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Special Issue “GIS Applications in Green Development”

Yannis Maniatis

Department of Digital Systems, University of Piraeus, 18534 Piraeus, Greece; maniatis@unipi.gr

In the context of climate change, the role of Geographic Information Systems (GIS) in
green developments cannot be overstated. The application of smart GIS is the linchpin for
decision makers tasked with designing and monitoring climate-conscious solutions at local,
national, and international scales. With 75% of the Earth’s surface now impacted by human
activities, it is imperative to expand the use of smart GIS to predict and mitigate the impact
of these activities across forests, oceans, urban and rural areas, transportation networks,
and production sites. This Special Issue of Applied Sciences, titled “GIS Applications in
Green Development”, explores the pivotal role of GIS in advancing sustainability across
diverse domains.

The five papers presented in this Special Issue consider the potential intersection of
GIS and green developments in urban planning, renewable energy integration, disaster
management, and the energy sector. According to Ostapenko et al. [1], the potential to
implement renewable energy sources in Ukraine is scrutinized using global and local
Geographic Information Systems (GIS). The study highlights GIS’s prowess in identifying
suitable territories for renewable energy development, assessing technical potential and
facilitating the integration of renewable energy technologies in Ukraine’s energy sector.
Zorzano-Alba et al. [2] addressed the sensitive issue of the visual impact associated with
renewable energy infrastructure, introducing a novel methodology for identifying optimal
locations for photovoltaic power plants, especially in areas of cultural or scenic significance.
Maniatis et al. [3] focused on fire risk mapping in the context of climate change. The
authors presented an innovative approach, incorporating recent land cover changes, to
highlight regions with a high fire risk. Through the integration of a support vector machine
(SVM) algorithm and the analytic hierarchy process (AHP) within a GIS framework, the
authors created a robust fire risk estimation model. The model identifies high-risk areas
in the Dadia-Lefkimi-Soufli National Forest Park, Greece, (although it can be adapted for
other regions) reinforcing the vital role of GIS in disaster management. Pinna et al. [4]
offer a comprehensive assessment of Sardinia’s rooftop photovoltaic potential using GIS
data and an efficient shadow calculation algorithm. Their innovative approach provides a
high-resolution, full census evaluation of the photovoltaic potential, which can be applied
on a regional scale. By estimating not only the geographic but also the technical and
economic potential, the paper exemplifies how GIS facilitate large-scale renewable energy
planning. Yildiz [5] explores the wind energy potential of Balıkesir Province, Turkey,
through GIS functions. The study employs wind speed data from meteorological stations
and extrapolates it to create a wind speed map, enhancing this methodology by using an
equation for turbine placement that is compliant with national regulations. This innovative
approach enables the calculation of wind energy potential across the province, contributing
to the knowledge regarding renewable energy assessments using GIS.

The collection of papers in this Special Issue emphasizes that GIS are more than a
technology; in fact, they are an indispensable tool in the quest for green developments and
sustainable management. By providing insights, data-driven decision support, and innova-
tive methodologies, GIS empower us to address the profound environmental challenges of
our time.
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Determining Wind Energy Potential Using Geographic
Information System Functions: A Case Study in Balıkesir,
Turkey

Selim Serhan Yildiz

Department of Geomatics Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey;
serhan@osmaniye.edu.tr

Abstract: With developing technology, energy consumption and requirements are steadily rising.
Wind energy emerges as an indispensable energy source in the world, where energy requirements
are increasing gradually due to important features such as being renewable, sustainable, easily
accessible, and environmentally friendly. In recent years, wind energy investments in Turkey have
increased significantly, in line with the rest of the world. In recent decades, a significant number of
investors have performed investment studies in this area. In this study, the wind energy potential
of the Balıkesir Province in Turkey was calculated using geographical information system (GIS)
functions. A wind speed map was created by using wind speed data measured at a 10 m altitude at
32 meteorological stations. The wind speeds were extrapolated to 100 m considering the land cover
data, and a wind speed map of the Balıkesir Province was created using GIS functions. An equation
was produced to calculate the number of turbines that can be placed in a certain area depending
on the national regulation, which is also the novelty of this study. By using this equation, the wind
energy potential values of the Balıkesir Province and its districts were obtained according to varying
wind speed ranges. The results obtained in this study were compared with the wind energy potential
atlas of Turkey (REPA).

Keywords: wind energy; wind speed; potential assessment; geographical information system (GIS);
renewable energy

1. Introduction

Energy consumption is increasing due to the rapidly growing world population and
technological developments. Natural energy resources play an important role both in
meeting the needs of countries and in development efforts throughout history. Today,
countries that are advanced in terms of their development are those that have managed to
use their natural resources efficiently. People want to benefit from all resources on Earth
and have their needs met, which is difficult due to the rapid increase in global population.
Planning and project studies about determining, obtaining, storing, processing, and using
natural resources to meet the needs of people have shown how important natural resources
are for human life. Natural energy resources include renewable and non-renewable sources.
The main sources of non-renewable energy are oil, natural gas, coal, and nuclear energy.
Oil, natural gas, and coal are called fossil fuels. Biomass, geothermal, solar, wind, and
hydroelectric energy sources are the leading sources of renewable energy. Due to the lack of
continuity of non-renewable energy resources, it is not possible to meet the energy needs of
the world forever. According to Marks-Bielska et al. [1], experts warn that non-renewable
energy sources may run out by 2040 with the present energy consumption in the world.
The air pollution caused by the greenhouse gases generated during the consumption of
fossil fuels poses a threat to the climate balance of the Earth [2]. Renewable energy is
a type of energy source that depends on the climatic conditions of a region, produces
less greenhouse gas emissions than fossil energy sources, and is naturally replenished [3].

Appl. Sci. 2023, 13, 9183. https://doi.org/10.3390/app13169183 https://www.mdpi.com/journal/applsci
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Renewable energy sources are more advantageous than fossil energy sources due to their
unlimited amount, less harm to the environment, and safety [4].

Solar and wind energy are the best known and fastest-growing renewable energy
sources that will help to ensure sustainable development in the world [5]. Wind energy is
the most developed and commercially available energy type among the renewable energy
sources in the world. The People’s Republic of China ranks first for the development of
wind energy production in recent years. The United States, Germany, India, and Spain
follow the People’s Republic of China [6–9]. The installed wind power capacities of
countries and their places in the world rankings are given in Table 1 [8].

Table 1. Installed capacity and ranks of countries [8].

Rank Country
Installed Capacity 2020

(MW)
New Installations 2021

(MW)
Growth Rates

(%)
Installed Capacity 2021

(MW)
Share in the
World (%)

1 P.R. China 288,029 58,641 20.4 346,670 41.0
2 United States 122,328 12,518 10.2 134,846 15.9
3 Germany 62,208 1716 2.8 63,924 7.6
4 India 38,625 1732 4.5 40,357 4.8
5 Spain 27,446 750 2.7 28,196 3.3
6 United Kingdom 24,167 2645 10.9 26,812 3.2
7 Brazil 18,010 3827 21.2 21,837 2.6
8 France 17,949 1132 6.3 19,081 2.3
9 Canada 13,627 677 5.0 14,304 1.7
10 Sweden 9922 2175 21.9 12,097 1.4
11 Italy 10,850 258 2.4 11,108 1.3
12 Turkey 9305 1797 19.3 11,102 1.3
13 Others 99,992 12,964 13.0 112,956 13.4

Considering the Republic of Turkey’s eleventh development plan covering the
2019–2023 period, the share of renewable energy sources in electricity production for
2023 is estimated to be 38.8% [10]. According to Turkey Electricity Investments in the
June 2022 Summary Report prepared by the General Directorate of Energy Affairs, 54.05%
of the total installed capacity of 101,518 MW, as of 30 June 2022, consists of renewable
energy production facilities [11].

Wind energy production in Turkey first began in 1998 in Izmir [12]. After the initial
setup, the development of wind energy production in Turkey has progressed in a way
consistent with its general development in the world. However, the production of wind
energy investments in Turkey has significantly increased in recent years. The total installed
capacity, which was 1375.80 MW in 2010, reached 11,101.82 MW as of January 2022. The
highest growth in terms of the installed capacity during this period was 1797 MW between
2020 and 2021. This increase elevated Turkey’s place in the world rankings significantly.
The annual rate of increase, which was around 30% in the first years, decreased noticeably
between 2016 and 2019, and declined by around 9% in 2019. After 2019, the annual rate
of increase started to rise again and reached 19.31% at the end of 2021. In recent years,
in order to increase the renewable energy production in Turkey, a number of incentives,
such as tax exemptions, fixed price guarantees, and public land allocation, have been
given by the government [13]. With the help of these incentives, wind energy investments,
which are an important renewable energy source, have gained momentum. When cities are
compared in terms of their total installed capacity, İzmir ranks first with 1886.70 MW, Balıke-
sir second with 1375.05 MW, Çanakkale third with 917.35 MW, and Manisa fourth with
727.55 MW. The total installed capacity of these four cities constitute 44.3% of Turkey’s in-
stalled capacity [14]. When the installed capacity increase of the provinces between January
2021 and January 2022 is examined, İstanbul takes the lead with an increase of 350.09 MW.
Yalova, Çanakkale, Balıkesir, Kırklareli, Bursa, and Sakarya follow İstanbul [14,15]. The
installed capacities, growth rates, and shares of the provinces in the country’s capacity
as of January 2021 and January 2022 are shown in Table 2. In addition, the geographical
distribution of the provinces within the top twenty in terms of their installed wind power
capacity in Turkey is given in Figure 1.
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Table 2. The installed capacities, growth rates, and shares of the provinces in Turkey [14,15].

Rank Province
Installed Capacity

January 2022
(MW)

New Installations 2021
(MW)

Growth Rates
(%)

Installed Capacity
January 2021 (MW)

Share in the
Country (%)

1 İzmir 1886.70 88.55 4.9 1798.15 17.0
2 Balıkesir 1375.05 155.00 12.7 1220.05 12.4
3 Çanakkale 917.35 166.03 22.1 751.32 8.3
4 Manisa 727.55 10.80 1.5 716.75 6.6
5 İstanbul 684.39 350.09 104.7 334.30 6.2
6 Kırklareli 481.68 150.08 45.3 331.60 4.3
7 Hatay 437.85 23.20 5.6 414.65 3.9
8 Afyon 368.45 0.00 0.0 368.45 3.3
9 Aydın 365.60 72.00 24.5 293.60 3.3

10 Konya 337.80 24.00 7.6 313.80 3.0
11 Yalova 308.95 174.60 130.0 134.35 2.8
12 Bursa 286.00 143.40 100.6 142.60 2.6
13 Kayseri 274.35 0.00 0.0 274.35 2.5
14 Osmaniye 265.30 0.00 0.0 265.30 2.4
15 Mersin 253.55 0.00 0.0 253.55 2.3
16 Muğla 237.25 32.00 15.6 205.25 2.1
17 Tekirdağ 187.95 10.25 5.8 177.70 1.7
18 Kırşehir 168.00 0.00 0.0 168.00 1.5
19 Sakarya 162.70 135.10 489.5 27.60 1.5
20 Sivas 155.30 0.00 0.0 155.30 1.4

Figure 1. Geographical distribution of the provinces within the top twenty in terms of installed wind
power capacity in Turkey.

Wind speed and wind power potential are among the most important factors taken
into consideration when establishing wind power plants. Therefore, the availability of
standardized wind speed data is crucial for potential determination studies. Having up-to-
date and reliable data in line with standards will enable consistent modeling procedures
and comparatively reduce the effort spent on modeling [16].

The lowest (cut-in) speed required for current wind turbines to start generating electric-
ity is generally 3 m/s [17–19]. Although wind turbines can produce energy at low speeds,
wind speeds must be above a certain value for economically sustainable production. There
are different studies about this subject in the literature. The exclusion value of wind speed
considered in these studies varies between 5 and 7 m/s [20–27].
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When the literature about determining wind energy potential is examined, studies are
generally carried out based on only one point [28–38]. It is not very meaningful to make
evaluations for large areas such as districts and provinces by using only one point. For
example, Bertrand et al. [34] determined the energy density of Ambam in Cameroon. Wang
and Liu [35] studied the wind energy potential of the Maling Mountain in China at a height
of 30 m. The wind speeds were not extrapolated to a certain height. Ongaki et al. [39]
determined the wind power density of the Kisii Region in Kenya using wind speed data
obtained from four stations at a height of 10 m. The wind speeds were extrapolated to
different heights from 20 m to 70 m. The wind power density of the case study’s station was
calculated in accordance with these wind speeds. Çakmakçı and Hüner [36] calculated the
wind energy potential of the Kırklareli University Kayalı Campus at an altitude of 100 m.
Paraschiv et al. [37] obtained the wind power density in the southeast of Romania near to
Tulcea city. All used wind speeds obtained from only one station. Jung and Schindler [38]
assessed the wind energy potential of Germany using several data points under climate
change at the wind turbine scale. They produced a wind speed map by using a Wind
Speed-Wind Shear model (WSWS). Although the wind speed map was created in the study,
the wind potential evaluations were made on a point basis. Since the studies were carried
out using a point-based approach, it is not meaningful to use this for the power potential
calculation of large areas. Wind speed measured at multiple points spread over the studied
area is required to consistently calculate the wind power potential over large areas.

With the help of geographic information system (GIS) functions, wind speed values
at multiple points can be used as input data, and wind speed maps of a particular area
can be created using interpolation methods. In this way, a basis is provided for studies in
order to calculate the wind power potential in a specific area. Anwer and Deshmukh [40]
created a wind speed map of the southern states of India based on 28 data points using the
kriging interpolation method of GIS tools. The wind speed map was created in counters
to illustrate the wind speed values. Since the produced map was black and white, it
was not clearly understood which wind speed value the areas between the two counters
had. Feng et al. [41] produced a wind speed map of mainland China using the inverse
distance weighting (IDW) interpolation method. The wind energy potential of the study
area was calculated for suitable areas for wind farm installation by excluding restricted
areas, similar to this study. Zahedi et al. [42] adopted a multi-criteria decision support
system to determine the suitable areas for wind turbine installation in the western region of
Iran using GIS tools. They determined the wind potential of the suitable sites in the study
area, similar to this study. There was no approach for determining the most appropriate
spatial interpolation method in both three studies. The determination of the interpolation
method is a significant step in wind speed map production. Each interpolation method has
its own characteristics and gives different results.

The main purpose of the study was to determine the total wind energy potential in the
Balıkesir Province by adopting an appropriate approach according to the legal regulations
in Turkey. The wind speed map of the Balıkesir Province at a height of 100 m was produced
considering the most appropriate spatial interpolation method. Subsequently, the wind
power potential of the Balıkesir Province at a height of 100 m was calculated by excluding
legally prohibited areas and those unsuitable for wind generation. The novelty in this study
was the creation a wind turbine layout model in accordance with the national regulation,
and the production of an equation that gives the number of turbines that can be installed in
a certain area. In this way, an approach for assessing the wind energy potential for large
areas in Turkey was put forward.

2. Study Area

The Balikesir Province is located in the northwest of Turkey. Some of the lands of the
Balıkesir Province are in the Marmara Region and some are in the Aegean Region. The
province has a coast facing the Marmara Sea to the north and the Aegean Sea to the west. It
also borders the Greek island of Lesbos, located in the Aegean Sea.

6
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The Balıkesir Province has a significant role in wind energy production in terms of both
its installed capacity and potential within Turkey. When the Balıkesir Province is considered
in terms of its total installed power and power potential, it has great importance in terms of
wind energy. The total wind energy potential at a height of 50 m in the Balıkesir Province is
13,827.36 MW, according to the wind energy potential atlas of Turkey (REPA) [43]. The total
installed power amount was 1375.05 MW as of January 2022 [14]. It constitutes only 9.9% of
the potential at a height of 50 m. Considering its installed capacity and new installations, it
is seen that Balıkesir has developed in harmony with Turkey. The increase in turbine height
due to developments in wind turbine technology provides an increase in wind energy
potential. This means that the wind potential of the Balıkesir Province may be higher than
that expressed in REPA. This supports the importance of determining the wind energy
potential in the Balıkesir Province. Due to the current installed capacity, growth rate, and
growth potential in Balıkesir, this province was determined as the case study area. The
location of the Balıkesir Province in Turkey and a physical map are given in Figure 2.

 

Figure 2. The location of Balıkesir Province and its districts.

3. Materials and Methods

The first step of the study was acquisition of the wind speed data belonging to
meteorological stations and land cover data, in order to extrapolate the wind speeds
to 100 m. Land cover data were used to determine the friction coefficient according to the
roughness of the surface at the station. After the data acquisition, the wind speeds were
extrapolated to 100 m by using the Hellmann equation. Following the calculation of the
wind speeds of all the stations at a height of 100 m, the wind speed map of the study area
was created with five different spatial interpolation methods of GIS tools. Interpolation
methods were examined in terms of their accuracy and the most appropriate method was
determined. Wind speed maps of the districts were produced by using the extract by mask
function of GIS tools. The wind speed maps were converted to point-based shapefile by
using the raster to point function of GIS tools to make wind potential calculations using the
wind speed values of cells. The wind speeds in the study area were divided into certain
ranges to determine the wind energy potential in a related range.

In order to calculate the number of wind turbines that can be installed in a certain area,
an equation was produced according to the legal regulation in Turkey. Then, the power
generated by one turbine was calculated according to the mean wind speed of each wind

7
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speed range. Then, the wind energy potential was calculated for each wind speed range.
Finally, the total wind energy potential in the study area was obtained. Database files
(.dbf) of the point-based wind speed maps were used to calculate the wind potential values.
Calculations were made by using the Microsoft excel program. Details of the methodology
are given below. Figure 3 shows the methodological framework of the study. Descriptions
and sources of the data are shown in Table 3.

Figure 3. Methodological framework of the study.

Table 3. Data sources.

Data Content Source

Wind speed Wind speed at a height of 10 m Turkish State Meteorological Service
Corine land cover Land cover types European Environment Agency (EEA) [44]

ASTGTM v003 Digital elevation model The United States Geological Survey (USGS)
Earth Explorer [45]

Regional environmental plan

Residential areas, tourism areas, airports,
areas of nature reserves, military areas,

mining areas, organized industrial
regions, logistics centers, small industrial
areas, organized agriculture and livestock
regions, work areas such as industry and

storage areas, and water surfaces

General Directorate of Spatial Planning

GADM boundary map Province and district boundaries Global Administrative Areas

Within the scope of the study, 5.5 years of average daily wind speed data from
32 meteorology stations in the Balıkesir Province between 1 January 2014 and 30 June 2019
were obtained from the Turkish State Meteorological Service (TSMS). The geographical
distribution of the TSMS stations used in the study is shown in Figure 4. The wind speed
measurements at these TSMS stations are carried out on poles with a height of 10 m. There-
fore, it is more meaningful to determine wind speeds according to a turbine hub height
suitable for today’s technology, in order to produce supportive information about possible
wind power plant locations.

8
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Figure 4. The geographical distribution of TSMS stations.

In this regard, the Hellmann equation shown in Equation (1) was used to obtain the
wind speeds at a 100 m height from the measured wind speed values at a 10 m height. In
this approach, calculations are made depending on the surface roughness of the region
where the TSMS stations are located and the height at which the speed is required [46].

V
V0

=

(
H
H0

)α

(1)

In Equation (1), V0 is the wind speed value for the TSMS station at a 10 m height, H
is the height at which the wind speed is desired, α is the friction coefficient determined
according to the roughness of the surface at the station where the wind is measured, and
V is the wind speed value at the height desired. H0 was taken as 10 m, at which the
TSMS wind speeds were measured. Table 4 shows the land use characteristics and friction
coefficients used in the study [47].

Table 4. Friction coefficient for different land use characteristics [47].

Land Use Characteristic
Friction Coefficient

(α)

Smooth hard ground, calm water 0.10
Tall grass on level ground 0.15

High crops, hedges, and shrubs 0.20
Wooded countryside, many trees 0.25
Small town with trees and shrubs 0.30

Large city with tall buildings 0.40

A CORINE land cover map was obtained from the Copernicus Services inventory to
obtain the friction coefficients for the locations of the TSMS stations [44]. The land cover
class for the locations of the stations was matched with the appropriate class among the
roughness classes used in the wind speed calculations, and the speed values of that station
at a height of 100 m were calculated with the help of Equation (1). The reason for choosing
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a height of 100 m here is that the height of the turbine hubs in currently installed wind
power plants is close to this value. In this way, the total installed wind power capacity and
the calculated wind power potential can be compared more meaningfully.

After calculating the wind speeds at a 100 m height, interpolation between 32 TSMS
stations was carried out with the inverse distance weighting (IDW) method to create a wind
speed map of the Balıkesir Province using the ArcMap software. The IDW interpolation
method is based on the principle that the weights decrease as the area being interpolated
gets further from the known sample points. ArcMap is a GIS software that has the capability
to collect, store, analyze, and present geo-spatial, attribute, and metadata. According to
Yildiz [48], the IDW method was determined as the most appropriate interpolation method
compared to the kriging, natural neighbor, spline, and trend methods. The measured wind
speed values of the TSMS stations were compared with the values obtained using the inter-
polation methods. Root mean square error (RMSE) values obtained from the comparison of
the measured wind speed values and the values obtained using the interpolation method
were calculated for each interpolation method. The RMSE value of the IDW method was
calculated as 0.008 m/s, which was the minimum RMSE value between these five methods.
When the RMSE values of the other interpolation methods were examined, the order from
the lowest to highest RMSE values appeared as the natural neighbor, spline, kriging, and
trend methods [48].

The wind speed map of the Balıkesir Province at a height of 100 m was produced with
200 × 200 m cells using the IDW method under the raster interpolation tool in the ArcMap
software, which is a GIS software (Figure 5). In addition, the extract by mask function
of GIS tools was performed to produce wind speed maps of the districts in the Balıkesir
Province. All of the produced wind speed maps are in raster data format.

Figure 5. Wind speed map of Balıkesir Province at a height of 100 m.

The number of wind turbines that can be installed in a certain area was determined
to calculate the wind energy potential at a height of 100 m. In this process, an equation
was produced that gives the number of turbines that can be installed in a certain area,
taking into account two rows side by side and a layout plan along the route, depending on
the rules of the Regulation on the Technical Evaluation of Wind Source Based Electricity
Generation Applications in Turkey [49]. In this calculation, the turbine rotor diameter was
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taken as 120 m. The distance between the turbines was considered to be 840 m, which is
seven times the rotor diameter along the route, and 360 m, which is three times the rotor
diameter for the second row perpendicular to the route (Figure 6). Equation (2) refers
to the number of turbines that can be placed in a certain area. In order to calculate the
number of turbines, the amount of the total area where the wind turbines will be installed
is needed. The total number of turbines that can be installed in a certain area is calculated
by multiplying the total area with the constant value of 6.6138 produced according to the
layout plan created in accordance with the national regulation and adding 2 to it.

Number of Turbines = 6.6138 × Area
(

km2
)
+ 2 (2)

Figure 6. Sample siting plan of wind turbines.

In order to determine the wind energy potential in a certain area, it is necessary to
calculate the power that each turbine can produce, as well as the number of turbines.
Equation (3) was used for this calculation.

P =
1
2
· ρ · V3 · Cp · A (3)

In Equation (3), P is the power (Watt) generated by the turbine, ρ is the air density
(equal to 1.225 kg/m3), V is the mean wind speed for each range (m/s), Cp is the power
coefficient (equal to 0.40 in general), and A is the area swept by the turbine blades (m2).

In order to obtain the wind speed value of each cell to be used in the wind potential
calculation, a conversion operation was carried out on the wind speed maps using the
raster to point tool of the ArcMap software.

In order to determine the area-based wind energy potential, the wind speed values
should be divided into certain ranges. The total area of the cells in each range was calculated
by multiplying the number of cells in the specified range with the area of each cell. The
wind power potential for each range was calculated by multiplying the number of wind
turbines that can be installed in the total area for each range and the power generated by
each wind turbine.

Spatial data obtained from the Republic of Turkey, Ministry of Environment and
Urbanization, General Directorate of Spatial Planning were used to determine the exclusion
areas. These areas are defined by the Republic of Turkey Energy Market Regulatory
Authority (EPDK) as unsuitable areas for wind energy production in REPA due to legal and
physical restrictions [43]. Residential areas, tourism areas, airports, areas of nature reserves,
military areas, mining areas, organized industrial regions, logistics centers, small industrial
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areas, organized agriculture and livestock regions, work areas such as industry and storage
areas, water surfaces, and areas where the slope is more than 30% were excluded from
the study. A digital elevation model (ASTGTM v003) was obtained from the United States
Geological Survey (USGS) Earth Explorer site in raster format [45]. A slope map was created
from the digital elevation model by using the slope function of the ArcMap software. The
excluded areas are shown in Figure 7. Since the reference ellipsoid of the TSMS station
locations is the World Geodetic System 1984 (WGS 84), the WGS 84 ellipsoid was used as
the reference ellipsoid in the study. Accordingly, all the geographical data obtained from
institutions, such as landscaping plans, the digital elevation model, and administrative
boundaries, were converted to the WGS 84 ellipsoid.

 

Figure 7. Excluded areas.

4. Results

When the wind speed map at a height of 100 m produced for the Balıkesir Province
(Figure 5) is examined, the speeds are distributed between 2.52 and 10.91 m/s. When
the speed distributions are evaluated for the districts, the high-speed values in the Balya,
Bandırma, Edremit, Burhaniye, Havran, and Erdek districts are greater than those in the
other districts. In addition, the maximum, minimum, and average wind speeds, and
standard deviations at a height of 100 m are shown according to district in Table 5. These
wind speeds were derived from the wind speed maps in raster data format. Figure 8
illustrates the wind speed maps of the Ayvalık, Balya, Bandırma, and Bigadiç districts at a
height of 100 m. The wind speed maps of the other districts are also given in Figures A1–A4
of Appendix A.

Wind speed varies depending on landforms. While the friction effect of wind increases
in mountainous and rough terrains, its speed decreases. On smooth surfaces, such as the
sea and oceans, the wind speed increases as the friction effect decreases.

When the wind speed map created is examined, it is seen that the wind speeds
are generally higher on the coastline. The Ayvalık, Gömeç, Burhaniye, Edremit, Gönen,
Bandırma, Erdek, and Marmara districts are located on the coastline. To the west of the
Ayvalık and Gömeç districts, there is the island of Lesbos. Due to the roughness caused by
Lesbos Island, the wind speeds in the Ayvalık and Gömeç districts are lower than those in
other districts on the coastline. In addition, the wind speeds in the İvrindi and Savaştepe
districts are lower than those in other districts for the same reason. However, due to the
air corridor formed by the passage of the Bosphorus between the Çanakkale Province and
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Lesbos Island, the wind speeds are at high levels in the districts of Burhaniye, Edremit,
Havran, and Balya, which are located in this direction. Since Sındırgı, Bigadiç, Dursunbey,
and Kepsut are the furthest districts from the coastline, their wind speeds are lower than
those of other districts.

Table 5. The maximum, minimum, average wind speeds, and standard deviations in the districts at a
height of 100 m.

Name of District
Wind Speed (m/s)

Max Min Mean Std. Dev.

Ayvalık 6.79 4.21 6.00 0.37
Balya 10.91 3.79 6.73 1.44

Bandırma 10.82 6.63 8.17 0.67
Bigadiç 6.86 2.85 5.27 0.93

Burhaniye 10.02 6.16 7.12 0.55
Dursunbey 7.05 2.52 4.47 0.79

Edremit 10.05 3.56 6.16 0.88
Erdek 8.36 6.39 7.44 0.48
Gömeç 6.75 5.63 6.11 0.31
Gönen 7.59 4.03 5.80 0.68
Havran 9.58 6.01 6.91 0.43
İvrindi 7.20 4.51 5.86 0.59
Kepsut 5.77 4.30 5.13 0.29
Manyas 7.19 5.42 6.10 0.34

Marmara 7.49 6.82 7.27 0.19
Merkez (Altıeylül-Karesi) 7.34 4.75 5.71 0.31

Savaştepe 5.94 5.36 5.64 0.13
Sındırgı 5.91 3.07 4.53 0.55
Susurluk 6.40 5.16 5.89 0.21

 

Figure 8. Wind speed maps of Ayvalık, Balya, Bandırma, and Bigadiç districts at a height of 100 m.

When the maximum and average wind speeds and standard deviations are examined,
it is seen that Bandırma is the most favorable district in terms of wind speed. There is
the Marmara Sea to the north of Bandırma and Lake Manyas to the south. Therefore, the
roughness that will prevent the wind flow in the district is low. For this reason, wind
speeds are at high levels throughout the district.
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Since wind speed is the main factor in the calculation of wind power potential, the
distribution of wind power potential in the districts also differs due to the reasons stated
above and is parallel to the wind speed distribution.

Moreover, the wind energy potentials of the districts were also calculated to com-
pare between the districts and give efficient information to decision makers. Table 6
demonstrates the wind energy potential of each district, according to different wind speed
threshold values. In a study conducted by the Turkish Atomic Energy Agency on alter-
native energy sources, the lowest wind speed that can be used for electricity generation
was determined to be 6 m/s [50]. According to the International Electrotechnical Com-
mission (IEC) standard, the minimum technical wind speed is expressed as 6 m/s by
Zahedi et al. [42]. For these reasons, the minimum speed was determined to be 6 m/s in
this study. Other threshold values were determined in order to compare the wind energy
potentials of the districts.

Table 6. The wind energy potential of districts.

Name of District
Wind Energy Potential (MW)

>6 m/s >7 m/s >8 m/s

Ayvalık 548.49 0.00 0.00
Balya 5758.53 3780.93 2416.78

Bandırma 4957.45 4839.97 3668.77
Bigadiç 848.04 0.00 0.00

Burhaniye 1625.17 929.52 265.30
Dursunbey 334.24 23.90 0.00

Edremit 2031.30 236.08 83.45
Erdek 1639.09 1466.05 427.49
Gömeç 674.11 0.00 0.00
Gönen 2010.05 275.84 0.00
Havran 2986.36 1451.84 51.75
İvrindi 1294.61 56.03 0.00
Kepsut 0.00 0.00 0.00
Manyas 1679.05 0.00 0.00

Marmara 664.25 553.82 0.00
Merkez (Altıeylül-Karesi) 875.36 64.96 0.00

Savaştepe 0.00 0.00 0.00
Sındırgı 0.00 0.00 0.00
Susurluk 1101.49 0.00 0.00

The wind speed values were divided into certain ranges and the number of cells
in the specified ranges and corresponding total areas were determined in order to more
clearly understand the wind energy potential of the Balıkesir Province at a height of
100 m (Table 7). The wind energy potential values in Tables 6 and 7 were derived from the
calculation process carried out by using the database files of the point-based shapefile of
the wind speed maps.

Table 7. The wind energy potential of Balıkesir Province for specified ranges.

Wind Speed Range
(m/s)

Number of
Cells

Total Area
(km2)

Wind Potential (P)
(MW)

2.5–4.5 42,794 1711.76 1345.22
4.5–6.0 157,450 6298.00 16,702.09
6.0–7.0 76,122 3044.88 15,325.79
7.0–7.5 14,768 590.72 4127.50
7.5–8.0 7616 304.64 2601.31
8.0–8.5 6645 265.80 2738.29
8.5–9.0 4067 162.68 2000.94
9.0–9.5 1483 59.32 823.39
9.5–10.0 784 31.36 537.81

>10 853 34.12 730.26
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5. Discussion and Conclusions

With the approach proposed in this study, it is possible to calculate the wind energy
potential for a certain area using multiple points, which is superior to the single point-based
wind energy potential determination studies [28–39] mentioned in the introduction section.
In these point-based studies, wind energy potential calculations can only be made for these
points and areal results cannot be produced. With the spatial interpolation method, which
is a GIS function, wind speeds for an entire area can be generated by interpolating the
wind speeds belonging to multiple points in a certain area. In this way, the total wind
energy potential can be calculated for a study area using wind speeds. The wind speed
maps of the Balıkesir Province and its districts were produced using IDW, which is the
most appropriate spatial interpolation method in this study. Area-based wind potentials of
the study region were obtained for different ranges considering the wind turbine layout
plan designed according to the national regulation.

Anwer and Deshmukh [40] used the kriging interpolation method to obtain a wind
speed map of the southern states of India. The produced wind speed map was insufficient
in terms of cartographic representation. Another missing point in the study is that no
comparison was made between interpolation methods. Likewise, Feng et al. [41] also
adopted the IDW interpolation method to generate a wind speed map of mainland China
without comparing interpolation methods. The wind energy potential of the study area
was determined by adopting the wind farm layout approach of Gustavson [51] using
wind potential calculation algorithms. These calculations were made according to the
specifications of a specific wind turbine. Turbine specifications were used to obtain the
maximum power coefficient in the study. Zahedi et al. [42] used a GIS-based multi-criteria
decision support system to determine the suitable areas for wind turbine installation in the
western region of Iran. They used raw wind speed and roughness information via Wind
atlas analysis and application program (WAsP) software and obtained a digital wind atlas.
There was no information about interpolation methods and the process for creating the
wind speed atlas in the study. A layout plan for the wind turbine installation was defined
and the total wind energy potential was calculated for the study area. The number of wind
turbines was given in the study, but no equations related to it were given. The total wind
potential for a given wind turbine was determined.

In this study, raw wind speeds gathered from TSMS stations were extrapolated to
100 m considering the roughness of the terrain, and wind speed maps were created us-
ing the IDW, kriging, natural neighbor, spline, and trend interpolation methods. The
most appropriate method was determined to be IDW with the minimum RMSE value of
0.008 m/s. In addition, a layout plan for wind turbine installation was designed considering
the minimum distances required between two turbines in the Regulation on the Technical
Evaluation of Wind Source Based Electricity Generation Applications, and an equation
(Equation (2)) was produced that gives the number of wind turbines that can be installed
in a certain area in accordance with this layout plan. Unlike other studies carried out,
no existing turbine model was taken as a reference, so that the model did not become
dependent on any brand. Wind energy investors can apply this model with the parameters
of the turbine model they want.

Wind speeds and Equations (2) and (3) were used to calculate the wind energy potential
for each wind speed range. Finally, the total wind energy potentials of the Balıkesir Province
and its districts were obtained by summing the wind energy potentials of all the ranges.

When the threshold value for wind speed is taken as 6 m/s, the total wind power poten-
tial is calculated as 28,885.30 MW in the Balıkesir Province. It is calculated as 13,559.51 MW
with a 7 m/s threshold value and 6830.69 MW with an 8 m/s threshold value.

The wind speed threshold value was taken as 6.8 m/s in the wind energy potential
atlas of Turkey (REPA), and the total wind energy potential at a height of 50 m for the
Balıkesir Province was determined to be 13,827.36 MW. In this study, the wind energy
potential was calculated as 15,928.81 MW with a 6.8 m/s wind speed threshold. There are
five different wind speed ranges in REPA. The wind energy potential for a given area is
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calculated by multiplying the total area value by five and is a general assumption. Although
the total area value obtained in this study was lower than that in REPA, the calculated total
wind power potential value was higher. This is because a realistic approach was used in
this study to calculate the wind energy potential. The reason for the lower area values in
this study is that areas were excluded from the study if they were legally prohibited or
unsuitable areas. Another reason why the wind potential values were higher than those in
REPA is that the height used in this study was greater than that used in REPA. The total
area and wind potential values obtained in this study and REPA are represented in Table 8.

Table 8. Comparison of current study with REPA.

Wind Speed Range
(m/s)

Current Study REPA

Total Area
(km2)

Wind Potential (P)
(MW)

Total Area
(km2)

Wind Potential (P)
(MW)

6.8–7.5 965.28 6468.10 1511.42 7557.12
7.5–8.1 364.64 3173.79 850.96 4254.80
8.1–8.6 252.88 2701.24 284.51 1422.56
8.6–9.5 174.92 2380.15 115.23 576.16

>9.5 65.48 1205.53 3.34 16.72
Total 1823.20 15,928.81 2765.47 13,827.36

When the wind power potentials of the districts are examined according to the 6 m/s
wind speed threshold value, the district with the highest potential is Balya. Bandırma,
Havran, and Edremit follow Balya. If the threshold value is taken as 7 m/s, this order is
Bandırma, Balya, Erdek, and Havran. When the threshold value is taken as 8 m/s, this
order changes to Bandırma, Balya, Erdek, and Burhaniye. This change in the rankings is
due to the wind speed distribution in the districts. When the wind power potential values
in the districts are examined, it is obvious that Bandırma and Balya are much more efficient
than the other districts.

The total installed power amount was 1375.05 MW as of January 2022. This value
constitutes only 8.6% of the 15,928.81 MW wind energy potential value calculated as a
result of this study. This shows that the Balıkesir Province is still quite suitable for wind
energy investments. This study is expected to contribute to the evaluations of investors
and decision makers working in the field of renewable energy.

The limitation of the method is that the wind energy potential value obtained within
a certain area cannot be visualized. In order to visualize the results obtained, the energy
potential of each cell must be calculated. The amount of error will increase when Equation
(2), which calculates the number of wind turbines that can be installed in a certain area, is
used for each cell in high-spatial-resolution studies. For example, the spatial resolution of
this study is 200 m and the size of each cell is 200 × 200 m. According to the Regulation
on the Technical Evaluation of Wind Source Based Electricity Generation Applications
mentioned in Section 3, the distance between two turbines has to be at least 840 m, which is
seven times the rotor diameter along the route, and 360 m, which is three times the rotor
diameter for the second row perpendicular to the route. In this case, it is impossible to
install more than one turbine in each cell. However, using Equation (2), the number of
turbines that can be installed in each cell is calculated as 2.26. For this reason, in this study,
the wind energy potential is calculated for each wind speed range by taking into account
the total number of cells in the specified ranges, and these results cannot be visualized.
On the other hand, in order to compare the obtained results with REPA, the same wind
speed ranges were created with REPA and comparisons were made. In addition, studies
will continue to calculate the wind energy potential that can be produced in each cell to
visualize the results produced. The proposed methodology can be applied in all areas that
consist of cells having an individual wind speed value.

The turbine rotor diameter used in the study was evaluated as 120 m and the hub
height was evaluated as 100 m by considering the installed wind turbines in Turkey and
up-to-date wind turbine technology. In order to not adopt a brand- and model-dependent
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approach, no turbine model of any brand was taken as a reference. The approach used in
this study can be applied considering different hub heights and predetermined turbine
specifications. Wood [52] mentioned problems that wind farm owners may encounter
technically, such as a miscalculation of the power coefficient for the turbine, which may
cause maintenance costs in the future. Therefore, more appropriate results can be obtained
if the wind energy potential determination approach in this study is re-applied in projects
to be realized in smaller areas according to the type of turbine determined, by taking into
account meteorological conditions.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The results presented in this paper are available upon request. Corine
Land Cover (CLC) 2018 data is public available and can be sourced at https://land.copernicus.eu/
pan-european/corine-land-cover/clc2018?tab=download (accessed on 11 February 2023).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

 

Figure A1. Wind speed maps of Burhaniye, Dursunbey, Edremit, and Erdek districts at a height of 100 m.
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Figure A2. Wind speed maps of Gömeç, Gönen, Havran, and Ivrindi districts at a height of 100 m.

 

Figure A3. Wind speed maps of Kepsut, Manyas, Marmara, and Merkez (Altıeylül and Karesi)
districts at a height of 100 m.
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Figure A4. Wind speed maps of Savaştepe, Sındırgı, and Susurluk districts at a height of 100 m.
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13. Akdoğan, İ.; Kovancılar, B. Evaluation of Eco-Friendly Renewable Energy Policies in The European Union and Turkey in Terms

of Incentive Types. Yönetim ve Ekonomi Dergisi 2022, 29, 69–91. [CrossRef]
14. Turkish Wind Energy Association. Turkish Wind Energy Statictic Report—January 2022. Available online: https://tureb.com.tr/

/yayinlar/turkiye-ruzgar-enerjisi-istatistik-raporlari/5 (accessed on 17 March 2023).
15. Turkish Wind Energy Association. Turkish Wind Energy Statictic Report—January 2021. Available online: https://tureb.com.tr/

/yayin/turkiye-ruzgar-enerjisi-istatistik-raporu-ocak-2021/139 (accessed on 17 March 2023).

19



Appl. Sci. 2023, 13, 9183

16. Manfren, M.; Nastasi, B.; Groppi, D.; Astiaso Garcia, D. Open data and energy analytics—An analysis of essential information for
energy system planning, design and operation. Energy 2020, 213, 118803. [CrossRef]

17. GoldWind Gw175-8.0MW Smart PMDD Wind Turbine Technical Parameters. Available online: https://www.goldwind.com/en/
windpower/product-gw6s/ (accessed on 13 March 2023).

18. Vestas V172-7.2 MW™ Wind Turbine Technical Specifications. Available online: https://www.vestas.com/en/products/
enventus-platform/V172-7-2-MW (accessed on 13 March 2023).

19. Nordex N163/6.X Wind Turbine Technical Data. Available online: https://www.nordex-online.com/en/product/n163-6-x/
(accessed on 13 March 2023).

20. Voivontas, D.; Assimacopoulos, D.; Mourelatos, A.; Coromınas, J. Evaluation of Renewable Energy Potential Using A GIS Decision
Support System. Renew. Energy 1998, 13, 333–344. [CrossRef]

21. Rodman, L.C.; Meentemeyer, R.K. A geographic analysis of wind turbine placement in Northern California. Energy Policy 2006,
34, 2137–2149. [CrossRef]

22. Al-Yahyai, S.; Charabi, Y.; Gastli, A.; Al-Badi, A. Wind farm land suitability indexing using multi-criteria analysis. Renew. Energy
2012, 44, 80–87. [CrossRef]

23. Gorsevski, P.V.; Cathcart, S.C.; Mirzaei, G.; Jamali, M.M.; Ye, X.; Gomezdelcampo, E. A group-based spatial decision support
system for wind farm site selection in Northwest Ohio. Energy Policy 2013, 55, 374–385. [CrossRef]

24. Höfer, T.; Sunak, Y.; Siddique, H.; Madlener, R. Wind farm siting using a spatial Analytic Hierarchy Process approach: A case
study of the Städteregion Aachen. Appl. Energy 2016, 163, 222–243. [CrossRef]

25. Noorollahi, Y.; Yousefi, H.; Mohammadi, M. Multi-criteria decision support system for wind farm site selection using GIS. Sustain.
Energy Technol. Assess. 2016, 13, 38–50. [CrossRef]

26. Villacreses, G.; Gaona, G.; Martínez-Gómez, J.; Jijón, D.J. Wind farms suitability location using geographical information
system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renew. Energy 2017,
109, 275–286. [CrossRef]

27. Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-based site suitability analysis for wind farm development in Saudi Arabia.
Energy 2017, 141, 1166–1176. [CrossRef]

28. Kavak Akpinar, E.; Akpinar, S. Determination of the wind energy potential for Maden-Elazig, Turkey. Energy Convers. Manag.
2004, 45, 2901–2914. [CrossRef]

29. Keyhani, A.; Ghasemi-Varnamkhasti, M.; Khanali, M.; Abbaszadeh, R. An assessment of wind energy potential as a power
generation source in the capital of Iran, Tehran. Energy 2010, 35, 188–201. [CrossRef]

30. Fyrippis, I.; Axaopoulos, P.J.; Panayiotou, G. Wind energy potential assessment in Naxos Island, Greece. Appl. Energy 2010,
87, 577–586. [CrossRef]

31. Ohunakin, O.S.; Akinnawonu, O.O. Assessment of wind energy potential and the economics of wind power generation in Jos,
Plateau State, Nigeria. Energy Sustain. Dev. 2012, 16, 78–83. [CrossRef]

32. Wu, J.; Wang, J.; Chi, D. Wind energy potential assessment for the site of Inner Mongolia in China. Renew. Sustain. Energy Rev.
2013, 21, 215–228. [CrossRef]

33. Elnaggar, M.; Edwan, E.; Ritter, M. Wind Energy Potential of Gaza Using Small Wind Turbines: A Feasibility Study. Energies 2017,
10, 1229. [CrossRef]

34. Elie Bertrand, K.S.; Abraham, K.; Lucien, M. Sustainable Energy Through Wind Speed and Power Density Analysis in Ambam,
South Region of Cameroon. Front. Energy Res. 2020, 8, 176. [CrossRef]

35. Wang, Z.; Liu, W. Wind energy potential assessment based on wind speed, its direction and power data. Sci. Rep. 2021,
11, 16879. [CrossRef]

36. Çakmakçı, B.A.; Hüner, E. Evaluation of wind energy potential: A case study. Energy Sources Part A Recovery Util. Environ. Eff.
2022, 44, 834–852. [CrossRef]

37. Paraschiv, S.; Paraschiv, L.; Alexandru, S.; Anisoara-Gabriela, C. Assessment of onshore wind energy potential under temperate
continental climate conditions. Energy Rep. 2022, 8, 251–258. [CrossRef]

38. Jung, C.; Schindler, D. Introducing a new approach for wind energy potential assessment under climate change at the wind
turbine scale. Energy Convers. Manag. 2020, 225, 113425. [CrossRef]

39. Ongaki, L.; Maghanga, C.M.; Kerongo, J. Evaluation of the Technical Wind Energy Potential of Kisii Region Based on the Weibull
and Rayleigh Distribution Models. J. Energy 2021, 2021, 6627509. [CrossRef]

40. Anwar, K.; Deshmukh, S. Parametric study for the prediction of wind energy potential over the southern part of India us-
ing neural network and geographic information system approach. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020,
234, 96–109. [CrossRef]

41. Feng, J.; Feng, L.; Wang, J.; King, C.W. Evaluation of the onshore wind energy potential in mainland China—Based on GIS
modeling and EROI analysis. Resour. Conserv. Recycl. 2020, 152, 104484. [CrossRef]

42. Zahedi, R.; Ghorbani, M.; Daneshgar, S.; Gitifar, S.; Qezelbigloo, S. Potential measurement of Iran’s western regional wind energy
using GIS. J. Clean. Prod. 2022, 330, 129883. [CrossRef]

43. Wind Energy Potential Atlas of Balıkesir, Turkey. Available online: https://repa.enerji.gov.tr/REPA/BALIKESIR-REPA.pdf
(accessed on 16 February 2023).

20



Appl. Sci. 2023, 13, 9183

44. Corine Land Cover (CLC). 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=
download (accessed on 11 February 2023).

45. The United States Geological Survey (USGS). ASTGTMv003 ASTER Global Digital Elevation Model. Available online: https:
//lpdaac.usgs.gov/products/astgtmv003/ (accessed on 11 February 2023).

46. Tar, K. Some statistical characteristics of monthly average wind speed at various heights. Renew. Sustain. Energy Rev. 2008,
12, 1712–1724. [CrossRef]

47. Masters, G.M. Renewable and Efficient Electric Power Systems; John Wiley and Sons: Hoboken, NJ, USA, 2004.
48. Yildiz, S.S. A Comparison of Interpolation Methods in Creation of Wind Speed Maps: A Case Study of Balıkesir. Afyon Kocatepe

Univ. J. Sci. Eng. 2021, 21, 130–137. [CrossRef]
49. Republic of Turkey Ministry of Energy and Natural Resources: Regulation on the Technical Evaluation of Wind Source Based

Electricity Generation Applications. Available online: https://www.resmigazete.gov.tr/eskiler/2015/10/20151020-2-1.pdf
(accessed on 17 February 2023).

50. Turkish Atomic Energy Agency. Alternatif Enerji Kaynakları. İstanbul: Çekmece Nükleer Araştırma ve Eğitim Merkezi. Available
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Abstract: The implementation of the energy transition and the building of energy communities
are driving forward the exploitation of the potential for rooftop photovoltaic power generation.
Estimating rooftop PV generation potential requires the processing of different types of data, such as
the cadastral information of buildings, a detailed description of available rooftop areas, and solar
irradiance data. High-resolution estimation based on GIS data is normally limited to small survey
areas. Instead, by using an algorithm for the efficient calculation of shadows over rooftops, and the
integration of solar irradiance over time, we developed a procedure that allows for the rapid full
census assessment of rooftop photovoltaic potential with a spatial resolution of 1 m, applicable at
the regional scale and requiring minimal computational resources. We applied this approach to the
rooftops of buildings in Sardinia, an island and region of Italy of particular interest for the energy
transition. In addition to estimating the geographic potential, we carried out a preliminary assessment
of the technical and economic potential, yielding a maximal photovoltaic rooftop generation potential
of 22 TWh for the entire region.

Keywords: rooftop solar photovoltaic (PV) potential; geographic information systems (GIS); LiDAR;
distributed generation

1. Introduction

In recent years, the European Union has been very committed to increasing the amount
of energy generated from renewable sources. The first target, set with the Renewable Energy
Directive of 2009 [1], aimed at increasing the percentage of energy from renewable sources to
20% by 2020; the Renewable Energy Directive II of 2018 [2] set this percentage to 32%, to be
reached by 2030. The REPowerEU directive from May 2022 [3] proposed to increase this
target to 45% by 2030 in order for the European Union to become increasingly autonomous
from importing fossil fuels.

In this paper, we deal with the generation of electricity from solar radiation by means
of photovoltaic panels, which is particularly widespread in Italy (in 2021, it met 8.7% of
the national electricity demand, and 21.8% of the production from renewable sources [4]).
The installation of photovoltaic systems has been promoted by the Italian government, e.g.,
by way of incentives such as “Superbonus 110%” [5,6].

Building rooftops offer significant potential for the deployment of photovoltaic (PV)
systems, and enable better geographic correlation between supply and demand [7]. The
installation of photovoltaic modules has low impact from the point of view of urban
planning, since the panels are mounted onto existing roofs.

Energy produced by photovoltaic systems can play a crucial role in reducing green-
house gas emissions [8]; the contribution of rooftop photovoltaic systems is essential in
smart cities [9], and the estimation of the production potential is a prerequisite for the
transformation of cities and energy communities [10,11] into net zero energy districts [12].

The estimation of the photovoltaic potential is, therefore, required in various fields
of study and research. The determination of the photovoltaic potential in urban areas
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consists of four basic parts [13,14]: physical potential, geographic potential, technical
potential, and economic potential. (i) Physical potential consists of assessing the solar
irradiation over the region of interest; (ii) geographic potential consists of identifying and
characterizing the surfaces suitable for photovoltaic installations; (iii) technical potential
studies the transformation of the solar energy harvested by the panels into electric energy;
(iv) economic potential evaluates the return on the investment incurred in the installation
of photovoltaic systems.

According to the literature, different techniques are used according to the scale of
the analysis to be conducted [15]. Studies on a continental [7] or global [16] scale have
a lower level of detail, with analyses primarily using statistical methods and machine
learning techniques.

Joshi et al. carried out a global-scale estimation of the technical potential of rooftop PV
systems [16]. Earth’s surface is divided into sectors of 10 km2, and the total area of building
roofs is estimated for each with a machine-learning approach on the basis of population
density, and geographic information system (GIS) datasets. The result is the technical and
economic potentials calculated for all countries and for each month of the average year.
Bodis et al., using satellite and statistical data, and machine-learning techniques, estimated
the photovoltaic potential on EU rooftops at 100 m spatial resolution [7].

Statistical methods are still used in national- [17] and regional [18]-scale studies, often
being supplemented with GIS data [19].

The use of machine-learning algorithms coupled with high-resolution GIS data and
physical models allowed for Walch et al. to estimate with a high level of detail the large
scale rooftop photovoltaic potential in Switzerland [19]. An evaluation of the geographic
potential is realized by combining the estimated average monthly irradiance obtained
from satellite data with available rooftop area, shading effects and rooftop geometry.
Lastly, the use of physical models allows for the estimation of the technical potential
and its uncertainty. The work of Walch et al. is a notable exception to other studies on
the same geographic scale because of the level of detail in the analysis. Regional-scale
analyses are typically carried out using statistical methods for extrapolating detailed
analyses to samples. Bernasconi et al., for example, estimated the area available for PV
installation using the clustering analysis of the urban and morphological characteristics of
municipalities in Lombardy, the most densely populated region in Italy with the largest
number of inhabitants [18].

Analyses on an urban scale, on the other hand, require the use of GIS data [20] or light
detection and ranging (LiDAR) surveys [21,22], or both [23,24], and other data sources such
as satellite images [25] or aerial photographic images [26] processed with machine-learning
techniques [27–29].

In [20], for an area of the city of Turin (Italy) having an extension of 1 km2 and
containing 1228 buildings, GIS tools were used to estimate the tilt and orientation of
rooftops from high-resolution (0.5 m) digital surface models. The problem of shading and
effective irradiance had already been addressed in [23], where the sky view factor [30,31],
and obstructions due to terrain and buildings were calculated with LiDAR data for a small
area in the city of Kingston, Ontario (Canada), and in [21], in which a three-dimensional
model of buildings was developed to calculate shading and thus the actual irradiance on
rooftops in the municipality of Avellino (Italy).

More recently, in [22], a method was proposed for the automatic identification of roofs
suitable for photovoltaic systems. The technique was demonstrated on buildings in the city
of Gothenburg (Sweden) using a digital model of the surface with a resolution of 10 cm
as the only input. The algorithm presented in [25] allowed for the examination of a 1 km2

area at high resolution in the city of Giessen (Germany).
In [24], a methodology was developed for the estimation of the rooftop potential for

food, water, and photovoltaics in the city of Zaragoza (Spain), where LiDAR and cadastral
data were used to identify suitable covers for the different purposes. Recently, techniques
in machine learning have been added to the GIS methodologies mentioned above, such as
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in [26] where a fast method was proposed to three-dimensionally construct the geometry
of buildings in an area of the Netherlands through the use of stereo aerial imagery with
10 cm resolution and cadastral information, while deep-learning techniques have found
use for the segmentation of suitable roof surfaces in urban areas [27,29].

Our work illustrates a complete methodology that allows for the high-resolution
estimation of the photovoltaic potential at a regional scale. We applied the procedure on
a large scale to an entire region of Italy, the island of Sardinia, and expanded the results
presented at the city scale in [32]. Sardinia has great potential for generation from renewable
sources and is included in the Coal Regions in Transition (CRiTs) initiative supported by
the European Union [33]; therefore, it needs to develop and implement projects to realize a
viable economic and technological transformation.

As far as physical potential is concerned, we reworked the data provided by PVGIS [34];
in terms of the technical potential, and calculated the average energy production by means
of a simplified formulation [35]; the economic potential was evaluated by means of an
estimation of the levelized cost of electricity (LCOE) [36]. Our method focuses on the
geographic potential and thus uses open cadastral, GIS, and LiDAR data to estimate
the available rooftop surface, to approximate the inclination and orientation of building
rooftops, and to evaluate the shading effects between buildings [32].

The scientific contribution is related to the extremely effective algorithm used for time
integration of solar irradiance reaching a surface, accounting for the shading effects of other
buildings, which can be applied to the roof surfaces of buildings in the entire region with a
spatial resolution of 1 m. Our procedure allows for us to combine a very high level of detail
within the extent of the area under consideration. The proposed methodology, in terms
of the employed types of techniques, the level of detail, and the extent of the examined
area, can be directly compared with the work of Walch et al. [19]. However, in our case, we
propose a more detailed analysis of the effects of shading and calculation of the average
annual irradiance. In fact, due to the efficiency of our procedure, we were able to integrate
over time the solar irradiance incident on each surface pixel modulated by shading effects
with a temporal resolution of one hour, whereas in the cited work, the calculation was
conducted on an hourly basis and with a monthly averaged irradiation.

By employing open data and open-source software, our procedure was able to estimate
the technical potential for the entire region of Sardinia on a modest workstation and in a rea-
sonable time (less than a week), thus demonstrating, contrary to common understanding [37],
that it is possible to obtain a timely estimation of photovoltaic potential with a LiDAR-based
approach, even for large areas, by employing limited computational resources.

Section 2 describes the data used in the study; Section 3 explains the methodologies used
to process the data to obtain the physical, geographic, technological, and economic potential;
Section 4 illustrates the results obtained on a regional level; Section 5 discusses the results;
Section 6 draws conclusions and addresses possible future developments.

2. Data

2.1. Introduction

The energy that may be generated by a photovoltaic system can be estimated by
knowing (i) the location of the system, (ii) the tilt and orientation of the panels, (iii) the
parameters that characterize the modules and the inverter, (iv) the temperature, the wind
speed, and the average amount of direct and diffuse radiation at the site, and (v) the
presence of any shading that may affect the amount of direct radiation reaching the panels.

In the following paragraphs, we illustrate the procedures for acquiring and process-
ing the data required to obtain our estimate, i.e., the building blueprints (Section 2.2),
the elevation raster (Section 2.3), the solar radiation measurements, and the meteorological
data (Section 2.4).
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2.2. Building Blueprints

Knowledge of the correct position of a building allows for us to associate it with the
average irradiance estimated for that geographic area, while the relative position with
respect to other buildings and their elevation allow for us to calculate the possible shading
that reduces the overall irradiance received.

The Geotopographic Database (DBGT) of Sardinia [38] provides the regional technical
authoritative maps in digital format (DBGT10K, published in 2017). Among the various
available layers, we were interested in the shape files representing the building blueprints
(Figure 1) and the municipal boundaries.

In the same regional geoportal, the DBGT10K updated to 2020 is available, although only
for the southern part of the island. For the purposes of this study, we used the building
blueprints published in 2017 in order to have more consistent data. The geometries con-
tained in the shapefile of the building blueprints allow us to calculate the surface extent
of the building rooftops, and its attributes describe the intended use of the buildings,
therefore enabling us to remove unsuitable buildings from the dataset. The shape file of the
administrative boundaries allowed for us to identify the buildings within each municipality.

(a)

(b)

(c)

Figure 1. (a) Distribution of buildings (in black) in Sardinia and (b,c) building blueprints in the
Municipality of Cagliari, the administrative center and largest city in Sardinia.

2.3. Elevation Data

We used the elevation data of the buildings, vegetation, and terrain to calculate any
projected shadows. In the absence of the three-dimensional model of the buildings, the ele-
vation data is provided by the raster files of the digital surface model (DSM) published by
the geoportal of the region of Sardinia [39]. The data covered a good portion of Sardinia
(Figure 2a), in particular the coastal, fluvial, and Campidano lowland areas, i.e., the most
densely populated territories. The DSMs were obtained from six different LiDAR acqui-
sition campaigns that took place between 2008 and 2013. Belonging to distinct datasets,
the raster files are heterogeneous and are offered in a variety of formats (Erdas Imagine,
GeoTIFF, ESRI ASCII Grid), each with its own specific peculiarities. As a result, we stan-
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dardized the raster data on a GeoTIFF format with an EPSG:32632 reference coordinate
system and a 1 m horizontal resolution.

(a)

(b)

(c)

Figure 2. (a) Coverage of the 1 m resolution DSM (in black) over the territory of Sardinia and (b,c) a
clipping of the DSM within the Municipality of Cagliari.

In general, the DSM covers 45.01% of the territory of Sardinia (i.e., 10,844 km2 out
of 24,093 km2) and as much as 87.36% of the area occupied by buildings (113 km2 out of
130 km2), as shown in Figure 3. We assumed that the remaining 12.64% of the buildings had
the same characteristics as the buildings for which the digital surface model is available,
so we calculate the total results for the individual municipalities and the entire region of
Sardinia by means of a proportion.

2.4. Radiation and Weather Data

For the measurements of solar radiation, temperature, and wind speed, we used
the data offered by the PVGIS portal [34]. According to the resolution of the PVGIS-
SARAH2 solar radiation database [40,41], we identified the 0.05◦ resolution sectors that
overlap the territory of Sardinia (Figure 4) and collected the time series data via a series
of application programming interface (API) calls to https://re.jrc.ec.europa.eu/api/v5_2
/seriescalc (accessed on 13 November 2022).
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(a) (b)

Figure 3. (a) Percentage of municipality area and (b) percentage of rooftop surface covered by
the DSM.

Figure 4. The island of Sardinia represented by the territorial boundaries of its municipalities (in
black), (left) superimposed on the grid of sectors of size 0.05◦ (in blue) of the PVGIS-SARAH2
database and (right) by the average annual global irradiance on a 1 m2 surface oriented to the south
and inclined by 20◦.
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Each individual call to the API service returned a 16-year long (2005–2020) hourly
time series of the values Gb (DNIh, direct irradiance on the plane of the array, POA), Gd
(DHIh, diffuse irradiance on the POA), Gr (reflected irradiance on the POA), Hsun (elevation
of the sun), T2m (air temperature measured at 2 m above the surface) and WS10m (wind
speed measured at 10 m above the surface). As a result, each time series contains over
140,000 values.

3. Methodology

In the following paragraphs, we illustrate the methodologies used for computing the
slope and aspect of building rooftops (Section 3.1), for evaluating the shadings (Section 3.2),
for estimating the radiation incident on rooftops (Section 3.3), for evaluating the energy
produced by photovoltaic panels installed on the rooftops themselves (Section 3.4), and for
studying the cost-effectiveness of the investment (Section 3.5). An overview of the whole
procedure is presented in Figure 5, where the steps within each of the physical, geographic,
technical and economic potentials and the connections between different data and method-
ologies are emphasized.

Figure 5. Flowchart representing the workflow followed to obtain the photovoltaic potential of
Sardinia. Input data are shown in the yellow boxes, derived data are framed in pink and light-blue
boxes, data processing steps were placed in green rounded rectangles, and the workflow results are
outlined by red frames.

3.1. Computation of Rooftop Slope and Aspect

By applying the algorithms to the DSM [42], offered by the tool gdaldem of the GDAL
library [43], we obtained the 1 m resolution raster map estimates of the tilt and orientation
angles of the roof surface, denoted respectively with β and γ. These values were necessary
for the calculation of the incident irradiance on photovoltaic panels, whose annual total
varies significantly depending on the orientation with respect to the south and on the
inclination of the rooftops on which they are installed. Figure 6 shows the (a) computed
aspect and (b) slope values for the rooftop of the buildings within an area of the Municipality
of Cagliari.
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(a) (b)

Figure 6. (a) Maps of aspect and (b) slope values computed for the building rooftops within the
Municipality of Cagliari.

The DSM covers a total building rooftop surface of about 113 km2, corresponding to
113 million pixels. Not all surfaces are suitable for the installation of panels due to the
peculiarities of the buildings, discontinuities, irregularities, and steep inclinations of the
rooftop surfaces. After filtering the unsuitable portions of building rooftops, we obtained a
total useful surface area of approximately 80 km2.

Figure 7 shows the cumulative sum of the rooftop surfaces: about 60% of building
rooftops were characterized by a slope less than 20◦. Around 25% of rooftops had a slope
greater than 45◦ and were thus excluded from the dataset. A further 5% of the rooftops
were removed because they were part of contiguous surfaces that were too small to allow
for the installation of photovoltaic modules. The aspect of the building rooftops is instead
described by a continuous uniform distribution (not shown).

Figure 7. Cumulative sum of rooftop surface, sorted by increasing tilt angle.
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3.2. Computation of Shadows over Rooftops

Knowing whether a portion of a rooftop is shaded for a given position of the sun
in the sky allows the amount of total irradiation received by the photovoltaic panels to
be corrected by excluding the contribution of the direct component of the irradiation.
Using the shadow mapping algorithm presented in [32], we determined for all individual
pixels of the rooftop surfaces whether they are illuminated or in shadow for each of the
selected positions of the sun. The procedure is a variation of the well-known Bresenham
algorithm [44] used in computer graphics to draw segments between two points on a grid.
Please refer to [32] for a detailed description of our implementation.

3.3. Estimation of Incident Radiation

The mean annual irradiance on the plane of the array Ey
POA was obtained from the

sum of several contributions, i.e., the mean annual irradiances due to the direct component
Ey

b , the diffuse component from the sky Ey
d and the diffuse component from the ground Ey

g :

Ey
POA = Ey

b + Ey
d + Ey

g (1)

The individual addends of Equation (1) could be approximated to summations:

Ey
b =

∫ T

0
Eb(t)dt ≈ Δt

N

∑
i=1

Eb,i = Δt
N

∑
i=1

FiDNIi cos(AOIi) (2)

Equation (2) calculates the average annual contribution Ey
b due to direct irradiance

Eb(t) over a year (T), which was discretized into one-hour time intervals Δt. In Equation (2)
DNIi is the mean direct normal irradiance, Fi = {0, 1} indicates whether the point at time
instant ti of the year is in shadow or is illuminated by the sun, and AOIi is the mean angle
of incidence of the solar ray with respect to the panel surface at time ti.

Ey
d =

∫ T

0
Ed(t)dt ≈ Δt

N

∑
i=1

Ed,i = Δt
1 + cos β

2

N

∑
i=1

DHIi (3)

Equation (3) is relative to the average annual contribution Ey
d due to diffuse irradiance

Ed(t) from the sky on a surface tilted with angle β with the isotropic sky model [45]; DHIi
is the diffuse horizontal irradiance.

Ey
g =

∫ T

0
Eg(t)dt ≈ Δt

N

∑
i=1

Eg,i = Δt
1 − cos β

2

N

∑
i=1

ρGHIi (4)

Equation (4) is relative to the average annual contribution Ey
g due to diffuse irradiance

from the ground Eg(t) on a tilted surface; GHIi is the global horizontal irradiance, and ρ is
the albedo.

In our model, the values of GHI, DHI, and DNI depend solely on the position of the
Sun with respect to the panel. Each instant ti of the year corresponds to a specific position
of the sun in the sky, as defined by azimuth angles αi and zenith angles θi. Performing the
calculation described in Section 3.2 for millions of pixels and for hundreds of thousands
of possible positions of the Sun in the sky (a year consists of over 500,000 min) is too
computationally onerous. With the objective of keeping the spatial resolution of 1 m
unchanged, it is possible to significantly reduce the number of sun positions for which to
calculate whether a point is illuminated by the sun or is in shadow.

The employed strategy was to divide the sky into sectors with a resolution of
Δα = Δθ = 5◦ (both in azimuth and zenith) without sacrificing accuracy [32]. As a
result, Equations (2)–(4) are transformed into:
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Ey
b = Δt

N

∑
i=1

FiDNIi cos(AOIi) =
Np ,Nq

∑
p=1,q=1

Fp,qEDNI
p,q cos(AOIp,q) (5)

Ey
d = Δt

1 + cos β

2

N

∑
i=1

DHIi =
1 + cos β

2

Np ,Nq

∑
p=1,q=1

EDHI
p,q (6)

Ey
g = Δtρ

1 − cos β

2

N

∑
i=1

GHIi = ρ
1 − cos β

2

Np ,Nq

∑
p=1,q=1

EGHI
p,q (7)

where Np, Nq � N, and, using Iverson’s notation,

EDNI
p,q = Δt ∑

αi ,θi

[Δα(p − 1) ≤ αi < Δαp][Δθ(q − 1) ≤ θi < Δθq]DNIi (8)

EDHI
p,q = Δt ∑

αi ,θi

[Δα(p − 1) ≤ αi < Δαp][Δθ(q − 1) ≤ θi < Δθq]DHIi (9)

EGHI
p,q = Δt ∑

αi ,θi

[Δα(p − 1) ≤ αi < Δαp][Δθ(q − 1) ≤ θi < Δθq]GHIi (10)

Equations (8)–(10) allow for the calculation of the average direct, diffuse, and global
components of solar irradiance for each portion of the sky as a function of the p, q indices
of azimuth and zenith.

As a result, the shading calculation for each pixel only needs to be performed a few
hundred times, i.e., for combinations of αp and θq angles for which DNIp,q > 0. By repeating
the computations for each pixel of the DSM raster belonging to the area inside the perimeter
of the buildings, we thus obtain the 1 m resolution map of the mean annual irradiance
on the plane of the array Ey

POA, and the components Ey
b , Ey

d and Ey
g for all the buildings

in Sardinia.
Figure 8a shows an extract of the global horizontal irradiance (GHI) map, whereas

Figure 8b depicts the irradiance on the plane of the array (POA). It is immediately noticeable
how the darker areas, i.e., those facing north or shaded by other buildings, receive less
radiation than the light-colored areas do, i.e., those facing south or are taller than the
surrounding buildings.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Maps showing, for the rooftop surfaces within the Municipality of Cagliari, (a) the yearly
average values per m2 of GHI, (b) irradiation on the POA, (c) and photovoltaic potential; (d) aver-
age LCOE.

3.4. Estimation of Photovoltaic Technical Potential

For the estimation of the photovoltaic technical potential, historical time series of
temperature and wind speed provided by PVGIS were used in addition to the irradiation
on the POA. The power output of the photovoltaic installations, according to the model
of Huld et al. [35], depends on irradiation, weather conditions, system characteristics,
and system losses:

Ppv = PPOA · PSTC · ηr · (1 − L) (11)

where PPOA represents the irradiance in the plane of the arrays, and PSTC represents the
power output from the photovoltaic modules determined under standard test conditions;
in our case, it defined as PSTC = A · ηn = 182 W, where ηn = 0.182 represents the nominal
(18.2%) efficiency [33] and A = 1 m2 is the area covered by a single pixel of the raster.
Relative efficiency ηr is calculated as follows:

ηr = 1 + k1 log(P′) + k2 log(P′)2 + k3Tm + k4Tm log(P′) + k5Tm log(P′)2 + k6T2
m (12)

where P′ = PPOA/1000 and parameters ki, which depend on the solar panel technology used,
were calibrated on the basis of measurements by ESTI, the Joint Research Centre’s European
Solar Test Installation laboratory [35]. Temperature module Tm is defined as follows:

Tm = Ta − 25◦ + PPOA

U0 + U1 · Ws
(13)

where Ta is the ambient temperature [46], Ws is the wind speed, and coefficients U0 = 26.9
and U1 = 6.2 are determined in [47]. Lastly, generic system loss L = 14.0%, as recom-
mended by PVGIS, was considered. Such system losses include the reduction of the panel
efficiency over time and the losses due to the transfer of power from the photovoltaic panels
to the electrical grid via cables and inverter [7].

By integrating power output Ppv from Equation (11) over a one-year period, we ob-
tained the average energy Epv generated annually by a hypothetical 1 m2 sized panel
installed on a portion of a roof characterized by specific irradiation values, weather con-
ditions, tilt, and orientation. Thus, we obtained the technical potential map, an extract of
which is shown as an example in Figure 8c, where each pixel represents the amount of
energy Epv that could be produced annually by photovoltaic modules characterized by a
1 m2 surface, efficiency of 18.2% and system losses of 14.0%.
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3.5. Estimation of Economic Potential

An initial estimation of the economic potential is obtained by calculating the levelized
cost of electricity (LCOE), which expresses the ratio of the costs incurred for the installation
of a photovoltaic system to the energy produced by the system itself over the period of
operation. Therefore, it indicates how much it would cost to produce 1 kWh with a 1 kWp
photovoltaic system. When the LCOE value is lower than the cost of a kWh purchased
from the grid, the investment is remunerative. We calculated the LCOE coefficient as
follows [36,48]:

LCOE =
CAPEX + ∑N

n=1(OPEXn − TDn)(1 + r)−n

∑N
n=1 Ey

kWp,n(1 + r)−n (14)

Ey
kWp = Epv · A/ηn = 5.5 · Epv (15)

where CAPEX = 2000 €/kWp (capital expenditure) is the initial cost of the plant [49], which
includes the purchase of panels and inverters, and the installation costs; OPEX = 50 €/kWp
(operating expense) is the annual running cost of the system [49] that takes into account
the tariff to be paid to the grid operator and the eventual cleaning and maintenance of
the system; TD represents the tax deductions or purchase incentives that for simplicity
we consider null; The cost of capital is r = 0.05 [49]; we assumed an operating life of
N = 20 years. Lastly, Ey

kWp represents the average energy produced annually by a 1 kWp
photovoltaic system with ηn = 18.2% [33].

It is possible to map the cost of electricity by calculating the LCOE for all the pixels
on building rooftops, as shown in Figure 8d for a district of the Municipality of Cagliari.
Dark pixels show the rooftop surfaces where the installation of photovoltaic systems
is most economically convenient. The choice of colours renders the map chromatically
complementary to the technical potential map shown in Figure 8c.

4. Results

Using the methodologies presented in Section 3 we computed, with a spatial resolution
of 1 m and for the whole territory of Sardinia, the shape (slope and aspect) of the building
rooftops, the irradiation incident on the rooftops (taking into account any shading due
to the presence of nearby buildings or other obstructions), the average annual energy
delivered by standard photovoltaic panels hypothetically installed on the rooftops, and the
cost to be incurred for installing a 1 kWp photovoltaic system in order for it to produce
1 kWh of energy. The results provide an overview of the rooftop photovoltaic potential
in Sardinia.

We estimated a yearly production of 22 TWh of electricity from photovoltaic sys-
tems for the entire island of Sardinia. Its two most populous cities, Cagliari and Sassari,
contribute almost 1 TWh each. The other major cities of Olbia, Quartu Sant’Elena, Al-
ghero, Oristano, and Nuoro, each exceeded a yearly production of 300 GWh (Table 1 and
Figure 9a).

Table 1. Summary table of annual photovoltaic potential by number of municipalities.

PV Potential (GWh) Number of Municipalities

Epv ≤ 50 257

50 < Epv ≤ 100 68

100 < Epv ≤ 200 35

200 < Epv ≤ 400 11

400 < Epv ≤ 800 4

800 < Epv 2
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(e) (f)

Figure 9. (a) Total yearly photovoltaic potential and (b) average yearly photovoltaic potential per
resident for the municipalities in Sardinia.

Figure 9b shows how much energy could be produced per resident per year after the
installation of photovoltaic modules on suitable rooftops. Depending on the municipality
in Sardinia, the technical potential varied from 215 to 265 kWh/m2/year, and from 10
to 60 MWh/individual/year. The per capita potential depends on two main factors: the
presence of apartment buildings, which are widespread in larger cities, lowering the amount
of rooftop area per individual; the presence of vacation houses in tourist areas, which are
unused for most of the year, and whose owners are rarely among the residents, increasing
the available surface per capita.

Compared to the total value, which is strongly related to the extension of the mu-
nicipality’s territory and the number of residents, the photovoltaic potential expressed
per m2 is more indicative of the potential of each individual area. Figure 10a shows the
annual average global horizontal irradiance per m2, as estimated by PVGIS. The map is
similar to Figure 4b, but instead of the 0.05◦ sectors determined by the PVGIS-SARAH2
database, the GHI values are distributed over the individual territories (from 1600 to close
to 1800 kWh/m2/year) The reduction in irradiance on the rooftops due to the shading,
inclination, and orientation of the panels leads to the map in Figure 10b, which shows the
actual irradiance received per m2 on the plane of the arrays. For some municipalities, the
change is drastic, possibly justified by the fortunate exposure of most buildings to the sun.
The towns that receive lower irradiance are either in mountainous locations (for which
the average irradiance is lower than that for locations on the plains) or are located in deep
valleys, situations that greatly reduce the irradiance received when the Sun is not yet high
in the sky.

The map of the photovoltaic potential in Figure 10c is qualitatively very similar to
the previous one; in fact, the (small) differences between one municipality and another
are explained by the equally small differences in temperature and wind speed. Lastly,
Figure 10d depicts the average levelized cost of electricity in Sardinia for all municipalities
ranging from 14 to 21 EuroCent per kWh. Should the cost of energy remain high as it
has been, installing photovoltaic systems in the vast majority of the buildings might be
worthwhile, and the energy surplus can be sold to other regions.
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The estimated annual photovoltaic potential for the island of Sardinia as a whole, equal
to 22 TWh, is obtained by computing the energy production from photovoltaic modules
distributed over a surface area larger than 92 km2 (on a total rooftop area of almost 130 km2).
This equates to an average annual production of 238.92 kWh per m2, or 1314 kWh produced
annually for each kWp installed, using the technology chosen as an example.

(a) (b)

(c) (d)

Figure 10. (a) Average yearly GHI per m2, (b) irradiation on the POA per m2, (c) photovoltaic
potential per m2 and (d) average LCOE for the municipalities in Sardinia.

Figure 11 shows the dependence of annual photovoltaic potential, per m2, on rooftop ori-
entation and tilt. In Sardinia, the optimal rooftops which guarantee about 250 kWh/m2/year
are those with an orientation between south-west and south-east and a slope between 10◦ and
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30◦. North-facing façades are unproductive unless they have an inclination of less than 20◦,
in which case a production of approximately 200 kWh/m2/year is expected.

Figure 11. Average annual energy production per m2 based on the orientation and inclination of
photovoltaic panels in Sardinia.

5. Discussion

Our procedure estimated a yearly production of 239 kWh per m2, i.e., a photovoltaic
potential of 22 TWh distributed over a rooftop area of about 92 km2. The JRC [7] estimates,
for the region of Sardinia, a production of 4.68 TWh, but over an area of just 31.96 km2,
corresponding to an average of 146.41 kWh per m2. It is not explicit in the text, but it
would appear that they used a panel efficiency of 10% instead of 18.2% (as in our case).
Using the 18.2% efficiency (5.5 m2/kWp instead of 10), results in an annual production
of 266.19 kWh/m2. The JRC estimate was, thus, higher than ours, although this can be
explained by their characterization of the modules with optimal aspect (due south) and
slope (20◦) and not, as in our case, with the actual tilt and orientation of the rooftops.
The JRC estimate, moreover, is based on much coarser analysis that does not take into
account the actual location of the buildings or the orientation of the rooftops.

Sardinia’s electricity production in 2019 (pre-COVID-19) was 13.14 TWh, with pho-
tovoltaic systems accounting for only 8.8% (1.15 TWh), while total consumption was
8.47 TWh [50]. As for the domestic and tertiary sectors, consumption in 2019 amounted
to 4.43 TWh. The photovoltaic potential of Sardinia is therefore capable of easily covering
domestic and tertiary sector consumption, and that in the industrial and agricultural sectors.
Consumption and potential per province are detailed in Table 2. The smaller available
surface area per inhabitant and the higher concentration of tertiary sector enterprises render
the province of the metropolitan city of Cagliari the most energy-intensive with respect
to its photovoltaic potential. This is despite the fact that the installation of modules on
just one third of the total rooftop surface could meet the energy needs of all households
and services.

Table 2. Electricity consumption in the domestic and services sectors, and photovoltaic potential
for the 5 provinces of Sardinia. The percentage indicates the fraction of eligible rooftops that,
if equipped with a photovoltaic system and accumulators, would cover the needs of the domestic
and services sectors.

Province Energy Demand PV Potential
% of Rooftop

Surface

Cagliari 1248 GWh 3.80 TWh 32.84%

Nuoro 482 GWh 2.95 TWh 16.34%

Oristano 374 GWh 3.15 TWh 11.87%

Sassari 1514 GWh 6.65 TWh 22.77%

Sud Sardegna 810 GWh 5.49 TWh 14.75%

Sardinia 4.43 TWh 22.04 TWh 20.10%
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The distribution of the estimated values for the levelized cost of electricity is shown in
Figure 12, where 50% of installations had an LCOE below 14.76 EuroCent/kWh, and 50% of
installations had an LCOE between 13.94 and 16.10 EuroCent/kWh.

Figure 12. Distribution of the levelized cost of electricity for all the rooftop surfaces in Sardinia.

Figure 13 shows the total energy from rooftop PV as a function of the corresponding
levelized cost of electricity, and shows that almost all of the available roof area could be
exploited for an LCOE of 17.5 EuroCent/kWh.

Figure 13. Cumulative sum of energy for all the rooftop surfaces in Sardinia as a function of the
levelized cost of electricity.

In Italy, electricity prices in 2022 soared above 30 EuroCent per kWh, making photo-
voltaic system installation worthwhile even in the least productive locations [51]. Assuming
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a return to the situation prior to COVID and to quieter geopolitical circumstances, the aver-
age energy price from 2010 to 2019 was 9.45 EuroCent/kWh, well below our LCOE values.
However, the LCOE values were calculated without taking into account the incentives
(SuperBonus 110% or 50% tax deduction, preferential VAT, on-site exchange, -i.e., the sale
of energy) thanks to which the installation would be worthwhile even with a return of
energy prices to pre-2020 values.

Areas for the improvement of our estimate mainly concern the quality of the data
available for analysis. The data used in the work were not particularly recent: the building
blueprints, despite having been digitally published in 2017, were obtained from regional
databases compiled between 1994 and 2000, and partially updated in 2006, while the
digital surface model was based on LiDAR observations performed between 2008 and 2013.
Therefore, there is a discrepancy between the data shown by the raster and the cadastral
data (e.g., the raster of 2013 might show a building not yet registered in the blueprint
dataset); the difference between the current situation (2022) and the one described by the
data might not be negligible (entire neighbourhoods might be built in a decade). In terms of
data accuracy, the digital surface model does not account for the presence of empty spaces;
sometimes the building blueprints also include internal courtyards within the perimeter
(e.g., see Figure 14); situations such as these are usually discarded due to the presence
of vegetation that makes the presumed building coverage irregular. The available data
do not yet cover the entire territory of Sardinia or even the entire set of buildings; the
overall estimate was obtained by rescaling the calculation made on the covered area, but it
is evident that a complete coverage would lead to fewer uncertainties.

Figure 14. Portion of the irradiation map in which the perimeter of some buildings does not follow
the actual perimeter of the buildings themselves, but also erroneously includes the inner courtyards,
thus misleading the algorithm that considers vegetation, for example, as an irregular cover. Surfaces
with a slope exceeding 45◦ and not belonging to contiguous areas of at least 30 m2 are, in any case,
not considered in the calculation of municipal and regional photovoltaic potential.

6. Conclusions

In this paper, we presented a high-resolution rooftop photovoltaic potential estima-
tion procedure based on GIS and satellite irradiance data, highly optimized to allow for
calculation over large areas.

We applied the procedure to the case of the Sardinia region in Italy. This gave us an
estimate of the geographic, technical, and economic potential for the entire region with a
spatial resolution of 1 m.

The computation provided an estimate of photovoltaic potential on building roofs
as a function of the cost of electricity, with an upper limit value of 22 TWh per year. This
potential would abundantly cover the energy needs of the region, in particular those related
to household consumption and for service activities directly associated with the buildings
on which the panels could be installed. Energy is not power, however, and the need to

38



Appl. Sci. 2023, 13, 7

instantly balance demand and generation of electric power by ensuring the balance of the
distribution system is clearly left out of this analysis. This work focused on estimating
geographic potential as a basis for further processing, and the technical and economic
analysis is based on standard technologies. We, therefore, make our results available to the
community in the hope that other researchers could further investigate aspects of economic
potential in relation to the different PV technologies available, and in relation to a changing
regulatory and economic framework. The procedure is replicable in other areas where
the necessary data are available. Our research will continue with the development of
artificial intelligence techniques for identifying suitable areas for panel installation from
satellite images.
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The following abbreviations are used in this manuscript:

AOI Angle of incidence
API Application programming interface
CAPEX Capital expenditure
DBGT Geotopographic database
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DSM Digital surface model
GHI Global horizontal irradiance
GIS Geographic information system
LCOE Levelized cost of electricity
LiDAR Light detection and ranging
OPEX Operating expense
POA Plane of the array
PV Photovoltaic
STC Standard test conditions
TD Tax deductions
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Abstract: Fire risk will increase in the upcoming years due to climate change. In this context,
GIS analysis for fire risk mapping is an important tool to identify high risk areas and allocate
resources. In the present study, we aimed to create a fire risk estimation model that incorporates
recent land cover changes, along with other important risk factors. As a study area, we selected
Dadia-Lefkimi-Soufli National Forest Park and the surrounding area since it is one of the most
important protected areas in Greece. The area selected for the case study is a typical Mediterranean
landscape. As a result, the outcome model is generic and can be applied to other areas. In order to
incorporate land cover changes in our model, we used a support vector machine (SVM) algorithm to
classify a satellite image captured in September 2021 and an image of the same period two years ago
to obtain comparable results. Next, two fire risk maps were created with a combination of land cover
and six other factors, using the analytic hierarchy process (AHP) on a GIS platform. The results of
our model revealed noticeable clusters of extreme high risk areas, while the overall fire risk in the
National Park Forest of Dadia-Lefkimi-Soufli was classified as high. The wildfires of 1st October 2020
and 9th July 2021 confirmed our model and contributed to quantification of their impact on fire risk
due to land cover change.

Keywords: wildfire; fire risk; model; MCDA; AHP; Natura; protected zones; GIS; SVM; land
cover change

1. Introduction

The frequency of forest fires is rapidly increasing in southern Europe, posing major
challenges for Greece, Italy, Portugal, Spain, and France [1]. Wildfires can represent a
serious threat to human health and infrastructure, as well as ecosystems and biodiversity [2].
More specifically, the impact of wildfires on human health can be either direct, causing
severe physical damage due to burns, or indirect, since the exposure to pollutants such as
ozone and PM [3] can lead to serious disorders. In addition, large wildfires can damage
properties or critical infrastructure, such as electricity grids and houses, resulting in major
economic losses [4]. Finally, wildfires play an important role in ecological balance, in which
humans are a part of. The increase in fire frequency in the past few years enhances forest
degradation and biodiversity loss [5].

In terms of biodiversity, Greece is one of the richest countries in Europe, having the
highest number of flora species among the Balkan countries. In fact, it contains over 5700
different species of flora, 20% of which are endemic to the country. Most of these species
are located in the northern regions of the country, thanks to the ideal geographic and
climate conditions [6,7]. It seems that species richness of Greece combined with the high
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risk of fire in the Mediterranean region—because of its hot and dry summers—makes
Greece extremely susceptible to wildfires. Consequently, the average annual burned area
caused by wildfires has shown an increasing trend in the past decades. During 2001–2017,
wildfires burned an average of 55,000 ha per year, most of which was covered by forested
areas [8]. Recently, one of the most disastrous wildfires took place in August 2021 in Evia
island, where 34,893.5 ha of forest and 1111.6 ha containing houses and infrastructure were
destroyed or seriously affected by fire [9]. As a result, it is critical to study how various
factors influence the probability of fire occurrence, in order to create a fire risk layer for the
Fire Management Geographic Information

Fire risk expresses the likelihood of a fire occurring during a specific time period and
place. The risk is the result of the different hazardous parameters interacting with the
conditions of vulnerability, which are present in the region [10]. On the one hand, hazardous
parameters describe the danger of fire occurrence and on the other hand, vulnerability
expresses the predilection of an area to be negatively affected by wildfire [11]. It is very
common for the terms ‘fire risk’ and ‘fire danger’ to have interchangeable meanings. The
factors that influence the ignition and development of fires constitute the fire danger. Fire
ignition can derive from natural causes (mostly thunder), or it can be a result of human
activity [12]. According to a study, approximately 93% of fires in Northern Europe are
caused by humans, either intentionally or unintentionally [13], and thus the location of
populated places and roadways is critical in identifying areas at high risk of fire. The
development of fires is influenced by topography, meteorological conditions, fuel condition,
and fuel availability [14]. Many studies have shown that vegetation and topography are
the key elements responsible for fire severity in many types of forests. [15–18]. Since
topographic features influence the distribution of local climate, topography is an important
factor in fire propagation. Fires spread quickly across steep and upward slopes, but slowly
in places with a downhill slope [19]. Moreover, the probability of fire occurrence may vary
in different elevations on the basis of factors such as temperature and vegetation [20]. The
topographic wetness index (TWI) [21] is another parameter that contributes to fire spread
and ignition. To a certain extent, TWI simulates the impact of topography to soil and fuel
moisture [22,23].

Geographic information systems (GIS) is mature technology and effective platform to
analyze, visualize, and disseminate spatial and temporal data and information. GIS is a
multidisciplinary approach that can combine methods from science, engineering, and the
economy with the experience of field officers to produce robust knowledge in firefighting.
GIS, besides its analytical capabilities, is the ideal platform for coordination, information
exchange, and awareness provision for all involved stakeholders (all levels of authorities,
fire department, police, forest services, agricultural coops, citizens, etc.).

Multiple levels of spatial and nonspatial data and information related to fire risk, such
as meteorological data, land cover, vegetation features, and topography, in the form of
historical information is combined and evaluated to create detailed fire risk maps [24–26].
The information to be used by the fire risk model has to be reliable, the most recent, easy to
obtain, and processable with reasonable H/W and S/W resources in order to produce an
update fire risk map. The key for the analysis is the determination and assignment of the
proper weights between all these pieces of information. Many studies, in particular, have
used multi-criteria decision analysis (MCDA) in conjunction with the analytic hierarchy
process (AHP), which assigns weights to the influencing parameters, so as to successfully
develop fire risk maps [14,24–28]. In the AHP framework, a decision is broken down into
a hierarchy of criteria or alternatives, and subsequently one can evaluate the significance
of each criterion to the final decision, given the relevant weights between each pair of
criteria [29]. After an exhaustive review of the bibliography, we proposed seven factors to
be used as criteria in AHP to estimate fire risk: the land cover (LC), the elevation, the aspect,
the slope, the TWI, and the distance from roads (DfR) and settlements (DfS). Out of those
seven factors, studies have shown that land cover is the most important for estimating
fire risk [24,27], especially in cases where the land cover indicates the type of vegetation
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that covers the area [28,30]. It is evident that having a detailed and updated depiction of
land cover is critical for estimating fire risk. In view of this fact, GIS can be used to classify
land cover and vegetation from satellite imagery with the implementation of machine
learning algorithms [31,32]. Various algorithms have been used by different studies for
land classification, such as k-means clustering [33], maximum likelihood classification [34],
and support-vector machines (SVM) [35]. In fact, support-vector machine models have
been used for land classification with promising results [31,35].

In this paper, the SVM algorithm was applied to satellite images obtained in 2019
and 2021 in order to create detailed land cover maps for the Natura 2000 (GR1110005)
zone, which includes the Dadia-Lefkimi-Soufli National Park Forest in the county of Evros.
Subsequently, the use of these land cover maps in combination with six other important
fire risk factors can determine the fire risk of the National Park for September 2019 and
September 2021. On the basis of the fire risk maps of 2019 and 2021 in conjunction with
the burned areas from the past fires of 1st October 2020 and 9th July 2021, we evaluated
how substantial land cover changes can affect fire risk mapping. In order to make a valid
comparison, we chose to include in the fire risk model factors that remain relatively constant
for long periods of time. This creates a baseline fire risk map of our study area.

2. Study Area

Our study area is the Natura 2000 zone with codename GR1110005, which coincides
with the National Park Forest of Dadia-Lefkimi-Soufli. The study area is located in Evros
county, as shown in Figure 1, and it extends from 26.03◦ E to 26.32◦ E and from 40.98◦ N
to 41.26◦ N, covering a total area of 42,481 ha. The climate in the area is Mediterranean,
with daytime maximum average temperatures of 32 ◦C in August and lowest average
temperature of 8 ◦C in January [36]. The average number of rainy days per year is 13.3 and
the average yearly rainfall is 732 mm [37]. The lowest point of the study area has a height
of 10 m, and the highest point is located in Kapsalo at 620 m [37,38].

The National Park Forest of Dadia-Lefkimi-Soufli contains two protected zones, A1
and A2, which cover an area of 7350 ha. Oak and pine trees make up the majority of the
forested areas. The spatial distribution of the different types of trees in the National Park
can be divided into two areas. The center is covered with pine trees, whereas the north
and southwest are covered mostly with oak trees [39]. During 2019 and 2021, two major
fires occurred within the National Park, both of which took place in the southern region, on
the northern part of the village Lefkimi. The first burstfire occurred on 1st October 2020,
burning approximately 694 ha, and the second one took place on 9th July 2021, burning
approximately 242 ha.
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Figure 1. (a) Location of the study area in Greece (b) and in Evros county. (c) Longitude and latitude
of Natura 2000 area (GR1110005) that coincides with the National Park Forest of Dadia-Lefkimi-Soufli,
including the protected zones A1 and A2.

3. Data and Methods

To construct the land cover maps, Sentinel-2 images were used, which were captured
on 18th September 2019 at 09:06 a.m. and on 27th September 2021 at 09:06 a.m., with
minimal cloud coverage (<0.1%) [40]. Both images were level 2 Sentinel-2 products, and
thus they had already received atmospheric correction. Next, the spectral bands B03,
B04, and B08 were extracted from the original images, with spatial resolution of 10 m, in
order to produce the color infrared images needed for the land classification. Finally, to
classify the color infrared image, we used a supervised machine learning (SML) model,
using the application of the support vector machine (SVM) algorithm. SVM algorithms
have been proven to be a reliable method of creating land cover maps from Sentinel-2
images [31,32,35].

For the calculation of the topographic factors, the freely available digital elevation
model (DEM) of the Copernicus Land Monitoring Service was used. The Copernicus DEM
offers spatial resolution of 25 × 25 m, with vertical accuracy of ±7 m (RMSE). For the
purpose of our study, the 1000 × 1000 km tile with codename E50N20 was used, and the
elevation of our study area was isolated from it [38]. The remaining topographic factors
(slope, aspect, and TWI) were derived by analyzing the DEM. The roads and settlement
locations were downloaded from open data sources [41,42]. For the raster analysis and
calculations mentioned above, the GIS software ArcGIS Pro 2.9.1. was used.

In order to validate our results and examine the impact of the fire on land cover and
subsequently the fire risk, detailed burn scar maps from the National Management Body
of Dadia-Lefkimi-Soufli Forest National Park were used [37], which depict the extent of
fires that occurred during October 2020 [43] and July 2021 [44]. VIIRS hotspot locations
were also used to validate the spatial extend of the burned areas [45]. The workflow of our
method is represented in Figure 2.
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Figure 2. Flowchart of the applied methodology.

3.1. Factors
3.1.1. Land Cover (LC)

To create the land cover maps, we used an SVM algorithm to process color infrared im-
ages from September 2021 and September 2019, which were derived from the combination
of Sentinel-2 B03, B04, and B08 bands. The resulting color infrared images are presented
in Figure 3, in which vegetation appears in shades of red, bare land in cyan or white, and
water in black.

Color infrared images can help distinguish among different plant types, depending
on their leaf characteristics [46]. Inside the National Park of Dadia-Lefkimi-Soufli, oak
and pine trees account for more than the 70% of vegetation [39]. Oak trees belong to the
broad-leaved tree family, and therefore they appear in brighter red in the color infrared
image. In Figure 3, oak trees can be seen as clusters of bright red in the northern and
southwestern parts of the national park. Pine trees have thinner leaves, and thus they
appear to have a darker red color. Finally, shrubs and low grass appear in faint red.
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Figure 3. Color infrared image of the study area produced by the combination of spectral bands B03,
B04, and B08 (a) from September 2019 and (b) from September 2021.

To classify the images, we considered six classes: pine forest, oak forest, shrubs and
low grass, bare land, water bodies, and built-up areas. To train the SVM algorithm, we
carefully gathered multiple samples of homogeneous parts from each image, representing
one of the six classes. After the classification of the image, we made some adjustments to
the product image, mainly to distinguish some parts of bare land from the buildup areas.
The accuracy of the land cover classification was estimated using the Kappa coefficient,
which was found to be 0.87. The final land cover maps from September 2019 and September
2021 of the National Park of Dadia-Lefkimi-Soufli are presented in Figure 4a,b, respectively.

Figure 4. Final land cover map produced by the SMV algorithm (a) from September 2019 and (b)
from September 2021.

Each type of tree has different flammability properties. Considering that pine trees are
more flammable than oak trees, the forest areas were classified accordingly [47]. Finally,
since water bodies cannot ignite, they were classified with the fire risk class ‘no risk’.
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The classification of land cover, based on the fire risk, is shown in Table 1, and the final
reclassified risk map of the land cover maps is presented in Figure 5.

Table 1. Fire risk classification of land cover.

Land Cover Class Risk Class Risk Description

Pine forest 5 Extremely high
Oak forest 4 High

Shrubs and low grass 3 Medium
Bare land 2 Low
Buildup 1 Extremely low

Water body 0 No risk

 
Figure 5. The fire risk classification of land cover (a) for September 2019 and (b) for September 2021.

3.1.2. Altitude

Altitude influences the humidity of vegetation and temperature. Vegetation in high
altitudes has higher rates of humidity and lower temperature [31]. Moreover, high altitudes
usually have lower vegetation density. Considering the topographic characteristics of the
area, we distributed the fire risk into five classes, as shown in Table 2. Elevation in our
study area, according to DEM [38], ranged from 10 m meters to 645 m meters. The altitude
raster and the final reclassification of fire risk appear in Figure 6.

Table 2. Fire risk classification of altitude.

Altitude (m) Risk Class Risk Description

10–100 5 Extremely high
100–200 4 High
200–300 3 Medium
300–400 2 Low

>400 1 Extremely low
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Figure 6. (a) Altitude. (b) Fire risk classification of altitude.

3.1.3. Aspect

In the northern hemisphere, south-oriented slopes receive more sunlight, and thus the
vegetation loses humidity faster and becomes more flammable [28]. Moreover, because
of the difference in sunlight distribution among the different orientations of slope, the
southern aspects usually have more dense vegetation. Less humidity and dense vegetation
results in higher fire risk, and thus vegetation facing south is more flammable. The fire risk
classification of the aspect appears in Table 3 [25,28].

Table 3. Fire risk classification of aspect.

Aspect Risk Class Risk Description

South 5 Extremely high
Southeast–East 4 High

Northeast 3 Medium
North 2 Low

Flat–Southwest–West–
Northwest 1 Extremely low

The aspect derives from the DEM and the is presented with different colors depending
on the orientations. The final aspect raster along with reclassified fire risk map can be seen
in Figure 7.
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Figure 7. (a) Aspect. (b) Fire risk classification of aspect.

3.1.4. Slope

Fire propagates faster on steeper slopes because the flames can reach higher vegetation
more easily at great surface angles [30]. Moreover, on steep slopes, water runoff increases,
resulting in less soil moisture [24]. Both of these factors make areas with steeper slopes have
a higher risk of fire. We derived the fire risk classification of slope as shown in Table 4 [25].
In order to calculate the slope raster, we used the DEM and chose to present the results in
percentage. The slope raster of the National Park Forest of Dadia-Lefkimi-Soufli along with
the fire risk map of the slope is presented in Figure 8.

Figure 8. (a) Slope. (b) Fire risk classification of slope.
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Table 4. Fire risk classification of slope.

Slope (%) Risk Class Risk Description

>30 5 Extremely high
20–30 4 High
10–20 3 Medium
5–10 2 Low
0–5 1 Extremely low

3.1.5. Topographic Wetness Index (TWI)

The TWI can simulate water concentration can be derived from topography. The
presence of water affects soil moisture and makes the surrounding vegetation harder to
ignite [22]. We calculated the TWI of the study area from the total catchment area, the flow
width, and slope from the DEM [21]. The risk classification of the TWI is presented in
Table 5. The TWI raster of the study area along with the fire risk map of TWI is shown in
Figure 9.

Table 5. Fire risk classification of TWI.

TWI Risk Class Risk Description

4–6 5 Extremely high
6–7 4 High
7–8 3 Medium
8–9 2 Low
>9 1 Extremely low

Figure 9. (a) TWI. (b) Fire risk classification of TWI.

3.1.6. Distance from Roads

Human activities near roads can be the cause of fire ignition, and therefore the areas
surrounding the road network are at a higher fire risk [48]. To attribute fire risk to those
areas, we took into consideration previous studies along with the structure of the road
network [24,28]. The first 200 m near the road network was determined to be at high risk of
fire, and afterwards the risk decreased by one class at 200 m intervals. The classification of
fire risk is presented in Table 6. Multi-buffer rings of 200 m each were calculated around
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each road segment and transformed to rasters in order to be incorporated into the model
(Figure 10).

Table 6. Fire risk classification of the area around the road network.

DfR (m) Risk Class Risk Description

0–200 5 Extremely high
200–400 4 High
400–600 3 Medium
600–800 2 Low

>800 1 Extremely low

 
Figure 10. (a) Rasterized buffer zones every 200 m from the road network. (b) Fire risk classification
based on the road network.

3.1.7. Distance from Settlements

The distance around settlement locations affects the risk of fire similarly to that of the
road network. The areas closer to settlements are in higher risk than those farther away [13].
To distribute the fire risk, we took the spatial extent of the settlements into consideration.
Since most of the settlements inside and near our study are small, we estimated that their
average extent is 500 m. Taking this into account, we assigned the area inside a radius
of 900 m around the settlements to be in extreme risk of fire, and afterwards the risk
decreased by one class at 400 m intervals, as it is depicted in Table 7. Buffer zones using
the aforementioned distances were applied around each settlement. The results and the
assigned fire risk is shown in Figure 11.

Table 7. Fire risk classification of the area around settlement locations.

DfS (m) Risk Class Risk Description

0–900 5 Extremely high
900–1300 4 High

1300–1700 3 Medium
1700–2100 2 Low

>2100 1 Extremely low
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Figure 11. (a) Rasterized buffer zones of the distance from settlements. (b) Fire risk classification of
the area around settlement locations.

3.2. Attribution of Weight to the Factors

To calculate the weight of each factor, we used the AHP as a multi-criteria method.
The AHP can estimate the significance of each factor given the pairwise comparisons
among each one of the seven factors [29]. In our model, each factor belongs to one major
category that influences fire risk. Particularly, slope, DEM, aspect, and TWI reflect the
impact of topography and to some extent fuel condition on fire risk. The distance from
roads and settlements captures the impact of human activity on fire ignition. Finally, land
cover depicts the alternations of fire risk, due to fuel availability and fuel type. In order
to estimate the pairwise comparisons, we consulted past studies and expert opinions. We
considered the land cover to be the most important factor for this estimation [24,25,27].
Moreover, human activity plays a key role in fire risk identification, since in most cases,
humans are the main cause of fires [13]. Therefore, the distance from roads and settlements
has a serious impact on fire risk. The most important topographic factor is TWI, since it has
a direct correlation with soil humidity, whereas the rest topographic factors contribute less
to the overall fire risk. The final distribution of pairwise comparisons is presented in Table 8.
Afterwards, the weights were calculated using the mathematical procedure established by
Thomas L. Saaty [49]. The final weights of each factor are also shown in Table 8.

Table 8. Pairwise comparisons of fire risk factors along with the assigned weight.

Land
Cover

Altitude Aspect Slope TWI DfR DfS Weight

Land cover 1 3 3 3 3 2 2 0.27
Altitude 0.33 1 3 2 0.5 0.33 0.33 0.09
Aspect 0.33 0.33 1 0.5 0.25 0.33 0.33 0.05
Slope 0.33 0.5 2 1 0.5 0.33 0.33 0.07
TWI 0.33 2 4 2 1 0.33 0.33 0.12
DfR 0.5 3 3 3 3 1 3 0.23
DfS 0.5 3 3 3 3 0.33 1 0.17

SUM 3.32 12.83 19 14.5 11.25 4.65 7.32 1
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To verify the consistency of our comparison estimations, we calculated the consistency
ratio (CR) by applying the following equations [30],

CI = (λmax − n)/(n − 1) (1)

CR = CI/RI (2)

The λmax in Equation (1) is the perturbated eigenvalue of the matrix constructed by
the pairwise comparisons, as depicted in Table 8. n is the order of the matrix, n = 7. The
consistency index (CI) in Equation (1) measures the difference between λmax and the exact
eigenvalue, n. The CR in Equation (2) is calculated from the random consistency index
(RI) [50], as shown in Table 9.

Table 9. Values of the random consistency index (RI).

n 1 2 3 4 5 6 7

RI 0 0 0.58 0.9 1.12 1.24 1.32

According to Table 9, RI = 1.32 for seven factors. Subsequently, concerning our
pairwise estimations, CR = 0.07. Since CR < 0.1, the estimations of the pairwise matrix were
consistent.

The fire risk maps were calculated by the weighted sum of all factors

Fire Risk = 0.27 ∗ LC + 0.09 ∗ Altitude + 0.05 ∗ Aspect + 0.07 ∗ Slope + 0.12 ∗ TWI + 0.23 ∗ DfR + 0.17 ∗ DfS (3)

4. Results

The fire risk maps for September 2019 and September 2021, with spatial resolution of
25 m × 25 m, were calculated using Equation (3), and they are presented in Figure 12, along
with the relative fire risk scale value. The risk class for most areas was unchanged, which is
expected. The parameters used in our model remained relatively invariant for long periods
of time. Therefore our risk map represents the baseline fire risk in the area [24].

Figure 12. Fire risk in the National Park Forest of Dadia-Lefkimi-Soufli (a) for September 2019 and
(b) for September 2021.
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The average fire risk in the National Park Forest of Dadia-Lefkimi-Soufli was high for
both years. Specifically, 50% of the total 42,481 ha of our study area for 2019 was considered
to be at high fire risk. Similarly, 48% of the total area was considered to be at high fire risk
for 2021. Moreover, for both years, 5% of the National Park was at extremely high risk
of fire.

The extreme fire risk areas form clusters. The most noticeable ones are located near
the center of the National Park, spreading along the line that connects the points with
coordinates 41◦10′ N, 26◦7′ E and 41◦6′ N, 26◦16′ E. Two additional extremely high risk
areas were detected. The first one is located in the northwest of the National Park, near
the settlement of Giannouli, and the second one is located in the southeast of the park,
near the settlement of Lefkimi. The overall distribution of fire risk for September 2019 and
September 2021 in the National Park is presented in Table 10.

Table 10. The distribution of fire risk in the National Park of Dadia-Lefkimi-Soufli for September
2019 and September 2021.

Risk Class Risk Description
Fire Risk Areas

(Sept 2019)
Fire Risk Areas

(Sept 2021)

5 Extremely high 5% 5%
4 High 50% 48%
3 Medium 33% 34%
2 Low 11% 12%
1 Extremely low 1% 1%

Within the National Park Forest of Dadia-Lefkimi-Soufli, two major fire incidents took
place between September 2019 and September 2021. The first one was recorded in October
2020, and the second one in July 2021 [46]. In order to validate our results and measure the
impact of change in the land cover on the fire risk, due to the fires, each fire incident was
examined separately as follows.

4.1. Impact of Fire in October 2020

The fire of October 2020, as stated by the fire department, started in the north of the
village of Lefkimi, near the southwest extreme high fire risk area, and burned approximately
694 ha. According to VIIRS hotspot measurements, the brightness temperature during the
fire ranged from 24 ◦C to 81 ◦C [46]. Moreover, the area affected by the fire before the fire
occurrence was considered at high risk. In fact, according to our fire risk map of 2019, 41%
of the area was classified as high risk and 36% as medium risk. The fire extent and the fire
risk map of 2019, along with the distribution of the fire risk inside the affected area, are
presented in Figure 13.

The fire had a significant impact on the fire risk in the area. The change in land cover
we identified with the SVM algorithm passed on the fire risk and was captured by the
difference among the fire risk maps inside the extent of the affected area before and after
the fire incident. The fire risk of the area dropped from high to medium–low risk. The
high-risk areas dropped from 41% before the fire to 10% after the fire, while the low-risk
areas increased by 17%. These changes are attributed to the loss of vegetation from the
fire on 5 October 2020. The fire extent related to the fire risk map of 2021, along with the
updated distribution of the fire risk inside the affected area, is presented in Figure 14.

55



Appl. Sci. 2022, 12, 2938

 
Figure 13. (a) The extent of the fire on 5 October 2020 relative to the fire risk map of 2019. (b) The fire
risk distribution inside the affected area before the fire on 5 October 2020.

Figure 14. (a) The extent of the fire on 5 October 2020 relative to the fire risk map of 2021. (b) The
updated fire risk distribution inside the affected area, after the fire on 5 October 2020.

4.2. Impact of Fire in July 2021

The second serious fire incident in the National Park Forest of Dadia-Lefkimi-Soufli
was recorded on 9th July 2021, in the north of the settlement of Lefkimi. The fire burned
approximately 242 ha of forested areas, and it was close to the limits of the fire that
occurred in October 2020, as is shown in Figures 14 and 15. According to VIIRS hotspot
measurements, the brightness temperature during the fire ranged from 59 ◦C to 32 ◦C [46].
According to our model, the affected area before the fire occurrence was considered to be at
high risk of fire. In particular, 59% of the overall area was classified as having a high fire
risk, and 10% as having an extremely high fire risk. On the contrary, only 4% of the area
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was classified as low and 0% as extremely low fire risk. The detailed distribution of the fire
risk inside the affected area (according to the risk map of 2019) is presented in Figure 15.

Figure 15. (a) The extent of the fire on 9 July 2021 relative to the fire risk map of September 2019.
(b) The fire risk distribution inside the affected area, before the fire on 9 July 2021.

The fire had a significant impact on the overall fire risk classification of the area. The
fire risk of the affected area after the fire was classified as medium with 49%. After the
fire incident, the high-risk areas dropped from 59% of the whole area to 26%, while the
extremely high risk areas dropped from 10% to 3%. On the other hand, areas categorized
as low risk increased by 18%. The fire extent related to the fire risk map of September 2021,
along with the updated distribution of the fire risk inside the affected area, is presented
in Figure 16.

Figure 16. (a) The extent of the fire on 9 July 2021 relative to the fire risk map of 2021. (b) The updated
fire risk distribution inside the affected area, after the fire on 9 July 2021.

5. Discussion

In this study, we combined elevation, slope, aspect, TWI, land cover, settlement
location, and road networks to create a fire risk model. Subsequently, we applied the model
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to the National Park Forest of Dadia-Lefkimi-Soufli. Topography, vegetation, and human
activity are the major categories represented in our model that affect wildfire generation
and spread. Similar factors have been used by other studies, in combination with AHP to
assign weights, in order to calculate fire risk in various areas [14,24–28,30]. In our analysis,
land cover was proved to be the factor with the highest weight. This does not mean
that topography and human activities are of less importance. In fact, human activity is
the main cause of wildfire ignition. Approximately 93% of fires in Northern Europe are
caused by humans, either intentionally or unintentionally [13]. Land cover, besides having
the highest weight in the resulting model, also changes more frequently compared to
human activities (road network, settlements) and topography. For this reason, we derived
land cover classification from Sentinel 2 imagery since they are georeferenced, frequently
updated, freely available, and have suitable spatial resolution. Classification was carried
out with the use of SVM algorithm, since it has already been used in similar applications
with promising results [31,35].

With the combination of AHP (to determine the fire risk) and the SVM algorithm
(to classify the land cover), we managed to identify the baseline fire risk of the National
Park Forest of Dadia-Lefkimi-Soufli for September 2019 and September 2021. According to
those fire risk maps, most of the areas in the National Park Forest of Dadia-Lefkimi-Soufli
are classified as high risk. More specifically, the map of 2021 reveals that 5% out of the
total area of the National Park was classified as extremely high risk, and 48% was high
risk. Consequently, fire risk distribution in the National Park suggests that local authorities
should be at high alert, especially during heatwaves and near the areas classified as extreme
high risk.

We also examined in detail the impact of the land cover change on fire risk in the areas
affected by the two major fire incidents (October 2020 and July 2021). It is concluded that
the average risk of those areas dropped significantly, while the rest of the fire risk map
remained relatively unchanged between September 2019 and September 2021. It is evident
that land cover changes caused by past fires have a significant drop on the fire risk of the
affected areas. The main cause is the loss of the highly flammable pine tree forest near
the settlement Lefkimi. Considering the effect of land cover changes on fire risk mapping,
it is important that fire risk management plans incorporate those changes and reallocate
resources accordingly on a local scale. In this way the SVM algorithm, along with other
classification algorithms [33–35,51], can offer a powerful tool for updating fire risk maps
year by year. Finally, it is notable to point out that both October 2020 and July 2021 fires
started near areas classified as ‘extreme high’ fire risk. This is yet another validity indicator
of the proposed fire risk model. Additionally, the above-mentioned fire incidents spread
mostly at areas classified as ‘high risk’ (Figures 13 and 15).

We acknowledge that daily risk maps at the national [52] and European levels [53],
which are mostly derived from weather data, are freely available and easily accessible to all
stakeholders, including the citizens. Prediction models based on weather information alert
civil protection and fire services on areas of increased readiness. Fire risk models and maps
(such as the one proposed in this study) are supplementary to weather data, indicating high
risk areas usually at higher spatial resolution and where proactive measures can, or should,
be taken. Those measures can include the optimal allocation of observatories and/or fire
service areas by using GIS tools such as visibility, network, or other suitable analysis.

We utilized GIS technology for fire risk model development, not only because of GIS’s
analytical and presentation capabilities, but also due to information dissemination and its
integration ability along with other organizational workflows. Developing the proposed
model, a key issue addressed is data availability. As the reader can see all data utilized
are from reliable [38,40] and freely referenced or downloaded sources [41,42]. As a result,
local authorities, which are responsible in specifying precautional policies and measures
(especially in high fire risk periods), such as increased supervision, temporal road closures
to traffic, prohibition of certain activities, and more optimal resource allocation, have the
means to identify areas of higher risk.
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The spatial resolution of the presented model is limited to the resolution (25 by
25 m) of the DEM used to calculate it [38]. Higher-resolution DEMs are calculated by
mapping agencies during orthophoto production workflows. They can also be acquired
by drones [54]. A question of further research and investigation is if higher resolution
DEMs help in a better understanding and mapping fire risk or just add higher frequency
data, which sometimes are noise rather than actual information. A constrain of our model
is the lack of meteorological factors. Furthermore, it is important to note that in order
to determine the fire risk of an area, meteorological factors such as temperature, wind,
and humidity play a very important role [26]. These factors change dynamically, and
therefore it is hard to establish a baseline risk map to compare results from different years.
Human activity layers of information (road network and settlements) were derived from
OpenStreetMap in testing our model. More important than the accuracy of road network is
completeness and the level of update. State agencies and local authorities are advised to use
the most updated information they have access to. Other data sources of human activities,
such as electricity grids and landfills, which are of great importance, can be incorporated in
our model, creating multi-buffer rings, similar to how road network and settlement areas
were treated.

6. Conclusions

Wildfires, unfortunately, are an inevitable consequence of climate crisis. Every year, we
are witnessing more and more devastating wildfires in the western United States, Amazon
basin, South Europe, Siberia, Australia, and elsewhere, with a priceless impact on our
environment. Understanding and modelling the phenomenon can make us more effective
in addressing it. Especially in firefighting, the timely response is the most crucial factor
to fight it. The role of fire risk models in conjunction with other GIS analysis tools can
provide us useful information for optimal arrangement of all available resources before the
ignition of the phenomenon such as selecting supervision locations for areas characterized
as ‘high risk’ and even allocate firefighting trucks for a more immediate response in case of
an incident. Knowledge of ‘high risk’ areas can assist all levels of administration to increase
citizen awareness and take targeted proactive measures.

Models and all data needed to support it should be free and easily accessible for
agencies and authorities to integrate it with their systems. All necessary data to implement
the model can be easily found at Copernicus services and other European or National
spatial data infrastructures. The most essential data to classify land cover, Sentinel 2 images,
are available freely worldwide through the same services. We will keep working and
testing the model in other areas to test its portability. Findings and suggestions will help us
to improve it. All future improvements will be embedded and published.
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Abstract: Power plants based on renewable sources offer environmental, technical and economic
advantages. Of particular importance is the reduction in greenhouse gas emissions compared to
conventional power plants. Despite the advantages, people are often opposed to the construction
of these facilities due to their high visual impact, particularly if they are close to places with a great
cultural and/or landscape value. This paper proposes a new methodology for identifying the most
suitable geographical areas for the construction of new photovoltaic (PV) power plants in zones of
special scenic or cultural interest, helping to keep the environment free from the visual intrusions
caused by these facilities. From several repeated analyses, the degree of visibility of the new PV plant,
the potential observation time of passing visitors, considering the route they follow and their speed,
and the increase in visibility of the plants when seen totally or partially with the sky as background,
are determined. The result obtained is a map showing the ranking of the geographical areas based
on a variable calculated in such analyses: the Global Accumulated Perception Time (GAPT). The
application of this methodology can help the different agents involved in the decision-making process
for the installation of new PV plant by providing them with an objective visibility criterion.

Keywords: visual impact; landscape heritage; photovoltaic plants; geographical information systems;
perception time; viewshed analysis

1. Introduction

The integration of power plants based on renewable energies into the electrical grids
has accelerated in recent years, primarily for environmental reasons, such as the effort to
reduce greenhouse gas emissions from fossil fuels. Economic support from government
authorities for these facilities, which are mainly wind and photovoltaic (PV) power genera-
tion plants, have led to their expansion throughout Europe [1]. For this expansion, finding
the land available for building a new facility is the initial requirement. In the case of new
wind farms or PV power plants, there are many factors involved in the decision to select
the right location (wind or solar resources, distances to roads, distances to power lines,
terrain orography, proximity to urban centres, visual impact, etc.) [2–5].

In areas where tourism is an important component of the local economy or in areas
with a high landscape or cultural value, one of the most important factors in people
accepting the installation of new power facilities is the visual impact. It is in the interest of
local authorities and economic entities related to tourism that visitors or tourists perceive
the landscape in its natural or original state [6] and as free from visual intrusions as possible.
This dimension can cause projects to be suspended as a result of social rejection to the
alteration or modification of the landscape [7]. In the field of power plants based on
renewable energies, wind energy has the greatest negative impact on landscapes per unit of
energy generation, followed by PV solar energy [8]. This has meant that the visual impact
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assessment of wind farms is more developed, although some of the proposed solutions can
be applied to PV plants.

Cohen et al. in [9] seek to develop a conceptual definition of social acceptance, identi-
fying and synthesizing the factors of discontent at play in the acceptance of wind farms,
transmission lines and pumping groups for energy storage. In wind farm projects, the
assessment of visual impact acquires great importance because of their lack of aesthetic
integration into the landscape [10]: the authors assess the magnitude of the aesthetic impact
on the landscape by means of a proposed indicator. Measurements of visibility, colour,
fractality and continuity are taken from photographs and combined with each other. The
results of the indicator are contrasted with the impact perceived by a sample of the local
population. This perceived impact is found through surveys. In [11], the variables that
can affect the visual impact are analysed, such as the visual magnitude and the overall
colour difference, according to the author. From the analysis of images of the wind farm
under study, parameters such as the difference in clarity, the difference in colour saturation
and the difference in hue are obtained, which factor into the calculation of the overall
difference in the colour represented by the visibility of the wind farm. The author analysed
images of the wind farm at different times of the day and, using atmospheric visibility data,
determined the temporal distribution of visual impacts in the area being studied. Other
works use a method that quantifies the degree of visibility of an offshore wind farm from
various observation points along the coast [12]. In this assessment of the degree of visibility,
the authors introduce three indicators: the horizon occupation indicator (surface occupied
by the wind farm on the horizon and defined by the area delimited by the convex envelope
joining the turbine hubs), the distinguishable turbine indicator (defined as the relationship
between the number of distinguishable turbines and the total number of turbines), and the
aesthetic indicator (based on the alignment of the turbines).

PV power plants can bring about the transformation of a large area (land-use change,
earthworks, vegetation removal), producing a significant alteration to the landscape. For
assessing the aesthetic impact of PV plants, an indicator based on four parameters is
proposed in [13], similar to the indicator presented in [10] for wind farms. In addition, in
PV plants, there is a risk of glare from the reflection of sunlight on the surface of the PV
modules, which makes them visible from great distances, producing a landscape alteration
and negative visual impact on the environment [14].

Geographic information systems (GIS) are tools that make it possible to organize,
analyse and model large amounts of spatial data, which facilitates the creation of maps
for decision making in various types of projects. The scientific and technical literature
includes many applications of GIS. Among other applications, they can be used to help in
the assessment of renewable energy resources. For solar energy resources, Moser et al. [15]
assess the PV potential in southern Tyrol, northern Italy, taking into account PV facilities
on roofs and non-conventional surfaces. In a GIS, it is possible to perform a spatial analysis
of the solar resource data together with other data from the area under survey, such
as orography and distances to roads and power lines, or even take climatic data into
consideration, which can help to locate the best sites for building PV plants [16]. A GIS
system is also a good tool for visual impact assessment: it is possible to generate maps of
the region under study that show those areas where the installation of PV power plants
would have less impact, or areas where the installation of these facilities would not be
suitable due to their high visual impact on the environment. Rodrigues et al. [17] address
visual impact from spatial and perceptual points of view. From the spatial point of view,
the result is a visibility map in which each cell (geographic position) has a Boolean value
indicating whether an installation built in that position is seen from the observer’s location,
and from the perceptual point of view, a visual perception map is obtained in which each
cell is assigned the affected angle of vision. The parameters required by the model are the
dimensions of the facility (height and width), the visual threshold (maximum distance from
which a facility can be recognized), and the height of the observer’s position.
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Manchado et al. [18] present a study that takes into account criteria of visibility and
visual impact in the design stage of wind farms. The proposed methodology is based on two
indices that describe the conditions of visual intrusion. The first index, called Magnitude
of the Visual Effect (MVE), is the product of three visual indicators (visually affected area,
visually affected population and visual exposure in linear sections), and the second one is
an improved version of the Spanish Method index (SPM) proposed in [19]. Other authors
take into account the visual capacity of the observer for visual impact assessment, using
GIS tools to generate 3D maps [20]. For the assessment of the visual impact of wind
turbines, other methods take into account the height of the visible part of the wind turbine
and what percentage of it occupies the scene, for which GIS software together with 3D
graphics generation software have been used [21]. Assessing the visual impact of PV plants
using GIS-based tools helps to select geographic locations where the visual impact is lower.
In [22], a relative visual impact index is defined, taking into account aspects such as the
number of inhabitants in the surrounding area, the orography of the terrain and the height
of the PV plants. From this index, visual impact maps are generated for two types of PV
power facilities (with fixed panels or with trackers). Most of the GIS software have tools
that make it possible to determine the visible geographic area (viewshed) from one or
several observation points. Reference [23] proposes a methodology based on the fuzzy
viewshed and the distance decay methods, which enables the calculation of the maximum
number of hours in an average day in which a new PV plant can be seen by every possible
observer. It takes into account all possible observers in motion (by roads) or in situ (urban
centres), the orography of the terrain, the height of the observer and the size of the PV
plant (height of panels, surface occupied). In urban areas, there is an increase in the use
of solar PV technologies, which are mainly attached to building envelopes (roofs and
facades). Florio et al. presents in [24] a methodology for assessing the visibility of building
envelope surfaces exposed to solar radiation, which could host solar modules (thermal
or photovoltaic) in urban areas and where public perception of this type of facility is not
affected. The viewshed is determined on the cumulative viewing time from observation
points, equidistantly arranged along urban roads, taking into account the height of the
observer. The maximum visibility distance limit for calculations is 500 m, imposed by
computational constraints.

As a consequence of population growth and industrial and socio-economic devel-
opment, the need to build new infrastructure arises, which may have a direct impact on
cultural and landscape heritage, the components of which may be seriously affected [25].
Therefore, the conflict between development policies and heritage conservation policies
makes it necessary to propose and make use of tools that evaluate the effects produced
by such infrastructures on cultural and landscape heritage, in order to maintain a balance
between the two conflicting interests [26]. The methodology proposed in this work can help
the agents involved to make decisions regarding the most suitable sites for the installation
of new PV plants under an objective visibility criterion, keeping landscapes of special
interest or unique cultural sites safe from the intrusion of these facilities, which could create
a significant visual impact. The methodology helps to identify the most suitable sites for
the construction of new PV plants using GIS tools on a digital surface model (DSM) and
taking into account the possible observers who move through the paths of geographical
areas that are especially protected by interest in their cultural and landscape value. These
tools are integrated in the open-source software QGIS [27]. The proposed method considers
the global visibility of future PV power plant elements, that is, the method evaluates what
portion of the elements can be seen by the observers and also what part of the elements can
be seen above the skyline. Facilities with the sky in the background have higher colour con-
trast and therefore greater visibility than facilities with the terrain in the background [28].
Variations in the visibility of PV facilities, caused by changes in colour contrasts during the
day or by the weather, have not been considered in this work.

In the scientific literature, the issue of visual impact caused by PV facilities has gen-
erally been approached under subjective criteria, evaluating the visual perception people
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have of these types of facilities by means of surveys, photographs, 3D computer simula-
tions, etc. To our knowledge, no published work proposes an objective method, based on
visibility (total or partial), to identify locations where the construction of new PV facilities
would produce a lower visual impact than elsewhere. Furthermore, there are not any
published works related to site selection for new facilities in areas of special landscape and
cultural protection, where the potential observers are visitors or tourists travelling in such
environment. The methodology proposed in this paper aims to fill these gaps.

We define a variable called Global Accumulated Perception Time (GAPT), for the
evaluation of the visibility of new PV facilities. This variable, which will be defined in
detail in Section 2, is related to the cumulative total hours in a year in which a proposed PV
plant can be seen by observers moving along the roads or paths in the area under study.
The assessment of the GAPT variable in a geographical area makes it possible to obtain a
set of GIS maps that help to visually identify the most suitable locations for the installation
of new PV power plants in terms of their visibility.

In summary, the main objective of this work is the development of a new methodology
based on GIS to determine, in an objective way, the places where future PV facilities will
have a greater or lesser visibility for a set of potential observers in movement, and its
application to places or geographical areas with special landscape or cultural protection.

The novel aspects covered in this work are:

• Assessment of the degree of visibility (total or partial) of the new PV plants;
• Assessment of the possible observation time of visitors or tourists, taking into account

the route they follow and their speed;
• The proposed visibility enhancement factor for PV plants that may be fully or partially

visible with the sky in the background.

The article is structured as follows: Section 2 presents the methodology used for
the evaluation of the GAPT variable for all the areas surrounding the paths followed
by the observers; Section 3 presents a case study with the application of the proposed
methodology for the selection of suitable sites for the installation of two-axis PV trackers
with an installed power capacity of 10 kW (the area under study corresponds to the area
crossed by the Way of St. James in the region of La Rioja, Spain, declared a World Heritage
Site by UNESCO) [29]; the results of the case study are shown and discussed in Section 4;
finally, Section 5 presents the conclusions.

2. Methodology

The data on which a GIS runs are structured in layers containing information in vector
or raster formats. Vector data represent geographic objects or entities such as points, nodes,
lines or polygons. The values of the features of interest of such geographic objects are
stored in the attribute table of the vector layer. Raster data are stored in an array of cells
or pixels (each one representing an elementary geographic area) organized into rows and
columns. The spatial resolution of a raster dataset determines the level of detail represented
and depends on the size of the cell or geographic area it depicts. Both types of data are
referenced to a geographic coordinate system.

In the proposed methodology, the main objective is to obtain a set of GIS maps that
facilitate the identification of those places where the perception time of new PV power
plants would be more reduced. The observers considered are visitors or tourists travelling
on roads, paths or trails (we will refer to them as routes throughout the article) of the
geographical area studied. GIS tools enable the creation of such maps working with data
in raster format. These maps represent, for each geographic area or cell, the values of the
variable called Global Accumulated Perception Time (GAPT). This variable corresponds to
the accumulated value of the number of hours per year that a proposed PV plant can be
seen by all possible observers in motion, considering all the observation points in the area
under study. That is, the GAPT variable is the sum of the values of another variable, the
Accumulated Perception Time (APT), for all the possible observation points. Considering a
single observation point, the value of the variable APT in any cell represents the cumulative
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value of the possible hours per year in which the proposed PV plant, located in such a cell,
can be seen by all observers passing through the observation point. It should be noted that,
throughout this article, when we say that a PV plant is located in a particular cell, it really
means that the PV plant is located in the elementary geographic area represented by that
cell in a GIS.

2.1. Accumulated Perception Time
2.1.1. Required Data

The calculation of the hours per year, represented by the APT variable, takes into
account increasing or decreasing factors. These factors include the distance between the
observation point and the cell in which the proposed PV plant is located, the fraction of
the PV plant that can be seen from the observation point, and the fraction that can be seen
above the skyline. For the evaluation of the APT variable, it is necessary to consider aspects
such as:

• Orography: Hills and depressions ensure that PV power plants remain hidden from the
eyes of observers. In other areas, PV power plants can be fully or partially visible and
some of their elements can be seen above the skyline, which increases their visibility.
The orography is considered in a GIS using the digital elevation model (DEM) of the
study area. The DEM is the digital representation of the elevation of the earth’s surface
with respect to a reference. Specifically, DEMs are a set that include digital terrain
models (DTMs) and digital surface models (DSMs). DTMs represent the elevation
of bare ground, while DSMs represent the elevation of the land surface, including
obstacles not exclusively associated with terrain orography such as trees, vegetation,
buildings, and other natural or artificial objects [30]. In this work, in order to consider
visual obstacles on the ground, we have used a DSM of the analysed area. Different
DSMs could also be used, as the density of vegetation can change over the seasons;

• Observation points: These represent the places where potential observers in motion
can be located at a given time. These points are represented in a vector layer and have
an associated attribute table containing the following data: geographic coordinates,
height of the observer’s eyes above the ground, height of the observed object above the
ground, observation point elevation (z-coordinate), slope of the terrain in the direction
of travel, and travel speed of the observers. From the speed value, it is possible to
calculate the average observation time of the observers, as will be discussed in detail
later in this section;

• Average annual number of observers travelling along the observation points of a
given route;

• Colour contrast of the observed object with respect to the background. According
to [31], objects with a higher colour contrast will have greater visibility than objects
with a low contrast, therefore it is necessary to introduce a weighting factor as a
function of this colour contrast of the facility;

• Distance between the observer and the observed object (proposed PV plant). According
to [32], the visual acuity of the human being decreases with distance, therefore it is
necessary to enter a weighting factor as a function of this distance.

Some works published in the scientific and technical literature consider this distance
in models of viewshed analysis. Fisher in [33] proposes the use of fuzzy functions, the
values of which decrease with the distance between observer and observed object. In the
methodology used in this work, we have taken a similar approach, but we use a weighting
function, shown in (1), with factors that have been adjusted taking into account both the
height of the observed object and the loss of human visual acuity with distance, using
logarithmic functions. This weighting function was used by Weigel in 2007 [34], improving
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the proposal of Paul in 2004 [35]. The weighting factors are limited by distance in three
different perception zones as:

⎧⎪⎨
⎪⎩

w = 0.3 f or d ≤ 57.5

w = −0.0638· ln(d)+0.59
1.105 f or 57.5 < d < 10, 000

w = 0 f or d ≥ 10, 000

(1)

where w represents the weighting factor, which can take values between 0 and 0.3, and d
represents the distance, in meters, between the observer and the observed object.

In this work, we have assumed that the potential observers are moving at the average
speed of a walking human being. However, the methodology is also applicable to other
types of observers who travel by other means of locomotion (land vehicles, horseback, etc.).
It is just a case of using the appropriate values of average speed and height of the observer’s
eyes above the ground when the observer is using these means of locomotion. The number
of potential observers (NOY) corresponds to the annual number of walkers moving along
a route (road, path or trail). NOY values can be obtained from local authorities, who can
provide them for all of the routes included in the area studied.

2.1.2. Calculation Process

Suppose that along a given route, k, there are n nodes or arranged observation points.
The value APTi,k corresponds to the sum of the values of the APT variable for all the n
observation points of route k, considering a new PV plant placed in cell i. The stages that
define the process of assessing the value of the APTi,k variable are described below:

1. Generation of the set of positions of observation points. The positions of the observa-
tion points are generated by taking equidistant nodes along the route at a distance
equal to the size of the cell selected to represent the values of the APT variable. The
nodes, stored in a vector layer, have an associated attribute table containing the infor-
mation required for each point: the geographical coordinates, the height of the eyes of
the observer above the ground, the height of the observed object above the ground,
the elevation of the observation point (z-coordinate), the slope of the terrain in the
direction of travel, the average speed of the observer as he/she moves from one node
to the next one, and the average observation time in each node. These last values are
calculated in the next two stages;

2. Evaluation of the walking speed of the observer. An observer walking along delimited
routes over different types of terrain does not have a constant speed, as may occur
when walking on flat terrain clear of obstacles. The observer’s speed will generally
be slower when walking over rough terrain with steep slopes. In order to take into
account the difficulty of walking routes in rough terrain, the Modified Tobler’s Func-
tion proposed by Márquez et al. in [36] has been used. It consists of an exponential
function that provides the walking speed depending on the slope of the route section
by which the potential observer is walking. This function is shown in (2), where wsn is
the walking speed (km/h) in node n and δn is the angle of the terrain slope, in degrees,
in the usual direction of the hiker, in that node.

wsn = 4.8·e−5.3 |0.7 tan δn+0.03| (km/h) (2)

To determine the angles of the terrain slopes δn in the direction of travel associated
with each node, the following steps are performed:

• To each node the value that collects the DTM cell with the same coordinates is
assigned. Let us call this value the z-coordinate of the node, which is stored in
the attribute table;

• Knowing the difference between the values of the z-coordinate of nodes n and
n + 1 and the distance dn between them, it is easy to obtain the angle of the slope
δn, when the observer moves from node n to n + 1. If δn has a positive value, it
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is an upward slope, while if it is negative, it is a downward slope. The value
obtained is stored in the register corresponding to node n in the attribute table;

• All the nodes of route k are analysed in the direction of travel, obtaining the
values δn of each node;

• The value of the real distance (Dn) separating nodes n and n + 1 is determined.
The value of the distance dn corresponds to the projection on the horizontal plane
of the real distance Dn;

• Then, applying the hiking function (2), the values of the observer’s velocity wsn
at each node n are obtained and stored in the attribute table.

3. Calculation of the average observation time tn in node n. This corresponds to the
travel time used by the walker to travel from node n to node n + 1 along the route k.
The time tn is calculated as the distance between consecutive nodes Dn divided by the
velocity of observer wsn assigned to node n; tn = Dn/wsn. The value of tn obtained for
each node n is stored in the attribute table;

4. Determination of the distance between the new PV plant and the observation point.
By using GIS tools, it is possible to determine the Euclidean distance di,n between the
area represented by cell i and the observation point represented by node n of route k.
Subsequently, the weighting factor wi,n is obtained for each cell i, as a function of the
distance di,n, using the expression previously shown in (1);

5. Determination of the visible height factor ( f hvi,n). This represents the visible part
(in terms of height) of the future PV plant, placed in the cell i, when the observer is
in the observation point represented by node n. Previously, the maximum height
(Hpv) of the PV plant was divided into segments of equal length (hseg). To determine
f hvi,n, for each node n, several repeated analyses are performed, following the
steps outlined below:

• To carry out a correct “visibility analysis” with a DSM, a new DSM must be
generated in which the elevation of the observer in node n and of the PV plant
placed in the cell i must correspond to the elevation values for bare ground in
that position or cell, collected from the DTM;

• Let h be the analysed height of the PV plant. In each analysis, h is increased
by one segment of length hseg, i.e., h ranges hseg to the total height Hpv of the
PV facility;

• Using GIS tools, visibility analyses are performed to evaluate the visibility factor
( f vh

i,n) of the PV plant with a height h, placed in the cell i, when the observer is in
node n. The result obtained for f vh

i,n will take the value 0, if from node n it is not
possible to see the PV plant in cell i. On the contrary, f vh

i,n will take the value 1,
if from node n it is possible to see the PV facility with a height of h meters. The
results, after applying the analysis to all the cells in the study area, are collected
in a binary raster, which only stores ones and zeros;

• The value of h is increased by one segment and the visibility analysis is subse-
quently repeated from the same node n. The last analysis will be when h reaches
the value of Hpv. As a result of each analysis for each value of h, a binary raster
dataset of f vh

i,n is obtained;
• The values of f vh

i,n obtained for each value of h are then summed. The result
corresponds to the portion in meters of the PV plant height placed in the area
represented by cell i that can be seen by the observer in node n. Finally, it is
multiplied by the term hseg/Hpv, as shown in expression (3), obtaining the visible
height factor f hvi,n, which represents the value per unit of the height Hpv seen
from the observation point n.

f hvi,n =
hseg

Hpv

Hpv

∑
h=hseg

f vh
i,n f or Hpv > 0 (3)
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6. Evaluation of the skyline index. Generally, facilities above the skyline (with the sky in
the background) will have a higher colour contrast and, therefore, higher visibility
than facilities below the skyline (with the terrain in the background) [37]. In order
to take this aspect into account, a skyline index (Isk) is calculated. Considering a PV
facility in cell i and an observer in node n, with the Iski,n index it is possible to give
more weight to the visibility of the facility which is seen partially or completely above
the horizon. Therefore, it is necessary to determine what fraction, in terms of height,
of the PV facility is visible from node n above the horizon line. This index is calculated
using the expression shown in (4), where only positive values are considered:

{
Iski,n =

di,n(tan θ fi,n−tan θhi,n)
Hpv

f or θ fi,n > θhi,n

Iski,n = 0 f or θ fi,n ≤ θhi,n

(4)

where θ fi,n is the angle of elevation of the line of sight [38] between the observation
point represented by node n and the maximum height Hpv of the PV facility placed in
the cell i, and θhi,n corresponds to the angle of elevation of the line of sight connecting
the position of the observer’s eyes in node n to the global horizon beyond cell i, as
shown in Figure 1.

Figure 1. Lines of sight connecting the observer, in node n, to the PV facility and to the horizon.

The Iski,n index can take values between 0 and 1, and represents the value per unit of
the height Hpv above the skyline, as seen by an observer located at node n. When the whole
facility (in terms of height) is below the skyline Iski,n takes a value of 0, on the other hand,
when the entire facility is above the skyline Iski,n takes a value of 1. To evaluate Iski,n it is
necessary to determine the elevation angles θhi,n and θ fi,n beforehand, as follows:

• First, we assume that observers can look in any direction, so it is necessary to deter-
mine the horizon line around each observation point or node n, whose geographical
coordinates are known. That is, the horizon height θhi,n must be evaluated for observer
azimuth values from 0 to 360 sexagesimal degrees. The observer’s azimuth refers to
the angle, measured on the horizontal plane, formed by the direction in which the
observer is looking with respect to a reference direction. In our work, the azimuth
value was 0 degrees when the observer was facing east and 90 degrees when facing
north. After applying GIS tools, the result obtained, for each node n, is a raster dataset
in which each cell i contains the value of the elevation angle θhi,n of the line of sight
connecting the observer’s eyes in node n to the global horizon beyond the area repre-
sented by the cell i. Consequently, all cells with the same azimuth value, will also take
the same value of θhi,n;

• To obtain the elevation angle θ fi,n, visibility analysis GIS tools are applied at each node
n. As result, a raster dataset is obtained in which each cell i contains the value of the
elevation angle θ fi,n of the line of sight connecting the observer’s eyes in node n with
the highest part of the possible PV facility placed in the cell i;

• Subsequently, by means of raster data layer processing techniques (map algebra) the
Iski,n index is determined using the expression (4).

For a single observer in node n, the value of APTi,n in cell i will take the value resulting
from the product of the visibility height factor f hvi,n, the weighting factor wi,n as a function
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of distance di,n, the average observation time tn, and the term (1 + Iski,n). This last term
has been introduced in order to give a higher degree of visibility to facilities that can be
seen above the skyline. We have applied this methodology to routes that are mainly taken
by walkers in periods of good weather with clear skies and high colour contrast (spring,
summer and autumn seasons). Therefore, the visibility of the fraction of the PV plant that
can be seen above the horizon line has received twice as much weight as the rest of the
facility. The APTi,n calculation process is shown in Figure 2.

Figure 2. APTi,n calculation flow-chart for PV plant placed in the area represented by cell i, and
observers in the position represented by node n.

Taking into account the average annual number of observers that can circulate through
node n of route k (NOYk), the cumulative value of APTi,n will be given by the expression (5).

APTi,n = NOYk· f hvi,n·wi,n·tn·(1 + Iski,n) (hours/year) (5)

70



Appl. Sci. 2022, 12, 703

2.2. Global Accumulated Perception Time

Finally, taking into account all the observation points or nodes n of route k and the
number of observers NOYk travelling through each route, the cumulative value of APTi,k in
cell i, will be given by the expression (6),

APTi,k = NOYk

Nn

∑
n=1

( f hvi,n·wi,n·tn)(1 + Iski,n) (hours/year) (6)

where Nn represents the total number of nodes or observation points on route k.
This process is repeated sequentially, analysing all possible routes (roads, path or trails

used by the potential observers) in the area under study, so that for each cell i, the result of
adding the APTi,k values of each route k is the global value of the accumulated perception
time (GAPTi), as shown in (7),

GAPTi =
Nk

∑
k=1

APTi,k (hours/year) (7)

where Nk represents the total number of routes in the study area.
The GAPTi values in each of the cells in the studied area are collected in a raster

dataset, which can be visually analysed in the form of a map. In this way, it is possible to
easily visualize those areas with a lower GAPT value which are therefore candidates for the
installation of PV plants under an objective visibility criterion. Note that the purpose of the
proposed methodology is to be able to choose the place within the study area where a new
PV plant with certain characteristics can be built with the least observability by visitors
who move along the routes in that area.

This methodology can be applied to tourist areas or areas with unique qualities where,
due to their location or their relationship with the landscape, it is necessary to determine
those sites where the presence of new PV plants would be less harmful in terms of the visual
impact. A similar case is its application to areas close to historical sites and landmarks,
since PV facilities visible from these locations can have a negative impact on the perception
of their cultural value [39]. The visual impact in places with a great cultural heritage has
become a controversial topic [40] and, in general, the methodology proposed in this work
can be used for evaluating the construction of new PV plants in locations that, due to their
cultural heritage and their cultural, historical or landscape value, have to be preserved [41].

3. Case Study

We have applied the proposed methodology to the region of La Rioja in northern
Spain. Specifically, the selected area of study corresponds to the area crossed by the Way
of St. James. Figure 3 shows, in the bottom right corner, the region of La Rioja, and the
studied area. The Way of Saint James is a world-renowned pilgrimage route that runs
through northern Spain, from the western range of the Pyrenees to the city of Santiago de
Compostela, in the northwest of the country. In 1993 it was declared a World Heritage Site
by UNESCO, forming part of the cultural legacy of Europe, one of the most varied in the
world [42].

In the studied area, the Way of St. James does not have a single route, rather it
has different variants or branches that run through different towns and places with great
cultural richness close to the main route and where it is possible to visit sanctuaries, temples
and other monuments that are part of the cultural heritage of the region. The main route
crossing La Rioja was established at the beginning of the 11th century. In addition to the
historical and cultural interest of the Way, the different routes in La Rioja cross through
vineyards that constitute an environment of special landscape beauty. The five routes of
the Way in La Rioja are shown in Figure 3 and these are: main route, route of San Millán,
route of Cirueña, route of Haro, and route of Briñas.
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Figure 3. Way of Saint James through La Rioja (Spain).

In this work, the possible potential observers correspond to pilgrims walking along
each of the five routes, while the inhabitants of the urban centres, included in the study
area, have not been considered. Data related to pilgrimages have been taken from periodic
statistical reports published by the Pilgrim’s Office in the city of Santiago de Compostela.
For this work, data referring to pilgrimages during the year 2019 have been used [43]. In
that year, about 190,000 pilgrims walked these routes of the Way.

A PV system with a two-axis tracker has been selected for the construction of new PV
plants in this case study. Each system can support up to 10 kW of power, depending on the
type of PV module installed. The height of such a tracker is not constant throughout the
day and its value varies depending on the elevation angle of the sun (angle between the
sun’s rays and the horizontal plane). The maximum height Hpv that can be reached by this
facility is 6 m above the ground, mainly in the early and late hours of the day. This height
was selected for this study because it is the most unfavourable value from the visibility
criterion. The area occupied by a single tracker is approximately 625 m2, including the
terrain corresponding to transit areas.

In the GIS tool the main input data are the DSM and the DTM of the area of study.
According to data from the National Geographic Institute of Spain [44], the DSM was
obtained from flights made during the summer of 2016. This geographic data is composed
of a set of square cells with an initial size of 2.5 × 2.5 m. Using resampling techniques, the
original DSM was converted to a DSM with a cell size of 25 × 25 m. We used the nearest
neighbour interpolation as the resampling method, which is one of the fastest interpolation
methods. With this method, each cell or pixel of the resampled raster data acquires the
same value as its nearest neighbour in the original raster. Originally, the DTM had a cell size
of 25 × 25 m; therefore, it was not necessary to apply sampling techniques. The final cell
size was chosen according to the size occupied by a two-axis solar tracker with a capacity
of 10 kW. In other words, each solar tracker would occupy the geographic area represented
by a single cell in GIS.

4. Results and Discussion

In order to evaluate the values of the GAPT variable in the region under study, the
stages described above in Section 2 have been followed:

1. Using a GIS tool and considering the cell size of the DSM, equidistant nodes were
generated every 25 m (dn = 25 m) along each route of the Way of St. James. The points
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corresponding to each of the five routes were collected in different vector data layers,
in whose attribute tables, each node had associated data such as the average height
above the ground of the observer’s eyes (1.61 m in this study), and the maximum
height Hpv above the ground of the PV facility (Hpv = 6 m);

2. GIS tools were used to obtain the value of the pilgrim’s walking speed wsn associated
with each node n. This value was obtained applying expression (2). The value of
walking speed was calculated for all the nodes of the five routes in the studied area;

3. The average observation time, tn, was calculated for each node, dividing the real
distance between consecutive nodes Dn by the value of the observer’s walking speed
wsn at that node;

4. With the suitable GIS tool, a Euclidean distance raster map was generated for each
node n, what allows to generate a new raster dataset containing the weight factor wi,n;

5. Several repeated visibility analyses were performed to calculate the visible height
factor f hvi,n of the future PV plant placed in the cell i, following the methodology
described in Section 2. Note that the length of the segment used in this case study
was 1 m (hseg = 1 m) and, therefore, a set of six binary raster maps was obtained.
Afterwards, using map algebra GIS tools, expression (3) was applied, obtaining a
raster map with the values of the f hvi,n factor as a result, which represents the fraction
of the PV facility located in the cell i, that can be seen from node n;

6. The skyline index Iski,n was evaluated using the expression (4). For each node n, two
raster maps were obtained, each one storing the values of θhi,n and θ fi,n, respectively,
in cell i. Then, using map algebra techniques, the Iski,n index was determined, which
made it possible to give more weight to the visibility of future PV plants that could be
seen above the skyline.

Next, taking into account the annual number of walkers traveling all the nodes of each
of the five routes, NOYk, the expression (6) was applied, obtaining a raster map in which
each cell i represented the value of the accumulated perception time APTi,k, achieved by
the PV plant placed in that cell.

The volume of data in the raster format obtained in the calculation process was so
high that R functions [45] were used to speed up this process and to automate access to the
geo-algorithms integrated in QGIS from outside QGIS [46].

Finally, the expression (7) was applied to obtain the global value of accumulated
perception time in each cell i (GAPTi). Applying the described methodology to the selected
study area, the GAPT map shown in Figure 4 was obtained.

In the area of study, the urban centres are represented by yellow polygons and the
different routes of the Way of St James are represented by red lines. The cells that show the
DEM as background (green and grey cells at the top and bottom of Figure 4) represent the
areas that have a zero GAPT value and correspond to sites where the PV facilities are not
visible from the routes, or to sites that are at a greater distance than the established limit of
vision (10 km in our case study). These cells will be the best areas for the location of this
type of solar facilities, from the point of view of their low observability from the routes of
the Way of Saint James. The blue cells represent the lowest non-zero GAPT values, while
the red cells represent the zones with the highest GAPT values and are therefore zones
that should be avoided when it comes to the installation of PV plants. We can observe that
the cells with higher GAPT values are relatively near the main route (route 1). The main
reason is that it corresponds to the route most used by pilgrims traveling to Santiago de
Compostela. The routes that generally cross geographic areas with gentle depressions and
elevations do not have too many natural obstacles and PV plants in such areas can reach
significant values of cumulative perception time.

The lower right corner of Figure 4 shows a zoom of the area marked by a black
rectangle. It is an area with gentle mountains and low vegetation, therefore, there is a
greater number of cells with high GAPT values. This is mainly due to the fact that a
significant part of the facilities can be seen crossing the horizon line and having the sky
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as a background in these locations. Therefore, the observability of a PV plant such as the
proposed one will be higher.

Figure 4. GAPT map, in hours/year, of the study area.

The results obtained provide accurate visibility maps with which it is easy to identify
the locations where the installation of a future PV plant will have less visual impact for
pilgrims walking along the Way of Saint James. The fundamental idea is to preserve the
areas that surround and, above all, can be seen from the Way, so that they preserve its
cultural legacy and previously held image.

In this case study, we have only analysed a 10 kW PV plant (each tracker occupies
one cell of the map). Generally, the projected facilities will be much larger, and more cells
will be required to cover the entire area occupied by the future facility. The solution to this
problem is to select zones containing contiguous cells with low GAPT values.

5. Conclusions

The construction of new PV plants contributes to the reduction of CO2 emissions but
does not have the support of all the parties involved. In areas that have a high landscape
value or in tourist areas, this type of facility can be opposed by the population due to its
visual impact. This work has presented a methodology, based on GIS, to determine the
places where future PV facilities will have a greater or lesser visibility for a set of potential
observers in movement, and its application to geographical areas with special landscape or
cultural protection. The methodology is based on an objective measure: the accumulated
perception time for all the potential observers.

The perception that observers have of this type of facility is estimated by means
of a variable called Accumulated Perception Time, APTi,k. This variable represents the
cumulative value of the possible hours per year in which the proposed PV plant, located in
cell i, can be seen by observers travelling along all the observation points of route k. In order
to make a more appropriate assessment of observability, two factors have been included in
the calculation of APTi,k: the factor f hvi,n, which considers the visible part of the PV facility
placed in the cell i, from observation point n, and the skyline index, Iski,n, which takes into
account the part of the facility that can be see above the horizon. This makes it possible to
present a greater degree of visibility to facilities that can be seen partially or totally above
the horizon.
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By calculating the values obtained for the APTi,k variables of each route k in the area
studied, the GAPTi variable is evaluated. This variable represents the global cumulative
value of hours per year in which the future PV plant, placed in the cell i, can be seen by
all observers travelling along all routes k in the area under study. It is possible to generate
maps that graphically represent the value of the GAPT variable, by means of the use of
GIS tools. With these maps, the agents involved in the construction of PV plants can easily
identify those locations in the study area with lower GAPT values and which will therefore
be more suitable for the installation of PV plants, based objectively on their observability.

As a case study, we have applied this methodology to one of the most famous
pilgrimage routes. Specifically, the study area is the section of the Way of Saint James
that crosses the region of La Rioja in northern Spain. The observers that have been
considered correspond to the pilgrims that walk along all routes of the Way in this
region. The result is a raster dataset that represents the value of the GAPT variable,
in which it is possible to identify those places which have lower values and which,
therefore, will be more suitable for the installation of PV plants based on their low
observability from the Way of Saint James.

Some of the limitations of the proposed methodology, that will be addressed in future
works, focus on the following issues:

• A high computational effort is required to achieve detailed results. Each visibility
analysis for different heights of the PV facility produces a raster map.

• All the nodes of the routes have been considered as waypoints for the observers. In
a more detailed analysis, a special treatment could be considered for some of these
nodes corresponding to places on the Way of St. James where pilgrims usually stop
on their way: viewpoints, fountains or rest areas. The APTi,n value for these nodes
should be proportional to the average stopping time of pilgrims at such locations.

• The visual impact caused by glares from PV panels has not been taken into account.

The methodology described here is easily applicable to different routes, observers with
different characteristics, and photovoltaic facilities with different dimensions, etc. In such
cases, it would suffice to introduce the appropriate values of the factors that intervene in
the calculation of the GAPT variable. The results obtained are easily interpretable and can
be used by decision-makers (investors and local authorities) to plan new PV plants in areas
with special cultural, historical or landscape value. The methodology can also be applied
to other types of facilities (wind turbines, electricity pylons, communications antennas
and buildings), taking appropriate values for the cell size and the maximum height of the
projected facility.
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Abbreviations

DEM Digital Elevation Model
DSM Digital Surface Model
DTM Digital Terrain Model
GIS Geographic Information System
PV Photovoltaic
APTi,n Accumulated perception time in cell i, with the observers located at node n (h/y)
APTi,k Accumulated perception time in cell i by all observers moving along route k (h/y)
dn Distance in the horizontal plane between nodes n and n + 1 (meters)
Dn True distance between nodes n and n + 1 (meters)
di,n Euclidean distance between cell i and node n (meters)
f hvi,n Visible height factor of a PV plant placed in cell i and viewed from node n
f vh

i,n Visibility factor of a PV plant of height h, placed in cell i and viewed from node n
GAPTi Global Accumulated Perception Time in cell i
h Analysed height of the PV plant (meters)
Hpv Maximum height of the PV plant (meters)
hseg Segment length by which the height of the PV plant is increased in the visibility analysis
i Geographic elemental area or cell with the possibility of housing a PV plant
Iski,n Skyline index for a PV plant placed in cell i and viewed from node n
k Any route considered in the study area
n Observation point or node contained in route k
Nk Total number of routes in the study area
Nn Total number of nodes on route k
NOYk Annual number of potential observers moving along the route k
tn Average observation time when the observer moves from node n to node n + 1 (hours)
wi,n Weighting factor calculated as a function of distance di,n
wsn Walking speed of the observer at node n (km/h)
δn Angle of the terrain slope in the direction of travel of the observer
θ fi,n Elevation angle of the line of sight between node n and the top of the PV plant in cell i
θhi,n Elevation angle of the line of sight connecting the observer’s eyes at n with the horizon,

beyond cell i
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Abstract: The scientific novelty of the results presented in this article is to substantiate and expand
the possibilities of using global and local geographic information systems (GIS) to assess the potential
of renewable energy sources in Ukraine. GIS analysis focused on key resource parameters can
help identify territories for development of renewable energy sources and assess of their possible
technical potential, as well as the possibility of effective integration of technologies for the use of
renewable energy sources in the energy sector of Ukraine. In this paper the possibilities for using
geographic information systems to assess the potential of renewable energy sources in Ukraine
are analyzed. The possibility of using the Global Atlas of the International Renewable Energy
Agency (IRENA) to support planning of technologies for the use of energy from biomass is analyzed.
The data can point to large-scale programs and applications in relation to key parameters (quality
resources, transmission distance, population density, terrain and site protection), helping identify
additional areas for development of renewable energy sources and give an approximate assessment
of technical potential. It is determined that the software products of IRENA are able to support
national and regional planning of renewable energy technologies, help establish the viability of future
renewable energy facilities and help project developers identify and analyze promising facilities
for the implementation of technologies using renewable energy. The application of geographic
information systems of Ukrainian web resources (“UA MAP”) for assessing the potential of renewable
energy sources and energy efficiency in Ukraine is been analyzed. The scientific novelty of the results
lies in applying global and local GIS for comprehensive assessment of the potential and effectiveness
of the use of regional non-traditional and renewable energy resources on the territory of Ukraine.
This makes it possible to assess the possibilities of generating additional electric and thermal power
for the needs of the regions of Ukraine using non-traditional and renewable energy sources. A
comprehensive methodology for the use of GIS is proposed for assessing the potential of non-
traditional and renewable energy sources at the regional level in Ukraine, taking into account energy,
environmental and socio-economic factors affecting the placement of non-traditional and renewable
energy facilities.
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1. Introduction

Important conditions for achieving energy security and energy independence are the
reduction of energy consumption and energy intensity of production, by increasing the
energy efficiency of technological processes using non-traditional and renewable energy
sources of natural and man-made origin [1]. In developing countries, it is necessary to
introduce large-scale modern technologies for the use of renewable and non-traditional
energy sources, the pace of implementation of which is not yet fully consistent with the
European level [2–4]. However, in the foreseeable future we should expect the development
of renewable energy in Ukraine.

In addition to the typical use of geographic information systems (GIS) in the areas of
business and commercial activities and the use of natural resources, GIS is widely used in
the public sector, transport and utilities. It is important for the state to have an adequate
analysis of data in order to effectively identify the most in-demand and scarce resources in
a timely manner.

GIS are systems for collecting, accumulating, processing and graphical visualization
of spatial (geographical) data about GIS objects. The main areas of GIS use are urban
and regional planning, economic development (GIS applications provide detailed analysis
of social, economic and topographic features), emergencies and disaster management
(assessment and monitoring of the environment, modeling of ecological disasters and
analysis of their consequences, environmental planning), law enforcement, oil and gas
industry, roads and transport, geodesy and logistics of infrastructure.

The purpose of GIS is determined by the tasks associated with decision-making in the
field of environmental design/planning, rational use of natural resources, the adoption of
sanitary protection measures in emergencies, and so on.

It should be noted that at present, extensive data sets have been formed on the basis
of global and regional GIS systems, which can become the basis for research in the fields
of non-traditional and renewable energy. In parallel with the problems associated with
the verification of data from GIS systems and the analysis of the adequacy of methods for
obtaining these information data, a number of problems should be noted that arise due to
the complexity of the visual display of the required data in a form convenient for analysis.
An important task in processing information data on non-traditional and renewable energy
sources is their accumulation in suitable databases, as well as mapping the potential of
non-traditional and renewable energy sources for various regions of Ukraine.

In addition to substantiated scientific and methodological significance, studies of the
regional potential of non-traditional and renewable energy sources in Ukraine are of great
practical relevance. The analyzed databases and GIS should become an influential tool for
analyzing the effectiveness of the practical use of non-traditional and renewable energy
sources in the regions of Ukraine, as well as for supporting the adoption of sound technical
and managerial decisions on the use of potential regional non-traditional and renewable
energy sources.

The relevance of the present research is determined by the need to create methods for
using the resource potential of GIS in the field of non-traditional and renewable energy
sources, taking into account the possible prerequisites and restrictions for their development
at the regional level. This approach makes it possible to carry out zoning of territories in
order to select the most promising sites for projects for the development of non-traditional
and renewable energy in the regions of Ukraine.

The use of GIS permits prompt and detailed analysis of the studied indicators, to
assess the possibilities and potential of regional non-traditional and renewable energy
sources. In particular, GIS permits assessment of the possibilities of generating additional
electricity and heat for the needs of regions, and the potential effectiveness of alternative
non-traditional energy. The use of GIS to substantiate and develop technologies for the use
of renewable energy sources will solve a number of energy, environmental and economic
problems of the regions of Ukraine.
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2. Methodology

In recent years, a number of scientific studies by various authors have been devoted
to the application of geographic information systems to assess the potential of renewable
energy sources [1–15]. As noted in a recent study [5], the relevance of this scientific topic is
due to the fact that the use of renewable energy sources is assessed by the world community
as one of the most promising ways to address growing energy supply and sustainable
development needs [6].

In particular, the aim of these study [5] was to solve the current fundamental problem
of environmentally safe use of a number of renewable energy sources in the Carpathian
region of Ukraine, in line with the concept of sustainable development [7,8]. This was
ensured by developing a scientific and methodological framework for strategic assessment
of capacity and environmentally safe location of renewable energy sources, taking into
account the sustainable development of the region [9,10], determination of optimal tech-
nologies for the use of renewable energy such as solar, wind and small hydropower, and
stabilization and improvement of the environment based on the principles of sustainable
balanced development of the region [10–12].

In [5], the scientific substantiation of technically achievable, economically expedient
and ecologically safe potentials of renewable energy sources through creation of a complex
of maps of GIS-potentials of renewable energy sources in the region was presented. A
number of technical and economic advantages, technological and environmental priorities
for the studied renewable energy sources were identified [8–11].

The first study [5] presented research on the development of a methodology for en-
vironmentally safe use of renewable energy sources in the Carpathian region of Ukraine,
taking into account the concept of sustainable development. The scientific novelty of the
results was to justify the expansion of the resource potential of renewable energy sources in
the Carpathian region of Ukraine with the creation of a set of maps in the geographic infor-
mation system “Map Information”. For each of the types of renewable energy sources (solar,
wind, small hydropower) in the study, a number of technical advantages have been identi-
fied, and technological and ecologically safe priorities for their use have been assessed. The
article provided a detailed calculation of wind, solar and hydropower regional potentials
of renewable energy sources for the Carpathian region of Ukraine. The spatial limitations
and possibilities of introduction of the considered renewable energy sources in the context
of sustainable development of the region of Ukraine were scientifically substantiated. A
number of scenarios for the use of renewable energy in Ukraine were proposed.

GIS are used for graphical construction of maps and for obtaining information on
individual facilities and spatial data on oblasts, such as the location of natural gas reserves,
the density of transport communications or the distribution of per capita income in the
state. The areas indicated on maps in many cases reflect the required information much
more clearly than dozens of pages of reports with tables. The effective application of GIS
is based on mathematical modeling in order to ensure the effectiveness of monitoring the
effectiveness of nature management.

In recent years, there has been a steady growth in global investment in renewable
energy. In 2015, the share of renewable energy sources in the structure of new installed
energy capacity in the world reached a record level at 54%, which confirmed the long-term
global trend in replacing traditional energy generation with renewable energy generation.
In 2016, the share of renewable energy technologies in Europe accounted for 87% of all new
installed capacity, which confirms the transformation of the European energy system in
terms of replacing traditional renewable energy sources.

Our previous study [8] assessed the future trends in the reform of the energy sector of
the world, the European Union and Ukraine up to 2050, using renewable energy sources
and the concept of sustainable development. Our study [8] identified the benefits of using
renewable energy sources and assessed the prospects for the use of innovative technologies
based on renewable energy sources and the concept of sustainable development. A number
of criteria for energy, economic and environmental efficiency of innovative technologies for
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the use of renewable energy sources were analyzed, to ensure comprehensive assessment
of the effectiveness of energy- and resource-saving, environmentally-friendly and cost-
effective innovative technologies in the field of sustainable development. This approach
allowed us to rationally determine the prospects for the use of energy and resource-saving,
environmentally-friendly and cost-effective innovative technologies for the use of renew-
able energy sources in line with the concept of sustainable development, in order to increase
energy and economic efficiency and the level of environmental safety of the energy sector
of Ukraine [8].

In our study, an energy model for the use of renewable energy sources based on global
and local GIS data was created and investigated. Thus, in our study, data from different
GIS sources were used in terms of time and are explored to analyze the possibilities of
using alternative renewable energy sources in the regions. Statistical data from global and
regional statistical resources also were used.

The general approach to modeling in our studies is based on the system approach and
system analysis, which involves the selection of the main object of the system, defining
the purpose and evaluation criteria, defining methods to achieve the goal, determining the
structure of the system and its elements and achieving efficiency, quality and optimality of
the system.

GIS-based statistics can complement consumer needs data and compensate for data
gaps through complementarity. Analysis and visualization of the results in the studies are
carried out using software for the study of global and local GIS.

The aim of the present study is to assess the possibilities of using geographic in-
formation systems to assess the potential of renewable energy sources in Ukraine, with
substantiation and expansion of opportunities to use global and local GIS to assess the
potential of renewable energy sources in Ukraine based on GIS analysis. The study will
analyze key resource parameters in order to define areas for the development of renewable
energy sources and assess their possible technical potential, as well as considering the
effective integration of technologies for the use of renewable energy sources in the energy
sector of Ukraine.

In the study, the estimation of possibilities of application of geoinformation systems
for estimation of potential of renewable energy sources in Ukraine is executed with use of
methodological bases and scientific results from a number of previous studies [16–22], and
also using databases and interactive resource maps on global renewable energy sources
from the internet [23–27].

The scientific novelty of our results lies in the application of global and local GIS for
solving the problems of a comprehensive assessment of the potential and effectiveness of the
use of regional non-traditional and renewable energy resources on the territory of Ukraine.
This makes it possible to assess the possibilities of generating additional electric and thermal
power for the needs of the regions of Ukraine using non-traditional and renewable energy
sources. For the first time, a comprehensive methodology for the use of GIS is proposed
for assessing the potential of non-traditional and renewable energy sources at the regional
level in Ukraine, taking into account energy, environmental and socio-economic factors
affecting the placement of non-traditional and renewable energy facilities [26,27]. The
proposed principles provide the basis for rational search for and selection of territories that
are most promising for the placement of facilities for non-traditional and renewable energy
in Ukraine.

3. Results

In 2018, Ukraine became a member of the International Renewable Energy Agency
(IRENA). According to [28,29], the activities of IRENA ensure coordination and intensifica-
tion of the work of countries’ agencies for renewable energy development through analysis,
formulation of recommendations, and transfer of knowledge and technologies.

The authors used the IRENA database to obtain the results shown in Figures 1–3.
Figure 1 shows the dynamics of growth of the installed capacity of technologies for the
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use of renewable energy sources in Europe. Figure 2 shows the dynamics and structure
of growth of the installed capacity of technologies based on renewable energy sources in
Europe in 2016–2020.

 

Figure 1. Dynamics of growth of the installed capacity of technologies for the use of renewable
energy sources in Europe (IRENA).

 

Figure 2. Dynamics and structure of growth of the installed capacity of technologies based on
renewable energy sources in Europe in 2016–2020 (IRENA).
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Figure 3. Dynamics and structure of growth of the installed capacity of technologies based on
renewable energy sources in Ukraine in 2016–2020 (IRENA).

Figure 3 shows the dynamics and structure of growth of the installed capacity of
technologies based on renewable energy sources in Ukraine in 2016–2020. IRENA member
countries have the opportunity to use a number of software products of this organization,
namely, statistics on the use of renewable energy (renewable capacity statistics) and the
Global Atlas [30]. IRENA also offers a number of tools for the implementation of projects
using renewable energy technologies: Project Navigator, Sustainable Energy Marketplace
and IRENA/ADFD Project Facility.

The Global Atlas of the use of renewable energy sources is a web-based platform that
provides users with access to renewable energy maps around the world.

More than 50 highly reputed international research institutes were involved in the
creation of the Global Atlas, which provides more than 2000 maps with characteristics of
renewable energy sources (solar, wind, bioenergy, geothermal and marine energy) on a
single platform.

The Global Atlas zoning service provides GIS-based spatial analysis using the IRENA
method for large-scale programs and applications, covering analysis of key parameters
(quality of resources, distance to transmission networks, population density, terrain and
protected areas) to determine suitable zones for the development of renewable energy
sources and to give an approximate assessment of the technical potential.

IRENA software products are offered to support national and regional planning of
renewable energy technologies in countries. The proposed technologies help to establish
the viability of future projects for the use of renewable energy sources, and help project
developers to characterize and analyze promising projects for the implementation of
technologies using renewable energy.

Figures 4 and 5 show the selection of characteristics of renewable energy sources in
the Global Atlas program from IRENA for any area with coordinates in Ukraine. This is
based on reproduction of graphic material [30].
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Figure 4. Selection of areas with coordinates in Ukraine to determine the characteristics of renewable
energy sources in the Global Atlas program from IRENA (reproduction of graphic material from [30]).

 

Figure 5. Selection of renewable energy characteristics in the Global Atlas program from IRENA for
any area with coordinates in Ukraine (reproduction of graphic material from [30]).

4. Discussion

According to IRENA, based on the results of the analysis “REmap 2030” [31], Ukraine
has significant potential for the development of solar and wind energy and the use of
energy from biomass. According to the analytical review “REmap 2030”, Ukraine can
ensure a ten-fold increase in total end-use of renewable energy sources by 2030 (compared
to 2009). According to forecasts, by 2030 the use of the potential of renewable energy
sources in Ukraine will be distributed as follows: 73% of the potential will be provided in
the heat industry, 20% in the electricity sector and 7% in the transport sector.

The use of Ukraine’s additional potential in wind energy, biomass and solar photo-
voltaic will increase the share of energy produced from renewable sources in electricity
production by 25% by 2030. In addition to IRENA web resources, it is advisable to use
geographic information systems from Ukrainian web resources to assess the potential of
renewable energy sources in Ukraine. In particular, «UA MAP» [32–37] is a modern infor-
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mation web resource containing information on renewable energy and energy efficiency in
Ukraine. The interactive investment resource map of Ukraine posted on the «UA MAP»
website (Figure 6) reflects general information on renewable energy projects in Ukraine and
provides data on the resource potential of the area. Figure 6 reproduces graphic material
in [34].

 

Figure 6. Interactive investment resource map of Ukraine “UA MAP” (reproduction of graphic
material from [34]).

The «UA MAP» website contains an interactive online map of the energy sector of
Ukraine (Figure 7), which shows the chains of energy transformations for the production of
certain types of energy in Ukraine. Figure 7 is a reproduction of graphic material in [35].

 

Figure 7. Interactive online map of the energy sector of Ukraine «UA MAP» (reproduction of graphic
material from [35]).

Figure 8, for example, shows the chains of heat generation technologies in Ukraine
based on traditional, non-traditional and renewable energy sources in the online map of
the energy sector of Ukraine “UA MAP”. Figure 8 is a reproduction of graphic material
in [36]. In Figure 8, each tab provides outputs of statistical and balance data in Excel.
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Figure 8. Chains of heat generation technologies in Ukraine based on traditional, non-traditional and
renewable energy sources in the online map of the energy sector of Ukraine “UA MAP” (reproduction
of graphic material from [36]).

The analyzed software products from the web resource “UA MAP” will permit assess-
ment of the effective integration of certain technologies for the use of renewable energy
sources in the energy sector of Ukraine.

The study shows the principles of using the generated vast data sets on the basis of
the analyzed global and regional GIS systems, which are proposed to be used as a basis for
research in the fields of non-traditional and renewable energy in Ukraine.

The study substantiates the scientific and methodological significance of GIS in study-
ing the regional potential of non-traditional and renewable energy sources in Ukraine. This
is of great practical use, since the analyzed databases and GIS should become an influential
tool for analyzing the effectiveness of the practical use of non-traditional and renewable
energy sources in the regions of Ukraine, as well as supporting the adoption of informed
technical and managerial decisions on the use of potential regional non-traditional and
renewable energy sources.

This paper study focuses on the need to create methods for using the resource potential
of GIS in the field of non-traditional and renewable energy sources, taking into account the
possible prerequisites and limitations for the development of non-traditional and renewable
energy sources at the regional level. This approach makes it possible to carry out zoning of
territories in order to select the most promising sites for projects for the development of
non-traditional and renewable energy in the regions of Ukraine.

The study proposes the principles of using global and local GIS for solving the prob-
lems of a comprehensive assessment of the potential and efficiency of using regional
non-traditional and renewable energy resources on the territory of Ukraine. This approach
makes it possible to assess the possibilities of generating additional electrical and ther-
mal power for the needs of the regions of Ukraine using non-traditional and renewable
energy sources, to rationally assess the effectiveness of regional projects on the use of
non-traditional and renewable energy sources in Ukraine.

The paper proposes a comprehensive methodology for using GIS to assess the potential
of non-traditional and renewable energy sources at the regional level in Ukraine, taking
into account energy, environmental and socio-economic factors affecting the placement
of non-traditional and renewable energy facilities. The proposed principles provide a
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reasonable search and selection of territories that are most promising for the placement of
facilities for non-traditional and renewable energy in Ukraine [38,39].

5. Conclusions

The scientific novelty of the results presented in this study is the substantiation and
expansion of the possibilities of using global and local geographic information systems
to assess the potential of renewable energy sources in Ukraine. GIS analysis aligned to
key resource parameters permits identification of territories for development of renewable
energy sources and assessment of their technical potential, as well as effective integration
of technologies for the use of renewable energy sources in the energy sector of Ukraine.

The scientific novelty of the results obtained lies in the fact that the principles of
applying global and local GIS make it possible to assess the possibilities of generating
additional electric and thermal power for the needs of the regions of Ukraine using non-
traditional and renewable energy sources, and to rationally assess the effectiveness of
regional projects on the use of non-traditional and renewable energy sources in Ukraine.
A comprehensive methodology for the use of GIS is proposed for assessing the potential
of non-traditional and renewable energy sources at the regional level in Ukraine, taking
into account energy, environmental and socio-economic factors affecting the placement
of non-traditional and renewable energy facilities. The proposed principles provide for a
rational search for and selection of territories that are most promising for the placement of
facilities for non-traditional and renewable energy in Ukraine.

This paper analyzes the possibilities of using geographic information systems to
assess the potential of renewable energy sources in Ukraine. The possibility of using the
software products of the International Renewable Energy Agency, namely the Global Atlas,
is analyzed.

This study confirms that the Global Atlas provides valuable spatial analysis based on
GIS technologies using the IRENA method for large-scale programs and applications. This
analysis of key parameters (resource quality, distance to transmission networks, population
density, terrain and protected areas) permits determination of suitable areas for the devel-
opment of renewable energy sources and gives an approximate assessment of the technical
potential.

IRENA software products are offered to support national and regional planning of re-
newable energy technologies. The proposed technologies can help to establish the viability
of future facilities for the use of renewable energy sources and help project developers to
characterize and analyze promising facilities for the implementation of technologies for the
use of renewable energy.

According to IRENA, based on the results of the analysis “REmap 2030”, Ukraine has
significant potential for the development of solar and wind energy, and the use of energy
from biomass.

The application of geographic information systems from Ukrainian web resources to
assess the potential of renewable energy sources in Ukraine is analyzed. The possibilities
of the modern information web resource “UA MAP”, which contains information on
renewable energy and energy efficiency in Ukraine, are illustrated.

The study shows the principles of using the generated vast data sets on the basis of
the analyzed global and regional GIS systems, which are proposed to be used as a basis for
research in the fields of non-traditional and renewable energy in Ukraine.

The article substantiates the scientific and methodological significance of GIS in study-
ing the regional potential of non-traditional and renewable energy sources in Ukraine,
which is of great practical use. The analyzed databases and GIS should become an influen-
tial tool for analyzing the effectiveness of the practical use of non-traditional and renewable
energy sources in the regions of Ukraine, as well as supporting the adoption of informed
technical and managerial decisions on the use of the potential of regional non-traditional
and renewable energy sources.
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The study focuses on the need to create methods for using the resource potential of
GIS in the field of non-traditional and renewable energy sources, taking into account the
possible prerequisites and limitations for the development of non-traditional and renewable
energy sources at the regional level. This approach makes it possible to carry out zoning of
territories in order to select the most promising sites for projects for the development of
non-traditional and renewable energy in the regions of Ukraine.

The study proposes the principles of using global and local GIS for solving the prob-
lems of a comprehensive assessment of the potential and efficiency of using regional
non-traditional and renewable energy resources on the territory of Ukraine. For example,
this approach makes it possible to better assess the possibilities of generating additional
electrical and thermal power for the needs of the regions of Ukraine using non-traditional
and renewable energy sources, through regional projects.

The study proposes a comprehensive methodology for using GIS to assess the potential
of non-traditional and renewable energy sources at the regional level in Ukraine, taking
into account energy, environmental and socio-economic factors affecting the placement
of non-traditional and renewable energy facilities. The proposed principles provide for a
rational search for, and selection of, territories that are most promising for the placement of
facilities for non-traditional and renewable energy in Ukraine.

The analyzed software products will permit assessment of the effective integration of
certain technologies for the use of renewable energy sources in the energy sector of Ukraine.
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