meet the
real-time detection requirements for maritime ship targets.

Table 4. Comparison results between EA-YOLOv4 and other mainstream algorithms.

Algorithm
AP0.5–0.95/%

mAP0.5–0.95/% FPS
OC FB CS BC GCS PS

YOLOv3 52.7 57.1 59.6 51.8 60 62.3 57.3 37
SSD 63.5 60.7 68.5 61.4 61.8 70.4 64.4 78

RetinaNet 63.4 63.5 70.1 66.5 64.9 67.3 66.0 11
Faster-RCNN 64.1 55.7 70.2 57.8 63.7 61 62.1 5
Mask-RCNN 64.5 60.8 69.3 67.0 68.8 67.5 66.3 7

EA-YOLOv4 (this paper) 71.7 68.1 75.7 71.9 74.8 72.6 72.5 38

The detection results of different algorithms under various conditions are shown
in Figure 7. It can be found that the scale of the ship in Figure 7a is small. YOLOv3,
Faster-RCNN, and SSD cannot capture the features of small fishing boats well. EA-YOLOv4
improves the loss algorithm by using EIoU, which allows it to pay attention to the structural
characteristics of small targets, thus improving the recognition ability for small targets. In
Figure 7b, there are overlapping targets, namely a bulk carrier and a cargo ship. YOLOv3,
Faster-RCNN, SSD, and Mask-RCNN all have prediction errors due to the unique shapes
of bulk carriers and cargo ships. The CBAM mechanism embedded in EA-YOLOv4 has
good feature representation capability for ship spatial features, and the introduced Soft-
NMS mechanism prevents overlapping targets from being incorrectly removed. Therefore,
EA-YOLOv4 has more accurate localization of overlapping ships. In Figure 7c, the scene
has low brightness. YOLOv3, SSD, and Retina-Net in the one-stage methods cannot extract
ship targets well. However, the CBAM mechanism of EA-YOLOv4 retains the high-value
channels that contain ship information, enabling it to accurately search for ship targets in
low brightness environments, achieving ship detection under low light conditions.
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YOLOv3 Faster-RCNN SSD 

 
Mask-RCNN Retina-Net EA-YOLOv4 

(a) 

 
YOLOv3 Faster-RCNN SSD 

 
Mask-RCNN Retina-Net EA-YOLOv4 

(b) 

 
YOLOv3 Faster-RCNN SSD 

 
Mask-RCNN Retina-Net EA-YOLOv4 

(c) 

Figure 7. Ship detection results of different algorithms; (a) small size target scene; (b) multi-target
overlapping scene (ore ship and general cargo ship); (c) underlit scene.
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4. Conclusions

To improve the real-time perception capability of unmanned ships in close-range envi-
ronments and further enhance the positioning accuracy and recognition accuracy of ship
detection algorithms, this paper proposes an EA-YOLOv4 algorithm based on YOLOv4. By
using the multidimensional attention mechanism CBAM to improve the algorithm network
framework, the extraction of shape features and suppression of background interference
are achieved. The improved EIoU loss function is used to enhance the algorithm’s per-
ception ability for ships of different scales, accelerate network convergence, and enhance
the algorithm’s detection ability for small targets. Soft-NMS is used for post-processing of
detection results to find missed targets from overlapping ships. The experiment evaluates
the influence of all improvements on EA-YOLOv4 in terms of the MSCOCO AP0.5–0.95

index and frame rate, and compares it with other similar algorithms. The results show
that EA-YOLOv4 performs best among all algorithms. Without significantly affecting the
detection speed, EA-YOLOv4 has improved the accuracy of the identification of six types
of ships in the real-time monitoring of the nearshore, and can be used as the technical
basis for unmanned ship detection and environmental identification. At present, due to the
limitation of data sets, this study is limited to ship detection in some severe weather. In
the future, we will collect optical ship images under more conditions, increase the types of
sea targets that can be detected, and continue to optimize the model, while ensuring the
detection speed of the algorithm can realize the full target perception of the unmanned
ship navigation environment.

Author Contributions: Conceptualization, Y.Y., R.Z. and J.P.; data curation, Y.Y. and R.Z.; investiga-
tion, R.Z., Y.Y. and Y.L.; writing—original draft, Y.Y., R.Z. and J.P.; methodology, R.Z., Y.Y. and Z.S.;
writing—review and editing, Y.Y., R.Z. and J.P.; supervision, R.Z. and Z.S.; visualization, Y.Y. and
Y.L. funding acquisition, R.Z. and Z.S. All authors have read and agreed to the published version of
the manuscript.

Funding: The research described in this paper is supported by the National Natural Science Foun-
dation of China (No. 52001134) and Fuzhou-Xiamen-Quanzhou Independent Innovation Region
Cooperated Special Foundation (No: 3502ZCQXT2021007).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yan, X.P.; Wang, S.W.; Ma, F. Review and prospect for intelligent cargo ships. Chin. J. Ship Res. 2021, 16, 1–6.
2. Xiao, G.N.; Cui, W.Y. Evolutionary game between government and shipping companies based on shipping cycle and carbon

quota. Front. Mar. Sci. 2023, 10, 1132174. [CrossRef]
3. Chen, X.Q.; Wu, S.B.; Shi, C.J.; Huang, Y.G.; Yang, Y.S.; Ke, R.M.; Zhao, J.S. Sensing Data Supported Traffic Flow Prediction via

Denoising Schemes and ANN: A Comparison. IEEE Sens. J. 2020, 20, 14317–14328. [CrossRef]
4. Liu, Z.; Zhang, B.Y.; Zhang, M.Y.; Wang, H.L.; Fu, X.J. A quantitative method for the analysis of ship collision risk using AIS data.

Ocean Eng. 2023, 272, 113906. [CrossRef]
5. Chen, X.Q.; Liu, S.H.; Liu, R.W.; Wu, H.F.; Han, B.; Zhao, J.S. Quantifying Arctic oil spilling event risk by integrating an analytic

network process and a fuzzy comprehensive evaluation model. Ocean Coast. Manag. 2022, 228, 106326. [CrossRef]
6. Zhen, R.; Shi, Z.Q.; Liu, J.L.; Shao, Z.P. A novel arena-based regional collision risk assessment method of multi-ship encounter

situation in complex waters. Ocean Eng. 2022, 246, 110531. [CrossRef]
7. Zhen, R.; Shi, Z.Q.; Shao, Z.P.; Liu, J.L. A novel regional collision risk assessment method considering aggregation density under

multi-ship encounter situations. J. Navig. 2022, 75, 76–94. [CrossRef]
8. Liu, D.; Zhang, Y.; Zhao, Y.; Shi, Z.G.; Zhang, J.H.; Zhang, Y. Multi-Scale Inshore Ship Detection Based on Feature Re-Focusing

Network. Acta Opt. Sinica. 2021, 41, 137–149.
9. Shao, Z.F.; Wang, L.G.; Wang, Z.Y.; Du, W.; Wu, W.J. Saliency-aware convolution neural network for ship detection in sur-veillance

video. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 781–794. [CrossRef]

43



J. Mar. Sci. Eng. 2023, 11, 625

10. Zhen, R.; Ye, Y.; Chen, X.; Xu, L. A Novel Intelligent Detection Algorithm of Aids to Navigation Based on Improved YOLOv4. J.
Mar. Sci. Eng. 2023, 11, 452. [CrossRef]

11. LA, T. YOLOv4-5D: An enhancement of YOLOv4 for autonomous driving. Towards Data Sci. 2021. Available online: https://
towardsdatascience.com/yolov4-5d-an-enhancement-of-yolov4-for-autonomous-driving-2827a566be4a (accessed on 3 February 2023).

12. Liu, Q.W.; Xiang, X.Q.; Yang, Z.; Hu, Y.; Hong, Y.M. Arbitrary Direction Ship Detection in Remote-Sensing Images Based on
Multitask Learning and Multiregion Feature Fusion. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1553–1564. [CrossRef]

13. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
11–18 December 2015; pp. 1440–1448.

14. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 770–778.

15. Yu, M.; Han, S.J.; Wang, T.F.; Wang, H.Y. An approach to accurate ship image recognition in a complex maritime transportation
environment. J. Marine Sci. Eng. 2022, 10, 1903. [CrossRef]

16. Liu, R.W.; Yuan, W.; Chen, X.; Lu, Y. An enhanced CNN-enabled learning method for promoting ship detection in maritime
surveillance system. Ocean Eng. 2021, 235, 109435. [CrossRef]

17. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804. 02767.
18. Hong, X.; Cui, B.; Chen, W.; Rao, Y.; Chen, Y. Research on Multi-Ship Target Detection and Tracking Method Based on Camera in

Complex Scenes. J. Mar. Sci. Eng. 2022, 10, 978. [CrossRef]
19. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
20. Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European

Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11211, pp. 3–19.
21. Zheng, Z.H.; Wang, P.; Liu, W.; Li, J.Z.; Ye, R.G.; Ren, D.W. Distance-IoU Loss: Faster and Better Learning for Bounding

Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 12993–13000.

22. Zhang, Y.-F.; Ren, W.Q.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T.N. Focal and Efficient IOU Loss for Accurate Bounding Box Regression.
Neurocomputing 2022, 506, 146–157. [CrossRef]

23. Bodia, N.; Singh, B.; Chellappa, R.; Davis, L.S. Soft-NMS-improving object detection with one line of Code. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5562–5570.

24. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks (CVPR). In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

25. Jaderberg, M.; Simonyan, K.; Zisserman, A.; Kavukcuoglu, K. Spatial Transformer Networks. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 28.

26. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014;
Volume 8693, pp. 740–755.

27. Shao, Z.; Wu, W.; Wang, Z.; Du, W.; Li, C. SeaShips: A Large-Scale Precisely Annotated Dataset for Ship Detection. IEEE Trans.
Multimedia 2018, 20, 2593–2604. [CrossRef]

28. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks
via Gradient-Based Localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]

29. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Lecture Notes in
Computer Science: Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland,
2016; Volume 9905, pp. 21–37.

30. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.M.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.

31. He, K.M.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

44



Citation: Bai, H.; Yu, B.; Gu, W.

Research on Position Sensorless

Control of RDT Motor Based on

Improved SMO with Continuous

Hyperbolic Tangent Function and

Improved Feedforward PLL. J. Mar.

Sci. Eng. 2023, 11, 642. https://

doi.org/10.3390/jmse11030642

Academic Editor: Rosemary Norman

Received: 9 February 2023

Revised: 7 March 2023

Accepted: 15 March 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Research on Position Sensorless Control of RDT Motor Based
on Improved SMO with Continuous Hyperbolic Tangent
Function and Improved Feedforward PLL

Hongfen Bai 1,2,*, Bo Yu 1 and Wei Gu 1

1 Key Laboratory of Transport Industry of Marine Technology and Control Engineering,
Shanghai Maritime University, Shanghai 201306, China

2 School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
* Correspondence: hfbai@shmtu.edu.cn

Abstract: With the increasing use of electric propulsion ships, the emergence of the shaftless rim-
driven thruster (RDT) as a revolutionary integrated motor thruster is gradually becoming an impor-
tant development direction for green ships. The shaftless structure of RDTs leads to their dependence
on position sensorless control techniques. In this study, a novel control algorithm using a composite
sliding mode observer (SMO) with a modified feed-forward phase-locked loop (PLL) is presented
for achieving high accuracy position and speed control of shaftless RDT motors. The deviation
between the observed and actual currents is exploited to develop a current SMO to extract back
electromotive force (back-EMF) errors. On this basis, a back-EMF observer is established to achieve
accurate estimation of the back-EMF. The basic structure of the PLL was modified and incorporates a
speed feedforward mechanism, which enhances the performance of rotor position estimation and
facilitates bidirectional rotation. The stability of the algorithm has been verified in Matlab/Simulink
for a range of steady-state, dynamic, and ship propeller loading conditions. Remarkably, the control
algorithm boasts an impressive adjustment time of approximately 0.006 s and its position estimation
error may be as low as 0.03 rad. Simulation results highlight the performance of the algorithm to
achieve bidirectional rotation, while exhibiting fast convergence, minimal vibration, exceptional
control accuracy, and robustness.

Keywords: rim-driven thruster (RDT); electric power propulsion ship system; permanent magnet
synchronous motor (PMSM); position-sensorless control; sliding mode observer (SMO); phase-locked
loop (PLL)

1. Introduction

Electric propulsion ships [1], underwater robots [2], unmanned surface vehicles [3,4],
and other navigational vehicles [5] have undergone significant development in recent
years, imposing more demands on propulsion systems. Electric propulsion systems are
phasing out thermal propulsion systems due to their better control performance and higher
control efficiency [6]. With the development of electric propulsion systems, integrated
motors are increasingly being applied in a wide range of applications [7]. The shaftless rim-
driven thruster (RDT) [8] is a revolutionary integrated motor thruster that merges propeller
blades and motors to conserve cabin space, increase power density, motor efficiency, and
hydrodynamic efficiency, as well as reduce system installation and manufacturing costs [9].
The introduction of the shaftless RDTs brings the electric propulsion ship systems more
prominent features such as integration, electrification, intelligence, and flexibility [10]. As a
typical complicated electromechanical system, the selection and control of the propulsion
motor in the shaftless RDT are the most important considerations. Due to its great power
density and efficiency, the permanent magnet synchronous motor (PMSM) is widely utilized
in the field of propulsion motors [11]. The field-oriented control (FOC) [12] method
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of a PMSM requires precise real-time rotor position and speed information, which is
commonly measured by mechanical position sensors installed on the rotor shaft, including
shaft encoders, resolvers, and Hall sensors [13]. Because RDTs should operate in a harsh
marine environment with high temperature, high humidity, and high salt for an extended
period of time, shaftless RDTs cannot be equipped with conventional mechanical position
sensors [14]. Simultaneously, removing the physical sensors from the control system can
significantly enhance the system’s dependability and minimize motor production costs and
size [15]. Consequently, it is necessary to develop the control algorithm of PMSM without a
position sensor.

There are two types of PMSM position sensorless control strategies [16]: Back electro-
motive force (EMF) based mid-to-high speed method and saliency-tracking based zero-to-
low speed approach. The motor dynamic model is utilized to obtain the back-EMF [17],
which provides information on the rotor position and speed. The Kalman filter method [18],
model adaptation method [19], Luenberger state observer [20], and sliding mode ob-
server (SMO) [21] are the typical back-EMF-based methods.

The SMO approach has been widely adopted for the sensorless control of PMSM, ow-
ing to its straightforward construction, robustness against disturbances, and insensitivity to
parameter variations [22]. However, the inherent switching characteristic of SMO gives rise
to control discontinuity within the system, leading to undesirable chattering phenomena
that compromise control precision and pose a risk to device integrity. The conventional
SMO methods utilize the sign function as the sliding mode switching function [23], which
exacerbates the problem of chattering due to the discontinuous nature of the sign function.
Moreover, the back-EMF estimation by conventional SMO approaches is often plagued
by high-frequency noise. As a result, one or more low-pass filters (LPF) are typically
employed to extract the back-EMF signal. However, the use of LPFs introduces phase
delays, necessitating position compensation based on the actual corner frequency and
LPF cutoff frequency [24]. In response to these challenges, various research endeavors
have been undertaken to address these issues and enhance the performance of the control
system. In Ref. [25], a position-sensorless control method for PMSM was proposed, which
utilized a SMO based on the variable boundary layer sigmoid function. The width of the
boundary layer was adjusted based on the velocity to effectively address the chattering
issue. However, this method used a LPF, which resulted in a phase shift of the system
state and reduced the estimation accuracy. To solve the phase delay problem. In Ref. [26],
a cascade low-pass filter (LPF) with a variable cut-off frequency is proposed to mitigate
chattering. In addition, a variable phase delay compensation is applied to counterbalance
the phase shift introduced by the LPF across the speed range. Although the LPF with
delay compensation strategy has demonstrated its effectiveness in improving the perfor-
mance of PMSMs, its topological complexity poses challenges for practical implementation.
In Ref. [27], the authors proposed a new approach for rotor position estimation in perma-
nent magnet synchronous motors (PMSMs) using a hyperbolic function-based SMO. Unlike
conventional SMOs, the proposed approach eliminates the need for a low-pass filter (LPF)
and angle compensator. The previous study proposed a method to reduce chattering in
sliding mode observers (SMOs) by utilizing a continuous switching function to construct a
transition boundary layer and generate a quasi-SMO. However, the thickness of the bound-
ary layer had a significant impact on the performance of the SMO. A narrow boundary
layer range improved the approach speed of the sliding mode motion, but introduced
chattering and harmonic distortion in the back-EMF. Conversely, a wide boundary layer
reduced chattering but weakened the robustness of the control system by decreasing the
approximation speed. Thus, regulating the width of the boundary layer appropriately
based on the continuous switching function was necessary to enhance the performance of
the control system while minimizing the chattering.

Sensorless control algorithms traditionally employ the inverse tangent function to
extract rotor position information from the back-EMF for motor speed calculation. However,
the rotor position estimation approach that utilizes the inverse tangent function introduces
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high-frequency harmonics into the division operation, leading to an amplification of high-
frequency harmonics that can cause significant errors in rotor position estimation. In
Ref. [28], a current pre-compensation scheme based on a double sampling strategy with
one switching cycle was proposed to improve the accuracy of position estimation and
motor control performance by compensating for the computational delay. However, this
technique significantly increased the computing complexity of the control system. To
address this issue, many researchers have proposed using phase-locked loop (PLL) to
extract rotor position and velocity information [29], which provides a simpler and more
efficient alternative for sensorless control. PLL usually consists of three parts: phase
detector (PD), loop filter (LF), and voltage-controlled oscillator (VCO). The PLL described
in the preceding work was referred to the traditional PLL. The conventional phase-locked
loop (PLL) has been shown to enhance the reliability of rotor position estimation. However,
it is only appropriate for estimating position information when the motor moves in one
direction with uniform parameters. Upon motor reversal, a position deviation of 180°
arises, causing imprecise estimation of the system position. In Ref. [13], the authors
introduced a position estimation technique for the sensorless control of a PMSM that
utilized a PLL structure with a tangent function. This enhanced PLL provided reliable
rotor position estimation during both forward and backward rotation, catering to the
frequent forward and reverse RDT rotation requirements. However, due to its reliance on a
tangent function, the technique was vulnerable to noise interference, leading to imprecise
location estimation. An often overlooked problem with conventional phase-locked loops
(PLLs) is their inability to quickly track rotor position during acceleration and deceleration.
Additionally, maintaining a zero steady-state error is challenging, and sudden changes in
velocity can result in significant position estimation errors, leading to tracking failures.

To address the aforementioned issues, a position-sensorless algorithm for PMSM is
proposed in this study, based on a composite SMO and a feedforward PLL. The composite
SMO comprises a modified current SMO and a back-EMF observer. The modified current
SMO adopts a continuous hyperbolic tangent function to replace the discontinuous sign
function, which reduces the SMO chatter. This SMO extracts the counter-electromotive
force error, which is much smaller in amplitude than the counter-electromotive force, so a
smaller SMO gain factor can be set to further weaken the chattering. The back-EMF observer
is constructed based on the back-EMF model, which replaces the traditional LPF and
avoids phase delay while greatly improving the observation accuracy of the back-EMF. The
proposed PLL with rotor speed feedforward compensation enhances the tracking stability
and position extraction accuracy, while maintaining the reliability of position extraction
when the motor rotates in both directions. The stability of the composite SMO and PLL is
verified through simulations under steady-state, dynamic, ship propeller load, and external
random disturbance conditions. The experimental results demonstrate that the algorithm
features fast convergence, small jitter, high control accuracy, and strong robustness compared
with conventional algorithms. There are two main highlights in this paper:

(1) This study addresses SMO chattering by replacing the sign function with a continuous
hyperbolic tangent function and selecting an appropriate boundary layer width. An
observer based on the back-EMF model is developed to eliminate the LPF, reduce
phase delay, and enhance the back-EMF signal estimation precision;

(2) Through optimization of the traditional PLL structure and the addition of feedforward
compensation, this study has successfully realized position extraction during bi-
directional rotation of the motor, while significantly improving the accuracy of position
extraction during acceleration and deceleration.

The remainder of this paper is organized as follows: In Section 2, the mathemati-
cal model of PMSM is presented. Section 3 proposes the improved SMO and counter-
electromotive force observer, and their stability is proven. Section 4 analyzes the limitations
of the conventional PLL and presents the design of the improved feedforward PLL, along
with a discussion of its stability. Simulation results under different conditions are presented
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in Section 5 to demonstrate the superiority and reliability of the proposed algorithm. Finally,
Section 6 concludes the paper.

2. PMSM Mathematical Model

In the d− q coordinate system, the mathematical model of the surface-mounted PMSM
is shown in Equation (1), in which iron saturation, flux leakage, eddy current, and hysteresis
losses can be ignored. ⎧⎪⎪⎨⎪⎪⎩

ud = Rsid + Ls
did
dt
−ωeLsiq

uq = Rsiq + Ls
diq
dt

+ ωeLsid + ωeψ f

(1)

where ud, uq, id, iq represent the voltage and current in the corresponding coordinate system,
respectively. Rs, Ls represent the stator resistance and stator inductance, respectively. ψ f
represents the permanent magnet flux linkage, and ωe represents the electrical angular
velocity. Equation (1) can be converted to a stationary α − β coordinate system using the
coordinate transformation as follows.⎧⎪⎪⎨⎪⎪⎩

uα = Rsiα + Ls
diα
dt

+ eα

uβ = Rsiβ + Ls
diβ

dt
+ eβ

(2)

where uα, uβ, iα, iβ, eα, eβ represent the voltage, current, and back-EMF in the corresponding
coordinate system, respectively. The back-EMF is described as{

eα = −ψ f ωe sin(θe)

eβ = ψ f ωe cos(θe)
(3)

where θe is the electrical angle and the ωe can be expressed as

ωe =
1

ψ f

√
(e2

α + e2
β) (4)

From Equation (3), it can be seen that the back-EMF contains information regarding
the position and angular velocity of the motor rotor. The exact observation of the motor
back-EMF is, thus, the foundation of the position-sensorless control algorithm.

3. SMO Design for PMSM Rotor Position Estimation

In this paper, based on the mathematical model of PMSM, an improved SMO is
constructed based on the error between the actual current iα, iβ and the observed current îα,
îβ to obtain the back-EMF errors ẽα, ẽβ. Next, the back-EMF observer is constructed based
on the back-EMF model, and the back-EMF êα, êβ is the output.

According to Equation (2), the expression for the current can be written as⎧⎪⎪⎨⎪⎪⎩
diα

dt
=

uα − Rsiα − eα

Ls
diβ

dt
=

uβ − Rsiβ − eβ

Ls

(5)

Define ĩα, ĩβ as the current estimation error of SMO with the following expression:{
ĩα = îα − iα

ĩβ = îβ − iβ

(6)
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where îα, îβ are SMO estimated currents. Based on the theory of the sliding mode variable
structure, the sliding surface is chosen as

s(ĩs) =
[

sα(ĩα)
sβ(ĩβ)

]
= ĩs + μ

t∫
0

ĩsdτ (7)

where ĩs =
[
ĩα ĩβ

]T, μ is a constant and satisfies 0 < μ < Rs/Ls.
According to the mathematical model of PMSM, the SMO is established as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dîα
dt

=
uα − Rsîα − êα − λ · F(Sα(ĩα))

Ls

dîβ

dt
=

uβ − Rsîβ − êβ − λ · F(Sβ(ĩβ))

Ls

(8)

where F(·) is the sliding mode switching function and λ is the sliding mode gain.
Due to the discontinuous character of the sign function, the back-EMF estimation

generates significant chattering. In order to reduce the chattering phenomenon of SMO, the
continuous hyperbolic tangent function is used instead of the sign function. The images of
the sign function and hyperbolic tangent function are shown in Figure 1. The hyperbolic
tangent function is demonstrated below:

F(s) =
ehs − e−hs

ehs + e−hs (9)

sign
hyperbolic tangent function

Figure 1. Sign function and hyperbolic tangent function.

Figure 2 depicts the hyperbolic tangent function with different values of h, which
shows that the boundary layer width d is inversely proportional to the coefficient h. The
magnitude of h is related to SMO chattering. The chattering of the state variable trajectory
in SMO reduces as h decreases. When it increases, the approximation speed of the state
variable improves, but if it is too large, SMO robustness is compromised. Therefore,
the balance between the robustness of SMO and suppression of chattering needs to be
considered when choosing h.
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Figure 2. Hyperbolic tangent function for different h.

The current observation error equation can be obtained by subtracting Equation (5)
from Equation (8), ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dĩα
dt

=
−Rsĩα − ẽα − λ · F(Sα(ĩα))

Ls

dĩβ

dt
=
−Rsĩβ − ẽβ − λ · F(Sβ(ĩβ))

Ls

(10)

According to the sliding mode equivalence principle, we may derive:{
ẽα = −λ · F(Sα(ĩα)) + (μLs − Rs)ĩα
ẽβ = −λ · F(Sβ(ĩβ)) + (μLs − Rs)ĩβ

(11)

Theorem 1. Consider the closed-loop system, which consists of Equation (2) with environmental
disturbances. Assume that Equation (8), Equation (21), and PLL are stable. When the system
parameters are set to satisfy 0 < μ < Rs/Ls and λ > max(|ẽα|, |ẽβ|), the current observation
error, back-EMF estimation error, position estimation error, and velocity estimation error converge
asymptotically to zero.

Proof of Theorem 1. The Lyapunov function is chosen as follows,

V(ĩs) =
1
2

S(ĩs)TS(ĩs) (12)

The derivative of the above equation yields,

V̇(ĩs) = S(ĩs)TṠ(ĩs)

= Sα(ĩα)Ṡα(ĩα) + Sβ(ĩβ)Ṡβ(ĩβ)

= Sα(ĩα)[{ ˙̃iα + μĩα] + Sβ(ĩβ)[{ ˙̃iβ + μĩβ]

= V̇α(ĩα) + V̇β(ĩβ)

(13)

where V̇α(ĩα) = Sα(ĩα)[
˙̃iα + μĩα] and V̇β(ĩβ) = Sβ(ĩβ)[

˙̃iβ + μĩβ].
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According to V̇α(ĩα) and Equation (10) it can be derived that

V̇α(ĩα) = Sα(ĩα)[ ˙̃iα + μĩα]

= Sα(ĩα)[−Rs

Ls
ĩα − 1

Ls
ẽα − 1

Ls
λ · F(Sα(ĩα)) + μĩα]

= (μ− Rs

Ls
)ĩαSα(ĩα)− Sα(ĩα)

Ls
(ẽα + λ · F(Sα(ĩα)))

(14)

According to Equation (7) and 0 < μ < Rs/Ls we can get the first term of the above
equation as

(μ− Rs

Ls
)ĩαSα(ĩα) = (μ− Rs

Ls
)(ĩ2α + ĩαμ

t∫
0

ĩαdτ) ≤ 0 (15)

When λ > |ẽα|, the second term of Equation (14) satisfies

−Sα(ĩα)
Ls

(ẽα + λ · F(Sα(ĩα))) < 0 (16)

In accordance with the aforementioned derivation, we may obtain

V̇α(ĩα) = (μ− Rs

Ls
)ĩαSα(ĩα)− Sα(ĩα)

Ls
(ẽα + λ · F(Sα(ĩα))) < 0 (17)

Likewise, when λ > |ẽβ|, we may derive

V̇β(ĩβ) = (μ− Rs

Ls
)ĩβSβ(ĩβ)−

Sβ(ĩβ)

Ls
(ẽβ + λ · F(Sβ(ĩβ))) < 0 (18)

Thus, when λ > max(|ẽα|, |ẽβ|), we obtain

V̇(ĩs) = V̇α(ĩα) + V̇β(ĩβ) < 0 (19)

This shows that the sliding mode surface as depicted in Equation (7) is reachable,
therefore the SMO is stable and can accurately obtain the back-EMF error as described in
Equation (11). The conventional SMO sliding mode gain needs to satisfy λ > max(|eα|, |eβ|),
while the improved SMO only needs to satisfy λ > max(|ẽα|, |ẽβ|). Obviously, the back-
EMF error is smaller than the back-EMF. Therefore, the sliding mode gain of the improved
SMO setting is significantly smaller than that of the conventional SMO, which can weaken
the sliding mode chattering.

The aforementioned SMO is capable of generating an equivalent back-EMF error
signal, but this signal still contains a high-frequency component and cannot be utilized
directly to extract rotor position information. Most conventional methods use LPF for
filtering, but this introduces a phase delay, which impacts the subsequent extraction of rotor
position information. This work employs the back-EMF model to construct the observer,
extract the back-EMF signal, and then use PLL to estimate the rotor position and speed.
Since the change rate of motor speed is significantly smaller than that of the stator current,
assuming ω̇e = 0, the back-EMF model of PMSM can be expressed as⎧⎪⎪⎨⎪⎪⎩

deα

dt
= −ψ f ω̇e sin θe − ψ f ωe cos θe

dθe

dt
= −ωeeβ

deβ

dt
= ψ f ω̇e cos θe − ψ f ωe sin θe

dθe

dt
= ωeeα

(20)
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Based on the above equation, the back-EMF observer is established as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dêα

dt
= −ω̂eêβ −mẽα

dêβ

dt
= ω̂eêα −mẽβ

dω̂e

dt
= ẽα êβ − ẽβ êα

(21)

where m is the observer gain, and m > 0. The error equation can be obtained by
subtracting Equation (20) from Equation (21),⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dẽα

dt
= −ω̃eêβ −ωeẽβ −mẽα

dẽβ

dt
= ω̃eêα + ωeẽα −mẽβ

dω̃e

dt
= ẽα êβ − ẽβ êα

(22)

Theorem 2. Considering that the change rate of motorspeed is significantly smaller than that of
the stator current, assume that ω̇e = 0. When the back-EMF observer is stable,the back-EMF error
converges to zero and the back-EMF observation can be obtained accurately.

Proof of Theorem 2. To verify the stability of the back-EMF observer, the Lyapunov func-
tion is chosen as

V =
ẽ2

α + ẽ2
β + ω̃2

e

2
(23)

Derivation of the above equation yields

V̇ = ẽα ˙̃eα + ẽβ ˙̃eβ + ω̃e ˙̃ωe

= ẽα(−ω̃eêβ −ωeẽβ −mẽα) + ẽβ(ω̃eêα + ωeẽα −mẽβ) + ω̃e(ẽα êβ − ẽβ êα)

= −m(ẽ2
α + ẽ2

β)

≤ 0

(24)

According to the above proof, the back-EMF observer is asymptotically stable, and its
stability is solely dependent on the motor parameters and not external disturbances.

4. Rotor Position and Speed Extraction

4.1. Traditional PLL Analysis

The PLL is significantly more stable than the arctangent function for extracting ro-
tor position information from the back-EMF, whose structure and equivalent model are
depicted in Figures 3 and 4, respectively. However, in the conventional PLL, once the
controller parameters are determined, the motor only runs in a single direction and the
position information cannot be estimated accurately if the parameters are not modified
when the motor reverses in the other direction. In addition, when the motor is accelerating
or decelerating, the estimation error is significant. In Figures 3 and 4, θe, θ̂e mean the rotor
electrical angle and the estimated value of the electrical angle, respectively, Δe indicates the
electrical angle estimation error, and kp, ki denote the proportional coefficient and integral
coefficient of the PI in the PLL, respectively.
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Figure 3. Structure of conventional PLL.

Figure 4. Traditional PLL equivalent model.

When the motor is rotating in the forward direction, the conventional PLL dynamics
equation is as follows. ⎧⎪⎪⎨⎪⎪⎩

dθ̃

dt
= ω̃

dω̃

dt
= −kp cos(θ̃)ω̃− kI sin(θ̃)

(25)

where ω̃ = ω− ω̂ is the electrical angular velocity estimation error and kp, kI are positive.
The phase plane of the system is shown in Figure 5, where (±π, 0) is the saddle point,
and (0, 0) is the stable focus. The trajectory in the phase plane of the system would converge
to the origin, i.e., the position and velocity estimation errors would converge to zero, and
the system would be able to precisely estimate the rotor position.

When the motor is reversed, the back-EMF of the motor would change from Equation (3)
to Equation (20). {

eα = ψ f ωe sin(θe)

eβ = −ψ f ωe cos(θe)
(26)

At this stage, the dynamics equation of a conventional PLL is as follows:⎧⎪⎪⎨⎪⎪⎩
dθ̃

dt
= ω̃

dω̃

dt
= kp cos(θ̃)ω̃ + kI sin(θ̃)

(27)

The phase plane diagram of the system is shown in Figure 6, where (±π, 0) is the
stable focus, and (0, 0) is the saddle point. Therefore, the system is stable at (±π, 0). In such
a case, the PLL would not converge the rotor position error to zero, but rather generate a π
deviation. When the motor is reversed, the conventional PLL would be unable to reliably
detect the rotor position.
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Figure 5. Traditional PLL forward phase plane.

Figure 6. Traditional PLL reversed phase plane.

According to Figure 4, the error closed-loop transfer function can be obtained as

Φess0(s) =
s2

s2 + kps + kI
(28)
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When the motor is accelerated or decelerated, the input is acceleration equivalent to
the angle. Assuming that the aforementioned transfer function is provided with a unit
acceleration input, the steady-state error can be calculated as follows:

ess0 = lim
s→0

s ·Φess0(s) · 1
s3

= lim
s→0

1
s2 + kps + kI

=
1

KI

(29)

It is known that the steady-state error of the system is not 0 at this time, and the steady-
state error of the system would be reduced when increasing the integral coefficient kI . How-
ever, increasing the integral coefficient kI may cause the stability of the system degradation.
Therefore, under the traditional PLL, the rotor position error cannot converge to 0.

4.2. Improved PLL Analysis

Based on the deficiencies of the traditional PLL outlined in the previous section, this
section will provide an improved PLL and demonstrate its stability. The structure diagram of
the improved PLL is shown in Figure 7. The relationship between Δe and θe, θ̂e is as follows.

Δe = −[1
2
(e2

α + e2
β) sin(2θ̂e)]− [eαeβ cos(2θ̂e)]

= −1
2

ψ2
f ω2

e cos(2θe) sin(2θ̂e) +
1
2

ψ2
f ω2

e sin(2θe) cos(2θ̂e)

=
1
2

ψ2
f ω2

e sin 2(θe − θ̂e) ∝ sin(2θ̃e)

(30)

Figure 7. Structure of the improved PLL.

When the PLL is steadily tracking the rotor position, θ̃e → 0, θ̂e ≈ θe.
Combining Equations (3), (26), and (30), when the improved PLL is used, its dynamic

equation is as follows whether the motor is in forward or reverse rotation.⎧⎪⎪⎨⎪⎪⎩
dθ̃

dt
= ω̃

dω̃

dt
=

1
2
[−kp cos(2θ̃) · 2ω̃− kI sin(2θ̃)]

(31)

The phase plane diagram of the system is shown in Figure 8, where (±π, 0), (0, 0),
(±0.5π, 0) are the five balance points of the system, (±0.5π, 0) are the saddle points, and
(±π, 0), (0, 0) are the stable focus. The trajectory in the phase plane of the system would
approach the origin. That is, the position and speed estimation errors would converge to
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zero. At this time, θ̂e ≈ θe, the system can accurately estimate the position and speed of the
rotor. The improved PLL open-loop transfer function is

G1(s) =
(kp + ωc)s2 + (kI + kpωc)s + kIωc

s2(s + ωc)
(32)

where ωc is the cut-off frequency of the LPF in the feedforward channel. By Equation (26),
the error closed-loop transfer function of the rotor position can be obtained as

Φess1(s) =
s3

(s + ωc)(s2 + kps + kI)
(33)

When the motor is accelerated or decelerated, the input is the acceleration equivalent
to the angle. Assuming that a unit acceleration input is added to the above transfer function,
according to the final value theorem, the steady-state error can be obtained as

ess1 = lim
s→0

sΦss1(s)
1
s3

= lim
s→0

s · s3

(s + ωc)(s2 + kps + kI)
· 1

s3

= 0

(34)

Figure 8. Improved PLL phase plane.

The improved PLL can reduce the rotor position error to 0 caused by the PLL when
the motor is accelerating and decelerating. Therefore, the improved PLL can extract the
position information of the rotor more accurately than the traditional PLL.

To sum up, there are two main improvements of the improved PLL:

(1) Improve the inability of the conventional PLL to reliably extract position information
during motor reversal;

(2) During motor acceleration and deceleration, the conventional PLL’s error problem has
been resolved.

Therefore, the structure of the PMSM position sensorless control system based on
SMO is shown in Figure 9.
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Figure 9. Structure of the PMSM position sensorless control system based on SMO.

5. Simulation Verification

To verify the feasibility of the proposed PMSM sensorless control algorithm based on
hyperbolic tangent SMO and improved PLL, a simulation model is built in Matlab/Simulink
according to Figure 9, and the simulation parameters are shown in Table 1.

Table 1. Main parameters of PMSM.

Parameter Value

number of pole pairs p 4

stator resistance Rs 2.875 Ω

stator inductor Ls 8.5 mH

rotational inertia J 0.001 kg ·m2

permanent magnet flux ψ f 0.175 Wb

DC voltage Udc 311 V

5.1. Steady-State Performance

This experiment focuses on examining the steady-state performance differences be-
tween conventional SMO combined with conventional PLL and improved SMO combined
with feedforward PLL.

Set the parameters of the improved SMO to h = 0.01, λ = 100, μ = 300, m = 100.
The parameter of traditional SMO is set to λ = 1000, ωc = 2000. The parameters of both
feedforward PLL and conventional PLL are set to kp = 100, kI = 10,000.

When the motor is unloaded and its speed is set to 1000 r/min, the steady-state
performance of the motor under each algorithm is compared. From Figures 10a and 11a, it
can be observed that both the conventional algorithm and the improved algorithm can keep
the motor running steadily, with the conventional algorithm having a speed fluctuation
range of ±5 r/min and the improved algorithm having a speed fluctuation range of
±0.1 r/min. Therefore, the improved SMO may effectively mitigate the speed chattering
issue. The peak rotor position estimation error is 0.255 rad and the steady-state error
is 0.212 rad for the conventional algorithm, whereas the peak rotor position estimation
error is 0.0043 rad and the steady-state error is 0.0042 rad for the improved algorithm
(Figures 10b, 11b and 12). Consequently, the improved feedforward PLL provides superior
position tracking performance.
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Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 10. Responses of the simulation with conventional SMO combined with conventional PLL
(steady-state). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 11. Responses of the simulation with improved SMO combined with feedforward PLL
(steady-state). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.

59



J. Mar. Sci. Eng. 2023, 11, 642

Traditional SMO + Traditional PLL
Improved SMO + Feedforward PLL

Figure 12. Rotor position observation errors (steady-state).

5.2. Dynamic Performance

This experiment focuses on comparing the dynamic performance differences between
the conventional SMO combined with the conventional PLL algorithm and the improved
SMO combined with feedforward PLL when acceleration, deceleration, and sudden load
addition are encountered.

First, set the initial load of the motor to 2 N·m and the initial given speed to 1000 r/min. When
the motor runs to 0.03 s, set the given speed to 500 r/min to decelerate the motor. Add a sudden
4 N·m load to the motor while it has been running for 0.06 s. From Figures 13a and 14a, it can be
seen that the conventional algorithm has a speed fluctuation range of±5 r/min in the initial state
and an overshoot of 4%. The improved algorithm has a speed fluctuation range of±0.1 r/min
and an overshoot of 0.3% in the initial state. In the case of motor deceleration, the adjustment time
of the conventional algorithm is 15 ms, while the adjustment time of the improved algorithm is
6 ms. In the case of load surge, the speed drop of the conventional algorithm is 50 r/min and
the adjustment time is 10 ms, while the speed drop of the improved algorithm is 40 r/min and
the adjustment time is 6 ms. Figures 13b, 14b and 15 reveal that the traditional algorithm rotor
position estimation error peaks at 0.25 rad, while the improved algorithm rotor position estimation
error peaks at 0.0043 rad. After motor deceleration and sudden load application, the conventional
algorithm rotor position estimation error is 0.1 rad, but the improved algorithm rotor position
estimation error can quickly converge to 0.002 rad. Therefore, the improved SMO can make the
motor maintain good stability and low chattering during dynamic operation. The improved PLL
can keep the rotor position estimation error low during acceleration and deceleration, so that the
rotor position information can be extracted more accurately.

5.3. Forward and Reverse

The main purpose of this experiment is to verify that the improved feedforward PLL
can accurately extract rotor position information in both forward and reverse motor rotation.

The motor load is initially set to 2 N·m and the initial given speed is set to 1000 r/min.
To simulate the motor reverse, the given speed is adjusted to −500 r/min for 0.05 s. From
Figures 16–18, it is evident that the improved PLL can accurately identify the rotor position
information when the motor is reversed and maintain stable motor operation, whereas the
conventional PLL cannot extract the rotor position information correctly when the motor
is reversed, resulting in unstable motor operation. Consequently, the improved PLL can
better maintain the stability of the ship motor control system in the face of the frequent
forward and reverse rotation requirements of ship motors.
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Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 13. Responses of simulation with conventional SMO combined with conventional PLL
(dynamic). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 14. Responses of simulation with improved SMO combined with feedforward PLL (dynamic).
(a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Traditional SMO + Traditional PLL
Improved SMO + Feedforward PLL

Figure 15. Rotor position observation errors (dynamic).

Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 16. Responses of the simulation with conventional SMO combined with conventional PLL
(forward and reverse). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 17. Responses of simulation with the improved SMO combined with feedforward PLL
(forward and reverse). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Traditional SMO + Traditional PLL
Improved SMO + Feedforward PLL

Figure 18. Rotor position observation errors (forward and reverse).

5.4. Performance under Ship Propeller Load

The motor position sensorless control algorithm proposed in this paper is mainly
applied to electric propulsion ships, so it is necessary to verify the effectiveness of the
algorithm under the ship propeller load. In addition, to verify the robustness of the
algorithm in this paper, a random noise is applied to the load torque to simulate the
disturbance of wind and waves in the ocean.

According to Ref. [30], the dynamic load model of the ship propeller is shown in
Figure 19. Based on the propeller load model and the model parameter values shown in
Table 2, the simulation model is established. The relationship between the motor speed and
its load when the ship is sailing can be obtained. The effectiveness of the improved SMO
and improved feedforward PLL is proposed in this paper for the dynamic environment of
ship navigation. In Figure 19, n is the propeller speed of the motor, unit is rad/s, TL is the
propeller torque, unit is N·m, J is the advance ratio of the propeller, Dp is the diameter of
the propeller, unit is m, P is the thrust generated by the rotation of the propeller, unit is N,
Ms is the mass of the ship, unit is kg, R is the resistance of the ship, unit is N, Vs is the
speed of the ship, unit is m/s, Vp is the propeller advance speed, unit is m/s, ω is the wake
coefficient, t is the thrust derating coefficient, k is the water attachment coefficient, Kp is
the dimensionless coefficient of propeller thrust, and Km is the dimensionless coefficient of
drag torque. {

Kp = 0.38955− 0.27115J − 0.10256J2

Km = 0.049543− 0.021832J − 0.02079J2
(35)

The PMSM load perturbation was set to propeller load while introducing random
perturbations. The initial speed was set to 1000 r/min, and after the motor ran for 0.05 s,
the speed was set to −500 r/min to simulate motor reversal. As shown in Figure 20a, in the
presence of random noise, the conventional algorithm ensures system stability in forward
rotation, with a speed fluctuation range of ±50 r/min. However, in reverse rotation, the
conventional algorithm causes the system to become unstable. From Figure 21a, it can
be observed that the improved algorithm ensures system stability in both forward and
reverse rotation, with a speed fluctuation range of ±20 r/min. The improved algorithm
effectively reduces speed fluctuation under disturbance while ensuring stable forward
and reverse rotation. From Figure 22, the maximum rotor position estimation error of
the conventional algorithm is 0.231 rad, whereas the maximum rotor position estimation
error of the improved algorithm is only 0.008 rad. Thus, the improved algorithm can
significantly reduce the rotor estimation error and improve the position estimation accuracy.
In conclusion, the algorithm exhibits excellent anti-interference performance and can adapt
to complex marine environments.
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Figure 19. Ship propeller load model.

Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 20. Responses of the simulation with conventional SMO combined with conventional PLL
(with propeller load). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Actual rotor speed
Estimated rotor speed

(a)

(b)

(c)

Figure 21. Responses of the simulation with improved SMO combined with feedforward PLL (with
propeller load). (a) Rotor speed. (b) Rotor position. (c) Estimation of the back-EMF.
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Traditional SMO + Traditional PLL
Improved SMO + Feedforward PLL

Figure 22. Rotor position observation errors (with propeller load).

Table 2. Main parameters of PMSM.

Parameter Value

Propeller diameter Dp/m 0.1

Hull mass Ms/kg 100

Water attachment coefficient k 1.1

Wake coefficient ω 0.12285

Thrust derating coefficient t 0.146

6. Conclusions and Outlook

This paper presents an improved algorithm for position sensorless control of PMSM,
which is specifically designed for electric propulsion ships equipped with shaftless RDTs.
The primary goal of this algorithm is to enhance the reliability of the motor control system.
The algorithm utilizes continuous hyperbolic tangent functions instead of discontinuous
symbolic functions to address the chattering problem of SMO. An observer based on the
back-EMF model is constructed to extract the back-EMF accurately and minimize speed
fluctuations, which effectively reduces the sliding mode gain of the SMO and eliminates
the phase delay caused by LPF. Furthermore, the improved feed-forward PLL is introduced
to minimize rotor position estimation errors during acceleration and deceleration, as well
as to achieve accurate extraction of rotor position information during motor reversal,
outperforming the conventional PLL.

To verify the reliability of the algorithm in a complex marine environment, a ship
propeller load model and random load are introduced. The simulation results demonstrate
the superiority of the improved algorithm over the conventional algorithm consisting of
a conventional SMO and a conventional PLL. The improved algorithm achieves smaller
speed fluctuations in the face of disturbances, which is beneficial for the stable operation of
the ship. It also shows good performance in bi-directional rotation of the motor and can
stably track the rotor position, which is important for the frequent forward and reverse
rotation of the ship’s RDT motor.

Our future work will validate the algorithm in a real motor and apply it to a real ship,
which will greatly contribute to the realization of green and sustainable ship technology.
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Abstract: The opening of arctic routes provides a new option for international navigation ships. The
correlation between ship movement characteristics and ice conditions should be known, which will
help ships adapt to the polar waters. Based on the voyage data and sea ice manual observation
data of the ‘XUE LONG’ ship’s six voyages in polar waters, a correlation analysis model of ice
conditions and ship movement characteristics was established in this work. First, the ship movement
characteristics in polar waters were analyzed, such as the distribution characteristics of ship speeds,
courses, and variation characteristics by using the descriptive statistical analysis method and data
visualization analysis method. Then, by using multivariate correlation analysis and univariate
controlled correlation analysis methods, the correlation between movement characteristics and
ice conditions, such as ice concentration and thickness, and the correlation between different ice
conditions themselves, were quantitatively analyzed. The result shows that the correlation analysis
model of ice conditions and ship movement characteristics is reliable and effective and can obtain
quantitative correlation analysis results. On the one hand, sea ice thickness has almost no significant
correlation with ship movement characteristics, excluding the influence of sea ice concentration. On
the other hand, excluding the influence of sea ice thickness, sea ice concentration is still significantly
correlated with the absolute value of speed, speed variation, and course variation. The conclusions of
this work have important reference significance for polar scientific investigations, commercial ships’
voyages in icy waters, and ships’ designs for icy waters.

Keywords: ship movement characteristics; polar waters; correlation analysis; polar navigation

1. Introduction

As the global climate warms, the melting of the Arctic sea ice has accelerated, which
makes the Arctic waterways gradually navigable. The opening of the Arctic route will
provide Asia with two more convenient routes to Europe and North America, reducing
the voyage by 10–13 days [1] and saving many ship fuel costs, canal costs, security costs,
personnel costs, and many more. The advantages of the Arctic route will inevitably
attract a large number of merchant ships to choose it [2]. However, the current navigation
environment of the Arctic waterway is still dominated by icy waters. Merchant ships
choosing Arctic routes need to improve and optimize ship design, route planning, and ship
maneuvering [3].

The ship movement characteristics in icy waters can provide reference information for
ship design, route planning, and ship maneuvering [4]. Different sea ice conditions have
different effects on ship maneuverability, ship speed, and other characteristics [5]. Due to
the lack of experience in the Arctic route, there are few studies on the ship movement char-
acteristics in icy water, and there is a lack of quantitative methods to clarify the influence of
sea ice conditions on the ship movement characteristics under multiple observed variables.
Therefore, a correlation analysis model of ice conditions and ship movement characteristics
is established in this work based on the voyage data and sea ice manual observation data of
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the ‘XUE LONG’ ship’s six voyages in polar waters. The ship movement characteristics in
polar waters are analyzed, such as the distribution characteristics of ship speeds, courses,
and variation characteristics using the method of descriptive statistical analysis and data
visualization analysis. The correlation of ship movement characteristics and ice conditions,
such as ice concentration and thickness, and the correlation between different ice conditions
themselves, are quantitatively analyzed by using multivariate correlation analysis and
univariate controlled correlation analysis methods.

The remainder of this study is organized as follows. In Section 2, a literature review is
presented. Section 3 presents the materials and methods. The discussion is provided in
Section 4. Section 5 states the conclusion.

2. Literature Review

Sea ice is an important factor that affects ship movement characteristics in polar
waters. The Northern Sea Route (NSR) has a large difference in ice conditions in summer
and winter [6]. To ensure navigational safety, there is widespread consensus to reduce the
speed of ships navigating icy waters. With the continuous improvement of the feasibility of
the NSR, how to improve the efficiency and safety of ship navigation in the sea ice area has
become a focus of scholars. Firstly, the relationship between ship speed and ice thickness is
studied by numerical and simulation methods [7,8]. The second approach is to study the
navigation performance of ships in polar open waters. Chen, C. et al., analyzed the effects
of ship type, ship speed, and wave steepness on added resistance of the polar research
vessel based on the three-dimensional full nonlinear time domain potential flow theory [9].
In the process of ship operation in the polar sea, some scholars have established the model
of key parameters in the process of ship–ice interaction and applied it to the structural
design loads [10,11]. The methods of numerical simulation and theoretical analysis provide
a theoretical basis for the analysis of the ship movement characteristics in the polar sea, but
it still needs to be combined with the actual observation data of the navigation environment
and state for further research [12].

With the development of information technology, it has become easier to obtain Au-
tomatic Identification System (AIS) data and navigation environment data. The research
results of ship movement characteristics based on a statistical analysis of data are develop-
ing continuously, but there is still a lot of potential value for massive spatiotemporal data
that has not been fully utilized. The correlation between massive spatiotemporal data and
ship movement characteristics needs to be deeply analyzed [13]. In terms of the character-
istic state of ship movement, Zheng J. et al., studied the nonlinear characteristics of ship
movement using control theory [14]. Montewka J. et al., established a hybrid model of ship
performance in ice-covered waters, which can be used in ice region navigation planning [15].
With the AIS and navigation environment data, the ship movement characteristics can be
further explored. Goerlandt F. et al., showed summary statistics of speed in convoy and
escort operations in icy waters under different sea ice thickness situations primarily based
on AIS data [16]. Zhang C. et al., pointed out that while the ice becomes denser in real
life Arctic navigation, ship speed will gradually decrease [17]. The analysis of navigation
environment data can also be extended to the study of traffic state characteristics [18–20].

At present, some conclusions about ship movement characteristics have been obtained
from ship navigation status data and navigation environment data, but there are few studies
on the quantitative correlation between sea ice density and ship movement characteristics in
polar waters. Correlation research is an effective method to reveal the correlation between
external variables and the target itself [21]. Zhao P. et al., proposed an analytical framework
for exploring the relationship between intra-urban logistics and urban transport planning
by integrating spatial analysis, network analysis, and spatial interaction analysis [22]. Gagic
R. et al., determined the correlation between cruise ship activities in ports with an ambient
concentration of pollutants [23]. The correlation analysis can also be extended to reveal
the relationships among water traffic factors such as environmental conditions, traffic
characteristics, ship collision frequency, ship defects, and so on [24,25]. In terms of polar
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ship navigation, Zambon A. et al., identified the correlation between ice-induced propeller
loads and sea ice conditions by experimental measurements and numerical analysis [26].
Yuen P.C. et al., analyzed the correlation of cargo damage risks for the planning of marine
container transportation voyages [27]. The premise of these studies is to accurately obtain
the analytical data of each target. For ships in the polar sea, how to effectively obtain the
environmental state data and ship movement state data is also the focus of the research [28–31].

There are some results on the relationship between ship performance and ice condi-
tions. In the study by Montewka J. et al., the correlation coefficient between ship speed and
sea ice concentration is given; there are no detailed studies on the correlation coefficient
between ship speed and different ice concentrations [32]. In fact, the sea ice concentration
and sea ice thickness are also related; they are not independent of each other [33]. Kimmritz
M. et al., analyzed the relationship between sea ice concentration and thickness in the
sea ice data assimilation method [34]. It is assumed that sea ice concentration and sea ice
thickness are both related to ship movement characteristics. In that case, it is necessary to
clarify which factor is more decisive: the characteristics of the ship course or ship course
variation. The relationship between the ship course and sea ice conditions also needs
to be further studied. These studies can clarify whether the ship uses ice breaking or
bypasses the ice when sailing in different ice regions and chooses waters with thin ice
layers or waters without ice. At the same time, the ship movement characteristics of ships
are not only associated with sea ice concentration but are additionally related to sea ice
thickness. Then, the relationship between sea ice concentration and sea ice thickness also
needs to be explored. Moreover, while sea ice concentration and sea ice thickness are each
associated with ship movement characteristics, it is essential to make clear which element
is more decisive.

3. Materials and Methods

3.1. Correlation Analysis Framework

The correlation analysis between ship movement characteristics and ice conditions
should meet three requirements: (1) analyze the basic information of ship movement
characteristics, (2) explore the interaction between ice conditions variables, (3) obtain
the interaction between ship movement characteristics and ice conditions, and design a
comprehensive correlation analysis framework on this basis. The framework is mainly
composed of three parts: data source, core analysis method, and analysis result output, as
shown in Figure 1.

 
Figure 1. Framework for analysis of the correlation between ice conditions and ship movement characteristics.

In terms of data sources, the voyage data of the scientific research ship ‘XUE LONG’
in the Arctic and Antarctic, as well as the ice data collected during the voyage, will be
used. Because the ice data collected by the ship during its voyage contained the actual
information, they have great value for analyzing the navigation characteristics of ships in
polar waters. In terms of core analysis methods, this paper studies a correlation analysis
method between ice conditions and ship movement characteristics, which can output the
correlation of the navigation environment, as well as the correlation between navigation
environment and ship movement characteristics. In the aspect of result output, the ship
navigation process is taken as the time series, the data types of the analysis results are
combined, and a two-dimensional cross relationship of the correlation of data points is
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formed to form a graph, and the mutual relationship between the ice conditions and the
ship movement characteristics is visualized.

3.2. Data Collection

This study’s original data came from the 5–9th Arctic voyage and the 34th Antarctic
voyage of the icebreaker ‘XUE LONG,’ including 69,098 voyage data points from GPS
equipment and 4085 manual observation data points on sea ice. The icebreaker ‘XUE
LONG’ is China’s largest polar science research ship. It is 167 m long and 22.6 m wide, with
a full draft of 9 m and a gross tonnage of 15,352 tons. It has a maximum speed of 17.9 knots,
an endurance of 20,000 nautical miles, and is capable of continuously breaking through
1.2 m of ice (including 0.2 m of snow) at a speed of 1.5 knots.

3.3. Data Preprocessing

The voyage data and the manual observation data on sea ice were matched in time.
Among these two types of data, there are 836 records with the same recording time,
2435 records with a time difference of less than 1 min, and 3394 records with a time differ-
ence of less than 10 min. Considering the ship’s speed and sea ice variations, 3394 records
with a time difference within 10 min between the two types of data were analyzed.

(1) Sea ice concentration and its classification and measurement
Sea ice concentration represents the sea ice coverage area ratio to the total area of the

sea area. It is often expressed in percentages (tenths).
In this study, the sea ice concentration data are manual observation data, and the

observation interval is about 30 min.
Among them, Ct represents the total concentration of sea ice in the view field with

a diameter of 5 km (in tenths). Ca represents the concentration of sea ice with the largest
concentration in the view field with a diameter of 5 km (Type A). Cb represents the concen-
tration of sea ice with the second largest concentration in the view field with a diameter of
5 km (Type B). Cc represents sea ice concentration with the third largest concentration in
the view field with a diameter of 5 km (Type C).

(2) Sea ice thickness and its classification and measurement
Sea ice thickness is defined as the vertical distance between the sea ice surface and the

ice bottom, in cm.
In this study, the sea ice thickness data are also manual observation data, and the

observation interval is about 30 min. In the actual sea ice observation data, the interval is
usually used to express sea ice thickness, such as 50–70 cm. In this study, the interval data
are processed, and their values are the average values of the upper and lower boundaries
of the interval.

Among them, Tha represents the thickness of the Type A sea ice. Thb represents the
thickness of the Type B sea ice. Thc represents the thickness of the Type C sea ice.

ThAVG represents the total average thickness of sea ice in the view field with a diameter
of 5 km. ThAVG is not directly derived from observational data and is calculated according
to Formula (1) in this study.

ThAVG = (Ca·Tha + Cb·Thb + Cc·Thc)/(Ca + Cb + Cc) (1)

3.4. Data General Characteristics and Visualization

This study performed descriptive statistical analysis on the preprocessed data to
obtain ship movement characteristic information, such as ship speed and course, in the
research waters. To convey and communicate information clearly and effectively with
the aid of graphical means, this study conducted a data visualization analysis on the
collected data to visually display the data distribution characteristics of ship movement
characteristics. Histograms, rose graphs, box graphs, and so on were adopted for data
visualization analysis of ship movement characteristics and ice conditions.
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3.5. Modeling

In order to explore the quantitative correlation between sea ice conditions and ship
movement characteristics, this study established a correlation analysis model of ice condi-
tions and ship movement characteristics. The model took ice condition and ship movement
state variables as inputs and included two parts: multivariate correlation analysis and
univariate controlled correlation analysis, which is shown in Figure 2. In multivariate
correlation analysis, the correlation between ship movement characteristics and sea ice
thickness and sea ice concentration, and other state variables is mainly studied. Since the
relationship between multivariate variables is very complex, ship movement characteristics
may be affected by multiple variables; therefore, univariate controlled correlation analysis
is established on the basis of multivariate correlation analysis, which is partial correlation
analysis. By eliminating the influence of the third variable, the correlation between other
variables is analyzed to obtain a more accurate relationship between ice conditions and
ship movement characteristics.

Figure 2. Model of correlation between ice conditions and ship movement characteristics.

As shown in Figure 2, the mathematical relationship of correlation analysis between
ice conditions and ship movement characteristics is expressed as follows:

CMi,j = cov
(
VSi, VIj

)
, i ∈ {1, · · · , N}, j ∈ {1, · · · , M} (2)

CUMi,j = cov
(
VSi, VIj

)|VCk , i ∈ {1, · · · , N}, j ∈ {1, · · · , M− 1}, k ∈ {1, · · · , M} (3)

where C_Mi,j is multivariate correlation analysis, C_UMi,j is the univariate controlled
correlation analysis, cov() is the correlation analysis function, VSi is the ship movement state
variable, N is the total number of ship movement state variables, VIj is the ice condition
state variable, M is the total number of ice condition state variables, and VCk is the selected
control variable in ice condition state variables.

3.5.1. Multivariate Correlation Analysis

There are three types of data analysis methods in multivariate correlation analyses:
Pearson, Spearman, and Kendall [35,36]. For quantitative variables with a normal dis-
tribution, the Pearson correlation coefficient can be used. If the data do not follow a
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normal distribution or have a sorted category, the Spearman coefficient or Kendall’s tau-b
coefficient can be adopted [37]. The latter two measure the correlation between ranks.

Spearman’s correlation is also known as rank correlation, which is used when one
or both variables are ranks or ordinal scales. It is applicable to determine the degree of
correlation between two variables in the case of ordinal data.

The Spearman rank correlation coefficient is defined by:

rs = 1− 6∑ d2
i

n(n2 − 1)
(4)

where di is the difference among ranks of ith pair of the two variables and n is the number
of pairs of observations.

3.5.2. Univariate Controlled Correlation Analysis

The univariate controlled correlation analysis calculates the partial correlation coeffi-
cient, which describes the linear relationship between two variables while controlling the
effect of one or more additional variables. It can be used to determine if the relationship
between two variables is direct, spurious, or intervening, controlling each of these variables’
correlation with a third related variable.

The formula for the partial correlation coefficient for X and Y, controlling for Z, is
as follows:

ryx.z =
ryx − ryzrxz√(

1− r2
yz

)
(1− r2

xz)

(5)

ryx.z is the partial correlation coefficient between variable X and variable Y, controlling
for Z.

Before solving the above formula, the zero-order coefficients between all possible pairs
of variables (Y and X, Y and Z, X, and Z) must be calculated first. The formula for the
zero-order coefficients is as follows:

rxy =
∑n

i=1 [(xi − x)(yi − y)]√
∑n

i=1 (xi − x)2·∑n
i=1 (yi − y)2

(6)

rxy is the zero-order coefficient between variable X and variable Y.
The following ranges are used for the interpretation of the strength of the correlation.

Complete correlation: correlation with |r| = 1; high correlation or strong correlation:
correlation with 0.7 ≤ |r| < 1; moderate correlation: correlation with 0.4 ≤ |r| < 0.7; low
correlation or weak correlation: |r| < 0.4 correlation; and zero correlation: r = 0.

4. Results

4.1. Analysis of Ship Movement Characteristics in Polar Waters
4.1.1. Characteristics of Ship Speed in Polar Waters

The speed histogram of the “XUE LONG” ship (at intervals of 1 knot) is shown in
Figure 3, and the speed statistics table is shown in Table 1.
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Figure 3. The speed distribution of the ship movement in polar waters.
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Table 1. Statistics of ship speeds in polar waters.

Minimum Maximum Mean S.D. Median Mode Count

Antarctic
waters 0.20 15.60 9.20 2.98 9.90 10.90 218

Arctic waters 0.00 16.00 7.38 3.65 7.40 8.30 3176
Polar waters 0.00 16.00 7.50 3.63 7.60 8.30 3394

From the data in the statistical table, the average ship speed in the Antarctic waters is
nearly 2 knots higher than that in the Arctic waters, and ship speed variation in the Arctic
waters is larger than that in the Antarctic waters.

4.1.2. Characteristics of Variation of Ship Speed in Polar Waters

In this study, the speed variation refers to the difference between the speed of the
current observation time and the speed of the last observation time, and its value is a vector.
The box diagram of the speed variation of the “XUE LONG” ship is shown in Figure 4, and
the statistics table of speed variation is shown in Table 2. It can be seen from the box chart
that the quartiles of speed variation for different waters are relatively close.

Figure 4. Box plot of ship speed variation in polar waters.

Table 2. Statistics of ship speed variation in polar waters.

Minimum Maximum Mean S.D. Median Mode Count

Antarctic
waters −9.80 11.70 −0.02 3.21 0.00 −0.20 218

Arctic waters −14.90 13.80 0.00 2.91 0.00 0.00 3176
Polar waters −14.90 13.80 0.00 2.93 0.00 0.00 3394

From the statistical table, the mean of the speed variation in Antarctic waters and
Arctic waters basically tends to be 0; the mode of speed variation in Arctic waters is 0,
indicating that a certain speed is always maintained, and the mode of speed variation in
Antarctic waters is −0.2 knots, which may be due to the frequency of observation during
deceleration. The S.D. of speed variation in Antarctic waters is greater than that in Arctic
waters, indicating a higher dispersion of speed variation.

4.1.3. Characteristics of Ship Course in Polar Waters

The rose chart of the course of the “XUE LONG” ship (with a 5◦ interval) is shown in
Figure 5. It can be seen intuitively in the figure that, regardless of the Antarctic routes or the
Arctic routes, the “XUE LONG” ship’s course distribution is relatively scattered. Although
there are several main lobes, the directions of the main lobes are still scattered.
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Figure 5. Rose chart of the ship’s course distribution in polar waters.

4.1.4. Characteristics of the Ship’s Course Variations in Polar Waters

In this study, the course variation refers to the difference between the course at the
current observation time and the course at the last observation time, and its value is a
vector. The box chart of the course variation of the “XUE LONG” ship is shown in Figure 6,
and the statistical table of the course variation is shown in Table 3. In the box chart, it can
be seen that the median of course variations in the Arctic waters is basically the same, but
the interquartile range of the course variation in the Antarctic waters is larger, indicating
that the course variation in the Antarctic waters is more scattered.

Figure 6. Box plot of the ship’s course variations in polar waters.

Table 3. Statistics of the ship’s course variations in polar waters.

Minimum Maximum Mean S.D. Median Mode Count

Antarctic
waters −163.60 179.70 2.95 68.52 1.95 −20.00 218

Arctic waters −179.30 179.80 −0.13 54.62 0.00 −3.20 3176
Polar waters −179.30 179.80 0.07 55.61 0.00 −3.20 3394

From the statistical table, the mean of the ship’s course variation in Antarctic waters
deviates more from 0◦ than in Arctic waters, the median and mode also deviate more from
0◦, and the standard deviation is larger than in Arctic waters. The ship’s course variation is
more scattered, and the variation is greater.
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4.2. Correlation Analysis between Sea Ice Conditions and Ship Movement Characteristics
4.2.1. Correlation Analysis between Sea Ice Concentration and Ship
Movement Characteristics

A bivariate correlation analysis was carried out on various types of sea ice concentra-
tions and ship movement parameters. After testing, each variable’s data does not conform
to the normal distribution, so Pearson’s correlation analysis cannot be used. Moreover,
because the navigation parameters are not ordered variables, it is also inappropriate to
use Kendall’s tau-b correlation coefficient. Therefore, this study used the Spearman cor-
relation analysis method to calculate the Spearman correlation coefficient and conduct a
significance test.

The results of the correlation analysis between sea ice concentration and ship move-
ment parameters are shown in Table 4 and Figure 7a.

Table 4. The correlation coefficient between sea ice concentration and ship movement characteristics.

Spearman’s Correlation Coefficient Ct Ca Cb Cc

Ship speed
Correlation Coefficient −0.489 ** −0.427 ** −0.318 ** −0.224 **

Sig. (2-tailed) 0 0 0 0
N 3394 3394 3394 3394

Ship speed
variation

Correlation Coefficient −0.094 ** −0.080 ** −0.059 ** −0.033
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

The absolute value
of ship speed

variation

Correlation Coefficient 0.126 ** 0.132 ** 0.110 ** 0.011
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

Ship course
variations

Correlation Coefficient −0.018 −0.007 −0.025 −0.009
Sig. (2-tailed) 0.291 0.671 0.151 0.618

N 3394 3394 3394 3394

The absolute value
of ship course

variations

Correlation Coefficient 0.257 ** 0.260 ** 0.129 ** 0.066 **
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

**. Correlation is significant at the 0.01 level (2-tailed).

 
(a) (b) 

Figure 7. The correlation coefficient. (a) The correlation coefficient between sea ice concentration
and ship movement characteristics; (b) the correlation coefficient between sea ice thickness and
ship speed.
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It can be seen in Table 4 and Figure 7a that total sea ice concentration, Type A sea ice
concentration, and ship speed have a significant and moderately negative correlation. Type
B sea ice concentration, Type C sea ice concentration, and ship speed have a significant
and low negative correlation. Total sea ice concentration, Type A sea ice concentration,
and Type B sea ice concentration are all significantly negatively correlated with ship speed
variation. Total sea ice concentration, Type A sea ice concentration, and Type B sea ice
concentration are all also significantly positively correlated with the absolute value of
ship speed variation. The absolute value of the correlation coefficient with the latter is
greater than with the former, indicating that the correlation degree between total sea ice
concentration, Type A sea ice concentration, Type B sea ice concentration, and the absolute
value of the speed variation is greater than the correlation with the speed variation. There
is no significant correlation between total sea ice concentration and ship course variation.
Still, all sea ice concentrations have a significant weak positive correlation with the absolute
value of ship course variation.

4.2.2. Correlation Analysis between Sea Ice Thickness and Ship Movement Characteristics

The correlation analysis results between sea ice thickness and ship movement charac-
teristics are shown in Table 5 and Figure 7b.

Table 5. The correlation coefficient between sea ice thickness and ship speed.

Spearman’s Correlation Coefficient ThAVG Tha Thb Thc

Ship speed
Correlation Coefficient −0.328 ** −0.334 ** −0.375 ** −0.225 **

Sig. (2-tailed) 0 0 0 0
N 3394 3394 3394 3394

Ship speed
variation

Correlation Coefficient −0.028 −0.028 −0.031 −0.026
Sig. (2-tailed) 0.104 0.102 0.074 0.131

N 3394 3394 3394 3394

The absolute value
of ship speed

variation

Correlation Coefficient 0.126 ** 0.132 ** 0.110 ** 0.011
Sig. (2-tailed) 0 0 0 0.516

N 3394 3394 3394 3394

Ship course
variations

Correlation Coefficient 0.001 −0.003 −0.015 −0.014
Sig. (2-tailed) 0.976 0.858 0.391 0.407

N 3394 3394 3394 3394

The absolute value
of ship course

variations

Correlation Coefficient 0.221 ** 0.209 ** 0.174 ** 0.085 **
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

**. Correlation is significant at the 0.01 level (2-tailed).

It can be seen in Table 5 and Figure 7b that there is no significant correlation between
the thickness of sea ice and ship speed variation. However, the average thickness of sea ice,
the thickness of Type A sea ice, the thickness of Type B sea ice, and the absolute value of ship
speed variation show a significant and weak positive correlation. There is no significant
correlation between sea ice thickness and ship course variation. Still, each type of sea
ice thickness has a significant and weak positive correlation with ship course variations’
absolute value.

4.2.3. Correlation Analysis between Sea Ice Concentration and Sea Ice Thickness

The relationship between sea ice conditions’ characterizing factors was analyzed to
explore the relationship between sea ice conditions and ship movement characteristics. The
bivariate correlation analysis of various types of sea ice concentration and sea ice thickness
was carried out, and the analysis results are shown in Table 6 and Figure 8.
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Table 6. The correlation coefficient between sea ice concentration and sea ice thickness.

Spearman’s Correlation Coefficient ThAVG Tha Thb Thc

Ct

Correlation Coefficient 0.597 ** 0.602 ** 0.609 ** 0.356 **
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

Ca

Correlation Coefficient 0.551 ** 0.541 ** 0.478 ** 0.179 **
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

Cb

Correlation Coefficient 0.493 ** 0.527 ** 0.693 ** 0.330 **
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

Cc

Correlation Coefficient 0.301 ** 0.292 ** 0.465 ** 0.932 **
Sig. (2-tailed) 0 0 0 0

N 3394 3394 3394 3394

**. Correlation is significant at the 0.01 level (2-tailed).

Figure 8. The correlation coefficient between sea ice concentration and sea ice thickness.

The total sea ice concentration is significantly positively correlated with the thickness
of various sea ice types, especially with the average sea ice thickness, Type A sea ice
thickness, and Type B sea ice thickness. Type A sea ice concentration has a significant and
positive correlation with the thickness of various sea ice types. There is a significant and
moderate positive correlation with the average sea ice thickness, Type A sea ice thickness,
and Type B sea ice thickness.

Type B sea ice concentration is significantly positively correlated with the thickness of
various sea ice types. The average sea ice thickness, Type A sea ice thickness, and Type B
sea ice thickness are significantly positively correlated. Type C sea ice concentration has
a significant and positive correlation with the thickness of various sea ice types. It has
a strong positive correlation with the thickness of Type C sea ice and a significant and
moderate positive correlation with Type B sea ice thickness.

4.2.4. Partial Correlation Analysis between Sea Ice Conditions and Ship
Movement Characteristics

In view of the fact that there is a positive correlation between sea ice concentration
and sea ice thickness, which characterize sea ice conditions, a partial correlation analysis
method was used to analyze the relationship between sea ice conditions and ship movement
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characteristics. The partial correlation analysis result is shown in Tables 7 and 8 and
Figure 9a,b.

Table 7. Partial correlation analysis between sea ice conditions and ship movement characteristics
with the control variable of ice thickness.

Control
Variable

Spearman’s Correlation Coefficient Ct Ca Cb Cc

ThAVG Ship speed
correlation coefficient −0.393 ** −0.333 ** −0.190 ** −0.141 **

Sig. (2-tailed) 0 0 0 0
N 3391 3391 3391 3391

Tha Ship speed
correlation coefficient −0.395 ** −0.335 ** −0.181 ** −0.148 **

Sig. (2-tailed) 0 0 0 0
N 3391 3391 3391 3391

Thb
Ship speed
variation

correlation coefficient −0.076 ** −0.062 ** −0.035 * −0.02
Sig. (2-tailed) 0 0 0.04 0.254

N 3391 3391 3391 3391

Thc
Ship speed
variation

correlation coefficient −0.074 ** −0.060 ** −0.033 −0.019
Sig. (2-tailed) 0 0 0.051 0.263

N 3391 3391 3391 3391

ThAVG

The absolute
value of ship

speed variation

correlation coefficient −0.006 0.013 −0.014 −0.032
Sig. (2-tailed) 0.74 0.449 0.411 0.063

N 3391 3391 3391 3391

Tha

The absolute
value of ship

speed variation

correlation coefficient −0.006 0.013 −0.016 −0.031
Sig. (2-tailed) 0.742 0.436 0.346 0.073

N 3391 3391 3391 3391

ThAVG
Ship course

variation

correlation coefficient −0.031 −0.017 −0.027 −0.023
Sig. (2-tailed) 0.074 0.312 0.114 0.176

N 3391 3391 3391 3391

Tha
Ship course

variation

correlation coefficient −0.027 −0.014 −0.025 −0.022
Sig. (2-tailed) 0.118 0.409 0.146 0.204

N 3391 3391 3391 3391

ThAVG

The absolute
value of ship

speed variation

correlation coefficient −0.006 0.013 −0.014 −0.032
Sig. (2-tailed) 0.74 0.449 0.411 0.063

N 3391 3391 3391 3391

Tha

The absolute
value of ship

course variation

correlation coefficient 0.170 ** 0.206 ** 0.006 −0.015
Sig. (2-tailed) 0 0 0.737 0.38

N 3391 3391 3391 3391

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

Table 8. Partial correlation analysis between sea ice conditions and ship movement characteristics
with the control variable of ice concentration.

Control
Variable

Spearman’s Correlation Coefficient ThAVG Tha Thb Thc

Ct Ship speed
correlation coefficient −0.033 −0.028 −0.042 * −0.018

Sig. (2-tailed) 0.057 0.103 0.015 0.298
N 3391 3391 3391 3391

Ca Ship speed
correlation coefficient −0.107 ** −0.107 ** −0.147 ** −0.130 **

Sig. (2-tailed) 0 0 0 0
N 3391 3391 3391 3391

Ct
Ship speed
variation

correlation coefficient 0.026 0.022 0.032 0.006
Sig. (2-tailed) 0.131 0.2 0.064 0.732

N 3391 3391 3391 3391
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Table 8. Cont.

Control
Variable

Spearman’s Correlation Coefficient ThAVG Tha Thb Thc

Ca
Ship speed
variation

correlation coefficient 0.013 0.008 0.013 −0.011
Sig. (2-tailed) 0.461 0.634 0.448 0.528

N 3391 3391 3391 3391

Ct

The absolute
value of ship

speed variation

correlation coefficient 0.036 * 0.036 * −0.012 0.008
Sig. (2-tailed) 0.034 0.035 0.49 0.625

N 3391 3391 3391 3391

Ca

The absolute
value of ship

speed variation

correlation coefficient 0.028 0.029 −0.013 0.01
Sig. (2-tailed) 0.097 0.097 0.454 0.559

N 3391 3391 3391 3391

Ct
Ship course

variation

correlation coefficient 0.019 0.012 0.007 −0.007
Sig. (2-tailed) 0.277 0.485 0.701 0.672

N 3391 3391 3391 3391

Ca
Ship course

variation

correlation coefficient 0.01 0.003 −0.002 −0.013
Sig. (2-tailed) 0.563 0.841 0.918 0.445

N 3391 3391 3391 3391

Ct

The absolute
value of ship

course variation

correlation coefficient 0.050 ** 0.041 * −0.031 −0.013
Sig. (2-tailed) 0.003 0.016 0.073 0.443

N 3391 3391 3391 3391

Ca

The absolute
value of ship

course variation

correlation coefficient 0.052 ** 0.046 ** 0.001 0.032
Sig. (2-tailed) 0.002 0.007 0.962 0.059

N 3391 3391 3391 3391

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

 
(a) (b) 

Figure 9. Partial correlation analysis. (a) Partial correlation analysis between sea ice conditions
and ship movement characteristics with the control variable of ice thickness; (b) partial correlation
analysis between sea ice conditions and ship movement characteristics with the control variable of
ice concentration.

(1) Partial correlation analysis between sea ice conditions and ship speed
While controlling for Ct, there is almost no significant correlation between ship speed

and sea ice thickness. While controlling for Ca, the speed and the thickness of various sea
ice types show a significant and weak negative correlation. While controlling for ThAVG,
the speed and various types of sea ice concentration all show significant and weak negative
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correlations. While controlling for Tha, the speed and various types of sea ice concentration
all show significant and weak negative correlations.

(2) Partial correlation analysis between sea ice conditions and ship speed variations
While controlling for Ct, there is no significant correlation between the speed variations

and the sea ice thickness. While controlling for Ca, there is no significant correlation
between the speed variations and the sea ice thickness. While controlling for ThAVG, there
are significant and weak correlations between ship speed variations and total sea ice
concentration, Type A sea ice concentration, and Type B sea ice concentration, but there
is no significant correlation with Type C sea ice concentration. While controlling for Tha,
the speed variations have significant and weak correlations with total sea ice concentration
and Type A sea ice concentration but do not significantly correlate with Type B and Type C
sea ice concentration.

(3) Partial correlation analysis between sea ice conditions and the absolute value of
speed variations

While controlling for Ct, ship speed variations’ absolute value has a significant and
weak correlation with sea ice’s average thickness and Type A sea ice thickness. Still, it
does not significantly correlate with the thickness of Type B and Type C sea ice. While
controlling for Ca, the absolute value of the speed variations does not significantly correlate
with the thickness of various sea ice types. While controlling for ThAVG, the absolute value
of the speed variations does not significantly correlate with the concentration of various
sea ice types. While controlling for Tha, the absolute value of the speed variations does not
significantly correlate with the concentration of various sea ice types.

(4) Partial correlation analysis between sea ice conditions and ship course variations
While controlling for Ct, there is no significant correlation between ship course vari-

ations and the thickness of various sea ice types. While controlling for Ca, ship course
variations have no significant correlation with the thickness of various sea ice types. While
controlling for ThAVG, there is no significant correlation between ship course variations and
the concentration of various sea ice types. While controlling for Tha, there is no significant
correlation between ship course variations and the concentration of various sea ice types.

(5) Partial correlation analysis between sea ice condition and the absolute value of ship
course variations

While controlling for Ct, ship course variations’ absolute value has a significant and
weak positive correlation with sea ice’s average thickness and Type A sea ice thickness.
Still, it does not significantly correlate with the thickness of Type B and Type C sea ice.
While controlling for Ca, the absolute value of ship course variations is significantly and
positively correlated with the average sea ice thickness and the thickness of Type A sea ice,
but not significantly correlated with the thickness of the Type B and Type C sea ice. While
controlling for ThAVG, the absolute value of ship course variations does not significantly
correlate with the concentration of various sea ice types. While controlling for Tha, the
absolute value of ship course variations is significantly and positively correlated with sea
ice concentration and Type A sea ice concentration, but not significantly correlated with
Type B and Type C sea ice concentration.

5. Discussion

5.1. Ship Movement Characteristics in Polar Waters

The ship movement characteristics in icy waters are a reference value for ship design
and management. This study extracts the ship movement characteristics in the Arctic and
Antarctic icy waters based on statistical data.

(1) Frequent changes in speed
The speed distribution chart in Figure 3 and the speed variation box chart in Figure 4

show that the speed distribution of the “XUE LONG” ship is relatively scattered, and the
speeds vary more frequently. This may be due to the narrow navigable waters between
the ice, the ship’s change of heading being hindered, or the ship needing to break the ice,
which usually requires the ship to keep changing speed.
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(2) Frequent changes in the course
From the ship’s course rose chart in Figure 5 and the course variation box chart in

Figure 6, it can be seen that the course distribution of the “XUE LONG” ship is relatively
scattered, and the course varies more frequently. A popular explanation is that to avoid icy
conditions, ships often have to change their course.

(3) Navigating at a low speed
The “XUE LONG” has a maximum speed of 17.9 knots. The average speed is lower

than 10 knots in actual navigation, and the speed is relatively low. Once the ship enters an
icy area, it will usually be prepared to slow down before the situation is determined.

(4) The difference exists between the Antarctic and Arctic routes
The Antarctic routes’ speeds are more concentrated, most of which are distributed in

the 8–12 knot range; the kurtosis of the speed distribution of the Arctic route is smaller
than that of the Antarctic route, and the speeds appear more frequently in the range of
2–12 knots. The Antarctic route’s average speed is nearly 2 knots higher than that of the
Arctic route, and the standard deviation of the speeds of the Arctic route is large, and the
speeds vary greatly. The distribution patterns of speed variations of different routes are
relatively similar, but the Antarctic route’s dispersion degree of speed variations is higher.
Whether in the Antarctic routes or the Arctic routes, the distribution of the courses of the
“XUE LONG” ship is relatively scattered, but the distribution of the course variation is
more concentrated and the left and right forms of the distribution curve are closer; the
course varies in the Antarctic routes because they are more scattered than the Arctic routes,
and the degree of change in course variation is greater.

5.2. The Influence of Sea Ice Conditions on Ship Movement Characteristics

This study shows that, in general, both sea ice concentration and sea ice thickness will
affect the speed and course variations of ships. Correlation analysis was carried out on
different sea ice conditions and the “XUE LONG” ship’s ship movement characteristics.
The main conclusions are as follows.

5.2.1. The Relationship between Sea Ice Concentration and Ship Movement Characteristics

(1) There is a significant negative correlation between sea ice concentration and ship
speed. This shows that the speed decreases with the increase in sea ice concentration and
vice versa. In the study presented by Montewka [16], the correlation coefficient between
speed and level ice concentration is −0.610, and the correlation coefficient between speed
and ridged ice concentration is −0.31; the correlation coefficient between speed and total
ice concentration calculated in this study is −0.489, which is between the above two values.
The negative correlation between sea ice concentration and ship speed can also be clearly
seen in the study’s time series of analyzed parameters.

(2) The sea ice concentration has a significant negative correlation with speed variation.
In contrast, it has a significant and weak positive correlation with the absolute value of
speed variation, and the correlation degree is greater than the correlation with the speed
variation. With the increase in sea ice concentration, the magnitude of speed variation
increases, and the direction of speed variation can be decelerated or accelerated.

(3) There is no significant correlation between sea ice concentration and course vari-
ation. Still, the concentrations of all sea ice types have a significant and weak positive
correlation with the absolute value of course variation. As the concentration of sea ice
increases, the course variation’s magnitude increases, but the course variation’s direction
is uncertain.

5.2.2. The Relationship between Sea Ice Thickness and Ship Movement Characteristics

(1) The thickness of all sea ice types has a significant and weak negative correlation
with ship speed. This shows that the ship’s speed decreases with the increase in sea ice
thickness and vice versa. In the study by Montewka [16], the correlation coefficient between
speed and level ice thickness is −0.120, and the correlation coefficient between speed and
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rafted ice thickness is −0.500. The correlation coefficient between speed and average
ice thickness calculated in this study is −0.328, which is between the above two values.
The negative correlation between sea ice thickness and ship speed can also be found in
the h–V curve, which describes the ship’s maximum speed in level ice in the study by
Izumiyama [38].

(2) There is no significant correlation between sea ice’s average thickness and speed
variation. However, the average thickness, Type A sea ice thickness, and Type B sea ice
thickness are all positively correlated with the speed variation’s absolute value; as the
thickness of sea ice increases, the magnitude of speed variation increases.

(3) There is no significant correlation between sea ice thickness and course variation.
Still, all sea ice thickness types have a significant and weak positive correlation with the
absolute value of course variation. As the thickness of sea ice increases, the magnitude of
course variation increases.

5.2.3. The Correlation between Sea Ice Concentration and Sea Ice Thickness

The overall sea ice concentration has a significant positive correlation with the thick-
ness of various sea ice types. The average sea ice thickness, Type A sea ice thickness, and
Type B sea ice thickness have a significant and moderate positive correlation, which can be
explained by reduced horizontal melting for thicker ice.

5.2.4. Partial Correlation Analysis between Sea Ice Conditions and Ship
Movement Characteristics

Since sea ice concentration and sea ice thickness have a significant positive correlation,
a partial correlation analysis of sea ice conditions and ship movement characteristics was
performed. Excluding sea ice concentration, sea ice thickness has almost no significant
correlation with ship movement characteristics; excluding the influence of sea ice thickness,
sea ice concentration is still significantly correlated with the absolute value of speed, speed
variation, and course variation. That is to say, when the sea ice concentration is high,
the speed of the ship will be reduced, and the magnitude of the course will be increased.
Overall this can be explained by the fact that the ship tends to navigate in more open waters
with the same ice thickness.

5.3. Shortcomings and Prospects

The data sampling in this study is not equal in the Antarctic and Arctic routes. The
data collection and analysis need to be improved to further analyze the difference in
ship movement characteristics in the Antarctic and Arctic routes. There may be errors in
the observation data itself, and the data should be verified and preprocessed to improve
accuracy. In addition to the sea ice concentration and sea ice thickness discussed in this
study, the effects of sea ice types, etc., need to be further studied.

6. Conclusions

In this paper, we introduced a correlation analysis model for ice conditions and ship
motion characteristics. The original work on correlation analysis was first developed
since the complexity of Arctic navigation and the lack of sufficient navigational experience
may make it difficult to discern the relationship between all the factors that influence
the ship movement characteristics. The whole correlation analysis model consists of two
sub-processes: one is multivariate correlation analysis and the other is univariate controlled
correlation analysis. With regard to the former, the Spearman correlation method was
chosen because it is more suitable for determining the degree of correlation between two
variables in the case of ordinal data, and is applicable to the actual voyage and ice data used
in this paper. According to the analysis result, the correlation coefficient between speed
and total ice concentration calculated in this paper is −0.489. The sea ice concentration
has a significant negative correlation with the speed variation and the concentrations of all
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sea ice types have a significant and weak positive correlation with the absolute value of
course variation.

Since the relationships between multivariate variables is very complex, the ship move-
ment characteristics may be affected by more than one variable. In order to further explore
the relationship between ice conditions and ship movement characteristics, a univariate
controlled correlation analysis was developed based on the multivariate correlation analy-
sis. The results show that excluding sea ice concentration, sea ice thickness has almost no
significant correlation with ship movement characteristics. Excluding the influence of sea
ice thickness, sea ice concentration is still significantly correlated with the absolute value of
speed, speed variation, and course variation. The conclusions of this work have important
reference significance for polar scientific investigations, commercial ships’ voyages in icy
waters, and ships’ designs for icy waters. Notwithstanding this, there are certain limitations
that require further effort in future research. First of all, the input parameters of the current
correlation analysis model would benefit from including a greater number of related com-
ponents, such as flow velocity, flow direction, wind conditions, etc., which would facilitate a
more comprehensive analysis of the ship movement characteristics in polar waters. Second,
since the current study is based on the “XUE LONG” ship and the data are not extensive
enough, the next step is to try to obtain more data from different types of ships. Finally, the
relationship between ship motion characteristics and icy conditions in polar waters is not
only a static correlation analysis problem but also feedback on ship maneuvers. This means
that the next research effort will combine the captain’s maneuvering and decision-making
processes in polar waters to provide a practical reference for more ships attempting to
navigate Arctic routes.
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Abstract: The international trade heavily relies on maritime transportation. Due to the vastness of
the ocean, once an accident happens, fast maritime search and rescue (MSR) is a must, as it is of
life-and-death matter. Using unmanned air vehicles (UAVs) is an effective approach to completing
complex MSR tasks, especially when the environment is dangerous and changeable. However, how
to effectively plan paths for multi-UAVs under severe weather, e.g., to rescue the most urgent targets
in the shortest time, is a challenging task. In this study, an improved NSGA-II based on multi-task
optimization (INSGA-II-MTO) is proposed to plan paths for multi-UAVs in the MSR tasks. In the
INSGA-II-MTO, a novel population initialization method is proposed to improve the diversity of an
initial population. Further, two tasks are introduced during the execution of the search algorithm.
Namely, one assistant task, which solves a simplified MSR problem through multi-task optimization,
is implemented to provide necessary evolutional knowledge to a main task that solves an original
MSR problem. The performance of the proposed INSGA-II-MTO is compared with other competitors
in three MSR scenarios. Experimental results indicate that the proposed algorithm performs best
among the compared ones. It is observed that the INSGA-II-MTO can find a set of shorter total paths
and handle the most urgent task in the shortest possible time. Therefore, the proposed method is an
effective and promising approach to solving multi-UAVs MSR problems to reduce human causalities
and property losses.

Keywords: maritime search and rescue; path planning; unmanned air vehicle; multi-objective
optimization; non-dominated sorting genetic algorithm-II; multi-task optimization

1. Introduction

With the rapid development of the global economy and trade, the throughput and
scale of cargo transportation between countries have sharply increased in recent years. Due
to the low freight, large transport capacity, and strong adaptability, maritime transportation
is playing an increasingly important role in cargo transportation [1,2]. However, because of
the rough and unpredictable marine environment due to the ever-change weather, maritime
accidents occur frequently [3], which has caused many human causalities [4], huge property
losses [5], and terrible damages to the marine ecological environment [6].

To carry out the MSR tasks in complex marine environments, assigning manual driving
ships is a traditional way, which has many limitations, such as high cost, low efficiency,
and poor applicability. In comparison, using UAVs is a much more promising and effective
method to solve MSR problems due to high mobility, wide view field, and no risk of
injury or death [7,8]. More importantly, UAVs can adapt to various challenging marine
environments. Until now, a large number of related studies have been proposed. For
example, Raap et al. [9] proposed a novel model to achieve search-trajectory planning
for a single dynamic target. Kilic and Mostarda [10] proposed a new framework for path
planning by optimizing the charging station grid to use a single UAV to reach multiple
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static ships. To further make the planned path more suitable and realistic for MSR tasks, a
weight related to the path based on the time of accident is introduced into the Ant Colony
Optimization (ACO) [11]. It is worth noting that the best path obtained by the improved
ACO may not be the shortest. However, a single UAV can only complete a limited number of
tasks, and its efficiency is often low. Therefore, some research has focused on implementing
a group of UAVs. For example, Yang et al. [12] proposed a cognitive mobile computing
network composed of UAVs and unmanned surface vehicles (USVs) for collaborative MSR
tasks. An iteration of the Markov decision process (MDP) is used in sub-areas to find
the paths with the highest reward for multiple pieces of equipment. The experimental
results show that this method can successfully avoid obstacles and find an optimal path.
Subsequently, some studies pointed out that there should be priorities according to urgency
level or high-value tasks among different MSR tasks [13,14]. Furthermore, Huang et al. [15]
proposed a multi-objective maritime patrolling problem, in which the vessels that need to
be visited are regarded as circular areas. Then, a novel method inspired by the immune-
endocrine short feedback system is proposed to solve the problem. Compared with other
algorithms, the proposed algorithm showed good global and local search abilities for a
given instance.

Although the existing studies can effectively solve MSR problems, they considered a
relatively simple marine environment model with relatively few MSR targets. Generally,
the solution complexity of multi-objective MSR problems increases exponentially with the
increased number of tasks. Additionally, the previous study [16] pointed out that severe
weather is a key factor causing marine accidents. Therefore, the present study aims to
propose an advanced algorithm to solve complex multi-objective MSR problems under
severe weather conditions.

To implement the above objective, the path planning problems of multi-objective
MSR under severe weather are proposed in the present study. Moreover, an improved
NSGA-II based on multi-task optimization (INSGA-II-MTO) is proposed. In the INSGA-
II-MTO, a novel population initialization method is proposed to improve population
diversity. Additionally, a multi-task optimization method, which can share knowledge
among different tasks, is incorporated into the improved NSGA-II. Specifically, the original
MSR problem is considered the main task, and a simplified MSR problem is used as the
assistant task. The performance of the proposed INSGA-II-MTO is compared with the
other two competitors in three test scenarios. The simulation results demonstrate that the
INSGA-II-MTO is superior to the compared algorithms in three MSR scenarios. Therefore,
the proposed algorithm is an effective and competitive approach to solving complex multi-
objective MSR problems under severe weather.

The main contributions of this study are as follows: (1) the complex multi-objective
MSR problems under severe weather are proposed. Different from previous studies, the
number of tasks is more; (2) an improved NSGA-II based on multi-task optimization
(INSGA-II-MTO) is proposed, where the multi-task optimization method is used to share
knowledge among different tasks to speed up the convergence of the algorithm.

The rest of this paper is organized as follows. Section 2 introduces some preliminary
knowledge of multi-objective optimization problems. Section 3 reviews the related lit-
erature on MSR. The problem definition and mathematical model of the multi-objective
MSR are given in Section 4. Section 5 describes the proposed INSGA-II-MTO. Section 6
demonstrates the effectiveness of this proposed algorithm in solving multi-objective MSR
through comparison with other algorithms on three testing examples. Conclusions are
shown in Section 7.

2. Preliminary Knowledge

2.1. Multi-Objective Optimization Problem

A multi-objective optimization problem (MOP) involves multiple conflicting objectives
that need to be optimized concurrently. Moreover, these objectives cannot be achieved
optimally at the same time [17].
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Without loss of generality, the minimization MOP can be mathematically described as:

minf (x) = ( f1(x), f2(x), . . . , fM(x))T (1)

where x = (x1, x2, . . . , xD) ∈Ω is a D-dimensional decision variable; Ω ⊂ R
D is the

decision space; f (x) is an objective vector with M objective functions; f (x) ⊂ R
M is the

objective vector.
Some basic concepts of MOP are described as follows [18–20]:

Definition 1. Dominant relationship. Suppose two variables u = (u1, u2, . . . , uD), v= (v1, v2, . . . , vD),
u is called to dominate v (denoted as u  v) if and only if u is no more than v, that is:

u  v ⇔ ∀d ∈ Φ, uk ≤ vk ∧ ∃b ∈ Φ, uh < vh (2)

where Φ = (1, 2, . . . , D)

Definition 2. Pareto optimal solution set. Assuming a solution x*∈Ω, x* is called to be a Pareto
optimal solution if and only if there are not any x satisfy f (x)  f (x*). All of Pareto optimal
solutions compose a Pareto optimal set (PS), marked as X∗.

Definition 3. Pareto front. The objective vector corresponding to the PS in the object space is called
the Pareto frontier (PF), represented as PF = {f (x*) |x* ∈ X*}.

To evaluate the performance of multi-objective evolutionary algorithms (MOEAs),
various performance indicators have been proposed [21,22]. Two commonly used per-
formance metrics are applied in the current study, i.e., the Hypervolume (HV) and the
Non-dominance ratio (NR). The HV proposed by Zitzler and Thiele [23] is a comprehensive
performance metric, which can evaluate the convergence and diversity of the PF approxi-
mation at the same time. A larger HV value means that the algorithm performance is better.
Moreover, the NR proposed by Goh and Tan [24] is used to evaluate which MOEA can find
more Pareto solutions. A larger NR means that the algorithm performance is better.

2.2. Non-Dominated Sorting Genetic Algorithm-II

The Non-dominated Sorting Genetic Algorithm (NSGA-II) [25] is one of the most
popular MOEAs, and has been successfully used to solve MOPs in various fields [26,27].
The main steps of the NSGA-II are as follows [28]:

First, generate the initial population P randomly and calculate the fitness value of
each individual. Then, the offspring population OP is generated by the binary tournament
selection [25], crossover and mutation strategies. For the integer-coded NSGA-II, the two-
point crossover and multi-point mutation operator [29] are commonly adopted to generate
offspring individuals. For the real-coded NSGA-II, the Simulated Binary Crossover (SBX)
and polynomial mutation (PM) [30] operator are commonly used to produce offspring
individuals. Note that the SBX is an operator simulating single-point binary crossover.
Assuming that x1 = (x1

1, x1
2, . . . , x1

D) and x2 = (x2
1, x2

2, . . . , x2
D) are two parent individuals,

two offspring individuals c1 = (c1
1, c1

2, . . . , c1
D) and c2 = (c2

1, c2
2, . . . , c2

D) can be obtained by
the SBX: {

c1
k = 0.5× [(1 + β) · x1

k + (1− β) · x2
k
]

c2
k = 0.5× [(1− β) · x1

k + (1 + β) · x2
k
]

β =

⎧⎨⎩ (2× rand)
1

1+ηc , rand ≤ 0.5(
1

2(1−rand)

) 1
1+ηc , otherwise

(3)

where rand is a random number between 0 and 1; k is an integer between 1 and D; ηc is a
customization parameter.
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The mathematical formula of the PM is as follows:

x1
k = x1

k + Δt

Δt =

{
(2× rand)

1
1+ηu − 1, rand < 0.5

1− [2× (1− rand)]
1

1+ηu , otherwise

(4)

where ηu is a customization parameter.
Next, the parent and offspring populations are merged to form Pall, which is sized 2NP.

Subsequently, the non-dominated sorting and crowding distance method [25] are used to
select NP individuals from Pall to obtain a new parent population. Repeat these steps until
the termination conditions are met. The pseudocode of NSGA-II is given in Algorithm 1.

Algorithm 1: NSGA-II

Input: Population size: NP; maximum generation: G
1: Generate and evaluate the initial population P
2: Set G = 1
3: while termination criterion not satisfied do

4: OP← Generate offspring by crossover and mutation strategies
5: Pall ← OP ∪ P
6: P← Select NP individuals from Pall based on the non-dominated sorting and crowding distance
7: G = G + 1
8: end while

Output: The PS and PF

3. Literature Review

To reduce the damages caused by maritime accidents and complete the MSR tasks, a
large number of methods have been proposed in previous studies. As MSR stations are
often set up on coastal lands and far from the accident scenes, determining their locations
is an optimization problem. Namely, selecting appropriate MSR stations can improve the
MSR capability and reduce potential losses. Zhou et al. [31] proposed a new framework
to plan the locations of the MSR stations. First, the response time of candidate islands,
which are determined according to potential demands, can be calculated. Then, the best
islands are selected as the MSR stations by solving the maximal covering location problem
(MCLP). Experimental results indicate that this method can improve the primary coverage
and reduce rescue time. Peng et al. [32] proposed a hybrid algorithm, in which the tabu
search algorithm is incorporated into the ACO to solve a bi-level programming model
of the location-routing problem. The proposed hybrid algorithm performs better than
the ACO.

Apart from the location optimization of MSR stations, a number of methods have
been proposed to support the planning of search areas. For example, Otote et al. [33]
proposed a decision-making model to implement an MSR plan based on the support of
optimal search theory. Specifically, they introduced the concept of density ratio and a
random detection function to improve the accuracy of probability of containment (POC)
and probability of detection (POD), respectively. Experiments confirm that the values
of POC and POD are obviously improved and can support MSR tasks. Based on the
above studies, Xiong et al. [34] proposed a time domain-based iterative planning (TIP)
method to plan the search areas. In the TIP, the probability map is updated based on the
mean drift direction in each iteration. Subsequently, an iterative search method is used to
determine the optimal search areas based on the grid with the highest POC in the map.
It was concluded that the probability of success (POS) of the search areas obtained by
the TIP is higher than other methods. However, the TIP may easily fall into local optima,
especially when the potential search area is large. To alleviate this issue, a method based
on the minimum bounding rectangle and K-means clustering (MBRK) is proposed [35].
In the MBRK, the K-means clustering method is used to divide the potential locations of
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survivors into multiple regions. Moreover, the minimum bounding rectangle is used to
generate probability maps for each region. Finally, the optimal search areas can be further
optimized by adding or subtracting multiple cells. Simulation experiments confirm that
MBRK can further improve the POS values of the search areas.

Apart from the above studies in the MSR, task allocation and path planning are
also two key tasks. For task allocation, Ai et al. [36] proposed a regional task allocation
algorithm to quickly respond to maritime accidents. The proposed method considers
both the temporal and spatial characteristics of task assignment. Based on experimental
tests, the proposed algorithm can avoid repeated searches and improve MSR efficiency.
For path planning, Cho et al. [37] proposed a two-stage coverage path planning (CPP)
method for multiple UAVs to minimize the completion time. In the first stage, a grid-based
decomposition method is used to decompose the search area into squares. In the second
stage, a three-phases randomized search heuristic (RSH) algorithm is proposed to find
optimal paths in large-scale instances. Extensive numerical experiments show that the RSH
has a faster convergence speed than other methods. To make the moving direction more
diverse, Cho et al. [38] proposed a mixed-integer linear programming (MILP) model based
on a hexagonal grid-based decomposition method. According to the results, the proposed
model can obtain high-quality paths. However, Ho et al. [39] established new MSR route
models, which consider path length and people information in distress simultaneously.
Moreover, the grey relational analysis is used to quantify the people’s information and
then convert them into distance weight, which is combined with the distance matrix of
the Floyd–Warshall algorithm. The experiment shows that the model can be applied to
the actual decision-making situation to provide reasonable schemes. In addition, it should
be noted that task allocation and path planning are coupled in most cases. Therefore,
Yan et al. [40] proposed an improved particle swarm optimization combined with a genetic
algorithm (GA-PSO) to solve task allocation and path planning problems. Namely, the
partial matching crossover and second transposition mutation are introduced to improve
the performance. The simulation results show that this algorithm can improve the efficiency
of task allocation and path planning when compared with competitors. Except for the
application scenarios of MSR, some researchers have proposed search and rescue strategies
for other scenarios, which can be used as references for MSR. Yazdani et al. [41] proposed
using public transportation systems to improve evacuation capability in extreme weather
disasters. Gharib et al. [42] developed a comprehensive model to plan the delivery of
construction materials to post disaster reconstruction projects.

4. Multi-Objective Maritime Search and Rescue Problem under Severe Weather

Maritime accidents can cause huge damage and often occur under severe weather,
such as storms. Therefore, how to carry out MSR tasks efficiently in a complex environment
is important. However, the cost and time consumption of a task are usually conflicting
goals in a rescue operation. Additionally, people or vessels in a high-risk area need to be
visited as soon as possible. Therefore, a multi-objective MSR problem under severe weather
is considered in the current study.

4.1. Description of Multi-Objective MSR Problem under Severe Weather

In the current study, a scenario of one MSR station equipped with a group of UAVs is
used. If the MSR station receives signals for help from a vessel in danger, it will dispatch
UAVs to provide various necessary assistance as well as to collect real-time information
about the troubled vessel. This can help decision-makers develop the next rescue plans to
reduce damages and save time. After completing the MSR tasks, the UAVs return to the
MSR station. It should be noted that the UAV does not have to reach the exact position
of the vessel. However, the position where the UAV actually arrives must be within the
contact range of the vessel. Assuming that this position between the UAV and the vessel is
called a node, and then a task is considered successfully completed when the UAV reaches
a node. Additionally, a storm is considered in the current study. Therefore, the UAV should
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prioritize the vessels which are in the high-risk area affected by the storm. An example of
the problem is illustrated in Figure 1. As shown in Figure 1, two UAVs are dispatched to
accomplish the MSR tasks. One will visit two vessels, and another will visit three vessels.
Moreover, the red circle represents the high-risk area affected by the storm.

 

Figure 1. An example of multi-objective MSR problem under severe weather.

4.2. Mathematical Model of Multi-Objective MSR Problem under Severe Weather

Supposing that the position of an MSR station P is (xP, yP) and the number of UAVs is
n. Moreover, there are q vessels in distress. The coordinate and contact range of the i-th
vessel is represented as (xi, yi) and ri, respectively. The center position of the storm S is
(xs, ys) and its influencing radius is rS. The j-th UAV is assigned to visit a set of vessels.
Moreover, the nodes corresponding to these vessels are denoted as T(j), in which Ni is
denoted as the corresponding node of the i-th vessel. Therefore, all the targets visited by
the j-th UAV is W(j) = {P, T(j), P}.

Furthermore, Ei is used to determine whether the i-th vessel is within the influencing
scope of the storm. It is calculated by the following formula:

Ei =

{
1, diS < rS
0, oherwise

,

diS =
√
(xi − xS)

2 + (yi − yS)
2

(5)

where diS denotes the Euclidean distance between the i-th vessel and the center position of
the storm. If Ei = 1, the i-th vessel is within the influencing scope of the storm and should
be visited as soon as possible. Otherwise, the i-th vessel is relatively safe.

If the j-th UAV is assigned to visit the vessels which should be visited as soon as
possible, γjmax is represented as the order number of the last urgent vessel in the visiting
sequence. Therefore, the MSR station and the nodes of vessels whose order numbers are
before γjmax in j-th path compose a set G(j). Moreover, δuv ∈ {0, 1} is a binary variable,
which denotes the movement between the node u and v. If δuv = 1, it means that UAV
moves from node u to v. If δuv = 0, it means that there is no path between the two nodes.
Additionally, the duv stands for the Euclidean distance between the two nodes.
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Based on the research of Huang et al. [15], the objectives of the model of multi-objective
MSR problem under severe weather can be defined as follows:

minF = ( f1, f2, f3)

f1 =
n
∑

j=1
duvδuv, u, v ∈ W(j)

f2 = max
1≤j≤n

duvδuv, u, v ∈ W(j)

f3 = max
1≤j≤n

duvδuv, u, v ∈ G(j)

(6)

The f 1 is to minimize the total path length of multi-UAVs. The shorter the total path
length of UAVs, the less energy they consume. The f 2 aims at minimizing the total task
completion time, which is equivalent to minimizing the longest single path length. The
f 3 aims at minimizing the completion time of urgent tasks. That is, UAVs are required
to visit the vessels within the affected area of the storm as early as possible. Concretely,
it is represented to minimize the path length from the MSR station to the vessels which
need priority.

5. The Proposed Method

Solving multi-objective MSR problems is a difficult task, thus it is important to develop
advanced MOEAs. It is worth mentioning that multi-task optimization is considered an ef-
fective method to solve various complex optimization problems [43,44]. To effectively solve
multi-objective MSR problems, an improved NSGA-II based on multi-task optimization
(INSGA-II-MTO) is proposed in this study.

5.1. Encoding and Decoding Method

In this subsection, the encoding and decoding methods of the main and assistant tasks
are introduced. Moreover, a boundary-based encoding approach [45] is adopted since
it can reduce the size of the search space. The polar coordinate is used to represent the
node position.

Individual encoding of the main task: The individuals in the main task are all encoded
by real numbers, where each individual is 3× q. Moreover, the individual is divided into three
segments in the current study. The first segment (i.e., Chromosome Segment I) represents the
task allocation of UAVs. It consists of q integer numbers within the range of [1, n]. The second
segment (Chromosome Segment II) contains a series of vessel numbers, whose order will be
mapped to the visiting sequence in the UAV paths. It also consists of q integer numbers within
the range of [1, q]. To ensure that the UAVs traverse all vessels without repetition and omission,
all genes in Chromosome Segment II are different from each other. The locations of nodes are
indicated in the third segment (Chromosome Segment III), in which genes are represented
as angles between the vessels and nodes. The Chromosome Segment III is composed of q
floating-point numbers within the range of [0, 360]. An example of a main task containing
5 vessels and 3 UAVs is shown in Figure 2.

Figure 2. An example for encoding method of main task.

Individual encoding of the assistant task: Unlike the encoding of the main task, a
new encoding for the simplified MSR problem (i.e., the target is regarded as an ideal point)
is used. Therefore, the length of each individual in the assistant task is 2 × q. All the
individuals are encoded by integer numbers. Moreover, the individual is divided into two
segments. The first segment (i.e., Chromosome Segment I) represents the task allocation of
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UAVs, and the second segment (i.e., Chromosome Segment II) denotes the visiting sequence
of each UAV. An example of an assistant task containing 5 vessels and 3 UAVs is shown in
Figure 3.

Figure 3. An example of encoding method of assistant task.

Since the encoding method of the assistant task is the same as that of part of the main
task, the decoding methods of three chromosome segments in the main task are given
as follows:

Chromosome Segment I: Each gene represents the number of a UAV, i.e., which UAV
will visit the matching vessel. The same genes mean that these vessels are assigned to the
same UAV.

Chromosome Segment II: Each gene represents the number of a vessel. For a given
UAV, its visiting sequence is determined by the corresponding order in the Chromosome
Segment II.

Chromosome Segment III: Each node location is computed by the following formulas:

xNi = xi + ri cos θi
yNi = yi + ri sin θi

(7)

where θi is represented as the angle between the i-th vessel and its corresponding node; xNi
and yNi are the abscissa and ordinate of the node, respectively.

To further illustrate the decoding method of Chromosome Segments I and II, an
example is given in Figure 4. It can be seen from Figure 4a that, for the Chromosome
Segment I, UAV “2” visits one vessel, and UAVs “1” and “3” visit two vessels, respectively.
It should be noted that the MSR station does not necessarily dispatch all UAVs for MSR
tasks. For the Chromosome Segment II, the visiting sequence of UAV “2” is “0→1→0”;
the visiting sequences of the UAVs “1” and “3” are “0→3→2→0” and “0→4→5→0”,
respectively. All paths are shown in Figure 4b, where “0” is denoted as an MSR station.

(a) (b) 

Figure 4. The decoding method. (a) An individual for decoding. (b) The corresponding decoded paths.

5.2. Population Initialization Method

A good initial population can accelerate the convergence of the algorithm and improve
the quality of final solutions. Therefore, how to generate a high-quality initial population is
vital. Although a randomly generated population can enhance the exploration ability of
algorithms in the early stage, it has some limitations in solving MSR problems. Specifically,
the probability of generating Chromosome Segment I with identical genes via random
initializing is extremely small. Namely, it is hard to generate individuals that dispatch one
UAV to accomplish the MSR tasks. In addition, this probability will be further reduced
with the expansion of search space.

To alleviate the above problem, a two-stage population initialization method is pro-
posed, which is described as follows:
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Step 1: The total number of UAVs and population size is set to n and NP, respectively.
Generally, NP is much greater than n. The number of individuals of each particular type
is defined as Num = [NP/n]. Then Num individuals that dispatch one UAV and Num
individuals that dispatch two UAVs are generated, respectively.

Step 2: For the remaining individuals in the initial population, they are
generated randomly.

Figure 5 shows an example of the proposed initialization method containing 5 vessels
and 3 UAVs. It can be observed from Figure 5 that the first Num individuals are generated
to dispatch one UAV to complete the MSR tasks. The next Num individuals are generated
to dispatch two UAVs. Moreover, there is a wide variety of individuals among the rest of
the population.

Figure 5. The proposed population initialization method.

5.3. Knowledge Transfer in the Multi-Task Optimization

The multi-task optimization is an effective method to solve complex problems, thus it
is incorporated into the proposed algorithm to improve the performance in solving multi-
objective MSR problems. A main task and an assistant task are used in the INSGA-II-MTO.
The schematic diagrams of the original and simplified MSR tasks are shown in Figure 6. It
can be seen from Figure 6a that the main task focuses on solving the original MSR problems.
Figure 6b shows that the visiting target can be considered as an ideal point by ignoring the
contact range, thus the assistant task can focus on solving the simplified MSR problem.

(a) (b) 

Figure 6. The scenes of the original and simplified MSR tasks. (a) The scene of the original MSR task.
(b) The scene of the simplified MSR task.
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According to Section 5.1, the encoding methods of these two tasks are not identical.
Therefore, the knowledge between the main task and the assistant task cannot be transferred
directly. To illustrate the transfer process, an example is given in Figure 7.

 

Figure 7. The transfer process of multi-task optimization. The symbol “*” denotes the chromosome
segment comes from a main task individual.

Knowledge transfer from main task to assistant task: As mentioned in Section 5.1,
the individual in the main task has three parts (i.e., Chromosome Segments I, II, and
III), while there are two components of the individual in the assistant task. Therefore,
if the knowledge of the main task is transferred to the assistant task, then the third part
(i.e., Chromosome Segment III) should be deleted. It can be observed from Figure 7 that,
to achieve knowledge transfer from the main task to the assistant task, the Chromosome
Segment III of the individual in the main task is deleted to obtain a transferred individual,
which can help the assistant task.

Knowledge transfer from assistant task to main task: The first two parts of indi-
viduals between two tasks are versatile. However, individuals in the assistant task do
not contain the third part. Therefore, if the knowledge of the assistant task is transferred
to the main task, the third part of the individual in the main task can be added to the
transferred individual. It can be observed from Figure 7 that a Chromosome Segment
III is randomly selected as a reference from the PS of the main task, which can provide
high-quality node information. Then, combine this Chromosome Segment III with the
assistant task individual to form a transferred individual.

5.4. The Overall Process of the INSGA-II-MTO

In the INSGA-II-MTO, the main task and the assistant task are incorporated to im-
prove the NSGA-II. It optimizes the main task and the assistant task independently and
simultaneously, and the two tasks are expected to assist each other during the search
process through a knowledge transfer process in multi-task optimization. Its pseudocode
is described in Algorithm 2.

In line 1, generate the initial populations P1 and P2 with NP individuals according to
the proposed initialization method. In line 2, all individuals in P1 are evaluated via the
original multi-objective MSR problem; in line 3, all individuals in P2 are evaluated via the
simplified multi-objective MSR problem.

Next, the main loop begins. In lines 5–6, select NP/2 individuals from P1 and P2 via
the binary tournament method, which are denoted as MP1 and MP2. Then, the SBX and
PM are adopted to generate an offspring population OP1 sized NP/2 in line 7; the two-
point crossover and multi-point mutation operator are adopted to generate an offspring
population OP2 sized NP/2 in line 8. After generating two offspring populations, in
lines 9–10, OP1 and OP2 are evaluated via the original multi-objective and simplified
multi-objective MSR problem, respectively. Subsequently, knowledge sharing between two
tasks is achieved by transferring individuals. In line 11, generate OP1new as a transferred
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population by deleting the Chromosome Segment III in OP1; in line 12, generate OP2new
as another transferred population by randomly adding the Chromosome Segment III to
the individual in OP2. In lines 13–14, P1, OP1 and OP2new are combined as P1all; P2, OP2
and OP1new are combined as P2all. Next, in lines 15–16, NP individuals are selected from
P1all and P2all for the next iteration according to the non-dominated sorting and crowding
distance, respectively. Finally, the PS and PF of the main task is output when the termination
condition is satisfied.

Algorithm 2: INSGA-II-MTO

Input: Population size: NP; maximum generation: Gmax; population of the main task: P1;
population of the assistant task: P2
1: Initialize P1 and P2 of size NP via the proposed initialization method in Section 5.2
2: Evaluate P1 on the original multi-objective MSR
3: Evaluate P2 on the simplified multi-objective MSR
4: while termination criterion not satisfied do

5: MP1 ← Select NP/2 individuals from P1 using binary tournament selection method
6: MP2 ← Select NP/2 individuals from P2 using binary tournament selection method
7: OP1 ← Generate NP/2 offspring by MP1 according to SBX and PM
8: OP2 ← Generate NP/2 offspring by MP2 according to two-point crossover and multi-point
mutation operator
9: Evaluate OP1 on the original multi-objective MSR problem
10: Evaluate OP2 on the simplified multi-objective MSR problem
11: OP1new ← OP1 delete the Chromosome Segment III to generate a transferred population
according to;
12: OP2new ← OP2 randomly add the Chromosome Segment III to generate a transferred
population according to Section 5.3;
13: P1all ←P1 ∪ OP1 ∪ OP2new;
14: P2all ←P2 ∪ OP2 ∪ OP1new;
15: P1 ← Select NP individuals from P1all based on the non-dominated sorting and crowding
distance
16: P2 ← Select NP individuals from P2all based on the non-dominated sorting and crowding
distance
17: end while

Output: The PS and PF of the main task

6. Experimental Results and Analysis

In this section, the performance of the INSGA-II-MTO is verified via comparing with
the other excellent multi-objective optimization algorithms in three scenarios. All of the
following experiments are tested via MATLAB R2021.

Three task scenarios are used and set to be 1000 × 1000 km, which are shown in
Figure 8. Although the three scenarios are the same, the number of vessels is different. It
can be seen from Figure 8a that 5 vessels should be visited. Figure 8b,c show that UAVs
should visit 10 and 15 vessels. Clearly, the solution difficulty of the three scenarios is
different. Moreover, the number of UAVs is set to be 4 in the MSR station in all scenarios. In
addition, the radius of the affected range of the storm and the contact range of each vessel
are set to 120 km and 60 km, respectively.

To ensure the fairness of comparisons, for all compared algorithms, the total number of
fitness evaluations in each scenario is the same, i.e., 20,000 is set in scenario 1 (see Figure 8a),
40,000 is set in scenario 2, and 60,000 is set in scenario 3. Each comparison algorithm
runs 20 times independently in each scenario. Moreover, the performance metrics HV
and NR are selected in the following experiments. The same reference point is set for
three algorithms in each MSR scenario. Additionally, parameter settings of all compared
algorithms are shown in Table 1.
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(a) (b) (c) 

Figure 8. Three MSR task scenarios. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Table 1. Parameter settings of three compared algorithms.

Name Value Algorithms

pc1 0.9 INSGA-II-MTO, NSGA-II, NSGA-II-GLS
pm1 0.6 INSGA-II-MTO, NSGA-II, NSGA-II-GLS
pc1 0.8 INSGA-II-MTO
pm1 1 INSGA-II-MTO
NP 100 INSGA-II-MTO, NSGA-II, NSGA-II-GLS

6.1. Comparison Results with Other Algorithms

To verify the performance of the proposed algorithm, it is compared with the NSGA-II [25]
and the NSGA-II-GLS [46] in three scenarios. The NSGA-II is a classical algorithm for solving
MOPs, and the NSGA-II-GLS is an improved version of the NSGA-II.

The average and standard values of HV of the three algorithms are provided in Table 2.
The best results are marked in bold, and Wilcoxon’s rank sum test is employed to analyze
the results from the statistical perspective. Specifically, the symbols “+”, “−”, and “=”
represent that the compared algorithms are better than, worse than, and similar to the
INSGA-II-MTO, respectively. From the results shown in Table 2, it can be observed that the
performance of the proposed algorithm is superior to that of the two compared algorithms.
Due to the relative simplicity of scenario 1, HV obtained by the three algorithms are similar.
However, Table 2 shows that the INSGA-II-MTO significantly outperforms the NSGA-II
and the NSGA-II-GLS in scenarios 2 and 3 in terms of HV. The main reason may be that the
initialization method can improve the diversity of the solutions and the performance of an
algorithm. In addition, the knowledge transfer in multi-task optimization can enhance the
search capability and save computational resources.

Table 2. HV results of all comparison algorithms in three scenarios.

Test Scenario 1 Test Scenario 2 Test Scenario 3

INSGA-II-MTO 0.1929
(2.46 × 10−4)

0.2846
(1.1 × 10−2)

0.2567
(1.2 × 10−2)

NSGA-II 0.1923
(5.8 × 10−4) +

0.2099
(2.5 × 10−2) +

0.1571
(4.1 × 10−2) +

NSGA-II-GLS 0.1924
(5.98 × 10−4) +

0.2211
(3.6 × 10−2) +

0.1774
(3.9 × 10−2) +

Besides the above comparisons, the other performance indicator NR is employed to
assess the performance of three algorithms. Specifically, NR is used to explore the dominant
relationship between the optimal solutions obtained by three algorithms. The NR values
in three scenarios are plotted in Figure 9. From Figure 9a, the NR values obtained by the
three algorithms are similar, while Figure 9b,c show that the NR values of the INSGA-II-
MTO are larger than that of the other two algorithms during twenty experiments. This
means that the INSGA-II-MTO can find more high-quality solutions which can dominate
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the most of non-dominated solutions obtained by the other two algorithms. Same as the
above experiment, this is mainly because using the initialization method and multi-task
optimization method is effective. It is worth noting that this advantage will be more evident
in relatively complex scenarios.

(a) 

(b) 

(c) 

Figure 9. The NR values of three algorithms. (a) The NR values obtained by three algorithms in
scenario 1. (b) The NR values obtained by three algorithms in scenario 2. (c) The NR values obtained
by three algorithms in scenario 3.

Based on the above analyses, it can be concluded that the INSGA-II-MTO is an effective
and efficient approach to solving complex multi-objective MSR problems.

6.2. Experimental Analysis

As mentioned above, the population initialization method and the multi-task opti-
mization method are used to improve the performance of the proposed algorithm. In this
subsection, their effectiveness is verified by the following experiments.

(1) The effectiveness of the population initialization method

To illustrate the effectiveness of the initialization method, the INSGA-II-MTO and
INSGA-II-MTO without the proposed initialization method (denoted as INSGA-II-MTO-R)
are applied to solve three multi-objective MSR problems.

The average and standard values of HV achieved by the two algorithms are provided
in Table 3. As shown in Table 3, the HV of the INSGA-II-MTO is better than that of the
INSGA-II-MTO-R in all three scenarios. Therefore, the population initialization method can
help the proposed algorithm improve the search performance and provide a high-quality
initial population.
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Table 3. HV results of the INSGA-II-MTO and INSGA-II-MTO-R.

Test Scenario 1 Test Scenario 2 Test Scenario 3

INSGA-II-MTO 0.1929
(2.46 × 10−4)

0.2846
(1.1 × 10−2)

0.2567
(1.2 × 10−2)

INSGA-II-MTO-R 0.1926
(3.7 × 10−4) +

0.2465
(3.0 × 10−2) +

0.1908
(3.1 × 10−2) +

Furthermore, the average number of various schemes obtained by two algorithms in
twenty experiments is shown in Figure 10. “One UAV” means that the station dispatches
one UAV to complete MSR tasks; “Two UAVs” represents two UAVs dispatched to complete
tasks. “Three UAVs” and “Four UAVs” refer to schemes that dispatch three UAVs and four
UAVs, respectively. The average number of schemes that can be obtained in experiments
by each algorithm is denoted as “Total Schemes”. From Figure 10a, except for the “Four
UAVs”, the INSGA-II-MTO and INSGA-II-MTO-R can find three other schemes. It can
be seen from Figure 10b,c, the number of “One UAVs” and “Four UAVs” obtained by
the INSGA-II-MTO is larger than the INSGA-II-MTO-R. Moreover, the results show that
the total number of schemes obtained by the INSGA-II-MTO is always more than the
INSGA-II-MTO-R in all three scenarios. Therefore, the proposed population initialization
method can assist the proposed algorithm in finding more different schemes.

(a) 

(b) 

(c) 

Figure 10. The number of various schemes obtained in experiments. (a) The number of schemes
obtained by two algorithms in scenario 1. (b) The number of schemes obtained by two algorithms in
scenario 2. (c) The number of schemes obtained by two algorithms in scenario 3.

Based on the above analyses, it can be inferred that the proposed population initial-
ization method is effective and can help the proposed algorithm find more diverse and
high-quality schemes.
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(2) The effectiveness of the multi-task optimization

To verify the effectiveness of the multi-task optimization, the INSGA-II-MTO without
assistant task (called INSGA-II-MTO-I) and the INSGA-II-MTO are used to solve three
multi-objective MSR problems.

Table 4 lists the HV values of two algorithms in three scenarios. It can be seen from
Table 4 that the performance of the INSGA-II-MTO-I and the INSGA-II-MTO is similar
in scenario 1. The main reason may be that scenario 1 is relatively simple, and the multi-
task cannot play an important role. However, Table 4 shows that the INSGA-II-MTO
outperforms the INSGA-II-MTO-I in the remaining two scenarios. Compared with the first
scenario, these two cases are more complex. Therefore, it can be concluded that multi-task
optimization can help the proposed algorithm improve its performance in solving complex
scenarios. This may mainly be because the computational resources of the INSGA-II-MTO-I
are evenly distributed in a huge search space, which will lead to a large amount of wasted
computational resources. However, the INSGA-II-MTO can allocate more resources in a
specific search space due to the existence of an assistant task, which can contribute greatly
to the performance.

Table 4. HV results of the INSGA-II-MTO and INSGA-II-MTO-I.

Test Scenario 1 Test Scenario 2 Test Scenario 3

INSGA-II-MTO 0.1929
(2.46 × 10−4)

0.2846
(1.1 × 10−2)

0.2567
(1.2 × 10−2)

INSGA-II-MTO-I 0.1926
(2.8 × 10−4) +

0.2593
(1.2 × 10−2) +

0.2272
(1.8 × 10−2) +

To further test the effectiveness of the multi-task optimization method, the proposed
algorithm is used to solve the MSR task in scenario 2. Moreover, the successfully transferred
individuals in each generation between two tasks are illustrated in Figure 11. “Individuals
from assistant task” represents the number of individuals successfully transferred from
the assistant task to the main task. “Individuals from main task” means the number of
individuals successfully transferred from the main task to the assistant task. It can be
observed from Figure 11 that the knowledge can be effectively transferred between the
two tasks. This means that the multi-task optimization method can greatly improve search
efficiency. Figure 11 also shows that the assistant task can provide a lot of useful knowledge
to the main task in the early and middle stages. Especially, the number of individuals from
the assistant task is extraordinary more than 4/5 at the first generation. As the assistant task
may contain more useful knowledge when compared with the main task in the beginning,
this result is as expected. In addition, the problem that the genetic algorithm is easy to
fall into the local optimization can be alleviated by the multi-task optimization in the
subsequent generations.

Figure 11. The number of individuals successfully transferred of INSGA-II-MTO.
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Based on the above experimental analyses, for complex multi-objective MSR problems,
multi-task optimization is an effective approach for improving the performance of the
proposed algorithm.

6.3. Diversity of the Solutions

To demonstrate the performance of the INSGA-II-MTO, scenario 2 is used in this
experiment. Moreover, two typical solutions are illustrated in Figure 12 and their objective
values are shown in Table 5.

(a) (b) 

Figure 12. Two typical solutions in scenario 2. (a) One UAV is used to complete the MSR task.
(b) Three UAVs are dispatched to complete the MSR task.

Table 5. The typical objective values.

Objective 1 Objective 2 Objective 3

(a) 297.876 297.876 138.7735

(b) 636.1917 228.4096 114.2048

From Table 5 and Figure 12, we can see that the total path length in the first row of
Table 5 is the shortest. However, the total completion time of all tasks and urgent tasks is the
longest. Moreover, Figure 12a shows that the MSR station dispatched one UAV to complete
the tasks. Clearly, using one UAV can save cost, but it will reduce the efficiency of MSR. It
is suitable for situations where decision-makers pursue low cost. It can be observed from
Figure 12b that the MSR station dispatches three UAVs to visit vessels. Moreover, Table 5
indicates that the total path length of the second scheme is the longest, while the completion
time is the shortest and the vessels in the risk region can be visited in the shortest possible
time. This scheme pays more attention to the urgency of the tasks. Therefore, the MSR
cost and the MSR efficiency are conflicting. Decision-makers can flexibly select different
schemes to adapt to different MSR environments based on the obtained solution set.

7. Conclusions

Severe weather is the main factor leading to marine accidents, thus solving MSR problems
under unpredictable weather conditions is an urgent problem. Using UAVs is an effective
method to complete MSR tasks facing a harsh environment. In the present study, an improved
NSGA-II based on multi-task optimization (INSGA-II-MTO) is proposed to solve the multi-
objective MSR problem under severe weather. A main task aims to solve the original MSR
problem, and an assistant task aims to solve the simplified MSR problem. Moreover, the
knowledge can be transferred between the two tasks. Additionally, a novel population
initialization method is proposed to improve population diversity. The experimental results
show that the INSGA-II-MTO obtained maximum values in terms of HV and NR in three
testing cases, that is, the proposed algorithm outperforms the other two competitors. In
addition, the effectiveness of the multi-task optimization and the population initialization
method is verified. Namely, the INSGA-II-MTO can find shorter total paths and handle
the most urgent task in the shortest possible time. Therefore, the proposed algorithm is a
competitive method to solve complex MSR problems under severe weather for providing
decision-makers with effective MSR schemes when a marine accident occurs.
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For future work, the energy consumption constraints of UAVs and the time window
of tasks will be considered in the MSR tasks. Further, UAV-Ship collaborative systems can
also be studied for the MSR tasks. Moreover, it is promising to extend this work to other
application scenarios such as data collection.
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Abstract: A sensor for measuring the crankshaft angle of the main engine in ships is designed.
Compared with the existing crankshaft angle encoder, this design’s advantage is that there is no need
to add a gear system at the free end of the crankshaft, reducing machining complexity. The purpose of
providing high angle resolution over a wide speed range is achieved. Inductive angular displacement
sensors (IADSs) require an eddy current magnetic field as a medium to generate the induced voltage.
The induced voltage also requires a complex linearization calculation to obtain a linear relationship
between angle and voltage. Therefore, a model of the inductive angular displacement sensor based
on magnetic focusing (IADSMF) is proposed. Magnetic focusing is introduced into the IADS to
replace the eddy current magnetic field with a focusing magnetic field. The main disadvantage of
traditional IADSs, which is that they cannot reduce the eddy current magnetic field, is mitigated.
An approximate square–shaped focusing magnetic field (12.4 × 12.4 mm2) is formed using the
magnetic field constraint of the magnetic conductor. When the receiving coil undergoes a position
change relative to the square–shaped focusing magnetic field, the voltage generated via the receiving
coil is measured using the electromagnetic induction principle to achieve angular displacement
measurement. A mathematical model of the IADSMF is derived. Induced voltages at different
frequencies and rotational speeds are simulated and analyzed via MATLAB. The results show that
frequency is the main factor affecting the induced voltage amplitude. The sensitivity of the IADSMF
is 0.2023 mV/◦. The resolution and measurement of the IADSMF range from 0.06◦ and 0–360◦.
Compared with a conventional planar coil–based IADS, the eddy current loss is reduced from 2.1304
to 0.3625 W. Direct linearization of the angular displacement with the induced voltage is achieved
through designing a square–shaped focusing field and receiving coil. After optimizing the sensor
structure with the optimization algorithm, the linearity error is 0.6012%. Finally, this sensor provides
a theoretical basis and research ideas for IADS development in ships and navigation.

Keywords: crankshaft angle of marine main engines; angular displacement sensor; magnetic focusing;
induced voltage analysis; linearity error optimization; eddy current loss

1. Introduction

With the rapid development of sensor technology, angular displacement sensors have
become an important research direction. The detection of angular displacement is related
to the performance of ship systems and offshore platforms, as expressed in terms of energy
consumption, service life and safety [1–4]. The detection of angular displacement plays an
important role in modern ships, navigation and ocean transportation [5,6].

Angular displacement measurement is widely used in the shipbuilding industry [7,8]
to provide an estimation of the ship test [9], ship turning performance [10], underwa-
ter transmission [11], localization and detection of targets in underwater [12], mooring
lines [13] and a berthing assistant system [14].
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Currently, most of the propulsion systems used in ships are driven using diesel engines.
Most of the diesel engines are manufactured under license from MAN Diesel and Wärtsilä
Corporation, which are the world’s largest marine diesel engine manufacturers. Crankshaft
angle sensor is an important part of the main engine. It provides crankshaft position
information to the electronic control unit (ECU) for the purpose of starting the main engine
and controlling the injection timing, injection volume, injection pressure and opening and
closing of the exhaust valve.

The gear at the free end of the main engine of the ship has hundreds of teeth, and the
crankshaft angle encoder is above the gear [15]. The encoder gives a rectangular voltage
signal due to the change in gear air gap. This tool records the number of high and low
electrical levels, and the final measurement of the angular position is achieved. The system
has several disadvantages: (1) the crankshaft has to be machined with teeth; and (2) if a
higher resolution is needed, the gear should be reprocessed.

Angle, torque and power are important control parameters in ship propulsion systems.
They determine whether the ship can operate normally, as well as its fuel consumption and
safety. It is necessary to measure and monitor these factors. The torque can be calculated
using the torsion angle on the rotating shaft, and the power is calculated using the torque
through the formula [16,17]. Thus, the premise of monitoring them is to measure the angle.

The common ways to measure the torque on the main engine are as follows.

(1) Torque is measured through measuring the surface deformation of the rotating shaft
during engine operation. The use of strain gauges as sensors is one of the most
common [15]. Four half-bridge strain gauges are affixed directly to the rotating shaft.
The measurement principle for torque is based on the relationship between shear stress
and normal stress for pure torsion. The torque is then calculated using Equation (1):

M =
ε

π · Gr3 , (1)

where M—torque, ε—strain, G—shear modulus and r—shaft radius.

(2) This method is based on an optical sensor and, through two teeth fixed on the shaft,
the distance is “1” teethed rings, achieving torque measurement. This measurement
method requires only one optical sensor [18]. The relationship between teethed rings
is proportional to the torsion angle of the shaft. When no torque is applied to the shaft,
the torsion angle ϕ = 0. At this time, the pulse period T1 and T2 of the two tooth rings
corresponding to the optical sensor are equal. When there is a torque applied to the
shaft, ϕ �= 0 and T1 �= T2. The torque is then calculated using Equation (2):

M =
kT · (T1 − T2)

n
, (2)

where kT—coefficient depends on construction of shaft and teethed wheels, n—revolution
and T1, T2—time of pulses received from optical sensor.

There are several disadvantages of using this method (1): the measurement method of
strain gauge is contact measurement, and contact friction due to long-term use will cause
the measurement results to deteriorate; (2): a geared system is required, and the number of
teeth of the gearing after processing is fixed. Thus, machining becomes more difficult as
the resolution of the measurement angle increases.

Therefore, this paper proposes an inductive angular displacement sensor based on
magnetic focusing (IADSMF) to replace the crankshaft angle encoder. The aim of this study
is to provide high angular resolution over a wide speed range without using machining
tooth rings. Furthermore, through adding an IADSMF to the other end of the shaft, the
torsion angle ϕ and torque of the shaft system can be measured [17]. Not only does the
sensor have the function of measuring angles, but it can also be extended to measure
torque. Ref. [15] mentioned that the cost of measuring shaft torque is five times higher than
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measuring angular displacement in a ship’s main engine system. As a result, versatility is
addressed while measurement costs are reduced.

1.1. Related Work
1.1.1. Angular Displacement Sensor

According to how angular displacement measurement is implemented, angular dis-
placement sensors can be divided into contact and non–contact sensors. Traditional contact
sensors are mainly potentiometric and resistance strain sensors [19–21]. The main disadvan-
tages are contact friction, large differences in measurement results due to the attachment
process, limited resolution, and strain gauge creep after long-term use. These problems can
lead to increased wear, affecting measurement accuracy and service life.

Non–contact sensors mainly include optical sensors, capacitive sensors [22,23], magneto–
resistive sensors [24–26] and inductive sensors [27,28]. Optical sensors are categorized
as photoelectric encoders [29–31] or grating sensors [32–34]. Their advantages are high
measurement resolution and accuracy. Their disadvantages [35] are structural complexity
and expense. They also have special requirements in specific environments. Their disadvan-
tages limit their application in measurement. Capacitive sensors [22] have the advantages
of high sensitivity, such as a simple structure and small non–linear error, but the disad-
vantages are evident. For example, capacitive sensors are prone to parasitic capacitance,
leading to low measurement accuracy and poor load capacity that is susceptible to external
interference, affecting sensor stability. Magneto–resistive sensors [24,25] are sensitive to
changes in orientation over an angular measurement range of 0–180◦. Their measurement
results are more accurate than those of potentiometric sensors, and they are widely used in
automotive pedal detection. However, the anisotropy of their magneto–resistive shapes
can cause harmonic distortion, which affects measurement.

An inductive angular displacement sensor (IADS) is an electromagnetic sensor [27,36–38]
that typically uses a printed circuit board (PCB) to support a stator and rotor made from a
metal sheet. The stator contains an excitation coil and m receiving coils. The physical space
angle difference of each receiving coil is 1/m of the angle corresponding to a measurement
period, where the m value is generally 3. The excitation coil generates a magnetic field,
and rotation of the rotor causes electromagnetic induction between the rotor and receiving
coil. The change in position causes the receiving coil to produce an induced voltage. The
magnitude of the induced voltage depends on the rotor position, allowing measurement
of the angular displacement. An IADS has the following advantages; (1) it has a simple
structure and no friction loss, no parasitic capacitance, a moderate price, and no special
requirements for operating environments; (2) the sensor is composed of PCBs and metal
sheets without additional materials; (3) the measuring range of angular displacement can
reach 360◦, which is larger than that of a magneto–resistive sensor.

Table 1 shows the advantages and disadvantages of non–contact angular displacement
sensors. In summary, the IADS is an ideal sensor for engineering applications. IADS is
especially suitable for the harsh environment of navigation ships, which are characterized
by high temperatures, humid air, poor ventilation and high salinity gas erosion.

Table 1. Advantages and disadvantages of non–contact angular displacement sensors.

Optical Magneto–Resistive Capacitive Inductive

Measurement range 0–360◦ 0–180◦ 0–360◦ 0–360◦
Output is linear or not No No Yes Yes

Measurement resolution 0.35◦ 0.08◦ 0.1◦ 0.15◦
Manufacturing difficulty Harder Moderate Moderate Simple

External environmental impact Large Small Moderate Small
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1.1.2. Magnetic Focusing and Application

Magnetic focusing in magnetism is the spiral line motion of charged particles in a
magnetic field. It is implemented when a charged particle beam enters uniform magnetic
field B with an initial velocity v. Moreover, the angle between v and B is small, with
v// = vcosθ ≈ v, v⊥ = vsinθ ≈ vθ. Thus, each particle has a spiral motion. Since the v// of
each particle is almost the same, the pitch is approximately equal. Therefore, particle beams
converge at the same point after completing the spiral motion.

With the development of technology, material processing techniques using focus–
adjustable laser beams and electron beams as high–energy density heat sources emerged in
the field of magnetics. Among them, high–energy electron beam processing technology has
the advantages of a vacuum environment and high energy utilization rate, and was applied
to metal additive manufacturing technology [39]. In recent years, the use of the above–
mentioned particle beam motion drove technological developments in the microscopic
field, such as the processing of microscopic materials [40,41]. Moreover, the technology’s
application for electron microscopes and scanning electron microscopes are growing [42,43].

Magnetic focusing is generally achieved using the magnetic field excited in a current-
carrying solenoid. In most practical applications, the non–uniform magnetic field excited
via the coil is commonly used to achieve magnetic focusing. Magnetic focusing has long
been used in physics and medicine. For example, Siegbahn et al. [44] studied the focusing
of two–dimensional electrons in an inhomogeneous magnetic field. Walton et al. [45] used
a uniform magnetic field with a straight–line boundary for high–order focusing, enabling
a mass spectrograph to better separate and detect charged ions. Damadian et al. [46]
visualized tumours in living animals through field-focusing nuclear magnetic resonance
(FONAR). In recent years, magnetic focusing was widely used in transcranial magnetic
stimulation [47] (TMS), magnetic resonance imaging [48], magnetic drug targeting [49–51]
(MDT), underground pipeline localization [52], metal soldering [53], metal surface detec-
tion [54] and quantum science [55].

Traditionally, the TMS magnetic focusing process used a figure–eight coil [56], double–
butterfly coil [57] or other structures [58]. Following years of development, TMS can now
be used to activate neurons [59], thus playing a vital role in the treatment of neurological
disorders and rehabilitation. Philip et al. [60] reported on the use of TMS to stimulate
tissues, such as the amygdala, deep in the brain. This study involved the treatment of
advanced brain stimulation. TMS based on magnetic focusing has even made positive
contributions in stuttering improvement [61] and detoxification [62]. The localization and
image acquisition of cerebral haemorrhages in patients was achieved via portable magnetic
resonance imaging [48]. While simplifying the detection process, TMS reduces the potential
risk of patients exposed to a high–intensity magnetic field environment. MDT [50] is a
process that uses the magnetic force of an external focusing magnetic field to remotely
deliver a drug containing magnetic particles to a lesion site. Non–invasive or minimally
invasive drug therapy was achieved through MDT, avoiding the potential risks associated
with surgery.

Using the magnetic focusing method (MFM) [63], a relatively high magnetic field
can be formed in a tiny area on an outer metal surface using the needle tip of a magnetic
conductor (MC). When the MC scans a metal surface with defects, the stable magnetic field
is disturbed and changed. The induced signal in the outer coil of the MC is made to change,
and metal surface defect detection is realized. The MFM, thus, became a mainstream
nondestructive testing method. Chen et al. [55] simplified quantum processing devices
using ultra–high enhanced field–matter interaction generated via magnetic focusing. This
study promoted the application of magnetic focusing in integrated quantum information
processing and high–sensitivity quantum sensing.

In summary, magnetic focusing is widely used in medicine, equipment testing, materi-
als science and quantum science. To the best of our knowledge, it is less commonly used in
measurement applications, especially in angular displacement sensors with ships.
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1.2. Contribution

The main contributions of this paper are as follows.

(1) An IADS based on the MFM is proposed. A breakthrough in the measurement method
of the IADS is realized. Compared with the existing crankshaft angle sensors in the
ship, the angle resolution is improved. The angular resolution is improved from the
existing 0.35 or 0.5 degrees to 0.06 degrees when the speed is 100 r/min.

(2) A mathematical model of the proposed sensor is derived, and the accuracy and
feasibility of the sensor are verified theoretically via simulations.

(3) Direct linearization of the induced voltage and angular displacement is realized using
this sensor. Compared with the traditional IADS case, there is no need for linearization
design and calculation. The corresponding linearization error is only 0.6239%.

(4) The sensor has a lower eddy current loss than the traditional IADS. The eddy current
loss is reduced from 2.103 W to 0.3625 W.

2. Methods and Models

2.1. Excitation Methods and Sensor Modelling

The common excitation methods for magnetic focusing and IADS are shown in Table 2.
As shown in Table 2, most of the traditional focusing methods are two–dimensional planes
or combinations of coil arrays. They only complete the coil to focus the magnetic field at a
point below it, achieving an increase in the magnetic field at only one point. The magnetic
field and its magnetic flux leakage in a certain area of the plane is ignored. Based on
this defect and combined with the excitation method of IADS, this paper proposed the
combination of Archimedes coil, hollow–core MC and solid–core MC. Due to the emergence
of hollow– and solid–core MC, the focusing effect was increased and the surrounding
magnetic flux leakage was reduced. Focusing was achieved in a certain area below the
MC. The magnetic flux leakage outside the area was reduced to a negligible level, and this
method was used to meet the measurement requirements of IADSMF.

Table 2. Magnetic focusing and IADS excitation method.

Magnetic Focusing IADS IADSMF

Excitation method

Figure–eight coil [56] Circular coil [27,64]

Archimedes coil,
hollow–core MC and

solid–core MC

Double–butterfly coil [57] Semicircular arc coil [65]
Hemispherical solenoid array [66] Four square Archimedes coils [67]

C–type core coil [68] Planar spiral coil [69]
Coil arrays in hemispherical, plane

and torus shapes [70] -

Biconical stimulation coil system [71] -

The sensor was modeled using the modelling function that came with COMSOL
software. The sensor model is shown in Figure 1. The modelling parameters are shown in
Table 3. The sensor stator was composed of two Archimedes coils, a solid–core MC and two
hollow–core MCs. The Archimedes coil was arranged on the PCB. Two PCBs arranged with
Archimedes coils were taped to each end of a solid–core MC (see Figure 1 for a schematic of
the sensor structure). The Archimedes coil was used as an excitation source for generating
a magnetic field. The functions of the solid–core MC were to conduct magnetism and
constrain the Archimedes coil. The PCB with Archimedes coil was adhered to solid–core
MC surface to prevent detachment. Constraining the magnetic field and reducing magnetic
flux leakage were the roles of the hollow–core MC as a magnetic conduction device and
shielding layer. The cross–section of the hollow–core MC was square–shaped; thus, the
Archimedes coil on the inner wall was located 1 mm below the bottom, generating a
square–shaped magnetic field (12.4 × 12.4 mm2).
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Figure 1. Sensor structure diagram.

Table 3. The modelling parameters.

Parameter Name Value (mm) Material

Radial side length of solid–core MC 8 Iron
Radial thickness of hollow–core MC 1 Iron
Maximum radius of Archimedes coil 4 Copper

Receiving coil side length 12.4 Copper
Radius of rotating shaft 47.4 Iron

A flexible printed circuit (FPC) had characteristics of arbitrary bending, and FPC
technology was used to manufacture the receiving coil. An FPC was wound on the surface
of the shaft to realize the requirement of the receiving coil being wound around the shaft.
Through wrapping the FPC around the shaft, the need for the rotor to wrap around the
shaft circumference was satisfied. The receiving coil in the FPC was square–shaped, and
the position of one coil between two adjacent receiving coils was empty. The size of
the receiving coil was the same as that of the square–shaped magnetic field. The rotor
consists of 12 receiving coils with a difference of 15◦ between adjacent receiving coils.
These dimensions represented the overall structural design of the sensor detailed in this
subsection. Through focusing the magnetic field, the direct linearization of the induced
voltage and angular displacement and sensor loss reduction can be realized via this design.

2.2. Receiving Coil Structure Arrangement

The planar structure of the FPC receiving coils was designed as shown in Figure 2a.
The FPC had 4 layers. Odd receiving coils were arranged in the first layer, and even
receiving coils were arranged in the second layer (Figure 2b). Wires connected to odd coils
were arranged in the third layer, and wires connected to even coils were arranged in the
fourth layer.

113



J. Mar. Sci. Eng. 2023, 11, 1028

 
(a) 

 
(b) 

Figure 2. FPC receiving coil plane connection diagram: (a) two-dimensional diagram; (b) three-
dimensional diagram.

The induced currents in odd coils, such as receiving coils 1 and 3, moved in the same
direction, while the induced currents in even coils, such as receiving coils 2 and 4, also
moved in the same direction. The induced current directions of the odd and even receiving
coils were opposite. The odd coil and even coils were connected to form a complete set of
receiving coils. Black circles indicate the position of the over-holes between the different
layers (Figure 2a). Every over–hole position had a small offset from the receiving coil of
this layer, which ensured that the two sides of the same receiving coil did not overlap.

The red arrow represents the current direction. The blue line represents the winding
method of the odd receiving coils. The green line represents the winding method of the even
receiving coils. The red line represents the winding method of connecting the receiving coil
wires (Figure 2b). In Figure 2b, the small offset of the over-hole is enlarged for clarity.

The spatial arrangement was such that the center points of all receiving coils were
located on the same axis (X–axis), allowing the receiving coils on the shaft surface to be
arranged stably for one week. We noted that to show the staggered relationship between
the receiving coil and the wire, the center point of the receiving coil (shown in Figure 2a)
was not on the same axis (X–axis). However, the center points of the actual FPC receiving
coils were on the same axis.
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2.3. Measurement Principle and Mathematical Modelling
2.3.1. Measurement Principle of Angular Displacement

According to the principle of electromagnetic induction, the induced voltage u [72]
can be expressed as in (3):

u = −N
dψ

dt
= −N

d
dt

Bz · S, (3)

where ψ and N represent the magnetic flux and the turn number, respectively; Bz is the
magnetic flux density in the Z–axis direction; and S is the receiving coil area.

A stable focusing magnetic field (square) was formed using the MFM, and the receiving
coil shape was the same as it (Figure 3). When the focusing magnetic field did not coincide
with the receiving coil (position 1), there was no magnetic field in the area enclosed using
the receiving coil; thus, the magnetic flux was zero. When the shaft rotated, the area where
the receiving coil coincided with the focusing magnetic field increased, and the magnetic
flux began to increase (the receiving coil was between positions 1 and 2). When the focusing
magnetic field reached position 2, the receiving coil completely coincided with the focusing
magnetic field, and the negative magnetic flux was maximum. The receiving coil continued
to move. When the focusing magnetic field was between positions 2 and 3, the overlap area
between the receiving coil and the focusing magnetic field decreased. When the focusing
magnetic field reached position 3, the magnetic flux was 0. When the focusing magnetic
field reached between 3 and 4, the positive magnetic flux began to increase. When the
focusing magnetic field reached position 4, the receiving coil coincided completely with
the focusing magnetic field for the second time, and the positive magnetic was maximum
(the magnetic flux at position 2 was opposite to that at position 4, which was achieved
through winding the receiving coil, as shown in Figure 2). When the focusing magnetic
field was located between positions 4 and 5, the overlap area between the receiving coil
and the focusing magnetic field decreased, and the forward magnetic flux decreased. When
the focusing magnetic field reached position 5, the receiving coil did not coincide with the
focusing magnetic field, and the magnetic flux was 0.

Figure 3. Induced voltage of receiving coils over one cycle.
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The process of measuring angular displacement was the process of changing receiving
coils on the rotor with respect to the Archimedes coil via a corresponding angle. The
rotor rotated one measurement period (60◦), and the corresponding change in the mag-
netic flux of receiving coils for a period was 0 → −ψ → 0 → ψ → 0. According to the
principle of electromagnetic induction, the receiving coil generated the induced voltage
for one cycle as follows: 0 → u → 0 → −u → 0. The relationship between the induced
voltage of the receiving coils and the shaft angular displacement was approximately a sine
wave (Figure 3).

A linear relationship between the induced voltage and angular displacement was
induced using the FPC receiving coils, enabling the measurement of angular displacement
(Figure 3). The difficulty of sensor design and linearization calculation was reduced through
the linear relationship between angular displacement and induced voltage. The sensor had
the advantages of being easy to calibrate, avoiding non–linear compensation and being
easy to analyze.

For the induced voltage analysis, mathematical modelling of Bz and S was performed
first, and the simulation analysis was carried out.

2.3.2. Archimedes Coil Magnetic Field Model

The Archimedes coil polar coordinate [73,74] is shown in Equation (4):

R = a + bθ, (4)

where a is the initial radius, b is the coil pitch and θ is the rotation angle. Equation (4) is
expanded into parametric Equation (5) (Figure 4a):

x = R · cos θ
y = R · sin θ

. (5)

  
(a) (b) 

Figure 4. Related schematic diagram of Archimedes coil: (a) parameter equation diagram; (b) gener-
ated magnetic field diagram.

The polar coordinate equation is then transformed into the parameter equation in the
Cartesian coordinate system. Equation (5) can be described via (6):

x = (a + bθ) · cos θ
y = (a + bθ) · sin θ

. (6)

The lower magnetic flux leakage was neglected in the theoretical derivation of this
paper to reduce the difficulty with theoretical derivation. According to Biot-Savart’s
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law [75], the Archimedes coil with the MC in the Z magnetic flux density generated in the
direction was Bz (Figure 4b). Bz can be obtained as follows (7):

Bz =
∮

l0 dB · cos α =
∫

B · cos αdl0 =
∫ μ0ur

4πr2 · u1·sin(2π f1t)
R1

dl0
= μ0ur I1·sin(2π f1t)

4π · ∫ k·2π
0

a+bθ

(a2+b2θ2+2abθ+z2)
3/2 dθ

, (7)

where l0 and α represent the circumference of the Archimedes coil and the angle between
B and the Z–axis, respectively; u0 and ur represent the permeability of vacuum and the
MC relative permeability, respectively; r is the distance from point M on the Archimedes
coil to the center of the receiving coil; k and u1 represent the number of coil loops and the
excitation voltage, respectively; R1 and I1 represent the Archimedes coil resistance and the
excitation current with frequency f 1, respectively; and z is the vertical distance from the
Archimedes coil to the receiving plane.

To reduce the difficulty of deriving the equations, the values of Bz at the center point
and in the region of the receiving coil are considered to be the same.

2.3.3. Receiving Coil Area Change Model

The three–dimensional space rotation of the Archimedes coil and the receiving coil
was simplified into a two–dimensional–plane relative motion (Figure 5). The mathematical
model of receiving coil area change was implemented, and the curvature of the receiving
coil was neglected both here and subsequently in this study. Here, only the trend of the
magnetic flux change from zero to the maximum value is shown, and the trend of the other
phases was the same but in different directions.

Figure 5. Relative motion diagram of coils.

The red–bordered square shape represents the focusing magnetic field generated
using the Archimedes coil (side length is l) in Figure 5. The grey square–shaped coil is
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the receiving coil with side l. The white square–shaped coil is vacant. The absolute value
of x represents the distance between the Archimedes coil and the Y–axis. The length of
the Archimedes coil coinciding with the receiving coil is equal to l − |x|. The overlap
area of the Archimedes coil and the receiving coil can be expressed as S(x) = l · (l − |x|),
x ∈ (−l, +l).

The Fourier expansion of S(x) [76,77] and S(x) is an even function. S(x) can be described
via (8)–(10):

S(x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
l

)
, (8)

a0 =
2
l

∫ l

0
l · (l − x)dx =

l · x(2l − x)
l

∣∣∣∣l
0
= l2, (9)

an = 2
l

∫ l
0 l · (l − x) · cos nπx

l dx = 2l·(l−x)
nπ sin nπx

l − 2l2

n2π2 cos nπx
l

∣∣∣l
0
,

= − 2l2

n2π2 (cos nπ − 1) = 2l2

n2π2 (1− cos nπ) = 4l2

n2π2 · (sin nπ
2 )2

(10)

where the fundamental wave period is l = 2πRa
N1

.
The angular displacement y can be obtained via (11):

y = vt = ωRat =
2πnaRat

60
, (11)

where v and ω represent the linear velocity of the receiving coil and the angular velocity of
the receiving coil, respectively; Ra and na represent the radius of the shaft and the rotational
speed of the receiving coil, respectively; and N1 is twice the number of receiving coils.

S(x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
l

)
=

l2

2
+

∞

∑
n=1

4l2

n2π2 ·
(

sin
nπ

2

)2

· cos
nN1πnat

60
, (12)

where n is the number of Fourier expansion terms.

2.3.4. Receiving Coil Induced Voltage Model

The induced voltage model was derived in this subsubsection. To avoid confusion, the
excitation voltage generated using the Archimedes coil is set to u1, and the induced voltage
of the receiving coil is set to u2. According to Lenz’s law [72], u2 can be obtained via (13):

u2 = −n2
dψ

dt
= −n2

d
dt

Bz · S. (13)

The frequency–independent terms are set as coefficients (K1, K2 and K3) in the expres-
sion to highlight the relationship between frequency and induced voltage in the equation.
K1, K2 and K3 can be obtained via (14)–(16):

K1 =
Bz

sin(2π f1t)
=

μ0ur I1

4π
·
∫ k·2π

0

a + bθ

(a2 + b2θ2 + 2abθ + z2)3/2 dθ, (14)

K2 =
a0

2
=

l2

2
, (15)

K3 = an =
4l2

n2π2 · (sin
nπ

2
)

2
. (16)

Here, u2 is split into three expressions for the excitation frequency f 1, and u2 is shown
in (17). Thus, u21, u22 and u23 can be obtained via (18), (19) and (20):

u2 = u21 + u22 + u23, (17)
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u21 = −n2K1K2 · cos(2π f1t) · 2π f1, (18)

u22 = −n2

∞

∑
n=1

K1K3 · cos
nN1πnat

60
· cos(2π f1t) · 2π f1, (19)

u23 = −n2

∞

∑
n=1

K1K3 · sin(2π f1t) ·
(
−nN1πna

60
· sin

nN1πnat
60

)
. (20)

The final expression for u2 can be described via (21):

u2 = −n2K1K2 · cos(2π f1t) · 2π f1 − n2
∞
∑

n=1
K1K3 · cos nN1πnat

60 · cos(2π f1t) · 2π f1 − n2
∞
∑

n=1
K1K3 · sin(2π f1t) ·

(
− nN1πna

60 · sin nN1πnat
60

)
= −n2

[
K1K2 · 2π f1 +

∞
∑

n=1
K1K3 · cos nN1πnat

60 · (2π f1t− nN1πna
60 )

]
· cos(2π f1t)− n2

∞
∑

n=1
K1K3 · nN1πna

60 · cos(2π f1 +
nN1πna

60 )t
. (21)

For a concise and clear representation of the effect of excitation frequency and rota-
tional speed on the induced voltage, the initial Equation (3) for the induced voltage is
expressed in (24), where the excitation current i(t) is described via (22):

i(t) = I · sin(ωt). (22)

The magnetic flux of the receiving coil can be obtained as follows (23):

ψ = k4y sin (ωt), (23)

where k4 is the proportionality factor and y is the angular displacement.
Equations (22) and (23) are substituted into Equation (3) to obtain (24):

u = −N dψ
dt = −N d[k4y sin(ωt)]

dt = −Nk4
dy
dt · sin(ωt)− Nk4yω · cos(ωt)

= −Nk4v · sin(ωt)− Nk4yω · cos(ωt) = −Nk4

√
v2 + (y · 2π f1)

2 · sin(2π f1t + ϕ)
. (24)

At f 1 = 10 kHz, the linear velocities of 5.6 m/s and 5.6 × 10−3 m/s, corresponding to
1000 r/min and 1 r/min, respectively, are substituted into Equation (24), and the ratio is
then calculated. The induced voltage amplitude is increased by a factor of merely 1.000023
when the rotational speed is increased from 1 r/min to 1000 r/min. Therefore, when the
rotational speed change value is less than 1000 r/min, the induced voltage change is very
small and can be directly ignored. From Equation (24), it can be seen that the magnitude of
the excitation frequency is the main factor affecting the induced voltage amplitude when
the excitation frequency is in the kHz range. Only when the rotational speed increases
to 104 r/min does the rotational speed affect the induced voltage amplitude, with the
amplitude increasing by a factor of 1.002; however, the impact is still small.

3. Results

3.1. Verification and Analysis of the Focusing Magnetic Field

COMSOL software is used to simulate the Archimedes coils with and without an MC.
The two sets of Archimedes coils are separately fed with an excitation voltage of 10 mV to
verify whether the above non–MC and MC setups can generate a square–shaped focusing
magnetic field. This set–up provides a basis for the next step to measure the dynamic
induced voltage. A circular magnetic field with a diameter of 20 mm is formed in the X-Y
plane at a distance of 1 mm below it (Figure 6). The magnetic field is in a divergent state
without the MC. The ratio of the magnetic flux density of the red circular magnetic field to
that of the surrounding blue area is 4.61. This ratio is defined as the magnetic field focusing
intensity λ. In engineering, if the value of the same parameter differs by more than one
order of magnitude, the lower value can be ignored. The λ1 value formed without an MC
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is only 4.61, which cannot meet the measurement requirement of ignoring the surrounding
magnetic flux leakage (Figure 6 and Table 4).

  
(a) (b) 

Figure 6. Magnetic field 1 mm the Archimedes coil without an MC: (a) two–dimensional diagram;
(b) three–dimensional contour diagram.

Table 4. Parameters obtained via two simulations.

Parameter Name Magnetic Field without MC Magnetic Field with MC

Magnetic field diameter, dm (mm)
Magnetic field side length, l (mm) 20 12.4

Magnetic field area, Sm = π(dm/2)2; Sm = l2 (mm2) 314 153.76
Maximum magnetic flux density, Bmax (T) 7.23 × 10−3 1 × 10−2

Focusing magnetic flux density BF (T) 6.5 × 10−6 1.4 × 10−4

Flux leakage, BL (T) 1.41 × 10−6 1.22 × 10−5

Magnetic field focusing intensity, λ = BF/BL 4.61 11.48

The magnetic field is approximately square–shaped (12.4 × 12.4 mm2), reducing the
area by 160.24 mm2 (Figure 7 and Table 4). The λ2 value formed by the MC is 11.48, which
is greater than an order of magnitude; thus, the magnetic field in the blue region can be
ignored (Figure 7).

We note that the Archimedes coil without an MC is 1 mm above the rotation axis
of the ferromagnetic material. Therefore, it can be assumed that the Archimedes coil
has an MC, but its relative permeability is not as large. For this reason, the maximum
magnetic flux density differs by only one order of magnitude, as shown in Figures 6 and 7.
As shown in Figures 6 and 7, only the magnetic field value of the left minimal region is
relatively large (1 × 10−2 T), while the other areas have essentially the same value and can
be approximately considered to correspond to a uniform magnetic field.

The previous study was focused on a minuscule area, i.e., a point [63]. At this point,
there was very little magnetic field that could be emitted independently. Therefore, the
relative permeability ur was changed from 300 to 60,000, and the increase in multiple K after
magnetic focusing was not large, being only 1.08 times. Compared with the minuscule area
of the previous study, the magnetic focusing area of this paper is large (12.4 × 12.4 mm2).
The original divergent magnetic field in this region is focused; thus, K corresponding to
Bmax and BF is larger than the multiples of the previous study. However, the increasing
trend of K is the same as the previous trend. The corresponding K increases by a factor of
1.38 at the position of Bmax in this region and by a factor of 21.54 over the entire focusing
magnetic field region.
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(a) (b) 

Figure 7. Magnetic field 1 mm below Archimedes coil with an MC: (a) two–dimensional diagram;
(b) three–dimensional contour diagram.

Here, the increased K value is not equal to the relative permeability ur of the MC for
the following reasons: (1) the hollow–core MC can only constrain the magnetic field and
cannot completely concentrate all the magnetic flux leakage in the square–shaped area;
(2) the lower Archimedes coil is a rotating shaft, which is equivalent to having an MC with
a small relative permeability. Thus, K does not simply represent an increase in the ur factor
of the MC. In summary, the focusing intensities simulated are basically consistent with
previous research results.

Due to the hollow–core MC constraint, the magnetic flux leakage is concentrated in
the square–shaped area (Figure 7). The magnetic field is reduced from a circle (dm = 20 mm)
in Figure 6 to a square (l = 12.4 mm) in Figure 7. The focusing area of the magnetic field is
reduced by 160.24 mm2. With the reduction in the focusing area, the resolution of the sensor
measurement can be improved; λ is increased from 4.61 times in Figure 6 to 11.48 times in
Figure 7, which realizes the focusing of magnetic flux density.

Since the magnetic field is generated via Archimedes coil excitation, no matter how the
shielding is added, it does not make the total amount of magnetic field intensity increase
or decrease. The original magnetic flux leakage, which is dispersed to other locations in
space, is constrained along the Z–axis through the outer wall of the hollow–core MC. This
function reduces the magnetic flux leakage to a negligible level, which, in turn, meets the
IADSMF measurement requirement.

3.2. Induced Voltage Simulation and Linearization Analysis

Since the equation for the induced voltage is mathematically derived from this paper,
simulation is used to verify the derivation. COMSOL software cannot be edited to include
equations; thus, MATLAB is used for simulations to verify the equations (see Figure 8 for the
simulation results). It is verified that the IADS based on magnetic focusing can realize the
measurement of angular displacement through the principle of electromagnetic induction.
This finding is consistent with the measurement principle described in Section 2.3.

As can be seen in Figure 8d–f, the resolution of the IADSMF is 0.6 degrees for
f 1 = 10 kHz, 0.24 degrees for f 1 = 25 kHz and 0.12 degrees for f 1 = 50 kHz. In sum-
mary, the increased resolution of the angle measurement can be achieved through simply
increasing the excitation frequency while the speed is constant. The purpose of providing
high angular resolution over a wide speed range is achieved.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 8. Simulation curves of induced voltage corresponding to different speeds and frequencies:
(a) na = 1 r/min, f 1 = 10 kHz; (b) na = 10 r/min, f 1 = 10 kHz; (c) na = 100 r/min, f 1 = 10 kHz;
(d) na = 1000 r/min, f 1 = 10 kHz; (e) na = 1000 r/min, f 1 = 25 kHz; and (f) na = 1000 r/min,
f 1 = 50 kHz.
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The reason for the approximately linear relationship between time and induced voltage
u2 is that when the rotational speed na and excitation frequency f 1 are constant, u2 is related
only to time in Equation (21), and u2 is a sine-like function of time. Since the amplitude of
the sine function in Equation (21) is large and the independent variable time is small, u2 is
approximately linear with time (Figure 8).

The reason for the linear relationship between the angular displacement y and time is
that the receiving coil and excitation magnetic field are both square–shaped. The amount
of change over time is the area S(x), where the receiving coil coincides with the excitation
magnetic field. Since the width l in S(x) (Figure 7) is constant, the overlap area is related only
to the overlap length l − |x| in the X–axis direction (angular displacement y = l − |x|).
Therefore, the angular displacement is linear with time.

Since the length of time in a cycle corresponds to the spatial angular displacement, u2
and y of the shaft assume an approximate linear relationship (Figure 5). The advantage
of the proposed square–shaped receiving coil, compared with the three sets of diamond-
shaped coils previously proposed [27], is that the induced voltage obtained is directly
linearized, eliminating the need for an algorithm to obtain the linear relationship between
the induced voltage and angle and simplifying the post–processing work. The measuring
requirements can be met using a set of receiving coils designed for this purpose; thus, the
receiving coil structure is simplified, and the number of wires is reduced. This outcome is
the original intention of designing a square–shaped receiving coil.

When the rotational speed is constant, the induced voltage amplitude increases with
increasing excitation frequency f 1 (Figure 8d–f). Here, f 1 is increased to improve the
resolution and achieve more accurate and smaller angle measurements. However, if f 1 is
increased excessively, electric energy will be wasted.

Advantages of IADSMF:

(1) For post–processing

There are several reasons for having different post–processing formulas (Table 5).
Firstly, the sensors have different metal rotor shapes and numbers of blades. Secondly,
the angle of the space occupied by its corresponding one blade is different; thus the post–
processing equation is different. Moreover, each researcher has a different understanding of
the sensor that they designed; thus, the defined post–processing is also different, i.e., there
is no standard answer, but only the correct answer. This makes post–processing poorly
versatile. Inevitably, it has caused some difficulties for researchers in understanding in
the field of just–contact sensors. Since IADSMF has no metal rotor blades, there is no
post–processing formula. At the same time, the focusing magnetic field is consistent with
the shape of the receiving coil; thus, the direct linearization is realized.

Table 5. Comparison of sensors.

Parameter [27] [64] [69] IADSMF

f 1 4 MHz 2 MHz 40 kHz 10 kHz
u2 (mV) 3.25 21 1.5 × 10−6 3.035

Post–processing
formula

U0 = UA
U0 = Uc + (UMAX −UMIN)
U0 = UB + 3UMAX −UMIN
U0 = UA + 5UMAX −UMIN
U0 = UC + 7UMAX −UMIN
U0 = UB + 9UMAX −UMIN

θ = arctan
(

Urx1(θ)
Urx2(θ)

)
θp =

{
θ1 − θ2

θ1 − θ2 + 2π
if (θ1 − θ2) ≥ 0
if (θ1 − θ2) < 0 θ1, θ2, θp ∈ [0, 2π) None

(2) Input and output aspects

As can be seen from Table 5, in conventional IADS, the excitation frequency is generally
at the MHz level in order to obtain the induced voltage at the mV level. The excitation
frequency cannot be too small as, as shown in [69], f 1 = 40 kHz; if the excitation frequency
is too small, the voltage cannot reach mV level. As it removes the intermediate link of the
metal rotor, the advantages of IADSMF are reflected. Instead of using the eddy current
magnetic field on the metal rotor to induce the output voltage, the excitation field induces
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the voltage directly in the receiving coils. Compared with traditional IADSs, it can reduce
the sensor components and input demand of the excitation end. Its eddy current loss will
also be reduced, realizing the energy saving of the sensor. The specific loss is shown in
Table 6 of Section 3.3.

Table 6. Eddy current loss comparison.

Parameter [38] IADSMF

f 1 (kHz) 10 10
V = a3 (m3) 9.3696 × 10−10 1.2301 × 10−8

BF (T) 1.2297 × 10−3 1.4 × 10−4

u2 (mV) 2.934 3.035
P (W) 2.1304 0.3625

In the next subsection, the eddy current loss is calculated to quantify the analysis.

3.3. Eddy Current Loss Calculation

Since the shaft is a ferromagnetic material, there is eddy current loss; thus, it is
necessary to study how to reduce the eddy current loss. While meeting measurement needs,
the excitation frequency should be minimized; the lower the frequency is, the smaller the
eddy current loss. Excessive eddy current also causes the shaft to heat up, and a quantity
of heat is transferred to the FPC on the shaft surface. Excessive temperatures affect the
stability of the FPC, resulting in unnecessary errors.

The eddy current loss [78] can be expressed via (25):

P =
∫

v

∣∣∣Jy

∣∣∣2
γ

dV =
1

24
kyokeσω2B2a3 =

1
6

kyokeσπ2 f 2B2a3, (25)

where B and ω represent the magnetic flux density and the angular frequency, respec-
tively; f and a3 represent the excitation frequency and the volume, respectively; and
kyoke = 0.915 and σ represent the correction factors for eddy current loss and the material
conductivity, respectively.

The penetration depth δ of the eddy current [79] can be expressed via (26):

δ =
1√

π f μ0μrσ
, (26)

where u0 and ur represent the permeability of vacuum and the relative permeability,
respectively; and σ is the material conductivity.

Substituting u0 = 4π × 10−7, ur = 400, σ = 1 × 107 S/m, π = 3.14 and f = 10 kHz, we
obtain δ = 0.08 mm, i.e., a3 = 0.08 mm. Therefore, VIADSMF = a1 × a2 × a3 = 12.4 × 12.4
× 0.08 × 10−9 = 1.2301 × 10−8 m3, and VIADS = a1 × a2 × a3 = 58.56 × 0.2 × 0.08 × 10−9

= 9.3696 × 10−10 m3.
From the conclusion of Section 3.1, it can be seen that the excitation frequency is

reduced from 1 MHz to 10 kHz when the induced voltage is reduced by approximately
100 times. Thus, the induced voltage of [38] is reduced to 2.934 mV. At this point, the output
voltage amplitudes of the IADS and IADSMF are almost equal, i.e., at the same level of
3 mV. We calculate the eddy current loss P (Table 6). PIADSMF = 0.3625 W is only 17.02% of
the IADS (2.1304 W) loss. The purpose of reducing eddy current loss is achieved through
replacing the eddy current field with a focusing magnetic field through the MFM.

3.4. Sensor Optimization Parameter Selection

After obtaining the linear relationship between the angular displacement and induced
voltage of the sensor, the measurement error needs to be analyzed. The linearity error of
the induced voltage is used to reflect the measurement error of the sensor. This error is
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derived from the measured induced voltage curve through fitting the difference between
the measured voltage and ideal voltage at the corresponding angle. The difference is
divided by the full–scale voltage to express the linearity error. L [38] can be expressed
via (27):

L =
|(u2 − ui)max|

uFS
× 100%, (27)

where L represents the linearity error; u2 and ui represent the simulation voltage and the
ideal voltage, respectively; and uFS is the full–scale output voltage.

The main design parameters of the sensor are listed. The design parameters include
the number of turns of the Archimedes coil, the width of the Archimedes coil, the air gap
between the Archimedes coil and the receiving coil, and the side length of the receiving
coil. The initial design parameters and ranges are shown in Table 7. The parameter that has
the greatest influence on the linearity error is selected through changing the single variable.
This parameter is optimized to reduce the sensor linearity error.

Table 7. Sensor model parameters.

Parameter Initial Value Setting Range

N1 3 3–11
r1 (mm) 0.2 0.2–0.4
dg (mm) 1 0.6–1.4
lr (mm) 12.4 12.4–12.8

N1—Archimedes coil turn number; r1—Archimedes coil width; dg—air gap between the Archimedes coil and
receiving coil; lr—receiving coil side length.

The initial parameters of the sensor model are used to perform the simulation. The
induced voltage curve is obtained, and the linearity error is calculated (Table 8). As seen
from Table 8, a corresponding simulated voltage has the maximum error (0.038 mV) with
the theoretical voltage at 10◦. Therefore, the maximum linearity error of the sensor in a
measurement period (0–60◦) is 0.6239%.

Table 8. Sensor model simulation results.

θr (◦) u2 (mV) ui (mV) u2–ui (mV) L (%)

0 3.035 3.045 −0.01 0.1642
10 1.049 1.011 0.038 0.6239
20 −1.059 −1.023 −0.036 0.5911
30 −3.035 −3.045 0.01 0.1642
40 −1.023 −0.999 −0.024 0.3941
50 1.071 1.0353 0.0357 0.5862
60 3.035 3.045 −0.01 0.1642

θr—rotation angle.

3.4.1. Archimedes Coil Turn Number

Only the number of turns of the Archimedes coil is changed, and the initial values of
the other design parameters remain unchanged (Table 7). The number of turns is increased
from 3 to 11. The variation in the maximum and minimum linearity error is 0.0318%. The
number of turns has a small effect on the linearity error of the sensor (Table 9).
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Table 9. Effect of number of turns on linearity error.

N1 r1 (mm) dg (mm) lr (mm) L (%) Ev (%)

3 0.2 1 12.4 0.6239

0.0318
5 0.2 1 12.4 0.6443
7 0.2 1 12.4 0.6521
9 0.2 1 12.4 0.6475

11 0.2 1 12.4 0.6557
N1—Archimedes coil turn number; r1—Archimedes coil width; dg—air gap between the Archimedes coil and
receiving coil; lr—receiving coil side length; Ev—error variation.

3.4.2. Archimedes Coil Width

Only the Archimedes coil width is changed, and the initial values of the other design
parameters remain unchanged (Table 7). The width is increased from 0.2 to 0.4 mm.
The variation in the maximum and minimum linearity error is 0.0269% (Table 10). The
Archimedes coil width has a small effect on the linearity error of the sensor.

Table 10. Effect of Archimedes coil width on linearity error.

N1 r1 (mm) dg (mm) lr (mm) L (%) Ev (%)

3 0.2 1 12.4 0.6239

0.0269
3 0.25 1 12.4 0.6488
3 0.3 1 12.4 0.6479
3 0.35 1 12.4 0.6498
3 0.4 1 12.4 0.6508

3.4.3. Air Gap between the Archimedes Coil and Receiving Coil

Only the air gap between the Archimedes coil and receiving coil is changed, and the
initial values of the other design parameters remain unchanged (Table 7). The air gap is
increased from 0.6 to 1.4 mm. The variation in the maximum and minimum linearity error
is 0.6219% (Table 11). The air gap has a significant effect on the linearity error of the sensor.

Table 11. Effect of air gap on linearity error.

N1 r1 (mm) dg (mm) lr (mm) L (%) Ev (%)

3 0.2 0.6 12.4 0.7389

0.6219
3 0.2 0.8 12.4 0.6663
3 0.2 1 12.4 0.6239
3 0.2 1.2 12.4 0.8043
3 0.2 1.4 12.4 1.2458

3.4.4. Receiving Coil Side Length

Only the receiving coil side length is changed, and the initial values of the other design
parameters remain unchanged (Table 7). The side length is increased from 12.4 to 12.8 mm.
The variation in the maximum and minimum linearity error is 0.0305% (Table 12). The side
length has a small effect on the linearity error of the sensor.

Table 12. Effect of side length on linearity error.

N1 r1 (mm) dg (mm) lr (mm) L (%) Ev (%)

3 0.2 1 12.4 0.6239

0.0305
5 0.2 1 12.5 0.6533
7 0.2 1 12.6 0.6399
9 0.2 1 12.7 0.6485

11 0.2 1 12.8 0.6544
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3.4.5. Optimization Parameter Selection

The magnitude of the error variation indicates the magnitude of the voltage fluctua-
tion. We calculate the magnitude of error variation in the Archimedes coil turn number,
Archimedes coil width, air gap between the Archimedes coil and the receiving coil, and
receiving coil side length. The maximum error variation for each parameter is shown in
Table 13. From these, the parameter corresponding to the maximum error variation is
selected and optimized.

Table 13. Effect of the main design parameters on Ev.

Parameter Ev (%)

N1 0.0318
r1 (mm) 0.0269
dg (mm) 0.6219
lr (mm) 0.0305

When the distance of the air gap is changed from 0.6 to 1.4 mm, the magnitude of the
error variation is 0.6219% (Table 13). Ev of the air gap is an order of magnitude larger than
that of the other parameters. The air gap is a main parameter affecting the linearity error of
the sensor. Therefore, the air gap is selected as an optimized parameter for the sensor.

3.5. Optimization Algorithm

Nowadays, the algorithm is being developed very rapidly, and new algorithms are
everywhere. For example, the IbI Logics Algorithm (ILA) is based on Intelligible-in-time
(IbI) Logics [80]. Its advantage over existing algorithms is that the optimization can be
divided into three phases, which can be optimized in stages. If there is a problem in the
second stage, the third stage will not be executed. Correct the problems in the second
phase before implementing the next phase. It is suitable for scenarios where the entire
optimization process needs to be monitored and the optimization parameters need to
be continuously improved (e.g., changing the number of iterations). There is also an
optimization algorithm applied to exoplanet exploration–Transit Search (TS) [81]. For
the optimization approach used through TS, different optimization strategies are used at
different stages of optimization. It optimizes 73 constraints, and the total average error of
TS is the lowest compared with the existing algorithms. Therefore, it is suitable for outer
space exoplanet exploration. The algorithm is suitable for multi–constrained problems, and
its effect of equilibrium is good.

In recent years, researchers optimized sensor structures or related parameters through
various optimization algorithms. The algorithms used are surface integral method [82],
particle swarm optimization (PSO) [83] and response surface method [38]. PSO is suitable
for solving global optimization problems. Compared with traditional algorithms, PSO
has fast solving speed and guarantees global search ability [84]. However, PSO has the
problem of premature convergence and may converge at the local optimum solution.
Considering the above shortcomings, Jing et al. improved the PSO via adding inertia
weights to the PSO. The inertia weights can decrease non–linearly with the number of
iterations increasing. Thus, it ensures global search capability while avoiding trapping
searches in local optimal solutions [85].

Linearly decreasing inertia weight particle swarm optimization (LIWPSO) and the
finite element method (FEM) are combined to optimize the sensor parameters. The sensor
parameter design problem is transformed into a particle swarm search for the best position.
LIWPSO has two key factors for the position search: (1) particle velocity (vi,j) and (2) particle
position (xi,j) [27]. The particle velocity represents the magnitude of the ability to find a
solution. In the n–dimensional search space, each position of a particle represents a solution
to the fitness function, i.e., a position corresponds to a set of sensor structure parameters.
LIWPSO finds the optimal structure variable through solving for the optimal value of the
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fitness function in the search space. Using the above variable, the corresponding parameters
are changed, and the sensor is simulated via the FEM.

Linearity error is calculated through comparing the simulated voltage profile with
the ideal voltage profile, i.e., LIWPSO finds a set of structural parameters that minimize
the sensor linearity error. The updated formulas [27] of the LIWPSO particle velocity and
position can be obtained via (28) and (29), respectively:

vi,j(t + 1) = ωvi,j(t) + c1r1(t)(pi,j(t)− xi,j(t)) + c2r2(t)(gi,j(t)− xi,j(t)), (28)

xi,j(t + 1) = xi,j(t) + vi,j(t), (29)

where vi,j represents the particle velocity; ω represents the inertia weight; xi,j represents
the particle position; c1 and c2 represent the acceleration coefficients of individual particles
and the particle swarm, respectively; and r1 and r2 represent random numbers uniformly
distributed on the interval [0, 1].

The inertia weight formula [27] can be obtained via (30):

ω = ωmax +
t · (ωmin −ωmax)

tmax
, (30)

where ωmax represents the maximum inertia weight, ωmin is the minimum inertia weight
and tmax is the maximum number of iterative steps.

In LIWPSO, ω should be maintained at a large value at the beginning to ensure that
particles jump out of the local optimal solution. Additionally, ω should be maintained at
a small value when the number of iterations is large to ensure that this parameter tends
to the global optimal solution and facilitate algorithm convergence. Generally, ωmin = 0.4,
and ωmax = 0.9. Figure 9 shows the LINWPSO optimization process.

 

Figure 9. Flow chart of LINWPSO optimization process.

In LIWPSO–FEM, the fitness function is used to represent the sensor linearity error.
The air gap between the Archimedes coil and receiving coil is used as the optimized
parameter. The optimization design of the sensor is transformed into the problem of
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determining the values of the sensor variables through searching for the minimum fitness
function via LIWPSO–FEM [27]. The fitness function [38] can be expressed via (31):

f itness = L =
|(u2 − ui)max|

uFS
× 100%, (31)

where L is the sensor linearity error; u2 and ui represent the simulated voltage and the ideal
voltage, respectively; and uFS is the full–scale output voltage.

In the optimization process of LIWPSO–FEM, the particle swarm size is 120, the
acceleration coefficients c1 = c2 = 1.495 and −0.05 ≤ vi,j ≤ 0.05. The number of iterations is
30. The minimum fitness, i.e., the linearity error value, is obtained through 30 iterations.
The linearity error is stable at 0.6012% when the number of iterations exceeds 11 (Figure 10a).
The variation range of the air gap is 0.6–1.4 mm, and the air gap distance corresponding to
the minimum linearity error is 0.96 mm (Figure 10b).

 
(a) (b) 

Figure 10. Sensor optimization simulations: (a) fitness value with iteration number; (b) linearity error
vs. the air gap obtained in optimization design.

The optimized linearity error, as shown in Table 14.

Table 14. Linearity error corresponding to optimized sensor parameter.

Parameter L (%)

dg = 0.96 (mm) 0.6012

In Table 15, a comparative study is given for the IADSMF and some inductive dis-
placement sensors. After optimization, the proposed IADSMF has a lower linearity error.
The advantage of direct linearization is, thus, demonstrated.

Table 15. Linearity comparison of IADSMF and other displacement sensors.

Sensor L (%)

[27] 0.778
[86] 0.8
[87] 1.25

IADSMF 0.6012

4. Discussion

The achievements and shortcomings are as follows.
The main engines of large ships usually operate at low–to–medium speeds. Therefore,

the main engine speed is usually in the range of 90–120 r/min [88]. As shown in Figure 8c,
na = 100 r/min, and the angular resolution is 0.06 degrees. The resolution of IADSMF is
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higher than shown in [15,89] (0.5 and 0.35 degrees). Higher or lower angular resolution can
be achieved through changing f 1.

In contrast to crankshaft angle measurement using an optical angle encoder set, the
IADSMF does not require a separate electronic module for converting the optical signal
into standard TTL signal [89]. IADSMF reduces the complexity of sensors.

Magnetic focusing is used as the excitation method to reduce one level of transmission
compared with a traditional IADS. A traditional IADS [27,36–38] is composed of three
parts—excitation, rotor and receiving coils—requiring two-level transmission to complete
a measurement. The working mode occurs as follows: (1) the excitation coil produces a
magnetic field due to rotor rotation, and an eddy current is created in the rotor. The rotor
undergoes a position change relative to the receiving coil; (2) the receiving coil then induces
a voltage through the eddy current magnetic field generated using the rotor to achieve
the position measurement. An IADSMF forms a stator through means of the MC and the
excitation coil. The generated focusing magnetic field directly acts on the FPC receiving
coil on the rotor, and the FPC receiving coil directly induces a voltage.

The focusing magnetic field from the excitation end replaces the eddy current magnetic
field of the IADS. The eddy current magnetic field inside the metal rotor is eliminated,
again avoiding inducing a voltage at the receiving coil end. Thus, the eddy current field
can be reduced, and the purpose of reducing eddy current loss can be achieved (Table 6).

The excitation frequency is 10 kHz for IADSMF and 4 MHz for [27], and the induced
voltage amplitude of the two sensors are 3 mV. Therefore, when this sensor outputs the
same magnitude of induced voltage as the previously studied sensor [27], there is no need
for a MHz–level excitation frequency. The reason for this finding is that the introduction
of magnetic focusing increases the magnetic induction intensity acting directly on the
receiving end.

In terms of linearization, the focusing magnetic field and the receiving coil of the
IADSMF are square–shaped to achieve direct linearization. The linearity error of the
IADSMF before optimization is 0.6239% (0.6012% after optimization), which is less than
the linearity error of a traditional IADS, which is optimized to 0.778% [27].

The sensitivity of the IADSMF is 0.2023 mV/◦, while the sensor sensitivity shown
in [27] is 0.4847 mV/◦; the IADSMF value is lower. The definition of sensitivity shows that
the higher the sensitivity, the narrower the measurement range of angular displacement,
and the lower the sensor’s stability. Although the IADSMF sensitivity is low, its stability is
better than that of [27].

In terms of the angle measurement range, the IADSMF can achieve 0–360◦ measure-
ment without the constraint associated with the measuring angle range. However, in [37],
it does not calculate the angle corresponding to the induced voltage of 0 mV, and there is a
defect in the range of angle measurement. The advantage of direct linearization is further
demonstrated.

In terms of the optimization algorithm, LINWPSO has a strong ability to jump out of
local optimal solutions. LINWPSO has a faster calculation speed and shorter calculation
time than the traditional particle swarm optimization method used in [37].

The MFM is used to change the traditional excitation method, and a breakthrough in
the excitation method of an IADS is realized. The above breakthrough and improvements
enabled the direct linearization of angular displacement and induced voltage, thus reducing
post–processing design and calculation.

The following issues should be the focus of future research.
The focus of future research is a comprehensive study of signal transmission at the

sensor output. The induced voltage would be sent to the host computer through a wireless
transmission technology such as Bluetooth. Among them, electromagnetic interference and
miniaturization of transmission devices are the focus of research.

(1) Electromagnetic interference

Through debugging different excitation and transmission frequencies, we would
discover a suitable electromagnetic compatibility scheme. The effect of different directions
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for the transmitted signal on the excitation would be sought in space. We would aim to
find the best decoupling scheme for the transmission signal and the excitation signal or the
scheme with the least influence [90].

(2) Miniaturization aspect

We would use manufacturing technologies, such as inkjet printing or silicon microma-
chining technologies, to manufacture circuit boards. We would use these technologies to
take advantage of their smaller size and ability to arrange multi–layer coils on a very small
area, as well as their amplifiers, low-pass filters, analog–to–digital converters, Bluetooth
transceivers, and other components to create transmission devices [91–93].

5. Conclusions

Based on the advantages of IADS, a magnetic focusing type sensor suitable for using
in the environment of ships is designed. The sensor has good versatility and scalability.
An IADSMF can realize the measurement of the crankshaft angle position. Two IADSMFs
are combined to enable the measurement of torque on ships’ rotating shafts. Compared to
the optical method of torque measurement, the IADSMF does not require an additional
geared system for torque measurement. Therefore, the machining of the shaft is simplified.
Compared to traditional IADS, IADSMF does not require a metal rotor in either a planar
or vertical structure. This fact results in one less component being in the overall sensor
system. The purpose of creating a simpler system and higher reliability in the engineering
application is realized. In addition, IADSMF is a non–contact sensor; thus, there is no need
to worry about contact friction and service life.

Compared to the resolution of existing crankshaft angle encoders (0.35 and 0.5 degrees),
the IADSMF increases the measurement resolution (0.06 degrees) by a factor of 5.8 to 8.3. If
necessary, the resolution improvement could be achieved through increasing the existing
excitation frequency (10 kHz). The increase in excitation frequency would be proportional
to the increase in resolution (Figure 8d–f).

Through combining an Archimedes coil with a hollow–core MC, the magnetic field
generated using the excitation coil is changed from a circular (dm = 20 mm) to an approxi-
mately square–shaped magnetic field (12.4× 12.4 mm2). This method reduces the magnetic
field’s area by 51.03%. It improves the center–focusing degree and sensor resolution and
realizes magnetic field focusing. The stator is composed of metal MCs and Archimedes
coils. The rotor is composed of a set of 12 square–shaped receiving coils connected at the
beginning and end, with the adjacent receiving coils separated by 15◦. A measurement cycle
is 60◦, and the angular displacement measurement of rotating in a circle can be completed
in six measurement cycles.

Mathematical models of the excitation coil magnetic field, the receiving coil area
change and the induced voltage are derived. Subsequent simulations are performed for
rotational speeds from 1 to 1000 r/min. The simulation results show that the relationship
between the shaft angular displacement information and induced voltage of the receiving
coil is approximately sinusoidal. The reason for the linearization of angular displacement
with respect to the induced voltage is analyzed, being achieved using the square–shaped
magnetic field and receiving coil design. Theoretically, the feasibility of the measurement
principle of this sensor is demonstrated, and the direct linearization of the angular displace-
ment and induced voltage is achieved. The IADSMF corresponds to an initial linearity
error of 0.6239%. As can be seen from the data in Table 15, this error is also smaller than
that of the other IADSs. The above finding shows that it is beneficial to the proposed direct
linearization, while its effect is good. Simplifying the post–processing design reduces the
difficulty of sensor development and avoids the calculation error that IADS may cause due
to subsequent complex linearization calculation. According to equations and simulations,
it is concluded that excitation frequency f 1 is the main factor affecting the induced voltage
amplitude. The amplitude of u2 increases proportionally with increasing f 1. At f 1 = 10 kHz,
the influence of a low rotational speed change on the amplitude of u2 can be ignored. The
eddy current loss of a traditional IADS is 2.1304 W, while that of the IADSMF is 0.3625 W
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for almost the same induced voltage amplitude, achieving a reduction in the eddy current
loss. The above eddy current loss calculation shows that the measurement method adopted
using IADSMF changes the original IADS, which requires a large eddy current magnetic
field to implement the angle measurement. A shortcoming in the design of IADS is solved,
i.e., the eddy current field of IADS cannot be too small, otherwise the induced voltage can-
not reach the mV level to achieve measurement. Moreover, an excessive eddy current field
corresponds to a large eddy current loss, which is not conducive to the energy saving of the
sensor. Therefore, IADSMF provides a research idea for the development of IADS family.
The parameter that has the greatest influence on the linearity error of the IADSMF—the air
gap—is identified through simulations. The sensor structure is then optimized via LIWPSO
to find the minimum linearity error of 0.6012%, corresponding to an air gap of 0.96 mm.

During optimization, the change in air gap affects the focusing effect of magnetic field,
which, in turn, affects the linearity. Thus, it is found that the better the focusing effect of
magnetic field, the less the magnetic flux leakage outside the receiving coil of IADSMF,
and the less it affects the measurement results. Therefore, future research can improve
the focusing effect. For example, we could find a material with greater relative magnetic
permeability than hollow–core MC to further constrain magnetic flux leakage. Moreover,
different materials of solid–core MC are selected and combined with hollow–core MC.
We could also find the best combination of hollow– and solid–core MC to improve the
focusing effect. The introduction of MFM into IADS further advanced application of MFM
in the measurement field. In particular, one potential application is angle measurement in
ships, which is based on the advantages of direct linearization of IADSMF, which, in turn,
contributed to the advancement in reducing the design difficulty and understanding aspect
of IADS. As shown in Table 5, there is no need for designers to convert angles or voltages.
For researchers who are not experts in the field of sensors, it is not necessary to understand
the design principles and formulas of each sensor post–processing. The linearity of the
voltage variation with time (angular displacement) can be visualized. The versatility and
readability of IADS in post–processing are improved.

Since the IADSMF does not have a metal rotor, we allow the IADS to bypass the eddy
current magnetic field. The excitation magnetic field is realized via inducing a voltage
directly into the receiving coil. The improvement of measurement method is realized.
For the designer, it avoids a situation in which the sensor, knowing that the greater the
eddy current, the greater the loss (Table 6), cannot reduce the eddy current significantly.
Otherwise, the induced voltage amplitude is too small to be measured, making the IADS
useless as a sensor.

In ships, the cost of developing a separate torque sensor is five times that of an angle
sensor [15]. While using IADSMF to replace the angle encoder of the ship main engine,
there is no need to separately develop a torque sensor applied to the ship. Instead, we
can simply place another IADSMF on the other end of the shaft. Through measuring
the torsion angle between two IADSMFs, the torque can be measured using the formula,
improving versatility and reducing costs. A potential application area for the IADSMF is
torque measurement on ships. This function promotes the measurement and application of
magnetic focusing knowledge in the field of torque.

An inductive sensor and the MFM are combined to realize the breakthrough of the
IADS measurement method in theory. This method provides a theoretical basis and new
research directions to promote further IADS development in ships and navigation. We will
experiment with the application of IADSMF in ships and navigation in our next steps.

Experimental arrangement:

(1) According to the data in Table 3, the solid– and hollow–core MCs are processed, and
they are combined with the PCB containing the Archimedes coil.

(2) Using a Gauss meter, we measured the magnetic field formed using the MFM proposed
in Section 3.1 to verify that the focus was successful.

(3) According to the actual focused square magnetic field, the FPC receiving coil with the
same size was processed.
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(4) We processed the shaft, purchase and manufacture equipment, such as the drive motor,
frequency inverter, excitation power supply, couplings and transmission equipment.

(5) After the sensor assembly was completed, the sensor was tested and calibrated to
determine the measurement angle, the linearity error and repeatability, etc.

After the above experiments were completed, IADSMF was installed on the free end
of the crankshaft of the main engine for board testing.

6. Patents

Li, Z.; Wang, B.; Guo, Y.; Zhang, C.; Qiu, F. A measurement system based on magnetic
focusing type to measure static torque and its measurement method. CN110987259B,
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42. Konečná, A.; Javier García de Abajo, F. Electron beam aberration correction using optical near fields. Phys. Rev. Lett. 2020,
125, 030801. [CrossRef] [PubMed]

43. Grillo, V.; Tavabi, A.H.; Yucelen, E.; Lu, P.H.; Venturi, F.; Larocque, H.; Jin, L.; Savenko, A.; Gazzadi, G.C.; Balboni, R.; et al.
Towards a holographic approach to spherical aberration correction in scanning transmission electron microscopy. Opt. Express
2017, 25, 21851–21860. [CrossRef]

44. Siegbahn, K.; Svartholm, N. Focusing of electrons in two dimensions by an inhomogeneous magnetic field. Nature 1946, 157,
872–873. [CrossRef]

45. Walton, E.T.S. High-order focusing by a uniform magnetic field with straight-line boundaries. Nature 1954, 173, 1147–1148.
[CrossRef]

46. Damadian, R.; Minkoff, L.; Goldsmith, M.; Stanford, M.; Koutcher, J. Field focusing nuclear magnetic resonance (FONAR):
Visualization of a tumor in a live animal. Science 1976, 194, 1430–1432. [CrossRef]

47. Lefaucheur, J.P. Transcranial magnetic stimulation. Handb. Clin. Neurol. 2019, 160, 559–580. [CrossRef]
48. Mazurek, M.H.; Cahn, B.A.; Yuen, M.M.; Prabhat, A.M.; Chavva, I.R.; Shah, J.T.; Crawford, A.L.; Brian-welch, E.; Rothberg, J.;

Sacolick, L.; et al. Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage.
Nat. Commun. 2021, 12, 5119. [CrossRef]

49. Kee, H.; Lee, H.; Park, S. Optimized Halbach array for focused magnetic drug targeting. J. Magn. Magn. Mater. 2020, 514, 167180.
[CrossRef]

50. Liu, Y.L.; Chen, D.; Shang, P.; Yin, D.C. A review of magnet systems for targeted drug delivery. J. Control. Release 2019, 302, 90–104.
[CrossRef] [PubMed]

51. Alexiou, C.; Diehl, D.; Henninger, P.; Iro, H.; Rockelein, R.; Schmidt, W.; Weber, H. A high field gradient magnet for magnetic
drug targeting. IEEE Trans. Appl. Supercond. 2006, 16, 1527–1530. [CrossRef]

52. Zhao, Y.Z.; Wang, X.H.; Sun, T.; Chen, Y.C.; Yang, L.; Zhang, T.; Ju, H.Y. Non-contact harmonic magnetic field detection for
parallel steel pipeline localization and defects recognition. Measurement 2021, 180, 109534. [CrossRef]

53. Cui, P.; Zhu, W.B.; Ji, H.J.; Chen, H.T.; Hang, C.J.; Li, M.Y. Analysis and optimization of induction heating processes by focusing
the inner magnetism of the coil. Appl. Energy 2022, 321, 119316. [CrossRef]

54. Zhang, X.; Li, W.W.; Li, B.; Tu, J.; Liao, C.H.; Wu, Q.; Feng, S.; Song, X.C. A new design of the dual-mode and pure longitudinal
EMAT by using a radial-flux-focusing magnet. Sensors 2022, 22, 1316. [CrossRef]

55. Chen, X.D.; Wang, E.H.; Shan, L.K.; Feng, C.; Zheng, Y.; Dong, Y.; Guo, G.C.; Sun, F.W. Focusing the electromagnetic field to 10−6λ

for ultra-high enhancement of field-matter interaction. Nat. Commun. 2021, 12, 6389. [CrossRef]
56. Daskalakis, Z.J.; Farzan, F.; Barr, M.S.; Maller, J.J.; Chen, R.; Fitzgerald, P.B. Long-interval cortical inhibition from the dorsolateral

prefrontal cortex: A TMS-EEG study. Neuropsychopharmacology 2008, 33, 2860–2869. [CrossRef]
57. Li, J.T.; Liang, Z.; Ai, Q.Y.; Yan, X.H.; Tian, J. Double butterfly coil for transcranial magnetic stimulation aiming at improving

focality. IEEE Trans. Magn. 2012, 48, 3509–3512. [CrossRef]
58. Rotundo, S.; Brizi, D.; Flori, A.; Giovannetti, G.; Menichetti, L.; Monorchio, A. Shaping and focusing magnetic field in the human

body: State-of-the art and promising technologies. Sensors 2022, 22, 5132. [CrossRef]
59. Lee, S.W.; Fallegger, F.; Casse, B.D.F.; Fried, S.I. Implantable microcoils for intracortical magnetic stimulation. Sci. Adv. 2016,

2, e1600889. [CrossRef]
60. Philip, N.S.; LaBar, K.S. Mapping a pathway to improved neuropsychiatric treatments with precision transcranial magnetic

stimulation. Sci. Adv. 2022, 8, q7254. [CrossRef]
61. Amigo, I. Stimulating the brain may help people who stutter. Science 2022, 376, 1365–1366. [CrossRef] [PubMed]
62. Wadman, M. Zapping cocaine addiction. Science 2017, 357, 960–963. [CrossRef]
63. Liu, S.W.; Sun, Y.H.; He, L.S.; Kang, Y.H. Magnetic focusing method and sensor in surface topography testing for ferromagnetic

materials. Sens. Actuators A Phys. 2019, 285, 531–542. [CrossRef]
64. Passarotto, M.; Qama, G.; Specogna, R. A fast and efficient simulation method for inductive position sensors design. In Proceedings

of the 2019 IEEE Sensors of the Conference, Montreal, QC, Canada, 27–30 October 2019. [CrossRef]
65. Anandan, N.; Varma Muppala, A.; George, B. A flexible, planar-coil-based sensor for through-shaft angle sensing. IEEE Sens. J.

2018, 18, 10217–10224. [CrossRef]
66. Yang, C.; Tian, Y.; Yu, J.; Jin, M.; Xie, N.; Deng, Y. A 3D printing method of customized magnetic focusing generator for magnetic

field therapy. Acad. J. Med. Health Sci. 2022, 3, 44–53. [CrossRef]
67. Anil Kumar, A.S.; George, B. A noncontact angle sensor based on eddy current technique. IEEE Trans. Instrum. Meas. 2020, 69,

1275–1283. [CrossRef]
68. Liu, C.; Ding, H.; Fang, X.; Wang, Z. Optimal design of transcranial magnetic stimulation thin core coil With trade-off between

stimulation effect and heat energy. IEEE Trans. Appl. Supercond. 2020, 30, 1–6. [CrossRef]
69. Zhang, Z.; Ni, F.; Dong, Y.; Guo, C.; Jin, M.; Liu, H. A novel absolute magnetic rotary sensor. IEEE Trans. Ind. Electron. 2015, 62,

4408–4419. [CrossRef]

135



J. Mar. Sci. Eng. 2023, 11, 1028

70. Liu, J.; Lu, J.; Liu, C.; Hu, Y. Coil arrays modeling and optimization for transcranial magnetic stimulation. In Proceedings of
the 2009 2nd International Conference on Biomedical Engineering and Informatics, Tianjin, China, 17–19 October 2009; pp. 1–5.
[CrossRef]

71. Wu, Y.X.; Yu, H.Y.; Liu, Z.W. Numerical investigation of the magnetic and electric field distributions produced by biconical
transcranial magnetic stimulation coil for optimal design. IEEE Trans. Magn. 2018, 54, 1–5. [CrossRef]

72. Zhang, X.; Wang, Y. Calculation of transient magnetic field and induced voltage in photovoltaic bracket system during a lightning
stroke. Appl. Sci. 2021, 11, 4567. [CrossRef]

73. Zhang, G.Z.; Chen, K.; Li, X.H.; Wang, K.; Fang, R.X.; Liu, J.B. Flexible built-in miniature Archimedes spiral antenna sensor for
PD detection in GIS. High Volt. Eng. 2022, 48, 2244–2254.

74. Song, Z.H.; Zhang, J.; Liu, M.J. Hemispherical Archimedean spiral antenna for multi-mode satellite navigation signals receiving.
J. Astronaut. 2010, 31, 391–396.

75. Aditya, K. Analytical design of Archimedean spiral coils used in inductive power transfer for electric vehicles application.
Electr. Eng. 2018, 100, 1819–1826. [CrossRef]

76. Rodríguez-Maldonado, J.; Posadas-Castillo, C.; Zambrano-Serrano, E. Alternative method to estimate the Fourier expansions and
its rate of change. Mathematics 2022, 10, 3832. [CrossRef]

77. Pachuau, J.L.; Kashyap, P.; Kumar, A.; Paul, R.; Id, P.; Chandrakiran, B.; Debnath, S.; Saha, A.K. Segmentation of composite signal
into harmonic Fourier expansion using genetic algorithm. Int. J. Inf. Technol. 2022, 14, 3507–3515. [CrossRef]

78. Liang, Z.G.; Tang, R.Y. Analytical solution of eddy current loss in core of an electromagnetic valve. Proc. CSEE 2005, 25, 153–157.
[CrossRef]

79. Jiao, S.; Liu, X.; Zeng, Z. Intensive study of skin effect in eddy current testing with pancake coil. IEEE Trans. Magn. 2017, 53, 1–8.
[CrossRef]

80. Mirrashid, M.; Naderpour, H. Incomprehensible but Intelligible-in-time logics: Theory and optimization algorithm. Knowl.-Based Syst.
2023, 264, 110305. [CrossRef]

81. Mirrashid, M.; Naderpour, H. Transit search: An optimization algorithm based on exoplanet exploration. Results Control Optim.
2022, 7, 100127. [CrossRef]

82. Hoxha, A.; Passarotto, M.; Qama, G.; Specogna, R. Design optimization of PCB-Based rotary-inductive position sensors. Sensors
2022, 22, 4683. [CrossRef]

83. Sharmin, S.; Ahmedy, I.; Md Noor, R. An energy-efficient data aggregation clustering algorithm for wireless sensor Networks
using hybrid PSO. Energies 2023, 16, 2487. [CrossRef]

84. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A compre-
hensive survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]

85. Wang, J.; Wang, X.; Li, X.; Yi, J. A hybrid particle swarm optimization algorithm with dynamic adjustment of inertia weight based
on a new feature selection method to optimize SVM parameters. Entropy 2023, 25, 531. [CrossRef] [PubMed]

86. Anandan, N.; George, B. Design and development of a planar linear variable differential transformer for displacement sensing.
IEEE Sens. J. 2017, 17, 5298–53051. [CrossRef]

87. Wang, K.; Zhang, L.S.; Le, Y.; Zheng, S.Q.; Han, B.C.; Jiang, Y.X. Optimized differential self-inductance displacement sensor for
magnetic bearings: Design, analysis and experiment. IEEE Sens. J. 2017, 17, 4378–4387. [CrossRef]

88. Fonte, M.; Duarte, P.; Anes, V.; Freitas, M.; Reis, L. On the assessment of fatigue life of marine diesel engine crankshafts. Eng. Fail.
Anal. 2015, 56, 51–57. [CrossRef]

89. Li, R.; Wen, C.W.; Meng, X.H.; Xie, Y.B. Measurement of the friction force of sliding friction pairs in low-speed marine diesel
engines and comparison with numerical simulation. Appl. Ocean Res. 2022, 121, 103089. [CrossRef]

90. Tawadros, P.; Awadallah, M.; Walker, P.; Zhang, N. Using a low-cost bluetooth torque sensor for vehicle jerk and transient torque
measurement. Proc. Inst. Mech. Eng. Part D 2019, 234, 423–437. [CrossRef]
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Abstract: Accurate and real-time monitoring of the shoreline through cameras is an invaluable
guarantee for the safety of near-shore navigation and berthing of unmanned surface vehicles; exist-
ing shoreline detection methods cannot meet both these requirements. Therefore, we propose an
improved shoreline detection method to detect shorelines accurately and in real time. We define
shoreline detection as the combination of water surface area segmentation and edge detection, the key
to which is segmentation. To detect shorelines accurately and in real time, we propose an improved
U-Net for water segmentation. This network is based on U-Net, using ResNet-34 as the backbone to
enhance the feature extraction capability, with a concise decoder integrated attention mechanism to
improve the processing speed while ensuring the accuracy of water surface segmentation. We also
introduce transfer learning to improve training efficiency and solve the problem of insufficient data.
When obtaining the segmentation result, the Laplace edge detection algorithm is applied to detect
the shoreline. Experiments show that our network achieves 97.05% MIoU and 40 FPS with the fewest
parameters, which is better than mainstream segmentation networks, and also demonstrate that our
shoreline detection method can effectively detect shorelines in real time in various environments.

Keywords: water surface segmentation; attention mechanism; edge detection; shoreline detection

1. Introduction

Unmanned surface vehicles (USVs) have dramatically developed in recent years
thanks to technical advancements. These intelligent devices can be navigated by manual or
programmed control to accomplish a variety of tasks. Real-time and accurate monitoring
of the shoreline is important when using these autonomous surface vehicles, both for the
safety of berthing and near-shore navigation.

On large vessels, several types of sensors are installed to monitor the surrounding
environment, such as cameras [1,2] and radar [3,4]. These devices can provide various
forms of environmental information to the ship, but considering the limitations of USVs
themselves in terms of carrying capacity and energy supply, they cannot equip huge or
a large number of sensors. As a result, visual sensors such as cameras that are lighter
and more energy-efficient while still offering extensive environmental information are
better-suited for USVs. Based on this analysis, a visual-based shoreline detection method is
crucial for USVs.

Depending on their technical means, existing visual-based shoreline detection meth-
ods can be classified into traditional image-based methods and deep-learning-based meth-
ods. Traditional methods include local binary patterns combined with the gray-level
co-occurrence matrix method [5], column-by-column logistic regression combined with the
polynomial spline modeling method [6], the calculation of vertical gradients in gray space
combined with the random sample consensus (RANSAC) algorithm fitting method [7], and
the calculation of morphological gradients on HSV color space combined with the water-
shed algorithm and edge detection method [8]. The abovementioned methods are subject to
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limitations in their use and are susceptible to water surface reflections, light changes, waves,
and long processing times, making them unable to meet the need for accurate and real-time
detection of shorelines. In recent years, artificial intelligence has been greatly developed
and been widely used in the maritime fields, such as for ship detection [9,10], ship trajectory
analysis [11] and prediction [12], marine accident risk quantification [13], and environ-
mental perception [14]. As for shoreline detection, some researchers have attempted to
introduce semantic segmentation techniques into this field [15] by first extracting the water
surface area with a semantic segmentation network and using an edge detection algorithm
on the obtained result to detect the shoreline. Based on this, some works have improved
existing semantic segmentation models, making them more suitable for water surface area
segmentation [16–18], and other studies have introduced pretrained methods [19] or the
use of transfer learning [20] to solve the problem of an insufficient amount of data for
training, as well as use self-supervised training approaches [21] to address the problem
of insufficient labeled data. The trained models have strong robustness, which is good
for solving the interference of environmental factors present in traditional image-based
approaches but still cannot address the processing speed problem due to the use of a large
network architecture, the large scale of the feature maps, etc.

To address the abovementioned problem, i.e., that existing visual-based shoreline de-
tection methods cannot meet the requirement of shoreline detection both accurately and in
real time, we constructed a better method to achieve real-time and accurate shoreline detec-
tion. We define shoreline detection as the combination of water surface segmentation and
edge detection. According to our definition, the key to shoreline detection is water surface
segmentation, which directly determines the accuracy and inference speed of our method.
Edge detection has almost no impact on either of these factors. Therefore, to achieve the
abovementioned target, we propose an improved U-Net network to perform water surface
segmentation accurately and in real time. This network is based on U-Net combined with a
residual network [22] and a squeeze-and-excitation (SE) attention module [23] to increase
the segmentation accuracy and processing efficiency and named the Residual Squeeze-and-
excitation U-Net (RS-UNet). According to experimental verification, the network proposed
in this paper achieved a processing speed of 40 FPS and 97.05% MIoU, outperforming
some mainstream methods of semantic segmentation, meeting the demand for real-time
and accurate water surface area segmentation, and shoreline detection when combined
with an edge detection algorithm. Other experiments also demonstrate the generalization
capability of our method. Specifically, the contributions of this paper include:

• An encoder is built based on ResNet-34 to enhance the feature extraction capability of
the network in complicated environments, with the introduction of transfer learning
using pretrained ResNet-34 weights to improve the training efficiency and solve the
problem of insufficient training data;

• To reduce the amount of computation, a lightweight decoder is built, and an attention
mechanism is added to the decoder to force the network to pay more attention to
the data in the critical part throughout the segmentation process, increasing the
computational speed and maintaining the segmentation quality;

• Construction of a shoreline detection method based on the proposed RS-UNet, which
can accurately detect the shoreline in real time and be applied in various environments.

The remainder of this paper is organized as follows. Section 2 presents a brief review of
related works. Section 3 explains our proposed method. Section 4 shows the experimental
results and analyses of these results. Section 5 provides a summary of our work and
directions for future work. We also provide a list of abbreviations in Abbreviations for a
better reading experience.

2. Related Work

2.1. Traditional Shoreline Detection Method

Traditional shoreline detection methods detect the shoreline through image processing;
for example, Kristan et al. [24] proposed the imposition of weak structural constraints and
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a Markov random field to account for the semantic structure of the marine environment in
real time. At present, the accuracy of this method is relatively low. Kröhnert [6] proposed
the use of column-by-column logistic regression and polynomial spline modeling to detect
shorelines, which has a good detection effect for nearly straight shorelines but a relatively
poor effect for more curved shorelines. Wei and Zhang [5] used local binary patterns
and a gray-level co-occurrence matrix to calculate river texture information and used
structure detection to eliminate the effects of wind and light, which is also a suitable
method for more flat shorelines. Zhan et al. [7] calculated the vertical gradient on a gray
image with the background texture removed, obtained the water shoreline candidate points
from the vertical gradient of each column, and fitted the shoreline from the candidate
points using the RANSAC algorithm. The processing speed of this method is faster, but
it is susceptible to the influence of water reflection or texture. Feng et al. [8] computed
morphological gradients in HSV color space to highlight edges, then used the watershed
algorithm to segment the image area, combined with the use of a filtering operator to
detect a river shoreline, which achieved real-time shoreline detection but was still subject
to the influence of ambient lighting to some extent. Peng et al. [25] analyzed the differences
in the characteristics of images in HSV color space under different lighting conditions.
Different regions in the image were segmented, and the shoreline was detected based on
the differences in saturation and brightness between land and water areas. This method is
less stable and easily affected by environmental changes and lighting variations.

2.2. Deep-Learning-Based Shoreline Detection Method

The key to the deep-learning-based method is the segmentation of the water surface
area. After obtaining the segmented result, the corresponding shoreline can be obtained
using the edge detection algorithm, so it is essentially a semantic segmentation problem.
For example, Steccanella et al. [15] used a fully convolutional neural network to detect
the water surface area and obtained a high segmentation accuracy rate. However, this
method could not meet the requirement of real-time processing. Steccanella et al. [16]
further improved this method and achieved 98.8% pixel segmentation accuracy and 10 FPS
on a 160 × 160 image. To address the problem of an insufficient amount of data for water
surface segmentation training, Adam et al. [19] demonstrated that the use of a pretrained
backbone can significantly improve the network’s ability to segment water surface regions,
and Vandaele et al. [20] proposed the use of a transfer learning approach that completes
pretraining on the COCO dataset and is then fine-tuned on the water surface segmentation
dataset. Zhan et al. [21] combined a semantic segmentation network with conditional
random fields (CRFs) and superpixel mapping to propose an adaptive water surface
segmentation network that effectively solves the training problem on datasets with limited
labeled data. Shen et al. [18] used improved DeepLab v3+ to acquire water surface area
segmentation results combined with an edge detection algorithm to detect the shoreline,
which effectively overcomes the interference of factors such as reflection, although the
processing speed of this method is 8 FPS, which is far from meeting the demand for
real-time detection. Yao et al. [26] proposed ShrelineNet to detect shorelines for USVs,
which segments the entire image into sky, land, and water sections. Then, the shoreline is
detected based on the water region. Yin et al. [17] applied the improved PSPNet to the water
surface segmentation task and later used the Canny edge detection algorithm to detect the
shoreline, obtaining a segmentation MIoU of 96.87% on the USVInland dataset [27].

3. Method

3.1. U-Net Network

The U-Net network [28], which is a fully convolutional network (FCN) [29], achieves
outstanding segmentation performance on small sample datasets for the job of segmenting
medical images. As shown in Figure 1, the distinctive characteristic of U-Net is fully
symmetric encoder–decoder composition. The feature maps input at each stage of the
encoder and decoder are subjected to two consecutive 3× 3 convolution processes without
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padding, while each downsampling in the encoder corresponds to a 2× 2 upsampling in
the decoder. In addition, U-Net crops the feature maps of each layer of the encoder for the
decoding process by Crop and Copy operation to supplement part of the information lost
in the downsampling and upsampling process.

Figure 1. U-Net network architecture [28]. The input is a gray image, and the output is the probability
that each pixel belongs to each category. The input image is downsampled four times to extract
features of different levels and upsampled an equal number of times to recover the original resolution.
Crop and Copy operation is used to first crop the feature map of different layers of the encoder, then
copy them to the decoder for semantic segmentation.

3.2. RS-UNet Network

The RS-UNet network proposed in this paper is based on U-Net owing to the similarity
in nature between water surface area segmentation and medical image segmentation.
Medical image segmentation is essentially a binary segmentation task that segments lesion
regions or other regions of interest in the input images. The water surface area segmentation
problem that we wish to solve is also a binary segmentation task that involves segmenting
the water surface area in the input image. Both tasks are simultaneously plagued by
the problem of a limited quantity of training samples. For this reason, we think that in
this study, we can take design inspirations from U-Net to build a water surface region
segmentation network.

This network maintains the encoder–decoder architecture and employs equal amounts
of downsampling and upsampling, as shown in Figure 2. To ensure that the final segmenta-
tion result is consistent with the resolution of the input image and that the feature maps of
the corresponding stages of the encoder and decoder have the same spatial resolution, the
convolution operation of each stage is padded according to the filter size of the convolution
layer. This enables us to fully utilize the output of various stages of the encoder to make
up for the information loss caused by sampling and to make comprehensive use of the
contextual information at various scales to better complete the task of water surface area
segmentation by using a skip connection instead of Crop and Copy opreation as in the
original U-Net.

For the water surface area segmentation task, the effectiveness of the extracted features
from the input image directly affects the segmentation results. Natural images used for
this task are more complicated and contain more information than medical images, so
the 10 layer convolutional network in the original U-Net encoder is unable to extract a
sufficient amount of useful features from such complex scenes. To improve the feature
extraction capability of the encoder while controlling the FLOPs of the network, we use
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ResNet-34 [22] with the final average pooling layer and fully connected layer removed as
the backbone to extract features. Because of the deeper network architecture and fewer
FLOPs of the backbone, the encoder of RS-UNet can effectively extract more high-level and
richer contextual features, which lays a foundation for the network to better complete the
segmentation task with less inference time. In addition, the utilization of ResNet provides
conditions for the introduction of the transfer learning approach, which solves the problem
of insufficient training data and improves the training efficiency of the network.

Figure 2. RS-UNet network architecture. S indicates the spatial resolution of the input image. The
input is an RGB image, and the output is the segmentation result. The Encoder is the pretrained
ResNet-34 and is fine-tuned during training. There are two input feature maps with different
resolutions for each layer in the decoder. The lower feature is upsampled by the UpConv block
and concatenated with the bigger larger feature through a skip connection. Then, interdependence
between channels is modeled through the SE attention block and processed by the Conv block. At the
end of the network, one UpConv block recovers the spatial resolution to the resolution of the input
image and classifies each pixel into a category.

Theoretically, the real-time processing capability means that the network has low
FLOPs. According to this theory, we built a very simple decoder for the network. The main
computational body of each layer contains only one transposed convolution operation and
one convolution operation; the former is responsible for recovering the spatial resolution,
and the latter is responsible for processing the concatenated feature map. This architecture
guarantees that the decoder contains low FLOPs, but it also leads to a loss of the computa-
tional capacity of the decoder. To overcome this weakness, the SE attention module [23]
is introduced to each layer of the decoder. By modeling the interdependence between
different channels of the concatenated feature map, this module can help the decoder focus
its limited computational capacity on important features to improve performance. The
additional computation required to introduce this kind of module is almost negligible.
Table 1 shows the details of the network architecture.
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Table 1. The architectural details of the network. Up: upsampling multiplier; Channels: the number
of channels of each input and output module; In and Out: spatial resolutions of the feature maps;
Input: input content of the module; ⊗: concatenation operation; S: spatial resolution of the original
image; F(B): the output corresponding to block B.

Encoder

Block Filter Size Stride Channels In Out Input

conv1 7× 7 2 3/64 S S/2 Input image

MaxPooling 2× 2 2 64/64 S/2 S/4 F(conv1)

layer1 3× 3 1 64/64 S/4 S/4 F(MaxPooling)

layer2 3× 3 2 64/128 S/4 S/8 F(layer1)

layer3 3× 3 2 128/256 S/8 S/16 F(layer2)

layer4 3× 3 2 256/512 S/16 S/32 F(layer3)

Decoder

Block Filter Size Up Channels In Out Input

de4upconv
de4se

de4conv

2× 2

3× 3

2
1
1

512/256
512/512
512/256

S/32
S/16
S/16

S/16
S/16
S/16

F(layer4)
F(de4upconv⊗ layer3)

F(de4se)

de3upconv
de3se

de3conv

2× 2

3× 3

2
1
1

256/128
256/256
256/128

S/16
S/8
S/8

S/8
S/8
S/8

F(de4conv)
F(de3upconv⊗ layer2)

F(de3se)

de2upconv
de2se

de2conv

2× 2

3× 3

2
1
1

128/64
128/128
128/64

S/8
S/4
S/4

S/4
S/4
S/4

F(de3conv)
F(de2upconv⊗ layer1)

F(de2se)

de1upconv
de1se

de1conv

2× 2

3× 3

2
1
1

64/64
128/128
128/64

S/4
S/2
S/2

S/2
S/2
S/2

F(de2conv)
F(de1upconv⊗ conv1)

F(de1se)

upconv 3× 3 2 64/2 S/2 S F(de1conv)

The semantic segmentation task is essentially a pixel-level classification task, so the
most commonly used loss function is the cross-entropy loss function. However, considering
the potential positive and negative sample imbalance problem in the water segmentation
task, a joint loss function (Equation (3)) based on Dice loss (Equation (1)) and focal loss
(Equation (2)) is constructed in this paper to replace the cross-entropy loss function to
supervise the training of the network.

Ldice(X, Y) = 1−
K

∑
k=0

2ωk ∑H
i=1 ∑W

j=1 p(X(i, j), k)g(Y(i, j), k)

∑H
i=1 ∑W

j=1 p(X(i, j), k) + ∑H
i=1 ∑W

j=1 g(Y(i, j), k)
(1)

where H and W denote the height and width of the image, respectively; X and Y denote the
predicted result of the network and the ground truth, respectively; K denotes the number
of categories except the background; wk represents the weight of each category; p(X(i, j), k)
denotes the probability of X(i, j) being predicted as category k; and g(Y(i, j), k) denotes the
truth label of Y(i, j) corresponding to category k.

L f ocal(X, Y) = − 1
H ×W

H

∑
i=1

W

∑
j=1

K

∑
k=1

(1− pt(X(i, j), k))γg(Y(i, j), k) log (pt(X(i, j), k)) (2)

where pt(X(i, j), k) denotes the probability of X(i, j) being predicted as category k, and γ is
the focusing parameter.

L(X, Y) = ωdiceLdice(X, Y) + ω f ocal L f ocal(X, Y) (3)
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where ωdice and ω f ocal denote the weight coefficients of Dice loss and focal loss in the loss
function, respectively.

3.3. Shoreline Detection

The flow chart of our shoreline detection method is shown in Figure 3. We define
shoreline detection as the combination of water surface segmentation and edge detection.
The shoreline, which is the edge of the water surface area, can be obtained using the
eight-neighborhood Laplace edge detection algorithm [30] based on the results of water
surface segmentation. The extracted shoreline is then superimposed on the original picture
for display. The outcome of shoreline detection is shown in Figure 4, demonstrating
that a simple eight-neighborhood Laplace operator can effectively detect the complete
shoreline based on the segmentation results, with only a small amount of additional
computation generated.

Figure 3. Flow chart of shoreline detection; from left to right: (a) input image; (b) semantic seg-
mentation; (c) obtained segmentation result; (d) process executed by the Laplacian edge detection
algorithm; (e) display of the detected shoreline.

(a) Original image. (b) Detected shoreline.

Figure 4. Shoreline detection results. (a) The original image; (b) the detected shoreline (green lines).

4. Results and Discussion

4.1. Experimental Implementation

Dateset and Evaluation Metrics According to our definition of shoreline detection
introduced in Section 3.3, the key to shoreline detection is the semantic segmentation of
water surface areas, the accuracy of which can be equivalent to the accuracy of shoreline
detection. To enhance the water segmentation capability of the network and its adaptability
to different scenes, a new dataset was constructed for the water surface segmentation
task. The dataset consists of 433 images of various scenes; the resolutions of these images
range from 220× 165 to 5792× 4344. These images were collected through the Internet
or photographed by ourselves. The dataset includes a wide range of shooting angles and
lighting conditions to make the dataset more representative and more widely applicable.

As the accuracy of shoreline detection can be equivalent to the accuracy of water sur-
face segmentation, we directly quantitatively evaluated the performance of our shoreline
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detection method using the metrics of semantic segmentation, that is, the Dice coeffi-
cient (Dice), mean intersection over union (MIoU), category mean pixel accuracy (MPA),
and pixel accuracy (PA).

Training Setting For network training, the dataset is divided into a training set and a
test set according in a 9-to-1 ratio. We set ωk =

1
K+1 in Equation (1), γ = 2 in Equation (2),

and ωdice = ω f ocal = 1 in Equation (3) according to the theory that Dice loss (Equation (1))
and focal loss (Equation (2)) constrain the network updating toward the same target from
different perspectives and that their equal status benefits the capability of the network and
saves on computation during training. We used adaptive moment estimation (Adam) [31]
for optimization. Since pretraining weights were introduced, the combination of freeze
training and unfreeze training was adopted. In a total of 150 epochs of the training process,
we first went through 30 epochs of freeze training, in which the weights of the backbone
were not updated, with an initial learning rate of 10−3 and a batch size of 4. The following
120 epochs trained the backbone, together with the rest of the network, with an initial
learning rate of 10−4 and a batch size of 2. In addition, a learning rate decay coefficient of
0.96 was used throughout the whole training process.

For data augmentation, we employed some fundamental data augmentation tech-
niques, such as random flipping, random scaling, and augmentation through HSV color
space. Specifically, each input image was rescaled to between 25% and 200% of its original
resolution, then horizontally flipped with a probability of 50%. Finally, its hue, saturation,
and value were randomly adjusted to between 50% and 150% of the original value. All
these processes were executed automatically and randomly.

Training was conducted on one NVIDIA GeForce RTX 3080 GPU.

4.2. Ablation Studies

We hypothesized that the potential imbalance of positive and negative samples in
the segmentation task would affect the training effect of the network, so the joint loss
function of Dice loss, which measures the similarity of segmentation results, and focal
Loss, which boosts the weights of small samples, was employed in training to replace
the cross-entropy loss function. In this section, experiments were conducted to compare
the impact of different loss functions on the training of the network, which used only the
cross-entropy loss function or the joint loss function. As shown in Table 2, the semantic
segmentation performance of the network trained with the joint loss function is better.
This indicates that considering the positive and negative sample imbalance problem is
more beneficial to training semantic segmentation networks than simply measuring the
pixel-level classification accuracy in the water surface area segmentation task.

Table 2. The impact of different loss functions on the training of the network. Best results are in bold.

Loss Function Dice MIoU (%) MPA (%) PA (%)

Cross-entropy loss 0.9748 96.65 98.27 98.37
Joint loss 0.9763 97.05 98.49 98.56

The effect of introducing attention mechanisms at different nodes on the network’s
performance is shown in Table 3. The two networks, RS-UNet-1 and RS-UNet-2, are de-
picted in Figure 5 as Figure 5a,b, respectively. RS-UNet-1 adds the attention mechanism to
the pretrained backbone used for feature extraction, while RS-UNet-2 adds the attention
mechanism to the decoder (ours). For training, the same hyperparameters are employed.
According to the experimental results, integrating the attention mechanism into the pre-
trained decoder is preferable to integrating it into the backbone in an interpolated manner.

Owing to this phenomenon, we found that because the backbone was pre-trained on
ImageNet, while the added SE attention module was not pre-trained but only initialized,
this kind of interleaved combination of pre-trained module and non-pre-trained module
destroyed the consistency of weight in the encoder. When training the network, the same
learning rate cannot have a uniform effect on both parts, making the network converge to
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a local optimum instead of a global optimum, which results in a suboptimal final output.
During training, the convergence speed of RS-UNet-1 also lags behind that of RS-UNet-2,
which is considered to have the same cause.

Table 3. Effect of adding the attention mechanism to different locations on network performance. The
network architectures of RS-UNet-1 and RS-UNet-2 are shown in Figure 5. Best results are in bold.

Architecture Dice MIoU (%) MPA (%) PA (%)

RS-UNet-1 0.9735 96.66 98.26 98.37
RS-UNet-2 0.9763 97.05 98.49 98.56

(a) RS-UNet-1 (b) RS-UNet-2

Figure 5. RS-UNet-1 and RS-UNet-2 network architectures. RS-UNet-1 adds the attention mechanism
in the encoder (integrated into the backbone), and RS-UNet-2 adds the attention mechanism in the
decoder. All symbols are the same as in Figure 2.

4.3. Experimental Results and Analysis of Water Surface Segmentation

The comparison between our network and some mainstream convolution-based se-
mantic segmentation networks for water surface segmentation performance and parameters
is shown in Table 4. All the networks compared here were retrained on our dataset with its
best hyperparameters. Note that all the networks were trained on one NVIDIA GeForce
RTX 3080 GPU and tested on one NVIDIA GeForce RTX 3050Ti GPU; the spatial resolution
of the images used in the test of processing speed was uniform, at 640× 320. The improve-
ment over [28,32,33] validates the effectiveness of introducing the attention mechanism.
The improvement over [32–35] favorably validates the effectiveness of integrating con-
textual information at all scales using a skip connection. In summary, the combination
of the attention mechanism and skip connection help the network successfully overcome
the influence of inherent properties of the water surface, such as reflection and irregular
boundary shapes. We can see that the processing speed of our network is the fastest due to
the concise network architecture.

Table 4. Comparison of the water surface segmentation performance and parameters of different
networks. We compare our network against some mainstream segmentation networks. All the
numbers reported here are from our experiment. Best results are in bold.

Network Params (M) Dice Coefficient MIoU (%) MPA (%) Pixel Accuracy (%) FPS

U-Net [28] 31.0 0.8791 80.16 88.24 89.60 9.5
PSPNet [32] 65.6 0.9052 88.83 93.82 94.36 20

DeepLab v3+ [33] 59.3 0.9449 92.22 95.90 94.36 35
DANet [34] 66.6 0.9705 95.61 97.70 97.93 34

CondNet [35] 44.1 0.9664 95.36 97.67 97.80 37
RS-UNet(ours) 23.7 0.9763 97.05 98.49 98.56 40

145



J. Mar. Sci. Eng. 2023, 11, 1049

In addition to the quantitative comparison, some qualitative results are also presented
in Figure 6 to visually show the differences between these networks after being trained on
the same dataset. The first column is the original input image, the associated ground truth
is displayed in the second column, and the following columns are the segmentation results
corresponding to different methods. The result of our network is the closest to the ground
truth. Other networks have obvious incorrect segmentation problems due to the inherent
properties of the water surface.

(a) Input Image (b) Ground Truth (c) U-Net (d) PSPNet (e) DeepLab v3+ (f) DANet (g) CondNet (h) RS-UNet

Figure 6. Some qualitative results of water surface segmentation of different networks. The first
column is the input image, the second column is the corresponding ground truth, and the other
columns are the segmentation results of the water surface area obtained by different methods. This
figure visually shows the performance differences between different networks after training on the
same dataset. Our results match the ground truth best.

4.4. Comparison with Other Shoreline Detection Methods

In addition to the comparison of water surface area segmentation results with those
of mainstream segmentation methods, we also compared our shoreline method with
other shoreline detection methods in the professional field. Due to the lack of open-
source resources, here, our method was only compared with that of Yin et al. [17], one
of the newest and best shoreline detection methods, on the USVInland dataset [27]. We
trained our network on this dataset with the same hyperparameters as in Section 4.1
and followed their dataset division strategies. The results reported in [17] were directly
used here. For fairness, this experiment was conducted on one RTX2080Ti. Because in
these two methods, the segmentation performance is directly related to the shoreline
detection performance, Table 5 only shows the comparison of these two methods in water
surface segmentation.

Table 5. Comparison with other shoreline detection methods in segmentation performance and
inferring speed. The data reported in the first row are from [17]. Best results are in bold.

Method MIoU (%) PA (%) FPS

Yin et al. [17] 96.87 98.49 -
Ours 97.21 98.60 32

It can be seen that when compared with the other methods in the professional field,
our method still shows a more favorable result. The inferring speed of our method is
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very attractive, which satisfies the need for real-time shoreline detection. Furthermore,
comparison of the improvements in MIoU and PA also demonstrates the effectiveness of
the use of joint loss during training.

4.5. Experiment on Generalization Capability

As discussed in Section 4.3, the inherent properties of the water surface, such as
reflection, and irregular boundary shapes, have a significant impact on the detection result.
However, these common features are easily influenced by the environment; for example,
the landscape on the shore affects the reflection. This causes the same feature to behave
differently in different environments, which challenges the generalization capability of the
network. To verify the generalization ability of our method in different scenes, we tested
it on the USVInland dataset [27] and the port scenes collected by our team without any
fine tuning. The segmentation performance of RS-UNet on these two datasets is shown in
Table 6. Obviously, our network generalizes well on the two datasets.

As for the shoreline detection performance, some qualitative results on the USVInland
and port datasets are shown in Figures 7 and 8, respectively. The green line indicates
the shoreline detected by our method, the red line is the artificially delineated reference
shoreline, and the yellow line indicates the overlap of the two. It can be seen that, al-
though there are reflection interference problems in the USVInland dataset [27] and the port
scene is not included in the training data, the shoreline detected by our method matches
the reference shoreline closely in both environments. This excellent result demonstrates
that our shoreline detection method can generalize well in various environments.

Table 6. The performance of RS-UNet on other datasets. The network was not re-trained on these
datasets, just use the weights trained in Section 4.3.

Dateset Dice MIoU (%) MPA (%) PA (%)

USVInland [27] 0.9763 95.60 97.73 97.75
Port 0.9830 97.26 98.68 98.76

(a) Original Image (b) Detected Shoreline (c) Original Image (d) Detected Shoreline

Figure 7. The results of our method on the USVInland dataset for shoreline detection. The green line
is the detected shoreline, the red line is the reference shoreline, and the yellow portions represent the
overlap between the two.
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(a) Original Image (b) Detected Shoreline (c) Original Image (d) Detected Shoreline

Figure 8. The results of our method on the port dataset for shoreline detection.The green line is
the detected shoreline, the red line is the reference shoreline, and the yellow portion represents the
overlap between the two.

5. Conclusions

In this paper, we discussed the current state of research in the field of shoreline
detection and analyzed the reasons for the shortcomings of these methods in accurately
detecting shorelines in real time. Accordingly, we constructed a more accurate and real-
time shoreline detection method based on the proposed RS-UNet network. Our method
defines shoreline detection as the combination of water surface area segmentation and edge
detection. As the key of our method, we proposed RS-UNet as the water segmentation
network, which can segment the water area accurately and in real time. Experiments
show that our RS-UNet achieves a 97.05% MIoU and 40 FPS processing speed in the task
of segmenting the water surface area, which is better than some existing mainstream
semantic segmentation methods and deep-learning-based shoreline detection methods. We
also demonstrated the generalization capability of our method through experiments. In
summary, our shoreline detection method can accurately detect shorelines in real time and
in various environments.

Although our method performs well in shoreline detection, it is still to some limitations.
The main limitation is the insufficient amount of training data with annotations, which
limits the generalization ability of our method. Our future work will be focused in two
directions. The first direction is exploring training our network in an unsupervised manner.
By employing an unsupervised training process, we can use a large number of images
without annotations for training and significantly reduce the impact of a lack of training
data. Another direction is to treat this work as a foundation, integrating the proposed
method with other downstream tasks. such as obstacle detection on the water surface,
automatic visual positioning, and the monitoring of distance between USVs and the shore,
in order to provide guarantees for the safety of navigation of USVs.
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Abbreviations

As there is a large number of acronyms and terms in our manuscript, we provide an abbreviations
list here for a better reading experience.

Abbreviation Full Name

MIoU Mean intersection over union
FPS Frames per second
USV Unmanned surface vehicle
RANSAC Random sample consensus
HSV Hue saturation value
SE Squeeze and excitation
RS-UNet Residual squeeze-and-excitation U-Net
CRF Conditional random fields
FCNs Fully convolutional Networks
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Abstract: In order to ensure the safe navigation of USVs (unmanned surface vessels) and real-time
collision avoidance, this study conducts global and local path planning for USVs in a variable
dynamic environment, while local path planning is proposed under the consideration of USV motion
characteristics and COLREGs (International Convention on Regulations for Collision Avoidance at
Sea) requirements. First, the basis of collision avoidance decisions based on the dynamic window
method is introduced. Second, the knowledge of local collision avoidance theory is used to study
the local path planning of USV, and finally, simulation experiments are carried out in different
situations and environments containing unknown obstacles. The local path planning experiments
with unknown obstacles can prove that the local path planning algorithm proposed in this study has
good results and can ensure that the USV makes collision avoidance decisions based on COLREGs
when it meets with a ship.

Keywords: local path planning; dynamic window method; USV; path planning

1. Introduction

In recent years, due to global warming, increasing environmental pollution, and the
scarcity of land resources, countries around the world have paid more attention to the
development of marine resources [1], which has led to the rapid development of intelli-
gent maritime technologies such as unmanned surface vehicles (USVs) and underwater
robots. As an intelligent robot, ASV can perform tasks independently without human
intervention [2,3]. It is a surface operating platform with the advantages of a small size
and stealthiness. Therefore, it is mainly used to perform hazardous missions [4]. USVs
play an important role in civil and military fields such as environmental monitoring,
hydrographic exploration, offshore patrol, maritime search and rescue, and long-range re-
connaissance [5,6]. During the navigation of USVs, they are affected not only by the known
static environment (shore base, shoals, islands, etc.) but also by unknown dynamic vessels
and unknown static obstacles (pontoons, offshore operating platforms, etc.) [7]. In order
to ensure safe navigation, USVs will first perform global path planning based on known
static obstacles in the navigation environment during operation, then perform real-time
detection of the dynamic ocean environment [8], and finally implement local dynamic
path planning in combination with COLREGs. During the process of the dynamic path
planning, when the vessels are in sight of one another, only by considering the rules of col-
lision avoidance can the USV in sailing be guided accurately [9]. At present, there are also
many studies focusing on ship collision avoidance algorithms; Zhang et al. [10] proposed a
distributed intelligent anti-collision decision support formulation and designed a linear
extension algorithm for both course alteration and speed reduction to keep clearance of all
the target ships, which proves that anti-collision formulation can avoid collision when all
ships have complied with COLREGs as well as when some of them do not take actions. Cai
et al. [11] proposed a Collision Risk Index of Ferry (CRIF) based on the behavior of ferries
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and multiple target ships, which makes it possible to assess real-time collision risk during
crossing and to integrate the collision risk of each voyage based on historical encounter
scenarios. Xu et al. [12] proposed a modified path-following control system using the vector
field method for USV. Unlike other methods, they considered the coupled path following
and collision avoidance task as a whole. Finally, their proposed method allows the USV
to follow a predetermined path while automatically avoiding obstacles. Zhang et al. [13]
proposed a modified path planning method called RRTes, which simultaneously considers
the ship draft and UKC to avoid grounding as well as ship maneuverability constraints
and COLREGs to identify ship dynamic collision risk. Therefore, in addition to global
path planning, USVs need to have the ability to plan paths in a dynamic environment. In
the current research on USVs [14], autonomous collision avoidance technology is a key
technology that has not been surpassed in the development of unmanned vessels and is a
prerequisite for USVs to navigate safely in dynamic environments.

Based on COLREGs, Almoaili et al. [15] propose a near-optimal algorithm to find a
feasible path for UGVs (Unmanned Ground Vehicle) in a static environment, and the per-
formance of the proposed algorithm was compared with other well-established algorithms
in the path planning literature such as A* using a simulator developed for this purpose.
Wang et al. [16] designed three-dimensional path planning and security event-triggered
cooperative path tracking for a multi-disc autonomous underwater glider (AUG) consid-
ering the presence of underwater obstacles and denial-of-service (DoS) attacks. In the
study by Jabbarpour et al. [17], a new ant-based path planning approach that considers
UGV energy consumption in the IPTS planning strategy is proposed. This method is
called Green Ant (G-Ant) and integrates an ant-based algorithm with a power/energy
consumption prediction model to reach its main goal, which is providing a collision-free
shortest path with low power consumption. Han et al. [18] propose a path planning
method based on the multi-strategy evolutionary learning artificial bee colony algorithm.
Thoresen et al. [19] propose a new method of path planning for UGVs on terrain, and the
proposed path planning method is based on the Hybrid A* algorithm and uses estimated
terrain traversability to find the path that optimizes both traversability and distance for the
UGV. Shin et al. [20] proposes a model predictive path planning algorithm by employing
a passivity-based model predictive control (MPC) optimization setup. Chen et al. [21]
introduce a new meta-heuristic path planning algorithm, the Cuckoo-Beetle Swarm Search
(CBSS) algorithm, to solve the path planning problem for heterogeneous mobile robots.
Through domestic and international research, it has been found that there are few studies
in global path planning that can ensure path safety while also considering path economy.
In local path planning, unknown static obstacles are rarely considered to be introduced into
the environment. Therefore, the improved A * algorithm is used in global path planning to
generate routes that are both safe and cost-effective. Unknown static obstacle evaluation
factors are introduced into the evaluation function of the dynamic window method (DWA)
in local path planning. This improves the sensitivity of the algorithm in local path planning.
This article integrates global and local path planning, which can provide certain feasible
suggestions for route planning before unmanned vessel navigation and collision avoidance
during navigation.

2. Global Path Planning of USV Based on an Electronic Navigation Chart

In order to realize the autonomous navigation of the USV under mutual visibility
conditions, the navigation environment is established based on a 5 m depth contour
according to web charts. It is based on the surface data in the ECDIS data, and rendering
is performed using tools such as Mapbox to achieve the display of basic surfaces such as
land, shoals, and bathymetric surfaces. Java’s SpringBoot framework is used as the main
body of the program, the ORM (Object Relational Mapping) framework of the MySQL
database is Mybatis, the Druid is used as the Connection pool of the MySQL database,
and the JedisPool is used as the Connection pool of the Redis database. A front and rear
nonseparation strategy is adopted. The security optimization objectives for global path
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planning are determined, and a global path planning model is established. The flowchart
of our work is shown in Figure 1. This work includes global path planning and local path
planning. The global path planning is the generation of a path based on known static
obstacles, including chart processing, path planning, path smoothing, etc. Local path
planning is the dynamic adjustment made by ships when navigating along the globally
planned path. During navigation, there may be static and dynamic obstacles that are not
displayed on the chart, and safe collision avoidance actions need to be taken to avoid
collisions. After avoiding collisions, it is necessary to return to the global planning path.

 

Figure 1. The flowchart of global and local path planning.

2.1. Chart Data Processing

First of all, the surface data rendered in different colors in the nautical chart are
processed by pixel threshold segmentation. Among them, the processing that satis-
fies the water depth constraints is the navigable area, and the others are the obstacle
area. Using electronic charts displayed on the web as the initial experimental environ-
ment, a global path planning experimental model is constructed for a portion of the
chart areas with a latitude range of 30◦9.627′ N–30◦21.306′ N and a longitude range of
121◦52.356′ E–122◦8.543′ E. The values of different chart information (R, G, B) are shown in
Table 1.

Table 1. Comparison table of rendering colors for different environmental information of the chart.

Chart Environmental Information Color Red Green Blue

Areas with a water depth of 30–50 m 216 244 225

Areas with a water depth of 10–20 m 185 225 222

Areas with a water depth of 5 m 152 211 237

Areas with a water depth of 1–2 m 123 193 241

shoal 115 185 142

land 203 199 131

Second, the point and line data that hinder navigation in the screening experiment
area are drawn in the experiment environment model. Next, after constructing the nautical
chart data into a rasterized environment model, the generated path is the grid position
point in the Cartesian coordinate system. In order to be able to guide the navigation of the
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USV in practice, it is necessary to convert the grid nodes and the geographic coordinate
system (longitude, latitude). The coordinate conversion calculation principle is shown in
Figure 2. Figure 2 shows a chart area where the maximum and minimum latitudes are
Latmax and Latmin and the maximum and minimum longitudes are Lonmax and Lonmin.
The corresponding number of horizontal grids is m, and the number of vertical grids is n.
The conversion formula between latitude and longitude and grid coordinates is as follows:{

Lat = y(Latmax−Latmin)
n + Latmin

Lon = x(Lonmax−Lonmin)
m + Lonmin

(1)

Figure 2. Coordinate transformation diagram.

Among them, Lat and Lon represent the position point coordinates of the unmanned
ship during navigation, and x and y represent the horizontal and vertical coordinates in
the grid map, respectively.

2.2. Improved A-Star Algorithm

As a commonly used heuristic path search algorithm, the A-star algorithm is widely
used in the field of global path planning [22]. Its search methods include four-connected
area search and eight-connected area search. Considering the movement characteristics of
the USV in the ocean [23], this paper uses the search method of eight-connected areas to
search navigable waters. The heuristic function of the improved A-star algorithm is defined
as follows:

f (n) = g(n) + h(n) + D(n) (2)

where g(n) is the actual distance cost from the starting point to the current node, h(n)
is the estimated distance cost from the current node to the target node [24], and D(n) is
the hazard function that uses the Voronoi field to add hazards to the grid. The A-star
algorithm only uses the path length as a heuristic function, and the planned path often
approaches obstacles, which cannot effectively guide USV to navigate safely and smoothly.
This article improves the evaluation function of the A-star algorithm by using the concept
of establishing navigation boundaries based on the Voronoi field algorithm, the definition
of which is as follows:

ρV(x, y) =
(

α

α + do(x, y)

)(
dv(x, y)

do(x, y) + dv(x, y)

)
∗
[
(do − dmax

o )2

(dmax
o )2

]
(3)

where do(x, y) is the distance from the current node to the obstacle, dv(x, y) is the distance
from the current node to the Voronoi boundary, α > 0 is a constant that controls the decay
rate of the potential field, and dmax

o > 0 is a constant controlling the maximum operating
range of the potential field.
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In the process of unmanned ship navigation, not only should the constraint of water
depth be considered, but a certain safe distance should also be maintained between the
generated path and obstacles. The evaluation functions of each grid after adding hazard
levels can be defined as:

f (n) =

{
g(n) + h(n), ρv = 0 or dv(x, y) ≥ D
∞, ρv > 0 or dv(x, y) < D

(4)

ρv is the Voronoi field value at the current node, and D is the safety constraint distance.

3. Local Path Planning of USV

3.1. Collision Avoidance Decision Based on the Dynamic Window Method

First, we establish the motion model of the USV (linear velocity, angular velocity, etc.). Sec-
ond, a set of navigable speeds including linear and angular velocities {(v1, w1), . . . , (vi, wi)}
is established under the constraints of the motion model and the distribution of obstacles in
the motion environment [25]. Finally, the speed vectors under the navigable speed set are
sampled, and the predicted trajectory of each speed vector (v, w) in the next time period
is solved according to the sampled speed vectors [26]. Finally, the evaluation function is
used to optimize the trajectory, and the speed combination corresponding to the optimal
trajectory is used as the navigation speed in the next period of time [27].

The movement state of the USV during navigation is shown in Figure 3. Assume
that the current given linear velocity and angular velocity vector is (v0, w0), the current
two-dimensional position coordinate is (x0, y0), and the included angle with the abscissa is
ϕ0 [28]. The motion model of the USV is shown in Formula (5):⎧⎨⎩

x = x0 + v0Δt cos ϕ
y = y0 + v0Δt sin ϕ
ϕ = ϕ0 + w0Δt

(5)

O
X

Y

0

x’
y’

x

y0

Figure 3. Kinematics Model of USV.

After the USV model is established, the trajectory of the USV in the next sampling
period can be predicted according to the motion model. The speed space available for
sampling in actual voyages is limited, which is determined by the following three aspects:

(1) Velocity constraints

Suppose the maximum linear velocity of the USV is vmax, the minimum linear velocity
is vmin, the maximum angular velocity is wmax, and the minimum angular velocity is
wmin [29]. Then, the set of velocities Vm between the maximum value and the minimum
value is:

Vm = {(v, w)|v ∈ [vmin, vmax], w ∈ [wmin, wmax]} (6)
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(2) Performance constraints of USV

Assuming that the linear velocity and angular velocity vector of a given USV at a
certain moment are (v0, w0), and its maximum linear acceleration and maximum angular
acceleration are α and w [30], then the speed set Vd constrained by the power device is:

Vd =
{
(v, w)

∣∣v ∈ [v0 − aΔt, v0 + aΔt], w ∈ [w0 − .
wΔt, w0 +

.
wΔt]

}
(7)

(3) Stopping distance constraint

Assuming that dist(v, w) is the shortest distance between the end of the USV-predicted
trajectory and the obstacle, v′ and w′ are the maximum stopping linear acceleration and
maximum stopping angular acceleration, respectively [31]; then, the speed set Vd con-
strained by the stopping distance is:

Va =

{
(v, w)

∣∣∣∣v ≤ √2 · dist(v, w) · v′, w ≤
√

2 · dist(v, w) · w′
}

(8)

In summary, if the USV is to sail safely to the destination, the speed space needs to
meet the above three constraints. Assuming that all navigable speed sets of USV in the
space are Vr, then Vr is the intersection of the speed sets under the above three constraints.

3.2. Acquisition of Optimal Trajectory

The acquisition of the optimal trajectory is divided into two parts: trajectory prepro-
cessing and trajectory evaluation, and the operation is as follows:

(1) Trajectory preprocessing

Dynamic ship risk detection is the process of screening and predicting trajectories,
as well as the operation of determining the timing of collision avoidance. Its principle is
shown in Figure 4. The distance between the sampling point of the predicted trajectory
and the corresponding position point of the obstructed ship during the period is calculated,
and the CPA is adopted. When the distance encountered recently is less than the set safety
distance, it indicates a risk of collision. The length of the USV is set to 3 to 11 m, and the
draft is less than 2 m. The size of the target ship is set to twice that of the USV, and the draft
is 3 m.

Figure 4. Dynamic ship risk detection.

When ships perform collision avoidance operations in head-on situations and crossing
situations, according to the requirements of the COLREGs, the give-way ship should turn to
starboard to avoid stand-on ships. Therefore, the range of angular velocity corresponding
to the predicted trajectory will be limited to ω ∈ [ωmin, ω0]. This operation needs to
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be maintained during the avoidance process until no obstructive ship is detected in the
predicted trajectory; then, the process ends.

(2) Trajectory evaluation function

On the basis of the constraints of the COLREGs, this paper sets three aspects of speed
function, heading function, and distance function to construct the trajectory evaluation
function to evaluate the navigable predicted trajectory. The optimal trajectory evaluation
function is shown in Formula (9):

G(v, ω) = α · fv(v, ω) + β · fh(v, ω) + γ · fd(v, ω) + λ · fdu(v, w) (9)

where G(v, ω) is the trajectory evaluation function, and its maximum value is used to find
the optimal solution of the predicted trajectory; the other functions are sub-functions of the
predicted trajectory function, and α, β, γ, λ are the weight coefficients of each sub-function.
The fastness function fv(v, ω) is used to evaluate the linear velocity size of the current
trajectory, the reachability function fh(v, ω) is used to evaluate the deviation degree of
the predicted trajectory end of the USV from the target point, and the safety functions of
known and unknown obstacles fd(v, ω) and fdu(v, w) are used to evaluate the safety of
predicted trajectories.

The trajectory evaluation function needs to be normalized before evaluation, as shown
in Formula (10): ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f v(i) =
fv(i)

∑n
i=1 fv(i)

f h(i) =
fh(i)

∑n
i=1 fh(i)

f d(i) =
fd(i)

∑n
i=1 fd(i)

f d(i) =
fdu(i)

∑n
i=1 fdu(i)

(10)

4. Results and Discussion

4.1. Experimental Results of Global Path Planning

In this paper, the selected nautical chart area is rasterized and divided into
500 × 500 grids, and each grid represents 25 m. Aiming at the maneuverability of the USV,
safety distance constraints of 100 m, 200 m, and 300 m are set. The results of global path
planning based on different safety distance constraints and smooth optimization are shown
in Figure 5, Figure 5a shows the display of the planned path in the grid environment, and
Figure 5b shows the planning in the redrawn sea chart water depth environment display of
the path.

Figure 5 is a comparison of the experimental results of the traditional A-star algorithm
and the improved A-star algorithm under different safety distance constraints. The solid
blue line is the result of the global path planning of the A-star algorithm without adding
a safety distance constraint. It can be seen that the planned path is close to the obstacle,
which will undoubtedly increase the collision between the USV and the obstacle risk.
Red, cyan, and magenta are the path planning results of maintaining 100 m, 200 m, and
300 m safety distance constraints, respectively. It can be seen that with the increase in
distance constraints, the planned path can maintain distance constraints when approaching
obstacles, and the path with a larger safety radius is farther away from obstacles. It can be
seen from Figure 5b that the planned paths are all outside the water depth of 5 m, and the
proposed method can guarantee the constraint of safe water depth.
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Figure 5. Global path planning results under different safety distance constraints.

Figure 6 shows the comparison of some planned paths before and after smooth
optimization. Figure 6a shows the path before smooth optimization. The number of
turns in the path is too many and not smooth, which does not meet the requirements
of navigation practice and USV performance; Figure 6b shows the path after smooth
optimization. The number of path turns is small, and the smoothness is high, which is of
high guiding significance.

Figure 6. Comparison of path smoothing effects under different safety distance constraints. The
meaning of different colored lines is same as Figure 5.

Figure 7 shows the distance between the path node and the obstacle under three
different safety distances. From the black horizontal dotted line set in the figure, it can be
seen that the path node keeps the set safety distance from the obstacle, which can improve
the safety factor of the USV during navigation.

Table 2 shows the comparison of path planning results under different safety distances,
and it can be seen that the optimized path has good results in terms of length and number
of nodes. In terms of path length, the smoothed path has a slight decrease. On the
path nodes, there is a significant decrease in the number of smoothed path nodes. The
experimental results demonstrate that the path smoothing algorithm proposed in this paper
has good performance.
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Figure 7. The distance between path nodes and obstacles under different safety distances.

Table 2. Comparison of path planning results under different safety distances.

Safe Distance/m
Original Path

Length/km
Optimized Path

Length/km
Number of

Nodes

Number of
Optimized

Nodes

D = 0 12.08 - 398 -
D = 100 12.14 11.32 402 5
D = 200 12.23 11.38 409 6
D = 300 12.30 11.48 414 6

In summary, the global path planning method proposed in this article can achieve
dual constraints of water depth and obstacle safety distance, which is in line with the actual
requirements of USV navigation.

4.2. Experimental Simulation under Different Encounter Situations

In order to verify the effectiveness of the proposed algorithm in the collision avoidance
process, the collision avoidance simulation experiment of USV is carried out in the range
of 500 m × 500 m under the three scenarios of head-on, crossing, and overtaking between
ships. The simulation parameter setting and algorithm setting of USV are shown in
Tables 3 and 4.

Table 3. Simulation parameters of USV.

Parameter Linear Velocity Angular Velocity

minimum value 0 m/s −20◦/s
maximum value 5 m/s 20◦/s

maximum acceleration 2 m/s2 5◦/s2

sampling interval 0.2 m/s 1◦/s

Table 4. Simulation parameters of USV.

α β γ λ
Predicted

Time/s
Safe

Distance/m

0.02 0.4 0.2 0.2 5 50

159



J. Mar. Sci. Eng. 2023, 11, 1060

(1) Head-on situation

The collision avoidance simulation process in the head-on situation is shown in
Figure 7, where the red circle is the starting point of the USV, the green star is the target
point of the USV, the pink line is the preset route, the red line is the trajectory of the USV,
and black is the trajectory of the target ship in the situation of encountering the USV.

Figure 8a shows the positional relationship between the USV and the target ship before
sailing, which can be judged as a head-on situation according to the COLREGs. Figure 8b
starts to make a decision for the USV to detect that there is a risk of collision with the target
ship. Figure 8c shows that the USV follows the COLREGs and turns starboard to avoid the
target ship. Figure 8d shows returning to the preset route after avoiding the target ship and
reaching the target point safely.

Figure 8. Simulation results of collision avoidance in a head-on situation.

Figure 9 is the heading change curve and the DCPA diagram corresponding to the
trajectory sampling points during the entire avoidance process in the USV head-on situation.
It can be seen from Figure 9a that near the 150th sampling point, the USV begins to turn
and avoid. At this time, the distance between the two ships corresponding to Figure 9b
is 50 m, which is in line with the set safety distance. In the process of the encounter, the
distance between the USV and the target ship decreases rapidly due to the relatively fast
speed of the USV and the target ship. The distance decreases continuously throughout the
process, and the nearest encounter distance is 14.10 m. As the process ends, the distance
gradually increases.

Figure 10 shows the changing trend of linear velocity and angular velocity in the head-
on situation. It can be seen from the linear velocity change diagram in Figure 10a that before
the collision avoidance process, the USV first accelerates and then has a constant speed;
during collision avoidance, deceleration measures are taken; after collision avoidance,
the USV accelerates again until it approaches the target point and begins to decelerate.
Figure 10b is the diagram of angular velocity change. Before the collision avoidance process,
the USV angular velocity is 0, and the navigation is maintained at the predetermined course;
during collision avoidance, the USV turns to starboard. From the analysis, it can be seen
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that the collision avoidance behavior in the encounter process conforms to the COLREGs
and the common maneuvering behavior at sea.

Figure 9. The heading change curve and the DCPA diagram in the head-on situation.

Figure 10. Trend diagram of speed change in a head-on situation.

(2) Crossing situation

The simulation process of collision avoidance under the crossing situation is shown in
Figure 11. Figure 11a shows the positional relationship between the USV and the target ship
before sailing, which can be judged as a crossing situation by the COLREGs. Figure 11b
starts to make a collision avoidance decision for the USV to detect that there is a risk of
collision with the target ship. Figure 11c shows that the USV follows the constraints of
the COLREGs and turns to the starboard to successfully avoid the target ship. Figure 11d
shows that USV successfully returned to the preset route after safe avoidance and sailed
safely to the destination.

Figure 12 shows the heading change diagram and the DCPA diagram corresponding to
the trajectory sampling points during the entire avoidance process in the crossing situation.
The first section of Figure 12a shows that the USV keeps a fixed heading when no target
ship is detected; the second section is to start to turn starboard to avoid collision when the
target ship is detected. The collision avoidance behavior complies with the requirements
of the COLREGs. According to the COLREGs, the maximum collision avoidance range is
set to 17◦ since the USV is the give-way ship in the crossing situation, and it should take
substantial action to keep well clear and avoid crossing ahead the head-on ship under the
allowed circumstances case. The range of collision avoidance ensures the safety of the
collision avoidance process, which is consistent with the actual situation of navigation.
The third section is the resumption process after collision until reaching the target point.
Figure 12b shows the distance of the nearest encounter. It can be seen that the distance
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between the two ships decreases first and then increases. The distance of the nearest
encounter is 40.32 m, which can safely avoid collision.

Figure 11. Simulation results of collision avoidance in a crossing situation.

Figure 12. The course change curve and the DCPA diagram in the crossing situation.

Figure 13 shows the change trend of the line velocity and angular velocity under the
crossing situation. Figure 13a shows the trend of linear speed change. During the whole
process, speed up first, then sail at the maximum speed and uniform speed and decelerate
near the target point. Figure 13b shows the change trend of angular velocity. It can be
seen that the course is maintained before collision avoidance. During collision avoidance,
turn to starboard to avoid the target ship. Due to the short process, the maximum angular
velocity is about 8◦/s. After collision avoidance, USV quickly resumes the course.
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Figure 13. Velocity variation trend diagram in a crossing situation.

(3) Overtaking situation

The simulation process of collision avoidance in overtaking situations is shown in
Figure 14. Figure 14a shows the overtaking situation. Figure 14b starts to make a decision
for the USV to detect that there is a risk of collision with the target ship. Figure 14c shows
that the USV follows the constraints of the COLREGs and turns to the port as much as
possible to avoid the target ship. Figure 14d shows that the USV returns to the preset route
after evading successfully and sails safely to the target point.

Figure 14. Simulation results of collision avoidance in an overtaking situation.

Figure 15 shows the course change curve and the DCPA diagram corresponding to
the trajectory sampling point during the whole collision avoidance process under the
overtaking situation. The first section of Figure 15a shows that the USV keeps a fixed
heading when no target ship is detected. The second section is to start turning to the port to
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avoid collision when the target ship is detected. The collision avoidance behavior meets the
requirements of the COLREGs, and the maximum collision avoidance range is about 27◦,
which is in line with the actual situation of navigation. The third section is the resumption
process after collision until reaching the target point. In Figure 15b, when the encounter
distance is less than 50 m, the collision distance will continue to decrease due to the close
proximity of the two during the overtaking process, and the nearest encounter distance
is 19.75 m.

Figure 15. The course change curve and the DCPA diagram in the overtaking situation.

Figure 16 shows the variation trend of the linear velocity and angular velocity of
the USV in the overtaking situation. Figure 16a shows the trend of linear speed change.
During the whole process, the USV first sped up, then sailed at the maximum speed and
uniform speed, and decelerated near the target point. Figure 16b shows the change trend of
angular velocity and maintains the heading before overtaking. When overtaking, the USV
has an obvious behavior turning port, the maximum turning rate reaches 10◦/s, which
is half of the maximum turning rate of the USV, and it moves towards the target point
after overtaking.

Figure 16. Velocity variation trend diagram in the situation of overtaking.

Through the analysis, it can be seen that the algorithm proposed in this paper can
guide the USV to avoid the target ship safely. Since the algorithm in this paper considers
the constraints of the COLREGs, it has certain practical guiding significance.

4.3. Experimental Simulation in a Local Environment

In order to verify the feasibility of the algorithm in the environment with unknown
obstacles, local path planning experiments are carried out.
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(1) Local path planning with dynamic obstructing ships and unknown static obstacles in
the head-on situation.

Figure 17 shows the local path planning process in head-on situations and unknown
static obstacles. Figure 17a shows that when the USV starts sailing, the pink line represents
the preset route from the starting point to the target point to guide the navigation of the
USV, and the purple dotted area represents the unknown static obstacles that are not
considered in the global path planning. Figure 17a shows that when there are unknown
static obstacles on the route, sailing along the preset route will collide with the obstacles.
Therefore, the USV needs to avoid unknown obstacles during actual navigation. The
algorithm proposed in this paper adds constraints on unknown obstacles to the trajectory
evaluation function, which can ensure that the USV avoids unknown static obstacles in the
navigation environment. Figure 17b shows that the USV detects the dynamic ship in the
situation of collision and starts to avoid the ship to the starboard. Figure 17c shows the
moment when the USV has completed the collision avoidance process and the unknown
static obstacle is detected when it continues to sail along the route. Figure 17d shows the
time at which the USV reaches the target point. It can be seen from the figure that the USV’s
navigation path can conduct collision avoidance operation between a single ship in a local
environment and avoid unknown static obstacles.

Figure 17. Partial path planning process in the head-on situation.

(2) Local path planning with dynamic obstructing ships and unknown static obstacles in
crossing situations.
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Figure 18 shows the local path planning process in crossing situations and unknown
static obstacles. Figure 18a is when the USV is sailing, where the pink line represents the
preset route that guides the unmanned ship from the starting point to the destination,
and the two purple areas represent unknown static obstacles that are not considered in
the global path planning. Figure 18b shows that the USV detects the dynamic ship in the
crossing situation and starts to turn to the starboard to avoid collision. Figure 18c shows the
moment when the USV completes the avoidance process in the crossing situation, detects
an unknown static obstacle, and begins to avoid it. Figure 18d shows the time when the
whole voyage is completed and the destination is reached. It can be seen from the figure
that the navigation path of USV can avoid collision and unknown static obstacles under
the crossing situation between a single ship in a local environment so as to ensure that the
USV can sail smoothly to the destination.

Figure 18. Local path planning process in the crossing situation.

(3) Local path planning in the overtaking situation with dynamic obstructing ships and
unknown static obstacles.

Figure 19 shows the local path planning process with an overtaking situation and two
unknown static obstacles. Figure 18a is the state when the USV is sailing. Figure 19b shows
the dynamic ship when the USV detects the situation of overtaking and starts to turn to
starboard to overtake the ship. Figure 19c shows that the USV has completed the avoidance
process in the overtaking situation. When it continues to sail, it detects an unknown static
obstacle and begins to avoid the unknown static obstacle. Figure 19d shows the moment
when the entire voyage is completed and the destination is reached.
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Figure 19. Local path planning process in an overtaking situation.

(4) Local path planning in three different situations containing dynamic obstructing ships
and unknown static obstacles.

Figure 20 shows the path planning process of a multi-objective dynamic ship. At time
T1, USV begins to sail. At time T2, USV starts sailing, forms a head-on situation with the
target ship, and starts to turn to avoid. At time T3, the USV successfully evades and forms
a crossing situation with the second target ship, and it begins to turn to the starboard to
avoid. At time T4, USV has successfully evaded and returned to the preset route. Time T5
is when the USV finds the ship under the situation of overtaking and begins to implement
the overtaking process. Time T6 is when the USV successfully reaches the target point.

Overall, the innovation of this article is that the hazard function is introduced as the
evaluation function in global path planning. In local path planning, the distance function
of static unknown obstacles is introduced. The computational complexity is not high, the
speed of generating routes is improved, and the sensitivity of path planning is improved
when facing unknown static obstacles. In local path planning, this method is suitable for
simple collision avoidance situations. In more complex scenarios, the accuracy of route
generation is reduced. Next, we will focus on studying the path planning of ships in
complex scenarios.
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Figure 20. Path planning process of a multi-objective dynamic ship.

5. Conclusions

In the global path planning, the constraints of water depth and safety distance are
mainly considered. Using the Voronoi Field algorithm to set the safety distance constraints,
combined with the A* algorithm, this paper realizes the smoothing process under different
safety distances. Different routes are generated by setting different safety distance con-
straints such as 100 m, 200 m, 300 m, etc. Finally, the data collected in path planning are
visualized, and the rationality and feasibility of the algorithm are analyzed.
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This paper describes the problems of USV navigation based on global path planning,
that is, insufficient consideration of unknown obstacles in the environment (dynamic
and static obstacles). On this basis, this paper proposes a collision avoidance decision
of USV based on the dynamic window method, including the USV kinematics model,
trajectory sampling considering the constraints of the COLREGs, and the optimal trajectory
evaluation method. Finally, the effectiveness and rationality of the method are proved by
the simulation results of collision avoidance in different situations of ships and local path
planning with unknown obstacles.
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Abstract: Given the national goal of “emission peaking and carbon neutralization”, China has become
the largest country in the world for offshore wind farm construction. At the same time, navigational
safety problems in offshore wind farm waters have become increasingly frequent. Owing to the
complexity of offshore wind farm waters and the small number of accident data samples available
for reference, the system theory method is more suitable for selection than the traditional method.
Based on causal analysis based on system theory (CAST) and a complex network (CN), in this
study, a qualitative and quantitative accident analysis model, CAST-CN, is constructed to analyze a
complete case of vessel and wind turbine allision in offshore wind farm waters. The results show
that, at the micro level, in addition to the master, crew, shipping company, and typhoon Hato, the
maritime safety administration and the wind farm operation management department have a certain
impact on the development of the accident discussed in this study. At the macro level, internal and
external factors leading to the lack of system safety are identified, and measures and suggestions for
system safety improvement are proposed based on analysis. This study can fill the research gap in the
systematic analysis of traffic accidents in offshore wind farm waters and provide support for the safety
assessment and decision-making of government management departments and research institutes.

Keywords: accident analysis; offshore wind farm; STAMP; CAST; complex network

1. Introduction

1.1. Background

With the global vision of carbon neutrality, offshore wind power is going through
a phase of rapid growth worldwide. China has always considered the development
of the wind power industry as an important means to achieve “emission peaking and
carbon neutralization”. Supported by the subsidy policy, China has surpassed the UK
to become the world’s largest country in terms of total installed offshore wind power
capacity at a stunning rate. As shown in Figure 1, approximately 21.1 GW of new offshore
wind power capacity was added globally in 2021, and the cumulative installed capacity
reached 57 GW [1]. Meanwhile, 16.9 GW of offshore wind power was added in China,
and the cumulative installed capacity is 27.7 GW, accounting for 80.1% and 48.4% of the
total, respectively. With advantages such as large wind farm areas, low visual impact,
high wind speed, and low transmission cost, offshore wind power has great potential for
development, and the scale of installed offshore wind power is expected to continue to
exceed expectations [2]. Due to the high development trend of offshore wind power, the
conflict of sea resources between the construction and operation of offshore wind farms
(OWFs) and other sea-related activities has gradually increased, affecting the safety of ship
navigation [3].
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Figure 1. 2017–2021 Global and Chinese cumulative installed offshore wind power capacity.

Marine traffic is variously impacted by the construction of offshore wind farms. First,
the presence of OWFs signifies that vessels must avoid more obstacles in the water and
ensure no allisions between vessels and offshore wind facilities [4]. Second, OWFs may
also limit the navigable space available to vessels, causing increased traffic density and an
increased risk of collisions between vessels [5]. Additionally, the physical structure and
electromagnetic characteristics of the wind turbine units of offshore wind turbines can
interfere with—even block—shore-based perception and communication systems, such
as the vessel traffic service system (VTS), the automatic identification system (AIS) and
the very high frequency communication system (VHF), which may lead to the loss of the
supervision and guidance for a vessel from the maritime safety administration (MSA),
decreasing the navigational safety level [6,7], especially in extreme weather [3]. Moreover,
due to the difficulty of the construction and operation, and maintenance of offshore wind
farms, a large number of workers need to be transported by special engineering vessels
(service vessels) to complete operations at sea, increasing safety risks.

Additionally, the combination of the above-mentioned influencing factors and strong
wind energy significantly increases the risk of accidents in offshore wind farm waters,
compared to other navigable waters [8]. The most common types of marine accidents in
offshore wind farm waters are vessel–wind turbine allisions (VTAs), vessel–vessel collisions,
and vessel sinking caused by wind disasters [9]. The analysis and prevention of VTAs
are more complex and difficult than those of the latter two types of accidents, and this is
because vessels have direct physical interactions with wind farm facilities. More companies
and organizations are involved, especially during the construction phase of an offshore
wind farm. Moreover, government safety supervision and legal policy formulation are
categorized as two industry sectors. In China, for example, the safety management of
vessels is handled by the China Maritime Safety Administration (China MSA) under the
Ministry of Transport, while the site selection approval and safety supervision guidance of
offshore wind farms is handled by the National Energy Administration under the Ministry
of Natural Resources. Therefore, determining how to scientifically and effectively analyze
and prevent VTA has become a focus of research on the navigational safety of offshore
wind farms [10].

1.2. Related Works

The majority of accident analyses in offshore wind farm waters have been conducted
based on the theory of accident causation, and the objective of these studies is to identify

172



J. Mar. Sci. Eng. 2023, 11, 1306

causal factors related to accidents, such as navigation environment, traffic flow conditions,
machine failures, and human errors [3]. Scholars have analyzed various marine accidents
arising from the construction and operation phases of offshore wind farms, as well as the
corresponding risk influencing factors, to address the issue of navigational risk in offshore
wind farm waters for vessels [11,12]. Commonly used methods include the Formal Safety
Assessment (FSA) of the International Maritime Organization [13], fault tree [8,14,15], and
Bayesian networks [16,17].

For example, Rawson and Brito used fault tree analysis to study the navigational risks
associated with environmental changes caused by the construction of offshore wind farms,
and their study showed that collisions were the most probable risks [18]. Dai established a
system fault tree analysis of offshore wind farm operations, and the assessment showed
that the key factors leading to accidents, such as offshore wind collapse, personal injury,
ship collision, and damage to submarine cables, also included high winds, untimely main-
tenance, and collision avoidance failure [19]. Mehdi studied the dynamic risk assessment
of vessels operating in the waters of offshore wind farms. The study showed that offshore
wind farm facilities were detrimental to the navigational safety of passing vessels, the safe
operation of wind farm support vessels, and emergency operations such as search and
rescue (SAR), and that the risks of these operations resulted from the reduction of ocean
space and the increase in traffic density [20]. To assess the overall navigational risk in
offshore wind farm waters objectively and accurately, Mehdi selected several indicators
from both natural conditions and the navigational environment, and constructed a model
to assess the navigational risk of vessels in offshore wind farm waters, not considering
factors such as personnel reliability, technical failures, and traffic management [21].

The traditional accident analysis methods mentioned above are widely employed in
research in the field of ship navigation safety [22]. However, the issue of VTAs analysis in
offshore wind farm waters requires simultaneous consideration of offshore wind farms,
various types of vessels in the water, and other elements. This is a complex systemic
problem, and the traditional risk assessment methods are unable to systematically analyze
the connections between various elements [23]. Another key challenge in marine accident
analysis in offshore wind farm waters concerns the scarcity of historical data on relevant
accidents. Hence, qualitative methods such as expert judgment are more commonly
used [24]. Qing Yu discussed the possibility of merchant vessel accidents due to offshore
wind energy development off the Atlantic coast of the United States, enlisting the advice of
nautical experts to assess the probability of allisions, collisions, or groundings of merchant
vessels due to the presence of offshore wind farms [25,26]. In addition, owing to China’s late
start of offshore wind power, research literature and historical accident data are scarcer in
China than in countries such as the UK [13,27]. Therefore, some machine learning methods
that rely on large-scale data sets for Natural Language Processing(NLP) model training are
difficult to apply to the analysis of VTA [28].

1.3. Objective and Outline

Against the background described above, the present study aims to construct a qualita-
tive and quantitative accident analysis method based on system theory to analyze a complex
VTA accident case [29]. The study comprehensively analyzes the development, cause, and
impact degree of VTA accidents, and explores deeper influencing factors, thus providing
new ideas for improving the intrinsic safety of ship navigation systems in offshore wind
farm waters.

To this end, this paper introduces the causal analysis based on system theory (CAST)
model, which is based on the Systems-Theoretic Accident Model and Process (STAMP),
proposed by Professor Leveson of NASA Institute in 2004 [30], and creatively integrates
complex network (CN) analysis methods [31]. A typical VTA accident occurring along
the coast of China is selected as a case study [32]. Using the accident investigation report,
the events chain is clarified, the accident causes are identified, the safety control structure
model and complex network model are constructed, the importance of key nodes is evalu-
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ated, and the defects at the system level are analyzed from a macro perspective. Finally,
suggestions for improvement are provided. In the second section, the framework of system
analysis, methods used, and calculation indexes are introduced. The third section intro-
duces the complete case analysis process. In the fourth section, the innovation, application
significance, and limitations of research are discussed. Section 5 concludes the study and
discusses future prospects.

2. Methodology

2.1. The Analysis Framework

The approach to analyzing VTA accidents in this study is based on the CAST model
integrated complex network theory to achieve quantitative analysis results. As shown in
Figure 2, the analysis framework is divided into three stages. Stage 1 is the initialization, and
the accident narrative is completed by extracting valuable information from a VTA accident
investigation report. Then the traffic system in offshore wind farm water (TSOWF) can
be defined and the system hazard and the constraint can be identified as the fundamental
step of the entire CAST analysis procedure. In Stage 2, microanalysis, a hierarchical safety
control structure (HSCS) is designed first to depict and code both the system components
and their relationships. The detailed analysis of all the system components is conducted
based on the proximate events in the VTA accident and the coded HSCS. Then a V-T
network/matrix is constructed and weighted according to the HSCS and the components
analysis results. Finally, the network eigenvalues are computerized to attain the critical
components in the TSOWF. In Stage 3, macroanalysis, the system deficiency in the VTA
accident is identified and improvement recommendations are proposed.

Figure 2. The analysis framework.

2.2. CAST Procedure

CAST is derived from STAMP, especially for accident qualitative analysis. Based on
the idea underlying STAMP, CAST is created to fulfill the goals of analyzing all accident
causes (optimized learning), reducing hindsight bias, systematically thinking about human
behavior, providing blame-free explanations, and improving the safety control structure
of the system [33]. The main analysis framework of CAST accords with STAMP, and
comprises system and system hazard definitions, HSCS modeling, component analysis,
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control structure (system) flaw identification, and improvement suggestions. The difference
lies in the fact that the system hazard identified by CAST is only related to the given accident
scenario, and it is necessary to determine the proximate events leading to the loss [34].
Therefore, the procedure of CAST optimization and adjustment in this study is divided
into five steps, as shown in Table 1.

Table 1. Experiment parameter setting.

Id CAST Step Details

1 Define system, hazard, constrain

(1) Define the system involved and the boundary of the analysis.
(2) Describe the loss and identify the system’s hazardous state

(system hazard).
(3) Identify the system safety requirements and constraints.

2 Design and code the hierarchical safety
control structure (HSCS)

(1) Model the HSCS by learning from the existing system structure
and the accident report.

(2) Code the components (A–Z) and their relationships, including
controls (C), feedback (F), communication (N), and physical
impacts (I). For example, if component “A” controls component
“B”, there should be a relationship link coded “CAB”.

3 Determine the proximate events and
analyze components

(1) Find the proximate events in a timeline from the
accident report.

(2) Analyze the components by determining their responsibilities,
safe and unsafe actions, contexts, and mental model flaws.

4 Identify the system’s deficiencies Identify flaws in the control structure as a whole (general systemic
factors) that contributed to the loss.

5 Propose the improvement
recommendation

Create recommendations for changes to the control structure to
prevent a similar loss in the future.

Since all STAMP-derived models, including CAST, are only suitable for qualitative
analysis [35,36], to improve the accuracy of the analysis and further weaken the subjective
factors of manual qualitative analysis, this paper introduces important quantitative analysis
indicators from complex network theory as a supplement to the CAST analysis process.

2.3. System Component Analysis Based on a Complex Network

Complex network theory can quantify and analyze complex systems well, providing a
good method for identifying critical nodes in the system. A large number of documents
have already applied complex network theory to model and analyze real systems. For
example, Shaphari et al. analyzed the fragility of the Iranian power grid using weighted
PageRank and identified critical fragile nodes [37]. Zhao et al. analyzed a weighted
city infrastructure system network using biased PageRank, reflecting the importance of
infrastructure in topology and functionality [38]. Kopsidas and Kepaptsoglou developed a
public transportation network with subway stations as nodes and analyzed the importance
of nodes using a combination of closeness centrality and betweenness centrality [31]. Tang
et al. established a directed weighted network of unsafe behavior in building accidents and
analyzed its characteristics using five network attributes: degree and degree distribution,
node strength and node strength distribution, average path length and diameter, weighted
clustering coefficient, and intermediary degree centrality [39].

In this study, the network formed by system components for a VTA accident scenario
can be defined as a “V-T network”. The nodes in the network represent the components in
the system, while the edges represent their interactions based on the modeled HSCS. Thus,
the V-T network is a directed network [37]. The V-T network comprising n nodes and m
edges is converted into a directed and weighted graph G = (V, E), and the node in the V-T
network is represented as vn ∈ V, while the link in the network is represented as em ∈ E.

The weight wi,j of the ei,j is determined by the number of failure controls/feedback fi,j
from vi to vj according to the statistics from the accident report, as shown in the following
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formula. The smaller wi,j is, the more fragile the control/feedback relationship is and the
closer the distance between vi and vj in the network is.

wi,j =
1

1 + fi,j
(1)

Then a weighted adjacency matrix Mi,j is constructed.

Mi,j =

⎡⎢⎣w1,1 · · · w1,n
...

. . .
...

wn,1 · · · wn,n

⎤⎥⎦ (2)

Based on this, the impact assessment process of system components is as follows:
Step 1. Analyze network structure features utilizing PageRank (PR). PR is a method

used to calculate the number of important nodes connected by a node [40]. Typically, the
value of PR must undergo multiple iterations before a stable outcome can be reached. This
stable outcome serves as the ultimate basis for ranking [41,42]. The PR value of node vi at
iteration time t is

PRt(vi) =
(1− s)

n
+ s

n

∑
j=1

wji
PRt−1

(
vj
)

kout
(
vj
) (3)

where, PRt(vi) is the PR of node vi at time t, s is the random jumping probability, which is
usually set around 0.85, wji is the weight of edge vj, to vi, kout

(
vj
)

is the out-degree of node
vj, PRt−1

(
vj
)

is the PageRank value of node vj at time t− 1, and n is the total number of
nodes in the network.

When the difference between the PageRank values at time t and t− 1 is less than a
specific threshold (i.e., when Equation (4) is satisfied), the iteration is considered to be in a
stable state, and the PRt(vi) will be the final result.∣∣PRt(vi)− PRt−1

(
vj
)∣∣ ≤ α (4)

where α is a specific threshold, the value of α = 0.0001 is selected in this paper.
Step 2. Analyze Closeness Centrality (CC). In the V-T network, Closeness Centrality

is defined as how close a node is to other nodes, usually expressed as the following
formula [41].

CC(vi) =
n− 1

∑n
j �=i g

(
vi, vj

) (5)

where CC(vi) is the closeness centrality of the node vi, and g
(
vi, vj

)
is the shortest-path

distance between node vi to vj.
Step 3. Analyze Betweenness Centrality (BC). A higher BC means that the influence of

a node on the entire network information flow is greater [43–45].

BC(vi) = ∑
vs �=vi �=vt∈V, s<t

σst(vi)

σst
(6)

where BC(vi) is the betweenness centrality of node vi, σst is the number of the shortest path
from the node vs to vt, and σst(vi) is the number of those paths that pass through vi.

Step 4. Compute Network Importance (NI). NI is the comprehensive network feature
value that combines the above three indicators, representing the influence of a node in the
entire network structure.

NI(vi) =
S(vi)

∑vi∈ V S(vi)
(7)

S(vi) =
PR(vi)

∑vi∈ V PR(vi)
+

CC(vi)

∑vi∈ V CC(vi)
+

BC(vi)

∑vi∈ V BC(vi)
(8)
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Step 5. Component Impact (CI) assessment. The CI represents the contribution of a
component to a VTA accident, and its quantitative calculation integrates the NI of a compo-
nent and the proportion of failure control/feedback actions performed by that component.

CI(vi) = log2

(
(NI(vi) + 1)×

(
fi

∑n
i=1 fi

+ 1
))

(9)

3. Case Study

3.1. Stage 1: Initialization

In Stage 1, the accident narrative is completed by extracting valuable information from
a VTA accident investigation report [32]. After that, the TSOWF can be defined, and the
system hazard and constraints can be identified as the fundamental step of the entire CAST
analysis procedure.

3.1.1. Accident Narrative

At 21:00 on 22 August 2017, the vessel Rongxiang 66 of Bohai New Area Rongxiang
Shipping Co., Ltd. of Cangzhou, China was carrying 5100 tons from Chi Bay, Shenzhen to
the west side of Guishan Pilot Anchorage at the mouth of the Pearl River. At approximately
11:05 on 23 August, affected by super typhoon Hato, the vessel crashed into the base of
the #02 wind turbine of the Guishan Offshore Wind Farm in Zhuhai, causing the cargo
hold to sink into the water. Eleven people on board fell into the water, including five
dead, three missing, and three rescued. The direct economic loss of the accident was
approximately CNY 12,460,000. According to the accident investigation report, the causes
of this VTA accident included the impact of severe weather and sea conditions caused by
super typhoon Hato, the insufficient anchoring position of the vessel to stabilize against
the strong typhoon, the insufficient guidance of the vessel safety management system
document on typhoon prevention, the insufficient deployment of the master’s typhoon
prevention work, and the failure to actively enact typhoon prevention measures as early
as possible. According to the accident investigation report, Rongxiang 66 had to be held
responsible for the accident, and the master was the person responsible for the accident. It
can be seen from Figure 3 that the vessel’s anchoring position was at the periphery of the
anchorage—only 0.8 nm away from the No. 2 pile foundation [32].

Figure 3. Anchor position of Rongxiang 66 and base position of wind turbine #02.
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3.1.2. System, Hazard, and Constraint Definition

In accordance with the basic steps of the application of CAST, the first step is system
definition and system hazard identification [46].

1. The traffic system in offshore wind farm water (TSOWF)

Based on the research results of maritime traffic engineering scholars around the world,
maritime traffic can be defined as the combination of vessel movements and the overall
behavior of vessels in a designated area. Therefore, the maritime traffic system is defined as
a dynamic and complex technology environment system involving human control behavior
and organizational management roles. The TSOWF can be defined as a collection of various
vessel movements and various factors acting on it in offshore wind farm waters. These
factors include the water environment, infrastructure, vessels, people who control vessels,
and management. The factors change dynamically and interact with each other, thereby
jointly determining the dynamic change process of the system state. The system consists of
natural environment elements such as hydrology, meteorology, and ocean bottom material,
navigation environment elements such as channels, anchorages, ports and wharves, the
wind turbines of wind farms, booster platforms, submarine cables, and relevant infras-
tructure elements of ports and wharves, marine transport vessels, fishing vessels, leisure
vessels, engineering vessels, and other vessel elements, as well as crew members, operation
and maintenance personnel, supervisors, and other personnel elements.

2. System hazard

According to system theory, not all the functional components in the system operate
independently; rather, the components generally interact with each other and undergo
dynamic changes in the time and space dimensions. Therefore, the state of the system also
changes dynamically. When the stable state of the system collapses, accidents occur. The
primary cause of a brewing accident is system hazard. Only by accurately identifying the
system hazard can the probability of accidents and losses be effectively reduced [47].

The term “hazard” has many definitions in the field of safety science. It usually refers
to the source of danger to a person, property, or the environment. From the perspective of
system theory [47], this paper defines the system hazard (SH) as a set of hazards (h) that
may lead to a system collapse:

System Hazard (SH) = {h1 + h2 + h3 + ···+ hn } (10)

The key to analyzing the traffic accidents of offshore wind farms lies in identifying
the system hazards of the traffic system of offshore wind farms, as well as in analyzing
the structure and mechanism of the system hazards with the help of systematic analysis
methods in order to find countermeasures. Based on the direct cause, allision is divided
into two types: dynamic allision and nondynamic allision. The former is VTA caused
only by human error during navigation [48]. The latter refers to an accident in which the
vessel loses control due to equipment failure or the impacts of wind, waves, and currents.
Rongxiang 66 VTA can be considered a nondynamic allision. In this case study, two system
hazards are mainly identified by the Rongxiang 66 VTA accident report.

System Hazard in Rongxiang 66 VTA accident:

SH1: Vessel anchoring failure caused by wind disasters.
SH2: The vessel is unable to be aware of the OWT on time.

A vessel’s stability will decline because of strong wind, waves, heavy rainfall, and
other natural environmental factors in the water area, which will result in the vessel going
out of control. Because the site selection waters of offshore wind farms are mostly located
in areas with abundant wind energy, strong winds and massive waves often occur in these
areas. In the Rongxiang 66 VTA accident, Rongxiang 66 was anchored at the arriving route
of Super Typhoon Hato. Therefore, one of the system hazards was vessel anchoring failure
and dragging caused by strong wind and waves. However, due to the proximity of the
wind farm to the anchorage, the TSOWF itself carried a high allision risk. It was too late
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for Rongxiang 66 to discover the wind farm until it was close enough to collide with the
wind turbine. Thus, another system hazard was that the vessel could not be aware of the
OWT promptly.

The corresponding system safety constraints are:

SC1: Rongxiang 66 should adopt correct anchoring measures when encountering typhoons.
SC2: Rongxiang 66 could be aware of the position of the Guishan OWF earlier.

3.2. Stage 2: Microanalysis

In Stage 2, a hierarchical safety control structure (HSCS) is designed first to depict and
code both the system components and their relationships. A detailed analysis of all the
system components is conducted based on the proximate events in the VTA accident and
the coded HSCS. Then a V-T network/matrix is constructed and weighted according to
the HSCS and the components analysis results. Finally, the multiple network eigenvalues,
including PR, CC, BC, NI, and CI, are computerized to attain the critical components in the
TSOWF [49].

3.2.1. Hierarchical Safety Control Structure Design and Coding

The most important step in the STAMP/CAST modeling process is to build a safety
control structure, which requires combining expert experience with accident investigation
reports to comprehensively display accident-related information as much as possible. In
this study, based on the system hazards which are identified in Stage 1, the HSCS is op-
timized to clearly show the control relationships between system components. First, the
system components are classified. The system components are divided into three layers
from top to bottom according to man and management (MM), machines and facilities
(MF), and environment (E), represented by yellow, blue, and green rectangles. Second, the
representation of relationships between components is optimized. Control or feedback
relationships are represented by implementation arrows, which are always top-down or
left-to-right, while the feedback is the opposite. A dashed line represents a communication
relationship between two components, which generally exists only between two compo-
nents that are not in control of each other. Third, dotted arrows are used to indicate physical
impact. The impact can be unidirectional or bi-directional. For example, environmental
factors have unilateral effects on the vessel. The allision between the vessel and the wind
turbine has a two-way impact, as shown in Figure 4. In order to facilitate component analy-
sis and subsequent complex network analysis, we number both components and control
relationships. To facilitate component analysis and subsequent complex network analysis,
both components and control relationships are coded. Since only 25 system components
are involved in Rongxiang 66 VTA, we code these in capital letters and mark the failure
control relationship on the HSCS diagram (Figure 5). The detailed coding matrix can be
found in Appendix A.
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Figure 4. Basic optimized HSCS model.

Figure 5. Marked HSCS model.
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3.2.2. Proximate Events and System Components Analysis

In this study, the accident proximity events recorded in the accident report are sorted
out. Table 2 lists the events on the day of the accident, starting with Hato affecting vessel
Rongxiang 66′s stable anchorage and ending with the sinking of the vessel [32]. Based
on this detailed analysis of the accident process, we combine Figure 5 to make a detailed
analysis of each component of the system, including safety responsibility/basic information,
inadequate control/feedback actions, context, and mental/process model flaws, as detailed
in Appendix A.

Table 2. Proximate events.

Time Proximate Events

7:52 Rongxiang 66 began to drag its anchor and move in the southwest direction, drifting at a speed of 1.5 knots.

8:00
Anchor dragging continued. The vessel’s drift speed was 1.6 knots, while the northeast wind was at level 8
and the wave height was 2 m. The master and chief mate were on duty at the bridge and began to start the
main engine and rudder main to head against the wind.

8:31 Anchor dragging continued. The vessel’s drift speed was 1.1 knots, while the northeast wind was at level 9
and the wave height was 3 m.

8:58 The vessel continued to drag anchor, with a drift speed of 1.1 knots, moderate rain, an east wind force of 10,
and a wave height of 4 m.

9:38 The vessel continued to drag anchor, with a drift speed of 1.1 knots, heavy rain, an east wind of 11, and a wave
height of 4 m.

10:11 The vessel continued to drag anchor, with a drift speed of 2.8 knots, heavy rain, an east wind force of 12, and a
wave height of 5 m.

10:28
The vessel continued to drag anchor, with a drift speed of 0.3 knots, a rainstorm, an east wind of 13, and a
wave height of 6 m. The master requested to cast the right anchor, but the crew was afraid to go to the bow
due to the strong wind and waves

11:00

The vessel continued to drag anchor, with a drift speed of 3.3 knots, a rainstorm, an east wind of 14, and a
wave height of 8 m. The master found the vessel approaching the #02 wind turbine base and ordered the crew
to report the danger to the shipping company. He ordered the third officer to report the danger to Guangzhou
VTS using VHF, and Guangzhou VTS instructed the vessel to take self-rescue measures.

11:05

A VTA occurred and the hull was damaged and flooded. The master reported to Guangzhou VTS and
announced the abandonment of the vessel, ordering the first mate to release the life raft, but the life raft was
soon blown away by the strong wind after entering the water. The master asked all the crew to assemble at the
stern wearing life jackets.

11:10 Rongxiang 66 sank

3.2.3. V-T Network Construction

Based on the component analysis and HSCS diagram, the V-T network and the
weighted adjacency matrix (Appendix B) are constructed. The node ID in the V-T net-
work is the same as that in HSCS. The system component label is shown on each node
in the diagram in Figure 6. The higher the proportion of incorrect actions is, the lower
the weight is and the thinner the lines on the chart are, implying that the link is more
fragile. The diagram shows that the master is in the central position with a higher error
rate, followed by the chief mate and third mate, which also corresponds to the conclusions
of the accident investigation report. The OWF construction managers also show a high
error rate. Regarding marine management, there are some problems in the communication
and coordination of the Guangzhou VTS center. Moreover, the vessel and all crews were
heavily affected by typhoon Hato, while neither the vessel nor the VTS center detected the
wind turbine.
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Figure 6. Diagram of the V-T network.

3.2.4. Critical Node Analysis

Based on the V-T network/matrix, the PR, CC, and BC of the network nodes are
calculated. The results are displayed in Appendix C. The PR (0.0745) of the master ranks
first, indicating that the master has connected more important nodes in the whole system.
As the first person in charge of ship safety, the master is indeed the most important role and
the most important component of the system in this accident. The highest CC (0.4) ranking
is the environmental factor, indicating that the node affected by the environmental factor
has the most problems. This also corresponds to the actual situation in that typhoon Hato
causes a series of events after Rongxiang 66’s anchoring. The highest BC (0.3496)-ranked
Guangzhou VTS center is the front-line unit of traffic management because the VTS center
should coordinate vessels and report to senior management in a timely fashion. Based on
the above three eigenvalues, the normalized network importance (NI) is calculated. The
results of NI uncover that the maritime management departments, including the MSA,
VTS center, and VTS system, have a high degree of importance in the network model,
which indicates the 24/7 vessel traffic service the departments provide and the important
command and coordination role they play in emergency response after accidents occur.
The calculation results of component impact obtained by superimposing the network
importance and component failure ratio are shown in Figure 7. The top ten components
account for 71.5% of all component impacts on this VTA accident, so they are regarded
as critical components. The master, wind turbine base, environment, deck crew, and VTS
center rank higher. The master holds a high level of importance in the network because
he undertakes the safety management, typhoon prevention, and emergency evacuation
decision-making functions of the vessel and crew. Obviously, in this accident, the master
also has an unshirkable responsibility. Meanwhile, of environmental factors having a wide
and serious impact on vessels and crew, almost all were triggered by super typhoon Hato.
The analysis result of above system components or factors is basically consistent with the
causation analysis in the accident investigation report.
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Figure 7. Rank of the component impact.

However, components related to OWF and MSA, which have no fault according to the
accident report, play a significant role in the accident impact in this study. For instance,
the components related to wind farms, such as wind turbine base, construction managers,
and operating companies, played critical roles in this VTA accident, but the accident
investigation report did not conduct an in-depth analysis of them, only introducing basic
information about the wind farm. The results of this analysis confirm the core philosophy
of Leveson’s design of STAMP and CAST, which is not to pursue accountability but to
improve system safety. This brings more enlightenment in that the dynamic process and
safety of the VTA system need to be analyzed from a higher level.

3.3. Stage 3: Macroanalysis

In Stage 3, the system deficiencies in the VTA accident are identified, and improvement
recommendations are proposed.

3.3.1. System Deficiency Identification

At the macro level, both internal and external factors of the system will affect each
system component [31]. Among them, the internal factors from the surface to the core of a
system can be divided into four levels, which are communication and coordination, the
safety information system, safety management, and safety culture, as shown in Figure 8.
These internal factors are influenced layer by layer. Meanwhile, external factors, including
the economy, policy, and environment, are independent of each other and simultaneously
generate impact to the system, leading to the occurrence of system deficiencies.
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Figure 8. Overall system safety architecture on the macro scale.

Through a CAST-CN analysis of the Rongxiang 66 accident, system defects can be
identified based on the above aspects. The limited system defects are explained in the
accident report. This study will be further improved or corrected.

1. Internal factors

Communication and coordination: In this case, Figure 5 shows the physical commu-
nication or sensing links established at four system levels based on communication and
sensing devices, such as VHF, AIS, radar, and CCTV, with the following dotted lines:

NUX (NXU): Sensing link between vessels and VTS system.
NTU (NUT): Communication link between the VTS system and VHF on the vessel.
NOP (NPO): Sensing link between shipborne navigation system and turbine.
NUO (NOU): Sensing link between VTS system and turbine.

Ideally, these links should remain unblocked. Communication between the VHF and
VTS systems on board is normal, and Rongxiang 66 can also be found by the VTS system
in the accident report; however, there is no reference as to whether the VTS and on-board
auxiliary navigation systems can detect wind turbines in wind farms. However, in this
accident, the master or any other crew did not perceive the existence of any facility in the
OWF through any measure prior to the appearance of the wind turbine in the field of vision,
and the VTS center did not indicate the existence of the OWF. Therefore, it can be inferred
that the two links of NOP and NUO are abnormal. The abnormal link is probably caused
by either no AIS terminal being installed in the infrastructure of the wind farm or the AIS
terminal being incorrectly used or faulty after installation, which means that the vessel or
VTS system fails to receive AIS signals. It is also possible that the inadequate precision of
the VTS system’s radar and ship-borne radar or the existence of blind areas leads to the
inability of vessels or the VTS system to actively detect wind farm infrastructure.

Hence, at the system level, effective communication and coordination between the
wind farm, ship, and VTS center are missing, which is one of the most significant causes of
accidents but is not analyzed in the accident report.

Safety information system: A safety information system is an important human–
machine interaction intermediary in a complex system. In this case, both shipping com-
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panies and offshore wind farm operators have safety information systems, but there is
very little information sharing between these systems. As can be seen from Figure 5, there
is no communication channel between them, especially between the Ministry of Natural
Resources, which is the top management department of the offshore wind farm company,
and the Ministry of Transport, which is the top management department of the shipping
company. Shipping companies lack clarity about the construction of offshore wind farms
in operating waters and it is difficult for offshore wind farm operators to master the dy-
namics of nearby vessels. Therefore, there are problems with the safety information system
throughout the system. This reason is not analyzed in the accident investigation report.

Safety management: Effective safety management is a guarantee for the implemen-
tation of a system safety operation mechanism. In this case, the insufficient guidance of
a shipping company regarding the anchorage of a vessel’s platform is an obvious safety
management problem. The inadequate training of the crew results in various erroneous
operations, such as the life raft being blown away by the wind after being released, which
also reflects the insufficient safety management of the shipping company. In addition, the
location of the Guishan offshore wind farm is less than two miles from the pilot anchorage
and five miles from the main channel, which is the busy traffic area in the Pearl River
Estuary. The wind power infrastructure is likely to affect navigation vessels or interfere
with VTS, CCTV, and other systems of the Maritime Bureau. The problems existing in the
site selection also reflect the lack of scientific and accurate demonstration by the energy
and transportation departments. Finally, the design of structural toughness, anti-collision
facilities, and anchor chain strength of the vessel Rongxiang 66 may not match the power
of the super typhoon Hato, which leads to the low fault tolerance rate of the driver once
the ship falls into this extreme environment. However, the above problems are safety
management problems at the whole scale of complex systems. Although there are some
safety management suggestions in the accident report, they are not all discovered, and the
deeper reasons are not analyzed.

Safety culture: Safety culture is the core of safety management. Specifically, the
defectiveness of safety awareness of some enterprise managers will lead to an unsafe
cultural ecology of an entire organization. Leveson lists five elements of a safety culture in
the CAST manual: Culture of Risk Acceptance, Culture of Denial, Culture of Compliance,
Paperwork Culture, and Culture of Swagger. Through our preliminary analysis, these five
unhealthy safety cultures have been reflected to some extent in this case. For example,
the safety culture of shipping companies is defective. First of all, the precondition for the
accident was extreme weather. Before the typhoon approached, the shipping company did
not promptly let ship Rongxiang 66 find a safe harbor to anchor but rather let it wait for
work in the harbor area. Secondly, when the vessel left the harbor in search of anchorage
platforms under the instructions of the VTS center, the shipping company only sent some
typhoon information searched on the internet and the company’s defense documents
(defective). These aspects demonstrate the company’s culture of Risk Acceptance, which
values productivity while ignoring safety issues. Similarly, in OWF companies, the lack
of site selection considerations, based more on the perspective of their operating interests,
does not establish adequate safety awareness systems; it only meets the basic government
requirements. These also reflect the existence of the culture of Compliance, Paperwork
Culture, and other unsafe cultures in the OWF companies.

2. External factors

Additionally, there are three external factors affecting the system: economy, policy, and
environment. These external factors are inherently uncertain and can influence a complex
system to produce dynamic changes.

Environmental factors: Uncertainty of the environment is one of the main factors of
navigation risk of vessels. The system analyzed in this VTA case is severely affected by
environmental uncertainties. The factors such as wind, waves, currents, and visibility can
have impacts on the stability of ships and the decision-making ability of crew members.
These environmental factors, which are rapidly changeable in extreme weather such as
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typhoon Hato, are difficult to predict accurately. In addition, the path of the typhoon
may reroute, and the impact range may also enlarge over time, which will challenge the
prevention plan of the master and ship company. Therefore, if the system resilience is not
enough to deal with the uncertainty of environment, it is necessary to keep as far away as
possible from waters with typhoon activity during the actual voyage and to take relevant
measures as early as possible.

Economic factor: In recent years, the revival of the Chinese shipping industry has
made maritime vessel traffic busier. To obtain high profits, many shipping companies have
chosen to reduce the safety standards of production and operation. These companies can
reduce the cost of investment in safety, and they can loosen production and make it develop
quickly without restrictions. This has reduced the requirements for ship quality and crew
quality, resulting in higher safety risks.

Policy factor: The offshore wind power subsidy policy issued by the Chinese govern-
ment lasts until 2022, so a large number of offshore wind farms have been constructed
with great haste in recent years, which has resulted in a possible lack of safety assessment
from site selection to design of facilities. The guiding force of this policy is intended to
help accelerate the development of China’s offshore wind power industry. However, this
policy has also generated a reacting force that leads OWF companies develop wind power
resources by all means covered and has hidden some safety hazards.

3.3.2. Improvement Recommendations

Based on the results of the above analysis, we provide the following system improve-
ment recommendations.

1. Overall planning of marine traffic resources

Conflicts concerning the use of marine resources between marine traffic and wind
power generation are one of the primary causes of VTA accidents, and require macro and
long-term planning. At the stage of planning and site selection for offshore wind farms,
relevant port, shipping, and maritime institutions should intervene in advance, strengthen
coordination with development and reform, energy, natural resources, and other depart-
ments, and actively participate in the formulation and revision of territorial and spatial
planning, such as marine functional zoning, to ensure marine transportation resources.

2. Establishing the OWF traffic safety management coordination mechanism

Following the Chinese safety-relevant laws, regulations, and the division of respon-
sibilities, the transportation department should establish and improve the cooperation
mechanism of joint law enforcement, supervision, and management with other compe-
tent departments in the industry, clarify the government regulatory responsibilities of the
energy and transportation departments, strengthen the safety supervision of the offshore
wind farms throughout their life cycle, and construct a dual prevention mechanism for hi-
erarchical risk management and control of OWF safety and the investigation and treatment
of potential accidents.

3. Simultaneous construction of sufficient navigational safety facilities

In conformity with relevant Chinese laws and rules on work safety, safety facilities
for production, operation, and construction projects must be designed, constructed, and
operated simultaneously with the main works. Because of the problems existing in the
traffic safety management in OWF waters, the owner of an OWF should strengthen the
construction of early-warning safety facilities and carry out special research on the impact
of wind farm construction on offshore regulatory facilities. Relying on the infrastructure of
an OWF, radar, surveillance cameras, and other sensing equipment for vessels should be
constructed to improve the coverage of the maritime safety supervision system.

4. Strengthening the construction of maritime supervision and rescue capacity

An offshore wind farm is usually located in an unshielded sea area rich in wind
energy. The navigation environment is relatively harsh, and the requirements for the
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ability for regulatory search and rescue equipment are high. It is necessary to increase the
configuration scale of rescue aircraft and improve equipment performance.

4. Discussion

The innovation of this study mainly lies in applying the method of system theory
analysis of accidents to special cases of allisions between vessels and wind turbines in OWF
waters, which has been rarely performed in previous research. Second, we optimize the
CAST method in STAMP and divide the analysis process into three stages: initialization,
microanalysis, and macroanalysis, making the analysis clearer, more targeted, and easier to
combine with other methods. In addition, to make up for the shortcomings of the STAMP
method in quantitative analysis, we integrate the analysis process of complex networks
and establish a network model and matrix based on the HSCS constructed by STAMP. We
analyze the PR, CC, BC, NI, and CI of each component in the VT network, and the results
meet expectations.

The practical implication of this study is based on an accident in the waters of an
offshore wind farm. The analysis results obtained through optimization methods are
consistent with the accident report, confirming the scientific nature of the method itself,
and can be used as a tool for subsequent analysis of such systems. In addition, other factors
not analyzed in the accident report are identified, especially regarding communication
perception, safety management, and safety culture in the macroanalysis process, as well
as the contribution of external economic and policy factors to the occurrence of accidents.
Therefore, the analysis method discussed in this article can serve as a powerful supplement
to accident investigation, making the results of an accident investigation more scientific and
reversing the long-standing responsibility-oriented analysis approach, providing support
for the true improvement of system safety.

Admittedly, there is still considerable scope for improvement in this study. For
example, there could be a deeper understanding of the case in terms of data acquisition.
Relying solely on accident investigation reports and some data information searched online
cannot accurately restore the appearance of the accident itself. If the real-time data from
vessel tracking systems, weather monitoring, and offshore infrastructure sensors could
be integrated into the analysis, the accuracy and timeliness will be enhanced significantly.
Future research could explore methods to collect and analyze such data to improve the
understanding of offshore wind farm water transportation system safety. Secondly, the
method of complex networks only analyzes some basic indicators, which can be further
applied to other analysis methods such as the percolation on complex networks.

5. Conclusions

Given the stimulus of the subsidy policy of the Chinese government, offshore wind
power has grown at an incredible speed. Many dynamic complex systems composed of
vessels and OWF have been formed in a short time, which has caused new navigational
safety problems. Due to the characteristics of rare accident cases, incomplete accident data,
and dynamic nonlinearity, it is difficult to use traditional data statistics and event chain
analysis methods to find the critical factors of a VTA accident. In this study, CAST, in the
STAMP family, is utilized, and the complex network theory and method are combined to
analyze the accident case of Rongxiang 66 colliding with a wind turbine qualitatively and
quantitatively for the macro and micro levels of the system. The main contributions of this
study are as follows:

• A typical VTA accident between a vessel and a wind turbine in the navigation system
of offshore wind farm waters is systematically analyzed, which establishes the effec-
tiveness of the STAMP model in solving this kind of complex system. In addition, the
model design of the safety control structure is improved, and the CAST-CN analysis
model is constructed based on the CN, which creatively compensates for the blanks in
the quantitative analysis of the cast, and enhances the scientific quality and accuracy
of the accident analysis.
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• The combined macro and micro analyses of accidents reveal some key factors not
mentioned in the accident report, such as maritime traffic management and OWF
operation management, which are of great significance to improve navigational safety.

Nevertheless, the CAST-CN model has great potential for improvement; for example,
it can be adapted for various types of accidents and network analysis methods. The
analysis of different types of offshore wind farm water accidents based on the CAST-
CN model will help maritime departments and relevant research organizations gain a
comprehensive understanding of the safety problems and key factors of offshore wind
farm water transportation system so as to improve the safety of the system. Future research
could delve deeper into understanding the perspectives and roles of various stakeholders
involved in these systems, such as vessel operators, wind farm operators, regulatory
authorities, and coastal communities. This would allow for a more comprehensive analysis
of the factors influencing safety and the development of targeted recommendations for
each stakeholder group.
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Appendix B. The Weighted Matrix of V-T Network

Table A2. V-T matrix with edge weights.

ID A B C D E F G H I J K L M N O P Q R S T U V W X Y

A 0.25 0.3330.5 0.5 1
B 1 0.5 1
C 0.5 1
D 0.333 0.5 0.5
E 1 0.5
F 1 1
G 1 1 1 1
H 1 1
I 1 1
J 0.5 1 1
K 1 1
L 1 0.5
M 1 1 0.5
N 1 0.5
O 0.5 0.5 0.5 0.5
P 0.5 0.5
Q 1 0.5
R 0.5
S 0.5 0.5
T 1 1
U 1 0.5 1 1
V 1
W 1
X 0.5 0.5 0.5 1
Y 0.5 0.5 0.5 0.5 0.5 0.5

Appendix C. Network Analysis Result of CAST-CN

Table A3. Network analysis results (PR, CC, BC, NI).

ID Label PR CC BC NI

A Master 0.0745 0.3710 0.2681 0.086
B Chief mate 0.0452 0.3382 0.0857 0.037
C Third mate 0.0322 0.3067 0.0199 0.018
D Deck crew 0.0526 0.3151 0.1172 0.045
E Ship company 0.0335 0.2987 0.0314 0.021
F Ministry of Transport 0.0349 0.2840 0.0181 0.017
G Guangdong MSA 0.0690 0.3333 0.3219 0.098
H South Sea Rescue Bureau 0.0415 0.2584 0.0812 0.033
I Hong Kong Flight Rescue Team 0.0415 0.2584 0.0812 0.033
J Guangzhou VTS Center 0.0455 0.3966 0.3496 0.105
K Ministry of Natural Resources 0.0346 0.1933 0.0000 0.010
L Energy Administration 0.0346 0.1933 0.0000 0.010
M Guishan OWF company 0.0491 0.2347 0.1558 0.051
N Construction manager 0.0321 0.2875 0.2228 0.068
O Wind turbine base 0.0576 0.3594 0.3110 0.095
P Navigational aids 0.0310 0.3067 0.0374 0.023
Q Main engine/rudder engine 0.0314 0.2949 0.0100 0.015
R Life raft 0.0218 0.2421 0.0000 0.010
S Mooring system 0.0343 0.2987 0.0531 0.027
T VHF 0.0318 0.3108 0.0254 0.020
U VTS system 0.0572 0.3898 0.2859 0.090
V Helicopters 0.0245 0.2072 0.0033 0.010
W Tugboats 0.0245 0.2072 0.0033 0.010
X Vessel Rongxiang 66 0.0592 0.3538 0.1443 0.054
Y Environmental factors 0.0060 0.4000 0.0000 0.014
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Abstract: Obtaining ship navigation information from maritime videos can significantly improve
maritime supervision efficiency and enable timely safety warnings. Ship detection and tracking are
essential technologies for mining video information. However, current research focused on these
advanced vision tasks in maritime supervision is not sufficiently comprehensive. Taking into account
the application of ship detection and tracking technology, this study proposes a deep learning-based
ship speed extraction framework under the haze environment. First, a lightweight convolutional
neural network (CNN) is used to remove haze from images. Second, the YOLOv5 algorithm is used
to detect ships in dehazed marine images, and a simple online and real-time tracking method with
a Deep association metric (Deep SORT) is used to track ships. Then, the ship’s displacement in
the images is calculated based on the ship’s trajectory. Finally, the speed of the ships is estimated
by calculating the mapping relationship between the image space and real space. Experiments
demonstrate that the method proposed in this study effectively reduces haze interference in maritime
videos, thereby enhancing the image quality while extracting the ship’s speed. The mean squared
error (MSE) for multiple scenes is 0.3 Kn on average. The stable extraction of ship speed from the
video achieved in this study holds significant value in further ensuring the safety of ship navigation.

Keywords: ship speed extraction; image dehaze; ship detection; ship tracking

1. Introduction

Currently, the Automatic Identification System (AIS) serves as the primary platform
for exchanging navigation information, including ship speed, between ships and between
ships and the shore [1]. However, the rapid growth of the shipping industry has led to an
increased number of ships, resulting in AIS signal interference in busy waters. Meanwhile,
the system’s weak ability to combat data defects, system instability, and environmental
interference often causes data delays or losses [2]. Additionally, some ships either lack AIS
equipment or turn it off in monitored waters, thereby preventing the maritime supervision
department from obtaining timely navigation information [3]. In this situation, both the
supervisory authority and ships in the same waters are unable to obtain accurate and
timely speed information of other ships, posing a hidden danger to navigation safety.
Maritime videos, which provide rich information at a low cost, are widely used in maritime
supervision. Techniques such as image processing, target detection, and target tracking
are employed to identify obstacles at sea [4] and extract navigation information, such as
ship trajectories, from maritime images [5]. These approaches have positive implications
for enhancing maritime supervision efficiency and ensuring ship safety.

While several studies have been conducted on ship detection and tracking in maritime
images [5–7], the related research has not sufficiently explored the application of ship
detection and tracking technology, nor has it fully extracted the navigation information
from maritime images. Zhao et al. [8] proposed a ship speed extraction framework based
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on UAV airborne video. In this study, the advantages of optical image data were fully
utilized to realize the visual extraction of ship speed information. However, this study does
not consider the influence of complex weather on the accuracy of ship speed extraction and
lacks research on processing low-quality marine image data.

In this study, we propose a ship tracking and speed extraction framework based
on deep learning under hazy weather conditions. Our approach utilizes cost-effective
optical data while considering environmental impacts. We achieve ship speed information
extraction from video data using ship tracking algorithms, as illustrated in Figure 1. The
contributions of this study can be summarized as follows:

Figure 1. Frame diagram of the method.

• To address the issue of the image becoming dark after haze removal, thereby obscuring
the ship’s target features, we improved AOD-Net [9] at the pixel level. After haze re-
moval, the mean peak signal-to-noise ratio (PSNR) of multiple maritime scenes reached
23.86, and the mean structural similarity index (SSIM) was 0.96, thus improving the
quality of maritime images.

• We extract ship speed from the images based on the image mapping relationship. The
average accuracy of ship speed extraction using this framework across multiple scenes
is approximately 95%. Furthermore, the mean squared error (MSE) of the speed values
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extracted from the dehazed images is approximately 0.3 Kn lower than that extracted
from the images before haze removal.

• Provides ideas for the application of advanced vision tasks such as haze removal
from maritime haze images and ship tracking in maritime scenarios, improving the
efficiency of maritime supervision.

2. Related Work

2.1. Image Haze Removal

Image processing for hazy weather is a significant research direction in the field of
computer vision. Haze removal methods based on image enhancement primarily aim to
enhance image contrast and highlight image details. These methods include the adaptive
histogram equalization method [10], Retinex theory [11], etc. While these methods are
simple, easy to implement, and widely applicable, they may lead to loss of details or over-
enhancement. He et al. proposed a method of combining the dark channel prior with the
atmospheric scattering model for haze removal [12]. The experimental principle of this method
is simple and has a good effect on most natural scenes, but it is prone to local coloration or
image brightness reduction after removing haze. In recent years, deep learning methods, such
as convolutional neural networks (CNN), have been utilized for haze removal, and numerous
deep networks have been developed for this purpose [9,13–15]; these haze removal networks
have demonstrated improved results in haze removal experiments. However, most of these
methods have been applied to land-based scenes, and there is a need for an improved haze
removal network specifically tailored for maritime haze videos, considering the differences
in sea surface scattering and other imaging characteristics compared to land-based haze.
Therefore, this study enhances AOD-Net for maritime haze scenes to more efficiently remove
haze from maritime haze images.

2.2. Target Tracking

Current methods of multi-target tracking generally employ the TBD (Tracking-by-
Detection) strategy, which involves first detecting the target’s position in the image and
then establishing associations between frames based on appearance consistency or posi-
tional similarity of the same target across frames. In recent years, with the advancement
of algorithms such as deep learning, tracking accuracy has been enhanced by utilizing
techniques such as neural networks to learn the appearance information of targets across
different video frames for precise inter-frame associations [16–18]. However, the study
by [19] demonstrates that when different tracking targets share similar appearance features,
matching errors in target IDs can occur, making reliance solely on appearance features for
inter-frame association unreliable.

Location similarity-based target tracking methods can overcome issues arising from the
appearance similarity of tracked targets. Simple online and real-time tracking (SORT) [20]
performs data association based on positional similarity and first uses a Kalman filter to
predict the position of the track in the next frame and then calculates the Intersection over
Union (IoU) between the detected and predicted frames. ByteTrack [21] matches the frames
with IoU matching below the threshold twice to improve the tracking performance of the
object when it is occluded. Inter-frame matching combining appearance consistency and
location similarity can be sufficient to further improve tracking performance [22–24], and
Deep SORT [25] uses an independent Re-ID model to extract appearance features from
the detected frames to reduce ID matching errors. It is worth stating that the performance
of the current multi-target tracking algorithm using the TBD strategy is closely related
to the results of the detection model, and the performance of the tracking model can be
guaranteed when the detection model reaches high accuracy [20]. In this paper, we adopt
Deep SORT [25], a flexible and robust tracking model, after ensuring that yolov5 can detect
ships with stable and high accuracy in maritime scenes.
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2.3. Techniques for Obtaining Information on Ship Speed

Commonly used technologies for measuring ship speed include AIS [26], radar [27],
lasers [28], and video-based speed measurements [29]. The emergence and advancement
of the AIS system have provided robust technical support for acquiring ship navigation
information [30]. However, as the number of ships at sea continues to increase, AIS signals
are prone to interference. Other ships can only obtain ship navigation information [31] if
the ship has AIS installed and turned on. Ship speed measurements using laser and radar
technologies require specialized and costly equipment. In contrast, marine videos contain a
wealth of ship navigation information, which can be easily visualized and processed in real-
time. Additionally, visual sensors offer a wide monitoring range and are cost-effective [32],
making them ideal for applications in complex marine environments with numerous ships
and various influencing factors [33]. With the advancement of visual sensor technology,
speed measurement methods based on videos hold promising prospects.

3. Materials and Methods

3.1. Remove Haze in Marine Haze Images Using CNN

The first part of the framework is a lightweight CNN, which is used to remove
haze from hazy marine images. To improve the quality of marine images in complex
scenes, marine haze images were used to train AOD-Net [9], which can achieve end-to-end
dehazing in marine scenes. To avoid the darkening of the maritime images after haze
removal by AOD-Net and to solve the problem of not highlighting the structural features
of ships in the images after haze removal, Equation (1) was introduced to highlight further
the structural features of ships in the images.

G(x) = mJ(x) + n (1)

where, J(x) is the image before image enhancement, G(x) is the image after image enhance-
ment, m is the gain parameter, and n is the bias parameter, which is used to adjust the
contrast and brightness of the marine image to further eliminate the impact of background
noise. In this study, the AOD-Net model trained by marine images and can improve the
quality of images after haze removal is called e-AOD-Net. The e-AOD-Net uses a CNN
to remove haze based on the atmospheric scattering model. The traditional atmospheric
scattering model that generates hazy images is described as follows:

I(x) = J(x)t(x) + A(1− t(x)) (2)

t(x) = e−βd(x) (3)

In the Equation (2), I(x) is the hazy image, J(x) is the clear image before image
enhancement, and t(x) is the medium transmission, describing the light without scattering
and transmitted to the visual sensor, which can be expressed by the atmospheric scattering
coefficient β and the distance between the field and the visual sensor d(x).

Equations (2) and (3) can be transformed into:

J(x) = K(x)I(x)− K(x) + b (4)

K(x) =
1

t(x) (I(x)− A) + (A− b)

I(x)− 1
(5)

where, b is the deviation value whose default value is 1. Meanwhile, Equation (4) integrates
1

t(x) and A into K(x). The e-AOD-Net builds an adaptive depth estimation model based on
the physical model of atmospheric scattering and trains the network by minimizing the
error between the pixel values of clear and hazy images.
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As shown in Figure 2, I(x) is entered into the network to estimate K(x) and then input
K(x) into the dehazed image generation module as an adaptive parameter. The function of
the K(x) estimation module is to estimate the depth and haze concentration of hazy images.
At the same time, Equation (1) is used to reduce the impact of noise on an image. Finally,
clear images are synthesized by the multiplication and additional layers, and they can be
output directly after haze removal to realize end-to-end haze removal of images.

 
Figure 2. Haze removal network.

3.2. Marine Shipping Target Detection Using the YOLOv5 Algorithm

The second part of the framework involves shipping detection. YOLO algorithms are
representative of one-stage target detection algorithms, which regard target detection as
a regression problem with a simple network flow. Among them, the YOLOv5 network is
small, stable, and good in terms of network generalization ability [34], making it an ideal
choice for real-time flexible target detection in the offshore environment. Because ships in
maritime images are usually small and ship speed extraction has high requirements for
the computational speed and flexibility of the detection algorithm, this framework adopts
YOLOv5 as the target detection algorithm [35]. Meanwhile, the maritime dataset is used
to train the YOLOv5 network to realize the fast and accurate positioning of small and
medium-sized ships in maritime images and improve the accuracy of ship speed extraction.
The main components of the YOLOv5 network are input, backbone, neck, and prediction,
as shown in Figure 3.

 

Figure 3. The network structure of YOLOv5.

Among them, mosaic enhancement is used at the input end of the YOLOv5 network
to improve the detection accuracy of small ships. The adaptive anchor frame calculation
and adaptive scaling for different data are performed to improve the calculation speed
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of the network. The neck network integrates the information of the upper and lower
layers to fully extract the features of the ship. At the same time, the cross stage partial
network (CSP-Net) is used to enhance the fusion of the target features of the network and
improve the extraction efficiency of the ship’s features. In the prediction part of YOLOv5,
the anchor frame of the grid is used for target detection on feature graphs of different scales.
The complete intersection over union (CIoU) is used as the loss function of the boundary
frame, which allows the algorithm to converge quickly and make the prediction frame
more consistent with the real frame. Non-maximum suppression (NMS) is used by the
neck network to enhance the detection accuracy of multiple ship targets and overlapping
ship targets.

3.3. Ship Target Tracking with Deep SORT Algorithm

To obtain the pixel displacement of the ships in the images of continuous frames,
the video with the detection frame information is taken as the input of the Deep SORT
algorithm [8] in the third part of this framework. The algorithm first predicts the trajectory
of the next frame using the Kalman filter. IOU matching and cascade matching are then
performed between the predicted value and the detection frame information to track the
trajectory of the target ship between the front and back frames of the video [36].

During the prediction process, xk−1 =
(

u, v, r, h,
.
x,

.
y,

.
z,

.
h
)

represents the motion state
of the target in k− 1 box, where (u, v) is the central point coordinates of the target box, r is
the aspect ratio, and h is the height of the detection box. In xk−1, the last four variables are
the derivatives of the first four variables, representing the transformation rate of the first
four variables. When the standard filter is used to predict the motion state of the target, the
last four values are constants. With xk−1 = (u, v, r, h) as the prediction result, the motion
state prediction of the Kalman algorithm can be expressed as:

x̂k = Ax̂k−1 (6)

where, x̂k−1 is the motion state vector of frame k− 1, and A is the state transition matrix
used to predict the motion state x̂k of frame k.

In the process of data association between continuous frames, Mahalanobis distance,
and cosine distance are introduced to conduct the association of data between connected
frames, and the thresholds between the observation box and prediction box are set, re-
spectively. In the process of data association, when the Mahalanobis distance and cosine
distance are both within the threshold range, the data association of two adjacent frames is
considered successful. The comprehensive associated cost equation is as follows:

ci,j = λd(1)(i, j) + (1− λ)d(2)i,j (7)

where, λ is a hyperparameter, and the influence of Mahalanobis distance and cosine
distance on the association results can be controlled by controlling λ.

In order to enable the targets blocked for a long time to be continuously tracked, Deep
SORT introduced cascade matching to give priority to the targets with more occurrences.
Then, the intersection and union (IoU) between the boundary box and the prediction box
by the Kalman filter is calculated and detected for the newly emerged targets and the
prediction boxes that failed to match. The detection result is recognized if the match value
is greater than the minimum IoU value. The equation for calculating IoU is as follows:

IoU =
|area(A) ∩ area(B)|
|area(A) ∪ area(B)| (8)

where, A is the detection boundary box, and B is the prediction boundary box of the
candidate trajectory.
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3.4. Space Mapping from 2D to 3D and Speed Extraction

In the fourth part, the mapping relation matrix between the ship’s displacement in the
images and the actual displacement is obtained by 2D to 3D space mapping. The actual ship
displacement is calculated according to the trajectory of the ship in the images obtained
by the target tracking algorithm. The ship’s movement in a short time is regarded as the
uniform motion. The average velocity equation is used to estimate the actual velocity of
the ships based on the premise of knowing the time difference and actual displacement of
the ship [37].

The process of 2D to 3D space mapping involves solving the mapping relationship
between objects from the three-dimensional world and points on the two-dimensional
image plane. The process involves four coordinate systems, and the representation methods
of coordinate systems and points in coordinate systems are as follows:

(1) World coordinate system. The coordinate system corresponding to the three-dimensional
world describes the position of the target in the real world. The unit length of the
coordinate axis is m. The points in the world coordinate system are represented by
(Xw, Yw, Zw).

(2) Camera coordinate system. The origin is located in the optical center of the lens,
and its x-axes and y-axes are parallel to both sides of the phase plane. The z-axis is
perpendicular to the image plane and is the optical axis of the lens. The unit length of
the coordinate axis is m. The points in the camera coordinate system are denoted as
(Xc, Yc, Zc).

(3) Image coordinate system. The origin is the intersection of the optical axis of the
camera and the imaging plane, that is, the midpoint of the imaging plane. The unit
length of the coordinate axis is mm. The points in the image coordinate system are
represented by (x, y).

(4) Pixel coordinate system: the origin is the top-left corner of the imaging plane in pixels.
Points in the pixel coordinate system are represented as (u, v).

The object is transformed from the world coordinate system to the camera coordinate
system through translation and rotation, and the transformation equation between the
camera coordinate system and the world coordinate system is:⎡⎢⎢⎣

Xc
Yc
Zc
1

⎤⎥⎥⎦ =

[
R t
→
0 1

]⎡⎢⎢⎣
Xw
Yw
Zw
1

⎤⎥⎥⎦ (9)

where R is a 3 × 3 rotation matrix and t is a 3 × 1 translation vector.
The transformation of the camera coordinate system into the image coordinate system

is based on the projection perspective. The connection between P in space and the camera
optical center O is OP, and the intersection point p between OP and phase plane is the
projection of point P on the image as shown in Figure 4.

According to the projection perspective, the conversion equation of the camera coordi-
nate system and the image coordinate system is:

Zc

⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦ =

⎡⎣ f 0 0 0
0 f 0 0
0 0 1 0

⎤⎦
⎡⎢⎢⎣

Xc
Yc
Zc
1

⎤⎥⎥⎦ (10)

where Zc is the scale factor, and f is the focal length. The pixel coordinate system can
coincide with the image coordinate system after translation, as shown in Figure 5.
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Figure 4. Projection perspective between the camera coordinate system and the image coordinate system.

Figure 5. Translation relationship between the image coordinate system and the pixel coordinate system.

Then, the conversion equation of the image coordinate system and pixel coordinate
system is: {

u = x
dx

+ u0

v = y
dy

+ v0
(11)

Represented by the matrix:⎡⎣u
v
1

⎤⎦ =

⎡⎢⎣
1

dx
0 u0

0 1
dy

v0

0 0 1

⎤⎥⎦
⎡⎣x

y
1

⎤⎦ (12)

where dx and dy are the scale factors of the two coordinate systems in the directions of the
x-axis and y-axis, and (u0, v0) is the coordinate of the origin of the pixel coordinate system.

As can be seen from Equations (9), (10) and (12), the conversion equation between the
world coordinate system and the pixel coordinate system in which the image is located can
be expressed as:

Zc

⎡⎣u
v
1

⎤⎦ ==

⎡⎢⎣
f

dx
0 u0 0

0 f
dy

v0 0
0 0 1 0

⎤⎥⎦[R t
→
0 1

]⎡⎢⎢⎣
Xw
Yw
Zw
1

⎤⎥⎥⎦ (13)

If [
R t
→
0 1

]
= M (14)

⎡⎢⎣
f

dx
0 u0 0

0 f
dy

v0 0
0 0 1 0

⎤⎥⎦ = K (15)
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Then

Zc

⎡⎣u
v
1

⎤⎦ = KM

⎡⎢⎢⎣
Xw
Yw
Zw
1

⎤⎥⎥⎦ (16)

In Equation (16), the element in K is the configuration parameters of the camera, which
is called the camera’s internal parameter matrix. The elements in M are called the internal
parameter matrix of the camera.

In this paper, the plane where the ship is located is set to the XwOwYw plane of the
world coordinate system, the direction perpendicular to XwOwYw is the positive direction of
the Zw axes, and the camera coordinate system is set to coincide with the world coordinate
system. Under this assumption, the conversion equation of the pixel coordinate system
and the world coordinate system can be simplified as:

Zc

⎡⎣u
v
1

⎤⎦ = K

⎡⎢⎢⎣
Xw
Yw
Zw
1

⎤⎥⎥⎦ (17)

In this study, the ship’s movement in a very short time is regarded as uniform linear
motion. Assuming that the ship displacement in the pixel coordinate system in the period
Δt at the moment T can be expressed as (Δu, Δv), the transformation relationship between
the image displacement and actual displacement is as follows:

Zc

⎡⎣Δu
Δv
1

⎤⎦ = K

⎡⎢⎢⎣
ΔXw
ΔYw
ΔZw

1

⎤⎥⎥⎦ (18)

Then the actual displacement of the ship in the time period Δt is:

ΔL =

√
(ΔXw)

2 + (ΔYw)
2 + (ΔZw)

2 (19)

According to the average velocity formula, the velocity of the ship at the moment T
can be expressed as:

vT =
ΔL
Δt

(20)

4. Results

The main contents of Section 4 are the experimental details and results. It should be
noted that all experiments were carried out on an Intel I7-11800H@4.6 GHz computer with
a 6 g memory processor, and the experiments were completed in the Windows10 system
using the Pytorch software library.

4.1. Experimental Data

In this study, contrast experiments were conducted on each module of the framework,
and simulation experiments were conducted to verify the robustness of the framework
in the process of extracting the shipping speed. The experimental data of hazy removal
included three shore-based surveillance videos, which contained 5658 images, and three
maritime videos with 8000 marine images. The resolution of the shore-based surveillance
images is 640 × 386, and that of the self-built images is 1920 × 1080.

In the haze removal experiment of marine images, 5000 synthetic hazy marine images
were selected as the training dataset to improve the generalization performance of AOD-
Net on marine scenes, and 600 images were used as the non-repetitive test set. During
the maritime target detection and tracking experiment, 8000 high-resolution images were
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divided into 6400 training datasets, 1000 validation datasets, and 600 test datasets to train
the YOLOv5 algorithm. It should be noted that the training and test datasets do not overlap.
At the same time, the Deep SORT algorithm was selected to combine with the YOLOv5
algorithm to conduct the multi-ship tracking experiment and the simulation experiment of
ship speed extraction in marine scenarios. Shore-based scenes include scenes on cloudy
days (scene 1 in Figure 6), scenes on sunny days [38] (scene 2 in Figure 6), and scenes
with wave disturbance [38] (scene 3 in Figure 6). The self-built dataset includes the scene
of many small target ships (scene 4 in Figure 6), the scene with normal light (scene 5 in
Figure 6), and the scene with low light (scene 6 in Figure 6).

Figure 6. Experimental scenes.

It should be noted that, when training the haze removal network, this paper [39] is
referred to adding synthetic haze images to improve the generalization performance of
the haze removal network in marine scenes. We synthesized image datasets with three
different haze concentrations, and in this study, T represents the haze concentration. The
images with three different haze concentrations are respectively represented as the images
with T = 0.3, the images with T = 0.5, and the image data with T = 0.7, among which the
images with T = 0.3 has the lowest haze concentration, as is shown in Figure 7.

 

Figure 7. Synthetic haze images.

4.2. Experimental Results and Analysis
4.2.1. Haze Removal of Marine Images

To verify the performance of the framework on haze removal, Retinex [40], Dark
Channel Prior [12], Contrast Limited Adaptive Histogram Equalization (CLAHE) [41],
AOD-Net [9], and e-AOD-Net adopted in the framework are used to conduct a comparative
experiment on haze removal. The experimental results are shown in Figure 8.
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Figure 8. Comparative experiments of haze removal. (a) Retinex (b) Dark Channel Prior (c) CLAHE
(d) AOD-Net (e) e-AOD-Net.

The images generated by the above methods after haze removal are shown in Figure 8.
Retinex and Dark Channel Prior usually lead to image distortion, and the color of the
images after haze removal is seriously abnormal. CLAHE usually makes the color of
images after haze removal too dark, and maritime ship features are not prominent. After
haze removal by the AOD-Net network, there is still noise remaining in the images. These
phenomena may occur because none of the above competing methods can fully extract
the target structural features from ocean images. By contrast, e-AOD-Net can learn more
structural features of images in marine scenes after generalization training and adaptive
enhancement of marine images. The evaluation results of the dehazed images in multiple
scenes using the PSNR and SSIM are presented in Table 1.

Table 1. Evaluation results of dehazed images. (The best results are highlighted in red).

Method Retinex CLAHE Dark Channel Prior AOD-Net e-AOD-Net

PSNR 1 SSIM 2 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Scene 1 10.86 0.70 9.80 0.67 9.72 0.72 22.81 0.94 23.71 0.95
Scene 2 10.12 0.68 9.06 0.65 9.01 0.67 20.50 0.95 21.86 0.94
Scene 3 10.10 0.65 9.51 0.63 9.09 0.65 20.06 0.95 23.84 0.95
Scene 4 10.73 0.55 9.76 0.52 9.48 0.53 20.59 0.92 21.99 0.95
Scene 5 11.42 0.40 10.46 0.38 11.13 0.39 22.15 0.92 23.69 0.96
Scene 6 11.79 0.50 10.17 0.43 10.82 0.48 19.68 0.94 23.87 0.96

1 PSNR: The peak signal-to-noise ratio [42] is a widely used evaluation index for measuring image quality. 2 SSIM:
The structural similarity index measure [43] can objectively determine the structural similarity of images based on
the human visual system.

As shown in Table 1, the e-AOD-Net adopted in this study has stable and good
performance in multiple marine scenes, indicating that e-AOD-Net achieves better image
enhancement performance. Images after haze removal can highlight more ship information,
which is the basis of ship detection and tracking.
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4.2.2. Multi-Ship Detection and Tracking Experiment after Images Enhancement

In this part, in order to verify the detection performance of the algorithm, SSD [44],
Faster RCNN [45], and YOLO v4 [46] are compared with the YOLOv5 algorithm [47] adopted.
The training comparison chart (Figure 9a), the verification comparison chart (Figure 9b), the
frames per second (FPS) comparison chart (Figure 9c), the training index table (Table 2), the
verification index table (Table 3), the test index table (Table 4) are drawn respectively.

   
(a) (b) (c) 

Figure 9. Comparison of detection methods. (a) Training carve; (b) Validation carve; (c) FPS of
multiple detection algorithms.

Table 2. Train metrics.

p R mAP_0.5 mAP_0.5:0.95

Faster RCNN 0.9446 0.9195 0.9297 0.8835
SSD 0.9154 0.8974 0.9065 0.8548

YOLO v4 0.979 0.9701 0.972 0.8903
YOLO v5 0.9929 0.973 0.989 0. 920

Table 3. Validation metrics.

p R mAP_0.5 mAP_0.5:0.95

Faster RCNN 0.927 0.907 0.916 0.764
SSD 0.90.1 0.884 0.863 0.718

YOLO v4 0.973 0.982 0.995 0.845
YOLO v5 0.989 0.990 0.993 0.880

Table 4. Test metrics.

p R mAP_0.5 mAP_0.5:0.95

Faster RCNN 0.932 0.895 0.937 0.775
SSD 0.903 0.874 0.895 0.738

YOLO v4 0.983 0.979 0.991 0.80
YOLO v5 0.993 0.984 0.994 0.83

As can be seen from the comparison curve, under the same training conditions, the
convergence speeds of the YOLOv4 and YOLOv5 algorithms are fast, and the YOLOv5
algorithm has a faster image-processing speed (in Figure 9c). The test and evaluation
parameters show that the trained YOLOv5 algorithm also performs well in detecting
accuracy in ocean scenes. To verify the performance of images after haze removal by
e-AOD-Net in ship detection tasks, we adopted the stable YOLOv5 algorithm to detect
ships in the synthesized hazy images and images after haze removal and compared the
detection results. The detection results are presented in Figure 10.
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Figure 10. Comparison of detection effects of YOLOv5 on images before and after haze removal
(Detection details are highlighted with red boxes).

Figure 10 shows that YOLOv5 has high-precision detection performance in multiple
ocean scenarios. However, the degree of recovery of the images after haze removal is high,
and the structural features of the ships are prominent, making it easy for the ship target
in the image to be detected by the YOLOv5 algorithm, such as the small ships in the red
boxes in scene 4. Haze noise in images reduces the accuracy of the target detection. In the
case of high haze concentrations, some ships were not detected, such as those in the red
boxes in scenes 5 and 6.

Considering the accuracy, detection speed, and detection stability of the algorithm
in synthetic haze scenes, the YOLOv5 algorithm is ideal for ship detection in maritime
scenarios. In the evaluation of the tracking algorithms, the YOLOv5 algorithm was used as
the detector in scenarios 4, 5, and 6. In the three scenarios, multi-objective tracking evalua-
tion parameters were introduced to evaluate the tracking performance of the SORT and
Deep SORT algorithms for ships in ocean scenarios. The evaluation results are presented
in Tables 5–7. In the tables, parameters with upward arrows indicate that the evaluated
method performs better when the evaluated value is larger; those with downward arrows
indicate that the evaluated method performs better when the evaluated value is smaller.
And the optimal evaluation values when the hazy concentration is T = 0.3, T = 0.5, and
T = 0.7 have been highlighted in red, yellow, and green, respectively in Tables 5–7.

As shown in Tables 5–7, the Deep SORT algorithm using YOLOv5 as a detector has
higher MOTA and MOTP values as well as lower IDS and ML values in the above scenes.
This indicates that Deep SORT can track ships stably while avoiding the number of ID
transitions. It should be noted that in the same scenario, the evaluation results of tracking
algorithms that use images after haze removal are usually the optimal values, indicating
that images after haze removal can effectively improve the robustness of target tracking
algorithms in maritime scenarios. It is worth noting that the YOLOv5 algorithm combined
with the Deep SORT target tracking algorithm adopted in the framework can maintain
high detection accuracy and stable tracking performance in multi-ship tracking, which is
the basis for accurate ship speed extraction in this study.

4.2.3. Ship Speed Extraction

In this section, AIS data are considered as the ground truth of the ship speed values. The
AIS data of Baosteel Wharf on 5 April 2021 is downloaded from the website http://www.
shipxy.com. To make it easier to compare the ground truth of the ship speed values with
the shipping speed extracted from marine images, the AIS data were linearly interpolated
to match the video image frame by frame after extracting the speed data. To highlight the
effect of this framework on hazy images and the performance of ship speed extraction, this
section selects a ship in scenes 4, 5, and 6 for the speed extraction simulation experiment and
compares the ground truth with the extracted speed of each ship in the scene with different
haze concentrations. The extraction and comparison results for the ship speed are shown
in Figures 11–13. The mean speed of each ship and the MSE and MAE values compared to
the ground truth of the speed are listed in Tables 8–10. In the Tables 8–10, the highlighted in
yellow indicates the speed results and speed evaluation results extracted from the haze videos,
the highlighted in green indicates the speed results and speed evaluation results extracted
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from the videos after haze removed, and the highlighted in red indicates the true value of
speed extracted from the AIS data.

Table 5. Evaluation results of multi-ship tracking in scene 4.

Scene 4

Data
Type

Tracker
Haze

Concentration
IDF1 1 ↑ MOTA 2 ↑ MOTP 3 ↑ MT 4 ↑ ML 5 ↓ FP 6 ↓ FN 7 ↓ IDS 8 ↓

Hazy
video

SORT
T = 0.3 97.6% 96.7% 85.4% 100.0% 0.0% 18 72 1
T = 0.5 97.3% 95.1% 85.4% 100.0% 12.5% 20 114 2
T = 0.7 89.3% 88.7% 84.2% 75.0% 12.5% 24 292 3

Deep
SORT

T = 0.3 98.5% 97.1% 85.2% 100.0% 0.0% 15 57 0
T = 0.5 97.5% 95.6% 85.5% 100.0% 0.0% 20 92 1
T = 0.7 96.8% 93.8% 84.7% 75.0% 12.5% 23 155 3

Dehazed
video

SORT
T = 0.3 98.6% 97.3% 85.8% 100.0% 0.0% 14 58 0
T = 0.5 97.7% 96.8% 86.0% 100.0% 0.0% 13 70 1
T = 0.7 97.5% 95.9% 85.5% 100.0% 0.0% 17 89 2

Deep
SORT

T = 0.3 98.7% 97.5% 85.7% 100.0% 0.0% 3 44 0
T = 0.5 98.7% 97.3% 86.9% 100.0% 0.0% 9 51 0
T = 0.7 98.3% 96.7% 86.1% 100.0% 0.0% 14 71 0

1 IDF1: The ratio of correctly identified detections over the average number of ground-truth and computed
detections; 2 MOTA (multi-object tracking accuracy): This measure combines three error sources: false positives,
missed targets, and identity switches; 3 MOTP(Multiple Object Tracking Precision): The misalignment between
the annotated and the predicted bounding boxes; 4 MT: The ratio of ground-truth trajectories that are covered by
a track hypothesis for at least 80% of their respective life span; 5 ML: The ratio of ground-truth trajectories that
are covered by a track hypothesis for at most 20% of their respective life span; 6 FP: The total number of false
positives; 7 FN: The total number of false negatives (missed targets); 8 IDS: The total number of identity switches.
(The meaning of the evaluation parameters in Tables 6 and 7 is the same as described above.)

Table 6. Evaluation results of multi-ship tracking in scene 5.

Scene 5

Data
Type

Tracker
Haze

Concentration
IDF1 1 ↑ MOTA 2 ↑ MOTP 3 ↑ MT 4 ↑ ML 5 ↓ FP 6 ↓ FN 7 ↓ IDS 8 ↓

Hazy
video

SORT
T = 0.3 92.7% 85.0% 80.4% 87.5% 0.0% 82 84 2
T = 0.5 90.2% 81.2% 80.8% 87.5% 12.5% 106 248 1
T = 0.7 88.4% 80.3% 77.6% 62.5% 25.0% 631 516 3

Deep
SORT

T = 0.3 98.0% 90.0% 81.5% 75.0% 0.0% 14 191 0
T = 0.5 95.9% 94.0% 81.2% 87.5% 12.5% 39 263 1
T = 0.7 95.3% 89.8% 80.7% 75.0% 12.5% 39 373 2

Dehazed
video

SORT
T = 0.3 97.6% 93.2% 81.8% 87.5% 0.0% 54 149 0
T = 0.5 95.1% 86.6% 81.4% 87.5% 12.5% 299 187 0
T = 0.7 94.7% 88.1% 81.6% 87.5% 0.0% 456 201 0

Deep
SORT

T = 0.3 98.8% 95.7% 83.5% 87.5% 0.0% 16 50 0
T = 0.5 98.0% 94.4% 81.6% 87.5% 0.0% 20 151 0
T = 0.7 98.0% 94.0% 80.9% 87.5% 12.5% 23 177 0

 
(a) (b) (c) (d) 

Figure 11. Speed extraction results for ship 1 in scene 4. (a) Scene image; (b) Comparison of speed
measurements (T = 0.3); (c) Comparison of speed measurements (T = 0.5); (d) Comparison of speed
measurements (T = 0.7).
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(a) (b) (c) (d) 

Figure 12. Speed extraction results for ship 2 in scene 5. (a) Scene image; (b) Comparison of speed
measurements (T = 0.3); (c) Comparison of speed measurements (T = 0.5); (d) Comparison of speed
measurements (T = 0.7).

 
(a) (b) (c) (d) 

Figure 13. Speed extraction results for ship 3 in scene 6. (a) Scene image; (b) Comparison of speed
measurements (T = 0.3); (c) Comparison of speed measurements (T = 0.5); (d) Comparison of speed
measurements (T = 0.7).

Table 7. Evaluation results of multi-ship tracking in scene 6.

Scene 6

Data
Type

Tracker
Haze

Concentration
IDF1 1 ↑ MOTA 2 ↑ MOTP 3 ↑ MT 4 ↑ ML 5 ↓ FP 6 ↓ FN 7 ↓ IDS 8 ↓

Hazy
video

SORT
T = 0.3 85.7% 78.9% 71.9% 85.7% 14.3% 183 3187 11
T = 0.5 85.6% 75.0% 70.7% 85.7% 14.3% 226 4381 14
T = 0.7 80.5% 70.2% 63.5% 71.4% 28.6% 318 4869 20

Deep
SORT

T = 0.3 86.2% 78.8% 74.4% 100.0% 0.0% 179 1356 9
T = 0.5 85.4% 78.1% 72.4% 85.7% 28.6% 186 1267 12
T = 0.7 82.7% 71.5% 65.6% 57.1% 28.6% 295 3741 18

Dehazed
video

SORT
T = 0.3 86.8% 79.7% 75.5% 85.7% 14.3% 164 3171 12
T = 0.5 85.7% 78.2% 71.9% 85.7% 14.3% 189 3469 14
T = 0.7 83.2% 74.8% 68.5% 71.4% 28.6% 233 4715 14

Deep
SORT

T = 0.3 92.7% 82.1% 76.7% 100.0% 0.0% 120 1224 7
T = 0.5 89.6% 79.9% 75.6% 85.7% 0.0% 163 1267 9
T = 0.7 88.2% 79.3% 68.7% 85.7% 14.3% 204 1334 11

As shown in Figures 11–13, the fold line representing the speed value of the ship extracted
from the AIS data is set to red in the figure; the fold line graph representing the speed value of
the ship extracted directly from the haze video is set to yellow, and the fold line representing
the speed value of the ship extracted by our framework after removing the haze from the
maritime haze image is set to blue. According to the extraction results and the mean ground
truth of the ship speed, the speeds of the three ships were at 7.71 Kn, 7.50 Kn, and 7.70 Kn,
respectively. For ship No. 1 in Figure 11, the accuracy of the speed extracted is easily affected
by noise in the images owing to the small sizes of the ships. When T = 0.3, the MSE and MAE
values of the speed are 0.37 Kn and 0.49 Kn due to the slight noise in the images. After haze
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removal, the fluctuation of the velocity image improved. At this time, the values of MSE
are 0.12 Kn, the values of MAE are 0.21 Kn, and the ship’s average speed is improved from
7.54 Kn to 7.73 Kn, which is closer to the average speed of the ground truth of the ship speed.

Table 8. Mean ship speeds.

Haze
Concentration

Mean Speed of Ship (Kn)

Hazy Video Dehazed Video Ground Truth

Ship 1

T = 0.3 7.54 7.73

7.71T = 0.5 8.55 7.75

T = 0.7 8.15 7.62

Ship 2

T = 0.3 7.59 7.50

7.50T = 0.5 7.71 7.54

T = 0.7 7.50 7.58

Ship 3

T = 0.3 7.31 7.63

7.70T = 0.5 7.19 7.63

T = 0.7 7.29 7.96

Table 9. MSE values of ship speed.

Haze
Concentration

MSE Values of Ship Speed (Kn)

Hazy Video Dehazed Video

Ship 1

T = 0.3 0.37 0.12

T = 0.5 1.71 0.33

T = 0.7 3.57 0.41

Ship 2

T = 0.3 0.32 0.13

T = 0.5 0.43 0.13

T = 0.7 0.57 0.18

Ship 3

T = 0.3 0.47 0.14

T = 0.5 0.58 0.16

T = 0.7 0.65 0.22

Table 10. MAE values of ship speed.

Haze
Concentration

MAE Values of Ship Speed (Kn)

Hazy Video Dehazed Video

Ship 1

T = 0.3 0.49 0.21

T = 0.5 1.03 0.41

T = 0.7 1.14 0.43

Ship 2

T = 0.3 0.44 0.23

T = 0.5 0.50 0.26

T = 0.7 0.54 0.30

Ship 3

T = 0.3 0.60 0.27

T = 0.5 0.60 0.31

T = 0.7 0.66 0.38
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When T = 0.5, due to the influence of haze noise in the images, the curve chart of ship
velocity fluctuates wildly, especially in the late video period, and the MSE of ship velocity
is 1.71 Kn, and MAE is 1.03 Kn. Although the extraction value of the velocity after haze
removal still fluctuated, it was significantly improved compared with that before haze
removal. After removing the haze, the MSE and MAE of the ship speed extracted from the
image are 0.33 Kn and 0.41 Kn, and the average ship speed was 7.75 Kn.

When T = 0.7, the velocity fluctuation was more prominent. Currently, the MSE and
MAE of ship velocity are 3.57 Kn and 1.14 Kn. After haze removal, the fluctuation of the
velocity curve chart decreased. Both the MSE and MAE of the ship velocity decreased, and
the mean value of the ship velocity was closer to the ground truth.

The same situation appeared in ship No. 2 in Figure 12. It can be seen from the truth
line chart is approximately 7.5 Kn. According to the MSE and MAE of ship No. 2, the
accuracy of the ship speed extracted can be improved by removing haze.

For ship No. 3 in scenario 6, the curve chart of ship speed fluctuates greatly because
the image brightness is low, and the accuracy of the ship speed extracted is reduced after
the haze noise is superimposed. The MSE of ship speed under different haze concentration
environments was 0.47 Kn, 0.58 Kn, and 0.65 Kn, respectively. The MAE of speed is 0.60 Kn,
0.60 Kn, and 0.66 Kn. The MSE of speed extracted after removing haze is 0.14 Kn, 0.16 Kn,
and 0.22 Kn. The MAE is 0.27 Kn, 0.31 Kn, and 0.38 Kn, respectively. After haze removal,
the average ship speed extracted from the images was closer to the average value of the
ground truth. It shows that the framework adopted in this paper can effectively enhance
the quality of haze images in ocean scenes with low brightness and improve the accuracy
of ship speed extracted from the images.

5. Conclusions

In this study, a framework for ship detection and ship speed extraction from maritime
haze images using deep learning methods is proposed. First, a lightweight CNN was used
to remove haze from hazy marine images. Second, YOLO v5 is used to accurately detect
ships in marine images after haze removal. Moreover, the Deep-SORT target tracking
algorithm is used to track ships. Finally, the ship motion pixels are calculated according to
the trajectory information of the ship between adjacent image frames, and the ship speed is
estimated and extracted based on the mapping relationship between the image space and
the actual space.

Experimental results demonstrate that the proposed framework effectively enhances
the clarity and contrast of marine haze images, as indicated by the mean peak signal-to-
noise ratio (PSNR) and mean structural similarity index (SSIM) values of 23.86 and 0.96,
respectively. The framework achieves high accuracy in extracting ship speed in multiple
marine scenes, with an average accuracy above 95% and strong stability. The proposed
speed extraction framework significantly improves the accuracy of ship speed extraction
in hazy environments, with the mean squared error (MSE) values of ship speed extracted
from the images after haze removal averaging 0.3 Kn lower than those from the images
before haze removal.

In future studies, additional marine scenarios will be considered to further verify the
practicality of this framework in real-world scenarios.
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Abstract: The intelligent maritime transportation system has emerged as a pivotal component in
port management, owing to the rapid advancements in artificial intelligence and big data technology.
Its essence lies in the application of digital modeling techniques, which leverage extensive ship
data to facilitate efficient operations. In this regard, effective modeling and accurate prediction of
the fluctuation patterns of ship traffic in multiple port regions will provide data support for trade
analysis, port construction planning, and traffic safety management. In order to better express the
potential interdependencies between ports, inspired by graph neural networks, this paper proposes a
data-driven approach to construct a multi-port network and designs a spatiotemporal graph neural
network model. The model incorporates graph attention networks and a dilated causal convolutional
architecture to capture the temporal and spatial dimensions of traffic variation patterns. It also
employs a gated-mechanism-based spatiotemporal bi-dimensional feature fusion strategy to handle
the potential unequal relationships between the two dimensions of features. Compared to existing
methods for port traffic prediction, this model fully considers the network characteristics of the
overall port and fills the research gap in multi-port scenarios. In the experiments, real port ship
traffic datasets were constructed using data from the Automatic Identification System (AIS) and port
geographical information data for model validation. The results demonstrate that the model exhibits
outstanding robustness and performs well in predicting traffic in multiple sub-regional port clusters.

Keywords: spatiotemporal graph neural network; traffic flow prediction; ship big data; AIS; port
traffic prediction

1. Introduction

Maritime transportation, characterized by its substantial carrying capacity, cost-
effectiveness, and remarkable adaptability to diverse environmental conditions, plays
a significant role in international trade as an important mode of transportation. The accu-
rate prediction of ship traffic flow holds immense significance, as it offers invaluable data
support for the advancement of the national maritime industry and the strategic planning of
international trade initiatives. Furthermore, it plays a crucial role in facilitating port layout
planning, thereby addressing the prevalent challenge of aligning the port capacity with
the escalating number of vessels arising from the rapid growth of the maritime industry.
Additionally, this predictive capability contributes to the reduction of traffic congestion
and the mitigation of accidents within maritime areas, consequently enhancing the overall
efficiency of port infrastructure utilization [1].

This paper primarily concentrates on the prediction of maritime traffic flow in multi-
port scenarios. Traffic flow prediction entails a typical task of time series forecasting,
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wherein the objective is to capture inherent patterns within traffic flow and speed data,
characterized by their temporal sequences. By effectively discerning such patterns, it be-
comes feasible to infer future traffic flow states [2]. The primary challenge in time series
prediction lies in accurately extracting a consistent temporal pattern. In practice, numerous
factors, including environmental fluctuations, seasonal variations, and unforeseen acci-
dents, can disrupt these theoretically stable patterns, thereby adding a considerable level
of complexity to time series prediction problems. Consequently, time series prediction
methods necessitate the incorporation of diverse influencing factors [3].

In the past, linear methods such as Autoregressive Integrated Moving Average (ARIMA)
models and historical average analysis were limited in handling complex external factors.
Scholars have attempted to use nonlinear machine learning methods such as backpropa-
gation networks [4] and support vector machines [5] to uncover hidden patterns in time
series data. However, these methods often suffer from slow convergence and algorithmic
incompleteness, resulting in unsatisfactory solutions to time series prediction problems.

Consequently, researchers have turned to the application of deep learning techniques
as a means to tackle practical time series prediction challenges. Deep neural networks
exhibit the inherent capability to capture and model nonlinear relationships. By leveraging
the stacking of multiple layers, these models can effectively capture a multitude of hidden
factors and intricate variables within the data. Recurrent neural networks (RNN) [6],
long short-term memory (LSTM) [7], and subsequent models such as gated recurrent
units (GRU) [8], WaveNet [9], and Transformer [10,11], have demonstrated outstanding
performance in the field of time series prediction.

With the rapid development of graph neural networks in recent years, spatial-convolution-
based graph neural network models led by graph convolutional networks (GCN) [12] and
graph attention networks (GAN) [13] have gained significant attention. In graph neural
networks, a graph is composed of a set of vertices (nodes) that are interconnected by a set
of edges. By performing convolutions on graphs with arbitrary structures, graph neural
networks can learn rich spatial features. In recent years, they have been successfully applied
in various domains, such as trajectory prediction [14,15] and traffic flow prediction [16].

In traffic flow prediction methods, conventional approaches often consider traffic in-
tersections or sensors as entities, represented as individual nodes. Simultaneously, the road
network, which accommodates these traffic entities, serves as the edges that symbolize the
relationships between these nodes. Graph neural-network-based traffic flow prediction
methods aggregate traffic flow information from neighboring nodes within a local spatial
range, thereby predicting the potential information of nodes in the traffic subnetwork.

Nevertheless, relying solely on spatial information to predict traffic flow states is
not rigorous and can lead to a significant loss of temporal information. To address this
limitation, researchers have extended their efforts by incorporating temporal prediction
learning methods into graph neural networks [17]. By leveraging techniques such as gate
units and recurrent neural networks (RNN), they have introduced “spatiotemporal graph”
models, which effectively capture both the spatial and temporal features of traffic flow
prediction [18,19]. These spatiotemporal graph models take into account both temporal
patterns and the spatial correlation structure of traffic entities. They can effectively capture
the underlying meanings and interactions of nodes and edges within complex systems,
resulting in superior prediction performance in traffic flow prediction.

In recent years, numerous excellent spatiotemporal graph models have been pro-
posed and applied in the field of urban traffic prediction. Representative works include
Multivariate Time Series Forecasting with Graph Neural Networks (MTGNN) [20], Dif-
fusion Convolutional Recurrent Neural Networks (DCRNN) [21], Spatiotemporal Graph
Convolutional Networks (STGCN) [18], and others.

However, the application traffic flow prediction methods in the maritime domain still
faces two major challenges. Firstly, there is a scarcity of public datasets that can be directly
used for analysis. The process of constructing maritime traffic flow datasets is arduous
and complex. Secondly, the maritime traffic flow prediction scenarios do not possess the
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same traffic network structures as urban settings, rendering it difficult to directly apply
spatiotemporal graph methods developed for urban traffic flow prediction [22]. Existing
port flow prediction methods typically focus on single-port scenarios and do not fully
consider the characteristics of port networks. They fail to consider the patterns of flow
changes from the perspective of the overall port distribution structure, resulting in a relative
scarcity of research in multi-port scenarios [23].

The scarcity of maritime traffic datasets stems primarily from the extensive geo-
graphical distribution, intricate structural arrangements, and challenges in regulating the
maritime networks comprising ports across diverse countries. The widespread adoption
of the Automatic Identification System (AIS) has significantly addressed the data gap in
the maritime domain. The AIS is an onboard broadcast response system that has been
gradually deployed on international vessels since 2002 and now has achieved widespread
coverage through satellite networks. Vessels equipped with AIS devices regularly transmit
navigational status data such as position points, speed, heading, and identity to ground-
based stations and satellite receivers [24]. This enables data exchange between vessels and
assists in navigation.

Despite the development of AIS, there are significant challenges related to the noise
contamination in the raw AIS data, which limits their application in maritime traffic
systems [25]. In this study, we address this issue by combining AIS data with spatial
information from various ports worldwide and employing various big data processing
techniques, similar to [26]. Through these approaches, we are able to effectively filter out
noisy AIS data to the maximum extent possible and reconstruct realistic maritime traffic
flow scenarios. As a result, we have constructed a multi-port flow dataset that can assist in
conducting in-depth research on ship traffic flow prediction and validating the effectiveness
of models under fair conditions.

The second challenge is that most existing research focuses on specific and single-port
traffic flow scenarios, while studies on wide-scale, networked, and multi-port ship traffic
flow prediction are relatively scarce. For example, ref. [27] combines Kalman filtering
with regression analysis to improve short-term ship traffic flow prediction performance.
Ref. [28] proposes a multi-variable extended CNN model based on convolutional methods,
which specifically considers the impact of extreme weather events on ship traffic flow
changes. However, the experimental settings in [28] involve geographically close ship
traffic statistical areas, failing to consider the complex correlation structures among multiple
regions. Ref. [29] uses AIS data to analyze the hourly ship traffic volume in a specific area
near Ningbo and achieves ship traffic flow prediction for multiple time periods using an
improved GRU-based time series prediction model. Nevertheless, it is also limited to the
task of predicting traffic flow in a single maritime area.

This article tackles the challenge of ship traffic forecasting in a scenario involving
multiple ports, employing a spatiotemporal graph model. Our proposed approach adopts
a data-driven methodology that leverages actual data to construct a comprehensive multi-
port graph structure, thereby establishing a realistic representation of the traffic network
for the accurate prediction of maritime traffic flow. Subsequently, we utilize graph neural
networks to capture the intricate message-passing patterns occurring between nodes within
the port network. This enables the timely identification of abnormal traffic fluctuations
in neighboring port nodes, thus enhancing the model’s capacity to capture and exploit
complex temporal dependencies. The incorporation of these techniques leads to improved
prediction performance and effectively addresses the need for coordinated management in
the context of multiple ports.

In summary, this paper contributes to the research in the following ways:

• It proposes a data-driven method for the construction of a multi-port network based
on historical data and creates a realistic port ship traffic dataset using AIS data.

• It presents a traffic prediction model specifically designed for maritime scenarios,
utilizing a spatiotemporal graph neural network. The novel model addresses the issue
of imbalanced temporal and spatial features in the spatiotemporal dataset.
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• The improved model’s effectiveness is validated through experiments conducted on
multiple port group datasets.

2. Methods

This study focuses on the task of forecasting ship traffic flow in multiple ports, which
is a typical time series prediction problem. This problem can be formulated as follows:

(Xt−τ+1, Xt−τ+2, . . . , Xt)
f (∗)−→ (Xt+1, Xt+2, . . . , Xt+n) (1)

As mentioned above, in this task, the model is given historical data of τ consecutive
time steps as input. After being transformed through the function f (∗), the model predicts
the future states of port traffic data for n consecutive time steps. Here, N represents the
number of ports, C represents the feature dimension of the data, and Xt ∈ R

N×C represents
the traffic state of each port at time t. Since the purpose of this study is to forecast the
inbound and outbound traffic of ports, the initial value of C is 2 (for outbound traffic and
inbound traffic).

2.1. Spatiotemporal Blocks

In the context of multi-port traffic flow prediction, we consider each individual port as
a distinct node and employ a data-driven methodology to establish edge relationships be-
tween ports, thereby constructing the port network based on historical data. The collection
of nodes and edges represents the graph structure of the multi-port network.

The previous study [30] presented in this paper demonstrated that existing spatiotem-
poral graph models do not exhibit significant advantages over traditional time series
prediction models when applied to multi-port traffic flow prediction. The spatial explo-
ration capability of the spatiotemporal graph network was found to be underutilized. We
propose two potential explanations for these experimental results. Firstly, the multi-port
network structure in this scenario may inadequately represent the connectivity and spatial
relationships between ports. Secondly, there may exist an inherent imbalance between the
temporal and spatial features, with the roles of time and space varying across different
datasets. To address the first conjecture, we optimize the existing data-driven method for
the construction of the multi-port network structure. Additionally, we conduct theoretical
research based on the second conjecture and make targeted improvements to the existing
spatiotemporal graph framework.

Firstly, this paper summarizes the existing general framework of spatiotemporal
graphs, as shown in Figure 1. The combination of the temporal layer and the spatial
layer is referred to as a “spatiotemporal block.” In the spatiotemporal block, the temporal
layer captures the temporal patterns of historical traffic flow data for each port, while the
spatial layer handles the relationships among port nodes across different time dimensions.
The sequential arrangement of multiple spatiotemporal blocks forms a deep spatiotemporal
graph neural network model.

Figure 1. General framework of spatiotemporal graph model.

From a holistic perspective, the framework directly utilizes the output of the temporal
layer as the input for the subsequent spatial layer, and the output of the spatial layer be-
comes the input for the next temporal layer. After several iterations of these spatiotemporal
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blocks, the predicted results are generated through the output layer. There is no specific
handling between the temporal and spatial layers in this architecture. The advantage of
this approach lies in its ability to fully preserve the features processed by the temporal and
spatial layers. However, it overlooks the potential master–slave relationship between the
temporal and spatial layers.

Inspired by [31], this paper employs a gating mechanism to determine the propaga-
tion and forgetting of information, in order to simulate the imbalance between time and
space. As shown in Figure 2, the model first duplicates the input tensor into two identical
copies. One copy is processed through the temporal layer and then passed through a tanh
activation function for output. The other copy is processed through the spatial layer and
mapped to the range of 0 to 1 using a sigmoid function, treating it as a filtering net for
spatial information. Finally, the two parts of the output are combined using element-wise
multiplication (Hadamard product). In other words, this structure treats the spatial hidden
features as a filter, using spatial features to filter important temporal features, which are
then outputted in the form of temporal features to enter the next hidden layer. This struc-
ture enhances the model’s sensitivity to temporal flow data while reducing the influence
of the graph structure on feature information. It can effectively simulate the imbalance
between time and space.

Figure 2. Structure of a spatiotemporal block.

In summary, the spatiotemporal graph framework used in this paper is illustrated in
Figure 3.

Figure 3. Overall framework of the Gated Attention Graph WaveNet model.
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2.2. Temporal Layer

The fundamental concept behind the temporal layer is based on dilated convolution.
By incorporating dilated convolution, the model can effectively expand its receptive field
while maintaining the sequential nature of data modeling. This allows the model to
capture longer temporal feature patterns with fewer computational costs, thereby capturing
temporal dependencies over a larger time span.

Dilated convolution is a convolutional operation. As shown in Figure 4a, during the
convolution process, fixed-sized “holes” are introduced between the elements of the convo-
lution kernel, expanding the kernel. This means that, with the same computational cost,
a larger effective filter size is used for convolution. Compared to a convolutional kernel
of the same size, dilated convolution offers higher computational efficiency. In particular,
dilated convolution with a dilation factor of 1 is equivalent to a regular convolution.

(a) (b)

Figure 4. Structure of temporal layer. (a) Stacked dilated convolutional layers; (b) WaveNet structure
with gating mechanism.

To accommodate different time step lengths, this paper adopts a dilation factor pattern
of “1, 2, 4, 8” as the base and cycles through it as the model’s hidden layers increase. Let us
apply this to the scenario of port traffic flow prediction, assuming that the input historical
flow data have a time step length of 14 and the convolution kernel size is 3.

In the first layer of the temporal layer, the dilation factor is 1, which means that fine-
grained time feature processing is performed at the level of 1 time step. As the network
goes deeper, the second layer of the temporal layer has a dilation factor of 2; the process of
applying time convolutions involves making leapfrog-like strides over the input sequence.
This approach results in less fine-grained time feature processing, but, correspondingly,
the same-sized convolutional kernel can handle twice the length of time steps.

By repeating this process, the temporal convolutional layer with a dilation factor of
8 can cover the entire input sequence, thereby extracting long-term historical features. This
enables the model to capture temporal dependencies over a larger time span.

On the other hand, as a key to the success of recurrent neural networks, gating mecha-
nisms preserve the non-linear capabilities while addressing the vanishing gradient problem,
leading to better performance in tasks involving long-term dependencies. WaveNet [9]
incorporates gating activation structures into causal convolutions, proposing the WaveNet
structure shown in Figure 4b. The formula can be represented as

hl(X) = tanh(X ∗W)� δ(X ∗V) (2)
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where X represents the feature tensor, and l denotes the current layer. W and V represent
two dilated convolution kernels, δ(∗) represents the sigmoid function, and � denotes the
element-wise multiplication operator.

Based on this gating structure, the temporal layer can easily perform feature selec-
tion on the input data. Compared to linear processing methods, this nonlinear structure
possesses stronger modeling capabilities for time series features.

2.3. Spatial Layer

The non-Euclidean nature, irregularity, and sparsity of graphs pose challenges in
directly applying convolutional neural networks (CNNs) to process graph features. This
limitation has impeded progress in graph representation within the field of machine learn-
ing. However, in recent years, researchers have made strides by combining spectral graph
theory with Fourier transforms, allowing the definition of convolutional kernels in the
spectral domain. This breakthrough has enabled graph convolutions in the spectral domain
and has laid the foundation for graph convolutional networks (GCN) [12]. By simplify-
ing the computation process, GCNs have facilitated rapid advancements in graph neural
network models.

Subsequently, the graph attention network (GAT) [13] was proposed as a graph neural
network model based on attention mechanisms. GAT controls the aggregation of infor-
mation from nodes and edges by assigning different learning weights to their neighbors.
This allows the model to extract more valuable hidden features. Compared to GCN, GAT
offers a more flexible node feature aggregation process, addressing the limitation of GCN
in which the fixed adjacency matrix prevents the graph structure from being expandable.

GAT can be divided into two stages: Stage 1 involves computing global similarity coeffi-
cients, while Stage 2 focuses on computing node features based on local attention coefficients.

Take a graph G = (V, E) with N port nodes as an example, where the historical flow
features of each port can be represented as Xi ∈ R

T×C, with T being the time dimension
and C being the feature dimension. In the graph attention layer, a trainable shared weight
matrix W is first used to linearly transform the initial features of all nodes. Based on the
edge relationships, the transformed node features are then used to calculate the similarity
coefficients eij between adjacent nodes on each edge. The formula for this stage is as follows,
where N is the set of first-order neighboring nodes of the target node i, l is the current
neural network layer, and the mapping function a(∗) is used to compute the similarity
between the flow features of port nodes i and j.

e(l)ij = a
([

W(l)X(l)
i ‖ W(l)X(l)

j

])
, j ∈ Ni (3)

In the aggregation stage, the model uses so f tmax to normalize the similarity coeffi-
cients of all nodes within the first-order neighborhood of the target node i. The normalized
coefficients represent the attention coefficients for each node within the neighborhood.
The specific formula for the calculation of the attention coefficients is as follows:

α
(l)
ij =

exp
(

LeakyReLU
(

e(l)ij

))
∑

k∈Ni

exp
(

LeakyReLU
(

e(l)ik

)) (4)

Subsequently, the features of each node are weighted and aggregated based on the
calculated attention coefficients, resulting in the new feature X(l)

i of the central node i at
layer l. Here, σ(∗) represents an optional activation function.

hl(Xi) = σ

(
∑

j∈Ni

α
(l)
ij W(l)X(l)

j

)
(5)
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Repeating Formulas (4) and (5), we perform feature aggregation for all nodes in the
graph, completing the processing of a GAT layer.

In summary, the overall calculation formula for the spatiotemporal block of the model
can be summarized as follows:

hl

(
X(l−1)

)
= tanh

(
WaveNet

(
X(l−1)

)
∗W + b

)
� δ

(
GAT

(
X(l−1)

)
∗V + c

)
(6)

3. Scenario and Data Sources

The experimental dataset in this study consists of 2019 AIS data and global port
geospatial data.

Firstly, we employed big data techniques to process the vast amount of raw AIS data.
To ensure data accuracy, we cross-referenced the information with vessel Lloyds Register
profiles and applied data cleaning techniques to eliminate erroneous data. Subsequently, we
integrated the trajectory data with spatial boundary information from global port geospatial
data. This integration enabled us to infer the departure and arrival details of vessels,
resulting in the creation of a global vessel port origin–destination (OD) dataset for the year
2019. The dataset comprised 154,205 vessels, 2697 ports, and a total of 5,275,645 records.
Finally, leveraging the origin and destination port IDs, along with the recorded arrival and
departure times in the OD dataset, we calculated the daily inflow and outflow of vessels
for each port. This enabled us to quantify the daily traffic volume of ships entering and
leaving each port.

Following the acquisition of historical port traffic data, the creation of a multi-port
spatial graph structure emerged as a pressing research challenge. Figure 5 illustrates that
employing the physical distance alone as the basis for constructing the port graph structure
would result in a significant loss of information. For instance, in the case of the Netherlands,
Rotterdam Port exhibits considerably different average daily vessel traffic in comparison
to nearby ports such as Leiden Port and Arnhem Port. This difference is also reflected
in the scale of the ports, where Rotterdam Port is classified as a large-sized port with a
maximum draught of 18 m, whereas Leiden Port and Arnhem Port fall under the category
of medium-sized ports. Such disparities would introduce substantial errors during the
feature aggregation stage within the graph convolutional layer.

(a) (b)

(c) (d)
Figure 5. Fluctuation in ship flow between different ports in the Netherlands. (a) The locations of four
closely located ports within the Netherlands; (b) Rotterdam Port 2019 daily inbound and outbound
traffic curve; (c) Arnhem Port traffic curve; (d) Leiden Port traffic curve.
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To tackle this problem, the present study introduces a methodology for the construc-
tion of a dynamic port correlation graph utilizing historical data. The fundamental concept
behind this approach is to employ actual maritime traffic patterns as an evaluative cri-
terion. By quantifying the frequency of vessel movement between two ports, a spatial
interconnection relationship is established, thereby creating an extensive multi-port correla-
tion network.

Specifically, the initial step involves utilizing the previously generated 2019 global
vessel port OD dataset, which is derived from the flow data calculation procedure, as the
foundation for the construction of the graph. The direct count of vessel traffic between
each pair of ports is computed on a monthly basis, encompassing global coverage. For the
purpose of experimentation, three months of OD data are randomly selected for the com-
putation process. A unidirectional edge relationship is established between two ports if
the vessel traffic count surpasses a predefined threshold. In the experiment, this threshold
was set to 10 to distinguish the level of closeness in the navigational relationship between
two ports. To prevent the graph structure from becoming overly dense or sparse, we com-
prehensively consider the port scale and previous experiments, and determine the optimal
range for this threshold as 5 to 10, guided by prior knowledge, which allows us to achieve
the optimal solution in terms of computational costs and experimental effectiveness.

Moreover, taking into account the extensive number of ports globally and the sub-
stantial volume of OD data involved, we adopt a strategy to mitigate the computational
overhead. This involves constructing independent sub-networks comprising port clusters,
with several prominent ports across the world serving as central hubs. In our experiment,
the central hubs selected were Rotterdam Port, Shanghai Port, Singapore Port, Boston Port,
Antwerp Port, Hong Kong Port, and Incheon Port. This approach allows for the more
efficient processing of the data while still capturing the essential connectivity among ports.

Using Rotterdam Port as an illustration, we initially filter the OD dataset to include
only maritime shipping data where Rotterdam Port is either the origin or destination. We
then identify the destination (or origin) ports that exhibit a mutual traffic count that satisfies
the threshold constraint, thereby indicating direct connections to Rotterdam. Through this
procedure, we identify a total of 250 port nodes that are directly linked to Rotterdam Port.

Subsequently, we shift our attention to these 251 ports and proceed to compute the
direct vessel traffic count between each pair of ports. Employing a similar methodology
as before, if the traffic count surpasses the predefined threshold, a unidirectional edge
relationship is established between the two ports.

Finally, we obtain a sub-network structure comprising multiple ports, with Rotterdam
Port as the central hub. The corresponding adjacency matrix is generated as a result.
Figure 6 provides a visual representation of the schematic diagram depicting the multi-port
graph structure centered around Rotterdam Port.

The geographical coordinates and location information of the seven central ports are
displayed in Figure 7. The comprehensive data attributes of the port cluster network scene,
centered around these seven ports, are recorded in Table 1.

Table 1. Dataset attributes for seven port subnetworks.

Central Port Name Port Nodes Edges Data Size

Rotterdam 251 3036 91,615
Shanghai 241 10,876 87,965
Singapore 388 10,017 141,620

Boston 121 1054 44,165
Antwerp 217 2706 79,205

Hong Kong 182 7731 66,430
Incheon 86 2733 31,390
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Figure 6. A multi-port graph structure with Rotterdam as the central port.

Figure 7. Distribution of locations of central ports.

4. Results

4.1. Experimental Environment

This study utilized a 2080ti GPU to conduct the experiments. To ensure a fair and con-
sistent testing environment, the experiments were conducted on the Libcity platform [32],
utilizing standardized hyperparameter configurations, with the hidden feature dimensions
uniformly set to 32. The input window for time series data was defined as 21, while the
output window was set to 7, meaning that the models aimed to predict the future 7-day
traffic changes based on the preceding 21 days of data.

Specifically, the models employed in the study consisted of eight hidden layers.
For models incorporating the multi-head attention mechanism, eight heads were used.
In the case of models employing the diffusion convolution mechanism, the dilated factors
were cyclically set as “1, 2, 4, 8”.
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4.2. Baseline and Metric

In the experiment, the baseline models were divided into two major categories, spa-
tiotemporal graph models and temporal models, based on whether they handled spatial
features. RNN, AE [33], Seq2Seq [34], WaveNet [9], and Transformer [10] are classical
temporal prediction methods that have proven effective in various domains, such as NLP
and traffic prediction. STGCN [18], AGCRN [35], and the proposed model GAGW in this
paper belong to spatiotemporal graph models. On the other hand, based on different time
layer processing strategies, models can be further categorized into RNN-based prediction
models led by RNN and DCRNN [21], TCN models such as GWNET [36] and STMGAT [37],
and self-attention-mechanism-based models such as STTN [38].

The evaluation metrics used in the experiment include commonly employed mea-
sures in traffic flow prediction, MAE, MAPE, and RMSE, as depicted in Equations (7)–(9),
respectively. MAE, known as the mean absolute error, is a widely used performance
metric in regression tasks, directly quantifying the average difference between predicted
values and actual values. MAPE, built upon MAE, measures the average percentage er-
ror of the experimental results. RMSE, or the root mean square error, in comparison to
MAE, is more sensitive to large errors, thus challenging the stability and robustness of the
predictive model.

MAE =
1
n

n

∑
i=1
|ŷi − yi| (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ ∗ 100% (8)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

4.3. Experimental Results

In the experiment, we extracted the consecutive 21-day inflow and outflow data for
each port from the test set as input and expected the model to generate predictions for the
next 7 days of each port in a single output. Taking the Rotterdam sub-scenario as an exam-
ple, which comprises 251 port nodes, the input should include an adjacency matrix with
251 nodes and an initial tensor of shape [32, 251, 21, 2]. Here, “32” represents the specified
batch size, and “2” indicates that the initial features only include inflow and outflow. Cor-
respondingly, the model’s output should be a tensor of shape [32, 251, 7, 2]. By comparing
the predicted 7-day traffic variations with the ground truth values, the predictive capability
of the model can be evaluated.

As presented in Table 2, cross-validation experiments were conducted across seven
major multi-port network scenarios centered around the seven central ports. The GAGW
model proposed in this study incorporates a weighted relationship to address the imbalance
between spatial and temporal features. Consequently, the model demonstrates consistent
and superior predictive performance across all scenarios, achieving the best results in the
majority of experimental scenarios.

Through a comprehensive comparison of the experimental results, it has been observed
that the majority of the existing spatiotemporal graph models outperform the temporal
prediction models. This indicates that the incorporation of graph neural networks indeed
enhances the performance of predictive models in various scenarios and effectively captures
intricate traffic flow patterns. Among the temporal prediction models, Transformer and
WaveNet exhibit significantly superior performance compared to traditional temporal
prediction models and even outperform certain spatiotemporal graph models in specific
scenarios. This highlights the significance of capturing temporal patterns in maritime traffic
flow prediction scenarios, thereby affirming the importance of time features in the field of
traffic prediction.
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In the comparison of spatiotemporal graph models, the overall predictive performance
of the STGCN model is relatively poor, which can be attributed to its use of a coarse-grained
temporal processing strategy. The relatively simple gate convolution structure of STGCN is
unable to fully capture the complex traffic flow variations in maritime scenarios, resulting
in its performance being inferior to that of more sophisticated temporal prediction models
such as Transformer.

In this experiment, the performance of the STTN model, which integrates self-attention
mechanisms in both the temporal and spatial layers, did not meet our expectations. Despite
adjusting certain hyperparameters, we were unable to obtain satisfactory experimental
results. We speculate that the underlying reason for this lies in the spatial feature captur-
ing strategy based on self-attention mechanisms. In the maritime context of this study,
this strategy fails to effectively represent the data-driven, cross-spatial graph correlation
structures, thereby leading to a decline in model performance.

The STMGAT, GWNET, and the proposed model in this paper all employ a time-
convolution-based temporal layer processing strategy. The experimental results demon-
strate that gate-based processing structures centered around causal convolutions can better
capture the long-term variations in traffic flow data, enabling the fine-grained analysis of
temporal features and obtaining more accurate prediction results.

The training curves of the top-performing three spatiotemporal graph models in the
traffic flow scenario centered around the Rotterdam Port cluster are shown in Figure 8.
The proposed model in this paper achieves more accurate predictive performance by
utilizing a multi-head attention mechanism similar to STTN and STMGAT in the graph
convolutional layer. However, this improvement in accuracy comes at the expense of
sacrificing some training speed, resulting in a convergence speed that is not state-of-the-art.
As illustrated in Figure 9, our model’s traffic flow predictions exhibit better adherence to
the actual flow variation patterns compared to other baseline models and demonstrate
good fitting capability for significant flow fluctuation curves.

Figure 8. Comparison of MAE training curves for top three models.
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Figure 9. Comparison of GAGW and other models with ground truth inbound flow.

To further investigate the stability of the model in the small-sample maritime test
scenario, we extracted the traffic flow data from June to September as a specific monthly
dataset for independent testing (Table 3). These four months are characterized by substan-
tial fluctuations in port traffic, without a discernible pattern in the context of international
shipping. Moreover, the navigation relationships among ports during this period are more
intricate, placing higher demands on the predictive capabilities of the models. In this chal-
lenging scenario, the GAGW model stands out among numerous spatiotemporal prediction
models and exhibits exceptional adaptability to the limited coverage of the specific monthly
dataset. This further confirms the effectiveness of the new architecture.

To validate the issue of the unequal treatment of spatial and temporal features, we
conducted ablation experiments by modifying some existing spatiotemporal graph model
architectures to incorporate the proposed gate-based mechanism for spatiotemporal feature
fusion. The experimental results, as shown in Table 4, indicate that the spatiotemporal
graph models with the inclusion of the feature fusion structure generally outperform the
models with the original architectures in the port traffic prediction scenario of this paper.
Among them, since the baseline models AGCRN and DCRNN both belong to iterative
architectures based on RNN, it is difficult to incorporate the fusion module. Therefore, we
introduced the ASTGCN [39] model, which simultaneously uses attention mechanisms and
temporal convolution strategies, as the new baseline model.

To validate the relationship weights between time and spatial features, we conducted
ablation experiments on the temporal and spatial layers of the GAGW model. In Table 5,
“w/o T” represents the removal of all temporal hidden layers in the model, while “w/o S”
indicates the removal of all graph structure processing methods. The experimental results
demonstrate that ablating the temporal layer has a more severe impact on spatiotemporal
graph models, leading to a significant decrease in predictive performance. In comparison,
the performance decline is relatively limited when the spatial layer is ablated, further
confirming the inequality between time and spatial features.
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Table 3. Results of specific month dataset.

Rotterdam Boston Antwerp Hong Kong

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

STGCN 10.0471 3.3148 19.1571 2.7766 0.558 5.0216 2.2405 0.5603 3.7479 21.7833 1.7334 44.5805
AGCRN 4.0285 0.5375 23.3363 2.7057 0.5186 5.118 2.0334 0.5032 3.7522 24.765 1.4236 53.009
DCRNN 6.7308 0.7575 36.2379 3.6936 0.5506 9.0707 3.5909 0.7169 9.1206 23.4573 1.6995 45.0641

STTN 7.3341 0.7816 37.1314 2.8498 0.508 5.6422 3.4785 0.6061 8.2283 25.1063 1.6549 50.5299
STMGAT 4.0649 0.5334 20.0261 2.7224 0.5165 5.0336 2.0679 0.4968 3.6653 18.2011 1.5736 39.1712
GWNET 3.62 0.5294 19.4332 2.7968 0.4875 5.3694 2.2134 0.5158 4.1839 14.0173 0.8861 31.1028

GAGW 3.3688 0.579 15.5115 2.6928 0.4753 5.0081 2.1446 0.5008 4.0861 13.3074 0.8242 29.6616

Shanghai Singapore Incheon

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

STGCN 21.8422 1.7012 45.8386 17.122 3.6693 36.7725 26.8699 1.8365 60.105
AGCRN 23.038 1.5282 47.7465 12.0759 0.9366 34.2086 21.9169 1.3855 44.5575
DCRNN 21.6196 1.8093 41.1723 14.5029 1.2927 39.0149 29.8365 1.6589 65.2048

STTN 22.5262 1.9444 44.5484 16.9381 1.2286 44.5798 23.6124 1.1277 59.0685
STMGAT 24.5565 2.6933 46.0391 6.9351 0.6712 19.7745 13.7049 0.6775 32.9118
GWNET 13.5886 0.9734 29.5113 6.9078 0.797 20.0405 15.5624 0.6453 40.8259

GAGW 11.9513 1.0716 26.2667 6.7402 0.6319 20.937 14.9141 0.6781 39.1262

Table 4. Ablation experiment on spatiotemporal feature fusion module.

w/o Feature Fusion w/ Feature Fusion

MAE RMSE R2 MAE RMSE R2

STGCN 13.7484 23.7532 0.9145 11.9819 21.2891 0.9319
STTN 21.6699 36.0566 0.8089 18.8857 33.1819 0.8384

GWNET 10.2954 20.1326 0.9402 10.3233 19.8169 0.943
ASTGCN 13.0184 22.8163 0.9229 11.3801 21.2428 0.9346
GAGW 10.9752 20.2516 0.9385 10.194 19.691 0.9428

Table 5. Ablation experiment of temporal and spatial layers.

MAE RMSE R2

w/o T 12.5244 21.3558 0.9323
w/o S 10.2882 20.0338 0.9406

GAGW 10.1879 19.9007 0.9412

To demonstrate the superior performance of the proposed model in traffic flow predic-
tion, we also conducted experiments on METR_LA, which is a renowned dataset comprising
urban highway traffic speed data. As shown in Table 6, the GAGW model performs at an
advanced level in the urban traffic dataset as well. This confirms that the phenomenon of
unequal treatment between time and spatial features also exists in urban traffic scenarios.

Table 6. Results of METR_LA.

METR_LA RNN AE Seq2Seq WaveNet Transformer STGCN AGCRN DCRNN STTN STMGAT GWNET GAGW

MAE 4.11 4.53 3.71 3.98 3.81 3.86 3.19 3.12 3.49 4.15 3.17 3.12
RMSE 8.17 8.77 7.19 8.98 8.73 8.34 6.33 6.19 7.92 8.24 6.39 6.11

In summary, the proposed model has demonstrated strong predictive capabilities in
various experiments conducted in the multi-port traffic flow prediction scenario.
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5. Conclusions

In this study, a comprehensive dataset of real port traffic and a port topology struc-
ture were constructed using global AIS data, Lloyd’s ship archive, and port geospatial
data. To explore different modeling approaches, a variety of comparative models were
reproduced using an open-source spatiotemporal graph model training framework [32].

Subsequently, a novel fine-grained multi-port traffic flow prediction spatiotemporal
graph network model called GAGW was designed and implemented. This new model
aimed to address the challenge of imbalanced temporal and spatial hidden features. Draw-
ing inspiration from gate-based structures, the GAGW model processed temporal and
spatial features in parallel, departing from the traditional sequential “time–space–time”
processing pattern. The model incorporated distinct mapping functions for temporal and
spatial feature vectors, placing greater emphasis on the influence of temporal features on
prediction outcomes while reducing the sensitivity to spatial features.

To evaluate the effectiveness of the GAGW model, comparative experiments were
conducted using maritime datasets, special monthly datasets, and urban road datasets.
The results demonstrated the reliability and robustness of the proposed model. The GAGW
model achieved advanced levels of prediction performance and robustness, among other
evaluation metrics.

Overall, this research contributes to the field of port traffic flow prediction by intro-
ducing a novel spatiotemporal graph model that effectively handles imbalanced temporal
and spatial features. The proposed GAGW model demonstrates superior prediction per-
formance and adaptability, making it a promising approach for multi-port traffic forecast-
ing applications.

Although the new framework has demonstrated the inequality of spatiotemporal
features in experiments, there is room for further improvement in the construction of dy-
namic port graph structures. The proposed method for dynamic graph construction solely
considers the spatial correlation between ports based on ship traffic, without incorporating
the objective geographical relationships that exist between ports. In future work, the paper
aims to focus on constructing flow datasets that encompass multi-port scenarios of practical
significance, such as Europe and coastal regions of China.

Additionally, this paper only utilized AIS source data from the year 2019, which
may be considered insufficient in capturing the full variability in port traffic patterns at
a daily level. In future research, the study intends to incorporate AIS data from multiple
consecutive years to augment the volume of data available for model training.

In summary, the future research endeavors of this paper will concentrate on two main
aspects: optimizing the design of dynamic graph structures and refining the strategies for
the processing of temporal layers in the model.
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Abstract: Existing research on auto-berthing of ships has mainly focused on the design and im-
plementation of controllers for automatic berthing. For the real automatic docking processes, not
only do external environmental perturbations need to be taken into account but also motion paths,
docking strategies and ship mechanical constraints, which are important influential factors to measure
autonomous docking methods. Through a literature review of ship path planning and motion control
for automatic berthing, it is found that many studies ignore the interference of the actual navigational
environment, especially for ships sailing at slow speed when berthing, or do not consider the physical
constraints of the steering gear and the main engine. In this paper, we propose a hybrid approach for
autonomous berthing control systems based on a Linear Quadratic Regulator (LQR) and Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), which systematically addresses the problems in-
volved in the berthing process, such as path planning, optimal control, adaptive berthing strategies,
dynamic environmental perturbations and physically enforced structural constraints. The berthing
control system based on the LQR and modified LQR-CMA-ES have been validated by simulation
work. The simulation results show that the proposed method is able to achieve the automatic docking
of the ship well and the system is robust and well adapted to environmental disturbances at slow
speed when docking.

Keywords: autonomous berthing; CMA-ES; LQR; berthing strategy

1. Introduction

Accelerating the construction of intelligent, efficient and green marine transportation
vessels is one of the methods for developing the marine economy. Unmanned Surface
Vehicle (USV) refers to an intelligent ship that can sail autonomously on the water without
the participation of crew. Elevated velocity, diminutive dimensions, reduced cost and the
ability for autonomous navigation constitute the salient attributes possessed by this kind of
watercraft, rendering USVs preferred in manifold scenarios such as open sea search and
rescue and military maneuvers. In virtue of the intrinsic properties surrounding the hull,
watercraft of such small size are readily maneuvered yet easily affected by disturbances
from ambient conditions, thereby imposing relatively strict requirements on the robustness
of the kinetic control system.

In 1987, Kose et al. [1] first realized the automatic berthing and unberthing of ships by
means of computer-aided control and tug assistance. In 2015, Mizuno et al. [2] proposed a
quasi-real-time automatic berthing control method based on a multiple shooting method,
which can give a solution in a short time. In 2017, Zhang et al. [3] promulgated a nonlinear
feedback algorithm predicated upon a bipolar S-PID, based on the MMG vessel model,
which suppressed perturbations and extraneous disturbances during the docking process
to maintain the ideal heading for the watercraft and the safety of the berthing procedure.
In 2020, Xu et al. [4] proposed a robust adaptive control algorithm to address the pertur-
bations engendered by the bank effect on the berthing control of a vessel and eliminate
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the oscillatory manifestations in the control outputs. Han [5] promulgated a disturbance
rejection control algorithm based on neural networks to accomplish the heading control
of vessels with minimal overshoot and effectuate berthing control maneuvers. In 2021,
Jia et al. [6] retrained the controller by using an ANN, which improved the accuracy of the
output and solved the problem of yaw deviation during berthing. Wang et al. [7] designed
the Linear Quadratic Regulator (LQR) controller combined with a GA, which reduced the
additional resistance of the system caused by pitch and heave motion.

In 2019, Yang [8] proposed an accelerated evolutionary algorithm based on the Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES), which reduced the time complexity
of the algorithm and solved the issue of premature convergence of multi-objective opti-
mization. In 2020, Maki et al. [9] applied CMA-ES to the optimization of control parameters
of an automatic berthing system, and the deviations between the actual trajectory and
the predetermined reference path during the berthing maneuver were minimized. In
2021, Maniyappan et al. [10] used the CMA-ES to carry out PD optimal control on the
time series of rudder angle change, and the experiments showed that the optimized con-
troller improved the yaw check effectively. In 2022, Miyauchi et al. [11] used the CMA-ES
algorithm to optimize the parameters of the Nomoto model which described the ship’s kine-
matic behavior in the process of berthing and obtained a better control effect by enhanced
accuracy.

In Table 1, a synopsis of the research on kinetic control mechanisms and optimization
thereof for watercraft, undertaken by a selection of scholars, has been compiled, to serve as
the theoretical foundation for subsequent study in this paper.

Automated berthing of vessels has always been an important area in the research of
ship navigation automation. Since the automatic berthing of a ship is low-speed maneu-
vering motion in restricted waters, the interference from the external environment on the
maneuver control system cannot be ignored. Although a series of automated measures
have been basically realized, including autonomous collision avoidance and route planning,
autonomous ship berthing remains a major challenge in the development of intelligent
ships at present. The “final one mile” problem of autonomous ships has not yet been well
solved, and much research work remains to be carried out.

According to the summation shown in Table 1, LQR demonstrates propitious com-
patibility which has great facilities in the MIMO control domain, providing a new way to
control the complicated docking process of ships. Moreover, the CMA-ES has exhibited
efficacious effects on model parameter and control law optimization. The essence of the
research is combining a controller with effective compatibility and a robustly effectual
optimizer to accomplish autonomous berthing of ships.

The autonomous berthing system architecture proposed in this paper based on the
current status of research on automatic berthing of ships is depicted in Figure 1. It encom-
passes the path planning, optimal control, power distribution and other indicators required
for ship intellectualization and can achieve the “final one mile” motion control objective
of automatic ship berthing. In Table 2, the problems that have been disregarded or not
thoroughly explored in the studies above are summarized, and the corresponding solutions
are provided in this paper.

 

Figure 1. Architecture of ship autonomous berthing system.
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Table 1. Comparison of research on berthing-related papers in recent years.

Core Method Researchers Outcome Experiment

LQR
control

Yazdanpanah et al. [12] The feedback gain of the system was calibrated through the
combination of LQR and fuzzy logical control. Simulation

Brasel [13] The heading angle and velocity of the vessel were modulated
under disparate operating conditions via LQR. Simulation

Shao [14] The kinetics of an oil tanker was governed within the limited
boundary of the channel through an LQR controller. Simulation

Farzanegan et al. [15] The heaving motions of a ship were damped using an LQR
regulator. Simulation

Tian [16] The yaw-checking maneuver was optimized under the straight
sailing condition by an LQR controller. Simulation

Zhao et al. [17] Based on the LQR, a controller without static error was utilized
to achieve heading stabilization. Simulation

CMA-ES
optimization

Chen [18] The ambulatory kinetics of the robot were optimized. Simulation

Maki et al. [9,19,20] The frequent rudder, propeller operation and control objective
function during the berthing process were optimized. Simulation

Maniyappan et al. [10] Global optimization of the rudder control for the yaw checking. Simulation

Liu et al. [21] A synopsis of the technology for automated docking and
undocking at the current stage was given. Simulation

Akimoto et al. [22] Antagonistic CMA-ES was used for automatic berthing control
with uncertainty. Simulation

Miyauchi et al. [23] A systematic berthing model was constructed and the berthing
trajectory was optimized. Simulation

Other

Jia et al. [6] The issue of excessive heading deviation was addressed
through neural networks by berthing training data. Simulation

Homburger et al. [24] MPPI methodology was utilized to implement berthing control
and achieve optimal control in a nonlinear system. Simulation

Sawada et al. [25]
An automated berthing control system was propounded and

trajectory tracking was performed through numerical
simulation.

Simulation

Zhang et al. [26] Reinforcement learning based on demonstration data was used
for auto-berthing control. Simulation

Kamil et al. [27] An ANN-based controller was proposed to simulate a human
brain’s activity during the execution phase. Simulation

Xu et al. [28] A three-phase guidance algorithm was devised to ensure stable
operation of the vessel when transient and during berthing. Simulation

Table 2. Inadequacies in current research and corresponding solutions.

Problems in Current Research Solutions Given in This Paper

The disturbances of wind and currents are not considered. The interference with the berthing process is considered.

The mechanical constraints of ship motion are not considered. The mechanical constraint of rudder and propeller is added to
the whole process of ship motion.

PID, robust and fuzzy control are inconspicuous in the MIMO
field.

The LQR control method with good performance in MIMO is
selected.

The difference in ship mathematical motion models (large drift
angle) in the low-speed domain is not considered.

The low-speed large drift angle motion correction model is
introduced in the berthing stage.

The overall optimization of the berthing process is not
considered. An architecture of the berthing control system is proposed.

In order to solve the problems existing in the current research, this paper uses the
Linear Quadratic Regulator (LQR) as the fundamental control model for the controller
according to the requirements of the ship’s auto-berthing in the “Guide to Autonomous
Cargo Ships” [29] issued by the China Classification Society in 2018. The output of an
LQR controller and the path of ship berthing are optimized by using the Covariance
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Adaptive Adjustment Evolutionary Strategy (CMA-ES) algorithm. The kinematic modeling
of the vessel included the low-speed and high-drift angle ship maneuvering emendation
model proposed by Yoshimura Yasuo [30]. To fulfill the real situation during the berthing
process, disturbances caused by the wind and current were introduced in the experiments
in this paper and a simple navigational chart with isometric scaling was introduced as the
test environment.

The organizational structure of this paper is as follows: The first section delineates
the relevant research on autonomous ship berthing technology. In the second part, the
fundamental ship handling maneuvering model used in this paper is characterized. The
third section articulates the LQR controller and CMA-ES optimization strategy, introducing
the berthing approach based on the CMA-ES and LQR algorithms. This section also
introduces the modified model for low-speed and large drift angle motility to suit authentic
simulation experiments on a vessel. In the fourth section, several simulation experiments
are described, implementing and validating the efficiency of the proposed methodology
and analyzing control effects under different simulation scenarios, while two berthing
strategies for different berthing conditions are proposed. Finally, in the fifth part, an
encapsulation of the research expounded is summarized.

2. Ship Kinematics Model

According to the ship state space model proposed by Fossen [31], the dynamic model
of a USV is described in Equation (1), where ν and η are defined as state vectors describing
the linear velocity (or angular velocity) and position (or Euler angle) of the ship in three
degrees of freedom, τ = [X, Y, N]T is the force or moment acting on the ship, ω is the
force or moment acting on the ship by wind and current induced by the environment and
JΘ(η) is the Euler angle rotation matrix. The parameters relevant to this model have been
explicated in detail in [31].

M
.
ν + C(ν)ν + D(ν)ν + G(η) = τ + ω(t)

.
η = JΘ(η)ν

(1)

For the facilitation of the research endeavors herein, the conventional three degrees of
freedom (surge, sway and yaw) ship handling maneuvering model was adopted. Figure 2
delineates the schematic representation of the three degrees of freedom model of the ship
utilized. The simplified three degrees of freedom do not consider the restoring force,
thus,G(η) = 0. At the same time, the influence of wind and current is added to the model,
and the three degrees of freedom ship model is finally expressed as Equation (2), where
τwind and τcurrent correspond to the force or moment of wind and current acting on the
ship, respectively, Vc = JΘ(η)νc is the current speed in the navigation coordinate system
(NED coordinate system), νr is the ship’s Speed Through Water (STW) and ν = νr + νc is
the Speed Over Ground (SOG).

τ τ τ

Figure 2. A schematic of USV’s three degrees of freedom.
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M
.
νr + C(νr)νr + D(νr)νr = τ + τwind + τcurrent.

η = JΘ(η)νr + Vc
(2)

υ = [u, ν, r]T , η = [x, y, ϕ]T (3)

The propellers p1 and p2 constitute the twin actuators upon the vessel utilized in this
work, which can be controlled by revolution n and angle ξ. The thrust generated by the
propeller for the USV is expressed as Equation (4) and, for simplicity, the heaving motion
of the ship is not considered in this paper, thus Fω = 0.

Equation (5) is obtained by decomposing the thrust generated by propeller P in the
normal and tangent direction separately, where tp is the thrust generated by each propeller,
Fp is the resultant force and ξp represents the instant angle of each propeller.

F = [Fu, Fν, Fω ]
T (4)

Fp =

⎡⎣cos
(
ξp
)

sin
(
ξp
)

0

⎤⎦·tp =

⎡⎣cos(atan2(Fν, Fu))
sin(atan2(Fν, Fu))

0

⎤⎦· ‖ Fp ‖ (5)

The force τ acting on the ship is decomposed into linear force and torque, where
τlinear is the total translational force generated by each propeller, τtorque is the cross product
sum of the translational force and the corresponding torque of each propeller, where rp
represents the position vector of the propeller and S

(
rp
)

is the skew symmetric matrix of
the vector.

τ =

[
τlinear
τtorque

]
=

[
P

∑ Fp,
P

∑ S
(
rp
)

Fp

]T

=

[
F1 + F2

S(r1)F1 + S(r2)F2

]
(6)

According to Fossen [31], Formula (7), of the thrust generated by the propeller and
its rotational speed, is derived, where the propeller has the physical parameters Tnn and
Tnν, the corresponding rotational speed is defined as np and the localized velocity to the
near propulsive is defined as VA. Combined with Formula (5), the control outputs of the
two propellers are calculated and expressed as Equation (8), where ξ is the angle of the
propeller and the rotational speed of the propeller is defined as n.

tp = Tnnn2
p + TnνVAnp , Tnn > 0 > Tnν

np = sgn
(
tp
)√Tnν2V2

A+4Tnn|tp|−TnνVA

2Tnn

(7)

ξ = [ξ1, ξ2]
T , n = [n1, n2]

T (8)

Ship motion is affected by wind and current when sailing. According to “the Manual
of Ship Fluid Dynamics and Motion Control” [31], the superimposed force τwind of wind
is expressed as Equation (9) and the superimposed force τcurrent of current is described in
Equation (10).

τwind =
1
2

ρaV2
a

⎡⎣ CX(μwd)AT
CY(μwd)AL

LCN(μwd)AL

⎤⎦ (9)

τcurrent =
1
2

ρV2
cd

⎡⎣CXC(μcd)ATC
CYC(μcd)ALC
CNC(μcd)ALC

⎤⎦ (10)
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3. Mathematical Modeling

3.1. LQR Control Model

Some researchers [14] implemented ship motion control of a large cruise ship based on
the LQR, and the simulation experiments show that the ship handling experimental effect
is good under certain wind conditions. The advantages of the LQR in ship motion control
is confirmed by simulation experiments in some studies [13,15–17]. Liu et al. summarized
the main automatic berthing control algorithms at the current stage and showed the
inadequacies of various algorithms in actual control. For instance, algorithms such as
neural networks and fuzzy logic for the precise control of berthing often do not work well
anymore. Meanwhile, rather high requirements are placed on both the computational real-
time capability and model accuracy by the Model Predictive Control (MPC) controller [21].

However, these disadvantages mentioned above can be overcome by the LQR which
in fact is the core of MPC. Otherwise, excellent generalization capability over disparate
models is possessed by the LQR controller, without particular utility functions needing to
be specified for different scenario requirements. In this paper, a Linear Quadratic Regulator
(LQR) controller is chosen for the motion control of a USV.

In order to realize the ship LQR control, firstly, it is necessary to determine the state
space model of the ship and, secondly, design the control gain of the controller according to
the corresponding performance index. According to the control model of Micha Brasel [13],
the state space equation of the system is expressed as Equation (11), and the performance
index J is defined as Equation (12).

The system state and control vector, respectively, are defined as x and u, A is the
state matrix of the controlled object, B is the linear control matrix representing u to x, H is
the interference matrix of the system, C is the system output matrix, Q is a semi-positive
definite symmetric weighted matrix of x and R is a weighted positive definite symmetric
matrix of u. .

x = Ax + Bu + H
y = Cx

(11)

J =
1
2

∫ T

0

(
xTQx + uTRu

)
dt (12)

Equation (12) shows that when the performance index J reaches the minimum value,
the corresponding u(t) is the optimal control u∗(t) of the controller output. According
to the “the optimal control theory” [32], it is proved that u∗(t), that enables J to reach
the minimum value, can be obtained by Equation (13), where K represents the optimal
feedback coefficient matrix and P is the solution to the Riccati equation.

u∗= −R−1BTPx = −Kx

0= PA + ATP− PBR−1BTP + Q
(13)

The optimal solution of the LQR has a standard analytical form, whereby optimal
feedback control can be conveniently obtained. The LQR controller possesses excellent
stability performance when the control system is able to maximize both system robustness
and responsiveness to the greatest extent possible, subject to various disturbances.

3.2. CMA-ES Algorithm

The CMA-ES, an evolutionary computation method for global optimization, was given
by Hansen et al. [33] from evolutionary strategy algorithms, which can find the global
optimal solution for both nonlinear and nonconvex problems. CMA-ES algorithm has good
search capability. Compared with the traditional linear programming method, no gradient
calculation is needed by this method, thereby computational cost is reduced.

Some studies have achieved good experimental results in the optimization of ship
lateral motion control by using CMA-ES [9,10,19,20]. The CMA-ES optimization method
is adopted for berthing control under model uncertainty [22]. This method has also been
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used to optimize the berthing trajectory and improve the robustness and flexibility of
navigation control [23]. The CMA-ES method can automatically optimize the search space
by adaptively adjusting the covariance matrix, thus achieving an efficient global search,
which can play a good role in path planning and motion control.

The computational process of the CMA-ES algorithm for auto-berthing is as
the following:

Step 1. Parameter initialization. According to the search space, the evolutionary path
is set, and the initial algebra is defined as g = 0.

Step 2. The population mutation is controlled by using the mean value mg, the step size
σg and the covariance matrix Cg in Equation (14), where g represents the population algebra.

xg+1
k = mg + σgN(0, Cg), k = 1, . . . , λ (14)

Step 3. According to the fitness function, the offspring are selected, and the first μ
individuals with the smallest fitness value are regarded as the new generation population.
Equation (15) realizes truncated selection by μ < λ and takes different weights as the
selection mechanism.

mg+1 = mg +
μ

∑
i=1

ωi(xg+1
i:λ −mg)

μ

∑
i=1

ωi = 1, ω1 ≥ ω2 ≥ · · · ≥ ωμ ≥ 0
(15)

Step 4. The parameter update method is described as Equation (15), while the defini-
tion of the covariance matrix, the explanation of the evolution path and the description of
the control step are given in Equation (16) to Equation (18), respectively. The proportion co-
efficient of new population individuals is represented by ωi. The learning rate and effective
selection quality of covariance matrix C are represented as cμ and μe f f . The learning rate of
the step length is represented by cσ. pc and pσ are conjugated and the damping factor is
represented by dσ.

Cg+1= (1− cμ)Cg + cμ

μ

∑
i=1

ωiy
g+1
i:λ (yg+1

i:λ )
T

yg+1
i:λ =

(
xg+1

i:λ −mg
)

σg , cμ = min(1,
μe f f

n2 )

(16)

pg+1
c = (1− cc)pg

c +
√

cc(2− cc)μe f f
mg+1−mg

σg

pg+1
σ = (1− cσ)pg

σ +
√

cσ(2− cσ)μe f f C− 1
2 mg+1−mg

σg

(17)

σg+1 = σg exp

(
cσ

dσ

(
‖ pg+1

σ ‖
E(‖ N(0, I) ‖) − 1

))
(18)

Step 5. Conditional judgment. When the set threshold condition is satisfied, the
iterative output result is obtained.

The CMA-ES algorithm is suitable for auto-berthing control for a USV owing to
its inherent advantage. The basic architecture of a ship’s autonomous berthing system
including path planning and the LQR combined with the CMA-ES is shown in Figure 1.

3.3. Autonomous Berthing Model of USV Based on CMA-ES

For ship motion control, in fact, it is difficult to accurately establish the ship math-
ematical model as it is a strong coupling nonlinear system. Fossen [34], Zhang [35] and
other scholars have made some achievements in large ship motion control. As the ship
usually navigates at a slow speed with a large drift angle when moving alongside the berth,
there is a great difference from a ship sailing at normal speed. The current research con-
centrates primarily upon the minimization of path length and time expenditure. External

241



J. Mar. Sci. Eng. 2023, 11, 1400

environmental perturbations, physical constraints and restrictions to ship maneuvering are
neglected although such factors would also exert great influence upon the ship handling
characteristics of a vessel.

Aiming at the inadequacies of the algorithms employed in the current phase of ship
control, the optimization of the berthing control system in this paper can primarily encom-
pass two aspects: on the one hand, the constrained optimization of the ship’s navigation
path is undertaken. According to the relevant navigation rules and constraints, a search and
evaluation of all viable paths are performed and the optimal initialization path is selected,
as delineated in Figure 3a. On the other hand, the optimization of the performance indices
of the LQR controller is carried out, such as the optimization of the motion or amplitude
stability indices.

Start

End

Grid map

Definition 
the fitness function

Calculate the force field

Whether to achieve 
the target

Output optimal path

Y

Calculate 
the resultant force

Update status

Optimization
N

 

Guidance

Controller

Optimization

Allocation

v

Actuator
n

v
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(a) (b) 

Figure 3. System control optimization strategy. (a) Path planning; (b) LQR controller.

As shown in Figure 3b, based on the CMA-ES algorithm, the objective function
and constraints considering ship actuators like engine and steering gear for the opti-
mizer are constructed and the improved LQR controller is given for the auto-berthing
control problem.

The framework of the path planning algorithm selected for this work, the Artificial
Potential Field (APF) method, is depicted in Figure 3a. The crux of the APF path planning
method constitutes the construction of potential fields by computing the gravitation of the
destination and the repulsion of obstacles, with the potential field gradient descent direction
harnessed to instigate updates in movement. The process of CMA-ES optimization is to
calculate whether the fitness function belongs to the threshold interval, otherwise, the
weight is changed again to calculate the gravitation and repulsion. In the process of path
planning using the APF algorithm [36], the resultant field is represented by U(q), Uatt(q) is
the gravitational field and Urep(q) is the repulsive field.

U(q) = Uatt(q) + Urep(q) (19)
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The framework schematic of the LQR control algorithm employed within this paper
is delineated in Figure 3b. The optimizer CMA-ES calculates and finds the optimal value
that meets the constraint conditions by adjusting the weight matrix parameters of state
variables and control variables.

According to Formulas (2) and (11), Formula (20) is obtained, where the state matrix is
A(νr) = −M−1(C(νr) + D(νr)) and the control matrix is B = M−1.

.
νr= A(νr)νr + B(τ + τwind + τcurrent)

.
η= JΘ(η)νr + Vc

(20)

According to the hydrodynamic model with large drift angle proposed by Yoshimura
Yasuo, the ship model navigating at slow speed, especially when moving alongside the
berth, is revised as (21), and the detailed derivation process and parameter explanation
are shown in references [30,31]. The modified model is decomposed into (22) after being
brought into the damping matrix D, where d is the original static constant, Φ(νr) is a
regression function and ϑ is an error parameter.⎧⎪⎨⎪⎩

XH = XH(r = 0) + Xνrνr + Xrrr2

YH = YH(r = 0) + Yr|u|r + 1
2 ρdCd

(
Lν|ν| − ∫ L/2

−L/2

(
ν + Cryxr

)|ν + Cryxr|dx
)

NH = NH(r = 0) + Nr|u|r + 1
2 ρdCd

∫ L/2
−L/2(ν + Crrxr)|ν + Crnxr|xdx

(21)

D(νr)νr= −dνr −Φ(νr)ϑ :

d= −diag([Xu, Yν, Nr])

ϑ= [X|u|u, Xuuu, Yν, Yr, Y|ν|ν, Y|r|ν, Y|ν|r, Y|r|r, Nν, N|ν|ν, N|r|ν, N|ν|r, N|r|r]
T

(22)

Combining Equations (12) and (22), the control law, Equation (23), is obtained, where
R(ψ) is the rotation matrix about the Z axis.

.
νr = M−1(τ + τwind + τcurrent − C(νr)νr + dνr + Φ(νr)ϑ).
η = R(ψ)νr + Vc

(23)

R(ψ) =

⎡⎣cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤⎦ (24)

3.3.1. Constraint Condition

Basic state constraints (25) are to be satisfied when the ship berths, where P1 = (x1, y1, ψ1)
T

denotes the prescribed desired berthing state, P1 = (x1, y1, ψ1)T is the motion state of the ship
in actual motion control, d_re f and ψ_re f are the maximum allowable errors.

P1− P1 ≤ [d_re f , d_re f , ψ_re f ]T (25)

Position constraint is to reduce the optimized search space and stabilize the ship’s
docking position more efficiently. The set berth area is IIC when the ship is within IIC, and
it is considered that the ship has entered the berth area. pi is the four points of the ship’s
safety rectangle, and Cberth represents the berth area.

As shown in Figure 4, The waters proximate to the berth are demarcated into three
zones: Zone I (the outer stabilizing region beyond the berth), Zone II (the berth per se)
and Zone III (the quayside wharf). The berthing process is likewise demarcated into three
stages: Stage 1 (the approaching phase, arriving at the outer stabilizing region far from the
berth), Stage 2 (outer stabilizing, adjusting the orientation of the ship’s head) and Stage 3
(berthing).

I IC =
4

∑
i=1

∫
pi∈Cberth

|Yi −Yberth|dt (26)
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Figure 4. Berthing area.

The control mechanism of a USV is composed of propellers and steering gear system
and is limited by its own physical characteristics. This paper mainly considers the mechani-
cal constraint [Cmin, Cmax] composed of rudder angle δ and propeller speed n of the USV.
The constraint [C′min, C′max] of rudder angle change rate δ′ and rotational speed change rate
n′ are also considered.

Cmin = [δmin, nmin]
T , C′min = [δ′min, n′min]

T

Cmax = [δmax, nmax]
T , C′max = [δ′max, n′max]

T (27)

The ship berthing speed is restricted as per Equation (28), and ut and νt represent the
longitudinal and lateral velocity of the ship at time t

|ut| ≤ umax, |νt| ≤ νmax (28)

The constraint on the ship’s course is described in Equation (29), ψt is the ship’s
heading at time t and rot is the ship’s turn rate, that is, the course change rate.

|rot| =
∣∣∣∣Δψ

Δt
∗ 180

pi

∣∣∣∣ ≤ ROTmax (29)

3.3.2. Objective Function

The initial state of the system is defined as x(0). The optimal control vector u* can be
obtained by the LQR, and the state vector x at the next moment can be obtained by motion
control of the ship. As the initial sample of the CMA-ES, the optimal state xi at the next
moment can be obtained.

Suppose that the system state vector x = (x, y, ψ)T and the control vector
.
u = (n, δ)T ,

then Formula (23) is simplified to obtain the system state described in Equation (30), where
the interference matrix H = M−1(τwind + τcurrent), f(·) is the system state matrix.

.
x = M−1(dx− Cx) + M−1(u + Φ(x)ϑ) + M−1(τwind + τcurrent)

= f(x) + M−1(u + Φ(x)ϑ) + H
y = R(ψ)x + Vc

(30)
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The desired ideal output is set to η∗(t) and y(t) is the actual control output.
e(t) = y(t)− η∗(t) is the deviation, and the index functional of the control system is ex-
pressed as J.

J =
1
2

eT(T)Se(T) +
1
2

∫ T

0

(
eT(t)Q(t)e(t) + uT(t)R(t)u(t)

)
dt (31)

In order to simplify the study of energy consumption of the ship power system, within
this work, the control variables for the rudder and propellers during the ship berthing
process are adopted as the energy consumption indices for the system. nt and δt are the
sampling values at the corresponding time, λ1 and λ2 are the weight coefficients of the
corresponding control variables. According to Formula (32), F(n, δ) [37] is calculated as the
energy consumption index during the ship’s navigation.

F(n, δ) =
T−1

∑
t=0

(λ1n2
t + λ2δ2

t ) (32)

The control objective function of the system can be written as Equation (33), where KJ
and KF are the corresponding weight parameters, the value is determined according to the
actual situation and the value is [0.75, 0.25] in the experiment. Combined with Formula (19),
the objective function of path planning is expressed as Equation (34), HU and HF are the
corresponding weight functions and the values in the experiment are [0.25, 0.75].

KJ ∗ J + KF ∗ F (33)

HU ∗U + HF ∗ F (34)

In summary, the optimization objective function and constraint conditions of the
berthing system can be described as Formulas (35) and (36).

min
{

HU ∗U + HF ∗ F
KJ ∗ J(P, C) + KF ∗ F(n, δ)

(35)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1− P1≤ [d_re f , d_re f , ψ_re f ]T

|ut|≤ umax

|νt|≤ νmax

|rot|≤ ROTmax

Cmin≤ C ≤ Cmax

C′min≤ C′ ≤ C′max

(36)

Upon the actual berthing process, external environmental disturbance and the intrin-
sic physical maneuverability properties of the hull exert considerable influence on the
behaviors of the vessel. In accordance with the actual hydrodynamic environments and
maneuvering constraints inherent to the ship itself, corresponding constraints have been
incorporated into the overall control process. An optimization strategy predicated upon the
CMA-ES effects adaptive optimization of the safety and smoothness of the ship’s berthing
trajectory as well as the outputs of the controller.

4. Simulation Analysis

The ship adopted in this experiment is a fully actuated ship, and the hydrodynamic
coefficient of the model refers to the Otter ship model given by Fossen [31]. In this paper,
two groups of simulation experiments are set up: group 1 implements automatic berthing
of the vessel in external environments with no consideration of wind and current through
employment of the LQR. The second group is the automatic berthing simulation experiment
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with consideration of wind and current environments by using the LQR and the integrated
control system proposed in this paper.

No dynamic obstacles are set in the two sets of experiments in this paper. The configu-
ration of the simulation environment of the experiment is shown in Table 2, the parameters
of the simulated ship model used in the experiment are shown in Table 3 and the values of
the relevant parameters of the experiment are shown in Tables 4 and 5.

Table 3. Experimental environment.

Parameters Configuration

System environment Win11 Intel (R) Core (TM) i5-9500 CPU @3.00GHz 16G RAM

Table 4. USV experimental ship model parameters.

Parameters Value

Length (m) 2.00
Width B (m) 1.08

Draft (m) 0.1951
Mass m (kg) 55

Rotation radius (m) 0.432
Square coefficient 0.4

Rudder angle δ range (◦) [−35, 35]
Propeller speed n range (r/s) [−50, 50]

Table 5. USV experimental simulation parameters.

Parameters Value

Simulation map 100 m × 100 m
Initial point state [90, 10, 120◦]

Berthing point status [7, 61, 0◦]
[uapproah, udock] [3 m/s, 0.075 m/s]
[dre f , ψre f ] [0.01 m, 3◦]
[umax, νmax] [0.075 m/s, 0.075 m/s]

ROTmax 2.5 ◦/s2

[KJ , KF, HU , HF] [0.75, 0.25, 0.25, 0.75]

4.1. Automatic Berthing of USV Based on LQR

In circumstances where the waters proximate to the berth do not show disturbances
from a northerly or easterly wind or current, a static calm water condition is assumed,
τwind = [0, 0], τcurrent = [0, 0] (the unit is m/s). Granted the port berth articulates no
particular stipulations regarding ship berthing, the testing shows that the vessel can be
capable of directly affecting berthing. Through experimental simulation, the berthing
process is delineated in Figure 5.

For the secondary berthing phase depicted in Figure 5b, with the ship stabilized
outside of the berth, the lateral berthing maneuver is executed based on distance detection
data from shipborne sensors indicating proximity to the berth terminal. In this process,
the ship’s posture must adjust flexibly according to the optimal control outputs generated
by the LQR controller to facilitate lateral berthing of the ship and, ultimately, automatic
berthing is completed.
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(a) Approaching stage (b) Berthing stage 

τ τ

Figure 5. USV auto-berthing process based on LQR without wind or current. (Black indicates the
non-navigable area of the map, and the red dashed line indicates the berth area I mentioned in
Figure 4, the same as below).

4.2. Automatic Berthing of USV Based on CMA-ES Optimization

The USV approaches the berth with perturbations from northerly and easterly winds
and currents, τwind = [1.5,−2.5], τcurrent = [−0.2572,−0.0514] (the unit is m/s). Compared
with the ideal environment of group 1, group 2 considers the environmental perturbations
from wind and current, which shows effective validation of the algorithm’s robustness
under simulation conditions and they are also much closer to the real situation during
ship berthing.

In accordance with the framework of the auto-berthing control system shown in
Figure 3, during the path planning phase the CMA-ES algorithm optimizes the APF
berthing path planning, rendering the ship’s motion path safer and smoother. By fully
considering the maneuvering constraints intrinsic to the ship itself and the frequency and
amplitude of changes in the ship’s rotational velocity and rudder angle, all those constraints
ensure the actual ship motion dynamics are as close as possible to the real berthing process.
In Figure 6, the simulation results with CMA-ES optimization at the initial berthing stage
are illustrated.

  
(a) Before optimization (b) After optimization 

Figure 6. The approaching process before and after optimization with wind and current.
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For the second berthing stage illustrated in Figure 7, motion constraints imposed on
the ship’s steering gear and propeller aim to exclude high-frequency control inputs to
the steering gear during the berthing process. The performance metrics of the controller
are optimized via the CMA-ES method, enabling its rapid and stable convergence to the
desired state and completing the berthing task.

 
(a) Before optimization (b) After optimization 

Figure 7. The auto-berthing process before and after optimization with wind and current.

Ships get as close to the berth against the wind and current as possible in tidal harbors
of China, as mentioned in reference [38]. In actual berthing operations, choosing a strategy
of berthing against the wind and current can prevent the ship from being pushed away
by the current and wind. The experimental water area is subject to wind and current
interference in the north and east directions (τwind = [2,−3.5],τcurrent = [−1.0289, 0.514],
the unit is m/s), as shown in Figure 8.

τ τ

  
(a) Before optimization (b) After optimization 

Figure 8. Two berthing methods with wind and current.

Hence, Figure 8a delineates the outcome of the berthing methodology being adopted
under the identical experimental conditions. Owing to the substantial current, the drifting
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motion of the vessel is rather conspicuous. A considerably large inertial residual velocity
is still maintained adjacent to the berth, which poses a grave peril to the execution of the
vessel’s berthing operation. By executing a turning maneuver, the collision risk imposed
by the drifting motion when the vessel comes to a stop adjacent to the berth is averted, as
shown in Figure 8b.

4.3. Result Analysis

By comparing Figures 5–7, it is shown that the wind and current have a great influence
on the ship’s motion. From the berthing stages in Figures 5b and 7a, we can find the
influence of wind and current on the ship’s low-speed motion: the wind interference
will cause ships, especially small ships, to deviate greatly from the planned trajectory at
low speed.

Figures 6 and 7 delineate the autonomous berthing process of a USV under specific
wind and current interference conditions (stabilization outside the berth followed by paral-
lel berthing). Figures 6a and 7a represent the nonoptimized scenarios. Figures 6b and 7b
display the optimal control profiles obtained through the CMA-ES optimization approach.
A comparative analysis between Figure 7a,b reveals that even with wind and current, the
CMA-ES optimized control system still shows competence in mitigating abrupt fluctuations
in the ship’s motion and amplitude.

Specifically, in the berthing path planning in Figure 6, the left side of Figure 6a is
without optimization processing. In the middle part of the figure, the path planned by the
APF algorithm has many waypoints. After optimization processing, Figure 6b has much
less twisting and turning, and the overall path becomes smoother. This smoothed path
can effectively reduce the rudder angle changes of the ship during sailing and reduce the
number of manipulations, and this change can be verified in the curve of the ship’s rudder
angle changes in Figure 9.

  
(a) Curves of position and heading changes 

before optimization 
(b) Curves of position and heading changes 

after optimization 

  
(c) Velocity profile before optimization (d) Velocity profile after optimization 

Figure 9. Comparison of motion parameters in the approaching stage. (The red represents the actual,
and the blue curve is the predicted).
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The enlarged part of Figure 7 shows the final berthing process of the ship. The left
figure shows the result of LQR control without optimization, and the right figure shows
the result after optimization. Comparison shows that the process shown in the optimized
Figure 7b is more acceptable. From the evaluation of the berthing effect, the berthing error
after optimization is better, and the error curve in Figure 10 can support this result.

 
(a) Before optimization (b) After optimization 

Figure 10. Location and heading error values.

Through the comparison of the optimization of the whole control process in Figures 6 and 7,
it is found that the optimized effect of the CMA-ES is significant.

A comparison between Figure 9a,b demonstrates that the incorporation of path opti-
mization significantly alleviates the abrupt changes in the ship’s heading during navigation.
Within the simulation time span of 0 to 400 s, the optimized path results in smoother motion.
During the 400 to 600 s period when the ship proceeds to the second docking stage, the path
optimization enables the ship to make minimal attitude adjustments to satisfy the target
state with smoother changes in heading angle and position, eliminating any instantaneous
mutations. Meanwhile, it can be observed that the optimized path is more amenable as the
input for the controller, yielding higher consistency between the actual ship motion and
the planned path.

A comparison between Figure 9c,d indicates that the path optimization augments
the fault tolerance of the ship’s output control during the first docking stage. The speed
profile in Figure 9c exhibits frequent fluctuations with evident instantaneous reversals
in polarity, which are undoubtedly deleterious to the ship’s steering control. In contrast,
Figure 9d does not show such issues. Meanwhile, it can be observed that incorporating the
optimization function in the second docking stage renders the output of the LQR controller
more stable. Compared to the sharp increases and decreases in Figure 9c, the curve in
Figure 9d demonstrates that the overall process does not incur rapid changes in either
speed or rudder angle, cohering with the actual operation of ship berthing maneuvers.

Obviously, it can also be found from Figure 9c,d that even if the frequency and
amplitude of the rudder angle change are reduced as a whole, the optimized rudder angle
is more frequent than before in the docking stage during the 400 to 600 s, which may be
caused by the high accuracy setting.

In contrast, the control system optimized by the CMA-ES demonstrates higher accu-
racy in control effect and greater energy saving of the system, as evidenced by the heading
variation frequency and amplitude illustrated in Figure 10.

According to the simulation results of the two berthing strategies under the same
environment in Figure 8, it can be analyzed that: when there are strong wind and current
disturbances to the ship’s berthing motion, the control difficulty of the ship increases
in Figure 8a when berthing directly, and the probability of collision with the berth is
increased; the turning strategy in Figure 8b can effectively offset the strong wind and
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current interference to the ship and ensure the safety of ship berthing. Choosing a suitable
berthing strategy is also a way to reduce the risk of berthing collision and ensure the safety
of ship berthing. The motion process curves of the two different berthing strategies are
shown in Figure 11.

  
(a) Berth alongside (b) Turning around and berthing 

Figure 11. Comparison of motion process parameters of different berthing strategies. (The blue
dotted line on the left axis represents the speed change curve of the movement, and the red solid line
on the right axis represents the position change curve.)

Analysis of Figure 12 indicates that the optimized rudder angle profile displays signif-
icantly reduced fluctuations with lower magnitude of changes; the abrupt shifts in heading
angle have been eliminated, resulting in a smoother curve. By comparing the simulation
results of the two berthing strategies, the optimized path (we understand it as strategy
2, that is, turning around is required under the current environment) appears generally
smoother, decreasing the frequency of steering gear operation during ship berthing. Within
the experimental setting of this study and given the berthing maneuver strategy employed,
it warrants attention that the conditions should entail a relatively stable state of wind and
current; more substantial marine environmental interferences can compromise the stability
of the ship’s autonomous berthing process.

Figure 12. Changes in ship heading and heading angle before and after optimization.
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5. Conclusions

In this paper, a complete framework of a berthing control system is proposed, and the
berthing control system based on an LQR controller is optimized by the CMA-ES. During
the experiment, the dynamic factors of the ship, the interference of the natural environment
and the energy consumption of motion are fully considered. The results show that the
berthing process of the ship can be well controlled, which is in line with the experimental
expectation. The simulation results show that the automatic berthing system based on the
CMA-ES proposed in this paper is feasible. However, in the current experimental process,
there are still some shortcomings, such as the shallow water bank effect of the ship not
being considered and the gain parameters of the controller cannot fully adapt to the model
changes. In the future, we will continue to carry out in-depth research on the autonomous
berthing of USVs and complete the algorithm test in a real environment in combination
with a real testing ship.
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Abstract: The influence of the maritime environment such as water currents, water depth, and
traffic separation rules should be considered when conducting ship path planning. Additionally, the
maneuverability constraints of the ship play a crucial role in navigation. Addressing the limitations
of the traditional A-star algorithm in ship path planning, this paper proposes an improved A-
star algorithm. Specifically, this paper examines the factors influencing ship navigation safety, and
develops a risk model that takes into account water currents, water depth, and obstacles. The goal is to
mitigate the total risk of ship collisions and grounding. Secondly, a traffic model is designed to ensure
that the planned path adheres to the traffic separation rules and reduces the risk of collision with
incoming ships. Then, a turning model and smoothing method are designed to make the generated
path easy to track and control for the ship. To validate the effectiveness of the proposed A-star
ship path-planning algorithm, three cases are studied in simulations and representative operational
scenarios. The results of the cases demonstrate that the proposed A-star ship path-planning algorithm
can better control the distance to obstacles, effectively avoid shallow water areas, and comply with
traffic separation rules. The safety level of the path is effectively improved.

Keywords: ship global path planning; A-star algorithm; navigational safety; path optimization

1. Introduction

Ships are essential carriers in maritime transportation and play a crucial role in the
transportation network [1]. Additionally, the integration of intelligent technologies, such
as autonomous systems and advanced data analytics, into ships has become an inevitable
advancement in maritime transportation [2]. In recent years, there has been rapid develop-
ment in the technology of intelligent ships, which has garnered unprecedented attention
in both military and commercial sectors [3,4]. The utilization of intelligent ships offers
numerous benefits, such as reduced labor costs, energy savings, and fewer accidents [5].
Furthermore, these ships can effectively perform complex and hazardous engineering tasks
in specific waters [6]. Research on intelligent ship autonomy has gained increasing attention
as they heavily rely on highly autonomous systems.

Path planning plays a vital role in the development of autonomous systems for ships.
It serves as the foundation for ship systems [7]. A safe and efficient path is essential for
ships to ensure routine safe navigation, dynamic collision avoidance, and avoidance of
grounding areas [8]. Path planning entails determining a secure and effective route from
the starting point to the destination while considering specific requirements such as path
length, risk factors, and rule constraints [9,10]. Path planning can be broadly classified
into global path planning and local (real-time) path planning [11]. Global path planning
calculates paths in advance in a static environment with stationary obstacles, whereas
local path planning computes navigational paths in real time in a dynamic environment
with both moving and stationary obstacles. Research on path planning is crucial for the
advancement of autonomous systems in ships and serves to enhance their autonomy.

Despite the numerous proposed improvements in ship path-planning algorithms,
many of these methods fail to sufficiently account for the impact of the marine environment
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on ship navigation [12,13]. The majority of existing path-planning algorithms prioritize
enhancing algorithm performance and broadening their application scope. While safety-
oriented path planning for unmanned vehicles has placed emphasis on assessing obstacle
hazards, only some studies have thoroughly evaluated the risks associated with diverse
factors in marine environments. As a result, there is a pressing need to develop a path-
planning algorithm that considers various navigation factors to comprehensively enhance
path safety.

The A-star algorithm has been extensively studied and utilized in the field of path
planning due to its high performance and efficiency in most cases. At the same time, the A-
star algorithm offers the advantage of heuristic search, which reduces the number of search
nodes while ensuring an optimal path, thus improving search efficiency. However, the
conventional A-star algorithm only takes into account the path length, making it unsuitable
for ship navigation in complex sea environments. To effectively utilize the A-star algorithm
for ship path planning, it is crucial to expand its functionality to incorporate multiple
navigation safety factors, thus enhancing path safety. Additionally, the planned path must
accommodate the dynamic motion characteristics of the ship. In global path planning, the
minimum turning radius of the ship holds significant importance as a parameter of the
ship’s dynamic motion characteristics; therefore, it must be given due consideration. This
paper aims to propose an improved A-star algorithm that enhances the security of global
path planning. The contributions of this paper are as follows:

(1) By analyzing the key factors that impact the safe navigation of ships, this paper
establishes a risk model that comprehensively considers factors such as water current,
water depths, and obstacle distances. The model aims to reduce the risk of collision
with obstacles and prevent grounding.

(2) This paper quantifies the traffic separation rules to establish a traffic model. The model
enables the ship to adhere to traffic separation rules, reducing the risk of collision with
incoming ships.

(3) This paper proposes a turn model and a smooth method to enhance the smoothness of
the path. The model optimizes the path on the basis of the ship’s minimum turning
radius to make it easier for the ship to track.

The remainder of this article is structured as follows: Section 2 introduces recent
research on path-planning algorithms, including a detailed overview of the A-star algo-
rithm. Section 3 explains the established methods used in the risk, traffic, and turn models.
Section 4 presents the principles and specific methods for improving the A-star algorithm.
Section 5 showcases three case studies. Lastly, Section 6 summarizes the conclusions and
proposes directions for future research.

2. Literature Review

Ship path planning differs from path planning for robots, roads, and other applica-
tions because it considers the influence of the water environment and the maneuvering
restrictions of the ship [14,15]. This section offers a concise overview of recent research
advancements in ship path-planning algorithms and provides a detailed examination of
the research conducted on the A-star algorithm in the context of ship path planning.

2.1. Research Progress of Ship Path Planning

Ship path planning plays a crucial role in achieving autonomous navigation [16]. Over
the years, global path-planning methods have been primarily categorized into four groups:
search algorithms based on existing map information, random expansion algorithms,
intelligent bionic algorithms, and deep reinforcement learning algorithms. The Dijkstra
algorithm [17] is a typical search algorithm that utilizes existing map information to
determine the shortest path between two points. The A-star algorithm, which enhances the
efficiency of the Dijkstra algorithm by incorporating a heuristic function, has been widely
employed in ship path planning [18].
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The most commonly used random expansion algorithms in ship path planning are
the rapidly exploring random trees (RRT) algorithm and the probabilistic road map (PRM)
algorithm [19]. These algorithms obtain feasible paths by randomly sampling path nodes,
which allows them to effectively solve path-planning problems with complex constraints
without requiring accurate environmental modeling [20]. However, paths planned by
these algorithms may not be suitable for tracking, and the convergence speed of the
algorithms can be slow. To address the slow convergence of the RRT algorithm, Dong
et al. [21] developed an environment framework that provides an initial path and guides the
algorithm’s expansion. Furthermore, Cao et al. [22] proposed an RRT algorithm enhanced
with path shearing and smoothing modules to mitigate navigational risks in inland rivers.
However, these algorithms do not consider the specific navigation characteristics of the
ship and cannot guarantee that the path is the optimal solution.

Intelligent bionic algorithms, derived from bionic research, are employed to address
path-planning challenges in complex environments. Commonly used algorithms include
genetic algorithm (GA), ant colony optimization (ACO), and particle swarm optimization
(PSO) [23]. Although these algorithms are robust, they often get stuck in local optima
and are slow in planning. Thus, they are frequently used in combination with other
algorithms [24]. To overcome the problem of GA getting trapped in the local optimum,
Long et al. [25] introduced a new population initialization method with adaptive mutation
and crossover probabilities to escape from the local optimal solution. Zhang et al. [26]
suggested a differential evolution particle velocity approach, which effectively resolved
the issue of PSO falling into the local optimum. Implementing these algorithms typically
requires extensive environmental modeling, substantial computational resources, and
parameter tuning. These requirements can pose challenges when applying them to practical
path-planning scenarios.

The rapid advancement of autonomous ship navigation has rendered traditional
algorithms insufficient to meet the demands of ship operations. As a result, researchers have
increasingly turned to deep learning and reinforcement learning techniques for ship path
planning [27]. Li et al. [28] enhanced the action space and reward function by incorporating
marine collision avoidance rules into the reward function, and by introducing an artificial
potential field. Simulation experiments demonstrated that the trained ship model can
autonomously avoid collisions. Liu et al. [29] improved the efficiency and generalization
capability of an algorithm by utilizing continuous multi-time target ship information and
a redesigned reward function. Their approach, based on the TD3 algorithm, resulted in
a smoother and more stable path. However, it is important to note that reinforcement
learning algorithms require extensive training of ships to effectively plan paths. In reality,
ship accidents are relatively rare, and available data are limited. Therefore, the application
of such algorithms to real-world scenarios remains challenging.

2.2. Research Progress of A-Star Algorithm

The A-star algorithm is widely utilized in path planning due to its high level of
completeness and optimality. However, when used in isolation, it can lead to paths that
overlook environmental factors, exhibit poor algorithm efficiency, and do not align with
real conditions [30]. To tackle these challenges, researchers have put forward various
enhancements to the A-star algorithm.

Complex environments and large maps exponentially increase the time complexity of
the A-star algorithm [31]. To tackle this challenge, researchers have made improvements
to the search method of the A-star algorithm. Duchon et al. [32] enhanced the algorithm’s
efficiency by modifying the traditional eight-neighbor search to an omnidirectional search
and incorporating the hop search algorithm into the path-planning process. Chen et al. [33]
introduced a bidirectional A-star algorithm that utilizes a dynamic window to search for
paths simultaneously from both the start and the goal positions. The dynamic window
significantly improved the algorithm’s efficiency, resulting in a substantial reduction in
search time. Fernandes et al. [34] improved the algorithm’s efficiency by limiting node
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expansion and constructing 16 directional layers that only visit adjacent layers when
searching for the lowest cost. Similarly, Zhang et al. [35] proposed an expansion method
that prioritizes nodes in the same direction as the target node, reducing the number of
expanded nodes in the A-star algorithm.

The A-star algorithm often produces paths with many turns and lacks smoothness [36].
Researchers have proposed various cost functions to smoothen paths and several post-
smoothing algorithms for generated paths to address these issues. Thaker et al. [37] tackled
the problem of excessive turning points in A-star algorithm paths by increasing the offset
distance of obstacles using a buffer area centered on the robot. Experimental results
confirmed that this method resulted in smoother paths. Lu et al. [38] introduced a path-
planning algorithm that combined the A-star algorithm with the Floyd algorithm to reduce
the sharpness of breakpoints in the planned path. Gunawan et al. [39] addressed the issue of
large turning point angles in the traditional A-star algorithm paths by incorporating angle
information between nodes to minimize the turning angle, thereby avoiding potential safety
hazards associated with sudden turns of unmanned vehicles. Sun et al. [40] combined the
A-star algorithm with the variable weight evaluation function of the artificial potential field
(APF) method and optimized the relevant parameters using the PSO algorithm, resulting
in smoother planned paths and enabling dynamic obstacle avoidance.

Environmental factors have a significant impact on global route planning for ships.
Recognizing the limitation of the A-star algorithm in considering only path length, re-
searchers have endeavored to incorporate various environmental factors in the maritime
area that affect navigation. To address the issue of the A-star algorithm’s path being too
close to obstacles, Shu et al. [41] proposed the utilization of an obstacle detection method
to select safer nodes. In their study, Liu et al. [42] improved the algorithm’s cost function
by considering the risk of water currents, presenting an A-star algorithm that addresses
the combination problem of the normal path and the berthing path. Additionally, Liu [43]
integrated environmental water depth interpolation into the algorithm and analyzed the
ship motion characteristics to devise an A-star algorithm that takes into account water
depth risk, effectively reducing the risk associated with water depth along the path.

In summary, researchers have made significant improvements to the A-star algorithm,
resulting in increased efficiency and practicality. However, these improved algorithms
often fail to guarantee safe navigation due to their limited consideration of environmental
factors, ship turning restrictions, and traffic separation rules. While these algorithms may
offer shorter paths, they also introduce higher navigation risks, making them unsuitable for
intelligent navigation [44]. To address these limitations, this paper proposes an improved
A-star algorithm that incorporates various navigation factors. The algorithm comprises risk
model, traffic model, and turn model. The risk model takes into account the influence of
current, water depth, and obstacle distance on navigation risks, thereby avoiding grounding
areas and maintaining a safe distance from obstacles. The traffic model ensures that
ships comply with maritime rules, reducing the risk of collision with incoming ships.
Furthermore, to better align with the dynamic motion characteristics of the ship during the
path-planning stage, the algorithm utilizes a geometric smoothing method. This method
optimizes the path to accommodate the ship’s turning radius, ensuring that it is in line with
the ship’s maneuverability. By considering these factors, the proposed algorithm enhances
both the safety and the practicality of ship navigation.

3. Model Design

3.1. Overview of the Model

When planning a ship’s path, it is crucial to consider the length of the path and various
risks that can impact navigation safety [45]. Turbulent currents, grounding, ship encounters,
and improper maneuvering are among the factors that can compromise the safety of
navigation [46,47]. The influence of water currents on ship movement is particularly
significant in the ocean. The speed and direction of currents can have a profound impact
on a ship’s course. Neglecting the influence of water currents during a voyage can lead
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to deviations from the intended path, resulting in unnecessary delays or increased risks.
Water depth is another critical factor that affects navigation safety. Insufficient water depth
can lead to grounding or damage to the ship. Therefore, when planning a ship’s path, it
is essential to consider the limitations imposed by water depth to avoid potential safety
issues. Furthermore, adherence to traffic separation rules is necessary in busy waterways
to ensure safe and orderly navigation. Failure to comply with these rules can result in
hazardous situations such as traffic congestion or collisions. Considering these factors, path
planning should incorporate risk assessment to enhance navigation safety. By accounting
for turbulent currents, water depth limitations, and traffic separation rules, the path can be
optimized to minimize potential risks and ensure a safe and efficient voyage.

To focus on the given problem, certain assumptions were made in this paper. The over-
all map was assumed to represent a confined ocean environment near a harbor, resulting
in a relatively short total travel distance and no significant environmental changes during
the ship’s journey. Assuming a static environment is reasonable for short-duration travel
of 1–2 h. This is because weather information is typically forecasted and updated on an
hourly basis, with minimal changes expected during this period. Therefore, if the travel
time is <1 h, it can be safely assumed that the environment is static.

To tackle these challenges, three models were developed: the risk model, the traffic
model, and the turn model. Figure 1 illustrates the relationship between the risk factors
and the respective models. By integrating these models into the path-planning process, we
can prioritize safety and ensure the utmost security for ship navigation.

 

Figure 1. Correspondence between risk factors and models.

3.2. Risk Model

Although the traditional A-star algorithm can identify the shortest path, the generated
path often remains very close to obstacles. This approach significantly increases the naviga-
tion risk due to the inherent time lag and inertia in ship movements. During navigation, if
the water currents push the ship toward obstacles, the risk of collision further escalates.
Furthermore, water depth plays a crucial role in safe navigation as it directly affects the
risk of grounding. Therefore, in path planning, it is essential to simultaneously consider
the proximity to obstacles, water depth, and the influence of water and wind currents.

On the basis of the analysis conducted earlier, this paper presents the following
definition of the risk model:

rs(m, n) = robs(m, n) + rdepth(m), (1)

where robs(m, n) denotes the risk from obstacles, and rdepth(m) denotes the stranding risk
from shallow water area. The purpose of designing the model robs(m, n) is to maintain a
certain safe distance from obstacles in the environment and prevent collisions between
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the ship and obstacles caused by wind, water currents, and other factors. The purpose of
designing the model rdepth(m) is to ensure that the ship can avoid grounding or potentially
grounding areas. The expression for robs(m, n) is as follows:

robs(m, n) = e−d(1 + vcurhc), (2)

where d is the distance from a navigable node N[m] to the obstacle node O[n]. Furthermore,
vcur is the current velocity. It should be noted that this article replaced obstacle expansion
with the distance function in Equation (2). This was to prevent the algorithm from being
trapped in a locally optimal solution in a narrow area. Lastly, hc denotes the direction
coefficient, expressed as follows:

hc =

{
−vU cos(θcur − θmn), cos(θcur − θmn) < 0
0, cos(θcur − θmn) ≥ 0

, (3)

where vU is the ship velocity, and θcur represents the angle between the water current
vcur and the horizontal direction. As shown in Figure 2, θmn is the angle between vec-

tor
−−−−−−→
N[m]O[n] and the horizontal direction, while

−−−−−−→
N[m]O[n] represents the angle formed

between the current position of the ship N[m] and the obstacle O[n].

 
Figure 2. Schematic diagram of calculating risk.

In Figure 2, assuming that node N[m] is the node where the ship sails at time ti, it
can be observed that at this moment the ship has collision risks with obstacles O[n] and

O[n + 1]. α represents the angle between the vector
−−−−−−→
N[m]O[n] and the water current vcur.

By calculating α, the risk value at node N[m] can be computed using Equation (2).
To ensure that the ship can avoid grounding areas, we define rdepth(m) as follows:

rdepth(m) =

{ Smin
D(m)

, Smin < D(m)

in f , D(m) ≤ Smin
, (4)

where D[m] is the water depth at node N[m], and Smin is the maximum draft of the ship,
expressed as follows:

Smin = zmax + 0.5Ltanθmax + T + eenc, (5)
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where zmax is the maximum settlement amplitude of ships at different velocity, L is the
length of ships, θmax is the maximum pitch angle, T is the average draft under the mission
load, and eenc is the calculation error.

According to Equation (1), there will be k obstacle nodes near a feasible node N[m],
corresponding to k different risk values. In this case, the maximum value is taken as the
final risk degree.

rs(m, n) = max{rs(m, 1), rs(m, 2), rs(m, 3), . . . , rs(m, k)}. (6)

In addition, a local search is used instead of a global search to save time. The search
range is set to dg, as shown in Figure 3.

 

Figure 3. Schematic diagram of local search.

3.3. Traffic Model

Similar to road traffic, ship navigation is also governed by traffic rules at sea. The
International Regulations for Preventing Collisions at Sea (COLREGS) mandate that ships
should cross separation zones in a direction perpendicular to the separation zone whenever
possible. This rule aims to clarify the intention of crossing, minimize the risk of collision
with other ships within the separation zone, and enhance navigation efficiency. However,
the conventional A-star algorithm does not inherently ensure that the planned path aligns
with the specified direction required by the traffic separation rules. To address this issue,
we define the following traffic model on the basis of the rules:

rtra(m) =

⎧⎨⎩1− cos
(

θt − θship

)
, i f cos

(
θt − θship

)
≥ 0

math.in f , i f cos
(

θt − θship

)
< 0

, (7)

where rtra(m) is the traffic separation cost at node N[m], θt is the direction of traffic rules
toward the true north, N[m]. f is the parent node of N[m], and θship is the direction of path

vector
−−−−−−−−→
N[m]O[m]. f toward the true north, which is the ship’s driving direction. As shown

in Figure 4, the orange horizontal line denotes the traffic separation zone. The orange arrow
is the driving direction specified by the traffic rules, where α = θt − θU is used to calculate
whether the currently planned path conforms to the specified direction. For example, if the
ship continues to follow the path in Figure 4 at time ti+1, the ship will violate the traffic
rules at sea.
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Figure 4. Schematic diagram of the traffic model.

3.4. Turn Model

In actual ship navigation, frequent turning can increase the difficulty of the captain’s
maneuvering and pose a risk to navigation. However, traditional A-star path-planning
algorithms only consider the path length and often include many turning nodes. To address
this issue, this paper presents a turn model to reduce the number of turns in the planned
path. The turn model is defined as follows:

rturn(m) = arcos

⎛⎜⎝−−−−−−−−→N[m]N[m].s
−−−−−−−−→
N[m]. f N[m]

⎞⎟⎠, (8)

where rturn(m) is the turning cost at node N[m], N[m].s is the child node of node N[m], and
N[m]. f is the parent node of node N[m]. As shown in Figure 5, the ship is at node N[m]
at time ti. The turning cost here is estimated by calculating the angle βi. βi is the angle of

vector
−−−−−−−−→
N[m]N[m].si toward the vector

−−−−−−−−→
N[m]. f N[m] . A greater turning range at node N[m]

attracts a greater turning cost. This model not only reduces the number of turns but also
limits the scope of turns to a certain extent.

 
Figure 5. Schematic diagram of the turn model.

4. A-Star Algorithm and Improvements

This section begins by introducing the rules of environmental modeling, which can
help to ensure that the A-star algorithm plans a path that is safer, better suits ship tracking,
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and adheres to traffic separation rules. Next, we propose an improved A-star algorithm
based on the model presented in Section 3.

4.1. Environment Modeling

To accurately represent the path-planning process, it is necessary to create a two-
dimensional environment map. There are several conventional methods for environmental
modeling, including the grid, geometric information, and view methods [48]. The grid
method involves dividing a planar map into a series of grids to create a grid map. This
method is efficient in representing the characteristics of the actual environment while
optimizing time and space consumption. It is also simple and direct, reducing the path
search time and simplifying programming. Therefore, the grid method is utilized in this
study to model the navigation environment.

(1) Water area and water depth division standard

The division of grids into navigable and non-navigable areas can be based on the
boundaries of the environment. A grid that contains objects is considered non-navigable
and denoted in black, representing non-navigable waters. On the other hand, a grid that
does not contain any objects is considered navigable and denoted in white, representing
navigable water areas, as illustrated in Figure 6a. Obstructions that occupy less than
one grid are expanded to ensure grid regularity and facilitate subsequent simulation
implementation. The navigable and non-navigable waters after expansion are depicted
in Figure 6b. The method for establishing the water depth environment follows the same
process as above, as shown in Figure 6c,d.

 

Figure 6. Obstacles division and water depth standards.

(2) Movement rules of ships in the grid environment

Ships can only move within the white grids representing feasible water areas and
cannot cross or appear in the black grids. At the same time, the ship can move in eight
directions within the grid environment, as illustrated in Figure 7.

 

Figure 7. Schematic diagram of eight neighborhoods.

It is worth noting that the algorithm proposed in this paper is also applicable to the
Electronic Nautical Chart (ENC) environment. The specific steps are to import the ENC data
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into the computer for preprocessing and establish the environmental model of the electronic
chart on the basis of the processed ENC data. The environmental model is established
using the grid map method, with each grid containing data on water depth, water currents,
wind currents, and traffic separation rules. Lastly, path planning is performed using the
constructed environment and the improved algorithm, and the resulting path nodes are
displayed on the electronic chart [49].

4.2. Improved A-Star Algorithm

Given the limitations of traditional A-star algorithms in ship path planning, this
section explores an improved A-star algorithm based on the risk models developed in
Section 3.

4.2.1. Traditional A-Star Algorithm

The A-star algorithm is a heuristic algorithm based on the graph method, and it is
also the most effective direct search algorithm for finding the shortest path in static road
networks. Due to its high accuracy and efficiency, it is widely used in global path planning.
The algorithm searches for the path by calculating the cost function of each node in the
field, which has the following form:

F(N[i]) = g(N[i]) + h(N[i]), (9)

where g(N[i]) is the actual cost function from N[start] to N[i], h(N[i]) is the cost estimation
function from N[i] to N[target], and F(N[i]) is the cost estimation function from N[start] to
N[target] through N[i]. Here, h(N[i]) has several forms, which are expressed by Euclidean
distance in this paper, as follows:

h(N[i]) =
√(

xi − xg
)2

+
(
yi − yg

)2, (10)

where (xi, yi) and
(
xg, yg

)
are the current node N[i] and target node N[target] position

coordinates, respectively.

4.2.2. Improved A-Star Algorithm

To incorporate the risk model, traffic model, and turn model into the A-star algorithm,
this paper introduces a redesigned cost function. The improved cost function, denoted as
F(N[i]), is defined as follows:

F(N[i]) = g(N[i])′ + εh(N[i]), (11)

g(N[i])′ = g(N[i]) + πrn(N[i]), (12)

where ε > 0 is a constant coefficient. ε is used to balance the weight between g(n)′ and
h(n). π > 0 is a constant coefficient. g(N[i]) is defined as

g(N[i]) =
t−1

∑
i=0

d(k), (13)

where t is the node amount from N[start] to N[i]. rn(N[i]) is the risk function, which is
defined as follows:

rn(N[i]) = rs(N[i]) + rtra(N[i]) + rturn(N[i]), (14)

where rs(n), rtra(n), and rturn(n) were defined in Equations (1), (7) and (8).
The improved A-star algorithm was designed to consider various factors that affect

navigation safety so that the planned path can meet several key characteristics. Firstly, it can
maintain a safe distance from obstacles in the environment. Secondly, it can avoid shallow
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water areas and reduce the risks associated with currents. Thirdly, it can comply with traffic
separation rules. Lastly, it can minimize the number of turns required. The pseudocode of
Algorithm 1 demonstrates the implementation of the improved A-star algorithm.

Algorithm 1: Improved A-star algorithm

1: Mark N[start] as openlist
2: if not traffic separation rule then

3: rtra = 0 at any time
4: While openlist �= ∅ do

5: Select openlist N[i] whose value of Fn[i] is the smallest
6: if N[i]=N[goal] then

7: return “path Pn is found”
8: else

9: Mark N[i] as closelist
10: if successor Ni[j] of N[i] not in closelist or openlist then

11: Mark Ni[j] as openlist
12: Calculate rs(j), rtra(j), rturn(j) by (1), (7), and (8), respectively.
13: if Ni[j] in openlist and Fnew(Ni[j]) is smaller than Fold(Ni[j]) then

14: Fold(Ni[j]) = Fnew(Ni[j]) and set parent node of N[j] as N[i]
15: return “path Pn is not found”

4.2.3. Smooth Paths with Geometry

The map is modeled using a grid-based approach, and the planned path consists of
line segments formed by the grid. However, the vertices of this path are not conducive to
the tracking and smooth navigation of the ship. Since the dynamic motion characteristics
of the ship play a crucial role in path planning, and the turning radius of the ship is an
important parameter of its dynamic motion characteristics in global path planning, the
planned path must be within the range of the ship’s maneuverability. To address this
issue, this paper adopts the geometric smoothing path method to replace the vertices of the
planned path with curve segments, taking into account the ship’s minimum turning radius
as an important reference parameter. The optimization process is shown in Figure 8.

Figure 8. Principle of geometrically smooth paths.

As shown in Figure 8, pi−1(xi−1, yi−1), pi(xi, yi), and pi+1(xi+1, yi+1) are polyline seg-
ments on the planned path. We use a circle of radius R such that pi−1 pi and pi pi+1 are
tangents to the circle, intersecting at pnew1(xnew1, ynew1) and pnew2(xnew2, ynew2). The calcu-
lation process of pnew1, pnew2 is as follows:

δ = arcos

⎛⎝−−−−→pi−1pi
−−−−→pi+1pi

⎞⎠, (15)

264



J. Mar. Sci. Eng. 2023, 11, 1439

pi pnew1 = pi pnew2 = R× cot
(

δ

2

)
. (16)

The radius of the circle is set to R = pnew1O, and the coordinate scale coefficient ϕ of
the tangent point is set as follows:

ϕ1 =
pi pnew1

pi−1 pi
, ϕ1 =

pi pnew2

pi pi+1
. (17)

From pi−1(xi−1, yi−1), pi(xi, yi), pi+1(xi+1, yi+1), and the coordinate scale coefficient
ϕ, we get

pnew1 = (ϕ1 × xi−1 + (1− ϕ1)× xi, ϕ1 × yi−1 + (1− ϕ1)× yi), (18)

pnew2 = (ϕ2 × xi+1 + (1− ϕ2)× xi, ϕ2 × yi+1 + (1− ϕ2)× yi). (19)

The slopes and formulas of the straight line pi−1 pi and the straight line pi pi+1 are

k1 =
yi − yi−1

xi − xi−1
, y1 = k1·x− xi−1yi − xiyi−1

xi − xi−1
, (20)

k2 =
yi+1 − yi
xi+1 − xi

, y2 = k2·x− xiyi+1 − xi+!yi
xi+1 − xi

. (21)

From the slope k1 and the point pnew1, the vertical straight line y1 and the straight line
y1′ passing through the point pnew1 can be obtained. In the same way, y2′ can be obtained
(y2′ passes through pnew2 and is perpendicular to y2). The intersection of the straight lines
y1′ and y2′ is the center of the circle, and the center of the circle is set to O(xo, yo); then, the
function expression of the curve after smooth geometric optimization is as follows:

f (x) =

⎧⎪⎨⎪⎩
y1, | xi−1 ≤ x ≤ xnew1

±
√

R2 − (x− xo)
2 + yo, | xnew1 < x < xnew2

y2, | xnew2 ≤ x ≤ xi+1

. (22)

In practical applications, we can adjust the curvature of the smooth curve by changing
the size of R, so that the curvature of the optimized curve satisfies the minimum turning
radius of ships.

5. Case Study

Simulation experiments were conducted in this section to validate the effectiveness of
the proposed improved A-star path-planning method. First, the path-planning performance
of the proposed A-star method was compared with traditional A-star methods, considering
obstacles, water depth, water currents, and traffic separation rules. Then, the proposed
improved A-star method was tested in real scenes in Zhoushan and Hainan ports. It
should be noted that the environmental data for Case 2 and Case 3 were obtained from
shipxy.com. In case 2, nautical charts were used for path planning instead of satellite
maps to illustrate the bathymetric boundaries and marine traffic diversion areas. In case 1
and case 2, the China-made autonomous cargo ship, ‘Jindouyun 0’, was selected for the
simulation experiment. The ship’s key parameters are shown in Table 1. The minimum
safe navigation depth was calculated on the basis of the ship’s key parameters.
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Table 1. Ship key parameters.

Parameters Value

Ship length 12.86 m
Ship width 3.8 m

Design maximum draft 1 m
Minimum turning radius R0 36 m

Design velocity 8 knots

5.1. Case 1: Path Planning in Complex Simulation Environment

For this study, we conducted simulation experiments on the Python 3.8 platform and
used a 50 × 40 grid map for the experiment. In order to simulate realistic environmental
conditions, we created a complex environment that included current velocity, shallow
water areas, and traffic separation zones.

5.1.1. Setup

The relevant model parameters need to be determined to establish the proposed model.
The velocity of the current is set to vm = 2m/s. The direction of the current is due east.
The ship velocity is set to vU = 4m/s. N[start] is set to (5, 8), and N[target] is set to (40, 35).
The grid length is set to 20 m. The depth of shallow water is set to 1 m. Other parameters
of the simulation experiment are shown in Table 2. In order to verify the effectiveness of
each model, this section designs a path for each model. Using the model established in
Section 3, the following four different cost functions are used for simulation experiments:
(1) Path1 is the traditional A-star algorithm; (2) Path2 verifies the validity of the risk model,
where rn(N[i]) = rs(N[i]) + rturn(N[i]); (3) Path3 verifies the validity of the traffic model,
where rn(N[i]) = rtra(N[i]) + rturn(N[i]); (4) Path4 simultaneously considers all models in
Section 3, i.e., rn(N[i]) = rs(N[i]) + rtra(N[i]) + rturn(N[i]).

Table 2. Parameter initialization.

Parameters Value

Node range of x-axis [1, 50]
Node range of y-axis [1, 40]

Grid length l 20 m
Minimum radius of ship R0 36 m

π 0.2
ε 0.5

5.1.2. Results

Figure 9 compares the four different path-planning results. Path1 is located close to the
obstacle and passes through a shallow water area, violating traffic rules and increasing the
risk of grounding. Moreover, Path1 has many sharp turns that could lead to ship collisions
and groundings. Path2 starts planning the path toward the upper left direction from the
starting point, aiming to move away from obstacles and reduce the risk of water currents
pushing the ship toward them. This demonstrates the effectiveness of the proposed risk
model in this paper. However, Path2 does not comply with the rule of separated traffic,
which could increase the risk of collision with oncoming ships when navigating in the
opposite direction. Path3 follows the separation rule by driving to the right in the lower part
of the map and crossing the separation zone perpendicularly in the upper part of the map
to reach the destination. This demonstrates the effectiveness of the traffic model proposed
in this paper. However, Path3 is still too close to the obstacle, which is due to the lack of
consideration of the risk model. Path4 is a path planned using the improved algorithm
proposed in this paper that considers multiple risk factors. This path keeps a safe distance
from the obstacle, avoids shallow water areas, and reduces the risk of ship navigation.
Path4 also adheres to traffic separation rules, with fewer turns and a smoother trajectory.
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With the aid of geometrically smooth curves, the optimized path ensures that the curvature
of turns remains within the maneuverability range of the ship, making it more suitable
for safe navigation and tracking. The proposed algorithm comprehensively improves
the safety of path planning in complex marine environments, making the planned route
highly suitable for ship navigation, and demonstrating its superiority over the traditional
methods.

 
Figure 9. Simulation results of four different cost functions.

To further demonstrate the superiority of the improved algorithm, we calculated
risk indicators for two paths: navigation risk rs = rs(m, n). We compared path length,
navigation risk, number of turns, maximum turn angle, and adherence to traffic separation
rules among the four paths. The risk calculation was based on Equation (1) of the risk
model.

The simulation results of the statistical experiment are presented in Table 3. Comparing
the data, we can observe that Path1 planned by the traditional A-star algorithm has the
shortest length. However, it has significantly higher risks of ship grounding and collision,
as well as more turns, indicating a higher navigation risk compared to the algorithm
proposed in this paper. Path2 also considers the risk model and has a navigation risk
close to Path4. Path3 complies with the traffic model and conforms to traffic rules, but
its proximity to the obstacle increases the risk of ship navigation. Paths2–4 have fewer
turns compared to Path1, as they all consider the turn model. Path 4 significantly reduces
various risks at the expense of a certain path length. Meanwhile, the path is smooth and
conforms to traffic separation rules. The turning radius at the path’s bends is within the
ship’s handling capabilities. In summary, the advantages of Path4 prove the effectiveness
of the improved A* algorithm.

Table 3. Comparison of experimental simulation data.

Path Length
(m)

Collision Risk
rs

Turn Times (n)
Compliance with Traffic

Separation Rules

Path1 516.9 30.11 19 No
Path2 545.2 13.53 7 No
Path3 592.1 18.58 8 Yes
Path4 608.7 9.39 8 Yes
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5.2. Case 2: Path Planning in Real Scenes in Zhoushan Port

In this scenario, the effectiveness of the improved A-star method is verified using a
real scene of the hidden reef in Zhoushan Harbor. The ship intends to travel from a starting
point (29◦56.551 N, 122◦13.826 E) to a destination point (29◦56.96 N, 122◦13.60 E). The area
is characterized by numerous hidden reefs that obstruct ships from passing through. In
addition, several shallow areas in this range affect navigation, as depicted in Figure 10. The
grid length is set to 25 m, and the velocity of the water current is set to vc = 1 m/s. The
direction of the water current is northwest. The geometric smooth path radius R is set to
50 m. It should be noted that the reef area does not adhere to traffic separation regulations
due to the low volume of ship traffic in the area, and traffic separation rules are not taken
into account in this case. The remaining parameter settings are the same as in Case 1.

 
Figure 10. The path planned by the proposed A-star algorithm in Zhoushan port, China.

In Figure 10, Path1 and Path2 represent the paths generated by the traditional and
improved A-star algorithms, respectively. From Figure 10, it can be observed that the path
distance planned by the traditional A-star algorithm is close to the reefs. In complex marine
environments, there is a high probability of collision with reefs due to the influence of
water currents, which undermines the assurance of safe ship arrival at the destination.
Furthermore, Path1 passes through two shallow water areas comparable to the ship’s
maximum draft, posing a high risk of grounding. Compared with Path1, Path2 avoids all
shallow water areas and keeps a certain distance from obstacles to ensure that the ship will
not collide with obstacles due to water currents. Table 4 compares various metrics for the
paths. According to the experimental data, Path1 traverses shallow water areas below the
maximum draft of the ship, resulting in an infinite risk of grounding. The navigation risk
associated with Path1 is extremely high, making it unsuitable for ship tracking. On the
other hand, Path2 takes into account multiple safety factors during navigation, exhibiting a
higher level of safety and thus being more suitable for ship operations. Moreover, Path2 has
a turning radius of 50 m (2 grids), well within the maneuverable range of the ship, ensuring
a smooth trajectory. In summary, the improved A-star algorithm significantly reduces ship
risks while slightly increasing the path length. Case 2 demonstrates the effectiveness of the
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proposed model and highlights its practical significance in the context of complex shallow
water ship path planning.

Table 4. Comparison of experimental simulation data.

Path Length (miles) Risk rs Turn Times (n)

Path1 0.52 inf 16
Path2 0.65 21.8 4

5.3. Case 3: Path Planning in Real Scenes in Hainan Port

In this case study, we choose the real scene of Hainan Port to verify the effectiveness
of the improved A-star method. There are multiple traffic separation zones in this area, as
shown in the rectangular area circled by the pink dotted line in Figure 11. The sides of the
traffic separation zone dictate the opposite direction of travel, and ships that violate these
rules run the risk of colliding with incoming ships. Therefore, it is crucial to ensure that
planned routes respect traffic segregation regulations. In order to verify the effectiveness
of the algorithm in this case, the “Yude Ship” is selected for simulation experiments. The
“Yude Ship” has a length of 199 m, a full load draft of 12 m, and a minimum turning radius
of twice the length of the ship. The planning start point (20◦4.755 N, 110◦8.501 E) and end
point (20◦15.392 N, 110◦22.11 E) are set. The area is divided into 100× 100 grids, and the
length of each grid is set to 300 m. The water current velocity vc is 2 m/s, and the direction
is 10◦ northeast. The smooth path radius R is set to two meshes.

 

Figure 11. The path planned by the proposed A-star algorithm in Hainan port, China.

In Figure 11, Path1 and Path2 represent paths generated by the traditional A-star
algorithm and the improved A-star algorithm, respectively. The area framed by the dotted
line of the pink rectangle indicates the traffic control area where ships are required to
obey the traffic separation rules. Pink arrows indicate the navigation direction for each
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area. As shown in Figure 11, although both paths avoid all navigation markers and reach
the destination safely, their planned paths are quite different. Path2 obeys the traffic
separation rules, while Path1 violates the rules, and there is a path traveling in the opposite
direction. Table 5 compares the experimental result data of the two paths. According to
the experimental data, the reverse driving of Path1 violates the traffic rules, resulting in an
infinite risk value. Path2 sacrifices a certain path length to make the planned path comply
with traffic separation rules. The path planned by the improved A* algorithm improves the
safety of the path and enables the ship to follow the prescribed channel. In summary, Case
3 verifies the effectiveness of the improved A-star algorithm.

Table 5. Comparison of experimental simulation data.

Path Length
(miles)

Risk rs Turn Times (n)
Compliance with Traffic

Separation Rules

Path1 17.38 inf 6 No
Path2 19.54 25.8 4 Yes

6. Conclusions

This paper presented a ship path-planning approach that considers multiple safety
factors. The proposed algorithm aims to enhance ship navigation safety by considering
environmental effects, traffic regulations, and ship maneuvering constraints. It considers
environmental factors such as water currents and water depth, as well as traffic regulations
and the minimum turning radius of the ship. The effectiveness of the proposed A-star
algorithm was demonstrated through three cases. The simulation results showed that the
algorithm effectively considers multiple risk factors during navigation, maximizing the
safety of the voyage. The planned paths not only comply with traffic regulations but also
remain within the ship’s maneuvering capabilities, ensuring safe and efficient navigation.
Additionally, the algorithm strikes a balance between path length and navigation safety,
reducing the risks of ship collisions and groundings. These improvements to the A-
star algorithm have significant potential for enhancing path-planning safety during ship
navigation. The findings contribute to the field of ship navigation safety, benefiting the
maritime industry and mitigating the risks associated with ship collisions and groundings.

With the rapid development of meteorology and measurement technology, more
accurate environmental information can be forecasted. By utilizing this information, safer
and more precise paths can be generated. The proposed path-planning system is generally
applicable to ships of any size, as most parameters such as ship dimensions, maneuvering
constraints, and water depth are used as input parameters.

A major drawback of the proposed path-planning method is the increased time com-
plexity due to the increased number of nodes and computational burden. This can be
reduced through code optimization, and the time used for a priori path planning before
actual navigation would not substantially affect the operation of the ship. Second, some
assumptions and simplifications in this article may differ from reality. In future research,
the consideration of factors such as weather can be explored to plan paths that avoid
adverse weather conditions.
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Abstract: Outliers of ship trajectory from the Automatic Identification System (AIS) onboard a ship
will affect the accuracy of maritime situation awareness, especially for a regular ship trajectory mixed
with a spoofing ship, which has an unauthorized Maritime Mobile Service Identification code (MMSI)
owned by a regular ship. As has been referred to in the literature, the trajectory of these spoofing
ships would simply be removed, and more AIS data would be lost. The pre-processing of AIS data
should aim to retain more information, which is more helpful in maritime situation awareness for
the Maritime Safety Administration (MSA). Through trajectory feature mining, it has been found
that there are obvious differences between the trajectory of a regular ship and that of a regular ship
mixed with a spoofing ship, such as in terms of speed and distance between adjacent trajectory points.
However, there can be a long update time interval in the results of severe missing trajectories of a
ship, bringing challenges in terms of the identification of spoofing ships. In order to accurately divide
the regular ship trajectory and spoofing ship trajectory, combined with trajectory segmentation by
the update time interval threshold, the isolation forest was adopted in this work to train the labeled
trajectory point of a regular ship mixed with a spoofing ship. The experimental results show that the
average accuracy of the identification of spoofing ships using isolation forest is 88.4%, 91%, 93.1%,
and 93.3%, corresponding to different trajectory segmentation by update time intervals (5 h, 10 h, 15 h,
and 20 h). The research conducted in this study can almost eliminate the outliers of ship trajectory,
and it also provides help for maritime situation awareness for the MSA.

Keywords: automatic identification system; spoofing ship; missing points; jumping points; trajectory
segmentation; isolation forest

1. Introduction

On 1 June 2020, the special rectification of national maritime communication order for
radio equipment on board ship began, such as AIS, very-high-frequency communication
(VHF), and so on. The China MSA at all levels have concentrated on the monitoring of
maritime communication order and improving the ability of maritime communication
supervision and maritime service support in China. The special rectification focuses on
the rectification of outstanding problems, such as irregularly authorized ship MMSI, one
MMSI owned by several ships, several MMSI owned by one ship, the illegal occupation of
channels, and the violation of communication order.

Among the violations of maritime communication order mentioned above, the irreg-
ular use of AIS may have a significant impact on the quality of AIS data [1]. The quality
of AIS data is a subject of interest for many researchers [2–5], but published research on
pre-processing raw data to improve quality is limited. Shelmerdine took the development
of a vessel database as the key to managing AIS data and for quality control [6]. All fields
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were checked for obvious outliers. If it was not possible to correct an outlier, it was removed.
The common method to filter inaccurate single position points is the threshold of position,
speed, and course [7]. To solve the problem of sharing MMSI numbers, a method of elim-
ination was applied by Pallotta et al. [8]. Mazzarella et al. proposed a nearest-neighbor
approach to assign AIS messages to the right tracks, but there was no detailed experimental
method, performance, or results [9]. Wu et al. created a simple algorithm to calculate the
likelihood of an association between an AIS message and each candidate vessel [10]. It is
used for processing massive data on a global scale, but it cannot be applied in a small region
where AIS messages are sampled at a high rate. The reason is that the algorithm is unable
to handle an association in the case where there are at least three consecutive abnormal
trajectory points. A similar method with speed threshold was proposed by Greidanus
et al. [11]. Given that none of these techniques are universally applicable, it is necessary to
propose a method with general applicability.

Wei et al. observed an abnormal ‘jumping point’ in ship trajectory by calculating the
speed between adjacent ship trajectory points and setting the speed threshold according
to ship maneuvering characteristics, which meant that abnormal trajectory points were
identified [12]. Since the constant velocity threshold method does not consider the change in
the motion state of a moving ship at different times, it can only detect some abnormal points
whose velocity exceeds the specified threshold, and the robustness of this method is poor.
Han et al. proposed a novel trajectory outlier detection algorithm based on the adaptive
threshold, designing a local threshold window and mean filter window, and calculated the
local speed (acceleration) threshold and global speed (acceleration) threshold, and found
three classes of abnormal trajectory points, including isolated outliers, continuous outliers,
and obvious outliers [13]. Zhang et al. calculated the bow deflection rate between adjacent
trajectory points by counting the speed distribution of ship trajectory points, setting the
speed threshold of trajectory points according to the probability of the speed distribution
of adjacent trajectory points, setting the threshold of the bow deflection rate according to
the characteristics of ship cycle, and identified abnormal trajectory points [14]. Liu et al.
converted ship speed, heading, and position from AIS data into evidence reliability and
used evidence reasoning rule synthesis to detect three classes of trajectory points, referring
to the manual identification method of abnormal AIS data adopted by the MSA [15,16].
Chen et al. and Guo et al. cleaned ship AIS data in these three rules: abnormal ship position
(the longitude and latitude of ship are beyond the scope of study area), abnormal speed
(the difference between adjacent trajectory points exceeds speed threshold), and abnormal
rate of turning (the course difference between adjacent trajectory segments exceeds rate
of turning threshold) [17–20]. Data derived from AIS plays a key role in water traffic
data mining. However, there are various errors regarding time and space. To improve
availability, AIS data quality dimensions are presented by Zhao et al. to detect errors of
AIS tracks, including physical integrity, spatial logical integrity, and time accuracy [21–23].
After systematic summary and analysis, algorithms for error pre-processing are proposed.
In the aspect of abnormal AIS data identification, combined with the characteristics of
adjacent trajectory points in a period of time, an abnormal AIS data identification model
based on BP neural network was constructed by Wang et al. [24].

Zhang et al. designed an MMSI spoofing detection algorithm based on the spatiotem-
poral data provided by AIS and radar. When a ship is monitored by AIS and radar before
and after MMSI spoofing, both monitoring processes continue for a period of time, meaning
the MMSI spoofing algorithm demonstrates a good performance [25]. Iphar et al. propose a
rule-based method for data integrity assessment, with rules built from the system technical
specifications and by domain experts, formalized by a logic-based framework, resulting in
the triggering of situation-specific alerts [26–28]. Jeong et al. provided an automatic ship-
ping route construction method using functional data analysis (FDA), and the proposed
approach includes two steps: outlier detection and shipping route construction [29]. Huang
et al. proposed a new method for detecting anomalous vessel dynamics using functional
data analysis. Empirical investigations of this approach demonstrate the effective detection

274



J. Mar. Sci. Eng. 2023, 11, 1516

of outlier flows in terms of ship traffic volume [30]. In summary, researchers regard outliers
in trajectory points as random error values and delete them in order to clean the trajectory.
However, these outliers may be the trajectory point of another ship, that is, the trajectory of
a spoofing ship sharing the same MMSI with other regular ship. Moreover, due to a large
number of missing trajectories, the speed between adjacent trajectory points cannot be used
as a basis for distinguishing the trajectory points of a spoofing ship and regular ship.

In this paper, we aim to propose a novel spoofing ship identification framework with
the support of trajectory segmentation. Our main contributions can be summarized as
follows: (1) We mined the trajectory feature of a regular ship and spoofing ship and obtained
the correlation between the time interval and distance and average sailing speed between
the adjacent trajectory points for a regular ship and spoofing ship. (2) We segmented ship
trajectory by considering the ratio of missing trajectory points and distribution of the time
interval between adjacent trajectory points, and obtained the trajectory segment with a
low missing points ratio. (3) Considering the low ratio of jumping trajectory points in the
data sample and the higher identification efficiency of isolation forest, we adopted isolation
forest to identify a spoofing ship and testified the proposed framework performance on
20 regular ship mixed with spoofing ship trajectories. We aim for this study to be able to
help the MSA identify spoofing ship trajectories and thus take early warning measurements
to enhance maritime traffic efficiency and safety. The remainder of this paper is organized
as follows. We introduce the data source used in our study in Section 2. After that,
the methodology details about trajectory feature mining of the AIS data are illustrated
in Section 3, and then isolation forest used for identifying spoofing ships is presented,
combined with trajectory segmentation. The experimental results are shown in Section 4.
Section 5 briefly discusses the study and illustrates future work.

2. Data

Shanghai Meili Shipbuilding Technology Co., Ltd. (Shanghai, China) provides large-
scale AIS data, which benefit many AIS-relevant studies due to their public accessibility
(https://www.hifleet.com/, accessed on 1 June 2023). The hifleet has online access to
over 50 AIS satellites and over 3000 AIS base stations, receiving 150 million AIS data per
day, as well as purchase Lloyd’s ship archives and access global electronic chart data and
ocean meteorological data. The original AIS dataset includes both kinematic and static
information for a ship, which contains the MMSI, latitude, longitude, speed over ground
(SOG), heading, course over ground (COG), timestamp, call sign, port of call, and so on.

When collecting records of the port of call for container ships, it was found that some
ships continuously call at ports that are far apart within a short time interval. It was found
that there were jumping points in the trajectories of these ships when selecting the real-time
trajectories of these container ships within the corresponding statistical time. Due to the
presence of jumping points in these trajectories, the trajectories of these container ships also
exhibit jumping characteristics, rather than showing continuity like those of regular ships.
Consequently, we collected the AIS data of container ships which have trajectory jumping
points and labeled them with different colors for different ships. We collected 20 container
ships and 52,538 AIS data samples from 1 January 2017 to 31 December 2017 (see Figure 1),
and the average time interval for sampling the AIS data was 1 h.

275



J. Mar. Sci. Eng. 2023, 11, 1516

Figure 1. Raw AIS data of regular container ships mixed with spoofing ships.

3. Methodology

We were affected by the limited coverage of AIS base stations, limited AIS communi-
cation capacity, and the illegal use of unauthorized ship-borne AIS, such as a ship leaving
the coverage area of AIS base stations, the quantity of ships exceeding AIS communication
capacity, the deliberate closure of ship-borne AIS, the use of the same MMSI for multiple
ships or the use of multiple MMSI for one ship, resulting in large quantities of missing or
jumping trajectories. To address this issue, we firstly implemented trajectory characteris-
tics mining and trajectory segmentation to obtain the distribution of speed and distance
between adjacent trajectory points and then identified spoofing ships using isolated forest.
The schematic overview for the proposed framework is shown in Figure 2. In order to
accurately describe the ship motion pattern, ship trajectory is defined as follows:

S = {{S1}, {S2}, . . . , {Si}, . . . , {Sm}} (1)

Si =
{

s1
i , s2

i , . . . , sk
i , . . . , sn

i

}
(2)

sk
i = (mk

i , tk, λk
i , φk

i , vk
i , ck

i ) (3)

In Equation (1), {Si} represents the trajectory of ship i. In Equation (2), sk
i represents

the trajectory point of ship i at time tk. In Equation (3), mk
i represents the MMSI of ship

i, tk represents the update time of AIS data, λk
i and φk

i represents the ship longitude and
latitude at time tk, vk

i represents ship speed at time tk, and ck
i represents ship course at time

tk.

3.1. Trajectory Feature Mining

According to the trajectory point distribution for missing and jumping ship trajec-
tory, ship trajectory points are divided into four categories: regular ship trajectory points
(Normal_Point, abbreviated as N_P), spoofing ship trajectory points (Spoofing_Point, ab-
breviated as S_P), and confusion points (No Labeled_Point, abbreviated as NL_P).

In order to accurately detect spoofing ship trajectory points, the distance between ad-
jacent trajectory points and average sailing speed are two important parameters. Generally
speaking, average sailing speed between adjacent trajectory points is consistent with the
ship maneuvering performance for regular ship. Taking the cargo ship as an example, the
speed of this ship would not exceed 50 knots. Therefore, two adjacent trajectory points
whose average sailing speed exceeds the speed threshold must not belong to the same ship;
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accordingly, the trajectory points of regular ships mixed with a spoofing ship can be effec-
tively identified. The average speed between adjacent trajectory points is closely related
to the update time interval of trajectory points, as well as the distance between adjacent
trajectory points. The distance between adjacent trajectory points could be calculated by
spherical distance (namely, Great Circle distance), as calculated in Equation (4), and speed
vavg

k, k+1
i between adjacent trajectory points was calculated, as in Equation (5):

dk,k+1
i = a cos

(
sin(φk+1

i ) ∗ sin(φk
i ) + cos(φk+1

i ) ∗ cos(φk
i ) ∗ cos(λk+1

i − λk
i )
)

(4)

vavg
k,k+1
i =

dk,k+1
i

t(k+1) − tk
=

dk,k+1
i
Δt

(5)

In Equation (5), Δt represents the update time interval of the trajectory points. If the
update time interval of the trajectory point is not affected by the working performance of
the AIS base station and traffic density, and is only related to ship speed, the trajectory point
would update more frequently. At this time, the distance between adjacent trajectory points
and the speed of navigation have good discrimination between regular ship trajectory
and regular ship trajectory mixed with spoofing ship. The average sailing speed between
regular ship trajectories is within the speed threshold, as shown in Equation (6), while the
average sailing speed among a regular ship trajectory mixed with a spoofing ship is beyond
the speed threshold, as shown in Equation (7).

Δt < Δt(th), dk,k+1
i < dth ∧ vavg

k,k+1
i < vavg(th(min)) (6)

Δt < Δt(th), dk,k+1
i ≥ dth ∧ vavg

k,k+1
i ≥ vavg(th(max)) (7)

Figure 2. Overview for the proposed spoofing ship identification frame work.
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In Equation (6), Δt(th) represents the threshold of the update time interval between
adjacent trajectory points. vavg(th(min)) represents the threshold of minimum speed between
adjacent trajectory points, that is, the normal navigation speed between adjacent trajectory
points belonging to the same ship, abbreviated as vth(min). dth represents the threshold of
minimum distance between adjacent trajectory points, corresponding to vth(min).

In Equation (7), vavg(th(max)) represents the threshold of maximum speed between
adjacent trajectory points, which is much larger than the normal navigation speed between
the adjacent trajectory points of a regular ship, abbreviated as vth(max).

When the continuity of ship trajectories is good, that is, the time interval between
trajectory points is short, there is a clear distinction between the distance and average
sailing speed between regular ship trajectory points compared to the regular ships mixed
with spoofing ships. However, due to the ship trajectory being missing, the time interval
between ship trajectory points becomes longer, and the average sailing speed between
them will be confused, making it difficult to identify spoofing ships. Therefore, trajectory
segmentation is very necessary as it can convert a poorly continuous ship trajectory into
several well continuous trajectory segments, which helps to identify the trajectory points of
spoofing ships.

3.2. Trajectory Segmentation

For missing ship trajectory, re-emerged regular ship trajectory points may be identified
as the trajectory points of a spoofing ship because the distance exceeds the corresponding
threshold. At the same time, the re-emerged trajectory points of a spoofing ship may be
misjudged as regular ship trajectory points due to the speed between adjacent trajectory
points being within a corresponding speed threshold, as shown in Equation (8).

According to Section 3.1 of the paper, with the increase in the time interval between
adjacent trajectory points, the average sailing speed between regular ship trajectory points
remains unchanged, but the distance between trajectory points will gradually increase.
However, the distance between adjacent trajectory points for the regular ship mixed with
spoofing ship remains unchanged, but the average sailing speed between adjacent trajectory
points will gradually decrease. Therefore, through trajectory feature mining in Section 3.1, it
can be observed that when the time interval between adjacent trajectory points increases to
a certain value, the distance between regular ship trajectory points is close to that between
regular ship trajectory points mixed with spoofing ships, or the average sailing speed
between regular ship trajectory points mixed with spoofing ships is close to that between
regular ship trajectory points. Consequently, this time interval can be used as the threshold
for trajectory segmentation.

Moreover, the time interval threshold for trajectory segmentation varies due to the
distance between the trajectory points of the spoofing ship and the regular ship trajectory
points. For spoofing ship trajectory points that are close to regular ship trajectory points, or
overlapped with regular ship trajectory, when the time interval between adjacent trajectory
points is small, trajectory features for this class of a regular ship mixed with a spoofing
ship would be similar to regular ships. Therefore, it is necessary to set a small time interval
threshold for trajectory segmentation. For spoofing ship trajectory points that are far away
from regular ship trajectory points, these two ship trajectories will not overlap. Only when
the time interval between adjacent trajectory points is large will the regular ship trajectory
characteristics mixed with a spoofing ship be similar to regular ships. Therefore, a larger
time interval threshold can be set for trajectory segmentation.

In order to avoid error identification for missing ship trajectory points, ship trajectory
could be segmented according to the threshold of the update time interval, as shown in
Equations (9)–(12).

Δt ≥ Δt(th), dk,k+1
i ≥ dth ∧ vavg

k,k+1
i < vavg(th(min)) (8)
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Si =
{

TR1
i , TR2

i , . . . , TRj
i , TRk

i , . . . , TRm
i

}
(9)

TRj
i =

{
sj+1

i , sj+2
i , . . . , sk

i )
∣∣∣tk+1 − tk > Δtth

}
(10)

TRk
i =

{
sk+1

i , sk+2
i , . . . , sk+m

i

∣∣∣tk+(m+1) − tk+m > Δtth

}
(11)

f lag(sk+1
i ) =

{
NN_P, Δt1 ≥ Δt(th) ∧ f lag(sk

i ) = N_P
NN_P, Δt2 ≥ Δt(th) ∧ f lag(sk

i ) = S_P
(12)

In Equations (9)–(11), TRj
i and TRk

i represent the trajectory segmented by the corre-
sponding time interval threshold. In Equation (12), sk

i represents the trajectory point of
ship i at time tk, and sk+1

i represents the trajectory point of ship i at time t(k+1). f lag(sk
i )

represents the class of trajectory point sk
i , and f lag(sk+1

i ) represents the class of trajectory
point sk+1

i . Δt1 represents the time difference between the current trajectory point and
latest time trajectory point in N_P. Δt2 represents the time difference between the current
trajectory point and latest time trajectory point in S_P. NN_P represents a new class of
points derived from the missing ship trajectory, namely the trajectory points of a new
regular ship.

3.3. Identification of Spoofing Ship via Isolation Forest

The trajectory segment characteristics between a regular ship and a regular ship mixed
with a spoofing ship have an obvious difference, and the proportion of the abnormal
trajectory segment is small. In Figure 1, there are only 10 percent of spoofing ship trajectory
points included in the overall AIS data sample. Therefore, the isolation forest is applicable
for spoofing ship identification for the AIS data sample of the paper. Ship trajectory is
divided into a set of trajectory segments composed of adjacent trajectory points. In Equation
(13), TRj

i is a set of trajectory segments composed of the adjacent trajectory points of ship i,
defined as follows:

TRj
i =

{
trj+1,j+2

i , trj+2,j+3
i , . . . , trk−1,k

i

∣∣∣0 ≤ j ≤ k, 1 ≤ k ≤ n
}

(13)

trk−1,k
i = (dk−1,k

i , vavg
k−1,k
i ) (14)

In Equation (13), n is the number of trajectory points of ship i.
A sample with the number of m is selected from the mother sample. A dimension of

the sample is randomly selected, and a segmentation value is also selected. The first isolated
tree is constructed according to the binary tree method. Samples less than the segmentation
value are divided into the left cross tree, and samples greater than the segmentation value
are divided into the right cross tree. Then, the first isolated tree would be constructed
until the number of segmentations reaches h. The average path length of isolated trees is
calculated as in Equation (15):

c(m) = 2 ∗ (ln(m− 1) + 0.5772156649)− 2(m− 1)
m

(15)

In Equation (15), m represents the number of sub-sampling points.
When the path length of sample tr in j isolated tree is set as htr

j , the expected path
length of sample tr in all isolated trees is calculated as in Equation (16):

E(htr
j ) =

p
∑

j=1
htr

j

p
(16)
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In Equation (16), p represents the number of isolated trees, and h represents the
restricted height of isolated trees.

The abnormal score s(tr) of sample tr is the basis for judging whether the sample is an
outlier. The calculation method is as follows:

s(tr) = 2
−E(htr

j )

c(m) (17)

The threshold of the abnormal score of sample tr is set to str(th), and the discriminant
method of the outliers is as follows:

label(tr) =
{

1, s(tr) > s(tr)th
0, s(tr) ≤ s(tr)th

(18)

In Equation (18), label(tr) is the category labeling of ship trajectory segment tr, and
1 means that the ship trajectory segment belongs to an outlier, that is, that the trajectory
segment is composed of two types of ship trajectory points (that is the regular ship trajectory
mixed with that of the spoofing ship). 0 indicates that the ship trajectory segment is
normal, that is, the trajectory segment is composed of only the regular ship trajectory point.
Combined with trajectory segmentation, the outliers of ship trajectory points are identified
as follows:

f lag(sk+1
i ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S_P, label(tr) = 1∧ f lag(sk

i ) = N_P
N_P, label(tr) = 0∧ f lag(sk

i ) = N_P
N_P, label(tr) = 1∧ f lag(sk

i ) = S_P
S_P, label(tr) = 0∧ f lag(sk

i ) = S_P

(19)

In Equation (19), if the trajectory segment is labeled as 0, indicating that distance and
speed for the trajectory segment tend to be normal, then the trajectory points at the adjacent
time have the same category and belong to one ship. Conversely, it shows that the distance
and speed for the trajectory segment tend to be abnormal, meaning the trajectory points at
adjacent times belong to two different ships.

4. Experiments

According to the trajectory characteristics of regular ships mixed with spoofing ships,
these characteristics can be divided into the following four categories: 1© the regular
ship trajectory is continuous, while the spoofing ship trajectory points are concentrated;
both ship trajectories are not overlapped (class I spoofing ship); 2© both trajectories are
continuous and not overlapped (class II spoofing ship); 3© the regular ship trajectory is
continuous, while the spoofing ship trajectory is concentrated, and both ship trajectories
are overlapped (class III spoofing ship); and, finally, 4© both trajectories are continuous and
overlapped (class IV spoofing ship), as shown in Figure 3. In Figure 3, there appears to
be a phenomenon of trajectory point jumping due to the trajectory points of a spoofing
ship (labeled with orange dots) mixed in a regular ship trajectory (labeled with blue dots).
In Figure 3a,c, there are only some scattered points of the spoofing ship, and they are
concentrated in certain areas and taken as some isolated outliers. In Figure 3b,d, there
are continuous trajectory points of the spoofing ship, which is obviously the trajectory of
another ship that occupies the same MMSI as a regular ship, namely a spoofing ship.

When navigating at sea, the distance between adjacent trajectory points is almost
linearly related to the update time interval of trajectory points, as shown in Figure 4a, while
the speed between the adjacent trajectory points remains almost unchanged, as shown in
Figure 4b. If there are two classes of ships with the same MMSI at sea, that means that
the trajectory of a regular ship has been mixed with a spoofing ship. The variation in
the trend of average sailing speed and distance between adjacent trajectory points is no
longer consistent with Figure 4a,b, as shown in Figure 4c,d. The distance between adjacent
trajectory points is large and almost does not change with time, while the speed between
trajectory points decreases exponentially with time.
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(a)                                    (b) 

 
(c)                                  (d) 

Figure 3. Distribution of regular ship trajectory points mixed with spoofing ship: (a) class I; (b) class
II; (c) class III; (d) class IV.
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Figure 4. Distribution of distance and speed between adjacent trajectory points: (a) distance distribu-
tion of regular ship; (b) speed distribution of regular ship; (c) distance distribution of regular ship
mixed with spoofing ships; (d) speed distribution of regular ship mixed with spoofing ships.
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4.1. Distribution of Speed and Distance between Adjacent Trajectory Points

In order to set a reasonable threshold of average sailing speed between adjacent
trajectory points, it is vital to understand the distribution of the average sailing speed.
Through trajectory feature mining, it was found that the average sailing speed among
regular ship trajectory points is normally distributed, and the expected value in Figure 5a
is 12.5 knots. Average sailing speed between different trajectory points conforms to normal
distribution, and expected value in Figure 5b is 2750 knots. Figure 5c shows the probability
distribution diagram of average sailing speed among trajectory points, while Figure 5d
shows the variation in the trend of the cumulative probability of average sailing speed
between trajectory points. Among them, 82.59% of the average sailing speed between
trajectory points is less than 16 knots, which can be used as the average sailing speed
threshold for identifying spoofing ship trajectory points.
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Figure 5. Speed distribution of trajectory segment: (a) speed of trajectory segment for regular ship;
(b) speed of trajectory segment for regular ship mixed with spoofing ship; and (c,d) probability
distribution of speed among trajectory segments for regular ship mixed with spoofing ship.

Through trajectory feature mining, it was found that the distance between regular
ship trajectory points is normally distributed, with the expected value in Figure 6a being
20 nautical miles. The distance between trajectory points mixed with spoofing ships is
normally distributed, and the expected value in Figure 6b is 800 nautical miles. Figure 6c
shows the probability distribution of the distance between adjacent trajectory points, while
Figure 6d shows the variation in the trend of the cumulative probability of the distance
between adjacent trajectory points. Among them, 82.42% of the distance between adjacent
trajectory points is less than 80 nautical miles, which can be used as the threshold of the
distance between adjacent trajectory points for identifying spoofing ship trajectory points.
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Figure 6. Distance distribution of trajectory segment: (a) trajectory segment distance among reg-
ular ship; (b) trajectory segment distance among regular ship mixed with spoofing ship; and
(c,d) probability distribution of trajectory segment distance among regular ship mixed with spoofing ship.

With regard to time interval between adjacent trajectory points, it is found that time
interval of regular trajectory points is normally distributed through statistical learning, and
the expected value is 1.5 h. However, the time interval between some adjacent trajectory
points is relatively large, but the ratio of these trajectory segments is relatively small. As the
time interval between trajectory points increases, the proportion of the trajectory segment
gradually decreases. The distribution pattern of the time intervals between adjacent
trajectory points is shown in Table 1.

Table 1. Trajectory segment number distribution for various time intervals.

Time Interval
(Hours)

Corresponding
Number of

Trajectory Segment

The Number of
Overall Trajectory

Segment

Trajectory Segment
Ratio

(Percent)

≤1 25,009 52,537 47.6
(1, 2) 24,025 52,537 45.73
(2, 3) 1686 52,537 3.2
(3, 4) 598 52,537 1.15
(4, 5) 337 52,537 0.64
(5, 10) 603 52,537 1.15

(10, 15) 142 52,537 0.27
(15, 20) 53 52,537 0.1

>20 84 52,537 0.16

Figure 7 shows the distribution pattern of the distance and average sailing speed
between adjacent trajectory points. The blue dots represent the scatter plots of distance
and average sailing speed between regular ship trajectory points, while the orange dots
represent the ship trajectory mixed with spoofing ship trajectory points. In Figure 7a, when
the time interval between adjacent trajectory points is within 5 h, the continuity of the ship’s
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trajectory is good, and the blue and orange points have a good distinguishing ability. When
the time interval between ship trajectory points exceeds 5 h, the blue and orange points will
overlap, making it difficult to identify the trajectory points of the spoofing ship, as shown
in Figure 7b. Moreover, the longer the time interval between adjacent ship trajectory points,
the less easily the regular ship trajectory and the ship trajectory mixed with spoofing ships
are identified, as shown in Figure 7c,d.
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Figure 7. The distance and average sailing speed distribution of trajectory segment corresponding to
various time interval between adjacent trajectory points: (a) time interval within 5 h; (b) time interval
beyond 5 h and within 10 h; (c) time interval beyond 10 h and within 15 h; and (d) time interval
beyond 15 h and within 20 h.

4.2. Identification of Spoofing Ships Based on Trajectory Segmentation and Isolation Forest

For the trajectory of classes I, II, III, and IV of the spoofing ship, the accuracy of
identifying outliers of the ship trajectory shows the following trend with the number of sub-
sampling points and height of the isolated tree. Figure 8 reflects a correlation between the
accuracy of identifying outliers and the number of sub-sampling points. For the trajectory
of classes I, II, III, and IV of spoofing ships, the accuracy of identifying outliers of trajectory
points gradually decreases, and the error rate within the identification of regular ship
trajectory points gradually decreases, with an increase in the number of sub-sampling
points. The number of sub-sampling points is one of the important parameters of the
isolation forest, which would affect the true positive rate (outliers correctly identified)
and false positive rate (trajectory points of regular ship wrongly identified). Generally
speaking, the higher the true positive rate is, and the lower the false positive rate is, the
more reasonable the number of sub-sampling points is. In Figure 8, when the number of
sub-sampling points is about 100, the true positive rate is higher than 0.95, and the false
positive rate is lower than 0.05, so the number of sub-sampling points is set as 128.
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Figure 8. The correlation between True Positive Rate, False Positive Rate, and the number of sub-sampling
points for spoofing ship trajectory identification: (a) class I; (b) class II; (c) class III; (d) class IV.

Figure 9 reflects a correlation between the accuracy of identifying outliers and the
height of isolated trees. For the trajectory of classes I, II, III, and IV spoofing ships, the accu-
racy of identifying outliers of trajectory points gradually increases, and the identification
error rate of regular ship trajectory points also gradually increases, with an increase in the
height of isolated trees. The height of isolated trees is one of the important parameters
of isolated forest. The higher the isolated tree height is, the more effectively true positive
samples are identified (outliers correctly identified). However, as isolated tree height in-
creases, some false positive samples may also be mistaken for positive samples (regular
ship trajectory point wrongly identified). Generally speaking, the higher the true positive
rate is, and the lower false positive rate is, the more reasonable the height of the isolated
trees is. In Figure 8, when the height of isolated trees is about eight, the true positive rate is
higher than 0.95, and the false positive rate is lower than 0.05, so the height of isolated tree
is set as eight.

In Figures 10–13, the N_P and S_P of the ship trajectory are labeled with blue and
orange dots, and the NL_P of the ship trajectory are labeled with red dots. For outliers of
trajectory points that cannot be identified by statistical learning, the number of unidentified
trajectory points shows the following trend after adopting the isolated forest algorithm
for recognition. The number of unidentified trajectory points for class I spoofing ships
gradually decreases with an increase in the trajectory segmentation time; the specific
values are listed as 32, 19, 12, and 9, respectively, as shown in Figure 10. The number
of unidentified trajectory points for class II spoofing ships gradually decreases with an
increase in the trajectory segmentation time, with specific values of 5, 3, 1, and 1, as shown
in Figure 11. The number of unrecognized trajectory points for class III spoofing ships
gradually decreased with an increase in the trajectory segmentation time; the specific values
are listed as 20, 11, 8, and 4, as shown in Figure 12. The number of unrecognized trajectory
points has always been 0 for class IV spoofing ships, as shown in Figure 13.
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Figure 9. The correlation between true positive rate, false positive rate, and tree height for spoofing
ship trajectory identification: (a) class I; (b) class II; (c) class III; and (d) class IV.

 
(a)                                    (b) 

 
(c)                                  (d) 

Figure 10. Identification of outliers for class I spoofing ships via isolation forest: (a) trajec-
tory segmented by 5 h, (b) trajectory segmented by 10 h, (c) trajectory segmented by 15 h, and
(d) trajectory segmented by 20 h.
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(a)                                    (b) 

 
(c)                                  (d) 

Figure 11. Identification of outliers for class II spoofing ships via isolation forest: (a) trajec-
tory segmented by 5 h, (b) trajectory segmented by 10 h, (c) trajectory segmented by 15 h, and
(d) trajectory segmented by 20 h.

 
(a)                                    (b) 

 
(c)                                  (d) 

Figure 12. Identification of outliers for class III spoofing ships via isolation forest: (a) trajec-
tory segmented by 5 h, (b) trajectory segmented by 10 h, (c) trajectory segmented by 15 h, and
(d) trajectory segmented by 20 h.
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(a)                                    (b) 

 
(c)                                  (d) 

Figure 13. Identification of outliers for class IV spoofing ships via isolation forest: (a) trajec-
tory segmented by 5 h, (b) trajectory segmented by 10 h, (c) trajectory segmented by 15 h, and
(d) trajectory segmented by 20 h.

As can be seen in Figure 14, the isolation forest was adopted to continue identifying
the outliers of trajectory points that could not be identified through statistical learning.
The time interval for trajectory segmentation increased from 5 h to 20 h, and the accuracy
of identifying outliers for class I spoofing ships improved first and then decreased, with
specific values of 95.7%, 98.3%, 94.5%, and 90.4%, gradually improved specific values of
76.4%, 86.9%, 94.4%, and 94.4% for class II spoofing ships, and gradually improved specific
values of 88.2%, 91.9%, 93.4%, and 98.1% for class III spoofing ships. However, the accuracy
of identifying outliers for class IV spoofing ships remains high and unchanged, mainly due
to the short time interval among trajectory points, with constant values of 100%.
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Figure 14. Comparison of the accuracy of identifying outliers for four classes of spoofing ships.
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In Figure 14, among the four classes of regular ship trajectories mixed with spoofing
ships, the identification accuracy of class IV and class I is relatively high, reaching 100%
and 95.7%, respectively, while the identification accuracy of class II and class III is relatively
low, at only 76.4% and 88.2%. The segmentation threshold for these four types of ship
trajectories is all 5 h, and the reason for the inconsistent identification accuracy is that the
ratio of missing trajectories varies. Taking the sampling time of one hour as an example, the
complete trajectory points of a ship in one day should be 24. Therefore, the ratio of missing
points and jumping points for four classes of ships can be calculated based on the statistical
time. The correlation between the ratio of jumping and missing points and identification
accuracy for four classes of spoofing ships are shown in Table 2.

Table 2. Correlation between the ratio of jumping and missing points and identification accuracy for
four classes of spoofing ships.

Class of
Spoofing

Ship

Statistical
Time

(Months)

The Number
of Jumping
Trajectory

Points

The Number
of Actual
Trajectory

Points

Jumping
Points Ratio

(Percent)

The Number
of Complete

Trajectory
Points

Missing
Points Ratio

(Percent)

Identification
Accuracy

(Trajectory
Segmented

by 5 h)

I 4 18 2197 0.82 2880 23.7 95.7
II 2 528 1085 48.66 1440 24.6 76.4
III 3 58 1629 3.56 2160 24.5 88.2
IV 1 218 690 31.59 720 4.1 100

In Table 2, the ratio of missing trajectories points for class IV spoofing ships is only
4.1%, while the ratio for the other three classes of spoofing ships is close to 25%. Therefore,
the accuracy of identifying the trajectories of class IV spoofing ships is much higher than
that of the other three classes of spoofing ships. For the other three classes of spoofing
ships, class I spoofing ships have the smallest ratio of jumping points, class III spoofing
ships have a slightly larger ratio of jumping points, and class II spoofing ships have the
largest ratio of jumping points. The accuracy of identifying these three classes of spoofing
ships is also consistent with the changes in the ratio of jumping points.

In Figure 14, the identification accuracy of the first three classes of spoofing ships did
not reach 100%, and the accuracy did not improve with the increase in the time interval
threshold, such as class I and II spoofing ships. The applicability of the three parameters
and their related thresholds in this paper varies for each class of spoofing ship. For class
I and IV spoofing ships, the small time interval threshold brought the best identification
effect due to the low ratio of missing trajectory points. For class II and III spoofing ships,
the identification effect is the best when the time interval threshold between trajectory
points is large due to the high ratio of missing trajectory points. In addition, in order to
avoid mistakenly identifying the trajectory point of a spoofing ship as a regular ship, the
distance threshold between trajectory points and the average sailing speed threshold are
set to be small, which results in some regular ship trajectory points not being recognized
and labeled as confusion points. In Table 3, as the distance threshold and average sailing
speed threshold change, there are variations in the trend of the identification accuracy of
the four classes of spoofing ships.
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Table 3. Correlation between various values of threshold and identification accuracy (True Positive
Rate, False Positive Rate) for four classes of spoofing ships’ trajectory segmented by 5 h.

Minimum
Speed

Threshold
(Knots)

Maximum
Speed

Threshold
(Knots)

Minimum
Distance

Threshold
(Nautical Miles)

TPR and FPR
for Class I
(Percent)

TPR and FPR
for Class II
(Percent)

TPR and FPR
for Class III

(Percent)

TPR and FPR
for Class IV

(Percent)

20 100 100 91.98, 8.02 76.49, 23.51 88.03, 12.54 100, 0
30 100 150 92, 8.57 76.47, 34.45 88.59, 11.93 100, 0
50 100 250 92.28, 8.16 76.49, 49 89.01, 11.46 39.28, 60.72
80 100 400 91.13, 9.2 76.48, 58.28 89.35, 11.09 81.08, 72.97

For the spoofing ship of class I and III, the ship trajectory can be accurately displayed
without scatter jumping points, as shown in Figure 15a,c. For the spoofing ship of class II
and IV, the trajectories of two ships can be accurately displayed, as shown in Figure 15b,d.
The blue lines indicate the trajectories of regular ships, and the orange lines indicate the
trajectories of spoofing ships. Through the identification of the spoofing ship, the outliers
of the trajectory of a container ship in Figure 1 have been almost removed and classified
via trajectory segmentation and isolated forest, and the trajectory of a regular ship and
spoofing ship are exhibited, respectively, in Figure 16a,b, which can reflect a ship’s motion
pattern accurately.

 
(a)                                    (b) 

 
(c)                                  (d) 

Figure 15. Trajectory of four classes of regular ship trajectory without outlier: (a) trajectory of class
I exhibited with regular ship (marked by blue line) and spoofing ship (marked by orange line)
separately; (b) trajectory of class II; (c) trajectory of class III; and (d) trajectory of class IV.
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(a) 

 
(b) 

Figure 16. Trajectory of container ships exhibited in Figure 1 without confusion points between
regular ship and spoofing ship: (a) regular ship trajectory; (b) spoofing ship trajectory.

The framework was implemented on Windows 10 OS with 8 GB RAM and 2.8 GHz
CPU. We employed Matlab (2016 version) to perform trajectory segmentation and the
spoofing ship identification procedure on the ship trajectory data. With regard to the
runtime test, the paper dealt with 52,538 trajectory points owned by 20 container ships via
isolation forest, and runtime was 15.77 s.

5. Discussion

Each ship sailing at sea has a unique MMSI, which can be used to extract the complete
trajectory of any ship from AIS data. However, some ships have obtained unauthorized
MMSI through illegal approaches, which are duplicated with MMSI owned by existing
ships. This leads to a trajectory being extracted from one MMSI that actually belong to
multiple ships, which poses serious challenges to ship motion pattern identification based
on AIS data.
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The paper adopts trajectory feature mining to clarify the distribution patterns of
distance and average sailing speed between adjacent trajectory points (see Figures 5 and 6
for details). To address the impact of the missing trajectories of ships, updating the time
interval threshold is set to segment ship trajectories. For a segmented ship trajectory,
outliers can be identified via isolation trees established based on distance and speed among
trajectory segments. By observing the trend of changes in the true positive and false
positive rates of trajectory point identification, two important parameters of isolation forest
are determined, namely the sampling number and isolated tree height. After adopting
isolation forest, the identification accuracy of spoofing ships was improved, as shown in
Figure 14. The number of unidentified trajectory points for class I, II, and III spoofing ships
has gradually decreased with an increase in the trajectory segmentation time, as shown
in Figures 10–12. However, the identification accuracy of class IV spoofing ships was not
improved, and the reason may be that class IV spoofing ships have good continuity, as
shown in Figure 13.

Due to the identification of spoofing ships by isolation forest, the number of trajectories
in Figure 16 is almost half more than that in Figure 1. The trajectory of these spoofing
ships would just be removed if using the approaches described in the literature, and more
information of the AIS data would be lost. The pre-processing of AIS data should aim to
retain more information, which is more helpful to the situational awareness of ship motion
for the MSA based on AIS data. For the trajectory of a spoofing ship away from a regular
ship, it can be identified according to the serial number of the AIS base station included
in the AIS data. A part of the ship trajectory in this paper meets such characteristics and
would be identified more efficiently by the serial number of the AIS base station. However,
many AIS data do not contain information such as the serial number of the AIS base station,
so the spoofing ship identification method supplied by this paper is still necessary.

However, some trajectory points are still falsely identified as a regular ship rather
than a spoofing ship. The main reason for this is that trajectory points correlation shows
a poor performance among some trajectory segments. Future research should focus on
the clustering of trajectory points among various trajectory segments, so as to identify the
NN_P listed in Equation (12). In addition, this study only set a constant threshold and
established isolated trees via trajectory feature mining from the history trajectory of typical
cargo ships so as to identify outliers of ship trajectories. Future research should focus on
setting an adaptive threshold for speed and distance between adjacent trajectory points
based on differences in the maneuvering performance for various types of ships and the
speed difference of ships in different navigation stages.

6. Conclusions

A long time interval between adjacent trajectory points results in severe missing trajec-
tories of a ship, and the identification of spoofing ships are not ideal. In order to eliminate
the impact of missing trajectory points on the accuracy of identifying spoofing ships, the
trajectory is segmented by the time interval threshold. After trajectory segmentation, the
trajectory points of each trajectory segment maintain good continuity, that is, the time
interval between adjacent trajectory points for each trajectory segment is relatively short.
Combined with trajectory segmentation, the isolation forest is efficient at distinguishing
between regular ship trajectory points and spoofing ship trajectory points. Consequently,
outliers of ship trajectories were almost removed or classified correctly in this work, and
the labeled ship trajectory points can reflect a ship’s motion pattern accurately.
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Abstract: With the rapid growth of shipping volumes, ship navigation and path planning have
attracted increased attention. To design navigation routes and avoid ship collisions, accurate ship
trajectory prediction based on automatic identification system data is required. Therefore, this study
developed an encoder–decoder learning model for ship trajectory prediction, to avoid ship collisions.
The proposed model includes long short-term memory units and an attention mechanism. Long
short-term memory can extract relationships between the historical trajectory of a ship and the
current state of encountered ships. Simultaneously, the global attention mechanism in the proposed
model can identify interactions between the output and input trajectory sequences, and a multi-head
self-attention mechanism in the proposed model is used to learn the feature fusion representation
between the input trajectory sequences. Six case studies of trajectory prediction for ship collision
avoidance from the Yangtze River of China and the eastern coast of the U.S. were investigated and
compared. The results showed that the average mean absolute errors of our model were much
lower than those of the classical neural networks and other state-of-the-art models that included
attention mechanisms.

Keywords: ship trajectory prediction; AIS data; neural network; attention mechanism;
encoder–decoder model

1. Introduction

Since 2002, the International Maritime Organization (IMO) has required that all sea-
going ships (>300 GT) and passenger ships are equipped with an onboard automatic
identification system (AIS) [1]. This is a transmission and communication technology that
enables a ship to transmit AIS information to other ships. This information includes the ship
identity, location, speed, and course; that is, the ship navigation behavior and status [2–4].
Based on these data, ships can effectively avoid collisions with other ships. Decisions about
collision avoidance must comply with the collision avoidance rules formulated by the IMO,
which have been noted in the Convention on the International Rules for the Prevention of
Collisions at Sea (COLREGs) [5]. The risk of collision is specified in the COLREGs, which is
assessed based on the estimated closest point of approach. The distance closest point of
approach and time closest point of approach are used as indicators of collision risk. If these
two values are less than the threshold, a risk of ship collision is considered [6]. Therefore,
it is necessary to accurately predict the trajectory of ships, to help with ship navigation
planning and collision warning [7,8].
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Ship trajectory prediction methods can be divided into two main categories. In most
traditional methods [9–17], ship trajectory prediction usually requires professional knowl-
edge of different application scenarios [18]. In recent methods, machine-learning models
are trained based on AIS data, to provide decision-making support to ship navigation and
path planning. Support vector machines (SVM) [19], clustering algorithm [20], multi-layer
perceptron (MLP) [21], back-propagation neural network (BPNN) [22,23], and long short-
term memory (LSTM) [24–26] are widely used in ship trajectory prediction. During the
last decade, there has been a dramatic increase in ship trajectory prediction studies based
on deep learning [27]. Among them, recurrent neural networks (RNN) [28] and LSTM are
particularly popular. However, most studies have considered for route planning macro
design. However, studies of collision avoidance from a micro perspective are required.

To address the above issues, this paper proposes an encoder–decoder model for ship
trajectory prediction for collision avoidance, which uses a sequence-to-sequence (Seq2Seq)
structure and multi-attention mechanism [29–31]. The main advances of this study in the
field of machine learning and ship navigation can be divided into two aspects.

First, this study is the first to introduce state-of-the-art attention mechanisms into the
field of navigation trajectory prediction, to effectively capture the potential information
and correlations in the AIS series data. Second, this study applied the proposed model
to case studies of ship collision avoidance, to demonstrate its effectiveness and efficiency.
We performed experiments with six case studies of trajectory prediction for ship collision
avoidance on the Yangtze River of China and the eastern coast of United States. The results
showed that the mean absolute error (MAE) of our model in trajectory prediction was
much lower than those of the classical models, such as back-propagation neural networks
(BPNN) and LSTM. Furthermore, our model also outperformed other state-of-art models
with attention mechanisms for trajectory prediction.

The remainder of this paper is organized as follows: Section 2 reviews related work
in the field of ship trajectory prediction. Section 3 summarizes the trajectory prediction
model studied in this paper and introduces data preprocessing. In Section 4, we apply
the proposed prediction method to real data of AIS and summarize the results. Section 5
discusses our conclusions and future work.

2. Literature Review

2.1. Trajectory Prediction Based on Kinematics Models

Regarding kinematics models, most studies directly used the current position and sailing
speed of the ship to estimate its future position and then used the constant speed and ground
heading values to predict the future position of the ship [9,10]. These studies also described
the uncertainty of the future position of ships based on statistical models [11–13]. On the other
hand, ship trajectory prediction can be considered a typical time-series problem; therefore,
Kalman filters [14,15] and Markov models [16,17] are used. Perera et al. [15] proposed an
extended Kalman filter to formulate the ship position, speed, and acceleration, to predict its
trajectory under noisy conditions. Guo et al. [17] divided the designated sea area into grids,
with the state of ship position, speed, and direction, and then used a K-order hidden Markov
model to establish the state transition matrix for prediction.

2.2. Trajectory Prediction Based on Machine Learning Techniques

Classical machine-learning methods, such as SVM [19] and clustering algorithm [20],
are widely used in ship trajectory prediction. They have improved prediction efficiency
and accuracy. At the beginning of the 2000s, Hinton et al. proposed a multi-hidden-layer
neural-network model [32]; deep-learning methods have shown advanced performance
in the field of machine learning. In trajectory prediction, deep-learning methods have
achieved higher prediction accuracy than MLP [21] and BPNN [22]. Since RNN [28]
and LSTM [33] have become the most representative prediction methods for time-series
classification and prediction models, a large number of studies have applied them to ship
trajectory prediction [24–26]. Based on a RNN, the encoder–decoder model is considered
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the standard method for Seq2Seq prediction tasks, because of its excellent performance
in machine translation [30] and speech recognition [34], which can also be applied to
trajectory prediction [35]. The Seq2Seq model based on an attention mechanism [31,36,37]
has proven its effectiveness in a wide range of prediction tasks. Several studies have
applied attention-mechanism-based models to the field of ship trajectory prediction [38–41].
Capobianco et al. [41] proposed an attention-based recursive encoder–decoder architecture
to solve the trajectory prediction problem of applying uncertainty quantification to a case
study in the maritime field.

In comparison with previous studies, the model proposed in this study introduces
multiple-attention modules of global attention and multi-head self-attention. The global
attention mechanism is used to combine the trajectory history and current state information
to obtain hidden information from within sequences, and the multi-head self-attention
mechanism can capture the spatiotemporal correlations between sequence-feature data, to
perform feature fusion for generating new feature representations, as well as effectively
capturing potential information and correlations contained in the ship position sequence.

3. Methodology

3.1. Problem Statement

During marine traffic encounters, an AIS can obtain the state of interaction between
the target ship and the surrounding ships. The state of the ship at time t can be expressed
as st = (LONt, LATt, SOGt, COGt), where LON, LAT, SOG and COG represent longitude,
latitude, speed, and heading, respectively. st−1 − st represents the change in relative
position and state information from t-1 to time t. The spatial position of the encounter ship
can be expressed as s′t, where st − s′t represents the relative position and navigation status
information from the encounter ship to the target ship.

As shown in Figure 1, the ship state information at t is used as input to the prediction
model, and the location information at t+1 after t is used as the model output. Therefore,
we can formulate Output = f(Input), where f(.) represents the prediction function of the
ship trajectory obtained using our model.

Figure 1. Overview explanation of trajectory prediction.

3.2. Methodology Design of Ship Trajectory Prediction

To solve the trajectory prediction of ships in an encounter situation, we add the relative
position and navigation status information of the trajectory of the observed ship and the
trajectories of the surrounding ships to our prediction framework. In this study, a sequence
model is used to determine the impact of the relative positional changes of the observed
ship and the ship sailing on the future navigation trajectory of the observed ship. The
attention mechanism is used to dynamically adjust the weight of the sequence information
to help the model focus on the important position change information, to dynamically
adjust the prediction in the sequence prediction process.

This study proposes a new trajectory prediction structure that uses AIS data to train
the model, as shown in Figure 2. The model is composed of three modules: Module 1
is an AIS data processing module, which can effectively improve the data quality and
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model execution efficiency. Module 2 is the trajectory prediction model developed in this
study, which is a deep-learning prediction model with an encoder–decoder structure and
an attention mechanism. The encoder structure is a multi-layer LSTM, and the decoder
consists of an RNN, a multi-layer LSTM, and a self-attention mechanism, which is described
in detail in Section 3.3. The training data from Module 1 are used as input to Module 2 to
train the prediction model. Finally, Module 3 is a prediction and validation module. Its
main function is to apply the test data of Module 1 to optimize the parameters and verify
the prediction model of Module 2.

Figure 2. Overview of the proposed trajectory prediction model.

3.3. Design of the Encoder–Decoder Learning Model

The encoder of the proposed model is an LSTM neural network, which maps the input
influence onto the sequential context representation. Based on the attention mechanism,
the hidden state sequence encoder is combined with the information representation of
the context. The decoder of the proposed model is a feature fusion layer that extracts the
potential relationships of future ship trajectory state information from the historical and
current state information. The weighted representation between the feature vectors of each
trajectory is then input into the RNN, so that it can obtain the information representation of
the correlation between features in each future prediction step. The RNN in the decoder has
a multi-layer structure, to improve the learning ability of the internal sequence information
representation. The overall structure is shown in Figure 3.

Figure 3. Overview of our model.

3.3.1. LSTM-Based Sequence to Sequence

The Seq2Seq model consists of an encoder and a decoder. The two units use a recursive
neural network (RNN or LSTM) to encode the input as a vector representation and then
use another sequential network to decode it. The main task of the encoder is to read the
sequence and pass the discovered rules to the decoder. The decoder decodes the received
rule information to generate an output sequence.
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Figure 4 shows the classic Seq2Seq model architecture.

• x1to xt represent the input sequence characteristic information of the model;
• h1to ht are the outputs of each circulating neural network cell;
• y1 and y2 represent the label sequence of the model output;
• The variable C between the encoder and decoder represents the sequence information

representation obtained by passing the input feature sequence information through
the encoder.

Figure 4. Seq2seq model architecture.

The RNN is a feature extractor of global information from the sequence and can be
used to process the sequence data. In the RNN, neurons can accept information from other
neurons and also their own information, to form a loop structure, as shown in Figure 5a.
Here, the gradient disappeared due to the long input sequence.

(a) Structure of the RNN cell. (b) LSTM cell structure.

Figure 5. Structure of the recurrent neural network cell. The symbol xt represents the input informa-
tion of the RNN at the current time step t, ht−1 represents the hidden state of time step t− 1, and ht

represents the output information of time step t.

To solve the problem of the vanishing gradient, a gating mechanism for forgetting
the previously accumulated information is required. An LSTM is a type of RNN based on
a gating mechanism. Compared with the traditional RNN, an LSTM introduces a gating
mechanism to control the speed of information accumulation. Through the forgetting gate,
input gate, and output gate, it forgets the previous information and simultaneously adds
new information, which effectively solves the loss of learning information caused by a
gradient explosion or disappearance. The unit structure is shown in Figure 5b. The notation
σ represents the sigmoid activation function, ht−1 is the output of the previous LSTM unit,
xt indicates the state information of the input at the current time, and Ct−1 is the internal
state of the memory unit in the last moment. Each memory block has three gates to control
the path of the information transmission.

a. Forget gate. ht−1, Ct−1, and xt are used as inputs to calculate the amount of informa-
tion ft (value is between 0 and 1) to be forgotten.

ft = σ(Wf · [ht−1, xt] + b f ) · Ct−1 (1)

b. Input gate. The input information it and candidate status C̃t can be obtained by
the inputs ht−1 and xt with a sigmoid function and tanh function, respectively. To
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calculate it · C̃t, we need to update the information and forgotten information Ct−1 · ft,
and then obtain a new state Ct. The specific Equations are (2)–(4).

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Ct = it · C̃t + Ct−1 · ft (4)

c. Output gate. ht−1 and xt are input to the sigmoid function to obtain the output
information Ot. The product of the output information and activated value of the
current updated state is the information carried by the internal state at the current
time ht as the output information at time t.

Ot = σ(Wo · [ht−1, xt] + bo) (5)

ht = Ot · tanh(Ct) (6)

Equations (1)–(6) introduce the operation of the LSTM unit in detail. The output
function of the LSTM unit can be expressed as follows:

ht = LSTMUnit(xt, ht−1, θ) (7)

where the LSTMUnit(·) function represents the operation rules forget, input, and output in
Equations (1)–(6); and θ represents the parameters in the LSTM unit.

3.3.2. Attention Mechanism

The attention mechanism module is used in the decoder of the model, to improve the
information resource allocation of the model. This can enable the model to dynamically
adjust the weights of serial information and allow it to focus on important positions to
achieve dynamic adjustment of the weights during the prediction process. The structure of
the attention mechanism is shown in Figure 6.

Figure 6. Attention mechanism structure.

Keys = values = ht(t ∈ {1, . . . , N}) are the outputs of all LSTM unit sequences in the
encoder at all times, and query = h′ is the output of the LSTM layer in the decoder. First, the
correlation between h′ and ht is calculated using the attention-scoring function s(·). The
calculation formula of h′ is h′ = LSTMUnit(Xt, ht, θ

′
).

The models commonly used as s(·) are additive models, such as point product models
or scaling point product models.In this study, a scaling point product model is selected as
the score function. It can make better use of a matrix product in the process of matrix oper-
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ation and can effectively solve the decrease in the softmax function gradient. D represents
the dimension of the input vector.

s(ht, h′) =
hT

t h′√
D

(8)

The softmax function is used to map the output value of the score function between 0
and 1, and the attention distribution of h′ with respect to ht is obtained, αt, which indicates
the degrees of input vector at t. Finally, αt is the weight, and ht is the weighted sum of the
corresponding positions.

αt = so f tmax(s(ht, h′)) = exp(s(ht, h′))
∑N

j=1 exp(s(hj, h′))
(9)

att(H, h′) =
N

∑
t=1

αtht, H = [h1, . . . , hN ] (10)

3.3.3. Feature Fusion Layer

To model the potential relationships of the ship trajectory information between the
historical state and current state, we propose a feature fusion layer. Its structure is shown
in Figure 7a. This layer consists of two parts: a multi-layer perceptron (MLP) and a multi-
head self-attention (MHSA) mechanism. The MLP is used for linear mapping of the input
sequence information. The MHSA is used for calculating and selecting multiple information
points from the input information in parallel (see Figure 7b). The original structure of
the self-attention mechanism is shown in Figure 6, which is set as Keys = Values = Query.
The MHSA can obtain the dependency information at the input stage, connect the input
information, and extract the important features from the input data. Simultaneously, these
features are spliced with the linear mapping information, which is extracted by the MLP
from the input data. The calculation formulas are given as follows:

MHatt = σ

(
WMH

(
concat

(
att
(
(K, V), Q

)
i

)))
, f or i = 1, . . . , d (11)

M = σ(Wm · X) (12)

F = concat(MHatt, M) (13)

where σ, WMH , and Wm are the activation function in the full connection layer and weight
parameters, respectively. The concat(·) function is used to connect multiple arrays with-
out changing the existing array values. The subscript i of the attention function is the
head number of the self-attention mechanism, where K = V = Q = X. Finally, X is the
position and status information of the observed ship at time t, the previous k times, and the
encounter ship.
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(a) Structure of the feature fusion layer. (b) Multi-head attention mechanism structure.

Figure 7. Structure of the feature fusion layer and multi-head attention mechanism.

4. Numerical Experiments

4.1. Data Description

The AIS data used in this study were mainly collected from onboard AIS equipment in
the Yangtze River delta region of China and the eastern coastal region of the United States.
In this experiment, we collected a large amount of AIS data and selected six case studies of
collision avoidance from the two regions. The research subject data from each region were
collected on different dates. Table 1 provides detailed information about the collected data,
and Figure 8 shows the specific location of each collision avoidance case.

In the experiment, the navigation trajectory sequence was sequentially sampled with
a set sliding window length, where 60% and 40% of the samples were randomly divided
into training and testing sets. The processing of experimental datasets for each situation
was the same. The training set was used to train and determine the weights, deviation,
and other parameters of the model. After training, the test set was used to evaluate the
proposed model and other comparison models.

4.2. Setting of Experiments
4.2.1. Criterion of Model Evaluation

The mean square error (MSE) was used as the loss function to quantify the difference
between the predicted and real values. After completing the model construction, we used
the MAE and average displacement error based on the Haversine distance (HADE) to
evaluate the model. These are calculated as follows:

MSE =
1
p

p

∑
l=i

(Yi − ŷi)
2 (14)

MAE =
1
p

p

∑
l=i
|Yi − ŷi| (15)

HADE =
1
p

p

∑
l=i

2r arcsin

⎛⎝√sin2(
ˆlati − lati

2
) + cos ˆlati cos lati sin2(

ˆloni − loni
2

)

⎞⎠ (16)

where p is the total number of AIS data samples for training or testing, ŷi is the estimated
value of the ship trajectory longitude and latitude, Yi is the measured value of the navigation
longitude and latitude of the ship, r is the Earth’s radius, ˆlati and ˆloni represent the
predicted latitude and longitude, and lati and loni represent the true latitude and longitude,
respectively. In the experiment, the ship status information containing the first 10 time
steps of the current time t was used as input to the model, and the geographic location
information of the 10 time steps after the current time t was predicted as the output.
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(a) (b)

Figure 8. Two routes of the case ships; the red line represents the navigation trajectory of the obser-
vation ship; the black line represents the navigation trajectory of the opposite ship. (a) Navigation
trajectory of collision avoidance for ships in Yangtze River delta. (b) Navigation trajectory of collision
avoidance for ships in the eastern coastal area of the United States.

Table 1. Collision avoidance cases of experimental ship trajectories from different areas.

Water Area MMSI Number of AIS Points Date References

Yangtze River Delta

413450480 2124 1 February 2019

Figure 8a

413425610 1529

414386000 912 28 June 2019312958000 786

413556520 257 2 January 2022413585000 207

Eastern Coastal Area
of the United States

367185680 1440 2 February 2019

Figure 8b

304604000 823

372821000 1180 31 December 2021311000375 669

316001635 1112 2 January 2022316044371 1440

4.2.2. Model Parameter Setting

The Adam adaptive learning rate optimization algorithm [42] was used to update
the network parameters of the model structure. In the LSTM layer part of the sequence
information extraction, the number of LSTM layers was between one to three. The number
of hidden units in each layer of the LSTM searching for the optimal value was taken
from [32, 320]. The serial batch size in the experiment was 512, the number of training
simulations was 200, and the number of heads for the multi-head self-attention mechanism
was 2. To prevent model overfitting, a dropout mechanism [43] and a regularization
term were used in the training process. The optimization range and optimization interval
granularity of each parameter and the parameter value ranges are shown in Table 2. After
the comparison experiment with multiple sets of super parameter selection, using the
encoder–decoder model based on the multi-module attention mechanism, the parameters
of two different trajectory regions (Situation 1 and Situation 2) were chosen as shown in the
last two columns of Table 2.

303



J. Mar. Sci. Eng. 2023, 11, 1530

Table 2. Model training parameters.

Parameters
Optimization

Range
Interval

Granularity
Head-On

Situation 1
Head-On

Situation 2

Dropout rate (0.1, 0.5) 0.1 - -
Learning rate (0.0001, 0.1) 0.0001 0.002 0.002

No. of LSTM layers (1, 3) 1 3 3
No. of hidden cells (32, 320) 32 128 128
No. of MHSA head (2, 10) 1 2 2

Regularization parameter (0.01, 1) 0.01 0.001 0.001

4.2.3. Introduction of Baseline Methods

In the comparisons, we employed four baseline methods, as follows:

(1) The BPNN has the classic three layers: input layer, hidden layer, and output layer
(see Figure 9a). In its network structure, the neurons are connected from the input
layer to the output layer;

(2) LSTM is a classic sequence prediction model. The structure is shown in Figure 9b,
and the unit structure of each LSTM cell can be found in Figure 5b;

(3) DANAE, Denoising automatic encoders (DAE) were proposed by Vincent et al. [44]
and are used for prediction tasks, while DANAE is a deep denoising automatic
encoder used for attitude estimation [45,46];

(4) EncDec-ATTN is a deep learning method used for ship trajectory prediction based on
recurrent neural networks and was proposed by Capobianco et al. [28]. This method
can learn spatiotemporal correlations from historical ship mobility data and predict
future ship trajectories.

(a) BPNN (b) LSTM

Figure 9. The basic structure of the baseline method.

4.3. Prediction Analysis and Result Discussion
4.3.1. Analysis of Model Performance

MSE and MAE were used to evaluate the performance of the model, which was carried
out using a Windows 10 system with a 2.90 GHz i5 central processor and 32 GB of memory.
The model was coded using TensorFlow 2.4.0 in Python 3.8. The analyses of the prediction
performance of our model and those of the other two models are shown in Table 3.

Table 3 shows that our model had the lowest MSE, MAE, and HADE. In both regions,
the parameter number of the LSTM layer was 3, the number of hidden units was 128,
the learning rate was 0.002, and the regularization parameter was 0.001. For Head-on
Situation 1 from the Yangtze River, the MSE and MAE of the latitude predicted by our
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model were 2.8857 × 10−5 and 0.0042, respectively, and the MSE and MAE of the longitude
were 2.5220 × 10−5 and 0.0041, respectively. For Situation 2 from the eastern coastal
area, the MSE and MAE of the latitude predicted by our model were 3.8907 × 10−5 and
0.0044, respectively, and the MSE and MAE of the longitude were 3.0541 × 10−5 and 0.0042,
respectively. Comparing with the experimental results of the other models, our model and
EncDec-ATTN consistently outperformed the classic network models not using attention
mechanisms. Moreover, the evaluation scores of our model decreased by 27.5% and
21.4%, respectively, compared with EncDec-ATTN, which indicated a greater advantage
for trajectory prediction in this experiment. HADE reflects the displacement error of the
predicted position of a ship from its true position in real scenarios, as shown in Figure 10.
In terms of the prediction performance of the ship trajectories, our model had the lowest
MSE and MAE values. Meanwhile, the HADE was also lower than that of the other
prediction models.

Table 3. Comparison with the performance index of classic models.

Model Position MSE MAE HADE Optimal Parameter

Head-on Situation 1
from Yangtze River delta

BPNN LON 3.1854 × 10−4 0.0110 1256.0985 3, (128, 64, 32), 0.01, 0.002
LAT 3.2575 × 10−4 0.0113

LSTM LON 1.4240 × 10−4 0.0093 1072.9199 3, (128, 128, 128), 0.01, 0.002
LAT 1.5876 × 10−4 0.0096

DANAE LON 1.2190 × 10−4 0.0074 890.1905 3, (128, 64, 10), 0.001, 0.002
LAT 1.5209 × 10−4 0.0085

EncDec-ATTN LON 4.5361 × 10−5 0.0051 612.8078 2, (128, 128), 0.002, 0.001
LAT 5.4565 × 10−5 0.0057

Our Model LON 2.5220 × 10−5 0.0041 480.3572 3, (128, 128, 128), 0.002, 0.001
LAT 2.8857 × 10−5 0.0042

Head-on Situation 2
from eastern coastal area

of the United States

BPNN LON 3.8615 × 10−4 0.0197 1366.2123 3, (128, 64, 32), 0.01, 0.002
LAT 3.6022 × 10−4 0.0190

LSTM LON 1.9693 × 10−4 0.0107 1045.1206 3, (128, 128, 128), 0.01, 0.002
LAT 1.6729 × 10−4 0.0105

DANAE LON 9.1580 × 10−5 0.0077 670.2299 3, (128, 64, 10), 0.001, 0.002
LAT 9.7660 × 10−5 0.0082

EncDec-ATTN LON 5.8020 × 10−5 0.0058 493.7096 2, (128, 128), 0.002, 0.001
LAT 5.0178 × 10−5 0.0056

Our Model LON 3.0541 × 10−5 0.0042 422.7494 3, (128, 128, 128), 0.002, 0.001
LAT 3.8907 × 10−5 0.0044

4.3.2. Discussion of the Prediction Results

To further evaluate the prediction ability, a comparison of the prediction results of the
different prediction methods at different time steps is shown in Figures 11 and 12. The
model prediction was evaluated according to the error between the predicted results and
the actual longitude and latitude.

In Head-on Situation 1 from the Yangtze River, as shown in Figure 11a,c, where two
ships meet and avoid each other, the first ship is sailing along the planned route, and the
course is relatively stable. We observed that all models could predict accurately under
relatively simple sailing conditions. As shown in Figure 11b, when the first ship began to
change course, the quality of the trajectory prediction generated by our model was much
lower than that of the other models.
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(a) Longitude MSE of two situations. (b) Longitude MAE of two situations.

(c) Latitude MSE of two situations. (d) Latitude MAE of two situations.

(e) HADE of two situations.

Figure 10. Results comparison of the MSE, MAE, and HADE. Brown and blue-green represent the
evaluation indicators for Situations 1 and 2 from different areas, respectively. The green dots represent
the average values.

In Head-on Situation 2 from the eastern coastal region, as shown in Figure 12a–d,
during the initial sailing phase with the encounter ship, the first ship encountered the other
ship and changed the sailing course. At this time, the prediction results of BPNN, LSTM,
and DANAE have large errors. One benefit of the attention mechanism is that our model
can predict ship trajectories with less variance from the actual ship trajectories.

In previous studies [28,38–41], only a single attention mechanism was used to express
the historical trajectory and current state information of ships, mainly focusing on hidden
information within sequences. However, the correlation of information between the spa-
tiotemporal sequence features is often overlooked. Unlike in previous studies, the proposed
model introduces both global attention and multi-head self-attention mechanisms. The
global attention mechanism is used to combine the trajectory history and current state
information to obtain hidden information between sequences. The multi-head self-attention
mechanism can capture the spatiotemporal correlations between the sequence-feature data
and extract the fusion features, to generate a new feature representation. The two extracted
parts of this information are correlated, to predict the ship trajectory at the next time point.
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(a) (b) (c)

(d) (e) (f)

Figure 11. The prediction results for Head-on Situation 1. (a–c) Visualization of ship navigation
trajectory predicted at different time steps. (d–f) Error of predicted navigation trajectory at different
time steps. The “ground truth” in the legend represents the true values of the experimental sample.

(a) (b) (c)

(d) (e) (f)

Figure 12. The prediction results for Head-on Situation 2. (a–c) Visualization of the ship navigation
trajectory predicted at different time steps. (d–f) Error of the predicted navigation trajectory at
different time steps. The “ground truth” in the legend represents the true values of the experimen-
tal sample.
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4.3.3. Analysis of the Attention Mechanism with the Weight Score

Our model includes two attention modules: The global attention mechanism recog-
nizes the information interactions in the input sequence, and the multi-head self-attention
mechanism extracts the effective feature information of the output target in the input
sequence information. To explore the impact of the attention mechanism on model per-
formance, we compared the performance of the attention mechanism module with and
without the attention mechanism, as shown in Table 4.

Table 4. Comparison of the model performance with and without the attention mechanism.

Model Position MSE MAE HADE Optimal Parameter

Head-on Situation 1
from Yangtze River delta

Seq2Seq LON 9.0469 × 10−5 0.0075 845.4042 3, (128, 128, 128), 0.01, 0.002
LAT 9.2702 × 10−5 0.0074

Seq2Seq-ATTN LON 5.7978 × 10−5 0.0061 717.5646 3, (128, 128, 128), 0.01, 0.002
LAT 6.4726 × 10−5 0.0064

Seq2Seq-MHSA LON 4.5202 × 10−5 0.0051 608.6507 3, (128, 128, 128), 0.01, 0.002
LAT 5.2463 × 10−5 0.0055

Our Model LON 2.5220 × 10−5 0.0041 480.3572 3, (128, 128, 128), 0.002, 0.001
LAT 2.8857 × 10−5 0.0042

Head-on Situation 2
from eastern coastal area

of the United States

Seq2Seq LON 9.3664 × 10−5 0.0077 758.1244 3, (128, 128, 128), 0.01, 0.002
LAT 1.1874 × 10−4 0.0078

Seq2Seq-ATTN LON 9.0765 × 10−5 0.0065 629.4445 3, (128, 128, 128), 0.01, 0.002
LAT 7.0376 × 10−4 0.0058

Seq2Seq-MHSA LON 4.6450 × 10−5 0.0050 512.9711 3, (128, 128, 128), 0.01, 0.002
LAT 5.4739 × 10−5 0.0057

Our Model LON 3.0541 × 10−5 0.0042 422.7494 3, (128, 128, 128), 0.002, 0.001
LAT 3.8907 × 10−5 0.0044

Table 4 and Figure 13 show the comparison results of the models under different
attention mechanisms. The Seq2Seq model showed a good prediction accuracy with the
attention mechanism. Focusing on the prediction for Head-on Situation 1 from the Yangtze
River, the prediction results of the model with a global attention mechanism showed
decreases in MAE of 0.0014 and 0.0010 in the longitude and latitude predictions, and a
decrease in HADE of 15.12%. The MAE of longitude and latitude predicted by the MHSA
mechanism decreased by 0.0024 and 0.0019, respectively, and the HADE decreased by 28%.
The results of comparing the MSE, MAE, and HADE showed that our model outperformed
the other two models with the attention mechanism.

To explain the internal working of the neural network, we obtained the importance
weight vector of the input sequence at each position in the prediction sequence and explored
the influence of the attention mechanism on the proposed model. Inspired by Lee et al. [47]
for the interpretability of the attention mechanism, we visualized the output of two self-
attention heads in the prediction model, and the visualization of the output attention
weight is shown in Figure 14.

We visualized the weight values calculated by the attention mechanism of the Head-on
Situation 2 in the model of different navigation state stages and explained the importance
of the network to specific trajectory characteristics. The first column in Figure 14 shows the
input, target, and prediction sequences of the different models; the second column shows
the visualization of the global attention mechanism weight score of our model, and the last
two columns show the visualization of the MHSA weight score of the feature fusion module
in our model. In the thermodynamic diagram, the line represents the output sequence, and
the list shows the weight distribution of the input sequence. Thus, it can be determined that
positions in the history mode are considered more important when generating the predicted
trajectory for the global attention mechanism (second column). Over time (from left to
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right), the model can influence the characteristics of the input sequence when generating
the output sequence. At different stages of the predicted navigation status, the positions
considered by the output series are different, as shown in Figure 14b,f, which pay more
attention to the middle and tail segments of the input series, respectively.

Figure 14j shows a marginal difference in the weight values of the entire series. For the
MHSA mechanism (the third and fourth columns), it can be observed from the figures that
the different information focused on by the attention head was inconsistent, as shown in
Figure 14k. The input X1 sequence had a greater correlation with X1, X7, and X8, while X3
had a greater correlation with X4 and X9. The MHSA mechanism calculates the correlation
representation between AIS information features and generates a better information feature
code for the current input sequence by making full use of the position state information in
the sequence. This allows the model to focus on the information of different positions in
the input sequence, and it can also alleviate overfitting by integrating different attention
heads, to improve the accuracy and robustness of the overall model.

(a) Longitude MSE of the two situations. (b) Longitude MAE of the two situations.

(c) Latitude MSE of the two situations. (d) Latitude MAE of the two situations.

(e) HADE for the two situations.

Figure 13. Comparison results of MSE, MAE, and HADE. Brown and blue-green represent the
evaluation indicators for Situations 1 and 2 from different areas, respectively. The green dots represent
the average value.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 14. Weights of attention mechanism. (a,e,i) is the prediction results of the ship navigation
trajectory at different conditions. (b,f,j) Weights of the global attention mechanism. (c,g,k) and
(d,h,l) represent the weight values of the self-attention mechanism for the two heads, respectively.

4.3.4. Analysis of Model Validation

For both the Yangtze River delta and eastern coast, we selected two encounter sce-
narios to verify the effectiveness of the trajectory prediction. Test samples 1 and 2 for the
Yangtze River delta contained encounter scenarios of MMSI (414386000, 312958000) on
28 June 2019 and MMSI (413556520, 413585000) on 2 January 2022. Test samples 1 and
2 for the eastern coast contained encounter scenarios of MMSI (372821000, 31100037) on
31 December 2021 and MMSI (316001635, 316044371) on 2 January 2022. The experimental
results and comparative analysis are shown in Table 5.

From Table 5, it can be seen that our model achieved the best results for the various
evaluation indicators, with the highest accuracy and a good predictive performance. In
addition, statistical methods were used to analyze the results, as shown in Figure 15.
In terms of the prediction performance of the ship trajectories, our model included an
attention module that more effectively extracted important feature information from the
trajectory sequences than BPNN, LSTM, Seq2Seq, and DANAE. Compared with the models
containing a single attention mechanism, such as Seq2Seq-ATTN, Seq2Seq-MHSA, and
EncDec-ATTN, our model effectively extracted correlations between the sequences and
features, accounting for multiple attention structures. The experimental results also showed
that our model had a good trajectory prediction performance under encounter situations.
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Table 5. Comparison of the model performance for the test samples.

Model Position
Test Sample 1 Test Sample 2

MSE MAE HADE MSE MAE HADE

Yangtze River delta

BPNN LON 5.5900 × 10−4 0.0137 537.5320 4.7147 × 10−4 0.0217 853.0951
LAT 5.8601 × 10−4 0.0142 5.1134 × 10−4 0.0226

LSTM LON 1.6606 × 10−4 0.0102 399.8864 2.6896 × 10−4 0.0116 640.3072
LAT 1.7191 × 10−4 0.0108 3.2279 × 10−4 0.0129

Seq2Seq LON 8.5295 × 10−5 0.0075 296.0660 9.9816 × 10−5 0.0078 485.1224
LAT 9.2641 × 10−5 0.0078 1.0563 × 10−4 0.0080

Seq2Seq-ATTN LON 7.3838 × 10−5 0.0069 264.7203 8.0580 × 10−5 0.0071 414.3751
LAT 7.6468 × 10−5 0.0069 8.4536 × 10−5 0.0071

Seq2Seq-MHSA LON 5.0014 × 10−5 0.0056 215.3634 6.2602 × 10−5 0.0061 350.034
LAT 4.4967 × 10−5 0.0055 6.7629 × 10−5 0.0065

DANAE LON 1.2231 × 10−4 0.0074 301.2500 1.3935 × 10−4 0.0083 495.0518
LAT 2.1533 × 10−4 0.0083 8.8652 × 10−5 0.0083

EncDec-ATTN LON 5.2074 × 10−5 0.0055 218.4405 5.6014 × 10−5 0.0057 334.0571
LAT 5.7575 × 10−5 0.0058 7.9404 × 10−5 0.0068

Our Model LON 3.2121 × 10−5 0.0044 174.3734 2.9485 × 10−5 0.0044 250.2701
LAT 3.5942 × 10−5 0.0045 3.5306 × 10−5 0.0048

Eastern Coastal Area
of the United States

BPNN LON 5.4331 × 10−4 0.0233 924.1445 5.2985 × 10−4 0.0160 1356.0606
LAT 6.2152 × 10−4 0.0249 5.7272 × 10−4 0.0168

LSTM LON 1.9752 × 10−4 0.0108 767.8572 1.5630 × 10−4 0.0100 1090.1046
LAT 2.3233 × 10−4 0.0111 1.3083 × 10−4 0.0097

Seq2Seq LON 5.8735 × 10−5 0.0062 586.9804 1.0423 × 10−4 0.0078 880.4276
LAT 9.7247 × 10−5 0.0076 9.0954 × 10−5 0.0076

Seq2Seq-ATTN LON 5.0514 × 10−5 0.0056 520.9248 7.4921 × 10−5 0.0066 745.4695
LAT 7.4168 × 10−5 0.0068 6.4257 × 10−5 0.0065

Seq2Seq-MHSA LON 4.6845 × 10−5 0.0049 383.6337 4.7334 × 10−5 0.0053 621.6424
LAT 5.7935 × 10−5 0.0059 5.1199 × 10−5 0.0054

DANAE LON 9.3591 × 10−5 0.0072 629.2457 1.2319 × 10−4 0.0081 864.9335
LAT 1.2229 × 10−4 0.0084 9.7121 × 10−5 0.0074

EncDec-ATTN LON 4.5829 × 10−5 0.0056 421.0406 5.0587 × 10−5 0.0055 632.9389
LAT 5.6622 × 10−5 0.0056 4.9324 × 10−5 0.0057

Our Model LON 2.9595 × 10−5 0.0043 358.1493 3.2749 × 10−5 0.0043 487.4037
LAT 4.1747 × 10−5 0.0048 3.5261 × 10−5 0.0042

(a) (f)

Figure 15. Cont.
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(b) (g)

(c) (h)

(d) (i)

(e) (j)

Two test samples of the Yangtze River Two test samples of the eastern coastal area

Figure 15. Comparison analysis of the MSE, MAE, and HADE of the test samples from the different
areas. Brown and blue-green boxplots represent the evaluation indicators for test samples 1 and 2,
respectively. The green dots are the average value. Figure (a–e) and (f–j) represent the Yangtze River
and eastern coastal area, respectively.

5. Conclusions

To predict the future trajectory of a ship in the case of encounter situations, a high-
precision trajectory prediction model based on AIS navigation-history data was proposed.
This method uses an LSTM neural-network model to encode and decode trajectory infor-
mation from sequences. The framework of the proposed model uses the relative navigation
state information of the encounter and observation ships as part of the input state infor-
mation characteristics, to predict the observation ship trajectory. Compared with classical
models, the proposed model has a stronger generalizability and better performance. Ex-
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periments showed that the attention-based model could effectively capture the potential
information and correlations in a ship position sequence, so that the proposed model had a
better prediction ability for the curve trajectory segment. This significantly improved on the
performance of the existing models, which have strong advantages in trajectory prediction.
It provides an effective safeguard for ship intelligent navigation systems, by providing
real-time trajectory prediction and developing safe and efficient decision support.

In future work, we plan to consider more influencing factors around ships, in the case
of multiple ship collisions, and provide further decision support for our model, for more
cases of ship collision avoidance.

Author Contributions: L.Z.: Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing-original draft, Visualization; Y.Z.: Conceptualization, Method-
ology, Validation, Formal analysis, Investigation, Resources, Data curation, Writing-original draft,
Writing-review & editing, Visualization, Supervision, Project administrator, Funding Acquisition; T.L.:
Conceptualization, Resources, Writing-review & editing, Project administrator, Funding Acquisition;
C.L.P.C.: Conceptualization, Writing-review & editing, Supervision, Project administrator, Funding
Acquisition.

Funding: This work was supported in part by the National Natural Science Foundation of China
(grant nos. 52131101 and 51939001), the Liao Ning Revitalization Talents Program (grant no.
XLYC1807046), and the Science and Technology Fund for Distinguished Young Scholars of Dalian
(grant no. 2021RJ08).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and model code of this study can be obtained from: https:
//github.com/zlingcheng2023/Ship-trajectory-prediction.git (accessed on 2 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mou, J.M.; van der Tak, C.; Ligteringen, H. Study on collision avoidance in busy waterways by using AIS data. Ocean Eng. 2010,
37, 483–490. [CrossRef]

2. Tu, E.; Zhang, G.; Rachmawati, L.; Rajabally, E.; Huang, G.B. Exploiting AIS Data for Intelligent Maritime Navigation: A
Comprehensive Survey From Data to Methodology. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1559–1582. [CrossRef]

3. Zhu, Y.; Zuo, Y.; Li, T. Modeling of Ship Fuel Consumption Based on Multisource and Heterogeneous Data: Case Study of
Passenger Ship. J. Mar. Sci. Eng. 2021, 9, 273. [CrossRef]

4. Li, X.; Zuo, Y.; Jiang, J. Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel
Consumption. Sustainability 2023, 15, 380. [CrossRef]

5. Cockcroft, A.; Lameijer, J. Part B—Steering and sailing rules. In A Guide to the Collision Avoidance Rules, 7th ed.; Cockcroft, A.,
Lameijer, J., Eds.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 11–104.

6. Huang, Y.; van Gelder, P.; Wen, Y. Velocity obstacle algorithms for collision prevention at sea. Ocean Eng. 2018, 151, 308–321.
[CrossRef]

7. Lehtola, V.; Montewka, J.; Goerlandt, F.; Guinness, R.; Lensu, M. Finding safe and efficient shipping routes in ice-covered waters:
A framework and a model. Cold Reg. Sci. Tech. 2019, 165, 102795. [CrossRef]

8. Park, S.W.; Park, Y.S. Predicting Dangerous Traffic Intervals between Ships in Vessel Traffic Service Areas Using a Poisson
Distribution. J. Korean Soc. Mar. Environ. Saf. 2016, 22, 402–409. [CrossRef]

9. Ristic, B.; La Scala, B.; Morelande, M.; Gordon, N. Statistical analysis of motion patterns in AIS Data: Anomaly detection
and motion prediction. In Proceedings of the 2008 11th International Conference on Information Fusion, Cologne, Germany,
30 June–3 July 2008; pp. 1–7.

10. Rong Li, X.; Jilkov, V. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans. Aerosp. Electron. Syst. 2003,
39, 1333–1364. [CrossRef]

11. Mazzarella, F.; Arguedas, V.F.; Vespe, M. Knowledge-based vessel position prediction using historical AIS data. In Proceedings of
the 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, 6–8 October 2015; pp. 1–6.

12. Ma, X.; Liu, G.; He, B.; Zhang, K.; Zhang, X.; Zhao, X. Trajectory Prediction Algorithm Based on Variational Bayes. In Proceedings
of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018; pp. 1–6.

13. Rong, H.; Teixeira, A.; Guedes Soares, C. Ship trajectory uncertainty prediction based on a Gaussian Process model. Ocean Eng.
2019, 182, 499–511. [CrossRef]

313



J. Mar. Sci. Eng. 2023, 11, 1530

14. Barrios, C.; Motai, Y. Improving Estimation of Vehicle’s Trajectory Using the Latest Global Positioning System With Kalman
Filtering. IEEE Trans. Instrum. Meas. 2011, 60, 3747–3755. [CrossRef]

15. Perera, L.P.; Oliveira, P.; Guedes Soares, C. Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation,
and Trajectory Prediction. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1188–1200. [CrossRef]

16. Hexeberg, S.; Flåten, A.L.; Eriksen, B.O.H.; Brekke, E.F. AIS-based vessel trajectory prediction. In Proceedings of the 2017 20th
International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–8.

17. Guo, S.; Liu, C.; Guo, Z.; Feng, Y.; Hong, F.; Huang, H. Trajectory Prediction for Ocean Vessels Base on K-order Multivariate
Markov Chain. In Proceedings of the Wireless Algorithms, Systems, and Applications; Chellappan, S., Cheng, W., Li, W., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 140–150.

18. Gao, D.W.; Zhu, Y.S.; Zhang, J.F.; He, Y.K.; Yan, K.; Yan, B.R. A novel MP-LSTM method for ship trajectory prediction based on
AIS data. Ocean Eng. 2021, 228, 108956. [CrossRef]

19. Liu, J.; Shi, G.; Zhu, K. Online Multiple Outputs Least-Squares Support Vector Regression Model of Ship Trajectory Prediction
Based on Automatic Information System Data and Selection Mechanism. IEEE Access 2020, 8, 154727–154745. [CrossRef]

20. Murray, B.; Perera, L.P. A Data-Driven Approach to Vessel Trajectory Prediction for Safe Autonomous Ship Operations. In
Proceedings of the 2018 Thirteenth International Conference on Digital Information Management (ICDIM), Berlin, Germany,
24–26 September 2018; pp. 240–247.

21. Valsamis, A.; Tserpes, K.; Zissis, D.; Anagnostopoulos, D.; Varvarigou, T. Employing traditional machine learning algorithms for
big data streams analysis: The case of object trajectory prediction. J. Syst. Softw. 2017, 127, 249–257. [CrossRef]

22. Zhang, Z.; Ni, G.; Xu, Y. Trajectory prediction based on AIS and BP neural network. In Proceedings of the 2020 IEEE 9th Joint
International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13 December 2020;
Volume 9, pp. 601–605.

23. Zhao, Y.; Cui, J.; Yao, G. Online Learning based GA-BP Neural Network to Predict Ship Trajectory. In Proceedings of the 2021
China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 3731–3735.

24. Tang, H.; Yin, Y.; Shen, H. A model for vessel trajectory prediction based on long short-term memory neural network. J. Mar. Eng.
Technol. 2022, 21, 136–145. [CrossRef]

25. Qian, L.; Zheng, Y.; Li, L.; Ma, Y.; Zhou, C.; Zhang, D. A New Method of Inland Water Ship Trajectory Prediction Based on Long
Short-Term Memory Network Optimized by Genetic Algorithm. Appl. Sci. 2022, 12, 4073. [CrossRef]

26. Ma, H.; Zuo, Y.; Li, T. Vessel Navigation Behavior Analysis and Multiple-Trajectory Prediction Model Based on AIS Data. J. Adv.
Transp. 2022, 2022, 6622862. [CrossRef]

27. Zhang, X.; Fu, X.; Xiao, Z.; Xu, H.; Qin, Z. Vessel Trajectory Prediction in Maritime Transportation: Current Approaches and
Beyond. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19980–19998. [CrossRef]

28. Capobianco, S.; Millefiori, L.M.; Forti, N.; Braca, P.; Willett, P. Deep Learning Methods for Vessel Trajectory Prediction Based on
Recurrent Neural Networks. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4329–4346. [CrossRef]

29. Donandt, K.; Böttger, K.; Söffker, D. Short-term Inland Vessel Trajectory Prediction with Encoder-Decoder Models. In Proceedings
of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022;
pp. 974–979.

30. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; NIPS’14, pp. 3104–3112.

31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA,
2017; NIPS’17, pp. 6000–6010.

32. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.
[CrossRef]

33. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
34. Chiu, C.C.; Sainath, T.N.; Wu, Y.; Prabhavalkar, R.; Nguyen, P.; Chen, Z.; Kannan, A.; Weiss, R.J.; Rao, K.; Gonina, E.; et al. State-

of-the-Art Speech Recognition with Sequence-to-Sequence Models. In Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 4774–4778.

35. Forti, N.; Millefiori, L.M.; Braca, P.; Willett, P. Prediction oof Vessel Trajectories From AIS Data Via Sequence-To-Sequence
Recurrent Neural Networks. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 8936–8940.

36. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the
2015 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

37. Luong, T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing; Association for Computational Linguistics: Lisbon, Portugal,
2015; pp. 1412–1421.

38. Jiang, D.; Shi, G.; Li, N.; Ma, L.; Li, W.; Shi, J. TRFM-LS: Transformer-Based Deep Learning Method for Vessel Trajectory Prediction.
J. Mar. Sci. Eng. 2023, 11, 880. [CrossRef]

39. Altan, D.; Marijan, D.; Kholodna, T. SafeWay: Improving the safety of autonomous waypoint detection in maritime using
transformer and interpolation. Marit. Transp. Res. 2023, 4, 100086. [CrossRef]

314



J. Mar. Sci. Eng. 2023, 11, 1530

40. Jiang, J.; Zuo, Y. Prediction of Ship Trajectory in Nearby Port Waters Based on Attention Mechanism Model. Sustainability 2023,
15, 7435. [CrossRef]

41. Capobianco, S.; Forti, N.; Millefiori, L.M.; Braca, P.; Willett, P. Recurrent Encoder—Decoder Networks for Vessel Trajectory
Prediction With Uncertainty Estimation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2554–2565. [CrossRef]

42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 2015 3rd International Conference on
Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

43. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

44. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and Composing Robust Features with Denoising Autoencoders.
In Proceedings of the 25th International Conference on Machine Learning; Association for Computing Machinery: New York, NY, USA,
2008; ICML’08, pp. 1096–1103.

45. Russo, P.; Ciaccio, F.D.; Troisi, S. DANAE: A denoising autoencoder for underwater attitude estimation. In Proceedings of the
2020 IMEKO TC-19 International Workshop on Metrology for the Sea, Naples, Italy, 5–7 October 2020; pp. 195–198.

46. Russo, P.; Di Ciaccio, F.; Troisi, S. DANAE++: A Smart Approach for Denoising Underwater Attitude Estimation. Sensors 2021,
21, 1526. [CrossRef]

47. Lee, J.; Shin, J.H.; Kim, J.S. Interactive Visualization and Manipulation of Attention-based Neural Machine Translation. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language: System Demonstrations; Association for
Computational Linguistics: Copenhagen, Denmark, Copenhagen, Denmark, 9–11 September 2017; pp. 121–126.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

315



Citation: Zhou, W.; Li, B.; Luo, G.

Multi-Feature Fusion-Guided

Low-Visibility Image Enhancement

for Maritime Surveillance. J. Mar. Sci.

Eng. 2023, 11, 1625. https://doi.org/

10.3390/jmse11081625

Academic Editor: Mihalis Golias

Received: 17 July 2023

Revised: 13 August 2023

Accepted: 15 August 2023

Published: 20 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Multi-Feature Fusion-Guided Low-Visibility Image Enhancement
for Maritime Surveillance

Wenbo Zhou 1,2,*, Bin Li 3 and Guoling Luo 2

1 School of Electronic and Information Engineering, South China University of Technology,
Guangzhou 510641, China

2 Zhuhai Metamemory Electronic Technology Co., Ltd., Zhuhai 519090, China; luo.guoling@zxelec.com
3 School of Microelectronics, South China University of Technology, Guangzhou 510641, China;

phlibin@scut.edu.cn
* Correspondence: zhou.wenbo@zxelec.com

Abstract: Low-visibility maritime image enhancement is essential for maritime surveillance in
extreme weathers. However, traditional methods merely optimize contrast while ignoring image
features and color recovery, which leads to subpar enhancement outcomes. The majority of learning-
based methods attempt to improve low-visibility images by only using local features extracted from
convolutional layers, which significantly improves performance but still falls short of fully resolving
these issues. Furthermore, the computational complexity is always sacrificed for larger receptive
fields and better enhancement in CNN-based methods. In this paper, we propose a multiple-feature
fusion-guided low-visibility enhancement network (MFF-Net) for real-time maritime surveillance,
which extracts global and local features simultaneously to guide the reconstruction of the low-
visibility image. The quantitative and visual experiments on both standard and maritime-related
datasets demonstrate that our MFF-Net provides superior enhancement with noise reduction and
color restoration, and has a fast computational speed. Furthermore, the object detection experiment
indicates practical benefits for maritime surveillance.

Keywords: multiple feature fusion; convolutional neural network; attention mechanism;
low-visibility image enhancement; maritime surveillance

1. Introduction

With the growth of the Internet of Things and artificial intelligence, the perception
efficiency of maritime sensors has been employed for different tasks in ocean engineering,
e.g., vessel trajectory prediction [1,2] and maritime surveillance [3]. In particular, visual
sensors are widely used because of their unique intuitiveness and high timeliness [4].
However, imaging devices working in extremely low-visibility conditions, typically low-
light and hazy, will generate images with severe distortion [5,6], which constantly suffer
from low contrast, non-uniform noise, and details lost, as shown in Figure 1. Undoubtedly,
the negative impact of low visibility will make it tricky to analyze critical information in
the image, which brings difficulty in subsequent tasks [7]. For instance, it has been proven
that low visibility will reduce the precision of object detection [8–10], image semantic
segmentation [11,12], etc. Therefore, an effective and real-time method for low-visibility
image enhancement is required in various domains, such as visual navigation [13], maritime
management [14], etc.

Many academics have attempted to improve extremely low-visibility photos with both
hardware- and software-enabled methods during the past several decades. The former
attempts to increase the robustness of the visual sensors by applying extra artificial light
sources, such as infrared and ultraviolet flashes [15], while the latter is more popular [16]
due to the relatively low cost. Specifically, some traditional software-enabled methods
have tried to employ some physical model and prior knowledge [15,17], which successfully
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enhanced the visibility but caused severe detail lost and failed to effectively overcome
the noise interference. The convolutional neural network (CNN) has become increasingly
popular in recent years for enhancement tasks [18]. The learnable convolutional kernel
parameters enable CNNs to simultaneously eliminate noise interference [19]. However,
the features extracted by convolutional layers are local, which works ineffectively for
some non-uniform illumination patches, and the translation invariance of the CNN is
incompatible to the non-linear relationship between the object and the background, which
causes vague edges in enhanced images. Furthermore, to improve the receptive view of the
convolutional kernel for better feature extraction, the computational complexity gradually
increases with the deepening of the network structure [20].

Figure 1. Examples of the comparison between maritime low-visibility images and clear images.

1.1. Motivation

For the convolutional layers, the critical mechanism is to learn a convolution kernel
with fixed parameters and perform the same transformation process on the entire feature
map. The size and stride settings of the convolution kernels only change the scope of action.
The translation invariance is an important feature of the convolutional layer, which also
makes it difficult for the CNN to extract the non-local features [21].

Meanwhile, the spatial attention mechanism is widely employed in computer vision
tasks [22]. Unlike convolution, the receptive field of the spatial mechanism is larger and
more diverse, which can extract the global features from the feature map and overcomes
the limitation of the local features. However, compared with words in passages of text,
the resolution of pixels is much higher, which requires more parameters to learn. In 2019,
Huang et al. [23] proposed the criss-cross attention mechanism, which extracts the contex-
tual information from full-image dependencies with competitive computational efficiency.

To let the comprehensive information guide the enhancement processing, we propose
the multi-feature fusion-guided network. Specifically, inspired by [23], we employ the
densely connected convolution layers and the cross attention module for local and global
feature extraction and fuse them to form the general feature map, which helps the network
enhance the low-visibility image with more detail preservation and better color recovery.

1.2. Contribution

In this paper, we present a multi-feature fusion-guided low-visibility image enhance-
ment network (MFF-Net) for maritime surveillance advancement. It achieves a superior
balance between the enhancement effect and computational time. The main contributions
of our method are summarized as follows:

• We propose a multiple feature fusion-guided low-visibility image enhancement
method for maritime surveillance advancement. It extracts the features of the image
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and reconstruct it with the supervision of a joint loss function to calculate both the
Euclidean distance and angle difference between the output and the ground truth.
The proposed network tackles two typical low-visibility problems, i.e., low-light and
hazy, with the same framework.

• To overcome the limitation caused by the translation invariance of the CNN, we design
a two-branched global and local features extraction block (GL-Block) comprising cross
attention modules and densely residual convolutional layers. The output feature maps are
then fused to guide the enhancement processing with more comprehensive information.

• Extensive experimental results show that our MFF-Net enhances both low-light and
hazy maritime images with significant noise reduction and detail preservation, which
outperforms other competitive methods. Furthermore, we evaluate the computational
complexity of the MFF-Net. The results indicate an outperforming balance between
the effect and the speed.

1.3. Organization

The rest of this paper is organized as follows: Section 2 reviews previous research on
low-visibility image enhancement tasks. Section 3 introduces the proposed method and the
detailed design of each component. Section 4 presents the experimental results compared
with state-of-the-art methods on both enhancement performance and the running time
cost. In addition, the ablation study investigates the necessity of the multi-feature fusion
guidance for low-visibility image enhancement and the rationality about the weight settings
of the joint loss function. The experiment on vessel detection demonstrates the practical
benefits of our method. Section 5 summarizes the content of the paper and discusses
future work.

2. Related Work

Low-light and haze are the most common low-visibility weathers in maritime surveil-
lance. Many research studies have been proposed to over come these problems [24]. In this
section, we briefly review the related works about low-light image enhancement and image
dehazing, which can be generally classified into traditional and deep learning-based method.

2.1. Low-Light Image Enhancement Methods

Low-light image enhancement methods can generally be divided to mathematical
model- and deep learning-based methods. Mathematical model-based methods include
some famous theories such as histogram equalization (HE) [17], gamma correction (GC) [25],
Retinex theory [26], and so on. HE firstly attempts to enhance the image with the most
frequent intensity values uniformly. However, in practical applications, HE and its vari-
ants [27,28] are severely hampered by non-uniform noise. GC tries to increase the in-
tensity of each pixel with an exponential function, which is also effective for contrast
enhancement. However, it ignores adjacent pixels’ correlation, resulting in artifacts and
enlarged noise. Retinex theory is based on the retinal-imaging concept that decomposes
images into illumination and reflection maps. It was first utilized in 1997 to lighten low-
light images [26,29]. Many Retinex-based methods were proposed in subsequent years.
For instance, Wang et al. [30] proposed a specially designed enhancement method for
non-uniform illumination, and Guo et al. [31] proposed low-light image enhancement via
illumination map estimation (LIME), which achieved competitive performance in low-light
image enhancement. However, mathematical model-based methods generally use some
specific functions to estimate the noise and illumination, which is non-uniform and dif-
ficult to express as a specific equation. Therefore, the results always suffer from severe
color distortion. Noise interference is also a thorny problem for traditional mathematical
model-based methods.

With the rapid advancement of computing devices, deep learning-based methods
have produced outstanding results in low-light image enhancement. In 2018, Chen et al.
proposed an end-to-end network trained using extremely low-light raw sensor data [32],
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which demonstrated the superior performance of the neural network in low-light image
enhancement tasks. In the following years, a number of works were published on low-light
enhancement [33,34]. For instance, KinD [35] proposed a CNN based on Retinex theory,
which successfully correlated the mathematical model and neural network. Zero [36]
formulated light enhancement as a task of image-specific curve estimation, which en-
hanced the low-light images with a lightweight neural network. Hap et al. [37] proposed
a low-light image enhancement method, which decouples the model into two sequential
stages to improve the scene visibility and suppress the rest degeneration factors separately.
Guo et al. [38] designed a multi-scale deep stacking fusion enhancer to lighten the darkness
in an intelligent transportation system. LLFlow [39] proposed a normalizing flow model
to establish the relationship between the single low-light images to different normally
exposed images. However, most deep learning methods suffer from several thorny prob-
lems like color distortion and detail lost, which are difficult to solve simultaneously by a
lightweight CNN.

2.2. Image Dehazing Method

Image dehazing methods can be generally divided into prior- and deep-learning based
methods. Prior-based dehazing methods exploit the statistical properties of clean images
to estimate transmission maps, and then predict the haze-free image using the scattering
model, which can be expressed as

H(x) = J(x) ∗ t(x) + A ∗ (1− t(x)), (1)

where H(x) is the hazy image, t(x) is the transmittance, and A is the atmospheric light intensity.
To acquire prior knowledge, early works attempted to concentrate on statistic analysis

or observation of the haze-free images. Among them, He et al. [40] proposed the dark
channel prior (DCP), which detects the haze distribution of hazy images by assuming
that the lowest local intensity in the RGB channels are close to zero in a clear image.
Zhu et al. [41] introduced the color attenuation prior, which supposes that in a linear model,
the difference between the saturation and the pixel values are positively correlated with the
depth of the scene. Although these methods have achieved certain dehazing effects, they
are based on artificially constructed prior models, which cannot fully describe the real haze
image. Therefore, these methods are highly restricted by the scene and have insufficient
generalization ability.

The method based on deep learning also has a large application in dehazing. Cai et al. [42]
proposed an end-to-end-based DehazeNet, which estimates the transmission map from
a hazy image. Tang et al. [43] proposed a multi-scale network to exploit multi-scale in-
formation, which predicts the transmission by a coarse-scale net and a fine-scale one.
Chen et al. [44] proposed a gated context aggregation network (GCANet), which employs
a smooth dilated convolution to reduce the gridding artifacts led by the dilation tech-
nique. However, the image enhanced by GCANet still has unevenly distributed haze.
However, these methods cannot recover the details of the image. Therefore, Qin et al. [45]
further employed the application of the attention mechanism in dehazing work, which
exploits a feature attention module that fuses the features with pixel and channel attention.
Guo et al. [46] proposed a self-paced semi-curricular attention network to overcome the
non-uniform distribution features of the hazy images.

3. Proposed Method

In practical applications, low-visibility weathers always bring challenges in traffic
observation and navigational environment perception. An effective and efficient low-
visibility enhancement method is beneficial for maritime surveillance. In this section, we
introduce our method in detail. For a better understanding, Table 1 lists the main symbols
adopted in this work.
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Table 1. Summary of key notations.

Notation Description

M The feature map generated by neural networks
Mi,_ The i-th row vectors of the feature map
M_,j The j-th column vectors of the feature map
Mi,j The vector at position (i, j) of the feature map

λ The weight of the loss function
L The loss function
P The pixel of the output image
P̂ The pixel of the ground truth image
h The height of the image
w The width of the image
c The channel number of the image

3.1. Architecture

The overview of the network is presented in Figure 2. To reduce the computational
complexity, we use 1× 1 convolutional and max-pooling layers to downsample the low-
visibility image. For feature extraction, we propose the GL-Block consisting of convolutional
layers and cross attention modules. In the end, 1× 1 convolutional and bilinear upsampling
layers transform the output image to the corresponding fine scale.

Figure 2. Flowchart of the proposed MFF-Net. Firstly, the low-visibility image is downsampled with
a max-pooling layer. The multiple features are then extracted with three GL-Blocks to guide the
enhancement process. The enhanced image is finally upsampled to the original scale.

3.2. GL-Block

We design a two-branched block to extract multiple features simultaneously. Firstly
we employ cross attention modules [23] to extract global features, which collect global infor-
mation in the horizontal and vertical directions to enhances the representative capability of
each pixel, as shown in Figure 3. Specifically, 1× 1 convolutional layers are used to obtain
the query (Q), key (K), and value (V) matrix and generate the attention map M with an
affinity operation. Unlike the common attention method, GL-Block achieves global spatial
information interaction with two cross attention modules, which sufficiently reduces the
computational complexity. The contextual information collected by the cross attention
module can be expressed as

Mi,j = f (M
′
i,j, M

′
i,_, M

′
_,j), (2)

where M′
i,j represents each vector in the input feature maps, M

′
i,_ and M

′
_,j represent the

horizontal and vertical vectors, respectively, and f denotes the process of establishing
the connection between each pixel. However, the cross attention mechanism will cause a
black-line problem due to the extremely dark or bright pixels, as discussed in Section 4.6.
Therefore, to balance the extreme non-uniformity, we optimize the cross attention module
with two subsequent dilated convolutional layers. The kernel size is set to three, and the
dilation steps are set to four and six, respectively.
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Figure 3. The detailed implementation of the GL-Block and cross attention module.

The other branch consists of several residual convolutional layers, designed to extract
local features separately. In particular, inspired by [47], the convolutional layers are densely
connected for better detail preservation. The kernel size and stride of convolutional layers
are set to three and one, respectively. In the end, we merge the global and local feature
maps and feed it into a 1× 1 convolutional layer for feature fusion.

3.3. Loss Function

For the back-propagation process, we propose a joint loss function consisting of L1
loss L1, L2 loss L2, and color similarity loss Lcolor to supervise our network from both the
Euclidean and angle difference. This can be defined as

L = λ1L1 + λ2L2 + λ3Lcolor, (3)

where λ1, λ2, and λ3 are the weights of each loss function.
L1 Loss. To ensure the quality of the generated images, we employ the widely used

L1 loss function, which is based on the Euclidean distance between each pixel. It can be
expressed as

L1 =
1

hwc ∑
i,k

∥∥∥Pk
i − P̂k

i

∥∥∥, (4)

where Pk
i and P̂k

i are the pixels of the output images and ground truth, respectively. i and k
represent the positions and channels, respectively. h, w, and c denote the height, width and
the number of channels, respectively.

L2 Loss. Besides L1, the L2 loss function is also widely used in low-level computer
vision tasks for the effective restriction on the output image, which can be expressed as

L2 =
1

hwc ∑
i,k
‖Pk

i − P̂k
i ‖2. (5)

Color Similarity Loss. In RGB images, the Euclidean distance is a typical evaluation
metrics to validate the similarity between two pixels, However, it ignores the angle differ-
ence between two RGB vectors, which also causes severe color differences between two
pixels. To measure the deviation more comprehensively, we employ the cosine similarity be-
tween each vector as the color similarity loss to take the angle difference into consideration.
The color loss function can be expressed as

Lcolor = 1− 1
hw
·∑

i

Pi · P̂i

max(‖Pi‖2 · ‖P̂i‖2, ε)
, (6)

where the cosine value of the angle between the RGB vectors Pi and P̂i is calculated, which
represents the angle differences of the pixel at the position i. ε = 0.001 is a hyper-parameter
used to avoid zero becoming the denominator.
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4. Experiments

In this section, we firstly describe the dataset and the implementation details used in
the experiment. To comprehensively evaluate the performance of the MFF-Net, different
aspects of the state-of-the-art methods and our model are compared including GT reference,
noise reduction, color naturalness, and computational complexity. The ablation studies
concerning the necessity of multiple feature fusion and the weight settings of the joint loss
function are presented to demonstrate the rationality of the proposed method. Finally,
to verify the practical benefits of the proposed method, we construct the vessel detection
experiments on the enhanced images.

4.1. Dataset and Evaluation Indicators

Supervised learning requires the perfectly paired dataset to calculate the pixel differ-
ence between the output and ground truth. However, the current publicly available paired
datasets (LOL [48], EnlightenGAN [49], I-HAZE [50], SMOKE [51], etc.) are not suitable for
maritime low-visbility image enhancement1, and the paired maritime low-visibility image
dataset is difficult to obtain. We thus synthesize a large number of marine low-visibility
images based on the Seaships dataset. Specifically, we select 1500 high-quality images from
the Seaships dataset for training and 30 images for testing, as shown in Figure 4. It is noted
that the characters in the image are the timestamps and locations of the camera, which is
contained in the original dataset. In low-light image enhancement tasks, we also adopt
traditional methods to synthesize low-light maritime images, which can be expressed as

Lmaritime(x) = J(x)× g(x), (7)

where Lmaritime(x) is the low-light maritime image, J(x) is the clear image, and g(x) is
the coefficient, which is a random number between 0.1 and 0.8. Meanwhile, we exploit
Equation (1) to obtain synthetic training hazy data. We restrict t(x) from 0.1 to 0.7, and set
A from 0.2 to 0.8. For the test data, we synthesized three types of low-light images
with different light levels, i.e., g1(x) = 0.2, g2(x) = 0.4, and g3(x) = 0.6 (termed Test-L).
Similarly, we also synthesized three types of images using Equation (1) with different
degrees of degradation, i.e., t1 = 0.4/A1 = 0.9, t2 = 0.2/A2 = 0.8, and t3 = 0.2/A3 = 0.7
(termed Test-H).

For the supervised neural network, the results closer to the ground truth represent
a better performance. Therefore, for quantitative image quality assessment comparisons,
we choose five reference evaluation indicators, i.e., peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [52], feature similarity index measure (FSIM) [53], and visual
saliency-induced index (VSI) [54] to evaluate the enhancement performance. It is noted
that a higher PSNR, SSIM, FSIM, VSI represent better image quality and a closer proximity
to the ground truth.

4.2. Implementation Details

We use Pytorch to build and train the MFF-Net. The network is trained for 300 epochs,
and the ADAM optimizer is employed during training. The starting learning rate is set to
1× 10−3 and is multiplied by 0.1 after every 100 epochs. In the loss function, to equally em-
ploy the Euclidean distance and the angle difference as the restraint, the weights of L1, L2,
and Lcolor are set to 0.25, 0.25, and 0.5, respectively. For data augmentation, we randomly
crop the 600× 400 images to patches of size 128 × 128 for training and the original size for
testing, and the running time costs are calculated on a laptop with an AMD Ryzen 7 5800H
CPU accelerated by an NVIDIA GTX 3060 GPU. For a fair comparison, the parameters of
all competing methods are from the open access checkpoints by the authors.
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Figure 4. Thirty selected maritime images from the Seaships [55] dataset, which contains raw
maritime surveillance data captured in different scenes.

4.3. Experiments on Maritime Low-Light Images

To verify the superior performance of our method, we select some competitive
classical algorithms and state-of-the-art methods to compare: (a) traditional mathemat-
ical model methods, including HE [17], NPE [30], BCP [56], SRIE [57], and LIME [31];
(b) deep learning-based methods, including RetinexNet [48], LightenNet [58], MBLLEN [59],
KinD [35], Zero [36], and StableLLVE [18]. The visual comparisons on Test-L are shown
in Figure 5. In terms of mathematical model-based methods, the results of HE and BCP
have obvious color distortion, some non-uniform artifact exists in the results enhanced
by NPE, and LIME fails to lighten the low-light images effectively. In addition, for deep
learning-based methods, RetinexNet suffers from severe color distortion, KinD only en-
hances the image with local features, which is incompatible with the illumination diversity
between the non-adjacent patches, Zero sacrifices the enhancement effect for fast speed,
making the results look a little dark, and StableLLVE fails to enlighten the extremely dark
regions. Compared with these methods, our results look more natural with better recovery.
As shown in Table 2, the quantitative experiment result indicates that our method achieves
a competitive performance on the whole. Although not the best in terms of certain met-
rics, our proposed method has substantial advantages in running speed, as discussed in
Section 4.5.
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Figure 5. Visual comparison of the synthetic low-light images from the Seaships [55] dataset with
other competitive methods: (a) low-light; (b) HE [17]; (c) NPE [30]; (d) BCP [56]; (e) SRIE [57];
(f) LIME [31]; (g) RetinexNet [48]; (h) LightenNet [58]; (i) MBLLEN [59]; (j) KinD [35]; (k) Zero [36];
(l) StableLLVE [18]; (m) MFF-Net; (n) ground truth.

Table 2. Quantitative comparison between our method and the state-of-the-art methods on the
90 maritime low-light images. The top three results are marked in red, blue, and green colors,
respectively. The ↑ represents that the higher value means better result.

Methods PSNR ↑ SSIM ↑ FSIM ↑ VSI ↑
HE [17] 18.011± 1.838 0.770 ± 0.073 0.896 ± 0.031 0.961 ± 0.013

NPE [30] 21.839± 2.936 0.946 ± 0.023 0.977 ± 0.008 0.992 ± 0.003
BCP [56] 16.577± 1.857 0.844 ± 0.051 0.929 ± 0.026 0.969 ± 0.016
SRIE [57] 18.044± 4.432 0.889 ± 0.074 0.946 ± 0.034 0.986 ± 0.008
LIME [31] 20.597± 3.719 0.945 ± 0.026 0.981 ± 0.008 0.993 ± 0.004

RetinexNet [48] 14.927± 1.927 0.691 ± 0.093 0.815 ± 0.049 0.943 ± 0.019
LightenNet [58] 11.985± 2.702 0.788 ± 0.072 0.916 ± 0.028 0.972 ± 0.008
MBLLEN [59] 13.721± 3.065 0.739 ± 0.064 0.950 ± 0.011 0.984 ± 0.004

KinD [35] 17.037± 1.413 0.906 ± 0.031 0.954 ± 0.015 0.984 ± 0.009
Zero [36] 17.074± 1.421 0.838 ± 0.036 0.891 ± 0.029 0.964 ± 0.017

StableLLVE [18] 14.853± 2.921 0.797 ± 0.044 0.898 ± 0.042 0.974 ± 0.011

MFF-Net 23.666± 4.222 0.941 ± 0.024 0.978 ± 0.009 0.994 ± 0.003

4.4. Experiments on Maritime Hazy Images

To demonstrate the dehazing ability of MFF-Net, we also select some classical tradi-
tional enhancement methods, including DCP [40], CAP [41], HL [60], F-LDCP [61], and
GRM [62], and some state-of-the-art learning-based methods, including DehazeNet [42],
MSCNN [63], AOD-Net [64], GCANet [44], HTDNet [65], and FFANet [45], for testing.
As shown in Figure 6, the image dehazed by DCP suffers serious noise interference, espe-
cially on the water surface. Meanwhile, color distortion occurs in some areas. CAP and
F-LDCP fail to dehaze the images thoroughly, resulting in the overall image being covered
by a layer of haze. In contrast, HL dehazes the images better, but the enhanced image is too
bright with serious noise interference. Furthermore, on the edge of the vessel and some of
the water surface, the reflection phenomenon seriously influences the visual feeling, which
brings a barrier to the lookout. On the whole, the learning-based methods achieve better
performance than the traditional methods. However, DehazeNet, MSCNN, and AOD-Net
still cannot dehaze the images thoroughly. Furthermore, although GCANet and FFA-Net
can remove most of the haze, the images are still riddled with artifacts. The quantitative
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results are shown in Table 3. Compared with other methods, MFF-Net can successfully
dehaze the images with a good balance between color restoration and detail preservation,
benefiting from the strong learning ability of the CNN and the multi-feature fusion strategy.
The expoeriments on the real captued images are shown in Figure 7. It can be seen that our
method is effective for both real-captured low-light and hazy images.

Figure 6. Visual comparison on the synthetic hazy image from the Seaships [55] dataset with
other competitive methods: (a) hazy; (b) DCP [40]; (c) CAP [41]; (d) HL [60]; (e) F-LDCP [61];
(f) GRM [62]; (g) DehazeNet [42]; (h) MSCNN [63]; (i) AODNet [64]; (j) GCANet [44]; (k) HTDNet [65];
(l) FFANet [45]; (m) MFF-Net; (n) ground truth.

Figure 7. Visual performance on the physically captured low-visibility images. The first row contains
the low-light images extracted from the TMDIED [66] dataset, and the third row contains the hazy
images extracted from SMD [67] and online websites. The corresponding enhanced results of our
MFF-Net are shown in the second and fourth rows.

4.5. Computational Complexity Analysis

In the practical maritime surveillance, the visual enhancement methods must take the
running time into account. To evaluate the performance on computational complexity, we
provide the running time cost on both low-light image enhancement and dehazing. For low-
light enhancement, as shown in Table 4, MFF-Net is able to enhance the 400 × 600 images
at over 20 FPS with the acceleration of an NVIDIA RTX 3060 GPU, which is faster than most
other methods. LightenNet [58] and Zero [36] are more lightweight, but the enhancement
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effect is much worse than ours. For the dehazing method, as shown in Table 5, our MFF-Net
also outperforms most of the previous methods. AOD-Net is faster, but the effectiveness
of dehazing is worse than ours. In general, MFF-Net achieves a superior balance between
the enhancement effect and the running time cost compared with the other methods, as
depicted in Figure 8.

Table 3. Quantitative comparison between our method and the state-of-the-art methods on the
90 maritime hazy images. The top three results are marked in red, blue, and green colors, respectively.
The ↑ represents that the higher value means better result.

Methods PSNR ↑ SSIM ↑ FSIM ↑ VSI ↑
DCP [15] 15.687± 2.437 0.823 ± 0.059 0.946 ± 0.019 0.976 ± 0.011
CAP [41] 19.218± 4.078 0.848 ± 0.089 0.906 ± 0.057 0.978 ± 0.013
HL [60] 21.440± 2.353 0.917 ± 0.027 0.962 ± 0.019 0.980 ± 0.013

F-LDCP [61] 12.318± 1.454 0.645 ± 0.099 0.781 ± 0.077 0.948 ± 0.020
GRM [62] 20.271± 2.236 0.815 ± 0.068 0.888 ± 0.042 0.968 ± 0.013

DehazeNet [42] 13.092± 1.456 0.683 ± 0.101 0.808 ± 0.076 0.955 ± 0.019
MSCNN [63] 17.084± 2.132 0.843 ± 0.075 0.915 ± 0.048 0.980 ± 0.011
AODNet [64] 17.722± 2.661 0.761 ± 0.105 0.819 ± 0.074 0.958 ± 0.020
GCANet [44] 19.437± 3.066 0.878 ± 0.043 0.952 ± 0.014 0.981 ± 0.007
FFANet [45] 19.918± 4.805 0.858 ± 0.076 0.939 ± 0.031 0.984 ± 0.009

MFF-Net 22.192± 2.021 0.912 ± 0.028 0.955 ± 0.013 0.988 ± 0.006

Table 4. Average running time cost (unit: seconds) and parameter comparison on low-light images
with different resolutions (400 × 600, 480 × 640, and 768 × 1024) of the different methods.

Methods Platform Parameters (K) 400 × 600 480 × 640 768 × 1024

HE [17] Matlab (CPU) - 0.1089 0.1344 0.3234
NPE [30] Matlab (CPU) - 4.6228 5.7649 14.705
BCP [56] Matlab (CPU) - 0.7711 0.9936 2.2191
SRIE [57] Matlab (CPU) - 5.1873 8.8056 20.323
LIME [31] Matlab (CPU) - 8.2369 11.429 46.887

RetinexNet [48] Python (GPU) 8536.7 0.0714 0.0922 0.2070
LightenNet [58] Matlab (GPU) - 0.0570 0.0640 0.2093
MBLLEN [59] Python (GPU) 450.2 0.0870 0.1045 0.2493

KinD [35] Python (GPU) 8017.1 0.1040 0.1469 0.2225
Zero [36] Python (GPU) 79.4 0.0165 0.0178 0.0315

StableLLVE [18] Python (GPU) 4316.3 0.1045 0.1501 0.1953

MFF-Net Python (GPU) 817.3 0.0457 0.0566 0.1657

Table 5. Average running time cost (unit: seconds) and the parameters comparison on hazy images
with different resolutions (400 × 600, 480 × 640, and 768 × 1024) of the different methods.

Methods Platform Parameters (K) 400 × 600 480 × 640 768 × 1024

DCP [40] Matlab (CPU) - 0.8124 1.0282 2.8398
CAP [41] Matlab (CPU) - 1.1568 1.3286 2.6762
HL [60] Matlab (CPU) - 4.9637 5.1852 6.6912

F-LDCP [61] Matlab (CPU) - 1.2865 1.4799 3.5562

DehazeNet [42] Matlab (GPU) - 0.5243 0.6742 1.4918
MSCNN [63] Matlab (GPU) - 0.1965 0.2853 0.8973
AODNet [64] Python (GPU) 9 0.0125 0.0141 0.0192
GCANet [44] Python (GPU) 2758 0.0912 0.1055 0.1722
FFANet [45] Python (GPU) 25,999 0.7236 0.7951 1.8978

MFF-Net Python (GPU) 817.3 0.0457 0.0566 0.1657
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Figure 8. The trade-off between the visibility enhancement performance and the computational
efficiency on several state-of-the-art low-light enhancement and dehazing methods. It is noted that
the frame per second (FPS) metric is tested on a 600 × 400 resolution image.

4.6. Ablation Study

To validate the necessity of multiple feature fusion guidance, we first conduct the
ablation experiment on the architecture with two incomplete versions: (a) with only the
local feature guidance network (OLF-Net), which only employs the dense connected
convolutional layers to extract the local features during the processing; and (b) with only
the global feature guidance network (OGF-Net), which only uses the optimized cross
attention module to extract global features. The visual results are shown in Figure 9,
the enhanced image of OLF-Net suffers from obvious dark artifacts, which proves that the
shallow convolutional layers cannot meet the learning capabilities required for extremely
low-visibility image enhancement tasks. In addition, the noticeable black-line issue exists
in the OGF-Net, due to the effect of exceptionally dark or bright pixels on correlated pixels
in the cross attention module. The ablation study on the architecture indicates that multiple
feature fusion guidance successfully improves the effectiveness of feature representation
and alleviates the excessive influence of extremely bright or dark pixels in the cross attention
mechanism, which is necessary in low-visibility enhancement tasks.

Figure 9. Visual comparison between the enhanced results of the MFF-Net with the incomplete
versions on the standard low-light image enhancement dataset. It is noted that the results in the
ablation study are output from the network trained and tested with the same implementation details
as the MFF-Net.
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We also investigate the effectiveness of the weight setting on different loss functions,
including the Euclidean distance (L1 + L2) and angle difference (Lcolor). For a fair experi-
ment, the architecture of the network is set to MFF-Net. According to the comparison of
the quantitative indicators shown in Table 6, the network shows the best performance on
the proposed weight setting, which guarantee the enhancement quality comprehensively
with a rational balance between the Euclidean distance and angle difference.

Table 6. Quantitative quality assessment comparison between different weight distributions of
the loss functions on the testing data consisting of paired images extracted from the LOL [48]
and EnlightenGAN [49] datasets. ↑ and ↓ represent that higher or lower values mean the better
results, respectively.

Loss Functions PSNR↑ SSIM↑ LPIPS↓
0.25L1 + 0.25L2 21.34 ± 4.4286 0.760 ± 0.1336 0.151 ± 0.1098

0.25L1 + 0.25L2 + 0.25Lcolor 21.30 ± 4.6006 0.763 ± 0.1302 0.148 ± 0.1070
0.125L1 + 0.125L2 + 0.25Lcolor 21.40 ± 3.6208 0.753 ± 0.1253 0.170 ± 0.1177

0.25L1 + 0.25L2 + 0.5Lcolor 21.36 ± 4.2196 0.779 ± 0.1251 0.139 ± 0.1003

4.7. Improvement in Maritime Vessel Detection

To further demonstrate the practical benefits of our MFF-Net for maritime surveillance
under low-visibility weathers, we apply YOLOv5 and YOLOX [68] to conduct maritime
vessel detection experiments. The test images are randomly selected from the Test-L and
Test-H. First, we select 1500 maritime-related images in the COCO dataset to train our
detection networks. The evaluation tests are then constructed on the selected images. In low-
visibility scenes, the vessel detection accuracy decreases heavily due to the low contrast
and vague edge features, which can cause difficulties in maritime surveillance. In other
words, the caption cannot make full use of the computer vision to assist the artificial lookout.
After enhancement, the visual data can deliver clearer traffic scenes to the managers, and the
detection accuracy is also significantly increased. The experimental results are illustrated in
Figures 10 and 11. Compared with the state-of-the-art methods, the enhanced results of the
MFF-Net perform better due to the application of multi-feature fusion. The quantitative
comparison is shown in Table 7. It is noted that the input image will be first resized to
640 × 640 in YOLOX. However, most of the traditional method cannot enhance them within
one second; thus, they cannot be applied in practical engineering. Therefore, we compare
our method with the fastest representative traditional and deep learning-based methods
in a quantitative experiment. The experimental results demonstrate that the MFF-Net
has practical benefits in maritime surveillance, which is more beneficial for higher-level
visual tasks under low-visibility weathers when assisting artificial observations, thereby
improving maritime management.

Table 7. Quantitative experiments about the vessel detection accuracy improvement on YOLOX,
which is tested on the Seaships [55] dataset. It is noted that mAP (clear), mAP (low-visibility),
and mAP (enhancement) represent the mean average precision on clear, low-visbility, and enhanced
images, respectively.

Weather Method mAP (Clear) mAP (Low-Visibility) mAP (Enhancement)

HE [17] 40.97% 31.97% 33.26%
Low-light Zero [36] 40.97% 31.97% 35.11%

MFF-Net 40.97% 31.97% 36.42%

DCP [15] 40.97% 21.66% 26.25%
Hazy AOD-Net [64] 40.97% 21.66% 32.37%

MFF-Net 40.97% 21.66% 34.81%
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Figure 10. Vessel detection experiment results on maritime low-light images between our method
and other competitive methods: (a) low-light; (b) HE [17]; (c) NPE [30]; (d) BCP [56]; (e) SRIE [57];
(f) RetinexNet [48]; (g) MBLLEN [59]; (h) KinD [35]; (i) Zero [36]; (j) StableLLVE [18]; (k) MFF-
Net; (l) ground truth. It can be seen that our MFF-Net significantly improves the accuracy of vessel
detection under low-light environments, which demonstrates the benefits of our MFF-Net for practical
ocean engineering.
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Figure 11. Vessel detection experiment results on maritime hazy images between our method and
other competitive methods: (a) hazy; (b) DCP [40]; (c) CAP [41]; (d) HL [60]; (e) F-LDCP [61];
(f) MSCNN [63]; (g) AODNet [64]; (h) GCANet [44]; (i) DehazeNet [42]; (j) FFANet [45]; (k) MFF-Net;
(l) ground truth. It can be seen that our MFF-Net significantly improves the accuracy of vessel
detection under hazy environments, which demonstrates the benefits of our MFF-Net for practical
ocean engineering.

5. Conclusions

In this paper, we proposed an end-to-end multi-feature fusion-guided low-visbility
enhancement method for maritime surveillance. Firstly, the maritime low-visibility images,
i.e., low-light and hazy, are downsampled and then fed into the GL-Block comprising cross
attention modules and dense residual convolutional layers. The GL-Block is designed to
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extract the global and local features to guide the enhancement processing simultaneously.
After enhancement, the image is upsampled to a finer scale. For better constraint of
the enhanced output, we introduced a joint loss function comprising L1 loss, L2 loss,
and color similarity loss. In the experiments, we made massive comparisons on the visual
performance, including quantitative image quality assessment, noise reduction, and color
naturalness on both low-light enhancement and dehazing. Compared with other methods,
the MFF-Net achieved a competitive quantitative and visual performance with effective
noise reduction and superior color naturalness. Moreover, we evaluated the operating
time cost and model size of the state-of-the-art methods, which indicates that MFF-Net can
efficiently enhance extremely low-visibility images with lower computational complexity.
In the ablation study, we conducted a series of experiments to investigate the necessity
of multiple feature guidance and rational weight settings of the proposed loss function.
Finally, the experiment of vessel detection indicate that our method is beneficial for practical
maritime surveillance under low-visibility weathers.

In the future, we will test more methods for global feature extraction to demonstrate
the advantages of multiple features for low-visibility image enhancement. Furthermore,
high-definition videos cannot currently be enhanced in real time. We will thus optimize
the architecture of the MFF-Net to achieve a better performance with lower computa-
tional complexity, which will enable the network to work on a diverse range of maritime
edge devices.
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Note

1 LOL [48] and EnlightenGAN [49] are mainly captured in indoor or land environments. The haze in I-HAZE [50] and SMOKE [51]
are artificially generated by smoke or steam, which is different from haze in the ocean.
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Abstract: The identification and classification of obstacles in navigable and non-navigable regions, as
well as the measurement of distances, are crucial topics of investigation in the field of autonomous
navigation for unmanned surface vehicles (USVs). Currently, USVs mostly rely on LiDAR and ultra-
sound technology for the purpose of detecting impediments that exist on water surfaces. However, it
is worth noting that these approaches lack the capability to accurately discern the precise nature or
classification of those obstacles. Nevertheless, the limited optical range of unmanned vessels hinders
their ability to comprehensively perceive the entirety of the surrounding information. A cooperative
USV-UAV system is proposed to ensure the visual perception ability of USVs. The multi-object
recognition, semantic segmentation, and obstacle ranging through USV and unmanned aerial vehicle
(UAV) perspectives are selected to validate the performance of a cooperative USV-UAV system. The
you only look once-X (YOLOX) model, the proportional–integral–derivative-NET (PIDNet) model,
and distance measurements based on a monocular camera are utilized to realize these problems. The
results indicate that by integrating the viewpoints of USVs and UAVs, a collaborative USV-UAV
system, employing the aforementioned methods, can successfully detect and classify different objects
surrounding the USV. Additionally, it can differentiate between navigable and non-navigable regions
for unmanned vessels through visual recognition, while accurately determining the distance between
the USV and obstacles.

Keywords: visual perception; cooperative USV-UAV system; YOLOX; PIDNet; monocular camera vision

1. Introduction

As sensing technology, artificial intelligence algorithms, and intelligent control algo-
rithms continue to advance, the development of intelligent spacecraft continues to advance.
In recent years, the demand for unmanned ships has increased, and unmanned surface
vehicles (USVs) have become research hotspots for numerous unmanned vehicles. USVs
are small, intelligent ships that can navigate autonomously without the need for human
operation and automatically complete specific water tasks [1].

The correct capture of surrounding environmental information is a crucial require-
ment for ensuring the safe and autonomous navigation of USVs in complex aquatic envi-
ronments. USVs are able to effectively navigate through a dynamic environment while
promptly avoiding obstacles and accurately identifying water surface target objects. USVs
typically employ a range of sensors for various purposes, including radar navigation,
millimeter-wave radars, LiDAR, sonar, and vision sensors. The initial sensors exhibit
several limitations, including elevated costs, notable environmental ramifications, and
a restricted capacity to perceive and gather comprehensive environmental data, hence
impeding the acquisition of additional information [2,3]. Visual sensors have the potential
to enhance the perception capabilities of USVs, allowing them to effectively observe a larger
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expanse of water and gather valuable information about the aquatic environment. This,
in turn, enables USVs to gain a thorough understanding of water navigation situations.
The advancement of image processing technology and deep learning-based detection and
recognition technology has led to a notable enhancement in the perceptual accuracy of
vision systems for unmanned ships. Visual sensors have found extensive applications
in diverse mobile intelligent platforms, assuming a crucial function in the detection and
recognition of water targets, monitoring aquatic environments, and mitigating potential
collisions with unmanned vessels [4].

The limited installation height of vision sensors on USVs poses challenges in achieving
a comprehensive perception of the surrounding environment, particularly in detecting
obstructed areas ahead. Consequently, this creates a blind spot inside the field of vision.
Simultaneously, the close proximity of visual sensors to the water surface introduces a sus-
ceptibility to environmental influences such as water ripples, reflections, and illumination,
hence presenting challenges in image processing and target recognition. Unmanned Aerial
Vehicles (UAVs) possess a notable advantage in terms of their elevated flying height, which
significantly enhances their visual perception range. Consequently, the images captured
by UAVs are subjected to lesser influence from the surrounding water environment [5].
The limited cargo capacity of UAVs necessitates a reliance on the battery module for flying
power, resulting in a relatively short flight duration that restricts its ability to carry out
prolonged, complex tasks. In addition, it should be noted that UAVs currently possess
limited processing and computing capabilities, rendering them inadequate for executing
intricate visual processing tasks within UAV systems.

Consequently, numerous researchers have directed their focus towards investigating
the collaborative systems of UAVs and USVs, aiming to leverage their individual strengths
in order to address the challenges posed by the limited endurance of UAVs and the restricted
perception range of USVs. This paper aims to investigate the research pertaining to visual-
based environment perception in collaborative UAV and USV systems. The findings
of this study will offer fundamental technological assistance for the advancement and
implementation of autonomous navigation, maritime supervision, and cruise control in
unmanned maritime vessels.

The organization of this paper can be summarized as follows: Section 2 lists the recent
related works. In Section 3, the several methods are introduced. Section 4 demonstrates the
experimental setup and data process. The results are discussed in Section 5. Finally, the
conclusion is summarized in Section 6.

2. Literature Review

The perception of autonomous ships can be categorized into two distinct aspects based
on their perceived content: self-perception and the perception of the external environment.
The accurate determination of USVs’ own state can be achieved by utilizing GPS positioning
sensors and IMU inertial units. The stability and precision of this determination are
often dependent on the device’s performance [6]. The process of perceiving the external
environment primarily relies on the use of diverse sensory mechanisms. The heightened
unpredictability of the environment is a significant obstacle in accurately recognizing
the exterior surroundings of USVs, hence creating difficulties in ensuring their safe and
autonomous navigation. The perception of the aquatic navigation environment can be
categorized into two groups based on the various operating methods of sensors: active
perception and passive perception [7].

Active perception refers to the act of transmitting signals to the external environment
using sensing devices, and subsequently acquiring information about the surrounding
environment by receiving the returned signal information. Examples of such sensing
equipment are radar navigation and LiDAR sensors [8]. Carlos et al. (2009) incorporated
radar technology into the ROAZ USV system in order to facilitate the identification of
obstacles and the prevention of collisions [9]. Zhang et al. (2011) employed the Gaussian
particle filtering technique to effectively analyze maritime radar data and successfully
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accomplish dynamic target tracking [10]. Han et al. (2019) presented a novel technique
that combines radar technology with simultaneous location and map building for un-
manned ship systems. This algorithm aims to overcome the issue of GPS signal loss
in difficult surroundings, ultimately enabling accurate positioning in coastal areas [11].
Esposito et al. (2014) employed LiDAR technology for the purpose of automatically identi-
fying docks, hence facilitating the autonomous docking of USVs [12].

Passive perception mostly pertains to the utilization of visual sensors for the acquisi-
tion of information concerning the surrounding navigation environment. The fundamental
premise involves capturing visual data of the surrounding environment using visual sen-
sors, followed by the interpretation of the environmental information based on the color
and texture characteristics of the captured images [13,14]. Kristan et al. (2014) first utilized
either monocular or stereo vision techniques to gather real-time data on the water surface
environment. Subsequently, they used a water antenna recognition algorithm to ascertain
the precise location of the water antenna. Next, they conducted a search for potential
targets in close proximity to the water antenna in order to successfully detect water surface
targets [15]. Wang et al. (2015) employed both monocular and binocular vision techniques
to achieve the real-time and efficient identification of obstacles on the sea surface. Their
approach enables the detection and localization of multiple objects across a distance range
spanning from 30 to 100 m [16].

Following this, the integration of deep learning techniques was used in the domain of
USV vision with the aim of enhancing the robustness and precision of algorithms pertaining
to USV vision. Shi et al. (2019) made enhancements to the single-shot multi-box detector
(SSD) algorithm in order to effectively identify and localize impediments and targets in the
vicinity of unmanned vessels [17]. Song et al. (2019) put forth an algorithm for real-time
obstacle identification. This approach utilized the Kalman filtering method to combine the
SSD and Faster RCNN models. The objective of this algorithm was to detect obstacles on
the sea surface for USVs [18]. Zhan et al. (2019) introduced a novel network segmentation
algorithm that utilized self-learning techniques to identify and classify water and non-
water surface regions in visual pictures captured by USVs. This approach aims to enable
autonomous collision avoidance capabilities in USVs, hence ensuring the safety of their
navigation [19].

The installation height of visual sensors on USVs presents a constraint that not only
diminishes the sensing range of these ships, but also renders their vision vulnerable to
the effects of water waves and reflections. Consequently, this low installation height
poses challenges for the visual processing capabilities of USVs. In recent years, there has
been significant advancement in UAV technology, leading to their widespread utilization
across several domains. UAVs possess notable maneuverability capabilities and have an
extensive perception range that is attributable to their elevated flight altitudes. Due to
this rationale, numerous academics have endeavored to engage in collaborative research
pertaining to USVS and UAVs in order to accomplish intricate aquatic assignments. Xu and
Chen (2022) presented a comprehensive analysis of a multi-agent reinforcement learning
(MARL) methodology, specifically designed for UAV clusters. The primary challenges
were the assembly and formation maintenance in UAV cluster formation control [20].
Zhang et al. (2019) employed a distributed consistency technique in order to develop and
simulate the control algorithm. In relation to the issue of cooperative path-following control
between USVs and UAVs [21]. Li et al. (2022) introduced a novel conceptual framework for
establishing a coherent and efficient connection between USVs and UAVs. This framework,
referred to as the logical virtual ship–logical virtual aircraft guidance principle, aims to
facilitate an effective association between these two types of unmanned vehicles [22].

3. Methodology

3.1. YOLOX

The predominant techniques employed for target recognition at present encompass
SSD, CenterNet, and YOLO. The SSD algorithm is influenced by the anchor notion intro-
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duced in Faster R-CNN, wherein individual units establish previous boxes with varying
scales or aspect ratios. The anticipated boundary boxes are derived from the past boxes,
hence mitigating the challenges encountered during training. CenterNet, alternatively
referred to as Objects as Points, has garnered significant attention from users, owing to
its very straightforward and refined architecture, robust capability for handling diverse
tasks, rapid inference speed, commendable accuracy, and the absence of the necessity for
non-maximum suppression (NMS) post-processing. The YOLO algorithm addresses object
detection by formulating it as a regression problem. Utilizing an independent end-to-end
network, the task involves processing the input data that originate from the original image
and generating the corresponding output, which comprises the positions and categories
of objects. In comparison to these networks, YOLOX demonstrates superior performance
in accomplishing the identical task, while concurrently preserving a highly competitive
inference speed. The YOLOX object detection network comprises four components: the
input terminal of the model, the Darket53 backbone network, the feature enhancement
network neck, and the model prediction [23].

The YOLOX network Incorporates two data augmentation techniques, namely Mosaic
and MixUp, at its input end. Additionally, it establishes a Focus structure. Mosaic data,
firstly proposed in YOLO4, aim to improve the background of an image through the
application of random scaling, cropping, and the arrangement of many photos [24]. MixUp
is a supplementary augmentation method that is implemented in conjunction with Mosaic.
This strategy significantly improves the quality of photos by merging two images together
using a specific fusion coefficient, while minimizing the computational overhead [25]. The
Focus structure is designed to extract four distinct feature layers from an image by selecting
alternate pixels. These layers are subsequently combined to consolidate width and height
information into channel information. This process results in a concatenation of feature
layers, increasing the number of channels from three to twelve, thereby quadrupling the
channel count.

The backbone serves as the primary architectural framework of YOLOX. Within
YOLOX, the prominent feature extraction network employed is CSPDarknet53. CSPDark-
net53 is composed of 72 convolutional layers, each possessing a dimension of 3 × 3 and
a stride of 2. This configuration enables the network to effectively extract features and
progressively down-sample the input data. The neck feature fusion structure employed in
YOLOX is founded upon three fundamental elements: Feature Pyramid Networks (FPNs),
Spatial Pyramid Pooling (SPP), and Path Aggregation Networks (PANs) [26]. The primary
components of prediction encompass the decoupled head, anchor-free, label assignment,
and loss calculation, which facilitate the execution of classification and regression tasks
inside the model.

The primary filtering technique employed in YOLOX is SimOTA. Initially, the anchor
boxes undergo a screening process to extract the position IoU matrix [27]. Subsequently,
the loss function is computed for the chosen candidate detection boxes and ground truth.
The cost function is then determined through a weighted summation of the resulting loss
functions, as demonstrated below:

Cij = Lclsloss
ij + γ× Lregloss

ij (1)

where Cij denotes the total loss for a specific bounding box; Lclsloss
ij is the classification

loss, measuring the difference between the predicted and true class labels; and Lregloss
ij is

the regression loss, evaluating the disparity between the predicted and actual bounding
box positions.

This paper employs the CBAM attention mechanism to enhance the conventional
YOLOX network [28]. In contrast to the original network, the present network exhibits a
heightened focus on pertinent characteristics of diminutive entities, hence minimizing the
risk of detection oversight. Identifying little objects poses a greater challenge because of
their low resolution and limited visual information, in contrast to larger objects. Conse-
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quently, the CBAM module is incorporated into the Dark3 module of the shallow network.
Attention weights are then derived from both the spatial and channel dimensions. These
weights are subsequently multiplied by the feature map ratio of 80 × 80, resulting in an
enhanced feature response specifically for small objects. The purpose of the CBAM is
accomplished by the utilization of two distinct attention modules: the channel attention
module (CAM) for assessing the correlation among channels, and the spatial attention
module (SAM) for evaluating the correlation among positions. The structure of the CBAM
module can be viewed in Figure 1.

Figure 1. The structure of CAM module.

The convolutional attention module initially conducts spatial domain operations,
specifically maximum pooling and average pooling, on the input feature map (F) with
dimensions H × W × C. This process generates two channel information vectors of size
1 × 1 × C. These vectors are subsequently fed into a multi-layer perceptron (MLP) and
individually summed. The application of the sigmoid activation function is the final step
in obtaining the weight coefficient, Mc. This coefficient is then multiplied by the original
feature map to derive the channel attention feature map, as shown in Equations (2) and (3).

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (2)

F′ = Mc(F)⊗ F (3)

The IoU (Intersection over Union) loss function is employed in YOLOX, which is a
widely utilized metric within the domain of object detection. The computation methodology
for the IoU is as follows:

IoU =
|A ∩ B|
|A ∪ B| (4)

3.2. PIDNet

A proportional (P) controller, an integral (I) controller, and a derivative (D) controller
comprise a PID controller, which can be viewed in Figure 2. The PI controller implementa-
tion might be expressed as:

cout[n] = kpe[n] + ki

n

∑
i=0

e[i] (5)
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Figure 2. The structure of CBAM module.

The P controller concentrates on the present signal, whereas the I controller gathers
all previous signals. Subsequently, the introduction of the D controller is implemented,
wherein the D component assumes a negative value when the signal decreases, acting as a
dampening mechanism to mitigate overshooting. In a similar manner, two-branch networks
(TBNs) analyze the contextual and intricate information via the utilization of several
convolutional layers, both with and without strides. In this particular one-dimensional
example, it is worth noting that both the detailed and contextual branches comprise three
layers, without the inclusion of batch normalization (BN) and rectified linear units (ReLUs).
The output maps can be calculated as

OD[i] = KD
i−3 I[i− 3] + . . . + KD

i I[i] + . . . + KD
i+3 I[i + 3] (6)

OC[i] = KC
i−7 I[i− 7] + . . . + KC

i I[i] + . . . + KC
i+7 I[i + 7] (7)

where

KD
i = k31k22k13 + k31k23k12 + k32k21k13 + k32k22k12 + k32k23k13 + k33k21k12 + k33k22k11 (8)

KC
i = k32k22k12 (9)

and where kmn refers to the n-th value of the kernel in layer m.
PIDNet is composed of three branches that have distinct roles: the proportional (P)

branch is responsible for parsing and preserving detailed information in feature maps with
high resolution; the integral (I) branch aggregates context information at both local and
global levels to parse long-range dependencies; and the derivative (D) branch extracts
high-frequency features to predict boundary regions. A semantic head is positioned at the
output of the initial Pag module in order to generate an additional semantic loss, denoted
as l0, with the aim of enhancing the optimization process of the entire network. Instead of
using dice loss, we employ weighted binary cross entropy loss, l1, to address the issue of
imbalanced boundary detection. This is because emphasizing the coarse border is desired
in order to emphasize the boundary region and increase the characteristics for smaller
items. The variables l2 and l3 are used to denote the cross-entropy (CE) loss in our study.
Specifically, for l3, we employ the boundary awareness CE loss (Towaki. 2019), which
leverages the output of the boundary head to effectively coordinate the tasks of semantic
segmentation and boundary detection. This approach enhances the functionality of the Bag
module. Therefore, the final loss for PIDNet can be calculated as [29]:

Loss = λ0l0 + λ1l1 + λ2l2 + λ3l3 (10)

3.3. Monocular Vision Scale–Distance by USVs

The objective here is to gather images of water surfaces, analyze them to determine
the specific area where the target is situated within each image, and afterwards compute
the greatest pixel ordinate value of that area, together with its related mean horizontal
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coordinate, utilizing the aggregated coordinates as the pixel coordinates for the points of
observation. The objective is to determine the depth information of the observation point
within the camera coordinate system by utilizing the camera’s internal parameters and
the geometric relationship of perspective projection. Next, the three-dimensional data of
the observation point in the coordinate system of the USV attachment will be determined
using rigid body transformation. Subsequently, the distance between the observation
point and the USV will be calculated. The range-measuring model utilized in this paper is
depicted in Figure 3. This model can be seen as a process that maps the items present in the
three-dimensional (3D) scene onto two-dimensional (2D) images using a pinhole camera.

Figure 3. Ranging model.

In Figure 3, xoy denotes the image coordinate system while Zc denotes the Z-axis and
optical axis of the camera coordinate system; xo2y represents the Z = 0 plane and water
surface in the USV coordinate system; O1 is the camera lens; the two dashed lines, a and
b, represent visual field range; θ indicates the camera pitch angle. The observation point
P1 is positioned at the imaging point P on the image plane, the projection point P2 on the
optical axis, and the projection point P3 on the X-axis; the point P3 corresponds to the point
P0 when projected onto the picture plane.

The distance from the observation point to the center of the USV can be calculated
as follows:

O2P1 =
√

x2
s + y2

s (11)

where xs and ys denote the coordinate values of Ps(xs, ys, zs) at the observation point in
the USV fitted coordinate system, which can be estimated based on the link between the
coordinates of the observation point in the pixel coordinate system and the coordinates in
the USV fitted coordinate system:

zc

⎛⎝u
v
1

⎞⎠ =

⎛⎝ fx 0 u0 0
0 fy v0 0
0 0 1 0

⎞⎠(R T

0 1

)⎛⎜⎜⎝
xs
ys
zs
1

⎞⎟⎟⎠ (12)
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where fx, fy, u0, and v0 indicate the intrinsic camera parameters, which can be calibrated
based on Pei (2015) [30]. R and T denote the rotation matrix and translation matrix from the
USV fitted coordinate system to the camera coordinate system, respectively. zc is the depth
coordinate value of the observation point in the camera coordinate system Pc(xc, yc, zc),
which is the distance of O1P2 and can be calculated as

zc = O1P2 = O1P3 × cos λ (13)

O1P3 =
H

sin(θ + λ)
(14)

where H denotes the height of camera; λ is the angle between the light at point P0 and the
camera’s optical axis, which can be shown as follows:

λ = arctan
y− y0

f
(15)

where y denotes the ordinate of point P in the image coordinate system; f is the focal length
of the camera. In the pixel coordinate system, λ can be calculated as follows:

λ = arctan
(v− v0)× dy

fy × dy
= arctan

v− v0

fy
(16)

where v denotes the ordinate of point P in the pixel coordinate system; v0 is the vertical axis
of the image center; dy is the unit pixel length in the y-direction; and fy is the normalized
focal length.

In order to mitigate the potential influence of measurement errors pertaining to cam-
era height and pitch angle on the accuracy of ranging in situations characterized by un-
certainty, this research study presents a calibration technique for the aforementioned
camera parameters.

In the event that the sea surface is generally tranquil, it is feasible to approximate it as
a flat plane. In Figure 4, A(x1, y1, 0) is the intersection point between the plane z = 0 in the
grid coordinate system and the camera optical axis (the Z-axis of the camera coordinate
system), and the coordinate of point A in the camera coordinate system is Ca(0, 0, z1).
B(x2, y2, a) is the intersection point between the plane z = 0 in the grid coordinate system
and the camera optical axis; the coordinate of point B in the camera coordinate system
is Cb(0, 0, z2). The coordinate of the vertical projection point B′ on the z = 0 plane of
intersection B in the grid coordinate system is (x2, y2, 0). The pitch angle of the camera is
∠BAB′, which can be shown as

∠BAB′ = a cos
AB·AB′

|AB||AB′| (17)

H = z1 × sin∠BAB′ (18)

Camera calibration is a process that yields the grid coordinate system, which lies on
the calibration plate and is coplanar with the water surface. Additionally, it provides the
rotation matrix (R1) and translation matrix (T1) of the camera coordinate system. The rela-
tionship between the coordinate XX in the grid coordinate system and the corresponding
coordinate XXc in the camera coordinate system can be expressed as follows:

XXc = R∗1 XX + T1 (19)
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Figure 4. Camera height and pitch angle model.

Substitute the coordinate variables of A and Ca into Equation (19):⎛⎝ 0
0
z1

⎞⎠ =

⎛⎝R11 R12 R13
R21 R22 R23
R31 R32 R33

⎞⎠·
⎛⎝x1

y1
0

⎞⎠+

⎛⎝T1
T2
T3

⎞⎠ (20)

Solve Equation (20) to obtain the coordinate values of A and Ca. Similarly, the coordi-
nate values of B and Cb can also be calculated.

4. Experimental Setup

4.1. Data Processing

Pre-processing actions for images are deemed crucial in accordance with the stipu-
lations of model application settings. The images within the experimental dataset were
obtained from a total of 60 videos, each of which had a minimum duration of 60 s. During
the cropping process, a proportional comparison is conducted on the target instance. If the
resulting area of the target instance is equal to or more than 60% of the original instance
area, the instance is retained. Otherwise, it is removed. The dataset has a total of 8588
pictures, with the training set and test set accounting for 80% and 20% of the dataset,
respectively. The objective of this study is to examine the feasibility of the cooperative USV
and UAV platform architecture. This is achieved by initially categorizing the dataset into
five distinct groups, namely ship (representing various types of ships), USV, buoy, building,
and people, with an equal proportion among each category.

In addition, 8588 images are also utilized to train and test the PIDNet model. The
labelme software is employed for the purpose of annotating all photographs, with a primary
focus on labelling distinct regions such as navigable water surfaces, non-navigable skies,
and diverse barriers that are present on the water. In order to address intricate marine
barriers, a multi-point framing approach is employed to accurately delineate the desired
area. The detailed annotation method is shown in Figure 5.
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Figure 5. Annotation diagram.

4.2. Experimental Platform

Jiangsu University of Science and Technology invented and developed the cooperative
USV-UAV platform, including an unmanned catamaran and a quadrotor, which can be
viewed in Figure 6. Furthermore, this platform is equipped with a USV, with two lithium
batteries housed within the hull. Additionally, a satellite communication module is located
within the hull compartment, while four cameras are fitted atop the USV.

 

Figure 6. Cooperative USV-UAV platform.

The experimental training computer is configured with the Windows 10 operating
system, with an NVIDIA GTX2080Ti graphics processing unit (GPU). The deep learning
framework is Pytorch 1.5.0. Additional information can be observed in Table 1.
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Table 1. Experimental computer environment.

Name Versions

System Environment Windows 10 64-bit
CPU Intel(R) Core (TM) i9-9980XE
GPU NVIDIA GTX 2080Ti

Python 3.6.0
Pytorch 1.5.0

4.3. Evaluation Criteria

Various occupations are evaluated using diverse metrics. This study introduces
assessment criteria, including frames per second (FPS), precision (P), recall (R), and average
precision (AP), which are developed by considering relevant demand variables. Frames
per second (FPS) is a quantitative metric, utilized to gauge the rate at which images are
processed within a given time frame of one second. Recall (R) is employed as a metric for
evaluating the comprehensiveness of target detection. Conversely, precision (P) is utilized
to ascertain the accuracy of recognition precision, which may be calculated as follows:{

Precision = NTP
NTP+NFP

[l]Recall = NTP
NTP+NFN

(21)

where NTP, NFP, NFN indicate the number of successfully detected targets, the number
of wrongly detected targets, and the correct number of targets missed by the model,
respectively. The average precision (AP) is computed as follows:

Averageprecision =
1∫

0
P(R)dR (22)

5. Results Analysis

5.1. Multi-Target Recognition

The field experiments were carried out on the Huanghai Sea in Yancheng city, China.
The YOLOX model was selected to track the USV on calm water. Figure 7 demonstrates the
test results. The model demonstrates a high level of effectiveness in accurately identifying
the USV during its operation on undisturbed water surfaces. Additionally, the UAV is
strategically positioned above the USV at this particular instance, which is considered the
most favorable condition for optimal recognition. Moreover, even when the USV is not
positioned in the center of the screen, the model is still capable of accurately detecting it
and generating reliable detection outcomes.

This article focuses on the YOLO model and YOLOX is a fundamental model in
the project, and is compared with other models (e.g., SSD, CenterNet, and other YOLO
versions). According to the data presented in Table 2, it is evident that YOLOX exhibits
superior speed performance compared to alternative models (baseline: FPS). The YOLOX
model shows a recognition accuracy that surpasses the YOLO V4 model by 6.2 percent, and
demonstrates superior performance compared to other existing models. The YOLOX model
displays suboptimal recognition outcomes for small targets due to its tendency to prioritize
the prediction of larger targets at higher levels while neglecting the accurate prediction
of smaller targets. Despite the somewhat lower FPS achieved with the YOLOX model, it
remains a highly promising approach. The YOLOX algorithm presents several benefits and
holds potential for practical implementations due to its straightforward architecture, rapid
processing capabilities, high precision, and efficient memory utilization.
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Figure 7. Results of the field test.

Table 2. Model comparison.

Model FPS AP50(%)

SSD 52 79.9
CenterNet 57 81.5
YOLO V3 51 83.6
YOLO V4 46 84.1
YOLO V5 47 82.7
YOLOX 42 90.3

In this article, a UAV is employed to capture the testing photographs with the purpose
of assessing the viability of the platform migration application. Figure 8 shows the multi-
object recognition based on the UAV’s perspective. From the standpoint of a UAV, it
is possible to precisely monitor the movements of USVs from various vantage points.
Additionally, the presence of other ships in motion near the unmanned vessel, as well as
stationary obstructions like buoys, quayside barges, and moored ships, may be reliably
detected and identified. The cooperative USV-UAV’s perception system is highly successful
in identifying even the smallest pixels in the distance of the image, including buoys
and ships. This ensures the system’s effectiveness in covering the entire water region.
Figure 9 demonstrates the multi-object recognition from the USV’s perspective. From this
standpoint, the USV possesses the capability to effectively detect and classify diverse forms
of impediments in its vicinity. Furthermore, it can precisely discern the movements of
individuals situated beside the vessel. Nevertheless, the current perspective of the USV
lacks sufficient breadth to adequately monitor diverse barrier conditions in every direction.
Hence, the approach that relies on the cooperative USV-UAV system can effectively facilitate
the comprehensive detection of expansive maritime regions by unmanned ships at sea. This
approach holds resemblance to the concept of bird’s-eye view (BEV) technology, employed
in autonomous driving systems.
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Figure 8. Multi-object recognition based on UAV’s perspective ((a–i) represent different angles of
view from UAV).

Figure 9. Multi-object recognition based on USV’s perspective ((a–d) represent different angles of
view from USV).

5.2. Semantic Segmentation

The reliable identification and classification of water surfaces play a crucial role
in facilitating the autonomous movement of USVs. This is because any area that is
not composed of water is highly likely to be an obstacle, hence presenting a possible
hazard to the USV’s navigation. The proposed PIDNet is based on the graph-based
segmentation algorithm.

Figures 10 and 11 illustrate the process of semantic segmentation, specifically focusing
on the identification and differentiation of water, surface obstacles, land, and sky. This
segmentation is achieved through the utilization of both USV and UAV perspectives. The
initial row showcases the unaltered input image, while the subsequent row presents the
corresponding ground truth. The subsequent row exhibits the segmentation output that
is predicted by PIDNet. The red region depicted in the diagram denotes the expanse of
the water surface, which is designated as a navigable zone. The black region depicted

347



J. Mar. Sci. Eng. 2023, 11, 1978

in the illustration represents the celestial expanse known as the sky, which is deemed
impassable for navigation purposes. Other colors are used to symbolize different barriers
found on both water and land, namely locations that are not suitable for navigation. The
results suggest that PIDNet demonstrates a high level of efficacy in discerning navigable
and non-navigable regions on intricate water surfaces. This offers dependable technical
assistance for the autonomous navigation of USVs, relying on visual inputs.

Figure 10. Semantic segmentation based on UAV perspective ((a–f) represent different angles of view
from UAV).

Figure 11. Semantic segmentation based on USV perspective ((a–f) represent different angles of view
from USV).

In order to showcase the resilience of the PIDNet algorithm, we conducted a compar-
ative analysis between our approach and other cutting-edge methodologies, specifically
focusing on graph-based segmentation algorithms (U-Net, Refine-Net, and DeepLab). The
performance evaluation of several models was conducted by quantitatively assessing their
accuracy in semantic segmentation. This assessment involved the use of metrics such as
mean intersection over union (MIoU), pixel accuracy (PA), and frames per second (FPS). It
was observed that the accuracy of semantic segmentation was comparable to that of water
surface segmentation. The results can be viewed in Table 3. The networks that are being
compared in this study were subjected to retraining using our dataset, incorporating the
most optimal hyperparameters. The results demonstrate that the PIDNet has the most
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accurate prediction ability, and the network’s processing speed is exceptionally high as a
result of its efficient architecture.

Table 3. Segmentation algorithms comparison.

Networks Params (M) MIOU (%) PA (%) FPS

U-Net 34.0 79.82 80.81 9
Refine-Net 55.1 81.63 84.26 15
DeepLab 44.3 87.22 89.13 30
PIDNet 29.5 91.08 94.32 40

Figure 12 shows the sea–skyline detection results based on the PIDNet. This part
focuses on evaluating the effectiveness of PIDNet in detecting the sea–skyline in various
water surface situations, including sunny, foggy, rainy, evening, and reflective conditions.
It is evident that, despite the presence of reflection interference issues in the dataset, the
alignment achieved using our technique roughly corresponds to the reference sea–skyline
in both situations. The obtained outcome serves as evidence that our sea–skyline detection
approach possesses the ability to effectively adapt to diverse environmental conditions.

Figure 12. Sea–skyline detection algorithm based on PIDNet (a–f) represent different angles of view
from UAV).

5.3. Stereo Distance Measurement

Based on the aforementioned distance measurement model, it is evident that the
outcomes of distance measurement are subject to the influence of factors such as the camera
height, pitch angle, and pixel coordinates of the observation site. The gathered single frame
image is presented in Figure 13, extracting the area where the sea surface target (black
box) is located. We determined the uppermost vertical coordinate value among the pixel
values within the designated area, and computed the mean value of the related horizontal
coordinates. The pixel coordinates obtained by combining the coordinates serve as the
basis for calculating the distance between the observation point and the USV.
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Figure 13. Target on water surface.

Through the manipulation of the camera height and pitch angle to collect photos of a
consistent area, this study aims to examine the influence of camera height on the accuracy
of range measurements. The findings of this investigation are presented in Table 4.

Table 4. The influence of different camera heights on ranging results.

Real Distance (m) Camera Height (m) Pitch Angle (Degree) Test Distance (m) Relative Error (%)

5.08

2.13 18 4.92 −3.1

2.32 20 5.05 −0.5

2.51 22 5.11 0.5

10.25

2.13 18 11.12 8.4

2.32 20 10.94 6.7

2.51 22 10.44 1.8

15.18

2.13 18 16.12 6.1

2.32 20 15.88 4.6

2.51 22 16.30 7.3

22.41

2.13 18 24.18 7.8

2.32 20 25.02 11.6

2.51 22 23.44 4.5

35.20

2.13 18 39.14 11.9

2.32 20 38.52 9.4

2.51 22 37.80 7.3

It is verified that the pitch angle has little impact on the ranging results [31]. Therefore,
the camera height serves as the primary variable for evaluating the precision of range mea-
surements. The distance values presented in Table 4 were obtained using radar technology.
Subsequently, experiments were conducted to validate these measurements. The findings
revealed that the relative error ((test distance − real distance)/real distance) diminishes as
the camera height increases, but it increases with greater measurement distances.

6. Conclusions

A visual perception technology for coordinated air–sea via a cooperative USV-UAV
system is proposed in this paper. The utilization of UAVs can serve as a means to address the
limited visibility of unmanned maritime vessels. The primary purpose of this technology is
to offer technological assistance in the realm of visual perception for USVs in complex sea
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regions. The research areas of USV visual perception encompass multi-object recognition,
semantic segmentation, and obstacle recognition, which are regarded as highly significant.
The main contributions of this paper can be summarized as follows:

1. The cooperative platform utilizes the YOLOX model to carry out a range of sea detec-
tion tasks, including ship recognition, various obstacle detection, and the identification
of individuals. The findings of the YOLOX study demonstrate the versatility and
effectiveness of the collaborative USV-UAV system, and provides improved detection
accuracy and increased detection speed compared to other mainstream methods;

2. The PIDNet model is firstly used to handle the semantic segmentation of sea and
air. Compared to other approaches, the results indicate that PIDNet has a significant
degree of effectiveness in distinguishing between areas that can be navigated and
those that cannot be navigated on complex water surfaces. This offers dependable
technical assistance for the autonomous navigation of USVs, relying on visual inputs.
The PIDNet model also has a strong ability to detect the sea–skyline in different
environmental conditions;

3. The application of distance measurements based on monocular camera vision is used
to range the distance between the USV and its targets. The results show that this
method can effectively estimate the distance of obstacles. Nevertheless, the findings
also suggest that, as the distance from the obstruction rises, the precision of the
anticipated outcomes will correspondingly deteriorate. Hence, in instances where
USVs exhibit high velocities, the utilization of visual ranging technology in isolation
is inadequate for ensuring the safety of these USVs.
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Abstract: Maritime ship detection plays a crucial role in smart ships and intelligent transportation
systems. However, adverse maritime weather conditions, such as rain streak and fog, can significantly
impair the performance of visual systems for maritime traffic. These factors constrain the performance
of traffic monitoring systems and ship-detection algorithms for autonomous ship navigation, affecting
maritime safety. The paper proposes an approach to resolve the problem by visually removing rain
streaks and fog from images, achieving an integrated framework for accurate ship detection. Firstly,
the paper employs an attention generation network within an adversarial neural network to focus
on the distorted regions of the degraded images. The paper also utilizes a contextual encoder to
infer contextual information within the distorted regions, enhancing the credibility of image restora-
tion. Secondly, a weighted bidirectional feature pyramid network (BiFPN) is introduced to achieve
rapid multi-scale feature fusion, enhancing the accuracy of maritime ship detection. The proposed
GYB framework was validated using the SeaShip dataset. The experimental results show that the
proposed framework achieves an average accuracy of 96.3%, a recall of 95.35%, and a harmonic
mean of 95.85% in detecting maritime traffic ships under rain-streak and foggy-weather conditions.
Moreover, the framework outperforms state-of-the-art ship detection methods in such challenging
weather scenarios.

Keywords: ship detection; adverse weather; image restoration; improved YOLOv5; intelligent
maritime transportation

1. Introduction

With the rapid advancement of artificial intelligence and computer vision technolo-
gies, the traditional navigation methods of maritime ships are undergoing a process of
transformation and elevation. Intelligent maritime traffic monitoring systems and auto-
mated ship navigation are gradually becoming tangible realities (Liu et al., Cheng et al.,
Volden et al. [1–3]). Therefore, it is imperative to accurately detect maritime traffic entities
(such as ships, buoys, etc.) based on ship vision navigation or port surveillance videos in
order to make precise navigational control decisions. This plays a pivotal role in enhancing
the safety of automated ship navigation and maritime ship passage within waterways
(Forti et al. [4]). To detect maritime navigating ships, various types of sensors, such as
cameras and radar, are commonly employed in automated ship navigation. However, the
unique maritime weather conditions and locations often expose these systems to adverse
weather, such as fog and rain streaks, resulting in the deterioration of ship-monitoring
video data (Bahnsen and Moeslund, and Li et al. [5,6]). The presence of rain streaks and
fog in the atmosphere severely impacts the visibility of monitoring scenes. Low visibility
is inefficient for accurately detecting maritime ships and increases the risk of maritime
traffic accidents. Consequently, the development of effective image restoration techniques
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becomes crucial to achieve improved visual appearance or distinctive features. Provid-
ing clear maritime images to detection systems can significantly enhance the detection
performance of maritime ships at sea (Fu et al., Lu et al. [7,8]).

Computer vision technology has become a crucial method for autonomous ship nav-
igation (autonomous driving) and intelligent transportation applications. It can detect
and recognize target objects in various scenarios with high precision, while also providing
data support for intelligent control decision-making in the transportation field (Yu et al.,
Yao et al. [9,10]). Previous research has primarily focused on capturing high-quality mar-
itime traffic video data. Wang et al. proposed a rapid and accurate ship detection algorithm
based on YOLOv4, which incorporates K-means clustering, model structure refinement,
and the Mixupfan method (Wang et al. [11]). Li et al. utilized a background filtering
network for rapid filtering of background areas and employed a fine-grained ship classi-
fication network for the detection and classification of ship targets (Li et al. [12]). Fence
et al. proposed a fast ship detection method based on multi-scale gradient features and
a multi-branch support vector machine (Feng et al. [13]). Similar studies can be found
in (Shao et al., Lv et al. and Chen et al. [14–16]). For some scenarios where video data
cannot be directly obtained, previous research relied on limited exploration using radar
data and multi-source data fusion. Chen et al. proposed a study similar to Radar-YOLONet
that uses radar images for object detection (Chen et al. [17]). Wang et al. proposed a
deep radar object-detection method called RODNet based on cross-fusion supervision of
radar–camera data (Wang et al. [18]). Xu et al. used a multiple linear rescaling scheme to
quantize the original satellite images into 8-b images, and proposed an adaptive weighting
scheme to detect the loss between ships (Xu et al. [19]). Similar studies can be found in
(Guo et al., Bai et al. [20,21]). The acquisition of multi-source data usually depends on
special physical sensors, which are highly susceptible to the water environment and have
high maintenance costs (Shang et al., Lin et al. [22,23]). With the development of deep
learning, feature enhancement has been used to strengthen the perception of low-feature
targets in low-visibility scenes. This addresses the issues of low accuracy and efficiency
in traditional object-detection algorithms. Wang et al. constructed a new feature enhance-
ment module (FEM) and utilized an attention mechanism to achieve real-time accurate
detection of multiple targets in foggy conditions (Wang et al. [24]). M. Hassaballah et al.
utilized an image enhancement scheme to achieve robust detection and tracking of vehicles
(Hassaballah et al. [25]). While these methods can effectively detect target objects, they
may not fully address the unique characteristics of maritime traffic environments, such
as tides, water currents, and channel divisions. Therefore, they may not guarantee the
safety of maritime traffic. It is important to consider these factors when developing and
implementing object-detection algorithms for maritime traffic environments.

To address these problems, the paper presents an integrated framework for maritime
ship detection under adverse weather conditions using computer vision techniques. This
framework leverages adversarial neural networks to generate attention maps that focus on
distorted regions within the images. These attention maps guide the contextual autoen-
coder in performing local feature inference, achieving a rational and effective restoration of
distorted areas in low-visibility images. Moreover, the restored images are concurrently fed
into the discriminative network to facilitate the evaluation of the restored regions in the gen-
erated images. This process serves as feedback to guide the generative network in achieving
optimal results for the enhancement of low-visibility images. Next, a weighted bidirectional
feature pyramid network (BiFPN) is introduced to achieve rapid multi-scale feature fusion,
enhancing the accuracy of maritime ship detection (Tan et al. [26]). This involves iteratively
applying top-down and bottom-up multi-scale feature fusion to enhance the accuracy of
ship detection in repaired low-visibility images. Our proposed framework is evaluated on
the synthetic SeaShip dataset, which includes challenges related to low-visibility conditions
such as rain streaks and fog, as well as small-target detection. Experimental results show
that the model framework we proposed exhibits effectiveness and superiority over existing
algorithms. The main contributions of this work are summarized as follows:
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• The paper has proposed a novel integrated framework for detecting and recognizing
ships navigating in low-visibility maritime environments.

• The paper has proposed the use of a weighted BiFPN in the YOLOv5 detector, achiev-
ing top-down and bottom-up multi-scale feature fusion to improve the accuracy of
ship detection in low-energy image restoration.

• The paper’s proposed framework achieves an average accuracy of 96.3%, a recall of
95.35%, and a harmonic mean of 95.85% in detecting maritime traffic ships under rain
streak and foggy weather conditions.

2. Materials and Methods

The proposed framework for ship detection in low-visibility maritime images in this
paper consists of two main logical steps: image restoration for maritime traffic and ship
detection in maritime traffic, as shown in Figure 1. Firstly, an attention map is generated
in the recurrent network within the generative network to identify low-visibility areas in
the image that are disturbed by rain streaks and foggy weather. Meanwhile, the context
autoencoder within the generative network performs local inference and restoration on
the rain streaks and fog areas, enabling them to generate more realistic local images. More
specifically, firstly, an attention map is generated in the recurrent network within the
generative network to identify low-visibility areas in the image that are disturbed by rain
streaks and foggy weather. Meanwhile, the context autoencoder within the generative
network performs local inference and restoration on the rain streaks and fog areas, enabling
them to generate more realistic local images. More specifically, firstly, images of rainy and
foggy weather are input into the model framework. The images, after passing through the
generative attention map network (Residual Block and LSTM + Convs modules), generate
an attention map for the rain streaks and fog (low-visibility) areas of the two-dimensional
image. This enhances the perceptibility of the distorted areas and provides guidance for
subsequent image restoration. Secondly, the generated attention map and the original
image are passed into the generative contextual autoencoder (Convs + ReLu, Dilated
Convs + ReLu, and Deconv + avgpool + ReLu modules). This allows for the extraction
of surrounding structure and feature information from the distorted areas. By combining
these extracted features, contextual information is inferred and restored, resulting in the
generation of relatively intact images. Meanwhile, the restored images are input into the
discriminator for image quality assessment. Finally, the restored images are input into
the detection model. Since some areas may have lower restoration quality during the
image restoration process, a multi-scale fusion method is used to achieve detection and
recognition of low-resolution ships. The discriminative network evaluates whether the
images generated by the generative network are realistic, and provides feedback to the
generative network. Next, the detection model incorporates BiFPN into YOLOv5 for multi-
scale feature fusion, further enhancing the accuracy of ship detection in the low-visibility
image restoration regions.

2.1. Rain-Streak and Fog Imaging Modeling

Rain streaks and fog in images can affect the detection performance of ships in both
human and computer vision. Therefore, removing rain streaks and fog, which means
restoring blurry images to clean images, is an important problem in computer vision. To
better remove rain streaks and fog, we first mathematically model the rain streaks and
foggy scenes. The widely used rain streaks model scene (Quan et al., Luo et al. and
Li et al. [27–29]) modeling formula is shown in Equation (1):

C = Fimg − S (1)

where Fimg represents the rain streak image, C represents the background of clean water
transportation and S represents the rain streaks. Therefore, we need to remove the rain
streaks S.
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Figure 1. Schematic overview for ship detection framework for distorted image restoration under
adverse weather.

For the simulation of foggy conditions, we have found that the most realistic methods
predominantly utilize depth-based techniques to synthesize their own datasets. The widely
used foggy model scene (Nayar and Narasimhan, Narasimhan and Nayar [30,31]) modeling
formula is shown in Equation (2):

N(y) =
H(y)− L
e−ϕd(y)

+ L (2)

where N(x) represents the clean image, H(y) represents the fog image, and L represents the
global atmospheric light. e−ϕd(y) is the transmission map. ϕ is the attenuation coefficient
and d(y) refers to the image scene depth.

2.2. Generative Adversarial Network

Generative adversarial networks (GAN) (Goodfellow et al. [32]) have gained widespread
application in the field of image restoration in recent years, and have yielded significant
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results (Qian et al. [33]). A GAN network consists of two components: a generator and a
discriminator. The generator takes random noise as input and produces a feature vector
representing the target as output. The discriminator is a classifier that takes a vector as
input and outputs a judgment on whether that vector is real or fake. More specifically,
the generator takes low-visibility ship images as input and generates the restored image
after passing through the attention map and context autoencoder within the generator.
Furthermore, the restored image is used as input to the discriminator to distinguish between
the generated images and real images, thereby guiding the generator to produce more
realistic images. Finally, the sigmoid function outputs 1 or 0, indicating real or fake for the
restored image. To make the model more efficient, the generator and discriminator evolve
in a minimax game, where they mutually constrain and encourage each other to achieve
more realistic image outputs. The optimization objective function of the GAN model is
shown in Equation (3):

min
G

max
D

V(D, G) = ET∼Rimgnoise [log(D(T))] + EB∼Pimgdrop [log(1− D(G(B)))] (3)

where G represents the generator, D represents the discriminator, and B represents the low-
visibility image input to the generator adversarial network. T represents the clear image
sample corresponding to the low-visibility image of B. E represents the expected value.
D(T) is the output of the discriminator for the real clear image T, which is a probability
value. D(G(B)) represents the output of the discriminator for the restored images generated
by the generator G(B).

2.3. Generative Attention Map Network

Rain streaks and fog in the atmosphere can significantly reduce the visibility of the
maritime background in monitoring equipment, and cause image distortion. The dis-
torted regions are perceptible to the human eye, but not explicitly delineated in computer-
generated images. To address this problem, the paper proposes a method to identify the
distorted regions by generating attention maps using adversarial neural networks. The
generation of attention maps in this context is inspired by the principles of recurrent neural
networks (RNNs) and residual networks. More specifically, as shown in Figure 1, the
recurrent network consists of five layers of ResNet network layers and LSTM + Convs.
The ResNet network is responsible for pre-extracting global features from the image
(He et al. [34]). After passing through the LSTM + Convs module, both global and lo-
cal features of the distorted image are fed back into the convolutional layers to generate the
attention map.

The generated attention map is then concatenated with the original image and fed into
the next identical module. In this process, the attention map from the previous layer guides
the subsequent layer of the same network to focus more on the distorted regions. This
iterative process is repeated in a loop. The attention map is essentially a two-dimensional
array of the same size as the original image, where each element’s value ranges from
0 to 1. The attention map is a non-binary mapping, signifying that attention gradually
increases from non-raindrop regions to raindrop regions, with values varying even within
the raindrop regions. This gradual increase in attention is meaningful because the areas
around raindrops also need attention, and the transparency within the raindrop regions
varies in reality. Therefore, a higher value in a specific region of the array indicates more
attention from the attention map to that area, enabling focused restoration of the distorted
regions in the image.

2.4. Generative Context Autoencoder

The framework obtains the distorted regions of the image through attention maps, but
the original image information collected is missing (distorted) under the interference of rain
streaks and fog. Therefore, the network uses a context autoencoder to help the generator
produce a clear and complete image guided by the attention map, which is equivalent to
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restoring and repairing low-visibility images. Figure 1 shows the architecture of the context
autoencoder. The network introduces a dilated convolution network to increase the size
and perception ability of the receptive field, so as to better capture the global features of the
input attention map and the context information of the distorted regions. At the same time,
the generative network ensures the restoration of high-resolution in the distorted regions
by introducing the Deconv + avgpool module. Since we need to extract image feature
information from different network layers to infer more context information, we set up
two loss functions in the context encoder: multi-scale loss and perceptual loss. The multi-
scale loss can effectively extract image features to obtain context information on different
scales and form outputs of different sizes to capture the details and structure information
in the image. The use of multi-scale loss is effective in extracting image features to obtain
context information on different scales and generating outputs of varying sizes to capture
fine-grained details and structural information in the image. The objective function for the
multi-scale loss is shown in Equation (4):

εM({F}, {R}) =
M

∑
i=1

WiεMSE(Fi, Ri) (4)

where Fi represents the i-th output extracted from the context autoencoder, and Ri rep-
resents the i-th output ground-truth image information, which has the same scale as the
Fi. εMSE represents the mean squared error between the output at different scales and
the corresponding ground-truth image, and {W}M

i=1 represents the weight magnitudes for
different scales.

To generate more realistic images, the generative network needs to pay attention to the
high-level structure and content of the image, rather than pixel-level noise. This approach
prioritizes the perceptual features of the image over subtle pixel variations. Besides the
pixel-based multi-scale loss in our image-based approach, the generative network also uses
perceptual loss to ensure visual consistency and feature fidelity between the generated
image and the target image. The objective function for the perceptual loss is shown in
Equation (5):

εP(O, T) = εMSE(VGG(O), VGG(T)) (5)

where O represents the output image of the generative network, which is the image after
the restoration process. O is obtained by the generator G using the input image I and the
attention map. VGG(O) represents the image features extracted from O using a pre-trained
VGG-16 network, while VGG(T) represents the image features extracted from T. εMSE
represents the mean-squared-error loss function, which calculates the difference between
the features of the reconstructed image and the ground-truth image after the restoration
process. The VGG-16 mentioned in this paper refers to a pretrained convolutional neural
network (CNN) that is solely used for feature extraction from images. To summarize, the
loss function for low-visibility image restoration is shown in Equation (6):

εG = εM({F}, {R}) + 10−2εP(O, T) + εGAN(O) + εA∼M (6)

where εA∼M represents the loss value of the attention map with the distortion region mask
and εGAN(O) = 1− D(G(O)). To verify the authenticity of the repaired distorted images,
the generative network utilizes attention maps to guide the discriminator’s focus on the
restored regions, evaluating the quality of the generated images based on both global- and
local-image content. Additionally, the generative network employs fully connected layers
to determine the authenticity of the restored low-visibility images.

2.5. Detection Method

Considering the navigation control decisions of maritime ships, the ability to detect
other ships at sea in real time and accurately handle emergency situations (such as colli-
sion avoidance and locating missing vessels) is crucial. The YOLO model, as a one-stage
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detection model, has certain advantages in this regard. While two-stage object-detection
models may offer superior accuracy, they do not stand out in terms of real-time perfor-
mance. Furthermore, the equipment and monitoring devices on intelligent unmanned
ships typically lack the computational capacity to support higher-precision target-detection
algorithms. Moreover, this model not only detects the positions of ships but also classifies
different types of ships. Therefore, choosing YOLOv5 for improvement can be effectively
deployed in the ship’s driving system to enhance the efficiency of maritime traffic man-
agement. YOLOv8 is the latest model-detection framework in the YOLO series. Although
YOLOv8 has better accuracy and speed on GPU devices than YOLOv5, making it a better
choice for real-time object detection, it is important to consider the device limitations of
the ship perception system and the lack of GPU support. YOLOv5, with its smaller model
parameters and ease of training, becomes a more suitable solution for such problems while
maintaining a certain level of accuracy.

In this section, the detailed specifics of the YOLOv5 detector will be introduced. The
network structure of YOLOv5 consists of three main components: backbone, neck and
head. As shown in Figure 1, first, the restored low-visibility ship image is preprocessed
(scaling the input ship image to a uniform size), and then sent to the backbone network,
which transforms the original input image into multi-layer feature maps. The backbone
network of YOLOv5 consists of CBL, CSP1_X and SPPF modules. The CBL module is
composed of a convolutional layer, a batch normalization layer and an activation function.
This module is mainly used to extract the local spatial information of the ship features
and normalize the feature information. The CSP1_X convolutional module splits the input
feature map into a backbone convolutional layer and a branch convolutional layer. The
backbone convolutional layer uses 1*1 convolution to reduce the channel number and
the parameter amount. The branch convolutional layer further extracts feature extraction
on the feature map. This design effectively reduces the computational load by reducing
the parameter count while enhancing the feature extraction capability. Additionally, this
module adopts a residual approach, which further enhances the model’s expressive power.
The detection model employs spatial pyramid pooling (SPPF) to pool features from input
feature maps of different scales, enabling the model to capture maritime ship objects at
various scales. Then, the detection model introduces the BiFPN feature pyramid structure
in the neck network to handle the ships of different scales and sizes that are distorted by
image restoration.

In order to recognize different types of ships, the key is to collect image features
of different ships (including color, shape, etc.) through supervised learning for further
processing. Therefore, by inputting the annotated dataset into the model training, anchors
of different sizes and aspect ratios are preset. The setting of these anchors can effectively
divide the prediction box space into several subspaces, thereby reducing the difficulty of
recognizing different types of ships. Through down-sampling by factors of 32, 16, and 8,
different sizes of feature maps (20 × 20, 40 × 40, and 80 × 80) are produced. And these
feature maps are input into the neck, where deep semantic features and low-level semantic
features are fully fused. Each feature region is then input into the prediction head. Finally,
the obtained feature maps are input into the head for feature regression and classification,
fitting the best bounding boxes and positions for different types of ships.

2.6. Introduce the BiFPN Structure

Due to the attention adversarial network in the restoration process of low-visibility
images, the distortion in the restoration of target ships in the images and the uneven
distribution of small ships cause the image features of such target ships to be insignificant.
Due to issues such as image distortion and occlusion, during the later stages of model
training, the features extracted from the restored normal regions are significantly more
prominent than those from the un-restored normal regions. The features of the restored
normal area are found to be more significant than those of the un-restored normal area
during the subsequent feature extraction, leading to a selective focus on the significant
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features. Therefore, to solve such problems, the YOLO series previously adopted the
FPN (feature pyramid network) structure. As shown in Figure 2a, this network structure
adopts a top-down approach to aggregate multi-scale features, allowing the high-level
feature map to be transmitted to the low-level feature map (different square colors represent
different feature maps, the arrow direction represents the direction of feature transmission.)
and aggregating features on different scales. However, this information transmission
can only be unidirectional, and cannot be reversed. More specifically, as the number of
down-sampling or convolution operations increases, the receptive field of the high-level
feature map gradually increases, and the overlap area between the receptive fields also
continues to increase. At this time, the information represented by the pixel points is the
information for a region, which has stronger semantic information and is more conducive to
the classification of different ships. The low-level feature map can utilize more fine-grained
feature information, ensuring that the network can capture more details. It has stronger
positional information, which is more conducive to the positioning of ships. Then, the
process of transmitting high-level features can lead to the loss and degradation of feature
information. Therefore, a unidirectional FPN cannot effectively solve such problems.

Figure 2. Comparative schematic diagram of different feature-fusion network structures: (a) FPN,
(b) PANet, and (c) BiFPN.

To better solve the FPN problem, it is necessary to create a new path from bottom
to top, transmitting the positional information to the predicted feature map as well, so
that the predicted feature map simultaneously possesses higher semantic information and
positional information (which is beneficial for object detection). As shown in Figure 2b,
PANet proposes a bidirectional feature network from top to bottom and from bottom to
top, and generates a new feature map from bottom to top. This is followed by adaptive
feature pooling in the later stages. This network structure enhances the feature expression
capability of the backbone network, allowing different target ships to choose different
feature maps. This avoids the one-to-one matching between ship size and network depth.
However, the ROI of this network structure can only rely on a single layer of features,
leading to the problem of information loss from other feature layers. Then, the dual
transmission paths can also lead to insufficient information transmission.

Therefore, in order to better solve the above problems, this study introduces the BiFPN
weighted bidirectional (top-down + bottom-up)-feature pyramid network structure as a
multi-scale feature-fusion method, and combines the idea of multi-level feature fusion.
This is an effective bidirectional cross-scale weighted feature-fusion method, which enables
the fusion and transfer of features from high-resolution ship images and low-resolution
ship images. This further avoids the problems of erroneous ship detection and recognition
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caused by occlusions and image restoration distortions between ships of different sizes,
and better balances the feature information on different scales under different circum-
stances. As shown in Figure 2c, the feature pyramid network structure is shown in the
diagram, where the left part represents the input section consisting of feature maps from
the backbone network. These feature maps have different levels and scales of information.
Typically, lower-level feature maps have higher resolution but relatively less semantic
information, while higher-level feature maps have lower resolution but contain more se-
mantic information. The input feature maps are fused and propagated through various
paths. The top-down path starts from higher-level feature maps and gradually increases the
resolution of the feature maps through upsampling or interpolation operations to obtain
higher-resolution feature maps. The bottom-up path starts from lower-level feature maps
and gradually decreases the resolution of the feature maps through pooling or convolution
operations to capture broader receptive fields and more detailed information. The lateral
connections are used to fuse the feature maps from the top-down and bottom-up paths. By
using 1 × 1 convolution operations, the channel dimensions of the feature maps from the
bottom-up path are matched to be added to or concatenated with the feature maps from
the top-down path. Multiple iterations are performed to enrich and diversify the levels
of the feature pyramid. Finally, the fused and propagated feature map is output on the
right side of the image. More specifically, the blue lines are the top-down pathways, which
convey the semantic information of the high-level features; the red lines are the bottom-up
pathways, which convey the location information of the low-level features; the purple lines
are the newly added edges between the input nodes and the output nodes at the same level
(N4, N5, N6), which fuse more image features without adding too much cost. Meanwhile,
In the BiFPN network, nodes with only a single input edge are eliminated. This is because
a node with just one input edge that does not perform feature fusion contributes minimally
to the feature network that integrates different features. Therefore, removing such a node
has a negligible impact on our network, while it simplifies the bidirectional network. This
is applicable to the first node on the right of N7. If the original input node and the output
node are at the same level, the network will add an extra edge between the original input
node and the output node. This allows for the fusion of more features without significantly
increasing costs, thereby improving the efficiency of ship detection and recognition.

3. Experimental Design

3.1. Data Description

To validate the proposed maritime ship detection framework for low-visibility sce-
narios at sea, it is essential to consider all influencing factors in the maritime environment
to ensure the reliability and authenticity of the model validation. The SeaShip dataset is
acquired by the monitoring cameras in a deployed coastline video-surveillance system. This
dataset includes labels for various types of ships and high-precision bounding boxes, and
covers all possible imaging variations, such as different scales, parts of the hull, lighting,
viewpoints, backgrounds, and occlusions. This dataset comprises 7000 images, which are
divided into two subsets: one simulates rain-streak conditions, and the other simulates
foggy weather. Both datasets are split into training, testing, and validation sets, in a 2:1:1
ratio. The dataset encompasses six types of ships, namely ore carriers, bulk cargo carriers,
container ships, general cargo ships, fishing boats, and passenger ships (Shao et al. [35]).

This dataset has collected maritime ship navigation data under forty-five different
background conditions. Ship detection accuracy is often affected by background changes
which pose challenges for separating foreground target ships from complex background
environments. Note that the datasets also involved image distortion, occlusions, hull parts
and small-target detection (i.e., small ship imaging size) interferences. Details for the
datasets can be found in Table 1. The proposed method was implemented with PyTorch
1.7.1 framework and Python 3.7. The operating system is Ubuntu 20.04 OS, and the CPU
is Intel(R) Xeon(R) Gold 6230R CPU @ 2.10 GHz. The GPU used for the experimental
platform is Quadro RTX 5000.
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Table 1. Information from Marine ship data.

Ship Category Resolution Image Distortion Small Target Detection Ship Obstruction Hull Parts

Ore carrier 1920 × 1080
√ √ √ √

Bulk cargo carries 1920 × 1080
√ √ √ √

Container ship 1920 × 1080
√

/
√ √

General cargo ship 1920 × 1080
√ √ √ √

Fishing boat 1920 × 1080
√ √ √ √

Passenger ship 1920 × 1080
√

/
√ √

(Symbol
√

indicates the situation that exists in the dataset.)

3.2. Evaluation Indicators

To validate the performance of the GYB framework proposed in this study, our ap-
proach involved five metrics: recall (R), F1-score, precision (P), and the average precision
AP0.5 and AP0.5:0.95 to quantitatively evaluate the performance of the framework. the per-
formance of the framework. Firstly, we need to introduce some common variables. TP (true
positive) represents the positions and labels of the ships detected by different algorithms
consistent with the ground truth. TN (true negative) represents that both the ground truth
and detected ship labels are negative (which correctly predict the negative samples). FN
(false negative) means that the different detection algorithms recognize the correct ship
positions and labels as wrong (this sample is a positive sample). FP (false positives) means
the different detection algorithms predict the wrong ship positions and labels as correct
(this sample is a negative sample). Precision is the ratio of correctly predicted ship positions
and labels among all predicted true ship labels within the range of [0, 1]. Recall represents
the percentage of correctly predicted true ship labels among the total actual true ship labels,
and lies within the range of [0, 1].

To better evaluate the performance of different algorithms, the F1-score, which is
the harmonic mean, precision (P) and recall (R) are introduced. The F1-score reaches its
optimum only when both precision and recall tend toward their maximum values. The
average precision (AP) can be obtained by calculating the area under the precision–recall
(P-R) curve, which is bounded by the horizontal and vertical axes. AP0.5 and AP0.5:0.95
are commonly utilized metrics, respectively signifying average precision values at an IOU
(intersection-over-union) threshold of 50% and the mean values across IOU thresholds,
ranging from 50% to 95%. In this study, the detection performance of the proposed method
was assessed using AP0.5 and AP0.5:0.95. In accordance with Equations (7)–(10), the positions
of the detected ships are closer to the ground truth when the values of P, R, F1, AP0.5 and
AP0.5:0.95 are larger. The frames-per-second (fps) is introduced as a performance criterion
to assess the real-time performance of this framework, for which the calculation formula is
shown in Equation (11):

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

F1 = 2
P× R
P + R

(9)

AP =
∫ 1

0
P(r)dr (10)

f ps =
1

COT
(11)

where COT represents the average time consumed per frame in the ship validation dataset.
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4. Discussion and Result

4.1. Discussion

To illustrate the entire workflow, we provide a descriptive output of each step within
the proposed framework in this paper. In the context of maritime surveillance video imag-
ing, the interference caused by rain streaks and fog leads to reduced visibility in monitoring
video data. Furthermore, the complexity and diversity of maritime ship navigation envi-
ronments exacerbate this issue. Existing ship-detection algorithms tend to exhibit abnormal
detection behavior in such scenarios, often resulting in missed detections, where they fail
to accurately fit bounding boxes around navigating ships.

As shown in scenario one in Figure 3, under the interference of rain streaks and the
complex water traffic environment, SSD and Faster_Rcnn failed to correctly distinguish
the features of water obstacles and ships, resulting in false and missed detections of ships
(purple dashed box). As shown in scenario two in Figure 3, the interference of rain streaks
reduced the visibility, and the sailing ships were far from the monitoring equipment,
resulting in YOLOv3 and SSD missing the detection of small-ship targets. Meanwhile, the
YOLOv3 detector failed to generate the correct ore-carrier bounding box. The significant
difference between the edge features of the general cargo ship and the edge features of
the cargo on board caused Faster_Rcnn to generate multiple incorrect candidate regions
(proposal regions), resulting in fishing boats and general cargo ships being generated
(i.e., a single ship corresponds to multiple bounding boxes).

 

Figure 3. Comparative diagram of the effects of YOLOv3, SSD, Faster_Rcnn, and GYB on the detection
of ships in typical water transportation under different weather disturbances.

As shown in scenario three in Figure 3, the visibility of the video image data collected
under the interference of fog is significantly reduced, and the ships are occluded by each
other; the features of small ships are similar to those of large ships, resulting in SSD,
YOLOv3 and Faster_Rcnn being unable to distinguish fine-grained ship features, causing
ship misdetection (i.e., multiple ships correspond to only one bounding box). As shown in
scenario four in Figure 3, the small-target fishing boats in this scene are confused with the
surrounding environmental features, and SSD, Faster_Rcnn and YOLOv3 cannot identify
effective regions, resulting in some small ships being missed (purple dashed box).

By restoring the low-visibility images and obtaining a clear image as the input of the
enhanced YOLOv5 detector, our proposed algorithm framework can effectively address
the challenges of low-visibility detection in the aforementioned scenarios and achieve
multi-scale fusion for water ship detection. Then, the restoration of the distorted area of
the image becomes more important. As shown in Figure 4, the visualization of the low-
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visibility region attention-map learning process in the proposed framework is presented.
This process focuses on the low-visibility regions by using the attention maps generated
by the adversarial neural network, while understanding the structure and edge features
around the low-visibility regions. And by guiding the context encoding encoder with
the attention map, the global and local features and relations of the low-visibility regions
are captured, generating high-quality image regions. In this way, we can ensure that the
detector can extract more realistic and effective ship image features. In order to better
quantify the effects of image dehazing and deraining, the PSNR (peak signal-to-noise
Ratio) and SSIM (structural similarity) are introduced as performance criteria to assess the
results after image restoration. PSNR (peak signal-to-noise ratio) is a reference value for
evaluating image quality, while SSIM (structural similarity) is an indicator for measuring the
similarity between the restored image and the real clear image. The evaluation indicators
are summarized in Table 2. It can be observed that the PSNR metrics of the framework for
image deraining and defogging are 30.32 and 32.68, respectively, and the SSIM metrics are
0.9289 and 0.9360, respectively. Overall, it has achieved a good quality of image restoration,
providing an important foundation for subsequent ship detection and recognition.

 

Figure 4. Schematic diagram of the process of image restoration by the context encoder guided by
the attention map.

Table 2. Quantitative evaluation results of image deraining and dehazing.

Datasets
Evaluation Indicators

PSNR SSIM

Rain streaks 30.32 0.9289

Fog 32.68 0.9360

4.2. Results

By calculating the data difference between the real position and the detected position
of each type of ship in low-visibility maritime surveillance videos, we further quantified
the experimental data regarding the framework’s performance. The evaluation results are
summarized in Table 3. For rain streak scene, the evaluation metrics (P,R,F1) of our proposed
GYB framework model are 95.2%, 94.3%, 94.8%. AP0.5 and AP0.5:0.95 are 0.970 and 0.701,
respectively, which are more than 10% higher than the traditional algorithms YOLOv3,
SSD and Faster_Rcnn models. Similarly, for the fog scene, the evaluation indicators of
the GYB model are more than 20% higher than traditional algorithms, while also meeting
the real-time requirements. Simultaneously, we find that the framework proposed in this
paper achieves a fps of 28.67 frames and 29.06 frames in the rain streak and fog scenes by
calculating the fps of different models. Therefore, this framework ensures the accuracy of

364



J. Mar. Sci. Eng. 2023, 11, 2065

ship detection and classification while meeting the real-time requirements of ship systems.
At the same time, in order to further verify the accuracy and reliability of the framework
for recognizing different types of ships, we conducted a separate indicator evaluation for
the detection and recognition of individual ships, and summarize the evaluation indicators
in Tables 4 and 5. It can be seen that, whether in rainy or foggy weather, the P, R, and F1 of
single-ship detection and recognition are all above 92%, especially due to the obstruction
of ship structures of different sizes and limited visibility in rainy and foggy weather. In
summary, the experimental results show that the proposed framework can effectively solve
the problem of ship detection and recognition problems, even in low-visibility conditions.

Table 3. Performance statistics of ship detection for waterborne navigation in different weather conditions.

Data Model
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95 fps

rain streaks

GYB 95.2% 94.3% 94.8% 0.970 0.701 28.67
YOLOv3 71.7% 48.4% 57.8% 0.578 0.256 11.98

SSD 83.5% 79.4% 81.4% 0.822 0.434 6.47
Faster_Rcnn 60.6% 59.7% 61.0% 0.614 0.294 3.26

fog

GYB 97.4% 96.4% 96.9% 0.984 0.742 29.06
YOLOv3 69.9% 58.9% 60.6% 0.867 0.268 12.68

SSD 89.8% 84.9% 87.3% 0.867 0.408 7.03
Faster_Rcnn 61.2% 63.5% 62.3% 0.655 0.317 3.78

Table 4. Performance statistics of detection and recognition of different types of ships under rain
streak weather conditions.

Rain Streaks
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95

ore carrier 94.8% 92.6% 93.7% 0.971 0.660

passenger ship 94.4% 92.9% 93.6% 0.971 0.656

container ship 99.9% 100% 99.9% 0.995 0.783

bulk cargo carrier 92.8% 92.1% 92.4% 0.949 0.696

general cargo ship 95.9% 95.1% 95.5% 0.971 0.737

fishing boat 93.5% 93.0% 93.2% 0.963 0.662

Table 5. Performance statistics of detection and recognition of different types of ships under foggy
weather conditions.

Fog
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95

ore carrier 98.4% 90.7% 94.4% 0.985 0.714

passenger ship 98.3% 96.5% 97.4% 0.966 0.715

container ship 96.7% 99.0% 97.8% 0.995 0.786

bulk cargo carrier 97.2% 97.7% 97.4% 0.99 0.766

general cargo ship 99.2% 97.7% 98.4% 0.992 0.771

fishing boat 94.7% 96.7% 95.7% 0.974 0.703

In order to gain a deeper understanding of the roles and importance of each part in
the model framework, we conducted a series of ablation experiments. In these experiments,
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we sequentially added the image restoration module and the BiFPN module, observing
their impact on the performance of the model framework. The image restoration method
has been renamed as GY and compared with the GYB framework proposed in Table 6
for the aforementioned experiments. The evaluation metrics of the control experiment
results are summarized in Table 6. We found that after adding image restoration and the
BiFPN module, the detection and recognition metrics of different ships have improved to
some extent. Under the conditions of rain streak weather, the YOLOv5 model with the
added BiFPN module has seen improvements in its P, R, and F1 score by 9.1%, 7.5%, and
8.6%, respectively, compared to the original model. The GY model framework has seen
improvements in its P, R, and F1 scores by 15.3%, 51.2%, and 38%, respectively, compared
to the original model. Meanwhile, both AP0.5 and AP0.5:0.95 have improved to varying
degrees. In combination with the model framework proposed in this paper, all evaluation
metrics of the model have seen a significant improvement. This ensures that the accuracy
of the model is improved without reducing the speed of model inference. Similarly, under
the conditions of foggy weather, after adding different modules to the model all evaluation
metrics of the model have seen a significant improvement.

Table 6. Comparison of experimental results of different modules.

Data Model
Evaluation Indicators

P R F1 AP0.5 AP0.5:0.95 fps

Rain streaks

YOLOv5 65.0% 34.1% 44.7% 0.405 0.216 33.37

YOLOv5 + BiFPN 74.1% 41.6% 53.3% 0.503 0.288 31.75

GY 80.3% 85.3% 82.7% 0.887 0.516 30.45

GYB 95.2% 94.3% 94.8% 0.970 0.701 28.67

Fog

YOLOv5 70.8% 55.5% 62.2% 0.622 0.368 35.37

YOLOv5 + BiFPN 75.9% 49.1% 48.1% 0.580 0.351 30.85

GY 83.6% 70.0% 76.2% 0.786 0.509 29.78

GYB 97.4% 96.4% 96.9% 0.984 0.742 29.06

The experimental results show that the proposed framework can effectively solve the
problem of ship detection and recognition problems, even in low-visibility conditions. It
can be seen that, under the conditions of low-visibility small-target ship detection, large-
area distortion of the image, and the challenge of area occlusion between ships, the new
ship-detection framework (GYB) proposed in this paper has more robust performance than
the traditional algorithms in the real complex low-visibility sea environment.

5. Conclusions

The detection of ships in maritime traffic navigation is of paramount practical signifi-
cance for safeguarding navigation safety and facilitating intelligent control decision-making.
In this paper, we propose an integrated framework for the detection and recognition of
maritime ships under low-visibility conditions. This framework achieves accurate detection
and recognition of ships in distorted maritime video data. The proposed framework utilizes
adversarial neural networks to generate attention maps, which enable the identification of
rain streaks and fog areas within the images. These attention maps guide the contextual
autoencoder to selectively restore the low-visibility regions of the images, based on the
surrounding information. Then, the restored images are input into the YOLOv5 detector,
which incorporates multi-scale feature fusion, to achieve accurate detection and classifica-
tion of navigating ships in the video images. We validated the performance of the proposed
GYB framework using the SeaShip dataset. Experimental results showed that the proposed
framework can achieve satisfactory performance for maritime ship detection under rainy
and foggy weather conditions, with an average precision of 96.3%, an average recall of
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95.4%, an average harmonic mean of 95.9% and an average fps of 28.87 frame. The average
precision AP0.5 and AP0.5:0.95 are 0.977 and 0.722. The experimental results demonstrate
that the proposed framework significantly improves the precision of ship detection and
classification under adverse weather conditions.

The following directions can be expanded to further enhance the model applicability
in the future. First, the SeaShip dataset exhibits a limited diversity in ship categories. It
is advisable to augment the dataset with additional ship types, including small fishing
boats, to enhance the model’s robustness. Second, the density of maritime ships collected is
not particularly high, and it is worthwhile for us to further investigate the validation of
maritime ship detection in high-density scenarios. Last, but not least, we can also add the
detection of ships with different rotation angles to further verify the performance of the
model under different water transportation scenarios.
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Abstract: The increase in maritime traffic and vessel size has strengthened the need for economical
and safe maritime transportation networks. Currently, ship path planning is based on past experience
and shortest route usage. However, the increasing complexity of the marine environment and the
development of autonomous ships require automatic shortest path generation based on maritime
traffic networks. This paper proposes an efficient shortest path planning method using Dijkstra’s
algorithm based on a maritime traffic network dataset created by extracting maritime traffic routes
through a spatial-temporal density analysis of large-scale AIS data and Delaunay triangulation.
Additionally, the depth information of all digital charts in Korea was set as a safety contour to support
safe path planning. The proposed network-based shortest path planning method was compared
with the path planning and sailing distance of a training ship, and compliance with maritime laws
was verified. The results demonstrate the practicality and safety of the proposed method, which
can enable the establishment of a safe and efficient maritime transportation network along with the
development of autonomous ships.

Keywords: path planning; spatial-temporal density; maritime transportation; network analysis;
Delaunay triangulation

1. Introduction

Owing to the worldwide increase in maritime traffic and vessel size, the importance
and connectivity of maritime transportation routes have become increasingly significant [1].
This implies that the marine transportation environment is becoming increasingly diverse,
leading to an increasing demand for the analysis of maritime transportation routes [2].
Maritime transportation routes generally refer to areas where ships operate. Several such
routes can be interconnected to form a maritime transportation network [3]. Maritime trans-
portation networks provide various routes through the connection of ports for maritime
logistics [4]. Lee and Cho stated that automatic identification system (AIS) data are essential
for various methods of analyzing maritime transportation [5]. The International Maritime
Organization (IMO) mandates the installation of AIS data on ships for safe navigation
and environmental protection [6]. AIS data include information such as ship type, ship
size, date and time, ship location, and ship specifications, and record ship tracks from
the past [7]. By analyzing the AIS tracks of ships engaged in international navigation,
optimal strategies for sailing from the origin to the destination can be planned based on
the ship type and size [8]. The optimal route is economical and safe for ship operators,
and most ships exhibit similar sailing patterns [9]. According to Akdağ et al. and Tan
et al., the development of unmanned navigation technology leads to the active develop-
ment of maritime autonomous surface ships (MASSs) and unmanned surface vehicles
(USVs) [10,11]. Currently, ship operations are conducted through navigation planning and
the actions of navigators and captains based on their experience and judgment. However,
because of the decreasing number of seafarers, new navigation planning methods based on
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computer algorithms using AIS data, which have been accumulated over the years, have
become essential, particularly owing to the increasing complexity of maritime traffic and
the development of MASS technology [12–14].

In this study, a novel method for shortest path navigation planning is proposed
through AIS data analysis to address the need for more efficient and safer navigation
planning for ships. A spatial-temporal density analysis was performed using the AIS data
accumulated over several years, and the navigational areas of the ships were represented
as polygons. The AIS data underwent transformation from points to lines, and the anal-
ysis involved calculating the temporal values occupied within each grid, resulting in the
spatial-temporal density analysis. Delaunay triangulation analysis was performed based
on these polygons to divide maritime traffic areas into separate spatial units, using the
traffic separation scheme (TSS) method to differentiate two-way traffic. The Delaunay
triangulation results involved a process of filtering out areas, excluding those with high
spatial-temporal density values. The resulting spatial units constituted a maritime traffic
network dataset of about 800, which was supplemented with depth information from a
digital chart to prevent grounding. The digital chart was based on the S-57 hydrographic
data generated for navigation purposes. Dijkstra’s algorithm was used to analyze the navi-
gation time and distance based on the proposed method to plan a safe and efficient route
from the departure point to the destination. The proposed method was compared with the
path planning of a training ship in terms of the navigation time, distance, and compliance
with TSS regulations. The AIS data, along with the spatial-temporal density analysis and
the maritime traffic network dataset generated using space partitioning algorithms, were
analyzed to better represent the shortest path planning compared to the results of the
reference training ship. The proposed maritime network dataset and depth information are
expected to enhance the safety of ship navigation and can be used for the future navigation
planning of MASSs and USVs.

2. Related Study

In this section, we classify the various analyses of maritime traffic into studies on mar-
itime traffic route generation, maritime traffic network proposals, and ship path planning
to represent the shortest distance. Additionally, we describe the main algorithms used in
the analysis, including the method of spatial partitioning.

2.1. Studies on Maritime Traffic Routes

Lee et al. aimed to create a national maritime traffic map for South Korea’s coastal
waters [5]. The study focused on cargo ships, tanker ships, passenger ships, and fishing
vessels with lengths of 60 m or more, using AIS data for four weeks (28 days). A line density
analysis was performed by connecting ship tracks and extracting the top 50% of the data
using quantile partitioning to derive maritime traffic routes. Similarly, Kim et al. conducted
a study on maritime traffic routes in the same area with four months (120 days) of AIS
data and applied the same ship types and sizes [15]. They proposed a spatial-temporal
density analysis method based on the occupied time of ship tracks within the analysis area.
This method addressed the limitations of line density analysis and enabled the analysis
of large amounts of maritime traffic data. This method utilized the approach provided by
the European Marine Observation and Data Network (EMODnet) for ship density, which
is publicly available [16]. Maritime traffic routes represent a way to depict high-density
maritime traffic areas by using polygons to represent the areas, rendering them suitable for
various applications.

2.2. Studies on Maritime Traffic Network

Pallotta et al. explained the effectiveness of using AIS data to infer spatial and tem-
poral information for port and ocean platforms as the usage of AIS data increases [17].
They proposed a Traffic Route Extraction and Anomaly Detection (TREAD) method, which
reviewed the utilization of this knowledge for the characteristics of maritime traffic, the
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extraction of traffic routes, and other related analyses based on the distribution analysis of
maritime traffic. Fernandez et al. extracted maritime traffic networks using unsupervised
methods on ship trajectory data, decomposing them into significant routes by detecting
waypoints, and constructing maritime traffic networks by connecting ports and waypoints
via graph-based connections [18]. Wang et al. extracted dense maritime traffic areas via the
kernel density estimation method, and used image processing to detect their edges [19].
They proposed a polygon-based approach to represent areas, and generated centerlines
connecting nodes and segments via Delaunay triangulation. Yan et al. transformed the rich
positional information of ship trajectories into semantic objects called “ship trip semantic
objects (STSO)”, which represent the objects as a “stop-waypoint-stop” model [20]. They
utilized graph theory to integrate the nodes and edges for maritime traffic network con-
struction. Filipiak et al. utilized ship traffic volume derived from AIS data to construct
maritime traffic networks [21]. Their method comprises three steps: maneuvering point
detection, waypoint discovery, and edge construction, utilizing the k-d B-tree and Quadtree
algorithms for spatial partitioning to extract waypoints. Graph-based maritime traffic
networks were constructed using a genetic algorithm based on the extracted waypoints.
The construction of a maritime traffic network that creates a path from a ship’s origin to its
destination is fundamental.

2.3. Studies on Path Planning

Shah et al. studied path planning for USVs operating in complex environments [22].
They utilized the A* algorithm at the visibility graph nodes, and employed quadtree spatial
partitioning to efficiently calculate the nodes of the visibility graph. Various distance-based
cost-to-go functions were proposed. Lee et al. also utilized quadtree to perform visibility
graph-based path planning for USVs in Korean coastal waters [23]. The nodes generated
through the quadtree were used to create a quadtree-based graph, and Dijkstra’s algorithm
was applied to extract the shortest path. Lee et al. used the depth data to detect the shortest
maritime traffic routes for AIS-based ships [24]. Depth is the most important parameter
for preventing maritime accidents when planning ship routes. In that study, a grid-based
navigational area was extracted, and Dijkstra’s, A*, and improved A* algorithms were used
for the shortest path calculation. Prior to using the shortest path algorithm, they proposed
a suitable algorithm for merchant ships that considered factors such as depth, restricted
areas, and designated routes.

2.4. Research Improvement Plan

Merchant ships in international shipping generally use comfortable and safe routes to
prevent accidents. Because navigation is impossible in certain areas, depending on the size
of the ship, directly searching for the shortest route can reduce the usability of actual ship
operations. In other words, the areas in which small vessels navigate are different from
those in which large vessels navigate. This study presents the shortest route that can be
applied to ships of a size capable of engaging in international navigation and suggests the
following improvement measures.

In contrast to previous studies, this study utilized a large-scale AIS density analysis
as basic data to represent maritime traffic areas as polygons. The high-density areas
obtained from the density analysis provide evidence that ships have used them safely and
economically. Therefore, we aim to produce maritime traffic routes based on the studies of
Lee et al. and Kim et al. to represent the areas where ships primarily operate [5,15]. The
polygons representing the navigation area of a ship can be used to create routes for ships
by utilizing the Delaunay triangulation algorithm.

We differentiate our study by separating the routes, such that merchant ships can
use them in two ways. Most maritime traffic networks represent single-line connections.
However, major accidents are likely if ships operate in different directions along the same
route. Therefore, when constructing maritime traffic networks, we assumed that ships
could use these networks in a two-way manner.
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Merchant ships engaged in international shipping must comply with mandatory
navigation regulations. We built a network based on the premise of safe ship navigation by
enforcing TSSs and using depth data.

3. Materials and Methods

The AIS data comprising spatial information are essentially a maritime traffic dataset
including various attribute information [25]. Spatial information can be used as a basis
for various analyses such as maritime traffic pattern recognition, maritime traffic predic-
tion, and maritime traffic networks using geographic information systems (GIS) [26]. In
this study, ArcGIS Pro 3.0.3 was used to generate maritime traffic routes, perform delay
triangulation, build network datasets, and perform network analysis. To differentiate it
from previous studies, AIS data were used as the basis for maritime traffic density analysis.
Furthermore, a network dataset was developed based on ArcGIS to store the routes of
various ships in the marine space, and a network analyst was used [27]. Additionally,
the digital chart’s shapefile files were combined with network analysis for practical ship
use. Considering safety, adherence to navigation regulations, and accident prevention, we
propose a shortest path maritime traffic network.

3.1. Study Overview

The entire Korean coastal area was selected to construct the maritime traffic network
dataset, as shown in Figure 1. Previous research has focused on relatively small areas
near ports or shallow waters for shortest path analysis. In contrast, this study aims to
construct a national-scale maritime traffic network for ships to connect ports. Korea is
located in Northeast Asia, and its geography depends strongly on the maritime industry,
with 99.7% of its water volume used for shipping [28]. Therefore, the construction of a
maritime traffic network is urgently required to handle the smooth flow of maritime traffic,
and the importance of safe and efficient shortest path planning is increasing. This study
emphasizes the need to construct a comprehensive maritime traffic network that covers
all areas.

 
Figure 1. Detailed location and the analysis area.
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The process for deriving the shortest path through a GIS-based network analysis is
shown in Figure 2. Appropriate preprocessing is required because the initial AIS data are
not directly usable. The AIS data, which are composed of point-based spatial information,
are transformed into line-based information based on the ship’s trajectories over time.
Subsequently, a spatial-temporal density analysis is performed to identify the dense routes
that are commonly used by ships. The resulting density can be represented as a polygon
of the shipping area, and the Delaunay triangulation method is used to partition the area
into triangles that are suitable for building a maritime traffic network. Subsequently, three
equidistant points were inserted into each line segment to regulate the traffic flow of the
ships. These points are subsequently connected in sequence to create a maritime traffic
network, which is stored as a network dataset. This dataset, including safety contours and
navigation regulation information from digital charts, enables the derivation of the shortest
path through network analysis.

 

Figure 2. Flowchart of shortest path planning in maritime transport using network analysis.

3.2. Overview of AIS Data and Density Analysis

AIS data are recorded in real time, and the AIS is equipment installed to support
the safe navigation of ships by providing information regarding their operations and
specifications [29]. AIS data afford several advantages for maritime transportation analysis,
including real-time data acquisition, high accuracy, and detailed ship information such as
ship type, speed, and location, rendering them a valuable tool for improving navigation
safety and optimizing shipping operations. In addition, AIS data can provide insight into
maritime traffic patterns and trends, which can aid the development of effective maritime
policies and regulations. The collected AIS data are divided into static and dynamic
information. Static information includes the maritime mobile service identity (MMSI),
name, type, IMO number, call sign, length, draft, and gross tons (GTs), whereas dynamic
information includes the MMSI, date, latitude, longitude, speed over ground (SOG), course
over ground (COG), and heading [30]. Preprocessing was performed by combining the
static and dynamic information based on the MMSI data for analysis. In this study, the
AIS data collected in Korea during the four seasons of 2018 were used for analysis, and
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data from March 1 to 7 (1 week), June 1 to 7 (1 week), September 1 to 7 (1 week), and
December 1 to 7 (1 week) were used. According to Tsuji (1996), maritime traffic survey
data should consider a minimum of 6–7 days of traffic volume, accounting for weekly
fluctuations [31]. Therefore, this study performed a maritime traffic density analysis for
28 days, using 7 days of data for each season. Various types of ships use the sea. However,
in this study, cargo ships, tanker ships, passenger ships, and towing ships were targeted to
construct a network dataset for major shipping routes. Figure 3 shows the results of the
spatial-temporal density analysis of AIS trajectories and traffic zones within the density
area in polygon form. The spatial-temporal density analysis method used in Figure 3a
follows the analyses used by Kim et al. and EMODnet, which are widely used scientific
methods for ship density providing public services in Europe and Korea [15,16].

  
(a) (b) 

Figure 3. Visualization of AIS data analysis: (a) results of spatial-temporal density analysis tar-
geting AIS; and (b) polygon results of maritime traffic area including spatial-temporal density
analysis results.

The density was calculated using Equation (1). When a line between two consecutive
positions on a ship intersects two or more cells, the length of the line segment crossing
these cells can be calculated. To calculate the time for which a ship occupied each cell, the
length of the line segment was divided by the total length of the line and subsequently
multiplied by the total time of the line. The density of each individual cell is subsequently
determined by calculating the time value of each line segment and adding all the time
values associated with the cell.

Di = ∑n
j=1

Sj

Lj
× Tj (1)

where Di is the ship density (h) of cell i, Lj is the total length (km) of the line j, Sj is the
partial length (km) of the line j that intersects with cell i, and Tj is the time (h) spent by each
ship in each cell during the entire period (e.g., one month) and the number of lines related
to the cell. Therefore, the density is the time (hours) each ship spends in a given cell over
the entire period. The polygon representing the area where ships navigate in Figure 3b is
included in the spatial-temporal density analysis result. This area can change and vary
depending on changes in the maritime traffic volume and traffic flow trends according to
the season. As the polygon is not a fixed element but can vary depending on the situation,
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it can be used in other analysis areas. In this study, the polygon, as shown in Figure 3b, was
used to perform Delaunay triangulation.

3.3. Method for Performing Delaunay Triangulation Based on Density Analysis

Based on the density analysis, extracting the area where ships conventionally operate
as polygons is feasible. This area is not only the flow area for the safe navigation of ships but
also serves as a basis for further analysis. Delaunay triangulation constructs a polygon in
the form of triangles based on points inserted at regular intervals on the edge of a maritime
traffic area. Delaunay triangulation is a method for constructing and dividing triangles in a
manner that excludes points other than those used to create the triangle. One of the most
important features of Delaunay triangulation is that “the circumcircle of each triangle does
not contain any points other than the three vertices of the triangle”. This feature is useful
for identifying the closest point, rendering it useful for data clustering, density analysis,
and road network design [32]. Figure 4a shows the initial results of Delaunay triangulation
on the generated polygon, and Figure 4b shows the filtered triangles generated outside the
polygon area.

 

Figure 4. Process of generating Delaunay triangulation: (a) Delaunay triangulation before filtering;
and (b) Delaunay triangulation after filtering.

Maritime traffic in ocean spaces exhibits complex traffic flows depending on the types
and sizes of ships. Shipping lanes for cargo ships have been established as a safe and
efficient means of navigation, rendering the analysis of cargo ship density in Korean coastal
waters important. The results of the density analysis and Delaunay triangulation for cargo
ships in Korean coastal waters are shown in Figure 5.
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Figure 5. Results of the density-based Delaunay triangulation performed on the coastal wa-
ters of Korea: (a) spatial-temporal density-based polygon representing the maritime traffic flow,
(b) insertion of points at regular intervals along the edges of the polygon, (c) initial results of Delau-
nay triangulation before filtering, and (d) results after filtering.

Figure 5a shows the initial state of the maritime traffic route and illustrates the results
of the spatial-temporal density analysis extracted as polygons. In Figure 5b, point insertion
along the boundary lines of the extracted polygons is performed at regular intervals. The
points are inserted at a consistent interval of 1 km, equivalent to the grid size used in the
density analysis. Figure 5c shows the results of Delaunay triangulation, encompassing
areas beyond those extracted as maritime traffic routes. Subsequently, Figure 5d presents
the filtering of the triangulation in land areas, retaining only the portions corresponding to
maritime traffic routes. Maritime traffic flows differ depending on the types and sizes of
ships. The analysis targeted the shipping routes for merchant ships that operate safely and
efficiently, rendering them important elements of maritime traffic.

3.4. Network Analysis Method Using Digital Chart Data

The digital chart refers to all hydrographic information related to ship navigation,
such as coastlines, contour lines, water depths, navigational aids, hazards, and shipping
routes, produced according to the International Hydrographic Organization (IHO) standard
specification S-57. It provides path planning, route monitoring, and navigation-related
information for safe ship navigation [33]. The inclusion of digital chart information in
network datasets is essential for safe ship navigation. In this study, we aim to create a new
maritime traffic network dataset that includes depth and navigational information that
can be utilized for actual ship operations. Figure 6 shows the detailed information on the
S-57-based digital chart used for the maritime traffic network dataset.
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Figure 6. Detailed description of S-57-based digital charts for the maritime traffic network (pilot area,
TSS, depth).

In general, a pilot boards a vessel to enter or leave a port. Similarly, for ships to leave
the port, pilots board and safely unberth the vessel [34]. Thus, ships can navigate freely
from the point of departure to their destination outside the port area, utilizing the most
economical and safe routes. Therefore, the Pilot Station (P/S) can be used as information
for departures and destinations. TSS is designed to prevent collisions between ships at sea
and has rules for navigation according to the designated flow [35]. The navigation rules
of the TSS are specified in Part B, Section I, Rule 10, Traffic Separation Schemes, as shown
in Figure 7.

 

Figure 7. Detailed description of Traffic Separation Schemes (TSSs).

To ensure safe navigation for ships, TSSs are designated in wide areas of the sea beyond
routes to ports of call. TSS was established to promote safe navigation in areas with heavy
maritime traffic. The direction of the TSS should be considered when building a maritime
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transportation network to ensure the safe navigation of ships. Furthermore, the size of a
ship significantly affects the factors considered in its navigation. Depth information is a
critical factor that must be considered, particularly for larger ships. A larger ship requires
a wider water area for maneuvering, rendering depth a sensitive factor. Therefore, depth
data are crucial for preventing ship grounding accidents. In this study, depth information
was applied to the network dataset at intervals of 10 m, 20 m, and 30 m. To secure a safe
depth for ship navigation, depth information is set as a line obstacle in the shortest path
detection algorithm.

3.5. Construction Method of Network Dataset Based on Delaunay Triangulation

Previous studies using Delaunay triangulation to construct maritime traffic networks
connected these networks based on centerlines. A route based on centerlines is suitable for
representing a single traffic flow but not for expressing various navigation patterns. The
polygon inside the maritime traffic route includes not only ships sailing in a certain direction
but also upstream, downstream, eastbound, westbound, and irregular navigation patterns.
To induce regular maritime traffic flow, it is regulated to connect in the same direction as the
TSS. Because TSS is a method for regulating bidirectional maritime traffic flow, constructing
a bidirectional maritime traffic network dataset using Delaunay triangulation is necessary.
Figure 8 illustrates the process of creating a bidirectional maritime traffic network that
regulates maritime traffic in both directions.

Figure 8. Construction process of two-way maritime traffic routes using Delaunay triangulation:
(a) Initial results of Delaunay triangulation filtering, (b) Removal of irregular triangulation at the
edges, (c) Insertion of points at 25% intervals in the triangulation results, (d) Removal of points along
the boundary line, (e) Connection of two-way traffic routes.

Figure 8a shows the process of converting the initial delay triangulation, which is
formed as a polygon, into line-based spatial information. Figure 8b shows the process
of deleting the irregular edge triangulation, which enables forming an accurate maritime
traffic route. Figure 8c inserts points at a distance of 25% for each line, resulting in three
points being generated for each line, which represent the points that indicate the flow of
maritime traffic. Figure 8d shows the process of deleting the points formed on the boundary
by uniformly utilizing the difference in spatial information. Afterwards, Figure 8e forms
three points only for the lines that exist inside, where the left point connects the south and
west bounds and the right point connects the north and east bounds. The points formed
in the middle are used as centerlines for the maritime traffic network route in this study.
However, they can be created separately according to the separation provided by the TSS.
Thus, maritime traffic flow is divided into two-way forms, preserving the regular flow
of ships and focusing on accident prevention through the installation of separate buoys.
The maritime traffic network dataset is constructed based on the created two-way route.
The process of building by reorganizing network connections and attribute information is
subsequently performed on the input network dataset. This implies rebuilding the included
routes, such that they are available for use in the network, and the work speed can vary
significantly depending on the data size during this process.
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4. Results

4.1. Extraction Results of Network Based on Delaunay Triangulation

Various types of digital chart information have been considered when constructing
maritime traffic networks. Maritime traffic includes areas with one-way navigation and
areas where navigation is enforced to be two-way. Additionally, stations are available
where pilots are required to board and disembark to enter and exit the ports. Lastly, safe
water depths for the target vessels must be considered, as the permissible depths vary
depending on the size of the ships. The ultimate goal of a maritime traffic network is to
safely and economically transport large volumes of maritime cargo using ships, while
considering various factors [36]. The maritime traffic network that can be established in
South Korea’s coastal waters is listed in Table 1. After constructing the maritime traffic
network dataset, 485 datasets were generated based on six major trade ports located in
the west (Incheon, Pyongtaek, Daesan, Boryeong, Gunsan, and Mokpo), with a total route
length of 323,351 km and an average route length of 666.7 km.

Table 1. Results of maritime traffic network dataset.

Area Number of Ports (Names)
Number of Route

Networks

Route
Total

Distance (km)

Route
Average

Distance (km)

Western 6 (Incheon, Pyongtaek, Daesan,
Boryeong, Gunsan, and Mokpo) 485 323,351 666.7

Southern 5 (Jeju, Wando, Yeosu, Busan Newport,
and Busan port) 153 56,684 370.5

Eastern 3 (Ulsan, Pohang, and Donghae) 100 61,053 610.5

Outside 18 62 28,662 462.3

Total 32 800 469,750 527.5

In the south, five major trade ports (Jeju, Wando, Yeosu, Busan Newport, and Busan
port) generated 153 datasets with a total route length of 56,684 km and an average route
length of 370.5 km. The three major trade ports in the east (Ulsan, Pohang, and Donghae)
generated 100 datasets with a total route length of 61,053 km and an average route length
of 610.5 km. In addition to the network dataset of routes departing from major trade
ports, data approaching trade ports from offshore were added as “outside”. A total of
62 “outside” datasets were generated, with a total route length of 28,662 km and an average
length of 462.3 km. Here, the term “outside” refers to routes approaching coastal areas
from the open sea. Therefore, 32 starting points were selected in the coastal waters of South
Korea, and 800 network datasets were constructed. Finally, density analysis was performed
using the AIS data. The results of the maritime traffic network dataset based on Delaunay
triangulation are shown in Figure 9.

The construction of a maritime traffic network must consider the actual flow of ship
traffic, comply with regulations such as those designated in the TSS, and ensure a safe water
depth to prevent grounding accidents. The established network dataset was subsequently
used as the basis for performing shortest path analysis.
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Figure 9. Result of the construction of the maritime traffic network dataset (32 starting points,
800 network datasets).

4.2. Shortest Path Network Analysis for Voyage Planning

For ships to navigate from the departure point to the destination, considering factors
such as the economically shortest route, safe water depth, and compliance with designated
routes is necessary. Dijkstra was the first to devise a method for generating the shortest route
based on graph theory, and Silveira et al. and Wang et al. constructed the shortest route
that ships can use using Dijkstra’s algorithm [37–39]. In this study, Dijkstra’s algorithm was
used to calculate the shortest route, and the safety depth data were set as line obstacles in
the network. This implies that by simultaneously inputting line obstacle values to maintain
a safe water depth during ship navigation, the network dataset provides the shortest route
among the available routes. Using Dijkstra’s algorithm provided by ArcGIS Network
Analyst, the safe area is set by considering points (marine facilities), lines (depth), and
polygons (military training), and a safety check can be performed for the designated routes.

4.3. Comparison of Shortest Path Planning Algorithms

To compare the actual path planning of the training ship (T/S HANBADA) with the
shortest path planning, the ship’s specifications are listed in Table 2, and its photograph is
presented in Figure 10.
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Table 2. Specifications of T/S HANBADA.

Category T/S HANBADA

Date built 8 December 2005

Length (overall) 117.20 (m)

Beam 17.80 (m)

Draught 8.15 (m)

Gross tonnage 6686.0 (tons)

Service speed 17.5 (knots)

Main engine Diesel 8130 (HP)

 

Figure 10. Photograph of T/S HANBADA.

The training ship T/S HANBADA is currently in operation as a vessel for student
onboard education. The ship’s length is 117.20 m, the beam is 17.80 m, and the draught
is 8.15 m, which is an important factor for designating the safety depth as the depth to
which a vessel is immersed in water. Therefore, a 10 m depth boundary line was entered as
a line obstacle in the maritime traffic network dataset. To compare the shortest path and
compliance with designated routes provided by the network dataset, the path planning
used in the actual operation of the training ship (Case A) from the P/S of Busan port to
the P/S of Incheon port and the path planning (Case B) from the P/S of Incheon port to
the P/S of Busan port were compared. Figure 11 shows the training ship’s route, and
Figure 12 shows the network dataset-based path planning connecting the P/S of the Busan
and Incheon ports, two major trading ports in Korea.
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Figure 11. Path planning of the training ship (Case A) from Busan to Incheon.

 
Figure 12. Path planning of the network dataset (Case A) from Busan to Incheon.
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Table 3 presents a comparison of the path planning of the HANBADA ship and the
shortest distance path generated by the network dataset in terms of distance, sailing time,
and compliance with TSS regulations. The distance of HANBADA’s path planning (Busan
to Incheon) is 708.5 km, and the sailing time is analyzed to be 00 d 21 h 50 m when sailing at
the service speed of 17.5 knots. Furthermore, the current ship operation plan is determined
based on the captain’s decision, and the ship may sail on routes other than the shortest
distance. The analysis showed that the HANBADA ship passed through all six regulated
TSSs in Korean coastal waters. Furthermore, the shortest distance path generated by the
network dataset is analyzed to be 663.9 km, and it takes 00 d 20 h 28 m of time when
sailing at 17.5 knots, which is the same speed as HANBADA. The shortest path of the
network dataset navigated between the islands without passing through TSS 2 and TSS 3,
but complied with all other TSS regulations and provided path planning. Therefore, the
shortest distance path planning of the network dataset reduced the distance by 44.6 km
relative to the HANBADA path planning, enabling arrival 01 h 22 m sooner.

Table 3. Comparison of path planning (Case A) between HANBADA and network dataset.

Category
(Case A)

Distance to
Go (km)

Sailing Time
(Distance/17.5 knot)

Comply
with

TSS 1

Comply
with

TSS 2

Comply
with

TSS 3

Comply
with

TSS 4

Comply
with

TSS 5

Comply
with

TSS 6

HANBADA 708.5 km 00 d 21 h 50 m Comply Comply Comply Comply Comply Comply

Network
dataset 663.9 km 00 d 20 h 28 m Comply No No Comply Comply Comply

Difference −44.6 km −00 d 01 h 22 m - - - - - -

Figure 13 shows the path planning of the training ship, whereas Figure 14 shows the
path planning based on the network dataset, connecting the P/S of Incheon and Busan,
and returning to the starting point.

 
Figure 13. Path planning of the training ship (Case B) from Incheon to Busan.
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Figure 14. Path planning of the network dataset (Case B) from Incheon to Busan.

Table 4 compares the distance, sailing time, and compliance with TSS regulations of
the HANBADA path planning and the shortest route provided by the network dataset for
the return trip from Incheon P/S to Busan P/S. The HANBADA path planning covers a
distance of 723.7 km and has a sailing time of 00 d 22 h 21 m when sailing at 17.5 knots, and
complies with all regulations from TSS 1 to TSS 6. In contrast, the shortest route provided
by the network dataset covers a distance of 680.7 km and has a sailing time of 00 d 21 h
02 m. Because the shortest route sails between the islands, it does not pass through TSS 2
and TSS 3. In summary, the results show that the network dataset can reduce the distance
by 43 km and the sailing time by 01 h 19 m, while HANBADA’s path planning complies
with all TSS regulations.

Table 4. Comparison of path planning (Case B) between HANBADA and network dataset.

Category
(Case A)

Distance to
Go (km)

Sailing Time
(Distance/17.5 knot)

Comply
with

TSS 1

Comply
with

TSS 2

Comply
with

TSS 3

Comply
with

TSS 4

Comply
with

TSS 5

Comply
with

TSS 6

HANBADA 723.7 km 00 d 22 h 21 m Comply Comply Comply Comply Comply Comply

Network
dataset 680.7 km 00 d 21 h 02 m Comply No No Comply Comply Comply

Difference −43.0 km −00 d 01 h 19 m - - - - - -

5. Discussion

The increase in maritime traffic and vessel size has significantly changed the marine
spatial planning (MSP) environment [40]. As the demand for various marine activities
increases, the area covered by maritime traffic routes decreases. Simultaneously, the im-
portance of maritime traffic networks for the smooth transportation and handling of cargo
is increasing. The shrinking area of maritime routes and the increasing importance of
networks signify the complexity of the marine environment. Furthermore, the future
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development of MASSs and USVs anticipates the operation of autonomous maritime
transportation without human decision making. Fundamentally, compliance with predeter-
mined routes is a priority for an unmanned MASS to operate from the point of origin to the
destination. In this case, the predetermined routes are safe and can be used to determine
the shortest distance. Therefore, analyzing the safe conditions and determining the shortest
distance are necessary. The safe and shortest route mentioned here can be determined by
analyzing the operating patterns of ships equipped with an AIS. If AIS data accumulated
over several years can be used to identify areas where ships frequently operate, this route
implies safe and economical results [41,42]. Therefore, maritime traffic routes, maritime
traffic networks, and shortest path planning should be based on AIS data. In this study, we
differentiated the following characteristics to construct a maritime traffic network dataset
for analyzing shortest path planning.

Areas where ships frequently navigate and where AIS data have been accumulated
over several years can be selected as safe and economically efficient routes. Accordingly, a
maritime spatial-temporal density analysis was performed to extract the areas where ships
operate the most.

A line that can induce ship flows is required to separate the flow of maritime traffic
within a density-based polygon. The IMO regulates TSSs for densely trafficked areas, which
separate traffic flows in a two-way direction. The Delaunay triangulation algorithm is used
to achieve this within the polygon. Two-way traffic flow can facilitate preventing collision
accidents because ships operate in a consistent direction, and this method can be effectively
applied to future navigation plans for MASSs and USVs.

To construct the network dataset, the safety depth values based on a digital chart (S-57)
were included, and the shortest path planning algorithm based on Dijkstra’s algorithm
was proposed. The results of shortest path planning were compared with the actual route
used by the training ship. One distinctive feature of this study is that it compares the actual
route used for navigation rather than comparing various algorithms for finding the shortest
path. A limitation of this study is that, while considering factors such as water depth and
designated routes utilized by ships, it did not account for various environmental factors in
the sea, such as weather conditions, sea states, and currents. Additionally, the study did not
encompass various aspects of maritime conditions, including navigation rules, encounters
between vessels, and collision avoidance, which are crucial for ship operations.

6. Conclusions

This study contributes to the literature by providing an understanding of shortest path
planning based on existing spatial-temporal density analysis results and network datasets.
The main significance of the research findings is that the maritime traffic network dataset
enables ships to be used in an easy, time-efficient, and safe manner for determining the
shortest path. The comparison between the maritime network dataset and the shortest
path planning for the training ship revealed the superiority of the AIS data-based network
dataset. The comparisons for both Case 1 and Case 2 indicated a reduction in sailing
time by over one hour and a distance decrease of more than 40 km. Maritime traffic
networks are important; therefore, various countries are actively conducting analyses using
different methods. Based on previous studies, this research proposes a novel approach
to extract polygons using spatial-temporal density, separates traffic flows in a two-way
direction, and suggests safe and economical shortest path planning using digital chart
depth values. However, this study has a limitation in that it requires an accurate knowledge
of maritime laws and navigation patterns. Although the traffic flow was separated in a
two-way direction, the actual traffic environment at sea is considerably more complex and
diverse. Developing a maritime traffic network requires combining various elements, such
as ship encounters, safe speed, TSS, and overtaking. However, the current network dataset
only considers TSS and safety depth, which is a limitation. Future research should aim
to develop a maritime network dataset by combining these factors. Furthermore, there is
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a need to advance research by considering and incorporating a broader range of marine
environmental factors, including weather conditions, sea states, and currents.

The analyzed area focused on Korea’s coastal waters, which generate various trade
ports and hundreds of routes; however, this area has the potential to be connected globally.
Accumulated AIS data over several years are a valuable resource for inferring safe and
economical routes. If a maritime traffic network dataset is constructed using the AIS data
from all maritime areas, it will be useful to ship operators, cargo managers, shipowners,
and government officials. This topic is of great interest when considering the potential use
of MASSs or USVs as unmanned vessels in the future.
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Abstract: This research introduces an online system for monitoring maritime traffic, aimed at track-
ing vessels in water routes and predicting their subsequent locations in real time. The proposed
framework utilizes an Extract, Transform, and Load (ETL) pipeline to dynamically process AIS data
by cleaning, compressing, and enhancing it with additional attributes such as online traffic volume,
origin/destination, vessel trips, trip direction, and vessel routing. This processed data, enriched with
valuable details, serves as an alternative to raw AIS data stored in a centralized database. For user
interactions, a user interface is designed to query the database and provide real-time information
on a map-based interface. To deal with false or missing AIS records, two methods, dead reckoning
and machine learning techniques, are employed to anticipate the trajectory of the vessel in the next
time steps. To evaluate each method, several metrics are used, including R squared, mean absolute
error, mean offset, and mean offset from the centerline. The functionality of the proposed system is
showcased through a case study conducted in the Gulf Intracoastal Waterway (GIWW). Three years
of AIS data are collected and processed as a simulated API to transmit AIS records every five minutes.
According to our results, the Seq2Seq model exhibits strong performance (0.99 R squared and an
average offset of ~1400 ft). However, the second scenario, dead reckoning, proves comparable to the
Seq2Seq model as it involves recalculating vessel headings by comparing each data point with the
previous one.

Keywords: online traffic monitoring; ETL pipeline; AIS data; vessel trajectory prediction; dead
reckoning; GIWW

1. Introduction

The availability of maritime data, collected through an extensive network of terrestrial
and satellite Automatic Identification System (AIS) receivers, has created unprecedented op-
portunities for transformative analyses and the extraction of valuable insights in maritime
traffic monitoring. This abundance of information enables various crucial applications,
including vessel trajectory prediction, anomaly detection, threat assessment, and tracking
and classification of maritime activities [1].

At the core of this data-driven revolution is AIS technology, which plays a central
role in maritime operations for real-time tracking and monitoring of vessels. Utilizing
Very High Frequency (VHF) signals, AIS facilitates the exchange of encoded information
containing various attributes of a ship at regular intervals. These attributes include key
details such as the ship’s position coordinates, speed over ground, course over ground,
Maritime Mobile Service Identities (MMSI), and more. AIS data are categorized into
static and dynamic information, with static details encompassing essential ship-related
information and dynamic data continuously transmitted and varying based on the vessel’s
motion [2,3].

The management challenges posed by the high volume and velocity of AIS data
underscore the necessity for compression and efficient data processing. The frequent
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transmission of AIS signals generates substantial data, posing challenges for real-time
analysis, decision-making procedures, and the development of intelligent services and
applications [4]. To tackle this issue, compression techniques are applied to reduce storage
and computing costs associated with processing AIS data. These techniques aim to decrease
the overall data volume by retaining essential information while eliminating redundant or
negligible data points [5].

In the practical landscape of vessel monitoring, existing systems such as VesselFinder [6],
Marine Cadastre [7], and AccessAIS [8], as outlined in Table 1, demonstrate capabilities in
vessel tracking. In Figure 1, the dashboard of the VesselFinder platform is shown. Such
systems let users find vessel locations and some static information like a vessel’s name,
picture (if any), speed, destination (if provided), as well as estimated time of arrival (ETA).
However, the current systems exhibit deficiencies in real-time analysis, data compression,
and traffic analysis. To address these limitations, a novel system has been crafted. The
proposed system not only monitors vessel movements but also conducts real-time data
analysis, presenting the results on an interactive map. Additionally, the system is equipped
to analyze historical data, enhancing its overall functionality.

Table 1. Comparison of current marine systems and our proposed system.

Features

Real-Time
Map

Historical
Analysis

Real-Time
Analysis

Traffic
Analysis

Data Volume
Reduction

Dealing with
Missing Records

Current
systems

VesselFinder �
Marine

Cadastre �
AccessAIS �

Proposed
system ETL pipeline � � � � � �

 

Figure 1. Dashboard of VesselFinder.

In narrow waterways and channels, where operational intricacies are heightened, the
significance of missing AIS points becomes even more pronounced. The scheduling of
vessels in such areas often relies heavily on manual intervention and observation, lacking
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a systematic monitoring approach. Aside from manual scheduling, current Collision
Avoidance Systems rely on observers to ensure safe navigation. The 1972 Convention
(COLREGs) was a significant effort, introducing rules and guidelines governing vessel
conduct, lights, sounds, and exemptions. The integration of advanced technologies like
radar, AIS, and automatic radar plotting aid (ARPA) could provide maritime operators
with real-time data, predictive tools, and automated alerts. However, these systems heavily
depend on the accuracy and consistency of data inputs. AIS provides the major source
of data, and any technical issues, data errors, or data absence can weaken the system’s
effectiveness. Apart from vessels that are not required to have an AIS transporter, there is a
notable occurrence of AIS transponders intentionally or accidentally turning off. This adds
a layer of complexity, as the absence of real-time vessel information can pose significant
challenges for ensuring safe navigation. Our study introduces an intelligent framework
designed to track vessel traffic effectively and predict the next location of vessel movements
accurately in real time. The algorithm employs an Extract, Transform, and Load (ETL)
pipeline to dynamically clean, compress, and process AIS data. Furthermore, it enriches
raw AIS data with valuable information such as online traffic volume, origin/destination
details, vessel trips, trip directions, and vessel routing. By storing the processed data in a
database, this advanced system could be a replacement for the current of collecting and
storing raw AIS data. To facilitate user interactions and access to the system’s intelligent
services, we have developed a user interface that allows end users to query the database
and retrieve real-time information displayed on an interactive map. This intuitive interface
empowers users to make informed decisions and gain valuable insights.

In the second phase of our study, we use processed data to predict the next location
of vessel movements employing two distinct approaches: classical dead reckoning and
machine learning methods. These approaches are evaluated and compared based on
prediction errors, enabling an assessment of their performance to determine the most
accurate prediction method. Combining data processing, prediction algorithms, and a
user-friendly interface, our framework provides a comprehensive solution for online traffic
monitoring and trajectory prediction. By leveraging its sequential-to-sequential architecture,
the model can learn patterns from historical AIS data, predict vessel trajectories, and fill
in the gaps caused by missing points, including instances where AIS transponders are
intentionally or accidentally turned off. This not only enhances the accuracy of predictions
but also introduces a level of automation to the monitoring and scheduling processes,
compensating for the limitations of manual observation. The model’s ability to predict
trajectories even in the presence of missing data due to AIS transponder outages contributes
to more robust and reliable maritime operations in narrow waterways. The algorithm’s
functionality is tested using the Gulf Intracoastal Waterway (GIWW). Three years of data
are collected and fed to the ETL pipeline using a simulated API that sends AIS messages
every 5 min. Results indicate that the proposed algorithm processes millions of data rapidly
and predicts the vessel trajectory with 99% accuracy in terms of R squared. To reinforce
our model, we also define other evaluation metrics as the mean offset from actual points as
well as the mean offset from the channel centerline. On average, the best model predicts
vessel points in a buffer of 1500 ft around actual points.

The paper is organized as follows: Processing based on historical AIS data (offline
mode) and both historical and current AIS data (online mode) are discussed in Section 2.
The methodology of the paper including the ETL process and prediction methods are
presented in Section 3. In Section 4, the result using a dashboard is visualized and the
prediction errors are investigated; in Section 5, the discussion and future direction are
mentioned, and finally, the conclusions are presented in Section 6.

2. Literature Review

We examine research papers that have employed historical AIS data for vessel tracking
and trajectory analysis, particularly focusing on online monitoring and intelligent frame-
works. These frameworks dynamically compare real-time AIS data with historical data to
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analyze vessel movements and identify trajectories. In the final review, we delve into the
application of machine learning, deep learning, and dead reckoning methods in predicting
vessel trajectories.

2.1. Historical Analysis

Li et al. proposed a multi-step algorithm that integrates Dynamic Time Warping
(DTW), Principal Component Analysis (PCA), and an improved center clustering approach
for trajectory clustering. The goal is to identify customary routes and detect abnormal
trajectories [9]. Zhang et al. utilized data-driven algorithms, including density-based
spatial clustering of applications with noise (DBSCAN) and Ant Colony Optimization
(ACO), to infer vessel routes from AIS data [10]. Ren et al. introduced a network based
on a multi-clustering algorithm combining k-means, DBSCAN, and Affinity Propagation
(AP) clustering methods to generate high-dimensional trajectories and measure their simi-
larity [11]. Eljabu et al. emphasized the significance of automatic methods for extracting
traffic routes from AIS data, demonstrating the potential of density-based clustering al-
gorithms [12]. Kang et al. analyzed AIS data from the Houston Ship Channel to explore
vessel congestion patterns, factors contributing to congestion, and speed variations [13].
Kabir et al. developed a framework and algorithms for capturing significant directional
changes in vessel trajectories for maritime traffic management [14]. Zohoori et al. presented
a vectorized algorithm for analyzing waterway traffic characteristics, reducing processing
time compared to loop-based methods [15]. Wu et al. proposed an AIS-based method
to identify hot spots in waterways experiencing frequent vessel conflicts and examined
time-of-day impacts on conflict frequency [16]. Additionally, Wu investigated vessel travel
behavior in hotspots using AIS data, focusing on speed distributions and flow speeds for
different vessel types [17]. Zohoori et al. developed an algorithm to model and quantify
delays caused by beam restrictions in narrow waterways, providing insights for vessel
scheduling and expansion projects [18].

2.2. Real-Time Analysis

Evmides et al. introduced an intelligent framework for vessel traffic monitoring that
integrates data analytics, machine learning, and visualization techniques [19]. Chi et al.
proposed a framework to monitor vessel efficiency in real time using AIS data, leading
to cost savings and environmental benefits [20]. Zhang and Li presented a methodology
involving online data cleaning, compression, partition, and clustering of AIS data to identify
traffic patterns and anomalies [2]. Kontopoulos et al. offered a method to detect intentional
AIS switch-off in real time for improved safety [21]. Gao and Shai introduced a ship
spatiotemporal key feature point extraction algorithm for AIS trajectory data, beneficial for
ship traffic flow analysis [22]. Sedaghat et al. proposed a smart framework to dynamically
separate and compress AIS data without compromising data quality, enabling the study of
the online traffic flow of vessels [23].

2.3. Trajectories Prediction

We delve into trajectory prediction methods, categorizing them into two main groups:
machine learning algorithms and deep learning algorithms. Machine learning algorithms
utilize historical trajectory data and models like regression, decision trees, and support
vector machines to predict future object movements based on past trajectories. In contrast,
deep learning algorithms, including recurrent neural networks (RNNs) and sequence-
to-sequence models, excel in capturing temporal dependencies and complex patterns,
exhibiting promising results in trajectory prediction.

2.3.1. Machine Learning Methods

Fuentes extensively discussed various machine learning prediction techniques [24],
encompassing regression models such as the Linear Regression Model (LRM) [25], the au-
toregressive model (AR) [26], Support Vector Regression (SVR), Gaussian Process Regression
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(GPR), neural networks like artificial neural networks (ANN), as well as the Kalman Filter (KF)
and Random Forest (RF). These models typically require ship velocity, acceleration, heading,
and position data for training. The Linear Regression Model (LRM) is often used for time
series prediction due to its real-time forecasting capability, although it may face challenges in
predicting long-term linear ship trajectories and susceptibility to overfitting. However, the
Kalman Filter (KF) excels in estimating the state of moving targets and making predictions.
The Random Forest (RF) algorithm, a versatile method incorporating decision trees, finds
applications in predicting arrival ports and sailing times of ships.

2.3.2. Deep Learning Methods

Deep learning methods prove highly effective in handling complex and dynamic
trajectory data, showcasing robust learning and adaptability. Notably, they demonstrate
outstanding performance in predicting ship trajectories based on AIS data [27]. The Long
Short-Term Memory (LSTM) model addresses the short-term memory issue of RNNs by
incorporating dedicated gate controls for both short and long-term memories in ship trajec-
tory prediction. Integrated models based on LSTM, such as the multiple vessels prediction
model [28], vessel location prediction [29], the Trajectory-based Similarity Search Prediction
model (TSSPL) [28], the Context-Aware LSTM (C-LSTM) model [30], and the federated
deep learning-based method (Conv LSTM) [31], handle complex trajectory problems. The
authors of [1,32] develop a model for predicting vessel trajectories using AIS data, employ-
ing neural sequence-to-sequence models with an LSTM encoder-decoder architecture. Their
experiments on real AIS data demonstrate the superiority of these models over traditional
methods. Abada et al. explore the synergy between deep learning and big data, showcasing
the prowess of artificial neural networks in deciphering complex patterns within extensive
datasets. It highlights applications in predictive analytics, image analysis, and language
processing [33].

3. Methodology

We consider an Extract, Transform, Load (ETL) pipeline to deal with the extraction of
the stream of AIS data, process the data, and load the result into a database as depicted in
Figure 2. Not only does this procedure help to build customized and useful information
to be used instead of raw AIS data but it also helps in making online predictions of vessel
movements; it is a big help for the port authorities to know the estimated location of the
vessels in a real-time manner when facing a disconnection or a vessel intentionally switch
off its location. To do the prediction, some traditional methods and deep learning methods
are implemented, and the error of each method has been evaluated. In the following, every
component of the ETL pipeline is explained in detail.

 

Figure 2. Proposed system (ETL pipeline) diagram.
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3.1. Extracting Data

The first step of the ETL pipeline starts by extracting data from an external source of
AIS data. Practically, the stream of real-time data would be provided through APIs. To
testify to the proposed method’s functionality in real-world cases, we collected historical
data for North America and simulated an API that generates AIS messages in a given time
interval. The retrieved data are then filtered based on a specific boundary called the Area
of Interest (AoI) to extract only the relevant portions of interest. After filtering, the code
performs a data-cleaning process by removing any incomplete or null values. This ensures
that the data are accurate and suitable for further analysis or processing. The final result of
the code is a cleaned dataset containing the essential and valid data, ready to be used for
the Transformation step.

3.2. Transforming Data

The second component of the ETL procedure is the “Transform”. This step considers
the output we have gathered as clean raw AIS data from the Extract part as an input for
further processing. The other input is a geographical information system (GIS) layer of
all waterways located in the AoI. Thanks to the QGIS toolbox, we employ the “split line
to maximum length” function to split the GIS layer into smaller, equally sized segments
as depicted in Figure 3. Then a series of functions have been applied to the input data to
transform the raw AIS data. The following sections talk about these functions in detail.

 

Figure 3. Generated segments along waterways in the AoI.

Step 1: Finding the last record

The algorithm is developed based on a hash table, which stores the latest record of
each vessel’s data. As the algorithm receives a stream of data; it compares each vessel’s
record with the last record already stored in the hash table to compute features such as
the time and space distance between a pair of consecutive points. The calculated features
will be used in the next steps. If there is no record in the hash table, the algorithm stores
the new data as the last record. However, if the vessel’s information is already stored,
the algorithm updates the existing data with the newly received data. This allows the
algorithm to progressively calculate and update the calculated values in real time, ensuring
the latest information is stored and processed accurately.

Step 2: Applying the sample rate

The other inputs of the transform algorithm are the minimum and maximum accept-
able time difference between two consecutive records collected for a vessel. Assuming Δt is
a time difference between each vessel’s AIS record and the previous record, the algorithm
keeps records only when Δt is between the minimum and maximum time difference. It
drops redundant information and breaks the sequence of the AIS records if there is a long
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pause. Our assumption is to set the minimum acceptable time difference at 5 min and the
maximum acceptable time difference at 120 min (2 h).

Step 3: Finding segments

This step takes the intersection of each AIS record and the pre-defined segments of the
AoI to assign the segment’s ids to the records. this helps us summarize the data for each
segment and calculate some traffic features like traffic density. Additionally, it drops any
records located outside of the segments.

Step 4: Filtering noises

Trajectory trackers sometimes may generate wrong records that appear as noises
in a sequence of locations. To capture and drop such records, we add this step to our
transformer. This step uses Δt and Δl—that is, the distance between each record and the
previous record—to calculate the average speed. If the average speed is not in a rational
range of the vessel’s speed, from 0 to 30 knots, it drops the record.

Step 5: Determining the vessel’s direction

To define the vessel’s direction, we first define the unit vector of the segments’ center-
line. As Figure 4 shows, we keep the first and last point of each segment centerline and
create a segment vector

→
a . Next, we consider vector b as the distance difference between

the new record and the previous record for each vessel. Finally, we utilize the inner product,
Equation (1), to calculate the angle between these two arrows:

a·b = |a| |b| cos(θ ) (1)

where
a: segment centerline vector
b: vessel’s movement vector

Figure 4. Segment and vessel vectors.

These two vectors (a, b) make an angle, θ. Based on Equation (1), we have the following:⎧⎨⎩
0 < θ ≤ 90 if a·b > 0
270 < θ ≤ 360 if a·b > 0
90 < θ ≤ 270 if a·b < 0

(2)

Therefore, if the inner product of two vectors has a positive value, it means that the
cos θ is a positive value, which means we can interpret the two vectors as having the same
direction, and we consider it as the “inbound” direction, while if cos θ is a negative value,
the direction of the vessel is in the opposite direction of the segment vector, so the vessel’s
direction is “outbound”. The example, shown in Figure 3, is an inbound trip because
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the inner product of (a, b) is a positive value and the θ between them is simply between
0 and 90 degrees. This method requires all segment unit vectors to be organized in the
head-to-tail position. We use the QGIS toolbox to order segments and find each segment
unit vector. We also assume the vessel’s direction is zero when its speed is below 2 knots.
Therefore, we define three directions based on the vessel’s speed, the inner product of the
vessel’s movement vector, and the segment vector as listed in Table 2.

Table 2. Direction Values.

Vessel Status Inbound Stop Outbound

Direction value 1 0 −1

Step 6: Determining the Trip Number

The proposed algorithm aims to determine trip numbers, considering every stop-to-
stop interval as a separate trip. To determine the trip number, the code first checks if the
new record’s direction is “stopped” and differs from the previous record’s direction. If this
condition is met, it implies the start of a new trip. The code increments the trip number by
one, assigning it as the previous record’s trip number plus one.

In instances where vessels initiate a trip and make stops during the journey, the
algorithm tends to designate each stop as a new trip number, even if the vessel halts briefly
and does not signify the initiation of a new trip. To address this, time-lagged windows
have been implemented. For trips in which vessels stop during the journey, if the stop time
is below a predefined threshold, the algorithm disregards the stop status, considering the
trip number as the previous trip number and not initializing it as a new trip. Consequently,
the algorithm updates the last vessel’s recorded trip number with a delay, ensuring that
the stop status of the vessel is deemed negligible. For more clarification, in Figure 5, we
have a record from an MMSI every five minutes, and the algorithm considers each stop to
stop as a single trip. Therefore, before using a time-lagged window, the trip number for
this specific vessel can increase to three, while in the movement of the vessel, it stops for
about 5 min. If we predefine our threshold at 15 min, based on the time-lagged window,
we must ignore the stop status and consider it to be the previous trip number. In this case,
we have two trip numbers, since at the third stop, the vessel does not stay less than 15 min.
Therefore, we initiate a new trip number.

Figure 5. Updated Trip number using a time-lagged window.

3.3. Load the Processed Data

The final stage of the ETL pipeline involves the loading of processed data from the
preceding section into a database. We have developed a comprehensive database to store
the processed data obtained from the ETL pipeline output. This database incorporates a
combination of static and dynamic tables to effectively organize the data. The static tables
encompass vessel profile, segments, vessel status, and vessel type. On the other hand, the
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dynamic tables consist of trips and the last records, which are used for efficient tracking
and analysis. As mentioned above, we developed a simulated API to replicate real-world
operations of receiving a stream of AIS records. The API uses actual AIS data from 2018
to 2022 but releases them in 5 min time intervals. Then, we connect our pipeline to this
API and set it running for all data. Figure 6 shows the log message when running the
pipeline. As shown in log messages, the pipeline is highly efficient so that it can process
26,000 records in 10 s and compress them into 583 records.

 
Figure 6. ETL pipeline log messages for a couple of hours.

3.4. Trajectory Prediction

This section discusses two distinct approaches used for predicting vessels’ trajectories.
The first method is a traditional approach. In contrast, the second approach involves
utilizing a sequence-to-sequence recurrent neural network model (RNN).

3.4.1. Dead Reckoning

In the realm of vessel navigation, a traditional prediction method known as dead
reckoning is employed to estimate the next position in a series of trajectory data using
current and previous records. Dead reckoning allows us to estimate the next location of
the vessel based on its past movements, even when real-time data, such as AIS data, are
unavailable or disrupted. There are two scenarios in which dead reckoning comes into
play. In Scenario I, we utilize the speed and course over ground obtained from the AIS
record as an input to predict its next location. On the other hand, in Scenario II, we rely on
the pre-record location of the vessel to find its next location. By extrapolating the vessel’s
historical data, we can project its next position, assuming it maintains a consistent speed.
To facilitate this prediction process, we undertake the following steps:

Step 1. Preparing the inputs

To streamline the process, we retrieve relevant data from the database. In the trip
table, we introduce two additional columns that showcase the pre-record and next-record
locations of the vessels.

Step 2. Dead reckoning method

Assuming our aim is to obtain predictions for each specific time interval, we apply
Equation (3) to calculate the distance traveled by the vessel within the defined time
interval, which is assumed to be 5 min (0.083 h). Regarding [34], in Equation (4) the
angular distance is calculated by dividing the linear distance by the earth’s radius. In
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Equation (5), the latitude of the next point is calculated. To find the longitude of the next
point, first we should calculate the projected latitude difference in Equation (6). The ratio
n in Equation (7) is introduced to account for the fact that, as the vessel moves along
a rhumb line, the meridional scale (change in latitude) is not equal to the zonal scale
(change in longitude) due to the convergence of meridians toward the poles. Therefore,
the term n is used to adjust for the variation in the size of a degree of the longitude with
the latitude. We have the longitude difference and the longitude of the next point in
Equations (8) and (9), respectively.

d = 1.15 s·Δt (3)

δ = d/R (4)

ϕ2 = ϕ1 + δ·cos(θ) (5)

Δψ =ln(tan(π/4 + ϕ2/2)/tan(π/4 + ϕ1/2) (6)

n = Δϕ/Δψ (7)

Δλ = δ·sin(θ)/n (8)

λ2 = λ1 + Δλ (9)

where
d: distance in mile
s: vessel’s current speed in knots
Δt: given time interval (5 min = 0.083 h)
R: earth’s radius in miles (3958.80 miles)
θ: vessel’s course over ground
ϕ1: latitude of current point
ϕ2: latitude of next point
Δϕ: latitude difference
Δψ: projected latitude difference
n: adjustment ratio for the variation in the size of a degree of longitude with latitude
Δλ: longitude difference
λ1: longitude of current point
λ2: longitude of next point
ϕ0: latitude of previous point
λ0: longitude of previous point

In scenario II, instead of using the course over the ground, as recorded in the AIS data,
we calculate it by comparing the current record and the previous one. Figure 7 shows the
dead reckoning method for finding the next location of the vessel using the pre-record and
the new record.
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Figure 7. Dead reckoning.

3.4.2. RNN Method

The sequence-to-sequence recurrent neural network (RNN) method is a more ad-
vanced approach for predicting the vessel’s next timestamp location. This technique
leverages the power of deep learning to model sequential data effectively. The RNN ar-
chitecture is designed to handle sequential input data, such as a vessel’s position and
timestamp over time. It is capable of capturing temporal dependencies and learning
complex patterns from the historical trajectory of the vessel. However, standard RNNs
have limitations in capturing long-term dependencies, making them less suitable for tasks
requiring long-term memory [1]. Long Short-Term Memory (LSTM) is a powerful variant
of RNNs that addresses the challenges of capturing long-term dependencies in sequential
data, making it well-suited for tasks that require modeling complex sequential patterns,
such as sequence-to-sequence learning and natural language processing.

3.4.3. LSTM Structure

LSTM is a type of recurrent neural network (RNN) architecture designed to address
the vanishing gradient problem and capture long-term dependencies in sequential data.
It is particularly effective in tasks involving sequences, such as time series prediction and
natural language processing. The components include the following:

• Input Gate: Determines which information from the current input should be stored in
the cell state;

• Forget Gate: Controls what information should be discarded from the cell state;
• Cell State updates: Maintains the long-term memory information;
• Output Gate: Determines the next hidden state based on the cell state.

3.4.4. Sequence-to-Sequence Model

A sequence-to-sequence (Seq2Seq) model (Figure 8) is designed for tasks where the
input and output are both sequences of varying lengths. Common applications include
machine translation and text summarization. The components include the following:

• Encoder: Processes the input sequence and encodes it into a fixed-size context vector;
• Decoder: Generates the output sequence based on the context vector produced by

the encoder.
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Figure 8. The Seq2Seq model structure.

In our case, we use different lengths to predict the points, so we use a Seq2Seq structure,
which is structured as below:

• Step 1: Preparing the inputs;

First, we call processed AIS data from the database and store it as a dataset.

• Step 2: Feature selection and normalization.

Vessel latitude and longitude coordinates are essential for capturing the vessel’s
movement patterns. Therefore, we use these two features as the input for the Seq2Seq
model. Additionally, as shown in Table 3, we add the vessel’s speed over the ground, the
course over the ground, and the heading independent variables. Then we perform data
normalization on the selected columns to bring them to a similar scale. This is crucial for
ensuring that the LSTM model can effectively learn from the data and avoid numerical
instabilities during training.

Table 3. X and Y features.

Features
Speed over

Ground
Course over

Ground
Vessel

Heading
Longitude Latitude

X features � � � � �
Y features � �

• Step 3: Converting data into tensors.

A sliding window method is applied to convert data tables into a three-dimensional
matrix tensor. Figure 9 illustrates how the sequences, and their corresponding target values,
have been selected. The output of this step is x and y tensors, which are the input sequence
(here this is four sequences) and target sequence (here this is two sequences), respectively.

• Step 4: Training the Seq2Seq model.

We split the data into 80% training and 20% validation sets. This operation does not
require data shuffling and sorts data based on the record date and time to choose the first
80 percent of the data as the training dataset. As depicted in Figure 10, three years of data
from January 2018 to April 2020 is selected and based on the chronological split, 80% of the
data falls between Jan 2018 and Aug 2019.
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Figure 9. An example of input and target sequences with different lengths feed into the Seq2Seq model.

Figure 10. Chronological split.

• Step 5: Seq2Seq model architecture.

In the context discussed in Section 3.4.4, where input and target sequences vary in
length, the model architecture, as illustrated in Figure 8, has been tailored accordingly. To
accommodate diverse configurations for sensitivity analysis, the generalized format is
presented in Figure 11. Using TensorFlow, we create a sequence model with 50 epochs
and 64 hidden layers. The goal is to predict the vessel’s trajectory based on historical
data using this model. The initial step involves selecting the input to the model with a
specified lookback value of 5, where 5 denotes the number of features in the X dataset.
This input is then fed into the LSTM layer, producing an output with a hidden layer of
64 units and a repeated vector, also known as the encoder vector. This fixed vector is
generated ‘m’ times and serves as the input for the subsequent LSTM layer, utilizing
the value (lookahead, 64). Consequently, the final output of the model is represented
as a lookahead value of 2, where 2 signifies the number of features in the Y dataset.
This architectural design enables the model to effectively handle varying lookback and
lookahead values during the sensitivity analysis.

• Step 6: Model evaluation.

In order to evaluate the model performance, the following metrics are defined:

• R2

R-squared measures the proportion of the variance in the dependent variable (the
actual next coordinates) that is explained by the independent variable (the predicted next
coordinates). It ranges from 0 to 1, where 1 indicates a perfect fit, meaning that the model’s
predictions perfectly match the actual data.

R2 = 1−
∑n

i=1

(
yi − ∼

yi

)2

∑n
i=1(yi − yi)

2 (10)
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Figure 11. Seq2Seq model architecture.

• Mean Square Error (MSE)

MSE calculates the average of the squared differences between the predicted and
actual values. It penalizes large errors more heavily. A lower MSE indicates that the
model’s predictions are closer to the actual values.

MSE =
1

n∑n
i=1

(
yi − ∼

yi

)2 (11)

• Mean Absolute Error (MAE)

MAE calculates the average of the absolute differences between the predicted and
actual values. It provides a measure of the average magnitude of errors.

MAE =
1
n

∣∣∣(yi − ∼
yi

)∣∣∣ (12)

• Mean Absolute Percentage Error (MAPE)

Aside from the conventional metrics, we calculate the distance between the predicted
and actual coordination in miles and feet and take the average of the distance of all the
predicted points.

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣∣
(

yi − ∼
yi

)
yi

∣∣∣∣∣∣× 100 (13)

• Mean offset from Centerline (MFC)
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We determine the mean offset from the channel centerline by measuring the distance
between the predicted points and the centerline of the channel and then calculating the
average of these distances. This helps us to have a better estimation of our model if it is
predicting the point in the land rather than the waterway. The red circles in Figure 12 are
predicted points and the dashed line is the centerline of the channel.

MFC =
1
n

∣∣∣→r ∣∣∣· sin(θ) (14)

 

Figure 12. Mean offset from the centerline.

4. Application

4.1. User Interface Dashboard

The proposed algorithm has been deployed for implementation in the Texas coastal
lines region, specifically targeting the GIWW (Gulf Intracoastal Waterway). As part of the
implementation, we simulate a continuous stream of AIS data from 2018. These data are
then processed using an ETL pipeline and stored in a database. To provide an intuitive user
interface, we have designed a dashboard that allows end users to retrieve the data they
need. The dashboard initially displays real-time vessel traffic, as shown in Figure 13. In
addition to real-time data, the dashboard provides access to historical information. Users
can query various metrics such as traffic flow, dwell time, OD matrix, trip generation, trip
attraction, and individual vessel trips. These queries can be filtered based on the vessel
type and specific date ranges.

 

Figure 13. Online traffic vessel monitoring at a section at GIWW region.
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4.2. Data Processing Efficiency

The proposed ETL pipeline is highly efficient, processing data at a rate of 0.000001
s per record. For example, if we want to process ten million records, it will take just ten
seconds using our algorithm. The speed of this method represents a notable advancement
compared to traditional data processing. It allows for real-time monitoring of vessel traffic
efficiently. Additionally, the ETL has been tested on a simulated environment and can work
simultaneously with the current AIS collection systems. As a result, it does not require a
high-end computer to process raw AIS data because it processes a chunk of the most recent
data at each iteration.

4.3. Prediction Evaluation

As discussed, in the previous section, the dead reckoning method and LSTM algo-
rithms have been implemented to predict the next location of the vessel’s movement. To
visualize the prediction of both methods, we use the folium library in Python. The real
location and the predicted location of a single vessel using the dead reckoning II method
are depicted in red and green colors, respectively, in Figure 14.

 

Figure 14. Real vs. predicted locations.

To evaluate the method in Scenarios I and II, the mean offset and other model evalua-
tion metrics have been investigated, and the result is shown in Table 4. While the traditional
method may be simple to implement, it may not capture complex patterns or account for
irregularities in the vessel’s movement. Additionally, the first two approaches can only
predict one location ahead of time, and they are not able to predict more than one step in
the future. They also may not perform well in situations where the vessel’s trajectory is
subject to sudden changes or nonlinear behavior.

Table 4. Model evaluation results.

Metrics Dead Reckoning I Dead Reckoning II Seq2Seq

r square 0.9996 0.9999 0.9999

mean absolute error 0.0111 0.0032 0.0028

mean square error 0.0149 0.0064 0.0046

mean absolute
percent error (%) 2.3 0.68 0.59

mean offset (mile) 1.03 0.32 0.28

mean offset (ft) 5433 1674 1454

mean offset from
centerline(mile) --- --- 0.12
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4.4. Sensitivity Analysis

To gain deeper insights into the impact of the input sequence length on the predictions,
various values were experimented with for both lookback and lookahead settings. Through
a comprehensive analysis of these combinations, it was determined that the optimal con-
figuration for lookback and lookahead is (5, 3) as shown in Table 5. This signifies that the
model exhibits strong predictive performance when provided with five historical records to
forecast the subsequent three records. The sensitivity analysis for different combinations of
lookback and lookahead values is shown in Figure 15, which denotes that the combination
(5, 3) shows better results in terms of the mean distance. Additionally, Figure 16 provides
a visual representation of both accuracy and loss per epoch. The graphs on the right
illustrate the loss per epoch, showcasing closely aligned training and validation curves,
indicating that the model is not overfitting. On the left, the accuracy per epoch plots reveals
consistently high values, approaching one, indicative of a positive trend. Notably, the a1
plot exhibits particularly promising results, suggesting that selecting a lookahead of three
yields enhanced the accuracy. While other lookahead values display slightly decreased
accuracy compared to lookahead three, the overall trend remains favorable. This indicates
that opting for lookahead values of five, seven, and ten still maintains a satisfactory level
of accuracy without a significant decline.

Table 5. Sensitivity analysis with different combinations of lookback and lookahead.

Mean Offset (mile)
Lookahead Window

3 5 7

Lookback
window

5 4.03 4.72 5.25

10 5.74 6.7 5.94

15 6.27 7.02 7.86

Figure 15. Sensitivity analysis on different lookback and lookahead values.

Note that it was impossible for us to capture weather data and merge them with
AIS data based on time and location. Thus, we plotted our model’s error (mile offset
between the predicted and actual point) versus the month of prediction to show the
weather’s impact on our model’s performance. As shown in Figure 17, there is no pattern
in different months.
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(b1) (b2) 

  
(c1) (c2) 

  
(d1) (d2) 

Figure 16. Accuracy (a1–d1) and loss (a2–d2) plots for a lookback value of 5 with different lookahead
values {3, 5, 7, 10}. The subfigures (a1–d1) depict the accuracy plots, while (a2–d2) represent the
corresponding loss plots under varying lookahead conditions.

Obviously, different vessel types show different maneuvers in channels and narrow
waterways. Especially in channels that have width or depth limitations and put restrictions
on vessels based on their type and dimensions, as shown in Figure 18, tug tows have the
lowest error since their operations are hardly impacted by such restrictions. The average
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offset values of tankers and cargos are also low, which is a good sign, because, in practice,
we care more about tankers and cargo’s locations in channels.

In Figure 19, the traffic density of the Galveston port with id segments of 18, 23, and
73 and the Houston ship channel with id segments of 43, 66, and 94 is illustrated.

 

Figure 17. The boxplot of test months vs. mean offset.

 

Figure 18. The boxplot of vessel type vs. mean offset.

 

Figure 19. The boxplot of the segments at the Galveston port and the Houston ship channel area vs.
mean offset.
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5. Discussion

Looking forward, the research suggests two important future directions. Firstly, an
examination of the system’s feasibility and its applicability to LSTM networks is essential.
Evaluating the scalability and adaptability of the proposed framework under different
operational conditions, such as high-traffic scenarios and diverse waterway characteristics,
will provide valuable insights. Additionally, exploring the integration of advanced machine
learning techniques beyond LSTM could enhance predictive capabilities. Secondly, the
research lays the groundwork for autonomous vessel systems. The system’s ability to
handle false or missing AIS records through dead reckoning and machine learning tech-
niques sets the stage for developing intelligent, self-adjusting vessels. This evolution aligns
with industry trends toward autonomy, particularly in navigating narrow waterways and
channels, offering a potential solution to the challenges of pilot training and scheduling.
Exploring these future directions will not only contribute to academic discourse but also
offer practical insights for the ongoing digital transformation of maritime operations.

6. Conclusions

In the realm of maritime tracking systems, current platforms like Marine Traffic, Ves-
selFinder, and AccessAIS serve as vital tools for monitoring vessel movements, providing
real-time insights into vessel types, names, and directions. However, these systems face
notable limitations, including the absence of detailed historical data and the cumbersome
process of downloading raw information, hindering users seeking comprehensive insights.
Additionally, these platforms lack features such as traffic information, mooring locations,
and advanced predictive capabilities for estimated time of arrival (ETA). Our proposed
model addresses these gaps by introducing innovative features and addressing existing
drawbacks. Through real-time transformation, the model processes and analyzes data in
smaller, more manageable chunks, optimizing time efficiency. Using a 5 min sample rate
reduces unnecessary data volume and structures data for storage efficiency by converting
repetitive columns into dimension tables. The model also introduces new features, in-
cluding trip number, direction, travel miles, travel time, segments, and origin/destination,
enhancing the depth of analysis. Furthermore, the model addresses issues of noise and
missing records, ensuring a more reliable and comprehensive maritime tracking solution.

Our research introduces an inclusive and effective framework for the processing of
maritime data, tracking vessel traffic, and predicting their next locations. Through the
implementation of an Extract, Transform, and Load (ETL) pipeline, we have successfully
processed raw AIS data, augmenting it with additional attributes like vessel direction
and trip number. The utilization of an inner product context for defining vessel direction
and a time-lagged window for trip estimation has proven highly effective, enabling the
accurate processing of millions of data entries within seconds. The newly designed system,
which eliminates the necessity for raw AIS data, exhibits the capacity to handle extensive
information, rendering it a valuable tool for maritime applications. Processed data are
stored in a database, and our user interface offers real-time visualizations of vessel traffic,
providing port authorities with effective monitoring capabilities. In the prediction phase,
we explored two distinct approaches: the conventional dead reckoning method and a deep
learning technique using a decoder-encoder model. Our findings revealed that the second
scenario of the dead reckoning method, considering the angle between the pre-record and
the new record, resulted in lower prediction errors compared to the course of the ground-
based approach. Furthermore, the Seq2Seq model demonstrated promising outcomes in
predicting the trajectories of vessels based on historical data. Our algorithm is versatile
and applicable to diverse maritime scenarios, offering valuable insights and facilitating
improved decision-making processes. For this study, we applied the framework to the
Gulf Intracoastal Waterway (GIWW) in the Texas region, simulating AIS APIs. The results
underscore the system’s efficiency in processing large amounts of data and achieving
precise vessel location predictions.
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Abstract: In maritime logistics, accurately predicting the Estimated Time of Arrival (ETA) of vessels
is pivotal for optimizing port operations and the global supply chain. This study proposes a machine
learning method for predicting ETA, drawing on historical Automatic Identification System (AIS)
data spanning 2018 to 2020. The proposed framework includes a preprocessing module for extracting,
transforming, and applying feature engineering to raw AIS data, alongside a modeling module that
employs an XGBoost model to accurately estimate vessel travel times. The framework’s efficacy
was validated using AIS data from the Port of Houston, and the results indicate that the model can
estimate travel times with a Mean Absolute Percentage Error (MAPE) of just 5%. Moreover, the
model retains consistent accuracy in a simplified form, pointing towards the potential for reduced
complexity and increased generalizability in maritime ETA predictions.

Keywords: travel time; ETA prediction; AIS data; XGBoost

1. Introduction

Shipping plays a pivotal role in the intricate web of global trade, serving as the
lifeblood of international commerce. It facilitates the movement of goods across vast oceans
as well as connecting markets and economies in a seamless exchange of products and
resources. With over 80% of the world’s trade volume being carried by ships, the maritime
industry is a cornerstone of the global economy [1]. Consequently, the efficiency of the
shipping system, particularly in ports, yields a profound influence on global trade and
supply chains. Port congestion, which is attributed to 93.6% of delays, primarily stems
from congestion issues, and it underscores the critical need for effective port operational
planning [2]. For ports to function smoothly, ships must adhere to arrival schedules.
Research indicates that shipping delays significantly impact port operations. Consequently,
the estimated time of arrival (ETA) assumes a pivotal role in port operational planning and
management. ETA represents the anticipated date and time of a shipment’s arrival at a
specified destination. An uncertain ETA hampers the ability of ports to formulate efficient
logistics plans, emphasizing the crucial role of accurate arrival time predictions.

In maritime terms, a “narrow waterway” designates a constricted waterway charac-
terized by limited breadth and depth, posing navigational challenges. Contrasted with
the ample maneuvering space in open seas or larger water bodies, these confined areas
demand precise navigation. Skillful handling and often the aid of local pilots are essential
for navigating these constrained spaces [3]. Challenges include a restricted turning radius
where big vessels have to sail extra miles to make a U-turn [4], possible strong currents or
tides, and close quarters with other vessels or the boundaries of the waterway itself [5].
Deep-draft vessel navigation in main waterways is managed by channel pilots, tasked
with ensuring safe, orderly bidirectional traffic. The process begins as arriving deep-draft
vessels request pilotage. A pilot is assigned to a vessel when two key criteria are met: the
availability of the intended dock and the accessibility of the channel. Channel unavailability
can arise from various factors, such as fog or the transit of large vessels. Since halting
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in the main channel’s centerline is prohibited, vessels await at sea buoys or designated
anchorages until these conditions are fulfilled [3].

The Estimated Time of Arrival (ETA) in narrow waterways is crucial and significantly
impacts maritime operations. When a vessel completes its ocean journey and enters
shallow waterways, terminal operations need to be meticulously managed. This involves
guiding vessels through the waterway to their destination terminal for loading/unloading.
Predicting the ETA to the destination greatly affects terminal efficiency. The ETA is vital for
various operational decisions, such as scheduling at the terminal, assigning pilots to vessels,
controlling traffic at waterway–highway intersections such as bascule bridges, and decision-
making regarding dredging and temporary channel closures to manage maritime traffic
in channels and narrow waterways. This study focused on the critical role of travel time
estimation in narrow waterways for its significant implications for maritime transportation.

While the estimation of travel time on highways and roadways has been extensively
explored in the literature, there is a noticeable gap in research concerning the Estimated
Time of Arrival (ETA) for shipping systems. Traditional traffic estimation methods typically
rely on aggregated data such as traffic flow, average speed, and congestion distribution.
Additionally, statistical modeling of travel time has been applied in city planning. More
recently, machine learning techniques have gained prominence in studying vehicle travel
times within urban routes. These methods encompass established approaches like ran-
dom forest and decision trees, as well as sophisticated deep learning architectures. In
contemporary city planning, diverse deep learning structures, including Recurrent Neural
Networks (RNN) with Long-Short Term Memory (LSTM) [6] and even Graph Neural Net-
works (GNN) [7], are employed for travel time estimation. However, the majority of studies
focus on travel time estimation within city routes. This research uniquely employs a ma-
chine learning approach to estimating the time of arrival for ship movement in waterways,
extending from a specific origin to their destined locations.

To tackle the challenge of estimating travel time, this study introduces a machine
learning framework that leverages AIS data for predicting arrival times between two
points along sea routes. This framework is designed to not only process AIS data but also
incorporate additional spatial information about vessel trajectories, such as path weight
and segment features, as supplementary data inputs. The proposed framework involves the
initial preprocessing of AIS data, followed by inputting the prepared data into an XGBoost
(v 2.0.1) model and determining the optimal parameters for the model. Subsequently, the
trained model undergoes testing using historical AIS data to assess its performance. The
experimentation in this study is conducted on historical AIS data of Houston Ports in the
United States. The results demonstrate the efficacy of the model, evaluated through five
different metrics, namely, mean absolute error (MAE), root mean square error (RMSE),
R squared, mean absolute percentage error (MAPE), and root mean square logarithmic
error (RMSLE).

The subsequent sections of this paper are structured as follows: Section 2 provides a
review of related work in the field of estimating time of arrival. Section 3 outlines the AIS
data, defines the problem, and extracts important information from the dataset. Section 4
details the proposed model framework and its constituent modules. Finally, Section 5
presents our conclusions and outlines potential future research.

2. Related Works

Considerable research has been conducted on the precise and timely prediction of
Estimated Time of Arrival (ETA) to enhance decision-making across diverse application
domains. ETA prediction plays a vital role in air traffic control, impacting arrival sequenc-
ing, scheduling, methods for assigning airport gates, and flight arrival time [8–13]. In
the realm of road transportation, studies have been undertaken to forecast vehicle man-
agement [14], as well as the ETAs of buses [15,16], emergency ambulance services [17,18],
and cargo. The current literature lacks studies on estimating vessel arrival times in ports
using historical tracking data. Vessel ETA from AIS messages are often unreliable due to
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manual input. Despite the requirement for a 72 h advance notice, accurate predictions
are challenging, as authorities must verify notifications, the lead time is sometimes too
long, and there is a need for insight into approaching vessel volumes for optimal port
operations. Therefore, investigating the theoretical foundations and practical applications
of machine learning in a business context, research has delved into the performance of
various algorithms, including Random Forests, Neural Network architectures, and Linear
Regression, on different datasets related to maritime transportation [19]. These machine
learning algorithms are applied to provide a qualitative estimation of vessel ETA, aiming
to alleviate the consequences of inconsistent arrivals at ports [20].

2.1. Path Finding/Other Methods

In recent years, the Dijkstra algorithm [21], which is often used to find the shortest
path in problems, and its derivative, the A* algorithm [22], have been used in studies
to calculate routes considering weather conditions. Alessandrini et al. [23] discussed a
novel data-driven method for estimating vessel arrival times in port areas, leveraging the
abundant data available from ship reporting systems like (AIS) and Long-Range Identifica-
tion and Tracking (LRIT). The approach utilizes historical maritime traffic data from these
systems, focusing on a specific area of interest. It employs an optimized data-driven path-
finding algorithm to process these data. Chen et al. employed maritime image sequences
for predicting the trajectories of ships [24]. Park et al. [2] presented an ETA prediction
system based on a path-finding algorithm. With increasing container volumes and vessel
sizes, efficient port operations are crucial. The proposed methodology utilizes AIS data-
driven techniques, including data mining and reinforcement learning, to identify possible
vessel trajectories. Additionally, the Markov Chain property and Bayesian Sampling are
introduced to estimate the vessel’s speed over ground (SOG). Wu et al. [25] introduced an
AIS-data-based model for the precise estimation and distribution of vessels’ travel time and
trip numbers in narrow channels, crucial for efficient traffic control. The model involves
identifying a vessel’s destination dock, arrival/departure times, and estimating travel time
between specific points. Additionally, the model addresses the separation of a vessel’s trips,
contributing to a comprehensive understanding of its journey. Applied to the Houston Ship
Channel, the model reveals that travel times are lognormally distributed and influenced
by vessel characteristics. Interestingly, trip numbers and travel times exhibit a correlation,
providing valuable insights for channel management.

Wu et al. [26,27] examined the transit patterns of tankers and cargos through the
Sabine–Neches Waterway (SNWW). Unlike highway traffic, vessel travel time at the SNWW
and the entrance of Galveston Ship Channel showed independence from traffic density [28].
Kang et al. [29] studied 15 legs in the Singapore Strait, observing a correlation between
vessel travel time and traffic density. The disparity in findings may be attributed to
differing vessel volumes, with the Singapore Strait experiencing higher traffic than SNWW
and Galveston Ship Channel.

2.2. Machine Learning

Artificial intelligence is about building systems capable of understanding and solving
real-world problems by acquiring knowledge from experience. Machine learning is a
subfield of artificial intelligence that refers to the ability of extracting insights from data.
Machine learning models include deep learning, which is an advanced class of machine
learning, inspired by the human brain function and based on Artificial Neural Networks
(ANN) and representation learning. Deep learning has networks with the capability to
learn complicated concepts even with unstructured data.

2.2.1. Road Application

Several studies have used machine learning (ML) approaches to predict travel times
based on GPS traces from vehicles [30,31] or the so-called live Automatic Vehicle Locations
(AVL) data [32,33]. Larsen et al. [34] employed an NN to predict the travel times of buses
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using open real-time data derived from the Sao Paulo City bus fleet location, real-time
traffic data, and traffic forecast from Google Maps. Alam et al. [35] used a Recurrent
NN (RNN) architecture to predict the ETA irregularities by exploring live AVL data from
buses, provided by the Toronto Transit Commission, along with schedules retrieved from
GTFS and weather data. Chondrodima et al. [36] addressed the challenge of predicting
public transport ETA using General Transit Feed Specification (GTFS) data. The proposed
approach employs a novel combination of Particle Swarm Optimization (PSO) and Radial
Basis Function (RBF) neural networks, incorporating a modified PSO-NSFM algorithm
for training. A unique pre-processing pipeline, CR-GTFS, is introduced for cleansing and
reconstructing GTFS data.

2.2.2. Waterway Application

ANNs have been applied to solve some issues in shipping, for instance, container
flow forecasting [37], container dwell time [38], navigational behavior prediction [39], and
detecting navigable area for autonomous navigation [40]. To minimize the unpredictability
of ship arrivals, recent studies have turned to data mining methods for arrival prediction.
In [41], for instance, the author utilized a Neural Network (NN) model to forecast the time
intervals between ship arrivals. Subsequently, the predicted interval times are integrated
into a model that optimizes the allocation of human resources, leading to successful
outcomes that offer valuable support to planners. Pani et al. [42,43] utilized both k-means
and Ward’s method to cluster daily records from the Cagliari International Container
Terminal. This clustering aims to categorize arrival delays into three levels. Subsequently,
Classification and Regression Trees (CART), Random Forest (RF), and Naive Bayes (NB)
were employed to estimate the delay level. Notably, RF demonstrated superior predictive
performance, boasting a relative absolute error of 29% when compared to CART and NB. In
a different approach. Pallotta et al. [44] introduced the unsupervised method Traffic Route
Extraction and Anomaly Detection (TREAD) to learn a statistical model from AIS data for
maritime traffic at the Cagliari International Container Terminal. Pani et al. [20] employed
Logistic Regression (LR), CART, and RF to estimate arrival ship deviations at both the
Cagliari International Container Terminal and the PSA-Antwerp terminal. Additionally,
Parolas et al. [45] applied Support Vector Machines (SVM) and NN to predict ETA for
container ships arriving at the Port of Rotterdam. The results showed that both SVM and
NN outperformed ETA predictions based on ship agent estimations, with SVM models
surpassing NN in Mean Absolute Error. Collectively, these studies hold significance and
provide valuable references for the application of data mining in predicting ship arrival
times at specific ports. Noman et al. [46] investigated the use of Gradient Boosting Decision
Trees (GBDT), Multi-Layer Perceptron Neural Networks (MLP), and Gated Recurrent Unit
Neural Networks (GRU) for predicting vessel ETA in inland waterways. It used historical
AIS data for training and compared the accuracy of these methods. The GRU algorithm
outperformed the others. Yu et al. [47] focused on ship arrival prediction and its impact on
the daily operations of Gangji (Yining) Container Terminal (GYCT) in China. Utilizing data
mining methods such as Back-Propagation network (BP), CART, and RF, the study aims to
enhance the accuracy of predicting ship arrival delays or advances. The results indicate
that RF outperforms BP and CART, with ETA month and ship length identified as crucial
factors influencing arrivals at GYCT.

3. Problem Definition

AIS Data

The Automatic Identification System (AIS), first introduced in 1990, is used in maritime
traffic to record the historical trajectory of vessels. Its main objectives are to enhance mar-
itime safety, improve situational awareness, and facilitate efficient maritime operations. In
2004, the International Maritime Organization (IMO) required all ships exceeding 300 gross
tonnages to record and broadcast AIS data [48].
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The frequency of AIS message transmission from vessels varies from 2 to 30 s, depend-
ing on their speed. The range at which these messages can be received is influenced by
various factors such as signal propagation conditions, sea state, and the height and strength
of the transmitting and receiving antennas. Reception ranges can vary from 20 nautical
miles to up to 350 nautical miles under optimal conditions. Typically, an AIS receiver
network is expected to achieve an average reception radius of around 40 nautical miles.

AIS operates by acquiring position and movement data from the vessel’s GPS system
or an internal sensor within the AIS unit. These data, along with other programmable
information from the AIS unit (such as Maritime Mobile Service Identity (MMSI) number,
vessel name, destination, and cargo type), are periodically transmitted. The system not
only sends out information but also receives data from other vessels’ AIS systems.

Each AIS message contains both static and dynamic information. Static information
includes vessel attributes, while dynamic information covers the spatial-temporal data
of the vessel [3]. The MarineCadastre website provides access to AIS data [49]. Table 1
displays the static and dynamic information contained in AIS data.

Table 1. Static and dynamic information in AIS data.

Static Information Dynamic Information

MMSI Number Ship’s Position with Accuracy indication

IMO Number Position timestamp (in UTC)

Name and Call Sign Course Over Ground (COG)

Length and Beam

Type of Ship

Location of Position

The first challenge in ETA analysis is to transform raw AIS messages into useful
data required in ETA prediction. As shown in Table 1, AIS data do not include trip
information such as trip number, trip origin, destination, start time, and end time. To get
such information, we apply a trip separation algorithm to raw AIS data. The algorithm
works based on comparing each vessel’s AIS message and the previous one. It uses a hash
table to capture the last AIS record of each vessel. Then, it calculates the time and length
difference between the current and the last records. The calculated time difference and
spatial distance help us to filter redundancies and noises. As the next step, it assumes a
vessel’s direction is “Stopped” if its speed is less than two knots (~1.151 miles per hour).
Defining one stop to the next one as a vessel trip, the algorithm assigns trip numbers to
the processed AIS data. Finally, the processed data are stored in a local database. This
paper does not discuss the algorithm but rather uses its output to predict ETA for vessels.
For an in-depth exploration of the methodology, we recommend reviewing our previous
works [50,51].

In this study, we applied our trip separation method to extract trip data from raw AIS
data. To estimate the time of arrival for vessels, this information has to be transformed into
the form of a complete trip for each vessel. A complete trip dataset includes longitude and
latitude coordinates from the origin to the destination, the time taken for each trip, and a
sequence of segments representing the vessel’s path. The methodology section provides a
comprehensive explanation of the algorithm.

4. Methodology

The model proposed in this study consists of three modules. In the first module, AIS
data undergo preprocessing, and new features are incorporated into the dataset. The second
module utilizes the preprocessed data to train an XGBoost (v 2.0.1) model, incorporating
hyperparameter optimization and defining a validation strategy. The final module is
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dedicated to applying the trained model to a test dataset and comparing the results with
the actual travel time. The three modules are illustrated in Figure 1.

Figure 1. Overview of the proposed framework.

Subsequent sections provide a more detailed explanation of each module.

4.1. Module 1: Preprocessing

The model module cannot directly use raw AIS data; hence, preprocessing is essential
before feeding the data into the model. This preprocessing module encompasses various
steps, such as addressing missing values, feature engineering, and implementing Principal
Component Analysis for dimensionality reduction. The subsequent sections elaborate on
each of these steps in greater detail.

4.1.1. Segmentation of Area of Interest

The vessel’s journey from its origin to its destination involves traversing a predefined
route. To facilitate the tracking of the vessel’s path, a network of segments is established
using a Geographical Information System (GIS) layer, which maps all waterways within the
designated Area of Interest (AoI). For this study, the AoI is the Gulf Intracoastal Waterway
(GIWW). To segment the waterway, a function in QGIS (v 3.32.3) named “split line to
maximum length” is utilized, dividing the channel’s centerline into segments of 2 miles
each. As the vessel moves through these segments, the IDs of the segments it passes are
captured and stored as features in the database. A schematic representation of this network
of segments is depicted in Figure 2.
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Figure 2. Schematic representation of segment network.

4.1.2. Extracting Features from Raw AIS Data

AIS data encompass details such as a vessel’s location, speed, date, and time. In
this section, the primary features are initially extracted from the raw data utilizing the
Sedaghat [50,51] algorithm. Their approach enables the retrieval of information related to a
vessel’s route, velocity, direction, and trip number.

In the next step, the extracted information is processed to compute a complete trip for
each vessel. A complete trip normally starts from the ocean and ends at a terminal and
vice versa. A trip is deemed complete when there is a change in the vessel’s trip number.
Consequently, the data processed in the previous step are organized by trip number for each
vessel, considering the latitude and longitude of the origin and destination. Subsequently,
the travel time for the entire trip is computed. A visual representation of a complete trip is
depicted in Figure 3.

 
Figure 3. Visual representation of a complete trip.

As illustrated in Figure 3, when there is a change in the vessel’s trip number, it signifies
the completion of the previous trip. Consequently, the AIS information of the origin and
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destination, along with the corresponding travel time, can be computed. For example, in
Figure 3, a complete trip can be calculated using Equation (1)

ODtrip = Pi+2(LONi+2, LATi+2, ti+2, TNi+1)− Pi(LONi, LATi, ti, TNi) (1)

where LONi, LATi, ti, and TNi represent the longitude, latitude, time, and trip number at
location i, respectively.

4.1.3. Principal Component Analysis

Principal Component Analysis (PCA) is a powerful statistical technique used to re-
duce the dimensionality of data while preserving as much information as possible. This
is achieved by identifying a set of orthogonal (uncorrelated) directions called principal
components (PCs) that capture the greatest variance in the data. By projecting the data
onto these PCs, we can obtain a lower-dimensional representation that is often sufficient
for many tasks, including visualization, data analysis, and machine learning [52]. Principal
components can be calculated by using singular value decomposition (SVD) of the dataset
matrix. The SVD of the matrix X can be expressed as Equation (2)

X = UΣVT (2)

where:

• U is an N×N orthogonal matrix containing the left singular vectors.
• Σ is an N×D diagonal matrix containing the singular values on the diagonal.
• V is a D×D orthogonal matrix containing the right singular vectors.

To compute the principal components (PCs) of the X dataset, the singular value
decomposition of the dataset must be calculated initially. Subsequently, by selecting the
top K right singular vectors (VK) and their corresponding singular values (ΣK), where
K represents the desired dimensionality of the reduced data, the projected X in the new
dimension can be calculated using Equation (3):

Xnew = XVKΣ(−1/2)
K (3)

where Σ(−1/2)
K is a diagonal matrix containing the reciprocal square root of the top K

singular values.
PCA method also can be used as a method to reduce noise in the dataset by mapping

data to a new space without reducing the dimensionality of the dataset. In this study PCA
algorithm is applied to the latitude and longitude of the origin and destination feature to
map the data to a new space with lower noise.

4.1.4. Feature Engineering

In machine learning, feature engineering involves extracting and manipulating data
to transform them into a format suitable for training and improving the performance
of machine learning models. This process allows the model to better understand the
underlying patterns and relationships within the data, leading to more accurate and
generalizable predictions. In this study, season, hour, minutes, and day of the week of trip
beginning are extracted from raw AIS data and added to the dataset to improve model
accuracy. Also, two new features are introduced including vessel segments path and path
weight. These new features are explained in more detail in the following sections.

Vessel Segments Path

In the AIS data provided for ETA prediction, the trajectory of vessels that pass through
different segments is introduced. In this study, all segments for every vessel are incorpo-
rated into the dataset as a one-hot-encoded vector appended to the original dataset. While
this approach introduces additional sparsity to the dataset, it enriches the dataset with
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more information about vessel paths from origin to destination, thereby aiding the model
in achieving more accurate travel time estimations. The encoded representation of each
segment is defined by Equation (4):

esegment =

{
1 if vessel path through segment

0 otherwise
(4)

Path Weight

The trajectory each vessel follows plays a crucial role in determining its arrival time,
with vessels navigating through busier routes expected to experience longer travel dura-
tions. Consequently, it is reasonable to infer that each path taken during shipment holds
distinct weights that significantly influence arrival times. In this research, we propose a new
feature termed “path weight”, which serves as an indicator of the congestion level along a
vessel’s route. Given that our dataset represents vessel paths through discrete segments,
we define the segment weight based on the frequency of vessel passages through these
segments. As the number of vessels traversing a segment increases, the corresponding
segment weight is proportionally amplified. The mathematical representation of segment
weight is denoted as Equation (5):

wsegment =
1
N

N

∑
i=1

esegment (5)

where N is the total number of samples, and esegment represents one hot encode of the
segment, as defined by Equation (4).

Path weight is the total sum of segments if the vessel path is through the segment and
is defined by Equation (6):

Wpath,i =
j=L

∑
j=0

Wsegments ∗ Ii,j
′ (6)

where L is the total number of segments, and Wsegments, II,j is defined by Equation (7).

Wsegments = [w0, w1, w2, . . . ..wL]
Ii,j = [e0, e1, e2, . . . ..eL]

(7)

The concept of path weight essentially represents the significance of a vessel’s trajectory
during each trip. As the path weight increases, it signifies a longer travel time for the vessel,
indicating that the trajectory traverses through busier segments.

4.2. Module 2: Modeling

Once the raw data have been thoroughly preprocessed, they are fed into the modeling
module for further analysis. This module encompasses the training of the model and the
identification of optimal hyperparameters, accomplished through a predefined validation
strategy. The subsequent paragraphs delve into a more comprehensive explanation of each
of these steps.

In this research, the XGBoost (v 2.0.1) algorithm serves as the modeling module for
Estimated Time of Arrival (ETA) prediction. XGBoost, a prominent member of the ensemble
learning family, is chosen for its potency and widespread application in machine learning.
XGBoost combines the strengths of both bagging and boosting techniques, creating a robust
and highly accurate model. The algorithm works by iteratively training weak learners,
typically decision trees, and boosting their performance by focusing on the mistakes made
in previous iterations. It employs a unique regularization term in its objective function,
which helps prevent overfitting and enhances generalization [53].
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Based on gradient boosting method, XGBoost uses the k additive function to predict
the output as expressed by Equation (8).

ŷi =
K

∑
k=1

fk(Xi), fk ∈ F (8)

where fk is an independent Classification and Regression Tree (CART) at each k step that
maps input variable Xi to output variable yi. And F is space of all possible CARTs. The
XGBoost algorithm tries to minimize the regularized objective function which is defined in
Equation (9):

Obj = ∑
i

l(ŷi, yi) + ∑
k

Ω(fk)

Ω = γT + 1
2λ‖w‖2

(9)

where T is number of leaves in the tree, w is the score in corresponding leaves, and
γ, λ are regularization coefficients. The regularized objective function comprises two
parts. Training loss function l and regularization term Ω. The training loss l indicates
the difference between the predicted (ŷ i) and actual (y i) value. The regularization term
shows the complexity of models, which helps the model to avoid overfitting to the dataset.

XGBoost incorporates two key techniques: shrinkage and column subsampling.
Shrinkage reduces the impact of each tree by scaling down the weights added in each
boosting step, which helps in mitigating overfitting. On the other hand, column subsam-
pling enhances the training speed by selecting a random subset of input features for the
construction of each tree.

XGBoost exhibits high sensitivity to its hyperparameters, with an increase in the
tree size potentially leading to overfitting issues. Consequently, identifying appropriate
hyperparameters is crucial for achieving a well-generalized model. This study attained op-
timal hyperparameters for the model by assessing its performance on a validation dataset.
Employing the stratified cross-validation method, the model’s hyperparameters were deter-
mined based on its performance in the validation dataset. The dataset is divided into 5 folds,
ensuring consistency in the frequency of the day-of-the-week feature across all partitions.
Consequently, the model’s hyperparameters are estimated to minimize a predefined metric
(Root Mean Square Logarithmic Error or RMSLE) on the validation dataset.

Metrics

In this study, five distinct metrics were employed to assess the model’s performance.
These metrics encompass R2, Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Logarithmic
Error (RMSLE). The mathematical definitions of each of these metrics are provided in
Equation (10).

R2 = 1− ∑N
i=1(y(i)−ŷ(i))2

∑N
i=1(y(i)−y(i))2

RMSE =

√
∑N

i=1‖y(i)−ŷ(i)‖2

N

MAE = 1
N

N
∑

i=1
|y(i)− ŷ(i)|

MAPE = 100
N

N
∑

i=1

∣∣∣ y(i)−ŷ(i)
y(i)

∣∣∣
RMSLE =

√
1
N

N
∑

i=1

(
log 1+ŷ(i)

1+y(i)

)2

(10)

where y(i) is the actual target value, and ŷ(i) is the predicted target value for all evaluation
metrics. Note that RMSLE is used as a metric to estimate the best hyperparameters of
the model.
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4.3. Module 3: Apply Model

In this module, the trained model with optimized hyperparameters is applied to the
test dataset, and its performance is evaluated using the metrics defined in the Metric section.
Additionally, this module includes visualizations to illustrate the efficiency of the model.

5. Experimental Study

The proposed methodology to estimate the time of arrival of vessel was evaluated by
considering port of Houston in the United States. Port of Houston was ranked the second
busiest seaport in the United States by total tonnage in 2013. The Houston Ship Channel
(HSC), spanning 52 miles, is home to approximately 200 private and public industrial
terminals. Annually, the HSC facilitates the transportation of over 247 million tons of cargo
through the passage of more than 8200 vessels and 215,000 barges [2]. This vital waterway
is integral to the support of Texas’ energy and petrochemical sectors. The detailed use of
the AIS data is summarized in Table 2.

Table 2. Summarized AIS data.

Variable Description

Data AIS data of 4330 Cargo and Tankers

Historical Period January 2018 to April 2020

Features MMSI, Vessel type, Date, Latitude, Longitude

In this study, data from 2018 were used for model training, and data from 2019 and
2020 were used in testing the model performance. These raw data were first fed to the
preprocessing module to extract proper features for model training.

5.1. Preprocessing Module

Within this module, feature extraction, identification of missing values, feature engi-
neering, and the division of data into training and testing sets were carried out. Following
the approach suggested by Sedaghat et al. [50,51], the initial features were extracted from
the raw data in the first step. Table 3 displays the list of features extracted from the raw data.

Table 3. Extracted initial features from raw AIS data.

Features

MMSI Vessel Type Trip Number

Direction Date Location

Segment id

To apply AIS data to the ETA problem, the initial features need to be transformed
into the structure of a complete trip, encompassing a specific origin, destination, and
corresponding travel time.

The resulting dataset, formatted with origin and destination information, is subse-
quently input into the dimension reduction and feature engineering section. This process is
undertaken to compute the path weight and the path of vessel segments.

The path weight distribution of the training and test data is shown in Figure 4. As
Figure 4 shows, the majority of shipment trips passed through lower-traffic routes. How-
ever, there are cases where vessels follow busier routes, leading to increased travel time and,
consequently, elevating the significance of the corresponding segments in the estimation of
travel time.
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Figure 4. Path weight distribution.

5.2. Modeling Module
5.2.1. Hyperparameter Optimization

As previously mentioned, XGBoost’s performance heavily relies on its hyperparame-
ters. Therefore, selecting the right hyperparameters is crucial for enhancing the model’s
generalization abilities. In this research, the model’s optimal hyperparameters were de-
termined based on its validation dataset performance. To identify a suitable validation
dataset, a stratified cross-validation approach was employed, dividing the training dataset
into five distinct segments. Additionally, to ensure a balanced distribution of trips across
all segments, the day of the week was used as the stratification feature. Furthermore, the
Root Mean Square Logarithmic Error (RMSLE) was adopted as the metric for optimal
parameter identification. Table 4 displays the optimal hyperparameters and their ranges.
Our experiments achieved an overall validation score of RMSLE = 0.07.

Table 4. Optimal hyperparameters and their corresponding range.

Hyperparameter Range Increment Method Optimal Value

λ (1 × 10−3, 10) Loguniform 0.009

α (1 × 10−3,10) Loguniform 1.03

Colsample by tree (0.3, 1.0) 0.1 0.7

Sub sample (0.4, 1.0) 0.1 0.4

Learning rate (0.008, 0.02) 0.001 0.014

Max depth (10, 80) 10 40

Min child weight (1, 300) uniform 5

5.2.2. Model Training

This section is divided into two distinct parts. The first part involves applying a tuned
model to the training dataset with all predefined features, followed by an evaluation of its
performance using the defined metrics in the Metrics section. In the second part, the effect
of reducing the size of the feature is investigated, and the model is reassessed on metrics.

The performance of the tuned model is illustrated in Figure 5. Figure 5 demonstrates
that the difference between the training and validation data is sufficiently minimal, indicat-
ing that the model is not overfitted to the training data across all folds.
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Figure 5. Model performance across folds.

Figure 6 illustrates the Cumulative Density Function of feature importance. The
visualization in Figure 6 reveals that the number of features essential for model accuracy is
considerably fewer than the total number of features. Our analysis indicates that merely
28% of features, encompassing all the segments traversed by ships, account for 99% of
the model’s feature importance. Critical among these are path weight, the latitude and
longitude of both origin and destination and the busiest segments, which significantly
influence the model’s performance. Notably, our findings suggest that the date and time of
the trip do not significantly impact the accuracy of the model.

Figure 6. Feature importance cumulative density function.

Table 5 presents a comparison of the performance metrics for both the tuned model and
the simplified model. This comparison highlights that removing less significant features
has a negligible impact on the overall performance of the model. However, it significantly
simplifies the model by reducing the sparsity of the dataset.

Table 5. Tuned full and simplified model accuracies.

Metric Tuned Full Model Reduced Model

R2 0.99 0.98

MAE [min] 6.35 6.81

MSE [min] 95.01 105.21

MAPE 0.05 0.05
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5.3. Apply Model

This module assesses the performance of the trained model using a test dataset, which
comprises historical AIS data from trips taken during 2019 and 2020. The corresponding
performance evaluation is depicted in Figure 7. To construct Figure 7, the travel times of
vessels are segmented into 30 min intervals. Within each interval, the average travel time
is compared with the distribution of the model’s estimated travel times. As indicated by
Figure 7, the model’s estimated time distribution aligns closely with the average travel time
for each interval. Notably, the model exhibits greater accuracy for shorter travel durations.
However, for longer trips (longer than 180 min), the figure shows that the travel time
estimates are more dispersed around the average, indicating reduced accuracy for these
longer journeys.

 
Figure 7. Model accuracy on the test dataset.

Table 6 displays the performance of the model on the test dataset. It demonstrates that
both the trained model and the trained simplified model maintain consistent performance
across all metrics on the test dataset, comparable to their performance on the training data.

Table 6. Model accuracy on test data.

Metric Tuned Full Model Reduced Model

R2 0.98 0.98

MAE [min] 6.49 6.41

MSE [min] 136.01 127.61

MAPE 0.05 0.05

6. Conclusions

This research presents a comprehensive study on estimated time of arrival (ETA)
for vessels in channels and narrow waterways. Using historical Automatic Identification
System (AIS) data from 2018 to 2020, this study introduces a machine learning framework
to transform raw data, perform feature engineering and preprocessing, and, finally, predict
vessel arrival time in channels. The proposed XGBoost model shows high performance
across all metrics. The model can predict travel time with only 5% mean absolute error
and with 98% R2. Moreover, the experimental results show that the model can maintain
consistent accuracy even using a simplified structure. The less complex model not only
preserves accuracy but also offers computational efficiency by addressing the sparsity in
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the dataset. The model also shows varying accuracy across different trip durations. While
it shows higher precision for shorter trips, its predictions for longer trips (over 180 min)
display a wider dispersion around the average values. It should be noted that our study
focuses on ETA prediction for vessels from anchorage areas in the ocean to their destination
terminals and vice versa. Therefore, a small portion of trips are longer than 180 min. The
other area for future research would be model production in real-time and integrating our
model results with port and channel operations.
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