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Preface

Clinical biomarkers are various measurable biological variables that can be detected in organ

tissues, blood or other body fluids. Currently, biomarkers can be divided into two main types:

prognostic and predictive biomarkers. Prognostic biomarkers are associated with the clinical

outcomes of the disease of interest (e.g., disease progression and relapse, death) and are mainly used

to identify more aggressive disease states. Predictive biomarkers are used to identify individuals who

respond better to a particular treatment, thereby better identifying those patients who are more likely

to benefit from the treatment regimen. Usually, a clinical biomarker can be divided into prognostic

or predictive markers, but, in some cases, some biomarkers can be used to predict both prognosis

and treatment response. With great progress in proteomics, metabolomics, functional genomics,

and bioinformatics, increasing numbers of new biomarkers are being discovered. They are of great

significance in multiple fields of clinical medicine, including cardiovascular disease, diabetes, and

cancer, as they play an important role in identifying high-risk individuals, diagnosing disease states,

and predicting treatment response and prognosis. In addition, the discovery of new biomarkers has

enabled us to better understand the mechanisms and molecular pathways of disease occurrence and

development, and the in-depth exploration of biomarkers has also provided more perspectives for

the development of new precision and personalized treatments.

Yuli Huang, Yong Yuan, and Peisong Chen

Editors
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Second-Line Treatment of Metastatic Renal Cell Carcinoma in
the Era of Predictive Biomarkers
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2 Department of Oncology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy,
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* Correspondence: catalin.baston@umfcd.ro; Tel.: +40-765210001

Abstract: Background: Over the past few years, significant advancements have been achieved
in the front-line treatment of metastatic renal cell carcinomas (mRCCs). However, most patients
will eventually encounter disease progression during this front-line treatment and require further
therapeutic options. While treatment choices for mRCCs patients are determined by established
risk classification models, knowledge of prognostic factors in subsequent line therapy is essential in
patient care. Methods: In this retrospective, single-center study, patients diagnosed with mRCCs who
experienced progression after first-line therapy were enrolled. Fifteen factors were analyzed for their
prognostic impact on survival using the Kaplan–Meier method and the Cox proportional hazards
model. Results: Poor International Metastatic RCCs Database Consortium (IMDC) and Memorial
Sloan-Kettering Cancer Center (MSKCC) risk scores, NLR value > 3, clinical benefit < 3 months from
a therapeutic line, and the presence of sarcomatoid differentiation were found to be poor independent
prognostic factors for shortened overall survival. Conclusions: This study provided new insights
into the identification of potential prognostic parameters for late-line treatment in mRCCs. The
results indicated that good IMDC and MSKCC prognostic scores are effective in second-line therapy.
Moreover, patients with NLR < 3, no sarcomatoid differentiation, and clinical benefit > 3 months
experienced significantly longer overall survival.

Keywords: mRCCs; late-line treatment; prognostic factors; risk classification

1. Introduction

Kidney cancer is not just one disease but one with great complexity. Renal cell carcino-
mas (RCCs) are a heterogeneous group of disorders with unique distinct morphological
and biological profiles. The 5th edition WHO Classification of Urinary and Male Genital
Tumors now recognizes more than seventeen RCC subtypes. Clear cell renal cell carcinoma
(CCRCC) is the most common histological subtype of kidney cancer, which comprises
65–70% of all RCCs [1].

RCCs rank as the 14th most frequently diagnosed cancers worldwide with approx-
imately 430,000 new cases and nearly 180,000 associated deaths estimated in 2020. Its
incidence and mortality trends have changed over time [2]. Over the past two decades,
the incidence of RCCs increased by 1–2% annually. In contrast to the rising incidence
rates, the overall mortality rate from RCCs has decreased from 69.71% in the early 1990s to
38.96% in the late 2010s. This improvement can be attributed to significant advancements
in treatment [3–5].

Diagnostics 2023, 13, 2430. https://doi.org/10.3390/diagnostics13142430 https://www.mdpi.com/journal/diagnostics1
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Currently, approximately one-third of RCCs cases are diagnosed with metastatic
disease and a poor five-year survival rate of 17% [6,7]. Unfortunately, patients diagnosed
with advanced unresectable or metastatic RCCs often experience disease progression during
front-line treatment, and only 60% of them survive long enough to receive second-line
therapy. As a result, there has been a recent introduction of numerous second-line treatment
regimens for mRCC with promising results (Figure 1) [8].

Figure 1. Algorithm for the second-line treatment selection for mRCCs.

The treatment landscape is rapidly evolving, and there are currently several therapeu-
tic options available for second-line therapy, including dual immune checkpoint inhibition
(ICI) or a combination of immunotherapy ICIs and antiangiogenic tyrosine kinase inhibitors
(TKI) [9].

The second-line therapeutic approaches are determined by the mechanisms of acquired
resistance to first-line regimens and require alternative treatment options.

For patients who experience progression on immunotherapy as their first-line treat-
ment, a TKI inhibitor should be considered a second-line therapy option. Conversely, if
an ICI plus TKI combination was utilized as the initial therapy, patients should receive
a regimen that includes a different TKI either in monotherapy or in combination with
immunotherapeutic agents [10–12].

Despite recent advancements in mRCC, there is limited knowledge regarding prog-
nostic parameters for second-line therapy. Several prognostic models have been refined
over time [13–17]. One of the most widely used models is the Motzer score or Memorial
Sloan Kettering Cancer Center (MSKCC) risk model, initially developed in the cytokine era
and validated in molecular-targeted therapy [18,19]. Similarly, the International Metastatic
Renal Cell Carcinoma Database Consortium (IMDC) model, proposed by Heng et al., was
developed and validated for patients receiving first-line antivascular endothelial growth
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factor therapy. Most recently, the IMDC model demonstrated prognostic value in patients
receiving immune checkpoint inhibitors [20–22].

The IMDC and MSKCC models for prognosis in mRCCs and the front-line therapy
administered have been identified as the only prognostic factors in patients receiving
second-line therapy [23–25]. Previous reports indicated that patients with mRCC and early
progression on the front-line regimen had a significantly higher probability of not receiving
subsequent therapy. Moreover, there is good evidence that the timing of treatment benefits
may serve as a reliable surrogate endpoint for progression-free survival [26,27].

There are several reasons why inflammation is a recognized hallmark of cancer
(Figure 2) [28]. First, increased neutrophils can lead to excessive inflammation and a
pro-inflammatory condition. Second, neutrophils can reduce lymphocyte T proliferation
and inhibit antitumor T-cell responses. Lastly, lymphocyte depletion reflects a defective
host immune system that fails to control tumor occurrence and growth.

Figure 2. Inflammation as a hallmark and cause of cancer.

In the context of cancer, a neutrophil-to-lymphocyte ratio (NLR) indicates an optimal
balance between pro- and antitumor immunity [29,30]. NLR is a well-known prognostic
marker in several malignancies, including RCCs. Elevated pre-treatment NLR was associ-
ated with poor survival and an unfavorable response to first or subsequent-line therapy
treatment [31,32].

A particular feature of RCCs is sarcomatoid differentiation, which indicates aggres-
sive behavior and poor prognosis. Even a small amount of sarcomatoid differentiation
might independently predict poor overall survival and limited therapeutic options. Also,
when adjusted for therapeutic response, patients with sarcomatoid RCCs have worse
survival [33,34].

However, additional research warrants validation of these potential markers’ prog-
nostic accuracy and consistency in mRCCs, especially when treated with late-line therapy.
To address this knowledge gap, we conducted the following retrospective analysis to eval-
uate the prognostic significance of clinical and biological factors in patients undergoing
second-line therapy.

3
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2. Materials and Methods

This is a single-center retrospective observational study of mRCCs patients treated
in our oncology department. Clinical data were extracted from patients’ medical records
in concordance with the recommendations of the ethics committee and the Declaration
of Helsinki.

The principal inclusion criteria for the study were documented metastatic clear cell
renal cell carcinomas (mCCRCCs), progression on first-line therapy, available clinical
and imaging data before initiation of each treatment line, willingness to provide written
informed consent, and age ≥ 18 years.

Exclusion criteria include short-term follow-up (<6 months), active autoimmune
disease, evidence of active infection before initiating any systemic therapy, second primary
cancers, brain metastases, and histotypes other than clear cell renal cell carcinoma.

Between January 2020 to October 2022, 74 patients diagnosed with mCCRCCs initiated
first-line therapy. The majority of patients (89.4%) had received first-line treatment with
TKI (57.3% sunitinib, 41.1% pazopanib, 1.4% sorafenib), while only 10.5% had received
immunotherapy with nivolumab and ipilimumab. During the follow-up period, out of
74 patients treated in our department, 51.3% (38 patients) required second-line treatment.
Nivolumab (3 mg per kilogram) plus ipilimumab (1 mg per kilogram) every 3 weeks
for four cycles, followed by nivolumab monotherapy, was the most frequently (39.4%)
administered second-line regimen, followed by cabozantinib (26.3%) at a daily dose of
60 mg orally once daily, axitinib (21%) at a dose of 5 mg orally twice daily, and pazopanib
(13.1%) at a dose of 800 mg orally twice daily.

Patients were followed from the date of first-line administration to the date of last
follow-up or death. The median follow-up was 15.3 (interquartile range: 8.3–22.6) months.
The median time to progression on first-line therapy was 7.5 months (HR = 0.49;
95% CI: 0.215–1.65). As of the last follow-up in October 2022, thirty-three patients re-
ceiving second-line therapy were alive, while five died. The median OS was 10.5 (range
5–22.5) months. Treatment and therapeutic monitoring were conducted based on computed
tomographic scans performed every 3 months.

The data were analyzed using SPSS 23.0. The chi-square test and the t-test were used
to compare the categorical and continuous variables, respectively. We identified clinical
characteristics with p-values ≤ 0.1 in the univariate analysis and further included them
in the multivariate Cox regression analysis (p < 0.05). We further calculated the curves
of overall survival (OS) using Kaplan–Meier survival curves and the log-rank test. The
optimal cut-off point of the neutrophil-to-lymphocyte ratio (NLR) was determined by the
receiver operating characteristic (ROC) curve analysis. OS was defined from the time of
first-line treatment initiation until death or the last follow-up.

3. Results

3.1. Baseline Patient Characteristics and First-Line Therapy

A total of 74 mCCRCCs patients were included in the study. The median age was
62.8 years (interquartile ranger, 43–88 years), and 70.3% were males. Most patients (77%)
had good performance status, defined as a Karnofsky performance status equal to or greater
than 80%.

Before the start of first-line treatment, 62 (85%) patients with clinically diagnosed
mCCRCCs underwent surgical intervention (radical or partial nephrectomy), and only
12 (15%) patients were diagnosed based on the results of a tissue biopsy of the primary
tumor. The most frequently observed metastatic sites were the lymph nodes (13.5%),
lung (23%), liver (39.2%), and bones (28.4%). The most common WHO/ISUP (WHO/
International Society of Urological Pathology (ISUP) grading system) grades were II (43.2%)
and III (44.6%). Only 12.2% of tumors were WHO/ISUP grade IV. At Histopathological
analysis, sarcomatoid differentiation was evident in seven (9.5%) cases.

The baseline characteristics are presented in Table 1.

4



Diagnostics 2023, 13, 2430

Table 1. Demographic and clinical characteristics of patients with mCCRCCs starting first-line therapy.

Patient and Disease Characteristics Count Count%

Patients treated with first line therapy 74
Age median, range (years) 62.8 (range 43–88)
Gender
Male 52
Female 22
Surgical treatment
Radical nephrectomy 48 64.8%
Tumor biopsy 11 15%
Partial nephrectomy 15 20.2%
First line therapy
TKIs 66 89.4%
Immunotherapy 8 10.6%
The main sites of metastasis
Lung 17 23%
Distant lymph nodes 10 13.5%
Liver 29 39.2%
Bones 21 28.4%
WHO/ISUP grades
2 32 43.2%
3 33 44.6%
4 9 12.2%
Sarcomatoid differentiation
Present 67 90.5%
Absent 7 9.5%
Karnofsky Performance Status
<80% 17 23%
≥80% 57 77%
Time interval from diagnosis to treatment
<12 months 52 70.3%
≥12 months 22 29.7%
Hemoglobin
<lower limit of normal 41 55.4%
≥lower limit of normal 43 44.6%
LHD
≥1.5× upper limit of normal 12 6.2%
<1.5× upper limit of normal 62 83.8%
Serum-corrected calcium
≥upper limit of normal 16 21.6%
<upper limit of normal 58 78.4%
Platelets
≥upper limit of normal 11 14.9%
<upper limit of normal 62 83.8%
Neutrophils
≥upper limit of normal 24 32.4%
<upper limit of normal 50 67.6%
IMDC score
Favorable 5 6.8%
Intermediate 38 51.4%
Poor 31 41.9%
MSKCC score
Favorable 8 10.8%
Intermediate 49 66.2%
Poor 17 23%
Poor

We estimated the prognostic scores using baseline clinical and laboratory charac-
teristics. Over 50% of patients with mCCRCCs at first-line treatment were classified as
intermediate-risk, according to the IMDC (51.4%) and MSKCC (66.2%) prognostic models.
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In the first-line therapy, 89.4% of patients received tyrosine kinase inhibitors (57.3% suni-
tinib, 41.1% pazopanib, 1.4% sorafenib), and only 10.6% of patients received immunotherapy
with nivolumab plus ipilimumab. The median PFS was 7.5 months in patients treated with
first-line therapy (Figure 3).

Figure 3. Identification and attrition of the first-line treatment and second-line treatment patient.

3.2. Patient Characteristics before the Start of Second-Line Systemic Treatment

A total of 38 (51.3%) patients were considered resistant to first-line treatment. The mean
age was 63.9 years; 71.1% of the patients were males, and 48.7% had a good performance
status prior to second-line initiation. Radical (65.7%) and partial nephrectomy (26.3%) were
the most common surgical treatments, and only 7.8% of patients underwent tumor biopsy.
Two (7.8%) patients had sarcomatoid features in their tumors.

Table 2 summarizes patients’ demographics and characteristics.

Table 2. Demographic and clinical characteristics of patients with mCCRCCs starting second-
line therapy.

Patient and Disease Characteristics Count Count%

Patients treated with second line therapy 38 51.3%
Gender
Male 27 71.1%
Female 11 28.9%
Age median, range 63.92 ± 8.03 (48–78)
Karnofsky status
>80% 18 48.7%
<80% 19 51.3%
Tumor location
Left side 20 52.6%
Right side 18 47.4%
Sarcomatoid differentiation
No 35 92.1%
Yes 2 7.8%
Surgical treatment
Radical nefrectomy 25 65.7%
Partial nefrectomy 10 26.3%
Biopsy 3 7.8%
Second line therapy
Nivolumab + Ipilimumab 15 39.5%
Cabozantinib 10 26.3%
Axitinib 5 13.1%
Pazopanib 8 21.1%

6



Diagnostics 2023, 13, 2430

Table 2. Cont.

Patient and Disease Characteristics Count Count%

IMDC score
Favorable 1 2.6%
Intermediate 26 68.4%
Poor 11 28.9%
MSKCC score
Favorable 1 10.8%
Intermediate 31 81.6%
Poor 6 15.8%

The prognostic risk scores were calculated at the start of the second-line therapy with
most patients classified as having intermediate risk according to both the IMDC (68.4%)
and MSKCC (81.6%) risk classifications. In second-line therapy, 15 patients (39.5%) received
immunotherapy with Nivolumab plus Ipilimumab, 10 (26.3%) with Cabozantinib, 5 (13.1%)
with Axitinib, and 8 (21.2%) with Pazopanib.

We calculated the neutrophil-to-lymphocyte ratio in all patients receiving second-line
therapy. The median NLR value was 2.85 ± 2.05 with a range between 0.8–10. We identified
the cut-off point using ROC curves in logistic regression (Figure 4). We obtained a value of
three as the optimal cut-off point, and we further divided patients into high (>3) and low
(>3) NLR.

Figure 4. ROC curve for NLR.

3.3. Statistical Analysis

We carried out exploratory investigations of the parameters associated with better
outcomes in mCCRCCs patients treated with second-line therapy. In particular, it was
queried whether different clinical, biological, or histological factors might be associated
with higher OS.

Univariate analysis (Table 3) demonstrated that the high IMDC (p = 0.028) and MSKCC
(p = 0.003) scores, as well as elevated NLR (p = 0.002), were significant prognostic factors
for poor OS.
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Table 3. Univariate analyses for overall survival.

Baseline Parameters N (%) Univariate HR (95%CI) p Value

Patients treated with second line 38 (51.3%)
Gender

0.314 (0.068–1.458) 0.139Male 27 (71.1%)
Female 11 (28.9%)
Age 63.92 ± 8.03

1.048 (0.957–1.148) 0.309(median, range) (48–78)
Tumor location

0.512 (0.157–1.669) 0.267Left side 20 (52.6%)
Right side 18 (47.4%)
Time from diagnosis to initial
systemic treatment

2.272 (0.488–10.569) 0.295<12 months 12 (31.6%)
>12 months 26 (68.4%)
Karnofsky status

1.766 (0.554–5.633) 0.336>80% 18 (48.7%)
<80% 19 (51.3%)
Hemoglobin

1.444 (0.454–4.587) 0.534<12 g/dl 18 (47.4%)
>12 g/dl 20 (52.6%)
Platelets

2.030 (0.248–16.615) 0.509<upper limit of normal 35 (92.1%)
>upper limit of normal 3 (7.9%)
LDH

1.443 (0.421–5.224) 0.301>1.5× upper limit of normal 16 (33.3%)
<1.5× upper limit of normal 22 (66.6%)
Corrected calcium

0.421 (0.171–1.655) 0.254>upper limit of normal 10 (26.3%)
<upper limit of normal 28 (73.7%)
Neutrophils

1.261 (0.415–5.503) 0.313>upper limit of normal 21 (55.2%)
<upper limit of normal 17 (44.7%)
NLR (median range) 2.85 ± 2.05 (0.8–10) 1.324 (1.078–1.625) 0.007
NLR

9.599 (2.299–40.072) 0.002<3 25 (65.8%)
>3 13 (34.2%)
IMDC score

1.826 (1.068–3.122) 0.028
favorable 1 (2.6%)
intermediate 26 (68.4%)
poor 11 (28.9%)
MSKCC score

8.907 (2.148–36.935) 0.003
favorable 1 (10.8%)
intermediate 31 (81.6%)
poor 6 (15.8%)

There were no statistical differences in terms of gender (p = 0.13), tumor location
(p = 0.26), time from diagnosis to initial systemic treatment (p = 0.29), performance status
(p = 0.33), LDH (p = 0.30) hemoglobin (p = 0.53), calcium (p = 0.25), platelets (p = 0.50) or
neutrophils (p = 0.31).

The multivariate analysis offered a more complete examination of these data. NLR was
the only independent predictor of OS with an HR = 8.672 and p = 0.010 (Table 4; Figure 5).

Table 4. Multivariate analyses for overall survival.

Variables p Value HR 95.0% CI

NLR 0.010 8.672 (1.658–45.349)
IMDC score 0.320 3.092 (0.334–28.661)
MSKCC score 0.961 506.651 (0.000–8.078)
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Figure 5. Kaplan–Meier estimates of OS according to the NLR.

The Kaplan–Meier survival curves of NLR showed significant differences in OS be-
tween patients with low (<3) and high (>3) NLR.

Time without disease progression was essential for all patients. The duration of treat-
ment and its impact on prognosis was also examined (Table 5). Patients who experienced a
clinical benefit for more than three months on a therapeutic line had better overall survival
in the first line (22.25 months versus 7.62 months) and the second line (25.22 months versus
12.33 months).

Table 5. The therapeutic response and clinical outcome in first and second-line therapy.

Therapeutic Response
Overall Survival

Mean Standard Deviation Median Min. Max.

First line
therapy

<3 months 7.62 4.84 8.00 1 19
>3 months 22.25 18.07 15.00 4 84

Second line
therapy

<3 months 12.33 9.58 9.00 6 31
>3 months 25.22 16.95 19.00 8 72

Most patients had a multimodal treatment consisting of surgery and systemic therapy.
Almost 90% of patients had undergone initial surgical resection, including radical

nephrectomy with lymph node dissection (24.3%) or without lymph node dissection (55.4%)
and partial nephrectomy (9.5%). Minimally invasive biopsy procedures were performed in
10% of cases.

The overall survival did not differ significantly between patients treated with radical
nephrectomy (21.73 ± 18.24 months) and partial nephrectomy (22.43 ± 23.25 months) but
was reduced in patients with a diagnostic biopsy (8.88 ± 5.98 months), p = 0.150 (Table 6,
Figure 6).
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Table 6. The surgical approach and clinical outcome.

Surgical Approach N (%) OS (Months)

Radical nephrectomy 41 (55.4%) 21.73 ± 18.24
Radical nephrectomy with lymph node dissection 18 (24.3%) 18.72 ± 15.68
Partial nephrectomy 7 (9.5%) 22.43 ± 23.25
Tumor biopsy 8 (10.8%) 8.88 ± 5.98

Figure 6. Box plot demonstrating survival difference in mCCRCCs patients according to surgery
approach. The outliers (°), the extreme outliers (*)

Unfortunately, we found no statistically significant correlation between the surgical
approach and clinical benefit in first and second-line therapy (Table 7).

Table 7. The therapeutic response, surgical approach and clinical outcome in first and second-
line therapy.

Therapeutic Response

Radical
Nephrectomy

Tumor
Biopsy

Partial
Nephrectomy

Radical
Nephrectomy
with Lymph Node
Dissection

p Value

N (%)

First line
therapy

<3 months 9 (21.95%) 1 (12.55) 2 (28.55) 1 (5.55)
0.382>3 months 32 (78.05) 7 (87.55) 5 (71.45) 17 (94.45)

Second line
therapy

<3 months 3 (13.65) 1 (25.05) 1 (16.65) 1 (16.65)
0.953>3 months 19 (86.35) 3 (75.05) 5 (83.35) 5 (83.35)

Another interesting aspect was the sarcomatoid differentiation, which was observed
in two (7.8%) patients with metastatic mCCRCCs receiving second-line therapy (Table 8,
Figure 7). The results suggested that sarcomatoid features were associated with worse
clinical outcomes (14.86 months OS versus 19.97 months OS, p = 0.033).
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Table 8. The presence of sarcomatoid differentiation and clinical outcome.

Tumor Caracteristics N (%) Overall Survival (Months)

No sarcomatoid differentiation 35 (92.1%) 19.97
With sarcomatoid differentiation 2 (7.8%) 14.86

Figure 7. Kaplan–Meier estimates of OS according to the sarcomatoid differentiation.

Moreover, the clinical benefit was significantly correlated with the sarcomatoid differ-
entiation in first therapy (p = 0.004) and second-line therapy (p = 0.029) (Table 9).

Table 9. Clinical benefit for patients with sarcomatoid differentiation.

Sarcomatoid Differentiation

Therapeutic Response No Yes p Value

First-line therapy <3 months 9 (13.43%) 4 (57.14%) 0.004
>3 months 58 (86.57%) 3 (42.86%)

Second-line therapy <3 months 6 (18.18%) 4 (80%) 0.029
>3 months 27 (81.82%) 1 (20%)

4. Discussion

RCCs are highly vascular tumors with strong immunogenicity and an unpredictable
natural history. The treatment of advanced and metastatic RCCs has revolutionized in the
past three decades. Interferon and interleukin two immunotherapies have been a treatment
options for over 30 years. Recently, immune checkpoint inhibitors and vascular endothelial
growth factor receptors have become promising therapeutic strategies [35].

The TNM classification is the most important prognostic factor in mCCRCCs patients
treated with first-line therapy. Other independent predictors of long-term survival include
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MSKCC and IMDC risk models. Few sources of data on potential prognostic factors in
mCCRCCs patients receiving second-line therapy exist. Despite the significant progress
in the treatment landscape of metastatic RCCs, only a minority of patients have access to
second-line therapies [21]. Therefore, understanding the baseline parameters of patients
who are eligible for second-line therapy is crucial. This study provides real-world evidence
on the characteristics and outcomes of these particular patients.

In this study, 51.3% of mCCRCCs patients received second-line therapy, which is
consistent with previous reports [21,36,37]. We evaluated the baseline characteristics of the
patients before initiating second-line therapy. Most of the patients had intermediate-risk
levels based on the prognostic models.

The IMDC and MSKCC models were originally developed and validated for metastatic
mCCRCCs patients who received front-line treatment [38–40]. Recently, these models have
been shown to profile risk in late-line settings.

The MSKCC is the most used tool for prognostic stratification of patients with mCCR-
CCs receiving second-line therapy. Data from the pivotal second-line studies, including the
CheckMate 025 trial demonstrating superior efficacy for nivolumab over everolimus, or the
phase III study METEOR, which showed that cabozantinib significantly improved OS and
PFS compared to everolimus [41,42].

Furthermore, a large study by Dudani et al. demonstrated that the IMDC score contin-
ues to risk stratify patients with mCCRCCs treated with second-line immune checkpoint
inhibitors [43].

Our results show that both MSKCC and IMDC have important prognostic value.
Patients with favorable risks had significantly longer overall survival compared to those
with poor or intermediate scores (HR = 8.907, 2.148–36.935, p = 0.004 for MSKCC; and
HR = 1.826, 1.068–3.122, p = 0.028 for IMDC).

The neutrophil-to-lymphocyte ratio (NLR) is a controversial topic. NLR is a marker
of systemic inflammatory response with prognostic significance. It reflects a dynamic
relationship between neutrophils, an essential part of the innate immune system, and the
adaptive immune responses carried out by lymphocytes. A high NLR has been unequiv-
ocally associated with adverse prognoses in many cancers. The evidence indicates that
pretreatment NLR could predict recurrence, disease progression, and survival outcomes in
RCCs patients [44–46].

However, NLR varies widely between patients. The normal range of NLR in healthy
adults varies between 1 and 3. Values higher than three are considered pathological [47–50].
Therefore, it is essential to find a cut-off value to mark the lower and the upper limit of
NLR associated with prognosis.

We also investigated the optimal cut-off value for NLR. Firstly, we determined the
median NLR value for the patients initiating second-line therapy, which was 2.85 ± 2.05.
The findings align with the literature, where NLR values between 1.7 and 5 have been
reported, with an NLR of 3 being frequently used [51–53]. Secondly, using ROC analysis,
we identified the optimal NLR cut-off value of 3. Furthermore, we classified patients into
high (>3) NLR and low (<3) NLR. The study reported a negative association between high
NLR and OS. Clearly, an increased NLR > 3 was associated with worse outcomes in both
univariate and multivariate analyses (p = 0.005). Therefore, we hypothesized that adding
NLR to the established risk models might help improve their prognostic accuracy.

Accumulating evidence has established the role of NLR as a biomarker of increased
immune activation in different disorders, including infections, autoimmune diseases, car-
diovascular diseases, and metabolic syndromes [54,55]. Even if most studies have explored
the prognostic value of NLR in cancer patients with an optimal cut-off value above 3, a
grey zone of NLR values between two and three may serve as an early warning of en-
dothelial dysfunction, chronic vascular inflammation, and atherosclerosis [56–58]. The
chronic vascular inflammatory process plays a role in the pathogenesis of atherosclero-
sis, hypertension, diabetes, and obesity. Prior evidence has shown that NLR is a reliable
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biomarker to predict cardiovascular risk. In patients with coronary artery disease, an NLR
over 2.13 independently predicted myocardial damage [59].

Furthermore, NLR has also been investigated as a marker of disease activity and a
predictor of relapse in autoimmune diseases [60,61]. For example, D’Amico et al. demon-
strated that an NLR > 1 in patients with multiple sclerosis strongly predicted disease
activity and aggressive evolution [62]. In conclusion, even an NLR value lower than three
may be an unfavorable prognostic factor for RCCs patients with underlying comorbidities.

Although growing evidence showed that immune checkpoint inhibitors, targeted
therapy combinations, and late lines of therapy improve clinical outcomes, whether in-
creased treatment duration improves survival remains unclear. Prolonged treatment time
for mCCRCCs has an important positive impact on cancer-specific survival. But despite
recent therapeutic advances in mCCRCCs treatments, challenges remain in managing
progressive or recurrent disease. About 10 to 25% of mCCRCCs patients experience rapidly
progressive disease on first-line therapy [39]. An established and accepted definition of a
rapidly progressive mCCRCCs still needs to be found.

For example, Chang and his colleagues defined rapid disease progression as oc-
curring within one month of systemic therapy in mCCRCCs [63]. Another study on
real-world treatment patterns in mCCRCCs patients by Bersanelli described rapid pro-
gression as the time from the start of the first-line to the beginning of second-line
treatment ≤ 24 weeks [64].

This study also examined whether treatment duration in first or subsequent therapeu-
tic lines is associated with survival.

Chen VJ et al. defined the term “clinical benefit” as receiving a therapeutic line
for at least three months. They found no statistically significant difference in clinical
benefit between first- and second-line treatment, but their data confirm that receiving
therapy for at least three months correlated with a longer overall survival [26]. Our results
also suggest that patients with over 3 months of clinical benefit had a statistically higher
median overall survival in both first-line (22.25 months versus 7.62 months) and second-
line (25.22 months versus 12.33 months) therapy. Unfortunately, we found no statistically
significant correlation between the surgical approach and clinical benefit in first and second-
line therapy.

Histopathological features can predict prognosis and may help to stratify patients to
receive appropriate therapy. The concept of sarcomatoid RCCs was first comprehensively
described by Farrow and colleagues in 1968 under the spectrum of renal sarcomas [65].
However, in 2012, the International Society of Urological Pathology (ISUP) grading system
for renal cell carcinoma established that sarcomatoid differentiation is an uncommon
histological transformation that can occur in most histological subtypes of RCCs, giving
them aggressive biological features and poor prognoses [66,67]. Due to the rarity of these
tumors and their exclusion from most studies, limited data exist on the current standard of
care associated with their treatment [68–71]. Most clinical evidence is therefore based on
case reports or subgroup analyses.

A systematic review and meta-analysis showed that immune checkpoint inhibitors
were associated with remarkable clinical efficacy in patients with sarcomatoid RCCs [72].

However, agents targeting the vascular endothelial growth factor pathway did not
report a significant improvement in patient outcomes [73]. Therefore, regardless of the
PD-L1 level, the preferred options are immunotherapy-based regimens.

In this current study, we evaluated the pathological features and the subsequent
treatment-related outcomes of patients with sarcomatoid RCCs. In total, seven patients
(9.5%) had sarcomatoid features. Only two patients with sarcomatoid differentiation
received second-line therapy with a modest response rate and poor clinical benefit
(14.86 months OS).

Naturally, the single-center retrospective observational analysis has several limitations,
including susceptibility to random errors. The main weaknesses of this study are the
retrospective nature and the relatively small sample size of patients. There was also
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a relatively short follow-up period and a lack of external validation. The second-line
therapy administered was not well-balanced, preventing a direct comparison of the efficacy
of each regimen. Furthermore, the patients did not receive novel drugs approved in
mCCRCCs, which have demonstrated survival benefits. However, we propose that the
analysis generates hypotheses and may serve as a basis for investigating these potential
prognostic factors in larger studies, particularly in later-line treatment settings.

5. Conclusions

No consistent reports regarding prognostic factors in second-line therapy for mCCR-
CCs had been published prior to this study. Therefore, this study contributed valuable
new insights to the literature by shedding light on the prognostic role of biomarkers and
emphasizing the importance of risk models in mCCRCCs.

The results indicated that second-line therapy is more effective in patients with favor-
able IMDC and MSKCC prognostic scores, NLR < 3, and no sarcomatoid differentiation.
Moreover, patients with clinical benefit > 3 months on a therapeutic line experienced
significantly longer overall survival.

Large-scale research studies are needed to confirm these observations and to increase
our understanding of the best therapeutic sequence in mCCRCCs patients.
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Abstract: Background: Malignant pleural mesothelioma (MPM) is a rare cancer type with an increas-
ing incidence worldwide. We aimed to develop a rational gene expression-based prognostic score in
MPM using publicly available datasets. Methods: We developed and validated a two-gene prognostic
score (2-PS) using three independent publicly available gene expression datasets. The 2-PS was built
using the Robust Likelihood-Based Survival Modeling with Microarray Data method. Results: We
narrowed down the model building to the analysis of 179 genes, which have been shown previously
to be of importance to MPM development. Our statistical approach showed that a model including
two genes (GOLT1B and MAD2L1) was the best predictor for overall survival (OS) (p < 0.0001). The
binary score based on the median of the continuous score stratified the patients into low and high
score groups and also showed statistical significance in uni- and multivariate models. The 2-PS was
validated using two independent transcriptomic datasets. Furthermore, gene set enrichment analysis
using training and validation datasets showed that high score patients had distinct gene expression
profiles. Our 2-PS also showed a correlation with the estimated infiltration by some immune cell
fractions such as CD8+ T cells and M1/2 macrophages. Finally, 2-PS correlated with sensitivity or
resistance to some commonly used chemotherapeutic drugs. Conclusion: This is the first study to
demonstrate good performance of only two-gene expression-based prognostic scores in MPM. Our
initial approach for features selection allowed for an increased likelihood for the predictive value of
the developed score, which we were also able to demonstrate.

Keywords: gene expression; prognosis; prediction; score; mesothelioma

1. Introduction

Primary malignant pleural mesothelioma (MPM) is a rare malignancy with an ag-
gressive course and a dismal prognosis for 5-year overall survival of less than 10%. It is
currently considered a premier example of a chemically-induced cancer due to occupa-
tional or environmental factors because the major risk factor remains a history of asbestos
exposure. The elucidation of asbestos exposure as a primary risk factor for MPM led to
its restricted use worldwide, which resulted in a slight decline in the incidence of MPM in
developed Western countries. However, most of the cases due to occupational exposure de-
velop with a latency of approximately 20 years or even longer, which suggests that we may
still expect to witness a peak or a steady state in MPM incidence in various regions world-
wide beyond 2020 [1]. Histologically, MPM is classified into three major subtypes, namely
epithelioid, sarcomatoid, and biphasic subtypes. Histological subtyping has prognostic
value, with epithelioid MPM having a much better prognosis in comparison to sarcomatoid
and biphasic cases. Recent molecular profiling studies, however, suggested that the clonal
structure of MPM is much more complex and actually consists of subpopulations of the
two major histological subtypes (epithelioid and sarcomatoid) in a variable proportion.
At a genomic level, MPM is characterized by a relatively low mutational burden [2]. The
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recurrently mutated genes are mainly tumor suppressor genes such as BAP1, CDKNA2,
NF2, SETD2, and TP53 [3]. Unfortunately, most patients with MPM present initially with
inoperable disease and are assessed for fitness for systemic therapy and symptoms control
approaches. Since the mid-2000s, the mainstay of frontline chemotherapy is cisplatin drug
in combination with pemetrexed, with some evidence that anti-angiogenic therapy may
add benefit to this doublet. Immune checkpoint inhibitors were shown to provide survival
benefits in relapsed settings [4] and gained regulatory approval. Phase 3 results also favor
immune checkpoint inhibitors in comparison to chemotherapy in first-line settings [5,6].

In the last two decades, a number of studies addressed the development of gene
expression-based prognostic scores. Because of the relatively small number of cases in
each study and the diverse patient profiles of each study, the wide applicability of each
of those is debatable. Additionally, it will be of greater value if any prognostic score has
some predictive power as well. Therefore, the MPM field still requires the identification of
reliable prognostic or predictive biomarkers. These become easier to address more than
ever before because of the recent advances in genomic technologies and the possibilities to
integrate multilayer omics data.

Here we aimed for the development of a novel gene expression-based prognostic score
in MPM with potential predictive power. We further aimed to integrate of gene expression
and epigenetic data to interrogate the underlying biological features of the newly defined
prognostic subgroups of the disease. For the purposes of this study, we used, as a training
set, the publicly available dataset of MPM cases that had been profiled as part of The
Cancer Genome Atlas (TCGA). As validation datasets, we used two other datasets of gene
expression data from MPM reported in the last decade. We were able to develop a 2-gene
expression-based score, which showed independent prognostic power in both training and
validation datasets. Furthermore, the score has some predictive power as demonstrated by
the integration of gene expression and drug sensitivity data from MPM cell lines.

2. Materials and Methods

2.1. Datasets

We identified 3 datasets of whole transcriptome analysis of at least 50 MPM patients
performed in the last decade as outlined in a recent review [7]. As a training dataset,
we used RNA-Seq data for 87 MPM cases from the TCGA project [3]. TCGA data were
downloaded as RPKM and log10 transformed from the Genomics Data Commons Portal
(https://portal.gdc.cancer.gov/ (accessed on 25 March 2023)). As validation datasets, we
used data from one study using RNA sequencing (Bueno) [8] of 211 MPM cases and one
study with a planar gene expression array (Blum) with 67 MPM cases [9]. Bueno RNA-seq
data were downloaded as raw counts from the European Genome-phenome Archive (EGA)
from a study, EGAS000010015631, conducted by Bueno et al. (EGAD00001001915, n = 211)
sequenced via Illumina HiSeq 2000 technology. Paired-end reads were trimmed using
Trim Galore v. 0.6.3 to remove Illumina adapters. Paired-end fastq files were subjected
to a quality control procedure using FastQC v. 0.72. fastq files were then to reference the
human genome hg38 build using HISAT2 v. 2.1 and subsequently annotated to the gene
level using featureCounts v 1.6.4. Raw counts data were subsequently voom transformed
and quantile normalized using limma package for R. Blum dataset data were downloaded
as raw .cel files from the Array Express server with the accession number E-MTAB-6877.
They were RMA transformed and quantile normalized using limma package and analyzed
as described below. The overall analytical approach is summarized in Figure 1.
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Figure 1. Summary of the analytical approach in the study using different datasets.

2.2. Model Building

In order to reduce the number of features (genes) that we start with in the model build,
we decided to select only genes on which MPM cells lines have already been reported to
be dependent as part of the DepMap project (https://depmap.org/portal/ (accessed on
25 March 2023)) [10–13]. We identified a total of 179 genes that were reported to confer
significant dependence of MPM in at least one RNA interference screen included in the
DepMap project (Supplementary Table S1). We subsequently used RNA-Seq data for
87 MPM cases included in the TCGA project as a training dataset to build a model based
on the expression of survival-associated selected genes. We filtered the RPKM expression
values of the identified 179 genes and applied the Robust Likelihood-Based Survival
Modeling with Microarray Data [14], which was implemented through the rbsurv package
for the R statistical environment. This technique utilizes the partial likelihood of the Cox
model and functions through the generation of multiple gene models. It also divides the
input dataset into training and validation sets and performs multiple cross-validations of a
series of gene models so that it finally provides the optimal model based on the Akaike
Information Criterion (AIC). The AIC measure does not have any biological meaning. It
is interpreted as a statistical criterion to select the best model. The lower the value of
the criterion, the better the statistical model performs for the given dataset. The rbsurv
package automatically selects and proposes the best multivariate model with the lowest
AIC. Cox regression coefficients for the genes included in the model for both datasets were
obtained using the survival package for R. A total continuous score was calculated for
each sample through weighted summation of the gene expression values according to the
formula: Scorei = ∑ wj ∗ xij where xij is the log-transformed expression value for the gene
j in patient i, and wj is the weight assigned to probe set j (here wj was the Cox regression
coefficient from the univariate analysis in the training set). The total score was calculated
for each patient sample in the training and validation datasets. To build a binary score
(high vs. low), we defined a cut-off value specific for each cohort corresponding to the
median of the continuous score for the respective cohort. Performance of the median cut-off
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score was assessed using Receiver Operating Characteristics (ROC) curves implemented
through the web-based graphical user interface of the Cutoff Finder package for R (https:
//molpathoheidelberg.shinyapps.io/CutoffFinder_v1/ (accessed on 25 March 2023)) [15].
Univariate and multivariate analyses for correlation of the continuous and discrete scores
with overall survival were performed for each of the datasets using the survminer package
for R. We have previously used an identical approach for the development of a microRNA-
expression based prognostic score in acute myeloid leukemia (AML) [16].

2.3. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using the stand-alone version
GSEA 4.0.3 (Boston, MA, USA) developed by Broad Institute (http://www.broadinstitute.
org/gsea/index.jsp (accessed on 25 March 2023)) [17]. The cancer hallmarks collection of
oncogenic gene ontology signatures from the Molecular Signatures Database (MSigDB)
(https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#H (accessed on
25 March 2023)) was used as the reference gene-sets to test for enrichment in the gene
expression profiles of high score versus low score patients from each cohort.

2.4. Cibersort

We downloaded the CIBERSORT-inferred immune signatures [18] for TCGA mesothe-
lioma cases, which were determined as part of the The Immune Landscape of Can-
cer study (https://gdc.cancer.gov/about-data/publications/panimmune (accessed on
25 March 2023)) [19]. We used the CIBERSORTx portal (https://cibersortx.stanford.edu/
index.php (accessed on 25 March 2023)) [20] to estimate the immune cell fractions of the
samples from the Bueno dataset. Pearson correlations between continuous score and each
immune cell fraction were calculated using the cor function from the stats package for R.
Estimated correlation coefficients were presented graphically using the corplot package
for R.

2.5. Drug Sensitivity Analysis

RNA-Seq data for 16 MPM cells lines included in the Sanger Genomics of Drug Sensi-
tivity in Cancer Project (GDSC) [21,22] were downloaded from the ArrayExpress server with
the accession number E-MTAB-3983 (https://www.ebi.ac.uk/biostudies/arrayexpress/
studies/E-MTAB-3983 (accessed on 25 March 2023)). FRPKM gene expression values were
log2 transformed and the 2-PS was calculated for each MPM cell line using the regression
coefficient as described above. The GDSC1 analysis dataset included data for 16 MPM cell
lines treated with 345 unique compounds. The GDSC2 analysis dataset included data for
15 MPM cell lines treated with 175 drugs. We analyzed the correlation between the 2-PS of
the analyzed cell lines and the Area Under the Curve (AUC) of the dose–response analysis
of each of the drugs in the two datasets. ANOVA models were used to identify significant
correlations, with a two-sided p-value of 0.05 being considered significant.

2.6. Common Statistical Procedures

All statistical procedures were performed using the R v. 4.2.2 environment for sta-
tistical computing. The chi-squared test was used for the assessment of independence in
the distribution of categorical variables. A two-sided t-test for independent samples was
used to compare the means of normally distributed continuous variables. The Wilcoxon–
Mann–Whitney test was used to compare the medians of continuous variables with-
out normal distribution. For all statistical tests, an alpha level of 0.05 was considered
statistically significant.

3. Results

3.1. Building and Initial Performance of a Two-Gene Prognostic Score (2-PS)

We applied the Robust Likelihood-Based Survival Modeling with Microarray Data
to the training dataset (TCGA dataset) with genes that MPM cell lines were shown to be
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dependent on (Supplementary Table S1) (Figure 1). We chose such an approach for two
main reasons. Firstly, we were able to reduce the number of features (genes) to be tested in
the prognostic model. Secondly, this approach, in our view, increases the likelihood that the
prognostic model built may also have some predictive power. The algorithm selected a best
performing prognostic model with AIC of consisting of two genes, GOLT1B and MAD2L1.
The estimated Cox regression coefficients (ln(HR)) for GOLT1B and MAD2L1 were 1.403 and
0.945, respectively. The continuous score for each sample in each dataset was calculated as
the sum of expression values for each of the genes in the model multiplied by the regression
coefficient. In univariate analysis, the continuous score was prognostic for the OS (Cox
regression p = 9.69 × 10−10). We further defined a binary score using as a cut-off the median
of the continuous score for all samples. In univariate analysis, the binary score also showed
significant prognostic value (Cox regression p = 2.85 × 10−6 and Figure 2A) with an Area
Under the Curve value of the Receiver Operator Characteristics (ROC) analysis of 0.67
(Figure 2B). This AUC value is distinct from 0.5 suggesting there exists a true difference in
survival between the two groups of patients [23]. As it is below 0.7, it is expected that the
binary score may not be the only contributing prognostic factor in this cohort. Therefore,
we further evaluated the performance of the binary score in a multivariate model with age,
sex, stage, histology, and mutational status as covariates. Notably, the binary score retained
independent prognostic power (Cox regression p = 7.34 × 10−6, Figure 2C).

Figure 2. Performance of the 2-gene PS in the TCGA cohort. (A) Overall survival in low vs. high
score patients; (B) ROC analysis using the median value of the continuous score to define low and
high score patients; (C) Multivariate prognostic model including 2-PS and other demographic and
clinical parameters. Significance notations: “*”—<0.05, “**”—<0.01, ”***”—<0.001.
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3.2. Validation of the 2-PS

In order to validate our 2-gene prognostic score, we used two recent publicly available
datasets with either RNA-Seq data (n = 211) (Bueno) or planar expression arrays (n = 67)
(Blum). The estimated continuous score in the Bueno dataset showed a clear prognostic
value (Cox regression p = 1.22 × 10−7). The score was further converted to a binary one
using the median of the continuous score as a cut-off. Analogous to the data training dataset,
the binary score in this validation dataset also had prognostic power (Cox regression
p = 1.4 × 10−5, Figure 3A) with an AUC of the ROC analysis of 0.75 (Figure 3B), which is
considered acceptable for a diagnostic test [23]. Furthermore, in the extensive multivariate
model for the Bueno dataset, the binary score was still of independent prognostic value
(Cox regression p = 0.03, Figure 3C).

Figure 3. Performance of the 2-gene PS in the Bueno cohort. (A) Overall survival in low vs. high
score patients; (B) ROC analysis using the median value of the continuous score to define low and
high score patients; (C) Multivariate prognostic model including 2-PS and other demographic and
clinical parameters. Significance notations: “*”—<0.05, “**”—<0.01.

Following the same procedure, we analyzed the performance of the estimated con-
tinuous score in the Blum dataset. In multivariate analysis, the continuous model was a
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significant prognostic factor (p = 1.13 × 10−5). The same also held true for the binary model
defined by the cut-off of the median for the continuous score (Cox regression p = 0.0014,
Figure 4A). The AUC in the ROC analysis, in that case, was 0.85 (Figure 4B), which is
considered excellent performance for a diagnostic test [23]. Finally, a multivariate model
for the Blum dataset was built using binary score, sex, age, stage, and histology, albeit
without mutational data, as those were not publicly available. The model demonstrated the
independent prognostic value of the binary score (Cox regression p = 0.00671, Figure 4C).

Figure 4. Performance of the 2-gene PS in the Blum cohort. (A) Overall survival in low vs. high score
patients; (B) ROC analysis using the median value of the continuous score to define low and high
score patients; (C) Multivariate prognostic model including 2-PS and other demographic and clinical
parameters. Significance notations: “**”—<0.01.

3.3. Gene Set Enrichment Analysis

Based on the observation that our novel 2-PS performed similarly well in both training
and the two validation datasets, we hypothesized that the score may correlate with specific
gene expression signatures. Therefore, we performed GSEA using predefined cancer
hallmark signatures from the MSig database. For each of the datasets, we obtained a
number of signatures enriched in the high score patients’ subgroups as follows: TCGA
(n = 37), Bueno (n = 34), Blum (n = 34). There was a more significant overlap between the
overexpressed signatures in the TCGA and Bueno datasets and slightly less so between
any of those two and the Blum dataset. However, there were a total of 25 signatures that
were commonly overexpressed in high score patients from the three cohorts (Figure 5A).
Most of them were related to DNA repair and DNA damage response (Figure 5B).
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Figure 5. Summary of the GSEA analysis in all three cohorts. (A) Venn diagram showing the overlap
of enriched cancer hallmark pathways in high score patients from the three cohorts. (B) List of all
enriched cancer hallmark pathways in high score patients from the three cohorts at a false discovery
rate (FDR) of below 0.05.

3.4. Correlation with Immune Signatures

Infiltrating immune cells are a major player in the immune response against cancer
and may be used as prognostic and predictive markers. We therefore questioned whether
2-PS-defined groups of MPM patients would also have distinct underlying profiles in
terms of the microenvironment. To address this question, we analyzed whether the 2-PS
correlated with specific immune cell subtype infiltration in MPM. We used the inferred
infiltrating immune cell fractions using the CIBERSORT algorithm using TCGA (Figure 6A)
and Bueno (Figure 6B) datasets. Notably for both datasets the continuous prognostic
score showed a positive correlation with CD8+ T cell fraction as well as with M1 and M2
macrophage fractions.

Figure 6. Plots of correlation matrices between 2-gene prognostic score and the estimated immune cell
population contents using CIBERSORT. (A) TCGA dataset; (B) Bueno dataset. Color codes represent
Pearson correlation coefficients.
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3.5. Potential Predictive Power of the 2-PS

We specifically developed our score focusing on genes for which there had been a
demonstration of dependency using some knock-out screen experiments. It was therefore
reasonable to accept that the score may have some potential predictive power. The most
straightforward approach to provide some preliminary evidence in that regard was to use
drug sensitivity screens data from MPM cell lines. We calculated the 2-gene prognostic
score for each of the cell MPM cell lines included in the Genomics of Drug Sensitivity in
Cancer project GDSC1 part (n = 16) and GDSC2 part (n = 15) [21,22]. We subsequently
tested the correlation between the 2-PS and the sensitivity to each of the drugs tested in
both projects using AUC values. The AUC-defined response to 11 drugs from the GDSC1
set showed a significant correlation with the 2-PS of the tested mesothelioma cell lines
(Figure 7A); whereas for the GDSC2 set, the number of such significant correlations was
18 (Figure 7B). Interestingly, this analysis revealed a correlation of the 2-PS with response
to commonly used drugs in mesothelioma management such as cisplatin (R = −0.51,
p = 0.046), gemcitabine (R = 0.69, p = 0.019), and vinblastine (R = 0.63, p = 0.037).

Figure 7. Linear correlations between 2-gene prognostic score and sensitivity of MPM cell lines (as
measured by Area Under the Curve (AUC)) to different compounds. (A) Data from the analysis using
the GDSC1 dataset. (B) Data from the analysis using the GDSC2 dataset. Correlation coefficients are
from Pearson correlation.
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4. Discussion

A number of studies proposed gene expression-based prognostic models in
MPM [3,8,9,24–31]. They differ significantly in their approaches for feature selection,
training and validation datasets, the number of genes included in the final model, as well
as in the performance in different MPM cohorts. Additionally, the predictive value of each
proposed score remains largely unexplored. Here we implemented a novel approach in
features selection by limiting the number of genes to be tested for inclusion in an MPM
prognostic model only to genes for which it has been that MPM cell lines have been sen-
sitive to their knock-down. We then applied the RBSURV approach to the TCGA dataset
and built a two-gene prognostic model, which showed moderate prognostic power as a
continuous or binary score in both univariate and multivariate models in three different
MPM cohorts. This moderate prognostic power is in trade-off with the minimal number of
genes included in the prognostic score, avoiding over-fitting of the model by the inclusion
of a higher number of features. The limited number of genes in our 2-PS may further
allow simple validation using low-throughput techniques such as quantitative RT-PCR or
immunohistochemistry. We tested the performance on continuous and binary scores using
univariate and multivariate Cox regression analyses in three independent cohorts (two
from the USA and one from Europe). The definition of cut-offs for binary scores cannot be
directly applied to prospective studies as we used a dataset-specific median to define binary
scores provided that the datasets we used were from different gene expression profiling
platforms and had different pre-processing steps. Ideally, the model must be validated in a
prospective fashion using a simple, readily reproducible technique providing a uniform
standardized read-out of gene expression. The two genes included in our model are not
widely studied in MPM.

The MAD2L1 gene encodes the mitotic arrest deficient 2 like 1, coding for the respective
protein, which is an integral part of the mitotic spindle assembly checkpoint and ensures
that all chromosomes are properly aligned at the metaphase plate before the cell can
proceed to anaphase [32]. MAD2L1 was recently found overexpressed in several MPM cell
lines at the mRNA and protein level [33]. This study conforms with a previous one which
demonstrated higher MAD2L1 protein expression (both nuclear and cytoplasmic) in MPM
cell lines as compared to normal mesothelium [34]. Interestingly, according to the latter
study, the total MAD2L1 mRNA expression level did not correlate with the overall survival
of 80 MPM patients [34]. However, the same study showed that higher nuclear MAD2L1
expression determined using immunohistochemistry correlated with a shorter overall
survival [34]. Notably, a recent study showed that BRCA1 in the mesothelioma leads to the
co-depletion of MAD2L1 mRNA and protein [35]. Additionally, loss of BRCA1/MAD2L1
was associated with resistance to vinorelbine ex vivo, and the survival was shorter for
patients lacking BRCA1/MAD2L1 expression in comparison to those with double-positive
tumors [35]. This observation can explain the fact that our 2-PS correlated with resistance to
vinblastine (mitotic spindle assembly inhibitor) and olaparib (PARP inhibitor) in MPM cell
lines (Figure 7). In addition, among the top enriched pathways in the GSEA analysis of all
three cohorts were pathways directly involving mechanisms of DNA replication such as the
following pathways: “Mitotic spindle”, “G2M checkpoint”, and “DNA repair” (Figure 5).

The GOLT1B gene encodes for the human vesicle transport protein (Golgi Transport
1B) GOT1B protein [36]. GOLT1B might be overexpressed in various tumors because of the
amplification of the chromosome 12p region [37]. Recent studies show that overexpression
of GOLT1B in breast and colorectal cancer might be associated with poorer outcomes due to
the promotion of immune evasion [38,39]. Consistent with that, we found that in high 2-PS
MPM, patients from all three cohorts in our analysis, “Epithelial mesenchymal transition”,
“Apical junction”, and “Protein secretion pathways”, were significantly enriched in the
gene expression profiles (Figure 5).

Recent reports regarding the role of GOLT1B in immune evasion let us investigate
whether our 2-PS correlated with the estimated fractions of immune cells within the tumor
tissue. We used the now standard deconvolution algorithm to obtain those fractions and
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were able to demonstrate that 2-PS correlated with the CD8+ T cells and M1/2 macrophage
content (Figure 6). Using a similar approach, Blum et al. demonstrated that epithelioid-like
morphology and transcriptomic profile correlated with an estimated fraction of CD8+ T
cells [9]. Nguen et al. also demonstrated that inferred infiltrating immune cell fractions can
be combined with genomic parameters to develop prognostic models in MPM [40]. Finally,
another recent study showed that markers for higher levels of systemic inflammation
correlated with shorter overall survival in MPM patients [41]. Our observations in the
context of those studies obviously suggest that immune-based markers are to be included
in prognostic schemes for MPM patients. In addition, it is rational to expect that they
may have predictive power for the success of immune-checkpoint inhibitors (ICIs)-based
therapy in MPMs [4,6].

However, even in the era of ICIs, combinations with conventional chemotherapy or
targeted therapy may yield additional clinical benefits in MPM. Therefore, we further
evaluated our 2-PS as a possible marker to predict the sensitivity of MPM cell lines to small
molecule drugs. Interestingly, 2-PS inversely correlated with AUC values for cisplatin,
suggesting that it may predict higher sensitivity to cisplatin. The opposite observation was
made for two other common chemotherapeutics, gemcitabine and vinblastine, suggesting
that our 2-PS can predict resistance to those two. These findings also suggest that the
performance of the 2-PS in various datasets might be highly dependent on the therapeutic
approach used in any cohort and its further evaluation need to focus on uniformly treated
MPM patients.

5. Conclusions

In sum, here we demonstrated the development of a 2-gene expression-based prog-
nostic score in MPM with initial filtration of features based on predicted gene dependency
of MPM. Our score was further validated in two independent cohorts. Furthermore, it obvi-
ously defines patient subgroups with specific gene profile expressions, underlying immune
surveillance mechanisms, and drug sensitivity. Our 2-PS can be tested in a prospective
fashion using readily available pathological techniques such as RT-PCR and immunohisto-
chemistry. Finally, our approach to the development of the 2-PS can be applied to other
cancer types.
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Abstract: Background: The aim of the present study was to develop an improved diagnostic and
prognostic model for HBV-associated HCC by combining AFP with PIVKA-II and other potential
serum/plasma protein biomarkers. Methods: A total of 578 patients, including 352 patients with
HBV-related HCC, 102 patients with HBV-associated liver cirrhosis (LC), 124 patients with chronic
HBV, and 127 healthy subjects (HS), were enrolled in the study. The serum levels of AFP, PIVKA-II,
and other laboratory parameters were collected. Univariate and multivariate logistic regression
and Cox regression analyses were performed to identify independent diagnostic and prognostic
factors, respectively. The diagnostic efficacy of the nomogram was evaluated using receiver operator
curve (ROC) analysis and the prognostic performance was measured by Harrell’s concordance index
(C-index). Results: AFP and PIVKA-II levels were significantly increased in HBV-related HCC,
compared with those in HBV-associated LC and chronic HBV participants (p < 0.05 and p < 0.001,
respectively). The diagnostic nomogram, which included age, gender, AFP, PIVKA-II, prothrombin
time (PT), and total protein (TP), discriminated patients with HBV-HCC from those with HBV-LC
or chronic HBV with an AUC of 0.970. In addition, based on the univariate and multivariate Cox
regression analysis, PIVKA-II, γ-glutamyl transpeptidase, and albumin were found to be significantly
associated with the prognosis of HBV-related HCC and were incorporated into a nomogram. The
C-index of the nomogram for predicting 3-year survival in the training and validation groups was 0.75
and 0.78, respectively. The calibration curves for the probability of 3-year OS showed good agreement
between the nomogram prediction and the actual observation in the training and the validation
groups. Furthermore, the nomogram had a higher C-index (0.74) than that of the Child−Pugh grade
(0.62), the albumin−bilirubin (ALBI) score (0.64), and Barcelona Clinic Liver Cancer (0.56) in all
follow-up cases. Conclusion: Our study suggests that the nomograms based on AFP, PIVKA-II, and
potential serum protein biomarkers showed a better performance in the diagnosis and prognosis of
HCC, which may help to guide therapeutic strategies and assess the prognosis of HCC.

Keywords: hepatocellular carcinoma; PIVKA-II; AFP; nomogram; diagnosis; prognosis

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and one of
the leading causes of cancer-related death globally, with an estimated 905,677 new cases
and 830,180 new deaths in 2020 [1]. The dominant histologic type of primary liver cancer
is hepatocellular carcinoma, accounting for nearly 75–90% of cases [2]. The majority of
cases of liver cirrhosis and hepatocellular carcinoma (HCC) are attributed to persistent
infections with the hepatitis B virus (HBV) and hepatitis C virus (HCV) [3]. Moreover, the
high number of chronic HBV carriers are responsible for the high prevalence of HCC in
China [4]. Unfortunately, lack of surveillance and inadequate early diagnosis account for
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the poor prognosis and high mortality of HCC [5,6]. Therefore, the accurate and effective
diagnosis of HCC is essential to rapidly determine potentially curative therapies, such as
liver resection or transplantation [6,7].

Currently, abdominal ultrasound with serum alpha-fetoprotein (AFP) assessment is
recommended for the early detection of HCC according to the guidelines [6,8]. Significant
heterogeneity in tumor size, equipment, and research experience compromises the efficiency
of abdominal ultrasound in HCC detection [9,10]. In addition, HBV and cirrhosis patients
with serum AFP levels up to 20 ng/mL at 12 months after entecavir treatment are most
likely to develop into HCC [11,12]. However, approximately 30% of patients with liver
cancer are always negative for serum AFP [13]. AFP detection has a sensitivity of only 46%
to 59% for clinical HCC diagnosis and only 40% for preclinical prediction [14,15]. Therefore,
the sensitivity and specificity of these methods in the screening and diagnosis of small and
early HCC remain inefficient [16]. There is an urgent need to explore new strategies for the
identification of high-risk groups for liver cancer and for the screening of HCC patients,
especially those with early-stage HCC, AFP-negative HCC, and micro-liver cancer in the
subclinical stage [6].

Protein-induced vitamin K absence or antagonist II (PIVKA-II) is widely recognized as
a reliable biomarker for the diagnosis, prognosis, treatment response, and recurrence moni-
toring of HCC [17–19]. Studies have demonstrated that PIVKA-II levels of 40 mAU/mL
are indicative of early HCC with sensitivity and specificity rates of 64% and 89%, respec-
tively [20]. Furthermore, PIVKA-II shows a significant diagnostic value for AFP-negative
liver cancer [21,22]. Although PIVKA-II is noted as a highly specific biomarker for HCC, the
limited sensitivity of PIVKA-II raises concerns about its efficacy as a surveillance biomarker,
as alcohol-related liver disease, obstructive jaundice, and cholestasis can also influence the
expression of PIVKA-II [23,24]. Therefore, combination studies of AFP and PIVKA-II have
been recommended to improve the sensitivity and specificity of HCC screening [15].

Several serum biomarkers have been shown to assist in the diagnosis and prognosis
of HCC, including liver enzyme indicators (aspartate aminotransferase (AST), alanine
aminotransferase (ALT), alkaline phosphatase (ALKP), and γ-glutamyl transpeptidase
(GGT)), or indicators reflecting liver metabolism (total bilirubin (TBIL)) and protein syn-
thesis function (total protein (TP), albumin (ALB), and prothrombin time (PT)) [25–30].
To fully explore and harness the potential benefits of different biomarkers, it is necessary
to identify potential serum/plasma protein biomarkers that can be combined with AFP
and PIVKA-II to facilitate HCC detection and surveillance. The present study aimed at
optimizing AFP and PIVKA-II related diagnostic and prognostic models by integrating
potential serum/plasma protein biomarkers in HCC.

2. Materials and Methods

2.1. Data Collection

From January 2014 to December 2016, individuals with HBV infection, HBV-related
liver cirrhosis (HBV-LC), and HBV-HCC, as well as healthy subjects (HS) from the First
Affiliated Hospital of Sun Yat-sen University (FAH-SYSU), were enrolled in the training
cohort. From June 2017 to December 2018, individuals with HBV, HBV-LC, HBV-HCC,
and HS from FAH-SYSU were recruited for the validation cohort. The exclusion criteria
were as follows: (a) history of previous treatment (hepatic resection, liver transplant,
trans-arterial chemoembolization, radiofrequency, anti-angiogenetic drugs, and warfarin
therapy); (b) Child−Pugh C; (c) obstructive jaundice; (d) estimated creatinine clearance
<30 mL/min; (e) diagnosis of second extrahepatic neoplasia; and (f) metastasis. HBV
infection was defined as hepatitis B surface antigen (HBsAg) positivity within the previous
6 months. HBV-HCC was defined as HCC with HBV infection, excluding alcoholic liver
disease or hepatitis C virus infection [6]. Patients with HCC met the diagnostic criteria
for HCC, including imaging evidence (ultrasound, computed tomography, and MRI)
and histopathological confirmation [6]. Liver cirrhosis was diagnosed based on clinical
parameters, including histologic examination, laboratory tests, and radiologic or endoscopic

32



Diagnostics 2023, 13, 1442

evidence of cirrhosis [31]. HS were blood donors with no history of chronic liver disease or
gastrointestinal malignancy. The study was approved by the Institutional Review Boards
at FAH-SYSU and informed consent was obtained from each participant.

2.2. Laboratory Methods

Peripheral blood was collected from each participant and centrifuged at 800× g for
10 min. The serum was aliquoted and immediately frozen at −80 ◦C until testing. Serum
concentrations of AFP, PIVKA-II, carcinoembryonic antigen (CEA), and carbohydrate
antigen 199 (CA199) were determined using the ARCHITECT immunoassay according
to protocol (Abbott Diagnostics). Clinical laboratory test results, including biochemical
indices, blood routine results, and coagulation function results, were collected from routine
clinical practice. The clinical laboratory test results included glutamic-oxalacetic transami-
nase (AST), glutamic-pyruvic transaminase (ALT), albumin (ALB), total protein (TP), lactate
dehydrogenase (LDH), total bilirubin (TBIL), direct bilirubin (DBIL), γ-glutamyl transpep-
tidase (GGT), and HBV surface antigen (HBsAg). Blood routine indexes included white
blood cell (WBC), neutrophil (NET), lymphocyte (LY), neutrophil-to-lymphocyte ratio
(NLR), red blood cell (RBC), red cell distribution width (RDW), hemoglobin (Hb), platelet
count (PLT), and mean platelet volume (MPV). Indicators of the coagulation function
included prothrombin time (PT), thrombin time (TT), activated partial thromboplastin time
(APTT), fibrinogen (FIB), and international normalized ratio (INR). All of the biochemical
indices, blood routine indexes, and coagulation function results were acquired via standard
automated laboratory methods and utilizing commercially available kits according to the
manufacturer’s protocols.

2.3. Statistical Analysis

For demographic data, categorical variables were expressed as a mean ± standard de-
viation (SD), range, or ratio. Univariate analysis was performed using the Mann−Whitney
U-test, chi-squared test, or Fisher’s exact test, as appropriate. Variables with right-skewed
distributions, including AFP and PVIKA-II, were log-transformed before logistic or Cox
regression analysis. OS was defined as the interval from the date of treatment to the date of
patient death or lost follow-up. Univariate and multivariate logistic regression and Cox
regression analyses were performed to identify independent diagnostic and prognostic
factors, respectively. Variables with p < 0.05 were included in the multivariate regression
analyses. The nomogram was constructed based on the results of the multivariate analysis
utilizing the rms package. The discriminative performance of the diagnostic nomogram
model was examined using area under the curve (AUC) analysis [32]. In addition, the
final variables for the construction of the prognostic nomogram were selected using the
backward step-down method based on the Akaike information criterion (AIC) [33]. To
evaluate the discriminative ability of the prognostic nomogram, Harrell’s concordance
index (C-index) and receiver operating characteristic (ROC) curve were used. Calibration
curves were plotted to evaluate the predictive accuracy of the prognostic nomogram. Fur-
thermore, the discriminatory ability of the prognostic nomograms was compared with the
HCC prognostic model of Barcelona Clinic Liver Cancer, ALBI score, and Child−Pugh
grade by analyzing the ROC curves. The results were considered statistically significant
if the p value was less than 0.05. Statistical analysis was accomplished using the SPSS
software version 25.0 and R (version 3.4.2).

3. Results

3.1. Characteristics of Patients

A total of 705 subjects were included in the study. The clinical laboratory characteristics
of the patients with HBV-related HCC, HBV-associate liver cirrhosis (LC), chronic HBV
infection, and healthy subjects are shown in Table 1. Consistent with previous studies,
the serum concentrations of liver function biomarkers AST and ALT were significantly
higher in patients with HCC than in other patients (p < 0.001). Serum levels of ALB, TP,
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PLT, and Hb were lower in the HCC and cirrhosis groups than in the hepatitis and normal
control groups. In addition, TBIL was increased moderately in the HCC group, but was
significantly elevated in the LC group. The time of PT was the longest in the cirrhosis
group, and PLT and Hb were dramatically decreased in the cirrhosis group.

Table 1. Clinical characteristics of the study population.

Parameters
HCC

(N = 352)
Liver Cirrhosis

(N = 102)
HBV

(N = 124)
Healthy Subjects

(N = 127)

Age, years
mean (SD) 54 (11.8) 55.7 (12.7) 36.3 (10.8) 50.1 (10.7)

Gender, n (%)
Male 309 (87.8%) 67 (65.7%) 83 (66.9%) 69 (54.3%)

Female 43 (12.2%) 35 (34.3%) 41 (33.1%) 58 (45.7%)
AST (U/L)
mean (SD) 92.2 (135.2) 79.2 (91.9) 40.0 (59.5) 24.1 (6.1)

ALT (U/L)
mean (SD) 79.4 (190.2) 52.1 (56.5) 45.5 (120.8) 24.0 (13.6)

TBIL, μmol/L
mean (SD) 32.5 (57.0) 60.7 (96.2) 17.0 (14.5) 12.4 (3.9)

ALB (g/L)
mean (SD) 36.3 (5.4) 32.7 (6.6) 45.6 (3.0) 44.5 (3.8)

TP (g/L)
mean (SD) 66.5 (8.5) 66.2 (9.0) 75.4 (4.7) 73.1 (4.8)

PLT (×109/L)
mean (SD)

174.3 (90.3) 124.2 (87.8) 214.5 (47.9) 244.6 (53.8)

Hb (g/L)
mean (SD) 129.5 (23.6) 106.7 (27.4) 145.2 (16.7) 146.1 (14.8)

PT, s
mean (SD) 13.2 (2.8) 15.7 (4.5) 12.8 (2.0) 13.0 (1.1)

Categorical and continuous variables are presented as frequencies or mean (SD), respectively. AST: aspar-
tate aminotransferase; ALT: alanine aminotransferase; TBIL: total bilirubin; ALB: albumin; TP: total protein;
PLT: platelets; Hb: hemoglobin; PT: prothrombin time.

3.2. AFP and PIVKA-II Distribution among Disease Groups

As depicted in Figure 1, there were significant differences between the HCC group and
the other groups in the serum concentration of PIVKA-II and AFP (p < 0.001 and p < 0.05,
respectively). Among 352 patients with HCC, 125 (35.51%) were AFP negative when the
positive screening value of AFP was defined as >20 ng/mL [34]. Similarly, when the posi-
tive screening value of PIVKA-II was defined as >40 mAU/mL [35], 84.37% of patients with
HCC had increased serum levels of PIVKA-II. Notably, elevated levels of PIVKA-II were ob-
served in 100 (80.0%) AFP negative patients. Furthermore, the sensitivity for AFP in combi-
nation with PIVKA-II to predict HCC was 92.89% (Supplementary Table S1). These results
suggest that PIVKA-II is a complementary biomarker to AFP in differentiating HBV-HCC.

3.3. Diagnostic Factors of HCC Based on Logistic Regression

The results based on the univariate and multivariate logistic regression analysis to
assess the predictive value of biomarkers for HCC are shown in Table 2. The results of
the univariate regression analysis indicate that night variables, including age, gender,
AFP, PIVKA-II, AST, ALT, ALB, PT, and TP, were significant predictors of HCC when
compared with HBV infection or liver cirrhosis. In the multivariate logistic regression
analysis, increasing age (OR: 1.08, 95% CI 1.050–1.116; p < 0.001), male gender (OR: 2.662,
95% CI 1.159–6.117; p = 0.021), elevated AFP (OR: 8.291, 95% CI 4.366–15.743; p < 0.001),
increased PIVKA-II (OR: 12.231, 95% CI 5.853–25.559; p < 0.001), decreased TP (OR: 0.912,
95% CI 0.871–0.954; p < 0.001), and prolonged PT (OR: 0.839, 95% CI 0.752–0.935; p = 0.002)
were independent predictors of HCC.
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Figure 1. Serum AFP and PIVKA-II concentrations in different populations. (A) Serum AFP levels in
healthy subjects (HS), chronic HBV infections (HBV), HBV-associate liver cirrhosis (LC), and patients
with HBV-related HCC. (B) Serum PIVKA-II levels in healthy subjects (HS), chronic HBV infection
(HBV), HBV-associated liver cirrhosis (LC), and patients with HBV-related HCC. AFP reference line:
20 ng/mL and PIVKA-II reference line: 40 mAU/mL.

Table 2. Univariate and multivariate logistic regression analysis between HCC and liver cirrhosis or
HBV infection groups.

Parameters
Univariate Analysis Multivariate Analysis

OR (95% CI) p Value OR (95% CI) p Value

Age 1.052
(1.037–1.066) <0.001 1.082

(1.05–1.116) <0.001

Gender (male) 3.641
(2.388–5.551) <0.001 2.662

(1.159–6.117) 0.021

Log10AFP 6.572
(4.515–9.566) <0.001 8.291

(4.366–15.743) <0.001

Log10PVIKA-II 17.056
(9.366–31.059) <0.001 12.231

(5.853–25.559) <0.001

AST 1.004
(1.002–1.007) 0.001 0.996

(0.989–1.004) 0.339

ALT 1.004
(1.001–1.006) 0.01 1.009

(0.999–1.019) 0.078

TBIL 0.999
(0.996–1.002) 0.426

ALB 0.923
(0.899–0.948) <0.001 1.073

(0.998–1.153) 0.056

TP 0.933
(0.912–0.954) <0.001 0.912

(0.871–0.954) <0.001

PLT 1.00
(0.998–1.002) 0.968

Hb 1.002
(0.996–1.009) 0.487

PT 0.918
(0.862–0.977) 0.007 0.839

(0.752–0.935) 0.002

Based on the results of the multivariate regression analysis, risk factors including age,
gender, AFP, PIVKA-II, PT, and TP were incorporated into a nomogram, referred to as the

35



Diagnostics 2023, 13, 1442

APPT grade. According to the nomogram, log-transformed AFP and PIVKA-II values had
the most significant impact on early HCC diagnosis, followed by PT, TP, age, and sex. The
discriminative power of the nomogram was evaluated using ROC curves and the AUC
of the diagnostic nomogram was 0.970 (Figure 2). The ROC analysis indicated that the
diagnostic nomogram demonstrated an excellent ability to discriminate HCC from CHB
and LC.

Figure 2. Diagnostic nomogram for patients with HCC. (A) A diagnostic nomogram for differentiating
HCC cases from chronic HBV and LC. (B) AUROC for the diagnostic nomogram in differentiating
HCC cases from chronic HBV and LC.

3.4. Clinical Characteristics of HCC Patients Enrolled in Survival Analysis

A total of 241 HCC patients were successfully followed up for 3 years. Correspond-
ingly, in our data, 106 patients (44%) died during the 3-year follow-up. Non-survivors had
significantly lower levels of ALB and higher levels of PIVKA-II, CA199, RDW, AST, GGT,
TBIL, DBIL, PT, and FIB (Table 3, p < 0.05).

Table 3. Characteristics of HCC patients according to 3-year mortality.

Parameters Survivor (n = 135) Non-Survivor (n = 106) p Value

Age (years)
Median (IQR) 55.0 (48.0–63.0) 54.5 (48–65.0) 0.730 a

Gender
Male (%) 117 (86.7%) 93 (87.7%) 0.806 b

Child-Pugh grade
Number (%) <0.001 b

A 120 (88.9%) 69 (65.1%)
B 15 (11.1%) 37 (34.9%)

BCLC stage
Number (%) 0.092 b

A 26 (19.3%) 19 (17.9%)
B 81 (60.0%) 52 (49.1%)
C 28 (20.7%) 35 (33.0%)

HBsAg
Positive (%) 108 (80.0%) 86 (81.1%) 0.826 b

AFP (mg/mL)
Median (IQR)

49.8
(8.3–719.0)

92.9
(8.5–8406.2) 0.099 a

PVIKA-II (mAU/mL)
Median (IQR)

296.6
(61.0–1725.3)

1626.3
(123.2–10833.8) <0.001 a

CEA (mg/mL)
Median (IQR) 2.8 (1.5–4.2) 2.6 (1.7–4.2) 0.948 a
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Table 3. Cont.

Parameters Survivor (n = 135) Non-Survivor (n = 106) p Value

CA199 (mg/mL)
Median (IQR) 7.4 (4.1–14.0) 12.5 (5.6–31.8) 0.001 a

WBC (×109/L)
Median (IQR)

7.2 (5.1–10.2) 7.7 (5.5–9.5) 0.858 a

LY (×109/L)
Median (IQR)

1.1 (0.8–1.6) 1.0 (0.7–1.5) 0.240 a

NET (×109/L)
Median (IQR)

5.0 (3.4–7.9) 5.0 (3.1–7.8) 0.918 a

NLR
Median (IQR) 4.5 (2.7–8.4) 4.6 (2.7–8.9) 0.577 a

RBC (×109/L)
Median (IQR)

4.0 (3.4–4.4) 4.1 (3.4–4.5) 0.230 a

Hb (g/L)
Median (IQR) 131.0 (117.0–145.5) 130.0 (113.3–142.0) 0.460 a

RDW (%)
Median (IQR) 13.5 (13.0–14.0) 14.0 (13.0–15.2) 0.049 a

PLT (×109/L)
Median (IQR)

166.0 (113.0–223.0) 163.5 (99.5–243.3) 0.913 a

MPV (fL)
Median (IQR) 10.0 (9.2–11.1) 10.0 (9.2–10.8) 0.686 a

ALT (U/L)
Median (IQR) 39.0 (24.0–66.5) 45.0 (32.0–65.8) 0.109 a

AST (U/L)
Median (IQR) 39.0 (29.0–64.0) 56.5 (37.5–98.5) <0.001 a

GGT
Median (IQR) 64.5 (39.2–112.7) 138.5 (72.7–242.7) <0.001 a

LDH
Median (IQR) 228.5 (195.5–298.0) 250.5 (206.2–345.5) 0.072 a

TBIL (μmol/L)
Median (IQR) 16.4 (12.5–24.8) 19.7 (14.1–34.9) 0.004 a

DBIL (μmol/L)
Median (IQR) 3.8 (2.5–6.8) 5.5 (3.2–12.9) 0.002 a

ALB (g/L)
Median (IQR) 37.0 (34.8–40.7) 35.2 (31.7–39.0) 0.002 a

TP (g/L)
Median (IQR) 66.2 (61.3–71.2) 66.9 (61.2–71.6) 0.630 a

Cr (μmol/L)
Median (IQR) 71.0 (60.0–81.0) 67.0 (56.0–79.0) 0.114 a

PT (s)
Median (IQR) 12.4 (11.8–13.1) 12.8 (12.1–14.2) 0.004 a

INR
Median (IQR) 1.1 (1.1–1.2) 1.1 (1.0–1.2) 0.949 a

APTT (s)
Median (IQR) 29.2 (27.2–33.4) 30.8 (27.6–35.6) 0.066 a

TT (s)
Median (IQR) 18.3 (17.5–19.1) 17.9 (17.2–19.1) 0.316 a

FIB (g/L)
Median (IQR) 2.6 (2.1–3.4) 3.1 (2.1–4.0) 0.035 a

Categorical and continuous variables are presented as frequencies or medians (IQR), respectively. Differences be-
tween groups in categorical and continuous variables are analyzed using the chi-squared test and Mann−Whitney
U test, respectively. BCLC: Barcelona Clinic Liver Cancer; HBsAg: HBV surface antigen; CEA: carcinoembryonic
antigen; CA199: carbohydrate antigen 199; LY: lymphocyte; NET: neutrophils; NLR: neutrophil-to-lymphocyte
ratio; RDW: red cell distribution width; MPV: mean platelet volume; Cr: creatinine; TBIL: total bilirubin; DBIL:
direct bilirubin; INR: international normalized ratio; APTT: activated partial thromboplastin time; TT: thrombin
time; FIB: fibrinogen. a Wilcoxon rank sum test; b Chi-squared test.

From January 2014 to December 2016, 142 HCC patients were successfully followed
up and enrolled in the training group, while from June 2017 to December 2018, 99 HCC
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patients were followed up and enrolled in the validation group. The characteristics and
laboratory indexes of the HCC patients in the training and validation cohorts are shown
in Supplementary Table S2. Univariable and multivariable Cox regression analyses were
applied to identify the independent prognostic factors for HCC patients in the training
cohort (Table 4). Univariate Cox regression analyses revealed that PIVKA-II, GGT, DBIL,
FIB, and ALB were significant predictors of survival in HCC patients. Variables with a
p value of <0.05 in univariable analysis were included in the multivariable analysis. The
results of multivariate Cox regression analysis demonstrated that log10PIVKA-II (HR: 1.347,
95% CI: 1.121–1.780), GGT (HR: 1.002, 95% CI: 1.001–1.003), and ALB (HR: 0.932, 95% CI:
0.888–0.979) were independent variables for the prognosis of HCC (Table 4).

Table 4. Univariate and multivariate Cox regression analysis in HCC patients according to
3-year mortality.

Parameters
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Log10PVIKA-II 1.573
(1.263–1.958) <0.001 1.347

(1.053–1.724) 0.018

GGT 1.005
(1.002–1.008) <0.001 1.002

(1.001–1.003) 0.002

CA199 1.004
(1.002–1.006) <0.001 1.001

(0.998–1.004) 0.395

AST 1.001
(1.000–1.002) 0.07

TBIL 1.007
(1.003–1.012) 0.002 1.001 (0.994–1.009) 0.763

DBIL 1.012
(1.005–1.018) 0.001 1.007

(0.999–1.016) 0.263

ALB 0.924
(0.884–0.966) <0.001 0.932

(0.888–0.979) 0.005

PT 1.082
(0.985–1.188) 0.102

FIB 1.22
(1.032–1.443) 0.02 1.121

(0.918–1.368) 0.263

3.5. Predictive Potentials of Prognostic Nomogram

The prognostic nomogram was established based on the risk factors PIVKA-II, GGT,
and ALB, which were identified by the multivariate analysis. Higher levels of PIVKA-II
and GGT and lower levels of ALB during hospitalization were associated with a poorer
prognosis for HCC patients. The nomogram based on PIVKA-II, GGT, and ALB was
referred to as the PGA grade (Figure 3).

Figure 3. A prognostic nomogram for the survival at the 3-year follow-up in hepatocellular carcinoma.
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The discriminative power of the nomogram was assessed using Harrell’s concordance
index and ROC curves. The C-indexes for the prediction of overall survive in the training
and validation groups were 0.75 (95% CI 0.67–0.83) and 0.78 (95% CI 0.68–0.88), respectively
(Figure 4). Furthermore, the calibration curves for the probability of 3-year OS demonstrated
good agreement between prediction by the nomograms and the actual observation in the
training and the validation sets (Figure 4). Therefore, the PGA grade exhibited a great
prediction efficiency for the 3-year prognosis of HCC patients.

 

Figure 4. The C-index of the nomogram for the prognostic prediction of OS in the training cohort (A)
and validation cohort (B). The calibration curves of OS based on nomogram prediction and the actual
observation in the training cohort (C) and validation cohort (D).

Child−Pugh grade, ALBI score, and BCLC were utilized to predict the prognosis of
HCC. To further evaluate the clinical value of the PGA grade, we compared the performance
of the predictive potential of 3-year survival probability in Child−Pugh grade, ALBI
score, BCLC, and PGA grade in all follow-up cases. The C-index for OS prediction of the
PGA grade was 0.74 (95% CI 0.68–0.80), which was found to be superior to that of the
Child−Pugh grade (0.62), ALBI score (0.64), and BCLC (0.56). The result suggests that the
PGA grade has better predictive potential than the ALBI score, Child−Pugh grade, and
BCLC (Figure 5).
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Figure 5. Comparison of predictive accuracy between ALBI score, Child−Pugh grade, BCLC, and
the PGA grade. BCLC, Barcelona Clinic Liver Cancer staging; ALBI, albumin−bilirubin score;
Child−Pugh, Child−Pugh grade.

4. Discussion

The high incidence rate and mortality of HCC patients remains a major clinical concern.
Early intervention based on risk stratification is an effective strategy to improve the survival
rate of HCC patients. Clinical and histopathological parameters, including tumor burden,
vascular invasion, lymph node, and extrahepatic metastasis, are closely related to the
prognosis of HCC [6,36]. As accurate histological diagnosis is not easily available, and
ultrasonography is far from excellent, serum biomarker assessments are more objective
and accurate at predicting and evaluating the prognosis of HCC [10,14]. Herein, we
presented a reliable and easy-to-use model for better diagnosis or prognosis of early HCC
by integrating potential serum biomarkers. The diagnostic nomogram based on age, gender,
AFP, PIVKA, PT, and TP (refer to APPT grade) can improve the diagnostic efficacy of early
HCC. In addition, the prognostic nomogram, constructed by PIVKA, GGT, and ALB (refer
to PGA grade) exhibited excellent discrimination between survival and non-survival HCC
patients. Moreover, the prognostic nomogram (PGA grade) outperformed the routinely
used prognostic models including ALBI grade, BCLC, and CTP classification. A high PGA
grade may serve as an effective predictor of survival rate in HCC and support optimal
therapeutic selection in HCC.

Collective evidence suggests a positive correlation between AFP and PIVKA-II lev-
els and clinicopathological performance, such as tumor size, tumor differentiation, and
vascular invasion [18,21,37]. In the present study, using 20 ng/mL as a cut-off, 35.51%
of HCC patients were AFP negative, which is consistent with previous reports indicat-
ing that approximately 30% of liver cancer patients were consistently negative for serum
AFP [13]. The sensitivity of AFP for HCC in CHB patients was 64.49%. On the other hand,
PIVKA-II with a level of up to 40 ng/mL revealed a superior specificity of 84.37% for
HCC diagnosis. Furthermore, the combination of AFP and PIVKA-II further increased the
specificity to 92.89%. Our results were consistent with the conclusions of other researchers
who suggested that the combination of AFP and PIVKA-II can improve the diagnosis of
HBV-related HCC [22,37].

The occurrence and development of HCC involves a multi-step evolutionary process
from the molecular to the clinical level, characterized by marked abnormalities in liver func-
tion, including liver enzymes, metabolism, and protein synthesis function [38]. Emerging
evidence suggests that the imbalance of tumor and blood coagulation disorders promotes
tumor growth, invasion, and metastasis [39,40]. For example, prolonged prothrombin time
(PT) has been associated with aggressive tumor growth and poor survival rates in various
cancers, such as lung cancer [39], kidney cancer [41], and early HCC [40]. After performing
univariate and multivariate logistic regression analyses, we identified PT as one of the
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independent risk factors for HCC (OR = 0.839, p = 0.002). In addition, hypoproteinemia,
especially hypoalbuminemia, suggests poor nutritional status and decreased hepatic syn-
thesis function due to chronic liver disease and HCC [27,30]. According to our study, TP
was also an independent risk factor for HCC (OR = 0.912, p < 0.001).

Therefore, the objective of this study was to construct a reliable and precise nomogram
for the prediction of HCC by integrating biomarkers such as AFP, PIVKA-II, PT, and TP. The
AUROC of the diagnostic nomogram was 0.970, indicating the critical role of APPT grade
in the early detection of HBV-related HCC. By evaluating the individualized potential to
develop HCC, the APPT grade may enable physicians to optimize the implementation and
efficiency of a screening surveillance strategy.

Liver function indicators, including GGT, ALB, PT, and TP, are critical serum biomark-
ers for determining hepatic reserve function, which is essential for the prognosis of
HCC. Currently, several prognostic models, such as BCLC [42], albumin−bilirubin (ALBI)
grade [43,44], and Child−Turcotte−Pugh (CTP) classification, have been established and
validated as effective tools for predicting HCC outcomes [44–46]. Despite the widespread
use of CTP scores to evaluate preoperative liver function, the limitations regarding its
subjective variables, such as clinical grading of ascites and encephalopathy, have been ex-
tensively discussed [6,47]. The albumin−bilirubin (ALBI) score has the specific advantage
of being based on statistical and objective evidence [44], but our multivariable Cox analy-
ses showed no correlation between bilirubin levels and worse survival in HCC patients.
Although previous studies have reported that HCC patients with higher bilirubin levels
had a worse prognosis, our results suggested otherwise.

PIVKA-II is a novel prognostic predictor for HCC as elevated levels are associated with
early recurrence, vascular invasion, large HCC size, and poor prognosis [17,22]. However,
the elevation of PIVKA-II is not specific to HCC because interfering factors such as taking
warfarin, primary gastric adenocarcinoma, vitamin K deficiency, inflammatory bowel
disease, intestinal flora imbalance, renal failure, malnutrition, and alcoholic liver disease
can lead to elevated serum levels of PIVKA-II in non-HCC patients [48]. In the current work,
the prognostic value of PIVKA-II in combination with other liver function parameters,
especially GGT and ALB, was evaluated through survival analysis in HCC patients. High
levels of GGT protein, which resulted from impaired biliary excretion in gastrointestinal
cancer or the secretion of HCC cells, were positively associated with a large tumor size
and advanced TNM stage, and were considered as an independent prognostic factor for
predicting the survival rate of individuals with AFP-negative HCC [49–51]. Consistent with
previous studies, the results of our analysis suggest that the increased GGT level seemed
to be a strong risk factor for an unfavorable survival rate in patients with HCC. Although
PIVKA-II, GGT, and ALB partially reflect different aspects of HCC including tumor burden,
vascular invasion, and poor tumor differentiation, respectively, they may complement each
other when used in combination. Therefore, the combined use of PIVKA-II, GGT, and
ALB could validate hepatic reserve function and increase their predictive probability in the
prognosis of HCC. In the present study, when PIVKA-II was used in combination with GGT
and ALB (PGA grade), the PGA grade (C-index: 0.74) exhibited an excellent discrimination
and good accuracy and outperformed commonly used prognostic models, including ALBI
grade (0.64), BCLC (0.56), and CTP classification (0.62).

Furthermore, Xu and colleagues conducted a study to evaluate the predictive efficacy
of GGT for prognosis in patients with HCC who underwent liver resection [52]. The study
found that elevated GGT levels were significantly associated with a higher risk in this
patient population, with an AUC of 0.643. In another study, Park et al. [53] investigated
the clinical utility of the response of AFP and PIVKA-II on the prognosis of patients
with locally advanced HCC who received local treatment. The combination of AFP and
PIVKA-II had a prognostic power of 0.626 for overall survival, which was better than
AFP alone (0.592). Although the management of patients may vary among different
studies, encompassing variations in therapeutic schedules and etiology, our results suggest
that the proposed PGA grade could improve prognostic prediction compared with using
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GGT alone or combining AFP and PIVKA. In addition, several nomograms have been
developed to predict recurrence and survival in HCC patients who had undergone resection
treatment [54–56]. Wang et al. reported that preoperative TACE therapy, microvascular
invasion (MVI), AFP, ALBI grade, tumor differentiation, tumor size, intraoperative blood
transfusion, and surgical modality were independent risk factors for overall survival in
patients with single large and huge HCC who underwent curative resection treatment [54].
Based on these risk factors, a nomogram was developed that achieved high C-indexes
(0.86 for overall survival). Compared with these nomograms [54–56], which are based on
clinical data such as tumor size and vascular invasion, the PGA grade was found to have
less potential for predicting prognosis, possibly due to the lack of clinical characteristics,
different treatment methods received by patients and the different histopathological types
of liver cancer.

The present study has some limitations that need to be considered. First, the lack of
clinical characteristics, such as treatment methods, tumor size, tumor differentiation, and
vascular invasion, may have led to confounding deviations. Therefore, further prospective
research is warranted, which should include a comprehensive evaluation of both clinical
and laboratory data to devise a better method for the diagnosis and prognosis of HCC.
Second, this study was conducted at a single center and had a relatively small sample
size. Therefore, to draw a precise conclusion, our results need to be validated in a larger,
multicenter clinical trial, which should include long-term follow-up evaluations.

In conclusion, the combination of AFP and PIVKA with PT and TP showed the greatest
diagnostic ability for HBV-related HCC, while the combination of PIVKA-II with GGT and
ALB was efficient at validating the hepatic reserve function and predicting the prognosis of
HCC. Therefore, clinicians should select the most appropriate biomarkers for HCC, which
can facilitate better assessment and guide appropriate therapeutic strategies for HCC.
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Abstract: Background: Long non-coding RNA (lncRNA) participates in the immune regulation of
lung cancer. However, limited studies showed the potential roles of immune-related lncRNAs (IRLs)
in predicting survival and immunotherapy response of lung adenocarcinoma (LUAD). Methods:
Based on The Cancer Genome Atlas (TCGA) and ImmLnc databases, IRLs were identified through
weighted gene coexpression network analysis (WGCNA), Cox regression, and Lasso regression analy-
ses. The predictive ability was validated by Kaplan–Meier (KM) and receiver operating characteristic
(ROC) curves in the internal dataset, external dataset, and clinical study. The immunophenoscore
(IPS)-PD1/PD-L1 blocker and IPS-CTLA4 blocker data of LUAD were obtained in TCIA to predict
the response to immune checkpoint inhibitors (ICIs). The expression levels of immune checkpoint
molecules and markers for hyperprogressive disease were analyzed. Results: A six-IRL signature was
identified, and patients were stratified into high- and low-risk groups. The low-risk had improved
survival outcome (p = 0.006 in the training dataset, p = 0.010 in the testing dataset, p < 0.001 in the
entire dataset), a stronger response to ICI (p < 0.001 in response to anti-PD-1/PD-L1, p < 0.001 in
response to anti-CTLA4), and higher expression levels of immune checkpoint molecules (p < 0.001 in
PD-1, p < 0.001 in PD-L1, p < 0.001 in CTLA4) but expressed more biomarkers of hyperprogression in
immunotherapy (p = 0.002 in MDM2, p < 0.001 in MDM4). Conclusion: The six-IRL signature exhibits
a promising prediction value of clinical prognosis and ICI efficacy in LUAD. Patients with low risk
might gain benefits from ICI, although some have a risk of hyperprogressive disease.

Keywords: immune-related lncRNA; ddPCR; prognosis; immunotherapy; lung adenocarcinoma

1. Introduction

Non-small cell lung cancer (NSCLC) remains the second-most commonly diagnosed
cancer (with an estimated prevalence of 11.4%) and the leading cause of cancer death
(with an estimated prevalence of 18%) in the global population, but incidence declines
and survival increases in the United States of America. The tobacco epidemic, ambient air
pollution, the diagnosis period, and late-stage treatments likely contribute to the remarkable
difference [1]. Lung adenocarcinoma (LUAD), as one of the common and severe lung
cancers, accounts for approximately 50% of NSCLC [2] and has an average 5-year survival
rate of 21% given to the missed diagnosis in an early stage and advanced cancer refractory
to traditional treatments [1]. A large proportion of patients still cannot benefit from current
conventional chemotherapy and targeted treatments because of the resistance, which leads
to a relatively high recurrence rate in LUAD [3].
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Cancer immunologic and immune therapeutic advances seem promising for gaining
a survival benefit for LUAD. Increasing studies focused on tumor microenvironments
reported that infiltrating immune cells and modulating immune pathways have prominent
effects on the progression and aggressiveness of LUAD [4]. Besides, immune checkpoint
inhibitors (ICIs) directed against programmed cell death-1 (PD-1) and its ligand (PD-L1)
have revolutionized the treatment of advanced LUAD without targetable mutations [5].
Unfortunately, the overall response to ICI is modestly low, and a paradoxical acceleration
of tumor growth, defined as “hyperprogressive disease (HPD),” happens in a subset of
patients with NSCLC treated with ICI [6]. Thus, the molecular signature relevant to tumor
immunology is needed to be recognized as prognostic biomarkers to optimize personalized
medicine and improve long-term survival.

Along with advances in immunology, researchers studied the critical regulatory ability
of long non-coding RNA (lncRNA) in different phases of cancer immunity, such as antigen
release and presentation, immune activation, immune cell migration, infiltration, and
killing of tumor cells [7]. Besides, the immune signature can be a conspicuous marker to
evaluate the overall survival (OS) in patients with LUAD [8]. However, few studies have
comprehensively considered prognostic immune-related lncRNAs (IRLs) and their roles in
predicting the efficacy of ICI treatment.

In this study, according to the IRL-based risk model, the subtypes of LUAD were
identified to evaluate prognosis, immune cell infiltration, therapeutic benefit, and HPD
during immune checkpoint blockade via integrative bioinformatics.

2. Materials and Methods

2.1. Data Download

Expression, phenotype, and survival data were downloaded from The Cancer Genome
Atlas (TCGA (RRID:SCR_003193)) cohort of the UCSC Xena database (https://xenabrowser.
net/ accessed on 16 September 2020), in which 513 LUAD samples were obtained as an
entire dataset after removing 13 samples with the missing phenotype (Table S1). Then, gene
symbol names were retrieved from the human gtf file in the Ensembl database (http://www.
ensembl.org/info/data/ftp/index.html accessed on 23 April 2020). A total of 3547 LUAD-
associated IRLs were acquired from Lnc_Immunecell_Sig and Lnc_Pathways_Sig files in
the immLnc database (http://bio-bigdata.hrbmu.edu.cn/ImmLnc/ accessed on 28 March
2021) [9]. The RNA sequencing data and relevant clinical characteristics of GSE120622
of patients with LUAD were downloaded from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/ accessed on 4 July 2022) [10]. Besides, the version
22 reference genome data, immunophenoscore (IPS) data [11], and target mRNAs of IRLs
were obtained from The Gencode database(https://www.gencodegenes.org/ accessed
on 27 April 2020), The Cancer Immunome Atlas database(TCIA, https://tcia.at/home
accessed on 10 May 2021) [11], and starbase3.0 (http://starbase.sysu.edu.cn/ accessed on
6 April 2020) database.

2.2. Patients’ Samples

To verify the risk score calculated from the TCGA database, we collected 40 samples of
lung tissue punctured by thoracoscope and relevant clinical information as a retrospective
case-control study in the First Affiliated Hospital of Sun Yat-sen University between October
2020 and June 2021. In accordance with the International Association for the Study of Lung
Cancer tumor–node–metastasis classification [12], 30 and 10 cases were diagnosed with
LUAD and nonlung cancer, respectively. The clinical characteristics of patients with LUAD
are shown in Table S1. This study was approved and supervised by the Research Ethics
Committee of the First Affiliated Hospital of Sun Yat-sen University (No. (2022)049).

2.3. Weighted Gene Coexpression Network Analysis (WGCNA)

The WGCNA (RRID:SCR_003302) R package (version 1.69) was used to analyze the
co-expression network of IRLs [13]. Specifically, the screening criterion was R-square
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> 0.85, and the soft thresholding power of four was selected. By using the power of
four and a merged module threshold < 0.25, highly correlated clusters were merged into
similar modules. Modules were generated, and the hierarchical clustering dendrogram
was plotted.

2.4. Efficacy Analysis of Risk Score

All samples were randomly divided into TCGA training (360 samples) and testing
(153 samples) datasets in accordance with the ratio of 7:3. Combining survival data,
univariate Cox regression was performed on the training dataset by using R package
survival (version 3.2-7) and R package survminer (version 0.4.8), and a p value < 0.05 was
set for screening significantly differentially expressed genes [14]. Afterward, the Lasso
regression was used to further narrow differentially expressed genes via the R package
glmnet (version 4.0-2), in which the minimal lambda was obtained by a cross-validation
procedure and then used to fit the Lasso model [15]. According to RScorei = ∑n

j=1 expji ×β j
(exp represents gene expression; β represents coefficients of genes identified by Lasso
regression; and i and j represent each sample and each gene), we calculated the risk score
of each sample and divided all patients with LUAD into high- and low-risk groups by
using the median risk score [16]. Combined with survival data, the Kaplan–Meier (KM)
curve was plotted between high- and low-risk groups with a p value < 0.05. The receiver
operating characteristic (ROC) curves and area under the ROC curves (AUC) were drawn
and calculated to estimate the 5-year survival probability [17].

2.5. Analysis of Stability and Independence

To validate the stability of the risk score, all patients were stratified into different
subgroups on the basis of age (<60 vs. ≥60 years), gender (male vs. female), and TNM
stage (stage I + II vs. stage III + IV). The survival status between high- and low-risk groups
in KM curves was determined (p value < 0.05 defined as significant). We incorporated
several parameters, including age, gender, M stage, N stage, T stage, and risk score, into
univariate and multivariate Cox regression analyses.

2.6. Construction of a Nomogram

By using the R package rms (version 6.1-0) and survival (version 3.2-7), the prognostic
nomogram was plotted with clinical parameters after establishing the Cox proportional
hazards model and calculating survival probability [18]. The ROC curve was used to
validate and predict the nomogram.

2.7. Assessment of Immune Microenvironment

The gene expression signature matrix of LM22 was obtained (CIBERSORT, RRID:SCR_016955)
to estimate the proportions of 22 types of infiltrating immune cells, and expression levels
were calculated in all samples by using the R package CIBERSORT (version 1.03) [19]. The
R package estimate (version 1.0.13) was used to calculate the stromal score, immune score,
ESTIMATE score, and tumor purity of all samples to compare the difference between high-
and low-risk groups. Besides, univariate and multivariate Cox regression analyses were
used to analyze the clinical traits and risk scores of LUAD.

2.8. Evaluation of Response to ICIs

IPS-PD1/PD-L1 blocker and IPS-CTLA4 blocker data on LUAD from TCGA were
obtained in TCIA for predicting patients’ responses to ICI in high- and low-risk groups.
In addition, the expression levels of immune checkpoint molecules and markers for HPD
were compared in these two groups.

2.9. Gene Set Enrichment Analysis

The Hallmark pathway enrichment analysis was performed using gene expression
profiling data from different groups with LUAD by a GESA software (version 3.0) from
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Sangerbox (http://vip.sangerbox.com/home.html accessed on 27 July 2021) [20] In the
GSEA runs, gene-set sizes were set to between 5 and 5000 and parameters were set to 1000.
A p value < 0.05 and an FDR < 0.25 were considered statistically significant.

2.10. Droplet Digital PCR

The Digital PCR MicroDrop-100 and Reagents (Kitforevergen) were used for droplet
digital PCR (ddPCR) experiments. Primers are shown in Table S3. The cycle parameters
used were as follows: 95 ◦C for 10 min and 95 ◦C for 30 s; 40 cycles of 60 ◦C for 30 s, and
72 ◦C for 1 min, and 72 ◦C for 30 s and final heating at 16 ◦C. The QuantaSoft software was
used to analyze the number of copies of each sample.

2.11. Statistical Analysis

The R software (version 4.0.5) or GraphPad Prism (version 7.0) was used for statistical
computing and graphics. For continuous variables, a t-test was used if data were normally
distributed, whereas the Mann–Whitney test or Wilcoxon was performed for data that did not
follow a normal distribution. For categorical variables, the chi-square test was performed.
The univariate Cox regression analysis was used to examine potential risk factors, and the
multivariate Cox regression analysis was further carried out for covariates whose p value
< 0.05 in the univariate analysis. The KM curve was plotted to analyze the differences in
survival by the log-rank test. Relationships between modules and traits were analyzed by
the Pearson correlation. A p value < 0.05 represented statistical significance in all analyses.

3. Results

3.1. Identification of Prognostic IRLs

Integrative bioinformatics was conducted to explore the prognosis, immune cell infil-
tration, therapeutic benefit, and HPD of LUAD. To obtain relevant IRLs from core modules
in LUAD, we acquired 513 TCGA–LUAD samples with complete clinical information
(Table S1) and 3547 LUAD-associated IRLs. The WGCNA was then conducted to catego-
rize the expression pattern of IRLs in TCGA–LUAD samples into 11 similar modules via
the hierarchical clustering dendrogram at the appropriate soft threshold power of four
(Figure 1A). Module–trait relationships were analyzed by correlating the 11 modules with
clinical characteristics. We found that the brown co-expression network, including 174 IRLs,
had negative associations with TNM stage and clinical events (Figure 1B).

To further narrow significant prognosis-related IRLs, we identified 18 candidate IRLs
(p < 0.05) by investigating the association between the expression levels of 174 IRLs and
survival information in the TCGA training dataset by using univariate Cox regression
(Figure 1C). Afterward, six prognostic IRLs were identified as the key immune signature by
Lasso regression with a minimal λ value (Figure 1D) and clustered in heatmaps (Figure S1).
Based on the coefficients of the six IRLs, an optimized prognostic model for LUAD was
constructed by calculating the risk score as follows: risk score = AC104971.3 × (−0.1592) +
FAM215A × (−0.0697) + AC021678.2 × (−0.0330) + LINC02413 × (−0.0228) + AL161781.2
× (−0.0207) + LY86-AS1 × (−0.0051).

3.2. Predictive Capability and Sensitivity of the Risk Score Model

Aiming to assess the predictive value of the constructed prognostic model with six
IRLs, patients were divided into low-risk and high-risk groups according to the median risk
score of −0.46. The KM curve was plotted to compare the survival time in the TCGA train-
ing dataset, revealing that the median survival time of the high-risk group was shorter than
that of the low-risk group (p = 0.006, Figure 2A). Afterward, KM curves were also drawn
in the TCGA testing dataset (p = 0.010), TCGA entire dataset (p < 0.001), and GSE120622
(p = 0.040) to validate the predictive ability of the prognostic model (Figure 2B–D). These
KM curves showed that patients with LUAD in the high-risk group had a worse prognosis
than those in the low-risk group. The ROC curves of the 5-year OS indicated that the
risk score was essential in predicting prognosis in patients with LUAD (TCGA training
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dataset: AUC = 0.64; TCGA testing dataset: AUC = 0.64; TCGA entire dataset: AUC =
0.64; GSE120622: AUC = 0.62; Figure S2), which indicated a predictive ability based on the
risk score.

Figure 1. Six identified immune-related lncRNAs (IRLs) after weighted gene coexpression network
analysis (WGCNA) and regression analyses. (A) Hierarchical clustering tree on IRL’s coexpression
network. (B) A heatmap of modules and clinical traits, including age, M stage, N stage, T stage,
gender, TNM stage, clinical event, and survival time. The numbers in each box and parenthesis
represented correlation coefficient and p value. (C) Eighteen prognosis-related IRLs screened by
univariate Cox regression. (D) Coefficients of six prognostic IRLs identified by the Lasso model.

Furthermore, we verified the risk score by directly detecting the absolute quantification
of these six IRLs via ddPCR in LUAD samples and controls from a case-control study in
south China. Consistent with the results from the TCGA and GEO datasets, patients
with LUAD and high-risk scores exhibited poor outcomes in our clinical study (Table 1).
Except for the predictive power of the IRL signature, we wondered whether these six
IRLs expressed differently between LUAD and normal controls. Results showed that
AC104971.3 (p < 0.01), AC021678.2 (p < 0.01), LINC02413 (p < 0.05), AL161781.2 (p < 0.05),
and LY86-AS1 (p < 0.01) were significantly downregulated in clinical LUAD tumor tissues,
and that FAM215A expression was not significantly different but slightly increased in
tumor samples (Figure S3). Besides, patients with LUAD from the TCGA dataset, GEO
dataset, and clinical study were divided into high- and low-risk groups to avoid baseline
bias. No difference was observed between the two groups in gender and age (Table S2).
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Figure 2. Survival prognosis of the risk score model. Kaplan–Meier (KM) survival curves of patients
with LUAD in high- and low-risk groups from (A) TCGA training dataset, (B) TCGA testing dataset,
(C) TCGA entire dataset, and (D) GSE120622.

Table 1. Severity of patients with lung adenocarcinoma (LUAD) and a low-risk score vs. patients
with LUAD and a high-risk score in the case-control study.

Low Risk High Risk p Value

TNM
Stage I + II 9 1 0.005 **

Stage III + IV 6 14
T stage

1–2 9 4 0.139
3–4 6 11

M stage
0 11 2 0.003 **
1 4 13

N stage
0 9 2 0.021 *

1–3 6 13
Performance Status

0 13 6 0.021 *
1–4 2 9

Note: ** p < 0.01 is considered statistically significant. * p < 0.05 is considered statistically significant.
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Additionally, to prove the stability and independence of the risk score based on IRLs,
we plotted KM curves on patients with LUAD under different subgroups divided by
baseline characteristics and performed univariate and multivariate Cox regression analysis
on the risk score and various clinicopathological characteristics. Results showed that
patients in the low-risk group had a high chance of survival at a different age (p = 0.019 in
age ≤ 60 years, p = 0.001 in age > 60 years), TNM stages (p = 0.046 in stage I + II, p = 0.011 in
stage III + IV), and male patients (p = 0.001 in male patients; Figure 3A–F). Univariate and
multivariate Cox regression analyses demonstrated that the risk score (p = 0.004) and TNM
stage (p = 0.007) had a remarkable predictive capability when considering potential risk
factors (Figure 3G,H). Hence, the established risk score had an independent and reliable
prognostic performance in predicting patients with LUAD.

3.3. Construction of an IRL Signature-Based Nomogram

A nomogram was established to visualize the above independent factors, including
risk score and TNM stage (Figure 4A), in which the ROC curve showed that the AUC of the
5-year survival probability in the nomogram was 0.75 (Figure 4B). This finding suggested
that the complex nomogram integrating IRLs and clinical characteristics could be effective
in predicting the survival status of LUAD. Besides, we compared several IRL prognostic
models and relevant nomograms of LUAD in a published paper [21–24]. Similarly, the
nomogram AUC values of these four TCGA entire datasets were more than 0.70, but the
nomogram AUC of GSE120622 was between 0.58 and 0.75 (Figure S4).

3.4. Immune Landscape and Efficacy of ICI

In order to characterize the immune environment of patients with LUAD, the pro-
portions of infiltrating immune cells were compared between low- and high-risk groups
in all samples using the CIBERSORT and LM22 signature matrices. The low-risk group
had higher percentages of naive B cells, plasma cells, CD8+ T cells, and activated memory
CD4+ T cells but lower percentages of M0 macrophages, M2 macrophages, and activated
dendritic cells than the high-risk group (Figure 5A). Additionally, the low-risk group was
found to have higher stromal scores (p < 0.001), immune scores (p < 0.001), and ESTIMATE
scores (p < 0.001), but lower tumor purity (p < 0.001) than the high-risk group (Figure 5B–E).

To explore the ability of the IRL signature in the prediction of immunotherapeutic
sensitivity for LUAD patients, IPS values, which were calculated based on immunogenicity
from the TCIA database, were analyzed in the risk model. The outcome showed that
the potentials of the low-risk group to respond to anti-PD-1/PD-L1 (p < 0.001) and anti-
cytotoxic T lymphocyte-associated antigen-4 (CTLA4, p < 0.001) treatment were higher
than those of the high-risk group (Figure 6A,B). In accordance with these results, we found
that the expression levels of PD-1 (p < 0.001), PD-L1 (p < 0.001), and CTLA4 (p < 0.001)
were relatively increased in the low-risk group (Figure 6C–E). Thus, ICI treatment might be
effective for patients with LUAD with low-risk scores. However, the expression profiles of
the amplification of murine double minute (MDM) 2 and 4 (p = 0.002, p < 0.001), which were
markers for HPD, were modestly elevated in low-risk patients (Figure S5), although no
difference in DNA methyltransferase 3 alpha (DNMT3A), Cyclin D1, or Fibroblast Growth
Factor (FGF) 3/4/19 was observed.

After conducting gene set enrichment analysis (GSEA) on the mRNAs of all LUAD
samples, we found that more pathways in the low-risk group were upregulated compared
with those in the high-risk group (Figure S6). Compared with the high-risk group, the
low-risk group had significantly enriched V-Ki-Ras2 Kirsten rat sarcoma viral oncogene ho-
molog (KRAS) signaling, interferon-gamma response, interleukin (IL) 2–signal transduction,
and activator of transcription (STAT) 5 signaling. Moreover, class II major histocompati-
bility complex transactivator (CIITA) and interferon alpha and beta receptor subunit 2, as
target mRNAs of AC104971.3 and LY86-AS1, took part in the interferon-gamma response,
implying that IRLs might regulate the relevant pathways via target mRNAs and play an
essential role in the pathogenesis of LUAD.
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Figure 3. Stability and independence of the prognostic risk model. Survival times of patients
among different (A,B) age, (C,D) gender, and (E,F) TNM stage subgroups. (G) Univariate and
(H) multivariate Cox regression analyses on risk score, age, gender, M, N, T, and TNM stages.
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Figure 4. Nomogram integrating risk score and clinical features. (A) Nomogram for predicting 1-, 3-,
and 5-year overall survival rates of patients with LUAD. (B) ROC curves of the risk score, TNM stage,
and nomogram. AUC, areas under the ROC curve. FPR, false positive rate. TPR, true positive rate.

Figure 5. Immune microenvironment in the whole TCGA–LUAD set. Comparison of (A) 22 immune
cell proportion, (B) stromal score, (C) immune score, (D) ESTIMATE score, and (E) tumor purity.
Note: **** means p < 0.0001. *** means p < 0.001. ** means p < 0.01. * means p < 0.05. - means
no significant.
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Figure 6. Predictive response to immune checkpoint inhibitor (ICI) treatment in patients with LUAD.
Relative probabilities of responding to (A) anti-PD-1/PD-L1 and (B) anti-CTLA4 treatments. The
mRNA levels of (C) PD-1, (D) PD-L1, and (E) CTLA4.

4. Discussion

Infiltrating immune cells in the tumor microenvironment are critical in cancer pro-
gression [25], and the quantitative evaluation of tumor immune infiltrates is still a major
challenge using the traditional immunohistochemistry immunoscoring approach. Ad-
ditionally, ICI has become the first-line treatment for advanced LUAD that is refractory
to targeted therapy [5]. Nowadays. PD-L1 expression, tumor somatic mutation burden,
mismatch repair deficiency, and microsatellite instability have been widely applied to
predict ICI efficacy. However, several concerns, including the poor uniformity of detection
technologies and different cutoff values for positivity across clinical trials, have limited its
utility [26]. In recent years, IRLs have been proven to be indispensable in tumor progression
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and oncogenic pathways by regulating gene expression and can be used as a potential
prognostic biomarker for cancer [27].

Immunologic features, which actively participate in cancer development, can more ef-
fectively predict patients’ survival than traditional intrinsic features of tumors [28]. With the
dramatic development of gene sequencing technology, molecular profiling-based signatures
to infer immune infiltration have become a reality. Several previous studies constructed
risk models with novel IRLs that can predict the prognosis in patients with LUAD. In most
of these studies, IRLs are obtained through different expressions combined with Pearson
correlation or interaction prediction with immune-related mRNA expression profiles from
databases. Another study selected lncRNAs that are upregulated in immune cell lines but
downregulated in NSCLC cell lines as tumor-infiltrating IRLs [29]. LncRNAs are suggested
to participate in the immune response by regulating the expression of target mRNAs and
interacting with chromatin, proteins, and miRNA in various ways [30,31]. Hence, only a
few IRLs have been found to play a role in LUAD so far, and high-throughput methods for
the identification of lncRNAs affecting immune activity are still largely unknown.

Therefore, our study of several novel IRLs is an essential complement to identifying
their roles in immune regulation and immunotherapy targets in LUAD. Here, we assessed
lncRNAs directly related to immune response, which are systematically identified via a
computational algorithm and represent immune pathways and distinct immune cell types
in the immLnc database. Afterward, we extracted IRLs and relevant clinical information
from TCGA–LUAD to construct a risk signature via integrative analysis and then divided
patients with LUAD into low- and high-risk groups. Comparing the survival outcomes of
patients classified by the six IRLs, we supposed that the risk score model and integrated
nomogram have a reliable and stable prediction performance. Moreover, cytotoxic T cells,
Th1 helper cells, B cells, and plasma cells eliminate tumor cells in the antitumor immune
milieu, whereas specific macrophages and regulatory T cells can accelerate immune escape
and tumor growth in the protumorigenic immune milieu [32]. Protective CD8+ T cell
responses can be induced by activated dendritic cells in the inflammation of normal
tissue [33], whereas an immune reaction to lung cancer in the presence of mature dendritic
cells (activated or not) is necessary to organize cytotoxic T cells, which are associated with
a good clinical outcome and response to therapeutics [34]. Similarly, we found that patients
with low-risk immune signatures have long OS; increased B cells, plasma cells, CD8+ T
cells, and CD4+ T cells; and minimal macrophages and activated dendritic cells infiltrated
in tumors.

Some similar published papers studied IRLs by performing coexpression analysis
between lncRNAs from TCGA and immune-related genes from MsigDB, ImmPort, or the
GSEA database, of which only three papers were validated by GEO microarray data [22,23]
or clinical studies [21]. We retrieved IRLs for LUAD from the ImmLnc database, which was
established by integrating tumor purity estimation, GSEA, and powerful algorithms [9],
and uninvestigated IRLs were found by directly retrieving IRLs from ImmLnc and TCGA
and integrating bioinformatics. The risk model and nomogram presented here were
validated by GEO sequencing data and our clinical study, suggesting that the IRL signature
is available in Chinese patients with LUAD.

An effective IRL-based model for patient selection before ICI treatment in LUAD
has not been studied yet. A considerable proportion of patients with NSCLC have a
poor response to immunotherapy despite the high expression of immune checkpoint
molecules [35]. Thus, developing comprehensive predictive biomarkers is indispensable.
The complex interaction between tumor immune infiltrates and the immunotherapy re-
sponse affects NSCLC [36]. For instance, more CD8+ T cell infiltration in lung cancer tissue
is associated with a superior treatment response from pembrolizumab treatment [37]. In
our model, patients in the low-risk group have increased IPS values for PD1/PD-L1 and
CTLA4 blockers, and the expression of immune checkpoint molecules may be associated
with improved sensitivity to ICI treatment, suggesting that their tumors are in a preacti-
vated immune status. Thus, six IRLs can be useful for choosing suitable immunotherapy.
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Additionally, HPD is a novel pattern of tumor progression, with unexpected and rapid
tumor growth, poor prognosis of patients, and high rates of fatality, which have limited
the clinical application of ICI [6]. Considering the limitations of ICI due to HPD incidence,
valid biomarkers are urgently needed to predict the occurrence of HPD to improve ICI
efficacy. To date, several tumor cell biomarkers, including MDM2/4, epidermal growth
factor receptor mutation, DNMT3A, and FGF3/4/19, have been shown to be associated
with HPD [38]. We found that the expression profiles of MDM2 and MDM4, which regulate
p53 and apoptotic responses to cellular injuries when overexpressed [39], are modestly
elevated in low-risk patients. This finding implies that patients with a minimal IRL signa-
ture may gain benefits from ICI treatment, but some patients may have a potential risk of
HPD. Hence, multiple factors influencing the efficacy of ICI should be comprehensively
considered to optimize treatment regimens.

To explore the possible underlying mechanisms, we conducted GSEA on targeted
mRNAs of IRLs. KRAS signaling, interferon-gamma response, and IL2–STAT5 signaling, as
potential positive predictors of antitumor immunity [40], are enriched in the low-risk group.
CIITA, the target mRNA of AC104971, plays an important role in the interferon-gamma
response. Consistent with our result, the loss of CIITA converts lung cancer from anti-PD-1-
sensitive to anti-PD-1-resistant [41]. Our study suggests that these IRLs may regulate target
mRNAs and play a functional role in the sensitivity to ICI treatment for LUAD.

Even with the above promising findings, some limitations remain in this study. First,
the prognostic model is established by public databases, which may increase the bias.
Even though the model has been validated with the internal database, external database,
and single-center case-control study, the optimal cut-off value and predictive capability
of the six IRLs demand further confirmation in prospective clinical trials with complete
survival time based on a large sample size. Second, the functions of the six IRLs have
not been validated. Thus, functional and mechanistic experiments are needed to support
our findings.

In conclusion, the six-IRL signature is a promising biomarker for prognosis prediction
and facilitates the management of immunotherapy in LUAD. Patients with low risk might
gain benefits from ICI, although some have a risk of hyperprogressive disease.
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Abstract: The accurate prediction of the status of PLNM preoperatively plays a key role in treatment
strategy decisions in early-stage cervical cancer. The aim of this study was to develop and validate a
radiomics-based nomogram for the preoperative prediction of pelvic lymph node metastatic status in
early-stage cervical cancer. One hundred fifty patients were enrolled in this study. Radiomics features
were extracted from T2-weighted MRI imaging (T2WI). Based on the selected features, a support
vector machine (SVM) algorithm was used to build the radiomics signature. The radiomics-based
nomogram was developed incorporating radiomics signature and clinical risk factors. In the training
cohort (AUC = 0.925, accuracy = 81.6%, sensitivity = 70.3%, and specificity = 92.0%) and the testing
cohort (AUC = 0.839, accuracy = 74.2%, sensitivity = 65.7%, and specificity = 82.8%), clinical models
that combine stromal invasion depth, FIGO stage, and MTD perform poorly. The combined model
had the highest AUC in the training cohort (AUC = 0.988, accuracy = 95.9%, sensitivity = 92.0%, and
specificity = 100.0%) and the testing cohort (AUC = 0.922, accuracy = 87.1%, sensitivity = 85.7%, and
specificity = 88.6%) when compared to the radiomics and clinical models. The study may provide
valuable guidance for clinical physicians regarding the treatment strategies for early-stage cervical
cancer patients.

Keywords: cervical cancer; pelvic lymph node metastasis; radiomics; nomogram

1. Introduction

Cervical cancer is the fourth most common malignant tumor and the fourth leading
cause of cancer death in women worldwide [1]. Due to the promotion of tumor screening,
an increasing number of early cervical cancers have been discovered in recent years [2,3]. In
the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines on cervical
cancer, radical hysterectomy with bilateral lymph node dissection [with or without sentinel
lymph node (SLN)], carried out by laparotomy, was regarded as standard treatment in
patients with the International Federation of Gynecology and Obstetrics (FIGO) stage IA2,
IB and IIA [4,5]. However, nearly 30% of early-stage cervical cancer patients have pelvic
lymph node metastasis (PLNM), which is an extremely important factor affecting treatment
decisions [6,7]. For cervical cancer patients with PLNM, concurrent chemoradiation is
preferred instead of surgical treatment, according to ESMO Clinical Practice Guidelines [8].
A considerable number of patients have received unnecessary radical hysterectomies,
which may lead to serious complications and reduce their quality of life [4,5]. In addition,
PLNM is a poor prognostic indicator for recurrence and metastasis in early-stage cervical

Diagnostics 2022, 12, 2446. https://doi.org/10.3390/diagnostics12102446 https://www.mdpi.com/journal/diagnostics60



Diagnostics 2022, 12, 2446

cancer [9,10]. Therefore, the accurate prediction of the status of PLNM preoperatively plays
a key role in treatment strategy decisions.

Magnetic resonance imaging (MRI) has been widely recommended as the optimal
imaging equipment for preoperative staging and lymph node exploration of cervical
cancer [11]. However, traditional MRI based on morphological assessment, such as lymph
node size and morphology, has only a low sensitivity of 75% for lymph node status [12].
Due to the presence of inflammatory hyperplasia and micrometastatic lymph nodes, the
efficacy of traditional MRI in differentiating lymph node status is difficult to satisfy [13].
Low diagnostic efficiency may result in many cervical cancer patients being understaged,
which affects clinical decision-making [14].

Radiomics, which can extract quantitative features from digital medical images and
convert them into mineable high-dimensional data, plays an important role in personalized
clinical decision-making [15]. Radiomics analysis can be used in the diagnosis, prognosis,
and prediction of curative effects in a variety of tumor types by developing appropriate
model refinement features. This method has shown a huge potential for predicting lymph
node metastatic status in a wide range of tumor types in a cost-effective and non-invasive
way [16–18]. T2-weighted MRI imaging has also been widely utilized in the staging of
cervical cancer [19].

Therefore, the purpose of this research was to develop and validate a radiomics-based
nomogram for the preoperative prediction of pelvic lymph node metastatic status in early
cervical cancer.

2. Materials and Methods

2.1. Patient

This retrospective study was approved by the hospital ethics committee, and the
requirement for informed consent was waived. We retrospectively collected patients
diagnosed with cervical cancer with biopsy-proven cervical carcinoma receiving initial
treatment with surgery in our hospital from February 2017 to October 2019. The inclusion
criteria were as follows: (i) patients receiving radical hysterectomy and pelvic lymphadenec-
tomy; (ii) pathologically diagnosed cervical cancer; (iii) pretreatment MRI scan available in
our hospital; (iv) primary cancer lesions visible on sagittal T2WI; and (v) available clinical
characteristics. The exclusion criteria were as follows: (i) patients receiving other treatment
before surgery, including neoadjuvant chemotherapy, radiotherapy, or conization; (ii) ab-
sence of preoperative MRI scan in our hospital; (iii) poor MRI image quality, for example,
indistinct MRI image of the cervical structure; and (iv) rare pathological types of cervical
tumor, for example, mucoepidermoid carcinoma [20]. The MRI images were reviewed by
two radiologists with 7 and 9 years of experience.

In total, 150 patients were enrolled. Among these patients, 35 patients with PLNM and
115 patients without PLNM were treated surgically and confirmed pathologically. Baseline
clinicopathologic characteristics, including age, FIGO stage, maximal tumor diameter
(MTD), histological subtype, and stromal invasion, were derived from medical records.
The patient selection process is shown in Figure 1.

2.2. MRI Acquisition Protocol and Tumor Segmentation

The MRI scans were performed on each patient before the initial surgical treatment.
A T MRI scanner was used (Achieva 3.0 T, Philips, Amsterdam, The Netherlands), which
was equipped with a 16-channel abdominal coil. Abdomen and pelvic MRI examinations
were performed on patients. To avoid the loss of image information, the Digital Imaging
and Communications in Medicine (DICOM) images from Picture Archiving were acquired
without any compression or downsampling. The conventional protocol included T2-
weighted imaging on the axial, sagittal, and coronal planes, T1-weighted imaging, fat-
suppressed T1-weighted imaging, fat-suppressed T2-weighted imaging, and diffusion-
weighted imaging (b = 0.800 s/mm2) on the axial planes. The scanning parameters for
the fat-suppressed turbo spin echo (TSE) T2-weighted images were as follows: TR/TE:
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4854/85 ms, FOV = 300 × 300 mm; matrix = 232 × 171; slice thickness/gap: 5/1 mm;
NEX = 2.

All of the MRI images were loaded into 3D slicer software and then manually three-
dimensionally segmented (open-source software; https://download.slicer.org/, accessed
on 1 January 2022). All of the manual segmentations of the primary tumor region were
contoured as the region of interest (ROI) on axial T2WI, and the coronal and sagittal
MRI images were used for guiding the segmentation of the ROIs in the cross-sectional
plane. Segmentation was performed by a radiologist who had 7 years of experience in
gynecological MR imaging and resolved any uncertainty through consultation with another
radiologist who had 9 years of experience. The representative images of the lesions are
shown in Figure 2. The workflow of the radiomics analysis is presented in Figure 3.

2.3. Radiomic Feature Extraction

Following the hand segmentation of the tumor, the radiographic characteristics of
the tumor were extracted using open-source software called Pyradiomics. To generate
a consistent normal-distribution image distribution, standardized techniques on T2WI
pictures were applied. We collected 1688 radiological characteristics from seven imaging
types on the T2WI of the tumor. Tumor size (e.g., volume), shape (e.g., circumference,
diameter), grayscale cooccurrence matrices (e.g., energy, contrast, entropy), grayscale
run-length matrices, and grayscale dependency matrices are all quantified using these
characteristics. Python 3.7 is used to implement all functionalities. The workflow of the
radiomic feature extraction is presented in Figure 3.

Figure 1. Flow chart of patient enrollment in this study.
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Figure 2. Representative MRI images in PLMN(−) and PLMN(+) patients.

Figure 3. Radiomics analysis workflow. The study’s subject underwent T2WI image collection.
Radiomics performed feature extraction after manually marking the ROI region of the tumor lesion.
The efficient feature combination was filtered using one of two feature extraction methods: filtered or
embedded. For further statistical analysis, ROC curves were used.
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2.4. Radiomics Feature Selection and Development of the Radiomics Model

The goal of feature selection is to choose some of the most useful features from the
original features to minimize dimensionality and increase the model’s generalization ability,
as well as to speed up the fitting process. We have chosen two types of feature selection
methods: filtered and embedded. MINE, Pearson’s initial relation number, and ANOVA F
value (F Classif) are chosen in the filtered scheme, whereas ExtraTree, GBDT, and Random
Forest are chosen in the embedded scheme.

Because we used Pyradiomics to extract a vast number of features from the images,
these features are not fully associated with the prevalence of the disease. Therefore, we
chose the most effective feature extraction approach among six alternative feature fil-
tering strategies to implement feature extraction. We also evaluated the validation of
Chalkidou et al. [21], in which research showed that a stable model might be built using
10–15 characteristics. The outcomes of the experiments reveal that not all datasets will
benefit from such a selection.

We use a support vector machine model to implement the sample classification when
we have finished selecting features. The RBF kernel is also chosen in the SVM model, and
the hyperparameter C is chosen to optimize the AUC value under the training set.

To develop the clinical prediction model, the stromal invasion depth, MTD, and
FIGO phases were examined. To determine the sample classes, the SVM model is em-
ployed. The logistic regression approach with forward stepwise selection was used to
create the combined model. In the combined model, the radiomics signature and clinical
risk variables were incorporated. The combined model was presented as a radiomics-based
nomogram to make it a more user-friendly tool for the preoperative prediction of PLMN
status. The formula of the radiomics signature of the final radiomics model is shown in
Supplementary S1.

2.5. Assessment of Predictive Models

The performance of these prediction models was evaluated in the training cohort
before being verified in the validation cohort using the receiver operating characteristic
(ROC) curve. The agreement between the nomogram prediction probabilities of the PLMN
status and actual results was assessed using a calibration curve.

2.6. Statistical Analysis

All of the statistical analyses were conducted with R 3.4.1 and Python 3.7. The
independent-sample t-test of independent samples was used to assess the significance
of age and MTD between the training cohort and the validation cohort. The chi-squared
test or Fisher’s exact test was used to evaluate the significance of categorical variables
such as FIGO stage, histology type, stromal invasion, lymphovascular invasion (LVSI), and
nerve invasion (NI) between the training and validation cohorts. Two-tailed p-values less
than 0.05 were considered statistically significant.

3. Results

3.1. Patients’ Clinicopathologic Characteristics

Between February 2017 and October 2019, a total of 301 patients who underwent
surgery for cervical cancer were enrolled. According to the inclusion and exclusion criteria,
151 patients were excluded. Finally, 150 patients fulfilled the eligibility criteria and were
enrolled in the following analysis (Figure 1).

The patient characteristics are summarized in Table 1. The distribution of clinical
characteristics (age, FIGO stage, MTD) and pathological characteristics (histology type,
stromal invasion depth, LVSI, nerve invasion) were balanced between the training and
validation cohorts. The MTD, stromal invasion depth, and LVSI status showed a significant
difference between the patients with and without PLNM metastasis in the training cohorts.
The LVSI status and NI status showed a significant difference in the validation cohort, as
shown in Table 1.
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Table 1. Characteristics of the included patients.

Characteristics

Training Cohort (n = 104) Validation Cohort (n = 45)
p *

PLNM(+) PLNM(−) PLNM(+) PLNM(−)

(n = 25) (n = 80) p (n = 10) (n = 35) p

Age, years 0.095 0.312 0.520

Mean 47.12 46.66 43.30 46.60

FIGO Stage (N, %) 0.787 0.208 0.871

IA 0 2 1 0
IB 15 52 5 22
IIA 10 26 4 13

MTD, cm 0.007 0.220 0.815

Mean 3.95 2.77 2.97 3.07

Histology (N, %) 0.331 0.657 0.664

SCC 19 67 10 30
AC 4 11 0 4
ASC 2 2 0 1

Stromal Invasion <0.001 0.261 0.448

Deep 1/3 21 28 6 10
Middle 1/3 2 24 2 12
Superficial 1/3 2 28 2 13

LVSI status <0.001 0.010 0.519

Positive 2 57 1 21
Negative 23 23 9 14

NI status 0.627 0.016 0.185

Positive 23 76 6 33
Negative 2 4 4 2

Note: p is derived from the chi-squared test or Fisher’s exact test between patients with and without PLNM
in the training and validation cohorts, respectively. p * represents the difference in each clinicopathological
variable between the training and validation cohorts. Abbreviations: PLNM: pelvic lymph node metastasis; MTD:
maximal tumor diameter; LVSI: lymphovascular invasion; SCC: squamous cell carcinoma; AC: adenocarcinoma;
ASC: adenosquamous carcinoma; NI: nerve invasion.

3.2. Feature Selection and Performance of the Clinical Model and Radiomics Model

We collected a total of 1688 characteristics, with 744 associated with wavelets,
372 associated with LBP, 186 associated with squares, and 107 associated with the original.
The exponential, the gradient, and the logarithmic functions each have 93 characteristics.
Furthermore, feature filtering was accomplished utilizing two types of methods: filtered
and embedded. Overall, the filtered technique beats the embedded extraction strategy,
ignoring the fact that the embedded scheme varies significantly with different feature
extraction ratios.

Although the AUC increases by over 90% as the number of features embedded grows,
the outcomes are more heavily influenced by the number of chosen features. In contrast,
when the number of features grows, the filtered solution maintains a consistent rising trend.
MINE outperforms F Classification and Pearson in regard to feature selection, with a rank
of 138. The MINE approach is focused on a feature number of 138 for later trials (Figure 4).

In the training cohort (AUC = 0.925, accuracy = 81.6%, sensitivity = 70.3%, and speci-
ficity = 92.0%) and the testing cohort (AUC = 0.839, accuracy = 74.2%, sensitivity = 65.7%,
and specificity = 82.8%), the clinical models that combined stromal invasion depth, FIGO
stage, and MTD performed poorly (Table 2). In both the training (AUC = 0.975, accuracy =
91.8 percent, sensitivity = 92.0 percent, and specificity = 91.7 percent) and testing cohorts
(AUC = 0.852, accuracy = 77.1 percent, sensitivity = 82.9 percent, and specificity = 71.4 percent),
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the radiomics model outperformed the clinical model significantly, as depicted in the ROC
curves (Figure 5).

Figure 4. Six different feature screening approaches are illustrated, with the horizontal coordinate
showing the number of features selected and the vertical coordinate showing the classifier’s AUC.
The filtered scheme includes (a–c). The embedded scheme includes (d–f).

Figure 5. The ROC curves of the clinical model, radiomics models, and combined model in the
training cohort (a) and testing cohort (b).
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Table 2. Performance of models.

Training Cohort Testing Cohort

AUC ACC (%) SEN (%) SPE (%) AUC ACC (%) SEN (%) SPE (%)

Clinical

stage 0.832 0.816 0.708 0.920 0.767 0.771 0.657 0.886

pathology 0.476 0.531 0.08 0.96 0.527 0.485 0.08 0.886

diameter 0.712 0.714 0.75 0.68 0.728 0.729 0.771 0.685

Stage+pathology+diameter 0.925 0.816 0.703 0.920 0.839 0.742 0.657 0.828

Radiomics model 0.975 0.918 0.920 0.917 0.852 0.771 0.829 0.714

Combined model 0.988 0.959 0.920 1.00 0.922 0.871 0.857 0.886

3.3. Performance of the Combined Model and the Radiomics Nomogram

Tumor stage, tumor infiltration depth, and radiomics signature were chosen throughout
the creation of the integrated model. The combined model had the highest AUC in the
training cohort (AUC = 0.988, accuracy = 95.9%, sensitivity = 92.0%, and specificity = 100.0%)
and the testing cohort (AUC = 0.922, accuracy = 87.1%, sensitivity = 85.7%, and specificity
= 88.6%) when compared to the radiomics and clinical models (Table 2 and Figure 5). The
combined model has a better performance than the clinical model in both the training and test
cohorts. The radiomics-based nomogram and the combined model are shown in Figure 6. The
calibration curves of the radiomics-based nomogram demonstrated satisfactory agreement
between the predictive and observational possibility of the PLMN status in both the training
and validation cohorts.

Figure 6. The radiomics-based nomogram (a). Calibration curves in the training cohort (b) and
validation cohort (c). A closer fit to the diagonal line indicates a better evaluation.
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4. Discussion

For patients with early-stage cervical cancer, pelvic lymph node (LN) status is one of
the most important factors taken into account when making clinical decisions regarding
surgery or radical chemoradiotherapy. Many inspection methods have been made to
enhance the accurate evaluation of LN status before surgery, such as sentinel lymph node
(SLN) biopsy, magnetic resonance imaging (MRI), and positron emission tomography (PET)-
computed tomography (CT). SLN biopsy can acquire optimal diagnostic efficiency, but the
absence of a standard surgical technique and the surgeon’s training and experience may
influence the outcome of SLN biopsy [22]. In addition, SLN biopsy is an invasive approach
and is not routinely applied. MRI has widely been used in preoperative staging evaluation
and lymph node detection of cervical cancer. Although MRI has the potential to identify
LNM status according to the MRI morphological appearances of PLNM, such as size and
shape, its efficiency and sensitivity in diagnosing PLNM are unsatisfactory [23]. Several
previous studies have shown that a considerable proportion of cervical cancer patients
were misclassified according to morphologic criteria on MRI images [24,25]. Although
PET-CT shows favorable performance and is superior to MRI, considering the availability
of PET-CT devices and high inspection costs, its wide application has a long way to go [26].

In this study, we successfully developed and validated a noninvasive individualized
radiomics-based nomogram integrating the radiomics signature and clinicopathologic
factors for predicting PLNM in patients with early-stage cervical cancer before surgery. The
proposed radiomics nomogram exhibited a favorable performance in discriminating lymph
node status in the training and validation sets. This radiomics nomogram also showed
more predictive efficacy than the traditional diagnostic criteria of PLNM.

Chalkidou and colleagues proposed a solution to the problem of picking a limited
number of finite features [21], which is the focus of this study. The results of the studies
reveal that only a subset of datasets fit the criteria, not all of them. As part of our related
work on lymphovascular space invasion, we substituted the study population in the
original dataset in this experiment. It was not possible to achieve a decent result in Lasso’s
technique based on the theory presented by Chalkidou et al. To achieve this, two broad
categories of feature selection strategies were chosen for validation, and all experiments
consistently indicated that even the same dataset might have a significant influence on the
selected features when the experimental aim is changed.

The findings of the experiments indicate that the tree-based feature extraction approach
may not be suited for feature extraction in imagingomics. The tree scheme is not ideal
for processing continuous features, and the continuity of the final derived features is
quite visible. Second, the tree-based algorithm’s performance tends to be poor when
processing data with substantial feature correlation, and the generated features are highly
correlated. The other set of approaches, on the other hand, makes better use of data
correlation and hence beats the tree-based strategy in the experimental comparison. MINE
is the most effective of these approaches since it finds not only the linear but also the
nonlinear correlations between the variables. It is possible that this is why the MINE
scheme outperforms the others.

By combining the radiomics signature with easily available, preoperative clinical risk
factors, we developed a quantified radiomics nomogram, which is convenient to utilize for
clinicians. The radiomics nomogram could generate a personalized probability of PLNM
for patients before surgery, which could provide more information for clinicians to make
treatment decisions. This individualized treatment is in line with the trend of personalized
precision medicine [27].

In our study, some clinical characteristics were independently correlated with LNM
status, including MRI-reported LN status and FIGO stage. These clinical characteristics
were quite similar to those from other previous studies based on conventional MRI ana-
lytical methods, indicating that the LNM status was closely related to the total status of
the primary tumor [24,25,28]. Recently, some studies [29–31] developed combined models
for predicting LNM status in cervical cancer patients based on clinical and histological
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information and MRI images. These studies utilizing the radiomics method showed com-
parable prediction performance with ours. Compared with these previous studies, our
study provides an easier visual tool for doctors to evaluate the PLNM status preoperatively
and noninvasively.

There were several limitations in our study. First, we performed radiomics analysis on
the T2WI sequence. During the segmentations, we excluded the T1WI for the unsatisfactory
performance in displaying the lesions. Therefore, we did not continue the segmentations
on T1WI. We also excluded DWI due to the low signal-to-noise ratio and motion artifacts.
In future research, we will combine or compare more MRI sequences to improve diagnostic
efficiency. Second, the cervical lesions that were difficult to recognize or invisible on MRI
were excluded, which may lead to potential selection biases. Third, due to the relatively
small number of cases in this single-center retrospective study, a larger sample size, multiple
centers, and prospective datasets are needed to optimize the performance of the radiomics
model in the future. Finally, all of the manual segmentations of the tumor tissues on axial
T2WI and contrast-enhanced T1-weighted spin–echo images were performed by a radiolo-
gist who had 5 years of experience in gynecological MR imaging, and each segmentation
was validated by a senior radiologist who had 12 years of experience. Therefore, the final
segmentations were revised and verified by two experienced radiologists. However, the
concordance between the two observers was not measured. In the future, we will perform
the analysis of concordance to provide more precise data. Automatic tumor segmentation
and extraction with machine learning could be further explored [32].

5. Conclusions

This study provides an effective and noninvasive tool for the individualized preopera-
tive prediction of PLNM status. This radiomics-based nomogram would aid the selection
of the optimal therapeutic strategy and clinical decision-making for individuals. The study
may provide valuable guidance for clinical physicians regarding treatment strategies for
early-stage cervical cancer patients.
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Abstract: In 2020, colorectal cancer was the third most common type of cancer worldwide with
a clearly visible increase in the number of cases each year. With relatively high mortality rates
and an uncertain prognosis, colorectal cancer is a serious health problem. There is an urgent need
to investigate its specific mechanism of carcinogenesis and progression in order to develop new
strategies of action against this cancer. Nectins and Nectin-like molecules are cell adhesion molecules
that take part in a plethora of essential processes in healthy tissues as well as mediating substantial
actions for tumor initiation and evolution. Our understanding of their role and a viable application of
this in anti-cancer therapy has rapidly improved in recent years. This review summarizes the current
data on the role nectins and Nectin-like molecules play in colorectal cancer.

Keywords: Nectin; Necl; cancer; colorectal; diagnostics

1. Introduction

Colorectal cancer (CRC) is a serious worldwide health problem with over 1.9 million
new cases estimated in 2020 [1]. Globally, CRC is the third most commonly diagnosed can-
cer in both sexes combined [2]. It is estimated that CRC is the second most common cause
of cancer-related mortality and accounts for approximately 930 thousand deaths around
the world in 2020 [1,3]. Increase in incidence, altogether with predictive models for future
years, prove that CRC is a growing burden for patients and national healthcare systems [4].
A significant shift toward the growing incidence among younger adults (<50 y.o.) makes
those predictions even more worrisome [5]. The COVID-19 pandemic led to weighty health
care delivery disruptions also in the matter of the prevention and treatment of patients
with CRC [6,7]. The association between the risk of a more advanced stage of disease and
the COVID-19 pandemic was reported in patients undergoing CRC when compared with
pre-pandemic cases [8]. Limited access to health care and a CRC screening slowdown
emphasized the importance of research in new diagnostic tools. Colorectal cancer is a
nonhomogeneous group in which over 90% of cases are adenocarcinomas [9]. Long-term
survival and cure rates have not improved significantly in recent years, especially in more
advanced stages of the disease [9–11]. Carcinogenesis involves an accumulation of irre-
versible genetic mutations and epigenetic alterations. Within the same tumor, there are
genetically distinguished cell populations coexisting. Epigenetic alterations vary from
“hard-wired” and stable during cell division to transient and changing with every few divi-
sions [12]. Epigenetic alterations, leading to developmental genes’ reactivation, normally
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silent in somatic tissues, have been observed in CRC specimens [13]. Not every geneti-
cal mutation and epigenetic alternation lead to specific phenotype change. Phenotypic
plasticity has been described, also in CRC cells, showing that there is an ability to alter tran-
scriptome without underlying genetic or epigenetic heritable mutation [14]. All the above
mentioned sum up into a complex intra-tumor heterogeneity and are closely connected in
cancer evolution. Clonal selection and evolution are at the base of treatment resistance [13].
Approximately 60% of all CRCs are sporadic–they develop without any known family
history or any obvious genetic cancer syndrome (e.g., FAP or HNPCC) [15,16]. One-in-four
CRCs has a hereditary component, as family and twin studies show. Yet, environmen-
tal factors play a role in carcinogenesis in those cases. Only 5% of CRC is attributed to
well-characterized, high-penetrance syndromes [17].

The prognosis for patients with CRC is strongly determined by tumor invasiveness
and the development of local or distant metastases. The presence of advanced locally or
disseminated disease is a strong negative prognostic for a cure and long-term survival.
Surgical treatment remains at the base of a curative approach [10]. Big differences in overall
survival, even within same-stage groups, place the search for valuable prognostic factors
in the spotlight of clinical research [18,19]. Among many others, cell surface molecules
are being investigated for their clinical relevance (e.g., carcino-embryonic antigen). Cell
adhesion molecules (CAMs) play a role in diagnostics and remain a field of interest in
pathophysiology and the development of new treatment strategies in CRC [20–23]. With
modern improvements we are on the verge of introducing a wide array of prognostic
and predictive tools into clinical practice, which will help treatment decision making [24].
Advanced statistical tools can help with navigation through numerous biomarkers, combin-
ing individual and distinct features into more relevant groups–e.g., consensus molecular
subtypes classification of CRC as a prognostic and predictive instrument for clinical deci-
sions [25–27] Factors, once associated only with poor prognosis, lead researchers to new
therapy development (e.g., BRAF, HER2) [28]. The new methods, such as circulating tu-
mor DNA (ctDNA) allow more precise and sooner detection of the residual disease or
relapse [29–31]. Nectins and nectin-like molecule seem to be worthy research candidates
for future clinical implementation.

2. General Characteristics of Nectins and Nectin-like Molecules

Nectin and Nectin-like molecules (Necls) belong to immunoglobulin-like (Ig-like)
transmembrane CAMs that play a significant role in cell-to-cell, calcium-independent ad-
hesion formation, cell motility, proliferation, differentiation, polarization, and apoptosis.
First discovered in 1986 as poliovirus receptor-related proteins (PRR proteins); then, after
amino acid sequencing and further studies, they were identified as members of the im-
munoglobulin superfamily (IgSF). Finally, after discovering CAMs properties, a change in
nomenclature was made: Nectins derived from latin “necto” i.e., “to bind” [32] (Table 1).
Divided into four members of Nectins and five members of Necls, the superfamily gained
attention due to their functions in immune response (e.g., TIGIT-related), being virion-entry
cell receptors and tumor suppressors and oncoproteins [33]. Several experiments have
shown lesser tumorogenic potential cells with positive expression of selected Nectins and
Necls [34–36]. By contrast, the loss of expression of Nectins and Necls has been associated
with a higher aggressiveness in several cancer cells e.g., Nectin-3 in pancreatic neuroen-
docrine tumor [37]. A specific mechanism of the mentioned tumor suppression is not well
elucidated, whether contact inhibition is a main process is not clear. Studies about the evolu-
tion of Nectins and Necls have showed Nectin-like protein 5 to possess characteristics that
are intermediate between these two groups. Moreover, sequence conservations of Nectins
across species suggests evolutionary constraints due to the critical roles played by these
CAMs [38]. Despite being diverse in terms of function, as well as phylogenetic distribution,
members of the IgSF family share structural similarities, such as an extracellular domain
consisting of three Ig-like loops, a transmembrane domain, and a short cytoplasmic tail [39].
On account of their ability to establish both, homophilic and heterophilic interactions with

73



Diagnostics 2022, 12, 3076

other CAMs (such as cadherins), Nectins perform a crucial role in the initiation of the
formation of adherence junctions (AJs) [38].

Table 1. The Nectin nomenclature and viral cell-entry mediation examples.

Molecule Other Names Viral Cell-Entry Mediation

Nectin-1 CD111, PVRL-1, PRR-1, HVEC HSV-1 1, HSV-2 2, PRV 3, BoHV-1 4

Nectin-2 CD112, PRVL-2, PRR-2, HVEB HSV-1 1, HSV-2 1, PRV 3, HHV-6B 5

Nectin-3 CD113, PRVL-3, PRR-3 -

Nectin-4 PVRL-4, PRR-4, MeV 6

Nectin-like molecule 5 CD155, PVR, Tage4 PV 7

1 Herpes simplex virus 1, 2 herpes simplex virus 2, 3 pseudorabies virus, 4 bovine herpes virus-1, 5 human
herpesvirus 6B, 6 measles virus, 7 poliovirus.

2.1. Homophilic and Heterophicic Interactions

Nectins form transient and weak clusters of homo-cis dimers on the cell surface, which
then trans-interacts with extracellular regions of opposing cell membrane Nectin molecules.
It was demonstrated that Nectins are able to form both homophilic and heterophilic trans-
interaction; however, heterophilic interactions are selective—for example, Nectin-1 interacts
with both Nectin-3 and Nectin-4, but there is no interaction with Nectin-2 [40]. The
selectiveness of heterophilic interactions is probably due to conserved charged residue
localized in the center of the adhesive face of each Nectin. Therefore, only Nectins with
opposed charged residues form heterophilic trans-interactions. Additionally, the transient
and weak nature of homo-cis dimers can be, at least partially, explained by the repulsion of
identical electrostatic charges [41].

Recruitment of E-cadherin to Nectin-based cell–cell adhesion sites and the subsequent
activation of Cdc42 and Rac small G proteins enhances the formation of cadherin-based
AJs through the reorganization of the actin cytoskeleton [42].

2.2. Nectin Spots

The C-terminus of the Nectins cytoplasmic domain determines their ability to interact
with afadin and PAR3 [39]. Additionally, Nectins initiate afadin- and cadherin-independent
cell adhesion apparatus that is not linked with the cytoskeleton. This type of apparatus is
observed as dots or short lines under an immunofluorescence microscope and is named
Nectin Spots [43].

The cytoplasmic tails of Necls differ from those of Nectins and interact with various
scaffolding proteins, such as MAGUK or TCTEX1—a subunit of the dynein motor complex.
Necls are ubiquitously expressed and have a greater variety of functions than Nectins [44].

2.3. Crosstalk between Cells and Extracellular Matrix

Many studies on MDCK cells have proven that Nectins and Necls promote crosstalk
between cell–cell junctions and cell–extracellular matrix (ECM) junctions [42,44]. Extracel-
lular regions of Nectins interact with integrins during the formation of AJs. Integrins are
responsible for interactions with ECM proteins. The integrin-mediated cell–ECM junctions
positively or negatively regulate the formation and stability of cell–cell junctions through
protein tyrosine kinases associated with integrins (e.g., FAK, c-Src). Interaction between
Nectins is responsible for integrin inactivation and, therefore, the stabilization of AJs [45].
The breakdown of AJs leads to the disruption of tight junctions (TJs) and desmosomes
and the loss of epithelial cell integrity by affecting subsequently cell–ECM junctions. This
process may lead to epithelial-to-mesenchymal cell transition (EMT). In cancerous cells,
such increased motility is responsible for pathological implications, i.e., invasion—EMT
and metastasing—cell migration [46–48].
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2.4. Interactions with Growth Factors

Growth factors are responsible for cell proliferation regulation. In mature tissues, that
process is transduced by a complex network of molecules. Interactions between Nectins,
Necls, and growth factor receptors play a significant role in this network. For example,
Nectins interact with the platelet derived growth factor (PDGF) receptor through the
extracellular region and regulates the PDGF-induced activation of Akt and the inhibition of
apoptosis in cooperation with afadin at PI3K activation. Experiments on Nectin-3 or afadin
knockdown resulted in attenuated phosphorylation of Akt as well as decreased activity of
PI3K enhanced by the PDGF receptor in NIH3T3 cell lines. Furthermore, embryoid bodies
derived from afadin displayed an enormous number of apoptotic cells [45,49].

2.5. Tissue Distribution

Nectins differ in tissue distribution, where Nectin-4 normally occurs in placenta
and embryonic tissues and Nectins-1 to -3 are commonly expressed in healthy adult
tissues [50,51]. Many studies have shown an overexpression of Nectin-4 in numerous
cancerous tumors, such as breast, pancreatic, urotheliary, ovarian, squamous cell carcinoma,
and colorectal cancer [52,53] (Table 2). Necl-5 has a rather low expression in healthy adult
organs but is overexpressed in many cancers. Necl-1 is specifically expressed in neural
tissue whereas other members are ubiquitously expressed in tissues [39].

Table 2. Expression of Nectins and Necls in selected cancers.

Molecule Colorectal Cancer Breast Cancer Urothelial Cancer

Nectin-1 ↑ * ↑ * - ***/↑ *

Nectin-2 ↑ * ↑ * NED ****

Nectin-3 NED *** ↑ */↓ ** NED ****

Nectin-4 ↑ * ↑ */↓ ** ↑ *

Nectin-like molecule 5 ↑ * ↑ * ↑ *

↑ * = high expression, ↓ ** = low expression, - *** = standard expression, **** = not enough data.

2.6. Nectins in Disease

Studies have shown that mutations in Nectin and Necls coding genes can lead to
many diseases, such as cancer, ectodermal dysplasia, Alzheimer’s disease, stress-related
mental disorders, viral infections, and cataracts [43]. Several Nectin-1 mutations cause
disorders in ectodermally derived structures, such as lip/palate clefts, dental anomalies,
and hypertrichosis—known as, e.g., Zlotogor–Ogur syndrome (CLPED1) or Margarita Is-
lands Syndrome (CLPED2) [45]. Studies on the biology and pathology of Nectins and Necls
has led to important innovations and clinical applications, such as FDA-approved therapy
for treating locally advanced or metastatic urothelial carcinoma antibody–drug conjugate:
enfortumab vendotin uses Nectin-4 as a target molecule for entering tumor cells [54,55].

3. Nectins and Necls in Cancer

3.1. Nectin-1

Nectin-1 is known as CD111, PRR-1, PVRL-1, and expressed under normal conditions
on cells of the gastrointestinal tract, liver, gallbladder, female reproductive organs, and
skin [50,51]. It is probably best studied as an entry receptor for the human herpes virus 1
(HSV-1) infection (Table 1). Nectin-1 has gained additional attention due to its interactions
with CD96 (known also as Tactile) [56,57]. Abnormal expression of Nectin-1 can be observed
in tumors of epithelial origin, such as cervical squamous cell carcinomas, cancer-associated
fibroblasts of pancreatic ductal adenocarcinomas, CRCs and gastric cancers, or malignant
transformations of keratinocytes. The observed expression varies from low to high, and the
published data are not consistent in this matter [40] (Table 2). CD96/Nectin-1 interactions
have not yet been fully explored, although studies have shown that cells with Nectin-1
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expression have been more susceptible to NK-mediated cell toxicity compared to those
with no expression [56]. It can be speculated that, if soluble ligands circulating in serum
can competitively inhibit NK-cell activation, they can also induce the internalization and
degradation of activating receptors on cell surfaces. Colon cancer might be a promising
target for NK cell-based adoptive immunotherapy, and there is a need to investigate the
role of Nectin-1 in further studies [58]. HSV-1 is a well-studied virus and was used as
the first rationally designed replication-competent onco-lytic virus (RCOV). Moreover, a
soluble variable domain of Nectin-1 was successfully used in an experiment as an “adaptor”
for increasing the efficacy of an HSV-1 infection in CHO cells with no Nectin-1 expression.
Based on these findings, cancerous cells, which display enhanced Nectin-1 availability, may
serve as a receptor for HSV-1 viral oncolysis [59].

Nectin-1 tends to be a possible prognostic factor in the disease-free survival of patients
with CRC. Research conducted by Tampakis et al. showed that Nectin-1 is strongly ex-
pressed in the cytoplasm of CRC cells in comparison to adjacent cells. Nectin-1 expression
in colorectal cancer is associated with a significantly worse three-year progression-free
survival, therefore, identifying a group of patients at high risk of an early recurrence of the
disease [60]. These findings correlate with studies on pancreatic ductal adenocarcinoma
patients. Yamada et al. reported that diffuse Nectin-1 expression in the cancer-associated
fibroblasts of pancreatic ductal adenocarcinoma patients is associated with invasion, metas-
tasis, and shorter survival [61]. It is important to note that colorectal endometriosis, which
represents the most aggressive form of endometriosis, is characterized by both an increased
expression of Nectin-1 and a decreased expression of Necl-2 [62].

3.2. Nectin-2

Nectin-2 (also known as CD112 and PVRL-2) is expressed in a vast number of adult
tissues [51]. There is an overexpression of Nectin-2 in tumors of epithelial origin, such
as squamous cell carcinomas and in adenocarcinomas (e.g., colorectal, esophageal, lung,
pancreatic, and gallbladder cancer) (Table 2). Besides involvement in cell–cell adhesion,
Nectin-2 interacts with immune cells by binding to different immune receptors, including
CD226 (DNAM-1, DNAX accessory molecule-1), T-cell immunoreceptor Ig tyrosine (TIGIT)-
based inhibition motif (ITIM) domain, and CD112R [63,64]. Coupling with receptors of
CD8+ T-cells and NKs to modulate immune functioning by mediating immune-activating
or inhibitory signaling in leukocytes. Necl-5 binds to the same immune receptors as
Nectin-2, and it has been proven in MCA-induced tumors of Necl-5-deficient mice that
Nectin-2 upregulation compensates Necl-5 absence in immune surveillance. In this study,
Nagumo et al. pointed out that there is some sort of modulation of expression between
Nectin-2, Necl-5, TIGIT, DNAM-1, and CD96 since they did not observe any difference in
tumor growth in the Necl-5-deficient mice model compared to wild phenotypes [65]. Nectin-
2 has been found to play an important role in the process of the NK cell-mediated killing
of colon adenocarcinoma cells. A functional blockage of Nectin-2 with a specific antibody
led to the significant inhibition of NK cell cytotoxicity to a colon cancer cell [58]. Platelet
cloaking of circulating tumor cells and releasing transforming growth factor beta (TGFß)
from platelets is an evasion method to hide from immune surveillance [66]. Cluxton et al.
reported that cancer cells cloaked by platelets had a significantly reduced expression of
Nectin-2 and Necl-5 on the tumor cell surface. Simultaneously, TGFß mediated the CD266
downregulation on NK cell surface. This suggests that the “immune decoy” mechanism
is mediated by platelets. Platelet cloaking actively disrupts the CD226/CD96–Nectin-
2/Necl-5 axis of circulating cancer cells recognition and plays a significant role in metastatic
cascade [67].

An estimated 3–5% of patients with diagnosed CRC display HER2 amplification. In
recent years, this has emerged as an actionable therapeutic target. There are treatments
targeted at HER2 in clinical trials, e.g., with trastuzumab-deruxtecan ADC in metastatic
CRC [68,69]. Nectin-2 has an affinity with the inhibitory immune receptor CD112R present
in T-cells and NK cells [70]. Trastuzumab has limited action on cells with low HER2
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expression. Antibody blockage of CD112R-enhanced NK cell cytokine production when
NK cells were incubated with trastuzumab-coated breast cancer cells [71]. Thus, Nectin-2
and its receptors can be utilized to improve the therapeutic level of trastuzumab and can
possibly be used in cases with lower HER2 expression. The complex and not yet fully
explored TIGIT-CD96-CD112R-CD-226 axis is a promising target for a next generation of
immunotherapy in cancer [57,64].

PVRIG binds with high affinity to Nectin-2 and suppresses T-cell function. This may
lead to the presence of exhausted T-cell phenotypes in the tumor microenvironment (TME)
that is unable to perform effective cytotoxicity. Whelan et al. found that PVRIG-Nectin-2
axis blockage enhanced cytokine production and the cytotoxic function of T-cells [72].
Immune-checkpoint inhibitors targeting the PVRIG-Nectin-2 axis in Nectin-2 positive
cancers may be evaluated as potential drugs.

What is more, Nectin-2 is the target of post-translational modifications. Ubiquitination
not only decreases Nectin-2 surface expression by targeting the protein for degradation but
also by promotes Nectin-2 intracellular retention. Upon the inhibition of the ubiquitin path-
way, increased Nectin2 surface expression renders tumor cells more efficiently recognized
and lysed by NK cells by mediating the CD226-dependent co-stimulation of both NK and
CD8+ T cells [73].

An interesting finding was described by Bekes et al. in a study on endothelial per-
meability and Nectin-2 downregulation. This study observed that patients with more
advanced stages of ovarian cancer displayed an overexpression of Nectin-2 in cancer cells,
a lower expression of Nectin-2 in peritoneal endothelium cells, and a significantly higher
concentration of circulating vascular endothelial growth factor (VEGF). These findings ad-
vocate a thesis that the downregulation of Nectin-2 is responsible for increased endothelial
permeability, which is VEGF driven [74]. These findings are in line with a study carried out
by Russo et al. However, increased vascular coverage in the retina and spleen of Nectin-
2-deficient mice was assumed to be caused rather by a defect in contact inhibition than
other angiogenic factors (e.g., VEGF). Moreover, it has been demonstrated that Nectin-2
is involved in the homecoming process of T-cell entry into the spleen. Both T-cell entry
routes into the spleen (through the red pulp and the marginal zone) were impaired in the
Nectin-2-deficient model [75].

Karabulut et al. measured serum levels of Nectin-2 in 140 patients with diagnosed
CRC. It was found that serum Nectin-2 levels in patients with both metastatic and non-
metastatic CRC have a diagnostic value since there was a significant difference in baseline
serum Nectin-2 levels between the whole group patients and the healthy control group
(p < 0.001; for all, non-metastatic (stage II or III), and metastatic patients). Patients with
elevated serum Nectin-2 concentrations had significantly less favorable progression-free
survival rates compared with those with lower levels (median 5.8 v 9.1 months, respec-
tively, p = 0.04). However, the results of this study did not show a statistically significant
relationship between serum Nectin-2 concentration and overall survival or chemotherapy
responsiveness [76].

This finding is in line with results obtained by researchers in different types of cancers.
Liang et al. tested the significance of Nectin- 2 in pancreatic ductal adenocarcinomas. It has
been shown that Nectin-2 expression is significantly correlated with clinical progression,
as indicated by large tumor size and lymph node metastasis. Moreover, positive Nectin-2
expression is correlated with shorter survival in the cited study [77]. Nectin-2 also acts
as an entry receptor for the Herpes simplex virus by interacting with viral glycoprotein
D [40,78]. The role of Nectin-2 in colorectal cancer needs to be further elucidated.

3.3. Nectin-3

Nectin-3, also known as PVRL-3, PRR3, or CD113, plays a significant role in organ
development (e.g., ocular, inner ear, and cerebral cortex development) and is widely ex-
pressed in healthy adult tissues (e.g., endocrine, gastrointestinal tissues, testis) (Table 1).
Nectin-3 has the most versatile skill in terms of trans-interactions with other family mem-
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bers [39,40]. It is the only known Nectin that is expressed on the T-cell surface. Nectin-3
plays a significant role in T-lymphocytes extravasation. It trans-interacts with Nectin-2 on
endothelial cells (localized near high endothelial venules) and facilitates the transendothe-
lial migration of immune cells to secondary immune organs or surrounding tissues [79].
A similar mechanism may apply to malignant cells during disease dissemination [80].
Nectin-3 was identified as a mandatory C. difficile receptor for TcdB-mediated cytotoxicity
as it is highly expressed in the colon. It may serve as a drug-target to prevent pseudomem-
branous colitis symptoms in C. difficile infections [81]. There are no specific studies on
the clinical application of Nectin-3 expression in CRC. From the published data, we know
that Nectin-3 expression is upregulated in lung adenocarcinomas, ovarian, and nasopha-
ryngeal carcinomas (Table 2). Minawa et al. presented a study in which the membranous
expression of Nectin-3 (normally absent in healthy lung tissues) was found to be associ-
ated with a poor prognosis for lung adenocarcinoma patients. Surprisingly patients who
showed the membranous expression of Nectin-3 together with e-cadherin co-location had
a better overall survival rate than in the case of the separate localization of both molecules
within a tumor cell. In cases where Nectin-3 was expressed on a cell membrane with no
expression of e-cadherin, the overall outcome was the worst of all patient groups. Thus,
the membranous Nectin-3 that does not have a physiological function (the recruitment of
E-cadherin) may contribute to increased tumor malignancy [82]. Zhao et al. established
Nectin-3 and NRXN3 (both are members of CAMs) as downstream target genes of the zinc
finger protein 582 (ZNF582). The hypermetylation of ZNF582 in nasopharyngeal carcinoma
(NPC) is associated with higher migration, invasion, and metastasis. The restoration of
ZNF582 led to the downregulation of Nectin-3 expression and the upregulation of NRXN3.
Subsequent knock-out experiments and an in vivo model confirmed that Nectin-3 acts
as an oncogene in NPC. This study also elucidated a new way of regulating Nectin-3
expression by ZNF582 [83]. Similarly, Xu et al. reported that Nectin-3 overexpression in
ovarian cancer is associated with a worse overall survival rate. As an oncogene, Nectin-3
contributes to tumor progression in ovarian cancer. These results indicate that the expres-
sion of Nectin-3 upregulates the expression matrix metalloproteinases (MMPs 1 and 2) and
leads to enhanced migration and invasion in OC cells by inducing ECM degradation in the
area surrounding the tumor [84].

Meanwhile, Nectin-3 is downregulated in pancreatic adenocarcinoma and neuroen-
docrine tumors along with breast cancer. In both cases, the loss of Nectin-3 expression
is associated with higher malignancy and a poorer prognosis. Martin et al. conducted a
study in which induced overexpression of Nectin-3 in breast cancer cell lines reduced their
motility and invasion properties. Established TJs, measured by trans epithelial resistance,
also appeared to be “tighter”. Nectin-3 may be a key component in the formation of cell
junctions and a putative suppressor molecule to the invasion and metastases of breast
cancer cells [85].

Covering results were obtained by Hirabayashi et al. in their study on Nectin-3 expres-
sion in pancreatic endocrine tumors (PanNETs). Loss of Nectin-3 expression in PanNETs
was associated with larger tumor size, a higher grade, lymphatic involvement, a higher
Ki67 labeling index, an advanced pT-factor, lymph node metastasis, an advanced tumor
stage, nonfunctioning tumors, and shorter disease-free survival. The authors presumed that
the higher rate of cell proliferation may be promoted by the disruption of trans-interaction
between Nectin-3 and Necl-5 [37,86]. In the case of pancreatic adenocarcinomas, reports on
Nectin-3 expression are in line with previously cited studies, where diffuse expression in
cancer cells was associated with a favorable prognosis [87].

More than 90% of microsatellite instability (MSI) colon cancers cells carry TGF-ß-
receptor type II (TGFBR2) mutations. Lee et al. reported that the reconstitution of TGFBR2
in HCT116 colorectal cancer cells led to an increased sialylation of Nectin-3. However,
overall synthesis and expression appeared to not be affected [88]. Available studies on
Nectin-3 are not consistent and suggest that the role of Nectin-3 may be dependent on the
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histopathological type and location of the tumor. Further research to evaluate the role of
Nectin-3 in CRC is needed.

3.4. Nectin-4

This is probably the most extensively researched Nectin family member in cancer and
disease in general, and in breast cancer in particular. Nectin-4, known also as PVRL-4 or
PRR4, is strongly expressed in fetal tissues during development (Table 1). There is little or no
expression in adult tissues, besides the placenta, throat, bladder, breast, stomach, esophagus,
salivary gland (ducts), and skin (epidermis and sweat glands) [40,89,90]. The importance
of Nectin-4 during embryogenesis can be illustrated with the example of ectodermal
dysplasia syndactyly associated with missense mutations of the PVLR4 gene. Disturbed
trans-interactions between Nectin-1 and Nectin-4 causing Rac1 pathway alteration and
delayed AJs formation in mutant cells are responsible for phenotypic presentations of EDSS1
and CLEPED1 [45,91,92]. By contrast, it was observed that Nectin-4 is overexpressed in
various types of tumors (e.g., colorectal, gastric, esophageal, urotherial, breast, ovarian,
hepatocellular, non-small cell lung carcinoma, and renal papillary cell) [90,93–99] (Table 2).
Its role as an oncogene is being investigated.

Nectin-4 has been identified as a biomarker of cancer stem cells (CSCs). CSCs have
been recognized as the root of cancers’ initiation and the resistance of cancer cells to conven-
tional chemo- and radiotherapies; hence, they are critical in the metastasis, recurrence, and
thus, the disease-free survival of, e.g., colorectal cancer [100–102].
Siddharth et al. alleged that Nectin-4 is a CSC biomarker in the breast cancer model.
Nectin-4 deletion inhibited the invasion of EMT/TME, a WNT-signaling cascade and an
anchorage-independent growth [103].

Colon cancer cells exposed to 5-fluorouracil (5-FU, a core drug in CRC chemotherapy
worldwide) increased endogenous Nectin-4 expression. The 5-FU sensitivity is inversely
related to Nectin-4 expression in CRC cell line studies. Thus, it has been proposed that
Nectin-4 is one of the factors related to 5-FU resistance. Nectin-4 coupling with afadin and
subsequent cell growth induction through the Pi3k/Akt axis is a putative mechanism of
resistance to 5-FU therapy in CRC cells. A combination of BCNU and resveratrol-induced
apoptosis in 5-FU resistant colon cancer cells by decreasing Nectin-4 expression [104].

It has been experimentally demonstrated by Siddharth et al. that Nectin-4 is respon-
sible for the induction of WNT/β-Catenin signaling via the Pi3k/Akt axis and promotes
cancer stem cell proliferation as well as EMT and metastasing [103]. The self-renewal prop-
erties of circulating cancer cells induced by Nectin-4 expression are considered responsible
for tumor aggressiveness and may play a role in EMT–TME transitions. A greater expres-
sion of Nectin-4 was observed in secondary tumors [89]. Nectin-4 has been associated with
virtually every stage of tumor progression and the dissemination of disease. This statement
is strongly supported by studies reporting Nectin-4 overexpression correlating with disease
advancement and a worse prognosis in other cancer types [52,89,93,94,96,103,105–109].
Nectin-4 appears to increase with tumor grade (e.g., based on the tumor-nodes-metastasis
classification). Measured overexpression was highest in relapsed tumors [89,107].

Nectin-4 has an impact on the cancer microenvironment. ADAM17 (a disintegrin and
metalloproteinase 17)/TACE (a TNFα-converting enzyme) overexpressed in many cancers,
including CRC, is capable of Nectin-4 cleavage under hypoxic conditions. As a result, the
endodomain and ectodomain of Nectin-4 are released in a process called shedding [110].

Siddharth et al. has investigated the role of the soluble Nectin-4 ectodomain in the
tumor microenvironment. It induces angiogenesis by direct interaction with endothelial
integrin-ß4 via Src/PI3K/Akt/iNOS cascade [111]. Chatterjee et al. have provided exper-
imental evidence that the Nectin-4 endodomain physically interacts with IMPORTIN-α
(KARYOPHERIN-α2) and is translocated and accumulated in a nucleus, which activates
DNA repair and enhances cell proliferation. In addition, nano formulated quinacrine
(NQC) inhibits the action of both shedded Nectin-4 domains in in vitro assays [112].
There has been demonstrated an anti-angiogenic effect of curcumin and veliparib (a
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PARP inhibitor) through the deregulation of Nectin-4 in alleged DNA repair inhibition
as well [113]. Taken together, ADAM-17 and Nectin-4 are putative targets for anticancer
therapies [110,111,113–115].

Kedashiro et al. reported that Nectin-4 and p95-ErbB2 (one of the trastuzumab-
resistant HER2 receptor splice variants) cooperatively activated the Hippo signaling-
dependent SOX2 gene expression in the T47D serum-free suspension breast cancer cell line.
It subsequently enhances cell proliferation in an anchorage-independent manner [116,117].
It has been outlined that the SOX2-β-catenin/Beclin1/autophagy signaling axis enhances
chemoresistance, induces EMT, and is responsible for CSC properties in CRC cells [118].
Surviving away from ECM and the ability to proliferate in blood is one of the key features
of malignant cells. Clusters of circulating tumor cells have been identified as well from
the blood samples of CRC patients [99]. The mechanisms mentioned above and potential
Nectin-4 involvement in CRC cell lines are yet to be elucidated.

Additionally, Nectin-4 tends to be involved in vasculogenic mimicry (VM)—the phe-
nomenon of fluid conducting, microcirculatory channels lined by nonendothelial cells. VM
channels are generated by pluripotent embryonic stem cells, highly invasive tumor cells,
and the ECM in aggressive primary and metastatic tumors in order to provide a sufficient
blood supply [119,120]. Zhang et al. reported a strong association between Nectin-4 mRNA
expression, metastases, and an advanced disease stage in CRC patients. They also observed
an association between VM, Nectin-4, and integrin ß-1 (ITGB1) presence. Additionally,
Nectin-4, ITGB1 and VM were significantly associated with metastases and TNM stage,
which features highly invasive CRCs. All the three parameters can be utilized as prognostic
factors for CRC [97].

Sethy et al. indicated that Nectin-4 is also responsible for the promotion of lymphan-
giogenesis. Their study was conducted on specimens collected from breast cancer patients.
Nectin-4 was found to have a predominant role in promotion of tumor-induced lymphan-
giogenesis by increasing lymphatic vessel density (LVD) and activating the chemokine
axis (CXCR4/CXCL12) [107]. These mechanisms were also investigated in other cancer
types [121]. Moreover, LVD in peritumoral tissues are associated with local recurrence and
DSF in CRC [122]. Whether Nectin-4 induces lymphangiogenesis in CRC is a matter for
future research.

Furthermore, Nectin-4 serves as a measles virus (MV) entry receptor [123]. It gives an
opportunity to utilize the oncolytic properties of MV in the treatment of Nectin-4-induced
cancer. In the available literature, MV was reported to act as natural cancer killer cells for
Burkitt’s lymphoma, Hodgkin’s disease, and squamous cell carcinoma [124]. Sugiyama et al.
utilized the natural killing effect of MV in the treatment of induced breast cancer in mice.
Their findings showed that recombinant MV specifically binds to Nectin-4 expressed on
the surface of cells and additionally that it can reveal anti-cancer effects in several other
malignancies, including CRC [125].

Antibody-based cancer therapies target specific antigens on cancer cells to deliver a
highly cytotoxic payload to tumor sites by harnessing the exquisite specificity of monoclonal
antibodies (mAb) as a delivery vehicle [90,126]. There are many (>200 at the time of
submission) antibody–drug conjugates (ADCs) in clinical trials. Enfortumab vedotin (sold
under brand name PADCEV) is an ADC consisting of a human anti-Nectin-4 antibody
linked to the cytotoxic microtubule-disrupting agent monomethyl auristatin E (MMAE). It is
an FDA-approved therapeutic for locally advanced or metastatic urothelial carcinoma. The
activity of this ADC is under investigation in other cancers known to express Nectin-4 [127].

Likewise, bicycle toxin conjugates (BTCs) are a new class of anticancer agents that allow
efficient and targeted delivery of toxin payloads into tumors. Bicyclic peptide is conjugated
to a cytotoxic agent via a cleavable linker. The molecules of BTCs are much smaller than
ADCs and exhibit better tissue distribution and tumor cell penetration [128]. The recently
discovered BTC8009 is targeted against Nectin-4. Linked to MMAE, it has demonstrated at
least equal efficacy as enfortumab vedotin in rodent models. In addition, the new BTC is
also a putative anti-cancer drug against other Nectin-4-expressing cancers [129].
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Thus, based on current knowledge, Nectin-4 expression could be used as a prognos-
tic and potentially predictive factor in CRC. Molecule itself can be a putative target for
the development of new therapeutics. Nectin-4 can be utilized for new target-specific
probes to improve tumor visualization and metastases detection in single-photon emission
computerized tomography (SPECT) [130].

3.5. Nectin-like Molecule 5

Nectin-like Molecule 5 (Necl-5), also known as polio-virus-receptor (PVR), Tage4,
or CD155, is phylogenetically more closely related to Nectins than to other Nectin-like
molecules (Table 1). It has probably diverged from Nectin-2 [38]. It trans-interacts with
Nectin-3 on neighboring cells and also mediates cell–ECM junctions by binding to vit-
ronectin. Necl-5 takes part in the contact inhibition mechanism. When there is no cell–cell
contact, Necl-5 prevents Sprouty2 (Spry2) phosphorylation. After cells come into con-
tact with each other, Necl-5 is downregulated by endocytosis following transient trans-
interaction with Nectin-3. Unprotected Spry2 is tyrosine-phosphorylated by c-Src, which
is activated by the PDGF receptor in response to PDGF, and subsequently inhibits PDGF-
induced Ras signaling for cell proliferation [39,49]. Upregulation of Necl-5 in cancerous
transformed cells that exceed the rate of internalization during cell–cell contact has been
proven in studies to increase cell proliferation and hence tumor progression [44]. Necl-5
colocalizes with integrin on leading edges and takes part in growth factor-induced lamel-
lipodia formation [49]. Necl-5 is upregulated through the Sonic hedgehog pathway as
well as in Ras-mutated cells and allegedly induces cancer cells proliferation by inter alia
shortening the G0/G1 phase [131].

Through interactions with CD226 and TIGIT, molecules present on leukocytes, Necl-5
together with Nectin-2 is a key regulator in cell-mediated immune response [57,132].

By binding to TIGIT, Necl-5 induces immunosuppression by the inhibition of NK cell
and CD8+ T-cell cytotoxicity [133]. At the same time, Necl-5 has an affinity to the DNAM-1
molecule, which enhances immunological response by recognizing and killing tumors [134].

Necl-5 is known to be overexpressed on various types of malignant cells, including
CRC [135,136] (Table 2). Zheng et al. evaluated Necl-5 in CRC cell lines under different
conditions. They observed increased apoptosis, inhibited colony formation ability, and
cell cycle arrest in the G1 phase in CRC cells after Necl-5 knockdown. In addition, the
authors observed reduced expression of some cell-invasion-related molecules, such as FAK,
Src, and MMP-2. Necl-5 knockdown inhibited Akt phosphorylation. Taken together, their
findings support previous studies on that subject—Necl-5 attributes to tumor progression,
invasion, and metastases in CRC cell lines and may be considered an anti-apoptotic factor
in CRC [135]. Morimoto et al. indicated that Necl-5 augments the metastasis of cancer cells,
including CRC, to the lungs. Necl-5 mAb blockage reduced secondary tumor formation in
lungs by 60% in a mice model [46]. The authors suggested that cancer cells with high Necl-5
expression attach to CD226-expressing platelets. The mentioned process leads to platelet
cloaking and enhances immune evasion of cancerous cells. Cell aggregates were arrested
in pulmonary capillaries where extravasation and metastases formation take place [46,67].

There are many examples of the importance of Necl-5 in carcinogenesis, CRC progres-
sion, and dissemination. Necl-5 is also involved in immune surveillance and can act both
as a tumor inducer and suppressor. Therefore, research on the application of Necl-5 in
diagnostics and treatment strategies is recommended.

4. Conclusions and Future Perspectives

Nectins and Nectin-like molecules takes part in a plethora of essential processes in
healthy tissues as well as mediating substantial actions in tumor initiation and evolution.
Most of the crucial mechanisms of CRC carcinogenesis cannot be explained by a single
factor, but nonetheless, Nectins and Nectin-like molecules are surely an important part of
the entire picture. Our understanding of their role and their viable application in anti-cancer
therapy is far from complete. Additional studies are needed to evaluate reliable Nectin and
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Necls expression patterns in CRC cells. Research into potential spatial distribution and
sidedness are necessary to elucidate the role of Nectins in different CRC clinical presenta-
tions. There is a possible place for Nectins and Necls in a future standard biomarkers array.
Nectin-4 tends to be the most achievable therapeutic target for novel CRC treatment options
with completion of present and upcoming clinical trials. Based on the broad spectrum of
available papers, Nectins and Necls may serve as diagnostic (e.g., PET probes), prognostic
(e.g., OS and DFS), and predictive (selection of targeted-therapy regimens) tools in CRC.
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Abstract: Lung cancer is considered one of the most fatal malignant neoplasms because of its late
detection. Detecting molecular markers in samples from routine bronchoscopy, including many liquid-
based cytology procedures, such as bronchoalveolar lavage fluid (BALF), could serve as a favorable
technique to enhance the efficiency of a lung cancer diagnosis. BALF analysis is a promising approach
to evaluating the tumor progression microenvironment. BALF’s cellular and non-cellular components
dictate the inflammatory response in a cancer-proliferating microenvironment. Furthermore, it is an
essential material for detecting clinically significant predictive and prognostic biomarkers that may
aid in guiding treatment choices and evaluating therapy-induced toxicities in lung cancer. In the
present article, we have reviewed recent literature about the utility of BALF analysis for detecting
markers in different stages of tumor cell metabolism, employing either specific biomarker assays or
broader omics approaches.

Keywords: biomarkers; bronchoalveolar lavage fluid; lung neoplasm; tumor microenvironment

1. Introduction

Lung cancer is among the most common malignant neoplasms and is associated with
a poor prognosis since it is usually diagnosed at an advanced stage [1]. However, recent
advances in the field of systemic treatment have changed the landscape of the disease.
Much of this progress has been achieved by the discovery and utility of predictive biomark-
ers, whose detection may guide targeted therapies in an attempt to a more personalized
approach to treatment. In cancer research, a biomarker is a biological molecule whose
levels can be measured in tissue or fluids and indicate the presence or progress of the
disease or its response to specific therapies [2]. Thus, biomarkers may aid in determining
the diagnosis, prognosis, and prediction of treatment response in cancer patients. Any
component of the cancer cell metabolic pathway, starting from gene alterations and ending
with the various metabolites, can be tested as a biomarker according to its biological role.
In recent years, the contemporary measurement of multiple substances belonging to the
same level in the metabolic cascade has been possible with the use of omics technologies,
making feasible the identification of biomarker profiles or signatures [2].

A major problem in employing lung cancer biomarker testing in everyday clinical
practice is obtaining adequate tissue samples. Most patients are diagnosed based on
small bioptic or even more limited cytological materials obtained during bronchoscopy or
transthoracic aspiration. These materials are often depleted during standard histological
and histochemical procedures used for diagnosis and tumor subtyping, leaving no space
for biomarker testing. Fluids, on the other hand, are promising materials for biomarker
evaluation since most substances, from DNA to proteins and metabolites, are being excreted
from cancer cells in soluble form. Bronchial or bronchoalveolar lavage fluid (BALF) is
obtained by a lung irrigation technique routinely performed during bronchoscopy. It allows
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the harvesting of cellular and non-cellular contents of the bronchial and alveolar space,
serving as an excellent marker of the tumor microenvironment [3]. Its collection requires
a minimally invasive procedure that can be repeated with minimum risk, providing a
valid and adequate medium for biomarker testing in lung cancer. In addition, due to its
proximity to the neoplastic tissue, it could have higher sensitivity for biomarker detection,
especially in locally advanced non-metastasized lung cancer, compared to other fluids
commonly employed for the same reason, such as plasma or pleural fluid [4].

BALF analysis in lung cancer has multiple uses. Numerous research studies have
demonstrated the benefit of employing BALF for the cytological identification of malignant
lung neoplasms. Malignant cells may be shed from an adjacent lung tumor into the respective
bronchoalveolar space and identified with conventional cytology. Although BALF cytology
alone has a modest sensitivity for diagnosing lung cancer (between 29% and 69%), the
specificity is exceptionally high (between 90% and 100%) [5]. Furthermore, its combination
with other histological techniques seems to increase the diagnostic yield. The diagnostic
accuracy of transbronchial lung biopsy in endoscopically non-visible lesions was enhanced
when combined with BALF cytology [6]. Secondly, the parenchymal cells of the lungs secrete
different types of soluble substances, which can be identified and measured in BALF after
removing the cellular component with centrifugation (supernatant). With the advent of novel
molecular techniques, it has become possible to amplify nucleic acids that are either extracted
from cells or extracellular vesicles (EVs) or detected in cell-free form on BALF and perform a
wide array of genomic, epigenomic, and transcriptomic testing. Finally, BALF analysis may
aid in identifying various treatment-related adverse events in the lungs, such as pulmonary
infections or pneumonitis.

This review aims to perform a brief and comprehensive overview of studies published
in the previous decade that focus on the utility of BALF for detecting different forms of
diagnostic, predictive, and prognostic biomarkers in lung cancer. Studies were identified
by searching the MEDLINE/PubMed electronic database for relative reports dating from
2011 to September 2022. The search strategy included a combination of MeSH terms
(biomarkers; bronchoalveolar lavage; lung neoplasm) and keywords (biomarker; [prog-
nostic or predictive] marker; [bronchoalveolar or bronchial or lung] lavage; [bronchial or
lung] washing; [lung or pulmonary] [cancer or neoplasm or tumor]). According to our
judgement, some older seminal articles are also mentioned based on their influence on the
afterward-growing literature on the subject.

2. BALF Biomarkers for the Diagnosis and Prognosis of Lung Cancer

2.1. Genetic Biomarkers

Recent studies have conducted various assessments on genetic markers at a large,
genome-wide scale to identify more specific and sensitive molecules for targeted drug
delivery methods to cure the disease. A recent study compared tumor-derived mutations in
similar plasma and BALF samples from patients with non-small-cell lung cancer (NSCLC).
Researchers discovered that BALF cell-free DNA (cfDNA) testing is more accurate than
serum for detecting mutations related to lung cancer [7]. Clinical applications of BALF
cfDNA testing include the detection of mutations in affected individuals and, perhaps, the
detection of lung adenocarcinoma. It is convenient to identify mutations related to tumors
by targeted sequencing of BALF cfDNA, and this method seems more robust compared to
plasma screening. Bronchial washings are also a viable and practical choice for genome-
wide molecular studies. Actionable mutations in cancer genes were detected with a higher
than 90% concordance with respective gene mutations in tumor biopsies [8].

2.1.1. EGFR Mutations

With cfDNA collected through the BALF supernatant, a polymerase chain reaction
(PCR) technique may identify functional EGFR mutations. This might be a quick and
accurate way to diagnose NSCLC simultaneously using DNA analysis and morphology [9].
The tissue biopsy results are compared to the detectability of activating EGFR mutations in
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BALF and blood plasma samples in another study [10]. Under this investigation, BALF
was found to be significantly more sensitive than liquid biopsy at detecting an EGFR
mutation in the same patients (92.3% vs. 38.5%) [10]. A real-time peptide nucleic acid
(PNA)-mediated polymerase chain clamping assay was used to detect the T790M EGFR
mutation on both BALF and bronchial biopsy specimens of cancer-afflicted persons [11]. In
a different, more thorough investigation, 20 patients with lung adenocarcinoma had their
EGFR mutations and T790M mutations molecularly tested using cfDNA from BALF. The
combination of PNA-mediated clamping PCR and the PANAMutyperTM R EGFR kit with
PNA clamping-assisted fluorescence melting curve analysis produced 91.7% concordance
with the results from a tumor biopsy [12]. In another study of patients with advanced
NSCLC, cytology samples from BALF were used to identify the T790M EGFR mutation.
The findings demonstrated that the clinical benefit of osimertinib treatment was predicted
by cytology sample EGFR T790M positivity [13]. Isolated EVs from BALF include DNA that
can be used for EGFR genotyping by liquid biopsy. Particularly when compared to liquid
biopsy cfDNA, BALF EV DNA is tissue specific and incredibly sensitive. Additionally,
tissue re-biopsy is less effective than BALF EV DNA at identifying the T790M mutation in
individuals who developed resistance to EGFR tyrosine kinase inhibitors (TKIs) [14].

2.1.2. KRAS Mutations

Clinical uses for KRAS mutation analysis in lung disease include its use as a diagnostic
indicator for cancer in sputum and BALF samples [15]. In adenocarcinomas of the lung
and related sputum and BALF samples, matched KRAS mutations have been found [16].
Furthermore, it has been demonstrated that patients with negative cytological results
may benefit from screening for KRAS mutations in BALF cells to help with a lung cancer
diagnosis [17]. KRAS and p53 gene mutations in BALF may serve as helpful biomarkers
for the diagnosis of peripheral NSCLC, according to the findings of a recent study [18].

2.1.3. ALK Translocations

Reverse transcription-PCR has been used to detect ALK translocations in cytology
samples having a 97% concordance with tissue samples [19].

2.2. Epigenetic Biomarkers

DNA methylation markers are frequently employed as biomarkers for early diagnosis
or recurrence of cancer. DNA methylation occurs when a methyl group is attached to
a cytosine base located in a CpG dinucleotide, which may impact gene transcription.
Aberrant DNA methylation can reduce the expression of tumor-suppressor genes and
allow cancer cells proliferation. Kim et al. discovered that p16, RASSF1A, H-cadherin, and
RAR beta gene methylation in tumors may be valuable biomarkers for the early diagnosis of
NSCLC in BALF [20]. Moreover, several other studies also reported the potential application
value of p16 promoter methylation in sputum for lung cancer diagnosis [21,22]. A large
retrospective cohort showed improved diagnostic efficacy of DNA methylation biomarkers
(DNA methylation of p16, TERT, WT1, and RASSF1 gene) in cytological bronchial washings
evaluation [23]. When lung cancer patients have bronchial aspirates, the Epi pro-Lung BL
Reflex Assay is a powerful and practical diagnostic technique for detecting elevated DNA
methylation of the SHOX2 gene locus [24]. In comparison to conventional cytology analysis
and serum CEA, the methylation analysis of the SHOX2 and RASSF1A panel in BALF
using RT-PCR produced better diagnostic sensitivity (81.0%) and specificity (97.4%) [25].
NSCLC could be found by examining the DNA methylation of 7CpGs (TBX15, PHF11,
TOX2, PRR15, TFAP2A, HOXA1, and PDGFRA genes) in bronchial washings [26]. A
5-marker (LHX9, GHSR, HOXA11, PTGER4-2, HOXB4-3) methylation model was recently
found to have 70% sensitivity and 82% specificity for discriminating malignant from benign
pulmonary nodules [27]. According to a meta-analysis, the detection of DNA methylation
of the p16INK4a gene in BALF may be a potential biomarker for NSCLC diagnosis [28].
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2.3. Post-Transcriptional Biomarkers

Transcriptome comparison allows for the discovery of genes that are differently ex-
pressed in various cell groups or in response to different treatments. Researchers have
showed that clusters of deregulated miRNAs were expressed in the BALF of smoking-
related diseases such as lung adenocarcinoma and COPD [29]. Similarly, the expression of
two anti-apoptotic genes, survivin and livin, through their mRNA levels was observed in
lung cancer patients versus patients with benign lung disease, using bronchial aspirates as a
sample source [30]. Other studies have broadened the target transcriptomes to other specific
panels of miRNAs that were significantly upregulated in patients with lung cancer [31,32].
Cluster analysis of the expression levels of a miRNA panel in BALF samples from NSCLC
patients provided a diagnostic sensitivity of 85.7% and specificity of 100% [33]. Moreover,
a prediction model of specific miRNA biomarkers from liquid cytological specimens has
shown potential in discriminating squamous cell carcinoma from adenocarcinoma [34].
Transcriptome signatures can also be potentially helpful in predicting survival for patients
with lung cancer. Patients with a low expression level of a 3-miRNA panel were associated
with better overall survival [35]. Evaluation of EVs from plasma and BALF in patients
with NSCLC and benign lung diseases revealed significant differences in exosome amount
and miRNA content between fluids and patient groups, revealing their specific role as
biomarkers [36]. A significant increase in the expression profile of immunoglobulin genes
in BALF was found between lung cancer and healthy controls in a recent transcriptomics
study, which generated a 53-gene signature that showed a significant correlation with
inhibitory checkpoint PDCD1 [37].

2.4. Post-Translational Biomarkers
2.4.1. Proteins

Proteins in BALF can represent the physiological and pathological state of the lung.
Proteins that lung cancer cells secrete into BALF may be utilized as biomarkers to detect
and evaluate malignancy, aiding lung cancer diagnosis, prognosis, subtyping, and therapy
response monitoring. Researchers have since long identified a link between bronchial
secretions and serum tumor marker concentrations [38]. Among many proteins, the most
specific is napsin A, a renowned immunohistochemical marker for lung cancer diagnosis in
affected individuals [39]. In addition, levels of several BALF proteins located in antioxidant,
inflammatory, or anti-angiogenic pathways, such as cytokines [40–42] and growth [43–45],
pro-angiogenic [46–48], or complement [49–51] factors, have been evaluated as diagnostic
or prognostic biomarkers employing antibody-specific immunoassays.

Combining proteomics, mass spectrometry (MS), and affinity chemistry-based meth-
ods have significantly improved our understanding of the protein oxidative changes that
take place in many biological specimens under varied physiological and pathological
circumstances in recent years (Figure 1). Glycoproteins are crucial in the standard process-
ing of biological processes such as cell separation, growth, their close contact with their
vicinity and invading of tumor cells into surrounding cells. A cohort study used solid-
phase N-proteoglycans extraction, iTRAQ labeling, and liquid chromatography-tandem
MS to analyze N-proteoglycans levels in BALF from patients with lung cancer and benign
lung diseases. Levels of 8 glycoproteins (neutrophil elastase, integrin alpha-M, cullin-4B,
napsin A, lysosome-associated membrane protein 2, cathepsin D, BPI fold-containing family
B member 2, and neutrophil gelatinase-associated lipocalin) displayed more than two times
rise in cancer BALF compared to benign BALF [52]. According to research by Uribarri et al.
the expression levels of APOA1, CO4A, CRP, GSTP1, and SAMP led to a diagnostic panel
for lung cancer that was 95% sensitive and 81% specific. The measurement of STMN1
and GSTP1 proteins enabled the two main subtypes of lung cancer (non-small-cell and
small-cell) to be distinguished with 57% specificity and 90% sensitivity [53]. Ortea et al.
identified different proteins in the BALF of patients with lung cancer, including glutathione
S-transferase pi, haptoglobin, and complement C4-A. These different types of proteins could
be proved as prominent biomarkers for disease diagnosis [54]. Almatroodi et al. performed
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a quantitative proteomic evaluative study on BALF of patients with lung adenocarcinoma,
and their results indicated the occurrence of 1100 proteins in BALF. Among them, the
ratio of over-expressed proteins in lung adenocarcinoma individuals were 33 compared to
healthy individuals. S100-A8, thymidine phosphorylase, annexin A2, transglutaminase 2,
and annexin A1 were lung cancer individuals’ most renowned over-expressed proteins [55].
In another prospective cohort of individuals with suspected lung cancer, proteomic analysis
of BALF samples identified 133 proteins that could differentiate cancer and non-cancer
patients [56]. Using label-free MS analysis of BALF, Hmmier et al. discovered that 4 proteins
(cystatin-C, TIMP1, lipocalin 2, and HSP70/HSPA1A) were significantly overexpressed in
lung cancer patients compared to healthy controls [57]. A recent investigation evaluated
aberrant protein glycosylation using lectin microarrays in BALF. It revealed 15 lectins that
could distinguish between the different lung cancer types and 14 lectins whose levels
differed between early and advanced disease stages [58].

 

Figure 1. Example of a proteome from a bronchoalveolar lavage fluid sample in a lung cancer patient
performed by two-dimensional gel electrophoresis and silver staining. Circled spots represent differ-
entially expressed proteins between lung cancer and controls. Reprinted from [53] with permission
from Elsevier.
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2.4.2. Cell Epitopes

The combination of immunoassays and flow cytometry in BALF supernatant en-
ables the study of cell epitopes, mainly used in identifying immune cell subpopulations
(Figure 2). T cells are essential for antitumor defense, but as cancer progresses, their popu-
lation changes. Numerous suppressory and regulatory systems can prevent lymphocyte
activation and prevent the identification of lung cancer antigens. Various research studies
indicated that now lung cancer immunotherapeutic therapy aims to enhance the cytotoxo-
logical action of lymphocytes by restricting the activities of suppressor molecules such as
cytotoxic T cell antigen 4 (CTLA-4) and programmed death-1 (PD-1) [59]. The examination
of BALF revealed that one could easily analyze the different types of immune responses
in the tumor microenvironment as well as an alteration in the status of various cells. A
higher ratio of cytotoxic CD8+ lymphocytes, neutrophils, T cells, and CTLA-4+ T regulatory
cells was found in BALF of the cancer-affected lung compared to the healthy contralateral
lung [60]. Moreover, tissue samples of lung adenocarcinoma patients also indicated the
presence of M2 polarization of macrophages, which are further associated with the onset
of lung cancer [61]. Osińska et al. examined the BALF of 35 patients with lung cancer
to figure out the existence of regulatory T cells (Tregs) and their specific role in boosting
immunity. Flow cytometry analysis revealed that Treg cells were present in significant
proportion in the local environment of lung cancer cells as compared to normal cells. These
Tregs are renowned as anticancer defense cells because they have the potential to restrict
the normal functioning of NK cells, T-lymphocytes, and dendritic cells, which ultimately
enhances the immune tolerance level [62]. In 2018, Hu et al. examined the significant ratio
of PD-1+ cells in BALF and peripheral blood in small-cell lung cancer (SCLC) individuals,
and their levels dropped after chemotherapy. Therefore, these cells would be potential
biomarkers for the diagnosis of diseases as these programmed death cells are recognized
as checkpoints in the immune system, and their inhibition could potentially mediate the
activation of T cells, ultimately exhibiting antitumor activity [63]. Moreover, another ra-
tional study was carried out on BALF as a prognostic agent for patients of lung cancer,
and through a cytometric bead array, Hu et al. identified a higher level of interleukin
(IL)-10 and IL-10+CD206+CD14+M2-like macrophages in the SCLC affected individuals as
compared to NSCLC individuals. These markers were also correlated with advanced stage
and reduced survival of SCLC patients [64]. Recently, a cohort study was conducted by
Masuhiro et al. to examine the immune profile of tumor microenvironment through BALF
of NSCLC individuals according to their response to immunotherapy. They observed a
higher level of CXCL9 and a higher ratio of CD56+ cytotoxic T cells in BALF of patients
responding to nivolumab compared to those not responding [65].

Some cells disassociate themselves from the primary tumor mass and enter the circu-
latory system. These cells are known as circulating tumor cells (CTCs) and emerge as a
new target that offers clinical insights for the prediction and diagnosis of different types of
cancers [66]. Recent studies have demonstrated that the precision and sensitivity of CTCs
detected by the chromosomal enumeration probe 8 (CEP8) in lung cancer patients was,
correspondingly, 83.3% and 98.6% [67]. Several studies have investigated these distinct
CEP8+ CTCs, and the results have demonstrated a substantial correlation between these
cells with the detection of lung cancer and also its prognosis with excellent precision and
sensitivity [68,69]. Detection of CTCs in serum and BALF showed that CEP8+ CTCs could
be used as a supplementary approach for individuals with solitary pulmonary nodules to
diagnose lung cancer at an early stage [70].
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Figure 2. Immunostaining for cell epitopes in macrophages from bronchoalveolar lavage fluid samples
in a lung cancer patient and healthy control. Reprinted from [48] with permission from Elsevier.

2.5. Metabolite Biomarkers

Metabolites of tumor cells, such as amino acids, nucleic acids, lipids, and sugars,
may reflect cellular metabolic processes that drive tumor formation and progression. Ei-
ther by using metabolite-specific immunoassays or MS-based metabolomic approaches
(Figure 3), recent studies have compared metabolites between lung cancer patients and
controls. In an early study, levels of leukotriene B4 and cysteinyl leukotrienes, which
are end products of arachidonic acid metabolism, were significantly elevated in BALF of
NSCLC patients [71]. In another report, patients with NSCLC had significantly lower
ATP and ADP concentrations in BALF than patients with COPD, an effect that was
exerted by upregulated expression of P2Y1, P2X4, and P2X7 purinergic receptors [72].
Callejón-Leblic et al. identified 42 altered metabolites in BALF of lung cancer patients
compared to non-cancer patients. Based on ROC curve analysis, levels of carnitine, adenine,
choline, glycerol, and phosphoric acid show high sensitivity and specificity to distinguish
between lung cancer and controls and should be considered as potential biomarkers [73].
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Figure 3. Typical mass spectra from lung cancer patients (a) and controls (b) by direct infusion triple
quadrupole time-of-flight mass spectrometry in bronchoalveolar lavage fluid for the detection of
metabolite expressions. Reprinted from [73] with permission from Elsevier.
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Certain elements such as essential and non-essential metals (Fe, Cd, Zn, Co, Cu,
Pb, V, Cr, etc.) are important for maintaining homeostasis and are involved in several
cellular pathways. Excess or deficiency of such elements causes dyshomeostasis and
disturbs cellular pathways, ultimately leading to the progression of serious illness [74]. So,
identification of levels of such elements in body fluids such as serum and BALF can help to
understand the mechanisms involved in the progression of serious illnesses such as lung
cancer. As a result, variations in the particular elements’ concentrations and the profile
of their chemical components can reveal the individual’s metabolic and nutritional status
and therefore offers a prospective early prognosis of cancer progression. Belén et al. used
triple quadrupole inductively coupled plasma MS analysis and identified the presence of
metals in body fluids, including BALF, in lung cancer patients and concluded that such
metals could be employed as a potent biological marker for more accurate and expeditious
identification of lung adenocarcinoma in affected individuals [75].

2.6. Metagenomic Biomarkers

Microbiome generally contributes towards barrier formation, external communication,
and immune homeostasis in healthy individuals. The microbiome can also trigger host
immune responses against cancer cells. Several studies have shown the interconnectedness
between lung cancer and the microbiome. For example, Wang et al. conducted a prelimi-
nary analysis of microbiome diversity in saliva and BALF of lung cancer patients [76]. They
observed that the microbiome diversity is significantly less than in the healthy samples,
indicating a link between cancer and microbiome. It can also be said that certain micro-
biome genera could act as potential lung cancer biomarkers. In this regard, Cheng et al.
characterized microbiomes in BALF for potential associations with lung cancer [77]. The
microbiome diversity was compared between diseased and healthy samples using principal
coordinate analysis. They observed six different genera that were significantly enriched in
BALF of cancer patients: Blautia, Capnocytophaga, Gemmiger, Oscillospira, Sediminibac-
terium, and TM7-3. Similarly, Lee et al. investigated the microbiome in BALF of the affected
group and compared them with benign lung mass [78]. They reported that members of the
genera Megasphaera and Veillonella are potential cancer markers as their concentrations
are relatively higher in cancer patients than in the control group. In addition, Patnaik et al.
observed that the lower airway microbiome could contribute to the recurrence of early-
stage NSCLC [79]. They observed that the microbiome diversity differed significantly
between patients with recurrence and non-recurrence after surgery. They also observed
that the diversity among 16 out of 18 cancer recurrence patients was similar. Zheng et al.
performed metagenomic sequencing on BALF samples from cancer patients and healthy
controls [80]. Even though the diversity between both samples was comparable, some rare
microbiota stood out in lung cancer samples. For example, species such as Bacteroides pyo-
genes, Chaetomium globosum, Lactobacillus rossiae, Magnetospirillum gryphiswaldense,
Paenibacillus odorifer, and Pseudomonas entomophila were common in cancer samples.
The results indicate that change in the microbiome’s diversity is directly associated with
cancer. Moreover, Veillonella was found to increase tumor burden and decrease survival.
Furthermore, the microbiome plays a crucial role in cancer cells’ response to immunother-
apy. For example, Jang et al. analyzed the microbiome’s relationship with programmed
death-ligand-1 (PD-L1) expression [81]. PD-L1 protein is typically involved in protecting
non-cancerous/non-harmful cells from immune cells. The authors also found that the cells
with higher PD-L1 expression levels respond better to immunotherapy than the cells with
lower PD-L1 expression levels. The population of Veillonella was significantly higher in
the group with the higher expression level of PD-L1, while Neisseria was abundant in the
group with the lower expression of PD-L1. Moreover, the exact reason for a higher amount
of Veillonella in cancer patients is still unknown, but several studies have developed links
between different lung-related diseases and the microbiome genera under debate. For
example, Veillonella has been found to be involved in pulmonary fibrosis and asthma
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development [82,83]. As both pulmonary disorders are related to the immune system and
lungs, it is also expected that Veillonella will be higher in cancer patients as well.

3. BALF Biomarkers for the Identification of Adverse Events of Lung Cancer Treatment

3.1. Pulmonary Infections

It has been investigated that the risk of developing neutropenia is usually low in
the case of lung adenocarcinoma immunotherapeutic procedures compared to chemother-
apy [84]. Moreover, long-term immunosuppression therapies with high drug dosage
(steroids, TNF-α) are required for immune-related adverse events (irAEs), e.g., colitis and
pneumonitis, that ultimately enhance the risk of other infections [85]. Aspergillus fumi-
gatus pneumonia diagnosed after BALF examination has been described in a metastatic
melanoma patient treated with systemic corticosteroids and infliximab for an irAE due to
ipilimumab [86]. Another report described the detection of Mycobacterium tuberculosis
in BALF in a NSCLC patient during third-line nivolumab therapy [87]. Thus, the perfor-
mance of bronchoscopy and subsequent serological and molecular testing of BALF is an
established method for the diagnosis of such infectious complications in this unique patient
population [88].

3.2. Therapy-Induced Pulmonary Toxicity

It has been observed that excess application of immunotherapeutic molecules has
important side effects; among them, checkpoint inhibitor pneumonitis (CIP) is the most
famous. Common clinical presentations of CIP are the onset of dyspnea, hypoxemia, and
pulmonary infiltration [89,90]. For advanced NSCLC, the phase I trial of pembrolizumab
and nivolumab reported 1 and 3 pneumonitis-related deaths, respectively [91,92]. The
extensive examination of BALF showed infiltration and inflammation of lymphocytes
in patients with CIP. In 2017, another case study reported T-lymphocytic alveolitis as
extrinsic allergic alveolitis in 80% of affected individuals with CD8+ cell predominance [93].
Identifying the dysregulation of immune cell subpopulations in BALF could serve as a
promising target for developing therapeutics to minimize adverse effects [94].

Drug-induced sarcoidosis reaction (DISR) can be another after-effect of cancer-related
therapies. DISR is a systematic granulomatous reaction that arises after using chemother-
apeutic agents and is indistinguishable from sarcoidosis [95]. DISR has been described
after treatment with immune checkpoint inhibitors, including PD-L1 inhibitors, PD-1 in-
hibitors, and anti-CTLA-4 antibodies [96]. Thus, in the absence of biopsy specimens, the
surrogate method for the diagnosis of DISR in affected patients is BALF sampling [97].
Montaudie et al. conducted research work, and they presented a DISR-based study that
showed 32% lymphocytes along with the enhanced frequency of CD4/CD8 cells [98].

Radiation-induced pneumonitis is an inflammatory process occurring in reaction to
chest radiotherapy used to treat thoracic malignancies. Early identification and treatment
are crucial, considering the fact that its chronic phase constitutes lung fibrosis. Previous
research has detected different types of serum biological markers, including TGF-β, IL-6,
TNF-α, and IL-1, that predicted tissue injuries after radiotherapy [99,100]. Later, a series
of research studies were performed by Kwang-Joo Park et al. on animal models for the
evaluation of radiotherapy-associated injuries of lung tissues, in which the focus was
on BALF. Their results revealed that the level of IL-1, NO, TGF-β, and neutrophils were
high in BALF [101,102]. Additionally, lymphocytic alveolitis was also found in BALF of
affected individuals who took radiotherapy for breast cancer. In most symptomatic cases, a
significant rise in CD4+ T lymphocytes was observed, but no increase in CD4/CD8 ratio
was found [103]. Crohns et al. reported that radiation therapy resulted in a significant
increase in IL-6 in BALF, while elevated IL-8 levels in BALF are associated with worse
survival in lung cancer patients receiving radiotherapy [104]. BALF was found to be
more effective as compared to serum for the detection of surfactant protein D, which is
an important biomarker for radiation-induced pneumonitis in tumor tissues of affected
persons [105]. In a cohort study, the profile of cytokines or chemokines was analyzed in
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BALF samples from cancer-afflicted individuals before and after radiotherapy. This study
showed the overexpression of cytokines, including PAI-1, CD154, IL-1ra, CXCL-1, IL-23,
MIF, and IFN-γ, in the lungs of patients with high-grade radiation-induced pneumonitis
even before radiotherapy [106].

4. The Value of Repeated BALF Examination in the Course of Lung Cancer

With the advent of modern molecular technologies and extensive research work
in biological sciences, highly curable therapies for patients with lung cancer have been
recently introduced. These treatment methods wrapped new therapeutic molecules as well
as more specific biomarkers for the diagnosis of cancer tissues found in different sections
of the lungs more accurately. Apart from their highly beneficial results, the continuous
re-evaluation of cancer patients is necessary to gauge the tumor status before and after the
application of each line of therapy. It has been proposed that the follow-up should not only
be restricted to imaging but repeated histological assessment may be needed when relapses
occur after therapeutic interventions. Zarogoulidis et al. performed a case study, and their
results suggested that re-biopsy of different lung cancer tissues after the administration of
TKIs would detect T790M mutations as well as an altered type of lung cancer [107]. Another
cohort study reported that 63% of NSCLC patients showed onset of EGFR mutations and
proliferation of cancer after treatment with EGFR-TKIs during re-biopsy, while a 33%
frequency of T790M mutation was found [108]. Taking into account the low invasiveness
and high sensitivity of BALF testing, a surrogate method of the classic re-biopsy technique
could be repeated BALF assessment, not only for the detection of T790M mutations but
also for a re-evaluation of biomarkers that may predict cancer recurrence or prognosis and
guide further treatment choices.

5. Advantages and Disadvantages of BALF Biomarker Testing in Lung Cancer

Biomarker testing is a central component in nowadays personalized management of
lung cancer patients. Many approved drugs for the treatment of stage IV NSCLC are being
prescribed according to the detection and quantification of specific molecular markers, such
as EGFR, ALK, ROS1, and BRAF mutations and PD-L1 expression. In the case of minimal
or no tumor tissue material available for biomarker testing, BALF has the advantage
of containing a wide variety of molecules, either cell derived or in soluble form, that
resemble the tumor molecular profile. Biomarkers with the highest diagnostic, predictive,
and prognostic accuracy from the studies reported above are presented in Table 1. High
concordance to tissue markers and better accuracy than plasma in oncogene driver detection
makes BALF the best alternative for predictive assessment in lung neoplasms. Panels of
BALF-isolated biomarkers of pre- and post-transcriptional gene expression regulation,
such as DNA methylation and miRNA expression, have higher diagnostic accuracy than
BALF cytology for the detection of lung cancer. Moreover, prediction models derived from
proteomic, metabolomic, and microbiomic studies have identified novel markers for the
discrimination between cancer types and stages and the prediction of immunotherapy
response or tumor progression/recurrence.

Main disadvantages of BALF biomarker testing are the lower yield of tumor cells
or tumor nucleic acids compared to tissue samples, which could impede biomarker test
performance, and the higher invasiveness compared to plasma sampling. Furthermore,
continuous validation of the methylomic, transcriptomic, and proteomic signatures in
BALF is needed so that they may assist in the diagnosis of small pulmonary nodules and
guide treatment approaches in clinical practice.
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Table 1. Overview of lung cancer biomarkers, their measurement methods in bronchoalveolar lavage
fluid, their respective diagnostic/predictive roles, and accuracy results from studies included in the
review.

Study Patients Controls Processing Detection Biomarker Role Accuracy

Genetic/epigenetic biomarkers

Lee 2020 [4]

n = 73 (M 38)
Mean age:

65.3 ± 9.8 y
Type: AC 65,

SQCC 7, other 1
Stage: I 20, II 10,

III 10, IV 27

-
Cell-free

DNA from
BALF

supernatant

Droplet
digital

allele-specific
PCR

EGFR L858R
mutation

Prediction of
tumor

molecular
profile

AUC 0.96
Acc 95%

EGFR E19del
mutation

AUC 0.86
Acc 85%

Nair
2022 [7]

n = 35 (M 18)
Age: 40–83 y
Type: AC 30,

SQCC 2, NSCLC
NOS 1, SCC 1,

other 1
Stage: I 18, II 6,

III 6, IV 5

n = 21 (M 12)
Age: 46–76 y

Cell-free
DNA from

BALF
supernatant

Deep
sequencing

11 gene
feature

classifier
LC diagnosis

AUC 0.84
Sens 69%

Spec 100%

n = 31 -
Any tumor

variant
detected

Prediction of
tumor

molecular
profile

Acc 81%

Roncarati
2020 [8]

n = 91 (M 60)
Age: 47–85 y
Type: AC 41,

SQCC 31,
SCC 11,

undefined 7
Stage: I 13, II 7,

III 25, IV 43

n = 31 (M 21)
Age: 42–86 y

Cellular
DNA/RNA
from BALF
cell pellet

Droplet
digital

methylation-
specific

PCR

CDH1
methylation

LC diagnosis

Sens 64%
Spec 74%

DLC1
methylation

Sens 37%
Spec 94%

PRPH
methylation

Sens 40%
Spec 100%

RASSF1A
methylation

Sens 46%
Spec 100%

4-gene
methylation

panel

AUC 0.93
Sens 97%
Spec 74%

-

Next-
generation
sequencing

ALK fusions

Prediction of
tumor

molecular
profile

Acc 96%

BRAF V600E
mutation Acc 100%

EGFR
mutations Acc 97%

ERBB2/HER2
mutations Acc 100%

KRAS
mutations Acc 90%

MET
mutations Acc 100%

ROS1 fusions Acc 100%

Kawahara
2015 [9]

n = 42 (M 23)
Age: 42–84 y

Type: AC
-

Cell-free
DNA from

BALF
supernatant

Allele-
specific PCR/
FRET-PHFA

EGFR
mutations

Prediction of
tumor

molecular
profile

Acc 47%
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Table 1. Cont.

Study Patients Controls Processing Detection Biomarker Role Accuracy

Yanev
2021 [10]

n = 26 (M 13)
Mean age: 63.3 y

Type: AC
-

Cell-free
DNA from

BALF
supernatant

Allele-
specific

PCR

EGFR
mutations

Prediction of
tumor

molecular
profile

Acc 92%

Park
2017 [12]

n = 20 (M 5)
Age: 43–77 y

Type: AC
Stage: I 1, II 1,

III 1, IV 17

-

Cell-free
DNA from

BALF
supernatant

PNA-
mediated
clamping

PCR/ PNA
clamping-
assisted

fluorescence
melting
curve

analysis

EGFR
mutations

Prediction of
tumor

molecular
profile

Acc 92%

Prediction of
treatment
response

(EGFR TKI)

-

Hur
2018 [14] n = 23 -

EV DNA
from BALF
EV pellet PNA-

mediated
clamping

PCR

EGFR
mutations

Prediction of
tumor

molecular
profile

Acc 100%

Cell-free
DNA from

BALF
supernatant

Acc 71%

Ahrendt
1999 [16]

n = 50
Type: AC 25,

SQCC 23, other 2
Stage: I 28, II 15,

III 7

-

Cellular
DNA from
BALF cell

pellet

Oligonucleotide
plaque hy-
bridization

p53
mutations

Prediction of
tumor

molecular
profile

Acc 39%

Allele-
specific

PCR

KRAS
mutations Acc 50%

Methylation-
specific

PCR

p16
methylation Acc 63%

Microsatellite
fragment
analysis

15
microsatellite

markers
Acc 14%

Combined
panel Acc 53%

Oshita 1999
[17]

n = 20
Type: AC n = 13

Cellular
DNA from
BALF cell

pellet

Allele-
specific

PCR

KRAS codon
12 mutation LC diagnosis Sens 79%

Spec 64%

Li 2014 [18]

n = 48 (M 27)
Age: 42–75 y
Type: AC 32,

SQCC 14, LCC 2
Stage: I 19, II 25,

III 4

n = 26 (M 17)
Age: 28–70 y

Cellular
DNA from
BALF cell

pellet

PCR
single-strand

conforma-
tion

polymor-
phism

KRAS
mutations

LC diagnosis Sens 38%
Spec 92%

Prediction of
tumor

molecular
profile

Acc 72%

p53
mutations

LC diagnosis Sens 44%
Spec 96%

Prediction of
tumor

molecular
profile

Acc 75%
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Table 1. Cont.

Study Patients Controls Processing Detection Biomarker Role Accuracy

Li 2014 [18]

n = 48 (M 27)
Age: 42–75 y
Type: AC 32,

SQCC 14, LCC 2
Stage: I 19, II 25,

III 4

n = 26 (M 17)
Age: 28–70 y

Cellular
DNA from
BALF cell

pellet

PCR
single-strand

conforma-
tion

polymor-
phism

Combined
panel

LC diagnosis Sens 67%
Spec 89%

Prediction of
tumor

molecular
profile

Acc 70%

Nakamichi
2017 [19] n = 36 -

Cellular RNA
from BALF
cell pellet

mRNA-
specific
reverse

transcription-
PCR

ALK translo-
cations

Prediction of
tumor

molecular
profile

Acc 97%

Kim
2004 [20]

n = 85 (M 57)
Mean age:
65 ± 17 y

Type: AC 31,
SQCC 43,
other 11

Stage: I 52, II 33

n = 127
(M 84)

Mean age:
62 ± 14 y

Cellular
DNA from
BALF cell

pellet

Methylation-
specific

PCR

p16
methylation

LC diagnosis

Sens 16%
Spec 94%

RARβ
methylation

Sens 15%
Spec 87%

H-cadherin
methylation

Sens 13%
Spec 97%

RASSF1A
methylation

Sens 18%
Spec 96%

Nikolaidis
2012 [23]

n = 139 (M 80)
Mean age:

68.4 ± 8.1 y
Type: AC 22,

SQCC 31, SCC
39, LCC 16, other
20, unknown 11

n = 109
(M 63)

Mean age:
67.6 ± 8.8 y

Cellular
DNA from
BALF cell

pellet

Methylation-
specific

PCR

Methylation
panel (p16,

RASSF1,
WT1, TERT)

LC diagnosis Sens 82%
Spec 91%

Dietrich
2012 [24]

n = 125 (M 72)
Age: 46–85 y
Type: AC 26,

SQCC 28,
NSCLC NOS 9,

SCC 40, other 22

n = 125
(M 61)

Age: 45–86 y

Cellular
DNA from
BALF cell

pellet

Methylation-
specific

PCR

SHOX2
methylation LC diagnosis

AUC 0.94
Sens 78%
Spec 96%

Zhang
2017 [25]

n = 284 (M 212)
Age: 31–85

Type: AC 92,
SQCC 107, SCC

42, LCC 5,
unknown 38

Stage: I 28, II 30,
III 133, IV 93

n = 38 (M 28)
Age: 29–75 y

Cellular
DNA from
BALF cell

pellet

Methylation-
specific

PCR

Methylation
panel

(SHOX2,
RASSF1A)

LC diagnosis
AUC 0.89
Sens 81%
Spec 97%

Um
2018 [26] n = 31 n = 10

Cellular
DNA from
BALF cell

pellet

DNA
methylation
microarray

Methylation
panel

(TFAP2A,
TBX15,
PHF11,

TOX2, PRR15,
PDGFRA,
HOXA11)

LC diagnosis
AUC 0.87
Sens 87%
Spec 83%

Li 2021 [27]

n = 52 (M 33)
Type: AC 37,

SQCC 10, other 5
Stage: I 34, II 1,

III 1, IV 4,
unknown 12

n = 59 (M 33)

Cellular
DNA from
BALF cell

pellet

Methylation-
specific

PCR

Methylation
panel (LHX9,

GHSR,
HOXA11,

PTGER4-2,
HOXB4-3)

LC diagnosis
AUC 0.82
Sens 70%
Spec 82%
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Table 1. Cont.

Study Patients Controls Processing Detection Biomarker Role Accuracy

Post-transcriptional biomarkers

Molina-
Pinelo

2014 [29]

n = 48 (M 40)
Type: AC

Stage: I-II 2, III
15, IV 31

n = 16 (M 15)
Cellular RNA

from BALF
cell pellet

MicroRNA
microfluidic
card array

Four
upregulated

miRNA
clusters (chro-
mosome loci

13q31.3,
7q22.1,
Xq26.2,

11q13.1)

LC diagnosis -

Li 2013 [30]

n = 70 (M 52)
Mean age:
64 ± 24 y

Type: AC 37,
SQCC 25, LCC 4,

SCC 4
Stage: I 10, II 24,

III 25, IV 11

n = 26 (M 19)
Mean age:
55 ± 19 y

Cellular RNA
from BALF
cell pellet

mRNA-
specific
reverse

transcription-
PCR

Survivin
expression
ratio > 0.35

LC diagnosis

AUC 0.83
Sens 83%
Spec 96%

Livin
expression
ratio > 0.3

AUC 0.68
Sens 63%
Spec 92%

Rehbein
2015 [31]

n = 30 (M 21)
Median age 64.5

y

n = 30 (M 17)
Median age

63.5 y

Cell-free
RNA from

BALF
supernatant

MicroRNA
microfluidic
card array

Five
upregulated
miRNAs (U6

snRNA,
hsa-miR 1285,
hsa-miR 1303,

hsa-miR
29a-5p,

hsa-miR 650)

LC diagnosis -

Kim
2018 [32]

n = 13 (M 7)
Age: 47–72 y

Type: AC
Stage: I 10, II 3

n = 15
EV RNA

from BALF
EV pellet

miRNA-
specific
reverse

transcription-
PCR

miR-126 and
Let-7a were
significantly
upregulated

LC diagnosis -

Kim
2015 [33]

n = 21 (M 17)
Age: 46–84 y
Type: AC 13,

SQCC 5, LCC 3
Stage: I 12, II 9

n = 10 (M 8)
Age: 30–77 y

Cellular RNA
from BALF
cell pellet

miRNA-
specific
reverse

transcription-
PCR

High
expression
cluster of a
5-miRNA

panel
(miR-21,
miR-143,
miR-155,
miR-210,
miR-372)

LC diagnosis Sens 86%
Spec 100%

Li 2017 [34]

n = 127 (M 82)
Age: 66 ± 8 y
Type: AC 45,

SQCC 82
Stage: I 52, II 38,

III-IV 37

-
Cellular RNA

from BALF
cell pellet

Droplet
digital

miRNA-
specific

PCR

2-miRNA
(miR-205-5p,

miR-944)
prediction

model

Discrimination
of SQCC
from AC

AUC 0.997
Sens 95%
Spec 97%

Mancuso
2016 [35]

n = 50 (M 32)
Age: 34–82 y
Type: SCC

Stage: III 18,
IV 32

-
Cellular RNA

from BALF
cell pellet

miRNA-
specific
reverse

transcription-
PCR

Above
median

expression
levels of a
3-miRNA

panel
(miR-192,
miR-200c,
miR-205)

Overall
survival
(worse)

-
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Table 1. Cont.

Study Patients Controls Processing Detection Biomarker Role Accuracy

Rodríguez
2014 [36]

n = 30 (M 23)
Age: 45–83 y
Type: AC 14,

SQCC 16

n = 75 (M 46)
Age: 18–87 y

EV RNA
from BALF
EV pellet

MicroRNA
real-time

PCR array

10 miRNAs
were

upregulated
and 10 down-

regulated

LC diagnosis -

Kuo
2018 [37]

n = 34 (M 19)
Mean age:

58.5 ± 12.8 y
Type: AC 26,

SQCC 8
Stage: III 11, IV

23

n = 14 (M 7)
Mean age:

53.3 ± 11.4 y

Cellular RNA
from BALF
cell pellet

mRNA-
specific
reverse

transcription-
PCR

9-gene (SPP1,
CEACAM6,

MMP7,
SLC40A1,
IGJ, IGKC,

CPA3, YES1,
CXCL13)

prediction
model

LC diagnosis AUC 0.92

Post-translational biomarkers (proteins, cell epitopes, metabolites)

Macchia
1987 [38]

n = 37
Type: AC 4,

SQCC 23, LCC 3,
SCC 7

n = 20
Cell-free

BALF
supernatant

RIA

CEA
LC diagnosis

Sens 57%
Spec 65%

TPA Sens 65%
Spec 20%

NSE

SCC
diagnosis

Sens 71%
Spec 90%

Ferritin Sens 71%
Spec 100%

CanAg
CA-50

Sens 100%
Spec 55%

Naumnik
2012 [40]

n = 45 (M 38)
Mean age:
61.9 ± 4 y

Type: AC 9,
SQCC 22,

NSCLC NOS 14
Stage: III 18,

IV 27

n = 15 (M 13)
Mean age:
60.1 ± 5 y

Cell-free
BALF

supernatant
ELISA

IL-27 (↑) LC diagnosis -

IL-27, IL-29
(↓)

Discrimination
of advanced

stage
-

Naumnik
2016 [41]

n = 46 (M 46)
Mean age:
63 ± 3 y

Type: AC 10,
SQCC 25, LCC 11

Stage: III 20,
IV 26

n = 15 (M 12)
Mean age
60 ± 4 y

Cell-free
BALF

supernatant
ELISA

HGF, IL-22
(↓) LC diagnosis -

IL-22 (↑)
Overall
survival
(worse)

-

Kontakiotis
2011 [42]

n = 42 (M 42)
Age: 43–80 y
Type: AC 7,

SQCC 22, SCC
10, other 3

n = 16 (M 16)
Age: 45–77 y

Cell-free
BALF

supernatant

ELISA TNF-α (↑)

LC diagnosis

-

Colorimetric
assay

Total
antioxidants,
glutathione

(↑)

-

Jakubowska
2015 [43]

n = 45 (M 38)
Mean age:

61.7 ± 8.3 y
Type: AC 20,

SQCC 22, LCC 3
Stage: III 18,

IV 27

n = 15 (M 13)
Mean age:

60.1 ± 5.0 y

Cell-free
BALF

supernatant
ELISA TGF-β (↑) LC diagnosis -
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Chen
2014 [44]

n = 45 (M 28)
Mean age:

60.8 ± 1.2 y
Type: AC 11,

SQCC 18, SCC
10, other 6

n = 33 (M 19)
Mean age:

58.2 ± 1.7 y

Cell-free
BALF

supernatant
ELISA TGF-β1

>10.85 pg/ml LC diagnosis
AUC 0.7
Sens 62%
Spec 61%

Xiong
2020 [45]

n = 219 (M 150)
Mean age:

68.4 ± 18.8 y
Type: AC 136,
SQCC 43, SCC

35, other 5
Stage: 0 38, I 93,

II 50, III 28, IV 10

n = 186
(M 125)

Mean age:
40.6 ± 15.5 y

Cell-free
BALF

supernatant
ELISA

VEGF >234.1
pg/mL,

TGF-β >81.8
pg/mL, HGF
44.6 pg/mL

(at least 2
positive)

LC diagnosis
AUC 0.81
Sens 82%
Spec 61%

Charpidou
2011 [46]

n = 40 (M 37)
Age: 45–82 y
Type: AC 12,

SQCC 19, other 9
Stage: I 3, III 14,

IV 23

-
Cell-free

BALF
supernatant

ELISA

VEGF (↓)

Prediction of
treatment
response

(chemother-
apy)

-

VEGFR1
>53.2 pg/ml

Progression
free survival

(worse)
-

VEGFR2
>705.3 pg/ml

Overall
survival
(worse)

-

Cao
2013 [47]

n = 37 (M 28)
Mean age:

55.4 ± 8.4 y
Type: AC 15,

SQCC 19, SCC 3
Stage: I 23, II 9,

III 5

n = 19 (M 12)
Mean age:

48.1 ± 9.2 y

Cell-free
BALF

supernatant
ELISA VEGF >214

pg/ml LC diagnosis
AUC 0.86
Sens 82%
Spec 84%

Chen
2014 [48]

n = 54 (M 60)
Median age: 60 y

Type: AC 9,
SQCC 36, SCC 9

n = 12 (M 6)
Median age:

37 y

Cell-free
BALF

supernatant
ELISA IL-8, VEGF

(↑) LC diagnosis -

Pio 2010
[49]

n = 56 (M 45)
Age: 38–83 y
Type: AC 12,

SQCC 24, LCC 4,
SCC 9, other 7

n = 22 (M 14)
Age: 30–82 y

Cell-free
BALF

supernatant ELISA

Complement
factor H >1
μg/mL LC diagnosis

Sens 62%
Spec 77%

Albumin >17
μg/mL

Sens 68%
Spec 71%

Ajona 2013
[50]

n = 50 (M 41)
Type: AC 12,

SQCC 22, SCC 9,
other 7

n = 22 (M 14)
Cell-free

BALF
supernatant

ELISA
Complement
C4-derived
fragments

LC diagnosis AUC 0.73

Ajona 2018
[51]

n = 49 (M 40)
Type: AC 12,

SQCC 22, SCC 8,
other 7

n = 22 (M 14)
Cell-free

BALF
supernatant

ELISA Complement
C4d LC diagnosis AUC 0.80

Li 2013 [52]
n = 18 (M 7)

Age: 51–83 y
Type: AC

n = 6 (M 3)
Age: 18–85 y

Cell-free
proteins from

BALF
supernatant

ELISA
Napsin A

>55 ng/mg
total protein

LC diagnosis
AUC 0.85
Sens 84%
Spec 67%
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Uribarri
2014 [53]

n = 204 (M 177)
Mean age:

63.0 ± 10.7 y
Type: AC 59,

SQCC 80, SCC
63, other 2

Stage: I 14, II 4,
III 60, IV 109,
undefined 17

n = 48 (M 38)
Mean age:

54.9 ± 14.0 y

Cell-free
proteins from

BALF
supernatant

Fluorescent
bead-based

immunoassay

5-protein
(APOA1,

CO4A, CRP,
GSTP1,
SAMP)

prediction
model

LC diagnosis
AUC 0.94
Sens 95%
Spec 81%

2-protein
(STMN1,
GSTP1)

prediction
model

Discrimination
of SCC from

NSCLC

AUC 0.80
Sens 90%
Spec 57%

Ortea
2016 [54]

n = 12 (M 8)
Median age: 64 y

Type: AC
Stage: I-II 2,

III-IV 10

n = 10 (M 10)
Median age:

61

Cell-free
proteins from

BALF
supernatant

Liquid
chromatography–

mass
spectrometry

Discriminant
analysis of a
44-protein

panel

LC diagnosis Sens 92%
Spec 70%

Almatroodi
2015 [55]

n = 8 (M 5)
Mean age:

68.1 ± 7.6 y
Type: AC

Stage: I 2, II 2, III
1, IV 3

n = 8 (M 3)
Mean age:
60 ± 8.7 y

Cellular
proteins from

BALF cell
pellets

Liquid
chromatography–

mass
spectrometry

33
upregulated

proteins
LC diagnosis -

Carvalho
2017 [56]

n = 49
Type: AC 28,

SQCC 10, SCC 4,
LCC 1,
other 6

n = 41
Cell-free

proteins from
BALF

supernatant

Liquid
chromatography–

mass
spectrometry

Different
spectral

count values
from all

abundant
proteins

LC diagnosis

-

133
differentially

expressed
proteins

-

Hmmier
2017 [57]

n = 26 (M 13)
Mean age: 65 y

Type: AC 13,
SQCC 13

Stage: I-II 15,
III-IV 11

n = 16 (M 8)
Mean age:

56 y

Cell-free
proteins from

BALF
supernatant

Liquid
chromatography–

mass
spectrometry

267
differentially

expressed
proteins

AC diagnosis -

261
differentially

expressed
proteins

SQCC
diagnosis -

292
differentially

expressed
proteins

Discrimination
of SQCC
from AC

-

Liu 2021
[58]

n = 85 (M 60)
Type: AC 32,

SQCC 32,
SCC 21

Stage: I-II 30,
III-IV 42,

unknown 13

n = 33 (M 20)

Cell-free
proteins from

BALF
supernatant

Lectin
microarray

3-lectin (ECA,
GSL-I,

RCA120)
prediction

model

LC diagnosis
AUC 0.96
Sens 92%
Spec 94%

4-lectin
(DBA, STL,
UEA-I, BPL)
prediction

model

Discrimination
of AC from

other
subtypes

AUC 0.62
Sens 71%
Spec 59%
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1-lectin
(PNA)

prediction
model

Discrimination
of AC from

other
subtypes

AUC 0.69
Sens 80%
Spec 67%

Liu 2021
[58]

n = 85 (M 60)
Type: AC 32,

SQCC 32,
SCC 21

Stage: I-II 30,
III-IV 42,

unknown 13

n = 33 (M 20)

Cell-free
proteins from

BALF
supernatant

Lectin
microarray

6-lectin (STL,
BS-I, PTL-II,
SBA, PSA,

GNA)
prediction

model

Discrimination
of AC from

other
subtypes

AUC 0.72
Sens 72%
Spec 68%

6-lectin
(MAL-II, LTL,

GSL-I,
RCA120,
PTL-II,
PWM)

prediction
model

Discrimination
of early from

advanced
stage

AUC 0.86
Sens 83%
Spec 81%

Kwiecien
2017 [60]

n = 18 (M 12)
Age: 50–81 y
Type: AC 4,

SQCC 9, NSCLC
NOS 4

Stage: I 4, II 11,
III 3

-
Immune cells

from BALF
cell pellets

Antibody-
specific flow
cytometry

% Tregs,
CTLA-4+

Tregs (↑)

LC diagnosis
(affected vs.

healthy lung)
-

Hu 2019
[63]

n = 52 (M 29)
Age: 39–73 y

Type: NSCLC 26,
SCC 26

n = 20 (M 12)
Age: 35–75 y

Immune cells
from BALF
cell pellets

Antibody-
specific flow
cytometry

% PD-1+ Tph
(↓), PD-1+

Tfh/Tph (↑)

SCC
diagnosis -

Hu 2020
[64]

n = 67 (M 46)
Age: 39–75 y
Type: AC 18,

SQCC 17,
SCC 32

Stage: 0–IIIA 39,
IIIB-IV 28

n = 14 (M 10)
Age: 33–71 y

Immune cells
from BALF
cell pellets

Antibody-
specific flow

cytometry

Tregs (↑)

LC diagnosis
Discrimination
of SCC from

NSCLC
Discrimination
of advanced

SCC

-

IL-10+

CD206+

CD14+

M2-like
macrophages

(↑)

LC diagnosis
Discrimination
of SCC from

NSCLC
Discrimination
of advanced

SCC
Overall
survival
(worse)

-

Cell-free
BALF

supernatant

Cytometric
bead
array

IL-10 (↑)

LC diagnosis
Discrimination
of SCC from

NSCLC
Discrimination
of advanced

SCC
Overall
survival
(worse)

-
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Masuhiro
2022 [65]

n = 12 (M 9)
Age: 55–70 y
Type: AC 7

-

Cell-free
BALF

supernatant

Cytometric
bead array CXCL9 (↑)

Prediction of
treatment

response (im-
munother-

apy)

-

Bacterial
DNA from

BALF
supernatant

16S rRNA
sequencing

Bacterial
alpha

diversity (↑),
Proteobacteria

(↓),
Bacteroidetes

(↑)

-

n = 7
Cellular RNA

from BALF
cell pellets

RNA
sequencing

87 genes
were

upregulated
and 28 were
downregu-

lated

-

Zhong 2021
[70] n = 12 n = 6

Tumor cells
from BALF
cell pellets

Antibody-
specific

immunos-
taining +

fluorescence
in situ hy-

bridization

Circulating
tumor cell
count ≥2

LC diagnosis Sens 75%
Spec 100%

Schmid
2015 [72]

n = 26 (M 16)
Mean age:

60.2 ± 8.3 y
Type: AC 20,

SQCC 6

n = 21 (M 13)
Mean age:

64.7 ± 8.4 y

Cell-free
BALF

supernatant
BLEIA ATP, ADP (↑) LC diagnosis -

Cellular RNA
from BALF
cell pellets

mRNA-
specific
reverse

transcription-
PCR

CD39 (↑)

LC diagnosis
Discrimination
of metastatic

disease

-

P2X4, P2X7,
P2Y1 (↑)

Discrimination
of metastatic

disease
-

Callejón-
Leblic 2016

[73]

n = 24 (M 16)
Mean age:
66 ± 11 y

n = 31 (M 23)
Mean age:
56 ± 13 y

Cell-free
metabolites
from BALF
supernatant

Direct
infusion

mass
spectrometry

Carnitine

LC diagnosis

AUC 0.88

Adenine AUC 0.83

Choline AUC 0.78

Gas
chromatography–

mass
spectrometry

Glycerol AUC 0.89

Phosphoric
acid AUC 0.79

Callejón-
Leblic 2018

[75]

n = 24 (M 20)
Mean age:
65 ± 13 y

Type: NSCLC 22,
SCC 2

n = 31 (M 27)
Mean age:
54 ± 14 y

Cell-free
elements

from BALF
supernatant

Inductive
coupled

plasma mass
spectrometry

Mn LC diagnosis AUC 0.75

V/Cu ratio AUC 0.76

107



Diagnostics 2022, 12, 2949

Table 1. Cont.

Study Patients Controls Processing Detection Biomarker Role Accuracy

Suresh 2019
[94]

n = 18 (M 13)
Type: NSCLC 15,

other 3

-

Immune cells
from BALF
cell pellets

Antibody-
specific flow
cytometry

% PD-
1hi/CTLA-

4hi Tregs (↓),
% IL-1RA-

expressing B
cells (↓), %

central
memory T
cells (↑), %

CD8+

TNF-αhi T
cells (↑), %

IL-1βhi

monocytes
(↑)

Prediction of
CIP

development

-

Cell-free
BALF

supernatant

V-plex im-
munoassays

IL-1β (↓),
IL-8 (↓),

MIP-3α (↓),
IL-12p40 (↑),

IP-10 (↑)

-

Crohns
2010 [104]

n = 36 (M 29)
Age: 47–82 y
Type: AC 1,

SQCC 33,
SCC 2

Stage: I 1,
III 18, IV 17

n = 36 (M 16)
Age: 18–75 y

Cell-free
BALF

supernatant
ELISA

Il-6 (↑) LC diagnosis -

IL-8 (↑)
Overall
survival
(worse)

-

Yamagishi
2017 [105]

n = 22 (M 16)
Type: AC 8,

SQCC 8, SCC 4,
unknown 2

-
Cell-free

BALF
supernatant

ELISA
MMP-9 (↑) Prediction of

radiation
pneumonitis

-

VEGF (↓) -

Metagenomic biomarkers

Wang 2019
[76]

n = 51 (M 31)
Type: AC 18,

SQCC 19,
SCC 14

n = 15 (M 8)

Bacterial
DNA from
BALF cell

pellet

16S rRNA
sequencing

Microbial
diversity (↓) LC diagnosis -

Treponema AUC 0.86

Cheng 2020
[77]

n = 32 (M 23)
Mean age:

64.3 ± 8.4 y
Type: AC 16,

SQCC 9, SCC 7
Stage: I 7, III 6,

IV 19

n = 22 (M 12)
Mean age:

56.5 ± 14.3 y

Bacterial
DNA from

BALF
supernatant

16S rRNA
sequencing

10-genera
(f:Pseudomonadaceae,

Capnocy-
tophaga,

Stenotrophomonas,
Microbac-

terium,
Gemmiger,
c:TM7-3,

Oscillospira,
Blautia,

Lautropia,
Sediminibac-

terium)
prediction

model

LC diagnosis AUC 0.79
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Lee 2016
[78]

n = 20 (M 13)
Median age:

64 y
Type: AC 13,

SQCC 5, SCC 2
Stage: II 6, III 8,

IV 6

n = 8 (M 7)
Median age:

58.5 y

Bacterial
DNA from

BALF
supernatant

16S rRNA py-
rosequencing

Veillonella

LC diagnosis

AUC 0.86

Megasphaera AUC 0.78

Combined
panel AUC 0.89

Patnaik
2021 [79]

n = 36 (M 16)
Type: AC 24,

SQCC 11,
other 1
Stage: I

-

Bacterial
DNA from

BALF
supernatant

16S rRNA
sequencing

19-genera
microbiome

signature

Prediction of
recurrence

after surgery
AUC 0.77

Zheng 2021
[80]

n = 32
Type: NSCLC
Stage: I-II 23,

III-IV 9

n = 15

Bacterial
DNA from

BALF
supernatant

16S rRNA
sequencing

Differentiated
abundance of

19 species
LC diagnosis -

Jang 2021
[81]

n = 11 (M 9)
Median age: 63 y

Type: AC 8,
SQCC 3

Stage: III 5,
IV 6

-

Bacterial
DNA from

BALF
supernatant

16S rRNA
sequencing

Haemophilus
influenzae (↓),

Neisseria
perflava (↓),
Veillonella
dispar (↑)

Prediction of
treatment

response (im-
munother-

apy)

-

BALF, bronchoalveolar lavage fluid; M, male; AC, adenocarcinoma; SQCC, squamous cell carcinoma; NSCLC;
non-small-cell lung cancer; NOS, not otherwise specified; SCC, small-cell carcinoma; LCC, large cell carcinoma;
EV, extracellular vesicle; PCR, polymerase chain reaction; FRET-PHFA, fluorescence resonance energy
transfer-based preferential homoduplex formation assay; PNA, peptide nucleic acid; RIA, radioimmunoassay;
ELISA, enzyme-linked immunosorbent assay; BLEIA, bioluminescent enzyme immunoassay; LC, lung can-
cer; TKI, tyrosine kinase inhibitor; CIP, checkpoint inhibitor pneumonitis; AUC, area under the ROC curve;
Acc, overall accuracy; Sens, sensitivity; Spec, specificity. Note: Upward arrows correspond to increased and
downward arrows to decreased detection of the biomarker respectively to predict each outcome. Sensitivity is
the probability that a test result will be positive when the disease is present. Specificity is the probability that
a test result will be negative when the disease is not present. Overall accuracy is the overall probability that a
patient is correctly classified. Area under the ROC curve is the probability that a classifier will distinguish between
two classes (disease vs. normal).

6. Conclusions

It can be concluded that BALF is an appropriate medium that may aid in the diagnosis
of lung cancer, in assessing prognosis and response to therapy, but also in the early identifi-
cation of treatment-related adverse events. Furthermore, continuous re-evaluation of the
genome and the protein and immune status of lung cancer cells is essential in the course of
the disease. Repeated BALF examination is a cost-effective and easily accessible method
for evaluating the microenvironment and immune status of cancer-afflicted lung tissues
and provides a valid comparison of the disease status before and after treatment.
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Abstract: Background: This study aims to investigate isocitrate dehydrogenase gene mutations in
patients with the non-hereditary skeletal disorders of Ollier disease and Maffucci syndrome, par-
ticularly in the extraosseous tumours. Methods: A total of 16 tumours from three patients with
Ollier disease and three patients with Maffucci syndrome were collected. Sanger sequencing was
applied to determine the hotspot mutations of IDH1 and IDH2 genes in multiple neoplastic tissues.
Results: A majority of the tumours displayed an IDH1 mutation (p.R132C in 11 tumours including
the paediatric ovarian tumour from one patient with Ollier disease, 4 cutaneous haemangiomas
from three patients with Maffucci syndrome, 5 enchondromas and 1 chondrosarcoma; p.R132H in
2 cartilaginous tumours from one patient). Conclusions: IDH1 mutations were demonstrated in
multiple cartilaginous tumours and extraskeletal neoplasms in this case series. Specifically, iden-
tical IDH1 mutations were confirmed in the separate lesions of each patient. These results are in
concordance with findings that have been reported. However, here, we additionally reported the first
case of Ollier disease with an ovarian tumour, which harboured the identical IDH1 mutation with
the corresponding cartilaginous tumour. We further provided evidence that IDH mutations are the
potential genetic links among the multiple neoplastic lesions of Ollier disease and Maffucci syndrome.

Keywords: isocitrate dehydrogenase; Ollier disease; Maffucci syndrome; cartilage tumour; extraskeletal
neoplasms; haemangioma; paediatric ovarian tumour

1. Introduction

Enchondromatosis is a syndrome hallmarked by a benign cartilage-forming tumour
within the bones. The most common subtypes are non-hereditary Ollier disease and
Maffucci syndrome [1,2], mainly involving the short tubular bone and long bone of the
limbs asymmetrically, and the latter is accompanied by simultaneous haemangioma of the
dermis or subcutis or internal organs. Patients with Ollier disease and Maffucci syndrome
often manifest in early childhood, and surgical intervention is usually needed to correct
deformities in the process of growth and development. However, the incidence of malignant
transformation of enchondromas to chondrosarcoma is high; it ranges from 5% to 50% in
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Ollier disease and could be as high as 53% in Maffucci syndrome [1,3,4]. In addition, both
disorders have an increased risk of extraosseous malignant tumours, and particularly of
ovarian juvenile granulosa cell tumours and central nervous system gliomas [2].

As is known, the hallmark genetic abnormality of enchondroma associated with Ollier
disease and Maffucci syndrome is the somatic point mutations on isocitrate dehydrogenase
(IDH) genes, IDH1 and IDH2 [5–8]. Tumours in separate sites of one individual display
identical mutations. However, the genetic correlation among multiple tumours especially
in extraosseous malignancies associated with the two disorders remains uncertain.

Herein, we retrospectively reviewed three cases of Ollier disease and three cases of
Maffucci syndrome. IDH1 and IDH2 gene mutations were performed in a series of tumours
from the 6 patients, including 1 ovarian tumour, 4 vascular tumours and 11 cartilage
tumours. The specific IDH mutations within cartilage tumours and non-cartilage tumours
of Ollier disease and Maffucci syndrome were compared.

2. Case Report

2.1. Case Selection

Three patients with Ollier disease and three patients with Maffucci syndrome were
selected from Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University
School of Medicine during the period from 2016 to 2020. Ethical approval was given
by the medical ethics committee of this hospital. The information of the patients was
collected, including clinical symptoms, imaging reports (X-ray, CT or MRI) and follow-up
data. All haematoxylin and eosin stain (H&E) sections were confirmed by C.Z. and J.Z.
A total of 16 tumours and paired normal tissues were sampled from the six patients for the
detection of IDH1 and IDH2 mutations by Sanger sequencing. Five enchondromas, one
chondrosarcoma and one ovarian tumour were from the three patients with Ollier disease.
Four enchondromas, one chondrosarcoma and four vascular tumours were from the three
patients with Maffucci syndrome.

2.2. Clinical Data

All patients had no corresponding family history. The sites of the tumours ranged from
one or several to dozens of lesions at most (Table 1). The cases of Ollier disease included
two females and one male, and the age at diagnosis was mainly at young age (Table 1,
case 1–3). In case one, the CT revealed lytic bone destructions in the right tibial metaphyseal,
superior femur, ilium and pubis (Figure 1A), and the MRI showed a huge mass in the pelvis
(Figure 1B,C). In case two, the patient presented with a nodular lesion of the right middle
finger at 3-years-old. Eccentric low-density shadows were shown gradually in the proximal
segment of the right middle finger and the right third metacarpal bone during the 13 years
follow-up by X-rays. In case three, a swelling was found in the right finger at 7-years-old.
The finger gradually enlarged in the following 48 years. Surgery was rendered because
the nodule grew fast at the age of 55. Multiple nodular lesions with eccentric expansive
growth and irregular calcification were demonstrated by imaging (Figure 1D,E), which
locally penetrated the bone cortex and extended into the surrounding soft tissue.

Maffucci syndrome (cases 4–6) included two females and one male (Table 1). In case
four, the patient presented with a swelling of the right finger and a left ulnar lesion at
the age of three. The left ulnar nodule was proven to be enchondroma histologically by
excision at the age of six. In the following 14 years, multiple intraosseous eccentric masses
were presented gradually on his right fingers, accompanied by multiple subcutaneous soft
tissue masses. Case five began to have nodules in her hands and feet when she was only
two–three-years-old. In the following 33 years, extensive purple-blue skin masses appeared
subsequently in the hands, feet, limbs, shoulders and back (Figure 1F,G). The patient
showed rapid progression of swelling and pain in her right knee for about half a year
before her consultation. The PET-CT scan showed multiple expansive bone destructions
with irregular calcification and an accompanying soft tissue mass surrounding the right
proximal tibia lesion (Figure 1H). In case six, a deformity of the left radius and ulna was
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identified at the age of six. An X-ray analysis showed a curved deformity of the left radius
and ulna, and eccentric low-density shadow of multiple short tubular bones of the left hand
and foot and the left distal tibia (Figure 1I,J). MRI showed multiple high-density nodules in
the left plantar and medial subcutaneous.

Figure 1. (A) Spotted bone destruction of the right upper femur, tibial metaphysis, iliac and pubis was
shown by X-ray (arrow). (B,C) A huge soft tissue mass in pelvis could be observed from the MRI (arrow).
(D,E) Multiple expansive bone destruction was shown in the right little finger; ring finger; middle finger;
the third, fourth and fifth metacarpal bones; and the distal ulna by three-dimensional reconstruction and
CT. (F,G) Multiple purplish blue subcutaneous nodules were found in the hands and feet, protruding
on the surface of the skin (arrow). (H) Multiple bone destruction was seen in bilateral ilium, right
acetabulum, left ischium, bilateral femur, right tibia, fibula and calcaneus by PET-CT (arrow, still image).
(I,J) A curved deformity of the left radius and ulna, and eccentric low-density shadow of multiple
short tubular bones of left hand and foot and the left distal tibia were presented by plain X-ray (arrow).
(K) Well-differentiated hyaline cartilage (arrow, up) and dark red sticky area involving the surrounding
soft tissue were seen in the cut section of the right proximal tibial tumour (arrow, down). (L) Active
chondrocytes were distributed in clusters, and atypical binucleate cells (arrow) could occasionally be
seen (Hematoxylin-eosin staining, ×200). (M) Chondrocytes with severe atypia could be demonstrated
in the sarcomatous area, no more cartilage lacunae could be found (Hematoxylin-eosin staining, ×100).
(N) Lobular-patterned ovarian sex cord-stromal tumour with mucinous degeneration was seen at
low power (Hematoxylin-eosin staining, ×40). (O) The tumour cells had obvious nucleoli and light
eosinophilic cytoplasm, and mitotic figures (arrow) were easy to find at high power (Hematoxylin-eosin
staining, ×200). (P) Solid spindle cell and cavernous haemangioma-like areas of Maffucci syndrome
(Hematoxylin-eosin staining, ×100). (Q) Positive immunoreaction with α-inhibin was seen in the
cytoplasm in ovarian tumour (EnVision, ×200). (R) Reticular fibres were confirmed in the ovarian
sex cord-stromal tumour (Reticular fibre staining, ×200). (S) Positive immunoreaction with ERG was
observed in the nucleus of the haemangioma (EnVision, ×100).
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Table 1. Clinicopathological data.

No Sex Onset Age Age of Diagnosis Locations Treatment Follow-Up (m)

1 F 2 yr 4 yr Right upper femur, ilium, pubis, tibial
metaphysis, right ovary right

Right upper femur biopsy and
right ovarian mass resection 31

2 F 3 yr 18 yr
Right middle finger proximal segment,

right third metacarpal bone, index finger
proximal segment

Curettage of
intraosseous lesions 40

3 M 7 yr 56 yr
Right little finger, ring finger, middle

finger, right third, fourth, fifth metacarpal
bone, right distal ulna

Resection of the fourth and
fifth phalanges and half palms

of the right hand
48

4 F 3 yr 20 yr
Left ulna, right index finger, little finger
and ring finger; the right wrist and little

finger subcutaneous soft tissue

Curettage of
intraosseous lesions

Resection of soft tissue mass
68

5 F 2 yr 36 yr

Bilateral scapula, sternum, left humerus,
bilateral ilium, right acetabulum, left

ischium, bilateral femur, right tibiofibula,
right calcaneus; extensive subcutaneous

nodules with calcification

Resection of right proximal
tibia tumour

Excision of subcutaneous
mass in right leg

40

6 M 6 yr 33 yr

Multiple phalanges, metacarpals, ulna and
radius in left hand, metatarsals, phalanges

and distal tibia in left foot, and
subcutaneous soft tissue nodules in the

dorsum, sole and medial side of left foot

Curettage of short tubular
lesions in left foot

Resection of 2 subcutaneous
nodules in the left foot

22

Benign cartilaginous lesions from six patients underwent curettage selectively. Re-
section was performed in 2 cartilaginous tumours which manifested local malignant
transformation to chondrosarcoma from 2 patients, respectively. The ovarian tumour
in case one was resected. Four subcutaneous nodules were resected from three cases of
Maffucci syndrome.

2.3. Pathological Examination

The gross appearance of the chondrogenic tumour tissue was grey, translucent and
cartilage-like. In case three: obvious deformity and swelling of the phalanx was observed
in the half palmar resection specimen; multiple nodular cartilaginous lesions destroyed
local bone cortex and invaded into the surrounding soft tissue. In case five: a translucent
cartilaginous mass in the medullary cavity extending from the tibial bone end towards
the metaphysis was demonstrated in the resected specimen of the right proximal tibial;
a dark red jelly-like tumour with an irregular margin penetrated into the bone cortex and
the surrounding soft tissue (Figure 1K).

All enchondromas showed a similar lobulated structure at low power, high cellularity
at high power, accompanied by mild atypia and binuclear cells occasionally (Figure 1L).
In the chondrosarcoma of 2 cases, atypical tumour cells with extensive mucinous degen-
eration of the cartilage matrix infiltrated into the cortex and soft tissue (1M). The ovarian
tumour of case one consisted of primitive and immature tumour cells within the mucinous
degeneration of interstitial components distributing in a flaky pattern with fibrous sep-
aration at low power, (Figure 1N). The tumour cells were ovate to elongated with light
eosinophilic cytoplasm and had obvious nucleoli at high power (Figure 1O). Three cases
with Maffucci syndrome presented a mixed spindle cell haemangioma and cavernous
haemangioma (Figure 1P).

2.4. Immunohistochemical Features and Special Staining

The ovarian tumours in Ollier disease showed an immunoreaction with α-inhibin
(Figure 1Q), and reticulin staining displayed tumour cells surrounded by reticular fibres
(Figure 1R). The spindle cell haemangioma and cavernous haemangioma in Maffucci
syndrome were positive for ERG (Figure 1S).
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2.5. Molecular Features

IDH1 and IDH2 mutations were detected by Sanger sequence. The molecular features
were summarised in Table 2. IDH1 mutations were discovered in most cartilage tumours
except for three enchondromas. All 4 haemangiomas detected an IDH1 mutation. The
ovarian tumour from a patient with Ollier disease was shown to carry the R132C IDH1
mutation. Multiple separate tumours in one individual shared identical IDH1 mutations.
The IDH1 mutation variant of three patients with Ollier disease were p.R132C, p.R132C and
p.R132H, respectively, and that of three patients with Maffucci syndrome was all p.R132C
(Figure 2). The detection rate of IDH1 mutations in cartilage tumours was 73% (8/11). All
the non-chondrogenic tumours were detected to have identical hotspot mutation locations
of IDH1 with the corresponding cartilage tumours. There were no IDH2 mutations detected.

Figure 2. (A) IDH1 mutation in ovarian tumour: p.R132C (c.394C > T) (indicated by arrow). (B,C)
IDH1 mutations in cartilage tumours: p.R132C (c.394C > T) (indicated by arrow) and p.R132H (c.395G
> A) (indicated by arrow). (D) IDH2 mutation: wild type.

2.6. Prognosis

Follow-up information as showed in Table 1 was available for all patients by radio-
graphic examination and telephone interviews. In case two, no relapse or new lesions were
demonstrated after surgery up to now. The remaining five patients were alive without
recurrence and distant metastasis.
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Table 2. Detection of IDH1 mutation in 16 tumours.

No Tumour Location IDH1 Mutation Results IDH2 Mutation Results

1
Right ovarian tumour c.394C > T p.R132C WT

Endochondroma of right upper femur c.394C > T p.R132C WT

2
Endochondroma of proximal segment of right middle finger c.394C > T p.R132C WT

Endochondroma of right third metacarpal bone c.394C > T p.R132C WT
Endochondroma of proximal segment of index finger WT WT

3
Endochondroma of right little finger c.395G > A p.R132H WT
Chondrosarcoma of right ring finger c.395G > A p.R132H WT

4

Subcutaneous haemangioma of right wrist c.394C > T p.R132C WT
Subcutaneous haemangioma of right little finger c.394C > T p.R132C WT

Endochondroma of right index finger c.394C > T p.R132C WT
Endochondroma of right ring finger WT WT

5
Subcutaneous haemangioma of right leg c.394C > T p.R132C WT
Chondrosarcoma of right proximal tibia c.394C > T p.R132C WT

6
Subcutaneous haemangioma of left medial malleolus c.394C > T p.R132C WT

Endochondroma of left middle finger c.394C > T p.R132C WT
Endochondroma of distal left tibia WT WT

3. Discussion

Ollier disease and Maffucci syndrome are characterized by multiple enchondromatosis,
and the phenotypic difference between them is mainly the existence of vascular anoma-
lies [1,9]. Maffucci syndrome may show more severe mesodermal dysplasia in that the
extraskeletal areas are often involved. The cartilaginous skeletal dysplastic are easy to
be identified; however, minimal soft tissue haemangiomas are hard to recognize initially.
Therefore, Maffucci syndrome is usually mistaken for Ollier disease in the early stage.
About 75% of those patients are diagnosed before the age of 20, and about 45% develop
symptoms before the age of six [2,3]. All of our 6 patients presented symptoms before
puberty, which were consistent with the previous studies. The incidence of secondary
chondrosarcoma associated with Maffucci syndrome and Ollier disease is much higher
than that in solitary enchondromas (3). As presented in our group, two cartilaginous tu-
mours developed into chondrosarcomas, which were located in the short and long tubular
bone, respectively. However, it is unnecessary to distinguish these two disorders from
the clinical perspective; both of them need a lifetime follow-up by imaging after diagno-
sis. A timely surgical intervention is essential whenever the tumour has a tendency of
malignant transformation.

IDH1 and IDH2 genes are located on the long arms of chromosome 2 and chromosome
15, respectively [5–8]. It was reported that IDH mutations are identified in 81% of patients
with Ollier disease and 77% of patients with Maffucci syndrome. The IDH mutation rate
of benign cartilaginous tumours is about 87%, and that of vascular lesions is about 70%.
In the current study, Sanger sequencing was used to detect the mutations of IDH1 and
IDH2 in the 16 tumours of six patients. The mutation rate of IDH1 in cartilaginous tumours
was about 73% (8/11), which is slightly lower than reported. All 4 haemangiomas were
confirmed to harbour a IDH1 mutation. Since the mutant allele could be present as low
as 1% (8), which may be below the detection level of the targeted mutation analysis, the
true frequency of IDH1/2 mutation in enchondroma could be underestimated. Saiji et al.
reported the mutation rate of IDH was 100% in 13 enchondromas from eight patients with
Ollier disease using next generation sequencing (NGS) [10]. The difference in methods may
explain the lower occurrence (73%) of IDH mutations found in our current study, as NGS
captures a broader spectrum of mutations than Sanger sequencing.

IDH mutations in enchondromatosis associated with Ollier disease most frequently
involve Arginine 132 (R132) in exon 4 of IDH1, while the IDH2 gene mutation (mainly
p.R172S) appears to be rarely affected. In comparison with Ollier disease, enchondromas
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and spindle-cell haemangiomas in Maffucci syndrome are characterized by the exclusive
predilection of IDH1. The mutation variants include mostly R132C, and rarely R132H,
R132G. Here, we reported an R132C mutation of IDH1 in two cases of Ollier disease
and three cases of Maffucci syndrome, and R132H in the third case of Ollier disease.
All the segregated extraskeletal non-cartilaginous tumours were found to possess the
identical IDH1 mutations with corresponding cartilage tumours. There were no IDH2
mutations found.

IDH1/2 plays important roles in the tricarboxylic acid cycle by converting isocitrate
to α-ketoglutarate (α-KG) [11]. The mutations of IDH1/2 make the mutated enzyme catal-
yse α-ketoglutarate (α-KG) to (D)-2-hydroxyglutaric acid (D-2-HG) [12–15], which has
already been confirmed that it could induce multiple enchondromas during bone formation
through promoting chondrocyte differentiation and inhibiting osteogenic differentiation
of mesenchymal stem cells [16,17]. As presented here, IDH1 mutations were identified
both in six enchondromas and two secondary chondrosarcomas. However, these muta-
tions are merely an early driver of tumourigenesis in cartilage tumour formation, and
further malignant transformation into chondrosarcoma may require additional genetic
events [7,18]. Furthermore, the excessive intracellular accumulation of D-2-HG impairs
histone demethylation, and leads to aberrant epigenetics changes of DNA methylation and
abnormal cellular differentiation [7,19–23]. Therefore, IDH1/2 mutations are believed to
contribute to the development of a variety of tumours.

Ollier disease and Maffucci syndrome share the same phenotypic characteristics:
(1) non-hereditary; (2) related tumours with asymmetrical polyostotic distribution, suggest-
ing the genetic characteristic of somatic mosaic mutations. Multiple tumours in the same
individual possess identical IDH1 mutations, and a very low frequency of IDH mutant
protein is observed in normal tissue in patients with Ollier disease and Maffucci syn-
drome [6–8]. Those reports further confirmed that IDH mutations occur in a somatic mosaic
pattern. The identification of the same variant in multiple tumours available for analysis
from the six patients in our group highlights the possibility of IDH somatic mosaicism;
however, neither normal tissue nor blood were examined in the current report.

As is well-known, patients with Ollier disease and Maffucci syndrome have a marked
risk of developing non-skeletal diverse malignancies, especially intracranial tumours of
glial origin and ovarian sex cord-stromal tumours [2,24,25]. The genetic correlation among
multiple tumours especially in extraosseous malignancies associated with the two disorders
remains mysterious. We know that IDH mutations are well-detected in mostly enchondro-
mas and spindle cell haemangiomas, and occasionally in other non-skeletal malignancies
such as gliomas associated with Ollier disease, anaplastic astrocytoma and acute myeloid
leukaemia in patients with Maffucci syndrome [26–28]. It seems that a mosaic pattern of
IDH mutations could explain the pathogenesis of diverse tumours (multiple cartilaginous
neoplasms, haemangiomas, gliomas or other uncommon extraosseous malignancies) in the
same patient. However, juvenile granulosa cell tumours (JGCTs) are considered the most
common reported extraskeletal tumours in patients with Ollier disease or Maffucci syn-
drome, which strongly suggests the possible connections between them [24,29]. However,
there have been no previous reports on molecular features of JGCTs with Ollier disease or
Maffucci syndrome. Other variants of ovarian sex cord-stromal tumour have rarely been
reported. Only one case of ovarian cell-rich fibroma associated with Ollier disease has been
reported to carry an IDH1 mutation [30], but the detailed mutation position of it was not
specified and the IDH1 mutation status of the corresponding cartilage tumours is lacking.

In our group, the right ovarian tumour with Ollier disease in case one located ip-
silaterally to the predominant skeletal dysplasia just as reported. Histologically, it was
characterized by primitive undifferentiated ovate to elongated cells accompanied by stro-
mal mucinous degeneration, and the mitotic figures were easy to find, but a pathological
mitotic figure was absent. The tumour cells showed no immunoreaction with Desmin,
MyoD1, Myogenin, SMA, S100, CD34 and BCOR, which were surrounded by reticular
fibres. The only positive immunoreaction with α-inhibin suggested its ovarian sex cord-
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stroma origination, but this was insufficient for a conclusive diagnosis. Fortunately, an
identical IDH1 R132C mutation was identified in both the ovarian tumour and the right
femoral cartilage tumour. To the best of our knowledge, we reported, for the first time,
that an identical IDH1 mutation was represented in the ovarian tumour and corresponding
cartilage tumour of Ollier disease. The demonstration of the IDH1 mutation both in the
ovarian tumour and cartilage tumour is of great significance. Theoretically, as the skeletal
system and the gonads are both originated from the mesoderm, the involvement of the
ovary is a manifestation of mesodermal dysplasia. Our result suggested that IDH mutation
is pathognomonic for both the ovarian tumour and cartilage tumour in Ollier disease.

In conclusion, IDH mutation may not be merely the initial cause of cartilage tumours;
they are probably the intrinsic genetic link among multiple neoplastic lesions in the setting
of somatic mosaicism. However, a heterozygotic IDH mutation alone is insufficient to
induce gliomas or ovarian tumours in patients with Ollier disease and Maffucci syndrome.
It may at least increase the tissue susceptibility of non-cartilaginous tumours’ formation.
Future studies should demonstrate a causal effect and assess how these gene mutations
lead to diverse neoplasms’ formation.
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Abstract: Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms. Tyrosine kinase
inhibitor (TKI) therapy is currently part of routine clinical practice for unresectable and metastatic
disease. It is important to assess the efficacy of TKI treatment at an early stage to optimize ther-
apy strategies and eliminate futile ineffective treatment, side effects and unnecessary costs. This
systematic review provides an overview of the imaging features obtained from contrast-enhanced
(CE)-CT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/CT to predict and monitor TKI treat-
ment response in GIST patients. PubMed, Web of Science, the Cochrane Library and Embase were
systematically screened. Articles were considered eligible if quantitative outcome measures (area
under the curve (AUC), correlations, sensitivity, specificity, accuracy) were used to evaluate the effi-
cacy of imaging features for predicting and monitoring treatment response to various TKI treatments.
The methodological quality of all articles was assessed using the Quality Assessment of Diagnostic
Accuracy Studies, v2 (QUADAS-2) tool and modified versions of the Radiomics Quality Score (RQS).
A total of 90 articles were included, of which 66 articles used baseline [18F]FDG-PET and CE-CT
imaging features for response prediction. Generally, the presence of heterogeneous enhancement
on baseline CE-CT imaging was considered predictive for high-risk GISTs, related to underlying
neovascularization and necrosis of the tumor. The remaining articles discussed therapy monitoring.
Clinically established imaging features, including changes in tumor size and density, were considered
unfavorable monitoring criteria, leading to under- and overestimation of response. Furthermore,
changes in glucose metabolism, as reflected by [18F]FDG-PET imaging features, preceded changes in
tumor size and were more strongly correlated with tumor response. Although CE-CT and [18F]FDG-
PET can aid in the prediction and monitoring in GIST patients, further research on cost-effectiveness
is recommended.

Keywords: gastrointestinal stromal tumor; prediction; response monitoring; FDG-PET; radiomics;
tomography; X-ray computed; personalized medicine

1. Introduction

Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms affecting
the entire gastrointestinal tract and are presumed to originate from the interstitial cells of
Cajal [1,2]. About 80–90% of GISTs harbor kinase-activating mutations in either receptor
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tyrosine kinase protein (KIT) or platelet-derived growth factor receptor α (PDGRF-α) [3,4].
Complete surgical excision remains the only curative treatment option for GIST patients.
Since GISTs are generally insensitive to radio- and chemotherapy, non-surgical treatment is
limited to tyrosine kinase inhibitor (TKI) therapy. This targeted molecular therapy is part
of routine clinical practice for unresectable and metastatic disease [5,6].

Adjuvant TKI treatment is used in high-risk GISTs to improve survival [7]. Unfor-
tunately, due to the varying aggressive nature of GISTs, about one-third of the patients
will relapse within three years after surgery with curative-intent [8]. For localized disease,
TKI treatment can be given to attain size reduction of the primary tumor and improve
chances of complete resection while maintaining an acceptable risk of complications [9,10].
About 20–25% of patients do not benefit from the neoadjuvant TKI treatment, as no com-
plete or partial response is observed [11,12]. The rarity and complex biological nature of
this disease, makes it difficult to differentiate between good and poor responders. For
example, GISTs harboring a KIT exon 11 mutation have a good response to TKI treatment,
whereas the same treatment is less effective in tumors with KIT exon 9 mutations [13]. Ad-
ditionally, progressive disease is common during long-term TKI treatment due to acquired
treatment resistance [14,15].

In the era of personalized medicine, it is of utmost importance to evaluate the efficacy
of TKI treatment at an early stage in order to optimize therapy strategies and protect patients
from futile ineffective treatment, unnecessary side-effects and healthcare costs. Contrast-
enhanced computed tomography (CE-CT) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG)
PET/CT are considered useful for diagnosis and response monitoring in GIST patients. The
imaging modalities offer information on tumor morphology, perfusion characteristics, as
well as tumor glucose metabolism [7]. However, optimal use of imaging for predicting and
monitoring TKI treatment in patients with GIST is still a subject of debate. This systematic
review aims to elucidate the added value of CE-CT and [18F]FDG PET/CT imaging in
the prediction of response and early response monitoring of TKI treatment in localized and
advanced GISTs.

2. Methods

2.1. Search Strategy

From 29 April 2022 to 24 June 2022, the databases of PubMed, Web of Science, the
Cochrane Library and Embase were systematically screened using predefined search
queries (Supplementary Materials). The following terms and their corresponding syn-
onyms were included: “gastrointestinal stromal tumors”, “(neo)adjuvant”, “TKI treatment”
and “FDG-PET” and “Tomography, X-ray Computed” imaging. The search queries are
wide-ranging and seek to cover the aspect of both response monitoring and prediction by
including ‘monitoring’ and ‘prediction models’ as well as ‘radiomics’ and ‘prognostics’. In
addition to these search terms, other terms, such as ‘patient selection’ and ‘personalized
medicine’, were also added, since these articles presumably covered the subject of TKI
treatment evaluation and its efficacy in specific patient groups as well. The search strategy
was implemented in consultation with an experienced research directorate, and access to
the databases was granted by the Leiden University Medical Center.

2.2. Article Selection

Articles were screened and considered eligible for full-text assessment if the title or
abstract mentioned (i) quantitative outcome measures to evaluate the efficacy of imaging
features (ii) retrieved from CE-CT and/or [18F]FDG PET/CT imaging (iii) in predicting or
monitoring (neo)adjuvant TKI treatment response (iv) in localized and advanced GISTs.
Response monitoring is defined as the evaluation of disease over the course of treatment
using multiple medical imaging time points. Predicting response, however, solely involves
the use of baseline scans made prior to TKI treatment administration. Articles assessing the
prognostic value of different clinical and imaging parameters (e.g., risk of recurrence and
metastatic potential) that can guide TKI treatment duration or timing for specific patient
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groups were also included, since these findings may improve patient selection in the future.
Exclusion criteria comprised non-English and non-human studies, reviews, guidelines,
recommendations, editorials, conference papers and abstracts. Case reports and studies
analyzing less than ten patients were also excluded. If the title and abstract did not contain
sufficient information, full-text evaluation was used for judgement of relevance.

Subsequently, the articles were screened on full-text and excluded if they did not
meet the previously mentioned inclusion criteria or if full-texts were not available. During
this assessment, the focus was primarily on quantitative outcome measure(s) of studies.
Outcome measures that were included in this analysis were correlations, associations, area
under the curve (AUC), sensitivity, specificity and accuracy.

Finally, the reference lists from included articles were screened to find additional
articles on this topic. The articles were independently assessed by the first two authors
(Y.A.W., G.M.K.) and in cases of discrepancy, consensus reading was performed to make a
final decision that led to either inclusion or exclusion.

2.3. Quality Assessment

Articles using a radiomics pipeline were assessed through the radiomics quality score
(RQS). The RQS is a scoring system that assigns points to a radiomics study based on specific
criteria, where a maximum score of 36 points can be awarded. In this paper, the RQS is
modified to focus on the methodological aspects of the included studies. The following
criteria were omitted from the RQS, yielding a modified RQS (RQSm); ‘imaging at multiple
time points’, ‘trial database registry’ and ‘multivariable analysis on non-radiomics features’,
since they were considered less relevant for the quality of the obtained models [16]. The
criteria from the RQSm were also used to create a quality assessment tool to assess studies
on non-radiomics prediction models and correlational research. Modifying the RQSm for
non-radiomics studies yielded the RQSm,nonrad. This RQSm,nonrad had a maximum score of
ten points (Supplementary Materials). Articles were considered high quality if they reached
a score above 50%. To assess applicability concerns and the risk of bias in articles covering
the topic of monitoring, the Quality Assessment of Diagnostic Accuracy Studies Tool,
Version 2 (QUADAS-2) was applied [17]. Articles on response monitoring were considered
to have a high risk of bias or applicability concerns if two or more of the domains were
scored as ‘high’ or ‘unclear’. Subsequently these articles were scored as low-quality.

Quality assessment was performed by the first author (Y.A.W.). The quality score was
not considered as an exclusion criterion, as the authors considered it important to review
all relevant evidence [17–19].

2.4. Data Analysis

The eligible studies were categorized based on their topic concerning either response
prediction or therapy monitoring. From each study, detailed information on the publication
year, first author, patient groups, type of TKI treatment and imaging technique(s), was
obtained. The specific CE-CT and [18F]FDG-PET imaging features and their corresponding
conclusions on efficacy, along with the attributed quality score, were briefly summarized.
In the results section, only studies that were considered to be high-quality, were analyzed in
depth by clarifying conclusions on clinical relevance, discrepancies in results and insights
on biological correlates.

2.4.1. Response Prediction

In response prediction, imaging features from baseline/diagnostic CE-CT and [18F]FDG-
PET/CT are retrieved to predict responder status, prior to TKI administration. Articles
on this topic were divided into five categories: mutational status, proliferative activity,
risk stratification, radiological response and prognosis. These categories were considered
important, as they all influence treatment strategies. Clinical genotyping is essential for
clinical decision making regarding neoadjuvant therapy, since the sensitivity and resistance
towards TKI treatment in GISTs is dependent on the mutational status. In addition, patients
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with a high-risk GIST (and thus high proliferative activity) receive adjuvant TKI treatment
for a period of three years to eliminate remaining disease and reduce chances of relapse [7].
Predicting whether patients will have a radiological response or a good prognosis at baseline
could also aid the development of a more personalized TKI treatment.

2.4.2. Therapy Monitoring

In therapy monitoring, one uses the visual and quantitative differences between
baseline and follow-up scans to determine treatment response. The efficacy of CE-CT and
[18F]FDG-PET are first discussed separately, followed by a qualitative comparison between
both imaging modalities.

3. Results

3.1. Search Strategy and Article Selection

The search query identified a total of 599 articles from the databases of PubMed, Web
of Science, the Cochrane library and Embase. The study selection process led to a total of
90 articles eligible for analysis (Figure 1). Articles that were excluded based on imaging
criteria included, for example, the use of radiotracers other than [18F]FDG [20]. Additionally,
some articles discussed the use of molecular genotyping and DNA sequencing to predict
or determine response and therefore did not involve the use of any imaging modality [21].
Other excluded articles discussed the efficacy of a specific TKI treatment but did not
quantify the efficacy of imaging features in predicting or monitoring response [22,23]. Of
the 90 eligible articles, 67 were concerning response prediction [24–90] and 23 discussed
response monitoring [91–113].

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flowchart
showing all the exclusion criteria. A total of 90 articles were included for this systematic review.
Sixty-seven articles covered the topic of response prediction, and 23 articles covered the topic of
response monitoring.

3.2. Quality Assessment

Twenty-two articles discussed the use of radiomic models, and six out of 22 studies
were of low quality (score < 50%). The mean RQSm of the included articles was 13.5
(SD ± 2.60) out of 26 points. Low scores were mainly caused by a lack of transparency,
biological correlates and gold standard comparison. Two articles received a score of
18 points (69.2%), which was the highest attributed score [70,88]. The forty-five studies on
non-radiomic prediction models and correlational research scored an average RQSm,nonrad
of 3.91 (SD ± 1.23) out of ten points, where eighteen articles scored above 50.0%. This was
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mainly caused by the fact that only a few articles used gold standard comparison [31,35,46]
or an undescribed test set to validate their results [44,48,68]. The results of the QUADAS-2
tool are graphically displayed in Figure 2. Eight articles on response monitoring had
high risk of bias or concerns for applicability and were therefore scored as low-quality.
High risk of bias was often introduced by using reference standards involving follow-up
(e.g., progression free survival, overall survival, time-to-treatment failure). Concerns for
applicability were mainly caused by a lack of reporting on patient characteristics. In this
way, judgement on whether the included patients matched the review question was unclear.

Figure 2. Summary of Methodological Quality Scored According to Quality Assessment of Diag-
nostic Accuracy Studies Tool, Version 2 (QUADAS-2) for 23 articles discussing the topic of response
monitoring.

3.3. Response Prediction

All articles on response prediction have been summarized in the Supplementary
Materials. Studies that were considered high-quality will be discussed in more detail.

3.3.1. Mutational Status

The radiomic model of Starmans et al. was validated on unseen data and achieved
an AUC, sensitivity and specificity of 0.51, 96.0% and 3.00% for predicting KIT mutation
presence [81]. The model, based on portal venous radiomic features, requires further
improvement in order to be clinically applicable.

Three studies developed a model or nomogram based on radiomic features obtained
from CE-CT imaging (arterial, venous and delayed phase) to predict the presence of KIT
exon 11 mutations, which resulted in varying AUC outcomes, namely 0.57, 0.72 and
0.81 [75,76,81]. Deletions in exon 11 may indicate more aggressive tumor behavior, and for
this reason, Liu et al. also assessed the efficacy of their model in predicting exon 11 deletion
affecting codons 557–558 and achieved an AUC of 0.85 [76].

In clinical practice, patients with KIT exon 9 mutations often receive a high-dose
imatinib regimen (800 mg) to improve progression-free survival (PFS). Yin et al. showed
significantly greater tumor sizes and higher enhancement ratios (Hounsfield units (HU)
for tumor parenchyma divided by the HUs of the erector spinae muscle) on portal venous
CE-CT imaging compared to KIT exon 11 mutations. Using a 1.60 cut-off point, KIT exon
9 mutated small intestine tumors could be differentiated with an AUC, sensitivity and
specificity of 0.76 and 86.7% and 98.5%, respectively. This threshold has, however, not been
validated on independent validation data [67].

3.3.2. Proliferative Activity

Since high-risk GISTs have a high proliferation rate, several studies attempted to link
the mitotic index and Ki-67 proliferation index to imaging features in order to make a
non-invasive assessment of expected tumor behavior. On CE-CT imaging, intralesional
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hypodensity and concurrent heterogeneous enhancement patterns were significantly more
common in high-mitotic tumors (Figures 3 and 4) [29,46]. Hypodensity was, in this case,
defined as an area of low attenuation on portal venous phase CE-CT with HUs between 0
and 30 and when no HU increase (max 5 HUs) was observed between unenhanced and
post-contrast images [46]. The changes in enhancement patterns were attributed to the
principle of neovascularization. Tumors with high proliferative activity can induce the
formation of hyperpermeable disorganized blood vessels and consequent development of
necrosis [29,61]. Therefore, the supply and washout of contrast agent is affected, which has
a direct impact on tumor enhancement patterns.

Figure 3. (a–c). Axial contrast-enhanced (iodinated contrast media) CT image of a 45-year-old male
diagnosed with a (histopathologically confirmed) low mitotic gastric GIST. The lesion (arrow) shows
a round tumor shape and homogeneous enhancement in (a) nonenhanced phase, (b) arterial phase
and (c) portal venous phase (scale bars 5 cm).

Figure 4. (a–c). Axial contrast-enhanced (iodinated contrast media) CT images of a 60-year-old male
diagnosed with a (histopathologically confirmed) high-mitotic gastric GIST. The lesion (arrow) shows
a lobulated tumor shape, heterogeneous enhancement in (a) nonenhanced phase, (b) arterial phase
and (c) portal venous phase (scale bars 5 cm).

A radiomic model using 42 quantitative and semantic imaging features (tumor location,
first-order and texture radiomic features) retrieved from portal venous CE-CT imaging,
differentiated high- from low-mitotic tumors with an AUC, sensitivity and specificity of
0.54, 27.0% and 75.0%, respectively [81]. Although on theoretical grounds CE-CT should
be able to visualize poor neo-vasculature due to rapid tumor growth, no radiomic study
has been able to establish this correlation. However, radiomic models predicting high
Ki-67 proliferation index in localized and advanced GISTs achieved AUC values above
0.75 [77,88,89].

Comparison of studies investigating the relation between imaging and Ki-67 indices
is complicated by the fact that different thresholds (e.g., 4%, 5%, 8% and 10%) for Ki-67
expression were used. Due to the small study sizes and heterogeneous outcomes with
respect to Ki-67 indices, the true relationship between CE-CT imaging and proliferation
has yet to be established.

3.3.3. Risk Stratification

Research on the use of [18F]FDG-PET imaging features for risk stratification in GISTs
is limited. In two studies, high metabolic tumor volume (MTV) and total lesion glycolysis
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(TLG) were predictive for high risk GISTs [25,35]. The use of quantitative imaging features
showed improved predictive accuracy during follow-up when compared to a clinical
reference standard (NIH modified criteria) [35]. Although these results suggest the added
role of [18F]FDG-PET for risk stratification, there are only a few studies that investigated
[18F]FDG-PET for this purpose.

Larger tumor sizes, mixed or extra-luminal growth patterns, ill-defined tumor shape,
presence of vessels feeding or vessels draining the tumor mass, necrosis and ulceration on
CE-CT imaging were all associated with high-risk GISTs [44,53,58,60,63,64,68]. Of note, Wei
et al. used the angle between the longest and shortest tumor diameter to quantify tumor
shape. This parameter was able distinguish intermediate- and high-risk from low-risk GISTs
more accurately when compared to using solely the longest diameter [58]. Heterogeneous
enhancement patterns on portal venous phase CE-CT proved to be predictive for high-risk
GISTs as well (Figure 5) [53]. Incomplete enhancement of the overlying gastric mucosa on
arterial phase, was also significantly more common in high-risk gastric GISTs [51]. In a
study by Tang et al., HUs of the arterial phase CE-CT were subtracted from the attenuation
coefficients in the portal venous phase to derive quantitative features describing contrast
enhancement. Using the subtraction CT, small regions of interest (ROIs) of 30–50 mm2,
were placed in the most enhancing solid components of the tumors. The difference in HUs
was significantly lower in high-risk gastric GISTs [53]. Additionally, the peak value of
enhancement on CE-CT (arterial and portal venous phase) imaging was strongly correlated
with risk [45]. Both articles suggest a rapid inflow of iodinated contrast agent in high-risk
GISTs and thus the presence of permeable and leaky tumor vessels. The mean of the
positive pixels (HU > 0) of the entire tumor volume on portal venous CT imaging was
lower in high-risk GISTs [31]. This observation can be attributed to the presence of tumor
necrosis, which was more commonly found in the high-risk group.

Figure 5. (a,b). Axial portal venous phase (iodinated contrast media) CT image of an 83-year-old male
diagnosed with a high-risk (Miettinen AFIP classification) gastric GIST (scale bar 5 cm). The large
lesion is lobulated and has central necrosis (arrow). (b) Axial portal venous phase (iodinated contrast
media) CT slice of a 72-year-old male diagnosed with a low-risk GIST affecting the small intestine
(scale bar 5 cm). It shows a well-defined and rounded lesion with a homogeneous enhancement
pattern (arrow).

By contrast, Li et al. included gastric, intestinal and extra gastrointestinal tumors and
did not find a significant difference in enhancement patterns between risk groups [43]. Al-
though tumor enhancement has been established as a relevant factor in the risk stratification
of GISTs, there are discrepancies in the results.

Machine learning used for the prediction of risk is extensively investigated with a
total of twelve articles covering this topic [71,72,79,83,86,87]. All models achieved an AUC
above 0.83 for predicting high-risk GISTs, with an average AUC of 0.87. In many of the
models, texture radiomic features (gray level co-occurrence matrix (GLCM), neighboring
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gray-tone difference matrix (NGTDM) and gray run-length matrix (GRLM) and gray level
size zoned matrix (GLSZM)) were used to develop the model. These texture features reflect
enhancement patterns and inter-pixel relationships in a three-dimensional tumor volume.

3.3.4. Prediction of Radiological Response

There was one article attempting to predict radiological response using baseline
imaging. Disease progression was in this case defined by the modified Choi criteria, which
is currently one of the reference standards used for GIST response evaluation [114]. In this
case, four textural portal venous features (features retrieved from GLCM, GLRLM and
NGTDM) predicted disease progression with an AUC of 0.83 [32].

3.3.5. Prognosis

Of the selected articles, two articles discussed the use of imaging features obtained
from [18F]FDG-PET/CT imaging to predict PFS through detection of disease recurrence
(locally and or development of distant metastases). They found significantly higher MTV
and TLG values in patients with a lower PFS. In addition to quantitative [18F]FDG-PET
imaging features, larger tumor sizes were also a significant factor contributing to lower
PFS [25,35].

On CE-CT imaging, one study with a relatively large patient group (n = 143) ob-
served that tumor sizes greater than 10 cm, ill-defined tumor outline and enhancing solid
components contributed to a poor patient prognosis, as reflected by their overall survival
(OS) [48]. The study by Jung et al. combined relevant predictive parameters (tumor lo-
cation, ill-defined tumor outline and presence of feeding vessels) to create a nomogram.
The nomogram was internally validated and achieved an AUC of 0.86 [37]. In addition to
semantic CT features, Ekert et al. assessed the efficacy of four quantitative textural features
from portal venous phase CT imaging to predict prognosis of GIST patients. This study
found that high values for these texture features were all associated with poor PFS [32].

In another study, three-year recurrence-free survival (RFS) was predicted by a deep
learning ResNet model based on features retrieved from arterial phase CT images. Results
show that, using an internal validation cohort, a predictive model with an AUC of 0.91
was obtained [70]. Furthermore, Zheng et al. investigated whether the occurrence of liver
metastasis in high risk GISTs could be predicted. They found that a model based on portal
venous CT radiomic features reached an AUC and accuracy of 0.87 and 84.9% [90].

3.4. Therapy Monitoring

All articles on therapy monitoring have been summarized in the Supplementary
Materials. Studies that were considered high-quality will be discussed in more detail.

3.4.1. CE-CT Imaging

Many articles discussed the use of the well-established Response Evaluation Criteria
in Solid Tumors (RECIST 1.1) to assess tumor response. RECIST 1.1 is a method in which
the sum of the longest diameter of (a maximum of 5) target lesions is used to evaluate
treatment response. The RECIST scoring system categorizes patients into four types of
response, namely complete response (disappearance of all lesions), partial response (≥30%
reduction of the sum of the target lesions (SLD)), progressive disease (≥20% increase of the
SLD compared to the smallest SLD ever measured) and stable disease (neither progressive
disease nor partial response) [115]. Nonetheless, substantial tumor shrinkage is often not
observed during effective TKI treatment. Subtle and moderate changes in tumor size may
be more accurately quantified by means of volumetric measurements. This is shown by
Schiavon et al., who showed that size changes in GIST liver metastases larger than 20%
were more frequently detected by volumetric measurements compared to the RECIST
1.1 criteria [110]. By using solely one-dimensional measurements, one presumes tumors
remain spherical and that response occurs equally along three orthogonal axes during
TKI treatment. However, liver metastasis in GIST patients showed significant changes
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in morphology over the course of imatinib treatment, which was better reflected by an
ellipsoid volumetric approach [109].

In addition to RECIST 1.1, Choi et al. proposed a new method (Choi criteria) by
including treatment-related changes in portal venous CT tumor densities [95]. Suppression
of vascular endothelial growth factor expression can be induced by TKI treatment [116,117].
Therefore, treatment leads to changes in tumor vascularity and can lead to a reduction in
tumor density, as reflected by the value of the HUs measured on CT (Figure 6). Using RE-
CIST1.1 and Choi, comparable results were obtained for predicting PFS for patients treated
with second line sunitinib assessed during an early follow-up of about 2–3 months [96,105].
Nonetheless, the Choi criteria gradually overestimated the number of patients with a par-
tial response to sunitinib and regorafenib during longer follow-up periods (up to a year),
leading to poorer PFS [105,106]. It was speculated that a drop in tumor density could also
be caused by tumor necrosis, which is often a sign of progressive disease. So, instead of
measuring a reduction in tumor vascularization, one may be measuring progressive disease
over longer follow-up periods [105].

Figure 6. (a,b). Axial portal venous phase CT images (iodinated contrast media) of a 67-year-old
male diagnosed with a primary GIST (arrows) of the stomach. (a) Pre-treatment imaging shows a
large gastric mass with heterogeneous enhancement. (b) After 1.5 months of avapritinib treatment,
the lesion has become hypodense (scale bars 5 cm).

3.4.2. [18F]FDG-PET Imaging

In [18F]FDG-PET imaging, the European Organization for Research and Treatment
in Cancer (EORTC) PET criteria are most commonly used, in which a metabolic response
is determined by a reduction in SUVmax of 25% or more [118]. Metabolic response was
significantly associated with prolonged PFS and could be detected as early as seven days,
after the induction of TKI treatment (imatinib and sunitinib) [100,102]. On the contrary, the
prospective study of Chacón et al. did not find a significant association between PFS and
metabolic response determined by the EORTC PET criteria.

Additionally, two retrospective studies by Farag et al. evaluated the impact of
[18F]FDG-PET/CT on clinical decision making in the treatment of localized and advanced
GIST patients. Changes in surgical management, systemic treatment and treatment objec-
tive were all included in the evaluation [111,112]. In 27.1% of GIST patients treated with
neoadjuvant intent, management was changed because of [18F]FDG-PET/CT findings at
an interval of eight weeks. The lack of metabolic response was correlated with therapeutic
changes in management, especially in non-KIT exon 11 mutations [111]. In the advanced
disease setting, specifically late [18F]FDG-PET response findings (median of 293 days)
proved to have an impact on therapeutic decision [112].
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3.4.3. CE-CT vs. [18F]FDG-PET Imaging

When comparing the aforementioned response evaluation criteria on CE-CT imaging
with the EORTC PET criteria on [18F]FDG-PET imaging, articles reported high agreement
and RECIST responders also showed significant reductions in SUVmax [91,98,100,108].
Choi et al. showed greater sensitivity and specificity (97.0% and 100%) when compared
to the EORTC PET criteria [95]. Metabolic response could, however, be observed within
a week and preceded changes in tumor size and volume in localized and advanced GIST
patients treated with imatinib (Figure 7) [92,97,100,107]. By using the RECIST criteria, the
early effect of TKI treatment may be underestimated. For example, Choi et al. showed that
70% of the stable disease RECIST patients had an SUVmax reduction between 61 and 100%
at the two-month follow-up [94].

Figure 7. (a–e). Axial [18F]FDG-PET images of a 71-year-old male diagnosed with a primary gastric
GIST (a) before treatment induction and (b) after about three months of TKI treatment, where the
standardized uptake value (SUV) is normalized (scale bar 5 cm). Corresponding contrast-enhanced
CT imaging (iodinated contrast media) visualizing the same lesion (arrow) (c) at diagnosis and after
(d) 2.5 months and (e) 6.5 months of imatinib treatment, showing minimal to no change in tumor size
(scale bar 5 cm). In the last image, the intrathoracic tumor location is caused by a sliding hernia.

4. Discussion

The aim of this review was to provide an overview of the value of CE-CT and [18F]FDG
PET/CT imaging to predict and monitor TKI treatment response in GIST patients.

There is limited literature available on the use of baseline [18F]FDG-PET findings
to predict tumor response. Although there are only a few studies available, generally
imaging features, such as MTV and TLG, were correlated with more aggressive tumor
behavior. On the contrary, there is more data available on the potential of CE-CT imaging
features to predict treatment response. Results indicate that larger tumor sizes (>5 cm),
ill-defined or lobulated tumor outline, mixed or exophytic growth patterns, the presence
of (enlarged) and feeding vessels are associated with patient outcome. The presence of
heterogeneous enhancement patterns was a recurring observation in high-risk GISTs. The
hypodensities observed on CE-CT imaging were devoted to the biological phenomena of
neovascularization and necrosis. It should be noted that the correlation between hypoden-
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sities on radiological imaging and actual pathological necrosis and neovascularization in
GIST tumors is still disputable.

Many articles discussed the use of radiomic and deep learning models for response
prediction on baseline CE-CT imaging. High performance scores were stated for models
predicting RFS and risk stratifications, while mutational status remained difficult to predict
with variable AUC values. Radiomics offers the possibility to identify clinically relevant
imaging features that would normally be imperceptible to the naked eye. For example, it has
proven to be difficult to obtain a sufficient amount of tissue samples from biopsy material,
which makes it difficult to determine the mutational status or a reliable mitotic count.
Additionally, if the mitotic count is determined on postoperative surgical specimens, the
results can be inaccurate due to the occasional administration of neoadjuvant TKI treatment.
It would, therefore, be very helpful if imaging could provide additional information, other
than tumor size. Nonetheless, the biological explanation behind the efficacy of radiomic
features was often missing in the included articles. Before advanced and objective learning
techniques can be introduced in clinical practice, they should be clinically relevant and
biologically meaningful. It is recommended to further explore the prediction of actual
radiological response using semantic or quantitative imaging features selected based upon
tumor biology.

The three evaluation methods currently used to monitor response in GIST patients, are
the RECIST, Choi and EORTC PET criteria. The main disadvantage of the RECIST criteria
is the one-dimensional nature of its measurements, presuming a spherical tumor shape
throughout the entire course of TKI treatment. To overcome this limitation, an additional
set of criteria was developed by Choi et al. involving CT densities. The Choi criteria are
occasionally applied in clinical practice. However, its efficacy and prognostic value in
determining response in GIST patients remains unclear. Supposedly, the antiangiogenic
effect of TKI treatment would lead to a consequent reduction in HU values. As previously
stated, necrosis and heterogeneous enhancement patterns at baseline were considered
predictive for more aggressively behaving tumors. Using reductions in CT densities as
a criterion for response monitoring may, therefore, be misleading, since it can reflect
a decrease in angiogenesis induced by TKI treatment, as well as necrosis induced by
aggressive tumor behavior. This hypothesis was supported by literature, since response
evaluation using Choi criteria led to an overestimation in the number of partial responders
at longer follow-up periods.

[18F]FDG-PET proved to be useful in the early monitoring of GISTs, since significant
reductions in SUVmax could be observed within a week of TKI treatment and metabolic
changes preceded morphological changes in size. However, this imaging technique is
often not considered for early response monitoring in clinical practice because of higher
costs. Since some of the targeted treatments are more expensive than PET-CT scans, further
research should, therefore, be focused on the cost-effectiveness of [18F]FDG-PET imaging
in the treatment of GISTs.

Particularly, the combined use of different imaging modalities, also known as multi-
modality imaging, might provide more detailed information that can assist in making early
image-guided treatment decisions. The use of such a multimodality imaging approach
might be useful to gather as much information as possible on the biological behavior of
GIST. However, currently, no literature is available on the specific use of combining these
different imaging modalities for response prediction or monitoring.

5. Conclusions

In conclusion, imaging features obtained from CE-CT and [18F]FDG PET/CT imaging
can aid in the development of a more personalized treatment of GIST patients by enabling
early prediction and monitoring of TKI therapy response. Heterogeneous enhancement
patterns on baseline CE-CT imaging were predictive for high-risk GISTs, reflecting neovas-
cularization and necrosis.
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For the purpose of response monitoring, current RECIST and Choi criteria are still lack-
ing sensitivity and are prone to errors when predicting or monitoring treatment response.
[18F]FDG-PET is a promising imaging technique that visualizes functional metabolic
changes in GISTs, which precedes measurable changes in tumor size. Although promising,
the true added value of [18F]FDG-PET remains elusive, and research on cost-effectiveness
is warranted.

Radiomics is an emerging topic in medicine and shows potential for the prediction
of RFS and risk stratifications in GISTs. However, future research should mainly focus on
clinical utility, explainability and correlation with actual tumor biology.
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Abstract: The prognosis of cancer treatment depends on, among other aspects, the cardiotoxicity of
chemotherapy. This research aims to create a feasible algorithm for the early diagnosis of antitumor
therapy cardiotoxicity in breast cancer patients. The paper represents a protocol for a prospective
cohort study with N 120 eligible participants admitted for treatment with anthracyclines and/or
trastuzumab. These patients will be allocated into four risk groups regarding potential cardiotoxic
complications. Patients will be examined five times every three months for six biomarkers: cardiac
troponin I (cTnI), brain natriuretic peptide (BNP), C-reactive protein (CRP), myeloperoxidase (MPO),
galectin-3 (Gal-3), and D-dimer, simultaneously with echocardiographic methods, including speckle
tracking. The adjusted relative risk (aOR) of interrupting an entire course of chemotherapy due
to cardiotoxic events will be assessed using multiple analyses of proportional Cox risks. The Cox
model will also assess associations between baseline biomarker values and time to cardiotoxic events.
Moreover, partly conditional survival models will be applied to determine associations between
repeated assessments of changes in biomarkers from baseline and time to cancer therapy-related
cardiac dysfunction. All models will be adjusted for cancer therapy regimen, baseline LVEF, groups at
risk, baseline biomarker values, and age. The decision-tree and principal component analysis (PCA)
methods will also be applied. Thus, feasible patterns will be detected.

Keywords: cardiotoxicity; chemotherapy; breast cancer; speckle tracking; biomarkers; kazakhstan

1. Introduction

Breast cancer (BC) was the most commonly diagnosed cancer in 2020 and remains as
such as of 2021, accounting for 12% of all new annual cancer cases worldwide [1,2]. In Kaza-
khstan, the leading country in Central Asia, BC ranks second following lung cancer and
accounts for 12.4% of all new cases as of 2021 [3]. Nevertheless, owing to cancer treatment
achievements, the overall 5-year relative survival rate for breast cancer has reached 90% [4].
The prognosis of BC treatment depends on the tumor tissue’s histochemical properties, the
tumor’s aggressiveness, the cancer process staging, and the cardiotoxicity of chemotherapy,
now defined in the literature as cancer therapy-related cardiac dysfunction (CTRCD) [5]. At
present, the CTRCD definition includes all possible cardiovascular complications occurring
during anticancer treatment, such as left ventricular dysfunction, heart failure, myocardial
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infarction, arrhythmias or conduction disorders, acute myocarditis or pericarditis, hyperten-
sion arterial or hypotonia, and, in case of radiotherapy, coronary heart disease [6]. Currently,
researchers distinguish two main typesof CTRCD: the anthracycline-associated, irreversible
type with a cumulative effect, and the trastuzumab-induced, reversible, dose-independent
type. Moreover, clinicians deal with its early-onset and late-onset varieties, as well as acute,
subacute, and chronic forms [7,8]. As CTRCD can affect cancer survivors for years, decreasing
their quality of life, the scope of the problem increases yearly. Only in the USA, 9.7 million
females out of more than 18 million Americans with a history of cancer were alive on 1
January 2022, and the most prevalent tumor type was BC (4,055,770) [9]. A retrospective
analysis of outcomes on all sarcoma patients in Denmark revealed that cardiotoxicity was
observed in 31% of these patients. Of them, 70% experienced early-onset CTRCD [10].

The challenge of heart consequences after chemotherapy appeared so large-scale that
it gave rise to a new subspecialty at the intersection of oncology and cardiology: cardio-
oncology [11]. Cardio-oncologists primarily focused on echocardiographic methods in
searching for methodsto detect CTRCD as early as possible. Transthoracic echocardiog-
raphy (TTE) was recognized as the standard method to evaluate cardiotoxicity [12]. In
the 2000s, the novel speckle tracking echocardiography (STE) method was widely intro-
duced. STE allows for tracking of the displacement of “speckles” in two-dimensional (2D)
echocardiographic images in an angle-independent way and assessment of their movement
(strain) during the cardiac cycle. Its high feasibility, reproducibility, and accuracy have been
demonstrated [13–15]. CTRCD is defined by either a decrease in left ventricular ejection
fraction (LVEF) above 10% from baseline to a value of LVEF under 53%, or a decrease in
global longitudinal strain (GLS) deformation below 15% from the baseline value [5,12,16].
Current echocardiography recommendations set the low normal value of 2D LVEF as 54%
for women and 52% for men; hence, in the previous European Association of Cardiovas-
cular Imaging (EACVI) position statement, a reduction in LVEF below 53% was classified
as abnormal [17]. To date, researchers mainly focus on applying cardiac markers as they
aresimple and relatively cost-effective compared to echocardiographic methods, particularly
GLS assessment. Moreover, including biomarkers in the algorithms of CTRCD detection
allows a comprehensive evaluation of cardiac function. Among biomarkers, cardiac troponins
and B-type natriuretic peptide (BNP) seem to display the most proven efficacy [18,19].

Common practices include serial echocardiography and mostly troponin measure-
ments. Nevertheless, although the pathophysiology of CTRCD has been characterized,
there is currently no evidence-based approach for monitoring and managing patients who
develop CTRCD [20]. Primarily, the task is to detect CTRCD at a preclinical stage, before any
echocardiographic evidence of dysfunction or clinical symptoms are present, which would
minimize cardiac complications. If the GLS assessment technique and three-dimensional
(3D) echocardiography can cope with this task, the more affordable TTE cannot.

Therefore, searching for reliable biomarkers remains the research target regarding
CTRCD’s feasible monitoring. Regrettably, to date, the cardio-oncologic integrative ap-
proach and development of appropriate tools to diagnose CTRCD conditions have not
been implemented in the practice of Kazakhstani cardiologists and oncologists. Cardiac
dysfunctions provoked by cancer treatment remain largely unexplored. The attitude to
and awareness of CTRCD within involved specialties in Kazakhstan are similar to the state
in many other countries. According to J. Peng et al. [21], the majority of cardiologists felt
that cardiotoxicity should be monitored, even in asymptomatic cancer patients (55.8% vs.
12% of oncologists); the majority of cardiologists stated that cardio-oncology clinics would
significantly improve cancer patients’ prognosis (88.3% vs. 45.8% of oncologists).

Thus, the current study is a first step toward forming a new subspecialty, cardio-
oncology, in the country, by developing a program for the early diagnosis and timely
correction of cardiotoxic complications of breast cancer antitumor therapy.

The rationale for this study is to use currently available methods to elaborate an
algorithm to reveal chemotherapy-linked cardiotoxic complications early, to minimize their
negative consequences. It is known that assessing the global longitudinal myocardial strain
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is the most effective technique in evaluating heart activity, although it isquite expensive.
On the contrary, cardiac markers are considered the most cost-effective tools. Determining
the predictive value of myocardial damage, inflammation, and oxidative stress biomarkers
by assessing GLS in chemotherapy patients would allow the further application of these
tests without combination with GLS, which is not always accessible. Detecting the incipient
stages of cardiotoxicity using relatively cheap and the earliest-responding biomarkers
would enable the development of a cost-effective algorithm for CTRCD’s timely correction.
Generally, this research aims to identify steady patterns between the decrease in systolic
myocardial function recorded by EchoCG, including speckle tracking, and the values of
selected biomarkers.

In this context, we designed a multimarker panel focused chiefly on the tests’ afford-
ability and relative comprehensiveness. The biomarkers’ values will be matched with
EchoCG data (GLS) in definite periods. As such, we present an opportunity for the syn-
chronous tracing of the changes and an evaluation of the comparative efficiency of all
selected tests. The article presents a protocol for a prospective cohort study focused on
biomarker research.

2. Materials and Methods

2.1. Protocol for Prospective Cohort Study
2.1.1. Study Design

In this observational single-center study, a mixed design was used, with retrospective
and prospective stages. The main points of the prospective cohort study are presented
in Figure 1 (stage II). During the first, retrospective stage (from April to September 2021),
we extracted all available information from the Aktobe Regional Oncologic Registry on
BC patients who received chemotherapy with anthracyclines and/or targeted therapy in
2018–2019. The findings of this database research were published in 2022 [22]. Subsequently,
survival rates from both samples (retrospective and prospective) will be matched within
the framework of a quasi-experimental design.

2.1.2. Study Population

At this stage, we consecutively recruited a single-center cohort of eligible women
newly diagnosed with BC on admission to the chemotherapy division of the University’s
Medical Center for treatment with anthracyclines an d/or trastuzumab. Given the single-
center design, we chose the BC diagnosis due to its relatively high incidence, facilitating
the recruitment of participants. The recruitment started on September 2021 and lasted until
late August 2022. Criteria for participants’ eligibility are shown in Figure 1. Notably, the
inclusion criteria do not imply participants who are administered targeted therapy with
Kinase Inhibitors (KIs) or Immune Checkpoint Inhibitors (ICIs), only human epidermal
growth factor receptor 2 (HER2)-positive individuals with indications of trastuzumab
treatment. We also include patients who received radiation treatment before chemotherapy,
as many schemes imply combined treatment. These patients will be allocated to a separate
subgroup during analysis. The form of chemotherapy is also of significance. We select
patients of any age (18+) and at any stage of BC but eligible for adjuvant or neoadjuvant
chemotherapy, not palliative. Exclusion criteria are commonly accepted: patients showing
LVEF ≤ 40% by Simpson or having established cardiac dysfunction or severe comorbidities
are believed to be not eligible.
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Figure 1. Design of the prospective cohort study.*“Very high” risk means presence of existing chronic heart
failure or dilated cardiomyopathy, according to the current position papers on CTRCD [17,23–25]; “high”
risk includes previous severe valvular heart disease, past myocardial infarction and/or revascularization,
baseline left ventricular ejection fraction <50%, stable angina, or prior treatment with anthracyclines or
radiation therapy (see Section 2.1.7). * Cardiac protectors: ACE inhibitors/ARBs; beta-blockers; statins;
trimetazidine/analogues; others (see Section 2.1.5).

2.1.3. Sample Size Estimation

To calculate the sample size for the prospective cohort, we analyzed data from the
regional oncologic registry for ten years, 2010–2019, and literature sources on the incidence
of LV dysfunction associated with chemotherapy [5,7,20]. The sample size was calculated
using the Epi Info TM v.7 software (CDC USA) (https://www.cdc.gov/epiinfo (accessed
on 2 September 2020)). We entered the following information: population size—150
(the average annual number of BC patients admitted to chemotherapy treatment at the
University Medical center), the expected incidence of cardiovascular disease in women
in the menopause transition aged 50+—9.7% [26], and the assessment accuracy—5%. The
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calculated sample size appeared to be equal to 100. Given the possible losses, the sample
might be increased to 120 patients. As is known, the predictive model requires at least ten
observations per predictor. We believe that the calculated sample size will be sufficient for
a clinically relevant predictive model, as the resulting sample size allows for the detection
of small-to-medium-sized group differences.

2.1.4. Patient and Public Involvement

There is no patient or public involvement. There is no potential risk for patients due
to the observational nature of this research.

2.1.5. Data Collection and Timing

The research implies five participants’ visits, including an initial visit and one every
three months (see Figure 1) Thus, the recruitment lasts twelve months, and the overall
data collection will last until late August 2023. Given the follow-up, the prospective stage
duration is thirty months. Data to be collected during visits are displayed in Table 1.

These data are listed in the patient’s individual registration card (IRC, Appendix No.
5 to the Protocol) and are entered into the dataset. The patient’s IRC example and other
supplemental materials of the study are placed in a publicly available repository, osf.io
[https://osf.io/nykmw/ (accessed on 10 June 2022)]. According to the Individual Participant
Data Sharing Statement, Excel datasets would also be placed in this repository upon their
completion (https://www.isrctn.com/ISRCTN12628444 (accessed on 21 July 2022).

2.1.6. Definitions and Outcomes of the Study

The definition applied in the present study is as follows: CTRCD is defined by either a
decrease in left ventricular ejection fraction (LVEF) above 10% from baseline to a value of
LVEF under 53%, or a decrease in global longitudinal strain (GLS) deformation below 15%
from the baseline value. Early cardiotoxicity is defined as <one year and late cardiotoxicity
as ≥one year [5].

Accordingly, we apply the following definitions of measured outcomes.

• Primary outcomes:

1. The number of patients who develop cardiotoxic complications, including subclini-
cal dysfunction during chemotherapy, measured using LVEF monitoring (<50% or >10%
decline from baseline) and GLS assessment (decrease > 15% from baseline) at 12 months
after the chemotherapy course started, through all groups at risk.

2. One-year survival without cardiotoxic complications, measured using LVEF moni-
toring and GLS assessment (as defined above) at 12 months after chemotherapy completion
through all groups at risk.

In the primary outcomes, we included not only manifested CTRCD but also subclinical
cardiac dysfunction during chemotherapy.

• Secondary outcomes:

Measured using biomarker measurement units on immunofluorescence analyzers at 3,
6, 9, and 12 months for all below:

1. Presence of increased values of the tests during chemotherapy treatment: cardiac
troponin I (cTnI)—≥0.3 ng/mL; brain natriuretic peptide (BNP)—>100 pg/mL; C-reactive
protein (CRP)—>5 mg/l; antibodies to myeloperoxidase (MPO)—>5 U/mL; galectin-3 (Gal-
3)—>28.7 ng/mL; D-dimer—≥0.5 mg/L (presented values are taken from the analyzers’
manuals).

2. Time trends in the onset of increasing biomarker values in the LVEF and GLS data.
3. The predictive value of a positive result (PPV) and the predictive value of a negative

result (PVN) for all enlisted biomarkers.
4. The number of all identified cardiovascular events during observation.
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Table 1. Type of data subject to collection during visits.

Domain Measures (Itemized)

General information

Patient’s code (individual identification No.);
age;
ethnicity;
main occupation for the last 12 months;
menopause;
BMI*

Breast cancer features

Tumor clinical staging;
tumor histotype;
tumor clinical classification;
IHC* data

Presence of risk factors

BC hereditary factor;
smoking;
physical activity (hour, min);
history of stroke;
IHD*, CHF* (functional class);
Charlson comorbidity index (disease, scores);
arterial hypertension;
diabetes mellitus (presence/absence)

Clinical examination at admission

Heart rate; SBP*; DBP*;
6-min walk test (functional class, meters);
selected clinical and biochemical lab tests;
ECG* and Holter monitoring (HM every 6 months)

Breast cancer treatment

Medications prescribed (dose, regimen)
Previous treatment, before admission to chemotherapy
division:
radiation (dose, regimen),
surgical (radical, sectoral)

Cardiac protectors prescribed

ACE* inhibitors/ARBs*;
beta-blockers;
statins;
trimetazidine/analogues;
others

Echocardiographic data and
biomarkers

See Figure 1
(including time periods of change onset)

Complications of Chemotherapy
CTRCD conditions Code; type; form; time of emergence

Other complications

Hematopoietic system complications; thromboembolic
complications; pericarditis; gastrointestinal tract;
respiratory system; urinary system; allergic reactions;
neurotoxicity; toxic effects on the skin and appendages;
toxic hyperthermic reactions; toxic phlebitis

Chemotherapy outcomes

Without complications;
CT* correction due to CTRCD;
CT interruption due to CTRCD;
CT correction due to non-CTRCD complications;
CT interruption due to non-CTRCD complications

Completeness of chemotherapy (%)
Death (Cause; date)
Dropped out of the study Reason

*ACE—angiotensin-converting enzyme inhibitors; *ARBs—angiotensin II receptor blockers; *BMI—body mass in-
dex; *CHF—chronic heart failure; *CT—chemotherapy; *ECG—electrocardiogram; *IHC—immunohistochemical
test; *IHD—ischemic heart disease; *SBP, *DBP—systolic, diastolic blood pressure.
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2.1.7. The Risk Stratification Strategy

During baseline clinical examination (visit 0), the potential risk of CTRCD emergence
is calculated. We use the strategy proposed in recent studies and adopted by current
position papers on CTRCD [17,23–25], except for additional measurements after three–four
medication cycles. According to the current strategy, the risk scores are calculated con-
sidering all possible risk factors—existing (recorded) cardiovascular diseases, the toxicity
of chemotherapy prescribed, and lifestyle risk factors. If there is one intermediate risk
factor or an absence of risks at the moment of examination, the patient is allocated to the
low-risk group. If two to four intermediate risk factors are present, they are allocated to
the intermediate risk group. If more than five intermediate risk factors or at least one
high-risk factor are revealed, they are allocated to the high-risk group. Respectively, pa-
tients with one very high-risk factor are allocated to the very-high-risk group. Thus, all
patients are divided into four risk groups, and patients from the groups of very high and
high risk are provided with cardiac protectors from the pharmaceutical classes pointed
out in Table 1. For all enrolled participants, a particular individual form, “Cardiovascular
risk stratification for upcoming chemotherapy treatment,” is filled out (Appendix No. 6,
[https://osf.io/nykmw/ (accessed on 10 June 2022)].) The patient’s risk scores will be
calculated and stated in this form based on the listed possible risk factors and their defined
hazard level and individual risk level.

2.1.8. Outcome Measurements

General blood and biochemical tests for this study are performed according to the
“Breast Cancer” in-country protocol dated 1 March 2019, No. 56, at the University Med-
ical Center’s clinical lab. Some biomarkers’ detection (cTnI, BNP, CRP, D-dimer) is also
performed in this lab using immunoassay analyzers and Finecare rapid quantitative tests,
in line with Good Laboratory Practice (GLP). Galectin-3 and MPO assays were directed
to a third-party collaborator, the “Olymp” labs network. The types of tests are the ELISA
Galectin-3 S and ELiA MPO Well tests.

• Functional outcomes:

ECG machines and 24-record 12-channel wearable devices for outpatient Holter moni-
toring are used to detect rhythm and conduction disturbances, including the QT interval
duration, in each enrolled participant during scheduled visits (*HM every six months,
not three.) If cardiac complaints have emerged, out-of-schedule invitations are provided.
Two project staffers are responsible for TTE and speckle tracking. Cardiac imaging is
performed using “automated function imaging (AFI)—automatic non-Doppler assessment
of longitudinal strain of the left ventricular myocardium” software and M5-SD transducer,
1.5–4.5 MHz. Left ventricular end-diastolic and end-systolic volumes are calculated using
Simpson’s approach to derive LVEF. The same specialists also analyze GLS according
to currently accepted protocols [17,27]. The study area is corrected to cover the whole
thickness of the myocardial wall. Measurements are carried out from the apical 3-chamber
(3C), 4-chamber (4C), and 2-chamber positions. When deriving apical positions, care is
taken to ensure that the long axis of the ventricle is perpendicular to the plane of the mitral
annulus in the LV apical views. Intra- and inter-observer coefficients of variation are not
set for LVEF and GLS. CTRCD is defined as a ≥10% absolute decline in LVEF to a value of
<53%. Subclinical LV myocardial dysfunction is considered to be a drop in GLS below (-)
18%, those in the range (0% to 17.9%), or a decrease in this indicator >15% from baseline.
Of note, although we scheduled functional and laboratory measurements in terms of 0, 3, 6,
9, and 12 months, if patients receive the treatment on these dates, we postpone the tests
until the chemotherapy cycle is completed or until the treatment interval. Usually, it takes
up to 1–2 weeks.
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2.1.9. Adherence Control

It is known that poor adherence has been characterized as the most common cause of
an unsatisfactory response to medication [28]. As the overwhelming majority of participants
are not present in the inpatient division, we cannot monitor the number of pills (cardiac
protectors) prescribed to patients from the two high-risk groups or use other vigorous
methods of compliance control. Instead, we practice monthly encouraging calls to patients
under observation to ensure retention and adherence to protocol activities. Moreover,
during the baseline examination, we assist willing participants who are prescribed cardiac
protectors in installing appropriate apps on their telephones to remind them to take their
pills. There are two project staffers responsible for these activities. According to research
on experience in the discussed issue, 89% adherence (medication taken) under long-term
observation is recognized as an excellent result [29].

2.2. Statistical Analysis

In this study, baseline characteristics will be summarized using proportions for cate-
gorical variables (cancer treatment, revealed cardiotoxic complications, etc.), and medians
(interquartile range) be presented for continuous variables (biomarker values, etc.). The
Pearson χ2 criterion will be applied to identify intergroup differences for categorical vari-
ables. Quantitative variables will be compared using the nonparametric U Mann–Whitney
test in terms of rhythm disturbances (ECG/HM), dynamics in the level of biomarkers (0,
3, 6, 9, 12 months), the degree of myocardial dysfunction identified by LVEF and GLS (0,
3, 6, 9, 12 months), etc., for two unrelated groups (with and without the development of
cardiotoxicity.) A comparison of three or more independent groups (e.g., four risk groups)
will be carried out using parametric analysis of variance (one-way ANOVA) or a nonpara-
metric Kruskal–Wallis H-test. For repeated measurements (related samples), analysis of
variance with Greenhouse–Geisser corrections will be applied.

To characterize the changes in biomarker levels according to treatment groups, mean
estimated changes from baseline will be plotted over time. Considering radiation treatment
received immediately before the chemotherapy as a source of potential bias, we arrange
not only anthracycline, trastuzumab, and combined treatment groups but also a separate
subgroup after radiation treatment. Mean changes will be determined using repeated-
measures linear regression estimated via generalized equations. Each model will be adjusted
for the baseline values of the biomarker under consideration and the time since the treatment
started. Contemporaneous associations between changes in biomarkers from baseline and
changes in LVEF will also be determined using repeated-measures linear regression.

To assess the influence of independent factors on the binary variable of response
(cardiotoxicity), multiple logistic regression analysis (LRA) will be used by the sequential
exclusion of variables (age, biomarkers, arrhythmias, LVEF according to Simpson and GLS
data, etc.). The presence of a statistically significant relationship with the predicted event in
the one-dimensional analysis will be the criterion for inclusion in the multivariate analysis.
The results will be presented as unadjusted (uOR), adjusted odds ratios (aOR), and 95% CI.
The incidence of cardiotoxic complications of chemotherapy will also be presented with
the 95% CI, calculated according to the Wilson method. Sensitivity analysis (the Cornfield
method) will also be applied for the binary variable of response (cardiotoxicity).

Indices of sensitivity (Sn), specificity (Sp), PPV, and PVN will be calculated for each
diagnostic test under consideration (biomarkers, TTE, rhythm disturbances, etc.), as well as
for predictive models in general.

The risk of interrupting a course of chemotherapy due to cardiotoxicity in the analyzed
groups will be assessed through Kaplan–Meier survival curves. Given the influence of
potential confounders, the relative risk of interrupting an entire course of chemotherapy due
to cardiotoxic events will be assessed using multiple analyses of proportional Cox risks. The
results will be presented as aOR with a 95% CI. Associations between baseline biomarker
values and time to CTRCD will also be assessed using Cox proportional hazards model.
Moreover, partly conditional survival models will be applied to determine associations
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between repeated assessments of changes in biomarkers from baseline and time to CTRCD.
All models will be adjusted for cancer therapy regimen, baseline LVEF and group at risk
(and cardiac protection if administered), baseline biomarker values, age, comorbidities
index, and body mass index. Associations between changes from baseline in biomarker
levels over time and subsequent changes in LVEF and longitudinal strain will be assessed
similarly. Differences in the associations between changes in biomarkers and LVEF/GLS
across the different treatment groups will be evaluated by including biomarker–treatment
interaction terms, as shown in the recent paper by Demissei et al. [30].

Due to the number of variables subjected to analysis, and the anticipated presence of
multiple outcomes, the included tests may not be sufficient to solve the task of building
a clinically relevant decision algorithm, and so the decision-tree method will be applied.
Decision trees break down complex data into more manageable parts, which is beneficial in
prediction analysis, data classification, and regression. A dimensionalityreduction method,
principal component analysis (PCA), will also be applied.

Two-sided levels <0.05 are assumed to be statistically significant. For statistical process-
ing, software packages SPSS (IBM, Armonk, NY, USA, v.25), Statistica (StatSoft, Inc., Tulsa,
OK, USA, v. 10), and R 3.3.2 (R Foundation for Statistical Computing, Vienna, Austria).

2.3. Study Ethics and Dissemination Plan

As mentioned above, this study poses no risk to the participating individuals. Study
participation does not imply restrictions in receiving any clinical care determined by
oncologists (additional CT, MRI, etc.). All study procedures are conducted according
to the principles of the Declaration of Helsinki (2013), and patient rights are observed.
Participation in the study is voluntary, and participants can leave the study at any time
for any reason. This provision was stated in the informed consent form at enrollment in
the study (https://osf.io/nykmw/ (accessed on 10 June 2022). Subsequent publications
will include the interim research results and final results with developed algorithms (in
peer-reviewed journals). Moreover, the dissemination plan permits the preparation of
country-scale clinical recommendations on the management of CTRCD for cardiologists
and oncologists.

3. Preliminary Results of the Study

Previous retrospective research for 2018–2019, the first stage of the current project,
aimed to clarify the proportion and structure of complications that led to chemotherapy
interruption in BC patients. This registry study included all available characteristics of
the oncologic process: tumor staging and histological type, medications used, duration of
chemotherapy, occurring complications, treatment outcomes, and survival rates.

Overall, 305 BC cases were analyzed. Chemotherapy was completed successfully in
65.9% of patients and interrupted in 10.5% due to adverse events. Cardiovascular disorders
were identified in 6.2%. There were significant differences in the number of detected
cardiovascular complications between the two groups of patients—those under EchoCG
monitoring and those without (p < 0.001)—but no difference in survival was found in the
two groups (p 0.814). Survival in patients with cardiovascular complications was 28.1 months,
compared to 34.3 months in the group without CV events (p < 0.005). Those who completed
a full course of chemotherapy had a survival rate of 34.9 months, compared to 17.6 months
in persons whose treatment was interrupted due to complications (p < 0.001). We identified
four fatal cases of cardiotoxicity that were not recorded in the oncologic registry as CTRCD.

4. Discussion

In the mentioned preface to the cohort study (retrospective research for 2018–2019), we
obtained an idea of CTRCD’s scope in the region, establishing a 6.2% CTRCD prevalence
and reporting four fatal cases [22]. Analysis of these cases revealed that only one of the
women was administered cardiac protectors, and three women received adjuvant radiation
treatment before admission to chemotherapy. Breast cancer patients who have undergone
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even small-dose radiation, particularly left-sided exposure, are known to carry an increased
risk of ischemic heart disease, which is proportional to the radiation dose [31,32]. In the
present cohort study, we cannot exclude those who underwent radiation treatment before
chemotherapy due to the relatively small number of eligible patients in a single-center
setting. This circumstance can lead to bias, and we will manage these patients as a separate
subgroup during analysis, as stated above. Recent research reported the cardiotoxicity risk
of relatively new classes of targeted therapies such as KIs or ICIs [33–36]. We exclude those
who are administered the mentioned treatments to minimize the subgroups under analysis.

A great deal of research has proposed and tested different panels, combining various
markers. Emerging biomarkers include myeloperoxidase (MPO), placental growth factor
(PIGF), growth differentiation factor 15 (GDF-15), C-reactive protein (CRP), Galectin-3
(Gal-3), microRNAs, etc., having potential value in predicting CTRCD before any signs
of overt cardiotoxicity are apparent [37,38]. Some of these biomarkers (CRP, Gal-3, MPO)
reflect such aspects of heart pathophysiology as oxidative stress, inflammation, and
fibrosis [39]. A high serum level of CRP (>10 mg/L) is known to predict mortality in
patients with acute decompensated heart failure (HF) one year after discharge [40]. CRP
has recently been shown to have important predictive value in tumor immunotherapy.
CRP is a prognostic biomarker for Immune Checkpoint Inhibitor (ICI)treatment [41,42]. Gal-3,
a member of the beta-galactoside-binding lectin family, is involved in the occurrence and
development of cardiac fibrosis, HF, and atherosclerosis [43]. In addition, Gal-3 inhibitors
can effectively block lung adenocarcinoma growth and metastasis and increase the efficacy
of PD-L1 ICIs [44]. Moreover, Gal-3 concentrations appear to increase before heart failure
manifests, making it a potential screening tool for patients at risk of heart failure [45].
MPO is known to be an independent predictive factor of 1-year mortality in acute HF
patients [46]. D-dimer is a sensitive biomarker for cancer-associated thrombosis, but little is
known about its significance in CTRCD. Japanese researchers recently established that the
occurrence of CTRCD was higher in the high D-dimer group compared to the low group
(16.2 vs. 4.5%, p = 0.0146, n 169) [47].

Undoubtedly, high-sensitivity cardiac troponin T (hs-cTnT) and NT-proBNP (N-
terminal pro-B-type natriuretic peptide) are currently recognized as the most effective
predictors of CTRCD [18,19,30,48]. According to a recent review, only NPs (BNP and
NT-proBNP) come close to the characteristics of “ideal” HF biomarkers. They are often
regarded as the reference standard against which other potential biomarkers must be eval-
uated, as they may allow the identification of patients with subclinical LV dysfunction [49].
Compared with BNP, NT-proBNP has a much broader “gray zone”. Notwithstanding, these
hormones are clinically equivalent in diagnosing CHF, and recalculation is possible [50–52].
Presumably, BNP appears more convenient in many actual situations. Moreover, a definite
correlation between D-dimer and BNP is found in patients with various pathologies. How-
ever, this can lead to an incorrect diagnosis regarding suspected cases of hypercoagulable
states in heart failure. More clinical data are needed to rely on such a correlation [53,54].

Troponin test elevation occurs even in chronic heart failure patients as an indicator
of myocardial stress. Within the panel of troponins, hsTn assays are believed to be the
most sensitive tests. Nevertheless, there is a loss of specificity unless specific protocols,
particularly those involving “deltas”, are used [55,56]. Moreover, researchers found that
when using hsTnI, a sex-specific threshold for MI diagnosis doubled the diagnosis of
MI in female participants [57]. Meanwhile, recently, the longitudinal LVEF trajectory,
but not hs-cTnT or NT-proBNP, was reported as allowing for a dynamic assessment
of cardiotoxicity risk in early BC [58]. Thus, an evidence-based approach for managing
CTRCD patients is yet to be developed.

Strengths and Limitations of This Study

• This study is the first of its kind across Kazakhstan and Central Asia, thus creating a
springboard for future developments in cardio-oncology.
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• All biomarkers selected for the panel are relatively affordable and can provide a
comprehensive assessment of cardiovascular disorders at definite periods over two
years of CTRCD monitoring in cancer patients, irrespective of cancer nosology.

• The single-center design may be considered the study’s main limitation, resulting in
a relatively small sample size compared to other researchers’ data and potentially
affecting the results’ generalizability.

• One of the limitations potentially leading to bias is the impossibility of excluding those
who receive radiation treatment before chemotherapy.

• The absence of set intra- and inter-observer coefficients of variation for LVEF and GLS
may also be referred to as a limitation of this study.

5. Conclusions

The PREDICATE research aims to study the effect of chemotherapy on myocardial
function and structure, presenting groups of BC patients for whom GLS assessment and a
proposed panel of biomarkers (cTnI, BNP, D-dimer, CRP, MPO, and Gal-3) would be the
most appropriate for the timely diagnosis and treatment of cardiotoxicity. The selected
tests were not combined in previous research by other authors. Some of these biomarkers
are included in routine examinations and do not require additional financing. We believe
that it would be helpful to establish further patterns in their relationship at certain time
intervals. In the future, the involvement of other in-country clinics to enlarge the number
of participants under CTRCD monitoring is needed.
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Abstract: COVID-19 infection triggered a global public health crisis during the 2020–2022 period, and
it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe
pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive
patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic
in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and
pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative
Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-
155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count
and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with
ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a
shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions
in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-
3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an
AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying
immunological mechanisms, and their possible use as biomarkers to discriminate against patients
with severe COVID-19. Functional analysis showed that most enriched pathways were significantly
associated with processes related to cell proliferation and immune responses (innate and adaptive).
Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential
use as predictive prognosis biomarkers.

Keywords: miRNAs; SARS-CoV-2; immune response

1. Introduction

SARS-CoV-2 virus is transmitted through aerosols and droplets. So far, the COVID-19
pandemic has resulted in more than 530 million cases and 6.3 million deaths [1].

Upon transmission, the virus particles bind the lung epithelial cells through inter-
actions between the spike (S) protein and the host cellular entry receptor angiotensin-
converting enzyme 2 (ACE2) [2], causing a negative regulation of ACE-2 with the conse-
quent loss of its catalytic capacity to degrade angiotensin II. During the infectivity phase,
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the virus can also produce its own miRNAs, which could further regulate host miRNAs
and their targets [3]. These host miRNAs may influence different phases of the viral life
cycle, including translation, by attaching itself to the viral RNA or mRNA.

Viruses can induce the up-/downregulation of certain host miRNAs to evade the
host’s immune system by suppressing antiviral factors, such as interferon (IFN) [4–6].
On the other hand, several miRNAs could have an antiviral effect, enabling the defense
mechanisms to fight the infection [5,7].

Previous data on the mechanisms regulated by miRNAs suggest a possible role in
COVID-19; miRNAs for which significant alterations have been reported are implicated
in the regulation of the immune and/or inflammatory pathways at different levels: cy-
tokine and chemokine synthesis; T-cell development, differentiation, and activation; or
B-cell development, differentiation, and activation, among others [8]. Well-described
associations have been reported in ventilated patients between miR-155 and inflamma-
tion; miR-208a/miR-499 and myocardial/cardiomyocyte damage; and miR-21/miR-126 in
cardiac fibroblast and endothelial-cell dysfunction [9].

In this context, the use of molecular principles of gene regulation mechanisms could
represent an innovative way to identify potential biomarkers of infection for developing
antiviral therapeutic agents for certain diseases that do not have yet an effective treatment,
such as COVID-19. Despite there are validated and approved methods available for COVID-
19 diagnosis, prognosis is still complicated by only assuming the positive results of rapid
antigen tests, serological tests, or RT-qPCR. For this reason, we are continuously looking
for reproducible methods that are able to predict poor prognosis even at early points after
infection. Most COVID-19 studies have focused on proteomic, metabolomic, and cellular
biomarkers [8]. In the last decade, noncoding RNAs (ncRNAs) and miRNAs, have emerged
as novel tools to aid in medical decision-making and can be easily measured through
standard techniques already employed in clinical laboratories, such as RT-qPCR. miRNAs
are sensitive, robust, and cost-effective biomarkers that offer additional information to
already established clinical variables and clinical indicators [10]. They are stable in various
body fluids and offer advantages as biomarkers because they are highly conserved between
species, and their expression patterns are tissue and life-stage specific. The advantage
of miRNAs is their consistent detectability in patients with lower COVID-19 severity
and a lesser dependence on sampling time. The integration of miRNAs into biomarker
signatures may improve the performance of established biomarkers, as demonstrated
for binary and triplet combinations with D-dimer, troponin T, SARS-CoV-2, RNAemia,
age, and BMI [11]. Target genes for these miRNAs play an important role in the immune
dysregulation observed in COVID-19 patients, and they may also be evaluated as potential
biomarkers in the context of long-COVID, because cumulative evidence suggest immune
alterations in patients with persistent symptoms or post-COVID-19 symptoms.

For the aims of the present work, we chose five miRNAs with previously validated
involvement in inflammatory processes related to immune system activation [12–15] to
examine their expression in plasma from patients with severe COVID-19 and to explore
their role as potential biomarkers of disease severity. It is well acknowledged that hy-
perinflammation and massive cytokine dysregulation are mechanisms leading to poor
outcomes in severe COVID-19 patients [16]. Due to the heterogeneity of the factors that
could affect the course of the disease, we propose here an age- and gender-adjusted model
to differentiate controls from severe COVID-19 patients.

2. Materials and Methods

2.1. Study Population and Sampling

This is a cross-sectional study with 41 patients suffering from severe COVID-19 and 42
negative controls attending hospitals for COVID-19 diagnosis or treatment. SARS-CoV-2
diagnosis was conducted using reverse transcription polymerase chain reaction (RT-PCR)
from a nasopharyngeal specimen using standard methods [17,18].
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This study was revised and approved by the Ethics and Research Committees of
the Christus Muguerza del Parque Hospital (folio: CEI-HCMP-15042020-3) and Health
Secretary Services of San Luis Potosí (folio: CEI-003-20161034). The study was conducted
in accordance with the Declaration of Helsinki. Informed consent was obtained from all
participants prior to the collection of the blood samples. Figure 1 shows the workflow for
the experimental design and data analysis.

Figure 1. Flowchart diagram of the experimental design and data analysis.

2.2. miRNAs Selection

One of the preferred methods to study miRNAs is microarrays, which requires a
large amount of RNA sample (usually more than 1 μg). Since COVID-19 has been widely
acknowledged as a hyperinflammatory diseases with a strong dysregulation in the immune
system, it is remarkable to find the factors that control this inflammatory unbalance. For

157



Diagnostics 2023, 13, 133

this reason, more than to perform a massive screening of all miRNAs, we selected some
miRNAs that have been previously related to inflammation, immune response, vascular
complications, metabolic signaling, and organ damage. Based on recent bioinformatic
prediction studies [11,19], we selected five miRNAs associated with some of the processes
previously mentioned and ranked within the most important miRNAs. Our goal was to
validate previous bioinformatic predictions for these miRNAs, this time for a Mexican
population, which remains poorly explored until now. Supplementary Table S1 shows the
miRNAs selected for validation and the justification for their inclusion in our study based
on previous findings.

2.3. Circulating miRNA Isolation and Relative Expression Determination by RT-qPCR

Total RNA from each sample was isolated from 25 μL plasma using TRI-Reagent
(Sigma-Aldrich, Germany), according to manufacturer’s instructions. The isolated RNA
was resuspended in DEPC-treated and RNAse inhibitors. Then, the RNA quality was
measured at 260/280 nm using a spectrophotometer (Q3000 Quawell Technology, Inc., San
José, CA; USA). A value greater than 1.8 was considered acceptable. The cDNAs for the
mature miRNAs (U6 snRNA, miR-16-5p, miR-221-3p, miR-34-5p, miR-146a, and miR-155)
were synthesized from 300 ng of total RNA by one-step RT-qPCR using the GoldBio’s
Probe-Based One Step RT-qPCR Kit (Gold Biotechnology® St Louis, MO; USA); TaqMan
probes were used for each of the miRNAs to avoid unspecific amplification. The miRNA
amplification by qRT-PCR was carried out using TaqMan MicroRNA Assay specific primers
(Applied Biosystems, Foster City, CA; USA) in a thermocycler (qTOWER3; AnalytikJena,
Gottingen, Germany) with the following amplification conditions: first strand cDNA
synthesis at 42 ◦C for 30 min, initial denaturation/RT inactivation at 95 ◦C for 3 min,
followed by 40 cycles of denaturation at 95 ◦C for 5 s, annealing/extension at 60 ◦C for 30 s.

All RT-qPCR reactions were performed in duplicate. Cq values were averaged and the
ΔΔCq method [20] was used to obtain the relative expression, where ΔΔCq was calculated
by subtracting the ΔCq value from the mean of the control group with the ΔCq value
of the COVID-19 patients. NormFinder [21] was used to estimate the best candidate
reference gene between U6 snRNA and RNU48; miRNA levels were normalized with
the use of the average of reference Cq value as the housekeeping gene, according to
NormFinder parameters.

2.4. Bioinformatic Analysis

Bioinformatic analysis of targets was performed through the page miRNet 2.0 and its
web service https://www.mirnet.ca/miRNet/home.xhtml (accessed on 14 July 2022). This
analysis identified targets that were shared by 2 or more miRNAs. We assessed hsa-miR-
155-5p, hsa-miR-221-3p, and hsa-miR-146a-3p, which were the significant miRNAs. The
selection of most relevant genes was made, setting degree centrality and betweenness to
equal or >1. Using the same web service, a miRNA-gene network with selected targets
was constructed. Subsequently, all genes related to immune system functions were se-
lected. Functional association analysis using the TAM 2.0 http://www.lirmed.com/tam2/
(accessed on 17 July 2022) [22] was also conducted to identify the functional terms for
differentially expressed miRNAs. To control for multiple comparisons, a false-discovery
rate (FDR) < 0.05 was used.

2.5. Statistical Analysis

Frequencies and proportions were used to describe sociodemographic characteristics,
main comorbidities, symptomatology, and epidemiological data for the study participants.

Statistical analyses were carried out using GraphPad (version 5.0) software (GraphPad,
La Jolla, CA, USA). The mean ± SD or median ± IQR were used to represent continuous
data with parametric or nonparametric distribution, respectively. For clinical data, ANOVA
with Tukey’s post hoc tests for continuous variables were used to identify differences
across categories, and Fisher’s exact tests were used for nominal data. Nonparametric
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Kruskal–Wallis with Dunn’s post hoc tests were employed to identify differences in miRNA
data. Statistical significance was set at p < 0.05.

Spearman’s correlation coefficients and plots between miRNAs and laboratory values
were computed using R studio (4.1.2).

Crude and adjusted logistic regression models were built to predict COVID-19 severity.
Odds ratios (OR) with 95% confidence intervals (CI) were computed. The full model
included all variables, with a p ≤ 0.10 in crude analyses, but only independent variables
with a p < 0.05 in at least one category in the comparisons remained in the final model. A
receiving operating characteristics (ROC) curve was produced from the final logistic model,
and the area under the curve (AUC) was reported. The Nagelkerke pseudo-R2 statistic,
ranging from 0 to 1, was used to provide an indication of the amount of variation in the
dependent variable explained by the model.

3. Results

3.1. Sociodemographic Characteristics

The sociodemographic characteristics of the patients recruited in the present study are
summarized in Table 1. The mean age of the patients with severe COVID-19 was higher
than that of healthy controls (52.4 vs. 39.1 years, p < 0.01). Male patients with severe
COVID-19 accounted for 82.9%, compared with 45.2% in the control group (p < 0.01). In
terms of comorbidities, the proportion of patients with diabetes (26.8% vs. 2.3%; p < 0.01)
and hypertension (41.4% vs. 9.5%; p < 0.01) was higher among those with severe COVID-19,
but no statistical differences were seen for the other conditions assessed. All general and
respiratory symptoms measured were clearly more frequent (p < 0.01) in patients with
severe COVID-19 than among controls.

Table 1. Selected sociodemographic characteristics, main comorbidities, and clinical symptoms for
patients with severe COVID-19 (n = 41) and healthy controls (n = 42).

Variable Category
Group, % (n)

p-Value *
Controls COVID-19

Sex Male 45.2 (19) 82.9 (34) <0.01

Female 54.7 (23) 14.6 (6) <0.01

Age (years) 20–45 73.8 (31) 31.7 (13) <0.01

46–65 23.8 (10) 53.6 (22) <0.01

66–85 2.38 (1) 14.6 (6) 0.04

Current smoking 11.9 (5) 7.3 (3) 0.71

Type 2 diabetes (DM-II) 2.3 (1) 26.2 (11) <0.01

Hypertension 9.5 (4) 41.4 (17) <0.01

COPD or asthma 4.7 (2) 4.8 (2) 0.98

Immunosuppressed 0 (0) 2.4 (1) 0.49

Chronic kidney disease 0 (0) 4.8 (2) 0.24

Obesity, BMI ≥ 30 kg/m2 71.4 (30) 63.4 (26) 0.48

General symptomatology Fever 2.3 (1) 73.1 (30) <0.01

Headache 16.6 (7) 58.5 (24) <0.01

Myalgia 16.6 (7) 63.4 (26) <0.01

Arthralgia 7.1 (3) 58.5 (24) <0.01

Respiratory symptomatology Cough 19.0 (8) 80.4 (33) <0.01

Odynophagia 9.5 (4) 31.7 (13) 0.01

Dyspnea 7.1 (3) 85.3 (35) <0.01

Chest pain 11.9 (5) 36.5 (15) <0.01

Other signs/symptoms Anosmia/dysgeusia 2.3 (1) 4.8 (2) 0.61

Diarrhea 7.1 (3) 24.3 (10) 0.03

COPD: chronic obstructive pulmonary disease; BMI: body mass index. Chi2 and Fisher’s exact tests were used. *
p < 0.05 was considered statistically significant.
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3.2. Differential Expression of miRNAs in the Plasma of Patients with COVID-19

Figure 2 shows the relative expression (normalized against U6 snRNA) in controls and
COVID-19 patients for each studied miRNA. Significant upregulation of miR-16, miR-155,
and miR-221 was observed for COVID-19 patients (Figure 2). miR-146a was found to be
marginally significant in the crude analysis. NormFinder analysis identified U6 snRNA as
the single most stable gene, with a stability of 0.589 and a standard error of 0.33.

Figure 2. Violin plot shows the relative expression of miRNAs in COVID-19 patient vs. healthy con-
trols. The violins represent medians and interquartile ranges. Data were analyzed using the Kruskal–
Wallis test and Dunn’s post hoc test when significant values were obtained (** and *** p < 0.05).

3.3. Logistic Regression Model Based on miRNAs for Classification of COVID-19 Patients

Crude and adjusted regression models (OR; 95% CI) to differentiate patients with
COVID-19 from healthy controls are presented in Table 2. The results showed a statistically
significant upregulated expression of miR-155, miR-16, and miR-221 in patients with severe
COVID-19 compared with healthy controls in crude analyses. However, when adjusting
by age and sex, only miR-155, miR-146a, and miR-221 remained significant for identifying
COVID-19 patients.

Table 2. Computed crude and adjusted odds ratios (OR) with 95% confidence intervals (CI) from
logistic regression for the probability to identify severe COVID-19.

Variables
OR (95% CI)

Crude Adjusted *

miR-16 1.28 (1.06–1.54) –

miR-34a 1.12 (0.99–1.28) –

miR-146a 0.70 (0.51–0.97) 0.24 (0.09–0.62)

miR-155 1.34 (1.13–1.60) 1.68 (1.19–2.37)

miR-221 1.29 (1.11–1.50) 1.36 (1.04–1.78)

Sex (male) 6.02 (2.16–16.7) 7.75 (1.40–42.7)

Age (years) 1.09 (1.04–1.14) 1.10 (1.04–1.18)

DM-II 15.1 (1.85–124.1) -

HTN 6.83 (2.04–22.8) -
DM-II: diabetes mellitus type II; HTN: hypertension; *Only significant variables (p < 0.05) remained in the final
adjusted model; Nagelkerke R2 = 0.71, Hosmer–Lemeshow Chi2, * p-value = 0.53.

3.4. Model Performance

Figure 3A represents the ROC curve for all the individual miRNAs, without adjust-
ment. However, when adjusted by sex and age, the combination of miR-155, miR-146a, and
miR-221 showed an adequate performance (AUC: 0.95, 95%CI 0.89–0.98) (Figure 3B) for
discrimination of severe patients.
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Figure 3. (A) ROC curve with individual miRNAs. (B) ROC curve built with the variables included in
the logistic regression model. (AUC: 0.95, 95%CI 0.89–0.98). Nagelkerke pseudo-R2 statistic, ranging
from 0 to 1.

3.5. Correlation of Significant miRNAs with Clinical Variables in Severe COVID-19 Patients

To assess if differences in miRNA expression were related to other variables, we
performed a correlation analysis. There was a significant positive association between miR-
146a and absolute neutrophil count (r = 0.57, p = 0.007), and proBNP (r = 0.40, p = 0.0001),
also between miR-221 and ferritin (r = 0.35, p = 0.03). On the other side, we observed a
significant negative correlation (r =−0.61, p = 0.01) between miR-221 and total cholesterol
(Figure 4).

Figure 4. Correlations between significant miRNAs and clinical characteristics. Blue circles represent
positive correlations, while red circles represent negative correlations. Significance of correlation is,
accordingly, the circle diameter. Spearman’s correlation (* p < 0.05).

3.6. Evaluation of the Interaction Networks of Common Target Genes across the Studied miRNAs

Only validated target genes with a correlation ≥1 were entered in the analysis to
identify genes regulated by miR-155-5p, miR-221-3p, and miR-146a-3p, which were the
miRNAs that contributed to the adjusted logistic regression model. A total of 498 targets
were related to the analyzed miRNAs (Figure 5A). The Venn diagram (Figure 5B) shows
the number of genes shared by the miRNAs under study. These genes are listed in Table 3.
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Figure 5. miRNA-target gene network related to immune system. (A) Results of pathway and
network analyses for the 3 miRNAs, selected according to the logistic regression model. Blue squares
indicate miRNAs, pink dots indicate corresponding targets, and yellow circles represent genes
involved in immune system functions that can be targeted by two or more of the selected miRNAs.
(B) Venn diagram shows the miRNAs 155-5p, 146a-3p, and 221-3p and the number of their immune
system targets. CDKN1B gene is shared between miRNAs.

Table 3. Target genes validated in plasma/serum for the significant miRNAs.

Target Official
Symbol

Official Full
Name

Sequence
Accession ID

(Gene)

miRNA
Associated with

Regulation
Predicted/Validated Gene Function Reference

INPP5D
(SHIP1)

Inositol
polyphosphate-5-

phosphatase
D

NC_000002 hsa-miR-155-5p

Validated (qPCR,
assay, luciferase
reporter assay,

and Western blot)

Tumor suppressor
recognized to inhibit cell

proliferation in many types of
tumor cells.

[23,24]

CDKN1B
Cyclin-dependent

kinase inhibitor
1B

NC_000012 hsa-miR-155-5p

Validated (qPCR,
assay, luciferase
reporter assay,

and Western blot)

Plays a critical role in
controlling cell growth and

division.
Macrophage proliferation.

[23]

SOCS1
Suppressor of

cytokine
signaling 1

NC_000016 hsa-miR-155-5p

Validated (qPCR,
assay, luciferase
reporter assay,

and Western blot)

Acts as a negative feedback
regulator to inhibit

JAK2/STAT3 signaling. Control
of systemic inflammation and
promotes the proliferation and
inflammation of macrophages

through downregulating
SHIP1.

[25]

FOXO3 Forkhead box O3 NC_000006 hsa-miR-155-5p

Validated (qPCR,
dual-luciferase
reporter system,

and Western blot)

Regulatory effects on cell
proliferation, apoptosis,

metabolism, and oxidative
stress. Plays an important role

in both inflammation and
regulation of cell proliferation.

Regulates inflammation by
NF-κB, T cells, and
autoinflammation.

[26]

ICAM-1
Intercellular

adhesion
molecule 1

NC_000019 hsa-miR-155-5p

Validated
(reporter gene

assay, qPCR, and
Western Blot)

Indicator of vascular
inflammation. [27]

PTEN Phosphatase and
tensin homolog NC_000010 hsa-miR-221-3p Validated

(RT-qPCR)

Tumor suppressor by
negatively regulating the

AKT/PKB signaling pathway.
[28]

ICAM1
Intercellular

adhesion
molecule 1

NC_000019 hsa-miR-221-3p Validated
(RT-qPCR)

It binds to integrins of type
CD11a / CD18, or CD11b /

CD18, and is also exploited by
rhinovirus as a receptor.

[29]

FOS

Fos
proto-oncogene,

AP-1
transcription
factor subunit

NC_000014 hsa-miR-221-3p Validated
(RT-qPCR)

Implicated as regulators of cell
proliferation, differentiation,

and transformation.
[30]
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Table 3. Cont.

Target Official
Symbol

Official Full
Name

Sequence
Accession ID

(Gene)

miRNA
Associated with

Regulation
Predicted/Validated Gene Function Reference

NFKB1 Nuclear factor
kappa B subunit 1 NC_000004 hsa-miR-221-3p Validated

(qRT-PCR)

Transcription regulator that is
activated by various intra- and

extracellular stimuli such as
cytokines.

[29]

P27KIP1
Cyclin-dependent

kinase inhibitor
1B

NC_000012 hsa-miR-221-3p

Validated
(luciferase

reporter assays,
Western blotting,

and qPCR)

p27kip1 is an inhibitor of
cell-cycle progression. Plays a

decisive role in nonproliferating
cell types, such as eosinophils

and dendritic cells (DCs).

[24]

EGFR
Epidermal

growth factor
receptor

NC_000007 hsa-miR-146a-3p Validated (qPCR)

It is a receptor for members of
the epidermal growth factor

family. EGFR is a component of
the cytokine storm, which

contributes to a severe form of
COVID-19 resulting from

infection with severe acute
respiratory syndrome

coronavirus-2 (SARS-CoV-2).

[31]

SUMO1
Small

ubiquitin-like
modifier 1

NC_000002 hsa-miR-146a-3p

Validated
(dual-luciferase
assay, Western

blot)

SUMOylation of SERCA2a,
Ca2+ handling in
cardiomyocytes.

[32]

From the 498 validated targets, 12 genes have been validated for miRNAs regulation
in plasma/serum. Table 3 shows the validation method, as well as the function associated
with each target gene. These genes are the most important target genes to be considered
as potential biomarkers since previous studies have validated them in the same matrix in
which miRNAs were measured in our study.

Finally, in the functional association analysis (Figure 6), miRNAs statistically different
in COVID-19 patients showed enriched functional terms, including aging, apoptosis, T-cell
differentiation, hematopoiesis, and immune response, among others.

Figure 6. Significantly over-represented functional terms for miRNAs up-reulated amongst predicted
targets in severe cases. The heat map shows that T-cell activation, inflammation, hematopoiesis, cell
death and apoptosis and aging were the most enriched cell activities. False discovery rate (FDR)
(p < 0.05).

4. Discussion

This study looked at the differential expression of five circulating miRNAs in plasma
from healthy controls and patients with severe COVID-19 to explore their potential role in
the inflammatory and host immune response against infection, and to assess their value
as biomarkers of disease severity. Our group has been focused in the role of miRNAs as
regulators for certain diseases [33–35]. Evidence suggests that these molecules are important
predictors of disease complications and an important source of diagnosis biomarkers or
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therapeutic targets. The Mexican population is complex to study, since multiple factors,
including ethnicity, comorbidities, genetic factors, and lifestyle, could modify disease
outcomes when comparing with other populations. We have previously seen these miRNAs
modulated in other inflammatory diseases [36], and we aimed to find a link between
COVID-19 and all the inflammatory mediators that influence the hyperinflammatory status
observed in severe cases. Therefore, with the present study, we validated not only our
previous findings about the involvement of the studied miRNAs in inflammation and
immune system, but also, we validated other author contributions, demonstrating that,
independently of population differences, these miRNAs regulate important processes
related to COVID-19 complications. Analysis of the identified miRNAs showed regulatory
functions associated with inflammation, immune response, and vascular and metabolic
diseases, indicating that the infection caused by the SARS-CoV-2 virus has multiple effects
that alter the homeostasis of different organs and tissues.

Previous studies have shown that viral infections affect host homeostasis by regulating
miRNA expression [11,37–41]. The altered expression of miRNAs causes other genes to
regulate the host immune response to viral infection. Each miRNA can then target multiple
genes, making them important regulators of numerous cellular functions. Eyileten et al.
(2022) reported a bioinformatic miRNA prediction and subsequent validation in Poland
patients. The authors looked for miRNAs regulating the highest number of top network-
medicine-based integrative approach (NERI) nodes and top NERI targets associated with
coagulation. In their study, top miRNAs were identified based on their regulation of the
highest number of the top differentially expressed genes associated with coagulation and
involved in the coagulation process. The miRNAs selected in our study are ranked in the
top 30 miRNAs having a role in ACE2-related thrombosis in coronavirus infection [19].

The results presented here showed a statistically significant dysregulated expression
of miR-155, miR-16, and miR-221 in patients with severe COVID-19 compared with healthy
controls in crude analyses. However, for the establishment of an adequate predictive
model, adjustment for cofounders must be accomplished. Due to the presence of different
factors influencing COVID-19 outcomes, such as sex, age, and comorbidities, we propose
here an adjusted model. When adjusting by age and sex, only miR-155, miR-146a, and
miR-221 remained significant for identifying severe COVID-19 patients. ROC built with
the adjusted model showed an adequate performance (AUC: 0.95, 95% CI 0.89–0.98).
However, interpretation of these results must be done with caution. A low sensitivity
was achieved in our study. Sensitivity refers to the proportion of subjects who have the
target condition (reference standard positive) and give positive test results. This parameter
is highly dependent on the simple size. For the sample size calculation, the prevalence
of the target population must be considered to obtain a representative sample. With a
low or high prevalence, the study may be overpowered in one subpopulation. Since
COVID-19 was an emergent disease, these estimations were difficult to calculate at the
beginning of the pandemic. Sammut-Powell et al. [42] reported a simulation study to
evaluate the effect of sample size calculations in the sensitivity and specificity of COVID-19
diagnostic tests in practice. Under the current emergency guidelines from the Medicines
and Healthcare Products Regulatory Agency, companies are required to evaluate diagnostic
tests in 30 positive and 30 negative cases. The authors demonstrated that, in practice,
in a test performed with 80% sensitivity and 93% specificity in 30 positive and negative
samples, respectively, their real-world sensitivity and specificity could be as low as 57.7%
and 83.2%, respectively.

Our results are consistent with previous studies in which expression of miR-155 has
been increased in patients with COVID-19 [43–45]. A study by Garg et al., found overex-
pressed values of miR-155 in critically ill and mechanically-ventilated COVID-19 patients,
suggesting that this miRNA could be useful for evaluating the severity of the disease [9].
This overexpression seems to contribute to the overall exacerbated proinflammatory state
widely described in patients with COVID-19. miR-155 has its origin in leukocyte cells,
and there is increasing evidence that macrophage activation contributes to the initiation of
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inflammatory responses resulting in tissue damage [23]; miR-155 responds to many inflam-
matory stimuli, such as TNF-α, IL-1β, pathogen-associated molecular patterns (PAMPs),
and damage-associated molecular patterns (DAMPs) that act by potentiating the inflam-
matory response [15]. Additionally, miR-155 has an important role in innate immunity
and differentiation and activation of T and NK cells [15,23,45,46]. miR-155-5p also has an
important role in inflammatory and immunological processes, endothelial dysfunction, and
cardiometabolic diseases. Moreover, it has been shown that miR-155 upregulates IL-1, IL-6,
TNF-α, and IL-12 signaling pathways, as well as the NF-kB and JAK/STAT3 pathways.
Therefore, over-regulation of miR-155 in SARS-CoV-2 infection could be a good predictor
of inflammatory status and immune disorders [9,43,44,47–49]. Studies have found that this
miRNA is also differentially expressed in other conditions, including acute lung damage,
viral infections (influenza), pulmonary fibrosis, and asthma [44,50–52].

On the other hand, miR-221-3p is able to target molecules belonging to pathways with
key roles in inflammatory responses, including toll-like receptors (TLRs), transcription
factors (NF-kB), and cytokines/chemokines (TNF-α, IL-6, and IL- 8) [53–55]. miR-221 has
been differentially expressed downwards in patients with COVID-19 compared to those
with community-acquired pneumonia [39]. Molinero et al. found an overexpression in
the ratio of miR-221-3p in bronchial pulmonary aspirate samples in patients seriously
ill with COVID-19, compared with healthy controls (in which decreased levels of miR-
221-3p in non survivors were reported), suggesting that the signature of miRNAs may
change depending on the degree of severity, the type of tissue studied, and the outcome
of the disease [44]. The proposed miR-221-3p mechanisms may be severe endothelial
injury and coagulopathy (features observed in lung samples of fatal COVID-19 cases) [56]
to the targeting core receptor protein ADAM17 (a disintegrin and metalloproteinase 17)
involved in ACE2-dependent shedding (associated with lung pathogenesis) [57], and to
the suppression of the innate immune response and promotion of the viral infection via the
TBK1 (TANK binding kinase 1) gene [58,59].

Previous experimental studies have described downregulation of miR-146a during
SARS-CoV-2 infection [50,53,60]. miR-146a is known to be an anti-inflammatory miRNA. It
regulates inflammation by targeting the factor 6-associated TNF receptor (TRAF6), thereby
reducing the expression of NF-kB (nuclear factor kappa B) [12,61,62]. miR-146a depletion
leads to IL-1, IL-6, and TNFα overproduction [63]. It is also related to the toll-like receptor
signaling pathway and is a regulator of IL-1B and TGFB1 transcription factors [64,65].

miR-146a expression also correlated with biochemical parameters such as proBNP
and absolute neutrophil count. Natriuretic peptides are sensitive indicators of cardiac and
hemodynamic stress, which may be due to left ventricular systolic/diastolic dysfunction,
ischemic or inflammatory dysfunction, and right cardiac overload secondary to pulmonary
consequences of the disease (i.e., pulmonary embolism, pulmonary hypertension, hypoxic
vasoconstriction, or acute respiratory distress syndrome) [66]. In fact, the potential useful-
ness of this cardiac parameter as a prognostic biomarker associated with the severity of
COVID-19 has been previously suggested [67,68]. Neutrophils are at the intersection of
innate immune responses, including pathogen destruction, thrombosis, and activation of
the adaptive immune system [69,70].

Lastly, miR-146a directly regulates thromboinflammatory processes by inhibiting
several proinflammatory elements of the NF-κB pathway [13,71]. This miRNA is predomi-
nantly expressed in cells that promote thrombosis (i.e., macrophages, platelets, neutrophils,
and endothelial cells) [72]. In addition, it has been shown that decreased levels of miR-146a
in patients with pneumonia are associated with an increased risk of adverse cardiovascular
events by exacerbating the inflammatory and prothrombotic responses associated with
severe COVID-19 [70].

We also account for a positive correlation between ferritin and miR-221. It has been
reported that ferritin is a nonspecific marker of inflammation and a key mediator of
immune dysregulation through direct immunosuppressive and proinflammatory effects
that contribute to the cytokine storm [73]. Clinically, cytokine release storms are a common
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phenomenon in patients with SARS-CoV-2. This process results in multiple deleterious
effects on both the innate and acquired immunity, potentially related to the activation
and differentiation of the T-cellular process wherein miRNAs have essential functions
in various immune-related diseases and could therefore modulate the response during
viral infections.

The negative correlation between total cholesterol and miR-221 (r = −0.61) is also
relevant, as lipid metabolism plays an essential role in the COVID-19 disease. Cholesterol
has been shown in several studies to interact with the S protein of SARS-CoV-2 [74]. De-
creased serum total cholesterol levels have been associated with poor prognosis in patients
with COVID-19. Ressaire et al., reported that low total cholesterol levels could result
from SARS-CoV-2-induced vasculopathy; the authors also observed a positive correlation
between total blood cholesterol levels and COVID-19 severity, which was evaluated using
the Kirby index [75].

Functional analysis showed that most enriched pathways were significantly associated
with processes related to cell proliferation and immune responses (innate and adaptive).
CDKN1B was found to be the unique shared target between the significant miRNAs.
This gene has an important role controlling the cellular cycle and apoptosis. A recent
study found that p27Kip1, encoded by CDKN1B, was positively regulated by the innate
immune signaling activated by the Influenza A virus. The authors suggested that increased
expression of p27Kip1 could limit the viral replication, constituting a potential therapeutic
approach [76].

In conclusion, SARS-CoV-2 infection appears to induce an important response in the
host’s miRNA profile, suggesting that the severity of the symptoms is associated with
epigenetic factors, which in turn regulate a large number of functions in different tissues
that can modulate the host response. The differential expression of miRNAs involved in
inflammatory processes, including miR-155, miR-221, and miR-146a found in patients with
severe COVID-19 in this study, point to their potential role as regulators of cellular processes
in SARS-CoV-2 infections. Therefore, the expression levels of these dysregulated miRNAs
could be of diagnostic and prognostic value as biomarkers to predict the severity of the
disease and to develop therapeutic strategies against the virus through their regulation. To
our knowledge, this is the first study reflecting miRNA dysregulation in severe Mexican
COVID-19 patients and their association with inflammation, immune system, and vascular
complications leading to organ failure. Since several studies about miRNA dysregulation
are based on bioinformatic prediction, the validation of these findings, such as we are
presenting here, will contribute to the inclusion of these molecules in multiomics prognostic
panels. However, we need to acknowledge study limitations. Sample size was the major
limitation, which makes it conflictive to establish highly accurate models of prediction.
Moreover, the sample amount (volume) limited the validation of targets by traditional
methods such as Western blot.

For future studies, the sample size needs to be increased, including patients with mild
COVID-19. miRNAs could also be evaluated in survivors and non survivors, as well as in
other types of samples that could be less invasive, such as urine, sputum, saliva, etc.
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Abstract: Background: Early in the pandemic, we established COVID-19 Recovery and Engagement
(CORE) Clinics in the Bronx and implemented a detailed evaluation protocol to assess physical,
emotional, and cognitive function, pulmonary function tests, and imaging for COVID-19 survivors.
Here, we report our findings up to five months post-acute COVID-19. Methods: Main outcomes
and measures included pulmonary function tests, imaging tests, and a battery of symptom, physical,
emotional, and cognitive assessments 5 months post-acute COVID-19. Findings: Dyspnea, fatigue,
decreased exercise tolerance, brain fog, and shortness of breath were the most common symptoms
but there were generally no significant differences between hospitalized and non-hospitalized cohorts
(p > 0.05). Many patients had abnormal physical, emotional, and cognitive scores, but most functioned
independently; there were no significant differences between hospitalized and non-hospitalized co-
horts (p > 0.05). Six-minute walk tests, lung ultrasound, and diaphragm excursion were abnormal but
only in the hospitalized cohort. Pulmonary function tests showed moderately restrictive pulmonary
function only in the hospitalized cohort but no obstructive pulmonary function. Newly detected
major neurological events, microvascular disease, atrophy, and white-matter changes were rare,
but lung opacity and fibrosis-like findings were common after acute COVID-19. Interpretation:
Many COVID-19 survivors experienced moderately restrictive pulmonary function, and significant
symptoms across the physical, emotional, and cognitive health domains. Newly detected brain
imaging abnormalities were rare, but lung imaging abnormalities were common. This study provides
insights into post-acute sequelae following SARS-CoV-2 infection in neurological and pulmonary
systems which may be used to support at-risk patients and develop effective screening methods
and interventions.

Keywords: PASC; long COVID; pulmonary function tests; brain imaging; chest imaging; COVID
symptoms; fatigue; shortness of breath

1. Introduction

Many survivors of coronavirus disease 2019 (COVID-19) experience lingering neuro-
logical and pulmonary symptoms that persist long after severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection has resolved [1–4]. These symptoms are commonly
referred to as post-acute sequelae of SARS-CoV-2 infection (PASC). Neuro-PASC include,
but are not limited to, altered mental status, anxiety, depression, dizziness, headaches,
memory loss, and post-traumatic stress disorder [5–8]. Pulmonary PASC include shortness
of breath, persistent cough, and fatigue. Neuro-PASC could be caused by direct infection
of the central nervous system, cytokine storm, systematic illness secondary to the initial
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viral infection, or psychological stressors such as social isolation, stigma, and future uncer-
tainty [9]. Pulmonary-PASC could be caused by direct infection of the pulmonary system
and/or systematic illness secondary to the initial viral infection, including pneumonia,
acute respiratory distress, hypoxia, sepsis, pro-inflammatory mediators, cytokine storm and
other host-mediated immunological responses [10–12]. Individuals with mild symptoms
from SARS-CoV-2 infection (i.e., not requiring hospitalization) may also be susceptible to
neurological and pulmonary PASC [13,14].

New York City was hit hard by the first wave of COVID-19 and by multiple subsequent
surges of infection from different variants [15]. The Montefiore Health System consists of
15 hospitals located in the New York Metropolitan area in the Bronx and its environs, serving
a large and diverse patient population, including many patients with lower socioeconomic
status. Early in the pandemic, we established two COVID-19 Recovery and Engagement
(CORE) Clinics for COVID-19 survivors with protracted symptoms. A detailed evaluation
protocol was implemented to assess physical, emotional, and cognitive function, including
pulmonary function tests and post-COVID imaging findings. In this study, we report a
detailed analysis of a subset of this CORE patient cohort that had pulmonary function tests,
imaging tests, and a battery of symptom, physical, emotional, and cognitive assessments.

2. Methods

2.1. CORE Patients

This study was approved by the Einstein IRB (IRB# 2021-13658) with a waiver of
informed consent and followed all relevant regulatory guidelines. This is a prospective
observational study of COVID-19 adult patients with protracted symptoms who were
referred to Montefiore Medical Center’s COVID-19 Recovery and Engagement (CORE)
clinics between 26 June 2020 and 7 January 2022. Eligible patients were adults (≥18 years
old) who had probable or confirmed COVID-19 and were experiencing new or continued
symptoms 4 or more weeks later. Patients who were terminally ill, referred to hospice or
interested in comfort measures only were not eligible for referral to the CORE. On average,
patients visited the CORE Clinics 133 ± 108 days after COVID-19 diagnosis. There were
11 patients who returned time over 300 days. If these patients were to be removed, the
standard deviation was 59.93 days.

Patients who had less than 70 answers to survey questions and clinical variables (out
of 100) were excluded. This threshold albeit arbitrary was chosen to avoid using subjects
with many missing data. The final cohort consisted of 97 CORE patients.

2.2. Demographics and Laboratory Data

Age, sex, race, ethnicity, hospitalization status, and critical illness information was
collected through patient questionnaires. Data from electronic medical records (EMR)
were extracted automatically as described previously [16–18]. Preexisting comorbidities
included body mass index (BMI), congestive heart failure (CHF), chronic kidney disease
(CKD), hypertension, chronic obstructive pulmonary disease (COPD) and asthma that were
designated by ICD10 codes at admission or prior. Hospitalization status and intensive-care-
unit (ICU) admission were also extracted.

2.3. Symptom, Physical, Emotional, and Cognitive Assessments

All patients were surveyed for the presence of various post-infection symptoms. They
were additionally administered a Modified Edmonton Physical Symptom Assessment
(MEPSA) [19]. The original Edmonton Physical Symptom Assessment, initially validated in
advanced cancer patients, included a list of common symptoms and allowed for repeated
quantitative measurement of symptom intensity with minimal patient burden [20]. In
our MEPSA, we asked patients to quantify their level of 14 symptoms over the past week
prior to presentation to the clinic using a numerical rating scale between 0 (no symptom
or best overall wellbeing) and 10 (the highest level of symptom imaginable or worst
overall wellbeing).
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Assessments of physical, emotional, and cognitive functions were performed. Dis-
ability and functional status were assessed using a modified Katz Activities of Daily
Living (ADL) [21], Instrumental Activities of Daily Living (IADL) [22], and markers of
frailty [23]. We assessed for depression, anxiety and post-traumatic symptoms using the
Patient Health Questionnaire (PHQ-9) [24], Generalized Anxiety Disorder (GAD-7) [25],
and Post-Traumatic Stress List for DSM-5 (PCL-5) questionnaires, respectively. We used pre-
viously validated cut-points for depression (PHQ ≥ 10) [26,27], anxiety (GAD-7 ≥ 8) [25,28]
and post-traumatic symptoms (PCL-5 > 33) [29]. Social determinants of health (SDOH)
information was collected through patient questionnaires.

2.4. Pulmonary Assessments

During the clinic visit (which could be remote or in-person), patients were evaluated
by either general internal medicine or a pulmonary/critical care physician. The visits
included a debrief of the acute illness experience, a summary of the questionnaire scores,
an exploration of the patients’ persistent symptoms, a physical examination (for in-person
visits), medication reconciliation, and interventions based on the clinical assessment. We
used chart review to collect additional information on the patient’s history and demo-
graphics and to summarize relevant clinical interventions. Clinical measures of physical
pulmonary health included the Borg Dyspnea Scale at rest and exertion, Lung Ultrasound
(LUS) Score, and triplicate Diaphragm Excursion measurements with quiet and deep inspi-
ration for survivors of critically ill COVID-19 pneumonia, defined as hypoxemia requiring
high-flow nasal cannula or invasive or non-invasive positive pressure ventilation. All LUS
videos were independently reviewed and scored by a blinded reviewer trained in scoring
Lung Ultrasound Scores. Patients also underwent spirometry testing, including the Six
Minute Walk Test (6MWT) and Pulmonary Function Test (PFT), which provided measures
of distance, maximum heart rate (HR), and percent oxygen saturation (SpO2), as well as
forced vital capacity (FVC % Predicted), forced expiratory volume (FEV1 % Predicted), the
FEV1/FVC ratio, the respiratory volume to total lung capacity (RV/TLC % Predicted) ratio,
and the diffusing capacity of lung carbon monoxide (DLCO % Predicted), respectively [30].

2.5. Lung Ultrasound Protocol

For the LUS, subjects were scanned in the upright position. Twelve fields were
assessed (six zones per hemithorax). Each zone was scanned based on predetermined
anatomical landmarks to assess anterior, medial, and posterior lung areas per published
protocols [31,32].

LUS was scored by identification of four sonographic patterns of lung ultrasound [31,32]:
normal lung by the presence of lung sliding with A-lines (score 0); the presence of significant
B-lines (score 1); confluent B-lines with or without subpleural consolidations (score 2); and
extensive subpleural consolidations with B-lines (score 3). The total lung ultrasound score
was calculated by a composite of the sum of all individual zone scores, ranging between 0
and 36 [33].

2.6. Diaphragm Ultrasound Protocol

Subjects underwent scanning in a supine position of the right hemidiaphragm via a
subcostal approach, using two-dimensional B-mode and M-mode ultrasound views [34].
Diaphragm excursion was measured during resting respiration (quiet breathing) and deep
inspiration (deep breathing) [34]. We obtained (3) consecutive measurements which were
averaged into a final composite distance recording in centimeters (cm).

2.7. Imaging Assessments

Images and radiology reports of chest x-ray, chest computed tomography (CT) images,
head CT, and brain magnetic resonance imaging (MRI) were evaluated at three time points:
pre-COVID-19, during COVID-19, and post-COVID-19, if available. Pre-COVID-19 images
were at least one month prior to COVID-19 diagnosis. During-COVID images included
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the first image taken after COVID-19 diagnosis. Post-COVID images included the first
images taken at least one month after discharge from COVID-19 hospitalization. For
patients who were not hospitalized for acute COVID-19 infection, there were generally no
during-COVID-19 images.

For brain imaging data, two board-certified neuroradiologists with 16 and 11 years
of experience evaluated the brain images and radiology reports in a single setting and
consensus was reached for all assessments. The primary findings on brain imaging included
new and prior stroke and hemorrhage. Secondary findings included microvascular disease
(MVD), atrophy, and white matter (WM) changes. The presence or changes (for patients
with multiple time point data) in stroke and hemorrhage, MVD, volume loss, and WM
(i.e., hyperintensity or lesion) were noted with qualitative adjustment for age (i.e., whether
brain volume loss is appropriate for patient’s age). Mass effect (from tumor or infarction) if
any was also noted.

For chest imaging data, radiology reports were evaluated for the presence of unilateral
or bilateral lung opacity or consolidation/infiltrate and the presence of fibrosis-like changes
in the lung at the three time points, if available, were tabulated.

2.8. Statistical Analysis

Analysis of group differences for categorical variables employed χ2 tests and for
categorical variables student t-tests via the statistical library from SciPy Python package in
JupyterLab (©2018, Project Jupyter, https://jupyter.org, accessed on 25 December 2022).
Sensitivity power analysis was performed. Cramer’s V and Cohen’s D values for size
effect investigation were computed. p < 0.05 was considered statistically significant unless
specified otherwise.

3. Results

3.1. Patient Demographics

Table 1 shows the profiles of the CORE patients. The entire cohort was 58.61 ± 14.43
years old, 49.48% female, 49.48% Hispanic, and 26.80% Black Non-Hispanic, with a BMI of
32.61 ± 7.63. Prevalence of diabetes was 32.0%, hypertension 56.7%, COPD/asthma 38.1%,
CHF 9.3% and CKD 9.3%. Most patients were hospitalized (77/97) and about half (50) were
critically ill. Effect size measures across all variables in Table 1 were small. Age was the
only variable that was significantly different between hospitalized and non-hospitalized
cohort (p < 0.05). For the sample size of 20 non-hospitalized and 77 hospitalized patients,
the minimum detectable effect sizes for the 80% and 90% statistical power were 0.71 and
0.82, respectively.

3.2. Symptom, Physical, Emotional, and Cognitive Assessments

Table 2 summarizes the symptom, MEPSA, ADL, IADL, frailty, PHQ-9, GAD-7 and
PCL-5 assessments. For all patients, dyspnea (77.32%), fatigue (70.1%), decreased exer-
cise tolerance (55.67%), and brain fog/cognitive issues (40.21%) were the most reported
symptoms. Many CORE patients reported fatigue (3.87 ± 3.23), overall well-being score
(3.45 ± 3.14), and shortness of breath (3.32 ± 2.96). The average ADL score was 0.57 ± 1.14
(out of 6) and IADL was 2.11 ± 2.53 (out of 8), indicative of high function but some depen-
dency. Challenges with bathing (16.84%) and dressing (13.54%) were the most reported
ADLs and help with shopping (41.24%) and laundry (36.84%) were the most reported
IADLs. The average frailty score was 1.66 ± 1.4 (out of 5), indicating pre-frailty. Of the
behavioral health surveys, the GAD-7 anxiety score was 3.8 ± 5.43, PCL-5 PTSD score was
13.12 ± 14.9, and PHQ-9 depression score was 5.64 ± 6.08. Few patients reported SDOH
challenges (0.40 ± 0.79 out of 8) and safety concerns (0.1 ± 0.31 out of 2).

These test scores were not significantly different between hospitalized and non-
hospitalized cohort after multiple comparison correction (p > 0.05), except GAD-7 score
which was higher in hospitalized compared to the non-hospitalized group (4.23 ± 5.94
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vs. 2.15 ± 2.06, p = 0.039). The difference between the hospitalized and non-hospitalized
groups are in the range of small to medium effect sizes in Table 2.

3.3. Pulmonary Assessments

Table 3 summarizes the 6MWT, Borg dyspnea scale, LUS, diaphragm excursion, and
PFT results for the hospitalized and non-hospitalized cohorts. The 6MWT distance and
6MWT maximum heart rate were below normative values but were not significantly
different between hospitalized and non-hospitalized cohorts (p > 0.05). 6MWT SpO2%
was abnormal for the hospitalized cohort (89 ± 7%) but normal (95 ± 1.8%) for the non-
hospitalized cohort with a significant difference between groups (p < 0.001).

The Borg dyspnea data indicated patients had slight shortness of breath at rest and
moderate difficulty breathing during exertion, but there were no significant differences
between groups (p > 0.05). The mean LUS score was abnormal for hospitalized patients
but normal for non-hospitalized patients, with a significant difference between groups
(p < 0.001). The average diaphragm excursion measurement with quiet inspiration was
significantly higher in hospitalized patients (p < 0.05); however, the average diaphragm
excursion measurement with deep inspiration was not significantly different between
groups (p > 0.05).

FVC% Predicted, FEV1% Predicted, RV/TLC% Predicted, and DLCO% Predicted
were abnormal for the hospitalized cohort, but normal for the non-hospitalized cohort,
with significant differences between groups (p < 0.031, 0.04, 0.010, and 0.018, respectively).
FEV1/FVC was normal for both groups and was not significantly different between groups
(p > 0.05). Across all variables, effect size measures ranged from small to large in Table 3.

3.4. Imaging Assessments

Table 4 summarizes the brain imaging findings pre-, during and post-COVID-19. The
average follow-up imaging was 5 months post-COVID-19 diagnosis. Many but not all
patients (N = 31, 6, and 13 out of 97, for pre-, during and post-COVID-19, respectively) had
clinically indicated brain MRI or head CT.

Four patients had prior stroke, one patient had newly detected hemorrhage during
COVID-19 hospitalization, and 2 patients had newly detected hemorrhage post-COVID.
Overall, newly detected major neurological events post-COVID-19 were rare.

Table 1. Demographics of CORE patients. Mean ± SD or (%), N = 97. * p < 0.05 between hospitalized
and non-hospitalized cohort.

All (N = 97)
Hospitalized

(N = 77)
Non-Hospitalized

(N = 20)
Cohen’s D Cramer’s V

Age (years) 58.61 ± 14.43 60.36 ± 13.53 50.8 ± 14.76 * 0.71
Female 48 (49.48%) 32 (41.56%) 16 (80.00%) 0.311

Race/Ethnicity
Hispanic 48 (49.48%) 42 (54.55%) 6 (30.00%) 0.199

Black Non-Hispanic 26 (26.8%) 16 (20.78%) 9 (45.00%) 0.224
White Non-Hispanic 13 (13.4%) 10 (12.99%) 3 (15.00%) 0.024

Other/Unknown 11 (11.34%) 9 (11.70%) 2 (10.00%) 0.022
BMI 32.61 ± 7.63 32.77 ± 7.79 32.01 ± 6.74 0.10

Comorbidities
CHF 9 (9.3%) 8 (10.39%) 1 (5.00%) 0.075
CKD 9 (9.3%) 8 (10.39%) 1 (5.00%) 0.075

Hypertension 55 (56.7%) 45 (58.44%) 10 (50.00%) 0.069
COPD/Asthma 37 (38.1%) 33 (42.86%) 8 (40.00%) 0.197

Diabetes 31 (32.0%) 29 (37.66%) 2 (10.00%) 0.240
Hospitalized 77 (79.38%) na na

Critically Ill (IMV/ICU) 50 (51.55%) 50 (64.94%) na
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Table 3. 6MWT, Borg Dyspnea scale, LUS Score, Diaphragm Excursion Measurements and PFT
results (Mean ± SD). * p < 0.05, ** p < 0.01, *** p < 0.001 (t-test).

Variable N
Hospitalized
(N = 77, 79%)

Non-
Hospitalized
(N = 20, 21%)

p-Value
Normal Values

or Ranges
Cohen’s D

6MWT
(Distance, feet) 59 985 ± 429 773 ± 258 0.091 1873 ± 295 [35] 0.51

6MWT (Maximum
heart rate, bpm) 55 111 ± 15 101 ± 24 0.341 128 ± 18 [36] 0.58

6MWT
(SpO2 % Nadir) 56 89 ± 7 *** 95 ± 1.8 *** <0.001 95 ± 2 [35] 0.74

Borg Dyspnea
Scale (Rest) 76 0.96 ± 1.47 0.82 + 1.23 0.734 0 (normal) to

10 (worst). 0.10

Borg Dyspnea
Scale (Exertion) 62 2.93 ± 2.23 2.86 ± 2.19 0.939 0 (normal) to 10 0.03

LUS Score 53 8.43 ± 6.73 *** 0.5 ± 0.71 *** <0.001 0 (normal) to 36 1.19

Diaphragm
Excursion, quiet
inspiration (cm)

47 2.02 ± 0.72 * 1.74 ± 0.02 * 0.014 Range: 1.9–9 0.40

Diaphragm
Excursion, deep
inspiration (cm)

47 4.72 ± 1.82 5.18 ± 0.39 0.307 Range: 1.9–9 0.25

Pulmonary
Function Tests

FVC% 42 66.34 ± 18.93 * 90.6 ± 17.29 * 0.031 >80 1.29

FEV1% 42 68.73 ± 19 ** 92 ± 10 ** 0.004 >80 1.24

FEV1/FVC 42 81.02 ± 13 81.8 ± 7.6 0.852 >70 0.06

RV/TLC 19 122.65 ± 26.63 ** 105 ± 2 ** 0.010 <120 0.94

DLCO% 20 62.33 ± 23.90 * 94 ± 9 * 0.018 75–140% 1.92

6MWT—6 min walk test; HR—heart rate; bpm—beats per minute; SpO2—oxygen saturation; LUS—lung ultra-
sound score; FVC—forced vital capacity; FEV1—forced expiratory volume in the first second. For diaphragm
excursion measurements, lower values are more abnormal. Please note that the last columns that indicate
typical normal ranges are for general reference only. They are not matched controls (i.e., for age, BMI, sex,
etc.). Reference [35]—normative cohort comparison: 46% female, mean age of 58, BMI of 27, 5% non-white.
Reference [36]—normative cohort comparison: 20–50 years old, 100% non-white.

Table 4. Major brain imaging findings pre-, during and post-COVID-19 diagnosis. Post-COVID-19
average 182 days after diagnosis. Note that each patient could have multiple radiological findings
and thus the counts are larger than unique patient counts.

Pre-COVID-19 During-COVID-19 Post-COVID-19

Total N with Imaging 31/97 6/97 13/97
No remarkable findings 20 2 4

Positive findings 11 4 9

Primary Outcomes
Acute Stroke 1 0 0
Prior Stroke 3 1 1

Newly Detected
Hemorrhage 0 1 2

Secondary Outcomes
MVD 6 2 8

Atrophy 0 0 2
WM HI/Lesions 3 0 0
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Although the presence of MVD was frequently noted, it was consistent with patient’s
age. Newly detected MVD was rare post COVID-19. Similarly, some patients had brain
volume loss (atrophy) consistent with their age and newly detected atrophy was also rare
post-COVID-19. For a patient subgroup who had both pre- and post-COVID-19 brain
imaging (N = 6), 3 patients exhibited longitudinal changes (3 MVD, 1 atrophy, and 3 WM
changes). The average time difference between the two time points was 7.06 years in
this subgroup.

Table 5 summarizes the pulmonary imaging findings pre-, during- and post- COVID-19.
The average follow-up scan was also 5 months post-COVID-19 diagnosis. Most patients
had clinically indicated chest imaging performed (64, 75 and 70 out of 97 patients for
pre, during and post-COVID-19, respectively). Opacity findings were rare pre-COVID-19
(N = 4), but very common during COVID-19 (N = 60), most were bilateral (N = 52). Most
patients with post-COVID-19 lung imaging had opacity findings (N = 40), and most were
also bilateral (N = 31). Fibrosis-like changes were rare pre- and during- COVID-19 (N = 5
and 1, respectively) but common post-COVID-19 (N = 14).

Table 5. Major lung imaging findings pre-, during and post-COVID-19 diagnosis. N reflects the
number of unique patients. Post-COVID-19 average 5 months after diagnosis (N = 97).

Pre-COVID-19 During-COVID-19 Post-COVID-19

Total N with imaging 64 75 70
No opacity 59 15 30

Opacity 4 60 40
Unilateral 2 8 9
Bilateral 2 52 31

No fibrosis 59 74 56
Fibrosis 5 1 14

With respect to hospitalization status, lung opacity was more common in the hospital-
ized compared to the non-hospitalized group both during- and post-COVID-19 (p < 0.05,
Supplementary Table S1). Fibrosis-like changes were more common in the hospitalized
cohort post-COVID-19 (p < 0.05).

4. Discussion

This study characterized a subset of the COVID-19 CORE clinic patients. The major
findings are: (i) dyspnea, fatigue, decreased exercise tolerance, brain fog, and shortness
of breath were the most common symptoms, (ii) some patients have abnormal physical,
emotional, and cognitive scores but most are able to live and function independently,
(iii) some variables of the 6MWT, LUS, and diaphragm excursion are abnormal in the hospi-
talized cohort, suggestive of interstitial lung disease, (iv) pulmonary function tests suggest
moderately restrictive pulmonary function in the hospitalized cohort but no obstructive
pulmonary function nor air trapping in the lung, (v) newly detected major neurological
events, microvascular disease, atrophy, and WM changes are rare, and (vi) many patients
have persistent lung opacity and fibrosis-like findings post-COVID-19.

4.1. Symptom, Physical, Emotional, and Cognitive Assessments

The high incidence of dyspnea, fatigue, brain fog, decreased exercise tolerance, and
shortness of breath are consistent with the literature. Goertz et al. found that fatigue, dysp-
nea, headache, and chest tightness were the four most common persistent symptoms across
both hospitalized and non-hospitalized COVID-19 patients 3 months after infection [37].
Huang et al. reported that fatigue or muscle weakness was by far the most common
symptom in hospitalized COVID-19 patients at 6 months followed up [38]. Carfi et al.
found fatigue, dyspnea, and joint pains to be the three most prevalent symptoms in COVID
survivors about 2 months after their COVID-19 hospitalization [39]. These symptomolo-
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gies are not surprising given many COVID-19 patients were often discharged with major
medical referrals [40,41].

Collectively, ADL, IADL, and frailty marker scores indicate that CORE patients have
a mild dependency and prefrailty. Although CORE patients showed signs of anxiety,
depression, and PTSD, they were below the clinical cutoff in both hospitalized and non-
hospitalized patients. Other studies reported clinically significant neurological and psychi-
atric symptoms after COVID-19 diagnosis [42].

Surprisingly, there were few differences in symptom, physical, emotional, and cog-
nitive scores between hospitalized and non-hospitalized cohorts. A likely explanation is
that non-hospitalized COVID-19 patients who visited our CORE clinics likely had more
symptomatic COVID-19 disease. Previously studies have reported individuals with mild
symptoms from SARS-CoV-2 infection (i.e., not requiring hospitalization) may also be
susceptible to neuro-PASC [13,14].

4.2. Pulmonary Assessments

For most pulmonary measures, only the hospitalized cohort exhibited abnormalities.
Both 6MWT distance and maximum heart rates were below normal (compared to some
normative means) because patients as a cohort were not able to accomplish the task. 6MWT
and SpO2 saturation were clearly abnormal in the hospitalized cohort. Note that the
normative data used for reference were from a very different population that were not
matched (i.e., for age or sex, etc.) and thus comparisons need to be interpreted with caution.

LUS has been previously used to measure the degree of loss of aeration in patients with
acute respiratory distress syndrome, with higher scores indicating more loss of normal lung
aeration. B-lines in lung ultrasound denote artifacts reflecting a widening of the interlobular
septa of the secondary pulmonary lobule. As a result, this finding is non-specific, and acute
respiratory failure may represent cardiogenic or non-cardiogenic pulmonary edema as
in ARDS, or other diagnoses [43]. In the post-COVID-19 population, however, high LUS
likely denotes the presence of interstitial lung disease and lung injury following severe
viral pneumonia. The abnormalities in spirometry measurements are suggestive of residual
lung disease likely from COVID-19 pneumonia. Our spirometry analysis did not account
for lung volume differences among patients thus such comparisons need to be interpreted
with caution.

A combination of moderately reduced FVC%, FEV1%, RV/TLC ratio and DLCO%
were abnormal in the hospitalized cohort, suggesting restrictive pulmonary function and
air-trapping. FEV1/FVC in the hospitalized cohort was however normal, suggesting there
was no significant obstructive pulmonary function. A normal FEV1/FVC ratio with a
decreased FVC indicates a restrictive lung condition, which includes pulmonary fibrosis
and infections such as pneumonia. A decreased FEV1/FVC ratio indicates an obstructive
condition, such as asthma or COPD. In contrast, all these PFT variables were normal in the
non-hospitalized cohort.

4.3. Imaging Findings

Although the sample size for brain imaging is small and both brain MRI and CT
were included (which provide different sensitivity to detection of abnormalities), the main
findings will likely hold, namely, that newly detected major neurological events post-
COVID-19 are rare, and newly detected MVD, atrophy, and WM changes are also rare
5 months post -COVID-19 in our cohort. We thus concluded that there is no evidence of
widespread changes in routine clinical brain imaging in our CORE patients 5 months post-
COVID-19. However, it is possible that subtle brain changes existed, but were not detectable
by routine clinical imaging. Imaging studies using more advanced imaging methods (such
as diffusion tensor imaging, quantitative susceptibility mapping, and functional MRI)
are warranted. It is surprising that given the broad spectrum of neuro-PASC symptoms
reported in this cohort, there were comparatively few observable radiological abnormalities
post-COVID-19. It is possible that these symptoms and neurological abnormalities have
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not yet manifested into structural changes in the brain on routine clinical imaging methods,
and thus longer follow-up and more sophisticated imaging tools are necessary.

A few studies have reported brain imaging findings in post-COVID-19 patients. A
cohort study found a greater reduction in grey matter thickness and tissue contrast in the
orbitofrontal cortex and parahippocampal gyrus, greater changes in markers of tissue dam-
age in regions that are functionally connected to the primary olfactory cortex and a greater
reduction in global brain size in the COVID-19 cases compared to negative controls [44].
Abnormalities and cerebral microstructural changes in the brain of COVID-19 survivors
both with and without neurological manifestations were noted [45,46], and persistent WM
changes and ischemic stroke were associated with COVID-19 [47,48]. Note that many
published studies to date were case reports or did not have pre-COVID-19 imaging data
or controls (including the current study), which makes it difficult to definitively discern
whether imaging abnormalities were pre-existing or a consequence of COVID-19 disease.
Thus, there is likely reporting bias of positive clinical imaging findings associated with
COVID-19. Brain imaging studies with proper controls with a correlation of neurological
function at longer follow-up intervals are needed.

In contrast to brain imaging findings, there are clear anatomical abnormalities in the
lung 5 months post-COVID-19. It is concerning that lung opacity in many patients has not
completely resolved and that many patients developed pulmonary fibrosis-like changes
5 months after COVID-19. Pre-COVID-19 abnormalities were very rare and thus essentially
all new lung findings were due to COVID-19. Hospitalized patients had more opacity and
fibrosis-like changes post-COVID-19, consistent with disease severity. The incidence of
fibrosis-like changes is likely underestimated in our study because a chest radiograph was
included which has lower sensitivity for fibrosis detection compared to CT.

A few studies have previously reported persistent fibrosis-like lung changes post-
COVID-19. CT abnormalities were common at 3 months after COVID-19 but with signs
of fibrosis in a minority. More severe acute disease was linked with CT abnormalities at
3 months [49]. One study reported that although COVID-19 survivors showed continuous
improvement in chest CT, residual lesions could still be observed and correlated with
lung volume parameters one-year post-COVID-19 and the risk of developing residual
CT opacities increases with age [50]. Another study found a significant percentage of
individuals develop pulmonary sequelae after COVID-19 pneumonia, regardless of the
severity of the acute process [51]. Six-month follow-up CT showed fibrotic-like changes in
the lung in more than one-third of patients who survived severe COVID-19 pneumonia.
These changes were associated with older age, acute respiratory distress syndrome, longer
hospital stays, tachycardia, noninvasive mechanical ventilation, and higher initial chest CT
score [52]. Given the numerous reports of persistent post-COVID-19 pulmonary sequela
in many COVID-19 patients, longitudinal monitoring by chest imaging and pulmonary
function in at-risk patients is warranted. Moreover, SARS-CoV-2 infection could also
worsen existing pulmonary diseases. Many COVID-19 survivors are already being treated
with pulmonary medications and pulmonary rehabilitation for pulmonary sequela.

4.4. Limitations

This study has several limitations. Our findings were limited to COVID-19 survivors
who came to our CORE clinics and who were more likely to have more severe COVID-19
symptoms, and thus our cohort was not representative of the general population. It was not
possible to definitively distinguish abnormalities that were due to COVID-19, pre-existing
or worsened by COVID-19 disease although attempts were made to evaluate patients’
pre-pandemic data. SARS-CoV-2 infection often resulted in multi-organ injury and future
studies should also investigate long COVID regarding multi-organ injury [17,18,40,41,53].

Sample sizes of imaging data were small and consisted of a mixture of imaging
modalities with different sensitivities to pathology, and thus results must be interpreted
with caution. The small sample size also precluded quantitative statistical parametric
analysis of imaging data. Large multicenter longitudinal imaging studies with proper
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controls are needed. We hope to be able to report longer follow-up findings on this cohort
in the future.

5. Conclusions

We established early in the pandemic the CORE Clinics for COVID-19 survivors. Many
CORE patients experienced significant symptoms across the physical, emotional, and cog-
nitive health domains. Pulmonary function tests suggest moderately restrictive pulmonary
function in patients hospitalized with COVID-19. Newly detected major neurological
events, microvascular disease, atrophy, and white-matter changes were rare, but persistent
lung opacity and COVID-19-related lung fibrosis-like findings were common. Our study
provides insights into neurological and pulmonary COVID-19 sequela which may be used
to support at-risk patients and develop effective screening methods and interventions to
address the potentially high burden of care needed among COVID-19 survivors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13010119/s1. Table S1: Major lung imaging findings
pre-, during and post-COVID-19 diagnosis broken down by hospitalization status. N reflects the
number of unique patients. Post covid average 5 months after diagnosis (N = 97). * p < 0.05,
*** p < 0.001.
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Abstract: In the past two pandemic years, Emergency Departments (ED) have been overrun with
COVID-19-suspicious patients. Some data on the role played by laboratory biomarkers in the early
risk stratification of COVID-19 patients have been recently published. The aim of this study is
to assess the potential role of the new biomarker mid-regional proadrenomedullin (MR-proADM)
in stratifying the in-hospital mortality risk of COVID-19 patients at the triage. A further goal of
the present study is to evaluate whether MR-proADM together with other biochemical markers
could play a key role in assessing the correct care level of these patients. Data from 321 consecutive
patients admitted to the triage of the ED with a COVID-19 infection were analyzed. Epidemiological;
demographic; clinical; laboratory; and outcome data were assessed. All the biomarkers analyzed
showed an important role in predicting mortality. In particular, an increase of MR-proADM level
at ED admission was independently associated with a threefold higher risk of IMV. MR-proADM
showed greater ROC curves and AUC when compared to other laboratory biomarkers for the primary
endpoint such as in-hospital mortality, except for CRP. This study shows that MR-proADM seems
to be particularly effective for early predicting mortality and the need of ventilation in COVID-19
patients admitted to the ED.

Keywords: emergency department; triage; COVID-19 biomarkers; mid-regional proadrenomedullin

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has
spread worldwide and reached catastrophic proportions in the past two years. The SARS-
CoV-2 infection has been named coronavirus disease 2019 (COVID-19). The World Health
Organization (WHO) declared the SARS-CoV-2 infection a ‘Public Health Emergency of
International Concern’ due to its rapid transmission among humans. To date, there have
been more than 539 million cases worldwide and more than 6 million deaths. SARS-CoV-2
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infection presents a wide clinical spectrum ranging from asymptomatic infection to mild
upper respiratory tract illness or severe interstitial pneumonia with respiratory failure [1].

During the COVID-19 pandemic, the high number of hospital admissions compli-
cated patient management, highlighting the weakness of our health system, resulting
in an increase of the mortality rate. Furthermore, the lack of specific clinical features of
COVID-19 pneumonia complicated the differential diagnosis from other forms of severe
pneumonia [1].

The lack of immediate results from the current microbiological tests to confirm
COVID-19, coupled with the reported suboptimal sensitivity of swab tests by real-time
reverse transcription-polymerase chain reaction (RT-PCR) assays, made the situation
worse [2]. Consequently, Emergency Departments have been overwhelmed by COVID-19-
suspicious patients, inducing the need to stratify the patient risk immediately upon entering
the triage. Since predicting the course of this disease at symptom onset is difficult and very
often clinical conditions tends to worsen abruptly, prognostic tools and/or biochemical
markers have been fundamental to address patients through the right clinical pathway in
the ED. However, although several laboratory biomarkers have been so far identified to
diagnose COVID-19 pneumonia more rapidly, to date, there are no data on biomarkers with
high specificity and sensibility able to early stratify the mortality risk of patients affected
by viral pneumonia [3].

C-reactive protein (CRP) has been one of the most used biomarkers to assess the
evolution of COVID-19 inflammatory processes, even though its use is limited by a low sen-
sitivity for community-acquired pneumonia (CAP). While a high CRP value (>100 mg/L)
can indicate a severe bacterial infection, lower values are common in both viral infections
and noninfectious diseases [4].

Another biomarker evaluated in COVID-19 patients has been procalcitonin (PCT),
since it has an important role in detecting a bacterial superinfection to manage antibiotic
therapy [5]. As is known, PCT can predict microbial etiology in pneumonia [6]. On the
other hand, in patients with a high pneumonia severity index (PSI classes III-V), PCT has
proven to be a good prognostic marker rather than a diagnostic marker [7].

Procalcitonin, CRP and white blood cell count have been shown to be significantly
higher in CAP patients with a typical bacterial etiology as compared to cases in which the
pathogen was represented by an atypical bacterium or by a virus [8].

The mid-regional proadrenomedullin (MR-proADM) is the precursor molecule of
adrenomedullin (ADM). Unlike ADM, which is unstable and characterized by a short
half-life, MR-proADM is more stable and appears promising as biomarker for detecting
endothelial dysfunction, therefore, predicting severity and long-term adverse outcomes in
CAP. Christ-Crain et al. [9] showed that the level of MR-proADM increased with the severity
of CAP, in contrast to CRP levels and leukocytes. In the study by Valenzuela Sanchez
et al. [10], MR-proADM predicted unfavorable outcomes in patients with pneumonia
caused by influenza virus. In addition, MR-proADM can be used to stratify the clinical risk
in patients affected by CAP [11]. Determination of MR-proADM level within 6 h of arrival
to the hospital has prognostic value. It has also been reported that MR-proADM obtained
within 6 h from arrival at the hospital has considerable prognostic value, irrespective of the
causal agent of CAP, and in association with PSI and CURB-65 scores, improves prognostic
accuracy [11,12].

In the presence of an alteration of the microcirculatory integrity due to an endothe-
lium damage with consequent capillary leak, as observed in sepsis, MR-proADM plasma
concentrations tend to increase [13].

Accordingly, Hupf et al. [14] have recently reported significantly higher adrenomedullin
RNA blood expression in patients with severe COVID-19 vs. patients with a mild disease.

It has been hypothesized by Li et al. [15] that the integrity of the epithelial-endothelial
barrier is severely damaged in critical ill patients with COVID-19 pneumonia, introducing
the concept of “viral sepsis”. Considering this pathogenetic mechanism, several recent
studies reported an increased level of proinflammatory cytokines and chemokines such
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as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in COVID-19 patients [16,17]
suggesting that this cytokine storm might have a critical role in the evolution of SARS-CoV-2
infection [18].

The predictive value of MR-proADM in patients with COVID-19 pneumonia has been
recently reported [19,20]. Our group showed that MR-proADM might have a predictive
value in the early risk stratification of patients with COVID-19 infection at the triage in the
Emergency Department [21].

Therefore, the aim of this study is to evaluate more in detail if the laboratory biomark-
ers can play a key role in predicting the correct care level of these patients, contributing
to optimizing the hospital resources and helping the emergency physician in the decision
about the adequate setting of care of patients at the entry to the Emergency Department.

2. Materials and Methods

2.1. Study Design

The present study has an observational, retrospective single-center design. Data from
321 consecutive patients admitted to the Emergency Department of the University Hos-
pital Tor Vergata (Rome, Italy) from April to December 2020 with a confirmed COVID-19
infection were analyzed. A diagnosis of COVID-19 was made by a positive real-time re-
verse transcription polymerase chain reaction (RT-PCR) taken from nasopharyngeal swabs
and through radiological imaging, where indicated, in accordance with WHO interim
guidelines. Adult patients aged >18 years with a positive swab test were enrolled.

The demographic, epidemiological and clinical data were obtained from the electronic
clinical records.

Patients underwent chest X-rays or computed tomography (CT) scans based on the
physician’s clinical assessment, and these data were further revised by the Emergency
Department’s radiologist. Blood culture, sputum, urine, bronchial aspirate and/or bron-
choalveolar samples were analyzed when deemed necessary.

The final diagnosis was considered as that provided by the ED physician. A patient
follow-up was performed up to 45 days.

The design of the study was evaluated and approved by the local Ethics Committee at
Tor Vergata University Hospital (approval number 87/20) and was carried out according to
the Declaration of Helsinki. Written informed consent was waived because of the rapid
spread of this infectious disease.

2.2. Blood Sample Collection

Blood samples were collected at the triage admission. Upon arrival at the laboratory,
blood samples were centrifuged at 4500× g for 5 min to obtain serum or plasma samples.

Blood examinations were for mid-regional proadrenomedullin (MR-proADM),
C-reactive protein (CRP), procalcitonin (PCT), D-dimer, lactate dehydrogenase (LDH).

CRP (normality range 0.01–5.0 mg/L) and LDH (normality range 125–220 IU/L)
levels were measured in serum using an Abbott ARCHITECT c16000 (Abbott, Chicago,
IL, USA) clinical chemistry analyzer. PCT (normality range 0.01–0.50 ng/mL; cut-off for
suspected infection 0.50 ng/mL) was detected in serum with a BRAHMS PCT chemilumi-
nescent microparticle immunoassay (CMIA) by an Abbott ARCHITECT i2000SR instrument.
MR-proADM (normality range 0.05–0.55 nmol/L) was measured using a time-resolved am-
plified cryptate emission assay on EDTA plasma samples (TRACE BRAHMS MR-proADM
Kryptor, BRAHMS AG, Hennigsdorf, Germany). D-dimer values were obtained by an ACL
TOP 700 instrument (Instrumentation Laboratory Company, Werfen, Bedford, MA, USA).

2.3. Statistical Analysis

The primary endpoint was the overall in-hospital mortality; the secondary endpoints
were the need of noninvasive mechanical ventilation (NIMV) and invasive mechanical
ventilation (IMV).
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Continuous variables were expressed as mean (standard deviation) or median (in-
terquartile ranges), according to data distribution, and were compared using the Student’s
t-test or the Mann–Whitney U test, when appropriate; categorical variables were expressed
as counts and percentages and compared using the Chi-square or Fisher’s exact tests, as
appropriate. Associations between candidate variables and endpoints were assessed using
both univariate and multi-variate Cox regression analyses, and hazard ratios were calcu-
lated. We have evaluated survivors compared with non-survivors and patients who needed
ventilation (both invasive and non-invasive) compared with patients without ventilation.

The discriminatory power of the analyzed variables for predicting mortality was tested
by means of a receiver operating characteristic (ROC) curve analysis with the area under
the ROC curve (AUC) determination.

For the regression analysis, variables were dichotomized according to cut-off values
derived during the data analysis for this study, using the Youden index arising from the
ROC curve analysis.

For each biomarker, sensitivity, specificity, negative and positive predictive values
(NPV, PPV), negative and positive likelihood ratio (LR−, LR+) and odds ratio with CI 95%
were also reported for mortality, IMV and NIMV.

Kaplan–Meier curves were created to estimate the overall survival and compared
using the log-rank test.

All analyses were performed with SPSS software. Tests were considered statistically
significant if they yielded two-tailed p-values <0.05. For the multivariate analysis, we used
variables resulting as statistically significant in the univariate analysis.

3. Results

The demographic and clinical characteristics of the study population are summarized
in Table 1. The patient population had a mean age of 63 ± 14.7 years. Hypertension
(40.8%), cardiovascular diseases (17.1%) and diabetes (13.1%) represented the most frequent
comorbidities (Table 1)

Table 1. Demographic and clinical parameters.

Overall Survivors Non-Surviv p Value No-IMV IMV p Value No-NIMV NIMV p Value

N 321 N 224 N 97 N 234 N 87 N 177 N 57

Age

Years, mean (SD) 63.3 (14.7) 59.6 (14.6) 71.9 (11.2) <0.001 61.4 (15.8) 68.6 (9.7) <0.001 59.6 (16.2) 67 (12.9) 0.002

Sex

Male, N (%) 215 (67.0) 145 (64.7) 70 (72.2) 0.193 146 (62.4) 69 (79.3) 0.004 107 (60.4) 39 (68.4) 0.280

Female, N (%) 106 (33.0) 79 (35.3) 27 (27.8) 88 (37.6) 18 (20.7) 70 (39.6) 18 (31.6)

Comorbidities

Hypertension, N (%) 131 (40.8) 70 (31.3) 61 (62.9) <0.001 81 (34.6) 50 (57.5) <0.001 51 (28.8) 30 (52.6) 0.001

Diabetes, N (%) 42 (13.1) 19 (8.5) 23 (23.7) <0.001 21 (9.0) 21 (24.1) <0.001 13 (7.3) 8 (14.0) 0.124

Respiratory disease, N (%) 28 (8.7) 14 (6.3) 14 (14.4) 0.017 16 (6.8) 12 (13.8) 0.050 13 (7.3) 3 (5.3) 0.588

Malignancy, N (%) 19 (5.9) 10 (4.5) 9 (9.3) 0.093 11 (4.7) 8 (9.2) 0.129 7 (4.0) 4 (7.0) 0.342

Cardiovasc. disease, N (%) 55 (17.1) 27 (12.1) 28 (28.9) <0.001 37 (15.8) 18 (20.7) 0.303 26 (14.7) 11 (19.3) 0.407

Renal disease, N (%) 51 (15.9) 13 (5.8) 38 (39.2) <0.001 17 (7.3) 34 (39.1) <0.001 8 (4.5) 9 (15.8) 0.004

Obesity, N (%) 15 (4.7) 8 (3.6) 7 (7.2) 0.155 7 (3.0) 8 (9.2) 0.019 7 (4.0) 0 (0) 0.127

Values expressed in percentages (%) indicate the proportion of patients within each group for each variable. Data
are presented as mean (standard deviation, SD) where specified. The chi-square (χ2) test was used to determine
significance between the groups for categorical variables, Student’s t test for the variable of age. IMV, Invasive
Mechanical Ventilation; NIMV, Non Invasive Mechanical Ventilation.

Among the comorbidities reported, obesity did not show significant differences be-
tween survivors and non-survivors, whereas malignancy showed a statistical level close
to the significance. All the other comorbidities showed a significant difference between
the two groups considered. Evaluating the secondary outcomes, cardiovascular disease
and malignancy did not show significant differences between IMV and no-IMV, whereas
all the other comorbidities showed a significant difference. For the last group of patients,
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only hypertension and renal disease showed significant differences between NIMV and
no-NIMV patients.

All the biomarkers evaluated just after triage showed increased values in non-survivors
as compared to survivors as well as in IMV and NIMV compared to no-IMV and no-NIMV,
reaching always a statistically significant level (Table 2)

Table 2. Biomarkers values at triage admission.

Overall Survivors
Non

Survivors
p Value NO IMV IMV p Value NO NIMV NIMV p Value

N 321 N 224 N 97 N 234 N 87 N 177 N 57

MR-proADM nmol/L

Median 0.90 0.75 1.46 <0.001 0.79 1.42 <0.001 0.72 0.99 0.001

(Q1–Q3) (0.63–0.33) (0.57–1.0) (1.14–2.37) (0.58–1.05) (1.11–2.14) (0.55–0.95) (0.80–1.30)

CRP mg/L

Median 61 45.90 134 <0.001 47.5 134 <0.001 35 90 <0.001

(Q1–Q3) (24–125) (14–86) (72–207) (12.0–93.0) (68–211) (10–75) (48–151)

PCT ng/mL

Median 0.08 0.06 0.18 <0.001 0.06 0.19 <0.001 0.05 0.09 0.001

(Q1–Q3) (0.04–0.20)
N 290

(0.03–0.13)
N 196

(0.10–0.40)
N 94

(0.03–0.13)
N 205

(0.10–0.60)
N 85

(0.03–0.10)
N 150

(0.06–0.20)
N 55

D-dimer ng/mL

Median 753 647 1295 <0.001 669 1212 <0.001 603 829 0.009

(Q1–Q3) (446–1437)
N 315

(411–1063)
N 219

(700–2365)
N 96

(417–1148)
N 229

(658–2102)
N 86

(408–999)
N 172

(508–1666)
N 57

LDH UI/L

Median 349 323 456 <0.001 323 494 <0.001 303 395 <0.001

(Q1–Q3) (268–487)
N 315

(249–432)
N 218

(323–597)
N 97

(244–427)
N 228

(343–616)
N 87

(233–413)
N 171

(295–500)
N 57

Data are presented as median [first quartile (Q1)-third quartile (Q3)]. The Mann Whitney U test was used to
determine significance among biomarker concentrations. MR-pro ADM, mid-regional proadrenomedullin; CRP,
C-reactive protein; PCT, procalcitonin; LDH, lactate dehydrogenase. IMV, Invasive Mechanical Ventilation; NIMV,
Non Invasive Mechanical Ventilation.

Table 3 shows the results of the univariate Cox regression analysis performed to inves-
tigate the possible predictive role of clinical and demographic characteristics in patients
with suspected COVID-19 infections. In addition, obesity does not seem to predict 45 days
mortality, whereas malignancy showed a statistical level close to the significance in patients
evaluated at the triage in the Emergency Department. All the other clinical features have
shown significant odds ratio value to predict mortality in this group of patients.

Table 3. Univariate Cox Regression Analysis for biomarkers and clinical characteristics for the
primary (survivors) and the secondary (IMV, NIMV) outcomes. Univariate Cox Regression Analysis
for the prediction of 45-day mortality and 28-day IMV/NIMV.

Cut-off
Overall

(N)
Non Surv

(N)
p

Value
HR

(95% CI)
Overall

(N)
IMV
(N)

p
Value

HR
(95% CI)

Overall
(N)

NIMV
(N)

p
Value

HR
(95% CI)

Age 320 96 <0.001 1.06
(1.04–1.07) 321 87 <0.001 1.03

(1.01–1.04) 234 57 0.003 1.03
(1.01–1.04)

Gender 320 96 0.182 1.35
(0.87–2.11) 321 87 0.007 2.03

(1.21–3.41) 234 57 0.301 1.34
(0.77–2.35)

Hypertension 320 96 <0.001 2.87
(1.90–4.34) 321 87 <0.001 2.16

(1.41–3.31) 231 57 0.002 2.28
(1.35–3.80)

Diabetes 320 96 <0.001 2.43
(1.51–3.92) 321 87 <0.001 2.41

(1.48–3.95) 234 57 0.137 1.76
(0.84–3.73)

Respiratory
disease 320 96 0.017 2.00

(1.13–3.52) 321 87 0.038 1.91
(1.04–3.51) 234 57 0.669 0.77

(0.24–2.49)

Malignancy 320 96 0.057 1.95
(0.98–3.87) 321 87 0.115 1.80

(0.87–3.72) 234 57 0.298 1.72
(0.62–4.74)

Cardiovasc.
disease 320 96 <0.001 2.47

(1.60–3.84) 321 87 0.307 1.31
(0.78–2.20) 234 57 0.385 1.34

(0.70–2.59)

Renal disease 320 96 <0.001 5.44
(3.59–8.25) 321 87 <0.001 4.85

(3.14–7.50) 234 57 0.003 2.92
(1.43–5.97)

Obesity 320 96 0.200 1.65
(0.77–3.57) 321 87 0.007 2.74

(1.32–5.67) 234 57 0.353 0.05
(0.0–29.60)
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Table 3. Cont.

Cut-off
Overall

(N)
Non Surv

(N)
p

Value
HR

(95% CI)
Overall

(N)
IMV
(N)

p
Value

HR
(95% CI)

Overall
(N)

NIMV
(N)

p
Value

HR
(95% CI)

MR-proADM
(nmol/L) 1.105 320 96 <0.001 9.10

(5.64–14.70) 321 87 <0.001 7.22
(4.41–11.83) 234 57 <0.001 4.20

(2.20–8.00)

CRP (mg/L) 95.5 320 96 <0.001 6.28
(4.03–9.78) 321 87 <0.001 4.79

(3.05–7.52) 234 57 <0.001 4.20
(2.40–7.50)

PCT (ng/mL) 0.095 289 93 0.001 4.62
(2.86–7.45) 290 85 <0.001 5.07

(3.01–8.54) 205 55 <0.001 3.10
(1.70–5.80)

D-dimer
(ng/mL) 985 314 95 <0.001 4.18

(2.72–6.43) 315 86 <0.001 3.22
(2.08–5.01) 229 57 0.002 2.30

(1.40–4.00)

LDH (UI/L) 439.5 314 96 <0.001 3.52
(2.35–5.27) 315 87 <0.001 4.47

(2.90–6.91) 228 57 <0.001 2.80
(1.60–4.80)

HR, hazard ratio; CI, confidence interval. MR-proADM, mid-regional proadrenomedullin; CRP, C-reactive
protein; PCT, procalcitonin; LDH, lactate dehydrogenase. Biomarkers cut-off values derived from ROC (Receiver
Operating Characteristic) curves using the Youden index. IMV: Invasive Mechanical Ventilation; NIVM: Non
Invasive Mechanical Ventilation. Cut-off changes in IMV: D-dimer 981.5 ng/mL, LDH 437.5 U/L; cut-off changes
in NIMV: MR-proADM 0.785 nmol/L, CRP 59.5 mg/mL, LDH 340.5 UI/L.

Concerning the possible role in predicting need of IMV within 28 days in these patients,
all the clinical features reached statistical significance except for cardiovascular disease
and malignancy, whereas only hypertension and renal diseases showed a significant odds
ratio value for NIMV within 28 days. All the biomarkers analyzed showed a significant
role in predicting mortality, need of IMV and NIMV in patients admitted at the ED with
COVID-19 infection as analyzed by the univariate Cox regression analysis (Table 3).

A multivariate analysis performed pooling together both clinical and laboratory vari-
ables, also considering the whole observation period (mortality at 45 days, IMV and NIMV
at 28 days), showed that all biomarkers, except PCT, might be considered a valuable pre-
dictive tool in the mortality risk stratification at admission to the Emergency Department
(Table 4).

Table 4. Multivariate Cox Regression Analysis pooling together biomarkers and clinical characteristics
for the primary (survivors) and the secondary (IMV, NIMV) outcomes. Multivariate Cox Regression
Analysis for the prediction of 45-day mortality and 28-day IMV/NIMV.

Overall
(N)

Non Surviv
(N)

p Value HR (95% CI)
Overall

(N)
IMV
(N)

p Value HR (95% CI)
Overall

(N)
NIMV

(N)
p Value HR (95% CI)

Age 284 93 0.083 1.02
(0.99–1.04) 285 85 0.386 0.99

(0.97–1.01) 200 55 0.952 0.99
(0.97–1.02)

Gender 285 85 0.095 1.63
(0.92–2.89)

Hypertension 284 93 0.970 1.01
(0.63–1.61) 285 85 0.930 1.02

(0.64–1.64) 200 55 0.450 1.30
(0.70–2.30)

Diabetes 284 93 0.880 1.04
(0.61–1.80) 285 85 0.292 1.34

(0.78–2.31)
Respiratory
disease 284 93 0.047 1.86

(1.01–3.41) 285 85 0.248 1.49
(0.76–2.94)

Malignancy 284 93 0.038 2.28
(1.05–4.95)

Cardiovascular
disease 284 93 0.042 1.78

(1.02–3.10)

Renal disease 284 93 0.039 1.64
(1.02–2.62) 285 85 0.019 1.82

(1.10–3.00) 200 55 0.745 1.10
(0.50–2.40)

Obesity 285 85 0.259 1.62
(0.70–3.75)

MR-pro ADM
(nmol/L) 284 93 <0.001 2.99

(1.70–5.28) 285 85 0.001 2.83
(1.49–5.36) 200 55 0.071 2.00

(0.90–4.30)

CRP (mg/L) 284 93 <0.001 2.85
(1.73–4.69) 285 85 0.106 1.54

(0.91–2.60) 200 55 0.036 2.00
(1.0–3.70)

PCT (ng/mL) 284 93 0.602 1.17
(0.65–2.10) 285 85 0.288 1.41

(0.75–2.65) 200 55 0.075 1.80
(0.90–3.60)

D-dimer
(ng/mL) 284 93 0.024 1.80

(1.08–2.99) 285 85 0.085 1.56
(0.94–2.59) 200 55 0.169 1.50

(0.80–2.80)

LDH (UI/L) 284 93 0.047 1.70
(1.01–2.84) 285 85 0.002 2.18

(1.33–3.57) 200 55 0.078 1.70
(0.90–3.10)

Age, Hpertension, Diabetes, Respiratory disease, Malignancy, Cardiovascular disease and Renal disease were
used as adjusting variables within the Multivariate Cox Regression Analysis for the prediction of 45-day mortality.
Age, Gender, Hpertension, Diabetes, Respiratory disease and Renal disease were used as adjusting variables
within the Multivariate Cox Regression Analysis for the prediction of 28-day IMV. Age, Hypertension and Renal
disease were used as adjusting variables within the Multivariate Cox Regression Analysis for the prediction of
28-day NIMV. MR-proADM, mid-regional proadrenomedullin; CRP, C-reactive protein; PCT, procalcitonin; LDH,
lactate dehydrogenase.
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In fact, patients with MR-proADM level higher than the cut-off value of 1105 nmol/L
show an increase of mortality of almost three times (OR 2.97, IC 1.7–5.28); also, CRP levels
were independently associated with a higher risk of in-hospital mortality in COVID-19
patients (OR 2.85, IC 1.73–4.69). Similarly, at ED admission, an increase of MR-proADM
level was independently associated with an almost three times (OR 2.83, IC 1.49–5.36)
higher risk of IMV need as well as for LDH, which showed a smaller but still significant risk
(OR 2.18, IC 1.33–3.57). Only CRP showed a significant predictive value (OR 2, IC 1–3.7) for
the need of NIMV.

Looking at ROC curve analysis, the prognostic ability of MR-proADM assessed at ED
admissions has been shown by the good discrimination performance both for in-hospital
mortality (AUC 0.85) and for prediction of IMV (AUC 0.81); it seems to be less effective,
as predictive factor for NIMV prediction (AUC 0.71), with the optimal cut-off of 1105 as
obtained with the Youden index. The risk stratification role of MR-proADM seems to be
more powerful as compared to the other biomarkers as demonstrated by ROC curves and
AUC, which resulted as significantly greater for the primary endpoint, i.e., in-hospital
mortality, except for CRP (Table 5 and Figure 1).

Table 5. Prognostic accuracy of biomarkers for different outcomes.

Outcomes
AUC

(95% CI)
Cut-off

p
Value

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

LR+
(95% CI)

LR-
(95% CI)

OR
(95% CI)

Mortality 0.848
(0.80–0.90) 1.105 0.77

(0.67–0.85)
0.80

(0.73–0.85)
0.65

(0.58–0.71)
0.87

(0.83–0.91)
3.75

(2.80–5.10)
0.29

(0.20–0.40)
12.76

(7.05–23.08)

MR-proADM
nmol/L IMV 0.807

(0.75–0.86) 1.105 0.75
(0.65–0.84)

0.77
(0.70–0.82)

0.58
(0.51–0.64)

0.88
(0.83–0.91)

3.20
(2.43–4.23)

0.32
(0.22–0.47)

9.92
(5.50–17.92)

NIMV 0.707
(0.63–0.78) 0.785 0.80

0.67–0.90)
0.55

(0.46–0.63)
0.40

(0.35–0.45)
0.88

(0.81–0.93)
1.76

(1.41–2.19)
0.37

(0.21–0.64)
4.79

(2.29–10.0)

Mortality 0.785
(0.73–0.84) 95.5 0.090 0.71

(0.61–0.80)
0.78

(0.72–0.84)
0.62

(0.55–0.68)
0.85

(0.80–0.88)
3.24

(2.40–4.40)
0.37

(0.30–0.50)
8.80

(5.01–15.50)

CRP
mg/L IMV 0.759

(0.70–0.82) 95.5 0.242 0.67
(0.56–0.77)

0.74
(0.67–0.80)

0.52
(0.45–0.59)

0.84
(0.79–0.88)

2.58
(1.95–3.40)

0.45
(0.33–0.61)

5.79
(3.34–10.06)

NIMV 0.709
(0.63–0.79) 59.5 0.970 0.69

(0.55–0.81)
0.67

(0.59–0.75)
0.44

(0.37–0.51)
0.85

(0.79–0.90)
2.09

(1.56–2.79)
0.46

(0.31–0.70)
4.52

(2.32–8.81)

Mortality 0.759
(0.70–0.82) 0.095 0.021 0.77

0.67–0.85)
0.67

(0.60–0.73)
0.53

(0.47–0.59)
0.85

(0.80–0.89)
2.29

(1.80–2.90)
0.35

(0.20–0.50)
6.50

(3.70–11.42)

PCT
ng/mL IMV 0.769

(0.71–0.83) 0.095 0.354 0.79
(0.69–0.87)

0.66
(0.59–0.72)

0.49
(0.44–0.55)

0.88
(0.83–0.92)

2.28
(1.83–2.85)

0.32
(0.21–0.49)

7.07
(3.89–12.83)

NIMV 0.657
(0.57–0.74) 0.055 0.380 0.76

(0.63–0.87)
0.55

(0.46–0.63)
0.39

(0.34–0.45)
0.86

(0.79–0.91)
1.68

(1.33–2.11)
0.43

(0.26–0.71)
3.87

(1.92–7.81)

Mortality 0.705
(0.64–0.77) 985.5 0.001 0.67

0.57–0.76)
0.73

(0.66–0.79)
0.55

(0.48–0.61)
0.82

(0.77–0.86)
2.46

(1.90–3.20)
0.45

(0.30–0.60)
5.43

(3.18–9.28)

D-dimer
ng/mL IMV 0.666

(0.60–0.74) 981.5 0.002 0.65
(0.54–0.75)

0.70
(0.63–0.76)

0.47
(0.41–0.54)

0.82
(0.77–0.86)

2.12
(1.63–2.76)

0.51
(0.38–0.69)

4.18
(2.44–7.15)

NIMV 0.610
(0.53–0.70) 787.5 0.110 0.60

(0.46–0.73)
0.66

(0.57–0.73)
0.40

(0.33–0.47)
0.81

(0.75–0.86)
1.74

(1.27–2.38)
0.61

(0.43–0.86)
2.85

(1.50–5.40)

Mortality 0.687
(0.62–0.76) 439.5 0.0001 0.55

(0.45–0.66)
0.80

(0.73–0.85)
0.57

(0.49–0.65)
0.78

(0.74–0.82)
2.71

(1.90–3.80)
0.56

(0.40–0.70)
4.83

(2.82–8.26)

LDH
UI/L IMV 0.736

(0.67–0.80) 437.5 0.101 0.61
(0.50–0.72)

0.80
(0.73–0.85)

0.56
(0.48–0.64)

0.83
(0.79–0.87)

2.98
(2.16–4.11)

0.49
(0.37–0.64)

6.30
(3.61–11.00)

NIMV 0.649
(0.56–0.73) 340.5 0.320 0.67

(0.53–0.79)
0.61

(0.52–0.69)
0.39

(0.33–0.46)
0.83

(0.77–0.88)
1.71

(1.30–2.25)
0.54

(0.36–0.81)
3.17

(1.65–6.11)

Area Under Curve (AUC) analysis for 45-day mortality prediction and for 28-day IMV or NIMV prediction of
study population. P value: differences between area of each biomarker vs MR-pro-ADM. Cut-off derived from
ROC (Receiver Operating Characteristic) curves using the Youden index. CI, Confidence Interval; PPV, Positive
Predictive Value; NPV, Negative Predictive Value; LR+, Positive Likelihood Ratio; LR-, Negative Likelihood Ratio;
OR, Odds Ratio; IMV, Invasive Mechanical Ventilation; NIMV, Non Invasive Mechanical Ventilation. MR-proADM,
mid-regional proadrenomedullin; CRP, C-reactive protein; PCT, procalcitonin; LDH, lactate dehydrogenase.

In particular, MR-proADM showed the better PPV (65%) and especially, NPV (87%) in
predicting mortality, as well as for IMV and NIMV regarding NPV (both 88%) as compared
to the other biomarkers, with only CRP showing similar values (Table 5).
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Figure 1. Association of candidate biomarkers with mortality and mechanical ventilation. AU-
ROC, Area Under the Receiver Operating Characteristic curve. MR-proADM, mid-regional pro-
drenomedullin; CRP, C-reactive protein; PCT, procalcitonin; LDH, lactate dehydrogenase; IMV,
Invasive Mechanical Ventilation; NIMV, Non-Invasive Mechanical Ventilation.
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The good discrimination performance of MR-proADM for the primary and secondary
endpoints is also shown by the survival curves (Figure 2). In fact, a higher survival rate
and a reduced mechanical ventilation risk were evident for patients with values less than
1.105 nmol/L for mortality and IMV and 0.785 for NIMV at admission to the ED.

Figure 2. Kaplan–Meier survival curves. Stratification of patients with mid-regional proad-
renomedullin (MR-proADM) levels greater or less than 1.105 nmol/L and C-reactive protein (CRP)
levels greater or less than 95.5 mg/L at admission in the Emergency Department. IMV, Invasive
Mechanical Ventilation; NIMV, Non-Invasive Mechanical Ventilation.

Similar results have been found for CRP (Figure 2), but with less differences when
compared to MR-proADM, as shown by the narrower forks. Conversely, the performance
was lower for PCT, D-dimer and LDH, as shown in Figure 3, where is evident a poor
discrimination power, as shown by the narrower forks.
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Figure 3. Kaplan–Meier survival curves. Risk stratification of patients with procalcitonin (PCT)
levels greater or less than 0.095 ng/mL, D-dimer levels greater or less than 985.5 ng/mL and lactate
dehydrogenase (LDH) greater or less than 439.5 U/L at admission in the Emergency Department.
IMV, invasive mechanical ventilation; NIMV, non-invasive mechanical ventilation.

4. Discussion

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has
heavily affected the worldwide population in the last two years. Although most patients
infected by SARS-CoV-2 had only a mild illness, about 5% of them suffered severe lung
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injury or even multiorgan dysfunction [22], requiring admission in the intensive care
unit (ICU).

Consequently, Emergency Departments have seen a dramatic increase in their work-
load, triggering the need to optimize resources and the decision to hospitalize only seriously
ill patients, to face the more adequate care level.

The utilization of biomarkers at the admission to the ED to quickly stratify risks for
patients with pneumonia and other diseases has been largely reported [12,23,24]. MR-
proADM has already been shown to be effective to stratify the risk in the Emergency
Department for patients affected by community-acquired pneumonia (CAP) [11,25].

To our knowledge, this is the first study focused on the ability of new, as MR-proADM,
and traditional biomarkers in the global risk stratification of patients with COVID-19
infections at the ED admission.

Previous studies performed with a smaller number of patients have reported that MR-
pro ADM can play a role in predicting outcome in already hospitalized patients affected by
COVID-19-related pneumonia [19,20].

Accordingly, we have recently shown in ICU critical patients that that MR-proADM
seems to represent the most powerful biomarker for predicting death, especially when
the outcome can happen earlier, within one week, thus representing a good predictor for
disposition of patients from ED to ICU [26]. In addition, our recent data show that also in
patients at the triage entry in the Emergency Department, MR-proADM is able to stratify
the risk in terms of mortality [21].

In line with these previous studies, the median admission levels of all biomarkers
checked in our studies showed significant higher values for all the endpoints considered, i.e.,
non-survivors vs survivors, IMV vs non-IMV and NIMV vs non-NIMV. This result suggests
that these biomarkers might play a predictive role in the early risk stratification of patients
with COVID-19 infections. In fact, all the biomarkers considered showed a significant
predictive value for the endpoints considered when analyzed with a univariate analysis.

Considering the possible confounding effect of the demographic and clinical features
of patients, a multivariate analysis was performed pooling together both the clinical charac-
teristics and the biomarkers assessed in the study. MR-proADM showed the best predictive
value for the primary endpoints and for the need of IMV, whereas it did not show significant
predictive role for the need of NIMV.

In particular, it is notable that MR-proADM showed the best negative predictive value
for all the endpoints considered, thus giving a relevant support to the emergency physician
in the eventual decision of the patient rule-out or rule-in. Consequently, MR-proADM
could determine an adequate clinical setting of patients affected by COVID-19 being able to
predict also the possibility of ventilation need. This relevant information might be helpful
for the emergency physician facilitating the decision-making process, thus optimizing the
hospital resources. The great power of MR-proADM in the mortality risk stratification of
COVID-19 patients has been further confirmed by the analysis of the ROC curves, which
showed a significant greater AUC as compared to the other biomarkers analyzed.

Similarly, the survival curves showed a primary role of MR-proADM as a predictive
factor in patients affected by COVID-19 in the Emergency Department. This is demonstrated
by the wider fork of MR-proADM as compared to the other biomarkers, highlighting a
better discrimination power for all the outcomes considered.

Our novel data are in line with previous studies in which the predictive role of MR-
proADM has been evaluated in hospitalized COVID-19 patients [19,20].

Some differences among the present and previous studies need to be highlighted.
First, the clinical setting. In fact, in previous studies, only critical patients admitted in the
hospital wards have been enrolled. Our study, instead, has been primarily focused on
patients admitted to the ED and therefore, with different degrees of impairment, ranging
from asymptomatic to critical conditions. In these populations, the goal is to predict the
trajectory of the illness at the onset of the symptoms and, very often, this is not easy to do.
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The second important aspect of our study was the number of patients enrolled, which
was considerably greater as compared to previous studies.

Similar conclusions have been reported by previous studies which have analyzed
the predictive role of biomarkers in patients affected by CAP, where MR-proADM was
shown to be particularly effective in stratifying the risk in patients affected by bacterial
pneumonia [9,11,12]. On the other hand, PCT was particularly effective as a diagnostic tool
for tailoring antibiotic therapy but with a minor impact on the predictive power [9,27,28].

Although PCR has been confirmed to be a non-specific marker of acute inflammation
as it is usually influenced by many other factors [9,28,29], its predictive power, as confirmed
in our study, makes it particularly useful in a context such as the Emergency Department,
even for COVID-19 patients.

PCT, in line with previous studies [21,26], does not show a sufficient predictive value
because, even if the ROC analysis shows a valid result, the multivariate analysis does not
show a significant predictive value. This could be due to the different statistical analysis
performed. In fact, in previous studies [21,26], PCT showed sufficient discriminatory power
for patients who died with COVID-19 after 28 days, presumably due to complications
such as bacterial superinfections. In contrast, MR-proADM was particularly effective in
predicting death in patients who died rapidly, within a week, because of COVID-19.

Our novel data strengthen the role of biomarkers as a useful tool in the early risk
stratification of patients presenting to the ED, especially in the age of COVID-19. We can
only speculate that a diagnostic and predictive power could be enhanced by combining
score and biomarkers in more complex biomarkers panels [30–32]. For these reasons, it
is important to know how biomarkers behave in response to defined diseases such as
SARS-CoV-2.

A limitation of our study is that patients were recruited in only one single hospital.
Therefore, it would be desirable to extend the study to multiple centers to increase the
number of enrolled patients, to confirm our results. A further limitation is represented by
the retrospective design of the study.

5. Conclusions

This study, which to our knowledge is the first to evaluate the behavior of the MR-
proADM compared to traditional biomarkers in COVID-19 patients at admission to the ED,
shows that all the biomarkers utilized can help the physician in the decision-making process.
Among them, MR-proADM and CRP seem to represent the most powerful biomarkers for
predicting mortality and the need of ventilation in patients admitted to the Emergency
Department. Therefore, the assessment of the MR-proADM level strengthens the predictive
power of CRP. This is particularly useful for helping the emergency physician in the
rule-in or rule-out of COVID-19 patients. Furthermore, the present study extends the
previous results giving a support to the emergency physician in deciding the adequate
clinical setting according to the possible need of ventilation, thus contributing to optimizing
hospital resources.

However, biomarkers might oversimplify the interpretation of important variables,
and consequently, they must be considered as a valid help but not as replacing clinician
judgment and/or the right consideration of validated severity scores.
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Abstract: Background: The incidence of Clostridioides difficile infection (CDI) has increased in recent
years in patients with inflammatory bowel disease (IBD). C. difficile is a toxin-producing bacterium,
and CDI results in the worsening of underlying IBD, increasing the risk of IBD treatment failure,
surgery, and hospitalization. Because the symptoms of CDI overlap with those of IBD, it is challenging
to make a differential diagnosis. Therefore, early, rapid, and reliable diagnostic tools that can identify
CDI in IBD patients would be valuable to clinicians. Methods: This study retrospectively collected
135 patients with IBD. Among them, 44 patients were diagnosed with CDI, and 42 patients were
diagnosed with viral or fungal infections. A total of 49 patients without infections were defined as
the control group. The diagnostic values of procalcitonin (PCT), C-reactive protein (CRP), and white
blood cell (WBC) count in the peripheral blood were examined. Results: In this study, PCT levels
were significantly higher in patients with CDI than in non-CDI patients (including patients with
viral/fungal infections and the control group; p < 0.001 and p < 0.05, respectively). CRP levels were
significantly higher in patients with CDI than in non-CDI patients (p < 0.05). The area under the
curve (AUC) of PCT and WBC count were compared using DeLong’s test: the AUCs of PCT vs. CRP
for the detection of the IBD–CDI group and the control group was 0.826 [95% confidence interval (CI)
0.743–0.909] vs. 0.663 [95% confidence interval (CI) 0.551–0.774] (p < 0.05), respectively. WBC count
was inferior as a diagnostic tool for CDI. The sensitivity was 59.09% (95% CI: 43.2% to 73.7%), the
specificity was 89.80% (95% CI: 77.8% to 96.6%), and the positive likelihood ratio LR (+) was 5.79 for
PCT for the diagnosis of CDI. Conclusions: The present study demonstrates the superiority of PCT
over CRP and WBC count for the rapid diagnosis of CDI in IBD patients.

Keywords: Clostridioides difficile; inflammatory bowel disease; PCT; CRP; WBC

1. Background

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative
colitis (UC), is a group of chronic disorders of the gastrointestinal tract that is characterized
by inflammation of an unknown etiology, and the recurrence rate is high. The clinical
characteristics are diverse and include serious complications, such as bleeding, perforation,
and abscess formation [1,2].

The resident microorganisms in the human gastrointestinal tract play an important
role in maintaining intestinal equilibrium. There are several mechanisms, including the
degradation of xenobiotic substances, synthesis of beneficial metabolites and vitamins,
immune system regulation, and colonization resistance against invading pathogenic mi-
croorganisms [3]. Chronic diarrhea caused by IBD leads to dysbacteriosis, decreasing
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bacterial diversity in the long term and reducing colonization resistance against Clostrid-
ioides difficile [4]. Changes in the community structure of the gut microbiota and markedly
decreased microbial diversity have been identified in patients with CDI [5]. The long-term
use of immunosuppressive medications for the treatment of IBD, such as immunomodula-
tors and glucocorticoids, particularly when these agents are used in combination, result in
an increased risk of opportunistic infections. Individuals with IBD have a nearly five-fold-
higher risk of C. difficile infection than individuals without IBD [6]. In contrast, infections
with bacteria other than C. difficile are uncommon in IBD patients experiencing a disease
flare [7].

C. difficile, a Gram-positive spore-forming anaerobe, produces exotoxins that cause a
spectrum of diseases. Serious infections are occasionally complicated by toxic megacolon,
perforation, sepsis, and death [8]. It is reported that CDI complicates the course of IBD,
leading to longer hospital stays, an increased rate of colectomy, and increased mortality [9].
CDI and IBD have an obvious overlap with the clinical manifestations of colitis. Diarrhea is
the most prominent symptom, but bleeding is more likely in IBD; other common symptoms
include abdominal discomfort and fever. Therefore, it is difficult to clinically distinguish an
acute IBD attack and acute CDI. In all IBD patients, these symptoms or signs may indicate
a colitis attack, such as increased blood in the stool. Accordingly, these patients should also
be tested for the presence of toxigenic C. difficile in the stool. This presents challenges in
diagnosis and treatment.

Based on the above evidence, the 2013 ACG guidelines made the following conditional
recommendation: in IBD patients with severe colitis, the simultaneous initiation of empiri-
cal therapy directed against both CDI and IBD attacks may be needed while awaiting the
results of C. difficile testing. The escalation of immunosuppression medications should be
avoided if there is a possibility of untreated CDI [10]. Therefore, a fast and reliable CDI
diagnostic tool is valuable for clinicians.

Nucleic acid amplification tests (NAATs) have a sensitivity greater than 95% for the
diagnosis of CDI [11,12]. The positive predictive value is dependent on the presence of
diarrhea [13,14]. C. difficile can colonize without producing significant amounts of toxin,
resulting in a symptomatic infection and making a positive PCR result clinically irrele-
vant [15,16]. An ideal test to diagnose CDI in a situation in which symptoms are not reliable
would be a highly sensitive assay to measure the level of the toxin [17]. Unfortunately,
most enzyme immunoassays (EIAs) for toxins have low sensitivities, sometimes even in the
50% to 70% range. Glutamate dehydrogenase (GDH) is produced by all C. difficile strains,
regardless of whether they are toxigenic, and it cannot be used to identify toxigenic strains
of C. difficile [18]. Currently, using PCR/NAATs alone leads to overdiagnoses, and the use
of EIAs for toxins alone may lead to underdiagnoses [19]. Therefore, reliable, specific, and
sensitive markers are needed for CDI in IBD patients.

At present, routine inflammation markers, including procalcitonin levels, C-reactive
protein levels, and white blood cell count, are widely used for the diagnosis of infectious
diseases. C-reactive protein (CRP) is one of the most important proteins involved in acute
inflammation. CRP has a short half-life, so CRP levels increase and decrease rapidly during
acute inflammation [20]. The detection of CRP is inexpensive and rapid. Procalcitonin
(PCT) is a prohormone of calcitonin, and serum levels of PCT are mainly increased in
patients with bacterial infections. PCT has been found to reach a high level within 8–24 h
after the onset of a bacterial infection [21]. As an inflammatory marker, PCT has obvious
advantages because it is stable, not affected by exogenous bacteria in vitro, and the test is
relatively easy to carry out with a fast turnaround time of 2 h [5].

This is a retrospective study. We aimed to determine the efficacy of noninvasive and
rapid routine inflammation marker tests in monitoring IBD patients infected with C. difficile.
Our research aimed to provide auxiliary evidence of CDI infection in IBD patients and
carry out antibiotic treatment as early as possible to improve prognosis. Thus, in the
present study, we evaluated the diagnostic value of PCT, CRP, and WBC count for CDI in
IBD patients.
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2. Methods

2.1. Patient Eligibility and Classification

In this study, a total of 445 patients diagnosed with inflammatory bowel disease (IBD)
were collected from the medical records of the First Affiliated Hospital of Sun Yat-sen
University register from 2016 to 2020. C. difficile should be detected in IBD patients with
a high risk of CDI, including the following: (1) all active IBD inpatients; (2) IBD patients
with diarrhea in remission or recent exposure to risk factors (such as contact with CDI
patients, gastrointestinal surgery, tube feeding, bowel preparation, etc.); (3) IBD patients
with severe colitis, without bacteriological evidence, and requiring empirical CDI treatment;
and (4) patients with low immunity, diabetes, renal failure, malnutrition, etc. An endoscopy
was performed in all individuals. IBD lacks the gold standard for diagnosis and needs
to be comprehensively analyzed in combination with clinical manifestations, laboratory
examinations, endoscopies, imaging examinations, and histopathological examinations.
The Crohn’s disease activity index (CDAI) is used to evaluate the severity of disease activity.
The improved ‘Truelove’ and ‘Witts’ disease severity classification criteria were used to
grade the active stage of UC [22]. Patients diagnosed with inflammatory bowel disease
(IBD) participated in the study, and 135 patients were included. A total of 300 subjects
were excluded from the analysis due to incomplete blood tests (n = 270), the presence of
other positive bacteria cultures in the stool (n = 10), and other sites of bacterial infection
(n = 20). Among all of the included 135 patients, 44 patients were diagnosed with CDI
based on NAATs for Clostridioides difficile. Forty-two patients were diagnosed with other
opportunistic infections, including viral infections and fungal infections. Viral infection
diagnosis was based on positive viral IgM antibodies and positive viral PCR results in blood
samples, including Epstein–Barr virus (EBV), cytomegalovirus (CMV), herpes simplex
virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2); meanwhile, fungal infection
diagnosis was based on positive stool culture results, mostly of Candida infection. Forty-
nine IBD patients without infections were enrolled in the control group (Figure 1). All
methods were carried out in accordance with the declaration of Helsinki. Written informed
consent was obtained from all subjects. This study was approved by the Clinical Research
and Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University.

Figure 1. Study algorithm. IBD: inflammatory bowel disease; CDI: Clostridioides difficile infection.

A six-component ATLAS score, which is useful in stratifying the severity of CDI
patients [23], was measured on the day of entry into the study (within 48 h of a positive
NAAT for Clostridioides difficile). The components of ATLAS score were as follows: age
(in years); treatment with systemic antibiotics (which occurred on one or more days of
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CDI therapy); temperature (in degrees Celsius); total leukocyte count; serum albumin; and
serum creatinine as a measure of renal function.

2.2. Detection of Clostridioides Difficile

CDI was diagnosed based on positive nucleic acid amplification tests (NAATs) for
the Clostridioides difficile tcdA, tcdB, cdtA, and cdtB genes (GeneXpert C. difficile Assay,
Cepheid, Sunnyvale, CA, USA).

2.3. Laboratory Measurement of Inflammatory Markers

Serum PCT levels were determined by a quantitative electrochemiluminescence im-
munometric assay using a COBAS E601 analyzer (e601 module of the Cobas 6000 system,
Roche, Switzerland) with a level of <0.05 ng/mL considered normal. Plasma CRP levels
were measured by immunoturbidimetry using a Mindray CRP-M100 analyzer (Mindray
CRP-M100, Shanghai, China) a Dade Behring BN II (Marburg, Germany). The reference
value provided by the manufacturer was < 10 mg/L. Whole WBC levels were measured by
a Mindray BC-6800 analyzer (Mindray BC-6800, Shenzhen, China) and SysmexXN-9000
analyzer (SysmexXN-9000, Kobe, Japan) with a level of <10 × 109/L considered normal.

2.4. Statistical Analysis

Statistical analyses and graphic presentations were carried out using the software
program GraphPad Prism (Version 5.0, GraphPad Software Inc., San Diego, CA, USA),
MedCalc (Version 20.1116, Ostend, Belgium) and IBM SPSS software (Version 25.0, SPSS
China). Patient characteristics among the groups were analyzed using Pearson’s chi-square
test, one-way ANOVA, and Tukey’s multiple comparison test. Categorical variables were
expressed in proportions. Infection marker variables were expressed as the mean ± SEM.
DeLong’s test was used for the pairwise comparison of AUC and ROC curves. AUCs
(with 95% confidence intervals) were calculated to assess the diagnostic values of the tests;
AUCs > 0.70 were considered clinically relevant. Youden’s index, sensitivity, specificity, and
the LR (+) were calculated with MedCalc. In all analyses, statistical tests were two-sided,
and p values of less than 0.05 were considered statistically significant.

3. Results

3.1. Patient Characteristics

Of these 135 IBD patients, 83 patients were diagnosed with Crohn’s disease and
52 patients were diagnosed with ulcerative colitis. Age and Clostridioides difficile infection
incidences were different in CD and UC patients (p < 0.001 and p < 0.05, respectively),
while sex and colectomy rate were similar in CD and UC patients (p > 0.05). Crohn’s
disease patients had a younger median age but a higher CDI incidence than ulcerative
colitis patients. The clinical characteristics of CD and UC patients are shown in Table 1.

Table 1. Clinical characteristics of CD and UC patients.

Characteristic Crohn’s Disease (n = 83)
Ulcerative Colitis

(n = 52)
p-Value

Age, y, median (IQR) 27.0 (15–61) 49.5 (18–70) <0.0001 ***
Male, n (%) 50 (60.2) 28 (53.8) 0.391

CDI incidence, n (%) 32 (38.6) 12 (23.1) 0.014 *
Colectomy, n (%) 18 (21.7) 6 (11.5) 0.056

* p < 0.05; *** p < 0.001.

3.2. Evaluation of Diagnostic Value

According to the clinical infection of Clostridioides difficile, virus and fungus, the IBD
patients were divided into three groups. The sex ratio, clinical characteristics, and outcomes
are shown in Table 2. Sex was different in the distribution of the three groups (p < 0.005).
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There was no difference in endoscopic activity and colectomy among the three groups
(p > 0.05).

Table 2. IBD patients’ characteristics in different infection groups.

Chi-Square Test
Male, n (%)

p-Value
Colectomy, n (%)

p-Value
Active Period, n (%)

p-Value

IBD+CDI vs. IBD+ virus/fungus 0.031 * 0.675 0.675
IBD+CDI vs. IBD 0.127 0.181 0.520

IBD+ virus/fungus vs. IBD 0.476 0.369 0.290
* p < 0.05.

The level of inflammatory biomarkers in the different groups in the study are shown
in Tables 3 and 4 and Figure 2. The mean of PCT was significantly higher in IBD–CDI
patients than in non-CDI patients, as well as in IBD patients with viral or fungal infections
(both p < 0.001). The mean of CRP was significantly higher in IBD–CDI patients than in
IBD patients (p < 0.05), and the mean of WBC count was not significantly different among
the three groups (p > 0.05).

Table 3. Patients’ inflammatory biomarker levels of IBD patients in different groups.

Characteristic
IBD with CDI

(n = 44)

IBD
with Viral/Fungus Infections

(n = 42)

IBD
Control Group

(n = 49)

One-Way ANOVA
p-Value

PCT (ng/mL)
Mean ± SEM 0.178 ± 0.029 0.081 ± 0.007 0.066 ± 0.007 <0.0001 ***

CRP (mg/L)
Mean ± SEM 59.70 ± 7.01 40.14 ± 4.91 37.35 ± 5.71 0.0177 *

WBC count (×109/L)
Mean ± SEM

8.48 ± 0.57 8.93 ± 0.71 7.38 ± 0.39 0.130

* p < 0.05; *** p < 0.001.

Table 4. Comparison of inflammatory biomarkers between groups of IBD patients.

Tukey’s Multiple Comparison Test
PCT

p-Value
CRP

p-Value
WBC

p-Value

IBD+CDI vs. IBD+ virus/fungus 0.821 0.066 0.840
IBD+CDI vs. IBD <0.001 * 0.022 * 0.345

IBD+ virus/fungus vs. IBD <0.001 * 0.942 0.126
* p < 0.05.

The receiver operating characteristic (ROC) curves corresponding to each infection
biomarker in the IBD–CDI group and the IBD control group for the prediction of CDI in
IBD patients are shown in Figure 3. Based on the AUC of the ROC curve, PCT had an AUC
of 0.826 (95% CI: 0.743–0.909, p = 0.000). CRP had an AUC of 0.663 (95% CI: 0.551–0.774,
p = 0.007). PCT was more accurate in the diagnosis of CDI or being noninfectious than CRP
(DeLong’s test, p = 0.0106).

The receiver operating characteristic (ROC) curves corresponding to each infection
biomarker in the IBD–CDI group and the viral/fungus group for the prediction of CDI
infections in IBD patients are shown in Figure 4. Based on the AUC of the ROC curve, PCT
had an AUC of 0.716 (95% CI: 0.609–0.824, p = 0.001). CRP had an AUC of 0.615 (95% CI:
0.496–0.735, p = 0.067). PCT was more accurate in the diagnosis of CDI or viral/fungus
infections than CRP (DeLong’s test, p = 0.170).

Youden’s index, sensitivity, specificity, and the LR (+) were calculated with MedCalc
software. Youden’s index associated criterion value >0.09, the sensitivity%, specificity%,
and positive likelihood ratio (LR+) predictive values of the best PCT cutoff value for the
diagnosis of Clostridioides difficile infection are shown in Table 5. The sensitivity% was
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59.09% (95% CI: 43.2% to 73.7%), the specificity% was 89.80% (95% CI: 77.8% to 96.6%), and
the LR (+) was 5.79.

 

 

Figure 2. Scatter plots of PCT (a), CRP (b), and WBC count (c) for patients with inflammatory bowel
disease with or without Clostridioides difficile infection or with viral/fungal infections. (a,b) In cases
of PCT, the mean was obviously higher in IBD–CDI patients than in patients without CDI or with
viral/fungal infections. In cases of CRP, the mean was obviously higher in IBD–CDI patients than in
patients without CDI infections. (c) There was no significant difference in WBC count among patients
with or without Clostridioides difficile infection or with viral/fungal infections. * p < 0.05, *** p < 0.001,
ns: no significance.
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Figure 3. Prediction of Clostridioides difficile infections by ROC curve analysis (CDI vs. IBD control
group). PCT with an AUC of 0.826 (95% CI: 0.743–0.909, p = 0.000). CRP with an AUC of 0.663 (95%
CI: 0.551–0.774, p = 0.007). DeLong’s test, p = 0.0106.
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Figure 4. Prediction of Clostridioides difficile infections by ROC curve analysis (CDI vs. viral/fungus
group). PCT with an AUC of 0.716 (95% CI: 0.609–0.824, p = 0.001). CRP with an AUC of 0.615 (95%
CI: 0.496–0.735, p = 0.067). DeLong’s test, p = 0.170.

Table 5. Diagnostic performance indices of PCT in Clostridioides difficile infection of IBD.

Sensitivity% 95%CI Specificity% 95%CI LR+

59.09% 43.2–73.7% 89.80% 77.8–96.6% 5.79

The ATLAS scoring system was used to stratify the severity of CDI patients in this
study, which divided CDI patients into seven groups (scores of 0 to 6). PCT and the rate of
colectomy were calculated for each stratification, which are shown in Table 6.

Table 6. ATLAS score, PCT, and rate of colectomy of Clostridioides difficile infection patients.

ATLAS Score Number of Patients
PCT Rate of Colectomy

Mean ± SEM (ng/mL) n (%)

0 11 0.1255 + 0.0285 2 (16.7%)

1 17 0.1888 + 0.0630 3 (17.6%)

2 6 0.1783 + 0.0715 1 (16.7%)

3 6 0.2317 + 0.0766 2 (33.3%)

4 2 0.1000 + 0.0600 1 (50%)

5 1 0.3800 0

6 1 0.1800 1 (100%)

4. Discussion

IBD patients are at increased risk of developing CDI with worse clinical consequences
than the rest of the population. European articles have reported that IBD patients with CDI
have an elevated 1.2- to 3-fold risk of gastrointestinal surgery or emergent colectomy [22].
IBD patients are at high risk of CDI recurrence [23]. Crohn’s disease patients who were
younger at diagnosis are much more likely to obtain CDI than ulcerative colitis patients. The
striking part of the epidemiology of CDI is an increase in individuals who are younger [6,24].

A positive stool test for C. difficile or its toxins does not absolutely diagnose CDI.
The sensitivity of stool culture is limited; it is time-consuming and does not distinguish
infection from colonization. NAAT detection methods are more sensitive and can quickly
obtain results. NAATs are considered superior to other methods, but it is difficult to
accurately distinguish the colonization and infection of C. difficile, which may lead to
excessive diagnoses and treatments of CDI. The two-step method, namely GDH and toxin
A/B, is recommended in the bacterial-infection-diagnosis guidance document [25]. In

207



Diagnostics 2022, 12, 3108

the three-step method, GDH EIAs or NAATs are used for the initial screening, and A/B
EIA tests are used when the initial screening is positive. If the A/B EIAs test is negative,
cultures or NAATs are used to confirm the identification [26]. However, these tests are
time-consuming, multi-step, and costly.

C-reactive protein is one of the most important proteins in acute inflammation. It
is maintained at a low level (less than 1 mg/L) in peripheral blood secreted by hepato-
cytes in healthy people, but it increases when acute inflammation occurs and is induced
by interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). The
CRP value sharply increases, even reaching up to three- to four-hundred times its usual
value. CRP remains at a level of 10–40 mg/L, indicating virus infection or chronic in-
flammation [10]. In this study, we determined that IBD patients suffered from chronic
inflammation with a mean CRP level of nearly 37 mg/L and IBD patients with viral or
fungal CRP levels remained at a mean of nearly 40 mg/L, while IBD patients suffered from
C. difficile infection. The mean CRP level increased up to nearly 60 mg/L, nearly 1.5 times
higher than that of non-CDI patients.

Procalcitonin is a prehormone of calcitonin. When bacterial infections occur, the
circulation levels of PCT increase, mainly due to the presence of bacterial endotoxins and
exotoxins, as well as inflammatory cytokines, such as TNF, IL-2, and IL-6. When viral
infections occur, interferon-gamma (IFN-γ) is released. PCT production is inhibited by
IFN-γ [27]. High levels are found in severe bacterial infections and low levels are found in
nonspecific inflammatory diseases and viral infections; therefore, PCT has been considered
a promising marker for the diagnosis of bacterial infections [28]. PCT may be used to
support clinical decisions in different types of infections, marking the beginning or end of
antibiotic therapy [29].

In our study on IBD patients, the purpose of monitoring PCT was to stop immuno-
suppressive drug treatment as soon as possible and relatively reduce the duration of
immunosuppressive treatment. In this present study, we found that mean PCT levels in
serum increased nearly three-fold in IBD–CDI patients compared to non-CDI patients with
IBD, considering PCT requires more intense stimuli to increase compared with CRP [30].
PCT is characterized by a relatively high specificity but low sensitivity in abdominal local
infection diseases, which differentiates bacterial infection from other systemic inflammation
or viral infections [28]. In this study, PCT showed a low sensitivity but high specificity
for CDI diagnosis in IBD patients as well. The PCT values are relatively high in moderate
and severe CDI, suggesting that PCT could be more useful in severe CDI diagnoses, and
that more careful differential diagnoses are needed in mild cases. However, more cases
need to be collected in the future to clarify the correlation between PCT and CDI severity.
Briefly, PCT provides a reference for the clinical withdrawal of immunosuppressants and
the initiation of antibiotic therapy in IBD patients. As a marker of inflammation, PCT is
stable, easy to operate, specific, and fast.

We found that CRP and WBC count were not ideal diagnostic tools for identifying C.
difficile infections or other viral and fungal infections in IBD patients. Although CRP levels
increased in the CDI of IBD patients, based on the pairwise comparison of AUC and ROC
curves by DeLong’s test, PCT was more accurate in the diagnosis of CDI than CRP.

Several limitations should be considered in the present study. First, given that it was a
retrospective study with a small number of patients, the effect of confounding variables
cannot be ruled out. Second, we did not have a long-term follow-up of mortality and
recurrence rate in patients with CDI. Third, there were only a few cases detected by EIA in
these retrospective studies, so the EIA results were not included in the study.

5. Conclusions

Overall, the present study demonstrates the superiority of PCT over CRP and WBC
count in differentiating CDI in IBD patients. PCT can be used as a biomarker for helping
with the rapid diagnosis of CDI in IBD patients. Whether PCT levels can help predict the
clinical outcome and progress of IBD patients’ needs further research to fully evaluate.
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Abbreviation

PCT procalcitonin
CRP C-reactive protein
WBC white blood cell
CDI Clostridioides difficile infection
IBD inflammatory bowel disease
ROC receiver operating characteristic
CD Crohn’s disease
UC ulcerative colitis
NAAT nucleic acid amplification test
PCR polymerase chain reaction
EIA enzyme immunoassay
GDH glutamate dehydrogenase
EBV Epstein–Barr
CMV cytomegalovirus
HSV-1 herpes simplex virus type 1
HSV-2 herpes simplex virus type 2
LR positive likelihood ratio
IL-6 interleukin-6
TNF-α tumor necrosis factor-α
IL-1β interleukin-1β
IFN-γ interferon-gamma
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Abstract: Objective: To study the clinical diagnostic value of neutrophil CD64 index, PCT, and CRP
in patients with acute pancreatitis with abdominal infection. Methods: A number of patients with
acute pancreatitis (n = 234) participated in the study. According to the infection and health conditions,
they were further divided into the non-infection group (n = 122), infection group (n = 78), and sepsis
group (n = 34), and 40 healthy subjects were selected in the control group (n = 40). Expression
levels of infection indexes, such as CD64 index, PCT, and CRP, were detected and compared. ROC
curves were drawn to compare the efficacy of each index in the diagnosis of acute pancreatitis with
abdominal infection and sepsis. The study was retrospectively registered under the China Clinical
Trial Registry as a trial number ChiCTR2100054308. Results: All indexes were significantly higher in
three clinical groups than the healthy control group (p < 0.05). The CD64 index, CD64 positive rate,
and PCT in the infected group were significantly higher than those in the uninfected group (ALL
p < 0.05). The PCT of patients infected with Gram-negative bacteria was significantly higher than that
of Gram-positive bacteria-infected patients (p < 0.05). CD64 index had the best diagnostic efficiency
for acute pancreatitis infection, with 82.14% sensitivity, 88.51% specificity, and 0.707 Youden indexes.
The CD64 Youden index (0.780) for sepsis diagnosis was the highest, while the AUC of PCT was the
highest (0.897). Conclusion: CD64 index combined with PCT has good sensitivity and specificity in
diagnosing acute pancreatitis infection and sepsis.

Keywords: neutrophil; CD64 index; acute pancreatitis; abdominal infection

1. Introduction

Acute pancreatitis is a common gastrointestinal disease caused by pancreas inflam-
mation due to systemic inflammatory response that may lead to organ or system impair-
ment [1]. It is also characterized by local inflammatory reactions of the pancreas in common
clinically acute and severe cases with or without functional changes of other organs. The
disease is self-limiting (one week duration) in patients with mild acute pancreatitis [2]. Mod-
erately severe or severe acute pancreatitis (SAP) has the characteristics of rapid progress,
dangerous condition, and high clinical mortality [3]. According to revised Atlanta clas-
sification (RAC), acute pancreatitis can be either interstitial edematous pancreatitis (IEP)
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or acute necrotizing pancreatitis (ANP) [4–6]. Approximately 20–30% of patients with
acute pancreatitis will have necrotizing pancreatitis [7]. According to statistics, the overall
mortality of patients with acute pancreatitis is about 5–10%, and that of patients with SAP
is 20–30% [8]. While 20% patients of AP may develop SAP, there are two peaks in the
course of acute pancreatitis; first stage is systemic inflammatory response syndrome with
subsequent organ failure and second is infectious complication stage with related organ
failure [9,10]. Without intensive care, SAP may progress into critical acute pancreatitis
(CAP) with mortality rate of 34% [11–13]. Predicting the risk of complications and carrying
out comprehensive treatment in the early stage of acute pancreatitis is the core means to
improve the prognosis of patients.

In recent studies, multiple scoring systems have been applied to the severity stratifica-
tion and early prognosis prediction of patients with acute pancreatitis, but these scores have
limitations [14]. Exploring blood markers to predict the condition and complication risk of
patients with acute pancreatitis has become an important research direction in recent years.
Abdominal infection is an important complication in patients with acute pancreatitis, which
can lead to systemic inflammatory response syndrome, multiple organ failure, and septic
shock. It is one of the important causes of death in patients with acute pancreatitis [15],
but the clinical symptoms and signs of abdominal infection are not specific. However, it is
difficult to obtain positive results in the early stage of the disease using imaging diagnosis
and etiological examination of peritoneal puncture fluid, thus representing a significant
clinical problem.

Although many studies used early infection markers to predict and diagnose abdom-
inal infection in patients with acute pancreatitis, there is no single marker that can meet
the clinical needs [16]. It has become a consensus that combining multiple markers can
improve the diagnostic effect. The cluster of differentiation 64 (CD64) antigen is considered
as an important marker of bacterial infections, systemic inflammation and mortality [17]. It
is a transmembrane glycoprotein functioning as a high-affinity IgG receptor (FcγRI) [18].
Cytokines regulate its expression and play a bridge role between humoral immunity and
cellular immunity. CD64 is mainly distributed on the surface of monocytes, macrophages,
and dendritic cells [19]. Normally, CD64 expression is very low in neutrophils, but the
expression is significantly induced in peripheral blood neutrophils during bacterial infec-
tion and helps in neutrophil phagocytosis and sterilization [19,20]. Many studies show
that CD64 has high specificity in bacterial infection, which is helpful in early diagnosis of
bacterial infection and the degree of infection [21,22].

Procalcitonin is another biomarker normally produced in thyroid C cells and enters
into blood after its conversion to calcitonin when induced by glucocorticoids, glucagon,
gastrin, or β-adrenergic signaling [23]. In infection patients, it is produced by non-thyroid
tissues (e.g., adipocytes) upon induction from IL-6 and TNF-α and enter bloods without
being converted into calcitonin [24]. Previously, PCT has been reported to be the most
sensitive laboratory test for the detection of pancreatitis where low levels of PCT appear
to be strong negative predictors of infected necrosis [25]. C-reactive protein (CRP) is a
conventional biomarker of systemic inflammatory response (SIRS) and bacterial infections.
Based on this current situation, the value of neutrophil CD64 index, PCT, and CRP in
predicting the incidence of acute pancreatitis complicated with abdominal infection was
analyzed to provide evidence for clinical diagnosis of infectious diseases.

2. Materials and Methods

2.1. Study Design

A total of two hundred and thirty-four patients with acute pancreatitis and met the
inclusion criteria of this study were selected from two class III (class A) hospitals from
September 2019 to March 2021. According to the infection, they were divided into the
No Infection group (n = 122), Infection group (n = 78), and Sepsis group (n = 34). At the
same time, 40 healthy persons who underwent physical examination in our hospital in
the same period were selected as the Control group (Figure 1). There was no significant
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difference between baseline data (all p > 0.05), which were comparable (Table 1). All patients
signed informed consent and voluntarily participated in the study. The study protocol
was approved by the hospital ethics committee (Scheme 1). The study was retrospectively
registered under the China Clinical Trial Registry as a trial number ChiCTR2100054308.

Figure 1. ROC curve of infection indicators for the diagnosis of acute pancreatitis with abdominal infection.

Scheme 1. Study design.

213



Diagnostics 2022, 12, 2409

Table 1. Comparison of basic data of patients in each group.

Group n
Sex [n (%)] Age (Years) Etiology [n (%)]

Male Female (x ± s) Biliary Hyperlipidemia Other Reasons

Control group 40 27 (67.50) 13 (32.50) 45.21 ± 8.24
Uninfected group 122 74 (60.66) 48 (39.34) 44.49 ± 9.39 66 (54.10) 38 (31.15) 18 (14.75)
Infection group 78 46 (58.97) 32 (41.03) 43.61 ± 9.47 50 (64.10) 20 (25.64) 8 (10.26)

Sepsis group 34 22 (64.71) 12 (35.29) 44.21 ± 8.26 22 (64.71) 6 (17.65) 6 (17.65)

Statistical test X2 = 1.001 F = 0.592 X2 = 4.089
p-value 0.801 0.555 0.394

2.1.1. Inclusion Criteria

All patients met the diagnostic criteria of acute pancreatitis in the initial treatment
guidelines for acute pancreatitis of the American Gastroenterology Association [26], with
complete clinical data and age >18 years. Blood samples were obtained from all patients
within 3 days of admission. We selected patients strictly according to the inclusion criteria,
which can basically ensure the homogeneity of all included patients.

2.1.2. Exclusion Criteria

The study exclusions include patients with malignant tumors, liver and kidney dys-
function, hematological diseases, cardiovascular and cerebrovascular accidents, immune
deficiency diseases or autoimmune diseases; patients diagnosed with an infection in other
parts or systemic infection except for pancreas and abdominal cavity at admission; patients
with diabetes and acute pancreatitis history. There were patients who used glucocorti-
coids and immunomodulatory drugs three months before enrollment. Pregnant or nursing
mother were also excluded.

2.1.3. Diagnostic Criteria for Abdominal Infection

The management guidelines for abdominal infection [27] updated by the World Society
of Emergency Surgery (WSES) in 2019 is used as the diagnostic criteria for abdominal
infection: patients generally have symptoms and signs, such as abdominal pain, rebound
pain, fever, cessation of anal exhaust and defecation, and Balthazar CT grade of acute
pancreatitis is grade D or E, and positive blood culture or ultrasound-guided peritoneal
puncture fluid pathogen culture.

2.2. Flow Cytometric Detection of CD64 Index

The detection and calculation formula of CD64 was analyzed by FACS Calibur flow
cytometer (Becton Dickinson, NY, USA), supporting reagents, and software CellQuest
(Becton Dickinson, New York, NY, USA). 2 mL of whole blood sample (with EDTA as an
anticoagulant) was collected from patients with suspected infection and analyzed within
two hours. Samples were mixed upside down eight times and added to the special flow
tube before processing. CD64 and CD45 phycoerythrin (PE) labeled antibodies (5 μL each)
were added to 50 μL whole blood, mixed well, and incubated at room temperature in
the dark for 40 min. A hemolytic agent (500 μL) was added to each tube, mixed well,
and incubated for 10 min. The samples were centrifuged for 5 min at 2000× g, and
the supernatant was discarded. Phosphate buffer (PBS) (mL) was added to the pellet and
mixed well before another centrifugation round using the same conditions. After discarding
the supernatant, sample pellets were resuspended in 300 μL PBS and analyzed by flow
cytometry. CD64 expression on the surface of neutrophils was measured as geometric mean
fluorescence intensity (MFI) on neutrophils, namely polymorphonuclear leukocytes (PMN),
lymphocytes (LYM), and monocytes (MO). CD64 index was calculated using Leuko64
QuantiCALC Software by the following ratio

CD64 index = (MFI_PMN CD64/MFI_LYM CD64)/(MFI_MO CD64/MFI_PMN CD64)
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CD64 positive rate = 100% × Number of CD64 positive PMN cells/total number of PMN cells.

2.3. PCT and CRP Index

PCT and CRP were detected from non-anticoagulated peripheral blood by Cobas-e411
Electrochemiluminescence Automatic Immunoanalyzer (Roche, Munich, Germany) and
AU5800 Automatic Biochemical Analyzer (Beckman Kurt, Dallas, TX, USA) and their
supporting reagents, respectively.

2.4. Statistical Analysis

Utilizing SPSS 20.0 software (SPSS Inc., Chicago, IL, USA), the comparison between
multiple groups of data adopts one-way ANOVA, the comparison between two groups is
subject to Student–Newman–Keuls (SNK) test, and the comparison between two groups
of measurement data adopts an independent sample t-test. Comparison row between
person data χ2 test, Wilcoxon rank-sum test was used to compare grade data. The receiver
operator characteristics (ROC) curve was drawn to evaluate the efficacy of various infection
indexes in diagnosing acute pancreatitis with abdominal infection and sepsis. p < 0.05 was
statistically significant. The Youden index [28] measure for the ROC curve was used to
measure the overall value of an infection index over the whole region of the ROC curve.
Youden index for a diagnostic marker and calculated optimal cut-off point is equivalent to
maximizing the sum of sensitivity and specificity for all the possible values of the cut-off
point [29].

3. Results

3.1. Comparison of Infection Indexes

When infection indexes were compared, there was a significant difference among the
four groups (all p < 0.05). The indexes of patients with acute pancreatitis in the three groups
were significantly higher than those in the healthy control group (all p < 0.05); The CD64
index, CD64 positive rate, and PCT in the infected group were significantly higher than
those in the uninfected group (all p < 0.05), but there was no significant difference in CRP
between the two groups (p > 0.05); All indexes in the sepsis group were significantly higher
than those in infection group (all p < 0.05), as shown in Table 2.

Table 2. Comparison of infection indexes in 4 groups.

Group n CD64 Positive Rate CD64 Index CRP (mg/L) PCT (μg/L)

Control group 40 9.79± 3.56 0.76± 0.21 2.29 ± 0.81 0.12± 0.07
Uninfected group 122 23.41 ± 7.17 a 1.21 ± 0.35 a 24.43± 4.61 a 1.14 ± 0.78 a

Infection group 78 43.91 ±15.82 ab 3.34 ± 0.94 ab 25.51 ±4.97 a 2.53 ± 1.25 ab

Sepsis group 34 67.71 ±9.64 abc 5.06 ± 0.36 abc 29.74 ±4.64 abc 5.35 ± 1.75 abc

F-value 177.321 304.560 328.296 131.643
p-value <0.001 <0.001 <0.001 <0.001

Note: Compared with the control group, a p < 0.05; Compared with the uninfected group, b p < 0.05; Compared
with the infected group, c p < 0.05.

A comparison of infection indexes among different bacterial infection groups shows
that PCT of patients infected with Gram-negative bacteria was significantly higher than
that of patients infected with Gram-positive bacterial infections (p < 0.05), but there was
no significant difference in CD64 index, CD64 positive rate, and CRP indexes between the
two groups (all p > 0.05), as shown in Table 3.
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Table 3. Comparison of infection indexes between different bacterial infection groups.

Bacteria Types n CD64 Ositive Rate CD64 Index CRP (mg/L) PCT (μg/L)

Gram-negative bacteria 89 51.91 ± 12.78 4.02 ± 0.81 27.36 ± 5.19 3.91 ±1.11
Gram-positive bacteria 23 49.93 ± 10.55 3.75 ± 0.76 25.954 ± 4.74 2.64 ± 0.75

F-value 0.621 1.259 1.031 4.802
p-value 0.550 0.239 0.329 <0.001

3.2. Evaluation of Diagnostic Efficacy of Acute Pancreatitis with Abdominal Infection

The uninfected acute pancreatitis group is negative, and the infection and sepsis
groups of acute pancreatitis are positive. The ROC curve of each index was obtained
for diagnosing acute pancreatitis with abdominal infection, as shown in Figure 1. The
sensitivity of CD64 index (82.15%), Youden index (0.707), and area under the curve (AUC,
0.892) were greater than other indexes, while the diagnostic specificity of PCT (95.11%) was
the highest (Table 4).

Table 4. Diagnostic efficacy of infection indicators for acute pancreatitis complicated with abdominal
infection.

Infection Index AUC * Sensitivity (%) Specificity (%) Youden Index

CD64 positive rate 0.669 71.44 75.42 0.469
CD64 index 0.892 82.15 88.51 0.707

CRP 0.622 58.94 81.96 0.409
PCT 0.867 67.85 95.11 0.630

* AUC; area under the curve.

3.3. Evaluation of Diagnostic Efficacy of Acute Pancreatitis with Sepsis

In this case, the acute pancreatitis infection group is negative, and the sepsis group is
positive. The ROC curve of each index for the diagnosis of burn sepsis is drawn (Figure 2).
Among them, the CD64 index and Youden index (0.780) are the largest, while the AUC of
PCT (0.897) is the highest (Table 5).

Figure 2. ROC curves of infection indicators for the diagnosis of acute pancreatitis and sepsis.

Table 5. Diagnostic efficacy of infection indicators for acute pancreatitis complicated with sepsis.

Infection Index AUC Sensitivity (%) Specificity (%) Youden Index

CD64 positive rate 0.815 76.48 87.19 0.637
CD64 index 0.847 88.26 89.76 0.780

CRP 0.627 88.25 66.69 0.549
PCT 0.897 70.61 94.87 0.655
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3.4. Combined Diagnosis

The above CD64 index and PCT with good diagnostic effects are used for combined
diagnosis, and the positive value is greater than the optimal critical diagnostic value. The
sensitivity and Youden index are higher than the single index (Table 6).

Table 6. CD64 index and PCT combined diagnostic efficiency.

Diagnosis of Content Sensitivity (%) Specificity (%) Youden Index

Acute pancreatitis with
abdominal infection 89.29 (100/112) 88.52 (108/122) 0.778

Acute pancreatitis with sepsis 94.12 (32/34) 84.62 (66/78) 0.787

4. Discussion

Acute pancreatitis is one of the common emergencies of the digestive system, includ-
ing mild-acute and severe-acute pancreatitis. Later is prone to septic shock and organ
dysfunction. Symptoms and signs or imaging examinations are ineffective in diagnosing
acute pancreatitis complicated with abdominal infection. In the clinic, a large number of
patients often delay treatment and cause a bad prognosis. So, the mortality of secondary in-
fection is as high as 36–50%. Some patients with acute pancreatitis can suffer from sequelae
of pancreatitis [30–32].

Bacteriological culture results and drug sensitivity tests are the gold standards for
diagnosing bacterial infection and guiding antibiotic treatment. Still, their positive rate is
low, and the isolation time of pathogens is long, which cannot provide the basis for early
diagnosis in time. Therefore, finding a rapid and accurate method to evaluate a bacterial
infection is particularly important.

In recent years, the application of flow cytometry to detect the expression of CD64 on
the surface of peripheral blood neutrophils has attracted extensive attention in the diagnosis
of bacterial infection. CD64 mRNA in neutrophils began to express 1~3 h after infection,
and CD64 on the cell surface could be detected up-regulated 3~6 h after infection, which has
the ability to detect infection early [33]. Rogina et al. also showed that the differentiation of
CD64 index and CD64 positive rate in each group of acute pancreatitis was higher. The
CD64 index, CD64 positive rate, and PCT in the infected group were significantly higher
than those in the uninfected group (all p < 0.05), but there was no significant difference in
CRP between the two groups (p > 0.05). It may be that CRP primarily reflects the acute
stress state in vivo, and the basic CRP in patients with acute pancreatitis is higher. The
increase was not obvious during infection. Previously, CRP shows low specificity and
limited correlation with the disease activity in comparison to other infection indexes [34].

Some studies pointed out that Gram-negative bacteria infection in patients with acute
pancreatitis with abdominal infection was significantly higher than that of Gram-positive
bacteria [35]. Therefore, this study compared the differences of various indexes between
the two types of bacterial infections. The results showed that the PCT of Gram-negative
bacterial infections was significantly higher than that of Gram-positive bacterial infections
(p < 0.05), but there was no significant difference in CD64 index, CD64 positive rate, and
CRP between the two groups (all p > 0.05). PCT is an important biomarker commonly used
to predict bacterial infections in clinics. It can also guide the diagnosis and treatment of
infectious diseases. Its sensitivity and specificity are higher than traditional markers such as
WBC and CRP. CRP test is controversial in term of limitation sensitivity and specificity [36].
PCT may be better than CD64 index in the early diagnosis of bacterial infection [37] but
CD64 index is still preferable and a method of choice in diagnosing severe and complicated
bacterial infection in term of sensitivity and specificity [38,39]. When the body is infected
or invaded by endotoxins, neutrophil CD64 can increase 4~6 h after stimulation and 0~24 h
after sepsis. This study confirmed by the bacterial culture that the peripheral blood CD64
index of acute pancreatitis (AP) patients can be significantly increased within 24 h after
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concurrent bacterial infection, which is expected to become a new biomarker for the early
diagnosis of sepsis.

Ye Z et al. reported that the sensitivity of CD64 on the surface of neutrophils for the
diagnosis of bacterial infection is ≥90%, and the specificity can reach 90~100%, which is
significantly better than PCT, CRP, and other indicators. However, there are many ways
to express the test results, including CD64 MFI, CD64 positive rate, and CD64 index, and
the calculation formula of CD64 index is not unified. The calculation formula of the CD64
index for diagnosing infection obtained by various laboratories is quite different from the
cut-off value, and the comparability is poor [40].

Because CD64 is expressed in various cells; in monocytes, these are produced in
large amounts in physiological and infectious states, while lymphocytes have low ex-
pression of CD64 [41]. Considering this expression pattern, this study used (MFI_PMN
CD64/MFI_LYM CD64)/(MFI_MO CD64/MFI_PMN CD64) to express the CD64 index,
which not only quantified the expression level of CD64, but could also reduce the operation
error to make the CD64 index more objective. The results showed that the efficacy of CD64
index in the diagnosis of acute pancreatitis with abdominal infection was better than other
indexes, but the specificity was lower than PCT. The Youden index (0.781) was the largest
in the diagnosis of sepsis, while the AUC of PCT (0.897) was the highest. The sensitivity of
the CD64 index was higher than that of PCT, but the specificity was lower than that of PCT.
Previously, the sensitivity and specificity of neutrophil CD64 was found to be more than
80% [42].

When the CD64 index was combined with PCT, the sensitivity and Youden index
increased, but the specificity decreased. It is suggested that combined diagnosis is helpful to
improve the diagnostic efficiency of acute pancreatitis with abdominal infection and sepsis.

5. Conclusions

In conclusion, neutrophil CD64 index combined with PCT has good sensitivity and
specificity in diagnosing acute pancreatitis with abdominal infection and sepsis and has a
good prospect of clinical application.
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Abstract: Sepsis is one of the deadliest disorders in the new century due to specific limitations in early
and differential diagnosis. Moreover, antimicrobial resistance (AMR) is becoming the dominant threat
to human health globally. The only way to encounter the spread and emergence of AMR is through
the active detection and identification of the pathogen along with the quantification of resistance.
For better management of such disease, there is an essential requirement to approach many suitable
diagnostic techniques for the proper administration of antibiotics and elimination of these infectious
diseases. The current method employed for the diagnosis of sepsis relies on the conventional
culture of blood suspected infection. However, this method is more time consuming and generates
results that are false negative in the case of antibiotic pretreated samples as well as slow-growing
microbes. In comparison to the conventional method, modern methods are capable of analyzing
blood samples, obtaining accurate results from the suspicious patient of sepsis, and giving all the
necessary information to identify the pathogens as well as AMR in a short period. The present review
is intended to highlight the culture shift from conventional to modern and advanced technologies
including their limitations for the proper and prompt diagnosing of bloodstream infections and
AMR detection.

Keywords: antimicrobial resistance; sepsis; early diagnosis; conventional methods; modern methods;
advanced methods

1. Introduction

Sepsis is one of the most ambiguous disorders in medicine due to its early onset.
Previously, sepsis was thought to be the process through which flesh decomposes, swamps
acquire a putrid odour, and wounds deteriorate [1]. Later, it was renamed as systemic
infection, which is commonly referred to as “blood poisoning” and was acknowledged as
a result of pathogenic organisms growing within the circulation and evading the host’s
immune system. As a result, it was established that the pathogen, not the host, is the perpe-
trator in the pathophysiology of sepsis [2]. Pathogens interact in the host immune system
during infection, triggering a downstream inflammatory cascade including cytokines and
other mediators, eventually producing immunosuppression, which leads to various types
of organ failure and subsequent clinical degeneration [3].

Originally, sepsis was thought to be the result of internal organs rotting or decaying,
with sepsis being defined as a result of the host’s systemic inflammatory response syndrome
(SIRS) to infection, severe sepsis (sepsis associated with organ dysfunction, hyperfusion, or
hypotension), and septic shock (sepsis induced hypotension that persists despite adequate
fluid resuscitation) [4]. However, due to a lack of effective antimicrobials and supportive
treatment, the definition of sepsis has evolved with time, preventing patients with sepsis
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from living long enough to be analyzed or they acquire a sequel of organ failure. As
a result, the American College of Chest Physicians (ACCP) and the Society of Critical
Care Medicine (SCCM) announced SIRS and published new agreements as a definition of
sepsis and associated medical criteria (Sepsis-3) with deadly organ dysfunction caused by
a dysregulated host response to an infection, which can be accepted as a shift in complete
Sequential Organ Failure Assessment (SOFA) score points ≥2 subsequent toward the
disease [3–5]. The guidelines of the SOFA score were presumed to be zero in the patients
having no infection or organ failure whereas a SOFA score ≥2 mirrors a general fatality
danger of approx. 10% in a common emergency population with suspected infection [6].
This novel and advanced definition focus on the power of the non-homeostatic response of
the host to infection, the potential fatality of the infection that is impressively more than
a direct disease, and the requirement for dire acknowledgement. As depicted later, even
an unpredictable level of organ dysfunction when it was suspected earlier is related to an
in-emergency mortality rate of nearly 10%.

According to the World Health Organization (WHO), in hospitals, sepsis is not just
the costliest condition to treat as an additional main source of death, but certain reports
have assessed a great many cases at a greater expense and death rates influencing more
than 30 million individuals worldwide, thus steadily prompting 6 million deaths with rates
of mortality between 20% and 50% [7]. The weight of sepsis is probably most noteworthy
in low-income countries [8]. A reported 31.5 million people have are diagnosed with
sepsis annually around the world, of which, 19.4 million individuals suffer from severe
sepsis while 5.3 million individuals experience death, 3 million cases are estimated in
neonates worldwide annually and there are 1.2 million cases in children, with a death rate
of 11–19% [9], as well as 75,000 annual deaths in females due to puerperal sepsis globally [5].
Additionally, as per the ongoing safety information of Centers for Disease Control and
Prevention (CDC) reports, sepsis inpatient admissions stay high for septic shock, roughly
60%; for severe sepsis, around 36%; for sepsis credited to a particular creature, roughly 31%;
and for unknown sepsis, roughly 27% [10]. The latest in-hospital mortality estimates for
sepsis patients has decreased from 28% to 18% [11]. Patients with severe sepsis admitted to
the ICU increased from 7.2% to 11.1% and hospital mortality in severe sepsis decreased
from 35% to 18%, according to a recent study of prospectively collected data from more
than 90% of all intensive care unit (ICU) hospitalizations, confirming these trends in both
incidence and mortality. Finally, the best epidemiologic evidence shows that severe sepsis
is becoming more common while simultaneously becoming less fatal [12].

Because of its narrow window, early and systemic diagnosis of sepsis is a crucial task
which may deviate towards shock, organ failure or even death. Delay in every hour in
providing the correct treatment results in a decline in the survival rate of sepsis patients
by 7.6% [13]. To combat this, non-specific broad-spectrum antibiotics are administered
immediately in suspected cases which results not only in poor patient outcomes but also in
the development of multi-drug resistance (MDR) [14,15]. Hence, the diagnostic method
should be rapid and applicable to detect pathogens along with drug resistance (preferably
within 3–5 h of patient admission) [16,17]. It should be capable enough to diagnose
polymicrobial infections along with unknown and emerging pathogens. Furthermore, the
results of the diagnosis should be able to provide appropriate decisions and antibiotic
stewardship within a key time window of hours in order to limit morbidity and death [14].
The procedures that are sensitive, specific and quick for identifying the pathogen are
therefore the major operational instruments for critical care units [18,19].

The current review discusses the present status of conventional, modern and advanced
methods along with their advantages and disadvantages in the deep specialized, transla-
tional and application-related scope (Figure 1). The authors searched PubMed and Google
Scholar applying the following keywords: sepsis, early diagnosis, conventional as well as
modern methods and cited the papers from the year 2018 to 2022. Many case reports and
series, as well as retrospective and prospective investigations, systematic reviews and meta-
analyses, clinical recommendations and other narrative reviews, have been included by the
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authors. The search for literature has been limited to research in English exclusively. Over
100 publications were disclosed in the initial literature search. The authors evaluated all the
relevant publications and assessed which research to include, with their conventional and
modern techniques, including WHO and CDC clinical guidelines, in the review focused on
an early identification of the condition.

Figure 1. Schematic overview of the diagnostic methods. Conventional methods use the selected
cultures and medium in traditional approaches and detect basic aspects of bacterial identification.
Molecular detection uses molecular-based (DNA and RNA) approaches to identify resistance genes,
as well as mutations in and expression of these genes, or their genomic signature.

2. Conventional Methods for Management of Sepsis

2.1. Microbiological Methods

The detection of pathogens using these techniques is based on the apparent growth of
microorganisms on a suitable culture media (solid agar and broth). There are two different
methods and they have been discussed in detail in the section below.

2.1.1. Identification through Blood Culture/Gram Staining

For detection as well as identification of causative pathogens, sampling of blood/urine/
lavage from patients, their routine culture followed by the Gram staining test remains the
gold standard method [20–22]. To enhance the diagnosis, a minimum requirement of blood
samples collected aseptically is 0.5–1 mL. Preferably, blood is drawn for blood cultures
from two distinct venipunctures sites. One is the central venous catheters, which allows
blood to be obtained concurrently from a peripheral and a vascular catheter, allows for
faster detection of peripheral bacteremia vs. catheter-related bloodstream infections and
appropriate dosing for clinical treatment [23]. Since some microbes can only be identified
at the collection site and not in the blood, continuous monitoring of the collection sites is
necessary when a positive culture is detected, which facilitates the further processing for
pathogen identification in proper sepsis assessment [24].

These are the confirmatory tests to detect the potentiality of microbes in the given
sample [25]. Comparatively, gram staining analysis is rapid (<15 min), economical, and
provides information about the categorization of the infectious microbe as either Gram-
positive, Gram-negative, Gram variable or Gram indeterminate [26,27].

2.1.2. Identification through Bactec Fx/VITEK 2

This automated system is built on sensors that detect any change in pressure within
the blood culture bottle or track the CO2 emitted by actively metabolizing species. Gram-
negative microbes take 14 to 24 h in blood culture bottles to detect microbial growth, while
Gram-positive bacteria take 24 to 48 h. It is now feasible to eliminate enough pathogenic
load for direct identification in Bactec FX without first growing on an agar plate until a blood
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culture bottle has been marked positive and is suitable for traditional diagnosis [28,29].
Blood culture bottles are prepared, checked and incubated for 5 days at 35 ◦C with shaking
agitation every 10 min in the instrument. By spreading 0.1 mL of consecutive 10-fold
dilutions on a blood agar plate, the quantitative plate count technique is used to determine
microbial fixation. They are then tested after overnight incubation at 350 ◦C on plates
containing the colonies [30].

The following are the three main issues with using this culture-based method: Firstly,
the conventional microbiological tests require 5 days to detect and identify the pathogens
involved in sepsis. As a result, the procedure does not provide results promptly, which may
be a significant source of anxiety for patients not having the infection. Secondly, the blood
culture/Gram stains analysis has a lower sensitivity. Only 30% to 60% of the overall positive
result of sensitivity has been estimated despite using it in the proper analytical manner,
standardized procedures and accurate collection of amounts of blood sample [28–31]. These
recommended false-negative results which range from 40% to 70% might be owing to a
scarcity of particular microbial species that flourish in laboratory culture medium, or
distantly similar microbial strains [32,33]. Another reason for the false-negative result is
self-medication and administration of antibiotics to the patients before the sampling for
diagnosis [34]. Thirdly, there is the possibility of false positives due to non-adherence
with the sterile condition during sample processing. As a consequence, patients receive
antibiotics for those bacteria of which they are not infected. This misuse has led to the
prolonged exposure of antibiotics, resulting in allergic reactions, toxicity, development of
MDR, a long stay of patients in hospitals and hence increased medical costs [34–36]. As
a result, certain points should be proposed for laboratory experts, concerned bodies and
other stakeholders to improve the laboratory service by applying and using refined and
emerging technology to classify and assess sensitivity to drugs for various microorganisms.
However, there is a need for more intensive interventional trials to assess the effect of these
technologies on sepsis treatment in clinical practice.

2.2. Biochemical Test

Biochemical tests including the mannitol test, citrate tests, triple sugar iron (TSI)
test, indole test, methyl red test and enzymatic tests such as oxidase tests, urease tests
and coagulase tests are used to distinguish pathogenic organisms that depend on the
various diverging biochemical processes of different bacteria. For the identification of
extracellular and intracellular bacterial enzymes, biochemical tests are used. Hence, they
are distinguished based on biochemical activities [37].

3. Modern Methods for Management of Sepsis

There is a paradigm shift from conventional culture and biochemical-based detection
of pathogens to modern techniques including molecular as well as emerging methods
which rely on detection at the strain level in much less time (20 min to 3 h). System
biology has been thrust into the spotlight in molecular research due to technological ad-
vances and the knowledge provided by the human genome project, which has accelerated
multiple methods that may not only produce an expanded understanding of compli-
cated sepsis pathophysiology but can also articulate undetermined methodologies [38,39].
Reviewed here are the modern advancements in early detection, including inventive high-
throughput approaches.

3.1. Implementing Molecular Detection for the Identification of Pathogens

Molecular detection using PCR depends upon the amplification of the pathogen’s
target nucleic acid region using gene-specific primers or probes. For the identification of
different pathogens, a variety of molecular targets are used [40–43].
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3.1.1. PCR

In 1983, Kary Mullis [44] devised the standard PCR, which allows the detection of a
single bacterial pathogen by identifying a specific target DNA sequence [45]. A sensitive
examination is portrayed here to classify the microorganisms in the entire bloodstream
by the PCR as demonstrated in Figure 2. A particular primer–probe set is intended to
reproducibly detect bacteria of purified DNA from whole blood. This assay framework was
demonstrated to be comprehensive for all strains, equally from all bacteria. This unique
PCR-based test was created to assist amplification from a range of human, bacterial and
yeast genomic DNAs due to its inefficiency. A broad sample preparation methodology
was designed that was applicable for the DNA purification from various bacteria in whole
blood. With the help of this method, it was feasible to distinguish every particular bacterial
DNA from whole blood samples inoculated with a minimum of 4 CFU/mL. Co-purified
human blood DNA did not influence the sensitivity of detection by PCR [46]. PCR can
identify even a single copy of a target DNA sequence under ideal conditions in a given
sample. Therefore, prior multiplication enrichment of the microbe is not needed, all things
considered with basic DNA probe tests. Thus, PCR-based diagnostic tests have made a
significant advanced improvement for infectious agents subsequently [47].

Figure 2. The principle of testing pathogenic DNA by standard PCR in blood samples. Schematic
diagram showing the amplification of a segment of DNA, using PCR where the target gene of bacterial
DNA is synthesized into two new strands of DNA.

The technology has been updated to expand the usage of traditional PCR. The use of
the primers pair in parallel reactions with simultaneous amplification for different target
DNA sequences, known as multiplex-PCR, is the first absolute shift. As a result, several
DNA sequences replicated in the same processor might be amplified [48]. Another change
is nested PCR, which uses two sets of primers with a preferred target for amplification of
an internal DNA sequence. The first reaction is carried out using the first set of primers,
and the results are subsequently subjected to a second amplification with various primer
sets [49].
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3.1.2. Real-Time PCR

Despite several advances, high-throughput science research laboratories can redirect
standard PCR methods, including nested PCR techniques, due to the immense exposure of
excess contamination with amplified products [50]. Traditional PCR procedures rely on
automated detection of fluorescence from PCR amplicons, while real-time PCR systems
are faster, less sensitive to contamination and require less labour [51,52]. Real-time PCR
techniques also allow for infinite and comparable calibration of the desired sequence, which
may help to increase the gap in critical microbial potential [53,54]. In addition, compared
to traditional PCR, real-time PCR has several novel advantages, including simplicity,
quantitative capacity and speed [55].

Fluorescence-based real-time PCR is based on the detection of the fluorescent signal
generated during DNA amplification. After a specific number of cycles, the real-time
assays synthesize a quantity of target DNA. When the amplification of a PCR product
is controlled, it is initially observed during cycling by determining the cycle number at
which the reporter dye’s discharge energy dominates the background noise. As a result, the
threshold cycle is named after this cycle number (Ct). This Ct value is determined during
the PCR exponential phase and is inversely proportional to the target’s copy number. As
a result, the difference in fluorescence signal is observed before the incident when the
beginning of the copy number of the target DNA is higher, and the Ct value is lower [56].

SYBR Green, TaqMan, molecular beacons and scorpions are the four types of fluo-
rescent DNA probes currently available for real-time PCR product detection. All of these
probes emit a fluorescent signal that can be used to detect the PCR products mentioned in
Table 1 [57]. The ability to quantify the process is a key function of RT-PCR [58]. An internal
calibrant is put to each well of the assay plates as a reference in each experiment, and PCR
is used to examine each well for quantification. The peak heights in the mass spectrum
for amplicons determine the proportionate ratios of calibrant to microorganisms [59,60].
The concentration of the pathogen can be thoroughly evaluated using the known initial
concentration of calibrant. Having a significant effect on pathogen detection in diagnostic
microbiology, real-time PCR is primarily focused on the pathogen genotype [61]. The role
of microbes in various human diseases is examined in these essays, which is the most
critical use of real-time technology in microbiology. Due to the strength of complexity
the technology has positively evaluated the various microbes and their nucleic acid tar-
gets present in a single sample, also it has allowed the differentiation of various forms of
microbial genotypes in a single reaction tube [62].

Table 1. Comparison of four different types of fluorescent DNA probes currently used in real-time
PCR for diagnosing polymicrobial infections.

Fluorescent
Molecule

Working
Volume of

the Reaction
Mixture

Cost-
Effective

Sensitivity Specificity
Sample to

Result Time
Detection

Limit
Refs.

SYBR
Green

Intercalates between
the DNA bases to
bind to ds-DNA

molecules.

10–20 μL ��� � � 2–3 h 60 pg DNA [63,64]

TaqMan
Probes

Taq polymerase
performs

5–3 exonuclease
activity during

hybridization of
fluorophore-based

detection, cleaving a
dual-labeled probe

to the
corresponding

target sequence.

5–10 μL � �� ��� 1–2 h 0.3 pg DNA [65,66]
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Table 1. Cont.

Fluorescent
Molecule

Working
Volume of

the Reaction
Mixture

Cost-
Effective

Sensitivity Specificity
Sample to

Result Time
Detection

Limit
Refs.

Molecular
Beacon
Probes

The hairpin ring
formed by the DNA

sequences on the
probes ends is
designed to be

complimentary to
one another. The
intervening loop

portion of the probe
is intended to

complement the
target DNA

sequence of interest.

20–25 μL � �� ��� 5–9 h 3–5 pg DNA [67–69]

Scorpion
Probes

On the 5′ and 3′
sides of the probe,
complementary

stem sequences hold
a distinct probe
sequence in a

hairpin loop shape.
After the primer is
extended during

PCR amplification,
the identical probe

sequence will attach
to its compliment
inside the same
strand of DNA.

20–25 μL � �� ��� 3–5 h 10pg DNA [70–72]

(� More stars suggest more specificity and higher sensitivity).

The significance of RT-PCR in microbial load detection is that these techniques are ex-
tremely useful since they actively reveal the spectrum of increasing infection, host–pathogen
interaction and antimicrobial medication effectiveness. It also enables the administration
of antibiotics promptly. Real-time assays are useful for distinguishing serotypes within a
particular microbial population [73], diagnosing pathogens in clinical samples [74,75] and
bacteria (viruses, bacteria, fungi, protozoa or toxins produced by them that cause diseases)
used as biological warfare agents [76]. Despite these, molecular techniques including PCR
do not provide any information about AMR among pathogens [77].

3.1.3. Surface-Enhanced Raman Spectroscopy (SERS)

Surface-enhanced Raman spectroscopy (SERS) is emerging as an important technology
for the identification which amplifies the Raman dispersing of the objective particles on
a superficial layer of metal made of graphene or other different materials [78–82]. This
technique has the ability to facilitate the label-free nucleic acid identification [83]. Surface
plasmons are generated by applying an excitation frequency that is in phase with the
particle’s plasmon assimilation profile, resulting in a solid electromagnetic field on the
metal surface. The emission of the Raman dispersed light is radiated in every direction of
the particle is gathered through a microscope and consequently identified. In addition, the
Raman dispersed light is then coordinated against a reference profile of microorganisms
to be recognized [84–87]. Consequently, SERS can efficiently recognize the occupancy of
microbial cells on the outer surface, thus yielding a data-rich spectrum that can be used
for microorganism identification [88–94]. In addition to the pathogen identification, SERS
has also been utilized for antibiotic susceptibilities in urosepsis [91]. The primary reason
the SERS procedure has not been set up as a routine scientific strategy is that it does not
withstand its high sensitivity and specificity, which are the significant disadvantage of
SERS, and restricted ability in investigating polymicrobial tests which are because of the
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lower reproducibility of the SERS signal [95]. Thus, SERS combined with different methods
should be incorporated which outlines the wide uses of this incredible method.

3.1.4. MALDI-TOF

Matrix-assisted laser desorption ionization-time of flight mass spectroscopy (MALDI-
TOF-MS) is another newly discovered procedure that is now being used in clinical research
to detect bacterial species. This technique guarantees fast detection of causative bacterial
microorganisms demonstrated to be viable in the positive blood cultures that can rapidly
recognize bacterial development, hence accelerating the general process of the antimicrobial
resistance report [96]. MALDI is a protein identification ionization technique in which the
analyte crystallizes in a strong lattice matrix crystal that absorbs laser light, allowing it
to ionize and desorb from the matrix. The ionized atoms are isolated and dependent on
their mass to charge (m/z) ratio from the entire microscopic organism’s test when it flies
through a vacuum tube produces an m/z profiles of the apparent multitude of proteins in
the sample [97]. Mass spectroscopy has been utilized for the inoculation of different species,
along with the microbial suspension. Because of the low microbial concentration, MS cannot
conduct direct examinations on human blood samples, which is a major disadvantage.
Because of the low reproducibility and changeability in preliminary methodology and
the matrix composition, blood culture is typically needed to improve the microscopic
organisms to a detachable level [98]. Another drawback of MS is its restricted capacity
in arranging various microbes from the polymicrobial samples [99–101] as the spectral
profiles formed by this technique are more complicated, making it difficult to deconvolute
the composite spectra gathered at the same time from different microbial species in the
poly-microbial samples.

3.2. Broad-Spectrum Genomic Detection of AMR

The currently employed technique to detect AMR is time taking (3 to 5 days) and
hampers the clinical management of sepsis results in a poor outcome. This protocol is
discussed herein Figure 3 for some of the methods. With the advent of genome sequenc-
ing, AMR can be detected for both targeted (high resolution melting) and non-targeted
(sequencing) pathogens.

3.2.1. High Resolution Melting Analysis Technology

High resolution melt (HRM) analysis depends on the detection of differences in melt-
ing temperature (Tm) due to the presence of a mutation in a previously amplified target
that produces melt curve profiles specific to pathogens. The size and the sequence of the
PCR amplicon is the major reason on which the melting curve profile depends [102]. It is
so sensitive that even a single point mutation resulting in a Tm shift can be detected [103].
Therefore, it allows molecular detection of resistant genes and hereditary mutations rapidly
with a higher output of post-PCR examination which allows the researchers to identify and
classify the new hereditary mutations and variations along with single nucleotide polymor-
phisms without sequencing (gene scanning) or before sequencing in a population [104].
Several antibiotic resistance marker genes conferring to a bacterium have been usually
detected (Table 2). A study reported real-time PCR-based rapid identification of Escherichia
coli, Staphylococcus aureus, Enterococcus faecalis and Proteus mirabilis using 16S rRNA
gene-specific primers. Furthermore, HRM and machine learning algorithm approaches
were used to determine the antimicrobial susceptibility test within 6.5 h [105].
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Figure 3. Molecular antimicrobial detecting testing assays. The ideas presented here are relevant to
novel antimicrobial testing methods based on nucleic acid amplification. Arrows follow the direction
from a clinical specimen to a diagnostic result. A process for the molecular test (right-sided) has been
demonstrated, which includes quick sample preparation, amplification and amplicon characterization.

Table 2. List of antibiotics classes, resistance marker genes and bacteria used in real-time PCR-HRM.

Antibiotics Class Genes Bacteria Reference

β-lactamases and Cephalosporins
ctxM Klebsiella pneumonia [106]

Tem

K. pneumonia,
Pseudomonas
aeruginosa,
Escherichia coli,
Acinetobacter
baumannii

[106]
[107]
[104]
[108,109]

Shv K. pneumonia [106]

Fluoroquinolones parC Streptococcus sp. [109]
gyrA Streptococcus sp. [109]

Vancomycin
vanA Staphylococcus aureus [110]
vanB Enterococcus faecalis [111]
vanC E. faecalis [111]

Methicillin
mecA S.aureus [112]
mecC S.aureus [113]

3.2.2. Sequencing

In the diagnostic field, the aim of the utilization of genomic rather than gene-based
techniques for both bacterial species detection and AMR detection is growing. There
is a need for more effective and rapid AMR preventive measures driving the shift to
whole-genome sequencing (WGS). Bacterial and AMR gene identification using automated
bioinformatics examination methods are easy to perform after an organism has been iso-
lated by culture [114]. WGS allows all genes involved in resistance to be tracked, allowing
all genomic data of resistant factors to be present in a bacterial cell to be analyzed. Next-
generation sequencing (NGS), which has revolutionized the biological sciences, is another
emerging tool. NGS makes large-scale whole-genome sequencing (WGS) affordable and
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realistic for the average researcher with its super high throughput, versatility and speed. It
also allows scientists to sequence the entire human genome in a single experiment, allowing
them to research biological processes at a level never before possible. Furthermore, in the
age of complex genomic science, which necessitates a deeper understanding of details
outside the boundaries of conventional DNA technology, it has filled the gap and become a
routine research method to resolve those issues [115]. NGS combined with meta-genomic
approaches that essentially include genome sequencing of infectious biological samples
such as blood, urine and lavage without culturing them and provide the diverse profile
of all species including those that are targeted and untargeted present in the sample. This
approach has revolutionized the identification of all including new resistance genes in a
single specimen [116,117]. The sequencing-based metagenomic approach has analyzed
the kinetics of gut microbiota before, during and after antibiotic treatment [118]. Further-
more, with the help of machine learning, it is now possible to predict the recolonization of
micro-biota post-antibiotic treatment, hence will be helpful in individual patient-specific
antibiotic treatment regimens. Expensive and more labour-intensive factors while han-
dling a significant number of samples are the major drawbacks in the wide application
of these genome-based methodologies despite their promising applications in pathogen
detection [119].

3.2.3. DNA Microarray

Microarray innovation has been utilized for longer than 10 years for the identification
of microorganisms which have altogether added to our comprehension of pathogenic
mechanisms, microbe reactions to ecological improvements and host–microorganism as-
sociations with the immediate effect on diagnostic microbiology [120]. Microarrays have
been updated as useful methods for bacterial detection and identification due to their
strong parallelism in screening for the expression of a wide variety of genes after spe-
cific gene amplification by either a broad-range or a multiplex-PCR before microarray
analysis [121] Microarrays employ surface-immobilized DNA and RNA probes to collect
and categorize DNA/RNA of microorganisms via sequence-specific complementary hy-
bridization, decreasing sample and reagent consumption and costs while permitting precise
segregation down to the species or strain level. A study conducted by Ballarini et al. uti-
lized an oligonucleotide-based microarray (BactoChip) for culture-independent detection,
quantification as well as differentiation from 21 different bacterial genera among clinical iso-
lates [122]. Additionally, the Verigene stage from Luminex Corporation can distinguish the
Gram-positive board of nine species of bacteria and three genes of AMR against methicillin
and vancomycin and five species and six AMR genes for carbapenemase and expanded
range beta-lactamases [123–125]. Being independent of culture, microarray-based detection
is rapid, hence gaining importance in clinics in combination with antimicrobial steward-
ship [126,127]. Despite these, not a single microarray platform has been commercialized so
far to effectively recognize all microorganisms in polymicrobial diseases [128].

4. Advanced Methods for Management of Sepsis

Enhancement in the sensitivity and specificity of the current technology with the
correct and rapid data analysis in a short time along with identification of drug susceptibility
to cumbersome resistance is needed within an hour [129].

4.1. Biosensors

Since biosensors have more acknowledged extension for the accurate diagnosis of
sepsis, accordingly, headway in this field has given novel world-view progressed highlights.
The best methodology for the use of this innovation is higher sensitivity for the diagnosis
and identification giving a helping hand to clinicians all over the world to control the
disturbing death rate [130]. Because species–specific probes or antibodies give an electrical
signal after attaching to their targets, and that signal intensity correlates to the target
species total signal, the electrochemical method is the primary criteria on which diagnostic
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biosensors frequently operate towards identification. They do not just distinguish microbes
with an incredible specificity very quickly to hours; however, they also give the data about
drug sensitivity [131]. Most biosensors have the constraints in their degree and insufficient
for the expansive range recognition as their sensitivity might not efficient enough to
distinguish BSI where the pathogenic concentration can be a simple 1–10 CFU/mL in
the blood [132] but they offer a quick strategy for analysis of a particular infection or
microorganisms utilizing just little sample volumes [131]. More research work is required
on biosensors to minimize the expenses and enhance their sensitivity, as the specificity and
pace of current advances are unusual and may be useful in critical situations.

4.2. Point of Care Test

The restricted advancement which has been previously occurred for the improvement
of diagnostics and therapeutics for septicemia is the absence of progress in the immuno
responses from sepsis patients has created a challenging part for the advancement of power-
ful immune therapy along with the proper organization of the anti-infectious agents which
activates the dangerous organ dysfunction. Currently, the treatment technique focuses
on the administration of anti-toxins, fluid resuscitation and vasopressors [133]. Several
studies have shown that early detection of sepsis events and prompt care improves medical
outcomes [134–137]. However, several other studies have also shown that early antibiotic
therapy has less significant effect as compared to the control patient cohort, demonstrating
the disease’s variability and the need for ongoing testing and treatment [138,139]. As a
result, optimal point-of-care sensors allow for the rapid compilation of data related to
a patient’s health status, as well as increased health coverage and enhanced healthcare
service efficiency while lowering healthcare costs [140,141] (Figure 4). Furthermore, it offers
additional pathogen and host–response information practically anywhere with a short
processing period, enabling sepsis treatment in two main streams: first, these devices could
accelerate the process where optimal care is initiated late, enhancing results, and second,
they can quantify multiple entities such as pathogens, plasma proteins and cell-surface
proteins, as described as representative of the host immune response, which, when paired
with complex data analytics, may help stratify sepsis even at the hospital bedside. Such data
could help to expedite the identification of patients who would benefit from the increased
treatment [134]. POCT can also potentially diagnose the assessment of the progression of
several proteins’ biomarkers (IL-6, IL-10, TNF-a, PCT and CRP) to acute sepsis or septic
shock in patients in ICUs, as well as to measure the 28-day risk of all-cause mortality [142]
to help with the antibiotic. However, certain POCT parameters, such as temperature regula-
tion and optical signal readout, also necessitate resource-intensive instruments. So far, the
research community of POCT has not been informed of the crucial need for polymicrobial
infection diagnostics research in this sector, which has been substantially insufficient [143].

Figure 4. Diagrammatic representation of an ideal POC sensor is shown here which gives the critical
information regarding sepsis including both pathogen and host–response information that provides
bimolecular identification of the pathogen and quantification of host–response biomarkers.
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4.3. CRISPR-Cas9

Advances in biology have been fueled by the technology used to create and modify
DNA. The insertion of site-specific changes into the genomes of cells and animals, on the
other hand, is still a mystery [144]. CRISPR-Cas9 is a ground-breaking genetic engineering
tool that has revolutionized the use of biological RNA-programmable CRISPR-Cas9 in
laboratories all over the world [145]. CRISPR/Cas9 is a revolutionary method for editing
genomes that is gradually finding applications in numerous domains of biomedical research,
including sepsis, as a new way to investigate and cure diseases. CRISPR-Cas9 technology
is based on the CRISPR-Cas system, which gives viruses and plasmids in bacteria adaptive
immunity. Cas9 is a CRISPR-associated endonuclease that uses the RNA duplex leader
sequence tracrRNA:crRNA to base pair with a DNA target sequence, allowing Cas9 to
function and induce site-specific double-strand breaks in DNA [146]. The single guide
RNA (sgRNA) is designed from the double tracrRNA:crRNA with two key features, i.e., a
sequence on the fifth side that determines the DNA target site through base pairing, while
a double-stranded RNA structure on the third side connects to Cas9 [147]. Such discovery
results in an uncomplicated two-component approach [148] that uses alterations in the
Cas9 sgRNA program’s leader sequence to target any DNA sequence of interest [149].

The RNA-guided Cas9 in CRISPR/Cas9 technology for targeted genome editing causes
a blunt-ended double-stranded break (DSB) three base pairs upstream of the proto adjacent
motif (PAM) domain. To repair DSBs, nonhomologous end joining (NHEJ)- or homology-
directed repair (HDR)-mediated disruption or mutation of the genome is utilized where
double-strand breaks caused by Cas9 can be repaired in one of two ways. Endogenous
DNA repair machinery processes DSB ends before rejoining them via the error-prone
NHEJ pathway, which may result in random mutations at the junction point. To take
advantage of the HDR pathway, which allows for high fidelity and precise editing, a repair
template, such as a plasmid or single-stranded oligodeoxynucleotide (ssODN), can also
be given [150]. HDR can also be induced by single-stranded DNA nicks. The unique
DNA cleavage mechanism, numerous target recognition capabilities and the presence of
many varieties of the CRISPR-Cas system have permitted tremendous improvements in the
utilization of this inexpensive and simple-to-operate system-using technology. Genomic
loci can be precisely identified, altered, modified, regulated and tagged in a variety of cells
and organisms [151,152].

This breakthrough gene editing approach allows for the simultaneous genetic modifi-
cation of many genes in cells, paving the way for a new class of diagnostics and treatments.
This technique is perhaps applied to alter the genomes of contagious microbes as well
as host cell genes implicated in the pathogenesis of many illnesses, allowing for better
treatment [153]. Furthermore, the potential of the immune system to resist infections can be
strengthened using CRISPR/Cas9 technology. Despite advancements in general healthcare,
the sepsis high death rate and its repercussions remain unacceptably high. The absence of
appropriate therapies is the major cause of this high morbidity and death. Because existing
clinical investigations failed to establish wide combination targets, developing creative and
evolutionary treatment options to enhance clinical outcomes in sepsis is a primary objective
in the prognosis of patients with sepsis [154].

To some extent, sepsis might be considered a hereditary disease, and gene therapy
could be a promising new treatment option. In this review work [155], we present a brief
application of CRISPR/Cas9 gene editing technology in sepsis research. To begin, here are
some guidelines for gene screening: TNF stimulates inflammatory responses while also
causing vascular endothelial cell death in sepsis to protect the host from infection. The
researchers employed a genome-wide CRISPR/Cas9 knockdown screen to look for poten-
tial targets in the TNF signaling system, which controls mild inflammation and apoptosis
during sepsis. The benefit of genome-scale screening using CRISPR/Cas9 in sepsis is clearly
demonstrated in this work [156]. Second, researchers discovered that mitochondrial DNA
(mtDNA) stimulated TLR9 signaling in septic patients, which was probably associated with
early inflammation and associated with higher mortality rate in severely ill patients [24].
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TLR9 signaling may be triggered by mtDNA, resulting in systemic inflammation, which
includes inflammatory mediator overproduction and leukocyte activation [157]. To treat
people infected with mutant mtDNA, CRISPR-Cas9 technology can be utilized to delete
specific sequences of mutated DNA [158]. The Ccl2 gene product regulates the trafficking
of inflammatory monocytes/macrophages, basophils and T lymphocytes in response to
inflammatory signals such as TNF- and IL-1 [159]. They modified mouse iPSCs using
CRISPR/Cas9 and introduced anti-inflammatory chemicals into the Ccl2 gene. According
to the researchers, CRISPR/Cas9 might be used to develop a directed cell-based anticy-
tokine vaccine, which could lead to new pathophysiologic insights and treatments for
inflammatory diseases [160].

The therapy options for this condition are currently limited, and employing CRISPR/Cas9
technology to better understand the molecular pathophysiology of sepsis might aid in the
development of efficient treatment techniques [161]. Despite the fact that CRISPR/Cas9
revolutionized genome editing, it is far from complete and has several limitations [162].
CRISPR is indeed an RNA-based DNA recognition system that uses an RNA-based guide
molecule to detect regions in DNA that have certain molecular features. One of the lim-
itations is that the original Cas9 can only cleave a small portion of the genome if it hits
on a genomic region with three “NGG” nucleotide base pairs (N can be any nucleotide).
Another drawback is that the Cas9 enzyme only cleaves DNA; approximately 2% of the
genome encodes proteins directly from DNA, while the rest, 98%, is the regulatory gene
sequence [163]. CRISPR/Cas9 technology may be the simplest and most successful way to
perform sepsis-related research; however, due to technical instability and targeting gene
constraints, CRISPR/Cas9 research for sepsis therapy requires substantial progress [164].

5. Challenges for a New Improved Method

The significant issues confining the fruitful execution of new strategies are the re-
quirement for considerable information, the time it takes to obtain a result, industrial
competition and the complexity of the evolving improved methods. In addition, since an
experienced individual is needed, these assays can seem difficult to conduct in ordinary
microbiology laboratories [165]. Furthermore, the current situation brings benefit to the
clinical microbiology lab by allowing for the cost-effective transportation of samples to
the lab as well as to the organization of computer-based data results. Nonetheless, the
transition time is lengthened by the distance between the laboratory and the time when a
sample is collected at the bedside from different hospitals. As a result, laboratories should
be prescribed such techniques that prioritize time from sample processing to lab work
schedule to patient care, as well as infection prevention steps, for the rapid diagnosis
of sepsis. Prior sequencing data for the specific target gene of interest is required for
molecular-based approaches. One of the significant drawbacks of molecular processes is
that they can only be used to manipulate the identified genes. As a result, accessing the
unknown sequence of the gene using some other procedure is an undesirable pitfall of
the sequence-based problems that have already been identified [166,167]. When analyzing
the data, it is important to remember that the presence of suspected bacteria or DNAemia
(the detection of circulating pathogenic DNA responsible for a specific disease) does not
always suggest the existence of microbes. Because of the detection of environmental DNA
infecting the blood sample or carryover contamination, it might potentially increase the
chance of false-positive outcomes. DNAemia is an infection-related condition that can be
caused by false septicemia [168,169] or by circulating DNA that persists after many days of
successful anti-infectious therapy [170].

Another significant drawback is that they cannot provide any detail on antimicrobial
resistance or the detection of the pathogens that may be used to diagnose sepsis. Rapidity
in detecting pathogens may allow an excellent and more advanced calibration of this
efficient procedure, resulting in greater commercial savings. However, the major issue
is the shortcoming of a distinct susceptibility spectrum, particularly with the emergence
of multidrug resistant microbes, which could restrict the clinical usage of these assays.
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Therefore, according to the current situation, it is very important to invest less energy on
limited and steady enhancements to existing innovation, yet rather to target for generous
improvements so novel approaches with prevalent execution attributes can be affirmed
and promoted at the earliest opportunity [171].

6. Conclusions and Future Direction

Despite understanding the awareness of the common molecular methods for calibrat-
ing gene expression, it is critical to learn about the various choices available in all facets of
this science. In comparison to traditional PCR, real-time PCR is much more complex and
has a major impact on the final performance. As a consequence, molecular methods can be
one of the most responsive and effective methodologies for studying any gene expression
analysis in a proper outline carried out with the proper controls [172]. The innovations
require enhancements of both pre-analytic and post-analytic updates at the clinical level
bringing the issues focused on AMR to more extensive public consideration is an absolute
necessity. This will require advancing a superior comprehension of antimicrobial use for
reasonable clarifications to the overall population about the drug determination along with
the improvement of multidrug resistance from an overdose of antimicrobial agents [173].

With the introduction of novel advancements such as low-cost, high-capacity liquid-
handling systems and nucleic acid extraction, modern approaches and innovations are
becoming more fundamental and interesting for routine diagnostics. Recent advancements
in technology have made it strong and reliable while making it reasonable to challenge
easy identification and genotyping with fast reactions and the measurement of a single
DNA target following the related quality confirmation programs. There is also a need to
improve and verify the full assessment of any newly designed assay against previously used
standardized assays, as well as the accuracy of specifications with their appropriate curves.
However, recent technology shows that this is a breakthrough that has now arrived [174]. A
few promising new techniques and standards are being created and applied in the clinical
arena, as we have sketched out in this work, and such upgraded processes will aid and
oversee AMR.

In Table 3, we summarize and compare the performance of the technologies in this re-
view in terms of cost, sensitivity, specificity, turnaround time and multiplexing capability of
polymicrobial infection diagnosis. Despite progress in technical and clinical improvements,
many unanswered questions remain in this sector, necessitating collaboration with not
only clinical collaborators, but also regulatory and funding bodies, the diagnostics industry
and public health agencies before new approaches such as healthcare systems, skilled
nursing and public health agencies can be implemented [175]. Furthermore, a range of
advancements will be required to work together, such as the ailments for clinical trials, the
use of biomarkers as a technological breakthrough, and these revolutionary developments
arise as future directions to focus on a new ground-breaking concept to the diagnosis of
sepsis. To keep working on these present diagnostic goals, the prior focus must be on
a single hand that is actionable and robust in a well-planned approach to include these
pathogen identification results for the treatment of patients with verified disease who will
have the desired therapeutic outcomes. As a result, infection to host responses have been
selected as the most interesting new technological technique and a viable alternative to
pathogen-based diagnoses in the assessment of significant progress [176]. Thus, prospective
studies should focus on supervised analysis for correct patient treatment, an integrated
“ideal” approach to the diagnosis of sepsis [177,178], as well as labour preparation in wards
and labs, which are key ingredients for fruitful programs.
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Table 3. Different infectious polymicrobial diseases: a comparison of molecular diagnostic technologies.

Technology Cost-Effective Sensitivity Specificity
Turnaround

Time
Multiplexing

Capability
Refs.

Microbiological
Methods

Blood Culture/Gram
Staining ��� � � ��� � [179]

BactecFx/VITEK 2 �� �� �� ��� �� [180]

Biochemical Methods ��� � � ��� � [181]

Modern Methods
Molecular Methods

Real-Time PCR �� ��� �� ��� �� [182]
SERS �� �� �� �� �� [183]

MALDI-TOF � � �� � � [184]

AMR Detection
Methods

HRM �� �� �� ��� � [185]
Sequencing � ��� ��� � ��� [173]

DNA Microarray � �� �� �� ��� [186]

Advanced Methods
Biosensors � �� �� � ��� [187]

POCT � �� �� � ��� [186,187]
CRISPR/Cas9 � �� �� �� ��� [188]

CRISPR/Cas9

(� More stars suggest more cost effective, less sensitive and specificity, more turnaround time and vice-versa
according to the technology).
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Abstract: According to the World Health Organization (WHO), type 2 diabetes mellitus (T2DM) is a
result of the inefficient use of insulin by the body. More than 95% of people with diabetes have T2DM,
which is largely due to excess weight and physical inactivity. This study proposes an intelligent feature
selection of metabolites related to different stages of diabetes, with the use of genetic algorithms
(GA) and the implementation of support vector machines (SVMs), K-Nearest Neighbors (KNNs) and
Nearest Centroid (NEARCENT) and with a dataset obtained from the Instituto Mexicano del Seguro
Social with the protocol name of the following: “Análisis metabolómico y transcriptómico diferencial
en orina y suero de pacientes pre diabéticos, diabéticos y con nefropatía diabética para identificar
potenciales biomarcadores pronósticos de daño renal” (differential metabolomic and transcriptomic
analyses in the urine and serum of pre-diabetic, diabetic and diabetic nephropathy patients to identify
potential prognostic biomarkers of kidney damage). In order to analyze which machine learning
(ML) model is the most optimal for classifying patients with some stage of T2DM, the novelty of this
work is to provide a genetic algorithm approach that detects significant metabolites in each stage of
progression. More than 100 metabolites were identified as significant between all stages; with the
data analyzed, the average accuracies obtained in each of the five most-accurate implementations of
genetic algorithms were in the range of 0.8214–0.9893 with respect to average accuracy, providing a
precise tool to use in detections and backing up a diagnosis constructed entirely with metabolomics.
By providing five potential biomarkers for progression, these extremely significant metabolites are
as follows: “Cer(d18:1/24:1) i2”, “PC(20:3-OH/P-18:1)”, “Ganoderic acid C2”, “TG(16:0/17:1/18:1)”
and “GPEtn(18:0/20:4)”.

Keywords: genetic algorithm; machine learning; metabolites; type 2 diabetes

1. Introduction

Diabetes is a chronic and progressive disease that occurs in the pancreas when it is
no longer able to make a hormone known as insulin or when the body is unable to use it
properly [1]. Adults numbering 537 million (20–79 years) currently live with diabetes in
the world, and over 6.7 million deaths in 2021 are reported (approximately one death every
5 s) [2]. Type 2 diabetes mellitus (T2DM) is a progressive condition that is produced by rela-
tive insulin deficiencies caused by pancreatic β-cell (cells that synthesize and secrete insulin
and amylin) dysfunction and insulin resistance [3]. The International Diabetes Federation
(IDF) presented in 2021 that 541 million people in adulthood present a higher risk of devel-
oping T2DM [4]. As T2DM progresses, the comorbidities associated with hyperglycemia
that induces renal damage directly or via hemodynamic modifications appear, which cause
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diabetic nephropathy or kidney disease (DN), and these are one of the most common
problems developing in 30 to 40% of patients [5]. In recent years, metabolomics has been
used as a novel approach for biomarker discovery and, in conjunction with genomics,
can potentially provide a systemic understanding of the underlying causes of pathology,
highlighting the importance of metabolomic approaches in the clinical sciences and helping
provide guidance in clinical interventions. Metabolomics are a powerful and potentially
high-throughput approach for biomarkers that can help provide molecular knowledge,
identify therapeutic targets and improve the prevention of T2DM and its progression [6].
For a quicker adaptation of biomarker discoveries, portable and wearable technologies
are aided by clever data mining, as well as deep learning and artificial intelligence inclu-
sion [7]. Since individuals with decreased functional β-cell mass are at risk of developing
T2DM, these individuals must be identified for prevention, but since in vivo detection re-
mains unsuccessful, the use of metabolomics provides readouts of the states of this disease
before symptoms appear. Gastrointestinal problems associated with metabolomics and
diabetes [8], as well as other comorbidities, can be addressed by identifying novel plasma
biomarkers for a loss of functional β-cell mass in the asymptomatic prediabetes stage as
a solution to this problem, with non-targeted and targeted metabolomics. In this study
performed on mice, Lingzi L. et al. [9] identified 1,5-anhydroglucitol as being associated
with the loss of functional β-cell mass and uncovered metabolic similarities between the
liver and plasma, providing insights into the systemic effects caused by early declines in
β-cells; this deoxyhexose reflects the progressive decline of functional β-cell mass at the
asymptomatic prediabetic stage. These findings stated a baseline to be applied in human
cohorts so that they can be validated.

Another way to understand the metabolic function in the organs and the development
and progression of T2DM is to match two-dimensional metabolic screening in tissue sam-
ples from key metabolic tissues such as serum, visceral adipose tissue, liver, pancreatic
islets or skeletal muscle of individuals in different states of T2DM. In this way, carnitines
are significantly higher in livers, while lysophosphatidylcholines were significantly lower
in the muscle and serum of diabetes subjects. Other findings showed that lysophosphatidyl-
cholines are significantly lower in the muscle and the serum of pre-diabetes subjects, and
glycodeoxycholic acid was significantly higher in livers [10].

On the other hand, metabolites analyses are potent approaches for unraveling the rela-
tions between them and the progression or conditions of a particular disease, and a relation
between conditions such as obesity and the progression of diabetes can be determined by
major variations in lipid-related metabolites [11]. As there are more than 200,000 different
metabolites in the human body, as shown in the human metabolome database 5.0 or HMDB
5.0 [12], data analyses by conventional methods prove to be inefficient and costly. The ML
techniques provide a solution for this volume of data by detecting patterns and providing
predictions. In order to stage novel results or predictions that are of high quality and usabil-
ity, the data must be clearly supported by experts in the field and extracted by professional
or scientific methods. The dataset also must be presented with the correct protocols for its
liberation relative to the experiment or analyses that it was created for.

Peddinti G. et al. [13] implemented ML models based on entire metabolome datasets,
and with a combination of glucose, mannose and α-hydroxybutyrate (known biomark-
ers commonly used as clinical risk factors) introduce predictive biomarkers, such as
α-tocopherol, bradykinin hydroxyproline, X-12063 and X-13435, which are other metabo-
lites that showed potential value in making precise predictions on the progression to type 2
diabetes. Moreover, Huang J. et al. [14] proposed a case of potential biomarkers in CKD
prediction, and this case involved sphingomyelin C18:1 and phosphatidylcholine diacyl
C38:0, which are identified specifically in hyperglycemic individuals.

Metabolites inclusion as part of the ML models brings new possibilities, making
detection more robust and accurate. Another biomarker as a lone candidate on non-
targeted urinary metabolomics is urine metabolome 3-hydroxy decanoyl-carnitine, which
can be used for the identification of individuals with T2DM risks [15]. DN pathogenesis

245



Diagnostics 2022, 12, 2803

can be diagnosticated early with non-invasive biomarkers such as the base urea cycle, TCA
cycle, glycolysis and amino acid metabolism, which includes lactic acid, hippuric acid,
allantoin (in urine) and glutamine (in blood) (the latter are suggested as meta-analyses [16]).
Valine (or betaine) and 3-(4-methyl-3-pentenyl)thiophene were associated with higher
hazards with respect to end-stage kidney diseases [17]. The prognostic biomarkers given by
metabolomics have the potential to uncover mechanisms in DN progression. Recent studies
present potential target antigens in membranous nephropathy, with a signature of urinary
peptides; this adds prognostic information to urinary albumin and implicates circulating
inflammatory proteins as potential mediators of DN, demonstrating the importance of
kidney bioenergetics as a modifiable factor in acute kidney injury [18].

ML has been widely used in the medical context using clinical data to detect patterns
and/or predict different diseases, solving classification problems: using extreme learning
machines on malaria parasite detection and classification [19]; using deep learning and
image processing in diabetic retinopathy [20]; using Internet of Things (IoT) to provide an
intelligent forensic analysis [21]; using FastAI and 1-Cycle Policy in breast cancer metastasis
prediction [22]; using various multimodal models such as decision tree, logistic regression
or random forest, among others, in Alzheimer’s disease progression detection [23]. The ML
implementations provide information for the analyst, which can be used to perform a pre-
diagnosis if the patient has a particular disease or in identifying significant features; these
results as the forms of predictions or classifiers can be ratified by a medical professional,
and the professional can give approval to validate or discard this pre-diagnosis.

Most of the studies presented in this work propose diverse techniques to find a relation
between control subjects and prediabetes: T2DM or DN. The ones that propose an ML
model use metabolomics as a complement for classification; however, there are few studies
that entirely use metabolomic data as features for the classification of a disease or provide
tools to predict progression. Additional studies are required to replicate and expand upon
these findings in independent cohorts, such as this one.

The proposal in this study is to provide a tool for the classification and analysis of
the role of metabolomics in four different stages of T2DM. The novelty of this work is to
present a genetic algorithm approach that selects the most significant metabolites in each
stage of T2DM progression and not an individual classification of a particular stage, as
other related work proposed.

The KNN, nearest centroid and support vector machines implemented as proposed
ML models inside a genetic algorithm focus on analyzing 80 patients in five different
sub-datasets: Control-Prediabetes, Control-T2DM, Prediabetes-T2DM, Control-DN and
T2DM-DN. The dataset for this study was acquired from the “Unidad de Investigación
Médica Biomédica by the Unidad de Investigación Biomédica located in Zacatecas, México,
IMSS” with information on Mexican patients. The database contains anthropometric,
clinical, laboratory and metabolomic data on Mexican patients.

This work is divided into five sections. The first is this Introduction. Section 2 describes
the data, models and the methodology used to carry out the development of the ensemble
model and how it is validated. Section 3 shows the results obtained and a detailed analysis
is included using output graphs. Finally, Section 4 shows the discussions, and in Section 5
conclusions and future work.

2. Materials and Methods

The methodology of this study consists of six stages, as shown in Figure 1 and ex-
plained as follows: The first stage describes the dataset used (Figure 1A). In the second stage,
a preliminary analysis of the data was performed by selecting subjects according to given
inclusion criteria (Figure 1B). Subsequently, the data from the dataset were separated into
three groups: Control-Prediabetes, Control-Diabetes and Control-DN (Figure 1C). In the
fourth stage, feature selection using a genetic algorithm is implemented (Figure 1D). In the
fifth stage, machine learning models (support vector machines, k-nearest neighbor and
nearest centroid) were developed using the main features of the previous stage (Figure 1E).
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Finally, the models were validated by taking into consideration different metrics (accuracy,
sensitivity, specificity and AUC) to determine the performance of our models (Figure 1F).

Figure 1. Flowchart of the proposed methodology. The blue squares refer to the data analysis
methodology, while the white squares detail the task involved in each step. (A) The metabolomics
dataset is obtained from the Unidad de Investigación Médica Biomedica. (B) The dataset is analyzed
and new datasets are created by selecting subjects according to the criteria described in Table 1. (C) The
data are normalized by probabilistic quotient normalization (PQN) and the dataset’s observations
are analyzed and separated in three groups: Control-Prediabetes, Control-Diabetes and Control-DN.
(D) The use of genetic algorithms is implemented to extract the main data features. (E) Using the main
features for prediabetes, diabetes and diabetic nephropathy detection in patients, several models are
generated using support vector machines, k-nearest neighbor and nearest centroid. (F) The validation
of our results is carried out using different metrics (cross-validation by GALGO and average accuracy)
to determine which of the models has the best performance.

Table 1. Inclusion criteria.

Inclusion Criteria

1. The age of the patients must be over 18 years
2. There will be no distinction in gender, education, ethnicity, race and marital status.
3. The datasets should contain only the metabolomics of each subject.
4. The dataset should distinguish controls from prediabetes, T2DM and DN.
5. The data of each feature in each subject must be complete.

2.1. Sample

The methodology implemented in order to obtain data of each of the 80 patients and
717 metabolomic data is presented in the following subsections: Sample Preparation; Qual-
ity Control (QC) and Quality Assurance (QA); Ultra-performance Liquid Chromatography
(UPLC)—Mass Spectrometry Method for Lipid Separation and Data processing.

2.1.1. Sample Preparation

Thawed plasma measuring 100 μL in ice was extracted with 300 μL of precooled
isopropanol (LCMS grade, Honeywell, Charlotte, NC, USA), vortexed for 1 min and in-
cubated at −20 °C for 1 h for protein precipitation. Subsequently, the extraction mixture
was centrifuged at 15,800× g for 15 min, and supernatants were collected. For the anal-
ysis, each aliquot was transferred into LC vials and diluted to 1:20 with a mixture of
isopropanol/acetonitrile/water (2:1:1, v:v:v). Sample preparation and analysis orders were
randomized to ensure no systematic bias was present.

2.1.2. Quality Control (QC) and Quality Assurance (QA)

The instrument was subjected to maintenance in the chromatography system: the mass
analyzer. The sample cone and ion sources were cleaned before the analysis. Calibration
and manual tuning were also performed before running samples. A pool of human plasma
from every sample in the study served as a technical replica for the entire experiment for
QC. The overall variability was established by determining the relative standard deviation
(RSD) for all endogenous metabolites present in 100% in the QC process. Experimental
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samples were randomized across the platform and run with ten QC samples at the start
(column equilibration), and one QC sample was acquired for every ten samples.

2.1.3. Ultra-Performance Liquid Chromatography (UPLC)—Mass Spectrometry Method
for Lipid Separation

The analysis was performed using an ACQUITY UPLC I-Class (Waters Corp., Milford,
MA, USA) coupled to an XEVO-G2 XS quadrupole time-of-flight (ToF) mass spectrome-
ter (Waters, Manchester, NH, USA) with an electrospray ionization source. The samples
were analyzed in the positive mode (electrospray ionization). A UPLC CSH C18 col-
umn (2.1 × 100 mm, 1.7 μm) with a binary gradient elution of solvents was utilized, as
represented in Table 2.

Table 2. Chromatography conditions.

Time (min) %A %B Curve

Initial 60 40 Initial
2 57 43 6

2.1 50 50 1
12 46 54 6

12.1 30 70 1
18 1 99 6

18.1 60 40 6
20 60 40 1

Column temperature 55 °C

The injection volume was five microliters. Data were acquired using positive electro-
spray ionization modes with the capillary voltage set to 3.2 kV, the cone voltage to 40 eV
and the source temperature to 120 °C. The desolvation gas was nitrogen, with a flow rate
of 900 L/h and source temperature of 550 °C. Data were acquired from a range of m/z
50–1200 in the MSE mode in which the collision energy alternated between low energy
(6 eV) and high energy (ramped from 10 to 40 eV).

2.1.4. Data Processing

Raw data were processed under default settings as a Unifi Export Package (.uep),
which was processed in Progenesis QI (version 2.3, Waters, Milford, MA, USA). Alignment
was performed using a retention time range within 0.5–14 min to avoid interference with
blank peaks. A peak width of 0.06 s was used. Deconvolution was automatically performed,
considering M + H, M + Na and M + NH4 as adducts; manual inspection was performed
after, eliminating features with incorrect alignments in chromatograms and neutral masses.
An excel file was exported and a signal-to-noise ration was calculated for each sample
based on the blank features, and all features with a signal-to-noise ratio (S/N) < 3 in 80%
of samples were eliminated. In addition, RSD was calculated by taking QC features as
medians, and RSD values > 20% were additionally removed.

2.1.5. Metabolite Identification

Putative annotations were assigned based on accurate mass and fragmentation pat-
terns. Metabolite annotations were determined using the metascope plugin in Progenesis
QI, mass measurements were taken with less than 10 ppm in error and fragmentation
spectrum matching (when MSMS data were available) was conducted using the HMDB
5.0 [12], LipidMaps [24] and METLIN [25] databases. The top metabolite annotation was
selected when the progenesis metascope score was >30.

2.2. IMSS Dataset

The dataset used in this study was provided by the Unidad de Investigación Biomed-
ica located in Zacatecas, Mexico, which is incorporated into the IMSS. All Mexican pa-
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tients signed an informed consent letter, and the data included in the IMSS dataset meet
the R-2017-785-131 dictum approval according to the protocol “Análisis metabolómico y
transcriptómico diferencial en orina y suero de pacientes prediabéticos, diabéticos y con
nefropatía diabética para identificar potenciales biomarcadores pronósticos de daño renal”
(differential metabolomic and transcriptomic analysis in the urine and serum of prediabetic,
diabetic and diabetic nephropathy patients to identify potential prognostic biomarkers of
renal impairment), which complies with the criteria approved by the National Committee
for Scientific Research and Ethics and follows the international ethical standards of the
Helsinki convention for research studies in humans. The IMSS dataset has information
on metabolomic, anthropometric, clinical and laboratory tests. These assessments can be
combined to measure the progression of prediabetes, diabetes and diabetic nephropathy.

2.3. Data Inclusion

The IMSS dataset includes 375 patients and 842 features. From this dataset, a filter
was applied to select only patients and features that met the inclusion criteria indicated
in Table 1. The resulting filtered dataset (FDS), after applying the inclusion criteria listed
in Table 1, contains information corresponding to 80 patients (42 female/38 male), such
as age (52.34 ± 10.45), metabolomics and diagnosis (20 patients positive for prediabetes,
20 patients positive for T2DM, 20 patients positive for DN and 20 control patients).

2.4. Data Normalization

The normalization implemented in this study is probabilistic quotient normalization
(PQN) and is conducted as follows: For each function, the output mean is calculated over
all samples. Then, a reference vector is generated. The median between the resulting
reference vector and each sample is calculated, obtaining a vector of related coefficients.
Then, each sample is divided by the mean value of the vector of coefficients; this mean
value is different for each sample. The purpose of PQN is to account for concentration
changes of some metabolite characteristics that affect limited regions of the data. The PQN
approach assumes that changes in the concentrations of individual analytes influence
only parts of the spectra, while changes in the overall concentration of a sample influence
the entire spectrum. In contrast to integral normalization, which assumes that the total
integral, covering all signals, is a function of dilution only, PQN instead assumes that the
intensity of most signals is a function of dilution only. Therefore, a most likely quotient
between the signals of the corresponding spectrum and a reference spectrum is calculated
as a normalization factor, which replaces the total integral as a marker of the sample’s
concentration. This most likely quotient for a specific spectrum can be derived from
the distribution of signals from a spectrum divided by the corresponding signal from a
reference spectrum [26]:

I(i) =
Iold(i)

∑k(
∫ juk

jlk
(I(x))ndx)

1
n

(1)

where Iold(i) and I(i) are the intensities of variable i, which is the spectral feature, wave-
length, bin and chemical shift. Before and after normalization, k is an index of the spectral
regions used for normalization, jl

k and ju
k are the lower and upper borders, respectively, of

spectral region k, for which the power n of intensities I(x) is integrated [26].

2.5. Feature Selection

The dataset used to perform this study has 717 different metabolites, and each has a
potential significance to become a biomarker or part of it to solve a classification problem;
nevertheless, this task could become computationally expensive and complex to process.
With genetic algorithms, this complex task can be performed and solved. GALGO [27] is a
GA implemented in this study as the R package software used to perform feature selections
in 5 sets of this article (Control-Prediabetes, Control-T2DM, Prediabetes-T2DM, Control-
DN and T2DM-DN). For this study, GA creates an initial population of chromosomes
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comprising random sets of metabolites. The fitness of the chromosomes is evaluated
by comparing their ability to correctly detect each stage in the progression of T2DM
(control → prediabetes → T2DM → DN).

Depending on the obtained fitness score, the chromosome population continues to
be replicated and the chromosomes crossover and mutate, as the fittest chromosomes will
produce next-generation offspring. The process only stops when it meets the goal criteria
(in this study, it is set at 1) or when the bigbangs (iterations) reach the limit proposed
(3 times the number of metabolites in this case rounded to 2300 in all GALGO imple-
mentations). The GA blast (the implementation of the GALGO model) output is then
submitted to a forward selection process to obtain the model that performed best (could be
one or more); then, this model or set of features is ready for utilization in an ML model.
Forward selection is widely used in genetic algorithms as a complement to presenting the
best possible model output of GALGO implementations, such as the following example:
Alzheimer’s [28], COVID-19 [29] or diabetic retinopathy [30].

GALGO allows the use of different model criteria or parameters. In this study, the
k-nearest neighbors (KNN), nearest centroid (NEARCENT) and support vector machines
(SVM) were configured, as shown in Table 3.

Table 3. GALGO parameters.

Model Parameter Value

KNN

classification.method
chromosomeSize
maxSolutions
maxGenerations
goalFitness

knn
5
2100
200
1

Nearest Centroid

classification.method
chromosomeSize
maxSolutions
maxGenerations
goalFitness

nearcent
5
2100
200
1

SVM

classification.method
svm.kernel
chromosomeSize
maxSolutions
maxGenerations
goalFitness

svm
radial
5
2100
200
1

2.6. Model Development

Once the main features from different partitioned datasets, described in Section 2.5,
have been selected, the ML models are developed. This process is used to ensure that the
training and testing results are as accurate as possible, avoiding overfitting or underfitting;
the models will be paired with the ones used in GALGO implementations. In this way, the
selection will be consistent with the results of the ML implementations, as is presented in
Table 4.

2.7. K-Nearest Neighbors

KNN is one of the most fundamental classification methods and is widely used when
there is little to no prior knowledge about the distribution of the data. In this study, as there
is no certainty about the classification prior to the implementation (only a clear separation
of the stages of the T2DM progression), a KNN implementation can provide a clear path to
validate this separation and to obtain a discriminant analysis of the data [31]. The Euclidean
distance between a test sample and the specified training samples is commonly defined
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by this model. The Euclidean distance between sample xi and xl (l = 1, 2, . . . , n) is defined
as follows:

d(xi, xl) =
√
(xi1xl1)2 + (xi2xl2)2 + · · ·+ (xipxlp)2, (2)

where xi is an input sample with p features (xi1, xi2, . . . , xip), n is the total number of input
samples (i = 1, 2, . . . , n) and p is the total number of features (j = 1, 2, . . . , p).

Table 4. GALGO models—ML models.

Sub-Dataset GALGO Model ML Model

knn K-Nearest Neighbours
Control-Prediabetes nearcent Nearest Centroid

svm Support Vector Machines
knn K-Nearest Neighbours

Control-T2DM nearcent Nearest Centroid
svm Support Vector Machines
knn K-Nearest Neighbours

Prediabetes-T2DM nearcent Nearest Centroid
svm Support Vector Machines

knn K-Nearest Neighbours
Control-DN nearcent Nearest Centroid

svm Support Vector Machines

knn K-Nearest Neighbours
T2DM-DN nearcent Nearest Centroid

svm Support Vector Machines

2.8. Nearest Centroid

The nearest centroid is one of the simplest classifiers; nevertheless, it is capable
of classifying data without any feature selection (for example, raw mass spectra [32]).
In addition, it is extremely fast and requires low computational power, provides a baseline
for the evaluation of feature selection algorithms and allows testing a number of algorithms
that were previously inapplicable. NEARCENT and KNN provide similar approaches
when there is limited knowledge on the distribution. In this study, they provide validations
for the classifications results relative to one another.

�μ� =
1

|C�| ∑
i∈C�

xi (3)

Given the labeled training samples (�x1, y1), . . .,(�xn, yn) with class labels yi ∈ Y, the
per-class centroids �μ� =

1
|C� |∑i∈C�

�xi are computed, where C� is the set of the indices of
samples belonging to class � ∈ Y.

2.9. Support Vector Machines

SVM is included as it is robust and precise for solving binary classification ML prob-
lems. This model uses the theory of Structural Risk Minimization to maximize its prediction
accuracy and procures avoiding data overfitting [33]. This model can use a wide variety
of standard or custom kernels. The radial kernel support vector machine model used in
this study fits the closest observations into the new observation, grouping them (similar
processes as KNN) based on how much they influence the output of the set classifier for
multiple hyperplanes. This kernel has been proven to be one of the most accurate kernals
for solving nonlinear separation problems [34].

The radial basis function kernel is defined as follows:

K(x, x′) = e
−||x−x′ ||2

2σ2 , (4)
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where x and x′ are original observations and new observations, respectively [35].

2.10. Implementation

All models and methodology were implemented in R, which is a well-known open-
source software validated by the scientific community, as well as the following packages:

• Genetic algorithms were implemented using “galgo 1.4” [27].
• For support vector machines, “caret” was used [36].

3. Results

The methodology proposed in Figure 1, presents the process followed in this study
in six steps: data acquisition, subject selection, data pre-processing, feature selection,
classification and validation. A description of the methodology to obtain the sample
(Section 2.1) included the following: Sample Preparation (Section 2.1.1); Quality Control
(QC) and Quality Assurance (QA) (Section 2.1.2); Ultra-performance Liquid Chromatog-
raphy (UPLC)—Mass Spectrometry 158 Method for Lipidomic Analysis (Section 2.1.3);
data processing (Section 2.1.4); and metabolite identification (Section 2.1.5). The data
normalization process is presented in Section 2.4.

The obtained dataset is described in Section 2.2 with the inclusion criteria presented
in Table 1. Data inclusion is provided in Section 2.3. After the data inclusion process,
the feature selection process begins with the implementation of genetic algorithms in
Section 2.5, and 15 runs were required to obtain each combination of the stages, as shown
in Table 3. Each set of features obtained in the genetic algorithms integrates a model
(Section 2.6), as presented in Table 4. The models are as follows: KNN (Section 2.7),
NEARCENT (Section 2.8) and SVM (Section 2.9). Lastly, the implementation in R is pre-
sented in Section 2.10.

3.1. Galgo Results

The 15 runs of GALGO, with different datasets combining the samples and comparing
them, provided an average accuracy, as presented in Table 5, and a group of features are
presented in the next sections.

Table 5. GALGO models—Average Accuracy.

Sub-Dataset GALGO Model ML Model Average Accuracy

knn K-Nearest Neighbours 0.8143
Control-Prediabetes nearcent Nearest Centroid 0.8321

svm
Support Vector
Machines

0.8464

knn K-Nearest Neighbours 0.9268
Control-T2DM nearcent Nearest Centroid 0.9286

svm Support Vector
Machines 0.9036

knn K-Nearest Neighbours 0.7821
Prediabetes-T2DM nearcent Nearest Centroid 0.7982

svm
Support Vector
Machines

0.8214

knn K-Nearest Neighbours 0.9893
Control-DN nearcent Nearest Centroid 0.9714

svm Support Vector
Machines 0.9857

knn K-Nearest Neighbours 0.9054
T2DM-DN nearcent Nearest Centroid 0.9125

svm Support Vector
Machines 0.8804

Bold text represent the model with the highest Average accuracy in each sub-dataset
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3.1.1. GALGO Implementation with the Control-Prediabetes Dataset

The features obtained by GALGO with the SVM classification model and the forward
selection best model, in this case model 1, are presented in Table 6 and in Figure 2, with an
average accuracy of 0.8464, as shown in Table 5. Derived from low-quantity data against
the large quantity of features included in the model, these results prove that the resultant
metabolites included are extremely significant, as is presented in the gene rank’s stability
(Figure 3) and fitness (Figure 4).

Figure 2. Models using forward selection methodology, with the Control-Prediabetes dataset. The
solid black line represents the most compact and accurate model. The vertical axis shows the classifi-
cation’s accuracy. The horizontal axis represents the ordered features, each of which corresponds to a
number and a specific feature.
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Figure 3. Gene frequency and gene rank stability in the models are ascertained by applying GA
with SVM to select the main features from the Control-Prediabetes dataset. (A) The gene frequency
allows observing the number of times each feature appears in the models. (B) The gene rank allows
observing the stability and frequency of each feature within the models and orders them by rank.

Figure 4. Evolution of maximum fitness scores over generations, using the Control-Prediabetes
dataset. The vertical axis represents the fitness score, while the horizontal axis represents a given gen-
eration. The solid blue line represents the average fitness across all models. The average unfinished
fitness plotted as a solid cyan line represents the average worst case expectation for all failed searches
in a given generation. The red dotted line shows the established GA fitness goal.

Table 6. Features obtained by the GALGO SVM method in the Control-Prediabetes dataset.

Result Features

“GPCho(20:2/18:1)”, “Cer(d18:1/24:1) i2”, “PA(i-19:0/20:3-2OH)”, “PC(20:3-OH/P-18:1)”,
“TG(17:1/17:2/22:5)”

All features in this table were obtained with GALGO with an SVM method implementation, with 2100 bigbangs
and 200 generations.

3.1.2. GALGO Implementation with the Control-T2DM Dataset

The features obtained by GALGO with the NEARCENT classification method and the
forward selection best model, in this case model 1, are presented in Table 7 and in Figure 5,
with an average accuracy of 0.9286 (as shown in Table 5). Derived from low-quantity data
against the large quantity of features included in the model, these results prove that the
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resultant metabolites included are extremely significant, as presented in the gene rank’s
stability (Figure 6) and in fitness (Figure 7).

Figure 5. Models using the forward selection methodology, with the Control-T2DM dataset. The solid
black line represents the most compact and accurate models. The vertical axis shows the classification
accuracy. The horizontal axis represents the ordered features, each of which corresponds to a number.

Table 7. Features obtained by GALGO NEARCENT method in the Control-T2DM dataset.

Result Features

“Androst-16-ene”, “Ganoderic acid C2”, “Cer(d18:2/20:4-3OH)”, “SM(d18:1/24:1) i2”, “(Z)-11-Hexadecenal”
All features in this table were obtained with GALGO with a NEARCENT method implementation with
2100 bigbangs and 200 generations.
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Figure 6. Gene frequency and gene rank stability in the models are ascertained by applying GA with
NEARCENT to select the main features from the Control-T2DM dataset. (A) Gene frequency allows
observing the number of times each feature appears in the models. (B) Gene rank allows observing
the stability and frequency of each feature within the models and orders them by rank.

Figure 7. Evolution of maximum fitness scores over generations, using the Control-T2DM dataset.
The vertical axis represents the fitness score, while the horizontal axis represents a given generation.
The solid blue line represents the average fitness across all models. The average unfinished fitness is
plotted as a solid cyan line and represents the average worst case expectation for all failed searches in
a given generation. The red dotted line shows the established GA goal fitness.

3.1.3. GALGO Implementation with the Prediabetes-T2DM Dataset

The features obtained by GALGO with the SVM classification method and the forward
selection best model, in this case model 4, are presented in Table 8 and in Figure 8, with an
average accuracy of 0.8214, as shown in Table 5. Derived from low-quantity data against
the large quantity of features included in the model, these results prove that the resultant
metabolites included are extremely significant, as presented in the gene rank’s stability
(Figure 9) and fitness (Figure 10).

3.1.4. GALGO Implementation with the Control-DN Dataset

The features obtained by GALGO with the KNN classification method and the forward
selection best model, in this case model 6, are presented in Table 9 and in Figure 11 with an
average accuracy of 0.9893, as shown in Table 5. Derived from low-quantity data against
the large quantity of features included in the model, these results prove that the resultant
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metabolites included are extremely significant, as presented in the gene rank’s stability
(Figure 12) and fitness (Figure 13).

Figure 8. Models using forward selection methodology, with the Prediabetes-T2DM dataset. The solid
black line represents the most compact and accurate model. The vertical axis shows the classification
accuracy. The horizontal axis represents ordered features, each of which corresponds to a number.

Table 8. Features obtained by the GALGO SVM method in the Prediabetes-T2DM dataset.

Result Features

“lysine phosphoester”, “PC(18:1-O/20:1)”, “CE(20:4-2OH)”, “SM(d17:1/18:0)”, “Androst-16-ene”, “Ganoderic
acid C2”, “12-Methylheptadecanoylcarnitine”, “Glufosinate”, “PE-NMe(22:0/18:1)”,

“5alpha-Androsta-16-ene-3-ol”, “PC(PGJ2/DiMe)”, “PC(P-16:0/20:4-3OH)”, “SM(d18:0/18:1)”,
“MGDG(26:0/22:4)”, “Isobehenic acid”, “(Melle-4)cyclosporin”, “DG(a-17:0/0:0/8:0) i2”, “DG(18:3/18:1/0:0)”,

“GPCho(22:5/18:0)”, “SM(d18:1/18:1)”, “TG(16:0/17:1/18:1)”, “MGDG(24:1/18:1)”, “PE(15:0/18:4)”,
“GPCho(16:1/16:1)”, “GPCho(24:1/22:6)”, “4-Hydroperoxycyclophosphamide”, “PC(22:6-2OH/24:0) i2”,

“GPCho(24:4/20:5)”
All features in this table were obtained with GALGO with an SVM method implementation with 2100 bigbangs
and 200 generations.
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Figure 9. Gene frequency and gene rank stability in the models are ascertained by applying GA with
SVM to select the main features from the Prediabetes-T2DM dataset. (A) Gene frequency allows
observing the number of times each feature appears in the models. (B) Gene rank allows observing
the stability and frequency of each feature within the models and orders them by rank.

Figure 10. Evolution of maximum fitness scores over generations, using the Prediabetes-T2DM
dataset. The vertical axis represents the fitness score, while the horizontal axis represents a given gen-
eration. The solid blue line represents the average fitness across all models. The average unfinished
fitness plotted as a solid cyan line represents the average worst case expectation for all failed searches
in a given generation. The red dotted line shows the established GA goal fitness.

Table 9. Features obtained by the GALGO KNN method in the Control-DN dataset.

Result Features

“5beta-Cholestanone”, “GPSer(18:1/11:0)”, “GPEtn(18:0/20:4)”, “TG(16:0/17:1/18:1)”,
“1,1-Dimethylbiguanide”, “5-Pentahydroxy-5-cucurbiten-11-one 3-[glucosyl-(1->6)-glucoside]”,

“PG(PGF1alpha/i-16:0)”, “TG(16:0/18:1/18:1)”, “DG(i-18:0/22:6-OH/0:0)”, “Butyl methacrylate”,
“DG(20:4/16:0/0:0)”, “Androst-16-ene”, “Threonyltyrosine”, “DG(a-25:0/0:0/a-13:0)”, “GPCho(20:2/18:0)”,

“Cholest-8-en-3-ol”, “Cer(d18:1/24:1) i2”, “9-Decenoylcarnitine”, “PA(22:1/17:0)”, “PE(TXB2/DiMe)”,
“(2Z,4E,6Z)-Decatrienoylcarnitine”, “delta-24-Cholesterol”,

“3-methoxy-4-hydroxy-5-all-trans-hexaprenylbenzoate”, “N-Methylethanolaminium phosphate”
All features in this table were obtained with GALGO with a KNN method implementation with 2100 bigbangs
and 200 generations.
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Figure 11. Models using forward selection methodology, with the Control-DN dataset. The solid
black line represents the most compact and accurate models. The vertical axis shows the classification
accuracy. The horizontal axis represents the ordered features, each of which corresponds to a number.

3.1.5. GALGO Implementation with the T2DM-DN Dataset

The features obtained by GALGO with the NEARCENT classification method and
the forward selection best model, in this case model 5, are presented in Table 10 and in
Figure 14, with an average accuracy of 0.9125, as shown in Table 5. Derived from low-
quantity data against the large quantity of features included in the model, these results
prove that the resultant metabolites included are extremely significant, as presented in the
gene rank’s stability (Figure 15 and fitness (Figure 16).

Comparing Tables 11–15, the metabolite addressed as “Cer(d18:1/24:1) i2” was found
in three out of five stages of T2DM, Control-Prediabetes, Control-ND and T2DM-ND.
The metabolite “PC(20:3-OH/P-18:1)” was found in Control-Prediabetes and Prediabetes-
T2DM. The metabolite “Ganoderic acid C2” was found in Control-T2DM and Prediabetes-
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T2DM. The metabolites “TG(16:0/17:1/18:1)” and “GPEtn(18:0/20:4)” were found in
Control-ND and T2DM-ND. This findings were obtained by matching the results of the
most significant metabolites presented in each table of common metabolites found.

Figure 12. Gene frequency and gene rank stability in models are ascertained by applying GA with
KNN to select the main features from the Control-DN dataset. (A) Gene frequency allows observing
the number of times each feature appears in the models. (B) Gene rank allows observing the stability
and frequency of each feature within the models and orders them by rank.

Figure 13. Evolution of maximum fitness scores over generations, using the Control-DN dataset.
The vertical axis represents the fitness score, while the horizontal axis represents a given generation.
The solid blue line represents the average fitness across all models. The average unfinished fitness
plotted as a solid cyan line represents the average worst case expectation for all failed searches in a
given generation. The red dotted line shows the established GA goal fitness.

Table 10. Features obtained by GALGO NEARCENT method in the T2DM-DN dataset.

Result Features

“SM(d19:0/20:3-OH)”, “TG(16:0/17:1/18:1)”, “5-Pentahydroxy-5-cucurbiten-11-one
3-[glucosyl-(1->6)-glucoside]”, “PS(PGJ2/22:6)”, “TG(16:0/18:1/18:1)”, “GPEtn(18:0/20:4)”, “Butyl
methacrylate”, “PC(22:6-2OH/P-16:0)”, “Cer(d18:1/24:1) i2”, “PC(P-20:0/14:1)”, “PA(19:1/16:0)”,

“CerP(d15:0/2:0)”, “PC(22:6-2OH/P-18:0)”, “SM(d16:1/18:0)”, “MG(20:4/0:0/0:0)”, “MG(18:1/0:0/0:0)”,
“1,1-Dimethylbiguanide”

All features in this table were obtained with GALGO with a NEARCENT method implementation with
2100 bigbangs and 200 generations.
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Figure 14. Models using forward selection methodology, with the T2DM-DN dataset. The solid
black line represents the most compact and accurate model. The vertical axis shows the classification
accuracy. The horizontal axis represents the ordered features, each of which corresponds to a number.

Table 11. Common metabolites found in each model for Control-Prediabetes.

KNN and NEARCENT and
SVM

KNN and
NEARCENT

KNN and SVM
NEARCENT and

SVM

“PC(20:3-OH/P-18:1)” “TG(17:1/18:1/18:1)” “GPCho(20:2/18:1)”
“TG(17:1/17:2/22:5)” “Glufosinate” “Cer(d18:1/24:1) i2”

“PC(18:1-O/20:1)”
“DGDG(20:5/14:0)”
“TG(18:0/18:1/20:2)”
“lysine phosphoester”
“TG(17:0/18:1/20:2)”
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Figure 15. Gene frequency and gene rank stability in the models are ascertained by applying GA
with NEARCENT to select the main features from the T2DM-DN dataset. (A) Gene frequency allows
observing the number of times each feature appears in the models. (B) Gene rank allows observing
the stability and frequency of each feature within the models and orders them by rank.

Figure 16. Evolution of maximum fitness scores over generations, using the T2DM-DN dataset.
The vertical axis represents the fitness score, while the horizontal axis represents a given generation.
The solid blue line represents the average fitness across all models. The average unfinished fitness is
plotted as a solid cyan line and represents the average worst case expectation for all failed searches in
a given generation. The red dotted line shows the established GA goal fitness.

Table 12. Common metabolites found in each model for Control-Diabetes.

KNN and NEARCENT and
SVM

KNN and
NEARCENT

KNN and SVM
NEARCENT and

SVM

“Androst-16-ene” “Cholestan-3-one” “(Z)-11-
Hexadecenal”

“Ganoderic acid C2” “PA(18:1/18:2) i2”
“Cer(d18:2/20:4-3OH)” “GPA(26:2/6:0)”
“SM(d18:1/24:1) i2” “CE(18:2+=O)”

Table 13. Common metabolites found in each model for Prediabetes-Diabetes.

KNN and NEARCENT and
SVM

KNN and NEARCENT KNN and SVM
NEARCENT and

SVM

“PC(20:3-OH/P-18:1)” “Ganoderic acid C2”
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Table 14. Common metabolites found in each model for Control-Nephropathy.

KNN and NEARCENT
and SVM

KNN and
NEARCENT

KNN and SVM
NEARCENT and

SVM

“5beta-Cholestanone” “Cer(d18:1/24:1) i2” “GPSer(18:1/11:0)”
“DG(a-25:0/0:0/a-13:0)” “PC(18:0/18:1-2OH)”
“PG(PGF1alpha/i-16:0)”
“DG(20:4/16:0/0:0)”
“N-Methylethanolaminium
phosphate”
“GPEtn(18:0/20:4)”
“TG(16:0/17:1/18:1)”

Table 15. Common metabolites found in each model for Diabetes-Nephropathy.

KNN and NEARCENT and SVM KNN and NEARCENT KNN and SVM
NEARCENT and

SVM

“Butyl.methacrylate” “SM(d19:0/20:3-OH)”
“TG(16:0/17:1/18:1)” “GPEtn(18:0/20:4)”
“Cer(d18:1/24:1) i2” “PC(22:6-2OH/P-16:0)”
“TG(16:0/18:1/18:1)” “CerP(d15:0/2:0)”
“1,1-Dimethylbiguanide” “PC(22:6-2OH/P-18:0)”
“PS(PGJ2/22:6)” “SM(d16:1/18:0)”
“5-Pentahydroxy-5-cucurbiten-11-one
3-[glucosyl-(1->6)-glucoside]” “PA(19:1/16:0)”

4. Discussion

The use of ML is proven to be an effective classifier and feature selection tool; however,
the metabolomic community has some concerns with the lack of explanation on where
does this biomarker’s significance come from. There are some methods that unveil these
doubts; the statistical validation, for example, has the most widely known validator, which
is the AUC or area under the curve [37]. In this proposal, this metric however will not
be used; instead, the strict use of average accuracies in the feature selection with genetic
algorithms is proposed as it comes from a validator given by the forward selection method
provided by GALGO.

The proposed selection and model implementation shows the potential to establish
significant metabolites in each stage of the disease described. The progression asseveration
can be made as features collide and the model’s products of the features and the ML
method can be used for fitting classifiers. As the metabolomics obtained are mainly
set from serum samples, the families of lipids involved in the features obtained reveal
metabolites of potential risk and more specifically propose a base to create a support tool
for personalized diagnosis.

To establish a connection in each stage, the five different sets were created within a pre-
vious classification and direct transition, so it can be asseverated that there will be a statistical
relation between each stage. The proposal provides a selection of features independently of
the type of data selected, as in this case of metabolomics, which has been a wide field to cover
but is a powerful ally for diagnosing a disease or for identifying progression.

The identification of metabolites as a potential or candidate biomarker of the incidence
of DN in hyperglycemic subjects can be performed with intelligent feature selection [14];
nevertheless, in the case of LASSO, the biomarkers obtained can be diverse depending
not only on the type of metabolomics in the dataset; since genetic algorithms prove the
superiority and diversity of models against LASSO, new approximations can be made.
The prediction of the progression from T2DM to DN remains difficult, even with potential
biomarkers, with respect to detecting one or another, and novel biomarkers are needed to
for detecting the progression of the disease. Nevertheless, ML methods can detect potential
biomarkers that could otherwise escape identification using a conventional statistical
method. Even identifying a potential biomarker such as the urinary 1-methylpyridin-1-ium
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(NMP) [38] with non-targeted metabolites still needs other features as complements in order
to be marked as clinically usable; in contrast, a group of significant metabolites can be useful
for the detection of each stage of the disease. Limiting the number of features to find strong
predictors could highlight differences in pathways leading to accurate predictions on more
specific populations and provide novel clues to lead to features of strong significance [39];
however, there is a need to have sufficient observations to make a model that does not
overfit, and even with this, it becomes difficult in T2DM’s progression detection as there is
no certainty as to when this disease will show symptoms or metrics that can be registered,
as it can takes decades to develop. In cases of a small number of observations and even with
a leave-one-out cross validation that seems to overfit, feature selection can stays stable with
good average accuracy values (over 0.82 in this study) when there are plenty of features
(717 in this case).

The metabolite’s biomarker identification can widely assist in understanding progres-
sion and in obtaining a more precise assumption on how a disease works in a specific part
of the human body or how it can progress in terms of increasing risks towards developing
a comorbidity. For example, in gestational diabetes, a series of metabolites can identify
potential risks in developing T2DM by only perceiving the variations and finding patterns
with ML and data-mining techniques [40].

In comparison with clinical or anthropometric data, metabolite data are presented
as complements of models; however, the metabolites presented in this study can perform
better than clinical and anthropometric data [41]. This behavior can be explained by the
use of genetic algorithms as selectors and the proper preselection and prediction of the
most important metabolites or family-related metabolites with respect to the disease.

The methods that best performed in the GALGO implementations were as follows:
In the Control-Prediabetes dataset, SVM had 0.8464 with respect to the average accuracy
and five features (to see features, view Table 6); in the Control-T2DM dataset, NEARCENT
had 0.9286 with respect to the average accuracy and five features (to see features, view
Table 7); in the Prediabetes-T2DM dataset, SVM had 0.8214 with respect to the average
accuracy and 28 features (to see features, view Table 8); in the Control-DN dataset, KNN
had 0.9893 with respect to the average accuracy and 24 features (to see features, view
Table 9); and in T2DM-DN dataset, NEARCENT had 0.9125 with respect to the average
accuracy and 17 features (to see features, view Table 10). The comparisons were made with
an average accuracy of each GALGO selection in each clasificator method implemented in
each dataset (see Table 16). Since the methods that resulted in the best average accuracies
were relatively small (the larger set of metabolites selected was 28 of 717), a comparable
model can be established with the same quantities and measured as percentage of features
selected from the total, with other related works that had less than 10 features as the final
outputs [14,38,39].

Table 16. Comparison of feature selection with related work.

Title Feature Selection Technique
Validation

Metric
Result

Machine Learning Approaches Reveal Metabolic Signatures of
Incident Chronic Kidney Disease in Individuals With Prediabetes

and Type 2 Diabetes [14]
LASSO AUC 0.857

Potential progression biomarkers of diabetic kidney disease
determined using comprehensive machine learning analysis of

non-targeted metabolomics [38]
NON AUC 0.775

Predictive Modeling of Type 1 Diabetes Stages Using Disparate
Data Sources [39]

Repeated Optimization for Feature
Interpretation AUC 0.91

Machine Learning–Derived Prenatal Predictive Risk Model to
Guide Intervention and Prevent the Progression of Gestational

Diabetes Mellitus to Type 2 Diabetes: Prediction Model
Development Study [40]

CatBoost tree ensembles AUC 0.86

264



Diagnostics 2022, 12, 2803

Table 16. Cont.

Title Feature Selection Technique
Validation

Metric
Result

Data-Driven Machine-Learning Methods for Diabetes Risk
Prediction [41]

Pearson Correlation, Gain Ratio, Naive Bayes
and Random Forest AUC 0.942

Interpretable machine learning-derived nomogram model for
early detection of diabetic retinopathy in type 2 diabetes mellitus:

a widely targeted metabolomics study [42]
Classification and Regression Tree AUC 0.95

Environmental chemical exposure dynamics and machine
learning-based prediction of diabetes mellitus [43] Lasso AUC 0.78

This Work in Control-Prediabetes Genetic Algorithm with GALGO-svm Accuracy 0.8464
This Work in Control-T2DM Genetic Algorithm with GALGO-Nearcent Accuracy 0.9286

This Work in Prediabetes-T2DM Genetic Algorithm with GALGO-svm Accuracy 0.8214
This Work in Control-DN Genetic Algorithm with GALGO-knn Accuracy 0.9893
This Work in T2DM-DN Genetic Algorithm with GALGO-nearcent Accuracy 0.9125

Bold text represent this work models with the highest Average accuracy in each sub-dataset

5. Conclusions

The metabolite selection method presented in this study has the potential to classify
each stage of the T2DM with superior average accuracies. These metabolites can provide
potential biomarkers for classification. The comparison between each classification method
provided two assertions: Even when the methods used different approaches, they have
similar results in a few features, and the features repeated in two of three OR three of
three methods for each dataset are those that are extremely significant. In this case, those
particular metabolites presented in each dataset are significant and provide the tools for
classification between stages. These particular metabolites colliding between stages can
be considered potential biomarkers for progression, and these metabolites are as follows:
“Cer(d18:1/24:1) i2”, “PC(20:3-OH/P-18:1)”, “Ganoderic acid C2”, “TG(16:0/17:1/18:1)”
and “GPEtn(18:0/20:4)”. Further investigations are required to establish more relations or
to corroborate with the observation that these metabolites are extremely significant.

As a disadvantage, the small number of observations presented limitations in this
study and could not be used as part of an ML model for more validation, as this could
present potential overfitting during performances (100% in AUC). More observations with
the same metabolites can validate or complement this proposal.
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Abstract: Background: Preeclampsia is a pregnancy-related hypertensive disease. Aberrant hormone
levels have been implicated in blood pressure disorders. This study investigated the association
of postpartum maternal serum hormone levels of estradiol, progesterone, prolactin, and ß-HCG
with poorer PE-related complications including arterial hypertension. Methods: Thirty patient
women with preeclampsia, and twenty women with uncomplicated pregnancy were included in this
study. Serum levels of estradiol, progesterone, prolactin, and ß-HCG were determined immediately
after delivery, and on the first and third postpartum days by means of ECLIA. Results: Compared
with normal pregnancy cases, preeclampsia cases had higher serum levels of ß-HCG levels on Day-
0 (319%), of progesterone on Day-0 (207%) and Day-1 (178%), and of estradiol on Day-1 (187%) and
Day-3 (185%). Increased prolactin levels were positively associated with disease severity and estradiol
and progesterone levels were decreased in poorer preeclampsia features including disease onset and
IUGR diagnosis. No significant correlation between different hormone levels and blood pressure
measurements was reported. Conclusions: This study is the first that detected postpartum maternal
serum hormone levels and their correlation with blood pressure measurements in preeclampsia. We
believe that the persistent arterial hypertension in the puerperium in preeclampsia as well as poorer
disease specifications are most likely not of hormonal origin. Larger, well-defined prospective studies
are recommended.

Keywords: preeclampsia; hypertension; hormones; postpartum; serum

1. Introduction

Preeclampsia (PE) is a pregnancy-related hypertensive disease that is characterised
by elevated arterial blood pressure (BP) (≥140/90 mmHg) associated with proteinuria
(≥300 mg/dL in 24-h urine) and/or other organ failure, beginning after the 20th week of
gestation [1]. Approximately 5% of pregnant women develop PE, which in turn causes
almost 40% of early-term deliveries and is a major cause of maternal and fetal mortality
in low-income countries [2]. Despite the amount of effort put into understanding PE, its
pathophysiology and pathogenesis are still not fully understood. One of the more plausible
and widely accepted theories is that trophoblast invasion is hampered early in pregnancy,
resulting in impaired spiral artery remodelling in the placenta and restricted blood flow,
resulting in a reduced nutrient supply to the foetus and signs of foetal growth restriction
(FGR) [3]. Furthermore, it has been demonstrated that incomplete spiral artery remodelling
in the uterus contributes to placental ischemia and, as a result, the release of antiangiogenic
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factors into the maternal circulation, resulting in endothelial damage [4]. PE can manifest
in multiple organs, but it always results in arterial hypertension, which can last into the
puerperium and increase the risk of future cardiovascular disease [5].

A hormonal genesis of PE-induced hypertension has been studied and obtained data is
ambiguous. Female sex hormones including estradiol and progesterone are produced in the
ovaries and in the placenta during pregnancy. Their blood levels increase steadily during
pregnancy and continue to be high until birth. Estradiol and progesterone are crucial for a
successful pregnancy via promoting and regulating different physiologic changes in the
mother such as metabolic, cardiovascular, stimulating of mammary gland development,
maternal tolerance of the feotus, and initiation of labour [6]. Maliqueo and colleagues
showed that estradiol and progesterone act as regulators of uterine blood flow and the
production of angiogenic factors in the placental tissue [7]. Therefore, abnormalities in these
factors have been suggested as associated with different pregnancy complications including
PE. Studies showed that decreased maternal serum estradiol levels appear to be associated
with the development of PE [8,9]. In addition, exogenous estradiol supplementation had a
BP-lowering effect in PE patients [10,11]. Furthermore, altered levels of progesterone were
found to be involved in dysregulated trophoblastic proliferation and aberrant development
of placental vasculature in PE patients [12,13].

Prolactin is a polypeptide hormone that has a significant role in the physiology of
the breast and its level is imperative for normal lactation capabilities, with significant
effects on the menstrual cycle also [14]. It is normally synthesized and secreted from the
lactotrophs in the anterior pituitary gland. During early pregnancy, decidua and placenta
secrete different types of prolactin-like molecules that can bind to the prolactin receptor,
which in turn are involved in regulating pituitary prolactin secretion. This function is
controlled by the local decidual prolactin-releasing factors and progesterone levels [15,16].
Apart from its role in maintaining pregnancy and lactation, prolactin has been implicated
in immune system regulation, osmoregulation, and angiogenesis [17]. In normal pregnancy,
the rise of maternal prolactin reaches 5–10 fold of its level in a non-normal state during the
third trimester, and dysregulated maternal prolactin levels have been linked to pregnancy
complications such as gestational diabetes and hypertension [18–20].

Beta-Human chorionic gonadotropin (β-HCG), better known as “pregnancy hormone”,
is a glycoprotein produced by trophoblast cells. The main function of this hormone during
pregnancy is to stimulate the production of progesterone and promote uterine and umbilical
cord growth as well as placental development [21]. The association between aberrant
β-HCG levels in the first trimester and the development of PE has been reported by several
studies and β-HCG has been considered a serum marker for PE screening at 8–14 weeks of
gestation [22–24].

To date, the only treatment for PE is delivery of the placenta, making this disease one
of the leading causes of preterm birth. Therefore, the clinical use of several biochemical
markers of placental dysfunction in combination with other relevant ultrasound and clinical
manifestations provides the potential to improve pregnancy outcomes by allowing early
detection and appropriate decision-making for referral of pregnant women at higher risk
to proper care centres [25]. Effective screening and intervention strategies for preterm PE
have been seriously considered. However, little is known about the value of maternal
parameters in predicting PE complications postpartum [26]. The objective of this study
is to investigate the correlation between maternal serum hormone levels of estradiol,
progesterone, prolactin, and ß-HCG and their influence on the systolic and diastolic BP
measurements immediately after delivery, on the first and the third postpartum days.

2. Materials and Methods

2.1. Study Cases and Performed Measurements

The current study included fifty women. Thirty women with PE as the patient group
and twenty women with uncomplicated pregnancy as the control group. PE cases were
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obtained, respectively, from our blood bank. Control cases were prospectively enrolled in
the study during their delivery in our department.

All study cases were older than 18 years and had a gestational age between 23 + 5
and 41 + 6 weeks of gestation. Cases with chronic hypertension, chronic renal or lung
disease, inflammatory or infectious disease, nicotine abuse, and gestations complicated by
chromosomal or fetal anomalies were excluded.

Diagnosis of PE, determination of PE severity and onset, diagnosis of HELLP syn-
drome, and intrauterine growth retardation (IUGR) were carried out in accordance with the
German national guideline for hypertensive illnesses during pregnancy, as described in our
previous study [27]. PE was diagnosed using two criteria: blood pressure of 140/90 mmHg
and proteinuria of more than 300 mg/24 h after the 20th week of pregnancy. At least
one of the following parameters was required for the diagnosis of severe PE: progressive
renal insufficiency (creatinine 0.9 mg/dL), blood pressure of 160/110 mmHg, thrombocy-
topenia, impaired liver function (elevated transaminases, upper abdominal pain), central
nervous system dysfunction abnormalities (severe headache, blurred vision), pulmonary
oedema, or IUGR. The presence of pathological Doppler of the umbilical and/or uterine
artery and foetal estimated weight less than the 10th percentile indicated the diagnosis
of IUGR. Late-onset PE was defined as PE patients with a gestational age ≥ 34 weeks.
In addition, increased liver enzymes (transaminases > 35 U/L), decreased platelet count
(thrombocytes < 100,000/μL), and lactate dehydrogenase [LDH] 2 times bigger than the
upper level of the normal range [0–262 U/L]) or hemolysis (haptoglobin ≤ 25 mg/dL)
indicated a diagnosis of HELLP syndrome.

Aseptic venous blood samples from control subjects were collected using serum gel
monovette between 8 a.m. and 10 a.m. on the day of delivery immediately after giving birth
and on the first and third day postpartum. Samples were centrifuged and supernatants
were transferred in aliquots into Eppendorf tubes that were stored at −80◦ until they could
be analysed. All clinical data were collected by reviewing electronic patients’ medical
records.

Serum levels of estradiol, progesterone, prolactin, and ß-HCG were tested in the
Central Laboratory of our University hospital by means of electrochemiluminescence im-
munoassay (ECLIA) from Roche® according to the manufacturer’s instructions. The techni-
cal variability of the hormonal assays ranged from 1.68–2.30% for ß-HCG, 2.07–2.55% for
prolactin, 3.12–3.26% for progesterone, and 1.61–1.83% for estradiol. In addition, BP read-
ings were taken regularly during blood sampling days using the BP monitor from the
company Erka®. Measurements were performed in the early morning, at noon, in the
afternoon, and in the evening and were recorded in the patient registry. The highest BP
reading was used in the study.

2.2. Statistical Analysis

Following the intent-to-treat principle, all patients that provided data at baseline
were included in the analyses. As appropriate for explorative analyses comparison-wise
two-sided significance level α of 5% was used. The statistical analyses were performed
using RStudio version 1.2.5042 and R version 4.0.3 running under Ubuntu 20.04 LTS. The R
packages gtsummary, and tidyverse were used.

3. Results

3.1. Clinical and Laboratory Parameters of Study Cases

Briefly, control and patient women were age-matched [Mean ± STD (years): 31 ± 7 vs.
32 ± 5, respectively, p > 0.05]. PE cases had higher BMI values [Mean ± STD: 36.9 ± 8.7 vs.
32.3 ± 5.7, respectively, p = 0.030] as well as higher creatinine, ALT, and AST concentrations.
Furthermore, gestation age at delivery and number of gravida and para were significantly
lower in PE cases compared with control cases. The existence of one or more pathological
signs such as headache, severe edema, vaginal bleeding, epigastric pain, and vision changes
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was observed in 20% of PE cases (6/30) but not in control cases; however, this difference
was not statistically significant. All parameters are displayed in Table 1.

Table 1. Clinical and laboratory parameters of included cases.

Characteristic
Control Cases

(N = 20)
PE Cases
(N = 30)

p

* Age (Years) 31 ± 7 32 ± 5 NS

* BMI (Kg/m2) 32.3 ± 5.7 36.9 ± 8.7 0.030

 Gestation age at the time of
delivery (Weak)

38.7 (34.3–41.9) 34.4 (26.6–40.1) <0.0001

* Creatinin (mg/dL) 0.6 ± 0.12 0.7 ± 0.16 <0.0001

 Alanine aminotransferase (ALT)
(U/L)

11.50 (8–28) ϕ 20.5 (8–392) 0.003

 Aspartate aminotransferase (AST)
(U/L)

20 (15–34) ϕ 31.5 (7–242) 0.018

 Gravida [N (%)]
One Gravida
≥2 Gravida

3 (15)
17 (75)

31 (70)
9 (30) <0.0001

 Para [N (%)]
0 Para
≥1 Para

5 (25)
15 (75)

25 (83)
6 (17) <0.0001

 ,  Symptoms [N (%)]
No
Yes

20 (100)
0 (0)

24 (80)
6 (20) NS

*: Results are shown as [Mean ± STD] and p-value is calculated using Student’s t-test.  : Results are shown as
[Median (Range)] and p-value is calculated using Mann-Whitney-U- Test.  : Results are shown as number (%)
and p-value is calculated using Chi-squared Test.  : Existence of one or more of the following signs: headache,
severe edema, vaginal bleeding, epigastric pain, and vision changes. ϕ: Data were available from 14 control cases.
N: Number of cases. NS: Not significant.

3.2. Postpartum Serum Hormone Levels and BP Measurements in Normal and PE Cases

Serum hormone levels of estradiol, progesterone, prolactin, and ß-HCG were detected
on the day of delivery immediately after giving birth (Day-0) and on the first day (Day-1)
and third day (Day-3) postpartum. Blood samples of PE cases were available from all
30 subjects on Day-0, from 29 subjects on Day-1 and from 26 subjects on Day-3. In addition,
BP measurements on Day-0, Day-1, and Day-3 were obtained from medical records of
patients of 29, 28, and 26 subjects, respectively. On the other hand, all hormones and BP
measurements of the control cases were performed for all 20 subjects on all study days.

As presented in Table 2, systolic and diastolic BP measurements were significantly
higher in PE cases compared with control cases during all study days. Furthermore, higher
serum hormone levels of ß-HCG, progesterone, and estradiol were reported in PE cases
compared with normal cases. These increases were statistically significant in ß-HCG levels
on Day-0, in progesterone levels on Day-0 and Day-1, and in estradiol levels on Day-1 and
Day-3. Serum prolactin levels showed no significant differences at all.
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Table 2. Serum hormone levels of ß-HCG, prolactin, progesterone, and estradiol and systolic- and
diastolic BP measurements in control and PE cases on all study days.

Parameter
Control Cases

(N = 20)
PE Cases  p

Systolic blood pressure (mm Hg)
Day-0 123 (105–170) 160 (130–200) <0.0001
Day-1 125 (100–145) 157 (130–194) <0.0001
Day-3 120 (80–150) 150 (130–190) <0.0001

Φ p NS *
Day-1 vs. Day-0: 0.032
Day-3 vs. Day-0: 0.029
Day-3 vs. Day-1: NS

Diastolic blood pressure (mm Hg)
Day-0 80 (60–90) 100 (60–140) <0.0001
Day-1 80 (50–90) 92 (70–120) <0.0001
Day-3 80 (65–90) 90 (70–110) <0.0001

Φ p NS * NS *

ß-HCG (mIU/mL)

Day-0 8357
(1786–95,328) 26,623 (2675–172,281) 0.005

Day-1 3379 (948–17,942) 4685 (487–43,860) NS
Day-3 519 (6–2103) 916 (138–6975) NS

Φ p <0.0001 * <0.0001 *

Prolactin (μIU/mL)
Day-0 5682 (1868–9277) 6327 (2489–17,660) NS
Day-1 5687 (369–14,576) 5766 (314–10,661) NS
Day-3 5310 (193–11,383) 5570 (149–12,275) NS

Φ p NS NS

Progesterone (ng/mL)
Day-0 55.8 (8.16–250) 115.5 (16.9–485) 0.046
Day-1 8.3 (3.1–24.3) 14.8 (3.8–103) 0.002
Day-3 1.3 (0.2–3.7) 1.8 (0.8–11.7) NS

Φ p <0.0001 * <0.0001 *

Estradiol (pg/mL)
Day-0 2544 (215–55,080) 12,675 (2126–63,086) NS
Day-1 227 (75–817) 425 (85–10,665) 0.020
Day-3 48 (12–278) 89 (12–681) 0.008

Φ p <0.0001 * <0.0001 *
: N = 30 at delivery day and Day-1; N = 29 at Day-3. Φ: p-value within each group. *: Significant differences

between values from 3 days. N: Number of cases. NS: Not significant. Results are shown as [Median (Range)] and
p-value is calculated using Mann-Whitney-U-Test.

We also found that serum hormone levels of ß-HCG, progesterone, and estradiol
were significantly reduced during study days in each study group separately. Systolic
BP measurements in PE cases decreased significantly on Day-1 and Day-3 compared
with Day-0 [Median (Range) (mm Hg): Day-0: 160 (130–200), Day-1: 157 (130–194),
Day-3: 150 (130–190); p = 0.032 and p = 0.029 respectively)]. No significant differences
in systolic BP measurements in the control group or in diastolic BP measurements in both
groups were observed (Table 2).

Then, we calculated the percent ratio of observed differences in serum hormone levels
as well as in BP measurements in order to scrutinize the scenario of these differences
between study groups and within each group separately during study days. For this
purpose, we included 20 control cases and 25 PE cases in which all measurements of all
tested parameters were available. Our data showed that the biggest differences in serum
hormone levels and in BP measurements between control cases and PE cases were reported

272



Diagnostics 2022, 12, 1700

on Day-0 (Figure 1A). In addition, we found that both study groups presented a similar
schema of reduction percent in ß-HCG, progesterone, and estradiol serum levels during
study days with maximal reduction percent between Day-0 and Day-3 (Figure 1B and
Figure 1C).

Figure 1. Measurements reduction % in serum hormone levels and BP measurements during study
days. (A) Reduction of serum hormone levels and BP measurements in 20 normal cases compared
with 25 PE cases. (B) Reduction of serum hormone levels and BP measurements in 25 PE cases.
(C) Reduction of serum hormone levels and BP measurements in 20 normal cases with normal
pregnancy. * Significant difference (p < 0.05 using Mann-Whitney-U-Test). Results are presented
as percent.

3.3. Association between Serum Hormone Levels with PE and BP Measurements

First, we tested the association between PE and parameters that differed significantly
between the PE group and control group using logistic regression. We found that PE
was negatively associated with gestation weeks and positively associated with creatinine
concentrations, serum ß-HCG levels on Day-0, and serum progesterone levels on Day-1
(Table 3). However, only gestation age and creatinine concentrations showed as indepen-
dent predictors of PE (data are not shown).

Next, as shown in Table 1, systolic and diastolic BP measurements were significantly
higher in the PE group compared with the control group on all study days. Logistic regres-
sion was used to investigate various parameters that could predict these measurements.
Serum ß-HCG levels on Day-0 were found to predict diastolic BP on Day-0 and systolic BP
measurements on Day-3. Serum ß-HCG levels on Day-1 and Day-3 were found to predict
systolic BP measurements on Day-3 (Table 4). When these observations were adjusted for
other variables, they became no more statistically significant. We found that PE diagnosis
was an independent predictor of systolic and diastolic BP measurements on all study days
(data are not shown).
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Table 3. Association between PE and parameters that differ significantly between PE group and
control group.

Predictor Variable * B p Exp(B) 95% CI for Exp(B)

Lower Upper

BMI Δ 0.085 0.053 1.089 0.999 1.188

Gestation age (Week) -0.324 0.004 0.723 0.581 0.900

Creatinin (mg/dL) 8.895 0.002 7294.2 25.7 20,741,143.8

ALT (U/L) 0.117 0.038 1.124 1.006 1.256

AST (U/L) 0.067 0.081 1.069 0.992 1.153

ß-HCG-Day-0 (mIU/mL) 0.031 0.030 1.03 1.003 1.061

Progesterone-Day-0 (ng/mL) 0.007 0.074 1.007 0.999 1.014

Progesterone-Day-1 (ng/mL) 0.145 0.018 1.156 1.025 1.304

Estradiol-Day-1 (pg/mL) 0.246 0.061 1.278 0.989 1.635

Estradiol-Day-3 (pg/mL) 0.100 0.109 1.100 0.978 1.250
*: Predictor variables included only parameters that were significantly different between PE group and control
group. Δ: Actual values.

Table 4. Simple linear regression of BP measurements with different parameters in all study cases.

Systolic BP Measurements
(mm Hg)

Diastolic BP Measurements
(mm Hg)

Predictor Variable Day-0 Day-1 Day-3 Day-0 Day-1 Day-3

PE diagnosis
P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
β 37.800 29.7 36.4 21.8 13.4 13.6

BMI
P 0.017 NS NS 0.017 NS NS
β 1.071 — — 0.710 — —

Gestation age (Weeks)
P <0.0001 <0.0001 <0.0001 0.005 0.024 0.002
β −2.471 −2.467 −2.841 −1.475 −0.966 −1.060

Creatinin (mg/dL)
P 0.001 0.003 0.003 0.003 0.018 NS
β 66.9 53.2 61.2 41.6 27.3 17.1

ALT (U/L)
P 0.023 NS 0.040 NS NS NS
β 0.134 — 0.122 — — —

AST (U/L)
P NS NS 0.042 NS NS NS
β — — 0.192 — — —

ß-HCG (mIU/mL) *
Day-0

P NS NS 0.013 0.028 NS NS

β — — 4.928 0.136 — —
Day-1

P NT NS 0.004 NT NS NS

β — — 4.846 — — —
Day-3

P NT NT 0.014 NT NT NS

β — — 4.769 — — —
*: Only results of β-HCG were shown because the results of all other hormones were not significant. NS: Not
significant. NT: Not tested.

274



Diagnostics 2022, 12, 1700

3.4. Relevant Diagnosis and Characteristics within the PE Group

Figure 2 illustrates PE features among our patient women cohort. Briefly, severe
PE and late-onset PE were reported in 54% and 57% of the patient women, respectively.
Seven women were diagnosed with HELLP syndrome (23%) and sixteen women were
characterised by IUGR (53%).

Figure 2. PE features among PE cases (N = 30). (A) PE severity. (B) PE onset. (C) HELLP cases.
(D) Protein urea concentration. (E) Existence of one or more of the following signs: headache, severe
edema, vaginal bleeding, epigastric pain, and vision changes. (F) IUGR cases. Results are presented
as N (number of cases) (%).

Differences in serum hormone levels and BP measurements according to the patho-
logical feature were tested using the Mann-Whitney test. Results showed that severe PE
cases (N = 19) had significantly higher serum prolactin levels compared with mild PE cases
(N = 11) on Day-0 [Median (Range) (μIU/mL): 7711 (2489–17,660) vs. 4702 (3056–9624),
respectively, p = 0.030]. However, no significant differences in PB measurements according
to disease severity were reported (Data are not shown).

Next, we found that decreased progesterone and estradiol levels on Day-0 as well
as increased systolic BP measurements on Day-3 were associated with worse PE features
including early disease onset and IUGR diagnosis (Figure 3). Consequently, predictor
variables for systolic PB on Day-3 in PE cases were tested using logistic regression. Data
showed that IUGR diagnosis, early disease onset, and lower gestation age predicted
increased systolic BP measurements on Day-3 [(β-p): (12.100–0.041), (−17.587–0.002) and
(−1.559–0.021), respectively]. No significant results were reported for serum hormone
levels (Data are not shown).
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Figure 3. Postpartum serum progesterone and estradiol levels and systolic BP within PE cases.
(A–C) Serum progesterone and estradiol levels at Day-0 and systolic PB measurements at Day-3
in cases with early PE onset vs. cases with late PE onset respectively. (D–F) Serum progesterone
and estradiol levels at Day-0 and systolic PB measurements at Day-3 in cases with normal IUG vs.
cases with IUGR respectively. Results are presented as Median (Range). p-value is tested using
Mann-Whitney-U-Test. N: number of cases.

4. Discussion

PE has been extensively studied. Large cohort studies yielded a wealth of informa-
tion on risk factors, symptoms, pathogenicity, clinical and laboratory findings, etc. PE
characteristics such as obesity, nulligravida, and elevated liver enzymes and creatinine
concentrations were confirmed in this study [28–30]. We also reported shorter gestation
age in PE women. This is due to the fact that, to date, pregnancy termination is the only
cure for this disorder [31].

PE, as previously stated, is classified as a hypertensive disease of pregnancy. Excessive
maternal inflammatory response, caused by disrupted spiral artery remodeling in the
placenta, provokes generalized maternal endothelial dysfunction, which contributes to the
clinically visible elevations in maternal BP [32]. We found that despite a slight decrease in
BP measurements during the puerperium, the significant increase in BP measurements in
the PE group compared with the normal group persisted for the first three postpartum days.
PE-induced hypertension is responsible for a substantial proportion of maternal mortality
and for a wide range of postpartum complications that mandate long-term follow-up
and contribute to the overall healthcare spending in developed countries [33]. Effective
screening and intervention strategies for high BP in the postpartum period have been
seriously considered [1,34,35]. To date, no specific biological marker has been identified
that can accurately predict PE postpartum consequences. In a previous study, we assessed
the predictive value of soluble fms-like tyrosine kinase 1 (sFlt-1), placental growth factor
(PlGF), and their ratio to estimate the short-term postpartum maternal outcome. According
to our findings, increased serum PlGF levels were associated with elevated systolic BP
measurements. However, none of these markers could predict the general worsening of
postpartum PE [26].

It is well known that hormonal changes, such as estradiol [36], progesterone [37],
ß-HCG [38], and prolactin [39] are associated with the pathology of PE. In this study, we
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looked at whether the alteration schema in serum levels of the aforementioned hormones
differs between the PE group and normal group over three postpartum days, and what
value these biomarkers might have as predictors of PB measurements and poorer disease
features. We found that, compared to control cases, PE cases had generally higher serum
hormone levels. Only ß-HCG levels on Day-0 were significantly elevated, as were pro-
gesterone levels on Day-0 and Day-1, and estradiol levels on Day-1 and Day-3. These
elevations were no more significant when adjusted to gestation age and creatinine concen-
trations. In addition, all serum prolactin level comparison tests were insignificant. As a
result, with the current study design, it was not possible to determine the role of the tested
hormones in PE pathogenicity. Nevertheless, this was not our study goal. For this purpose,
further prospective studies in a large multicentric cohort are warranted.

Next, we found that the alteration schema in serum hormone levels of estradiol,
progesterone, and ß-HCG was similar in both study groups, with a gradual decrease
over the course of the study (Figure 1B and Figure 1C), which could imply that the early
postpartum profile of tested hormones is unaffected by the presence of PE.

Furthermore, our findings revealed that serum levels of tested hormones had no
predictive value for PB measurements, with the exception of ß-HCG levels, which predicted
systolic on Day-3. However, when adjusted for PE diagnosis and gestational age, this effect
was no more significant. In a retrospective case-control study, Chen and colleagues showed
that free early pregnancy β-hCG levels in PE groups were significantly lower than in the
control group. This study included 680 hypertensive disorders of pregnancy (HDP)-free
pregnant women and 222 HDP-affected pregnant women, 90 of whom had PE and 71 of
whom had severe PE. However, the risk calculation model developed using a combination
of different factors including β-hCG after adjusting for maternal weight and gestation age
outperformed the original method of using β-hCG alone [40].

Lan et al. found that, throughout pregnancy, the PE group had lower estradiol levels
than the control group, but the two groups had similar progesterone levels [9]. Low levels
of 2-methoxyestradiol, an estradiol metabolite, were found to be negatively correlated with
systolic peak arterial pressure in patients with early-onset PE. On the contrary, in patients
with late-onset PE, a rise in 2-methoxyestradiol serum levels has been reported. It has been
proposed that this increase is due to the activation of compensatory mechanisms to keep
normal serum estrogen levels. Exogenous administration of estradiol has been shown in
animal models as well as in PE patients to normalize blood pressure and other associated
symptoms of PE [41].

Prolactin has been linked to the pathogenesis of pregnancy-associated hypertension
by modulating the activity of endothelial nitric oxide synthase [42]. Hypertensive pregnant
women had higher blood prolactin levels than non-hypertensive pregnant women, but
the difference was not statistically significant. Nonetheless, cord blood prolactin levels
were significantly higher in babies born to hypertensive mothers than in normal pregnancy
mothers [43].

As evidenced by the studies listed below, investigating better predictors of HDP has
been a research hot spot in the field of prenatal medicine. As a result, there is no comparable
data for our postpartum study. In this study, we assume that postpartum serum levels of the
tested hormones could not be implicated in the pathogenesis of PE-induced hypertension.

Our data showed that serum prolactin levels in the PE group on Day-0 were lower
by 40% in mild PE cases compared with severe PE cases. A reduction of 20% was also
reported by Leaños-Miranda et al. who also found that urinary prolactin levels, as well as
the presence of antiangiogenic prolactin fragments in urine, are associated with PE severity
at the time of clinical manifestation [44]. Regardless, we found no significant differences in
PB measurements based on disease severity, as well as no correlation between prolactin
levels and PB measurements, despite the fact that early-onset disease and IUGR diagnosis
could have predicted systolic BP measurements in our PE group on Day-3, and that these
two subgroups had significantly lower serum estradiol and progesterone levels. While a
causal relationship between these two hormone levels and BP measurements could not
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be established, it is tempting to propose that dysregulated serum prolactin, estradiol, and
progesterone levels may be involved in poorer PE features via mechanisms unrelated to
hypertension.

The small sample size limits the interpretation of our results. Although we were unable
to establish a link between postpartum maternal hormone status and BP measurements, a
larger number of cases could significantly refute or affirm our results. Another limitation is
the notable difference in gestation age between study groups, which could affect the levels
of tested hormones. Serum progesterone and estradiol concentrations in normal pregnant
women, for example, increase with advanced pregnancy and reach 100-fold or more at
delivery than before pregnancy [45]. The “snapshot” nature of single-point hormone testing
is another limitation because hormone production follows a circadian rhythm, making it
difficult to determine whether serum levels represent a peak, a valley, or something in
between. As a result, larger, well-defined prospective studies are needed to demonstrate
the postpartum pattern and actions of these hormones, as well as their role in predicting
PE-related arterial hypertension.
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Abstract: The present systematic scoping review aimed at mapping and analyzing the available
literature on biological fluid (biofluid) biomarkers showing promise in the prediction of chronic
subdural hematoma (cSDH) recurrence and the prognosis of neurological/functional patient outcome.
Twenty-three studies published between 2003 and 2023 investigating a diverse range of biomarkers
in hematoma fluid and/or the circulation in 3749 patients were included. Immune cell populations
and inflammatory/anti-inflammatory cytokines comprised the most studied category of biomarkers
displaying significant findings. A notable time trend in biomarker studies was a recent shift in
research focus towards the analysis of circulating biomarkers. Several biomarkers were indicated
as independent predictors of cSDH recurrence and/or functional/neurological outcome, including
circulating fibrinogen degradation products (FDP), brain natriuretic peptide (BNP-1) and high-
density lipoprotein (HDL), as well as blood urea nitrogen (BUN) and the ratios of blood neutrophil to
lymphocyte (NLR) or red blood cell distribution width to platelet count (RPR). While studies on cSDH
prognostic biomarkers have gained, in recent years, momentum, additional multicenter prospective
studies are warranted to confirm and extend their findings. The identification of prognostic biofluid
biomarkers in cSDH is an active field of research that may provide future tools, guiding clinical
decisions and allowing for the design of treatments based on risk stratification.

Keywords: chronic subdural hematoma; prognosis; recurrence; biomarker

1. Introduction

Chronic subdural hematoma (cSDH) is a common neurosurgical entity that typically
affects elderly patients and is increasing in incidence. The presenting symptoms of cSDH
are variable but commonly include gait disturbances and mental deterioration as well as
limb weakness [1]. The diagnosis of cSDH is based on imaging indicating the presence
of a hematoma in the subdural space, often in association with a history of mild or mod-
erate head injury, weeks to months prior to hospitalization [2]. Histologically, cSDH is
characterized by an external and an internal membrane, encapsulating the hematoma,
both containing fibroblast layers with only the former showing the persistent presence of
immature, leaky vessels that have been postulated to drive hematoma expansion [3].

Surgical evacuation remains the standard of care for cSDH with immediate results
postoperatively [2]. Nevertheless, the postoperative recurrence of cSDH is not uncommon,
ranging between 5 and over 30% in previous studies [2]. cSDH recurrence thus currently
represents a significant nosological consideration, the more so since reoperations increase
healthcare-associated costs and are a substantial burden on patient morbidity and mortal-
ity [1,4]. In this context, previous studies have sought to establish the factors associated
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with an increased risk of cSDH recurrence and/or which can aid in the prediction of neu-
rological/functional outcomes. Thus far, several clinical factors, e.g., increased patient
age, radiological characteristics, e.g., bilateral hematoma, and specific external membrane
features, e.g., enhanced presence of angiogenic factors, have been previously indicated
as risk factors for cSDH recurrence [5–8]. Additional research has focused on identifying
prognostic molecular or cellular factors within the hematoma fluid and/or peripheral blood
of cSDH patients. This class of potential prognostic biofluid biomarkers includes molecules
and/or cellular populations that are implicated in cSDH pathogenetic and pathophysio-
logical processes such as cerebrospinal fluid leaks, inflammation and fibrinolysis [3,9,10].
While at present no such biomarker has been validated for clinical use, the overarching goal
of this research field is to provide valuable tools guiding future clinical decision making in
cSDH [11].

To the best of our knowledge, this is the first systematic scoping review that maps
the pertinent literature on biofluid biomarkers showing promise in postoperative cSDH
prognosis. We included studies reporting differences in biomarker levels between recur-
rent and non-recurrent patients as well as those indicating associations between levels and
patient outcomes.

2. Materials and Methods

The PRISMA checklist (http://prisma-statement.org, accessed on 6 April 2023) for
scoping reviews was used to address patients with chronic subdural hematoma (Partic-
ipants) in terms of biomarkers measured in peripheral blood or the hematoma fluid or
both (Intervention) in studies that may additionally recruit neurologically intact patients
(Controls), with the aim to determine their association with disease prognosis (Outcome).

A literature search of the MEDLINE database was conducted on 4 April 2023. The
search algorithm included keywords such as “chronic subdural”, “recurrence”, “prognosis”
and “markers” and can be found in the Appendix A. The search did not have a language
restriction and the search algorithm included free text and Medical Subject Headings
(MeSH) terms. Two independent reviewers (I.G. and L.A.) screened the results of the search
primarily according to the title and abstract. Any differences in opinion were resolved
through discussion and by reaching a consensus with a 3rd independent reviewer (G.G.).

Inclusion criteria were set as follows: (1) study types: observational, cohort studies
and randomized control studies (RCTs), (2) English-language manuscripts, (3) human
studies which included surgical treatment; (4) studies that involved biofluid markers
(e.g., hematoma fluid or circulation cellular/molecular markers) and (5) prognosis rele-
vance. Exclusion criteria were (1) reviews, case reports, letters and hypotheses, (2) animal
studies, (3) studies on imaging markers and (4) studies with results of no statistical sig-
nificance or without statistical analysis of the results. According to these criteria, full text
screening was performed by two independent reviewers (I.G. and L.A.), and when a conflict
came up, a third reviewer intervened (G.G.).

Data were extracted by two independent reviewers (I.G. and L.A.) and verified by a
third (G.G.) reviewer. Data extraction included DOIs, publication year, country, study type,
population characteristics (sample size, age, co-morbidities), outcome measures associated
with prognosis and conclusions. Reviewers aimed at incorporating studies that address
the following questions and provided significant findings from different levels of analy-
sis: (1) biomarkers the levels of which differ between patients with recurrence and those
without, (2) biomarkers that have been indicated as independent risk factors for CSDH re-
currence and (3) biomarkers associated with prognosis in terms of neurological/functional
outcome. Studies were summarized in tables.

3. Results

A Pubmed search identified a total of 1913 articles (Figure 1). After the removal
of duplicates, 1506 records remained and were screened based on title and abstract, and
50 reports were further assessed by full text reading. From these, 27 were excluded based on
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statistically insignificant results (n = 11), wrong topic (n = 2), not being related to prognosis
(n = 8), non-biofluid marker (n = 3), study design (n = 2, one case report and one case series
with three patients) and lack of full text availability (n = 1). Twenty-three studies were
finally included in the review synthesis.

Figure 1. Prisma flow diagram.

3.1. Study and Population Characteristics

Twenty-three studies on a total of 3749 patients were included in the current review
(Table 1). Over half of the included studies (n = 12) had a prospective design, whilst no
RCTs were found. The median (interquartile range, IQR) patient sample size of the included
studies was 93 (60–258). The median (IQR) recurrence rate of twenty-one studies (two
studies did not provide recurrence data) was 17.5% (5–21).

Studies were published in 17 different journals. The Journal of Neurosurgery ranked first
in terms of number of published manuscripts (n = 5). The most common corresponding
author’s address was a German one (n = 8).

3.2. Biofluids and Biomarker Types

Biomarkers were investigated in peripheral blood and/or hematoma fluid, with one
study examining (additionally) hygroma fluid (Table 1).
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Investigated biomarkers displaying significant results, which are summarized below,
fell within one of the following categories (Table 1): (i) immune- and/or circulatory-
system-associated cellular populations and/or their ratios (ten studies), (ii) fibrinolysis-
/coagulation-associated molecules, complexes, degradation products or assays (six studies),
(iii) cytokines (five studies) and (iv) other/miscellaneous (six studies), such as lipoproteins,
ABO (blood) types, CSF markers and markers of cardiovascular/kidney/liver function.

3.3. Biomarker Findings
3.3.1. Immune- and/or Circulatory-System-Associated Cellular Populations

Several studies reported significant findings on blood platelets (PLTs) in relation
to CSDH recurrence. Thus, a prospective cohort study on 114 patients was the earliest
study identified which reported significantly lower preoperative levels in patients with
recurrence compared with non-recurrent cases [12]. A similar result was indicated by the
univariate (but not multivariable) analysis of a more recent retrospective cohort study [13].
Two additional retrospective studies by a Japanese group incorporating larger patient
cohorts indicated preoperative thrombocytopenia as an independent risk factor for CSDH
recurrence [14,15].

Blood eosinophil levels were investigated by two studies. An eosinophil-rich count
of ≥100 × 106/L preoperatively was highlighted as an independent risk factor for cSDH
recurrence in the study of Matsubara et al. [15]. In contrast, a second study on a smaller
patient cohort indicated that the preoperative eosinophil count in their non-recurrent CSDH
group was significantly higher than that in the recurrent group (0.14 ± 0.14× 109/L vs.
0.09 ± 0.08× 109/L) and that an eosinophil count < 150 × 106/L was an independent risk
factor for recurrence [16].

Three additional studies investigated peripheral blood cellular population ratios
that were considered to be inflammatory biomarkers. A prospective cohort study on
61 surgically treated patients indicated that a low admission blood platelet-to-lymphocyte
ratio (PLR) was associated with worse outcomes using the Glasgow outcome scale (GOS)
and Lagos brain disability examination scale (LABDES) [17]. In a retrospective study on
297 patients, Guresir et al. [18] showed that circulating high red blood cell distribution
width to platelet count ratio (RPR) (>0.0568) is an independent predictor of recurrence. In
addition, patients with low RPR improved more in terms of Karnofsky performance status
at 3 months [18]. The third study, a retrospective cohort study on 160 patients, indicated
that a postoperative neutrophil-to-lymphocyte ratio (NLR) ≥ 1 (i.e., NLR that remains high
compared to its preoperative value) and the postoperative absolute neutrophil counts were
independently associated with recurrence [19].

Lastly, a prospective study on a small cohort (30 patients) measured preoperative and
postoperative circulating endothelial progenitor cells (EPCs) and reported that patients
with recurrence had a lower mean difference in postoperative and preoperative EPCs in
comparison with those without relapse (MV 8.54 vs. 35.52) [20].

3.3.2. Cytokines

A prospective cohort study on 66 patients indicated significantly higher levels of
IL-6 in the hematoma fluid of recurrent patients [6]. Another prospective cohort study on
35 patients undergoing surgery indicated that in addition to IL-6, IL-8 hematoma levels
were significantly higher in patients with recurrence [21]. Nevertheless, in the retrospective
cohort of Pripp and Stanisic [10] that included 93 patients, an association between increased
hematoma fluid CXCL8 (IL-8) and reduced risk of recurrence in need of reoperation was
indicated. In the same study, a positive association between hematoma fluid CCL5 (also
termed regulated on activation, normal T-cell expressed and secreted, RANTES) levels
and recurrence as well as a negative association between IL-5, IL-13, IFN-γ and CXCL10
levels and recurrence was also indicated. In the earlier prospective cohort study of these
two researchers on 57 patients, an association between increased hematoma fluid (but not
serum) of a panel of biomarkers considered an anti-inflammatory index (IL-4, IL-5, IL-10,
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IL-13, IL-1 RA) and a reduced risk of recurrence was indicated [22]. In the retrospective
cohort pilot study of Puccio et al. [11], higher IL-5 hematoma fluid levels were associated
with a better outcome in terms of the extended Glasgow outcome scale (GOS-E) at 3, 6
and 12 months. Moreover, in this study, a lower concentration of hematoma RANTES
(<1649.24 pg/mL) was associated with recurrence [11].

3.3.3. Fibrinolysis-/Coagulation-Associated Molecules/Complexes, Products and Assays

Four prospective and two retrospective cohort studies were identified. A prospective
cohort study on 60 patients investigated the levels of several biomarkers, including tissue
plasminogen activator (TPA), in both hematoma fluid and peripheral blood [23]. The
authors indicated that the TPA levels in the hematoma fluid of recurrent cases were signifi-
cantly higher than those in non-recurrent cases [23]. A second prospective cohort study was
on 18 patients with spontaneous cSDH and examined plasma F XIII activity [24]. Patients
with recurrence of the spontaneous cSDH after the first operation had significantly lower
FXIII activity in comparison to the non-recurrence group (47.5% vs. 78.5%, respectively).
Moreover, the authors indicated a cut-off value of 68.5% in association with recurrence [24].
The third prospective study identified was on 61 patients treated surgically for cSDH [17].
This study indicated associations between elevated activated partial thromboplastin time
(APTT), prothrombin time (PT) and international normalized ratio (INR) and worse out-
come [17]. Reduced levels of serum fibrinogen in cases manifesting recurrence of cSDH
compared with non-recurrence cases were indicated in the univariate analysis conducted
by Wang et al. [25].

A retrospective cohort study on 90 patients showed that higher preoperative PT was an
independent risk factor for recurrence after surgical evacuation [26]. Another retrospective
cohort study on 92 patients showed that a serum fibrinogen degradation products (FDPs)
value > 5 μg/mL on admission was an independent risk factor for cSDH recurrence within
90 days [27].

3.3.4. Other/Miscellaneous

In the largest prospective cohort study identified (653 patients), blood urea nitro-
gen (BUN) levels and additional variables (PLTs, fibrinogen, leukocytes, erythrocytes,
hemoglobin, creatinine) were analyzed [25]. The authors indicated that elevated postop-
erative BUN levels (> 6.4 mmol/L) was the only measure independently associated with
cSDH recurrence [25]. In a second prospective cohort study on 119 patients, Chihi et al.
showed that the preoperative plasma brain natriuretic peptide (BNP-1) level on admission
is an independent predictor of poor functional outcome at the 5- to 6-month follow-up [28].
The authors of another prospective study on 75 patients undergoing burr hole hematoma
evacuation for subdural hematoma or hygroma measured the levels of the CSF marker
beta-trace protein (β-TP) in serum, hematoma or hygroma [9]. The authors of this study
reported that when patients with hematoma and hygroma were grouped together, the β-TP
levels measured during the first operation were significantly higher in recurrent cases [9].

A large retrospective cohort study on 274 patients showed that preoperative triglyc-
erides levels and serum lipids were positively correlated with recurrence, whilst high-
density lipoprotein (HDL) was negatively associated [29]. In this study, a cut-off level of
HDL at 37.45 mg/dL was the only variable indicated as an independent risk factor for cSDH
recurrence [29]. In the retrospective cohort study of Mainka et al. on 256 cSDH patients,
dehydration status on admission (indicated by serum urea-to-creatinine ratios (U/Cr))
was highlighted as another independent predictor for recurrence [30]. Lastly, Hirai et al.
retrospectively investigated the relationship between ABO type and cSDH recurrence after
burr hole drainage in 320 patients. The authors showed that type A was an independent
risk factor for recurrence [14].
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Table 1. Biomarker study characteristics and findings.

Author, Year
[Ref. Number]

Study
Type

Sample Size,
Recurrence %

Biofluids
Utilized

Biomarkers
Analyzed

Significant Biomarker
Findings

(Recurrence/Outcome)

König et al., 2003
[12]

Prospective
Cohort

114,
17.5%

Blood and
plasma

PLTs, INR, APTT,
fibrinogen, FXIII ↓ PLTs in recurrence

Frati et al., 2004
[21]

Prospective
Cohort

35,
14.3%

Serum and
hematoma IL-6, IL-8 ↑ Hematoma IL-6 and

IL-8 in recurrence

Katano et al., 2006
[23]

Prospective
Cohort

60,
8.1%

Serum and
hematoma

Plasminogen,
antiplasmin, TPA,
PIC, HGF, VEGF,

bFGF

↑ Hematoma TPA in
recurrence

Kristof et al., 2008
[9]

Prospective
Cohort

75,
22.7%

Serum,
hematoma and

hygroma
β-TP ↑ β-TP of hematoma and

hygroma in recurrence

Hong et al., 2009
[6]

Prospective
Cohort

66,
21.21% Hematoma IL-6, VEGF, bFGF ↑ IL-6 in recurrence

Song et al., 2013
[20]

Prospective
Cohort

30,
20% Blood

RBCs, WBCs, PLTs,
Hb, PT, APTT, INR,

TT, EPCs
↓ EPCs in recurrence

Bosche et al., 2013
[24]

Prospective
Cohort

18,
33.3% Plasma

INR, PTT, PLTs,
fibrinogen,

FXIII

FXIII activity 68.5%
(cut-off) → recurrence
(100% sensitivity, 75%

specificity)

Pripp et al., 2014
[22]

Prospective
Cohort

57,
12.5%

Blood and
hematoma

TNF-a, IL-1b, IL-2,
IL-2R, IL-6, IL-7,

IL-12, IL-15, IL-17,
CCL2, CXCL8,
CXCL9, CXCL1

and IL-1RA, IL-4,
IL-5, IL-10 and

IL-13

↑ Hematoma
anti-inflammatory

activity (IL-4, IL-5, IL-10,
IL-1 RA, IL-13) → ↓

recurrence

Pripp et al., 2017
[10]

Retrospective
Cohort

93,
17.2% Hematoma

IL-1-IL-17, TNF-a,
IFN-g, CXCL8,
GM-CSF, VEGF

↑ CXCL8 (IL8), CXCL10,
IL-5, IL-13, IFN-γ → ↓

recurrence
↑ CCL5 (RANTES) → ↑

recurrence

Hori et al., 2018
[27]

Retrospective
Cohort

92,
NR Serum

FDP, APTT, PT,
D-dimer, PLTs,

INR, Hb

FDP > 5 μg/mL =
independent recurrence

risk factor

Wang et al., 2020
[25]

Prospective
Cohort

653,
14.7% Serum

Glucose, Cr,
leukocytes,
neutrophils,

lymphocytes,
erythrocytes, Hg,

PLTs, PT, INR,
fibrinogen, BUN

↓ Serum leukocytes,
neutrophils, PLTs,

fibrinogen in recurrence
BUN > 6.4 mmol/L =

independent recurrence
risk factor

Suero-Molina et al.,
2020
[13]

Retrospective
Cohort

148,
23.6% Blood PLTs ↓ PLTs in recurrence
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Table 1. Cont.

Author, Year
[Ref. Number]

Study
Type

Sample Size,
Recurrence %

Biofluids
Utilized

Biomarkers
Analyzed

Significant Biomarker
Findings

(Recurrence/Outcome)

Liu et al., 2021
[29]

Retrospective
Cohort

274,
84.67% Serum

TG, total
cholesterol, LDL,

HDL

↑ Serum TG in
recurrence

Low HDL =
independent recurrence

risk factor
(HDL > 37.5 mg/dL,

↓ risk)

Martinez-Perez
et al., 2021

[26]

Retrospective
Cohort

90,
18.9% Blood PLTs, Hb, PT ↑ PT = independent

recurrence risk factor

Chihi et al., 2021
[28]

Prospective
Cohort

119,
13.3% Plasma BNP-1

BNP-1 = independent
predictor for functional

outcome

Hirai et al., 2021
[14]

Retrospective
Cohort

307,
10.6% Blood PLTs, ABO type

↓ PLTs = independent
recurrence risk factor;

blood type
A = independent

recurrence risk factor
(64.9% sensitivity, 58.8%

specificity)

De Oliveira et al.,
2022
[19]

Retrospective
Cohort

160,
22.5% Blood Neutrophils, NLR

Absolute neutrophil
count = independent
recurrence risk factor;

NLR ≥ 1 = independent
recurrence risk factor

(77.8% sensitivity, 66.7%
specificity);

validation on
independent sample

Idowu et al., 2022
[17]

Prospective
Cohort

61,
NR Blood

INR, PT, APTT,
NLR, CRP, ESR,

PLR

↑ APTT, ↑ PT, ↑ INR, ↓
PLR → worse outcome

Mainka et al., 2022
[30]

Retrospective
Cohort

256,
32% Serum U/CR

U/Cr > 80 =
independent recurrence

risk factor

Chen et al., 2022
[16]

Retrospective
Cohort

258,
14.3% Blood

WBCs, PLTs,
basophils,

eosinophils

Eosinophils < 0.15 × 109

= independent
recurrence risk factor

Guresir et al., 2022
[18]

Retrospective
Cohort

297,
12.5% Blood CRP, Hb, WBC,

PLTs, RDW, RPR

RPR ≥ 0.0568 =
independent recurrence

risk factor (70.3%
sensitivity, 56.2%

specificity);
low RPR → higher

Karnofsky at 3 months

Matsubara et al.,
2023
[15]

Retrospective
Cohort

466,
9.3% Blood Eosinophils, PLTs

↓ PLTs and eosinophils
≥ 100/μL =

independent recurrence
risk factors
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Author, Year
[Ref. Number]

Study
Type

Sample Size,
Recurrence %

Biofluids
Utilized

Biomarkers
Analyzed

Significant Biomarker
Findings

(Recurrence/Outcome)

Puccio et al., 2023
[11]

Prospective
Cohort

20,
42% (21%
requiring

reoperation)

Hematoma

CXCL9, MCP-1,
G-CSF, IL-6,

VEGF-A, IL-8,
PDGF-AB/BB,

PDGF-AA, MDC,
IL-1α, IP-10, IL-5,
RANTES, IL-10,
IL-1β, IL-1 Ra,

M-CSF

↑ IL-5 → ↑ GOS-E
RANTES < 1649.24 pg/mL

→ ↑ recurrence

Abbreviations. ABO: ABO blood group system, APTT: activated partial thromboplastin clotting time, bFGF:
basic fibroblast growth factor, β-TP: beta-trace protein, BNP-1: brain natriuretic peptide-1, BUN: blood urea
nitrogen, CBC: complete blood count, CCL: C-C Motif Chemokine Ligand, CRP: C-reactive protein, CXCL: C-X-C
Motif Chemokine Ligand, ECL: electrochemiluminescence, ELISA: enzyme-linked immunosorbent assay, EPCs:
endothelial progenitor cells, ESR: erythrocyte sedimentation rate, FDP: fibrinogen degradation products, FXIII:
factor XIII, GM-CSF: granulocyte-macrophage colony-stimulating factor, GOS-E: Glasgow outcome scale extended,
Hb: hemoglobin, HDL: high-density lipoprotein, HGF: hepatocyte growth factor, IFN-g: interferon gamma, IL-:
interleukin-, IL-2R: interleukin-2 receptor, IL-1RA: interleukin-1 receptor antagonist protein, INR: international
normalized ratio, IP-10: interferon-γ-inducible protein 10, LEIN: latex-enhanced immune nephelometry, LDL:
low-density lipoprotein, MCP-1: monocyte chemoattractant protein-1, M-CSF: macrophage colony-stimulating
factor, MDC: macrophage-derived chemokine, NLR: neutrophil-to-lymphocyte ratio, NPR: negative predictive
value, NR: not reported, PDGF-AA: platelet-derived growth factor-AA, PDGF-AB/BB: platelet-derived growth
factor-AB/-BB, PIC: a2-plasmin inhibitor–plasmin complex, PLR: platelet–lymphocyte ratio, PLTs: platelets, PPV:
positive predictive value, PT: prothrombin time, RANTES: regulated upon activation, normal T cell expressed
and presumably secreted, RBCs: red blood cells, RDW: red blood cell distribution width, RPR: red blood cell
distribution width to platelet count ratio, TG: triglycerides, TNF-a: tumor necrosis factor alpha, TPA: tissue
plasminogen activator, TT: thrombin time, U/CR: urea-to-creatinine ratio, VEGF: vascular endothelial growth
factor, WBCs: white blood cells, ↓: reduced (levels/counts/events of), ↑: increased (levels/counts/events of), →
associated with.

4. Discussion

4.1. Biomarker Study Characteristics/Designs and Time Trends

Twenty-three studies published between 2003 and 2023 on a total of 3749 patients were
identified in the present review. The median postoperative recurrence rate of 17.5% falls
well within the range of previous estimates (5 to 30%) [2]. The notable limitations of the
incorporated studies were their retrospective cohort/single-center designs (n =11 studies)
and/or small cohort sizes (<100 patients, n = 12 studies).

A noteworthy trend is a shift in research focus towards circulating biomarkers on
larger patient cohorts during the last four years (2020–2023: circulation focus in 12 of
13 studies, median patient size: 256 patients) compared with previous studies (2003–2018:
circulation focus in 3 of 10 studies, median patient size: 63). While hematoma biomarkers
allow for the analysis of local pathophysiological processes [3], the distinct advantages of
assessing circulating prognostic biomarkers are the ease of sampling and that they offer
the opportunity of tailoring patient treatment according to risk stratification preopera-
tively. In this context, current guidelines on cSDH treatment incorporate adjuvant drug
therapies such as cholesterol-lowering statins and anti-inflammatory corticosteroids that
are designed to improve patient neurological function and/or reduce recurrence [2,31].
From an analytical perspective, the protein analysis of biomarkers with significant find-
ings ranged from single enzyme-linked immunosorbent [6,21,23], nephelometric [9] and
electrochemiluminescent [28] assays to multiplex immunoassays [10,11,22].

4.2. Biomarkers in Recurrence Prediction

Numerous studies on biomarkers associated with inflammatory processes were identi-
fied. Enhanced levels of cytokine biomarkers in hematoma fluid have been highlighted
as evidence for a robustly elevated local inflammatory index, as well as for the involve-
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ment of inflammatory processes in recurrence. The replication of findings was evident
for IL-6 [6,21], with less consistent findings regarding the direction of change (increased
or decreased levels) in recurrent cSDH for IL-8 and RANTES [10,11,21]. The notion of
increased local anti-inflammatory activity (reflected by the levels of a panel of cytokine
biomarkers) in association with reduced cSDH recurrence rates was introduced by the
studies of a single group [10,22].

More recent studies assessing circulating cellular population ratios as markers of
inflammation support the notion of a systemic inflammatory response in cSDH and its
association with recurrence [18,19]. Thus, while Guresir et al. [18] proposed preoperative
RPR as a novel independent predictor of cSDH recurrence, De Oliveira et al. [19] highlighted
similar value for the postoperative NLR ratio. Of note, evidence for a systemic inflammatory
response triggered by cSDH was previously obtained by studies comparing levels of cell
inflammatory markers in patients and healthy controls [32,33].

Aside from the aforementioned cellular biomarkers, circulating eosinophil counts were
indicated as independent predictors of recurrence by two studies, albeit with contradictory
findings. Thus, Chen et al. [16] indicated that lower peripheral eosinophil counts are
independently associated with recurrence, while Matsubara et al. [15] reported the opposite.
The findings of Chen et al. appear consistent with evidence suggesting a protective role of
hematoma-membrane-infiltrating eosinophils against recurrence in a previous histological
study [34].

A substantial body of evidence supports a role for local coagulation and fibrinolysis
in cSDH development [35–39], including evidence for excessive activation of the former
during the early stages of development, succeeded by hyperfibrinolysis [40]. In relation to
cSDH recurrence, Katano et al. [23] found higher levels of TPA, a major fibrinolytic media-
tor, in the hematoma fluid of patients that experienced recurrences, while Wang et al. [25]
indicated lower levels of circulating fibrinogen in their recurrent cases. Circulating FDP
(but not D-dimer) levels on patient admission as an independent predictor for recurrence
was indicated by Hori et al. [27]. The authors of this study hypothesized that the systemic
elevation of FDP induces a systemic inflammatory response, which in turn influences
expansion of the hematoma and can lead to its recurrence [27]. The potential of coagula-
tion cascade mediators as peripheral biomarkers in the prediction of cSDH recurrence is
further supported by studies reporting preoperative thrombocytopenia or increased PT as
independent risk factors for cSDH recurrence [15,26,41] and of lower circulating factor XIII
in recurrent cases [24].

The formation of immature, leaky vessels in the outer membrane of cSDH upon which
damaging forces of inflammation and of abnormal cerebral pulsations are exerted has
been postulated as a driving mechanism for cSDH expansion, as well as a risk factor
for its recurrence [3,20]. A study indicating significantly lower postoperative levels of
peripheral EPCs in patients that experienced cSDH recurrences suggested that this decrease
may lead to a reduced capacity for endothelium repair, thus increasing the risk of cSDH
recurrence [20]. Following a similar logic, an attenuated protective role on vascular integrity
and endothelial function due to decreased peripheral HDL levels was postulated by a
second study indicating lower HDL levels as an independent predictor of recurrence [29].

Three additional studies indicated the potential value of peripheral biomarkers as in-
dependent predictors of recurrence. The dehydration status of cSDH patients on admission,
estimated using the blood U/Cr ratio, was reported as an independent predictor of cSDH
recurrence by Mainka et al., 2022 [30]. The authors proposed that the impact of dehydration
is due to a reduction in brain volume and/or instigation of inflammatory processes that pre-
dispose patients to the occurrence/recurrence of cSDH [30]. Wang et al. investigated BUN
levels in cSDH patients based on previous findings indicating the prognostic significance
of BUN in neurological disorders such as ischemic stroke [25]. Their findings indicated that
an elevated postoperative level of BUN is an independent risk factor for recurrence via
mechanisms that remain to be established [25]. Blood type A was also highlighted as an
independent risk factor for cSDH recurrence by Hirai et al. [14]. Nevertheless, it is worth
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pointing out that a second study on another Asian cohort, reporting significantly lower
recurrence rates, did not find an association between ABO types and cSDH recurrence [41].
Larger prospective cohort studies that may include additional population samples are
warranted to establish the impact of ABO blood types on cSDH recurrence.

4.3. Biomarkers in Neurological/Functional Outcome Prognosis

A smaller number of studies assessed biomarkers in relation to cSDH patient neuro-
logical/functional outcome. The pilot study of Puccio et al. indicated strong correlations
between higher hematoma IL-5 levels and more favorable GOS-E scores [11]. Interestingly,
higher hematoma IL-5 levels were associated with lower rates of cSDH recurrence in two
other studies included in the present review [10,22]. Consistent with the notion of a sig-
nificant association between a lower preoperative peripheral inflammatory index and a
favorable functional outcome are the findings of Guresir et al. [18], indicating significantly
higher Karnofsky scores 3 months postoperatively in the low compared to the high RPR
patient group. Moreover, Idowu et al. [17] indicated significant associations between a
low admission PLR, which represents another inflammatory marker, and poor outcome
at 3 months using the GOS and LABDES. Notably, in the same study, inflammatory mark-
ers, such as c-reactive protein (CRP) and the NLR, did not display associations with the
outcome [17].

Lastly, on the basis of previous evidence for significant associations between admis-
sion circulating BNP-1 levels and functional outcome in neurological disease, including
traumatic brain injury and stroke, Chihi et al. [28] investigated circulating peptide levels
in cSDH. Their findings indicated that preoperative BNP-1 is an independent predictor of
functional outcome at 5–6 months postoperatively [28].

5. Conclusions

In the present systematic scoping review, we mapped and analyzed the pertinent
literature on biofluid biomarkers showing promise in the prediction of cSDH recurrence
and for the prognosis of neurological/functional patient outcomes. Twenty-three studies
spanning three decades, analyzing a diverse range of biomarkers in hematoma fluid
and/or the circulation, were included. Immune cell populations and inflammatory/anti-
inflammatory cytokines comprised the most studied category of biomarkers displaying
significant findings. A notable time trend in biomarker studies was a recent shift in research
focus towards the analysis of circulating biomarkers on larger patient cohorts. Some of the
studies on peripheral biomarkers highlighted the notion that aside from local inflammatory
processes, cSDH triggers a systemic inflammatory response, and biomarkers associated
with the latter are of prognostic value. Several biomarkers were indicated as independent
predictors of cSDH recurrence and/or functional outcome, including circulating FDP, BNP-
1 and HDL as well as BUN and blood NLR and RPR ratios. In recent years, studies on cSDH
prognostic biomarkers have gained momentum. Nevertheless, additional multicenter
prospective studies are warranted to confirm and extend their findings. The identification
of prognostic biofluid biomarkers in cSDH is an active field of research that may provide
future tools guiding clinical decisions and allowing the design of treatments based on
risk stratification.
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Appendix A

The search strategy comprised the following: ((“chronic subdural haematoma”[All Fields]
OR “hematoma, subdural, chronic”[MeSH Terms] OR (“hematoma”[All Fields] AND “sub-
dural”[All Fields] AND “chronic”[All Fields]) OR “chronic subdural hematoma”[All Fields]
OR (“chronic”[All Fields] AND “subdural”[All Fields] AND “hematoma”[All Fields]))
AND (“biomarkers”[All Fields] OR “biomarkers”[MeSH Terms] OR “biomarkers”[All
Fields] OR “biomarker”[All Fields])), ((“chronic subdural haematoma”[All Fields] OR
“hematoma, subdural, chronic”[MeSH Terms] OR (“hematoma”[All Fields] AND “subdu-
ral”[All Fields] AND “chronic”[All Fields]) OR “chronic subdural hematoma”[All Fields]
OR (“chronic”[All Fields] AND “subdural”[All Fields] AND “hematoma”[All Fields]))
AND (“recurrance”[All Fields] OR “recurrence”[MeSH Terms] OR “recurrence”[All Fields]
OR “recurrences”[All Fields] OR “recurrencies”[All Fields] OR “recurrency”[All Fields] OR
“recurrent”[All Fields] OR “recurrently”[All Fields] OR “recurrents”[All Fields])), ((“chronic
subdural haematoma”[All Fields] OR “hematoma, subdural, chronic”[MeSH Terms] OR
(“hematoma”[All Fields] AND “subdural”[All Fields] AND “chronic”[All Fields]) OR
“chronic subdural hematoma”[All Fields] OR (“chronic”[All Fields] AND “subdural”[All
Fields] AND “hematoma”[All Fields])) AND (“prognosis”[MeSH Terms] OR “progno-
sis”[All Fields] OR “prognoses”[All Fields])).
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Abstract: Background: Perthes disease is a juvenile form of osteonecrosis of the femoral head that
affects children under the age of 15. One hundred years after its discovery, some light has been
shed on its etiology and the biological factors relevant to its etiology and disease severity. Methods:
The aim of this study was to summarize the literature findings on the biological factors relevant to
the pathogenesis of Perthes disease, their diagnostic and clinical significance, and their therapeutic
potential. A special focus on candidate genes as susceptibility factors and factors relevant to clinical
severity was made, where studies reporting clinical or preclinical results were considered as the
inclusion criteria. PubMed databases were searched by two independent researchers. Sixty-eight
articles were included in this review. Results on the factors relevant to vascular involvement and
inflammatory molecules indicated as factors that contribute to impaired bone remodeling have been
summarized. Moreover, several candidate genes relevant to an active phase of the disease have
been suggested as possible biological therapeutic targets. Conclusions: Delineation of molecular
biomarkers that underlie the pathophysiological process of Perthes disease can allow for the provision
of earlier and more accurate diagnoses of the disease and more precise follow-ups and treatment in
the early phases of the disease.

Keywords: Perthes disease; candidate genes; biomarkers; biological therapy

1. Introduction

Perthes disease (LCPD OMIM#150600) is an idiopathic, debilitating structural disorder
that affects the growing femoral head of children, mostly boys. The male-to-female ratio
is reported to be 3.1:1 [1]. Annual incidence is highly variable between populations and,
according to 21 studies from 16 countries, the incidence rate was found to range from
0.2 incidences per 100,000 people to 19.1 incidences per 100,000 people [2].

It is generally accepted that the main hallmark of Perthes disease is the disruption of
the blood supply to the femoral capital physis, which can lead to the collapse of the femoral
head, loss of sphericity and subsequent degenerative changes in the joint and surrounding
tissue. The natural course of the disease goes through four phases (hip synovitis, femoral
epiphysis condensation and fragmentation, reossification, and remodeling) that last several
years, eventually causing permanent mechanical disturbance of the joint in varying degrees
of intensity. Research conducted over a period of more than 100 years included external
factors connected with socioeconomic status, such as low birth weight and the mother’s
smoking habits, and other factors such as obesity and hyperactivity. The elucidation of the
etiology of the disease from this research brought many insights, though a definite cause is
still unknown [3]. However, the results of more recent research that explored biological
and physiological mechanisms have given many new answers, and we are one step closer
to a better understanding of the disease’s pathogenesis and more accurate treatment for
this disabling disease.
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Partial- or full-weight bearing restrictions and operative containment methods (femoral
and/or pelvic osteotomies) are still considered standard treatment options and are in broad
use worldwide [3–5]. During the last decade, a class of new therapeutics based on biomark-
ers has been introduced and their biological potential has been explored in animal studies.
This biological therapy provides a possibility to resolve the disease in its initial phase and
prevent subsequent complications, thus diminishing the need for operative procedures.

This review summarizes the results from research on biomarkers that are involved in
endothelial activation and dysfunction that could be involved in impaired blood supply to
the femoral head in Perthes disease. The findings of studies that examined markers relevant
to angiogenesis, inflammation and apoptosis have been introduced. An overview of the
familial and sporadic occurrence of collagen mutations is presented. We also discuss the
possible usage of new techniques for better diagnostics of the disease and the development
of biomarker-based therapeutics that directly target the cause of the disease and could
be effective in the early phases of the disease, precluding the femoral head collapse of an
affected hip.

2. Materials and Methods

Literature Search Strategy and Selection Criteria

The inclusion criteria for this narrative review encompassed available studies that
examined factors influencing the development of Perthes disease. This included hereditary
factors that could act as susceptibility factors; factors that could contribute to vascular
impairment, including markers of angiogenesis, inflammation and apoptosis; and in-
flammatory biomarkers relevant for clinical presentation. Studies describing biological
therapeutics used in preclinical models of Perthes disease were also included. Studies of
any level of evidence published in peer review journals were further analyzed.

Exclusion criteria included non-English written articles, conference presentations and
expert opinions. Articles without an accessible abstract were also excluded.

Online databases PubMed and Science Direct were searched by two independent au-
thors. The searches were conducted using the following keywords: “Perthes” or “avascular
necrosis of femoral head in children” combined with the terms “biomarkers”, “endothelial”,
“inflammatory”, “collagen mutations”, “susceptibility”, “hereditary”, “inflammation”,
“angiogenesis”, “vascular”, “apoptosis”, “biological therapy” and “genetic factors” in
order to gain the most specific results. A time range was set from 1 January 1992. to
1 October 2022. All incongruities were discussed with senior investigators until a consen-
sus was reached.

3. Results and Discussion

3.1. Endothelial Dysfunction in Perthes Disease

Vascular involvement in the etiology of Perthes disease has been proposed since its
discovery and studied in epidemiological and experimental studies. The first genetic mark-
ers to be studied in Perthes disease were markers of thrombophilia, and their significance
is described elsewhere [3,6]. In this review, we highlight endothelial markers that could be
relevant to the vascular dysfunction observed in Perthes patients.

The basic building block of blood vessels is the endothelial cells (ECs). They form a
permeability barrier, thus playing a primary role in the maintenance of hemostasis and
blood fluidity, preventing platelet aggregation and thrombosis. They contribute to the
retention of vasomotor tone, play a decisive role in angiogenesis and vasculogenesis, and
are involved in immune and inflammatory responses. They also represent a multifunctional
paracrine and endocrine organ [7]. For this reason, endothelial cell injury, activation and/or
dysfunction play an important role in the pathogenesis of diseases that involve thrombosis,
angiogenesis, vascular repair and/or inflammation, which is the case with Perthes disease.

Dysfunction of the vascular system and its life-long consequences were analyzed
by Hailer et al. in a study that involved 3141 patients and 15,595 individuals without
Perthes disease who were selected from the Swedish Inpatient Register [8]. The study
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examined Perthes patients’ risk for vascular diseases during life and included subjects
older than 30 years of age at the follow-up. Patients with Perthes disease were found to
have significantly higher risks for blood diseases, including anemias, coagulation defects
and hypertension, than the control group, implying the involvement of the vascular system
in Perthes disease [8].

Anatomical differences in Perthes patients were examined in a study where the size of
blood vessels was measured using the technique of flow-mediated dilation of the brachial
artery in response to an ischemic stimulus [9]. A notable reduction in blood velocity and
blood flow was detected in children with Perthes disease compared to controls, which was
caused by the smaller artery caliber found in affected children [9].

3.1.1. VEGF

Vascular endothelial growth factors (VEGFs) are a family of signal peptides, with
VEGF-A as the founding member [10]. VEGF-A is an extracellular signal protein that is
produced by many cells with the main function of stimulating the formation of blood
vessels during embryonic development and in adults. Angiogenesis is a process that is
essential during pregnancy and in tissue growth and repair but also in disease develop-
ment and progression. Among many other functions, VEGF-A acts as a key regulator of
endochondral ossification [11] and, therefore, represents a potential biomarker for Perthes
disease (Table 1).

Several studies explored the significance of VEGF for Perthes disease. Experimen-
tal studies on piglet and rabbit models of Perthes disease explored its role in cartilage
remodeling and ossification [12,13]. Kim et al. investigated the role of VEGF in restoring en-
dochondral ossification in the epiphyseal cartilage after ischemic necrosis in a piglet model
of Perthes disease [12]. The results of this study showed ectopic expression of VEGF in the
proliferative zone of the epiphyseal cartilage, with VEGF mRNA expression upregulation
as early as 24 h after the induction of ischemia. This study proposes a possible role of VEGF
in osteoclast recruitment and differentiation and the resorption of the necrotic cartilage
and bone and suggests that VEGF is a factor that induces the restoration of endochondral
ossification in the epiphyseal cartilage through the coupling of angiogenesis, cartilage
remodeling and ossification after ischemic damage [12].

Similar findings came from a study on rabbits which showed increased VEGF mRNA
and protein expression in the proliferative zone of epiphyseal cartilage and downregulation
of VEGF in the hypertrophic zone of epiphyseal cartilage after necrosis [13].

Two studies explored serum levels of VEGF in the active phase of Perthes disease. In
a Turkish study conducted by Sezgin et al., serum VEGF levels were compared between
28 patients and 25 controls. There was no significant difference in serum VEGF levels
between the two groups [14]. Nevertheless, a study on Indian children showed that median
serum levels of VEGF were significantly lower in the patient group compared to the normal,
healthy, control group [15]. The study also examined the level of VEGF at four different
stages of the disease but failed to find any significant differences. If future studies confirm
the significant role of VEGF, especially if differences between various stages of the disease
are established, the serum VEGF level may act as a marker for the follow-up of the disease
and a possible therapeutic target for Perthes disease.

3.1.2. eNOS

Among markers that could influence endothelial cell fate in the context of osteonecro-
sis of the femoral head, the endothelial nitric oxide synthase gene (eNOS) has been much
investigated. eNOS is primarily responsible for the generation of NO in the vascular en-
dothelium [16]. It is involved in a variety of physiologic processes, including angiogenesis,
thrombosis and bone turnover, making it a promising marker for Perthes disease.

There are three polymorphisms of the eNOS gene that have been identified thus far, includ-
ing a −786 T > C (rs2070744) polymorphism in the promoter region, an 894 G > T (rs1799983)
polymorphism in exon 7 and a variable number of tandem 4a4b repeats (rs61722009) in
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intron 4 [17,18]. A Chinese study that examined 4a4b polymorphism in intron 4 and
894 G > T polymorphism in exon 7 found that both polymorphisms may be risk factors for
Perthes disease [19]. An Iranian study that examined all three polymorphisms of eNOS
highlighted the association of 894 G > T and −786 T > C but not the 4a4b polymorphism
with susceptibility to Perthes disease [20].

3.1.3. Plasma Exosomes and Microparticles

The number of endothelial progenitor cells in circulation represents a valuable tool
for the justification of the state of the endothelium and might also be explored in the
context of physiological and pathological events. Additionally, circulating endothelial
microparticles (EMPs) and exosomes, which represent extracellular vesicles secreted by
endothelial cells, may vary in number and content during normal and pathological con-
ditions, and could have clinical significance. The involvement of endothelial cells in the
development of Perthes disease was recently studied by the analysis of plasma extracellular
vesicles [21]. The study showed an increased number of EMPs in the circulation of Perthes
patients and suggested that the mechanism of action of these circulating EMPs might be
endothelial cell apoptosis, endothelial dysfunction and deregulated angiogenesis in Perthes
patients [21]. In a study by Huang et al., epigenetic factors that might contribute to Perthes
disease were examined in the plasma exosomes of both Perthes patients and controls [22].
They showed the differential expression of several miRNAs involved in endothelial cell
dysfunction (miR-3133, miR-4644, miR-4693-3p and miR-4693-5p) and osteoclastogenesis
(miR-3133, miR-4693-3p, miR-4693-5p, miR-141-3p and miR-30a) that might contribute to
the development of Perthes disease [22].

3.2. Inflammatory Factors in Perthes Disease

Inflammation plays a fundamental role in Perthes disease as significant and persistent
synovitis is present throughout the course of the disease [23]. Synovitis causes cartilage
edema, the deterioration of cartilage mechanical properties, cartilage hypermetabolism and
cartilage hypertrophy. It is the primary cause of hip pain in affected children. Synovitis
has a negative impact on bone formation during the repair process and is involved in the
subsequent ischemic osteonecrosis present in Perthes patients. During the fragmentation
phase of the disease, an unsuccessful attempt of the body to repair brittle bone tissue of
the collapsing femoral head occurs; instead of forming normal bone matter with high
strength and low compressibility, a fibrovascular tissue with fragments of necrotic bone is
formed [24]. Yet, only in recent years have researchers gained significant data about the
nature of the inflammatory process in Perthes disease.

The process of bone turnover represents a fine balance between bone formation and
bone resorption, which is based on the activity of two major cell populations in the bone:
osteoclasts (OCs) and osteoblasts (OBs) [25–27]. It is known that IL-6 positively regulates
OCs [28,29] and negatively regulates OBs [29,30]. Its elevation could trigger the uncoupling
of bone resorption and bone formation, which is characteristic of this stage of the disease
and leads to ischemic osteonecrosis of the developing hip.

The significance of genetic markers of inflammation for the development and activity
of Perthes disease, specifically IL-6, TLR4, TNF-α and IL-3, were first studied in associative
studies [31,32]. Two promoter polymorphisms in IL-6, 174 G > C and −597 G > A, and two
SNVs that encode mutations in the ectodomain of TLR4, D299G and T399I, were exam-
ined [31]. The significance of TLR4 was not shown, but heterozygous carriers of promoter
variants IL-6 −174 G > C and −597 G > A had a lower chance of developing Perthes disease
than carriers of both homozygote genotypes [31]. Next, variants in TNF-α −308 G > A and
IL-3 −16 C > T were analyzed [32]. TNF-α has been recognized as a skeletal catabolic agent
that stimulates osteoclastogenesis while simultaneously inhibiting osteoblast function [33],
and gene variants in IL-3 were shown to be associated with rheumatoid arthritis [34]. No
significant differences between the frequencies of analyzed gene variants in TNF-α or IL-3
genes between the patient and control groups were found [32]. An Iranian study from 2019
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examined the significance of IL-6 −174 G > C and −572 G > C genotypes in developing
Perthes disease in Iranian children [35]. The study showed that the mutant homozygote
genotype CC of IL-6 −174 G > C polymorphism was associated with an increased risk of
Perthes disease in the Iranian population.

Several studies examined the expression of inflammatory cytokines in the serum of
Perthes patients and animal models of the disease.

In a study by Kamiya et al., 27 inflammatory cytokines and related factors were
analyzed in the synovial fluid of 13 Perthes patients and significant overexpression of IL-6
was observed [36]. In addition, this study showed that in the active stage of Perthes disease
IL-6 is a key inflammatory cytokine present in the synovial fluid, with strong impact on
bone turnover. The detailed mechanism of action of IL-6 was studied by Yamaguchi et al.,
and the relevance of HIF-1α in the activation of IL-6 was designated [23]. Namely, when
osteonecrotic articular chondrocytes were cultured under hypoxic conditions, a significant
increase in the expression of IL-1β and TNF-α genes was observed, which was inhibited
by the IL-6 receptor blocker tocilizumab. This work highlighted tocilizumab as a potential
therapeutic in the treatment of synovitis.

A murine model of Perthes disease was used to further delineate the role of IL-6 in the
process of revascularization and new bone formation following ischemic osteonecrosis [37].
Ischemic osteonecrosis was surgically induced in wild-type and IL-6 knockout (KO) mice.
Significant differences were observed in OB and OC numbers and bone formation and
mineral apposition rates in the osteonecrotic side of the IL-6 KO mice compared to the
wild-type mice.

TLR4

In order to delineate the mechanism of the inflammatory cascade responsible for the
disturbed process of bone remodeling and the receptor mechanisms involved in sensing
the necrotic bone observed in this phase, the role of macrophages was studied in detail in a
piglet model of Perthes disease [38]. The study showed that macrophages that are exposed
to soluble factors from the necrotic bone were activated (M1 phenotype) and showed
increased secretion of proinflammatory cytokines TNF-α, IL1-β and IL-6. The upregulation
of pattern recognition receptor TLR4 in activated M1 macrophages was determined and the
relevance of the TLR4 signaling pathway for proliferation, migration and proinflammatory
cytokine responses in activated macrophages was established [38]. It was suggested that
the process of inflammation, driven by proinflammatory mediators, could be responsible
for the distortion of the regenerative process, where instead of new bone formation, the
repair process aids the formation of fibrotic tissue. The relevance of the TLR4 signaling
pathway in this process was ultimately confirmed by knockdown experiments using the
CRSPR-Cas9 approach and the TLR4 inhibitor, TAK242 [38]. TLR4 is a known receptor
where both infectious and non-infectious stimuli converge to elicit a pro-inflammatory
response. It is involved in the lipopolysaccharide sensing of gram-negative bacteria and
binds the endogenous molecules produced as a result of tissue injury [39]. Hence, these
results illuminated a new paradigm for therapy that could be based on TLR4 inhibitors.
Since the TLR4 signaling pathway regulates OB and OC formation [40], the damage caused
by its misregulation could be repaired using such an approach.

3.3. Role of Apoptotic Factors in Uncoupled Bone Metabolism

Several studies explored the mechanism of programmed cell death in the avascular
necrosis of the femoral head (ANFH) and reported that the processes leading to the death
of femoral head cells involve an increased rate of apoptosis rather than solely bone cell
necrosis [32,41–43]. The importance of the inner apoptotic pathway was also observed
in the peripheral blood mononuclear cells of Perthes patients, where the upregulation of
BAX gene expression levels and an increased BAX/BCL2 ratio were first shown by Srzentic
et al. [32]. Results from a recent study by Zhu et al. revealed elevated levels of BAX mRNA
and protein in the cartilage, serum and chondrocytes of Perthes patients compared with
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a healthy control group. Moreover, this study examined the underlying mechanism of
the elevation of BAX gene expression and showed that miRNA-214 is a direct regulator of
the BAX gene [42]. It showed that the downregulation of miR-214 promotes chondrocyte
viability and decreases apoptosis via the downregulation of BAX. Taken together, these
results indicated that the expression levels of miR-214 and BAX might represent reliable
biomarkers and potential therapeutic targets in the treatment of Perthes disease.

3.4. Familial Clustering and Tween Studies of Perthes Disease

Since the first mentions of Perthes disease described among siblings [2,3], familial cases
have been occasionally reported, but statistical analysis usually negates the influence of
genetic factors on the genesis of Perthes’ disease. One of the largest studies that investigated
the familial incidence of Perthes disease was conducted among 310 Scottish patients [44].
Of the 310 patients with a family history of the disease (246 male, 64 female; male to female
sex ratio 3.8:1), 35 had bilateral disease (11.3%). Five dizygous and one monozygous twin
pairs were present among the patients, with only one sibling affected in each of them. This
study highlighted low overall proportions of affected relatives, with only a 1.6% frequency
of appearance among siblings.

The largest study on twins explored the incidence of Perthes disease among 81 twin
pairs of Danish children with at least one affected sibling [45]. Nevertheless, among the
10 pairs of monozygotic, 51 dizygotic and 20 unknown zygosity (UZ) twins described in
this study, only 4 concordant pairs were found: 2 of each in the dizygotic and UZ groups.
As expected, statistical analysis showed a low probability of a hereditary component of
this disorder.

Interestingly, there are families that are prone to joint diseases similar to Perthes
disease, such as avascular necrosis or secondary osteoarthritis. A common marker for this
type of heritable susceptibility is collagen type II protein.

3.5. COL2A1 Mutations

Collagen type II is a fibrillary structural protein mainly found in hyaline and articular
cartilage, but also in other tissues, such as the intervertebral disc (nucleus pulposus), retina
(as a part of the clear gel that fills the eyeball (vitreous humor)), sclera and lens of the
eye, nose, inner ear, and external ear [46]. As with other types of collagens, collagen
type II is a triple helix consisting of three type α1(II) monomers. Fibrils of collagen type
II are cross-linked in the viscous proteoglycan matrix with collagen type IX, forming a
structure that provides the tissue with strength and compressibility that allows it to resist
large deformations in shape, giving joints the ability to absorb shocks [47]. Mutations are
dispersed throughout the entire gene, and no mutational hot spots within the COL2A1 gene
have been identified. Several publications reported the presence of missense mutations
in the COL2A1 gene (COL2A1 OMIM#120140) in Perthes patients in sporadic but also
in familial cases [48–51]. All mutations found in Perthes patients are missense types of
mutations leading to the substitution of the amino acid glycine with another, usually larger,
amino acid, predominantly serine (Figure 1). Glycine is a small, nonpolar amino acid, and
its substitution with a larger amino acid leads to structural changes in the triple-helical
collagen type II structure [47].

The recurrent p.Gly1170Ser mutation (c.3665 G > A) in exon 50 of the COL2A1 gene
was first reported in two Taiwanese families with ANFH [52] and then in Japanese and
Chinese families with Perthes disease [48,49]. Miyamoto et al. described three generations
containing seven family members affected by Perthes disease, in whom the p.Gly1170Ser
mutation was detected [49]. Another comprehensive genetic study was conducted in order
to trace the same mutation through a five-generation Chinese family affected by three dif-
ferent joint diseases [48]. Of the forty-two family members analyzed in this study, sixteen
members were affected by one of three joint diseases: Perthes disease (five affected mem-
bers), avascular necrosis (AVN) of the femoral head (six affected members) or osteoarthritis
(OA) (five affected members). Genetic analysis showed the presence of the c.3665 G > A
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mutation of the COL2A1 gene in the heterozygous state in all affected family members,
with the exception of one 8-year-old carrier, who was clinically asymptomatic. The authors
concluded that this genetic variant was a disease-causing mutation in this family.

In another family study, a similar phenotypic presentation was described as a con-
sequence of another mutation in the COL2A1 gene, c.1888 G > A, p.Gly630Ser in exon
29 [51]. In order to detect this disease-causing mutation and trace its segregation, forty-five
members of a four-generation Chinese family were recruited and analyzed. The study
found that six family members were affected by either Perthes disease or ANFH and, in all
of their DNA samples, the mutation c.1888 G > A of the COL2A1 gene was detected. The
same mutation was detected in a 7-year-old girl who was asymptomatic. The mutation was
absent in samples from healthy family members and controls.

These two family studies are examples of the presence of a disease-causing mutation
in the COL2A1 gene, with a different onset of clinical manifestation. Factors that could
influence the closure of the femoral head epiphysis, such as hormonal status, body weight
or circulation problems, appear to be critical factors in determining phenotypic expression
and defining the age of the onset of disease phenotypes.

 

Figure 1. Protein sequence alignment of COL2A1 protein. COL2A1 proteins show high conservation
of the primary structure among distant species. The figure shows CLUSTAL OMEGA (1.2.4) multiple
sequence alignment of the regions of COL2A1 protein of different organisms: Human, Mus musculus,
Xenopus laevis, and Danio rerio [Uniprot identifiers: P02458, P28481, Q91717, Q2LDA, respectively].
Highlighted amino acids show the mutations found in Perthes patients. c.638 G > A (p.Gly213Asp)
(exon 9); c.2014 G > T (p.Gly672Cys) (exon 31) (NM_001844.5) [50]; c.1888 G > A (p.Gly630Ser) (exon
29) (NM_033150.3) [51]; c.3665 G > A (p.Gly1170Ser) (exon 50) (NM_033150.3) [48,49]. The alignment
of the whole protein sequence is given in Supplementary Material.

COL2A1 Mutations in Patients with Bilateral Presentation

Mutations in the COL2A1 gene were rarely found in sporadic cases [53]. The only
study where mutations in the COL2A1 gene were found in sporadic cases was the study
by Kannu et al., which described two children with bilateral presentations of Perthes
disease [50]. Two different mutations were found in probands (c.2014 G > T (p.Gly672Cys)
and c.638 G > A (p.Gly213Asp)), but not in their family members. This very interesting
finding highlights the need to seek COL2A1 mutations in bilateral cases of Perthes disease,
which could be beneficial for differential diagnosis and management of patients.
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Table 1. Studies on biomarkers in Perthes disease.

Biomarker SNV Experimental Model Reference

VEGF piglet model Kim et al. [12]

VEGF rabbit model Li et al. [13]

VEGF human serum Sezgin et al. [14]

VEGF human serum Tiwari et al. [15]

eNOS 894 G > T
4a4b human peripheral blood Zhao et al. [19]

eNOS −786 T > C; 894 G > T
4a4b human peripheral blood Azarpira et al. [20]

EMPs vesicles human plasma Li et al. [21]

exosomes human plasma Huang et al. [22]

IL-6
TLR4

174 G > C; −597 G > A
D299G; T399I human peripheral blood Srzentic et al. [31]

TNF-α
IL-3

−308 G > A
−16 C > T human peripheral blood Srzentic et al. [32]

IL-6 −174 G > C; −572 G > C human peripheral blood Akbarian-Bafghi et al. [35]

IL-6 human synovial fluid Kamiya et al. [36]

IL-6 piglet model Yamaguchi et al. [23]

IL-6 murine model Kuroyanagi et al. [37]

TLR4 piglet model Adapala et al. [38]

BAX, BCL-2 human peripheral blood Srzentic et al. [32]

Bax, miR-214 human cartilage, serum and chondrocytes Zhu et al. [42]

COL2A1 c.3665 G > A human peripheral blood Su et al. [48]

COL2A1 c.3665 G > A human peripheral blood Miyamoto et al. [49]

COL2A1 c.638 G > A
c.2014 G > T human peripheral blood Kannu et al. [50]

COL2A1 c.1888 G > A human peripheral blood Li et al. [51]

3.6. Biological Therapy for Perthes Disease

The accumulation of data on particular pathophysiological changes at various stages
of the disease makes biological therapy a promising option for the treatment of patients
(Table 2). Bone turnover relies on biogenesis and the activity of OB and OC, and their
number and function are tightly regulated. In this respect, the receptor activator of nuclear
factor κ-B ligand (RANKL) plays a fundamental role, and the fine-tuning of this process
is controlled by its receptors: a transmembrane receptor for RANK and a soluble decoy
receptor, osteoprotegerin (OPG) [24].

The mode of action of therapies that can target OC-mediated bone resorption and
prevent femoral head deformity is elucidated. The fragmentation (resorptive) stage of
Perthes disease lasts for 1–2 years [24] and agents that could attenuate bone resorption and
stimulate bone formation, such as bisphosphonates (BP) and RANKL inhibitors, could be
beneficial at this stage. Data about the usage of BP (Ibandronate and Zoledronic acid) from
a pig model of ischemic necrosis [54], rat model of Perthes disease [55] and rat model of
traumatic osteonecrosis [56] have shown that systemically administered BP has a protective
role regarding the femoral head. The mode of action of these drugs is the stimulation of OC
apoptosis, without affecting the inhibition of OC or new bone formation [57]. Nevertheless,
BP have many limitations, especially when used with children. Their long half-life can have
inhibitory effects on bone growth, and their systemic administration has limited access to
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the necrotic bone [57]. An ongoing clinical trial in Australia (ACTRN12610000407099) will
compare the results from the intravenous administration of zolendronic acid in 100 children
receiving the standard treatment [58].

However, subcutaneous injections of osteoprotegerin (human OPG-Fc) have been
shown to have a protective role in the femoral head in a piglet model of Perthes disease [24].
Results indicate that RANKL inhibition produced a decreased total number of OC in repair
tissue. Despite the finding that RANKL inhibitors do not bind to bone and that their effect
is reversible since they are rapidly cleared from circulation, RANKL inhibition can be
considered a novel therapeutic strategy for femoral healing deformity diseases.

3.6.1. Anti-IL-6 Therapy

The influence of IL-6 on bone turnover and the effects of the blockade of the IL-6
receptor have been proven in in vitro and animal models and clinical studies of rheumatoid
and juvenile arthritis [59–62]. Since the first confirmation of the role of IL-6 in Perthes
disease [31,36], an in vitro study showed that the expression of IL-6 is HIF-1 dependent
and is attenuated by the anti-IL-6 monoclonal antibody, tocilizumab [23]. These findings
converged in the preclinical study of Ren et al., who used tocilizumab on a piglet model of
Perthes disease to explore its influence on hip synovitis and bone healing [63]. Biweekly
intravenous injections in doses of 15 to 20 mg/kg were applied in this preclinical setting
and, after examination of the experimental and control groups, encouraging results were
obtained. Significantly higher bone volume and a lower number of OC per bone surface
were shown in the tocilizumab group compared to the control group. Additionally, the
number of synovial macrophages and vessels was significantly lower in the tocilizumab
group compared to the control group, showing that both the effect on attenuated osteo-
clastogenesis and the inhibition of angiogenesis had a positive influence on alleviated hip
synovitis, supporting bone healing after treatment.

3.6.2. Cellular Therapy as an Option for the Treatment of Perthes Disease

Constant improvements in understanding the biology and course of action of mes-
enchymal stem cells (MSCs) have encouraged their application and modernized the field of
skeletal regenerative medicine. Pediatric cases of bone and joint diseases could potentially
have enormous benefits for treatment using stem cells. Severe congenital impairments of
bone metabolism, such as osteogenesis imperfecta (OI), have already been successfully
treated using MSCs prenatally [64,65] and postnatally [66]. MSCs could be a promising
option for diseases where no other treatment options are available and for chronic diseases
that require lifelong therapy or where standard therapy gives unsatisfactory results.

Table 2. Biological treatments of Perthes disease.

Therapy Experimental Model Reference

Osteoprotegerin piglet model Kim et al. [24]

Ibandronate pig model Kim et al. [54]

Zoledronic acid rat model Little et al. [55]

Zoledronic acid rat model Little et al. [56]

Tocilizumab piglet model Ren et al. [63]

ADSC rabbit model Wang et al. [67]

Usage of MSCs in the pediatric population must be preceded by sufficient and encour-
aging results from preclinical trials and safety and efficacy clinical studies and adequate
results from treatments of similar diseases in adults. A pioneering attempt in the treatment
of Perthes disease using stem cells was described in a study by Wang et al., where the
authors used a combination of drilling through the growth plate with injections of adipose-
derived mesenchymal stem cells (ADSC) and bone morphogenetic protein 2 (BMP-2) on an
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ischemic model of epiphyseal ischemic necrosis of the femoral head in juvenile rabbits [67].
The treatment showed new bone formation and prevented the collapse of the femoral head
epiphysis in an experimental model of Perthes disease.

There are also available results from the treatment of other pediatric joint diseases,
such as juvenile idiopathic arthritis (JIA), which is a form of juvenile rheumatoid arthritis.
Ten patients who were treated using umbilical cord-derived MSCs were followed for
2 years. No side effects were detected. The patients’ symptoms improved and the dose of
antirheumatic drugs decreased during the follow-up period with good tolerance [68]. This
is an important result, suggesting a new paradigm of treatment for this severe condition.

4. Conclusions

The delineation of molecular biomarkers that underlie the pathophysiological process
of Perthes disease allows for the possibility to provide earlier and more accurate diagnoses
and more precise follow-ups and treatment in the early phases of the disease. In this
respect, techniques that analyze extracellular particles from the patient’s plasma could be
used as a new tool for early diagnosis and follow-up. Markers involved in endothelial cell
dysfunction; markers of angiogenesis, inflammation and apoptosis; and genes involved in
bone turnover are possible new targets for biological therapy. In the years to come, high
throughput methods of sequencing, such as whole exome sequencing (WES) and whole
genome sequencing (WGS), will provide additional data on other genetic loci that could be
of interest for the development of Perthes disease.
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