
mdpi.com/journal/applsci

Special Issue Reprint

Federated and Transfer 
Learning Applications 

Edited by 

George Drosatos, Pavlos S. Efraimidis and Avi Arampatzis



Federated and Transfer Learning
Applications





Federated and Transfer Learning
Applications

Editors

George Drosatos

Pavlos S. Efraimidis

Avi Arampatzis

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester



Editors

George Drosatos

Institute for Language and

Speech Processing, Athena

Research Centre

Xanthi

Greece

Pavlos S. Efraimidis

Department of Electrical and

Computer Engineering,

Democritus University of

Thrace

Xanthi

Greece

Avi Arampatzis

Department of Electrical and

Computer Engineering,

Democritus University of

Thrace

Xanthi

Greece

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Applied Sciences (ISSN 2076-3417) (available at: https://www.mdpi.com/journal/applsci/special_

issues/Federated_Transfer_Learning).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0075-9 (Hbk)

ISBN 978-3-7258-0076-6 (PDF)

doi.org/10.3390/books978-3-7258-0076-6

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

George Drosatos, Pavlos S. Efraimidis and Avi Arampatzis

Federated and Transfer Learning Applications
Reprinted from: Applied Sciences 2023, 13, 11722, doi:10.3390/app132111722 . . . . . . . . . . . . 1

Gang Xu, De-Lun Kong, Xiu-Bo Chen and Xin Liu

Lazy Aggregation for Heterogeneous Federated Learning
Reprinted from: Applied Sciences 2022, 12, 8515, doi:10.3390/app12178515 . . . . . . . . . . . . . . 6

Rémi Gosselin, Loïc Vieu, Faiza Loukil and Alexandre Benoit

Privacy and Security in Federated Learning: A Survey
Reprinted from: Applied Sciences 2022, 12, 9901, doi:10.3390/app12199901 . . . . . . . . . . . . . . 20

Ha Min Son, Moon Hyun Kim and Tai-Myoung Chung

Comparisons Where It Matters: Using Layer-Wise Regularization to Improve Federated
Learning on Heterogeneous Data
Reprinted from: Applied Sciences 2022, 12, 9943, doi:10.3390/app12199943 . . . . . . . . . . . . . . 35

Waleed Albattah and Saleh Albahli

Intelligent Arabic Handwriting Recognition Using Different Standalone and Hybrid CNN
Architectures
Reprinted from: Applied Sciences 2022, 12, 10155, doi:10.3390/app121910155 . . . . . . . . . . . . 47

Morris Stallmann and Anna Wilbik

On a Framework for Federated Cluster Analysis
Reprinted from: Applied Sciences 2022, 12, 10455, doi:10.3390/app122010455 . . . . . . . . . . . . 70

Dimitrios Zaikis, Christina Karalka and Ioannis Vlahavas

A Message Passing Approach to Biomedical Relation Classification for Drug–Drug Interactions
Reprinted from: Applied Sciences 2022, 12, 10987, doi:10.3390/app122110987 . . . . . . . . . . . . 91

Jingyuan Han, Tao Liu, Jingye Ma, Yi Zhou, Xin Zeng and Ying Xu

Anomaly Detection and Early Warning Model for Latency in Private 5G Networks
Reprinted from: Applied Sciences 2022, 12, 12472, doi:10.3390/app122312472 . . . . . . . . . . . . 112

Song Liu, Xiong Wang, Longshuo Hui and Weiguo Wu

Blockchain-Based Decentralized Federated Learning Method in Edge Computing Environment
Reprinted from: Applied Sciences 2023, 13, 1677, doi:10.3390/app13031677 . . . . . . . . . . . . . . 130

Leonardo Esteves, David Portugal, Paulo Peixoto and Gabriel Falcao

Towards Mobile Federated Learning with Unreliable Participants and Selective Aggregation
Reprinted from: Applied Sciences 2023, 13, 3135, doi:10.3390/app13053135 . . . . . . . . . . . . . . 147

Luzhi Li, Yuhong Zhao, Jingyu Wang and Chuanting Zhang

Wireless Traffic Prediction Based on a Gradient Similarity Federated Aggregation Algorithm
Reprinted from: Applied Sciences 2023, 13, 4036, doi:10.3390/app13064036 . . . . . . . . . . . . . . 166

Nikolaos Tsinganos, Panagiotis Fouliras and Ioannis Mavridis

Leveraging Dialogue State Tracking for Zero-Shot Chat-Based Social Engineering Attack
Recognition
Reprinted from: Applied Sciences 2023, 13, 5110, doi:10.3390/app13085110 . . . . . . . . . . . . . . 180

v





About the Editors

George Drosatos

George Drosatos has been a researcher with the position title “Privacy Technologies in Content

Analysis and Retrieval” since July 2020 at the Institute for Language and Speech Processing, Athena

Research Center in Xanthi (Greece). Before that and after receiving his PhD in Privacy-Enhancing

Technologies, he was an Associate Researcher for more than 7 years, participating in National

and European research projects. During this period, he also received a Fellowship as a PostDoc

Researcher, researching the “assessment of news reliability in social networks of influence”.

Dr. Drosatos has an interdisciplinary background (engineering, computer science, and biomedical

science), and his research interests focus mainly on privacy-enhancing technologies, information

security, and biomedical science. Last but not least, he was elected in March 2023 as a Secretary

General to the European Alliance for Medical and Biological Engineering and Science (EAMBES).

Pavlos S. Efraimidis

Pavlos S. Efraimidis is a Professor of Computer Science at the Department of Electrical and

Computer Engineering of the Democritus University of Thrace (Greece). He received his PhD in

Informatics in 2000 from the University of Patras and the diploma of Computer Engineering and

Informatics (CEID) from the same university in 1995. He has served as a director of the Division of

Software and Application Development and as a director of the Programming and Data Processing

Lab. His main work is on algorithms, and his current research interests are in the fields of design and

analysis of algorithms, graph theory and network analysis, federated machine learning, algorithmic

game theory, and algorithmic aspects of privacy. His past industrial experience includes working as

a computer engineer in the high-performance computing field (Parsytec Computer GmbH, Aachen,

Germany) and the financial sector (ASYK—Athens Stock Exchange, Athens, Greece).

Avi Arampatzis

Avi Arampatzis is an Associate Professor of Computer Science at the Department of Electrical

and Computer Engineering of the Democritus University of Thrace (Greece). He received his PhD

in Informatics (Information Retrieval and Information Systems group) from the Computing Science

Department, University of Nijmegen, the Netherlands, on June 21st, 2001. After that, he was a

Postdoctoral Fellow at the Department of Information and Computing Sciences, Center for Geometry,

Imaging and Virtual Environments, Utrecht University, the Netherlands (2003–2005) and at the

Department of Media Studies, Archives and Information Studies group, University of Amsterdam,

the Netherlands (2006–2009). Prof. Dr. Arampatzis has a lot of experience (more than 26 years) in

information retrieval, including teaching related courses, and around 100 publications in the field.

vii





Citation: Drosatos, G.;

Efraimidis, P.S.; Arampatzis, A.

Federated and Transfer Learning

Applications. Appl. Sci. 2023, 13,

11722. https://doi.org/10.3390/

app132111722

Received: 20 October 2023

Accepted: 24 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Federated and Transfer Learning Applications

George Drosatos 1,*, Pavlos S. Efraimidis 1,2 and Avi Arampatzis 2

1 Institute for Language and Speech Processing, Athena Research Center, 67100 Xanthi, Greece;
pefraimi@ee.duth.gr

2 Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
* Correspondence: gdrosato@athenarc.gr; Tel.: +30-25410-78787 (ext. 322)

1. Introduction

The classic example of machine learning is based on isolated learning—a single model
for each task using a single dataset. Most deep learning methods require a significant
amount of labelled data, preventing their applicability in many areas where there is a
shortage. In these cases, the ability of models to leverage information from unlabelled
data or data that are not publicly available (for privacy and security reasons) can offer
a remarkable alternative. Transfer learning and federated learning are such alternative
approaches that have emerged in recent years. More precisely, transfer learning (TL) is
defined as a set of methods that leverage data from additional fields or tasks to train a
model with greater generalizability and usually use a smaller amount of labelled data
(via fine-tuning) to make them more specific for dedicated tasks. Accordingly, federated
learning (FL) is a learning model that seeks to address the problem of data management
and privacy through joint training with this data, without the need to transfer the data
to a central entity. Figure 1 illustrates the comparison of federated and transfer learning
applications with traditional machine learning approaches.
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Figure 1. Comparison of federated and transfer learning applications with traditional machine learning.

With this in mind, the present Special Issue of Applied Sciences on “Federated and
Transfer Learning Applications” provides an overview of the latest developments in this
field. Twenty-four papers were submitted to this Special Issue, and eleven papers [1–11]
were accepted (i.e., a 45.8% acceptance rate). The presented papers explore innovative
trends of federated learning approaches that enable technological breakthroughs in high-
impact areas such as aggregation algorithms, effective training, cluster analysis, incentive
mechanisms, influence study of unreliable participants and security/privacy issues, as
well as innovative breakthroughs in transfer learning such as Arabic handwriting recog-
nition, literature-based drug–drug interaction, anomaly detection, and chat-based social
engineering attack recognition.
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2. Federated Learning Approaches

The federated learning approaches published in this Special Issue include aggregation
algorithms, layer regularization for effective training, cluster analysis, blockchain-based in-
centive mechanisms, influence study of unreliable participants, and security/privacy issues.

FL aggregation algorithms: Xu et al. [1] proposed an FL framework, called FedLA (Fed-
erated Lazy Aggregation), which reduces aggregation frequency to obtain high-quality
gradients and improve robustness to non-independent and identically distributed (non-
IID) training data. This framework is particularly used to deal with data heterogeneity.
Based on FedAvg, FedLA allows more devices, which come from consecutive rounds, to
be trained sequentially, without needing additional information about the devices. Due to
sequential training, it performs well on both homogeneous and heterogeneous data, simply
by discovering enough samples to aggregate them in time. Regarding the aggregation
timing, this work proposes weighted deviation (WDR) as the change rate of the models to
monitor sampling. Furthermore, the authors propose a FedLA with a Cross-Device Mo-
mentum (CDM) mechanism, called FedLAM, which alleviates the instability of the vertical
optimization, helps the local models escape from the local optimum, and improves the
performance of the global model in FL. Compared to benchmark algorithms (e.g., FedAvg,
FedProx, and FedDyn), FedLAM performs best in most scenarios, achieving a 2.4–3.7%
increase in accuracy compared to FedAvg on three image classification datasets.

Li et al. [10] presented a novel federated aggregation algorithm, named FedGSA, which
relies on gradient similarity for wireless traffic prediction. FedGSA addresses critical aspects
in the optimization of cellular networks, including load balancing, congestion control, and
the promotion of value-added services. This method incorporates several key elements:
(i) utilizing a global data-sharing strategy to overcome the challenge of data heterogeneity
in multi-client collaborative training within federated learning, (ii) implementing a sliding
window approach to construct dual-channel training data, enhancing the model’s capacity
for feature learning, and (iii) proposing a two-layer aggregation scheme based on gradient
similarity to enhance the generalization capability of the global model. This entails the
generation of personalized models through a comparison of gradient similarity for each
client model, followed by aggregation at the central server to obtain the global model. In
the experiments conducted using two authentic traffic datasets, FedGSA outperformed the
commonly used Federated Averaging (FedAvg) algorithm, delivering superior prediction
results while preserving the privacy of client traffic data.

Layer regularization for effective training: Federated learning is a widely used method
for training neural networks on distributed data; however, its main limitation is the per-
formance degradation that occurs when data are heterogeneously distributed. To address
this limitation, Son et al. [3] proposed FedCKA, an alternative approach based on a more
up-to-date understanding of neural networks, showing that only certain important layers
in a neural network require regularization for effective training. In addition, the authors
show that Centred Kernel Alignment (CKA) is the most appropriate when comparing
representational similarity between layers of neural networks, in contrast with previous
studies that used the L2-distance (FedProx) or cosine similarity (MOON). Experimental
results reveal that FedCKA outperforms previous state-of-the-art methods in various deep
learning tasks, while also improving efficiency and scalability.

Federated clustering framework: Stallmann and Wilbik [5] presented for first time a
federated clustering framework that addresses three key challenges: (i) determining the
optimal number of global clusters within a federated dataset, (ii) creating a data partition
using a federated fuzzy c-means algorithm, and (iii) validating the quality of the clustering
using a federated fuzzy Davies–Bouldin index. This framework is thoroughly evaluated
through numerical experiments conducted on both artificial and real-world datasets. The
findings indicate that, in most instances, the results achieved by the federated clustering
framework are in line with those of the non-federated counterpart. Additionally, the
authors incorporate an alternative federated fuzzy c-means formulation into the proposed
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framework and observe that this approach exhibits greater reliability when dealing with
non-IID data, while performing equally well in the IID scenario.

Blockchain-based incentive mechanism: In response to the issues associated with cen-
tralization and the absence of incentives in conventional federated learning, Liu et al. [8]
introduced a decentralized federated learning method for edge computing environments
based on blockchain technology, called BD-FL. This approach integrates all edge servers
into the blockchain network, where the edge server nodes that acquire bookkeeping rights
collectively aggregate the global model. This addresses the centralization problem inherent
in federated learning, which is prone to single points of failure. To encourage active partic-
ipation of local devices in federated learning model training, an incentive mechanism is
introduced. To minimize the cost of model training, BD-FL employs a preference-based
stable matching algorithm which associates local devices with suitable edge servers, effec-
tively reducing communication overhead. Furthermore, the authors propose the utilization
of a reputation-based practical Byzantine fault tolerance (R-PBFT) algorithm to enhance
the consensus process for global model training within the blockchain. The experimental
results demonstrate that BD-FL achieves a notable reduction in model training time of up
to 34.9% compared to baseline federated learning methods. Additionally, the incorporation
of the R-PBFT algorithm enhances the training efficiency of BD-FL by 12.2%.

Influence of unreliable participants and selective aggregation: Esteves et al. [9] intro-
duced a multi-mobile Android-based implementation of a federated learning system and
investigated how the presence of unreliable participants and selective aggregation influence
the feasibility of deploying mobile federated learning solutions in real-world scenarios.
Furthermore, the authors illustrated that employing a more sophisticated aggregation
method, such as a weighted average instead of a simple arithmetic average, can lead to
substantial enhancements in the overall performance of a federated learning solution. In
the context of ongoing challenges in the field of federated learning, this research argues
that imposing eligibility criteria can prove beneficial to the context of federated learning,
particularly when dealing with unreliable participants.

Survey on privacy and security in FL: Gosselin et al. [2] presented a comprehensive survey
addressing various privacy and security issues related to federated learning (FL). Toward
this end, the authors introduce an overview of the FL applications, network topology,
and aggregation methods, and then present and discuss the existing FL-based studies in
terms of security and privacy protection techniques aimed at mitigating FL vulnerabilities.
The findings show that the current major security threats are poisoning, backdoor, and
Generative Adversarial Network (GAN) attacks, while inference-based attacks are the most
critical for FL privacy. Finally, this study concludes with FL open issues and provides
future research directions on the topic.

3. Transfer Learning Approaches

The transfer learning approaches published in this Special Issue include Arabic hand-
writing recognition, literature-based drug–drug interaction, anomaly detection, and chat-
based social engineering attack recognition.

Arabic handwriting recognition: Albattah and Albahli [4] proposed an approach for
Arabic handwriting recognition by leveraging the advantages of machine learning for
classification and deep learning for feature extraction, resulting in the development of
hybrid models. The most exceptional performance among the stand-alone deep learning
models, trained on both datasets (Arabic MNIST and Arabic Character), was achieved by
the transfer learning model applied to the MNIST dataset, with an accuracy of 99.67%. In
contrast, the hybrid models performed strongly when using the MNIST dataset, consistently
achieving accuracies exceeding 90% across all hybrid models. It is important to note that
the results of the hybrid models using the Arabic character dataset were particularly poor,
suggesting a possible problem with the dataset itself.

3
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Drug–drug interaction based on the biomedical literature: Zaikis et al. [6] introduced a
Knowledge Graph schema integrated into a Graph Neural Network-based architecture
designed for the classification of Drug–Drug Interactions (DDIs) within the biomedical
literature. Specifically, they present an innovative Knowledge Graph (KG)-based approach
that leverages a unique graph structure, combined with a Transformer-based Language
Model (LM) and Graph Neural Networks (GNNs), to effectively classify DDIs found in the
biomedical literature. The KG is meticulously constructed to incorporate the knowledge
present in the DDI Extraction 2013 benchmark dataset without relying on additional ex-
ternal information sources. Each drug pair is classified based on the context in which it
appears within a sentence, making use of transfer knowledge through semantic represen-
tations derived from domain-specific BioBERT weights, which act as the initial KG states.
The proposed approach is evaluated on the DDI classification task using the same dataset,
and it achieves an F1-score of 79.14% across the four positive classes, surpassing the current
state-of-the-art methods.

Anomaly detection for latency in 5G networks: Han et al. [7] proposed a novel approach
for detecting anomalies and issuing early warnings with application to abnormal driving
scenarios involving Automated Guided Vehicles (AGVs) within the private 5G networks
of China Telecom. This approach efficiently identifies high-latency cases through their
proposed ConvAE-Latency model. Building on this, the authors introduce the LstmAE-TL
model, which leverages the characteristics of Long Short-Term Memory (LSTM) to provide
abnormal early warnings at 15 min intervals. Furthermore, they employ transfer learning to
address the challenge of achieving convergence in the training process for abnormal early
warning detection, particularly when dealing with a limited sample size. Experimental
results demonstrate that both models excel in anomaly detection and prediction, delivering
significantly improved performance compared to existing research in this domain.

Chat-based social engineering attack recognition: Tsinganos et al. [11] employed the ter-
minology and methodologies of dialogue systems to simulate human-to-human dialogues
within the realm of chat-based social engineering (CSE) attacks. The ability to accurately
discern the genuine intentions of an interlocutor is a crucial element in establishing an ef-
fective real-time defence mechanism against CSE attacks. The authors introduce ‘in-context
dialogue acts’ that reveal an interlocutor’s intent and the specific information they aim
to convey. This, in turn, enables the real-time identification of CSE attacks. This research
presents dialogue acts tailored to the CSE domain, constructed with a meticulously de-
signed ontology, and establishes an annotated corpus that employs these dialogue acts as
classification labels. In addition, they introduce SG-CSE BERT, a BERT-based model that ad-
heres to the schema-guided approach, for zero-shot CSE attack scenarios in dialogue-state
tracking. The preliminary evaluation results indicate a satisfactory level of performance.

Author Contributions: Conceptualization, G.D., P.S.E. and A.A.; writing—original draft preparation,
G.D.; writing—review and editing, P.S.E. and A.A. All authors have read and agreed to the published
version of the manuscript.

Acknowledgments: We would like to thank the authors of the eleven papers, the reviewers, and the
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Abstract: Federated learning (FL) is a distributed neural network training paradigm with privacy pro-
tection. With the premise of ensuring that local data isn’t leaked, multi-device cooperation trains the
model and improves its normalization. Unlike centralized training, FL is susceptible to heterogeneous
data, biased gradient estimations hinder convergence of the global model, and traditional sampling
techniques cannot apply FL due to privacy constraints. Therefore, this paper proposes a novel FL
framework, federated lazy aggregation (FedLA), which reduces aggregation frequency to obtain
high-quality gradients and improve robustness in non-IID. To judge the aggregating timings, the
change rate of the models’ weight divergence (WDR) is introduced to FL. Furthermore, the collected
gradients also facilitate FL walking out of the saddle point without extra communications. The cross-
device momentum (CDM) mechanism could significantly improve the upper limit performance of
the global model in non-IID. We evaluate the performance of several popular algorithms, including
FedLA and FedLA with momentum (FedLAM). The results show that FedLAM achieves the best
performance in most scenarios and the performance of the global model can also be improved in
IID scenarios.

Keywords: federated learning; heterogeneous data; lazy aggregation; cross-device momentum

1. Introduction

With the development of information technology, the amount of data generated by
human beings is unprecedented. To mine the potential value of data, a series of emerging
information technologies have been promoted (for example, Internet of Things, Big Data,
and Data Mining). Nevertheless, it is tough for industry competition, monopoly, and data
protection laws to achieve data sharing. Thus, it is necessary to discuss how to break the
“data silos” to achieve secure data sharing. In 2016, Google proposed a privacy-constrained
distributed neural network training paradigm named FL. Different from centralized train-
ing, FL aggregates the models’ weights of devices to integrate data knowledge of all parties
without disclosing local data and improves the performance of the model on unknown
data. FL realizes the efficient and safe sharing of data knowledge among multiple parties.
FL has been widely explored and applied in data-sensitive fields such as medical treatment,
personalized recommendation, and monetary risk assessment.

Unfortunately, there are some challenges in FL [1,2]. First of all, the open distributed
architecture requires network transmission for synchronous training. In practice, the local
training delay is much smaller than network transmission delay, especially in the case of
large scale and big model. The network quality directly determines training efficiency.
Secondly, the central server cannot access local data and data statistics of the participants,
which restricts data preprocessing operations (e.g., data cleaning, deduplication, and
enhancement). In addition, different distributions and data sparsity greatly weaken the
final effect and efficiency, and even fail to converge, which has become a dark cloud over FL.

Appl. Sci. 2022, 12, 8515. https://doi.org/10.3390/app12178515 https://www.mdpi.com/journal/applsci
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In order to resolve the issues of communication and data heterogeneity in FL, re-
searchers have carried out a series of explorations. McManhan et al. [3] proposed the
vanilla FL framework federated averaging (FedAvg), whose optimization focuses on in-
creasing local epochs to reduce the synchronization frequency, and just some devices are
chosen in each round. In Independent and Identically Distributed (IID), FedAvg per- forms
very well and takes the first step of FL from theory to practice. However, FedAvg not only
slows down the convergence speed but also greatly reduces the performance of the global
model in non-IID. Li et al. [4] analyze theoretically convergence of FedAvg for the strongly
convex and smooth problem, different data distributions expand the weight difference,
and more epochs further exacerbate gradient offsets. Duan et al. [5] proved that it could
also affect FL performance in the case of global unbalanced dataset, and they proposed to
use a global shared and balanced dataset to alleviate gradient offsets caused by different
distributions. As sharing proportion increased, it performs better, which maybe cause
data leakage unfortunately. Zeng et al. [6] proposed a novel FL framework FedGSP, which
counteracts perturbations for heterogeneous data by sequential execution. Sequential train-
ing is more robust to heterogeneous data than parallel training; however, the efficiency of
sequential training is lower. For this reason, the author proposes the inter-cluster grouping
(IGP), which is achieved inter-group homogeneity and intra-group heterogeneity. Grouping
requires device characteristics, which has security risks.

In this paper, we propose a novel method for FL, which is shown in Figure 1. Federated
lazy aggregating (FedLA) is used to address data heterogeneity. On the basis of FedAvg,
FedLA allows more devices, which are from successional rounds, to train sequentially.
FedLA doesn’t need extra informations about devices. As paper [6] said, finding out
heterogeneous device groups is an NP-hard problem. Due to sequential training performs
well under both homogeneous and heterogeneous data, just finding out sufficient sampling
to aggregate in time. As for the aggregation timing, this paper proposes the change
rate of the models’ weight divergence (WDR) to monitor sampling. Furthermore, we
propose FedLA with Cross-Device Momentum (CDM) mechanism, FedLA with Momentum
(FedLAM), which relieves vertical optimization jitters and helps local models jump out of
local optima and release the performance of the global model in FL. In the end, we introduce
several benchmark algorithms for comparison. The result shows that FedLAM achieves
excellent performance in most scenarios. Compared with FedAvg, FedLAM promotes test
accuracy by 3.1% on Mnist and is even higher by 7.3% in class 1. It has a comprehensive
increase of 3.7% on Cifar10 and also has a 2.4% improvement on Emnist.

Figure 1. Federated lazy aggregating framework.
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2. Related Work

At present, there are three main solutions to handle the FL problem in non-IID, includ-
ing (1) adaptive optimization, (2) model personalization, and (3) data-based optimization.

2.1. Adaptive Optimization

FedAvg excels in IID but is not ideal in non-IID. To this end, there is a series of works to
modify FedAvg to adapt to non-IID scenarios. Li et al. [7] eased the extreme point oscillations
by dynamically reducing the local learning rate; moreover, a proximal term is added to
local loss to limit the gradient offset. In the presence of straggler devices, aggregation
stability is greatly improved. In general, it is similar to FedAvg. Shamir et al. [8] used multi-
party distributed optimization to coordinate all parties to find the global optimal solution.
However, FL cannot fully participate in each round. Karimireddy et al. [9] proposed a
control state scheme, Scaffold which uses device-state and server-state control variables to
coordinate the differences in training objectives of all parties, which greatly improves the
convergence speed and upper bound of the global model, but its transmission overhead is
twice as much as FedAvg. Durmus et al. [10] proposed a dynamic regularization method,
FedDyn, by dynamically modifying local objectives to make them asymptotically consistent
with the global objective and avoids transferring extra data. It should be noted that the
method is very sensitive to learning rate.

2.2. Model Personalization

Just as its name implies, this kind of scheme allows device models to be personalized,
and each model may be completely different. Although the personalized models are differ-
ent, they still contain some global shared knowledge. Finn et al. [11] proposed a federated
meta-learning framework, MAML which pretrains a meta-model using auxiliary dataset,
and then fine-tunes the meta-model with local data. Fallah et al. proposed scheme [12] is
to extract the feature extraction layers of pretraining model and fine-tune output layers to
implement personalization. Arivazhagan et al. [13] proposed a personalized scheme which
splits the model into two parts: base layer and personalized layer, and only upload weights
of the base layer for aggregation in each round. It is personalized learning with the lower
requirement for datasets. While the personalized model is excellent locally and not often
satisfactory. Sattler et al. [14] proposed a fresh multitask framework, clustered federated
learning (CFL), which introduced a recursive dual-partition mechanism based on FedAvg
to separate heterogeneous devices and combine homogeneous devices to improve general-
ization and reduce gradient conflicts, but it is computationally inefficiency. Ghosh et al. [15]
put forward an iterative federated clustering learning algorithm IFCA similar to EM. First,
several group models are randomly initialized, and the group models are distributed to
selected devices in each round, and selected devices choose the optimal weight base on
local data. Finally, the server aggregates the gradients by group. The FedSem scheme of
Xie et al. [16] is based on l2 distance between device and group model weights. The above
two schemes can improve grouping efficiency. The former needs to transmit more redun-
dancy models, while the latter requires complex model initialization. Duan et al. [17]
proposed a pre-grouping scheme, FedGroup, which uses decomposed cosine similarity
instead of Euler distance to avoid the “Dimensional Curse” and improve the efficiency and
stability of the cluster algorithms. Although CFL establishes the connections of devices to a
certain extent, each group is independent. In reality, the relationships of devices are com-
plex and diverse, and hard grouping will cut off connections between devices. Therefore,
Li et al. [18] proposed a federated learning with soft clustering algorithm, FLSC based on
IFCA. The devices of each group can overlap, and the updated weights can be shared by
multiple groups. Its experiment shows that group models of FLSC have better performance
than IFCA.
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2.3. Data-Based Optimization

Data sharing [4,19,20] is a simple and effective scheme. FedShare [19] uses a global
shared and balanced dataset G to initialize the global model, distributes the global model
and partial G in each round, and devices use the distributed and local data to train jointly.
Experiments show that only 5% of shared dataset makes the global model improve by 30%
on Cifar10. It is difficult to obtain dataset such as this in practice. Data augmentation [21,22]
can expand dataset through random transformation, knowledge transfer etc., which can
effectively alleviate the impact of data sparsity. However, these methods need to acquire
statistical informations, which will undoubtedly break the privacy constraint. Knowledge
distillation [23] is a kind of promising solution for FL in non-IID, which transfers the knowl-
edge of teacher model to student models with the help of auxiliary dataset. Lin et al. [24]
used the ensemble distillation method to fuse multiple local models (teacher) to generate
the next global model (student) and extract the knowledge of local models to ensure privacy,
but the efficiency of knowledge distillation is relatively low.

In summary, these works have made improvements for heterogeneous federated
learning from the data to model and system architecture. To mitigate the difference in
data distribution and deal with the conflict gradient are the main goals. Our work focuses
on the former, and continuously sampling multiple devices is to make sampling closer
to global data distribution. Data sparsity is also very common on the device side, which
makes the local model fall into local optimization. To this end, CDM is introduced. More
importantly, the two-point optimization does not introduce extra communication overhead
and FL privacy is effectively guaranteed, even reducing the server communication load.

3. Methods

3.1. Problem

FedAvg is the prototype of a series of FL algorithms whose theoretical basis is the fed-
erated optimization [25] problem, which is essentially a distributed optimization problem
with privacy constraints. The distributed optimization goal of FL is:

min
w

{
F(w) =

N

∑
k=1

akLk(w)

}
(1)

where N is the number of total devices and pk is the global weight of the k-th device
ak ≥ 0, ∑N

k=1 ak = 1. Generally, ak = nk/ ∑N
k=1 nk; nk is the number of the k-th device

samples. In general, Lk(w) is widely used cross-entropy loss as the loss function of the
classification task:

Lk(w) =
C

∑
i=1

pk(y = i)Ex|y=i[log fi(x, w)] (2)

The local optimization goal is to find the weight wk with the minimum loss, and FL
algorithms look for global optimal weight w with the minimum total loss. To cope with
the complex network environments, FedAvg only selects a subset St of all devices {N} in
each round. Then, they execute training in parallel. Finally, the server aggregates recycled
updates to renew the global model weight wt+1 whose transfer expression is:

wt+1 =
1

∑k∈ST
nk

wt+1
k (3)

When the local distributions of devices are consistent with global distribution (IID), there
are few distinctions between partial and full training in each round, while the amount of
computation and communication is greatly reduced. In reality, local data are sparse and
distributed inconsistently, and gradient conflicts are prone to occur. The effect of gradient
aggregation is poor [4], and it is easy to form a low-quality model.
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3.2. FedLA

When the sampling is sufficient and IID, the gradients are unbiased estimates, and
training in parallel can accelerate convergence of the global model. Otherwise, the gra-
dient directions are divergent or even conflicting, which impacts aggregation [26]. It is
known from the literature [6] that sequential SGD is more robust to heterogeneous data.
An intuitive idea is to make devices train one by one. However, this way is inefficient,
especially for large-scale FL. Moreover, sequential training has higher requirements for
network connectivity, and too long sequential training would cause knowledge forgetting
phenomenon. On the one hand, the efficiency of parallel training is higher in IID. On the
other hand, sequential training is non-negligible robustness. We combine the two methods
to form a mutual and allow homogeneous devices to train parallelly and heterogeneous
devices to train sequentially. In FL settings, the server cannot obtain data distributions on
the device-side, grouping by data distribution becomes an NP-Hard like knapsack problem.
Therefore, Zeng et al. [6] proposed an IGP approximation to solve the problem, but the
operation of acquiring device characteristics may cause data leakage. We consider that
it isn’t necessary to judge whether devices are homogeneous or not, and more attention
should be paid to how to sample fully. That is to say, the gradients of only one round of
devices are often biased in non-IID, which makes aggregation unsatisfactory. Reducing the
frequency of the server’s aggregation maybe a better choice.

The accuracy of gradient depends on whether data sampling is sufficient. In non-
IID settings, data distribution is inconsistent with global distribution on the device- side,
which is likely to cause gradient bias. The cross-device sequential training can sample
more samples and gain high-quality gradients. Too long sequential training also leads
to knowledge forgetting and is low efficiency. It is necessary to aggregate and cut off
sequential chains periodically. To this end, we introduce the change rate of the models’
weight divergence (WDR) to judge the aggregation timing. Set WDR in the t-th round as:

WDRt =

∣∣∣∣WDt − WDt−1

WDt

∣∣∣∣ (4)

WDt is the models’ weight divergence (WD) in the t-th round:

WDt =
1
K ∑

0≤i<j<K
‖wi

t − wj
t‖ (5)

K is the number of selected devices per round. The model weight Wi
t is updated for

the selected i-th device after local training in the t-th round. In this way, the server recycles
updated weights, it judges the timing of aggregation according to (4) calculated WDR.
When the WDR is less than the threshold, the server aggregates and forms a new global
model, otherwise, the server would randomly distribute collected and updated weights
to the next round of devices. When the model weights are not aggregated, the models’
WD becomes larger and larger, but their WDR becomes smaller and smaller. Because, with
the increase in continuous sampling, the updated directions of the models’ weights are
gradually consistent with the global optimization direction.

Zhao et al. [19] have theoretically proved that the WD between FedAvg and vanilla
SGD is related to the probabilistic distance of the local and global distribution. Since the
global data distribution is unknown as usual, the WD focuses on the divergence of the
models’ weights, which are to be aggregated in this paper.

‖wi
t − wj

t‖ ≤ (1 + ηβ)‖wi
t−1 − wj

t−1‖
+ηgmax(w

j
t−1)

C
∑

k=1
‖pi(y = k)− pj(y = k)‖ (6)
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where 0 < β = ∑C
k pi(y = k)λx|y=k and gmax(w

j
t−1) = max

0≤k<C
∇wEx|y=k[log fk(x, wj

t−1)] and

η is the fixed learning rate (LR) of local SGD in our research. We can conclude that the
WD mainly comes from the difference in the initial weights and sampling distributions.
The former can be reduced by synchronous aggregation, which is the focus of previous
works, but this paper has shifted its attention to the latter. For the aggregation, the result
of multi-epochs training with a small LR isn’t different from an epoch training with a
lager LR on the device side, and multiple devices with few samples train sequentially
which is equivalent to a device training with a large number of samples. Therefore, we can
generalize the conclusion of the inequality (6). The sampling range is extended from batch
to device.

With sampling, the WD growth caused by distribution difference disappears gradually.
Therefore, monitoring WDR is a great way to judge whether sampling is necessary. If
WDR is greater than the threshold, the current round of weights won’t be aggregated but
forwarded to the next round of selected devices. On the contrary, we consider that the
sampling is sufficient. Only when their whole distributions are consistent with the global
distribution will the WD growth slow down. On this basis, this paper proposes a federated
lazy aggregate (FedLA) as shown in Algorithm 1:

Algorithm 1: Federated Lazy Aggregate (FedLA)

Input: T, K, E, B, w0, d0, ε

Initialize n0
0, n1

0 . . . nk−1
0 ← 0; w0

0, w1
0 . . . wK−1

0 ← w0
for t = 0, 1, 2, . . . , T − 1 do

Sample devices St ∈ [N], |St| = K ≤ N
Transmit w0

t w1
t , . . . , wK−1

t to selected K devices, respectively
for each device k ∈ St in parallel do

nk, wk
t+1 = ClientUpdate

(
wk

t , E, B
)

Transmit device nk, wk
t+1 to server

end for

for k = 0, 1, 2, . . . , T − 1 do

nk
t+1 ← nk

t + nk
end for

dt+1 = WD
(

w0
t+1, w1

t+1, . . . wK−1
t+1

)
if
∣∣∣ dt+1− dt

dt+1

∣∣∣ ≤ ε do

wt+1 ← 1
∑K−1

k=0 nk
t+1

∑K−1
k=0 nk

t+1wk
t+1; w0

t+1, w1
t+1 . . . wK−1

t+1 ← wt+1

n0
t+1, n1

t+1 . . . nK−1
t+1 ← 0; dt+1 = 0

else

wt+1 ← wt
end if

end for

Output: wT

Where E represents the number of local training epochs, B represents the batch size for
loading data, and wk represents the weight of k-th device which is initialized to the received
weight in the t-th round. T represents the number of total rounds; w0 represents initial
global weight; d0 indicates the initial WD value, generally assign 0; ε is the threshold of
WDR; and nk

t indicates the number of cumulative samples in the t-th round. FedLA adopts
the same local solver as FedAvg, which optimizes the received weight by mini-batch SGD,
and then the updated weights are sent back to server. Unlike FedAvg, aggregation doesn’t
occur every round, but is determined according to WDR. The impact of heterogeneous data
could be effectively mitigated through aggregation with intervals. In addition to adding
WDR (computational complexity O(K2d), where d is the number of parameters in the
model) and postponing aggregation, no other optimizations are introduced. Thus, FedLA
has the same convergence rate O(1/T) as FedAvg [4] for strongly convex and smooth
problems in non-IID. In practice, only classifier weights are needed for judgment, and
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the weights of feature layers are transmitted when aggregation is possible which ensures
efficiency and reduces redundant aggregation. Moreover, it is compatible with other
optimization and privacy strategies.

3.3. FedLAM

FedLA eliminates redundant aggregations and allows more devices to train sequen-
tially, enabling more data to be sampled and alleviating data sparsity (e.g., few samples,
class imbalance, and poor quality). Continuous training sequentially without aggrega-
tion occurs more jitters than vanilla FL on vertical optimization. It is more urgent for
momentum mechanism, especially for cross-devices. It can correct current gradients by
previous gradients and raise the utility of historical gradients. Firstly, we assign K groups of
gradient momentums on the server side, the initial value is zero gradient 0̂ and its transfer
equation is:

mk
t ← μmk

t−1 + Δwk
t (7)

where μ is the momentum coefficient, the bigger coefficient means that historical gradients
are dominant and have a longer survival period; mk

t is the momentum of the k-th group
in the t-th round; and Δwk

t indicates the k-th updated gradient in the t-th round. There-
fore, we propose the FedLA with momentum (FedLAM) that adds the CDM mechanism.
Algorithm 2 is as follows:

Algorithm 2: Federated Lazy Aggregate with Momentum (FedLAM)

Input: T, K, E, B, w0, d0, ε, μ

Initialize m0
0, m1

0 . . . mK−1
0 ← 0̂; n0

0, n1
0 . . . nK−1

0 ← 0; w0
0, w1

0 . . . wK−1
0 ← w0

for t = 0, 1, 2, . . . , T − 1 do

Sample devices St ∈ [N], |St| = K ≤ N
Transmit w0

t w1
t , . . . , wK−1

t to selected K devices, respectively
for each device k ∈ St in parallel do

nk, Δwk
t+1 = ClientUpdate

(
wk

t , E, B
)

Transmit device nk, Δwk
t+1 to server

end for

for k = 0, 1, 2, . . . , T − 1 do

nk
t+1 ← nk

t + nk
mk

t+1 ← μmk
t + Δwk

t+1

wk
t+1 ← wk

t + mk
t+1

end for

dt+1 = WD
(

w0
t+1, w1

t+1, . . . wK−1
t+1

)
if
∣∣∣ dt+1 − dt

dt+1

∣∣∣ ≤ ε do

wt+1 ← 1
∑K−1

k=0 nk
t+1

∑K−1
k=0 nk

t+1wk
t+1; w0

t+1, w1
t+1 . . . wK−1

t+1 ← wt+1

mt+1 ← 1
∑K−1

k=0 nk
t+1

∑K−1
k=0 nk

t+1mk
t+1; m0

0, m1
0 . . . mK−1

0 ← mt+1 (*)

n0
t+1, n1

t+1 . . . nK−1
t+1 ← 0; dt+1 = 0

else

wt+1 ← wt
end if

end for

Output: wT

It is noteworthy that the selected devices send their gradients instead of weights, and
the weights of each group are updated by corrected gradients which enhance the horizontal
optimization and offset the vertical optimization jitters. In non-IID settings, the local models
fall easily into the local optimum [7], which is further passed to the global model through
their gradients [27]. The step of momentum aggregation is optional in Algorithm 2(*). It is
suggested to train early and close it later to expand the search optimization space, which
contributes to the walking out of the saddle point. CDM could help FL alleviate gradient
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disappearance and take the global performance to a higher level. Compared with [28],
our scheme doesn’t pass momentum on the device, which undoubtedly reduces the traffic
between the device side and server side.

4. Evaluation

In this section, we will evaluate the actual performance of FedLA and FedLAM. First,
we implement the above and several benchmark algorithms based on PyTorch and Ray
frameworks. Three public datasets are selected for testing. In addition, we set up IID and
two kinds of non-IID scenarios (label distribution skew, [5] Dirichlet [29]) to simulate actual
environments in FL.

4.1. Experiment Setup

To compare different benchmark algorithms simply and fairly, this section selects
three kinds of image classification datasets, Mnist [30], Emnist [31], and Cifar10 [32], and
simulates IID and non-IID scenarios by partitioning the datasets. All experimental datasets
are divided into 100 copies; each device holds one, and the number of selected devices
K = 10. It should be noted that the local training doesn’t use momentum, weight decay
options of SGD optimizer and gradient clipping technologies, and the constant learning
rate is used by local solver. The datasets, partitions and models used in our experiments
are shown in Table 1.

4.1.1. Datasets and Models

• Mnist, a widely used image classification task, contains a training dataset of 60,000
handwritten digit pictures and a test dataset of 10,000. Its elements are 28 × 28 pixel
black and white pictures with 10 classification labels. Since the dataset is relatively
simple and pure, and complex models (e.g., CNN, RNN) are little discriminated, for
comparison, only single-layer MLP is used in this section.

• Emnist (Extend Mnist) expands 402,000 numbers and 411,000 26 letters samples on the
basis of Mnist. Due to the huge amount of dataset, six types of splits (e.g., by class, by
merge, letters etc.) are introduced. To distinguish from Mnist, the letters split is used,
and a two-layer simple CNN is used for the test model.

• Cifar10 contains 60,000 32 × 32 pixel color images in 10 categories, and its classes are
completely mutually exclusive (e.g., car and airplane), while the samples of the same
category are quite different (e.g., car and truck). The difficulty of classification tasks
has undoubtedly increased significantly, so we choose a three-layer convolutional
layer and a two-layer fully connected layer CNN.

4.1.2. Data Partitions

As shown in Figure 2, data distributions of the clients are under three federated
data partitions.

• IID: The dataset is randomly shuffled and divided into several subsets of the same size.
• Label distribution skew: Zhao et al. [5] proposed a more demanding non-IID setting,

the outstanding feature of which is that each subset only holds a few classes of samples.
• Dirichlet: Wang et al. [29] proposed a partition scheme based on the Dirichlet distribu-

tion, where each subset is also class-imbalanced with different amounts of samples.
It is closer to a partition scheme than the real FL environments.
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Figure 2. Schematic diagram of class distribution of data partitions.

Table 1. Summary of federated datasets and models.

Dataset Samples Classes Devices Partitions Models

MNIST 69,035
10 100

IID
Class 1/3

Dir-0.1/0.3

MLP 101,770
CIFAR10 60,000 CNN 553,514

EMNIST
(letters) 145,600 26 Class 3/9 SimpleCNN 28,938

4.1.3. Baselines

1. FedAvg: The vanilla FL Algorithm [3].
2. FedProx: A popular FL adaptive optimization scheme that limits excessive offset of

the device-side model by adding a proximal term [7].
3. FedDyn: A dynamic regularization method for FL, and local objectives are dynami-

cally updated to ensure that local optimums are asymptotically consistent with the
global optimum [10].

4. CFL: A clustering federated learning framework based on recursive bi-partition that
uses cosine similarity to separate the devices with gradient conflicts and form their
respective cluster center models [14].

4.1.4. Evaluation Metric

In order to comprehensively evaluate the FL algorithms’ performances, we take top-1
classification accuracy of the devices’ test dataset as the main indicator. Note that all original
training and test samples are merged into a new dataset which is divided into 100 copies,
including 80% training dataset and 20% test dataset, which is to ensure that the training and
test dataset is the same distribution on the devices. As it involves multi-party evaluation
and local data are inaccessible, we use weighted accuracy on the test dataset of selected
devices as verification accuracy and we take the weighted accuracy of all devices as test
accuracy. There are several cluster center models in CFL, and it cannot be directly compared
with other algorithms. To facilitate comparison, except for the weighted accuracies of cluster
models, the pseudo-global model aggregated by all cluster models is introduced [17]. Note
that this paper selects the benchmark algorithms without introducing extra synchronized
parameters, so their communication traffics are at the same level.

4.2. Effects of the Proposed Algorithm
4.2.1. Performance

There are several points to explain: (1) The highest score of testing is taken after
training with 300 rounds on Mnist and Emnist or 500 rounds on Cifar10. (2) The learning
rates of the experiments are unified 0.002. (3) Other hyperparameters are as follows:
FedProx: offset penalty coefficient u = 0.01; FedDyn: regularity coefficient α = 0.01; CFL:
mean-norm threshold eps1 = 0.035, max-norm threshold eps2 = 0.5; FedLA: WDR threshold
ε = 0.02; and FedLAM: historical gradient momentum coefficient μ = 0.5. Differences from
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the above will be noted. We found that the FedLA and FedLAM algorithms perform well
in most scenarios, as shown in Table 2, compared with the baseline algorithms.

Table 2. Comparisons of FedAvg, FedProx, FedDyn, CFL, FedLA, and FedLAM on Mnist, Emnist,
and Cifar10 (lr = 0.01) in IID and four kinds of non-IID settings. Local epoch E = 5, batch size B = 32.

FedAvg FedProx FedDyn FedLA FedLAM CFL

Mnist

IID 91.5 91.5 93.7 91.4 95.3 91.6191.6
Class 1 83.3 83.2 85.8 87.6 90.6 93.4270.8
Class 3 90.0 90.0 88.9 89.8 92.4 90.01 90.0
Dir 0.1 90.0 90.0 88.7 88.8 91.5 91.2288.8
Dir 0.3 89.8 89.8 89.1 90.3 90.4 89.81 89.8

Emnist

IID 89.4 89.7 91.4 89.9 89.4 89.91 89.9
Class 3 79.1 79.6 84.9 79.3 85.3 79.21 79.2
Class 9 87.6 87.4 90.0 85.7 89.1 87.61 87.6
Dir 0.1 84.3 84.9 88.5 84.2 87.8 85.11 85.1
Dir 0.3 89.1 89.3 90.7 89.1 89.7 89.11 89.1

Cifar10

IID 70.8 69.6 71.5 70.4 76.3 70.91 70.9
Class 1 27.0 27.0 41.8 28.00.03 30.00.07,0.2 100.010 17.1
Class 3 65.3 66.2 64.1 67.3 71.1 66.01 66.0
Dir 0.1 62.5 62.1 59.3 60.4 64.6 62.71 62.7
Dir 0.3 66.0 66.1 65.6 68.1 71.5 66.51 66.5

On Mnist, FedLAM is ahead of other algorithms. Compared with FedAvg, it leads
by 3.8% in IID, and leads comprehensive by 2.9% in non-IID, especially by 7.3% in class
1. For the more difficult task, Cifar10, it increases by 5.5% in IID and there is an overall
increase of 3.2% in non-IID. In most cases, FedProx is very close to FedAvg. The method
of adding a proximal term doesn’t overcome gradient conflicts caused by heterogeneous
data but only reduces excessive gradient offset. As for the straggler devices mentioned
in Section 5.2 [7], we will not explore this case in this article. FedDyn performs well on
Emnist by aligning the local targets with the global target in real-time through an attached
dynamic regularizer. As shown in Figure 3, FedDyn has a fast convergence speed in the
early stage, but the accuracy of the global model is stagnant in the later stage, and its loss
fluctuates significantly. The main reason is that it doesn’t adapt to the constant learning
rate which needs to be adjusted flexibly. CFL separates the devices with gradient conflicts
to build a flesh model and utilizes multiple models to adapt to devices with different
distributions to improve comprehensive accuracy. For Cifar10 in class 1, the performances
of other algorithms are not satisfactory, and CFL uses recursive dual partition to separate
the different classes of devices and bring test accuracies to 100%. We also observed that
the pseudo-global model has a poor effect, which verifies the great differences between
classes. Although FedLA mitigates the gradient conflict caused by insufficient sampling
in a way, it is limited by the aggregation method and it’s inability to fuse gradients well
in Cifar10 (class 1). Gradient projection [33] technology solves the impact of opposing
gradients. In non-IID scenarios, FedLA has a better performance than FedAvg. It reduces
redundant aggregation and finds parallel groups of devices which are consistent with
global distribution by computing WDR and overcomes the impact of data sparsity on
a single device. Furthermore, the collected gradients could be used to correct vertical
oscillation and walk out of the steep fall. FedLAM supplemented by CDM has the best
performance in most cases, which is an exciting optimization.

15



Appl. Sci. 2022, 12, 8515

Figure 3. Mnist-MLP: Test top 1 accuracy and test loss under IID, class 1, dir 0.1. (a–c) test accuracy
curves of FedLA(M) and baselines, (d–f) corresponding loss curves under three scenarios. To evaluate
the convergence efficiency and stability.

4.2.2. WDR and Cross-Device Momentum

In order to explore the effectiveness of WDR and cross-device momentum, we added
fixed-interval aggregations and different proportions of momentum based on Mnist (class 1).

As shown in Figure 4a,c, we sampled 2, 5, 10, and 20 devices for sequential training
before aggregation. We found that sampling five devices is enough to obtain unbiased
gradients in this experiment. Oversampling will not further improve the performance of the
global model and reduces learning efficiency, or even has negative effects (knowledge for-
getting, resource waste). According to inequality 3, WD mainly comes from the difference
in the initial weights and sampling distribution. We prefer to sacrifice part of the former for
the latter in non-IID. However, the number of sampling rounds is unknown. Fortunately, it
could be observed that the growth rate of WD slowed down significantly after five rounds.
Apart from the difference caused by initial weight, sampling distribution gradually tends
to be consistent, and the second term of the inequality (6) approaches 0. This is why this
paper proposes that WDR is used to find sufficient sampling in a timely manner. It can be
used to adjust aggregated intervals dynamically, which makes the performance curve of
the global model smoother and accelerates convergence.

In Figure 4b,d, we explored the influence of proportions of historical gradients in FL.
In early training, a higher momentum will hinder the convergence of the global model, but
it can bring FL performance to a higher level in the later stage. The gradients of devices
will gradually disappear with FL training; nonetheless, the main reason is that the device
model falls into the local optimum. Whether increasing sampled devices or the proportions
of momentum, their gradient qualities are enhanced remarkably, which is undoubtedly
helpful to the promotion of the global model. Inspired by the experiment, the momentum
mechanism with dynamic adjustment deserves further exploration in the future. To sum
up, FedLA determines aggregation timing by monitoring WDR, flexibly handles complex
FL environments, and CDM mechanism improves FL performance in both IID and non-IID.
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Figure 4. WD and loss under class 1 on Mnist. (a,b) model weight divergence during training, (c,d) model
convergence performance.

5. Conclusions

This paper studies the training problem with heterogeneous data in FL. Due to sparse
data and different distributions of devices in FL, sampling only one round of devices is not
enough and creates a poor model. Therefore, this paper proposes a novel FL framework,
FedLA, which allows us to sample more devices by putting off aggregation, making
aggregation more robust. We also note that local optimization is easier to fall into the
saddle point. Thus, the cross-device momentum mechanism is added to FedLA to further
release the performance of the training model in FL. Compared with benchmark algorithms
(e.g., FedAvg, FedProx, FedDyn, and CFL), FedLAM has the best performance in most
scenarios. In the future, we plan to conduct the theoretical analysis of FedLA in detail,
and study more advanced aggregation and sampling judgment strategies. Moreover, the
dynamic scheduling strategies of learning rate and momentum are introduced to further
accelerate the convergence speed of FedLA.
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Abstract: In recent years, privacy concerns have become a serious issue for companies wishing to
protect economic models and comply with end-user expectations. In the same vein, some countries
now impose, by law, constraints on data use and protection. Such context thus encourages machine
learning to evolve from a centralized data and computation approach to decentralized approaches.
Specifically, Federated Learning (FL) has been recently developed as a solution to improve privacy,
relying on local data to train local models, which collaborate to update a global model that improves
generalization behaviors. However, by definition, no computer system is entirely safe. Security
issues, such as data poisoning and adversarial attack, can introduce bias in the model predictions.
In addition, it has recently been shown that the reconstruction of private raw data is still possible.
This paper presents a comprehensive study concerning various privacy and security issues related to
federated learning. Then, we identify the state-of-the-art approaches that aim to counteract these
problems. Findings from our study confirm that the current major security threats are poisoning,
backdoor, and Generative Adversarial Network (GAN)-based attacks, while inference-based attacks
are the most critical to the privacy of FL. Finally, we identify ongoing research directions on the
topic. This paper could be used as a reference to promote cybersecurity-related research on designing
FL-based solutions for alleviating future challenges.

Keywords: survey; federated learning; deep learning; machine learning; distributed learning; privacy;
security; blockchain; deep learning security and privacy threats

1. Introduction

Machine Learning (ML) approaches can be considered as classical methods to address
complex problems when the underlying physical model is not perfectly known. They are
also a hot topic when considering a high semantic level analysis of complex data, such as
object recognition on images and anomaly detection on time series. It is now possible to
learn complex non-linear models directly from large quantities of data and deploy them for
a variety of domains, including sensitive ones such as autonomous driving and medical
data analysis. Numerous domains indeed generate ever-increasing quantities that thus
allow for the application of ML methods. As an illustration, connected edge devices being
integrated into most domains are expected to increase their number of collected data by
more than 75% by 2025 [1], encouraged by new wireless technologies, namely 5G [2].

As a counterpart, such a successful model optimization requires an extended pro-
cessing power to process large quantities of training data to improve robustness and
generalization behaviors. As illustrated in Figure 1a, traditional machine learning ap-
proaches generally rely on centralized systems that gather both computing resources and
the entirety of the data. However, this strategy raises confidentiality issues when transfer-
ring, storing, and processing data. In addition, it implies high communication costs that
may forbid its use in a variety of sensitive application domains.

Decentralized learning is an alternative approach that aims to optimize models locally
to reduce communication costs and preserve privacy. This strategy is challenging, since
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the end-user expects at least similar performances and generalization behaviors as those
that originate from a centralized approach while dealing with smaller and potentially
biased local data collections, i.e., non-IID (Identically and Independently Distributed) data.
Then, collaborative approaches are developed to introduce communication between local
learner agents to look for a robust, general model. More specifically, the recently introduced
Federated Learning (FL) [3] has been subject to a growing interest to address complex
problems while never sharing raw data between collaborative agents, only exchanging
model parameters. As illustrated in Figure 1b,c, a variety of system infrastructures are
possible. Agents can communicate in a peer-to-peer (P2P) fashion or with a centralized
parameter server. Further, hierarchical structures are possible in order to consider different
model aggregation scales [4]. With such an approach, sensitive data are strictly kept on
the client’s device, at the edge, thus initiating privacy. In addition, communication costs
can be significantly reduced, since model parameters are significantly smaller than the raw
data. This, however, expects edge devices to be powerful enough to conduct local learning.
Nevertheless, the quantity of data is smaller than with the centralized approach, and thus
allows for cheaper hardware. In conclusion, federated learning is an attractive solution for
multiple application domains and technologies, from medical applications to the Internet
of Things, and is subject to intensive research.

Figure 1. Comparison between classical centralized ML approach and centralized or P2P FL.

Nevertheless, despite being more privacy friendly than the centralized approach,
FL is still subject to attacks that may impact the learned model’s relevance, as well as
the data integrity. A typical example is poisoning attacks [5,6], which aim to distort the
model by sending corrupted training data. This attack type is facilitated by the centralized
federated learning topology, since the parameter server cannot directly verify the data.
User data integrity can also be compromised by relying on generative adversarial networks
(GANs)-based attacks [7] to reconstruct data from local node models. Thus, despite the
improvements compared to the centralized approaches, data security and privacy with
federated learning are still burning issues that must be resolved.

The current state-of-the-art research surveys and reviews in the field provide remark-
able work from various perspectives of FL, while focusing only on categorizing existing FL
models [8], summarizing implementation details in the vertical FL approach [9] and open
issues in FL [10]. While research already exists on the FL topic, the examination of FL secu-
rity and privacy has not been sufficiently addressed in the literature. This work discusses
the privacy and security risks of FL in terms of FL formal definitions, attacks, defense
techniques, and future challenges, in an attempt to help the community and newcomers by
providing in-depth information and knowledge of FL security and privacy.

Thus, the aim of this paper is to conduct a comprehensive study that highlights open
security and privacy issues related to federated learning by answering several research
questions. Figure 2 depicts the proposed taxonomy of security and privacy studies in FL.
Following this structure, the remainder of this paper is then organized as follows. Section 2
presents the FL approach, the main infrastructure topology, and the related most common
aggregation techniques. Section 3 provides an overview of the security flaws inherent to FL
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and the defensive techniques proposed in the state of the art. Section 4 provides an outlook
on the various privacy breaches and how advisers can minimize them. Section 5 discusses
current issues and future trends. Finally, Section 6 concludes this survey paper.

Figure 2. Taxonomy of security and privacy studies in FL. We report the sections of the paper that
discuss each of the mentioned items.

2. An Overview of Federated Learning

In order to present the main security and privacy threats related to federated learning,
this section first presents the main principles of FL compared to the traditional centralized
learning approaches. Figure 1 illustrates the discussed approaches. Then, some real-world
scenarios illustrate the FL relevance. Finally, the main features, topology, and model
aggregation methods are presented.

2.1. From Centralized to Federated Learning

In a traditional centralized approach, the aim is to learn a single model f (θC) from a
large data collection built from the aggregation of data coming from a variety of sources.
Despite its impressive success, several issues must be highlighted. Indeed, when dealing
with very large data collections and complex models, server-level data and communication
costs must be reduced to efficiently distribute the data across computing devices [11].
Moreover, advanced machine learning techniques require large computing resources,
which induce costs that may not be sustainable depending on the application economic
model and may create dependencies on such computation power in the long term.

To overcome traditional machine learning weaknesses, federated learning was intro-
duced in 2016 by McMahan et al. [3] as a learning technique that allows users to collectively
reap the benefits of shared models trained from their data, without the need to centrally
store them. Federated learning aims at identifying a general model f (θFL) by aggregating
local ones f (θi) trained by a set of participating clients that keep their data, but occasionally
share their parameters. Indeed, FL introduces a new paradigm that reduces communication
costs and pushes forward data privacy approaches in several application domains [12].

2.2. Federated Learning Applications

The first large-scale demonstration of FL was Google predictive keyboard (Gboard)
on Android smartphones. The smartphone’s processing power is used to train a local
model from the typing data of the device owner. By occasionally communicating local
models to a Google central server that performs aggregation, the general word prediction
model improves and is distributed to all the users. This approach allows integration of
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both global user behaviors, and the specialization of a local model [13]. Compared to the
centralized approach, personal typing data should have been sent to the cloud and would
have led to privacy issues. Further, this use case is interesting in terms of understanding
the limits of the classic ML approach. Indeed, a smartphone keyboard has to fit the user’s
language. This results in a very personal ML model; however, to be efficient and benefit
from the richness of the language, this model should be trained at a larger scale, taking
advantage of other people making use of similar languages. However, in a privacy concern,
it is impossible to collect the user’s typing data. FL then enables taking advantage of both
the global knowledge and the specialization of a local model [13]. Similarly, healthcare
is another typical case study. The COVID-19 crisis illustrated the use of FL in predicting
the future oxygen needs of patients for the EXAM model. In [14], data collected from over
20 institutions around the world were used to train a global FL model. Although no raw
data were communicated to a central server, FL allowed for the optimization of a general
model relying on a large amount of data.

2.3. Network Topology

The studied state-of-the-art papers mainly report two typical FL communication
schemes that impact the network topology, which we summarize as follows.

2.3.1. Centralized FL

This approach is the standard one. The central server is the cornerstone of the architec-
ture. It manages clients, centralizes their local models, and updates the global model. FL
optimization is an iterative process wherein each iteration improves the global ML model.
It consists of three main steps:

• Model initialization: FL is based on an initial model generally prepared on the server
side. Initial weights can rely on a pretraining step. The model parameters are then
distributed to the participating clients and will be updated along the next steps in
accordance with clients’ feedback.

• Local model training: a selection of participating clients is defined. Each of them
receives the global model and fine-tuning parameters, which rely on their local data
for a set of training epochs. Then, the locally updated model weights are sent to the
central server to update the global model.

• Aggregation: the central server collects the participating clients’ updated models.
Then, an aggregation of their parameters yields an updated general model. This
step is critical and should integrate several factors, including client confidence and
participation frequency, in order to reduce bias.

Steps 2 and 3 constitute a single round that is repeated until a stop condition is reached.

2.3.2. Peer-to-Peer FL

In a fully decentralized approach, there is no longer a central server that acts as an
initiator, coordinator, and model aggregator. Communication with the central server is
replaced by peer-to-peer communication as shown in Figure 1c. In this type of topology,
network agents learn personalized models. Communication with other members with a
common goal is essential in order to increase the quality of their model. The gossip com-
munication protocol is one of the most widely used and efficient protocols today [15,16].

2.4. FL Aggregation Methods

The aggregation of the local models should result in an improved and more general
model. Some of the main state-of-the-art methods are presented below:

• The first proposal was the Federated Averaging Algorithm (FedAvg), introduced in [3].
Considered the default approach for centralized FL, the central server will generate the
global model by averaging all the participating client models. This approach can be
considered as gradient descent on the server side. Extensions have been proposed to
adapt efficient optimization strategies, such as Adam and Adagrad, to this context [17].
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• FedProx [18] was proposed as a generalization of the FedAvg method. It takes into
account the variable amount of work to be performed by each client. This also depends
on global data distributions across clients, local computational resources, energy, and
communication limits. It has been shown that FedProx results in better averaging
accuracy than FedAvg in heterogeneous settings.

• The Federated Matched Averaged (FedMa) method [19] aims to update the global
model via layer-wise matching and aggregation of inner model components, namely
neurons. This approach only works on neural networks due to its specificities. More-
over, it only works on simple neural networks such as Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM)-based models. This method presents
good results with heterogeneous learners and better performances than FedAvg and
FedProx within a few training iterations.

3. Security in Federated Learning

Clients participating in a federated learning model can be numerous. This opens
doors to a variety of attacks on the client, server, and communication sides. Thus, the
development of models via this technology must follow and take into account the main
concepts of information security confidentiality, integrity, and availability.

Current studies that explore vulnerabilities and provide existing defensive techniques
for security attacks of FL are very limited. Thus, we define the following research questions
on the security aspect of the FL:

• RQ1: What are the major vulnerabilities in the FL domain?
• RQ2: What security threats and attacks do FL models face?
• RQ3: What are the defensive techniques against security attacks in the FL ecosystem?

In the rest of this section, we answer each research question based on the studied
publications in the FL domain.

3.1. Vulnerabilities in the Ecosystem

A vulnerability can be defined as a weakness in a system that provides an opportunity
for curious/malicious attackers to gain unauthorized access [20]. Scanning all sources of
vulnerabilities and tightening defenses are thus mandatory steps needed to build up a
federated learning-based system while ensuring the security and privacy of the data. Based
on the studied publications, we answer the RQ1 question below. Vulnerability sources are
actually similar to those of distributed applications. We categorize them as follows:

• Compromised communication channels: an insecure communication channel is an open
vulnerability in the FL process that could be addressed using a cryptography public
key, which keeps message content secure and safe throughout the communication.

• A large group of FL clients: The number of clients participating in the model is large,
so the general model is likely to receive models from Byzantine nodes. This type of
safety threat is called Data Poisoning [21].

• A single point of failure: The central parameter server, which is at the heart of the
network, must be robust and secure to prevent intrusions. Then, its vulnerabilities
must be checked to ensure that they are not exploited. Furthermore, the security
updates and all the security recommendations must be followed to limit the risk of
intrusions [22].

3.2. Common Attacks in FL

A cyber-attack consists of any action aiming at undermining a computer element:
network, software, or data with a financial, political, or security purpose [23]. The number
of attacks against a deep learning model is high, such that we focus on the three main
ones in terms of impact on the system, frequency, and relevance concerning federated
learning. Interested readers can find more details in [24]. These attacks are derivations of
the so-called Poisoning Attacks we mentioned previously. Next, we provide the answer to
the RQ2 question by introducing some specific and challenging approaches.
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3.2.1. Poisoning Attacks

A Poisoning Attack is one of the most common techniques used in the FL. This
type of attack can be of a different nature, but the principle remains essentially the same.
A malicious client will send rigged data to affect the global model [22,25]. Such an attack
can be conducted by two means:

• Data poisoning: The aim is to incorporate malicious data points to create bias in the
global model. To be undetectable, attackers slightly modify the model parameters
they send but repeat this operation over several training iterations or rounds. This
makes it difficult to determine whether a local parameter set is poisoned or not. With
several model updates of such a corrupted client, the global model becomes biased
enough to degrade its task performance [26].

• Model poisoning: This type of poisoning is more direct; it seeks to manipulate the
global model without going through the insertion of malicious data points. It is
generally permitted thanks to an intrusion at the server level.

3.2.2. Generative Adversarial Network (GAN) Based Attacks

Poisoning attacks have evolved and new methodologies for creating poisoned models
have been proposed. One of them is called PoisonGAN [27]. This attack uses a generative
adversarial network (GAN) to generate realistic datasets that are controlled at will by the
attacker. A GAN is optimized on a given client side, relying on model updates with the
aim of manipulating the parameters of the global model, as shown in Figure 3. Attacks
using GANs have several advantages. Indeed the attacker does not need to have a dataset
before making the attack [6]. Such kind of attack is actually facilitated by the federated
learning infrastructure since the attacker has access to the local model, which would be
more difficult with centralized learning.

Figure 3. Overview of GAN-based poisoning attack in FL.

Finally, such GAN-based attacks are the most difficult to detect since the generated
data are realistic. Its application can yield disastrous consequences for the model’s accuracy
by introducing strong and controlled bias.

3.2.3. Backdoor Attacks

Bagdasaryan et al. [22] show that it is possible to create a backdoor by poisoning
the models. This type of attack does not aim to reduce the global model accuracy, but
introduces a very specific bias focused on certain labels. A classic example of a backdoor in
FL is the image detection models that we find in [27], where the image classifier is distorted
to assign a specific label chosen by the attacker.

3.3. Techniques for Defending against Attacks in FL

As a general rule, good security practices for information systems and networks
such as encryption of communications must be put in place. No computer system is
impenetrable; however, protecting against the various known methods can greatly reduce
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the number of attacks and their impact. There are two main defense approaches: (i) the
proactive one, which is upstream of the attack, and which looks for ways to detect and
blocking the latter, and (ii) the reactive one, which is set up when the attack has already
taken place and aims to mitigate the consequences and make the patch. With the emergence
of federated learning and its specific attacks, dedicated protections are proposed. To answer
the RQ3 question, strategies against the most common vulnerabilities and attacks presented
in Sections 3.1 and 3.2) are explained below.

3.3.1. Defense against Poisoning Attacks

The proposed methods are mainly reactive ones which continuously monitor client
behaviors. Rodríguez-Barroso et al. [28] have proposed a method to screen out malicious
clients. This method works by using artificial intelligence that detects model changes
or nonconforming data distributions. Another method following the same principle but
applied to an attack by several malicious users is proposed in [29]. This is called sniper.
Another defense against poisoning attacks is proposed in [21]. This technique consists of
checking the performance of the global model at each new model update.

3.3.2. Defense against GAN-Based Attacks

Those specific poisoning attacks require dedicated approaches, such as advanced
Byzantine actor detection algorithms [30]. Additionally, defensive techniques are enabled
via heterogeneous federated learning via model distillation, which is detailed in [31].
However, defense techniques against this type of attack are still poorly developed and
documented.

3.3.3. Defense against Backdoor Attacks

The main approach consists of minimizing the size of the model to reduce its com-
plexity and capacity while potentially improving its accuracy. This technique is called
pruning [32]. Since the resulting model is less expressive, backdoor attacks are more
complex to carry out. Such a method also introduces some beneficial side effects. The
reduced number of parameters indeed reduces communication costs and reduces message
interception probability.

One can highlight the fact that the absence of a central server avoids the risk of an
attack at the heart of the system. Thus, peer-to-peer federated learning infrastructure
could be an interesting solution. However, this would reduce global monitoring capacities
and delegate a fraction of this task to each client. Peer-to-peer approaches then introduce
additional constraints on the potentially limited capacity edge nodes, thus limiting its
application.

3.3.4. FL Security through the Blockchain Technology

As defined by [33], blockchain technology can be represented as a distributed database—a
ledger that can be consulted by everyone and everything. Each new element in the database is
verified and forgery-proofed [34].

Technologies such as blockchain can be used to secure federated learning and introduce
device and model trust. This has been proven in [35,36]. Blockchain technology would act
at two levels. The first would be to encourage users to participate in the development of the
global model by rewarding contributors for their involvement. The second would be to save
the evolution of the parameters in the blockchain. This can then increase user confidence
and reduce the risk of poisoning attacks. One of the most cited models following this
approach is called blockFL [36]. It proposes a way to trust devices in which a blockchain
network replaces the central server of a classical centralized FL infrastructure and conducts
local model validation, but model aggregation is performed on the client side. In further
detail, each client sends its updates to an associated miner in the network. Miners are
in charge of exchanging and verifying all the model updates. For a given operation, a
miner runs a Proof of Work (PoW), which aims to generate a new block where the model
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updates are stored. Finally, the generated block stores the aggregated local model updates
that can be downloaded by the other members of the network. Then, each client can
compute the global model locally. This strategy makes poisoning attacks more difficult by
certifying model updates. As a counterpart, communication and client computation costs
are increased. Additionally, in order to keep attackers from tampering with local models,
Kalapaaking et al. [37] proposed a blockchain-based Federated Learning framework with
an Intel Software Guard Extension (SGX)-based Trusted Execution Environment to securely
aggregate local models in Industrial Internet of Things. Indeed, each blockchain node could
(i) host an SGX-enabled processor to securely perform the FL-based aggregation tasks,
(ii) verify the authenticity of the aggregated model, and (iii) add it to the distributed ledger
for tamper-proof storage and integrity verification.

4. Privacy in Federated Learning

Some of the most frequent concerns about traditional ML include privacy weaknesses.
In the industrial area, companies invest to protect their intellectual property. However,
traditional ML and, more specifically, deep learning model optimization often go against
those privacy requirements. It is indeed necessary to store potentially large quantities of
data close to the large processing power to train, validate, and test models. Therefore, such
data collections, when sensitive, must be communicated and centralized at a high-security
level to prevent any data leakage or attacks. However, threats remain. The traditional ML
approach thus has topology threats, which require alternatives to be found. As an answer
to these issues, federated learning promotes a new topology to limit the data transfers and,
consequently, the data footprint. However, some privacy issues are already identified and
must be combated in this new setting.

Current studies exploring privacy attacks in FL and providing existing privacy-
preserving defense techniques are very limited. Thus, we define the following research
questions on the privacy aspect of the FL:

• RQ4: What are the privacy threats and attacks in the FL ecosystem?
• RQ5: What are the privacy-preserving techniques that tackle each type of the identified

attacks in RQ1’?
• RQ6: What new technology could enhance the general privacy-preserving feature

of FL?

In the rest of this section, we answer each research question based on the studied
publications in the FL domain.

4.1. Privacy Attacks in FL

Federated learning [3] introduces the assumption that it is safer for user data privacy
thanks to its topology. Each client shares its model updates instead of its dataset, preventing
user data interception while communicating with the server or peer [38]. However, several
studies have shone light on many attacks that still compromise data privacy. This section
provides the answer to the RQ4 question by presenting several popular attacks, allowing
user data to be inferred or the local model to be reconstructed.

4.1.1. Unintentional Data Leakage and Model Reconstruction Attacks

Despite the non-communication of data, Nasr et al. [39] have shown that data could
be inferred by considering only model weights. Indeed, an honest-but-curious adversary
eavesdrops communications of clients and the server, allowing for the reconstruction of the
client model. Ref. [40] defines an honest-but-curious client as a client, which aims to store
and process data on its own. Unlike other attacks such as data poisoning, the client may
not interfere with the collaborative learning algorithm.

Several studies demonstrated the possibility of reconstructing local data collections
by inverting the model gradients sent by the clients to the server [40,41]. Nonetheless,
this attack has some limitations. It performs well on models that have been trained on
small batches of data or data points with poor diversity. It is not suitable when multiple
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stochastic gradient updates have been performed locally before communicating with the
server. Other recent studies [42] go further by reconstructing the local client model without
interfering in the training process. This attack, called the model reconstruction attack, copes
with the previous limits, allowing for high-quality local model reconstruction.

4.1.2. Malicious Server

In a centralized federated learning setting, the central server is one of the most critical
parts of the architecture. If the server is malicious or is accessed by unauthorized persons,
then all local models sent by clients can be intercepted and studied in order to reconstruct a
part of the original client data. The malicious server can then analyze the model shared by
the clients in a discontinuous way (passive mode) or follow the chronological evolution of
the model shared by the victim (active mode) [43].

4.1.3. GAN-Based Inference Attack

This kind of attack has already been experienced in [40,44–46] and may be passive or
active. The passive attack aims to analyze the user inputs at the server level, and the active
one works on sending the global update to only an isolated client.

Experiments in [47,48] demonstrated that with only some of the computed gradients of
a neural network, training data could be inferred. With only 3.89% of the gradients, Aono et
al. [47] have been able to reconstruct an image close enough to the original one to infer the
information. Further, Zhao et al. [48] were able to reconstruct nearly 100% of the original
data by inference. Their Deep Leaked Gradients algorithm was the first algorithm capable
of rebuilding a pixel-wise image and token-wise matching texts. These works prove that is
it possible to infer data from only leaked gradients using an honest-but-curious client with
only a few iterations or a small number of gradients.

4.1.4. Inferring Membership Attacks

The purpose of the Inferring Membership is to determine if data have already been seen
by the model. This attack can be carried out in two ways: actively or passively. During a
passive attack, the user will only observe the updates of the global model [49]. For the active
attack, the adversary participates in the creation of the model, which allows him to recover
more information. In this type of attack, the goal is to follow the evolution and the behavior
of the global model. This type of attack exploits the stochastic gradient descent (SGD)
algorithm to extract information about training sets. According to [39], during training, the
SGD aims to make the gradient of the loss leaning zero for information extraction.

4.2. Privacy-Preserving Defense Strategies

To mitigate the aforementioned attacks and answer the RQ5 question, the state of
the art already reports some defensive strategies, which are summarized in the following
subsections.

4.2.1. Gradient Noise Addition and Compression

Despite the performance of the Deep Leakage from Gradients (DLG) algorithm to
infer data from gradients, Zhu et al. [7] demonstrated that in FL, and more generally in
ML, the addition of noise to the gradients makes the inference more difficult. The authors
show that from a variance larger than 10−2, the accuracy drops significantly and leads to
an inability to infer the original data. Another solution proposed in [50] is the compression
of the model gradients. This approach sparsifies gradients, which impacts the sensitivity of
algorithms such as DLG. The authors of [50] show that the gradients can be compressed
by 300× before affecting the accuracy of the model. Conversely, the tolerance of the DLG
algorithm is around 20% of sparsity, and the compression makes it ineffective.
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4.2.2. Enlargement of Batches, High-Resolution Data

Despite the good performances of the DLG algorithm, the technique is not yet general-
izable enough to present a significant threat to private data. One of the limits of the DLG
algorithm is related to large batch size and image resolution. In their study, Zhu et al. [7]
used a batch size of up to eight images and an image resolution of up to 64 × 64, which
illustrates that some FL configurations rely on small datasets. In another larger-scale setting
still addressable by FL, more data and processing power would allow for large batch train-
ing and/or high-resolution data, such as the data used for classical centralized machine
learning. In such a context, DLG would be out of its operating conditions and would not
allow for private data inference.

4.2.3. Defense against a Malicious Server

Due to privacy concerns and critical communication bottlenecks, it can become im-
practical to send the FL updated models to a centralized server. Thus, a recent study [51]
proposed an optimized solution for user assignment and resource allocation over hierar-
chical FL architecture for IoT heterogeneous systems. According to the study’s results, the
proposed approach could significantly accelerate FL training and reduce communication
overhead by providing 75–85% reduction in the communication rounds between edge
nodes and the centralized server, for the same model accuracy.

4.2.4. Secure Multi-Party Computation (SMC)

Initially, the secure multi-party computation aims to jointly compute a function on
different parties over their personal data. One of the benefits of this approach is the
possibility of keeping the inputs private thanks to cryptography. According to [47], SMC is
currently used in FL but in a different version, which only needs to encrypt the parameters
instead of the large volume of data inputs. Although this approach prevents leaks from a
malicious central server, the encryption is expensive to use and may have an impact on a
larger scale. Thus, the main cost of this solution is efficiency loss due to encryption.

4.2.5. Differential Privacy

Differential Privacy (DP) is a technique widely used to preserve privacy in industry
and academic domains. The main concept of DP is to preserve privacy by adding noise
to sensitive personal attributes. In FL, DP is introduced to add noise to clients’ uploaded
parameters in order to avoid inverse data retrievals. For instance, the DPFedAvgGAN
framework [52] uses DP to make GAN-based attacks inefficient in training data inference
of other users for FL-specific environments. Additionally, Ghazi et al. [53] improve privacy
guarantees of the FL model by combining the shuffling technique with DP and masking
user data with an invisibility cloak algorithm. However, such solutions bring uncertainty
into the uploaded parameters and may harm the training performance.

4.2.6. Concealing Iterations

Xu et al. [54] have suggested iterations concealing as a method of avoiding privacy
threats. In typical FL, the client model iterations are visible to multiple actors of the
system, such as the central server and the clients chosen to participate in each round.
Thus, a malicious server may be able to infer data through iterations thanks to GAN-based
attacks. By concealing iterations, each client should make the learning phase inside a
Trusted Execution Environment (TEE). A TEE provides the ability to run code on a remote
trusty machine, regardless of the trust placed in the administrator. Indeed, a TEE limits
the abilities of any party, including the administrator, to interact with the machine. This
specificity results in three properties that make TEE trusty:

• Confidentiality: The running code and its execution state are not shared outside of the
machine and cannot be accessed.

• Integrity: Because of access limitations, the running code cannot be poisoned.
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• Attestation: The running virtual machine can prove to an external entity what code is
executing and the inputs that were provided.

Thus, thanks to TEE, the model iterations can be concealed, and the model parameters
may be encrypted inside the TEE before being shared. Nonetheless, this approach might
not be used across clients, especially with devices such as smartphones. In fact, TEE may
not be powerful enough for training and may involve too many computational and memory
costs. These weaknesses may have a significant impact on devices’ autonomy, performance,
and user experience. For these reasons, in its current state, TEE cannot yet be used on
limited-capacity edge devices.

4.2.7. Verification Framework

VerifyNet [54] is a FL framework that provides the possibility for clients to verify the
central server results to ensure its reliability. To preserve privacy, it provides a double
masking protocol, which makes it difficult for attackers to infer training data. Moreover,
VerifyNet is robust enough to handle clients’ dropouts due to the user’s battery or hardware
issues. However, this framework imposes more communication with the clients, which
involves a decrease in performance and additional costs.

4.2.8. FL Privacy through the Blockchain Technology

As discussed in Section 3.3.4, and to provide an answer to the RQ6 question, we
argue that blockchain technology brings a new FL network topology. Above the security
benefits, it can also provide privacy benefits. Indeed, the decentralized network allows each
participant to access all transactions made on the network. This transparency makes the
network more reliable and increases trust in the learning process. Thus, instead of sharing
gradients to a centralized server, the model parameters and clients’ updates are stored on
the blockchain. In order to introduce privacy in blockchain, the authors of [55] presented a
specific design adapted to IoT that relies on differential privacy. Experiments showed that
robustness against GAN and curious server-based attacks is increased while maintaining
significant task performance levels. Moreover, the blockchain allows for client updates
audits in order to maintain model reliability and cope with malicious participants. Thus,
blockchain-based models such as BlockFL [36] provide a layer of security that guarantees
the model parameters’ integrity. Nonetheless, such an approach does not prevent privacy
attacks, and it must be enhanced with privacy-oriented methods such as differential privacy.

5. Open Issues and Future Trends

Federated learning is a recent and continuously evolving approach in machine learning
that can already benefit many economic, medical, and sociological domains. Industrial
sectors and, more specifically, the so-called Industry 4.0 that introduces the data processing
paradigm to improve the manufacturing process can push the implications of federated
learning [56] further by integrating contextual factors, such as decentralized production
models. FL thus appears as an interesting general solution that effectively associates global
and local machine learning with privacy by design. However, despite overcoming some
classical machine learning issues, some remaining ones and new challenges must be faced
in this context. This paper therefore provides an overview of recent trends in the specific
problems related to privacy and security. Nevertheless, as reported in recent publications
such as [10], other critical challenges are related to system architecture and learning bias.
As an opening discussion, we thus elaborate on the following subsections, connections
between security, privacy, and bias, and identify research directions.

5.1. Security, Privacy, and Bias Mitigation Dependency Management for Trustfully and Fair
Federated Learning

Machine learning model bias is a general problem encountered by machine learning
methods. It is critical, since it actually impacts model decisions and can yield discrimination
of data populations that have a direct impact on our life, including sexism and racism. More
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specifically, learning bias can in fact be aggravated by Federated Learning. As reported
in recent studies, such as [10], bias is indeed mostly related to the non-IID nature of the
data distributed across federated participants. Among other bias sources, participants’
involvement frequency in the learning process is a significant factor. Bias mitigation
techniques have long been proposed in classical machine learning [57], but they must be
adapted to the specific context of Federated Learning [58]. Indeed, we would like to point
out in this discussion that bias mitigation, privacy, and security, in the context of federated
learning, are highly associated and thus should not be considered separately. For instance,
the search for bias in the data, as well as in the model predictions, generally relies on global
knowledge that conflicts with client data privacy. Additionally, Poisoning Attacks typically
introduce bias, such that their detection allows for security flaws to be counterfeit. Those
connections allow us to identify some promising research directions that should, in our
opinion, increase federated learning trust and fairness.

5.2. Research Directions

Recent contributions such as [59] propose innovative approaches that consist of de-
tecting communities of clients that share similar behaviors. The aim is next to build up a
general model that integrates all those populations in an equal way and thus reduces bias.
Such an approach could also help detect specific outliers such as poisoning sources, thus
increasing security. Such a direction is indeed promising; however, the identification of
those communities may lead to new issues related to user privacy. In addition, the seman-
tics and ethics behind the identified clusters should also be clearly reported. Addressing
those challenges is, therefore, of real interest.

A complementary research direction relates to partial federated learning recently
introduced in [60]. Such an approach considers the fact that clients may need to share only
a subset of their knowledge and still improve each other. As for real applications related to
healthcare, autonomous driving, and home automation, clients may have different sensors
but try to solve the same problem or try to solve different tasks with the same sensors. A
given model may thus be considered as a set of cascading functions, some being local and
private while others are shared. Such an approach has many potential advantages. It better
corresponds to real-life applications and could also reduce global costs while improving
generalization behaviors for a variety of complementary problems. In addition, it provides
means to increase security and privacy by sharing only a fraction of the knowledge. We
believe that this research direction is promising, and suggest associating this with bias
detection and mitigation research.

Finally, new models of artificial intelligence approaches that specialize in blockchain
technology seem relevant, sharing similar ideas. For instance, Swarm Learning (SL) [61]
takes the main principle of FL, where the data are not shared with a central server. However,
the computation of the global model is deferred to the customers. In each training cycle,
the operation falls to a node that the others have elected. SL implementations have been
applied to the medical field [61,62]. In such a sensitive context, it has been shown that SL
can push the BlockFL approach further by using smart contracts to protect the model from
misleading participants and keep data and learning safe [63]. Nevertheless, some security
issues related to computation and leader node selection still remain, but show interest in
blockchain-based methods. This direction, which maintains connections with federated
learning while providing an innovative communication paradigm, is therefore of interest
for further research.

6. Conclusions

Despite the recent improvements and the growing interest in the federated learning
field, it is still in its infancy. Recent studies demonstrated that federated learning is a
serious alternative to traditional machine learning methods. While existing surveys have
already studied FL from various perspectives, sufficient progress has not been made
concerning understanding FL for its security and privacy risks. This paper intends to fill
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this gap by presenting a comprehensive study of privacy and security issues related to
federated learning. Thus, we introduced an overview of the FL applications, topology,
and aggregation methods. Then, we discussed the existing FL-based studies in terms of
security and privacy defensive techniques that aim to counteract FL vulnerabilities. Finally,
FL open issues and future trends are identified to be addressed in further studies. Based on
the findings from the study, we conclude that FL fixed several privacy and security issues
of classical ML. Thus, it opens up new possibilities, especially in areas in which data are
sensitive, such as the medical area or personal user data. Already used by some companies,
such as Google, its uses are bound to develop and become more democratic. However, FL
is confronted with privacy and security issues inherited from the distributed architecture
and the traditional ML. As a consequence, several research works try to go further and
integrate the FL principles into other architectures, such as blockchain architectures, to
skirt threats.
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Abstract: Federated Learning is a widely adopted method for training neural networks over dis-
tributed data. One main limitation is the performance degradation that occurs when data are
heterogeneously distributed. While many studies have attempted to address this problem, a more
recent understanding of neural networks provides insight to an alternative approach. In this study,
we show that only certain important layers in a neural network require regularization for effective
training. We additionally verify that Centered Kernel Alignment (CKA) most accurately calculates
similarities between layers of neural networks trained on different data. By applying CKA-based
regularization to important layers during training, we significantly improved performances in hetero-
geneous settings. We present FedCKA, a simple framework that outperforms previous state-of-the-art
methods on various deep learning tasks while also improving efficiency and scalability.

Keywords: federated learning; heterogeneity; non-IID; regularization; layer-wise similarity

1. Introduction

The success of deep learning in a plethora of fields has led to a countless number of
research studies conducted to leverage its strengths [1]. One main outcome resulting from
this success is the mass collection of data [2]. As the collection of data increases at a rate
much faster than that of the computing performance and storage capacity of consumer
products, it is becoming progressively difficult to deploy trained state-of-the-art models
within a reasonable budget. In light of this, Federated Learning [3] has been introduced as
a method to train a neural network with massively distributed data. The most widely used
and accepted approach for the training and aggregation process is FedAvg [3]. FedAvg
typically progresses with the repetition of four steps, as shown in Figure 1. (1) A centralized
or de-centralized server broadcasts a model (the global model) to each of its clients. (2) Each
client trains its copy of the model (the local model) with its local data. (3) Clients upload
their trained model to the server. (4) The server aggregates the trained models into a single
model and prepares it to be broadcast in the next round. These steps are repeated until
convergence or other criteria are met.

Federated learning is appealing for many reasons, such as negating the cost of collect-
ing data into a centralized location and effective parallelization across computing units [4].
Thus, it has been applied to a wide range of research studies, including a distributed learn-
ing framework on vehicular networks [5], IoT devices [6], and even as a privacy-preserving
method for medical records [7]. However, one major issue with the application of Federated
Learning is the performance degradation that occurs with heterogeneous data. This refers
to settings in which data are not independent and identically distributed (non-IID) across
clients. The drop in performance is observed to be caused by a disagreement in local op-
tima. That is, because different clients train its copy of the neural network according to its
individual local data, the resulting average can stray from the true optimum. Unfortunately,
it is realistic to expect non-IID data in many real-world applications [8,9]. While many

Appl. Sci. 2022, 12, 9943. https://doi.org/10.3390/app12199943 https://www.mdpi.com/journal/applsci
35



Appl. Sci. 2022, 12, 9943

studies have attempted to address this problem by regularizing the entire model during the
training process, we argue that a more recent understanding of neural networks suggests
regularizing every layer may limit performance.

In this study, we present FedCKA to address these limitations. First, we show that
regularizing the first two naturally similar layers is most important for improving per-
formance in non-IID settings. Previous studies had regularized each individual layers.
Not only is this ineffective for training, it also limits scalability as the number of layers in
a model increases. By regularizing only these important layers, performance improves
beyond previous studies. Efficiency and scalability also improved, as we do not need
to calculate regularization terms for every layer. Second, we show that Centered Kernel
Alignment (CKA) is most suitable when comparing the representational similarity between
layers of neural networks. Previous studies added a regularization term by comparing
the representation of neural networks with the l2-distance (FedProx) or cosine similarity
(MOON). By using CKA, we improve performances, as representations between important
layers can accurately be regularized regardless of dimension or rank [10]; hence, the name
FedCKA. Our contributions are summarized as follows:

• We improve performances in heterogeneous settings. By building on the most up-to-
date understanding of neural networks, we apply layer-wise regularization to only
important layers.

• We improve the efficiency and scalability of regularization. By regularizing only
important layers, we exclusively show training times that are comparable to FedAvg.

Figure 1. The typical steps of Federated Learning (FedAvg).

2. Related Works

Layers in Neural Networks

Understanding the function of layers in a neural network is an under-researched field
of deep learning. It is, however, an important prerequisite for the application of layer-wise
regularization. We build our study based on findings of two relevant papers.

The first study [11] showed that there are certain ’critical’ layers that define a model’s
performance. In particular, when trained layers were re-initialized back to their original
weights, ‘critical’ layers heavily decreased performance, while ‘robust’ layers had minimal
impact. This study drew several relevant conclusions. First, the very first layer of neural
networks is the most sensitive to re-initialization. Second, robustness is not correlated
with the l2-norm or l∞-norm between initial weights and trained weights. Third, while
‘robust’ layers did not affect performance when changed to their initial weights, most layers
heavily decreased performance when changed to non-initial random weights. Considering
these conclusions, we understand that certain layers are not important in defining per-
formance. Regularizing these non-important layers would be ineffective and may even
hurt performance.

The second study [10] introduced Centered Kernel Alignment (CKA) as a metric for
measuring the similarity between layers of neural networks. In particular, the study showed
that metrics that calculate the similarity between representations of neural networks should
be invariant to orthogonal transformations and isotropic scaling while being invertible to
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linear transformations. This study drew one very relevant conclusion. For neural networks
trained on different datasets, early layers, but not late layers, learn similar representations.
Considering this conclusion, if we were to properly regularize neural networks trained on
different datasets, we should focus on layers that are naturally similar and not on those
that are naturally different.

Studies that improve performances on non-IID data generally fall into two categories.
The first focuses on regularizing or modifying the client training process (step 2). The second
focuses on modifying the aggregation process (step 4). Some studies employ knowledge
distillation techniques [12,13], while others use data sharing [14]. Other works such as
FedMA [15] aggregates each layer separately, starting with the layer closest to the input.
After a single layer is aggregated, it is frozen, and each client trains all subsequent layers.
This process is repeated until all layers are individually aggregated. FedBN [16] aggregates
all layers except for batch normalization layers, which are locally stored to reduce local
data bias. While these approaches are significant and relevant to our work, they focus more
on the aggregation process. Thus, we focus on works that regularize local training as it is
more closely related. Namely, we focus on FedProx [17], SCAFFOLD [18], and MOON [19],
all of which add a regularization term to the default FedAvg [3] training process.

FedAvg was the first study to introduce Federated Learning. Each client trains a model
using a gradient descent loss function, and the server averages the trained model based
on the number of data samples that each client holds. However, due to the performance
degradation in non-IID settings, many studies added a regularization term to the default
FedAvg training process. The objective of these methods is to decrease the disagreement in
local optima by limiting local updates that stray too far from the global model. FedProx
adds a proximal regularization term that calculates the l2-distance between the local and
global model. SCAFFOLD adds a control variate regularization term that induces variance
reductions on local updates based on the updates of other clients. Most recent and most
similar to our work is MOON. MOON adds a contrastive regularization term that calculates
the cosine similarity between the MLP projections of the local and global model. The study
takes inspiration from contrastive learning, particularly SimCLR [20]. The intuition is that
the global model is less biased than local models; thus, local updates should be more similar
to the global model than past local models. One difference to note is that while contrastive
learning trains a model using the projections of one model on many different images (i.e.,
one model, different data), MOON regularizes a model using the projections of different
models on the same images (i.e., three models, same data).

Overall, these studies add a regularization term by comparing all layers of the neural
network. However, we argue that only important layers should be regularized. Late layers
are naturally dissimilar when trained on different datasets. Regularizing a model based on
these naturally dissimilar late layers would be ineffective. Rather, it may be beneficial to
focus only on the naturally similar early layers of the model.

3. FedCKA

3.1. Regularizing Naturally Similar Layers

FedCKA is designed on the principle that naturally similar, but not naturally dissimilar,
layers should be regularized. This is based on the premise that early layers, but not late
layers, develop similar representations when trained on different datasets [10]. We verify
this in a Federated Learning environment. Using a small seven-layer convolutional neural
network and the ResNet-50 model [21], we trained 10 clients for 20 communications rounds
on independently and identically distributed (IID) subsets of the CIFAR-10 [22] dataset.
After training, we viewed the similarity between the layers of local models, calculated by
the Centered Kernel Alignment [10] on the CIFAR-10 test set.

3.2. Federated Learning with Non-IID Data

Figure 2 shows the similarity of layers between local models after training. We report
all layers for the simple CNN. For the ResNet-50 model, we report the accuracy of the initial
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convolution layer, each of the four blocks of the ResNet, the two layers in the projector, and
the output layer. We verify that early layers, but not late layers, develop similar representa-
tions in the ideal Federated Learning setting, where the distribution of data across clients
are IID. For convolutional neural networks without residual blocks, the first two naturally
similar layers are the two layers closest to the input. For ResNets, it is the initial convo-
lutional layer and the first post-residual block. As also mentioned in Kornblith et al. [10],
post-residual layers, but not layers within residuals, develop similar representations.

Figure 2. CKA similarity between clients at the end of training (refer to Experimental Setup for more
information on training).

The objective of regularization in Federated Learning is to penalize local updates that
stray from the global model. Since late layers are naturally dissimilar in an IID Federated
Learning setting, all settings, including sub-ideal non-IID settings, should emulate the
representational similarity of the ideal IID setting—achieved by regularizing only naturally
similar layers. Furthermore, regularizing the first two naturally similar layers is unique
from previous studies, which had regularized local updates based on all layers. This allows
FedCKA to be much more scalable than other methods. The computational overhead for
previous studies increases rapidly in proportion to the number of parameters, because all
layers are regularized. FedCKA keeps the overhead nearly constant, as only two layers
close to the input are regularized.

3.3. Measuring Layer-Wise Similarity

FedCKA is designed to regularize dissimilar updates in layers that should naturally
be similar. However, there is currently no standard for measuring the similarity of layers
between neural networks. While there are classical methods of applying univariate or
multivariate analysis for comparing matrices, these methods are not suitable for comparing
the similarity of layers and representations of different neural networks [10]. As for norms,
Zhang et al. [11] concluded that a layer’s robustness to re-initialization is not correlated
with the l2-norm or l∞-norm. This suggests that using these norms to regularize dissimilar
updates, as in previous works, may be inaccurate.

Kornblith et al. [10] concluded that similarity metrics for comparing the representa-
tion of different neural networks should be invariant to orthogonal transformations and
isotropic scaling, while they are invertible to linear transformation. The study introduced
centered kernel alignments (CKAa) and showed that the metric is most consistent in mea-
suring the similarity between representation of neural networks. Thus, FedCKA regularizes
local updates using the CKA metric as a similarity measure.

38



Appl. Sci. 2022, 12, 9943

3.4. Modifications to FedAvg

FedCKA adds a regularization term to the local training process of the default FedAvg
algorithm, keeping the entire framework simple. Algorithm 1 and Figure 3 shows the
FedCKA framework in algorithm and figure form, respectively. More formally, we add
�cka as a regularization term to the FedAvg training algorithm. The local loss function is as
shown in Equation (1).

� = �sup(wt
li ; Di) + μ�cka(wt

li ; wt
g; wt−1

li
; Di) (1)

Here, �sup is the cross-entropy loss, μ is a hyper-parameter to control the strength of the
regularization term, �cka, in proportion to �sup. �cka is shown in more detail in Equation (2).
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Algorithm 1 FedCKA
Input: number of communication rounds R, number of clients C, number of local epochs E,
loss weighting variable μ, learning rate η
Output: The trained model w

1: Initialize w0
g

2: for each round r ∈ [0, R − 1] do
3: for each client i ∈ [0, C] do
4: wt

li
← LocalUpdate(wt

g)
5: end for
6: Wt

l ← [wt
l0

, wt
l1

, ... , wt
lC−1

]

7: wt
g ← WeightedAvg(Wt

l )
8: end for
9: return wt

g

10: LocalUpdate(wt
g):

11: wt
li
← wt

g
12: for each epoch e ∈ [0, E − 1] do
13: for each batch b ∈ Di do
14: �sup ← CrossEntropyLoss(wt

li
; b)

15: �cka ← CKALoss(wt
li
; wt−1

li
; wt

li
; b)

16: � ← �sup + μ�cka
17: wt

li
← wt

li
− η∇�

18: end for
19: end for
20: return solution

21: WeightedAvg(Wt
l ):

22: Initialize wt
g

23: for each client i ∈ [0, C] do

24: wt
g +=

|Di|
|D| Wt

li
25: end for
26: return wt

g

39



Appl. Sci. 2022, 12, 9943

Figure 3. Training process of FedCKA

The formula of �cka is a slight modification to the contrastive loss that is used in
SimCLR [20]. There are four main differences. First, SimCLR uses the representations
of one model on different samples in a batch to calculate contrastive loss. FedCKA uses
the representation of three models on the same samples in a batch to calculate �cka. at

li
,

at−1
li

, and at
g are the representations of client i’s current local model, client i’s previous

round local model, and the current global model, respectively. Second, SimCLR uses the
temperature parameter τ to increase performance on difficult samples. FedCKA excludes
τ, as it was not seen to help performance. Third, SimCLR uses cosine similarity to measure
the similarity between the representations of difference datasets. FedCKA uses CKA as
its measure of similarity. Fourth, SimCLR calculates contrastive loss once per batch, using
the representations of the projection head. Here, M represents the number of layers being
regularized . FedCKA use calculates �cka M times per batch, using the representations
of the first M naturally similar layers, indexed by n, and averages the loss based on the
number of layers to regularize. M is set to two by default unless otherwise stated.

As per Kornblith et al. [10], CKA is shown in Equation (3). Here, the ith eigenvalue of
XXT is λi

X. While Kornblith et al. [10] also presented a method to use kernels with CKA,
we use the linear variant, as it is more computationally efficient, while having minimal
impact on accuracy.
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4. Experimental Results and Discussion

4.1. Experiment Setup

We compare FedCKA with the current state-of-the-art method, MOON [19], as well as
FedAvg [3], FedProx [17], and SCAFFOLD [18]. We purposefully use a similar experimental
setup to MOON, both because it is the most recent study and also reports the highest
performance. In particular, CIFAR-10, CIFAR-100 [22], and Tiny ImageNet [23] datasets are
used to test the performance of all methods.
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For CIFAR-10, we use a small convolutional neural network. Two 5 × 5 convolutional
layers comprise the base encoder, with 16 and 32 channels and two 2 × 2 max-pooling
layers following each convolutional layer. A projection head of four fully connected layers
follow the encoder, with 120, 84, 84, and 256 neurons. The final layer is the output layer
with the number of classes. Although FedCKA and other studies can perform without this
projection head, we include it because MOON shows a high discrepancy in performance
without it. For CIFAR-100 and Tiny ImageNet, we use ResNet-50 [21]. We also add the
projection head before the output layer, as per MOON.

We use the cross-entropy loss and SGD as our optimizer with a learning rate of 0.1,
momentum of 0.9, and weight decay of 0.00001. Local epochs are set to 10. These are
also the parameters used in MOON. Some small changes we made were with the batch
size and communication rounds. We use a constant 128 for the batch size and trained for
100 communication rounds on CIFAR-10, 40 communication rounds on CIFAR-100, and
20 communication rounds on Tiny ImageNet. We used a lower number of communication
rounds for the latter two datasets, because the ResNet-50 model overfit quite quickly.

As with many previous studies, we use the Dirichlet distribution to simulate hetero-
geneous settings [9,19,24]. The α parameter controls the strength of heterogeneity, with
α = 0 being the most heterogeneous, and α = ∞ being non-heterogeneous. We report
results for α ∈ [5.0, 1.0, 0.1], similarly to MOON. Figure 4 shows the distribution of data
across clients on the CIFAR-10 dataset with different α. Figure 4A shows α := 5.0, Figure 4B
shows α := 1.0, and Figure 4C shows α := 0.1. All experiments were conducted using the
PyTorch [25] library on a single GTX Titan V and four Intel Xeon Gold 5115 processors.

(A) (B) (C)

Figure 4. Distribution of the CIFAR-10 dataset across 10 clients according to the Dirichlet distribu-
tion. The x-axis shows the index of the client, and the y-axis shows the index of the class (label).
(A–C) shows the data distribution of α := 5.0, α := 1.0, and α := 0.1, respectively. As parameter α

approaches 0, the heterogeneity of class distribution increases.

4.2. Accuracy

FedCKA adds a hyperparameter μ to control the strength of �cka. We tune μ from
[3, 5, 10] and report the best results. MOON and FedProx also have a μ term. We also tune
the hyperparameter μ with these methods. For MOON, we tune μ from [0.1, 1, 5, 10], and
for FedProx, we tune μ from [0.001, 0.01, 0.1, 1], as used in each work. In addition, for
MOON, we use τ = 0.5 as reported in their work.

Table 1 shows the performance across CIFAR-10, CIFAR-100, and Tiny ImageNet
with α = 5.0. For FedProx, MOON, and FedCKA, we report performances with the best
μ. For FedCKA, the best μ is 3, 10, and 3 for CIFAR-10, CIFAR-100, and Tiny ImageNet,
respectively. For MOON, the best μ is 10, 5, and 0.1. For FedProx, the best μ is 0.001, 0.1, and
0.1. Table 2 shows the performance across increasing heterogeneity on the CIFAR-10 dataset
with α ∈ [5.0, 1.0, 0.1]. For FedCKA, the best μ is 5, 3, and 3 for each α ∈ [5.0, 1.0, 0.1],
respectively. For MOON, the best μ is 0.1, 10, and 10. For FedProx, the best μ is 0.001, 0.1,
and 0.001.
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Table 1. Accuracy across datasets (α = 5.0).

Method CIFAR-10 CIFAR-100 Tiny ImageNet

FedAvg 64.37% 37.41% 19.49%
FedProx 64.58% 37.81% 20.93%
SCAFFOLD 64.33% 39.16% 21.18%
MOON 65.25% 38.37% 21.29%
FedCKA 67.86% 40.07% 21.46%

Table 2. Accuracy across α ∈ [5.0, 1.0, 0.1] (CIFAR-10).

Method α = 5.0 α = 1.0 α = 0.1

FedAvg 64.37% 62.49% 50.43%
FedProx 64.58% 62.51% 51.07%
SCAFFOLD 64.33% 63.31% 40.53%
MOON 65.25% 62.60% 51.63%
FedCKA 67.86% 66.19% 52.35%

We observe that FedCKA consistently outperforms previous methods across different
datasets and across different α. FedCKA improves performances in heterogeneous settings
due to regularizing layers that are naturally similar and not layers that are naturally
dissimilar. It is also interesting to see that FedCKA performs better by a larger margin when
α is substantial. This is likely because the global model can more effectively regularize
updates as it is less biased when data distribution approaches IID settings. However,
we also observe that other studies consistently improve performance, albeit by a smaller
margin than FedCKA. FedProx and SCAFFOLD improve performances, likely due to their
inclusion of naturally similar layers in regularization. The performance gain is lower, as
they also include naturally dissimilar layers in regularization. MOON generally improves
performance compared to FedProx and SCAFFOLD likely due to their use of a contrastive
loss. That is, MOON shows that neural networks should be trained to be more similar to
the global model than past local model , rather than only being blindly similar to the global
model. By only regularizing naturally similar layers using a contrastive loss based on CKA,
FedCKA outperforms all methods.

Note that across most methods and settings, there are discrepancies to the accuracy
reported by MOON [19]. In particular, MOON reports higher accuracy across all methods,
although the model’s architecture are similar if not equivalent. We verify that this discrep-
ancy is caused by the data augmentation used in experiments with MOON. We disclude
augmentation as it would be unfair to generalize results across different non-IID settings if
augmentations were to be used. The reported non-IIDness would decrease, as clients could
create a more balanced distribution.

4.3. Communication Rounds and Local Epochs

We study the effects of regularization on the performance improvement per communi-
cation rounds. Results are shown in Figure 5. As expected with any regularization methods,
we find that the accuracy for FedCKA is lower for the 40 communication rounds. However,
we also find that after 40 communication epochs, FedCKA improves performances due
to effective regularization. FedCKA decreases the bias that would have otherwise limited
performance by penalizing weight updates that are not in agreement with the global model.

We also explore the effects of the number of local epochs on overall performance. We
find that the performance of both FedAvg and FedCKA increases slightly when the number
of local epochs increased. However, when further increasing the number of local epochs,
we find that accuracy decreases, suggesting overfitting. The small increase in performance
does not warrant additional local epochs. Clients are limited in their computational budget.
Thus, computation cannot be used sparingly.

42



Appl. Sci. 2022, 12, 9943

Figure 5. Effects of communication round and local epochs.

4.4. Regularizing Only Important Layers

We study the effects of regularizing different number of layers. Using the CIFAR-10
dataset with α = 5.0, we change the number of layers to regularize through �cka. Formally,
we change M in Equation (2) by scaling M ∈ [1, 2, 3, 4, 5, 6, 7], and report the accuracy
in Figure 6. Accuracy is the highest when only the first two layers are regularized. Note
the dotted line representing the upper bound for Federated Learning. When the same
model is trained on a centralized server with the entire CIFAR-10 dataset, accuracy is 70%.
FedCKA with regularization on the first two naturally similar layers nearly reaches this
upper bound.

Figure 6. Accuracy with respect to the number of layers regularized and variance in similarity
measures between clients on CIFAR-10 and α = 5.0.

This verifies our hypothesis that only naturally similar, but not naturally dissimilar
layers, should be regularized. By regularizing only one layer, a naturally similar layer
(the second layer) would be excluded, thus decreasing performance. By regularizing three
layers, a non-similar layer (the third layer) with the highest variance of non-similarity (see
Figure 6) would be regularized, thus decreasing performance. The performance increase
when 4–7 layers are regularized may seem anomalous, yet is valid when considering that
both the first two naturally similar layers are included, and the weight of regularization of
the third layer decreases with a higher M.

4.5. Using the Best Similarity Metric

We study the effects of regularizing the first two naturally similar layers with different
similarity metrics. Using the CIFAR-10 dataset with α = 5.0, we change the similarity
metric to regularize through �cka. Formally, we change CKA(a1, a2) in Equation (2) to
three other similarity metrics: first, the kernel CKA, introduced in Kornblith et al. [10]
(CKAk(a1, a2)); second, the squared Frobenius norm (‖a1 − a2‖2

F); third, the vectorized

43



Appl. Sci. 2022, 12, 9943

cosine similarity (‖vec(a1)‖‖vec(a2)‖ cos θ). We compare the results with these different
metrics as well as the baseline, FedAvg. The results are shown in Table 3.

Table 3. Accuracy and training duration with FedCKA with different similarity metrics (CIFAR-10).

Similarity Metric Accuracy Training Duration (s)

None (FedAvg) 64.37% 54.82
Frobenius Norm 65.54% 64.73

Vectorized Cosine 66.67% 65.75
Kernel CKA 67.93% 122.41
Linear CKA 67.86% 104.17

We observe that performance is the highest with CKA due to the increased accuracy
of measuring similarity. Only truly dissimilar updates are penalized, thus improving
performance. Note Equation (3) includes an inner product in the numerator. While the
l2-distance or cosine similarity are also inner products, CKA is more suitable for measuring
similarities between matrices of higher dimension than the number of data points, as is the
case for neural network representations [10].

Furthermore, while kernel CKA slightly outperforms linear CKA, we opt to use
linear CKA considering the computational overhead. We also observe that the squared
Frobenius norm and vectorized cosine similarity decreased performance only slightly.
These methods outperformed most previous works. This verifies that while it is important
to use an accurate similarity measure, it is more important to focus on regularizing naturally
similar layers.

4.6. Efficiency and Scalability

Efficient and scalable local training procedures are important engineering principles in
Federated Learning. That is, for Federated Learning to be applied to real-world applications,
we must assume that clients have limited computing resources. Thus, we analyze the local
training time of all methods, as shown in Table 4. Note that FedAvg is the lower bound for
training time, since all other methods add a regularization term.

Table 4. Average Training Duration Per Communication Round (in seconds).

Method 7 Layers Time Extended 50 Layers Time Extended

FedAvg 54.82 - 638.79 -
SCAFFOLD 57.19 2.37 967.04 328.25
FedProx 57.20 2.38 862.12 223.33
MOON 97.58 42.76 1689.28 1050.49
FedCKA 104.17 49.35 750.97 112.18

For a seven-layer CNN trained on CIFAR-10, the training time for all methods are
fairly similar. FedCKA extends training by the largest amount, as the matrix multiplication
operation to calculate the CKA similarity is proportionally expensive to the forward and
back propagation of the small model. However, for ResNet-50 trained on Tiny ImageNet,
we see that the training time of FedProx, SCAFFOLD, and MOON increased substan-
tially. Only FedCKA has comparable training times to FedAvg. This is because FedProx
and SCAFFOLD perform expensive operations on the weights of each layer, and MOON
performs forward propagation on three models until the penultimate layer. All these opera-
tions scale substantially as the number of layers increase. While FedCKA also performs
forward propagation on three models, the number of layers remains static, thus being most
efficient with medium-sized models.

We emphasize that regularization must remain scalable for Federated Learning to be
applied to state-of-the-art models. Even on ResNet-50, which is no longer considered a
large model, other Federated Learning regularization methods lack scalabililty. This causes
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difficulty in testing these methods with the current state-of-the-art models, such as ViT [26]
posessing 1.843 billion parameters, or slightly older models, such as EfficientNet-B7 [27]
posessing 813 layers.

5. Conclusions and Future Work

Improving the performance of Federated Learning on heterogeneous data is a widely
researched topic. However, many previous studies suggested that regularizing every layer
of neural networks during local training is the best method to increase performance. We
propose FedCKA, an alternative approach built on the most up-to-date understanding
of neural networks. By regularizing naturally similar, but not naturally dissimilar layers,
during local training, performance improves beyond previous studies. We also show that
FedCKA is currently the one of the best regularization methods with adequate scalability
when trained with a moderatly sized model.

FedCKA shows that the proper regularization of important layers improves the per-
formance of Federated Learning on heterogeneous data. However, standardizing the
comparison of neural networks is an important step in a deeper understanding of neural
networks. Moreover, there are questions as to the accuracy of CKA in measuring similarity
in models such as Transformers or Graph Neural Networks. These are some topics we
leave for future studies.
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Abstract: Handwritten character recognition is a computer-vision-system problem that is still critical
and challenging in many computer-vision tasks. With the increased interest in handwriting recog-
nition as well as the developments in machine-learning and deep-learning algorithms, researchers
have made significant improvements and advances in developing English-handwriting-recognition
methodologies; however, Arabic handwriting recognition has not yet received enough interest. In
this work, several deep-learning and hybrid models were created. The methodology of the current
study took advantage of machine learning in classification and deep learning in feature extraction to
create hybrid models. Among the standalone deep-learning models trained on the two datasets used
in the experiments performed, the best results were obtained with the transfer-learning model on the
MNIST dataset, with 0.9967 accuracy achieved. The results for the hybrid models using the MNIST
dataset were good, with accuracy measures exceeding 0.9 for all the hybrid models; however, the
results for the hybrid models using the Arabic character dataset were inferior.

Keywords: classification; convolutional neural network; recurrent neural networks; MNIST;
model selection

1. Introduction

Despite massive technological advances, many people’s textual compositions are still
handwritten. Using pen and paper for writing is essential to people’s work. Handwriting
has different sizes and styles, making the creation of automatic techniques for recognizing
texts a challenging task in computer vision [1]. Text-recognition systems utilize automated
techniques for text recognition by converting text included in images into matching digital
formats. Such systems can discover typed or handwritten characters and are used in
different application domains.

A handwritten-character-recognition system is a computer-vision system that is in-
tended to classify and recognize handwritten characters [2]. Character recognition is still
critical and challenging in many computer-vision tasks [3]. With the increased interest in
handwriting recognition and the developments in machine-learning and deep-learning
algorithms, researchers have made significant improvements and advances in this field.
English-handwriting-recognition methodologies have received significant interest from
researchers [4]; however, Arabic has not yet received enough interest. With more than
315 million native Arabic speakers [5], the need for Arabic-handwriting-recognition sys-
tems is critical. Arabic is one of the most popular spoken languages in the world, with
twenty-eight alphabets and different letter styles, based on geography.

In general, handwriting is a pattern-recognition research area with different applica-
tions. For each application domain, specific constraints should be considered [6], otherwise
the recognition process will be complicated due to the wide range of handwriting styles
and sizes. For example, recognizing characters on car license plates is more straightforward
than recognizing Arabic handwriting due to the different styles of handwriting. There-
fore, researchers are making great efforts to improve recognition systems using various
techniques, deep-learning algorithms being at the top of the list.
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For a while, Arabic handwritten character recognition (AHCR) has been an area
of research in pattern recognition and computer vision. Several machine-learning (ML)
algorithms, such as support vector machines (SVMs), have improved AHCR. Such models
are still limited and cannot outperform convolutional neural networks (CNNs) on different
Arabic handwriting datasets.

Several Arabic handwriting datasets have been used in the literature to create con-
volutional neural network (CNN) models [1,7,8] that automatically extract features from
images and outperform classical machine-learning techniques (such as [9,10]), especially
when large datasets with a large number of classes are used. As Niu and Suen claim [11],
better classification results can be achieved when an SVM is replaced with an MLP in deep
learning. This is because MLPs are based on empirical risk minimization, which tries to
minimize errors in the training set. As a result, the training procedure is terminated when
the back-propagation algorithm finds the first separating hyperplane.

Several deep-learning architectures have been used in the literature in different appli-
cations (deep neural networks (DNNs), convolutional neural networks (CNNs), deep belief
network (DBNs), recurrent neural networks (RNNs), and generative adversarial networks
(GANs)) [12]. In this work, a CNN, a commonly used deep-learning algorithm, was used
to recognize Arabic handwritten characters.

Despite all the progress that has been made, there are still some challenges and a
demand for new methods to overcome these limitations [13]. Compared to the English
language, the quantity of available datasets of Arabic handwritten characters is relatively
small. Additionally, some of the published datasets include few records. There is a require-
ment for a vast dataset containing a variety of font sizes, styles, illuminations, users, and
texts [14]. Some of the collected records (pictures) may have unnecessary data noise that
must be eliminated, or misclassification might occur. Especially for massive datasets, it is
necessary to identify a simple and rapid method for removing noise automatically rather
than manually [15,16].

The rest of the paper is organized as follows. Section 2 explains the background of
the previous research work on handwriting recognition. Section 3 presents the materials
and methods of the study. Section 4 describes the experimental results and analysis, while
Section 5 presents the discussion and comparison. Finally, the conclusions are drawn and
future works are considered.

2. Related Works and Motivation

Handwriting recognition using CNNs has received attention in terms of research
work in different languages, such as English [17–21], Arabic [1,3,7–10,22], Bangla [2], and
Chinese [23–28]. Recently, the focus on Arabic handwriting recognition has increased [29].
Researchers have developed different techniques to enhance recognition outcomes.

According to El-Sawy et al. [3], CNN techniques outperform other feature-extraction
and classification methods, especially with big datasets. This is not applicable for most
of the studies on Arabic language recognition. Therefore, the authors created the Arabic
Handwritten Characters Dataset (AHCD) and proposed a CNN model that achieved an
accuracy of 94.9. Similarly, Altwaijry et al. [1] released Arabic handwritten alphabets in
what is called “the Hijja” dataset. The dataset consists of samples written by children aged
7 to 12 years old. The researchers conducted handwriting-recognition experiments using
a CNN trained on two datasets, the Hijja dataset and the Arabic Handwritten Character
Dataset (AHCD). The proposed model achieved accuracies of 97% on the AHCD dataset
and 88% on the Hijja dataset. These results indicate that they have outperformed the
achieved results of El-Sawy et al. [3].

Using a different approach, Alrobah and Albahli [13] merged an ML model with
a deep-learning model to create a hybrid, taking advantage of CNN models in feature
extraction and ML models in classification. The study achieved an accuracy of 96.3, proving
the hybrid model’s effectiveness. The result was better than those obtained in the original
experiment performed on the same dataset (the Hijja) by Altwaijry and Al-Turaiki [1].
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A CNN architecture known as Alexnet was utilized by Boufenar et al. [7], which
includes three layers of max pooling followed by three layers of fully connected convolu-
tions. They investigated the impact of preprocessing on model improvement. The Alexnet
model was trained and evaluated using two datasets, OIHACDB-40 and AHCD, and three
learning strategies: training the CNN model from scratch, utilizing a transfer-learning
technique, and fine-tuning the weights of the CNN architecture. The experimental out-
comes demonstrated that the first technique outperformed the others, with 100 percent and
99.98 percent accuracy for the OIHACDB-40 and AHCD datasets, respectively.

Balaha et al. [30] established a vast, complicated dataset of Arabic handwritten char-
acters (HMBD). They implemented a deep-learning (DL) system with two convolutional-
neural-network (CNN) architectures (called HMB1 and HMB2), using optimization, regu-
larization, and dropout techniques. They employed Elsawy et al. [3] as a controlled study
throughout their 16 experiments with the HMBD, CMATER, and AIA9k datasets. The
study suggested that data augmentation helped increase testing accuracy and reduce over-
fitting. Data augmentation increased the volume of input data; as a result, the architectures
were learned and trained using more data. The top results for HMBD, CMATER, and
AIA9k were 90.7%, 97.3%, and 98.4%, respectively. Younis [31] and Najadat et al. [32]
built CNN models that were trained and tested on AHCD to improve AHCD performance.
Three convolutional layers and one fully connected layer comprised the model of [30].
In addition, two regularization methods, dropout and batch normalization, with distinct
data-augmentation techniques, were employed to enhance the model’s performance. Using
the AIA9k and AHCD datasets to train and test the model, the accuracies were 94.8 and
97.6 percent, respectively. Similarly, the CNN design suggested in [31] comprised four
convolutional layers, two max-pooling layers, and three fully connected layers. The authors
examined various epochs and batch sizes and found that 40 epochs with a batch size of
16 produced the best results for training of the model. Based on empirical findings, the
model accuracy achieved was 97.2%.

Considering various model architectures, subsequent investigations attempted to
identify more successful instances. Alyahya et al. [33] examined the performance of the
ResNet-18 architecture when an FCL and dropout were added to the original architecture
for recognizing handwritten Arabic characters. Two models utilized a fully connected layer
with/without a dropout layer following all convolutional layers. The other two models
used two fully connected layers with/without a dropout layer. They used the AHCD
dataset to train and evaluate the CNN-based ResNet-18 model, with the original ResNet-
18 achieving the best test result of 98.30 percent. Almansari et al. [34] examined the
performance of a CNN and a multilayer perceptron (MLP) in detecting Arabic characters
from the AHCD dataset. To reduce model overfitting, they examined various dropout
levels, batch sizes, neuron counts in the MLP model, and filter sizes in the CNN model.
According to the experimental results, the CNN model and the MLP model achieved the
highest test accuracies of 95.3% and 72.08%, respectively, demonstrating that CNN models
are more suitable for Arabic handwritten character recognition.

Similarly, to improve the detection of Arabic digits, Das et al. [35] provided a collection
of 88 features of handwritten Arabic number samples. An MLP classifier was constructed
with three layers (input, single hidden layer, and output). Back-propagation was performed
to train the multi-layer perceptron, which was subsequently used to classify Arabic numer-
als from the CMATERDB 3.3.1 dataset. According to testing results, the model achieved an
average accuracy of 94.93 percent on a database of 3000 samples.

Musa [36] introduced datasets that include Arabic numerals, isolated Arabic letters,
and Arabic names. The vast majority of these datasets are offline. In addition, the report de-
scribed published results and an upcoming study. Noubigh et al. [37] examined the issue of
Arabic handwriting recognition. They offered a new architecture based on a character-model
approach and a CTC decoder that combined a CNN and a BLSTM. For experimentation,
the handwriting Arabic database KHATT was used. The results demonstrated a net perfor-
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mance benefit for the CNN–BLSTM combined method compared to the methods employed
in the literature.

De Sousa [8] suggested two deep CNN-based models for Arabic handwritten charac-
ter and digit recognition: VGG-12 and REGU. The VGG-16 model was derived from the
VGG-12 model by removing the fifth convolutional block and adding a dropout layer prior
to the SoftMax FCL classifier. In contrast, the REGU model was created from scratch by
adding dropout and batch-normalization layers to both the CNN and fully connected layers.
The two models were trained, one with and the other without data augmentation. The
predictions of each of the four models were then averaged to construct an ensemble of the
four models. The ensemble model’s best test accuracy was 99.47 percent. Mudhsh et al. [10]
proposed a model for recognizing Arabic handwritten numerals and characters. The model
consisted of thirteen convoluted layers, followed by two max-pooling layers and three
completely connected layers. To reduce model complexity and training time, the sug-
gested model employed only one-eighth of the filters in each layer of the original VGG-16.
The model was trained and evaluated using two distinct datasets: ADBase for the digit-
recognition task and HACDB for the character-recognition task. To prevent overfitting,
they utilized dropout and data augmentation. The model’s attained accuracy was 99.66%
when using the ADBase dataset and 97.32% when using the HACDB dataset.

Al-Taani et al. [38] built a ResNet architecture to recognize handwritten Arabic char-
acters. The suggested method included pre-processing, training ResNets on the training
set, and testing trained ResNets on the datasets. Using MADBase, AIA9K, and AHCD, this
method achieved 99.8 percent, 99.05 percent, and 99.55 percent accuracies, respectively.

AlJarrah et al. [39] established a CNN model to detect printed Arabic letters and num-
bers. Using an AHCD dataset, the model was trained. This study used data-augmentation
techniques to improve model performance and detection outcomes. The experiment
demonstrated that the proposed strategy might achieve a success rate of 97.2 percent. The
model’s accuracy increased to 97.7 percent once data augmentation was implemented.
Elkhayati et al. [40] created a method for segmenting Arabic words for recognition pur-
poses using a convolutional neural network (CNN) and mathematical morphology oper-
ations (MMOs). In their study, the authors offered a directed CNN and achieved better
performance than a standard CNN. Elleuch et al. [41] presented a deep-belief neural net-
work (DBNN) for identifying handwritten Arabic characters/words. The proposed model
began with the row data before proceeding to the unsupervised learning technique. This
model’s performance on the HACDB dataset was 97.9 percent accurate. Kef et al. [42] devel-
oped a fuzzy classifier with structural properties for Arabic-handwritten-word-recognition
offline systems based on segmentation procedures. Before extracting features using in-
variant pseudo-Zernike moments, the model splits characters into five distinct categories.
According to the study’s findings, the proposed model achieved a high level of accuracy
for the IFN/ENIT database of 93.8%.

Based on the generic-feature–independent-pyramid multilevel model (GFIPML),
Korichi et al. [43] developed a method for recognizing Arabic handwriting. To evalu-
ate their system’s performance, the authors utilized the AHDB dataset and obtained better
outcomes. They combined local phase quantization (LPQ) with multiple binarized sta-
tistical image features (BSIfs) to enhance the recognition. The proposed system achieved
an accuracy of 98.39%. However, in a previous study, Korichi et al. [44] compared the
performance of multiple CNN networks to statistical descriptors derived from the PML
model. The highest recognition rate attained by the LPQ descriptor was 91.52%. Another
common application of handwriting recognition is Arabic handwritten literal amount
recognition. Korichi et al. [45] performed numerous experiments with convolutional neu-
ral networks (CNNs), such as basic CNN, VGG-16, and ResNet, which were developed
using regularization approaches, such as dropout and data augmentation. The results
demonstrated that CNN architectures are more effective than previous approaches based
on handmade characteristics.
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Since pre-trained models are trained on a general dataset and may not be suitable
for Arabic handwriting classification, it is evident from the articles mentioned above that
models created from scratch tend to produce better results. Models that have been pre-
trained include machine-learning and deep-learning models that have been created and
trained on a wide range of data. For example, the ImageNet dataset is used to train models
and comprises thousands of images; however, models constructed utilizing the image
dataset from the beginning of their training make them far more fit for the classification task
due to their comprehensive understanding of the dataset. Later, adjusting the hidden layers
of the deep-learning models makes them more suitable for the classification challenge. In
this work, we tried to overcome this limitation by building the model specifically for Arabic
handwritten character classification. Table 1 summarizes the CNN models developed in
the literature for Arabic handwriting recognition. Table 2 presents a summary of the Arabic
handwriting datasets.

Table 1. Summary of the CNN models for Arabic handwriting recognition.

Paper Year Model Dataset Accuracy (%)

El-Sawy et al. [3] 2017 CNN AHCD 94.9

Altwaijry et al. [1] 2017 CNN
AHCD 97

Hijja 88

Alrobah and Albahli [29] 2021
Hybrid CNN models: CNN + FCL,

CNN + SVM, CNN + XGBoost
AHCD 94.5

Hijja 96.3

Boufenar et al. [7] 2018

CNN from scratch
OIHACDB-40

100
CNN as features ex-tractor 82.38

Fine-tuned CNN 98.86
AHCD CNN from scratch

AHCD
99.98

CNN as feature extractor 82.53
Fine-tuned CNN 96.78

Balaha et al. [30] 2021 CNN
HMBD 90.7
AHCD 97.3
AIA9k 98.4

Younis et al. [31] 2017 CNN
AHCD 97.6
AIA9k 94.8

Najadat et al. [32] 2019 CNN AHCD 97.2
Alyahya et al. [33] 2020 CNN AHCD 98.3

Almansari et al. [34] 2019
CNN

AHCD
95.27

MPL 72.08
Das et al. [35] 2010 MPL CMATERDB 94.93

Musa [36] 2011 CNN SUST-ALT
Noubigh et al. [37] 2021 CNN and BLSTM KHATT

De Sousa [8] 2017
VG16-based CNN AHCD

97.32
Mudhsh et al. [10] 2018 98.42
Al-Taani et al. [38] 2021 ResNet AHCD 99.5
AlJarrah et al. [39] 2021 CNN AHCD 97.7
Elleuch et al. [43] 2015 DBNN HACDB 97.9

Kef et al. [42] 2016 5 Fuzzy ARTMAP IFN/ENIT 93.8

Table 2. Summary of the Arabic handwriting datasets.

Dataset Type Amount

AHCD Characters 16,800
Hijja Characters 47,434

OIHACDB-40 Characters 30,000
HMBD Characters 54,115
AIA9k Alphabet 8737

CMATERDB Digits 3000

51



Appl. Sci. 2022, 12, 10155

Table 2. Cont.

Dataset Type Amount

SUST-ALT
Digits
Letters
Words

47,988

KHATT Characters 4000
HACDB Characters 6600

IFN/ENIT Characters 212.211

3. Materials and Methods

The convolutional neural network (CNN) is the leading technique applied in automatic
character and digit detection using computer systems. Various deep-learning models are
being tested for multiple languages. As one of the most spoken languages in the world,
Arabic is no exception. This section discusses the methods and techniques used to create
the system for detecting handwritten Arabic characters.

There have been many approaches used for handwritten character recognition in
different languages, but proper techniques have not yet been developed for the Arabic
language. Arabic handwritten character recognition is now needed. The CNN approach
was best suited for other language datasets, so the proposed system tried this technique
with the complete setup.

3.1. Brief Overview of Convolutional Neural Networks

A typical convolutional neural network (CNN) is an artificial neural network that tries
to mimic the way the human brain detects, recognizes, and interprets images. It does so by
processing pixel data to find features that stand out and serve as identification points. It
works by assigning importance (learnable biases and weights) to certain parts of inputted
images to differentiate them from one another, which ultimately leads to recognition of
what the images contain. The various parts of a typical CNN are further elaborated below.

A CNN automatically detects the available features in a dataset. These features may
be statistical, texton, curvature, along with many others. The features used depends on the
problem that needs to be addressed, but this process was performed automatically in this
model. According to the proposed system, the data were required to know these character
types. Here, the CNN model also detected the curvature features or image contours.

3.1.1. Convolutional Layer

A convolutional layer constitutes the foundation and main building block of a CNN.
It works by converting an input image into a feature map, also known as an activation
map. The convolutional layer has a kernel, or filter, a two-dimensional array of weights
that is responsible for carrying out the task of feature extraction, which leads to the creation
of a feature map. The filter works by moving from one image stride to another while
performing a dot product and feeding the result to an output array. This output is the
feature map. The filter needs to be configured before the operation begins and maintained
throughout. The parameters to be configured are:

The number of filters: This affects the number of feature maps to be obtained, as the
number of feature maps increases with the number of filters.

Stride: This is the number of pixels the filter travels for each operation. Usually, a
stride of one or two is used because a larger number of strides leads to a smaller output
and missing key features. The stride and feature map are shown in Figure 1.

Zero padding: This is crucial, since most input images have elements that fall outside
the input matrix, which might be ignored. Zero padding covers boundary pixels, thereby
producing larger outputs of high quality.
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Figure 1. Stride and feature map.

In Figure 1, the stride image shows the input image being turned into a matrix. The
filter is then applied to the green section, and a dot product is computed between the input
pixels and the filter. After this, the filter is then moved by one stride, repeating the initial
process until the kernel has covered the entire matrix formed by the image. The final result
is a new, smaller matrix called the feature map or activation map.

3.1.2. Pooling Layer

The pooling layer, or down sampling, performs the task of reducing the parameters in
the input image, thereby resulting in dimensionality reduction. It also sweeps through the
entire input just like the filter; however, unlike the convolutional layer, it does not carry any
weights. Instead, it applies an aggregation function to the image to populate the output
array. Two types of pooling are usually used:

Max pooling selects the pixel with the maximum value as the filter moves across the
input image and sends it to the output array.

Average pooling: Here, the average value within the receptive field is calculated as
the filter moves through the image and sends it to the output array.

The pooling used for this project is illustrated in Figure 2.

Figure 2. The application of max pooling on the input.

As shown in Figure 2, we applied max pooling, which returns the maximum value
in the filter, then moves by one stride and repeats the process. This is repeated until the
entire image has been covered. In the above figure, we can see how 6 is chosen from the
first stride. The same applies to 8, 3, and 4.

3.1.3. Fully Connected Layer

The convolutional and pooling layers perform the task of feature extraction, using the
filter to create the feature map [46]. The fully connected layer performs the detection and
recognition tasks by matching patterns in the feature maps of the images being operated on.
The fully connected layer is arranged so that each node in the output layer connects directly
to a node in the previous layer. Figure 3 shows a typical convolutional neural network and
how all the parts are interconnected.
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Figure 3. A typical convolutional neural network.

3.2. Architecture of the Applied CNN Models

This section outlines the machine-learning and deep-learning algorithms used in this
experiment. All artificial intelligence experiments follow the same procedure. First, relevant
data are collected and preprocessed to ensure that the raw data are suitable for training and
testing. Second, certain features are extracted from the data and used to train and test the
models. Finally, the extracted features are used for prediction, depending on the purpose
of the research. Our research is a classification problem, so the extracted data will be used
to classify the handwritten Arabic characters when we get to the final stage.

From the literature review, it can be seen that machine-learning models have not been
used as extensively as deep-learning models. Most of the papers examined were generally
focused on feature ANN and CNN approaches. This research explores advanced ensemble
methods of classification which have not previously been used in related experiments.

The two datasets used for all the models were split into training and test sets at a
ratio of 70% to 30%. The first dataset used was the Arabic MNIST dataset, which contains
10 classes for 0–9 numerical digits; the other dataset contains handwritten Arabic characters
and has 28 classes resembling the 20 Arabic characters.

Two different strategies were used to conduct a series of experiments. The first strategy
involved standalone models, while the second strategy utilized hybrid models, which were
designed by combining two models. The two strategies are discussed below:

Standalone Models

• XGBoost stands for extreme gradient boosting. It is an ensemble machine that uses
trees for boosting. It makes use of gradient boosting for the decision tree, thereby
increasing speed and performance. These trees are built sequentially to reduce errors
from the preceding tree, and each new tree learns from the previous one. Hence, as
new trees grow, more knowledge is passed on. To enhance accuracy, the model, after
the iterations, tries to minimize the following objective function, which comprises a
loss function and regularization. There are three main forms of boosting:

1. A gradient-boosting algorithm uses a gradient algorithm and the learning rate;
2. A stochastic gradient-boosting algorithm uses sampling at the row and column

per split levels;
3. A regularized gradient-boosting algorithm uses L1 and L2 regularization.

• Random forest is a meta-estimator that fits several different decision trees on various
subsamples, and the output is averaged so as to control overfitting. Random forest
was used for this experiment because the error generated is always lesser than the
decision tree due to out-of-bag error. Decision trees are a popular method for machine-
learning tasks. Tree learning derives from the shell method for data mining because
of its invariant behavior when it comes to scaling and other transformation methods
for feature values, which are robust given the inclusion of feature values. The error
generated by a random forest is always lesser than that generated by a decision tree
because of the out-of-bag error, which is also called the out-of-bag estimate. This
error-estimation technique is a method of estimating the prediction errors of random
forests, which involves boosted decision trees that utilize bootstrap aggregation to
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subsample data samples required for training. The parameters used for training were
max_depth = 12, random_state = 0, and n_estimators = 100.

• CatBoost stands for category boosting, which was developed by Yandex [47]. It uses
the gradient-boosting technique and does not require conversion of the dataset to a
specific format, unlike other machine-learning algorithms, making it more reliable and
easier to implement. The parameters used for this experiment were iterations = 100,
depth = 4, and learning_rate = 0.1.

• Logistic regression uses L1, L2, and ElasticNet as regularization techniques and then
calculates the probability of a particular set of data points belonging to either of those
classes. For this experiment, the log was used as the cost function.

• A support vector machine (SVM) is a supervised machine-learning algorithm for
classification. It takes data points as inputs and outputs a hyperplane that separates
the classes with the aim of achieving a hyperplane that maximizes the margin between
the classes. This is the best hyperplane. For this experiment, two kernels were tested,
the RBF and the linear kernel.

• A feed-forward neural network is an artificial neural network wherein connections
between the nodes do not form a cycle. This means that information moves only
in the forward direction, from the input nodes, through the hidden nodes, to the
output nodes [48]. Four optimization methods were experimented on, including
Adam Optimizer, RMSprop, Adagrad, and stochastic gradient descent. Table 3 shows
the feed-forward network architecture and all the parameters.

Table 3. The feed-forward architecture design.

Feed-Forward Network

Architecture Design

Layer (type) Output Shape Param #

Dense_30 (Dense) (None, 512) 401,920

Dense_31 (Dense) (None, 512) 262,656

Dense_32 (Dense) (None, 10) 5130

Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0

• All these proposed algorithms were used for the recognition of handwritten Arabic
characters, where statistical type features, shape-based features (curvatures), and
categorical features with indexes were used.

• A convolutional neural network is a deep-learning algorithm that can take in an input
image, assign importance (learnable weights and biases) to various aspects/objects in
the image, and differentiate one from another. The convolutional layer is first applied
to create a feature map with the right stride and padding. Next, pooling is performed
to lessen the dimensionality and properly adjust the quality of parameters used for the
training, thereby reducing preparation time and battling overfitting. This experiment
used max pooling, which takes the maximum incentive in the pooling window. Trans-
fer learning was also carried out. This focuses on storing knowledge gained while
solving one problem and applying it to a different, related problem; it is particularly
useful in our case, since there is a limited number of data. A sequential model was
used while using different optimization algorithms, including RMSProp, Adagrad,
stochastic gradient descent, and Adam Optimizer. Table 4 shows the architecture of
the convolutional neural network, with all the layers, the shapes expected, and the
number of parameters.
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Table 4. The CNN architecture design.

CNN

Architecture Design

Layer (type) Output Shape Param #

Conv2d_7 (None, 26, 26, 32) 320

Max_pooling2d_7 (None, 13, 13, 32) 0

Batch_normalization_7 (None, 13, 13, 32) 128

Conv2d_8 (None, 11, 11, 64) 18,496

Max_pooling2d_8 (None, 5, 5, 64) 0

Batch_normalization_8 (None, 5, 5, 64) 256

Conv2d_9 (None, 3, 3, 128) 73,856

Max_pooling2d_9 (None, 1, 1, 128) 0

Batch_normalization_9 (None, 1, 1, 128) 512

Flatten_3 (None, 128) 0

Dense_5 (None, 256) 33,024

Dense_6 (None, 10) 2570

Total params: 129,162
Trainable params: 128,714
Non-trainable params: 448

CNN parameters were selected, and 129,162 parameters were chosen during the model
training. Trainable parameters were set at 128,714, whereas the non-trainable parameters
numbered 448 during the model training. The number of epochs was 20, the batch size was
32, and there were 3600 training samples and 2400 validation samples.

3.3. Hybrid Models

Hybrid models are models that combine two or more models. Those models inte-
grate machine-learning models and other soft-computing, deep-learning, or optimization
techniques.

In this research, we used CNN as a base-feature extractor, and these extracted features
were fed into machine-learning models to see how the models performed, as shown in
Figure 4. The architecture of the feature extractor was the same as that of the CNN model
and the various machine-learning models mentioned above. The following are the hybrid
models that were experimented on:

1. CNN + SVM;
2. CNN + Random Forest;
3. CNN + AdaBoost;
4. CNN + XGBoost;
5. CNN + CatBoost;
6. CNN + Logistic Regression.
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Figure 4. The architecture of the hybrid models.

The models were trained using both the Arabic MNIST dataset and the Arabic char-
acter dataset. The CNN’s only task is to extract relevant features from the handwritten
images, which are its outputs. It then passes the features to the machine-learning models,
which use these features to find patterns, thereby classifying the images.

The proposed approaches for the system have their benefits and drawbacks. A CNN
was proposed because this approach has been used for handwritten character recognition
with many other languages, so adopting this method could achieve the best performance.
The CNN approach involved two steps. The first was the extraction of the required
features; the second was classification. The standalone approach was proposed to check the
individual impact on the dataset and see whether it could perform the same procedure for
handwriting recognition. The hybrid approach was designed because it helped to achieve
more reliable results than the standalone approach. It works like the ensemble approach in
solving the Arabic handwriting recognition problem. This was decided after reviewing the
multiple approaches to handwriting recognition reported in the literature.

4. Experimental Results and Analysis

This section discusses the experimental setup for this work, including all the hardware
and software requirements. Then, the results obtained from all the models are reported
to show how they all performed. We compared the models to see which ones did well
and which did not. Finally, we took the best performance we achieved and compared it
with state-of-the-art models for Arabic handwriting recognition to see how well our model
performed compared to the others.

The proposed system used two approaches: deep learning and conventional machine
learning. Both methods involve some signs; as with the conventional machine learning
approach, where the model can be trained with an available dataset, this approach worked
based on the extraction of various features, such as statistical, curvature, and multiple
different features. The machine-learning approach must extract features manually and
pass them to the model for training. The deep-learning approach has some other aspects
compared with this approach. In deep-learning models, there is no need to extract features
manually because the models can extract the required or available features automatically.
These features are passed for the model training and classification. The CNN approach
extracts features and gives them to the model for classification. The proposed system used
both to check where the model can deliver the best results for the problem.

The deep-learning approach requires more time for training due to the large volumes
of datasets, whereas the conventional machine-learning approach takes less time with small
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datasets. Deep-learning models are more complex than conventional learning approaches
and need devices with high computational power to execute them.

4.1. Datasets

The first dataset used for this research was an Arabic MNIST dataset obtained from
the MNIST database developed by LeCun et al. [49], which comprises 60,000 images for
training and 10,000 images for testing, with 6000 images per class. A part of this dataset can
be seen in Figure 5. In the same fashion, the Arabic MNIST dataset comprises 60,000 images
from digit 0 to digit 9, with each class having 6000 handwritten images.

 
Figure 5. The Arabic MNIST dataset.

The second dataset [3] comprises 16,800 characters written by 60 participants. The
images were scanned at a resolution of 300 dpi. Each image was segmented automatically
using MATLAB 2016a, which automatically coordinated every image. The database was
then partitioned into 13,400 images for training and 480 images for testing, with 120 images
per class, which sums up to 3360 images in total.

The images were processed by converting them to grayscale using OpenCV so that the
images had a single filter instead of three, then row-wise values were extracted side by side,
with 784 columns. The labels for the images were used as the target values, thus generating
a csv file. The Kaggle dataset already had a csv file with 1024 columns. These columns
contained 0 for a black value and 1 for a white value for an image. Then, the dataset was
separated into two csv files for training and testing.

4.2. Experimental Setup

The choice of datasets was the same for all the models trained (both standalone and
hybrid), the datasets used are the Arabic MNIST dataset and the Arabic character dataset.
All experiments were conducted using Google Colab (short for Colaboratory), which is
a product from Google research that allows users to write and execute Python code with
either a CPU or a GPU. As for libraries, the Keras library was employed to create the
deep neural networks, the Python programming language (version 3.6.3) being used for all
of them.

The proposed system was evaluated using the open-source MNIST Arabic dataset.
This system calculated evaluation measures, such as accuracy, precision, recall, and F1-
measure, to check the proposed system’s consistency and performance. Accuracy is the
ratio of the number of correct predictions to the total number of predictions. Equation (1)
shows the accuracy measure. These evaluation measures are described in terms of TPs
(true positives), TNs (true negatives), FNs (false negatives), and FPs (false positives).

Accuracy =
TN + TP

TP + TN + FP + Fn
(1)
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Precision is the ratio of true positives to true and false positives. The equation of
precision is shown in Equation (2).

Precision =
TP

TP + FP
(2)

The recall is the ratio of correctly identified positive examples to the total number of
positive models. Equation (3) shows the recall evaluation measure.

Recall =
TP

TP + FN
(3)

The F1-measure is a valuable metric in machine learning, which sums up the predictive
performances to the combination of two other metrics. Equation (4) shows the F1-measure
evaluation measure.

F1 − Measure = 2 × Precision × Recall
Precision + Recall

(4)

4.3. Results and Analysis

The task of designing a system that can automatically detect Arabic handwritten
characters is very necessary, so we set out to use every means possible to achieve the
best performance. To do this, we split the work into two parts: the standalone and the
hybrid models. The results obtained from these experiments are reported below to show
the performance evaluation for the models trained on both the Arabic MNIST and Arabic
character datasets.

4.3.1. Standalone Machine-Learning Models

The standalone models are deep neural networks that carry out the entire classification
task, from feature extraction to the final detection of patterns and the ultimate classification
of images. The first model trained was the XGBoost model, then the random forest model
was trained. Next, the CatBoost model was trained for 100 epochs, with a learning rate of
0.1. Then, the logistic regression model was trained with a cost function of the log. Finally,
a Support Vector Machine (SVM) was trained, but since the SVM is a non-linear model,
two different kernels were used: the RBF and the linear kernel. The results obtained by the
standalone machine-learning models broke down into two tables. Table 5 shows the results
for the models trained on the Arabic MNIST digit dataset, while Table 6 show the results
obtained by the models trained on the Arabic character dataset.

Table 5. Standalone machine-learning models trained on the Arabic MNIST digit dataset.

Model
Precision (Macro

Average)
Recall (Macro

Average)
F1-Score (Macro

Average)
Accuracy Score

Random Forest 0.99 0.99 0.99 0.98714
CatBoost 0.95 0.95 0.95 0.95476

SVM (Linear) 1.0 1.0 1.0 0.99628
SVM (RBF) 1.0 1.0 1.0 0.99628
AdaBoost 0.69600
XGBoost 1.0 1.0 1.0 1.00000

Logistic Regression 1.0 1.0 1.0 0.99957

The proposed system was evaluated on the Arabic MNIST digit dataset. Evaluation
measures were calculated against this dataset, with precision, recall, F1-measure, and
accuracy calculated for the test dataset. Machine-learning algorithms, named Random
Forest, CatBoost, SVM, AdaBoost, XGBoost, and Logistic Regression, were used for the
model training and testing on the Arabic MNIST digit dataset. The XGBoost results were
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the highest compared to the other algorithms, but Logistic Regression and Linear SVM also
performed outstandingly. The results shown in Table 5 were remarkable for the dataset.

Table 6. Standalone machine-earning models trained on the Arabic character dataset.

Model
Precision (Macro

Average)
Recall (Macro

Average)
F1-Score (Macro

Average)
Accuracy Score

Random Forest 0.64 0.64 0.63 0.6336
CatBoost 0.47 0.47 0.46 0.4643

SVM (Linear) 0.41 0.41 0.41 0.4233
SVM (RBF) 0.66 0.65 0.65 0.6529

Feed-Forward Neural Network (Adam) 0.66 0.61 0.63 0.6101
XGBoost 0.49 0.49 0.48 0.4854

Logistic Regression 0.66 0.65 0.65 0.6529

As can be seen from Table 5, above, almost all the models performed extremely well.
This goes to show that the models were fine-tuned in such a way that they conformed to
the dataset used. The Arabic MNIST digit dataset is a standard dataset used for artificial
intelligence projects. This means that it has been standardized to avoid overfitting, which
indicates that our models are valid; however, as shown in Table 6, the results obtained were
average, with the highest being those for Logistic Regression and the SVM (RBF kernel),
both of which achieved an accuracy of 0.65. The accuracies were as low as 0.43 for the SVM
(linear kernel).

Table 6 shows the evaluated results against the Arabic character dataset for the follow-
ing machine-learning algorithms. The machine-learning algorithms were Random Forest,
SVM, Neural Network, XGBoost, and Logistic Regression. Based on the feature extraction
in the machine learning, the results were evaluated for the Arabic character dataset. SVM
(RBF) had better results than the other algorithms, but the overall results were not the best.

4.3.2. Standalone Deep-Learning Models

The second phase of the research consisted of the experiments on the standalone deep
neural networks which performed the tasks of feature extraction and classification. Three
deep neural networks were trained and evaluated, including the feed-forward network, the
convolutional neural network, and the neural network integrated with transfer learning.
These models were tested with different optimizers to see how they performed, and a
summary of the results obtained is presented in Table 7.

Table 7. Standalone deep-learning models trained on the Arabic MNIST digit dataset.

Model
Precision (Macro

Average)
Recall (Macro

Average)
F1-Score (Macro

Average)
Accuracy Score

Feed-Forward Neural Network
(Adam)

1.0 1.0 1.0 0.98714

CNN 1.0 1.0 1.0 0.99063
Transfer Learning 1.0 1.0 1.0 0.99673

Figure 6 shows the loss- and accuracy-curve graphs for the feed-forward network, for
which the variation was very low after the 10th iteration. The purpose was to check the
variation in the iterations, so that more iterations were required. The variational changes
after the 10th iteration were only minor.

Figure 7 shows the curves for both the loss and accuracy of the training and validation;
the model had an almost perfect training accuracy but a more realistic validation accuracy,
which goes to show that the model performed well.
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Figure 6. Graphs of the loss and accuracy curves for the feed-forward network.

Figure 7. Graphs of loss and accuracy curves for the CNN.

The loss and accuracy curves for the convolutional neural network can be seen in
Figure 7. The model encountered a few problems at the beginning of the experiment,
which caused it to move rapidly; however, with more epochs, the line smoothed out,
which signifies the model’s effectiveness. Figure 8 shows the confusion matrix of the CNN
classifier. Variations in the graphs show significant changes in the loss and accuracy for
the training and validation. This impact was seen due to the significant change in the
dataset. During training, the changes in loss and validation for the loss and accuracy were
clearly seen.

The results obtained for the experiments conducted on our two datasets were impres-
sive. The MNIST dataset was used to train the feed-forward network, the CNN, and the
transfer-learning models, which achieved 0.9871, 0.9906, and 0.9967 accuracies, respectively.
These are very effective accuracies, and it can be confidently said that the models can be
used. On the other hand, the Arabic character dataset was used to train only the CNN with
an adagrad optimizer, and it achieved an accuracy of 0.8992, see Table 8, which is not as
high as that of MNIST but still remarkably high.
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Figure 8. The confusion matrix of the CNN model.

Table 8. Standalone deep-learning models trained on the MNIST Arabic digit dataset.

Model
Precision
(Macro

Average)

Recall (Macro
Average)

F1-Score (Macro
Average)

Accuracy Score

CNN (Adagrad) 0.90 0.90 0.90 0.8992

4.3.3. Hybrid Models

The final phase of this research was the experiment on the hybrid models, which were
combinations of more than one model. These hybrid networks were a combination of
a convolutional neural network (CNN), which performed the task of feature extraction
because of such networks’ eminent suitability for the task. Then, the extracted features
were passed on to various machine-learning models, which carried out the classification.
The machine-learning models used were the SVM, Random Forest, AdaBoost, XGBBoost,
CatBoost, and Logistic Regression. A summary of all the results obtained is shown in
Tables 9 and 10, below.

Table 9. Hybrid machine-learning models trained on the Arabic MNIST digit dataset.

Model
Precision (Macro

Average)
Recall (Macro

Average)
F1-Score (Macro

Average)
Accuracy Score

CNN + SVM 0.97 0.97 0.97 0.9710
CNN + Random Forest 0.94 0.94 0.94 0.9390

CNN + AdaBoost 0.57 0.55 0.54 0.5470
CNN + XGBoost 0.93 0.93 0.93 0.9320

CNN + Logistic Regression 0.94 0.94 0.94 0.9388

The hybrid models were purely experimental. Since we combined models that nat-
urally are standalone, it can be seen from the MNIST dataset experiment that all the
models did well, with results exceeding 0.9, with the exception of CNN + AdaBoost, which
achieved a classification accuracy of 0.55. The Arabic character dataset experiments did
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not produce such good results, with the highest performance attained by the CNN + SVM
hybrid model, which had a classification accuracy of 0.872, and the lowest by the CNN +
AdaBoost, which had a very poor accuracy score of 0.1690. This result goes to show that the
CNN + AdaBoost hybrid model is not suitable for this classification task because it had the
lowest classification accuracy for both datasets. In the hybrid approach, the combinations
were set to check the model performance, the CNN + SVM set performing better than the
other varieties. CNN + AdaBoost performed very poorly as compared with the other com-
binations. According to this system analysis, these types of machine-learning algorithms
were not best-suited to this problem. Ultimately, which combination of algorithms is best
depends on the nature of the problem to be solved.

Table 10. Hybrid machine-learning models trained on the Arabic character dataset.

Model
Precision (Macro

Average)
Recall (Macro

Average)
F1-Score (Macro

Average)
Accuracy Score

CNN + SVM 0.87 0.87 0.87 0.872
CNN + Random Forest 0.78 0.78 0.87 0.804

CNN + AdaBoost 0.14 0.17 0.13 0.1690
CNN + XGBoost 0.78 0.77 0.77 0.7990

CNN + Logistic Regression 0.83 0.83 0.83 0.8560

5. Discussion and Comparisons

The primary purpose of this study was to develop a hybrid model that recognizes
Arabic handwritten characters accurately. In this section, the performances of the hy-
brid CNN-based architectures will be discussed from three perspectives: the basic CNN
architectures and the ML classifiers utilized in the hybrid models.

The Arabic MNIST and Arabic character datasets were used to assess the hybrid
models developed in the current study. Ten standalone machine-learning models using the
Arabic MNIST dataset, eight standalone machine-learning models trained on the Arabic
character dataset, and five hybrid models for both the Arabic MNIST and Arabic character
datasets were developed. According to the results, the performances of several CNN-based
models for the Arabic character dataset were considerably inferior to the performances for
the Arabic MNIST [49] dataset. Therefore, the Arabic character dataset can be considered
a more complicated and challenging dataset. In this study, the best performance for the
Arabic MNIST dataset was 97% (Figures 9 and 10), achieved with the hybrid model that
combined a CNN and an SVM.

 
Figure 9. The accuracy of the hybrid models on the MNIST dataset.
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Figure 10. The accuracy of the hybrid models trained on the Arabic character dataset.

For the Arabic MNIST dataset, the Logistic Regression model and the XGBOOST
model outperformed all the models in the research field in this area; the previous record of
99.71% was outperformed by our machine-learning approach. The hybrid models, such as
CNN + SVM, reached near accuracy. However, hybrid models are more robust than stan-
dalone CNN models. A higher recall rate was observed for the hybrid models. The models
which had the worst performances were the AdaBoost and CNN + AdaBoost models.

For the Arabic MNIST digit dataset, the machine-learning methods Random Forest,
CatBoost, SVM, AdaBoost, XGBoost, and Logistic Regression were employed for model
training and testing. In comparison to the other algorithms, XGBoost yielded the best
results, while Logistic Regression and Linear SVM also performed quite well. Each of
these models performed well. This demonstrates that the models were fine-tuned in
accordance with the datasets used. The Arabic MNIST digit dataset is a typical dataset
for artificial intelligence research. This implies that it has been standardized to prevent
overfitting, indicating that our models are legitimate. However, on the Arabic character
dataset, the results obtained were average, with Logistic Regression and the SVM (RBF
kernel) achieving the best accuracy (0.65), followed by the SVM (linear kernel). The SVM
accuracy dropped as low as 0.43 (with the linear kernel). The machine-learning methods
examined were Random Forest, SVM, Neural Network, XGBoost, and Logistic Regression.
On the basis of feature extraction in machine learning, the findings for the Arabic character
dataset were reviewed, and the SVM (RBF) yielded superior results compared to the other
algorithms, although the results were not the greatest overall.

In contrast, three deep neural networks were trained and assessed, including a feed-
forward network, a convolutional neural network, and a neural network along with transfer
learning. These models were evaluated using several optimizers to determine their per-
formances. Experiments performed on our two datasets yielded amazing outcomes. The
MNIST dataset was used to train the feed-forward network, the CNN, and the transfer-
learning models, which produced corresponding accuracy levels of 0.9871, 0.9906, and
0.9967. These are very reliable accuracies; thus, it is fair to assume that the models can be
used. In parallel, the Arabic character dataset was used to train the CNN solely with an
adagrad optimizer, and it achieved an accuracy of 0.8992, which was not as high as that
achieved for the MNIST dataset but still remarkable.

The last batch of models consisted of hybrid models. These hybrid networks incor-
porated a convolutional neural network (CNN), which performed the feature extraction,
since such networks are superior for the task. The extracted features were then sent to
several machine-learning models, which performed classification. SVM, Random Forest,
AdaBoost, XGBBoost, CatBoost, and Logistic Regression were the machine-learning models
used. Regarding the hybrid model approach, the model combination performances were
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evaluated to assess the approach. The CNN + SVM set was proven to outperform the others.
However, the CNN + AdaBoost fared very badly compared to the other combinations.

5.1. Arabic MNIST Dataset

For the standalone models trained using the Arabic MNIST dataset, most of the models
performed excellently, with accuracies above 95%. The best performances were observed for
XGBoost (with values for precision, recall, F1-score, and accuracy of 1), Logistic Regression
(with precision, recall, and F1-score values of 1.0 and an accuracy of 0.99957), the SVMs
(with precision, recall, and F1-score values of 1 and an accuracy of 0.99628), followed by
the transfer-learning model (with an accuracy of 0.99743) and the CNN (with an accuracy
of 0.99063, and precision, recall, and F1-score values of 1). AdaBoost, on the other hand,
obtained the lowest performance, with an accuracy of 0.696.

Considering the hybrid models, see Figure 9, the best classification performance was
observed for the combination of CNN and SVM (with an accuracy of 0.9710, and precision,
recall, and F1-score values of 0.97), followed by the CNN and Random Forest (with an
accuracy of 0.9390), CNN and Logistic Regression (accuracy of 0.9388), and CNN and
XGBoost (accuracy of 0.9320). The CNN and AdaBoost hybrid model obtained the weakest
performance, with an accuracy of 0.5470, precision of 0.57, recall of 0.55, and an F1-score
of 0.54.

5.2. Arabic Character Dataset

The standalone Convolutional Neural Network outperformed all the models trained
using the Arabic character dataset. The experiments performed using this dataset recorded
relatively lower accuracies than those trained using the Arabic MNIST dataset due to the
large class size and low interclass difference coupled with a higher variance. Regarding the
Arabic character dataset, the applied algorithms obtained weak-to-moderate performances,
with accuracies ranging from 0.4233 (linear SVM) to 0.8992 (CNN), suggesting that the
CNN might be the best choice for classification problems on this dataset. Hybrid models
obtained similar performances, with the highest accuracy score of 0.872 for the CNN and
SVM model, see Figure 10, followed by the CNN and Logistic Regression model (accuracy
of 0.8560), the CNN and Random Forest model (accuracy of 0.804), and CNN and XGBoost
(accuracy of 0.7990). The lowest performance was obtained by the combination of the CNN
and AdaBoost algorithm, with an accuracy of 0.1690, a precision of 0.14, a recall of 0.17,
and an F1-score of 0.13.

5.3. Comparison

As already discussed in Section 2, the literature contains reports of various attempts to
improve Arabic handwriting recognition approaches. In the current work, the hybrid model
of machine-learning and deep-learning algorithms (CNN + SVM) achieved an improved
result. Tables 1 and 2 present summaries of the CNN models (standalone and hybrid) and
the datasets used for the Arabic handwriting recognition experiments.

Various types of datasets, AHCD, HMBD, AIA9k, OIHAC, HACDB, and Hijja, have
been used to train normal CNN models. Most of the studies have used the dataset
AHCD [3], for which the highest accuracy of 99.98% was achieved [9] using AlexNet.

For the hybrid models, HACDB and AHCD were used. The accuracy reached for
AHCD upon its initial publication was 94.90%, but the accuracy achieved by the hybrid
model [50] was 95.07%.

In the current work, the performances of the proposed models applied on the MNIST
dataset were generally better than those applied on the Arabic character dataset. Thus,
one can infer that the latter dataset is more complicated than the former one. Researchers
are encouraged to further investigate how performance can be improved for the Arabic
character dataset. Table 11 presents a comparison of the proposed work and the other
common architectures trained on the common datasets.
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Table 11. Comparison with other architectures.

Authors Model
Datasets with Accuracy Rates (%)

AHCD Hijja AIA9k MNIST

El-Sawy et al. [3] CNN 94.9

Altwaijry et al. [1] CNN 97 88

Alrobah and Albahli [29]
Hybrid CNN models: CNN + FCL,

CNN + SVM, 94.5 96.3

CNN + XGBoost -

Balaha et al. [30] CNN 97.3 - 98.4

Younis et al. [31] CNN 97.6 - 94.8

Al-Taani et al. [38] ResNet 99.5 - -

Current work CNN + SVM 97.1

6. Challenges and Open Problems

The task at hand is a very challenging one, since this is a field in which not much
research has been carried out, especially in the area of artificial intelligence. Most of the
challenges and problems to be discussed in this section could be mitigated or completely
eradicated in the near future when more work has been completed. The challenges and
open problems are discussed below:

• Inadequate dataset: For this experiment, two databases were utilized to acquire dataset
images for both digits and characters; even so, the dataset was not sufficient, because
one of the requirements for training both machine-learning and deep-learning models
is an enormous supply of data. Lack of sufficient data leads to model overfitting.

• Cursive nature of the Arabic language: The Arabic language is cursive, meaning
written characters are joined together, even in digital forms. If what is to be predicted
was digitally written, it would have been much easier, but the project focused on
handwriting recognition. Since every writer has a unique way of writing, it is difficult
for the designed system to effectively detect handwritten characters and digits.

• Imbalanced dataset: The datasets used for the experiments were subjected to normal-
ization by the database managers. However, the real-world problems that will be
encountered might not be as clean as the ones in the dataset. For example, the images
to be analyzed might be zoomed-in, unclear, or blurry, such that the system cannot be
used to achieve effective results.

• Presence of special characters: The Arabic language is one that has a lot of special
characters, such as dots and diacritics, making the classification problem a tedious
one, in that misplacing just a single dot may completely change the meaning of
the conveyed message and the presence or absence of a single stroke may change
what is said completely. Hence, clear images are required for the system to make
correct classifications.

The challenges and open problems are summarized in Figure 11.
The major contribution of the proposed system was to apply deep learning and

conventional approaches to the crucial problem of Arabic-language character recognition.
The proposed system addressed Arabic handwritten character recognition and various
methods were explored to find the best solution to the problem. A deep-learning CNN
approach, a conventional standalone approach, and a hybrid approach were introduced to
address the crucial problem of handwritten character recognition. No approach has been
applied to solve this issue prior to the system proposed here.
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Figure 11. Challenges and open problems.

7. Conclusions and Future Studies

In this study, combining machine-learning and deep-learning algorithms to build the
recognition models was worthwhile. The study involved standalone deep-learning experi-
ments and focused attention on the idea of exploiting machine learning in classification and
the advantages of deep learning in feature extraction. Several deep-learning and hybrid
models were created. The best result for the standalone deep-learning models trained on
the two datasets was achieved with the transfer-learning model on the MNIST dataset,
which had a 0.9967 accuracy. On the other hand, the results of the hybrid models achieved
good records using the MNIST dataset, with accuracies exceeding 0.9 for all the hybrid
models. It should be noted that the results for the hybrid models using the Arabic character
dataset were very poor, which might mean that the problem lies with the dataset itself.

To conclude, more studies are required to improve Arabic handwriting recognition
and overcome the challenges it presents. Arabic handwriting might have some unique
characteristics that need to be considered by researchers. What is appropriate for one
language might not be appropriate for others. As mentioned in the Introduction to this
study, English handwriting recognition might have received a large amount of interest
in the literature. Although there is always room for improvement, the Arabic language
is still in need of more attention from researchers, to improve handwriting-recognition
methods and the use of appropriate datasets in experiments. It is hoped that the challenges
discussed in this work will grab the attention of researchers and stimulate the proposal
of more solutions and better contributions towards improvements in the field of Arabic
handwriting recognition.
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Abstract: Federated learning is becoming increasingly popular to enable automated learning in
distributed networks of autonomous partners without sharing raw data. Many works focus on
supervised learning, while the area of federated unsupervised learning, similar to federated clustering,
is still less explored. In this paper, we introduce a federated clustering framework that solves three
challenges: determine the number of global clusters in a federated dataset, obtain a partition of
the data via a federated fuzzy c-means algorithm, and validate the clustering through a federated
fuzzy Davies–Bouldin index. The complete framework is evaluated through numerical experiments
on artificial and real-world datasets. The observed results are promising, as in most cases the
federated clustering framework’s results are consistent with its nonfederated equivalent. Moreover,
we embed an alternative federated fuzzy c-means formulation into our framework and observe that
our formulation is more reliable in case the data are noni.i.d., while the performance is on par in the
i.i.d. case.

Keywords: federated learning; framework; cluster analysis; cluster number determination; federated
fuzzy Davies–Bouldin index; federated cluster validation metric; federated fuzzy c-means

1. Introduction

The success of machine learning (ML) can partly be attributed to the availability of
good and sufficiently sized training datasets. Often, the data are stored on a central server,
where ML models are trained. However, the data might initially be distributed among
many clients (e.g., smartphones, companies, etc.). There are situations where gathering the
data on a central server is not feasible, e.g., due to privacy regulations (such as GDPR) [1]),
the amount of data, or other reasons. Federated learning (FL) is an approach that allows
clients to jointly learn ML models while keeping all data local [2]. Authors describe the
generic FL training process by five steps:

1. Client selection: Select clients participating in the training.
2. Broadcast: A central server initializes a global model and shares it with the clients.
3. Client computation: Each client updates the global model by applying a training

protocol and shares the updates with the central server.
4. Aggregation: The central server applies an aggregation function to update the

global model.
5. Model update: The updated global model is shared with the clients.

This protocol can be repeated multiple times until a convergence criterion is met. Train-
ing a model following such a process has been successfully applied to a variety of use cases,
e.g., for next-word predictions on smartphones [3], vehicle image classification [4], data
collaboration in the healthcare industry [5,6], on IoT data [7–9], and many more. For com-
prehensive surveys please refer to [2,10] or [11]. Many works focus on supervised learning
while the area of federated unsupervised learning, similar to federated clustering, is less
explored. Cluster analysis is widely applied across many different disciplines as diverse as
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medical research [12], social and behavioral sciences [13,14], strategic management [15], or
marketing [16,17], just to name a few. In all of these areas of application, the data could
be initially distributed and hard to centralize. Hence, they are all potential application
areas for a federated cluster analysis framework. Ref. [18] described cluster analysis as
seven steps that need to be performed in order to derive insights (Section 2.1). In federated
clustering, only one step has been (explicitly) addressed, i.e., the clustering method [19–22].
Other important steps, such as cluster validation or determining the number of clusters,
have no federated equivalent yet.

Federated clustering is an FL setting, where the goal is to group together (local)
data points that are globally similar to each other. That is, data points are distributed
among multiple clients and are clustered based on a global similarity measure, while
all data remain local on client devices. Existing works largely focus on developing and
applying a federated clustering method, i.e., partitioning the data given the number of
(global) clusters K. While being an important step in the clustering framework, the lack of
more comprehensive frameworks (for example, including determination of the number of
clusters and cluster validation) might hinder application in practice.

We contribute to closing this gap by introducing a multistep federated (fuzzy) clus-
tering analysis framework for the first time. In particular, we propose a federated version
of the well-known (fuzzy) Davies–Bouldin index for cluster validation, show how to use
it for the determination of the number of clusters, and apply a federated fuzzy c-means
algorithm to solve the soft clustering problem. Even though independently developed, we
note that our federated fuzzy c-means algorithm is closely related to other works in the
area of federated clustering [19–22]. It combines local fuzzy c-means on the client side with
k-means on the global server side. Each idea in itself is not new, but the combination is,
and we observe that our formulation is more reliable than other federated fuzzy clustering
methods in case the data are non-i.i.d. To the best of our knowledge, there exists no cluster
validation index for federated cluster validation yet. Moreover, no work addressing the
problem of determining the number of clusters in a federated setting is known to us.

In the remainder of this section, we demonstrate the need for a federated clustering
framework. In subsequent sections, we review relevant works from nonfederated and
federated cluster research in Section 2.1. In Section 2.2, we introduce the individual pieces of
our framework before fitting them together. Section 3 contains an experimental evaluation
on real-world and artificial data to demonstrate the framework’s effectiveness and uncover
shortcomings. Finally, Section 4 concludes this work.

1.1. Motivational Example

Previous works in federated clustering mostly assume application scenarios to be
given. However, it is not necessarily obvious that sophisticated federated cluster analysis
algorithms are indeed required and, for example, exchanging locally optimal cluster analy-
sis results is not sufficient. This motivational example is designed to close the gap. In the
following example, locally optimal results obtained by nonfederated fuzzy c-means do
not reveal the global cluster structure. We illustrate this example by outlining a potential
practical application.

Imagine a multinational company with several local markets selling similar consumer
goods in all markets. Each local market has data about their customers (e.g., age, place
of residency, sold good, etc.) and applies (fuzzy) clustering algorithms to generate cus-
tomer segments. The cluster analysis insights are utilized to steer marketing activities.
The company wishes to derive global clusters to better understand their global customer
base and identify unlocked potential in the local markets. Due to strict privacy regulations,
the company is not allowed to gather all data in a central database (e.g., European customer
data are not allowed to be transferred to most countries outside of Europe). The company
could ask each local market to share their local cluster centers, but this approach disregards
that clusters might only become apparent when the data are combined. Such a situation
exists, as we will show. For the purpose of this example, we spare the details of the dataset
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creation, because a detailed explanation can be found in Section 3.2.1. It is enough to know
that there are five global clusters in the dataset, because of how it was created. Four of
the clusters have relatively high cardinality, and the fifth cluster has fewer points. We
verify that the correct number of clusters is detected in the centralized dataset. To achieve
this, the (nonfederated) fuzzy c-means algorithm (Section 2.1.2) is applied with multiple
(potential) number of clusters K, and the result is evaluated with the fuzzy Davies–Bouldin
index (Section 2.1.3). The best fuzzy Davies–Bouldin score is achieved with K = 5, and we
can conclude that the correct number of clusters can be found in the centralized case.

This example is designed to prove that global structure in federated data can hide
behind locally optimal solutions. To create a federated setting, the data are distributed
among three clients in a certain way: each client receives data from two of the four bigger
clusters and a few points from the smaller cluster (see Figure 1 for a visualization). Next,
we calculate the number of local clusters for all clients using the same method as before
(nonfederated fuzzy c-means in combination with nonfederated Davies–Bouldin). For each
client now, the best number of clusters is 2 (as it gives the best DB index score) and none
identify the smaller cluster present in their data. That calls for a federated cluster analysis
(federated clustering method and federated cluster validation metric) that is able to detect
the global structure.

In the multinational company example, the smaller cluster could represent a group of
customers that each local market falsely assigned to their bigger clusters. As a consequence,
the company targets those customers with inappropriate marketing activities. Exploiting
insights from the global cluster analysis could lead to new, more targeted marketing
strategies and unlock (previously hidden) potential.

This work is concerned with introducing the federated fuzzy Davies–Bouldin (Fed-
FuzzDB) index as a federated cluster validation metric. It can be leveraged to identify
all five clusters in the data without the need for sharing the raw data, as we will see in
Section 3.2.1. To the best of our knowledge, there exists no other federated cluster validation
metric in the literature. Another, equally important, challenge is to correctly identify the
global cluster structure given the number of clusters. Our framework applies a federated
fuzzy c-means algorithm with k-means averaging (FedFCM, Section 2.2.3) to address this
challenge. We will see that the combination of FedFuzzDB and FedFCM leads to promising
results, but note that the framework could also be used with other clustering algorithms.

(a) (b)

(c) (d)

Figure 1. Motivational example. (a) The centralized dataset. Colors correspond to ground truth partitions.
(b–d) The distributed dataset. Crosses denote the clustering result of the federated clustering framework.
Original cluster centers are recovered even though no client alone was able to do so.

2. Materials and Methods

Our overall framework consists of federated versions of the fuzzy c-means with k-
means averaging and a federated version of the (fuzzy) Davies–Bouldin index. Therefore,
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we revisit these well-known concepts in the next subsections (Sections 2.1.1–2.1.3). More-
over, we provide a brief overview of works about federated clustering (Section 2.1.4).
Finally, we introduce our new framework in Section 2.2 and corresponding subsections.

2.1. Background: Related Work
2.1.1. Nonfederated k-Means Clustering

Let X be a given dataset. The objective of the k-means clustering is to find cluster cen-
ters c = (c1, c2, . . . , cK) (and corresponding assignments) such that the following expression
is minimized (see, e.g., [23]):

Ĵ(c) =
K

∑
k=1

∑
x∈X

I(x, k)||x − ck||2 (1)

I(x, k) =

{
1, x is assigned to cluster k,
0, otherwise.

Each data point x is assigned to its closest cluster center, where closeness is defined by
Euclidean distance. The assignment is given by function a : X × {c1, . . . , cK} → {1, . . . , K}:

a(x, {ck}K
k=1) := arg min

1≤k≤K
||ck − x||2 (2)

A widely used iterative algorithm for finding such a clustering works is as follows [23]:

1. Initialize cluster centers c1, . . . , cK.
2. Assign clusters for all x ∈ X according to a(x, {ck}K

k=1) (Equation (2)).
3. Recalculate cluster centers ck by solving the following problem, i.e., calculating the

mean of points assigned to the same cluster:

ck = min
m∈Rd

∑
x∈X:a(x)=k

||x − m||2, k = 1, . . . , K.

4. Check if the convergence criterion is met, i.e., whether the assignment did not change

(much) compared to the previous iteration. Let a(t−1)
i be the assignment vector of

the previous iteration for data point xi ∈ X, i.e., the k-th entry is 1 if a(xi, {ck}) = k,
and zero otherwise. Let a(t)i be the assignment of the current iteration. Further, let

A(t−1) and A(t) be the assignment matrices, where the i-th row equals a(t−1)
i and

a(t)i , respectively. Then, the algorithm converges if the difference between the two
assignment matrices is smaller than some predefined ε:

||A(t−1) − A(t)||2 < ε. (3)

If the algorithm did not converge yet, move back to step 2. If it did converge, terminate.

Ĵ(c) is monotonously decreasing with each iteration, but it is known that the algorithm
might become stuck in a local minimum. In fact, it does not offer any performance guar-
antee, and [24] argues that it often fails due to its sensitivity to the initialization method.
In [24], the still-popular initialization method k-means++ is introduced. It subsequently
chooses random cluster centers that are likely to be far from already chosen centers. In our
experiments, we use the scikit-learn implementation that applies the k-means++ initializa-
tion method, too [25].

2.1.2. Nonfederated Fuzzy c-Means Clustering

Fuzzy c-means is a well-known soft clustering method that assigns a membership
index uij for clusters j = 1, . . . , K to data points xi ∈ X such that ∑K

j uij = 1 ∀i = 1, . . . , N.
The term soft clustering refers to the fact that points are allowed to belong to more than
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one cluster. In contrast, a hard clustering method such as k-means assigns each point to
exactly one cluster.

For given data X, the objective is to find cluster centers cj and membership matrix
U = [uij] such that the following expression is minimized [26]:

Jm(U, c) =
N

∑
i=1

K

∑
j=1

(uij)
m||xi − cj||2, (4)

uij :=
1

∑K
k=1(

||xi−cj ||2
||xi−ck ||2 )

2
m−1

, (5)

where ||y|| :=
√

∑n
l=1 y2

l . It is closely related to the k-means clustering, and the main
difference lies in the assignment matrices A in k-means versus U in fuzzy c-means.

Parameter m > 1 controls how fuzzy the cluster assignments should be. The greater
the m, the more fuzziness in the assignment, i.e., points are assigned to more clusters with
smaller values. A common choice that we also employ in all of our experiments is m = 2.

A widely used algorithm to find a solution to the optimization problem was introduced
by [26] and follows four basic steps:

1. Initialize matrix U := U0.
2. In iteration t, (re)calculate cluster centers cj according to:

cj =
∑i um

ij xi

∑i um
ij

(6)

3. Update membership matrix Ut+1 according to Equation (5).
4. Check if the convergence criterion is met: ||Ut+1 − Ut|| ≤ ε for some predefined ε,

i.e., did the memberships change by at most ε? If it was not met, return to step 2 after
setting Ut = Ut+1. Terminate if it was met.

The time-complexity of the algorithm is quadratic in the number of clusters K, and meth-
ods to reduce the complexity have been proposed [27]. Similar to k-means, other short-
comings of the algorithm are sensitivity to the cluster initialization and sensitivity to noise,
as noted in [28]. Those challenges have been addressed by subsequent works, but each
auxiliary method comes with its own shortcomings [28]. Clustering in high-dimensional
spaces is another well-known challenge for clustering algorithms in general [29], and fuzzy
c-means in particular [30], due to high sparsity in high-dimensional spaces. Authors of [30]
show that fuzzy c-means centers are likely to converge to the center of mass of the whole
dataset in high-dimensional spaces. It remains up to the practitioners to decide on a suitable
method for their specific problems.

For the introduction of federated fuzzy c-means, we focus on the original formulation
and extend it to the federated setting.

2.1.3. Davies–Bouldin Index

The Davies–Bouldin index was introduced in [31] as a method to measure cluster
validity. One of its advantages is that it only requires distances between a “vector charac-
teristic of a cluster” (i.e., cluster center) and the vectors belonging to the cluster, as opposed
to pairwise distances between all vectors in the dataset, as in other cluster validation
methods. That makes it also particularly interesting for the federated clustering setting,
where a pairwise distance matrix is hard to obtain, but distances to the cluster center can
be calculated locally, shared, and averaged by the central server.

Informally speaking, the validation measures how well “cluster spread” is balanced
against “dissimilarity between cluster centers”. A good clustering is achieved with low
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spread and high cluster center dissimilarity, but these goals are potentially conflicting.
Formally, in [31], the nonfederated measure for a hard clustering is defined as:

R̄ :=
1
K

K

∑
i=1

Ri (7)

Ri := max
i 
=j

Rij (8)

Rij :=
Si + Sj

Mij
(9)

Si := (
1
Ti

Ti

∑
j=1

||xj − ci||q)
1
q “cluster spread” (10)

Mij := (
D

∑
k=1

|ci[k]− cj[k]|p) 1
p “center distances”, (11)

where ci is the characteristic vector (read: center) of cluster i, and D is the dimension of
the data. Note that Rij is big when two cluster centers are close to each other (small Mij),
or the “spread” of the clusters is big (big Si). Additionally, the cluster spread is usually
smaller if we have many clusters. However, this often comes at the expense of closer centers.
Roughly speaking, the index measures how well those two characteristics are balanced,
and a smaller value indicates a better cluster result. In our experiments, we chose p = 2
and q = 1 for our computations.

A soft version of the Davies–Bouldin index for fuzzy clustering was introduced in [32].
In soft clustering, every point can belong to every cluster, but in Equation (10), only points
belonging to the same cluster are considered. Hence, the “spread” of a cluster must be
defined differently. Authors of [32] propose the following adaptation:

S f
i := Ui(

1
N

N

∑
j=1

||xj − ci||q)
1
q , (12)

Ui :=
1
N

N

∑
j=1

uij. (13)

Each x ∈ X can belong to each cluster i. As a consequence, the spread of each cluster needs
to be calculated by considering the whole dataset and is then multiplied by the average
assignment for cluster i, i.e., Ui. The calculation of the index R̄ proceeds as outlined above,
with S f

i instead of Si.

2.1.4. Federated Clustering

Due to the similarity in terminology, we start by contrasting clustered federation with
federated clustering. Clustered federation is concerned with identifying clusters of clients
or model updates that are suitable to be grouped for a focused update of global supervised
FL models. It has been proven to be effective when addressing issues caused by non-i.i.d.
data among clients [33–36].

In contrast, federated clustering is concerned with identifying global clusters in dis-
tributed data without sharing the data and, to the best of our knowledge, has not been
explored as much. In [19], the k-means algorithm was extended to the federated setting.
Client devices execute the k-means algorithm and share cluster centers with the central
server. Authors propose a global averaging function that calculates a weighted mean of
local cluster centers in order to update global cluster centers. The weights are given by the
number of local data points assigned to the clusters. Further, the federated fuzzy clustering
equivalent of that approach was introduced in [20] and similarly in [21]. In this approach,
the clients execute the fuzzy c-means algorithm and share the results. Then, the fuzzy
assignment vectors are used as weights instead of number of data points given by the hard
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assignments. In their experimental sections, both works focus on scenarios where the data
are uniformly distributed among the clients. Ref. [20] found that the federated clustering
result was consistent with centralized clustering result, the algorithm converged quickly,
and the clustering result was not impacted much by the number of clients participating.
Additionally, Ref. [21] observed that even if clients became unavailable during the federa-
tion, the algorithm still found good results. However, these findings are limited to scenarios
where the data are uniformly distributed among clients. Finally, we acknowledge that [20]
also introduced a formulation for vertical FL, which is beyond the scope of this work.

A different approach on averaging the local cluster centers to obtain global cluster
centers was taken in [22] in the context of one-shot learning. The clients performed k-means
clustering. On the central server, the global cluster centers were computed by applying the
k-means algorithm again to the shared local cluster centers. Besides numerical experiments,
they also provided proof that the result was similar to an “oracle clustering” (e.g., clustering
on the assumed centralixed dataset). The federated k-means algorithm by [19] appears
to be the first work in the area of federated clustering. All other papers were published
around the same time and appear to be independent of each other.

In [18], the cluster analysis framework is described in terms of seven steps: selecting
training examples for the cluster analysis, selecting variables for the cluster analysis,
preprocessing (e.g., standardizing) the data, selecting a (dis)similarity measure, selecting a
clustering method, determining the number of clusters, and interpreting and validating
the results. Note that the aforementioned works are mostly concerned with the clustering
method and (implicitly) with the dissimilarity measure in a federated setting. With this
work, we aim to also contribute to determining the number of clusters and cluster validation
in a federated setting; however, similar to the other works, we assume the experimental
datasets to be preprocessed and prepared for analysis.

2.2. The Federated Fuzzy Clustering Framework

In this section, we build upon the previous section and introduce the federated ver-
sions of the fuzzy c-means algorithm (Section 2.2.1) and fuzzy Davies–Bouldin index
(Section 2.2.2). In Section 2.2.3 the pieces are assembled to form a cluster analysis frame-
work performing three steps: determine the number of clusters K, derive a clustering for K,
and validate the clustering through a federated cluster validation metric.

2.2.1. Federated Fuzzy c-Means with k-Means Averaging

Our proposed federated fuzzy c-means algorithm (FedFCM) is an extension of the iter-
ative fuzzy c-means algorithm to the federated learning setting similar to [20,21], but with
a different take on the global cluster center calculation. The global cluster calculation is
similar to the one proposed in [22], where it is applied in the context of federated one-shot
k-means. This idea was first mentioned and discussed in our preliminary work [37].

In the federated scenario, the data are not stored in a centralized database, but dis-
tributed among multiple clients. The goal is to learn a global clustering that is similar to
the clustering of the centralized data while the data stay private. The general procedure is
as follows: Each client runs a number of fuzzy c-means iterations locally, and sends the
resulting cluster centers to a central server. The central server is responsible for calculating
meaningful global clusters from the local learners’ results. After calculating the global
centers, they are shared with the clients that use them to recalculate their local centers,
which in turn are shared with the central server, and so forth. That procedure is repeated
until the global centers remain stable.

The creation of a global model from clients’ local model updates was first introduced
by [38] and is known as federated averaging (FedAvg). Our averaging method is a k-means
averaging that was independently developed and applied in the context of federated
one-shot clustering in [22].

Let data X be distributed among P parties (clients), i.e., X =
⋃P

l=1 X(l). The protocol
reads as follows:
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1. The central server initializes K global cluster centers c1, . . . , cK.
2. The central server shares c1, . . . , cK with the clients.
3. Client l calculates membership matrix Ut+1

l according to Equation (5) and generates

local cluster centers c(l)1 , . . . , c(l)K according to Equation (6) (l = 1, . . . , P) and repeats
until local convergence.

4. Client l shares c(l)1 , . . . , c(l)K for j = 1, . . . , K and l = 1, . . . , P.

5. The central server updates c1, . . . , cK by applying an averaging function avg([c(l)1 ,

. . . , c(l)K ]Pl=1).
6. The central server checks a convergence criterion. If not converged, go back to step 2.

Since the central server has only access to the local cluster centers c(l)k , the previous
convergence criterion can not be applied. As an alternative, we check whether the cluster
centers changed by less than ε between two iterations. Let ckt be the global cluster center k
after time step t. Then, the convergence criterion can be formulated as follows: ∑K

k=1 ||ckt −
ckt+1 || ≤ ε. Note that this new criterion might lead to different cluster centers than in the
previous formulation. It might let the centers move closer to the center of mass even though
the assignments might have stabilized already.

In order to find meaningful global clusters, it is essential to find a good averaging
function avg(·) used in step 5 of the framework outlined above.

To address this challenge, we apply a k-means averaging function, similar to the one
in [22]:

avg : RP×d×K → R
d×K

avg([c(l)k ]k,l) := kmeans([c(l)k ]k,l), (14)

= [ck]k,

where kmeans(·) denotes a function that applies the k-means clustering algorithm and
outputs the k cluster centers it converged to. This averaging function applies the k-means
algorithm to all reported local cluster centers to find new global cluster centers. It does
introduce increased complexity compared to federated fuzzy c-means in [20,21], but we
observed robust results in preliminary experiments [37]. At the same time, sharing only the
local cluster centers (as opposed to local centers and assignment vectors such as in [19–21])
increases the privacy of the data.

We know that both the fuzzy c-means and k-means algorithm converge (even though
possibly to local optima) when applied separately. Convergence means that the centers
and assignment vectors are guaranteed to stabilize after finitely many iterations. Our
federated algorithm converged if the global cluster centers stabilized. For that to happen,
the local cluster centers must have stabilized. The local cluster center, in turn, stabilizes
if the global centers do not change much between two iterations. We want to provide
intuition on why we observe such a behavior in our experiments. Each clients starts with
calculating local cluster centers in the first iteration and reports them back to the central
server. The central server essentially groups together all centers that are close to each
other, calculates the average of close centers, and reports those averages back to the clients
as their new centers. Due to this averaging, it is likely that for any previous local center
there is a new nearby global center (which is a function of that previous center). The client
updates the global center with its local data. Since it is close to a previously reported center,
the new local centers do not deviate much from the global center, and the update is small.
If a new center has low cluster membership, the update is naturally small. With small
updates, however, we know the k-means algorithm to converge. Usually, the updates can
be quite big after the first global round, but are small thereafter, which is consistent with
the behavior of k-means one-shot learning with k-means averaging [22]. Even though this
is not a formal convergence proof, we hope to provide insights into how the algorithm is
expected to behave.
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2.2.2. Federated Fuzzy Davies–Bouldin Index

As described in the introduction (Section 1.1, Figure 1), there is a need for federated
cluster validation metrics. It is not enough to calculate metrics such as the Davies–Bouldin
index locally and draw conclusions from there. Therefore, we formulate a federated version
of the index. In the federated setting, the global server does not have access to the clients’
data. That means that it cannot carry out the calculation of the soft Davies–Bouldin index
R̄ directly. Specifically, the central server can not directly calculate the cluster spread S f

i
(Equation (12)) that requires the calculation of distances between cluster centers ci and
data points xj. Through a simple transformation we see that sharing the data points is
not required:

S f
i = Ui(

1
N

N

∑
j=1

||xj − ci||q)
1
q (15)

= Ui(
1

∑P
l=1 Nl

P

∑
l=1

Nl

∑
j=1

||x(l)j − ci||q)
1
q (16)

Ui =
1

∑P
l=1 Nl

P

∑
l=1

Nl

∑
j=1

u(l)
ij (17)

Hence, for the calculation of S f
i , each client l needs to share its number of data points Nl ,

its local local cluster spread ∑Nl
j=1 ||x(l)j − ci||q, and its local average assignment vectors

∑Nl
j=1 u(l)

ij for i = 1, . . . , K. With that information, the global server can calculate S f
i . Since

the global server calculates (and knows) the cluster centers, it can also calculate Mij, i.e., the
distances between centers ci and cj (Equation (11)), and, finally, Rij for all (i, j), Ri and
the index R̄. Note that the federated and nonfederated versions of the Davies–Bouldin
index produce the same result given X =

⋃N
l=1 X(l), and the nonfederated and federated

cluster centers are the same. Generally, the first assumption holds in our experiments
while the second one is the subject of study and cannot be guaranteed. In fact, due to
different convergence criteria in the nonfederated and federated fuzzy c-means algorithms,
the centers are often different. Generally, however, we expect federated clustering and
nonfederated algorithms to converge to similar centers.

2.2.3. The Complete Framework

Our proposed framework for federated clustering addresses three core challenges:
Estimate the number of clusters in the federated dataset, obtain a cluster result (i.e., centers
and a data partitioning) that is similar (or not worse) to the one on the same but centralized
dataset, and assess the federated cluster result via a federated validation metric. Note that
the challenges are closely related. In order to compare two clustering results (for example,
with different numbers of clusters), there must be an evaluation metric. This evaluation
metric is the FedFuzzDB index. To obtain the federated clustering result, a federated
clustering method must be applied. In our case, this is FedFCM (and for comparison
federated fuzzy c-means with federated averaging). The overall framework applies the
following steps:

1. Decide on a range for number of clusters K to test: [Kmin, Kmax].
2. For each K ∈ [Kmin, Kmax]:

(a) Obtain a clustering with FedFCM as described in Section 2.2.1.
(b) Calculate the FedFuzzDB index of that clustering as described in Section 2.2.2

and store the result.

3. Choose K ∈ [Kmin, Kmax] with the minimum FedFuzzDB index as the number of
clusters or apply the elbow method (see, e.g., [39]).
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The initial guess for [Kmin, Kmax] is not subject to a more principled study in this work,
but we acknowledge that choosing a good range is crucial. It is known that the Davies–
Bouldin index sometimes favors higher number of clusters [40]. Therefore, introducing a
tight upper bound can be important. In a federated setting, this is even harder, as some
clusters might not even be present in any client’s data, but only form when the data are
combined (Sections 1.1 and 3.2.1). As a rule of thumb, we note that the minimum number of
global clusters is given by the minimum number any client could identify on its own (note
that two local clusters might turn out to belong to the same cluster in the global dataset).
The maximum is (roughly) given by ∑P

l=1 Kl + f orming − overlapping. Kl is the number
of clusters locally in client l, f orming is the number of clusters that only form when the
data are combined, and overlapping is the number of clusters that overlap. f orming and
overlapping are the hardest to estimate, even with knowledge from an initial local-only
clustering. As a very rough rule of thumb, we apply Kmax ≈ minl K(l) + maxl K(l) in our
real-world experiment.

Before continuing with experiments, we note that there is a potential privacy risk and
suggest a simple prevention mechanism. Let us summarize the local information that is
required to be shared with the central server for the overall framework. For the execution of
federated fuzzy c-means with k-means averaging, only the local cluster centers need to be
shared, which is already a privacy improvement over some of the existing methods. For the
calculation of the FedFuzzDB index, however, each client l needs to share more information:
its number of total data points Nl , the total spread ∑Nl

j=1 ||x(l)j − ci||q, and the local average

assignment vectors ∑Nl
j=1 u(l)

ij for all clusters i = 1, . . . , K. As noted in [21], this information

can be used to formulate a system of nonlinear equations where data x(l)i are the only
unknowns (i = 1, . . . , Nl , l = 1, . . . , P). While not necessarily easy to solve, this imposes
a privacy risk. In [21], the server does not know Nl , which is an effective prevention, as
they explain. Hence, if we hide Nl from the central server, we prevent the privacy risk.
Luckily, the calculation of the FedFuzzDB index only requires ∑P

l=1 Nl . If we outsource
the calculation of ∑P

l=1 Nl to an intermediate server, we can circumvent the risk. Another
option is to perform the clustering and the validation on different servers that cannot
communicate with each other, as the system cannot be solved for X without the cluster
center information, either. However, that would require that the distances between clusters
i and j (Mij) need to submitted to the cluster validation server, e.g., by one of the clients. All
of that might not be required if the central server can be completely trusted (for example,
when local markets cooperate under the orchestration of the parent company). Usually, it
is assumed that the central server only keeps updates for immediate aggregation. Hence,
the cluster center information is supposed to be not available anymore when FedFuzzDB
is calculated.

3. Results

Our framework is evaluated on three different groups of data. Firstly, we handcraft a
non-i.i.d. clustering scenario and apply the complete clustering framework to it. The em-
phasis in this experiment is on demonstrating and motivating the use of the federated
clustering framework to obtain a global cluster structure without sharing the raw data.
Secondly, we create federated scenarios from 100 well-known cluster benchmark datasets
from the literature [41] by uniformly distributing the data to clients. This set of experiments
allows us to study how the framework performs with data of different dimensionality and
different spread, and how it behaves with increasing number of clients, but fixed number of
total data points. We will see that high sparsity is harmful and big cluster overlap is harmful
in the federated and nonfederated setting. Thirdly, we apply the complete framework to
more real-world-inspired data and demonstrate how to use it in practice. We will see that
the federated and nonfederated results are mostly consistent, and the federated clustering
is even slightly better in terms of FedFuzzDB.
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Moreover, we compare our federated fuzzy c-means with k-means averaging to fed-
erated fuzzy c-means, as introduced in [20,21]. We note that scenarios where the data are
nonuniformly distributed among clients are not investigated by these works. In fact, we
observe that the method does not converge reliably in such scenarios (see Section 3.2.1
and our preliminary work [37]). Further, note that we do not compare the method to hard
clustering methods such as [19] or [22], because we only introduced the fuzzy version of
the federated Davies–Bouldin index.

Before describing each dataset in more detail and reporting the results, we introduce
the evaluation methods for our experiments.

3.1. Evaluation Method

There are two main questions we want to answer with our evaluation.

1. How reliably can the framework detect the correct number of clusters in federated
datasets?

2. How good is the federated clustering result, and how does it compare to an assumed
central clustering result?

To answer the first question, we first need to define the “correct” number of clusters. In the
first two sets of experiments (Sections 3.2.1 and 3.2.2), we know the ground truth number of
clusters, because the data are artificially created by sampling from Gaussian distributions.
Given the ground truth number of clusters Ktrue and the detected number of clusters Ki

det
in experiment i, we simply count how often the correct number of clusters was found and
report the percentage of correct numbers:

pcorrect =
∑

Nexp
i=1 {Ki

det=Ktrue}
Nexp

, (18)

where Nexp is the total number of experiments. Moreover, we want to study how feder-
ated clustering compares to nonfederated clustering. Therefore, we report pcorrect for the
federated dataset and for the same centralized dataset.

The second challenge is to evaluate the clustering result itself. On the one hand, we
use the (federated) Davies–Bouldin index introduced in this work. Moreover, we calculate
a “knowledge gap” metric whenever ground truth cluster centers are known:

gap :=
K

∑
k=1

√√√√ D

∑
i

(c̃k[i]− ck[i])2

Var(x[i])
, (19)

between two sets of cluster centers c̃ = (c̃1, . . . , c̃K), and c = (c1, . . . , cK) and Var(x[i])
denotes the variance in the i-th dimension. This gives us a normalized measure of the
distance between the cluster centers and another indication of whether the algorithm
converged to a meaningful result.

3.2. Experiments

As our parameter setup, we chose ε = 0.001 in the centralized case, for local conver-
gence, and for global convergence. As noted before, we chose m = 2, p = 2, and q = 1 for
all experiments. Code to reproduce the results is available (https://github.com/stallmo/
federated_clustering).

3.2.1. Framework Demonstration on Artificial Data

We revisit the motivational example from the introduction (Section 1.1). In this exam-
ple, we start with a centrally created dataset by drawing from five Gaussian distributions:
500 examples each drawn from distributions centered at μ1 = (0, 0), μ3 = (1, 1), 1000 ex-
amples each drawn from distributions centered at μ2 = (0, 1), μ4 = (1, 0) and standard
deviation σ1 = 0.2, 120 examples drawn from a distribution centered at μ5 = (0.5, 0.5) and
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σ2 = 0.01 (see also Figure 1). Hence, there are five ground truth centers. First, we verify that
the five ground truth centers can indeed be found in a nonfederated scenario. We obtain
clustering results for K = 2, . . . , 7 and calculate the (nonfederated) Davies–Bouldin index
for each result. As expected, the index is smallest for K = 5 (Table 1). Second, the data
are distributed to three clients such that all clients have data from three clusters in total:
two of the four bigger clusters and a few points from the smaller cluster. In particular,
each client receives 40 points from distribution (μ5, σ2). Client 1 receives 500 points each
from distributions (μ1, σ1) and (μ2, σ1). Client 2 receives 500 points each from (μ2, σ1)
and (μ4, σ1). Client 3 receives 500 points each from (μ3, σ1) and (μ4, σ1). Next, each client
applies the (nonfederated) fuzzy c-means separately on their local data for K ∈ {2, 3, 4, 5}
and calculates the (nonfederated) fuzzy Davies–Bouldin index. In this experimental setup,
all clients would conclude that they have only two clusters, as K = 2 results in the smallest
Davies–Bouldin index (Table 1). The clients only detect the two bigger clusters in their
data and disregard the smaller cluster. When applying the federated clustering frame-
work outlined in Section 2.2, the correct number of clusters K = 5 is found. Please refer
to Table 1 for an overview of the results. This experiment shows that the framework is
capable of identifying global cluster structure even though it is hidden behind local op-
tima without sharing the raw data. For comparison, we repeat the same experiment with
the federated fuzzy c-means formulation that applies federated averaging, as introduced
in [20,21] (see also Section 2.1). Note that the setting is non-i.i.d. in the sense that not
all clients have data from the same clusters and that such a situation was not part of the
analysis in [20,21]. For an overview of the results, please refer to Table 2. We observe that
the federated averaging formulation struggles to identify the ground truth centers in this
setting. The Davies–Bouldin index is generally higher with federated averaging than with
k-means averaging. This indicates that the clustering can be considered less meaningful.
The same is indicated by the higher ground truth gap, i.e., the ground truth centers could
not be found. Consequently, this also leads to a wrong estimate for the number of global
cluster centers. All in all, the results with federated averaging appear to be less reliable
than k-means averaging on non-i.i.d. data. However, as we will see in the next section,
the results on i.i.d. data are similar and, therefore, consistent with [20,21].

The drop in performance can be explained by the lack of a “grouping mechanism”.
The grouping mechanism must identify a group of local centers that belong to the same
global center and, hence, are used to update that global center. In the case that each
client has data from the same clusters (thus, finds and reports similar centers locally), that
matching is (implicitly) given. Since all clients have points from the same clusters, all local
updates will move in the same direction and there is no ambiguity. With widely different
data locally, the local updates will also be very different and there must be a mechanism
to deal with the ambiguity, e.g., a grouping of local updates. Using k-means as averaging
function directly provides such a mechanism and, as a consequence, produces more reliable
results in non-i.i.d. settings.

Table 1. Local and federated clustering results on the motivational dataset with k-means averaging.
The best result per experiment (column) is bold.

Fuzzy
Davies–
Bouldin

Central
(Nonfederated)

Federated
Local
Client 1

Local
Client 2

Local
Client 3

K = 2 0.8707 0.8179 0.6426 0.6437 0.6381
K = 3 0.5687 0.6055 0.7289 0.6991 0.7704
K = 4 0.4869 0.4951 1.0637 1.0706 1.1248
K = 5 0.4348 0.4289 0.9260 0.8927 0.9496
K = 6 0.5440 0.6202 — — —
K = 7 0.6707 0.5072 — — —
K = 8 0.5680 0.6221 — — —
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Table 2. Local and federated clustering results on the motivational dataset with federated averaging.
The best result per experiment (column) is bold

Fuzzy
Davies–
Bouldin

Central
(Nonfederated)

Federated
Local
Client 1

Local
Client 2

Local
Client 3

K = 2 0.8707 1.0047 1.0356 0.8620 0.9685
K = 3 0.5687 0.9143 0.8880 0.8370 0.8647
K = 4 0.4869 1.1683 1.1924 0.9221 1.1662
K = 5 0.4348 2.9158 2.8867 2.4132 2.9538
K = 6 0.5440 1.5063 — — —
K = 7 0.6707 0.9248 — — —
K = 8 0.5680 1.2115 — — —

3.2.2. Evaluation on Benchmark Data

We test our framework on cluster benchmark sets from an online repository (http:
//cs.uef.fi/sipu/datasets/, accessed on 17 March 2022) [41]. In particular, the G2 sets
were introduced in [42] and each set was generated by drawing 2048 samples from two
Gaussian distributions with different means, i.e., each set contains two ground truth centers.
The Gaussians are centered at μ1 = (500, 500, . . . ) and μ2 = (600, 600, . . . ) with standard
deviations σ ∈ {10, 20, . . . , 100} and dimension D ∈ {2, 4, 8, . . . , 1024}. In total, there
are 100 sets with varying dimension and standard deviation. In order to evaluate the
federated clustering framework, we randomly (but uniformly) distribute the points among
P ∈ {2, 5, 10} clients. Note that the number of samples is fixed to be 2048 such that with an
increasing number of clients, each clients has fewer samples. Each experiment is repeated
20 times and the averages over the runs are reported.

The first step is to determine the correct number of clusters for each G2 set. We follow
the procedure described in Section 2.2.3 for K ∈ [2, . . . , 6] and choose the minimum as
the framework’s guess. An overview of the results can be found in Table 3 and Figures 2
and 3 for the framework with k-means averaging. Moreover, the complete framework is
evaluated with the federated averaging method for comparison. Results are summarized in
Table 3 as well. For the calculation of the correct number of cluster guesses metric in Table 3,
we only consider datasets with clustering results with a federated fuzzy Davies–Bouldin
index below 1.3. Through exploratory analysis we found that a higher Davies–Bouldin
index often shows that the algorithm could not converge (which we also discuss later in this
section). In such cases, the framework’s cluster number guess is meaningless, because the
clustering itself is not meaningful. Note that the value of 1.3 coincides with the 75% quantile
in all scenarios (central, k-means averaging, and federated averaging) such that the number
of considered datasets is similar for all evaluations.

First, we observe that in the nonfederated, central clustering case, the correct number
of clusters can be found in 92.2% of all cases with an federated fuzzy DB index below
1.3. This detection rate is slightly lower in the federated case. Generally, it decreases with
an increasing number of clients (while keeping the number of data points fixed). This
effect is independent of the clustering method. The effect can be explained by sparsity, as
we discuss at the end of this section. High sparsity leads to decreased cluster algorithm
performance and, as a consequence, to less meaningful number of cluster detection.

Table 3. Correct cluster guesses with different numbers of clients (DB index below 1.3).

Correct Central Two Clients Five Clients Ten Clients

k-means avg. 92.9% 91.4% 88.0% 87.2%
Federated avg. 90.4% 89.5% 88.9%
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Figure 2. Correct number of cluster guesses on all 100 G2 sets per standard deviation σ. The values
are averaged over all dimensions and runs. We observe a decline of correct number of cluster guesses
with increasing σ. The figure shows results of the k-means averaging, but they are similar with
federated averaging.
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Figure 3. Correct number of cluster guesses on all 100 G2 sets per dimension. The values are averaged
over all values of σ and runs. We observe few correct guesses in the two dimensional case, a peak for
D = 8, then a decline that stabilizes after D = 64. The overall trend is similar for all number of clients.
The figure shows results of the k-means averaging, but they are similar with federated averaging.

We want to demonstrate the effect of sparsity by taking a closer look at the full G2
set for the k-means averaging. The performance generally worsens with increasing σ
(Figure 3; averaged over all D), independent of the number of clients. For σ ∈ {10, 20, 30},
the detection rate is close to one. For σ ∈ {40, 50, 60, 70, 80}, the detection rate is between
0.8 and 0.9 with lower numbers for higher number of clients. Finally, there is a noticeable
performance drop when σ ∈ {90, 100} with the steepest decline when P ∈ {5, 10}, where in
the majority of cases, the correct number of cases is not detected. Moreover, we also observe
detection rates varying across dimensions (Figure 3; averaged over all σ). For D = 2, the
correct number of clusters is only detected in 0.25 to 0.3 of all cases. Then, it peaks with a
detection rate close to 1 for D = 8 before decreasing and stabilizing at D = 64 and being
constant thereafter. The trend is similar for all P, with small exceptions for P = 2. However,
the level of detection rate is smallest for P ∈ {5, 10}, with the exception of D = 2, where it
is even slightly higher than in the central case.

Second, we report the results of the clustering itself in terms of (federated) fuzzy
Davies–Boulding index and knowledge gap . Overall, we see that the results are mostly
similar in the central case and in the federated scenarios for P ∈ {2, 5, 10} for either
clustering method: The 0.25, 0.5, and 0.75 quantiles and the minimum values for both
metrics are similar. However, the maximum value for the federated fuzzy Davies–Bouldin
index shows some variation (Tables 4 and 5). Similarly, the knowledge gap statistics are
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consistent, but not the same (Tables 6 and 7). Hence, in some cases, FedFCM converges
to different centers. As we will explain, the differences mostly occur due to sparsity. It is
important to note that those are the cases where FedFCM did not find a good clustering
(high knowledge gap and high FedFuzzDB) in either the central case or in the federated
settings. Overall, we conclude that the clustering results on i.i.d. data are similar in the
central case and with both federated clustering methods.

Table 4. Statistics of the (federated) fuzzy Davies–Bouldin index on 100 G2 test sets with k-means av-
eraging.

Fuzzy Davies–
Bouldin (K = 2) Central

Two
Clients

Five
Clients

Ten
Clients

25%
Quantile 0.6762 0.6771 0.6766 0.6766

50%
Quantile 0.8640 0.8638 0.8627 0.8627

75%
Quantile 1.3092 1.3073 1.2961 1.2944

Minimum 0.5460 0.5459 0.5459 0.5458

Maximum 56,784.5518 57.6910 23.6987 20.0192

Table 5. Statistics of the (federated) fuzzy Davies–Bouldin index on 100 G2 test sets with federated av-
eraging.

Fuzzy Davies–
Bouldin (K = 2) Central

Two
Clients

Five
Clients

Ten
Clients

25%
Quantile 0.6762 0.6767 0.6766 0.6766

50%
Quantile 0.8640 0.8627 0.8623 0.8620

75%
Quantile 1.3092 1.2997 1.2990 1.2934

Minimum 0.5460 0.5460 0.5459 0.5459

Maximum 56,784.55 31,307.76 54,809.42 9021.3485

Table 6. Statistics of the knowledge gap on the 100 G2 test sets with k-means averaging.

Knowledge
Gap (K = 2) Central

Two
Clients

Five
Clients

Ten
Clients

25%
Quantile 0.2850 0.2724 0.2700 0.2587

50%
Quantile 0.8904 0.8897 0.8900 0.8898

75%
Quantile 5.9544 5.9272 5.8335 5.4764

Minimum 0.0286 0.0278 0.0265 0.0253

Maximum 77.6472 77.540 77.7092 76.0134
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Table 7. Statistics of the knowledge gap on the 100 G2 test sets with federated averaging.

Knowledge
Gap (K = 2) Central

Two
Clients

Five
Clients

Ten
Clients

25%
Quantile 0.2850 0.2729 0.2693 0.2679

50%
Quantile 0.8904 0.8888 0.8902 0.8899

75%
Quantile 5.9544 5.5436 5.4888 5.4320

Minimum 0.0286 0.0285 0.0283 0.0281

Maximum 77.6472 77.6472 77.6472 77.6472
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Figure 4. The federated Davies–Bouldin index on 100 G2 sets per standard deviation σ. The values
are averaged over all values of D and runs. As expected, we see an increasing index with higher
σ. However, the index suggests that it is hard to find good clusterings with FedFCM for σ ≥ 80.
The values outside this plot are 434.4732 and 2463.9748 (central).

With this in mind, we enter the discussion of the results and offer an explanation for
some of the observations. First, we want to understand why the cluster number detection
rate is lower for higher values of σ. Recall that the Davies–Bouldin index is the ratio of
“cluster spread” and “center closeness”. Hence, the index is high for clusters that naturally
have a high spread, i.e., high σ as depicted in Figure 4 (while keeping the center distances
fixed, as in our experiments). In such cases, the index could be reduced by introducing
a new cluster, because the gain through the lower spread is relatively big. This behavior
is intensified by the poor performance of fuzzy c-means on sparse data. In such cases,
(local) fuzzy c-means centers (regardless of K) tend to converge to the center of mass of
the whole dataset [30]. Hence, the global centers are also all close to the center of mass,
and, thus, to each other. This leads to favoring a higher number of clusters. With fewer
data points per client (i.e., more clients in our experiments), the data become even more
sparse and the effect more severe. Overall, we attribute the lower detection rate to poor
performance of FedFuzzDB and FedFCM in sparse spaces. Note that this is a shortcoming
of the nonfederated equivalents as well. Second, we want to understand why the cluster
number detection rate is so much lower in the two-dimensional case (Figure 3). As opposed
to the high-dimensional case, in two dimensions, we are faced with a very dense space and
a significant cluster overlap even for smaller values of σ. Through visual inspection, we
found that in some cases it is even questionable whether there exist two clusters, because of
the high overlap. Even though FedFCM identifies cluster centers correctly for K = 2 (small
knowledge gap), the FedFuzzDB can be reduced by introducing more clusters because of
the high spread, even for smaller values of σ. We attribute the low detection rate in the
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two-dimensional G2 sets to the FedFuzzDB index and its bias towards more clusters in
data with high overlap. Again, the federated and nonfederated versions both suffer from
this effect alike.

In summary, with our experiments, we show that the federated and nonfederated
fuzzy Davies–Bouldin in interplay with the federated and nonfederated fuzzy c-means
algorithms behave similarly in most tested situations. We tested the behavior on data with
big cluster overlap (high value of σ in low-dimensional spaces) or sparsity. Sparsity was
introduced through a big spread in high-dimensional spaces or an increased number of
clients with a fixed dataset size. While generally reliable, the federated and nonfederated
cluster algorithms struggle with extreme overlap or extreme sparsity. The federated and
nonfederated indices favor a higher number of clusters in such situations. Overall, we see
promising results and a good consistency between the federated and nonfederated settings.

3.2.3. Evaluation on Real-World Data

In the last two sections it was investigated how the framework behaves on artificial
data with well-controlled properties. With this final experiment, we want to evaluate the
framework on more real-world-inspired data and demonstrate how it could be used in
practice. The data for this experiment were first introduced in [43] and can be accessed
through the UCI machine learning repository (https://archive.ics.uci.edu/ml/datasets/
Bank+Marketing, accessed on 27 March 2022) and are about customers of a bank. In partic-
ular, we are interested in the customers’ recorded job, age, balance, and education. Based
on the job information, we split the data to create a federated setting. Each client has data
of only one job group. For example, one client has all records of students, another has
all data of retired persons and another has all records of managers, etc. In total, there
are 11 job categories such that there are 11 clients in the federated setting. Based on the
remaining columns (age, balance, education), we want to form groups of similar customers
using (federated) fuzzy c-means following the framework introduced in Section 2.2.3: deter-
mine the number of global clusters, derive a soft partitioning of the data, and validate the
clustering. For comparison, we also compute the partitioning on the full, but centralized,
dataset as well as the local-only datasets. Before applying the framework, we preprocess
the data: we translate education into numerical values (primary: 1, secondary: 2, tertiary:
3), roughly estimating the time spent in school/university, rows with unknown values are
dropped, and each column is standardized to have zero mean and standard deviation of
1. In total, we are left with 43,193 rows in the dataset. Each client holds data of only one
job group: job group “management” has 9216 examples, “technician” 7355, “entrepreneur”
1411, “retired” 2145, “admin” 5000, “services” 4004, “blue-collar” 9278, “self-employed”
1450, “unemployed” 1274, “housemaid” 1195, and “student” 775 examples.

First, we need to determine the number of clusters by executing the first step of
our framework. We set the minimum of clusters Kmin = 3. Each client has at least
3 clusters in its local-only data. We draw that conclusion from calculating the (nonfederated)
fuzzy Davies–Bouldin index and applying the elbow method (see Figure 5 for examples).
The maximum number of clusters is set to Kmax = 9, because it provides a buffer for
the identification of forming clusters. One of the clients (entrepreneur) reports that it
has six clusters and we choose Kmax = Kmin + maxl K(l) = 9 according to our rule of
thumb (Section 2.2.3). For each K ∈ [Kmin, Kmax], the partitioning using the federated
fuzzy c-means algorithm with k-means averaging and the FedFuzzDB index is calculated.
The results can be found in Figure 6. The elbow method suggests the number of global
clusters to be four, five, or six. Additionally, the figure contains the results of the same
analysis in the nonfederated setting. Similarly, the method suggests that there are four or six
in the centralized data, showing good consistency. As common in practice, the index only
gives a good indication on the number of clusters and the practitioner is left to make the
final call. Notably, the nonfederated and federated index values are not the same. Generally,
the FedFuzzDB index is slightly lower than the nonfederated index. That implies that the
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federated method returns better centers (as measured by the Davies–Bouldin index) than
its nonfederated counterpart.
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Figure 5. Local-only Davies–Bouldin index for different (but not all) clients. According to the index
and the elbow method, each client has a different number clusters locally (management, K = 5;
technician, K = 4; student, K = 3).
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Figure 6. Federated fuzzy Davies–Bouldin index for different number of clusters.

Second, we want to understand why the federated index is lower than the nonfed-
erated index. Therefore, we compare the federated and nonfederated cluster centers for
K = 4. We note that three out of the four centers are almost identical. The three centers
all have similar values in feature direction “balance” and are very different in the other
dimensions “education” and “age”. Intuitively, this makes sense because the vast majority
of data have relatively low balance, and the other dimensions are key discriminators. The
fourth center is the center of wealthy customers (very high account balance) in the federated
and the nonfederated settings. However, in the federated setting, the center has a higher
value for “balance” (3.1) compared to the central clustering (2.4). For a visualization of the
centers, please refer to Figure 7. Hence, the center is further from the other centers, which
is is the reason for a lower FedFuzzDB index. In the central clustering case, the center does
not move as far in the balance direction, because the mass of all points has a value close
to zero. Recall that in fuzzy clustering all points are considered for the calculation of the
center. Hence, many points (even though with low weight for further points) still have a
noticeable effect. The key difference is that the federated clustering algorithm computes
global centers based on the local cluster centers, which changes the relative importance in
this case. To illustrate this, seven of 40 local-only cluster centers have a balance of >2.4,
which is 15.9% of all local-only cluster centers. In contrast, in the central dataset, only 3.9%
of all points have a balance of >2.4. This leads to higher cluster center dissimilarity Mij.
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The lower FedFuzzDB index lets us conclude that the effect on the spread (and, hence,
the assignments uij) is small.

(a) (b)

Figure 7. (a) Local-only clustering results for K = 4 of the clients in one plot. Each color corresponds
to one client. (b) Federated and centralized cluster centers for K = 4. The darker points are the
federated cluster centers and the brighter points are the central cluster centers.

In summary, we demonstrate how our cluster analysis framework can be applied to
gain insights from real-world datasets. We see that there is a good consistency between the
federated and the nonfederated cluster results, and the federated algorithm produces even
better results in terms of (federated) fuzzy Davies–Bouldin index.

4. Discussion

In this work, we introduce a federated clustering framework (Section 2.2) that solves
three challenges: determine the number of global clusters in a federated dataset, obtain
a global clustering via a federated fuzzy c-means algorithm (Section 2.2.1), and validate
the clustering through a federated cluster validation metric (Section 2.2.2). To the best of
our knowledge, there exists no other similar federated cluster analysis framework. Instead,
previous works mostly focus on the clustering method itself. The lack does not stem from
the lack of necessity, as we show with our motivational example (Section 1.1): There exist
situations where global clusters remain hidden behind local clients’ optima.

The complete framework is evaluated through numerical experiments on different
datasets (Section 3). We find that the framework identifies global cluster structures (correct
number of clusters and data partitions) that are hidden in non-i.i.d. data (Section 3.2.1). We
also find that the framework performs reliably if the data have certain properties, but fails
if they do not (Section 3.2.2). In particular, it struggles with sparse data as well as with high
cluster overlap. This is consistent with the equivalent nonfederated setting. In our last set
of experiments, we outline how the framework can be applied in practice. It shows a good
consistency with nonfederated clustering, and can even find better data partitions than in
the centralized case (as measured by the Davies–Bouldin index).

Lastly, we see multiple interesting research directions for future works. One direction
is to better understand the theoretical properties of the federated fuzzy c-means algorithm
with k-means averaging. Moreover, the calculation of the federated fuzzy Davies–Bouldin
index potentially creates a privacy risk. We suggest simple prevention mechanisms, but an
in-depth analysis could lead to more sophisticated mechanisms. Furthermore, the cluster
determination method still needs an initial range for the number of clusters, which can
be hard to obtain. We provide a rule of thumb, but a better understanding of when and
how federated clusters form could help to make this initial guess more accurate or even
automate the choice. Moreover, FedFuzzDB can be extended to a federated crisp clustering
or can be applied in combination with other clustering algorithms. Finally, the framework
can be extended to include more steps in cluster analysis, such as federated preprocessing
or feature selection.
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Overall, we propose the first federated cluster validation metric, a new federated clus-
tering approach based on existing works in the field, propose a comprehensive federated
cluster analysis framework, and demonstrate how it can be applied. In comprehensive
experiments, we observe promising results and identify shortcomings. Topics such as
theoretical properties of the clustering algorithm and privacy evaluation of the framework
have only been briefly discussed and can be addressed in more detail in future works.

Author Contributions: Conceptualization, methodology, validation, analysis: M.S. and A.W.; soft-
ware: M.S.; writing—original draft preparation: M.S.; writing—review and editing: A.W.; visu-
alization: M.S.; supervision: A.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The analyzed data can be retrieved from online repositories as refer-
enced in the article. Online repositories are referenced in the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. EU. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data (...) (General Data Protection Regulation). Off. J. Eur. Union 2016, 119, 1–88.

2. Kairouz, P.; McMahan, H.B. Advances and Open Problems in Federated Learning. Found. Trends® Mach. Learn. 2021, 14, 1–210.
[CrossRef]

3. Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Eichner, H.; Kiddon, C.; Ramage, D. Federated
learning for mobile keyboard prediction. arXiv 2018, arXiv:1811.03604.

4. Ye, D.; Yu, R.; Pan, M.; Han, Z. Federated Learning in Vehicular Edge Computing: A Selective Model Aggregation Approach.
IEEE Access 2020, 8, 23920–23935. [CrossRef]

5. Deist, T.M.; Jochems, A.; van Soest, J.; Nalbantov, G.; Oberije, C.; Walsh, S.; Eble, M.; Bulens, P.; Coucke, P.; Dries, W.; et al.
Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: EuroCAT.
Clin. Transl. Radiat. Oncol. 2017, 4, 24–31. [CrossRef]

6. Brisimi, T.S.; Chen, R.; Mela, T.; Olshevsky, A.; Paschalidis, I.C.; Shi, W. Federated learning of predictive models from federated
Electronic Health Records. Int. J. Med. Inform. 2018, 112, 59–67. [CrossRef]

7. Grefen, P.; Ludwig, H.; Tata, S.; Dijkman, R.; Baracaldo, N.; Wilbik, A.; D’hondt, T. Complex collaborative physical process
management: A position on the trinity of BPM, IoT and DA. In IFIP Advances in Information and Communication Technology,
Proceedings of the Working Conference on Virtual Enterprises, Cardiff, UK, 17–19 September 2018; Springer: Cham, Switzerland, 2018;
pp. 244–253.

8. Duan, M.; Liu, D.; Chen, X.; Tan, Y.; Ren, J.; Qiao, L.; Liang, L. Astraea: Self-Balancing Federated Learning for Improving Classification
Accuracy of Mobile Deep Learning Applications. In Proceedings of the 2019 IEEE 37th International Conference on Computer Design
(ICCD), Abu Dhabi, United Arab Emirates, 17–20 November 2019; pp. 246–254. [CrossRef]

9. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and
Communication by Federated Learning. IEEE Netw. 2019, 33, 156–165. [CrossRef]

10. Yin, X.; Zhu, Y.; Hu, J. A Comprehensive Survey of Privacy-Preserving Federated Learning: A Taxonomy, Review, and Future
Directions. ACM Comput. Surv. 2021, 54, 1–36. [CrossRef]

11. Khan, L.U.; Saad, W.; Han, Z.; Hossain, E.; Hong, C.S. Federated Learning for Internet of Things: Recent Advances, Taxonomy,
and Open Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 1759–1799. [CrossRef]

12. McLachlan, G. Cluster analysis and related techniques in medical research. Stat. Methods Med. Res. 1992, 1, 27–48. [CrossRef]
13. Maione, C.; Nelson, D.R.; Barbosa, R.M. Research on social data by means of cluster analysis. Appl. Comput. Inform. 2019,

15, 153–162. [CrossRef]
14. Bolin, J.H.; Edwards, J.M.; Finch, W.H.; Cassady, J.C. Applications of cluster analysis to the creation of perfectionism profiles:

A comparison of two clustering approaches. Front. Psychol. 2014, 5, 343. [CrossRef] [PubMed]
15. Ketchen, D.J.; Shook, C.L. The application of cluster analysis in strategic management research: An analysis and critique. Strateg.

Manag. J. 1996, 17, 441–458. [CrossRef]
16. Punj, G.; Stewart, D.W. Cluster analysis in marketing research: Review and suggestions for application. J. Mark. Res. 1983,

20, 134–148. [CrossRef]
17. Hudson, S.; Ritchie, B. Understanding the domestic market using cluster analysis: A case study of the marketing efforts of Travel

Alberta. J. Vacat. Mark. 2002, 8, 263–276. [CrossRef]

89



Appl. Sci. 2022, 12, 10455

18. Milligan, G.W.; Cooper, M.C. Methodology review: Clustering methods. Appl. Psychol. Meas. 1987, 11, 329–354. [CrossRef]
19. Kumar, H.H.; Karthik, V.R.; Nair, M.K. Federated K-Means Clustering: A Novel Edge AI Based Approach for Privacy Preservation.

In Proceedings of the 2020 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), Bengaluru, India,
6–7 November 2020; pp. 52–56. [CrossRef]

20. Pedrycz, W. Federated FCM: Clustering Under Privacy Requirements. IEEE Trans. Fuzzy Syst. 2022, 30, 3384–3388. [CrossRef]
21. Bárcena, J.L.C.; Marcelloni, F.; Renda, A.; Bechini, A.; Ducange, P. A Federated Fuzzy c-means Clustering Algorithm. In Proceed-

ings of the International Workshop on Fuzzy Logic and Applications (WILF 2021), Vietri sul Mare, Italy, 20–22 December 2021.
22. Dennis, D.K.; Li, T.; Smith, V. Heterogeneity for the Win: One-Shot Federated Clustering. In Proceedings of the 38th

International Conference on Machine Learning, PMLR 2021, Virtual, 18–24 July 2021; Meila, M., Zhang, T., Eds.; 2021; Volume 139,
pp. 2611–2620.

23. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning—Data Mining, Inference and Prediction; Springer: New York,
NY, USA, 2017.

24. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms; Society for Industrial and Applied Mathematics, SODA ’07, New Orleans, LA, USA,
7–9 January 2007; pp. 1027–1035.

25. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

26. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
27. Kolen, J.; Hutcheson, T. Reducing the time complexity of the fuzzy c-means algorithm. IEEE Trans. Fuzzy Syst. 2002, 10, 263–267.

[CrossRef]
28. Suganya, R.; Shanthi, R. Fuzzy C- Means Algorithm—A Review. Int. J. Sci. Res. Publ. 2012, 2, 1–3.
29. Steinbach, M.; Ertöz, L.; Kumar, V. The challenges of clustering high dimensional data. In New Directions in Statistical Physics;

Springer: Berlin/Heidelberg, Germany, 2004; pp. 273–309.
30. Winkler, R.; Klawonn, F.; Kruse, R. Fuzzy C-Means in High Dimensional Spaces. Int. J. Fuzzy Syst. Appl. 2011, 1, 1–16. [CrossRef]
31. Davies, D.; Bouldin, D. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [CrossRef]
32. Vergani, A.A.; Binaghi, E. A Soft Davies–Bouldin Separation Measure. In Proceedings of the 2018 IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [CrossRef]
33. Ghosh, A.; Chung, J.; Yin, D.; Ramchandran, K. An Efficient Framework for Clustered Federated Learning. In Advances in

Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2020; Volume 33, pp. 19586–19597.

34. Sattler, F.; Muller, K.R.; Samek, W. Clustered Federated Learning: Model-Agnostic Distributed Multitask Optimization Under
Privacy Constraints. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3710–3722. [CrossRef]

35. Kim, Y.; Hakim, E.A.; Haraldson, J.; Eriksson, H.; da Silva, J.M.B.; Fischione, C. Dynamic Clustering in Federated Learning.
In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021;
pp. 1–6. [CrossRef]

36. Xie, M.; Long, G.; Shen, T.; Zhou, T.; Wang, X.; Jiang, J.; Zhang, C. Multi-center federated learning. arXiv 2021, arXiv:2108.08647.
37. Stallmann, M.; Wilbik, A. Towards Federated Clustering: A Federated Fuzzy c-Means Algorithm (FFCM). In Proceedings of the

International Workshop on Trustable, Verifiable and Auditable Federated Learning in Conjunction with AAAI 2022 (FL-AAAI-22),
Vancouver, BC, Canada, 1 March 2022.

38. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, 2017; pp. 1273–1282.

39. Bholowalia, P.; Kumar, A. EBK-means: A clustering technique based on elbow method and k-means in WSN. Int. J. Comput. Appl.
2014, 105, 17–24.

40. Milligan, G.W.; Cooper, M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika
1985, 50, 159–179. [CrossRef]

41. Fränti, P.; Sieranoja, S. Clustering Basic Benchmark. 2018. Available online: http://cs.uef.fi/sipu/datasets/ (accessed on
27 March 2022).

42. Mariescu-Istodor, P.F.R.; Zhong, C. XNN graph. LNCS 2016, 10029, 207–217.
43. Moro, S.; Cortez, P.; Rita, P. A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst. 2014,

62, 22–31. [CrossRef]

90



Citation: Zaikis, D.; Karalka, C.;

Vlahavas, I. A Message Passing

Approach to Biomedical Relation

Classification for Drug–Drug

Interactions. Appl. Sci. 2022, 12,

10987. https://doi.org/10.3390/

app122110987

Academic Editors: Pavlos S.

Efraimidis, Avi Arampatzis and

George Drosatos

Received: 30 September 2022

Accepted: 27 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Message Passing Approach to Biomedical Relation
Classification for Drug–Drug Interactions

Dimitrios Zaikis *,†, Christina Karalka † and Ioannis Vlahavas *

School of Informatics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
* Correspondence: dimitriz@csd.auth.gr (D.Z.); vlahavas@csd.auth.gr (I.V.)
† These authors contributed equally to this work.

Featured Application: With this contribution, we aim to aid the drug development process as

well as the identification of possible adverse drug events due to simultaneous drug use.

Abstract: The task of extracting drug entities and possible interactions between drug pairings is
known as Drug–Drug Interaction (DDI) extraction. Computer-assisted DDI extraction with Machine
Learning techniques can help streamline this expensive and time-consuming process during the
drug development cycle. Over the years, a variety of both traditional and Neural Network-based
techniques for the extraction of DDIs have been proposed. Despite the introduction of several
successful strategies, obtaining high classification accuracy is still an area where further progress
can be made. In this work, we present a novel Knowledge Graph (KG) based approach that utilizes
a unique graph structure in combination with a Transformer-based Language Model and Graph
Neural Networks to classify DDIs from biomedical literature. The KG is constructed to model the
knowledge of the DDI Extraction 2013 benchmark dataset, without the inclusion of additional external
information sources. Each drug pair is classified based on the context of the sentence it was found
in, by utilizing transfer knowledge in the form of semantic representations from domain-adapted
BioBERT weights that serve as the initial KG states. The proposed approach was evaluated on the
DDI classification task of the same dataset and achieved a F1-score of 79.14% on the four positive
classes, outperforming the current state-of-the-art approach.

Keywords: Drug–Drug Interactions; transformers; graph neural networks; language models; relation
classification; domain-adaption

1. Introduction

Drug–Drug Interactions (DDI) refer to the pharmacological action between drugs
that can occur during polypharmacy, and the co-administration of more than one drug
can potentially lead to harmful adverse drug reactions that have a significant impact on
public health. Most DDIs are discovered during the various drug development stages
or during Phase IV clinical trials conducted on already publicly available drugs [1]. The
dissemination of these findings are reported at an exponential rate, rendering the task of
manually finding the most relevant information very difficult and time-consuming [2].
However, the heterogeneity of the available data regarding DDIs presents new challenges
in their exploration, analysis and manageability. The identification and retrieval of docu-
mented drug interactions requires gathering and analyzing data from multiple data sources,
especially in the early stages of drug development.

Moreover, as the practice of medicine and scientific research increasingly produces
and depends on data, addressing these issues becomes a necessity. Therefore, the automatic
extraction of DDIs from biomedical literature is important in order to accelerate this time-
consuming and strenuous process. Vast amounts of relevant knowledge can be extracted
from various types of information sources such as scientific literature, electronic health
records, online databases and many more [3]. However, these sources contain textual
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information that is very diverse in terms of type, format, level of detail and differ in
terms of expressiveness and semantics. Additionally, the possibility of conflicting or
outdated information presents among the various sources adds to the overall complexity
regarding the collection, storage and analysis of the data and consequently the extraction
and exploitation of the hidden wealth of information.

DDI extraction from textual corpora is a traditional Relationship Extraction (RE) task
in Machine Learning (ML) that aims to classify the interaction between drug entities [4]
into specific predefined categories. Related DDI extraction studies vary based on the
underlying task they aim to tackle and could be divided into pattern-based, traditional
machine learning-based and deep learning-based [5]. The DDI classification task focuses
on classifying the interactions between drug pairs by using gold entities with Relationship
Classification (RC) techniques and are evaluated on the DDI Extraction 2013 corpus, which
is considered as the benchmark dataset [6]. Similar to all underlying extraction tasks, the
Deep Learning-based (DL) methods achieve the best performance and advance the state-of-
the-art research in this field. Early DL-based approaches mainly utilized Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) as their base architectures
to learn better task-specific representations with the use of contextualized information
incorporated into their Neural Network-based architectures.

Liu et al. [7] introduced the first CNN-based approach for the DDI task, focusing
on local sentence information without defining additional features generated by Natural
Language Processing (NLP) toolkits. They applied a convolutional layer that takes the
input from a look-up table constructed from word and position embeddings, leveraging
the neural networks ability to automatically learn features. A max pooling layer then
extracts the most important feature from each feature vector before finally classifying the
interactions into one of the five classes using a softmax layer. The reported results show
that the position embeddings improve the classification performance but face challenges
due to the different position distribution on the test set.

Similarly, Quan et al. [8] integrated multiple word embeddings in their proposed
MCCNN model, to tackle the vocabulary gap, the integration of semantic information
and the manual feature selection in the DDI extraction task. The proposed approach
implemented a multi-channel CNN model and fused multiple versions of word embeddings
that were trained on biomedical domain corpora. However, the systems performance
depends greatly on the CNN’s window size, leading to errors in long sentences where the
relevant drug mentions are either very close or very far from each other. In an attempt to
capture long distance dependencies, Liu et al. [9] utilized syntactic features in the form of
dependency parsing trees and word syntax-based embeddings in their proposed DCNN
approach. Due to the small number of correctly parsed long sentences, a threshold was
implemented where sentences with a length smaller than the threshold were classified
by the DCNN, while the rest by a CNN. Similarly, Zhao et al. [10] utilized dependency
features in combination with Part-of-Speech (PoS) and position embeddings with an auto-
encoder to transfer sparse bag-of-words feature vectors to dense real value feature vectors.
The proposed SCNN approach additionally implemented a rule-based negative instance
filtering, leading to limited generalization ability.

To alleviate the limitations of CNN-based approaches, various DDI extraction studies
employed RNN-based networks that capture long sequences using an internal memory
mechanism, such as Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU)
networks. Accordingly, Wang et al. [11] presented a three channel bidirectional LSTM
(BiLSTM) architecture to capture distance and dependency-based features with their DL-
STM model. To account for the imbalanced class distribution of the DDI corpus, negative
instance filtering and training set sampling were employed. However, the reported results
indicate that the lengths of the instances continue to adversely affect the classification
performance of the model. Yi et al. [12] introduced 2ATT-RNN, a GRU architecture that
leverages multiple attention layers. A word-level attention layer extracts sentence represen-
tations in combination with a sentence-level attention layer that combines other sentences
containing the same drug mentions. However, the inclusion of the negative class in the
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overall performance metric does not allow for a clear depiction of the effectiveness of
the proposed method. Zhang et al. [13] divided the input sentence sequences into three
parts according to the position of two drug entities, and applied a hierarchical BiLSTMs to
integrate sentence sequences, shortest dependencies paths and attention mechanisms to
classify DDIs. The experimental results show improvements over the previous approaches,
but continue to underperform in cases where the two drug entities are mentioned over a
long distance with each other.

Similarly, Zhou et al. [14] utilized the attention mechanism in a BiLSTM-based archi-
tecture. To improve the efficiency of the attention mechanism, the proposed PM-BLSTM
system utilizes an additional position embedding to generate the attention weights. The
model takes advantage of multi-task learning by predicting whether or not two drugs inter-
act with each other, further distinguishing the types of interactions jointly. The reported
results show that the position-wise attention improves the performance but continues to
misclassify instances that contain multiple drug mentions. Salman et al. [15] proposed a
straightforward LSTM and attention-based architecture and expanded the DDI extraction
task to include sentiment-based severity prediction. The sentence-level polarity is extracted
using an NLP toolkit and finally classified as either low, moderate or high level of severity
for instances that contain at least on DDI. However, the Word2Vec [16] generated word
embeddings are context-independent and do not account for the word positions in the
sentences. Furthermore, Word2Vec learns word level embeddings, resulting in the same
embedding for any learned word, independently of the surrounding context. Therefore,
this type of embedding cannot generate representations for words encountered outside the
initial vocabulary space, which is a major disadvantage in the DDI corpus.

Recently, Transformer-based Language Models (LM) such as ELMo [17], GPT-2 [18]
and BERT [19] achieved state-of-the-art results in general domain NLP. By leveraging
the capabilities of the transformers, transfer learning and the self-supervised training ap-
proach, biomedical and scientific-domain LMs, such as BioBERT [20] and SciBERT [21],
were introduced in the DDI extraction task as well. Mondal [22] incorporated BioBERT as a
pre-trained LM and chemical structure representations of drugs, in the form of SMILES, to
extract DDIs from text. The proposed approach focused on the encoding and incorporation
of the chemical structure information from external sources using a Variational AutoEn-
coder in an attempt to leverage both entities and sentence-level information. However,
the low dimensionality of the final representations used for the Transformer initialization
could potentially lead to information loss in longer sentences.

The integration and utilization of knowledge through semantic representations of data
aims to mitigate the aforementioned problems [23]. Specifically, in recent years, biomedical
knowledge base information represented as Knowledge Graphs (KG) tends to be preferred
more and more often. KGs are powerful knowledge representation models which focus
on the semantic meaning instead of only on the information structures, modeling the
relationships between the graph entities [24]. As a result, KGs provide a homogenized
view of data regardless of their origin, allowing for human-interpretable encoding of
domain-specific information with the use of node and relation types.

Consequently, Graph Neural Networks (GNN) that take advantage of graph-based
structures, in combination with Transformer-based LMs, have seen great success in various
general-domain NLP tasks and have been introduced in the DDI extraction task as well.
Xiong et al. [25] introduced GCNN-DDI, which utilized dependency graphs in a BiLSTM
and GCN architecture to classify the interactions. Shi et al. [26], similar to GCNN-DDI,
adopted a GNN and introduced a PageRank based multi-hop relevant words selection
strategy for the dependency graph. These approaches rely on the construction of depen-
dency trees (or syntax trees) from the sentences where nodes represent individual words
and edges the syntactic dependency paths between words in the sentence’s dependency
tree. The feature vectors of the nodes are initialized by a pre-trained domain-specific LM,
utilizing the POS tag of each word and a BiLSTM to update the initial word embeddings for
contextual feature extraction. Both approaches utilize GNNs to improve the representations
through the incorporation of dependency relations with the word embeddings. However,
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while GCNN-DDI uses the raw dependency graph, DREAM additionally enhances it with
long-range potential words discovered by PageRank by extending some potential relevant
multi-hop neighbors, which have high information transferability.

GNN-based approaches exclusively implement dependency graphs which are complex
graph structures where the number of nodes equals the number of tokens in each sen-
tence making the application of GNNs slow and computationally expensive. Additionally,
since the benchmark corpus is considered relatively small and imbalanced, proposed ap-
proaches try to overcome this limitation by incorporating complicated feature engineering
or extending the available information from external sources.

In contrast to the previously reported methods, in this paper, we present a novel KG
schema for the DDI classification task that is leveraged by our GNN-based architecture
that includes message and non-message passing units. We constructed the KG according
to the principles of the Resource Description Framework (RDF) data model where each
relation is annotated by an subject-predicate-object triplet. The proposed graph structure
is built upon the DDI corpus to model the sentence and drug mention relations and is
further semantically enhanced by domain-adapting a BERT-based LM pre-trained on large-
scale domain-specific corpora that generates the initial state of the graph nodes. Finally,
the interactions are classified by utilizing a sub-graph, taking the context of the sentence
into consideration.

We evaluated our proposed approach for the classification of DDIs according to the
SemEval 2013 shared task [4] on the DDI Extraction 2013 dataset. Experimental results indi-
cate that our KG and GNN-based classification model achieves a state-of-the-art F1-score of
79.14% on the four positive classes, outperforming other methodologies. Additionally, we
show that the KG information in combination with negative instance filtering can enhance
the performance of our model. Table A1 shows a comparative analysis of the related studies
presented in this work and our proposed approach.

The remainder of this paper is organized as follows: in Section 2, we elaborate on
the dataset used and describe our proposed approach in detail. In Section 3, we present
the experimental setup and results and elaborate on the effectiveness and limitations of
our proposed model. Finally, in Section 4, we present our conclusions and directions for
future research.

2. Materials and Methods

In this section, we introduce the dataset and the architecture of our proposed graph
neural network-based classification model for drug–drug interaction extraction, where,
given a sentence containing drug mentions, each drug pair is classified into one of the
five possible interaction categories. It consists of three main parts, which are the DDI
Knowledge Graph, the BERT-based language model and the GNN-based classification
module as shown in Figure 1. Specifically, a knowledge graph based on our proposed
DDI task related schema is created where a domain-adapted BERT-based language model
is then applied to generate meaningful word representations. This knowledge is then
integrated into a selected part of the graph, where a GNN is trained to classify the drug
pair relationship.

2.1. Dataset

The DDI–Extraction 2013 corpus [6] is a collection of biomedical texts containing
sentences from the DrugBank database and MedLine abstracts. The DrugBank database
focuses on providing information on medicinal substances, while MedLine is a more
general database of scientific publications from health-related sectors. The corpus has been
manually annotated by two expert annotators and is considered the benchmark dataset for
the text-based DDI extraction task which includes the recognition of drug named entities
and the interaction classification of the drug pairs.
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Figure 1. An overview of our proposed architecture for the classification of DDIs.

The dataset contains separate XML files where each one constitutes a document, which
is further separated into its individual sentences. For each sentence, the drugs (entity)
it mentions are listed and, for each possible pair of them, an interaction pair (relation
pair) is defined. Therefore, n drugs define n(n − 1)/2 pairs of interactions. Highlighted
elements are characterized by unique identifiers (id) that reveal their position in the XML
tree hierarchy. The corpus is split into a single training set and two separate test sets for
both drug recognition and interaction classification tasks. Table 1 provides a summary of
the corpus’s main features and statistics for the predefined train and test datasets splits.

Drug entities and interactions are classified into categories (types) based on the context
of the sentence they are mentioned in. In the majority of them, the named entities concern
drugs intended for human use and are classified as “drug”, “brand” and “group” types,
while other substances are classified as “drug_n”. Similarly, the interaction types between
two drugs when administered simultaneously are categorized as follows:

• Effect: These are changes in the effect of a substance on the body, such as the appear-
ance of symptoms and clinical findings.; The results of such effects are also referred to
as pharmacodynamic properties of drugs.

• Mechanism: Refers to modifications in the absorption, distribution, metabolism and
excretion of drugs, characteristics that constitute their pharmacokinetic properties. In
other words, it concerns how the concentration of a substance in the body is affected
by the presence of the other substances;

• Advice: Refers to descriptions containing recommendations or advice regarding the
simultaneous use of two drugs;

• Int: Assigned in the case where the existence of an association between two drugs is
mentioned, without any additional information indicating its type;

• Negative: It refers to the absence of interaction between two substances.

2.2. DDI Knowledge Graph

In order to model the DDI-specific Knowledge Graph, we used the RDF standard to
create the proposed schema for representing the corpus knowledge. Figure 2 provides an
overview of the DDI Knowledge Graph.

According to the RDF principles, the base of a knowledge graph is composed of a set
of <Subject, Predicate, Object> statements, with the Subject and Object resources being
respectively the initial and terminal nodes of a directed edge. The Predicate resource
is considered the label of the edge in question, which is a property that associates the
individual resources or serves to assign a value (Object) to some attribute of the Subject.
This basic model is extended by defining classes into which the objects of the world belong.
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Table 1. The DDI-Extraction 2013 corpus statistics.

Training Set Test Set

DNER RC

Documents 714 112 191
Sentences 6976 665 1299

Drug Entities

Drug 9425 351 1864
Group 3399 155 667
Brand 1437 59 369
Drug_n 504 120 140

DDIs

Mechanism 1322 - 303
Effect 1700 - 363
Advice 827 - 222
Int 188 - 96
Negative 23,771 - 4737

In the DDI corpus, all drug entities are annotated by providing the exact drug name
and the location in the context of the specific sentence they are found in. Initially, each
sentence of a document becomes an instance of the Sentence class, with its text preserved
intact in the graph as an attribute of the specific node. Additionally, a sentence refers to
a set of drugs that are modeled by the Token class, which is associated with the Sentence
through the contains_token property. This property has a minimum cardinality of 2, filtering
sentences that mention less than two drug entities (i.e., do not contain at least one drug pair).
Furthermore, the set of unique drug entities in the collection is described by the Drug_Class
class and its subclasses are the four types of drugs, which are mutually exclusive.

Finally, the concept of interaction (relationship between two drugs) is also modeled
through classes. Typically an RDF statement represents a binary relationship between
two resources in the form of a triplet. However, it may be necessary to add additional
information regarding the statement resulting in an n–ary relationship. Each possible
drug pair of a particular sentence is represented by an Interaction helper node. Thus, the
information defining an interaction is composed centered on this node, through properties
that associate it with other entities (e.g., 1 Sentence instance, 2 Drug_Class, 2 Token). Similar
to the Drug_Class, its subclasses are based on the five predefined interaction types.

Collectively, a drug entity (Drug_Class), referred to as (found_as) Token in a particular
sentence (Sentence), participates (interaction_found) in some pairs of interactions (Inter-
action). The sentence contains (contains_interaction) the interacting pair, while the Token
reference participates (in_interaction) in it.

2.3. Modeling the DDI Relation Classification Task

In order to model the drug–drug interaction classification task and utilize DDI Knowl-
edge Graph representations, a subgraph G = (V, E, X, K, R) of the complete graph is
selected. V and K denote the sets of nodes and the classes they belong to, with class
instances denoted as k defining a subset of Vk. X constitutes an accompanying matrix of
node characteristics (node feature vector), dimension |V| × dBERT , where dBERT denotes
the dimension of the BERT-based LM vector representation. Finally, R refers to the types
of edges (properties) that associate the nodes, while E is the set of edges of the graph
expressed in the form of a coordinate list (coordinate list format—COO).

Each interaction node is associated with a pair of specific drug mentions occur-
ring in a sentence. Figure 3 shows the schema of the subgraph resulting from K =
{Interaction(I), Token(T), Sentence(S)} and R = {in_interaction, contains_interaction}.
Therefore, the target is to classify the Interaction nodes VI , or otherwise to determine the
object of each triplet < vI , rdf:type, cvI >, where cvI is a subclass of Interaction, from the
three elements (i.e., the two tokens and the sentence) that determine its type.
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Figure 2. The DDI Knowledge Graph overview based on an example sentence. (Left) drug sub-graph;
(Right) sentence sub-graph.

Figure 3. The schema of subgraph G which models the classification of an Interaction node.

2.4. Negative Instance Filtering

The extraction of DDIs from biomedical text is a multi-class classification problem,
with Advice, Effect, Int and Mechanism being the positive classes and Negative being the
negative class. The dataset statistics in Table 1 show the highly imbalanced nature of the
corpus, in terms of both the positive and negative class distribution and within the four
positive classes as well. In particular, the instances of the negative class exceed the positive
classes with a ratio of 1:5.9 in the training set. It can be observed that only a part of the pairs
labeled as negative explicitly express the knowledge that there is no interaction between
the substances (drugs). Conversely, in the vast majority, the negative instances follow the
same pattern where a number of drug–pair interactions were labeled in the same sentence,
without clarifying the relationship between them. Consequently, the following set of rules
was defined to detect them, as such cases can be dismissed.
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• Consistent with the assumption that a substance does not interact with itself, pairs
involving the same or synonymous drugs are rejected;

• There are sentences in the form of “drug1 [:-]. . . drug1 . . . drug2. . . ” which provide con-
flicting knowledge about the type of interaction between two drug entities. Therefore,
any pair involving the first occurrence of drug1 will be removed;

• Regular expressions identify patterns, such as quoting a list of drugs or referring to a
sub-case, broader category or abbreviation. Additionally, consecutive or overlapping
matches are merged to combine regular expressions. Finally, any pairs found within a
match are discarded.

The above rule set leads to the rejection of 44.5% and 0.94% of the negative and positive
examples in the training set, respectively, with the ratio changing to 1:3.3. Finally, as the
corresponding Interaction nodes are not taken into account, they are excluded in the results
during the evaluation of our proposed system.

2.5. Language Model-Based Transfer Learning

BERT [19] is an extensively pre-trained, Transformer-based language model, capable
of state-of-the-art performance in NLP tasks. The increased ability to understand the
conceptual framework that characterizes it is due to the self-attention mechanism, through
which the token-level importance is assigned based on the associations between the in-
dividual words (tokens) of the sentence. Additionally, due to the training as a masked
language model, it is able to perceive the information of the text in a bidirectional manner,
allowing the LM to produce vector representations that reflect the syntactic, semantic and
grammatical relationships between words.

BERT’s architecture is composed of a number of Nenc consecutive encoder units with
dBERT hidden vector dimension, where Nenc = 12, dBERT = 768 for the base version
and Nenc = 24, dBERT = 1024 for the large version. Furthermore, multiple BERT-based
variations pre-trained on specific domains have been developed which achieve better
performance in domain-specific tasks compared to BERT. As an example, BioBERT [20] and
SciBERT [21] are two popular variations of BERT, pre-trained on large text corpora from
the biomedical and scientific field, respectively.

2.5.1. Embedding Generation

In the DDI classification task, knowledge about the interaction type of a drug pair is
expressed through text. The sentence text t is an associated element of the Sentence node,
or otherwise contained in < vS, sentence_text, t > triplets. By applying a BERT-based LM
to t, it becomes possible to reduce the text to a suitable vector representation, in addition to
sharing information among the individual nodes of the subgraph G.

The preparation of t involves the addition of the special tokens [CLS] and [SEP], which
mark the beginning and end of the sentence, respectively. Then, each drug in the sentence is
replaced by drugi, where i is a number. Finally, WordPiece tokenization is applied, through
which words outside the BERT vocabulary are broken into individual pieces (subwords)
that belong to it.

Furthermore, the LM is used to initially generate word embeddings xvS (sentence
embeddings) for the entire sentence and a set of xvTj

(token embeddings) where each one is
a representation of a Tokenj contained within the sentence. These vectors are assigned to
the respective nodes vS and vTj , constituting their feature vectors.

2.5.2. Sentence and Token Nodes Feature Generation

Each sentence contains words that reveal or indicate the type of interaction between
two drugs. For example, expressions such as “should (not) be administered”, “caution
should be used” and “is (not) recommended”, are associated with suggestions (advice)
when taking more than one drug simultaneously. Therefore, although the expressions
show some variety, they are characterized by a high semantic similarity and are expected
to correspond to nearby points in the embeddings vector space.
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When generating the sentence embeddings xvS , it is important for the LM to focus
on the above type of information and therefore any reference to any drug is replaced by
“drug0” (i.e., i = 0). Because of the repeated occurrences, the string loses its meaning within
the sentence, with the BERT-based LM giving an appropriate weight. Finally, the [CLS]
token embedding is chosen for xvS , which is a centralized representation of the sentence
and is often used in classification tasks. However, since a sentence most likely contains
more than one drug pair, the interaction classification can not be performed solely on
the basis of xvS , consequently requiring the feature generation for each drug mention in
the sentence.

Furthermore, the interaction type does not depend on the specific drug names in
the potential drug pair, but on their position within the sentence. In line with previous
studies [7], their replacement is expected to aid in noise reduction when generating the
Token embeddings, increasing the classification performance. To this end, each unique
drug entity in the sentence is assigned a sequence number i, according to the order of
appearance of its first mention within the sentence. Thus, Tokenj references that participate
in < Drug_Class, f ound_as, Token_j > triplets with a common subject are replaced by
drugi with a common i. The final feature vector of each node vTj is obtained by pooling the
embeddings of the subwords that compose it. That is, xvTj

= pooling{Bdrug##, B##x}, where
the pooling method is the average, and Bw is the BERT output for the input w.

2.6. GNN-Based Classification Module

KGs are a complex and dynamic data structure where the notion of fixed ordering
does not apply. However, by implementing a message passing framework, GNNs are
able to better utilize the KG’s underlying graph structure as well as any initially available
data for its nodes, compared to other approaches [27]. Specifically, each layer first applies
a transformation function on the node feature vectors. The generated messages from
each node’s neighbors, as well as its own message, are then aggregated to produce a new
embedding that encodes additional semantic information provided by the defined relation
types. These embeddings can finally be used to perform predictions for the nodes.

Given a selected subgraph G, the classification takes place on one of three types of
nodes, namely the set VI . As a sentence defines a maximum number of pairs according to
the contained drug mentions, applying a BERT-based LM for their embedding generation
may not be ideal. Instead, word embeddings were generated at the token level, as well as
aggregated for the entire sentence that contains them. However, utilizing a GNN allows for
the feature generation for each Interaction node.

The vector representation of these nodes is initialized with a null (zero) vector
h0

vI = xvI = 0, indicating no initial characterization for the Interaction nodes. However,
GNNs pay special attention to the current hl−1

v representation of a node when generating hl
v

from layer l. Therefore, when applying a GNN layer, its new embedding results exclusively
from the topology of the graph around it, i.e., through transformation and aggregation of
xvS and xvT from the one neighboring Sentence and the two Tokens nodes, respectively.

As the subgraph G is a heterogeneous graph, the use of a Relational GNN (RGNN)
is required. The management of the heterogeneity is based on the logic of parameter
distribution according to the type r of the edge that connects to the Interaction node
(i.e., relation-specific transformations) [28]. Therefore, the embedding results from the
following equation:

h1
vI = aggrr∈R{GNNl=1;r(h0

vI , {h0
u, u ∈ Nr(vI)})}, (1)

where aggr is an aggregation function, R the set of edge types and Nr(vI) the set of
neighbors of vI according to the triplets < u, r, vI >.

The modeling capability of GNNs is determined by the expressive power of the
message aggregation functions, making the choice of the appropriate GNN architecture
critical to the performance of this shallow network. Therefore, with the utilization of a
Graph Isomorphism Network (GIN), the architecture’s deep layers are encapsulated within
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the single layer GNN. Using the sum as the aggregator operation, the above relation is
formulated as:

h1
vI = ∑

r∈R
MLPl=1;r(h0

vI + ∑
u∈Nr(vI)

h0
u) (2)

The architecture’s main RGNN element is surrounded by MLP modules, which are de-
fined according to the node classes. Specifically, through the integration of the MLP prepro-
cessing layers, the initial representation of each node is obtained by
h0

vk
= MLPk

pre
(
xvk

)
, k ∈ K. Similarly, the final vector representation of the Interaction

nodes is defined by zvI = MLPI
post

(
h1

vI

)
.

Conclusively, the system is now able to classify each node vI into one of the |C| = 5 in-
teraction classes. First, the probability distribution of the classes is calculated as
y′vI

= so f tmax(zvI W
T + b), where W and b are the trainable weights and biases parame-

ters, respectively. The dimensions of matrix W are |C| × dGNN , with the hyperparameter
dGNN = dim (zvI ) constituting the dimension of the vector space defined by the network.
The final classification during the inference is obtained by cvI = argmaxc∈C{y′vI

}.

3. Results and Discussion

3.1. Experimental Setup

Training is performed in a supervised manner on the labels of the Interaction nodes,
resulting from the provided training set by merging the MedLine and DrugBank subsets.
This amounts to a total of 17,176 training examples, derived from 3395 sentences and
608 documents after the construction of the knowledge graph. Similarly, the evaluation is
performed on the RE task test set, where a separate graph with 3057 Interaction nodes and
604 sentences from 159 documents is created. The domain-adaption of the LMs is trained
either on the training set sentences (Sentence Level Domain Adaption—SLDA) or training
set paragraphs (Document Level Domain Adaption—DLDA) only, in a self-supervised
manner using the Masked Language Modeling task.

Our proposed approach requires the definition of the two main elements of the ar-
chitecture, the underlying BERT-based LM that will generate the word embeddings and
the GNN-based classification module. First, different pre-trained BERT variants were
compared, such as the base version of the general domain BERT, the scientific domain
SciBERT and the biomedical domain BioBERT. Furthermore, BioBERT, the pre-training of
which is in alignment with the DDI domain, was tested on both base and large versions.
Additionally, since recent studies show that domain-adapting a LM by pre-training it on the
downstream task can potentially offer large gains in the task performance [29], we aligned
both SciBERT and BioBERT base to the DDI task corpus and compared their performance.

Having the features of the nodes generated by the BERT-based LMs, it is then necessary
to define and train the classification unit. GIN [30] was chosen as the GNN framework,
with node embeddings dimensions dGNN = 256 for dBERT = 768 and dGNN = 512 for
dBERT = 1024, with the internal MLP unit consisting of lGIN = 3 consecutive layers. Its
performance is also compared to the mean GraphSAGE framework [31]. Additionally, the
contribution of a single-level MLPpre of size dGNN and two-level MLPpost of sizes dGNN/2
and dGNN/4 with a drop-rate of 0.4 and ReLU activations are evaluated.

Adam was chosen as the optimizer with a learning rate and weight decay equal to
5 × 10−5 and 5 × 10−4, respectively. Furthermore, the mini-batch training approach is
followed, where the Interaction nodes of the training set are divided into 53 batches of
size 324, while the number of epochs is equal to 170. Finally, the cross entropy loss function
is used in the context of the multi-class classification problem.

The experiments were conducted on a computer with a single RTX 3090 24 GB graphics
card an a 24-core Intel CPU and the LM domain-adaption on a computer with two RTX
A6000 48 GB graphics cards and were implemented using the Pytorch library and the
Python programming language.
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3.2. Evaluation Metrics

Similar to the related studies, the performance of the system was evaluated based on
the Precision (P), Recall (R) and micro F1-score (F1mirco) metrics on the test set with the four
positive classification targets C+. The ratio of correctly classified instances c to all instances
that were classified as c or actually belong to c constitutes the Precision and Recall of class
c, respectively. The micro F1-score, which is the harmonic mean of P and R, provides an
overall picture of the system without focusing on the individual performance of each class.
The metrics are defined by the following formulas, where the number of corresponding
cases is denoted by the combination of T (true) or F (false) and P (positive) or N (negative):

Pmicro = ∑c∈C +TP
∑c∈C +(TPc+FPc)

Rmicro = ∑c∈C +TP
∑c∈C +(TPc+FNc)

F1micro = 2×Pmicro×Rmicro
Pmicro+Rmicro

3.3. Overall Comparison

In Table 2, we show the results of our method in comparison to baseline and state-
of-the-art DDI classification approaches which reported their overall performance metric
based on the four positive classes. These approaches are trained on the same training
set and evaluated on the same test set provided by the DDI corpus and follow the same
experimental setting without the inclusion of external information. These approaches can
effectively be divided into two categories: traditional methods that utilize extensive feature
engineering and state-of-the-art neural network-based approaches that aim to learn feature
representations automatically based on different architectures. We compare our proposed
approach to the traditional method “FBK-irst” presented in [32], which used linear features,
path-enclosed tree kernels and linguistic features. For the NN-based approaches, we
compared our approach to the following methods:

• “SCNN” [10]—CNN-based architecture with manually designed features;
• “MCCNN” [8]—CNN with multichannel word embeddings;
• “ASDP-LSTM” [13]—Hierarchical RNNs with shortest dependency paths;
• “PM-BLSTM” [14]—Bidirectional LSTM with position-aware attention;
• “GCNN-DDI” [25]—Bidirectional LSTM with GNN that utilized entire dependen-

cy graphs;
• “DREAM” [26]—Bidirectional LSTM with GNN that utilized PageRank enhanced

dependency graphs.

The experimental results show that our Knowledge Graph-based approach that uti-
lized BioBERT LM achieves the best overall performance for the classification of DDIs. The
proposed KG schema with the domain-adapted pre-trained weights and the non-message
passing MLPs are the main contributing factors, which will be analyzed in the following
subsections. In the four positive classes, our approach achieves the best results in the
Advice, Effect and Mechanism classes and a similar score in the Int class. In the following
sections, we additionally analyze and discuss the various components of our method and
their contribution to the overall performance.

Table 2. Overall performance comparison of our proposed method. All values are F1 scores (%) and
‘-’ denotes the value was not provided in the published paper. F1micro denotes the overall score on
the four positive classes. The highest values are shown in bold.

Method System Advice Effect Int Mechanism F1Micro

SVM FBK-irst 69.20 62.80 54.70 67.90 65.10
CNN SCNN - - - - 68.60
CNN MCCNN 78.20 68.20 51.00 72.20 70.21
LSTM ASDP-LSTM 80.30 71.80 54.30 74.00 72.90
LSTM PM-BLSTM 81.60 71.28 48.57 74.42 72.99
GNN GCNN-DDI 83.50 75.80 51.40 79.40 77.00
GNN DREAM 84.80 76.10 55.10 81.60 78.30

Our method BioBERT-GIN 86.45 78.46 54.80 82.27 79.14
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3.4. The Importance of the Pre-Trained Language Model Domain

The initially generated graph node features are inextricably linked to the performance
of the GNN [33]. Accordingly, we evaluated the effects of the various BERT-based LMs for
the task of relationship classification from biomedical text, by comparing the models that
are trained with their respective BERT variant word embeddings, as shown in Table 3.

Based on the overall performance metrics, we define BERT (M9.1), SciBERT (M6.1)
and BioBERT (M2.1) as the three baseline approaches with BioBERT (M2.1) achieving
the best baseline results. This further validates the fact that domain-specific LMs tend
to outperform general-domain LMs on the domain-specific task. However, the general-
domain BERT achieves significantly better performance in the underrepresented class Int.
As a reminder, sentences that contain the interactions of type Int indicate that there is a
relationship between two drugs but no additional information about the relation type. In
this context, the performance increase of general-domain BERT can be attributed to the use
of non-scientific language when describing these types of interactions.

The best performing model is M3.3, which makes use of the SLDA BioBERT base and
the GIN framework surrounded by pre- and post-processing MLPs. Furthermore, it is the
only one that achieves Rmicro and F1micro scores greater than 75 in addition to the maximum
value of Pmicro among all the models. Moreover, it achieves the best F1 scores in most of the
classes (4 out of 5), unlike other models that usually excel in just one class (M9.1-3).

At the same time, M8.2 that utilized DLDA SciBERT achieves a comparable score in
Rmicro and F1micro to the best performing models and surpasses 70% of the models in Pmicro
but significantly underperforms on the Int class. We observe an improvement over the
SciBERT baseline approach (M6.1-3) proving that domain-adapting SciBERT to the DDI
domain leads to a performance gain in the relationship classification task. Similarly, the
performance improved significantly when domain-adapting BioBERT (M3.1-3) to the same
task with SLDA, indicating that the biomedical-domain pre-trained LM model may benefit
from adapting to other tasks in the same domain. Conversely, adapting same LM with
DLDA (M4.1-3), a significant performance degradation can be observed, suggesting that
the LM benefits mostly from the context of individual sentences and not larger paragraphs.

The overall results show the effectiveness of the biomedical-domain pre-trained
BioBERT base LM, especially compared to the general-domain BERT. Furthermore, aligning
the BioBERT to the DDI corpus did yield significant improvement and led to performance
increase. Similarly, domain-adapting SciBERT with DLDA produced improved task per-
formance. Noticeably, BioBERT large (M5.1-3) performs worse than its base counterparts,
especially in the Int class, which warrants further investigation as no interpretable patterns
could be found. However, recent findings [34] suggest that fine-tuning noise increases
with model size and that instance-level accuracy has momentum leading to larger models
having higher variance due to the fine-tuning seed.

3.5. Effectiveness of the GIN Message Aggregation Function Layers

A basic hyperparameter of the GIN module is the number of layers of the internal MLP
network (lGIN). Figure 4 shows the system’s behavior on the test set as a function of the
MLP network depth (number of layers). For lGIN = 1, GIN shows comparable performance
to GraphSAGE (M1.1—Table 3), which is significantly lower than the best performing
model, validating the limiting factor of shallow aggregation functions. However, as lGIN
increases beyond four layers, the F1micro score displays a sharp decrease as it detects a
higher percentage of existing interactions, combined with an increase in false positives,
evidenced by the significant difference in the recall–precision curve slopes.

Therefore, the intermediate values lGIN = 2 and 3 are compared. The change in F1micro
is negligible, while the recall improvement and precision drop is approximately 4% when
increasing the layer depth by one. However, at lGIN = 3, a better compromise is made
between the two metrics, with a difference of only 1.7%, compared to the corresponding
9.6% for lGIN = 2. Moreover, considering the risk of not being able to detect an existing
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interaction, the behavior of the system with the best recall is considered more appropriate
for the current task.

Table 3. Performance comparison of the pre-trained LM. SAGE denotes the models that utilize
the GraphSAGE framework. SLDA and DLDA denote the Sentence and Document Level Domain
Adaption, respectively, and x denotes the inclusion of the corresponding pre/post-processing MLP
unit. The highest values are shown in bold.

Model MLP Metrics per Classification Target Overall Metrics

M BERT-Based LM Pre Post Advice Effect Int Mech. Pmicro Rmicro F1micro

1.1
SAGE BioBERT base

70.51 67.04 48.21 58.39 71.59 57.37 63.70
1.2 x 74.78 72.92 51.61 70.72 72.42 69.47 70.92
1.3 x x 65.59 70.02 50.00 68.69 75.00 60.39 66.90

2.1
BioBERT base

75.00 74.96 52.71 71.56 72.91 71.18 72.04
2.2 x 76.84 76.09 52.71 71.49 73.16 72.58 72.87
2.3 x x 82.45 73.46 52.80 74.27 73.42 74.87 74.14

3.1
BioBERT SLDA

79.14 76.19 52.71 71.46 72.81 71.28 72.04
3.2 x 84.45 75.46 53.80 76.27 75.81 74.13 74.96
3.3 x x 86.45 78.46 54.80 82.27 84.33 75.55 79.14

4.1
BioBERT DLDA

72.30 73.14 40.88 67.94 66.67 70.53 68.54
4.2 x 72.53 73.36 40.88 70.02 66.91 71.84 69.29
4.3 x x 71.94 70.43 39.37 69.22 63.78 72.76 67.98

5.1
BioBERT large

69.23 67.83 15.50 70.66 62.97 66.45 64.66
5.2 x 70.86 69.54 20.97 71.52 65.48 67.63 66.54
5.3 x x 66.67 67.19 12.17 71.85 62.58 66.45 64.45

6.1
SciBERT

72.48 71.68 51.24 73.00 70.51 70.79 70.65
6.2 x 73.51 72.82 52.31 73.75 70.03 73.16 71.56
6.3 x x 73.63 69.86 50.38 70.25 66.67 72.11 69.28

7.1
SciBERT SLDA

80.12 69.43 47.06 67.11 67.16 71.32 69.18
7.2 x 77.35 69.18 43.94 68.60 68.45 69.08 68.76
7.3 x x 79.06 67.15 40.35 67.10 70.55 65.26 67.81

8.1
SciBERT DLDA

78.86 73.24 51.91 70.46 72.52 71.18 71.85
8.2 x 80.89 74.15 47.93 73.28 72.74 74.08 73.40
8.3 x x 77.97 71.26 46.55 73.94 72.70 70.79 71.73

9.1
BERT base

73.24 68.23 58.06 67.24 69.19 67.37 68.27
9.2 x 72.24 67.62 60.00 70.74 68.25 69.87 69.05
9.3 x x 68.15 68.42 55.74 68.91 64.25 71.18 67.54

3.6. Effectiveness of Non–Message Passing Units

In addition to adopting the GIN framework to increase the expressiveness of the
shallow GNN network, it has been further proposed to incorporate non-message passing
units MLPpre and MLPpost into the architecture [35]. The contribution of increased model
complexity to the performance is confirmed by the significant improvement in the otherwise
underperforming GraphSAGE (M1.1). Although not as pronounced, GIN models also
appear to benefit.

The performance metrics in Table 3 show the advantage of including the MLPpost unit
in the M1-9.2 models over the basic M1-9.1 models. Adding the unit yields an average
increase of 0.9% in each metric, with eight models achieving better Pmicro, Rmicro scores,
and seven models achieving better F1micro scores. At the same time, the rest of the mod-
els where either precision or recall is affected, the opposite metric (Pmicro ⇐⇒ Rmicro)
shows an improvement in the order of 2.6% on average, which is always superior to the
corresponding drop.
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Figure 4. GIN MLP performance compared to the number of aggregation layers using the baseline
BioBERT and no additional MLP units.

Conclusively, the three best performing models (M2.3, M3.3 and M8.2) include this unit.
Each presents an improvement over its base version (M2.1, M3.1 and M8.1, respectively),
while improving on the individual class level as well. Particularly, in at least three of the
five classes, there is a clear improvement or at least some stability (decrease ≤ 0.08). This
behavior is partially confirmed by the other (underperforming) GIN models, although
not universally.

In contrast, the effect of the combination of the two units appears to be negative in
the vast majority of models. Through MLPpre, the word embeddings xv produced by the
BERT-based LMs (dBERT) are projected into a smaller dimensional space dGNN before the
execution of message passing by GNN. This results in reduced performance in at least
two instances. However, obvious exceptions are the models which make use of the BioBERT
base architecture. Especially in combination with GIN, the models M2-3.3 outperform their
M2-3.1-2 counterparts in every metric, with the exception of the F1E f f ect metric.

3.7. Effectiveness of Preprocessing

Focusing on the best performing model and its base (M3.3 and M8.2 respectively), the
contribution of the preprocessing steps to the data was studied. Particularly, Figure 5 shows
the effects of Drug Name Replacement (DNR, Figure 5a,b) and Negative Instance Filtering
(NIF, Figure 5c,d) on the F1 metric of each positive class and the overall F1micro score.

First, reducing imbalance greatly benefits the Advice and Int classes in both models.
Especially in M3.3 (Table 3), applying NIF improved the Recall by 7.6% and 10.9%, re-
spectively, and the Precision by 3.4% and 6.2% respectively. Simultaneously, a relative
robustness is demonstrated in the Effect class when restoring the rejected pairs; however,
their inclusion appears to favor the Mechanism class. Conclusively, the overall F1micro is
improved in each case through the rejection of trivial negative instances; however, M3.3
maintains a better balance between Recall and Precision than M8.2, where although no
class is perceptibly affected, their removal leads to an increase in false positives.
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(a) (b) (c) (d)
Figure 5. Performance comparison based on Drug Name Replacement (DNR) and Negative Instance
Filtering (NIF), (a) M3.3 with DNR, (b) M8.2 with DNR, (c) M3.3 with NIF, (d) M8.2 with NIF.

In contrast, the use of drugi over the original drug names provides a clear performance
improvement when generating word embeddings with BERT-based LM. This fact confirms
the hypothesis that the type of interaction is determined by their syntactic role within the
sentence and its content and not by specific substances’ names. This method of replacing
drug names, also known as entity blinding or entity masking, supports the generalization
of the model. Therefore, through these preprocessing steps, noise is reduced in the feature
vectors of the Token nodes.

3.8. Error Analysis

To analyze the advantages and limitations of our proposed approach, we compare and
analyze the classification results of the best performing model (M3.3) on a few indicative
cases (Table 4). Figure 6 shows the confusion matrix, with a total of 330 errors that were
made, representing 11% of the 3057 test cases. In addition, 273 (83%) originate from the
DrugBank instances and the remaining 57 (17%) from MedLine abstracts, corresponding to
9.8% and 20% of the total interactions of their respective collection.

Figure 6. Confusion matrix of our proposed model.

First, misclassifying an existing interaction is the least common type of error, account-
ing for 20% of the total errors. Furthermore, 48% of these correspond to the case where
instances of Int are classified as Effect, which makes this the main source of confusion in
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this category. The contributing drug pairs were found in only five sentences, with one
of them giving 28 of the total 32. This is S1, where although the system can recognize
the existence of interactions in the long list of drugs, it fails to predict the types. This is
probably due to the presence of “enhance”, a word regularly associated with drug pairs
with the interaction type Effect. Furthermore, 42% of the errors involve false positive pairs
that can occur due to the following cases:

• The possibility of an annotation error is not excluded. Indicatively, in S2, every
pair containing e0 is of type Effect, as predicted by the model. However, any such
relationship other than (e0, e1) is marked as negative in the data set.

• A substance appears multiple times in the sentence, such as mebendazole in S3. The
pairs e0, e1 and e0, e2 are the Mechanism and Negative types, respectively, but both
are predicted as Mechanism. An attempt was made to limit these occurrences when
rejecting cases, but, as S3 indicates, they do not follow a specific pattern that can
be expressed.

• Similar to the case of S1, confusion is caused when the description is made with
expressions that refer to another type. In S4, e0 is the subject of the sentence and
declares the simultaneous administration of the mentioned drugs as safe, since they
do not interact. However, due to the wording, the system perceives the relationships
as Advice.

• Cases where drug mentions are listed and are not covered by regular expressions. e.g.,
in S5, the existence of “the” excludes the match and makes it impossible to locate the
negative pairs (e0, ei), i = 1, . . . , 5. However, as a large number of instances has been dis-
carded from the corpus, the model is unable to handle these underrepresented patterns.

However, the most serious form of error concerns the inability to detect existing
interactions, or else the existence of false negatives. An obvious source of error is the
particularly long sentences, where descriptions are highly complex. The same applies
to long sentences that could have been separated into smaller sentences, occurring in
53 related instances. We define sentences as long when they have a length of ≥ 40 tokens
(the number of words separated by a space, having replaced drugs with “drug”). S6 is an
example of a sentence with a length of 40, where three interactions of the Mechanism type
were not detected.

However, there are several instances where misclassification can be attributed to
system errors. For example, the interaction in S7 is not found, even though the sentence
contains characteristic expressions that suggest that an interaction is being described and
does not include any redundant information that might cause any confusion. The existence
of such phenomena causes difficulty in the holistic interpretation of the results.

3.9. Data Uncertainty

The main point of uncertainty that may arise in our proposed approach, that is shared
with all related works using the DDI corpus, is input-dependent data uncertainty. In this
case, the observation noise varies based on the input and is commonly introduced during
the data generation process [36]. In order to address this issue, we attempt to deal with the
observed inconsistencies during the the pre-processing stage.

Initially, simple entity name transformations are applied by changing the plural form
to the singular form when the same substance is referenced and both cases are found in the
the Drug_Class set (e.g., “penicillin” and “penicillins”). Consequently, this leads to a total
of 122 cases of identified cases.

An additional point of uncertainty concerns the classification of drugs into the four
classes as each drug mention generally belongs to a single class. However, cases were
observed where the same drug was labeled with different classes throughout the instances
found in the dataset. Although the percentage of entities in which this is observed is
relatively small, the drug mentions in question participate in a large number of interaction
pairs. Specifically, 6023 pairs are identified in which at least one entity with multiple types
is found.
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Table 4. Indicative cases of misclassified instances. Drug names are denoted in bold and underlined
words describe the interaction in the sentence. Subscripts denote the drug name (entity) index in
the sentence.

Sentence

S1
Other drugs which may enhance the neuromuscular blocking action of nondepolarizing

agents such as MIVACRON include certain antibiotics e.g., antibiotics_group).

S2
Thalidomidee0 has been reported to enhance the sedative activity of barbituratese1,

alcohole2, chlorpromazinee3, and reserpinee4.

S3
Preliminary evidence suggests that cimetidinee0 inhibits mebendazolee1 metabolism and

may result in an increase in plasma concentrations of mebendazolee2.

S4
Pyrimethaminee0 may be used with sulfonamidese1, quininee2 and other antimalarialse3,

and with other antibioticse4.

S5
Dopamine antagonistse0, such as the neurolepticse1 (phenothiazinese2,

butyrophenonese3, thioxanthinese4) or metoclopramidee5, ordinarily should not be
administered concurrently with Permaxe6 (a dopamine agoniste7)

S6
The bioavailability of SKELIDe0 is decreased 80% by calciume1, when calciume2 and

SKELIDe3 are administered at the same time, and 60% by some aluminume4- or
magnesiume5-containing antacidse6, when administered 1 hour before SKELIDe7.

S7 Anticholinergicse0 antagonize the effects of antiglaucoma agentse1.

Thus, the management of differentiation is sought without rejecting them. For example,
in the case of “corticosteroid” where the vast majority of occurrences belong to a specific
class, the assumption can be made that all instances should be labeled based on the majority
class. In contrast, in the case of “tetracycline”, where the class distribution is not clearly
in favor of a single class, no such assumption can be made without introducing more
uncertainty in the dataset.

The class of a drug entity is defined by a <drug-name, rdf:type, drug-class> triplet,
where the object takes its value from the set of the four positive drug classes which should
be unique for each instance of the Drug_Class class. However, a small amount of drug
names cannot be classified to a single class. Moreover, each individual case is characterized
by the name of the drug, as well as the set of the additional classes it was labeled in its
various occurrences in the dataset. Therefore, for each one of these classes c, a blank node
<_:substance-name_c> and a statement in the form of <_:substance-name_c, rdf:type, c>
are included in the KG. Furthermore, in order to emphasize that those individual entities
are not independent, the property name is defined which participates in <_:substance-
name_c, name, substance-name> triplets. Therefore, entities that share the same value in
this attribute are referring to the same substance.

An example of how our proposed approach performs on instances that contain uncer-
tainties can be seen in the example sentence S2 (Table 4) in Section 3.8.

4. Conclusions

In this paper, we propose a Knowledge Graph schema in a Graph Neural Network-
based architecture for the classification of Drug–Drug Interactions from biomedical liter-
ature, which achieves state-of-the-art performance. Specifically, we presented a Graph
Isomorphism Network-based architecture with message passing and non-message passing
units that leverage the proposed DDI-specific graph structure that models the knowledge
(drug identifiers, names, types and interactions) from the DDI corpus. Token and sentence
embeddings are generated for the drug named entities and sentences, respectively, and are
passed to the graph, populating the Token and Sentence nodes, taking advantage of the
underlying BERT-based LM.

Although our approach achieves state-of-the-art performance in the DDI classification
task, the experimental results show that the individual class scores are greatly affected by
the underlying LM, indicating that further improvements can be achieved. Based on the
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results, future work could be directed towards exploring a combination of general and
domain-specific corpora to pre-train or domain-adapt a LM to further improve the perfor-
mance of each positive class. Another direction for future work is to extend our approach
with multi-task learning for extracting the entities in combination with interactions that
could potentially improve generalization by using the domain information contained in
the training signals of the related tasks as an inductive bias.

Author Contributions: Conceptualization, D.Z.; methodology, D.Z. and C.K.; formal analysis, D.Z.
and C.K.; investigation, D.Z. and C.K.; software, D.Z. and C.K.; resources, D.Z.; validation, D.Z.
and C.K.; writing—original draft preparation, D.Z.; writing—review and editing, D.Z., C.K. and
I.V.; visualization, D.Z. and C.K.; supervision, D.Z. and I.V. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Data Availability Statement: The DDI Extraction 2013 corpus is available at https://github.com/
isegura/DDICorpus, (accessed on 25 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DDI Drug–Drug Interaction
NN Neural Networks
GNN Graph Neural Network
GCN Graph Convolutional Network
RGNN Relational Graph Neural Network
KG Knowledge Graphs
ML Machine Learning
RDF Resource Description Framework
RE Relation(ship) Extraction
PoS Part-of-Speech
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
BiLSTM Bidirectional Long Short-Term Memory
GRU Gated Recurrent Unit
DGF Dependency Graph Features
XML Extensible Markup Language
LM Language Model
SLDA Sentence Level Domain Adapted
DLDA Document Level Domain Adapted
GIN Graph Isomorphism Network
MLP Multi-Layer Perceptron
DNR Drug Name Replacement
NIF Negative Instance Filtering
CPU Central Processing Unit

Appendix A

108



Appl. Sci. 2022, 12, 10987

T
a

b
le

A
1

.
C

om
p

ar
at

iv
e

an
al

ys
is

of
re

la
te

d
st

u
d

ie
s

an
d

ou
r

p
ro

p
os

ed
ap

p
ro

ac
h.

N
IF

an
d

D
N

R
d

en
ot

e
N

eg
at

iv
e

In
st

an
ce

Fi
lt

er
in

g
an

d
D

ru
g

N
am

e
R

ep
la

ce
m

en
t,

re
sp

ec
ti

ve
ly

.V
al

u
es

th
at

ar
e

no
tr

ep
or

te
d

in
th

e
pu

bl
is

he
d

w
or

k
ar

e
d

en
ot

ed
w

it
h

‘-
’.

D
G

F
d

en
ot

es
D

ep
en

d
en

cy
G

ra
ph

Fe
at

ur
es

.Y
an

d
N

de
no

te
Ye

s
an

d
N

o,
re

sp
ec

ti
ve

ly
.

R
e

fe
re

n
ce

M
e

th
o

d
E

m
b

e
d

d
in

g
s

E
m

b
.

d
im

.
F

e
a

tu
re

s
N

IF
D

N
R

H
ig

h
li

g
h

ts
R

e
v

ie
w

Li
u

et
al

.[
7]

C
N

N
O

rd
er

30
0

Po
si

ti
on

Y
Y

Po
si

ti
on

em
be

dd
in

gs
im

pr
ov

e
pe

rf
or

m
an

ce
D

ep
en

de
nt

on
po

si
ti

on
di

st
ri

bu
ti

on
s

of
th

e
in

pu
t

Q
ua

n
et

al
.[

8]
C

N
N

C
BO

W
20

0
Po

si
ti

on
N

Y
M

ul
ti

pl
e

em
be

dd
in

gs
ca

pt
ur

e
be

tt
er

re
pr

es
en

ta
ti

on
s

Er
ro

rs
in

lo
ng

se
nt

en
ce

s

Li
u

et
al

.[
9]

C
N

N
O

rd
er

30
0

Po
si

ti
on

,D
G

F
N

Y
Sy

nt
ac

ti
c

fe
at

ur
es

fo
r

lo
ng

di
st

an
ce

de
pe

nd
en

ci
es

O
nl

y
a

sm
al

ls
et

of
la

rg
e

se
nt

en
ce

s
pa

rs
ed

co
rr

ec
tl

y

Z
ha

o
et

al
.[

10
]

C
N

N
W

or
d2

Ve
c

-
Po

si
ti

on
,P

oS
,D

G
F

Y
N

D
ep

en
de

nc
y

fe
at

ur
es

an
d

po
si

ti
on

em
be

dd
in

gs
Fi

lt
er

in
g

ru
le

s
le

ad
to

lim
it

ed
ge

ne
ra

liz
at

io
n

ab
ili

ty

W
an

g
et

al
.[

11
]

LS
TM

W
or

d2
Ve

c
10

0
D

is
ta

nc
e,

D
G

F
Y

Y
C

ap
tu

re
s

di
st

an
ce

an
d

de
pe

nd
en

cy
-b

as
ed

fe
at

ur
es

Lo
w

pe
rf

or
m

an
ce

on
lo

ng
se

nt
en

ce
s

Yi
et

al
.[

12
]

R
N

N
G

lo
Ve

10
0

Po
si

ti
on

N
Y

M
ul

ti
pl

e
at

te
nt

io
n

la
ye

rs
to

ca
pt

ur
e

be
tt

er
re

pr
es

en
ta

ti
on

s
Se

m
an

ti
c

am
bi

gu
it

y
le

ad
s

to
m

is
cl

as
si

fic
at

io
ns

Z
ha

ng
et

al
.[

13
]

LS
TM

W
or

d2
Ve

c
20

0
Po

S,
D

G
F

N
N

In
te

gr
at

io
n

of
se

nt
en

ce
se

qu
en

ce
s,

sh
or

te
st

de
pe

nd
en

cy
pa

th
s

an
d

at
te

nt
io

n
la

ye
rs

Er
ro

rs
in

lo
ng

se
nt

en
ce

s

Z
ho

u
et

al
.[

14
]

LS
TM

W
or

d2
Ve

c
30

0
Po

si
ti

on
Y

Y
A

dd
it

io
na

lp
os

it
io

n
em

be
dd

in
gs

to
ge

ne
ra

te
th

e
at

te
nt

io
n

w
ei

gh
ts

M
is

cl
as

si
fic

at
io

n
of

in
st

an
ce

s
co

nt
ai

ni
ng

m
ul

ti
pl

e
dr

ug
m

en
ti

on
s

Sa
lm

an
et

al
.[

15
]

LS
TM

W
or

d2
Ve

c
10

0
Po

si
ti

on
,D

G
F

N
N

Ta
sk

ex
pa

ns
io

n
to

se
nt

im
en

t-
ba

se
d

se
ve

ri
ty

pr
ed

ic
ti

on

W
or

d
po

si
ti

on
s

in
th

e
se

nt
en

ce
s

ar
e

no
tt

ak
en

in
to

ac
co

un
t

M
on

da
l[

22
]

BE
R

T-
VA

E
Bi

oB
ER

T
30

0
C

he
m

ic
al

St
ru

ct
ur

es
N

N
U

ti
liz

es
ch

em
ic

al
st

ru
ct

ur
e

re
pr

es
en

ta
ti

on
s

of
dr

ug
s

In
fo

rm
at

io
n

lo
ss

in
lo

ng
er

se
nt

en
ce

s
du

e
to

lo
w

re
pr

es
en

ta
ti

on
di

m
en

si
on

al
it

y

X
io

ng
et

al
.[

25
]

LS
TM

-G
C

N
N

W
or

d2
Ve

c
20

0
Po

S,
D

G
F

Y
N

D
ep

en
de

nc
y

fe
at

ur
es

w
it

h
gr

ap
h

ne
ur

al
ne

tw
or

k
C

om
pl

ex
gr

ap
h

st
ru

ct
ur

es
im

pa
ct

pe
rf

or
m

an
ce

Sh
ie

ta
l.

[2
6]

LS
TM

-G
C

N
N

W
or

d2
Ve

c
20

0
Po

S,
D

G
F,

Pa
ge

R
an

k
Y

N
D

ep
en

de
nc

y
fe

at
ur

es
w

it
h

gr
ap

h
ne

ur
al

ne
tw

or
k

an
d

Pa
ge

R
an

k

A
dd

ed
co

m
pl

ex
it

y
w

it
h

fe
at

ur
e

ge
ne

ra
ti

on
fr

om
co

m
pl

ex
gr

ap
h

st
ru

ct
ur

es

O
ur

ap
pr

oa
ch

BE
R

T-
G

IN
Bi

oB
ER

T
51

2
K

G
,D

A
PT

Y
Y

N
ov

el
D

D
It

as
k-

ba
se

d
K

no
w

le
dg

e
G

ra
ph

le
ve

ra
ge

d
by

a
gr

ap
h

ne
ur

al
ne

tw
or

k
w

it
ho

ut
re

ly
in

g
on

m
an

ua
lf

ea
tu

re
en

gi
ne

er
in

g

N
od

es
ar

e
in

it
ia

liz
ed

w
it

h
do

m
ai

n-
ad

ap
te

d
re

pr
es

en
ta

ti
on

s
to

be
tt

er
ca

pt
ur

e
se

nt
en

ce
co

nt
ex

t

109



Appl. Sci. 2022, 12, 10987

References

1. Percha, B.; Altman, R.B. Informatics confronts Drug–Drug Interactions. Trends Pharmacol. Sci. 2013, 34, 178–184. [CrossRef]
2. Hunter, L.; Cohen, K.B. Biomedical Language Processing: What’s Beyond PubMed? Mol. Cell 2006, 21, 589–594. [CrossRef]
3. Wang, Y.; Wang, L.; Rastegar-Mojarad, M.; Moon, S.; Shen, F.; Afzal, N.; Liu, S.; Zeng, Y.; Mehrabi, S.; Sohn, S.; et al. Clinical

information extraction applications: A literature review. J. Biomed. Inform. 2018, 77, 34–49. [CrossRef] [PubMed]
4. Segura-Bedmar, I.; Martínez, P.; Herrero-Zazo, M. SemEval-2013 Task 9: Extraction of Drug–Drug Interactions from Biomedical

Texts (DDIExtraction 2013). In Proceedings of the Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013); Association for Computational Linguistics:
Atlanta, GA, USA, 2013; pp. 341–350.

5. Zhang, T.; Leng, J.; Liu, Y. Deep learning for Drug–Drug Interactions extraction from the literature: A review. Briefings Bioinform.
2019, 21, 1609–1627. [CrossRef] [PubMed]

6. Herrero-Zazo, M.; Segura-Bedmar, I.; Martínez, P.; Declerck, T. The DDI corpus: An annotated corpus with pharmacological
substances and Drug–Drug Interactions. J. Biomed. Inform. 2013, 46, 914–920. [CrossRef] [PubMed]

7. Liu, S.; Tang, B.; Chen, Q.; Wang, X. Drug–Drug Interaction Extraction via Convolutional Neural Networks. Comput. Math.
Methods Med. 2016, 2016, 6918381. [CrossRef]

8. Quan, C.; Hua, L.; Sun, X.; Bai, W. Multichannel Convolutional Neural Network for Biological Relation Extraction. BioMed Res.
Int. 2016, 2016, 1850404. [CrossRef] [PubMed]

9. Liu, S.; Chen, K.; Chen, Q.; Tang, B. Dependency-based convolutional neural network for drug–drug interaction extrac-
tion. In Proceedings of the 2016 IEEE international conference on bioinformatics and biomedicine (BIBM), Shenzhen, China,
15–18 December 2016; pp. 1074–1080.

10. Zhao, Z.; Yang, Z.; Luo, L.; Lin, H.; Wang, J. Drug drug interaction extraction from biomedical literature using syntax convolutional
neural network. Bioinformatics 2016, 32, 3444–3453. [CrossRef]

11. Wang, W.; Yang, X.; Yang, C.; Guo, X.; Zhang, X.; Wu, C. Dependency-based long short term memory network for drug–drug
interaction extraction. BMC Bioinform. 2017, 18, 99–109. [CrossRef]

12. Yi, Z.; Li, S.; Yu, J.; Tan, Y.; Wu, Q.; Yuan, H.; Wang, T. Drug-drug interaction extraction via recurrent neural network with
multiple attention layers. In Proceedings of the International Conference on Advanced Data Mining and Applications, Foshan,
China, 12–15 November 2017; pp. 554–566.

13. Zhang, Y.; Zheng, W.; Lin, H.; Wang, J.; Yang, Z.; Dumontier, M. Drug–drug interaction extraction via hierarchical RNNs on
sequence and shortest dependency paths. Bioinformatics 2017, 34, 828–835. [CrossRef]

14. Zhou, D.; Miao, L.; He, Y. Position-aware deep multi-task learning for drug–drug interaction extraction. Artif. Intell. Med. 2018,
87, 1–8. [CrossRef] [PubMed]

15. Salman, M.; Munawar, H.S.; Latif, K.; Akram, M.W.; Khan, S.I.; Ullah, F. Big Data Management in Drug–Drug Interaction: A
Modern Deep Learning Approach for Smart Healthcare. Big Data Cogn. Comput. 2022, 6, 30. [CrossRef]

16. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013.
arXiv:1301.3781.

17. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, AK, USA, 1–6 June 2018; Volume 1 (Long Papers), pp. 2227–2237. [CrossRef]

18. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

19. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019 . Available online: https://aclanthology.org/N19-1423 (accessed
on 20 September 2022).

20. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; Thus, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation
model for biomedical text mining. Bioinformatics 2019, 36, 1234–1240. [CrossRef] [PubMed]

21. Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A Pretrained Language Model for Scientific Text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3615–3620. [CrossRef]

22. Mondal, I. BERTChem-DDI : Improved Drug–Drug Interaction Prediction from text using Chemical Structure Information.
In Proceedings of the Knowledgeable NLP: The First Workshop on Integrating Structured Knowledge and Neural Networks for
NLP, Suzhou, China, 7 December 2020; pp. 27–32.

23. Gu, W.; Yang, X.; Yang, M.; Han, K.; Pan, W.; Zhu, Z. MarkerGenie: An NLP-enabled text-mining system for biomedical entity
relation extraction. Bioinform. Adv. 2022, 2, vbac035. [CrossRef]

24. Ren, Z.H.; You, Z.H.; Yu, C.Q.; Li, L.P.; Guan, Y.J.; Guo, L.X.; Pan, J. A biomedical knowledge graph-based method for Drug–Drug
Interactions prediction through combining local and global features with deep neural networks. Briefings Bioinform. 2022,
23, bbac363. [CrossRef]

110



Appl. Sci. 2022, 12, 10987

25. Xiong, W.; Li, F.; Yu, H.; Ji, D. Extracting Drug–Drug Interactions with a dependency-based graph convolution neural network.
In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21
November 2019; pp. 755–759.

26. Shi, Y.; Quan, P.; Zhang, T.; Niu, L. DREAM: Drug-drug interaction extraction with enhanced dependency graph and attention
mechanism. Methods 2022, 203, 152–159. [CrossRef]

27. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. arXiv 2017, arXiv:1709.05584.
28. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional

Networks. In The Semantic Web; Gangemi, A., Navigli, R., Vidal, M.E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 593–607.
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Abstract: Different from previous generations of communication technology, 5G has tailored several
modes especially for industrial applications, such as Ultra-Reliable Low-Latency Communications
(URLLC) and Massive Machine Type Communications (mMTC). The industrial private 5G networks
require high performance of latency, bandwidth, and reliability, while the deployment environment
is usually complicated, causing network problems difficult to identify. This poses a challenge to the
operation and maintenance (O&M) of private 5G networks. It is needed to quickly diagnose or predict
faults based on high-dimensional data of networks and services to reduce the impact of network
faults on services. This paper proposes a ConvAE-Latency model for anomaly detection, which
enhances the correlation between target indicators and hidden features by multi-target learning.
Meanwhile, transfer learning is applied for anomaly prediction in the proposed LstmAE-TL model to
solve the problem of unbalanced samples. Based on the China Telecom data platform, the proposed
models are deployed and tested in an Automated Guided Vehicles (AGVs) application scenario. The
results have been improved compared to existing research.

Keywords: private 5G networks; anomaly detection; abnormal early warning; autoencoder; long
short-term memory; transfer learning

1. Introduction

With the rapid development of wireless communication technology, the 5G era has
arrived. Operator services are gradually transforming from traditional services for the
general public to customized services for business customers. Compared with existing tradi-
tional networks, private 5G networks have the characteristics of diversification, refinement,
and certainty. The business scenarios in 5G involve various industrial firms with more
complex and diverse terminal modes, which results in a significant increase in the business
requirements for network performance indicators. According to the relevant survey report,
the custom network for vehicle networking requires the latency of the vehicle-to-vehicle
(V2V) service to be less than 200 ms. A minimum latency of 30 ms is required for automated
guided vehicles (AGVs) in a smart factory, whereas the latency of a smart grid application
scenario is the most sensitive, having a threshold of less than 15 ms. The impacts of not
meeting these thresholds include large-scale production downtime, business interruptions,
serious economic losses, and even personnel safety risks.

Also in the actual production of the existing network, such a massive system of cus-
tomized communication systems faces many challenges. The existing network operations
and maintenance (O&M) methods mainly rely on manual experience accumulation, which
cannot realize the early warning of faults or proactively defend against fault occurrence. At
the same time, the difficulty of O&M through manual experience alone has increased sig-
nificantly because of the existence of multiple alarms behind the single-alarm phenomenon
caused by the virtualization of 5G technology deployment, as well as the explosive growth
of monitoring data in the O&M system due to refined management. The long anomaly
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location cycle and difficulty of root cause tracing seriously affect productivity and customer
experience. In the face of these factors, there is an urgent need for efficient, rapid, accurate,
and low-cost approaches to meet the growing demand for digital O&M.

The concept of data-driven artificial intelligence for IT operations, intelligent oper-
ations, and maintenance (AIOps) [1] was presented in 2016 and has become a trending
research direction, aiming to solve the low efficiency of O&M caused by inexperience. It
combines traditional O&M with artificial intelligence algorithms, big data and artificial
intelligence, and other methods to improve the network’s O&M capabilities and reduce
human interference in the O&M, with the ultimate goal of achieving unmanned and fully
automated O&M. In 2018, the white paper “Enterprise AIOps Implementation Recommen-
dations” was jointly initiated and developed by the Efficient Operations and Maintenance
community and the AIOps Standard Working Group [2].

Based on the research work in [3], most existing intelligent O&M frameworks are
based on machine learning methods, which mainly include the following three aspects:
anomaly detection, anomaly localization, and abnormal early warning. Specific research is
presented in the related work in Section 2. Most research in the field of anomaly monitoring
determines whether an abnormal state exists at the current moment by calculating the
error between the current and normal intervals. Based on association rule mining or
decision trees, which are mature algorithms in anomaly localization, data of the top-ranked
dimension can be returned by ranking the channel anomalous factors (or errors) within
the anomaly duration or by reducing the search space complexity through algorithm
design. However, existing anomaly localization studies mainly focus on research from
the perspective of supervised classification, which is contrary to the background of most
unlabeled data in the actual production environment. Abnormal early warning studies
focus on regression prediction for time variable series or by matching the real-time data
distribution with failure rules to obtain the probability of failure occurrence. After thorough
research, it was unfortunately found that the progress of intelligent O&M research lies
only in the field of scientific research, and there are still some difficulties in combining the
algorithms of academia with the domain knowledge of the industry and applying them to
actual industrial production scenarios.

In the early stage of this study, we completed the construction of the data monitoring
platform for private 5G networks and found that the abnormal phenomenon of AGVs
driving is strongly related to high latency, but the current O&M is based on manual
experience or simple data analysis, but the latency-sensitive scenario requires strong
timeliness. Therefore, based on the China Telecom network data platform, this study
proposes an anomaly detection and abnormal early warning models for AGV’s abnormal
driving scenarios in private 5G networks, which efficiently detects high latency using the
proposed model (the ConvAE-Latency model). Based on this, the LstmAE-TL model is
proposed to realize abnormal early warning with a 15 min interval using the characteristics
of long short-term memory (LSTM). Simultaneously, transfer learning was used to solve the
problem in which loss cannot converge in the training process of abnormal early warning
detection owing to the small sample size. However, during data analysis, it was found
that the percentage of abnormal samples was few, owing to private 5G networks running
smoothly. Considering that the clustering of few samples cannot prove the correlation
in the same class, we only studied anomaly detection and abnormal early warning, and
anomaly location was not considered.

The main contributions of this study are as follows:

1. Instead of simulation data [4], the training data of proposed models are from the
China Telecom network data platform, and the practicability of the ConvAE-Latency
and LstmAE-TL models is verified.

2. Considering latency fluctuation as the important indicator for anomaly detection,
compared to other methods [5,6], the ConvAE-Latency model uses the latency fitting
module to enhance the correlation between target indicators and hidden features.
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3. Transfer learning is applied to solve the problem of fewer abnormal data samples; be-
cause of the smooth running of private 5G networks, compared to related works [7,8],
the LstmAE-TL model works better.

The remainder of this paper is organized as follows: Section 2 introduces state-of-the-
art background information and studies, Section 3 introduces the method used in this study,
and Section 4 shows the dataset and experimental results. Finally, Section 5 concludes the
paper and discusses future research directions.

2. Related Works

Owing to the growing demand for data-driven operations and maintenance, AIOps [1]
has become a prominent research direction; it uses artificial technologies such as big data
analysis and machine learning to automate the management of O&M and make intelligent
diagnostic decisions through specific policies and algorithms, which will replace the col-
laborative system of R&D and operations personnel and the automated operations and
maintenance system based on expert systems to achieve faster, more accurate, and more
efficient intelligent operations and maintenance. However, in the real O&M scenario, the
abnormal indicators are not affected by a single dimensional key performance indicator
(KPI), but by multi-dimensional abnormal KPIs.These lead to abnormal occurrences. More-
over, monitoring data have the characteristics of large volume, being difficult to clean, and
having no labeling of abnormal data; therefore, realizing fast and accurate intelligent O&M
is not easy. With the development of complex and refined O&M requirements, abnormaly
detection, anomaly location, and abnormal early warning as key technologies in the AIOps
field have become prominent research directions.

2.1. Anomaly Detection

Compared with traditional time-series-analysis-based anomaly monitoring mod-
els [9,10], most existing studies focus on machine-learning-algorithm-based approaches [6].
Shyu et al. [11] focused on the use of principal component analysis (PCA) for anomaly de-
tection and constructed a prediction model to determine anomalies based on the principal
and subprincipal components of normal instances. Liu et al. [12] considered the concept
of isolation and proposed the isolation forest (IF) model. They considered that anomalies
are sparser than other normal data points and can be isolated and divided into leaf nodes
using few splits, making the path between the leaf node where the anomaly is located and
the root node shorter.

The autoencoder network has also been applied to detect anomaly metrics using
reconstruction errors [6,13,14]. Astha et al. [6] proposed an autoencoder-based anomaly de-
tection and diagnosis method by designing a scoring algorithm to calculate the root-cause
occurrence likelihood ranking. Zong et al. [13] proposed a method that combines a deep
autoencoder (DAE) and Gaussian mixture model (GMM). The method performs well on
several types of public data and outperforms many existing anomaly detection methods;
however, it does not consider the temporal correlation and severity of anomalies in real
scenarios and is not very robust against noise. Zhang et al. [14] used graph neural networks
for the anomaly detection of temporal data using a combination of convolutional layers,
convolutional long short-term memory networks (Conv-LSTM), and an autoencoder. This
algorithm can eliminate the effect of noise between mutually uncorrelated features; how-
ever, the data size increases, leading to a high computation time and high computational
load. He et al. [15] trained normal data using a temporal convolutional network (TCN)
and used Gaussian distribution fitting for anomaly detection. Munir et al. [16] proposed
a method that uses a convolutional neural network (CNN) for time-series prediction and
then uses the Euclidean distance between predicted and true values for anomaly detection.
In addition, Yahoo, Skyline, Netflix, and others have conducted related studies. Yahoo
proposed a single-indicator anomaly detection system that combines three modules: timing
modeling, anomaly detection, and alerting [17]. Netman Lab of Tsinghua University and
Alibaba and Baidu also conducted related studies, such as the Donut algorithm for periodic
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temporal data detection based on the variational autoencoder (VAE) model [18] and the
apprentice algorithm based on random forests [19].

2.2. Anomaly Location

After using anomaly detection algorithms to detect anomalies in multidimensional
monitoring metrics at a certain time, we need to quickly and accurately find the specific
dimension that causes these anomalies, that is, anomaly location. Association rule min-
ing [20] and decision trees [21] are two mature anomaly location methods in intelligent
O& M. Association rule mining is a rule-based machine learning algorithm that aims to
discern strong rules present in a dataset using a number of metrics. When association rules
are generated, they can be used to assist with the correlation analysis of events (errors and
alerts). Decision trees belong to supervised learning in machine learning and represent
mappings between object attributes and object values. Each node in the tree represents a
judgment condition for object attributes, with branches representing objects that meet the
conditions of the nodes and the leaf nodes of the tree representing the judgment results to
which the objects belong. Tsinghua University and Baidu Inc. proposed a root cause analy-
sis algorithm called HotSpot in 2018 [22], which uses Monte Carlo tree search to transform
root cause analysis into a large spatial search problem with a heuristic search algorithm
to locate the root causes that cause anomalies. Lin et al. proposed a multidimensional
monitoring metric for the number of problem reports, called the iDice root cause analysis
algorithm [23], which reduces the workload of O&M staff by reducing the combinations of
attribute values under each dimension through three pruning strategies.

In addition, Bhagwan et al. proposed the Adtributer algorithm [24] for the KPI of the
advertising revenue of a website. This algorithm uses the concepts of explanatory power
and surprise to identify the set of the most likely root causes of anomalies after detecting
anomalies in the KPI. Pinpoint [25] uses cluster analysis to diagnose the root causes of large
dynamic Internet services. Argus [26] uses a hierarchical data structure for aggregation and
performance metrics for groups of users with the same attributes and attempts to locate
users with performance faults.

2.3. Abnormal Early Warning

Early warning is forward-looking compared to anomaly location; predicting the
operational state of network or the faults of industrial equipment, which can improve
the efficiency of maintenance and reduce loss. Currently, warning algorithms focus on
traditional statistical-based logistic regression [27–29] as well as mathematical prediction
techniques in which fuzzy theoretical models [30] , and grayscale models [31] are also
widely used.

However, owing to the complexity of prediction scenarios and the explosive increase
in data volume, researchers are more inclined toward data-driven intelligent prediction
techniques [8,32–35]. Zhiqiang et al. [8] proposed an improved intelligent early warning
method based on moving window sparse principal component analysis (MWSPCA) appli-
cable to complex chemical processes. The sparse principal component analysis algorithm
was used to build the initial warning model, which was then updated using moving win-
dows to make the warning model more suitable for the characteristics of time-varying data.
MALHOTRA et al. [32] proposed a coding and decoding model based on LSTM networks.
This method models the time dependence of the time series through LSTM networks and
achieves a better generalization capability than traditional methods. Related studies [33,34]
proposed a deep belief network fault location (DBN-FL) model based on a deep trust
network, which sets a series of fault rule identification templates based on historical fault
data, integrated data analysis results, and expert experience in the fault identification
process. The probability of fault occurrence is obtained by matching the real-time data
distribution with the fault rules. In this study [35], an implementation method for abnormal
early warning technology based on the probability distribution and density estimation
method was proposed, which calculates the probability value of feature distribution by
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extracting data features and then distinguishes fault data from normal data according to the
probability value. The performance of logistic regression and machine learning methods
was evaluated in this study. The results show that these methods effectively improve the
prediction accuracy relative to traditional networks [36].

3. Proposed Methods

3.1. Framework

As private 5G networks are the key development direction of operators for business
customers, compared with public users, private networks have more demanding require-
ments for various types of performance. Once faults occur, industrial production will be
significantly affected; therefore, timely and efficient troubleshooting is particularly im-
portant. This poses a challenge to O&M of private 5G networks. It is needed to quickly
diagnose or predict faults based on high-dimensional data of networks and services to
reduce the impact of network faults on services.

Based on this research direction, we investigate the limitations of private 5G net-
works O&M and find that most business scenarios focus on latency-sensitive AGVs and
band-width-sensitive video transmission. According to the feedback of O&M staff, AGVs
demonstrating abnormal driving behavior occurred several times. Considering that this
is highly correlated with the high latency, the O&M staff deployed a probe to private
5G network parks to obtain monitor data. The result shows that, when the AGVs work
abnormally, the latency of private 5G network is higher than the specified threshold.

Regarding the latency-sensitive scenario in private 5G networks, this study proposes
an intelligent O&M framework, as shown in Figure 1, including anomaly detection and
early warning models. First, based on the wireless data of private 5G networks, an anomaly
detection model (ConvAE-Latency) based on an autoencoder network is proposed to detect
whether the latency of network is high by calculating reconstruction error. Moreover, based
on the ConvAE-Latency model, the LstmAE-TL model based on LSTM is proposed, which
can predict abnormal behavior after 15 min. In addition, transfer learning was used in the
training process of LstmAE-TL to solve the problem of low learning speed and difficult
convergence because of a limited number of samples.

3.2. Anomaly Detection

Traditional O&M methods is based on periodic inspection, assign work. Problems exist
such as low efficiency and lack of timeliness of resource placement; thus, non-preventive
O&M fails to meet the needs of private 5G network. The use of artificial intelligence and
big data and other new technologies to achieve active, rapid, and accurate detection is a
new trend in the development of O&M.

As the autoencoder is trained as a neural network with unsupervised learning, it can
reconstruct the original data by hidden features, and the reconstructed data are made closer
to the original data by iterative training. If input data are anomaly, the distribution of
reconstruction error is different. Based on this, we propose an autoencoder-based anomaly
detection model (ConvAE-Latency) for anomaly detection of latency-sensitive scenarios in
private 5G networks. The wireless data of base station are used for training, while probed
latency is used for labeling to distinguish normal and abnormal samples. Significantly, only
normal samples are used to train, and the results show the ConvAE-Latency model can
reconstruct normal data well, while the abnormal samples are detected.
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Figure 1. The framework of Intelligent O&M.

The network architecture of the ConvAE-Latency model is shown in Figure 2. It
consists of three parts: an encoder, decoder and latency classification network. For the
encoder, two convolutional layers are used for dimensionality reduction because of the
large dimensionality of the wireless parameters on the base station side, and the training
algorithm for the ConvAE-Latency model is shown in Algorithm 1. The encoder maps an
input vector x to a hidden representation z by a an affine mapping following a nonlinearity,
as shown in Equation (1). Subsequently, the decoding process shown in Equation (2) also
maps the potential spatial representation of the hidden layer back to the original input
space as the reconstructed output through the nonlinear transformation. The reconstruction
goal is given by Equation (3), the difference between the original input vector x and the
reconstruction output vector x̂. Notably, the reconstruction–error distribution of abnormal
samples should be as far away from the normal samples as possible:

z = kE
θ (WEx + bE), (1)

x̂ = kD
σ (WDz + bD), (2)

Ex =
n

∑
i=1

||xi − x̂i||2, (3)

where x = [x1, x2, · · · , xn], x ∈ R
m, m represents the wireless parameter dimension, and n

represents the number of samples. W and b are the weight matrix and bias vector of the
neural network, respectively, and k denotes the nonlinear activation function.
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Figure 2. The network architecture of the ConvAE-Latency model.

Considering latency as target indicators in this scenario, the correlation with the
hidden features z needs to be enhanced. In addition to reconstructing input, dense networks
are used to construct the latency classification network, which ensures that z is strongly
correlated with the latency, using the binary cross-entropy loss function with the function
set, as shown in Equation (4):

L =
1
N ∑

i
Li =

1
N ∑

i
−[yi log pi + (1 − yi) log(1 − pi)], (4)

where yi denotes the label of sample xi, that is, the positive class is 1, the negative class is 0,
and 30 ms is used as the classification threshold. pi denotes the probability that sample i is
judged to positive class.

Algorithm 1 The ConvAE-Latency model training algorithm

Input: Dataset x, label y
Output: Encoder fθ , decoder gσ, classification uφ

1: θ, σ, φ ← Initialization parameters;
2: repeat
3: z = fθ(x);
4: x̂ = gσ(z);
5: Ex = ∑n

i=1||xi − x̂i||2;
6: L = 1

N ∑
i

Li =
1
N ∑

i
−[yi log pi + (1 − yi) log(1 − pi)];

7: θ, σ, φ ← Update parameters according to combination of Ex and L;
8: until Convergence of parameters θ, σ, φ

As shown in Algorithm 2 and Figure 3, the ConvAE-Latency model is implemented
as follows:
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Algorithm 2 The ConvAE-Latency model based anomaly detection algorithm

Input: Dataset x, threshold k
Output: The results of anomaly detection

1: Pre-training ConvAE-Latency model obtained from Algorithm 1;
2: x̂ = gσ( fθ(x)) Calculate reconstruct result;
3: Ex = ∑n

i=1||xi − x̂i||2 Calculate reconstruction error;
4: if Ex > k then
5: x is an anomaly;
6: else
7: x is not an anomaly;
8: end if

Figure 3. Implementation process of the ConvAE-Latency model.

3.3. Abnormal Early Warning
3.3.1. Network Architecture

In the previous section, we proposed the ConvAE-Latency model, which can effectively
shorten the O&M troubleshooting time, compared with manual experience-based O&M
methods. However, it only detects the current network status. To further enhance the
intelligence of O&M in private 5G networks, abnormal early warning is expected. The
possible abnormality is predicted before the network faults occur, so staff can prepare
preventive measures as well as maintenance in advance to avoid or reduce the loss caused
by the network faults.

LSTM has a memory function in the time dimension, which is often used in prediction
schemes based on historical messages. Therefore, based on the ConvAE-Latency model,
this study proposes a transfer-learning-based abnormal early warning model (LstmAE-TL),
as shown in Figure 4. The model is divided into two parts: the LSTM-based prediction
network and ConvAE-Latency model. The specific structure is described as follows.
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Figure 4. Network architecture of the LstmAE-TL model.

The first part of the proposed model consists of a three-layer LSTM network and
dense networks; input data are the same as that for the ConvAE-Latency model. It is
noteworthy that the input data need to be obtained by a sliding window algorithm. The
output of the first part is the prediction of the wireless data ŵ for the next period. The
reconstructed function is given by Equation (5). Subsequently, ŵ is fed into the previously
trained ConvAE-Latency model to predict whether there is high latency, which is the final
output. However, the ConvAE-Latency model is frozen and not trained here in order
to fit the real situation better because inaccurate prediction will affect its judgment. It is
worth noting that the latency fitting module of ConvAE-Latency is not used. The training
algorithm for the LstmAE-TL is shown in Algorithm 3:

Ew =
n

∑
i=1

||wi − ŵi||2, (5)

where w = (wt1 , wt2 , · · · , wt5), w ∈ R
m×n, m represents the wireless parameter dimension,

and n represents the number of samples.

Algorithm 3 The LstmAE-TL model training algorithm

Input: Normal dataset wnormal , anomaly dataset wanomaly
Output: Prediction network hξ

1: Pre-training ConvAE-Latency model obtained from Algorithm 1;
2: ξ ← Initialization parameters;
3: repeat
4: Ew = ∑n

i=1||wi − hξ(wi)||2 Calculate predict error by only wnormal ;
5: Ex = ∑n

i=1|| hξ(wi)− gσ( fθ(hξ(wi)))||2 Calculate reconstruction error of the predict
result of wnormal by ConvAE-Latency model;

6: ξ ← Update parameters according to combination of Ew and Ex;
7: until Convergence of parameters ξ
8: Freeze part of parameters in ξ;
9: repeat

10: Ew = ∑n
i=1||wi − hξ(wi)||2 Calculate predict error by mix wanomaly and part of

wnormal ;
11: ξ ← Update parameters according to combination of Ew;
12: until Convergence of parameters ξ

As shown in Algorithm 4 and Figure 5, the implementation process of the LstmAE-TL
model is as follows:
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Algorithm 4 The LstmAE-TL model based abnormal early warning algorithm

Input: Dataset w, threshold k
Output: The results of abnormal early warning

1: Pre-training ConvAE-Latency model obtained from Algorithm 1;
2: Prediction network hξ ;
3: Ex = ∑n

i=1|| hξ(wi)− gσ( fθ(hξ(wi)))||2 Calculate reconstruction error;
4: if Ex > k then
5: x is an anomaly;
6: else
7: x is not an anomaly;
8: end if

Figure 5. Implementation process of the LstmAE-TL model.

3.3.2. Transfer Learning

For any system, the abnormal state has a small probability compared with normal
functionality, and the application scenarios of private 5G networks require high-reliability
services, which determines that it is a highly reliable system itself, and its abnormal state is
highly improbable. Therefore, the number of anomalous samples is too small in proportion
to the samples of normal cases, leading to difficult training of the network and difficulty in
fitting the anomalous part of the samples, which is usually referred to as few-shot learning.

For the few-shot learning of anomalous samples, this study used transfer learning
to solve this problem. The idea of transfer learning comes from human analogy learning,
which aims to apply features learned from a high-quality dataset to other datasets under
similar domains. In the environment of this study, although there is a gap between abnormal
sample features and normal sample features, both occur in the same network environment
and their feature extraction processes are similar; therefore, transfer learning can be used to
apply the feature extraction framework learned from normal samples to abnormal samples
to improve the accuracy of abnormal sample prediction.

In the previous section, a three-layer dense network was proposed as the temporal
feature extraction of wireless base station data and is the shared network part of normal
and anomalous samples, which was trained using transfer learning which is not consistent
with the training method of anomaly detection. First, the proposed model is trained with
normal samples to obtain a prediction network with good performance. Then, the LSTM
of LstmAE-TL is frozen and trained again with a small number of normal samples mixed
with anomalous samples to achieve accurate prediction of the anomalous part.
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3.3.3. Data Sensitivity Analysis

In essence, the proposed abnormal early warning model can be considered a joint
composition of two independent networks, and both are trained using the same dataset.
Due to the poor quality of the few data present in the dataset, both networks produce large
errors, and the errors of both will further superimpose on each other, leading to serious
degradation of the model performance.

However, because the two networks are trained separately, the information between
them is not interoperable, which leads to the fact that, although the final result error of
both networks is small, the locations where the errors are generated are different, which
significantly magnifies the small errors in the process of cross-network transfer, thus
affecting the performance.

To solve the above two problems, in this study, the loss function of the autoencoder
with fixed weights is added as the judgment basis during the training of the LSTM network,
that is, it is not only required that the prediction results obtained by the LSTM conform to
the true distribution but also that the prediction results can be correctly coded and decoded
by the autoencoder.

4. Analysis of Results

4.1. Data Set Description

The dataset was selected from the downlink network status data of a single DU under
the exclusive base station of private 5G networks, totaling 16 days, one data point every
15 min, and a total of 1536 data points. The dataset includes PRB, CQI, MCS, etc., the entries
of which are listed in Table 1. According to the different pre-processing methods, all the
data can be divided into two categories: normalized data, including the total number of
PRBs and the total number of CQI reports, which are normalized to the 0–1 range using
the maximum and minimum normalization methods, and percentage data, including PRB
utilization and retransmission rate. The percentage data were not normalized. The final
dataset contained 179 dimensions.

Table 1. Sample wireless data.

Class ID Meanings

PRB.UsedDl Total number of downlink PRBs used
PRB.AvailDl Total number of downlink PRBs available

MAC.TxBytesDl Number of bits sent at the downlink MAC layer
MAC.TransIniTBDl Initialize TB count at downlink MAC layer

HARQ.ReTransTBDl Retransmission TB number
CQI.NumInTable CQI Report

PRB.NumRbOfTableMCSDl Table of the number of PRBs used in each level of MCS
PHYCell.MeanTxPower Transmit power of physical layer

CELL.PowerSaveStateTime Host standby sleep time

It is worth noting that, to save resources, the base station sleeps for a period of time
every day at regular intervals, and the data collected during the sleep period are blank.

4.2. Anomaly Detection Results

For the input of the autoencoder-based anomaly detection model, all the data were
randomly divided into training and test sets in a ratio of 2:1, and zeros were added after
the existing 179-dimensional KPIs, thus forming a 12 × 15 matrix, which was fed into the
convolutional network and decoded again to 179 dimensions after being compressed and
coded to 32 dimensions. Owing to the high dimensionality of the data, MSE was used for
the loss function to avoid large local errors. The learning rate was reduced by half every
50 epochs during the training process.
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Figures 6 and 7 show the distribution curves and the cumulative distribution function
(CDF) of reconstruction error after the autoencoder for abnormal and normal samples, respec-
tively, where red and blue lines represent the abnormal and normal samples, respectively.

Figure 6. The reconstruction-error distribution for the ConvAE-Latency model.

Figure 7. The CDF of reconstruction error for the ConvAE-Latency model.

The results show that there is a significant difference between the error distribution of
normal and abnormal samples, and the decoding error of abnormal samples is significantly
higher than that of most the normal samples; however, there are also some normal samples
with larger errors. This is due to the fact that, when the autoencoder is trained, all the data
used in this study are expected to be normal samples, but in fact, only one criterion of
latency is used as the screening basis in the data screening process and the actual screened
normal samples are obtained, but there may be some abnormal samples that cannot be
characterized by latency, and the performance in the training results is attributed to some
“fake samples” having a large error.

4.3. Abnormal Early Warning Results

For abnormal early warning, the LstmAE-TL model is proposed, and the training
process was divided into two parts: normal training and transfer learning.

Figures 8 and 9 show the distribution curves and the CDF of reconstruction error without
the latency fitting module; compared with that, the ConvAE-Latency model works better.
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Figure 8. The reconstruction-error distribution without the latency fitting module.

Figure 9. The CDF of reconstruction error without the latency fitting module.

4.3.1. Normal Sample Training

The purpose of normal sample training is to achieve an accurate prediction of the
network for normal samples; therefore, the dataset of normal samples is selected and
randomly divided into training and test sets according to the ratio of 2:1. The input data
were the data of the five time periods before the period to be predicted, and the output data
were the 179-dimensional network state data of the current time period. The loss function
of the proposed model consists of two parts: LSTM-based abnormal early warning and
autoencoder-based abnormal detection. The training first requires the prediction results
to match the real situation such that the mean square error (MSE) between the prediction
results and the real data are as small as possible. Second, the prediction results must be
correctly reconstructed using the autoencoder. Therefore, the prediction results are fed
into the abnormal detection network, and the MSE between the reconstructed data and
predicted data are calculated again. The learning rate was reduced by half every 100 epochs
during training.

Figure 10 shows the MSE of the prediction data based on the normal dataset, and the
results indicate that the error of the network appears to increase periodically over time. It is
observed that most of the error spikes occur at the beginning of the day, presumably because
the base stations are beginning to work during these hours and their performance and
service are unstable. Because the base stations are intermittently dormant to save energy,
the dormant time data will be set to zero. As mentioned in Section 4.1, these dormant time
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period data are removed during data pre-processing, which results in discontinuous data
timing around the dormant time period and cannot be accurately predicted.

Figure 10. MSE of the prediction data based on the normal dataset.

4.3.2. Effectiveness of Transfer Learning

The purpose of migration learning is to improve the prediction accuracy of the abnor-
mal samples. Based on the early warning network obtained above, this study freezes the
three-layer LSTM network and subsequently only trains the three-layer dense network.
Similarly, the data were randomly divided into a training and test set at a ratio of 2:1 for all
abnormal samples. To enhance the weight of the abnormal samples, each of the samples
in the training set was repeated twice and then mixed with an equal number of randomly
selected normal samples to form the complete training and test sets. Because the prediction
results of anomalous samples are expected to produce large errors when input into the
autoencoder (while the opposite is true for normal samples), the process of transfer learning
does not use reconstruction error as a loss function and only considers the accuracy of the
fitted prediction. The learning rate was chosen to be one-tenth of the initial learning rate in
normal learning, and the same learning rate was halved every 100 epochs.

The distribution curves and the CDF of the autoencoder reconstruction errors for
abnormal and normal samples are shown in Figures 11 and 12, where red and blue line
represent abnormal and normal samples, respectively. Meanwhile, Figures 13 and 14 show
the results of abnormal early warning without transfer learning.

Figure 11. The reconstruction-error distribution for the LstmAE-TL model.
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Figure 12. The CDF of reconstruction error for the LstmAE-TL model.

Figure 13. The reconstruction–error distribution without transfer learning.

Figure 14. The CDF of reconstruction error without transfer learning.

The results show that there are differences in the distribution of abnormal and nor-
mal samples, and the LstmAE-TL works better than training without transfer learning.
However, there is an overlap in the distribution of some samples, and the error of normal
samples has improved. In transfer learning, to meet the prediction performance of abnor-
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mal samples, the prediction of some normal samples is inevitably sacrificed. In addition,
the sampling density of the data selected in this study was 15 min, and for some of the
abnormal samples, the abnormality may occur within 15 min of the current time period,
resulting in it not yet being reflected in the previous time period, which means that these
abnormal points do not have temporal characteristics, and the prediction accuracy is poor.

5. Conclusions

To meet the requirements of high-quality operation and maintenance of the private 5G
network, this paper proposes the ConvAE-Latency model based on the autoencoder and
the LstmAE-TL model based on LSTM. This work is verified at the China Telecom private
5G networks. Transfer learning is introduced in training to solve the problem of few fault
samples. The results show that the two models achieve anomaly detection and prediction,
and their effects are significantly improved compared with existing research. It is planned
to use the hidden features of the proposed model combined with clustering algorithms to
achieve anomaly location in the future.
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Abstract: In recent years, federated learning has been able to provide an effective solution for data
privacy protection, so it has been widely used in financial, medical, and other fields. However,
traditional federated learning still suffers from single-point server failure, which is a frequent issue
from the centralized server for global model aggregation. Additionally, it also lacks an incentive
mechanism, which leads to the insufficient contribution of local devices to global model training. In
this paper, we propose a blockchain-based decentralized federated learning method, named BD-FL,
to solve these problems. BD-FL combines blockchain and edge computing techniques to build a
decentralized federated learning system. An incentive mechanism is introduced to motivate local
devices to actively participate in federated learning model training. In order to minimize the cost of
model training, BD-FL designs a preference-based stable matching algorithm to bind local devices
with appropriate edge servers, which can reduce communication overhead. In addition, we propose
a reputation-based practical Byzantine fault tolerance (R-PBFT) algorithm to optimize the consensus
process of global model training in the blockchain. Experiment results show that BD-FL effectively
reduces the model training time by up to 34.9% compared with several baseline federated learning
methods. The R-PBFT algorithm can improve the training efficiency of BD-FL by 12.2%.

Keywords: decentralized federated learning; blockchain; edge computing; stable matching; consensus
algorithm

1. Introduction

With the development of new generation information technology such as mobile
internet, the number of mobile services and applications is growing exponentially, resulting
in the generation of massive amounts of data. It has been shown that there are data
security risks in well-known business associations [1]. User data are often stored in the
centralized cloud servers of an organization or enterprise and can be accessed without
privacy protection, which raises the risk of leakage of user-sensitive data [2]. Google took
the lead in proposing a federated learning method [3] to solve the collaborative training
problem of privacy protection so that private data can be safely used in a distributed
environment. Therefore, federated learning has received extensive attention and research
from industry and academia. However, federated learning has its own limitations [4]. It
relies on a single centralized server and is vulnerable to a single point of server failure.
Additionally, it lacks the incentive mechanism for local devices, which leads to the reduction
of the initiative of local devices to participate in the training of federated learning.

Blockchain is a decentralized and auditable ledger technique [5] that has become a
solution to replace vulnerable centralized servers in insecure environments. By combining
with blockchain, the decentralized federated learning method can be realized. However,
in the scenario of combined blockchain and federated learning, distributed servers usually
use cloud computing to transmit model data [4]. Since cloud servers are physically far
from local devices, which will further increase the delay of network data transmission [6],
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traditional cloud computing techniques will weaken the role of servers in supporting the
training process of federated learning models. Additionally, edge computing has become an
efficient computing paradigm that sinks computing and storage resources to the side close to
local devices [7,8]. Compared to cloud-based servers, edge servers are closer to local devices
and can respond to requests from local devices faster. Applying edge computing to federated
learning can further reduce the latency and energy consumption of model training.

However, when combining blockchain with federated learning in the edge computing
environment, it also faces the challenge of the high cost of network communication [9]. As
the number of local devices is large and keeps growing dramatically, local devices need to
effectively offload data and tasks to the appropriate server close to the edge side of the network,
optimizing the utilization of edge server resources and maximizing the system efficiency.
This requires efficient and stable matching between local devices and edge servers [10]. The
matching problem is affected by many factors, such as distance, network bandwidth, and
computing power [11]. These factors involve new techniques such as node localization [12],
and they need to be considered to reduce the overall system latency and energy consumption
in the edge computing environment. Meanwhile, as the core of blockchain technique, the
consensus algorithm plays a decisive role in the security and efficiency of blockchain [13–16].
In highly decentralized federated learning with blockchain, all local devices participating in
model training will also participate in the consensus process. The communication cost will
increase significantly, which is bound to increase the consensus time of the blockchain, thus
reducing the efficiency of model training.

To address the problems of centralization and lack of incentives in traditional federated
learning, this paper proposes a blockchain-based decentralized federated learning method
for edge computing environments, named BD-FL. By designing a stable matching algorithm
between local devices and edge servers and an optimized consensus algorithm, BD-FL can
effectively reduce the overall system delay and speed up the model training efficiency. This
paper makes the following contributions.

• We propose the BD-FL by combining blockchain with federated learning in the edge
computing environment. BD-FL uses the distributed characteristics of blockchain and
edge computing to solve the problem of a centralized server in that the local device
trains the local model and the edge server aggregates the global model. BD-FT also
introduces an incentive mechanism to encourage local devices to actively participate in
model training, increasing the number of samples and improving the model accuracy.

• We propose a preference-based stable matching algorithm in BD-FT, which binds
local devices to appropriate edge servers, improving the utilization of edge server
resources and reducing the delay of data transmission. We propose the R-PBFT
algorithm, which optimizes the network topology and the consistency protocol and
designs a dynamic reputation mechanism, reducing the communication overhead of
the blockchain consensus process and improving the model training efficiency.

• We performed extensive simulation experiments to evaluate the proposed BD-FL.
Experimental results show that BD-FL effectively reduces the model training time
by up to 19.7% and 34.9%, respectively, compared with several federated learning
methods with different matching algorithms and a state-of-the-art blockchain-based
federated learning method. The R-PBFT algorithm can reduce the communication
overhead of the consensus process and improve the training efficiency of BD-FL
by 12.2%.

The rest of this paper is organized as follows. Section 2 introduces related work.
Section 3 presents the methodology, including the system architecture, BD-FL, and R-PBFT.
Section 4 gives the experimental evaluation. Section 5 concludes this paper.

2. Related Work

A centralized network topology has more serious system security issues and higher
communication overhead compared with a decentralized distributed network topology.
Traditional federated learning adopts a centralized topology with a single centralized server
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responsible for aggregating the global model. As federated learning takes hold in real-life
production, the shortcomings of the centralized topology model have gradually become
apparent [17]. In practical applications, the centralized server will put huge pressure on
the network bandwidth overhead and also reduce the robustness of the system, which
will affect the model training process of federation learning once the server is maliciously
compromised. Blockchain is a distributed technique with decentralized characteristics and
incentive mechanism [5,18,19], which can effectively solve the above problems of traditional
federated learning. In addition, due to being tamper-proof and anonymous, blockchain can
guarantee data security. Therefore, a lot of work has been done on decentralized federated
learning methods using blockchain.

However, decentralized federated learning with blockchain still faces the challenge of
model training efficiency. Kim et al. [20] proposed a blockchain-based federated learning
architecture. The local device in this architecture updates the local model based on its
available data samples. The architecture uses blockchain to reward updates from local
devices, and the reward is proportional to the number of local data samples. This simple
reward scheme is not able to accurately reflect the magnitude of the contribution made by
the local device to the global model training. Weng et al. [21] designed a federated learning
scheme incorporating blockchain incentives. The scheme ensures system reliability by
rewarding honest local devices and punishing dishonest ones. They also introduced a
consensus protocol based on a committee mechanism, which participates in the consensus
process by randomly selecting nodes to form a committee. However, randomly selecting
committee nodes is almost negligibly close to a completely random scheme and is probably
not optimal. Local devices make significant contributions to the training of the federated
learning model, so it is important to reasonably reward local devices. Existing federated
learning incentive schemes generally agree that local devices should be fairly rewarded
based on the magnitude of their contribution to the model. Jia et al. [22] stated that the most
widely used scheme to evaluate the contribution size of local devices is Shapley values
(SVs). SVs can fairly distribute rewards for model training, and it is widely used in many
fields, such as economics, information theory, and machine learning. However, SV-based
reward schemes usually require exponential time to compute, and the computational cost
is prohibitive.

In the edge computing environment, the matching problem between local devices
and edge servers has an important impact on the data transmission delay and the overall
system efficiency. Hu et al. [23] proposed a matching method for mobile edge computing
and device-to-device communication environments. This method uses a game model to
solve the offloading problem of local devices. Each local device is regarded as a gamer,
and the offloading strategy is obtained through a mutual game to make the system reach
Nash equilibrium. Wu [24] proposed an intelligent scheduling matching scheme based on
a delayed acceptance algorithm. It combines the Hopfield neural network and the decision
tree model and quantifies the assignment scheduling problem into a matching optimization
problem by defining the cost coefficient between tasks and equipment. Lu et al. [25]
proposed an asynchronous greedy matching algorithm, which builds a preference list of
both parties based on the utility value between the cooperative node and the requesting
node, and uses the greedy strategy for stable matching. The existing related research mainly
solves the one-to-one or N-to-N matching problem, and there is less research on stable
matching between M devices and N servers in the edge computing environment.

The consensus algorithm, as one of the core ideas of blockchain, can ensure the proper
operation of the blockchain, but it has an important impact on communication overhead and
model training efficiency. The most commonly used consensus algorithms are proof of stake
(PoS) [13], proof of work (PoW) [14], delegated proof of stake (DPoS) [15], and practical
Byzantine fault tolerance (PBFT) [16]. The PBFT algorithm is widely used in distributed
architectures, but it still suffers from high communication overhead and low reliability of
master nodes. Numerous solutions have emerged to address the shortcomings of PBFT.
Castro et al. [26] improved the transaction throughput of PBFT by caching blocks, but their
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method does not perform well on the delay of the consensus process. Zhang et al. [8] made
the certificate and other information of blocks clear in time without communication between
nodes according to the timestamp in the blockchain, but this method does not consider the
optimization of the PBFT consistency protocol. Zheng et al. [27] combined DPoS and PBFT
to make the algorithm with dynamic authorization, but the limited bandwidth still reduces
the transaction throughput of the algorithm. On the other hand, some studies are dedicated
to reducing the time complexity of PBFT. Ma et al. [28] proposed a scheme to verify the
consistency of asynchronous Byzantine nodes through a stochastic prediction model. This
scheme randomly selects one of the multi-node proposals in each round of consensus and
uses the threshold signature algorithm to reduce the communication cost of each round
of consensus to O

(
n2). However, the random selection method of this scheme may cause

security problems. Gao et al. [29] proposed a scalable Byzantine algorithm (FastBFT)
that introduces a tree data structure to achieve the optimal time complexity of O(nlogn).
However, in the worst case, the time complexity of FastBFT is still O

(
n2). Liu et al. [30]

improved the consensus efficiency by caching blocks and smart contract techniques, but
without reducing the time complexity of PBFT. Wang et al. [31] proposed a PBFT algorithm
based on randomly selected collectors. It can reduce the communication cost to a linear
level, but if the selected collector is malicious, the communication cost of the algorithm will
rise sharply. However, these consensus algorithms are not applicable to real blockchain
and edge computing application scenarios, and still have high computational complexity.

In this work, we present BD-FL to solve the single node failure and network communi-
cation overhead problems of centralized federated learning. BD-FL introduces an incentive
mechanism to increase the contribution of local devices to global model training. We also
propose a stable matching algorithm and the R-PBFT algorithm to reduce the number of
nodes participating in communication and consensus, which reduces the system delay and
improves the model training efficiency.

3. Methodology

3.1. System Architecture

To implement blockchain-based decentralized federated learning, we first designed
the system architecture. Figure 1 shows the architecture of BD-FL, which mainly includes
the demand release module, aggregation module, training module, and verification module.
Since the nodes participating in the consensus in BD-FL are only a limited number of edge
servers, the alliance chain is selected as the implementation platform of the architecture.

The demand release module is mainly composed of model demanders, whose main
role is to release the demand task and pay the model training fee and the verification fee.
After the model demander pays the fee and provides the initial model data, the system
will send the relevant information of the initial model to each edge server for download
by local devices. The aggregation module is mainly composed of edge servers that are
close to local devices or data sources, such as base stations with certain computing and
storage capabilities. It will save the gradient parameters of the local model, and other
block data uploaded by local devices, and aggregate the global model on edge servers. It
will also verify the accuracy of the uploaded gradient parameters and prevent dishonest
local devices from maliciously providing wrong information. In the consensus process of
blockchain, the local device will not participate, and the edge servers of the aggregation
module will participate in the consensus to reduce the system communication delay. The
training module is mainly composed of local devices, and its main role is to train local
models using local data samples. In the model training, the system will bind local devices
with edge servers according to our proposed matching algorithm. The local device will
only upload the local model parameters to its bound edge server and only download the
global model from its bound edge server. The verification module is also composed of
some local devices. In each round of global model aggregation, the edge server sends the
received local model gradient parameters uploaded by the local device to the verification
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device, which uses its own dataset to verify the quality of the local model, and returns the
results to its bound edge server.

Figure 1. Architecture diagram of the decentralized federated learning.

3.2. Incentive Mechanism

In order to effectively promote local devices to participate in model training and
verification, BD-FL has designed an incentive mechanism. During each round of training,
the system will store the verification results returned by the verification device, the number
of samples uploaded by the training device, and the training time of the device in the block.
After a round of global model aggregation, the system will read the data saved on the block,
calculate the reward of each training device according to the incentive mechanism, and
send it to each local device.

The incentive mechanism gives corresponding rewards or punishments according to
the contribution of local devices to model training. During the federated learning process,
in order to ensure that the verification devices can give honest reports, their verification
results can be re-verified by other devices, and dishonest validation behaviors will be
punished. At the same time, in order to improve the fairness of reward distribution, the
system will allocate the training fee according to the size of contribution made by each
training device. The incentive mechanism introduces two metrics to calculate the final
profit of the training device.

The first is the number of data samples owned by the training device. Devices with
more data samples contribute more to global training, take longer time to train local models,
and cost more. The second one is the accuracy of the model corresponding to the gradient
parameters uploaded by the training device. The edge server verifies the model accuracy
of the training device using the dataset of the verification device and returns the results to
the edge server. An accuracy threshold T is introduced as a standard to measure whether
the local model parameters of the training devices are qualified.

The system assigns the training fee S by scoring each training device. The score
is related to the training time of the local device (denoted as trainTime) and the accu-
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racy of the uploaded local model parameters (denoted as accValue). It is calculated by
Equation (1), where α and β are the score coefficients, and the sum of them is 1.

S =

{
α ∗ trainTime + β ∗ accValue

α + β = 1 (0 < α, β < 1)
. (1)

Equation (2) gives the calculation of the training reward Rk
train that an honest training

device (device number is denoted as k) should receive in a training round, where m is the
number of training devices, and PFLM is the total cost of the model, which is paid to the
public account of the system when the demander releases the task.

Rk
train =

⎧⎨⎩
0 (accValue < T)

PFLM ∗
(

Sk/
m
∑

i=1
Si

)
(accValue ≥ T) . (2)

3.3. Preference-Based Stable Matching Algorithm

Since local devices need to transmit a large amount of data to edge servers, the network
quality, the transmission distance between nodes, the server throughput, and other factors
will largely affect the overall delay and energy consumption of the system. We design a
preference-based stable matching algorithm in BD-FL, which considers the above factors
that affect data transmission, so as to achieve the optimal matching and binding between
local devices and edge servers.

In the network environment, local devices and edge servers are abstracted into two
sets, which are, respectively, denoted by the set of local devices K = {k1, k2, . . . , km} and the
set of edge servers S = {s1, s2, . . . , sn}. For each k ∈ K, it has a matching request, denoted
as Equation (3),

Qk = (Dk, In f ok), (3)

where Dk represents the data of uplink communication that local device k uploads to the
edge server, mainly including information such as local model parameters, version number,
local iteration time, etc.; In f ok represents the state information of local device k, such as
bandwidth, physical location, etc.

The uplink communication rate vks determines the data transmission delay, which is
expressed as Equation (4) according to [32],

vks = bandk ∗ log2

(
1 +

pk ∗ gks
N0

)
, (4)

where bandk represents the channel bandwidth allocated to the local device k, pk represents
the transmit power of k, gks represents the channel gain between k and the edge server s,
and N0 represents the noise power of s.

According to [32], the network distance between nodes is related to the channel
bandwidth. It reflects the actual distance and network condition between local devices and
edge servers. Assuming that physk and physs are the physical nodes corresponding to the
local device and the edge server, respectively, the network distance distNodeks between
them is defined as Equation (5),

distNodeks =
bandaver

(bandk + bands)/2
∗ distPhysks , (5)

where distPhysks represents the actual distance between physk and physs, which has a
certain influence on the reliability of data transmission and the network latency, bandaver
represents the average bandwidth between them, and bandk and bands represent the actual
bandwidths of physk and physs.
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Equations (6) and (7) express the upload time and the upload energy consumption,
respectively, after local device k and edge server s are bound.

Tks =
Dk
vks

, (6)

Eks = pk ∗ Tks = pk ∗ Dk
vks

. (7)

We use the sum of weighted energy consumption and weighted delay, denoted as wk,
as the cost function of k, which is expressed by Equation (8),

ωk = μe
k ∗ Ek + μt

k ∗ Tk , (8)

where μe
k, μt

k ∈ [0, 1], μe
k + μt

k = 1, μe
k and μt

k, represent the energy consumption weight
and the delay weight of k, respectively. A larger μe

k indicates a higher priority of energy
consumption, and a larger μt

k indicates a higher priority of latency, and vice versa. The
priority of energy consumption and delay of the local device can be adjusted by modifying
the value of μ.

We define a coefficient matrix W to represent the cost relationship between local
devices and edge servers. It is expressed by Equation (9), where wks denotes the cost when
device k is bound to server s, and its value can be calculated by Equation (8).

W = (ωks)m∗n =

⎡⎢⎢⎣
ω11 ω12 . . . ω1n
ω21 ω22 . . . ω2n
. . . . . . . . . . . .

ωm1 ωm2 . . . ωmn

⎤⎥⎥⎦ . (9)

We also define an assignment matrix X to represent the matching relationship between
local devices and edge servers. It is expressed by Equation (10), where xks denotes the
matching relationship between device k and server s, and xks = 1 means k is bound to s,
otherwise, k is not bound to s.

X = (xks)m∗n =

⎡⎢⎢⎣
x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .
xm1 xm2 . . . xmn

⎤⎥⎥⎦ . (10)

The goal of the matching algorithm is to minimize of the total cost of model training,
while also satisfying the constraint that the total number of local devices bound to edge
server s cannot exceed its maximum number of device bindings. Therefore, we derive the
optimization objective function, which is expressed by Equation (11).

min obj =
m

∑
k=1

n

∑
s=1

ωks∗xks , (xks = 0 or 1) . (11)

We propose a preference-based stable matching algorithm to solve the optimization
objective function of cost minimization. Each local device k will establish a preference list of
matching degrees for all edge servers. We use a binary (k, s) to represent a match between
device k and edge server s. Equation (12) gives the preference function of k for s, and P(k,s)
represents the matching degree of (k, s). Equation (13) is the preference list of k, i.e., Γk. The
matches are sorted in descending order of matching degree, that is, the higher the match in
the list, the higher the preference.

P(k,s) = ηEks + (1 − η)Tks , (12)
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Γk = [P(k,s), ∀s ∈ S]. (13)

Similarly, each edge server s will establish a matching preference list for all local
devices, i.e., Γs, according to the preference function P(s,k). We only consider the strict
partial order, that is, a local device will not have the same matching degree with two
edge servers.

The local device tends to match the edge server with the highest matching degree,
and the edge server also tends to bind to the local device with the highest matching degree.
However, in the matching process, we can only pay more attention to the needs of one
side. In order to make the local device have a better experience in the training process, the
matching algorithm should meet the needs of the local device as much as possible, that is,
the local device has priority to match.

Algorithm 1 describes the preference-based stable matching algorithm. All local
devices and edge servers are initialized as unmatched. Then, all devices and servers
broadcast their status information to each other, and each device and server establishes
its preference lists. Each local device k sends a matching request to the edge server with
the highest matching degree according to its Γk. If the request is rejected, it sends the
matching request to other edge servers again according to their preference lists. Each edge
server first places all devices that it receives the matching request into its match list. If
the number of devices in the match list is greater than its maximum binding number, the
edge server will pre-enroll devices according to its preference list from front to back, and
reject the devices with low matching degrees in its Γs until the number of devices in the
match list equals its maximum binding number. If the number of local devices in the match
list is less than the maximum binding number, all devices are reserved. Each edge server
repeats updating its match list until all local devices are in the match lists of edge servers.
The output matches of the algorithm are Pareto optimal [33]. The time complexity of the
algorithm is O(nm) + O(n + m).

Algorithm 1 Preference-based stable matching algorithm.

Input: local device set K, edge server set S, maximum binding number of the server Ls.
Output: match list of edge servers Ns.

1: All items in K and S are initialized as unmatched;
2: All devices and servers broadcast their status information to each other;
3: Each k and s establish the preference lists Γk and Γs;
4: i = 0, Ns = ∅, Nk = K; //Nk is an unmatched device list
5: while | Nk |> 0 do
6: for k ∈ Nk do
7: i = i + 1; //k sends a matching request to the edge server with the highest

matching degree in its Γk
8: k sends Qk to si in its Γk;
9: Ns = Ns

⋃
k;

10: Nk = Nk − k;
11: end for
12: for s ∈ Ns do
13: while Ns > Ls do
14: //k′ is the device with lowest matching degree in its Γs
15: k′ = argmink∈Ns Γs;
16: Ns = Ns − k′;
17: Nk = Nk

⋃
k′;

18: end while
19: end for
20: end while
21: return Ns;
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3.4. R-PBFT Consensus Algorithm

To improve the model training efficiency of BD-FL, we propose a reputation-based
practical Byzantine fault tolerance (R-PBFT) consensus algorithm. In the BD-FL environ-
ment, due to the large number of nodes, the traditional PBFT algorithm will lead to a sharp
increase in communication cost and network bandwidth consumption in the consensus
process, which is easy to cause network congestion and increase the delay of model train-
ing. In addition, the master node election in PBFT adopts the modulus calculation, which
cannot guarantee the optimal master node of the election, thus affecting the consistency
and reducing the reliability and security of the system.

The R-PBFT consensus algorithm combines the characteristics of BD-FL and designs
the following improvements to solve the shortcomings of traditional PBFT for BD-FL.

• Remove the client node. In the traditional PBFT algorithm, the request phase and the
reply phase occur between the client and the master nodes. However, in the blockchain
structure, information is broadcast between nodes in the form of P2P, without the
participation of the client. Therefore, we remove the request and reply phases of
the client node in the consistency protocol, modify the C/S structure of PBFT to a
distributed topology, and divide all nodes into master and slave nodes.

• Optimize the consistency protocol. The five phases of consensus in PBFT are changed
to three phases, including the pre-preparation phase, preparation phase, and confirma-
tion phase. In the pre-preparation phase, the master node broadcasts blocks to other
slave nodes. In the preparation phase, the slave node broadcasts the block verification
results to other slave nodes and master nodes. In the confirmation phase, traditional
PBFT requires mutual interaction between nodes. We simplify it as all slave nodes
send verification results to the master node, and the master node makes a decision on
the consensus results, thus reducing the communication overhead of consensus.

• Introduce reputation mechanism. The main purpose of the reputation mechanism is to
make the nodes with high reliability easier to be elected as the master node. Each node
will be divided into different reputation levels according to the reputation value, and
then each node will be rewarded or punished based on its performance in each round
of consensus. According to a preset reputation threshold, nodes can be dynamically
transformed in different reputation levels.

When the current round of consensus is completed, the system performs the reputation
mechanism to assign each node to different reputation levels according to the reputation
value and then selects the node with the highest score among the trusted nodes as the
master node for the next round of consensus. Figure 2 shows the execution flow of a round
of consensus, where P denotes the master node and S denotes the slave node.

According to the reputation value R of each node, the reputation mechanism divides
it into three different reputation levels, namely trusted node, normal node, and unreliable
node. R is a real number between 0 and 1, and its size reflects the reliability of the node.
For the trusted node, the range of R is (0.8,1], and the node of this level generated valid
blocks multiple times. For the normal node, the range of R is (0.3,0.8], and the node of
this level generated unqualified blocks, but less often. For the unreliable nodes, the range
of R is [0,0.3], and the node of this level generated unqualified blocks many times. The
unreliable node will not participate in the election of the master node and the consensus
process of the blockchain and only saves block data.

Each node updates its R according to the following rules after a consensus, so as to
dynamically transform in different reputation levels. (1) The R of the node will be increased
by 0.01 for each successful consensus participation. (2) If the master node successfully
generates a valid block, its R will be increased by 0.02. However, if the master node fails or
is identified as a malicious node, its R will be deducted by 0.2, and it will be immediately
removed from the trusted node. (3) The slave node that correctly overthrows the malicious
master node will increase its R by 0.02.

138



Appl. Sci. 2023, 13, 1677

Figure 2. Execution flow of a round of consensus.

The initialization of reputation value is mainly divided into two cases. For the initial
nodes of the system, the comprehensive strength of these nodes, such as computing power
and network bandwidth, is used as the basis for initializing their reputation values. For
the newly added node, other nodes vote to get its initial reputation value according to the
comprehensive strength of the new node. Figure 3 shows the dynamic reputation level
transformation of nodes.

Figure 3. Dynamic reputation level transformation diagram of nodes.

On the one hand, the reputation mechanism can ensure the fairness of R-PBFT. Honest
nodes will be rewarded, while malicious nodes will be punished for dishonesty. On the
other hand, it can ensure the reliability of R-PBFT and remove malicious nodes in the
blockchain network to avoid affecting the security of the system.

3.5. Training of BD-FL

Algorithm 2 describes the training process of the BD-FL. Assuming that the model
needs r times of iterative training to reach convergence, the total time complexity of BD-FL
is O(n2) + O(nm) + O(n + m) + O(1).
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Algorithm 2 BD-FL training.

Input: local device set K, edge server set S, model demander MQ.
Output: global aggregation model M.

1: Initialization of K and MQ;
2: MQ releases task;
3: for k ∈ K do
4: calculate the matching degree with all edge servers;
5: bind with a edge server according to the proposed matching algorithm;
6: end for
7: while the cost of global model is greater than the set threshold do
8: for k ∈ K do
9: download global model M;

10: train M using local data set;
11: upload local model parameters, training time, and other information to its bound

server after training;
12: end for
13: for s ∈ S do
14: use verification device to verify the authenticity of uploaded data and the accuracy

of local model parameters;
15: calculate the scores of local devices according to the incentive mechanism;
16: if it is a master node then
17: participate in the consensus process;
18: aggregate all local model parameters and update M;
19: store the global aggregation information, transaction information, scores, and

etc. into blocks and broadcast in the blockchain;
20: update the reputation value according to R-PBFT;
21: else
22: participate in the consensus process or not according to R-PBFT;
23: receive M from the master node;
24: notify local devices to download M after consensus;
25: update the reputation value;
26: end if
27: end for
28: end while
29: return M;

4. Experiments and Results

4.1. Experiment Setting

We built a simulation experiment environment on an Intel(R) Xeon(R) server with two
Gold 6248 processors @ 2.50 GHz (Intel Corporation, Santa Clara, CA, USA). We used Java
version 1.8 to implement edge servers and the blockchain system, and Python version 3.7
to implement the local device environment. The local device communicates with the edge
server through Socket. In the simulation environment, local devices are distributed within
the coverage range of a 250 m radius of each edge server. The channel gain between them
is modeled as 30.6 + 36.7log10(distNodeks) dB using the block fading model. Table 1 shows
the simulation parameter settings.

Table 1. Simulation parameter settings.

Simulation Parameters Value

Network Bandwidth 20 MHz
Shooting Power pk 200 mW

Power Spectral Density −95 dbm/Hz
Uplink Data Size Dk [3000, 4000] kb

μ, η 0.5,0.5
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We use the ResNet18 implemented by PyTorch as the federated learning network
model, and the dataset is CIFAR-10. In experiments, the CIFAR-10 dataset will be randomly
divided into multiple copies with different sizes. The local device will randomly obtain
one copy as the local data sample.

4.2. Evaluation of BD-FL

Since the proposed preference-based stable matching algorithm plays an important
role in BD-FL to minimize the model cost and reduce the system delay, we first conducted a
set of experiments to evaluate the stable matching algorithm. We designed three matching
algorithms as the baseline, i.e., the local device first greedy algorithm (DFG), the edge server
first greedy algorithm (SFG), and the random matching algorithm (RMA), and applied
them to BD-FL for comparison experiments.

For DFG, each local device sends a matching request to the edge server according
to its preference list. If the candidate list of the edge server does not reach the maximum
number of bindings, the device binds with the server directly, otherwise, it continues to
send requests to other servers. For SFG, each edge server sends a matching request to the
local device according to its preference list. If the local device is unbound, the server binds
with the device directly, otherwise, it continues to send requests to other local devices.
For RMA, the local device and the edge server randomly send matching requests to each
other. If both parties are unbound, they can bind directly, otherwise, they continue to send
requests to other unbound devices or servers.

Figure 4 shows the total system costs of the four matching algorithms with different
numbers of nodes. As RMA is a pure random matching algorithm without considering
any factors that affect the matching result, it has the highest system cost. The costs of DFG
and SFG are also higher than that of the stable matching algorithm. Because they only
consider the one-side cost function of the local device or the edge server as the minimization
objective, they cannot achieve the overall optimization of the system cost. In contrast, the
preference-based stable matching algorithm designs the corresponding preference functions
of local devices and edge servers by considering various influencing factors, therefore, both
parties are able to match and bind efficiently. The stable matching algorithm achieves the
minimum system cost, which reduces the cost by 34.9%, 43.6%, and 69.9% compared to
DFG, SFG, and RMA, respectively, on average.

Figure 4. System costs of 4 matching algorithms with different numbers of nodes.

We also counted the number of unstable matches of DFG, SFG, and RMA, which is
shown in Figure 5. It can be seen that the number of unstable matches in these algorithms
increases with the number of nodes. Due to the randomness of RMA, the number of
unstable matches is the largest. DFG and SFG also have multiple unstable matches. The
result of unstable matches is consistent with the result of system costs in Figure 4, and the
reason is the same. For the stable matching algorithm, the number of unstable matches is
always 0, even if the number of nodes in BD-FL increases.
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Figure 5. Number of unstable matches of DFG, SFG, and RMA.

To evaluate the model training time of BD-FL with the four matching algorithms, we
set the number of edge servers to 4 and the number of local devices to 20 to build the
simulation environment. In order to eliminate the influence of the consensus algorithm, all
BD-FL models adopt traditional PBFT for blockchain consensus. Figure 6 shows the results
of model training time. It can be seen that the training time of BD-FL models with DFG,
SFG, and RMA is longer than that of the stable matching algorithm. This is because DFG
and SFG only consider the single-side matching on local devices or edge servers, and RMA
binds devices to servers in a random way, they cannot achieve the optimal stable matching.
According to Figure 5, there are unstable matches in DFG, SFG, and RMA, which will
increase the communication delay, and thus lead to a longer total time of model training.
On the contrary, BD-FL uses the stable matching algorithm on both sides of the device and
the server to utilize the computing resources and minimize the system communication cost.
Compared with DFG, SFG, and RMA, the stable matching algorithm reduces the training
time of BD-FL by 10.0%, 12.5%, and 19.7%, respectively, for 15 rounds of training. The
result of model training is consistent with that of system cost and unstable matches.

Figure 6. Model training time with different algorithms.

In order to better evaluate the performance of BD-FL, we chose a state-of-the-art
blockchain-based federated learning method [17], named FLChain, for comparison. FLChain
also applies blockchain techniques to federated learning. However, the nodes in the
blockchain are composed of entities registered in FLChain, and all local devices participate
in the consensus process of the blockchain.

In the comparison experiments, we set two configurations for BD-FL. In the first
configuration, 20 local devices are bound to 4 edge servers in the BD-FL with the stable
matching algorithm, denoted as BD-FL1. Additionally, in the second configuration, 20 local
devices are bound to 10 edge servers, denoted as BD-FL2. For the network environment of
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FLChain, we set 20 local devices and 4 edge servers. The 10 local devices are not bound to
edge servers in FlChain for consensus. Figure 7 shows the comparison results of model
training time. It can be seen that as the number of global training rounds increases, the
training time of all methods grows, but the training time of FLChain grows significantly and
is the longest. This is because the more nodes participating in the blockchain consensus, the
longer the communication time, and ultimately the longer the model training time. FLChain
does not optimize the blockchain consensus process, and all nodes need to participate
in consensus, causing a higher communication cost and thus a longer training time. All
20 local devices in FLChain participate in the consensus process, while the numbers of nodes
participating in the consensus in BD-FL1 and BD-FL2 are 4 and 10. Therefore, BD-FL1 is the
most efficient in the consensus process among these three methods. Experimental results
show that BD-FL1 and BD-FL2 reduce the training time by 34.9% and 27.0%, respectively,
over FLChain for 150 rounds of global model training.

Figure 7. Model training time with different methods.

4.3. Evaluation of R-PBFT

To evaluate the performance of BD-FL with R-PBFT, we compared this method to the
BD-FL with PBFT that applies the traditional PBFT algorithm to the consensus process of
blockchain. In the experiments, BD-FL uses 20 local devices to bind with 4 edge servers
according to the stable matching algorithm for both methods. Figure 8 shows the global
model training time of these two methods over different numbers of training rounds. It
can be seen that as the number of training rounds increases, the training time of the two
methods grows, and the BD-FL with R-PBFT consumes significantly less time than the BD-
FL with PBFT. This is due to the fact that R-PBFT streamlines the consistency protocol and
eliminates the client nodes to optimize the traditional PBFT for the decentralized federated
learning system in the edge computing environment. Thus, R-PBFT can effectively reduce
the communication overhead of consensus and improve the global model training efficiency
compared to the traditional PBFT. Meanwhile, R-PBFT can better guarantee the security
of the system by introducing the reputation mechanism. In the experiments, BD-FL with
R-PBFT reduces the training time by 12.2% compared with BD-FL with PBFT for 150 rounds
of global model training.
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Figure 8. Model training time with different consensus algorithms.

5. Conclusions

In this paper, we mainly proposed a blockchain-based decentralized federated learning
method for the edge computing environment. The proposed method joins all edge servers
into the blockchain system, and the edge server nodes that obtain bookkeeping rights
aggregate the global model to solve the centralization problem of federated learning caused
by a single point of failure. In this method, we introduced an incentive mechanism to
promote local devices to contribute data samples for model training. To further enhance
the system efficiency, we proposed a preference-based stable matching algorithm to bind
local devices with appropriate edge servers. For the consensus process of blockchain, we
optimized the PBFT algorithm to reduce the communication overhead and enhance the
system security, which improves the model training efficiency. Experimental results verified
the effectiveness of the proposed method in communication overhead, system delay, and
model training efficiency.

In the blockchain consensus process of the proposed method, the information broad-
cast between edge server nodes is not encrypted, which may lead to the disclosure of
local model parameter information of the local models. Avoiding information leak-
age and improving system security in the consensus process will be one of our future
research directions.
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Abstract: Recent advances in artificial intelligence algorithms are leveraging massive amounts of data
to optimize, refine, and improve existing solutions in critical areas such as healthcare, autonomous
vehicles, robotics, social media, or human resources. The significant increase in the quantity of data
generated each year makes it urgent to ensure the protection of sensitive information. Federated
learning allows machine learning algorithms to be partially trained locally without sharing data,
while ensuring the convergence of the model so that privacy and confidentiality are maintained.
Federated learning shares similarities with distributed learning in that training is distributed in both
paradigms. However, federated learning also decentralizes the data to maintain the confidentiality of
the information. In this work, we explore this concept by using a federated architecture for a multi-
mobile computing case study and focus our attention on the impact of unreliable participants and
selective aggregation in the federated solution. Results with Android client participants are presented
and discussed, illustrating the potential of the proposed approach for real-world applications.

Keywords: federated learning (FL); federated averaging (FedAvg); federated SGD (FedSGD);
unreliable participants; selective aggregation

1. Introduction

Mobile and wearable devices, as well as autonomous vehicles, are just some of the
applications that are part of modern distributed networks that generate an abysmal quantity
of data every day [1–3]. With increased computing power, energy efficiency, lower latency
between communications, greater bandwidth, better data management solutions, and even
storage capacity on these devices, as well as concerns about the disclosure of private
information, it is becoming increasingly attractive to allocate data locally (e.g., on mobile
devices) and push data processing to the edge so that users’ private information is not
exposed [4].

The concept of edge computing is not new. In fact, computing simple instructions in
low-power, distributed devices is an area of research that is several years old. Recently,
works have emerged, which consider training machine learning (ML) models centrally but
serving and storing models locally in these distributed devices [5].

As the computational and storage capabilities of devices in a distributed network
grow, local resources can be used on each device. This has led to an increase in interest
in federated learning (FL) [6–8]. Federated learning is a machine learning technique in
which an algorithm is trained on multiple decentralized edge devices or servers using
local private data samples without sharing them. It has numerous applications, such as
healthcare systems, industry, telecommunications, etc., as shown in Figure 1.

This concept shares some similarities with distributed learning. In distributed learning,
the training model is distributed across different nodes, while FL assumes a decentralization
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of both the data and the model and generates a global model that aggregates all the clients’
models [9] (see Figure 2).

Figure 1. Federated Learning Applications.

Figure 2. Difference Between Centralized Machine Learning, Distributed Learning and Federated Learning.

With the wide availability of mobile phones, we investigate the feasibility of im-
plementing machine-learning-based techniques in these devices. Specifically, this paper
explores federated learning for multimobile computing applications towards real-world
deployment scenarios, by focusing on the implementation of a federated solution in An-
droid devices. It also aims to preliminarily investigate different methods for aggregating
and updating the global model managed by the central server, using unreliable client
participants. In addition, the challenges and drawbacks of the FL process are discussed.
Thus, the main contributions are:

• The implementation of a real-world FL application with up to eight Android mobile devices;
• A comparison of results obtained with the developed FL solution against a baseline

obtained with a centralized ML approach;
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• We demonstrate that a more advanced aggregation method, such as a weighted
average instead of an arithmetic average, can significantly improve the overall result
of an FL solution;

• Based on existing challenges, we conclude that eligibility criteria can benefit the FL
framework in the presence of unreliable participants.

2. Background and Related Work

The federated learning concept aims to build a machine learning model based on data
distributed across multiple sites [10]. It offers clients the ability to collaboratively train a
common model without sharing personal data stored on their devices [8,11].

FL consists of two processes: model training and model inference. Typically, in an
FL framework there are two main players: clients/workers/parties who contribute to
the training of the model, and the server where the aggregation and update of the global
model is performed. Thus, model training consists of sharing information between the
workers and the server. However, the training data can never be shared. On the other hand,
during the inference phase, the model is trained based on new data. Lastly, FL provides
a mechanism to distribute the benefit of the whole process through all the collaborative
parties. As described in [11,12], FL is a framework for building ML models that can be
characterized by the following features:

• Two or more parties are interested in jointly creating an ML model. Each party has
some data that will be used as input to train the model;

• It is imperative that during model training, the data kept by each party never leave
that party;

• The locally trained model can be partially transferred from one party to another under
an encryption scheme, so that other parties cannot reproduce the training data of a
particular party;

• Theoretically, the performance of the resulting model is a reasonable approximation of
an ideal ML model built using data from all parties.

More technically, let N = {1, . . . , N} be the set of N parties, each of which has a
private dataset Di∈N . Each data owner i uses its dataset Di to train a local model wi.
The local model parameters are then forwarded to the FL server. All collected local model
parameters w = ∪i∈N wi are then aggregated to create a global model WG [13].

The conventional architecture of an FL system is illustrated in Figure 3. In that system,
the parties jointly train an ML model with the assistance of an aggregate server. It is
assumed that all parties involved in the process are trustworthy, which means that they use
their private data to perform the training and pass the locally obtained model parameters
to the FL server in each training round. Evidently, this assumption may not be practical,
as discussed further ahead.

Typically, the FL process involves the following three steps [13].

• Step 1 (task initialization): The FL server determines the training assignment, i.e.,
the application goal and the corresponding data requirements. Moreover, the server
determines the hyperparameters of the global model and the training process. Finally,
the server transmits the initialized global model w0

G to the selected parties.
• Step 2 (local model training and update): Following the global model Wt

G, where t
represents the current iteration index, each party individually uses its local data to
update the local model parameters wt

i . The purpose of a party i in iteration t is to find
ideal parameters wt

i that minimize the loss function L(wt
i), for example,

wt∗
i = arg min

wt
i

L(wt
i). (1)

Then, the local model parameters are sent to the FL server.
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• Step 3 (global model aggregation and update): the FL server aggregates the local
models received from all selected parties and sends the updated model parameters
wt+1

G back to the participants.

Steps 2–3 are repeated until the global loss function converges or a desired training
accuracy is achieved, i.e.,

L(wt
G) =

1
N

N

∑
i=1

L(wt
i). (2)

Figure 3. Federated Learning Architecture.

The FL training process can be applied to several ML models using the stochastic
gradient descent (SGD) method. Typically, a training dataset contains a set of n data feature
vectors x = {x1, . . . , xn} and a set of corresponding data labels. In the case of unsupervised
learning, there is no data label. y = {y1, . . . , yn}. Moreover, ŷj = f (xj; w) denotes the
predicted result from the model w updated/trained by data vector xj [13].

Most of the recent successful deep learning [14] applications use variants of SGD for
optimization. In fact, many advances can be understood as an adaptation of the structure
of the model (and hence the loss function) to facilitate optimization using simple gradient-
based methods. Therefore, it is only natural that federated optimization algorithms are
built based on SGD.

After training and updating the local model comes an essential part of the FL process:
global model aggregation. There are several proposed solutions to this issue.

Experiments by Chen et al. [15] show that large-batch synchronous state-of-the-art
SGD optimization outperforms asynchronous approaches, in a data center application.
To apply this approach in a federated context, a C-fraction of clients/parties is selected
at each round, and the gradient of the loss over all the data held by these parties is
computed. Thus, C controls the global batch size, with C = 1 corresponding to full-batch
(nonstochastic) gradient descent. While the batch size selection mechanism is different
than selecting a batch by choosing individual examples uniformly at random, the batch
gradients g computed by FedSGD still satisfies E[g] = � f (w). The baseline algorithm is
FederatedSGD (FedSGD) [14].

A typical implementation of FedSGD with C = 1 and a fixed learning rate η has each
client k compute gk = �Fk(wt), the average gradient on its local data at the current model
wt, and the central server aggregates these gradients and applies the update wt+1 ←−
wt − η ∑K

k=1
nk
n gk, since ∑K

k=1
nk
n gk = � f (wt) [16]. An equivalent update is given by ∀k,

wk
t+1 ←− wt − ηgk and then wt+1 ←− ∑K

k+1
nk
n wk

t+1. That is, each client locally performs a
gradient descent step on the current model using its local data, and the server takes a
weighted average of the resulting models. Within the algorithm, more computation steps
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can be added to each client by iterating the local update wk ←− wk − η � Fk(wk) multiple
times before the averaging step [14]. This approach is called FederatedAveraging (FedAvg).

The number of computational steps is controlled by three key parameters: C, the fraction
of clients performing computations in each round; E, the number of training passes each
client makes over its local dataset in each round; and B, the local batch size used for
client updates. Selecting B = ∞ and E = 1 is equivalent to FedSGD. In FedAvg, for a client
with nk local examples, the number of local updates per round is given by uk = E nk

B [14].
Algorithm 1 is a complete pseudocode of the FedAvg procedure.

Algorithm 1: FederatedAveraging (FedAvg). The K clients are indexed by k;
B is the local minibatch size, E is the number of local epochs, and η is the
learning rate.

Server executes:
initialize w0
for each round t = 1, 2, . . . do

m ←− max(C · K, 1)
St ←− (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1 ←− ClientUpdate(k, wt)

wt+1 ←− ∑K
k=1

nk
n wk

t+1

ClientUpdate(k, w): //Run on client k
B ←− split Pk into batches of size B
for each local epoch i from 1 to E do

for batch b ∈ B do
w ←− w − η � l(w; b)

return w to server

Typical FL solutions prioritize the privacy and security of all the parties involved.
In fact, the server does not need to access individual information from each party involved
to perform SGD. The server only requires the weighted averages of the update vectors.
In [17], the authors proposed the secure aggregation protocol to compute these weighted
averages. This method ensured that the server became aware of what types of data were
present in the dataset, but without knowing the data that each user contained.

In mobile contexts, devices have limited resources in terms of energy and network
connectivity. This introduces some unpredictability in terms of the number of parties
that can participate in each round of updates, and the system must be able to respond to
disconnections and new participants. Since ML models can be parameterized with millions
of different values, model updates can involve a large quantity of data, which imposes a
direct cost on users on metered network plans.

Secure aggregation proposes to work with high-dimensional vectors, uses efficient
communication strategies, even considering the addition of new parties at each round and
being robust to users dropping out, and finally, provides the strongest possible security
measures under the constraints of a server-mediated, unauthenticated network model.

Pillutla et al. [18] introduced the use of the robust federated averaging (RFA) algorithm.
RFA replaces the mean aggregation of FedAvg with a geometric median (GM) based robust
aggregation oracle. Similar to FedAvg, RFA trades off communication for local computation
by running multiple local steps. The communication efficiency and privacy preservation of
RFA follow from computing the GM as an iterative secure aggregate.

Challenges

Some challenges distinguish the FL framework from other classical ML problems,
such as distributed learning or traditional private data analytics [5]. Below, we describe
four of the most important challenges identified for federated learning:
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Expensive Communications

Client–client and client–server communication is a critical bottleneck in FL solu-
tions [8]. When paired with privacy concerns over the transmission of raw data, it becomes
necessary for the data generated on each side to remain local. It is undeniable that FL
networks potentially include a huge number of devices, and network communications can
be many orders of magnitude slower than local computations, due to limited resources
such as bandwidth, energy, and power [19,20].

To fit a model to the data generated by devices in the federated network, it is important
to develop communication-efficient methods that iteratively send small messages or model
updates as part of the training process, rather than sending the entire dataset across the
network. To reduce communication in such an environment, there are two key aspects to
consider: minimizing the total number of communication rounds and the size of messages
transmitted in each round [5,20].

Systems Heterogeneity

The storage, computational, and communication capacities of individual devices in
federated networks may differ due to differences in hardware (CPU and memory), network
connectivity (3G, 4G, 5G, and Wi-Fi), and power (battery level) [19]. In addition, the network
size and systems-related constraints on each device typically result in only a small fraction
of the devices being active at once. Moreover, it is not uncommon for an active device to
lose connection with the server (dropout) in a given iteration due to connectivity or power
constraints [8].

These system-level characteristics dramatically increase the number of challenges,
such as straggler mitigation and fault tolerance [5]. Proposed FL approaches must therefore
anticipate a low amount of participation, tolerate heterogeneous hardware, and be robust
enough to dropped devices in the communication network [5,8].

Statistical Heterogeneity

Devices often generate and collect data that are not identically distributed across the
network, e.g., smartphone users have a varied use of language in the context of a next-
word prediction task [5]. Furthermore, the number of data points may vary significantly
between devices, and there can be an underlying statistical structure present that captures
the relationship among devices and their associated distributions [21]. This data-generation
paradigm frequently violates the independent and identical distribution (i.i.d.) assumptions
commonly used in distributed optimization and can increase the complexity of problem
modeling, theoretical analysis, and empirical evaluation of solutions [5].

Although the canonical FL problem aims to learn a single global model, there are
other alternatives such as learning different local models simultaneously via multitask
learning frameworks [21]. In this respect, there is also a close connection between leading
approaches for FL. This multitasking perspective allows personalized or device-specific
modeling, which is often a more natural approach to handling statistical heterogeneity in
the data for better adaptation [5,8].

Privacy Concerns

FL makes a step toward protecting data generated on individual devices by shar-
ing model updates, e.g., gradient information, instead of raw data. However, sending
model updates throughout the network during the training process can expose sensitive
information, either to third parties or to the central server [22].

Although recent methods aim to improve the privacy of FL using tools such as secure
multiparty computation (SMC) or differential privacy, these approaches often provide
privacy at the cost of reduced model performance or system efficiency [17,22]. Under-
standing these tradeoffs, both theoretically and empirically, is a significant challenge in
implementing private FL systems [5].

FL is already a case study for many applications. Simsek et al. [23] presented a study
on AI-driven autonomous vehicles, and in [24], an energy efficient distributed analyt-

152



Appl. Sci. 2023, 13, 3135

ics solution for IoT was proposed. In addition, Malekzadeh et al. [25] used FL for the
transmission of sensor-data transformations.

The next section details the implementation of a mobile FL framework using Android
devices as a case study, focusing on the impact of unreliable participants and selective
aggregation methods in a multimobile computing application. Since this is the focus of the
work, we do not explicitly address some of the challenges mentioned above, such as client
heterogeneity or privacy concerns.

3. Proposed Federated Learning Infrastructure

In what follows, we describe an implementation which aims to serve as a guide to
design a real-world multimobile FL solution.

3.1. Training Parameters

For our FL implementation, there were 4 controllable variables that allowed the testing
of various training scenarios.

The first parameter (num_clients) represented the total number of clients participating
in the federated solution. The dataset was divided among these clients so that each client
received a predetermined number of dataset elements.

The second parameter represented the number of rounds that the training should
take (num_rounds), and the third parameter represented the total number of local training
rounds on each selected client’s device (epochs). The fourth and last parameter was the
batch size (batch_size). Data were loaded per batch, so it was important to choose a value
that did not allow too little data to be loaded at once, as this would degrade training
performance by not utilizing the full processing power of the client devices. However,
it was also important not to select a value that was too high, as this could lead to data
overload on the clients.

After the initial definition of num_clients and num_rounds, in each communication
round (a communication round in federated learning represents the server–client and
client–server data exchange associated to the training performed at each client), training on
the client’s devices with the local dataset took place, according to the number of epochs

and the batch_size. Then, the server aggregated the individual models by weighting the
corresponding parameters into one global model.

Below, we present the training parameters chosen in this work. The values for
num_rounds were set empirically, since for the chosen dataset (see Section 5), we achieved
an accuracy after 100 rounds that was approximately equal to the maximum achieved
by Zhu et al. [26]. The num_clients was limited by the resources available for Android
deployment in our work. The values of epochs and batch_size were fixed to eliminate
their influence on the results and to allow a comparison of different configurations under
the same test conditions.

num_rounds = {10,30,500,100}
num_clients = {2, 4, 8}
epochs = 5
batch_size = 32

3.2. Model Architecture

The chosen architecture of the neural network was VGG19. This network can be seen
as a successor to AlexNet [27], which builds on its predecessors and improves them by
using deep convolutional neural layers to achieve a higher accuracy [28].

The architecture of the VGG19 network provides 19 weight layers (16 CNN layers,
3 fully connected layers, and a final layer for a softmax function) as seen in Table 1.
It assumes 224 RGB channels as input, leading to a 3D matrix of size 224 × 224 × 3. In a
first preprocessing stage, the average RGB value calculated for the whole training set is
subtracted from each pixel. A 3 × 3 kernel with a stride size of 1 pixel is used, allowing the
entire image to be covered. Spatial padding is used to preserve the spatial resolution of the
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image. A max-pooling is performed over a 2 × 2 pixel windows with a stride of 2. This
is followed by a rectified linear unit (ReLu) to introduce a nonlinearity that improves the
classification performance of the model and the computation time compared to previous
models that used tanh or sigmoid functions. Finally, there are three fully connected layers.
The first two have a size of 4096 and the last one has 1000 channels. The final layer is a
softmax function. This network is widely used for image classification in various fields,
such as face recognition.

Table 1. Configuration of the VGG-19 Network.

Input (224 × 224 RGB Image)

conv3-64 + ReLu

conv3-64 + ReLu

maxpool

conv3-128 + ReLu

conv3-128 + ReLu

maxpool

conv3-256 + ReLu

conv3-256 + ReLu

conv3-256 + ReLu

conv3-256 + ReLu

maxpool

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

maxpool

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

conv3-512 + ReLu

maxpool

FC-4096 + ReLu

FC-4096 + ReLu

FC-1000 + ReLu

softmax

3.3. Training the FL Model

At this stage, a global model and the individual client models were initialized. In this
solution, SGD was used as an optimizer for all client models. The training process took
place within a cycle, i.e., training was performed by the clients before each round of
communication. After receiving the updates from the local modules, the aggregation of
the weights was performed on the server according to a specific aggregation method,
which updated the global model that was then used to validate the training. This process
continued for num_rounds, i.e., 100 communication rounds for all the tests performed.
Accordingly, Algorithm 2 summarizes the FL training process in our implementation.
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Algorithm 2: Training steps of our FL implementation.

for i in num_rounds do

for j in num_clients do
Perform local training

end

Send the global model to the server
Aggregate the global model
Validate the global model

end

3.4. System Design

The server–client and client–server communication was done through a REST server.
Since we focused exclusively on the impact of unreliable participants and alternative
aggregation methods, a REST server presented a simple way to communicate through
POST messages with a JSON formatted body. This allowed us to perform a proof-of-concept
study while ignoring aspects that were outside the scope of this work, such as protecting
clients and the server from external attacks.

Another major point of our solution was the implementation of all the training logic
on several clients using a mobile Android application.

The logic implemented on the server included a function that aggregated the weights
coming from the clients and a function to test the updated global model. Figure 4 presents
a high-level diagram of the interaction between server and clients in the proposed solution.

Finally, it only remains to define the last point of our solution: the deployment
of clients on Android devices. Acquiring multiple devices to test this solution would
represent a significant investment. Therefore, we decided to use Android mobile device
emulation. There are numerous emulation software applications, such as BlueStacks
(https://www.bluestacks.com/, accessed on 28 February 2023), Nox Player (https://www.bignox.com/,
accessed on 28 February 2023), MEmu Play (https://www.memuplay.com/, accessed on
28 February 2023), etc., as well as Android Studio (https://developer.android.com/studio,
accessed on 28 February 2023) itself where the Android application (.apk) development
is done.

Server Client

Distribute the global model via REST message

Client trains the model with private data

Sends the weights via REST

Aggregates all the weights into
a  updated global model

Repeats the whole process for each training round

Figure 4. Federated Learning Server–Client Interaction in the Proposed Solution.
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3.5. Development and Implementation

In this section, we first describe the implementation of the FL server and then we
provide details about the implementation of the mobile clients.

REST Server (Server Implementation)

As seen before, the REST server started the communication rounds and monitored
whether all updated weights were sent to the server by the clients. This server also sent the
updated model to all clients.

The services supported by the REST API were as follows:

• A GET method to retrieve the latest shared model on the server;
• A POST method to upload the updates from the clients;
• A GET method to retrieve the information about the current round.

The first training round started immediately after the server was initialized. Once the
local training was finished, the server asynchronously received updates from all clients.
When a client sent the updated weights to be aggregated to the global model, the server
stored them in a file in JSON format. This file contained all the information about each
client’s training rounds known so far.

After the server received information from all clients, it proceeded to aggregate the
weights to create the global model. In a production environment, the server should have
protection mechanisms to prevent it from receiving new information during the model
aggregation process, as this can lead to system degradation. It was assumed that all
available clients participated in each training round. Therefore, this paper did not consider
the elimination or addition of clients during the training process.

Once the model aggregation was complete, the server sent it back to all participating
clients in response to the previously received update message.

Android Application (Client Implementation)

An Android client application was developed using Android Studio based on the
above-mentioned strategy. A functional .apk file was created that allowed any user to
install the application for local training on an Android mobile device.

This application had to be able to communicate with the server. To do this, each
client sent a REST message to an endpoint created for the server described above and with
a known IP address. The clients sent weights from the local training and received in a
response the updated global model to be used in the next round.

The client side implementation consisted of four phases:

• Setting up the connection to the server and loading the client dataset into memory;
• Receiving the global model through a REST message;
• Performing training on the client dataset;
• Sending the resulting weights to the server through a REST message.

The training function was developed using TensorFlow Federated for Android
(https://www.tensorflow.org/federated, accessed on 28 February 2023). For our imple-
mentation, tests were initially performed with Android devices emulated in Android
Studio. These tests showed that the software application would consume large amounts
of computational resources and would therefore affect scalability with a larger number of
clients. After further testing with alternative solutions, BlueStacks software was selected as
it proved to scale better.

Like any other emulator, BlueStacks creates a virtual version of an Android device
that runs locally on any computer. On this virtual device, the application was installed to
run the developed FL client.

The multi-instance manager lets a user create multiple instances of BlueStacks. Using
this feature, one can emulate several Android devices to test scenarios with multiple clients.

Ideally, one should consider the computational capacity and energy efficiency of
each client, since in most real-world cases, client devices are heterogeneous. This has a
significant impact on training, as there are clients that perform their local training faster
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than others. This not only affects the total training time but also the ability of each client to
train with a considerably large dataset. However, in our work, all devices were considered
homogeneous. The effect of using training devices with different capabilities is therefore
reserved for future work.

4. Evaluation Design

The final goal of this paper was to implement a multimobile Android-based solution
for federated learning. To reach this goal, we outlined a succession of tests to perform.

First, the dataset to be used for experimental evaluation was selected, and a baseline
method was run to serve as a reference for the remaining results. Then, tests were run with
2, 4, and 8 clients, with the selected dataset evenly distributed

In a real-world implementation, clients do not have the same quantity of data available
for training. Therefore, we also tested an uneven distribution of the dataset across all clients
to get a clearer picture of how a federated solution would perform in such scenarios.

In all the tests described previously, the arithmetic mean was used as the aggregation
method. Alternatively, we repeated these tests using an aggregation method that used a
weighted average. The weighted average benefited clients with a larger dataset over ones
that had less data, so conclusions about the effects of selective aggregation could be drawn
by directly comparing the results.

We then performed cross-validation tests that allowed us to test the generalization
capability of the implemented solution, i.e., we evaluated the results obtained with different
parts of the dataset.

Finally, we experimented with another, more complex dataset to validate the im-
plemented solution and the proposed alternative aggregation method. Figure 5 shows a
diagram of the experimental methodology for the results discussed in Section 5.

Distribute the
Dataset Uniformly

Through:

Distribute the
Dataset Non-

Uniformly Through:

2 Clients 8 Clients

Establish the
Dataset

Implement a 
Multi-Mobile

Solution

4 Clients

Introduce a Weighted
Average hen

Aggregating th Model

Repeat the Previous
Tests

Perform Cross-
Validation Tests

Perform Tests With a 
Different Dataset

Figure 5. Experimental Methodology.

In all experiments, the performance measure used was the average accuracy after
multiple rounds. This was calculated by the server, which progressively recorded the
arithmetic mean of the accuracy achieved in each round. Moreover, each test configuration
was repeated for five trials.
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5. Results and Discussion

After a thorough survey of existing datasets, the CIFAR10 dataset was selected due to
its appropriate balance between complexity and size. This allowed a clear analysis of the
accuracy curve per round of an FL solution, while ensuring that the tests performed did
not take too long and thus a reasonable number of configurations could be tested.

The CIFAR10 dataset consists of 60,000 color images of 32 × 32 pixels, divided into
10 different classes. There are 50,000 images available for training and 10,000 images for
testing [29].

For all tests performed, the parameters mentioned in Section 3.1 were used.

5.1. Machine Learning Baseline Test

To make accurate comparisons between the models, a baseline ML method was run
locally with the same parameters, i.e., the same dataset (CIFAR10), the same neural network
(VGG 19), the same training rounds (100), epochs (5), and batch size (32).

According to [26], the VGG19 network can achieve up to 94.71% accuracy on CIFAR10
with sufficient training rounds. Based on this, our preliminary test was performed on a
local machine to establish a baseline. Note that we used 100 rounds of training, as this was
an adequate balance between training time and achieved accuracy.

After running these tests with the above parameters, an average accuracy of 92.87% was
achieved. That is, we assumed 93% as the baseline value for the locally achieved accuracy.

5.2. Uniform Distribution of the Dataset

Here, we performed tests while splitting the dataset evenly across the Android devices
(see Table 2).

Table 2. Average accuracy results obtained with 2 devices for a uniformly distributed dataset.

Elapsed Rounds Average Accuracy

10 79%

30 88%

50 90%

100 91%

Although the training time was not analyzed, it is important to note that the average
training time for each test performed in this scenario was about 24 h. This long training
time was quite expected since the server and the Android devices were emulated on the
same machine. In an ideal scenario, each node computes only its own training, and this is
done entirely in parallel.

This first experiment was conducted to verify whether an FL solution could achieve
a similar maximum accuracy as the same solution using centralized ML. From Table 2,
it can be seen that the maximum accuracy achieved was close to the maximum accuracy
mentioned in the previous subsection.

5.3. Nonuniform Distribution of the Dataset

Next, we examined how a client with an incomplete dataset affected the accuracy
across rounds. In this work, only the set of images available for local training at each client
determined whether the dataset was incomplete. In general, a dataset may be incomplete
under various conditions, such as the quality of the images used, e.g., blurred images,
pixelated images, etc., which is reserved for future work on this topic.

With this in mind, three test cases were conducted (see Table 3). In the first case, two
clients performed the training, one using half of the CIFAR10 dataset (25,000 images) and
the second using only 10 images (one image for each class in CIFAR10).
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Table 3. Average accuracy for nonuniformly distributed datasets with 2 devices (one with 50% of
CIFAR10 images and another with 0.0002%), 4 devices (15%, 25%, 60%, and 0.0002% of CIFAR10
images) and 8 devices (two clients with 7.5%, two with 12.5%, two with 30%, and two with 0.0002%
of CIFAR10 images).

# Devices

Elapsed Rounds 2 4 8

10 27% 22% 12%

30 34% 43% 26%

50 42% 78% 44%

100 48% 90% 89%

In the second case, the number of clients was increased to four. The dataset was
divided unevenly among them, but one of the clients saw its dataset allocated with only
0.0002% of the full training batch of CIFAR10 (one image for each class in CIFAR10). The
other three clients had 15%, 25%, and 60% of the dataset, respectively.

In the last scenario, the number of clients was increased to eight. Two clients had 7.5%
of the dataset, two had 12.5%, and two had 30%. The remaining two clients had 10 images
each, i.e., one image for each class in CIFAR10.

The first case led to very poor accuracy results. This was to be expected since the train-
ing was performed on only half of the entire dataset. The second and third cases showed
that increasing the number of clients and consequently each client having a smaller local
dataset, together with introducing clients that hardly contributed to the overall training,
still allowed an accuracy close to the maximum achieved in previous tests. However, it
could also be observed that the accuracy in the first training rounds was significantly worse
than in the previously presented case.

From this point on, no more tests were performed with just two clients. In order to
test the implemented solution for as many clients as possible, we proceeded only with tests
with four and eight clients.

5.4. Proposing a Weighted Average for Model Aggregation

The preceding results demonstrated the need to use an aggregation method that
benefited those clients that contributed the most to the global model. This could be achieved
by giving more weight to the contributions of clients with a more complete dataset, i.e.,
clients that predictably contributed more to a higher accuracy of the model.

Therefore, a new aggregation model was tested to meet this premise. Instead of an
arithmetic average with equal weights for each client, we introduced a weighted average
where the weights were computed as a fraction of the number of images each client had
locally compared to the total number of images used for training.

Equation (3) represents the weighted average used hereafter.

w ←−
K

∑
k=1

nk
n

wk, (3)

where n represents the total number of images considered for training in all clients in a
round and nk represents the number of images in each client k. With this aggregation
method, little importance is given to clients with a small number of images.

Once again, we performed tests with a nonuniform distribution of the dataset with
four clients: one client with 15%, one with 25%, one with 60% of the CIFAR10 images, and
one client with only 10 images; and with eight clients: two with 7.5%, two with 12.5%, two
with 30% of the dataset, and two clients with 10 images for each class of CIFAR10 (see
Table 4).
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Figure 6 shows that using a weighted average in the aggregation of the global model
improved the accuracy of the training in the first rounds compared to an aggregation
method using an arithmetic average with both four and eight clients. However, given a
sufficient number of rounds of training, nearly identical accuracy was achieved at the end
of training in both cases. As expected, training accuracy converged faster in both cases
when a weighted average was used, as clients with large assigned datasets were favored
over clients with only a few images that had almost no effect on model aggregation.

To further evaluate the performance of our solution for as many clients as possible,
only the tests with eight clients were performed in the following sections.

Table 4. Average accuracy for a weighted average aggregation method using nonuniformly dis-
tributed datasets with 4 devices (15%, 25%, 60%, and 0.0002% of CIFAR10 images) and 8 devices (two
clients with 7.5%, two with 12.5%, two with 30%, and two with 0.0002% of CIFAR10 images).

# Devices

Elapsed Rounds 4 8

10 73% 36%

30 84% 55%

50 88% 79%

100 91% 90%
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Figure 6. Training 100 Rounds with 4 and 8 Devices (Weighted Average vs Arithmetic Average).

5.5. Cross-Validation

A cross-validation test was performed to obtain a more comprehensive evaluation
of the proposed approach. In this case, the 50,000 training images were divided into five
batches of 10,000 images. These five batches were again divided into two batches of 12.5%,
two batches of 7.5%, and two batches of 30% images (see Figure 7). A training run was
performed for each batch of 10,000 images. The aim of that test was to validate the presented
solution for different image samples used for training, demonstrating the generalization
capacity of the proposed model.
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Figure 7. Division of the CIFAR10 dataset for the cross-validation tests.

Table 5 shows the average results obtained for the two aggregation models discussed.
The results show that the presented solution was valid for a wide range of cases and not
only for the cases presented in this study, since the maximum accuracy obtained after
100 rounds of training in previous tests (91%) and the maximum accuracy obtained after
100 rounds of training with the cross-validation tests (90%) were only slightly different.

Table 5. Results obtained with cross-validation for 8 devices.

Elapsed Rounds Weighted Average Accuracy Arithmetic Average Accuracy

10 28% 8%

30 42% 17%

50 74% 42%

100 90% 89%

5.6. Increasing the Complexity of the Dataset

The use of the weighted average aggregation led to an overall improvement in training.
However, for CIFAR10, both the weighted average and the arithmetic average achieved
a similar maximum accuracy. Therefore, we performed a final test on a larger and more
complex dataset—CIFAR 100 [30]—to further evaluate the performance of our FL solution.

This dataset has the same number of training and test images as CIFAR10. The main
difference is in the number of image classes. While CIFAR10 considers 10 image classes,
CIFAR100 considers 100 image classes.

In Table 6, we present the results obtained by repeating the tests with eight clients
with an unbalanced dataset for both the arithmetic average and the weighted average
aggregation methods.
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Table 6. Results obtained from 8 clients (two clients with 7.5%, two with 12.5%, two with 30%, and
two with 0.0002%) with the more complex CIFAR100 dataset.

Elapsed Rounds Weighted Average Accuracy Arithmetic Average Accuracy

10 6% 2%

30 21% 12%

50 32% 24%

100 63% 51%

Note that for the same rounds of training with this dataset, only a maximum accuracy
of 63% was achieved. This was to be expected since the dataset had a much higher
complexity. Sterneck et al. [31] showed that with the CIFAR100 dataset, the VGG19 CNN
achieved a maximum accuracy of 70.3% after 100 training rounds, which was obtained with
a balanced dataset and a centralized machine learning method with access to all training
data. In our case, since we performed distributed training with unreliable clients (due to
the lack of dataset balance), we would need a much larger number of rounds to converge
closer to that maximum accuracy.

These results support the use of aggregation methods that benefit those clients who
contribute more to training.

6. Lessons Learned

Although the advantages of using FL are obvious, it is also important to note that
a solution based on an FL architecture has some potential weaknesses that need to be
addressed, such as:

• The need for communication between clients and server also brings the need to deal
with asynchronous client connection or disconnection (client dropout), which will
have an impact on the system. For these cases, both the server and the FL architecture
need to be extremely resilient. If the system is not prepared to handle connection
dropouts or a large influx of users during a communication round, the end result may
be significantly degraded or the system may suddenly fail.

• The need to protect the privacy of every client also brings with it the need to protect
against cyberattacks or malicious clients. Therefore, all communications must be
secured, as well as the access to the dataset at each client.

• In a federated solution, there is no prior knowledge of the data that each client contains
locally. This means that there may be clients that do little to improve the accuracy of
the global model. Moreover, in most cases, the clients are heterogeneous, meaning that
not all clients have the same computational power or energy efficiency. Accordingly,
some clients may take significantly longer to train locally than others. In these cases,
the training time in each round depends on the slowest client training and transmitting
its local updates.

However, FL has very important strengths compared to centralized ML. Above all,
client data protection is the focus of the concept presented. Moreover, two main advan-
tages arise: (i) distributed training, i.e., it is no longer necessary to have a superpowerful
machine on the server to run computationally intensive algorithms, and training becomes
easier while being performed in parallel; (ii) the need for distributed training implies the
decentralized use of data. A federated solution has the potential to use a dataset that grows
exponentially with the number of clients connected to the system, i.e., the model becomes
more complete and robust and responds more accurately to a wider variety of situations.

Based on the analysis performed, this work suggests the inclusion of admission criteria
in the implementation of an FL solution. This would allow the introduction of several
requirements in the system, for example:
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• Ensure that all clients have sufficient computing capacity to make a positive contribu-
tion to the training;

• Ensure that all clients have sufficient data to ensure model convergence;
• Ensure that all clients are trustworthy, i.e., do not pose a risk to the privacy of others;
• Ensure that all clients have a stable and secure connection to the server.

We strongly believe that the inclusion of admission criteria should be further explored
as it would improve the overall quality of an FL architecture.

We also believe that FL could benefit from other aggregation methods. A clear
example of this is reported in [32], where a protocol with user selection was proposed to
reduce the negative effect of correlation within the training data of nearby participants,
which impaired the optimization of the FL process. In our work, we demonstrated that
using a slightly more complex method improved the overall accuracy of the solution. In
addition to a weighted averaging of each client’s contribution, other approaches could be
explored, such as:

• Performing a validation of the local model in each client and giving preference to the
clients that achieve a higher accuracy locally;

• Maintaining and updating a historical score on the server side to weight each client’s
contribution according to training performance over time;

• Sending updates to the server along with the relevant client status (e.g., connection
status, local dataset size, etc.) to continuously adjust the aggregation method.

7. Conclusions

This paper presented a multimobile Android-based implementation of a federated
learning solution and studied the impact of unreliable participants and selective aggregation
in the federated solution towards the deployment of mobile FL solutions in real-world
applications.

After establishing a baseline using a traditional ML approach, we showed that we were
able to achieve similar performance using an FL solution with two clients and a uniformly
distributed dataset. When the dataset was not evenly distributed among participants, a
lower accuracy was observed in the early stages of training, and the network typically
required a higher number of rounds before performance converged. After the introduction
of a weighted average selective aggregation, we found a significant improvement in con-
vergence when using a dataset unevenly distributed among clients. However, the accuracy
achieved for four and eight clients after the 100 rounds of training was not different from
the previous tests. This was due to the complexity and dimension of the dataset, which led
to a training accuracy near the accuracy that was close to the known maximum accuracy
when enough training rounds were performed.

Afterwards, we ran cross-validation tests to demonstrate the generalizable nature of
our results. Finally, we conducted experiments with a more complex dataset and found that
using the weighted average aggregation method not only improved the accuracy across
rounds but also improved the maximum accuracy achieved after 100 rounds of training.

By comparing an arithmetic average aggregation method and a weighted average
aggregation method, we concluded that there was room for improvement in the aggregation
methods used for FL. In the context of the existing challenges of FL, we also concluded that
FL would benefit from the introduction of admission criteria for clients.

For future work, it would be important to test the implemented solution for a larger
number of clients (i.e., higher than eight) and further analyze the impact of the number
of clients in the training process and communications. In addition, our experience has
shown that the proper handling of disconnections and newly added clients during training
is critical for real-world deployment. Other opportunities to be explored include using
heterogeneous clients with different computational capacities, investigating the impact
of clients with unfavorable data (e.g., blurred or pixelated images), improving the ag-
gregation method to further optimize model convergence, testing the federated solution
with even larger and more complex datasets to validate the applicability of the model to
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other use cases, and exploring cybersecurity techniques and secure connections for privacy
preservation to enable sustainability for all participants.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial intelligence
CPU Central processing unit
CNN Convolutional neural network
FedAvg Federated averaging
FL Federated learning
FedSGD Federated stochastic gradient descent
GM Geometric median
IP Internet Protocol
JSON JavaScript Object Notation
ML Machine learning
ReLu Rectified linear unit
RGB Red green blue
REST Representational state transfer
RFA Robust federated averaging
SMC Secure multiparty computation
SGD Stochastic gradient descent
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Abstract: Wireless traffic prediction is critical to the intelligent operation of cellular networks, such
as load balancing, congestion control, value-added service promotion, etc. However, the BTS data
in each region has certain differences and privacy, and centralized prediction needs to transmit a
large amount of traffic data, which will not only cause bandwidth consumption, but may also cause
privacy leakage. Federated learning is a kind of distributed learning method with multi-client joint
training and no sharing between clients. Based on existing related research, this paper proposes a
gradient similarity-based federated aggregation algorithm for wireless traffic prediction (Gradient
Similarity-based Federated Aggregation for Wireless Traffic Prediction) (FedGSA). First of all, this
method uses a global sharing enhanced data strategy to overcome the data heterogeneity challenge
of multi-client collaborative training in federated learning. Secondly, the sliding window scheme is
used to construct the dual channel training data to improve the feature learning ability of the model;
In addition, to improve the generalization ability of the final global model, a two-layer aggregation
scheme based on gradient similarity is proposed. The personalized model is generated by comparing
the gradient similarity of each client model, and the central server aggregates the personalized
model to finally generate the global model. Finally, the FedGSA algorithm is applied to wireless
network traffic prediction. Experiments are conducted on two real traffic datasets. Compared with
the mainstream Federated Averaging (FedAvg) algorithm, FedGSA performs better on both datasets
and obtains better prediction results on the premise of ensuring the privacy of client traffic data.

Keywords: wireless traffic prediction; federal learning; FedAvg; deep learning; gradient similarity

1. Introduction

According to the State Ministry of Industry and Information Technology, as of the
end of August 2022, 1,854,000 5G base stations have been completed and opened nation-
wide. Indeed, 5G networks play an essential role in realizing application scenarios such as
AR, Telematics, and 4K TV, but 5G base station construction also faces problems such as
difficulty and long investment cycles, etc. If we can accurately understand the different
demands and growth trends of network traffic in each region, we can allocate network
resources and reasonably plan the construction of 5G base stations. Meanwhile, the devel-
opment and application of big data and artificial intelligence technologies are very effective in
improving the quality of service (QoS) of access and core networks [1]. The application of arti-
ficial intelligence in the convergence of communication networks is significant for the accurate
prediction of wireless traffic. Wireless traffic prediction estimates future traffic data volumes
based on historical data and provides a decision basis for communication network manage-
ment and optimization [2], and, based on the predicted traffic data, proactive measures can
be taken to alleviate network congestion and improve network operation performance.
In addition, common heterogeneous service requirements can be well met in future 6G
communication networks by wireless traffic prediction at a lower cost [3].
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Existing centralized traffic prediction methods require large and frequent interactions
to share data from various regions for learning prediction. In real-world applications, it
is difficult to achieve sufficient data sharing across enterprises due to multi-level privacy
factors, i.e., the existence of data silos. A large number of data interactions also poses a
huge communication overhead and risk of privacy leakage, and the centralized training
data model poses a huge challenge to the computational and storage capacity of the central
server. The implementation and application of Federal Learning (FL) provide a new way
of thinking for traffic prediction models. Specifically, FL provides a distributed training
architecture that can be jointly applied with many machine learning algorithms, especially
deep neural networks, based on which local data can be effectively learned and global
models can be obtained by iteratively aggregating local training models, which can also
share the data information of the clients while protecting the privacy of the training client
data, thus obtaining more accurate prediction results.

FL has been studied in the field of wireless traffic prediction, but there are still many
challenges and problems. First, the client data of collaborative learning in FL has certain
heterogeneity, i.e., Non-Independent Identically Distribution (Non-IID) characteristics, and
the effective solution of the data heterogeneity problem is a prerequisite for the effective
execution of the federal learning algorithm. In addition, the generalization performance of
the global model generated by the final aggregation in FL traffic prediction largely determines
the model prediction capability. In 2017, the federal average [4] algorithm proposed by Google
uses the average aggregation approach for the integration of model parameters across edge
nodes, but the strategy does not consider the differences between edge computing nodes,
and the average global aggregation weights will undoubtedly reduce the generalization
effect of the global model. Based on the above problems, this paper proposes a new wireless
network traffic prediction method, called Federated Gradient Similarity-based Aggregation
Algorithm for Wireless Traffic Prediction (FedGSA), which can collaboratively train multiple
base stations and provide them with high-quality prediction models, including an enhanced
data strategy based on global incremental integration, a two-channel training data scheme
using sliding window construction, and a gradient aggregation mechanism to cope with
data heterogeneity and global model generalization in FL.

Paper Organization and Contribution:
In this paper, we study the application of federation learning in wireless network

traffic prediction. To achieve this goal, this paper addresses research-related issues in the
following article sections. In Section 2, we discuss recent developments and applications of
federation learning and wireless network traffic prediction. Then, in Section 3, we discuss
the specific implementation details of the methodological techniques used in our proposed
framework. Subsequently, in Section 4, we show the details of the experiments and the
conclusions of the comparative analysis with existing methods.

Based on the proposed FedGSA framework and the descriptions in previous articles,
the contributions of this paper can be summarized as follows:

• To balance the individuality of clients and the correlation characteristics among multi-
ple clients to obtain a global model with better generalization capability, we propose a
two-layer global aggregation scheme based on gradient similarity, which quantifies
the client similarity relationship by calculating the Pearson correlation coefficient of
each client’s gradient to guide the weighted aggregation on the server side;

• To address the problem of statistical heterogeneity between traffic patterns collected
by different clients, which can lead to difficulties in generalizing the global model, we
introduce a quasi-global model and use it as an auxiliary tool in the model aggrega-
tion process;

• Considering the time-dependent characteristics of base station network traffic, we
use a sliding window strategy here to represent the traffic of each time slot as a two-
channel Tensor matrix, and divide the historical traffic data into adjacent time traffic
data and periodic daily historical traffic data;
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• We conducted validation experiments on two publicly available real datasets and
compared and analyzed the experimental results with existing experimental methods.

2. Related Work

As the present work is closely related to wireless traffic prediction and FL, we re-view
the most related achievements and milestones of these two research topics in this section.

2.1. Federated Learning

Federated Learning (FL), first proposed by Google in 2016, provides a collaborative
training architecture based on deep learning. FL is a distributed learning framework in
which raw data is collected and stored on multiple edge clients, and model training is
locally performed on the clients, and then the models are progressively optimized to learn
the models through client interaction with a central server. Its classical architecture diagram
is shown in Figure 1.

 

Figure 1. Classic architecture of federated learning.

As shown in Figure 1, the global model is initialized by the client application and
trained based on local data, and the local model is obtained after the local training is
completed, and its parameters or gradient information is uploaded to the central server,
which aggregates the local client model based on the aggregation algorithm to generate
a new global model, and then sends the new round of global models to each edge client
again to iterate the above process until the final global model is obtained.

It is shown that the performance of federated learning is similar to that of centralized
learning when the client data have Independent Identically Distributed (IID) characteris-
tics. However, when the multi-client data are Non-IID, the performance of the federation
learning algorithm is significantly reduced. Therefore, solving the problem of statistical
heterogeneity of data is an urgent prerequisite to be addressed before deploying feder-
ated learning algorithms. To address this issue, a data-sharing strategy is proposed in the
literature [5] for creating a globally shared data subset to integrate the local data features of
the participating training clients to overcome the data heterogeneity challenge faced by FL.
In addition, how to aggregate each client model to the global model while ensuring its
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generalization capability is a critical issue in federation learning. FedAvg is currently the
mainstream federation aggregation scheme, the core idea of which is to weight the average
of each local model participating in the aggregation according to the ratio of the amount of
data each client has to the total training data, and its process can be described as:

Assuming K clients participate in federation training, each client has multiple training
data volumes nk and local model weights wt+1

k in the (t + 1)st global iteration, and the
FedAvg aggregation approach can be expressed as Equation (1):

wt+1
G =

K

∑
k=1

nk
n

wt+1
k (1)

where wt+1
G is the global model parameters after the t + 1 st communication aggregation, n

denotes the total amount of data for K clients and
K
∑

k=1
nk = n, and w denotes the parameters

of the local model of the kth client at t + 1 communication rounds.
However, in the federation learning aggregation process, FedAvg’s aggregation ap-

proach by averaging the model parameters or gradients across clients is difficult to guar-
antee the generalization ability of the global model generated by the final aggregation,
in addition to the fact that federation learning cannot observe the amount of data from
the clients of edge computing nodes. Therefore, the aggregation weight assignment using
the actual data volume is difficult to achieve, and the quantity of data does not represent
the quality of data. To address this problem, this paper proposes a federated aggregation
scheme based on gradient similarity, which considers the similarity of gradient information
among individual clients and performs two-level aggregation of client models based on
similarity knowledge. The simulation experiments show that the scheme can achieve
better results.

2.2. Wireless Traffic Prediction

Accurate traffic modeling and forecasting capabilities play an important role in wire-
less services, and research related to wireless traffic forecasting has received significant
attention. Wireless traffic prediction is essentially a time series prediction problem. The so-
lution methods can be broadly classified into three categories, namely, simplex methods,
parametric methods, and non-parametric methods.

The historical average method and the simplex method are the representatives of the
first type of method. The two methods use the average value of historical data and the last
observation as the prediction value, respectively. This type of prediction method does not
require complex calculations and is easy to implement, but it cannot capture the hidden
patterns of the wireless traffic and the prediction performance is relatively poor.

For the second category, i.e., parametric methods, tools based on statistics and probabil-
ity theory are used to model and forecast wireless services, among which the most classical
method is the Auto-Regressive Integrated Moving Average (ARIMA). In order to character-
ize the self-similarity and burstiness of wireless traffic, the authors explored ARIMA and
its variants in the literature [6,7]. In addition to ARIMA models, literature [8–10] explored
alpha-stable models, entropy theory, and covariance functions to perform wireless traffic
forecasting, respectively.

With the rapid development of machine learning and artificial intelligence techniques,
nonparametric methods have become a strong contender among wireless traffic predic-
tion methods. In particular, research on wireless traffic prediction based on deep neural
networks has attracted great attention. In the literature [11], the authors designed a traffic
prediction model based on a multi-channel sparse long-term short-term memory network
to capture multi-source network traffic information and improve the ability of deep neural
network models to capture important features. In [12], the authors designed a Generative
Adversarial Network (GAN) traffic prediction method and separately captured traffic
spatio-temporal features and base-station-type features, input the spliced features into
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the composite residual module to generate predicted traffic, judge the generated traffic
by the discriminative network, and then generate highly accurate predicted traffic by the
generative network after the game confrontation between the generative network and the
discriminative network.

To effectively extract spatial and temporal features, a joint spatio-temporal prediction
model based on neural networks has been proposed in the literature [13], which uses graph
convolutional networks to extract complex topological spatial features in a targeted manner,
while using gated cyclic units to extract temporal features of the traffic. City-scale wireless
traffic forecasting is also studied in the literature [14], where the authors introduce a new fore-
casting framework by modeling the spatio-temporal correlation of cross-domain datasets.

The above work mainly uses centralized wireless traffic prediction, and to address
the problems of communication overhead, privacy leakage, and data silos in centralized
prediction schemes, this paper implements wireless traffic prediction through distributed
architecture and federated learning.

3. Proposed Framework and Methods

This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Overview

In this section, we describe the proposed FedGSA framework in detail. Figure 2 shows
the overall model framework of FedGSA; specifically, FedGSA has the following steps.

a global model and applies it to each client.

Figure 2. FedGSA Overall Architecture.

1. First, clients share local augmented data to form an augmented dataset based on
global incremental integration, and a central aggregation server is trained to generate a
quasi-global model based on this dataset and apply it to each client.

2. After each client applies the quasi-global model locally, a sliding window scheme is
used to generate local two-channel network traffic data for each client, and then the client
executes a local training procedure and passes the local model parameter information to
the central aggregation server after the local training is completed.

3. Finally, the central server performs a two-level weighted aggregation of each client’s
network model based on the gradient similarity of each client, and finally generates a
global model.

3.2. Enhanced Data Strategy Based on Global Incremental Integrations

The variability of base station traffic patterns and the mobile characteristics and
communication behaviors of users within the base station range further expand the model
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diversity of wireless services, and the wireless traffic data from different base stations are
highly heterogeneous and non-IID in nature. It is shown that Non-IID client-side data leads
to a degradation of the performance of the federation learning algorithm, since the weight
differences of the client-side model parameters should be considered when performing model
aggregation at the server side. Therefore, this paper uses an augmented data strategy based
on global incremental integration to overcome the traffic data heterogeneity challenge by
creating a small augmented dataset using the original wireless traffic dataset and generating
a global shared dataset.

The augmentation strategy in this paper is as follows. The dataset is first partitioned
into weekly slices based on temporal indexes. For weekly traffic, statistical averages are
calculated for each time point and the obtained results are considered as augmented data,
and finally, the augmented data are normalized as shown in Figure 3.

Figure 3. Enhanced data strategy.

As can be seen from Figure 2, the employed enhancement strategy is easier to imple-
ment and generate enhanced data than the traditional time-domain or frequency-domain
time-series data enhancement strategies [15]. It has been experimentally proven to provide
an effective solution to the problem of data heterogeneity.

During the training process, each base station sends a small fraction of its augmented
dataset, say β%, to the central server to eventually generate a global dataset that obeys the
original client data distribution. The size of the augmented data is much smaller compared
to the size of the original data. Based on this augmented dataset, a quasi-global model can
be trained and used as prior knowledge for all clients, and the model is trained using the
augmented data for all clients rather than the original data. Even so, due to the high similarity
between the augmented data and the original data, the model can still be used as prior
knowledge for all clients.

3.3. Constructing Two-Channel Sliding Window Training Data

The wireless traffic prediction service in general is: given K base stations, the local
wireless traffic data of each base station can be represented as a dataset, as in Equation (2):

dk =
{

dk
1, dk

2, dk
3, · · · , dk

z

}
(2)

where the total time interval is Z; and assuming that d̂k
z is the target service volume to be

predicted, then the wireless service prediction problem can be described as Equation (3).

d̂k
z = f (dk

z−1, dk
z−2, · · · , dk

1; w) (3)
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where f (·) denotes the chosen prediction model and w denotes the corresponding parame-
ter. The prediction model f (·) can be in linear form (e.g., linear regression) or in nonlinear
form (e.g., deep neural network).

For wireless network traffic prediction techniques, to reduce data complexity, partial
historical traffic data are usually used as input features, and considering that the base
station network traffic is time-dependent, the traffic of each time slot can be represented as
a two-channel Tensor matrix [16,17].

Therefore, based on the wireless traffic dataset dk, a set of input-output pairs
{

xk
i , yk

i

}n

i=1
,

where xk
i denotes the historical traffic data associated with yk

i , can be obtained using a
sliding window scheme, and xk

i is partitioned into two time channels, i.e., adjacent time
and cycle time channels, which represent the predicted target time adjacent time traffic and
cycle time traffic for the corresponding time points, respectively, as in Figure 4.

Figure 4. Two-channel training data.

Defining p as the adjacent time point sequence dependence length, the flow of the
adjacent time series can be expressed as

{
dk

z−1, · · · , dk
z−p

}
, q as the periodic time de-

pendence length, and the periodic historical sampling flow can be expressed as b, μ is
periodic. The flow prediction target of this paper is the flow value at the next time point, so
Equation (3) can be described as Equation (4):

ŷk
i = f

(
xk

i ; w
)

(4)

The objective of the experiment is to minimize the prediction error on K clients, so the
objective of the traffic prediction can be described as solving for the parameter w under the
optimal solution in Equation (5):

min
w

�(w) =
1

Kn

K

∑
k=1

n

∑
i=1

�
(

f
(

xk
i ; w

)
, yk

i

)
(5)

where � is the loss function, which can be expressed as
∣∣∣ f
(

xk
i ; w

)
− yk

i

∣∣∣.
Long Short-Term Memory (LSTM)) has the powerful ability to model time series

datasets, so this paper selects a LSTM Long Short-Term Memory network as the network
model, sets two LSTM network layers, corresponding to the input adjacent time point
dependent sequence traffic data and periodic time series dependent data in turn, after
which the output data features of each channel are spliced, and finally, the features are
mapped to the prediction by a linear layer.
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3.4. Global Aggregation Based on Gradient Similarity

The aggregation process in FL is a key part of model training, and the quality of
aggregation directly affects the strength of the generalization ability of the final generated
global model. The goal of central server-side model aggregation is to obtain a global
model with strong generalization capability across all clients, which should balance client
personalization and correlation characteristics across multiple clients. To achieve this, the
global model should find a balance between capturing the personalized traffic patterns of
the clients and the public shared traffic patterns.

In literature research, it is found that similarity-based weighted fusion schemes have a
wide range of applications in machine learning, such as natural language processing and
transformers in image vision [18], where similarity knowledge can tap potential correlations
among different clients, and FedGSA quantifies client similarity relationships by calculating
Pearson correlation coefficients for each client gradient to guide the server-side weighting
of client models for aggregation.

The Pearson correlation coefficient is used to describe the degree of linear correlation
between two variables, i.e., the larger the absolute value of the correlation, the stronger the
correlation, and the value is [−1, 1]. The Pearson correlation coefficient is the ratio of the
covariance to the standard deviation, and the Pearson correlation coefficient for a set of
data (x, y) is calculated as:

ρx,y =
Σxy − ΣxΣy

N√
(Σx2 − (Σx)2

N )(Σy2 − (Σy)2

N )

(6)

where N denotes the number of values of the variable.
Here, we use gradient information to measure the similarity between individual client

models, rather than based on the original traffic data of each client itself. The central server
uses the similarity relationship between the gradients of the individual client models to
guide the clients in generating personalized models, thus helping to moderate their impact
on global aggregation (i.e., reduce variance), and the aggregation principle of FedGSA can
be described as follows:

Assuming K clients involved in training, after t rounds of global iterations, then in
t + 1 rounds, each client is trained based on the quasi-global model obtained under T
rounds using local data to obtain its local model parameters

{
wt+1

k }K
k=1 , and the central

server in the aggregation phase has two layers of aggregation for the client models:
The first layer of aggregation aims to capture the similarity relationship between each

client and quantify the impact of each client on the global model by assigning weights to its
Pearson correlation coefficients among the clients, and for each client, a personalized model
is formed based on its gradient similarity relationship with other clients using Equation (7):

w̃t+1
k =

K

∑
r=1

ρk,rwt+1
r (7)

The second layer performs aggregation among the personalized models: the central
server generates a new round of quasi-global models based on the final aggregation of
Equation (8):

wt+1
G =

1
K

K

∑
k=1

w̃t+1
k (8)

where ρk,r denotes the Pearson correlation coefficient between two models of K clients, w̃t+1
k

denotes the new personalized model parameters of each client obtained in t + 1 round after
the weighting operation of comparing the gradient similarity of each client in the round,
and wt+1

G denotes the quasi-global model parameters finally generated in the round.
Algorithm 1 describes the execution process of FedGSA:
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Algorithm 1: FedGSA Implementation Process

Input: The wireless traffic data ; the clients share the enhanced data and form the globally 
shared dataset ; the percentage of selected clients is , and the client learning rate is . 

Output: Global Model . 
Obtain  by using //Get the quasi-global model  and send it down to the client 
1 for each round  do 
2      
3    Randomly selected m-base stations 
4    for each client  do 
5         //Client local update model 
6    end for 
7        Obtain //Get the client local model 
8    Obtain  by using Equation (5)//First aggregation to obtain personalized models for each client 
9 end for 
10 Obtain  by using Equation (6)//Second aggregation, get the global model 
11 Return  

4. Experiments and Conclusions

In this paper, two real datasets were selected to learn and train clients by combining
federal learning mechanisms with LSTM long and short-term memory networks. To verify
the feasibility and effectiveness of the method in this paper, some traditional network
models based on LSTM, Lasso, Support Vector Regression (SVR), and FedAvg traffic
prediction methods were selected for comparative analysis. Except for the shallow learning
algorithm, the FedAvg algorithm and the structure of this experimental network remained
consistent.

4.1. Dataset and Evaluation Metrics

This paper used the Trento and Milano telecommunication activity datasets provided
by Telecom Italia in the European “Big data challenge” [19,20], and used the network traffic
records of these two regions as the raw data for traffic prediction. The cellular networks for
cellular user activity recorded traffic every ten minutes for two months from 11 January
2013 to 1 January 2014. For the experiments in the following subsections, the network
traffic was resampled to hourly to avoid data sparsity issues.

To evaluate prediction performance, three widely used regression metrics were adopted
in this paper, i.e., mean squared error (MSE), mean absolute error (MAE), and R-squared
score:

1. Mean Absolute Error (MAE): Is the average of the absolute error, which can better
reflect the actual situation of the prediction value error. The range is [0,+∞), as in
Equation (9):

MAE =
1
n

n

∑
i=1

|yi − ŷi| (9)

2. Mean Square Error (MSE): Is the square of the difference between the true value and
the predicted value, and then the average of the summation is used to detect the
deviation between the predicted and true values of the model, and its range is as in
Equation (10):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

(10)

where, in MAE and MSE, ŷi denotes the predicted value of wireless traffic at the time
i and yi denotes the true value at the corresponding time.
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3. R-squared score: the R-squared score is applied to regression problems with values
between 0 and 1. The closer to 1 indicates a better fit and is generally expressed as R2,
as in Equation (11):

R2 = 1 −
(

m
∑

i=1
(ŷ(i) − y(i))

2
)

/
m

(
m
∑

i=1
(y(i) − y)

2
)

/
m

(11)

The numerator represents the Residual Sum Of Squares (RSS) and the denominator
represents the Total Sum of Squares (TSS).

4.2. Experimental Settings and Overall Results

Experiments were conducted with 100 randomly selected cells from each dataset, and
eight weeks of traffic data were randomly selected for the experiments, where the traffic
of the first seven weeks was used for training the prediction model and the traffic of the
last week was used for testing. In constructing the two-channel training samples using the
sliding window scheme, both the temporal channel dependency length and the periodic
channel dependency length were set to 3. A total of 100 rounds of communication were
conducted between the local client and the central server, and the initial learning rate was
set to 0.001, the local training batch size was set to 20, and 10% of the total samples were
randomly selected in each round for the client samples to locally participate in the training
and report the results of the last round, and had different results according to the different
data sharing ratios in the shared data strategy; see Table 1. It can be seen from Table 1
that even if only 1% of the augmented data were shared, the performance of FedGSA, the
method proposed in this paper, still outperformed other baseline methods in both datasets.

Table 1. Comparison of MSE and MAE prediction performance of different methods on two datasets.

Methods
Trento Milano

MAE MSE MAE MSE

Lasso 1.5391 5.9121 0.5475 0.4380
SVR 1.0470 5.9080 0.2220 0.1036

LSTM 1.1193 4.6976 0.2936 0.1697
FedAvg 1.0668 4.7988 0.2319 0.1096

FedGS A (β = 1% ) 1.0455 4.5269 0.2322 0.1089
FedGS A (β = 50% ) 0.9723 4.2330 0.2285 0.1078
FedGS A(β = 100% ) 0.9572 4.0257 0.2260 0.1054

Improve ↑10% ↑16% ↑3% ↑4%

Specifically, for the results on the Trento dataset, the present experimental algorithm
(FedGSA) provides MAE and MSE gains of 10% and 16%, respectively, compared to the
best performing method in the baseline (i.e., FedAvg). Similarly, for the Milano dataset,
the FedGSA performance gains (MAE, MSE) are 3% and 4%, respectively. Furthermore,
observing Table 1, it can be found that the prediction performance of FedGSA keeps
improving with the increase in the shared enhanced data size, i.e., as shown in Figure 5a,b.
This is because the initialized quasi-global model can better capture the traffic patterns
when more data samples are available. Unless otherwise stated, the following experimental
results in the article default to the results at β = 100%.
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(a) (b) 

Figure 5. (a) describes the performance indicators on the Trento dataset; (b) describes the performance
indicators on the Milano dataset.

To further evaluate the prediction capabilities of different algorithms, comparisons
between the predicted and real network traffic values derived using different prediction
algorithms for randomly selected base stations on the Trento and Milano datasets are pre-
sented in Figures 6 and 7, respectively, which include the Cumulative Distribution Function
(CDF) results of the absolute prediction errors, and this experiment chooses FedAvg as
the benchmark for performance comparisons because it achieves the best performance
among all the baseline methods in Table 1. As can be seen in Figures 6 and 7, the FedGSA
prediction capability outperforms the popular FedAvg algorithm.

(a) (b) 

Figure 6. (a) describes the traffic comparison on the Trento dataset; (b) describes the results of the on
cumulative distribution function (CDF) on the Trento dataset.

For the prediction error, in the Trento dataset, for example, FedGSA has about 95%
errors less than 0.3, while FedAvg has about 89%, and FedGSA outperforms FedAvg in
predicting the peak fluctuation of flow values. Based on the above evaluation, it can be
concluded that the algorithm of this experiment can obtain more accurate prediction results
than the baseline method.

176



Appl. Sci. 2023, 13, 4036

(a) (b) 

Figure 7. (a) describes the traffic comparison on the Milano dataset; (b) describes the results of the
cumulative distribution function (CDF) on the Milano dataset.

4.3. Communication Rounds versus Prediction Accuracy

In FL or any other distributed learning framework, communication resources are often
more valuable than computational resources, and fewer communications are preferred.
Therefore, in this subsection, we report the prediction accuracy along with each communi-
cation cycle (epoch) and use the R-squared fraction to indicate the accuracy as it reflects
how well the model predicts the true value of the network traffic [21]. As shown in Figure 8,
we can observe that FedGSA achieves a higher prediction accuracy on both datasets, in
addition to the fact that FedGSA requires fewer communication rounds to reach a certain
accuracy; for example, for the Milano dataset, after 30 communication rounds, FedGSA
achieves an accuracy of about 82% for wireless network traffic, and as for FedAVG, the
prediction accuracy is about 75% Therefore, we consider that our proposed method has
higher communication efficiency, which is also one of the important metrics for evaluating
federation learning methods.

(a) (b) 

Figure 8. (a) Prediction accuracy and communication rounds on the Trento dataset. (b) Prediction
accuracy and communication rounds on the Milano dataset.

5. Conclusions

In this paper, we propose a model gradient-based similarity aggregation scheme
for federation learning and wireless network traffic prediction and name the framework
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FedGSA, which uses similarity knowledge to construct individualized models for each
client and realize model aggregation for each client to improve the generalization ability of
the final global model. Experiments are conducted to predict the base station network traffic
based on LSTM long short-term memory network on two real network traffic datasets, and
the enhanced data scheme and sliding window strategy are combined to further overcome
the problem of high data heterogeneity during FL training and improve the prediction
capability. Compared with the current mainstream federal average algorithm, the method
proposed in this paper achieves good results in simulation experiments.
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Featured Application: Methods and techniques demonstrated in this work can be used to increase

the effectiveness of chat-based social engineering attack detection systems.

Abstract: Human-to-human dialogues constitute an essential research area for linguists, serving
as a conduit for knowledge transfer in the study of dialogue systems featuring human-to-machine
interaction. Dialogue systems have garnered significant acclaim and rapid growth owing to their
deployment in applications such as virtual assistants (e.g., Alexa, Siri, etc.) and chatbots. Novel
modeling techniques are being developed to enhance natural language understanding, natural
language generation, and dialogue-state tracking. In this study, we leverage the terminology and
techniques of dialogue systems to model human-to-human dialogues within the context of chat-based
social engineering (CSE) attacks. The ability to discern an interlocutor’s true intent is crucial for
providing an effective real-time defense mechanism against CSE attacks. We introduce in-context
dialogue acts that expose an interlocutor’s intent, as well as the requested information that she
sought to convey, thereby facilitating real-time recognition of CSE attacks. Our work proposes CSE
domain-specific dialogue acts, utilizing a carefully crafted ontology, and creates an annotated corpus
using dialogue acts as classification labels. Furthermore, we propose SG-CSE BERT, a BERT-based
model following the schema-guided paradigm, for zero-shot CSE attack dialogue-state tracking. Our
evaluation results demonstrate satisfactory performance.

Keywords: social engineering; dialogue-state tracking; chatbot

1. Introduction

Language stands as one of humanity’s most remarkable accomplishments and has been
a driving force in the evolution of human society. Today, it is an indispensable component
of both our professional and social lives. Dialogue, as a term [1], refers to interactive
communication between two or more individuals or groups in the context of human
language. It is a two-way intentional communication that can take on spoken or written
forms. Language assumes a prominent role, especially in the context of cybersecurity and
social engineering, as malicious users employ it to deceive and manipulate unsuspecting
individuals. Among various social engineering attacks, chat-based social engineering is
recognized as a critical factor in the success of cyber-attacks, particularly in small and
medium-sized enterprise (SME) environments. This type of attack is attracting increasing
attention due to its potential impact and ease of exploitation. According to Verizon’s
2022 [2] report, the human element is a significant factor in driving 82% of cybersecurity
breaches.

During a CSE attack, malicious users utilize linguistic manipulation to deceive their
targets by exploiting human personality traits and technical misconfigurations. From a
strategic standpoint, it is more effective [3] to isolate individual CSE attack enablers and
investigate detection methods for each enabler separately. In a chat-based dialogue, such
as one between an SME employee and a potential customer, interlocutors communicate
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through written sentences. The ability to identify one or more characteristics that can reveal
the malicious intent of an interlocutor can sufficiently safeguard the SME employee against
potential CSE attacks. Dialogue act (DA) is a term used to describe the function or intention
of a specific utterance in a conversation, and it has already been identified [3] as one of the
critical enablers of successful CSE attacks. As such, detecting dangerous DAs that may lead
to a successful CSE attack is of paramount importance.

The widespread use of dialogue systems (such as Alexa and Siri) has led to a surge in
research in this field. It is advantageous for us to transfer knowledge and terminology from
this field to chat-based social engineering recognition tasks. The formalism used to describe
these systems can facilitate the modeling of human-to-human conversations, especially
CSE attacks, as both types of dialogues share common structural characteristics. Dialogue
systems rely on dialogue-state tracking (DST) to monitor the state of the conversation.
Similarly, in human-to-human dialogues and CSE attacks, the state of the dialogue can be
tracked through the DST process, which in our case, is the state of the CSE attack. CSE
attacks involve deception and manipulation in order to acquire sensitive information, such
as an attacker posing as a trusted individual (e.g., a bank representative) to trick the victim
into disclosing personal information. By using DST to track the dialogue state and identify
when the attacker is attempting to extract sensitive information or deceive the victim, we
can detect and prevent CSE attacks.

Leveraging the progress made in dialogue systems, we develop a system that performs
CSE attack state tracking. The main component in the system’s architecture is a BERT-
based model that is trained and fine-tuned to detect the intent of an interlocutor utilizing a
multi-schema ontology and related dialogue acts. The main contributions of our work are
as follows:

1. A set of dialogue acts in the CSE attack context, called SG-CSE DAs.
2. A corpus, called SG-CSE Corpus, annotated with SG-CSE-DAs appropriate for CSE

attack state tracking model training.
3. A multi-schema ontology for CSE attacks, called SG-CSE Ontology.
4. A BERT-based model, called SG-CSE BERT, that follows the schema-guided paradigm

for CSE attack state tracking fine-tuned with SG-CSE Corpus.

2. Related Work

In DST, the main tasks are the prediction of intention, requested slots, and slot values,
and although there is no similar research applying DST tasks for the purpose of recognizing
CSE attacks, we present related works that deal with DST tasks in single-domain or multiple
domains.

Rastogi et al. [4], introduce the Schema-Guided Dialogue dataset to face the challenges
of building large-scale virtual assistants. They also present a schema-guided paradigm
for task-oriented dialogue for predicting intents and slots using natural language descrip-
tions. The Schema-Guided Dialogue corpus extends the task-oriented dialogue corpora
by providing a large-scale dataset (16k+ utterances across 16 domains). Along with the
novel schema-guided dialogue paradigm, a model is released that facilitates the dialogue-
state tracking able to generalize to new unseen domains and services. This work, with its
simplistic and clear approach, inspired our research.

Xu and Hu in [5] suggest an approach that can track unknown slot values when
Natural Language Understanding (NLU) is missing, which leads to improvements in state-
of-the-art results. Their technique combined with feature dropout extracts unknown slot
values with great efficiency. The described enterprise-to-enterprise architecture effectively
predicts unknown slot values and errors, leading to state-of-the-art results on the DSTC2
benchmark. The addition of a jointly trained classification component that is combined
with the pointer network forms an efficient hybrid architecture. This work presents a
different perspective as to what can be important for unknown slot prediction and how we
can approach a solution.
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Chao and Lane, in [6], build on BERT to learn context-aware dialogue-state tracking
for scaling up to diverse domains with an unknown ontology. They propose a new end-
to-end approach for scalable context-based dialogue-state tracking that uses BERT in
sentence-level and pair-level representations. The proposed BERT-DST is an end-to-end
dialogue-state tracking approach that directly utilizes the BERT language model for slot
value identification, unlike prior methods, which require candidate generation and tagging
from n-gram enumeration or slot taggers. The most important module is the BERT dialogue
context encoding module, which produces contextualized representations to extract slot
values from the contextual patterns. The empirical evaluation of SimM and Sim-R datasets
showed that the proposed BERT-DST model was more efficient in utilizing the slot value
dropout technique and encoder parameter sharing. The authors’ approach to extracting
slot values with an unknown domain ontology is important. Furthermore, the BERT
architecture is inspiring and helped us design our model.

Deriu et al. [7], summarize the state of evaluation techniques of dialogue systems.
They use a classification of dialogue systems that leads to an equally effective classification
of evaluation methods. Thus, they easily comment on each evaluation method focusing on
those that lead to a reduction in the involvement of human labor. In their survey paper, they
compare and contrast different evaluation measures across the various classes of dialogue
systems (task-oriented, conversational, and question-answering dialogue systems)—a
useful review that presents the modern state of dialogue systems’ evaluation techniques
and helps to foresee the trends.

Xiong et al. [8], propose an approach to process multi-turn dialogues based on the
combination of BERT encoding and hierarchical RNN. The authors propose a domain-
independent way to represent semantic relations among words in natural language using
neural context vectors. The proposed MSDU model is able to recognize intents, dialogue
acts, and slots utilizing the historical information of a multi-turn dialogue. The test results
using multi-turn dialogue datasets Sim-R and Sim-M showed that the MSDU model was
effective and brought about a 5% improvement in FrameAcc compared with models such
as MemNet and SDEN.

Zhao et al. [9], propose a schema description-driven dialog system, D3ST, which uses
natural language descriptions instead of names for dialog system variables (slots and
intents). They present a schema description-driven dialogue system that produces a better
understanding of task descriptions and schemas, leading to better performance. Measured
on the MultiWOZ, SGD, and SGD-X datasets, they demonstrate that the approach can
lead to better results in all areas: quality of understanding, learning data efficiency, and
robustness. Their approach differentiates between schema names and schema descriptions
and recommends using natural language descriptions. This work nicely presents the
flexibility that we can get using different schemas.

Ma et al. [10], propose an end-to-end machine reading comprehension for non-
categorical slots and a Wide & Deep model for a categorical slot DST system, achieving
state-of-the-art performance on a challenging zero-shot task. Their system, which is an
end-to-end machine reading comprehension (MRC) model for the task Schema-Guided
Dialogue-State Tracking, employs two novel techniques to build a model that can accu-
rately generate slots in a user turn, with state-of-the-art performance in the DSTC 8 Track
4 dataset. This work introduces RoBERTa as a classification model for intent recognition
and slot recognition.

Kim et al. [11], propose a novel paradigm to improve dialogue-state tracking that
focuses on the decoder analyzing changes to memory rather than on determining the
state from scratch. They use an explicitly available memory for dialogue-state tracking to
improve state operations prediction and accuracy. The proposed Selectively Overwriting
Memory (SOM) is a general method to improve dialogue-state tracking (DST). Initial
experiments showed improved performance on open vocabulary tasks. This work presents
an approach where the initial problem definition is changed to fit the proposed solution.
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Kumar et al. [12], propose an architecture for robust, dialogue-state tracking using deep
learning, demonstrating improved performance over the state-of-the-art. They introduce a
novel model architecture for dialogue-state tracking using attention mechanisms to predict
across different granularities to better handle long-range cross-domain dependencies. The
proposed model employs attention mechanisms to encode information from both the
recent dialogue history and from the semantic level of slots. The proposed approach is
a cross-attention-based model that performs coreference resolution and slot filling in a
human-robot dialogue to address complex multi-domain dialogues.

In [13], Lin et al. propose a slot-description-enhanced generative approach for zero-
shot cross-domain dialogue-state tracking. They efficiently learn slot-to-value mapping
and jointly learn generalizable zero-shot descriptions. They demonstrate improved per-
formance on multimodal question answering and multi-agent dialogues. The generative
framework introduced for zero-shot cross-domain dialogue-state tracking significantly im-
proves the existing state-of-the-art for DST. Their approach helps the design and evaluation
of dialogue systems for tasks that require entities to communicate about unseen domains
or multiple domains.

Lin et al. [14], propose TransferQA, which transfers cross-task dialogue knowledge
from general question answering to dialogue-state tracking. The TransferQA is a generative
QA model that learns a transferable, domain-agnostic QA encoder for handling question-
answering tasks. TransferQA is a general framework that transfers knowledge from
existing machine learning models, particularly the more challenging zero-shot scenarios.
Negative question sampling and context truncation techniques were introduced to construct
unanswerable questions,

Li et al. [15], propose a simple syntax-aware natural language generation as a general
way to perform slot inference for dialogue-state tracking, achieving a new state of the art
on MultiWOZ 2.1. They present a language-independent approach for tracking slot values
in task-oriented dialogues, making it possible to add a domain to an existing system (as
used in the Alice personal assistant). They offer a generative, end-to-end architecture for
dialogue-state tracking that only needs domain-specific substantive examples. They pro-
pose contextual language models, not built from ontologies, for determining the domains
in which a multi-domain task-oriented dialogue is occurring.

3. Background

3.1. Dialogue Systems

According to Dan Jurafsky [16], human-to-human dialogues possess several properties.
A crucial structural attribute is a turn, which is a singular contribution made by one speaker
in the dialogue. A full dialogue comprises a sequence of turns. For instance, in Table 1,
two interlocutors identified as V(ictim) and A(ttacker) exchange utterances in a small
six-turn dialogue excerpted from the CSE corpus [17]. One or more utterances from the
same speaker can be grouped into a single turn. Typically, an utterance from speaker V is
followed by a response from speaker A, constituting an exchange. A dialogue consists of
multiple exchanges.

Table 1. A sample dialogue in turns.

Turn Utterance

V1 We don’t allow Telnet, especially from the Internet; it’s not secure.
If you can use SSH, that’d be okay

A2 Yeah, we have SSH.
A3 So, what’s the IP address?
V4 IP is [ANON]
A5 Username and password?
V6 Username is [ANON] and password is [ANON]
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Nowadays, a dialogue can be conducted between humans or between a machine and
a human, and the latter is named a dialogue system. Dialogue systems communicate with
humans in natural language, both spoken and written, and can be classified as:

• Task-based dialogue systems where the system helps humans to complete a task.
• Conversational dialogue systems where the systems answer questions.

Task-based systems can be further classified, based on their architecture, into systems
that use:

• Genial Understander System (GUS) architecture [18] which is an old simple approach
to describing a dialogue structure.

• Dialogue-State (DS) architecture, in which the dialogue is modeled as a series of
different states.

The primary objective of dialogue systems when interacting with a human is to elicit
three key pieces of information from the user’s utterance: domain classification, user
intention, and requested information. Domain classification pertains to the conversation’s
context and can be determined through the use of a domain ontology. To ensure proper
interpretation and response to user input, a formal representation of the knowledge that a
conversational system must comprehend must exist. This knowledge comprises concepts
and entities mentioned in the conversation, the relationships between them, and the
potential dialogue states, which are encapsulated in the domain ontology. Dialogue systems
rely on ontologies to link the user’s input to the corresponding concepts and entities, as
well as to monitor the current dialogue state. By tracking the state of the conversation
and the user’s objectives, the system can generate more precise and pertinent responses.
The domain ontology can be defined by means of a static schema, where the dialogue
system operates within a single domain, or a dynamic schema, where the dialogue system
is capable of operating within multiple domains. In this context, the schema represents a
framework or structure that defines the arrangement of data. Typically, a dialogue system
consists of the following units:

• Natural Language Understanding (NLU) unit, which uses machine learning to inter-
pret the user’s utterance.

• Dialogue-State Tracking (DST) unit, which maintains the entire history of the dialogue.
• Dialogue Policy unit, which defines a set of rules to drive the interactions between the

user and the system.
• Natural Language Generation (NLG), which generates responses in natural language.
• Text-to-Speech unit, which transforms text to speech.
• Automated Speech Recognition unit, which transforms speech into text.

3.2. Dialogue Acts

The Speech Act theory, introduced by Austin [19] and Searle [20,21] in the 1960s, has
become a widely used concept in linguistics and literature studies. Today, the modern
notion of speech act [22] has found applications in diverse fields such as ethics, episte-
mology, and clinical psychology [23]. Dialogue Acts (DAs) are a type of Speech Act that
represents the communicative intention behind a speaker’s utterance in a dialogue. Hence,
identifying the dialogue acts of each speaker in a conversation is an essential initial step in
automatically determining intention.

The Switchboard-1 corpus [24], which consists of telephone speech conversations, was
one of the first corpora related to dialogue and dialogue acts. It contains approximately
2400 two-way telephone conversations involving 543 speakers. The Switchboard Dialogue
Act Corpus (SwDA) [25,26] extended the Switchboard-1 corpus with tags from the SWBD-
DAMSL tagset [27]. The SWBD-DAMSL tagset was created by augmenting the Discourse
Annotation and Markup System of Labelling (DAMSL) tagset. Through clustering, 220
tags were reduced to 42 tags to improve the language model for the Switchboard corpus.
The resulting tags include dialogue acts such as statement-non-opinion, acknowledge,
statement-opinion, and agree/accept, among others. The size of the reduced set has been a
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matter of debate, with some studies [28–30] using a 42-label set while others have used the
most commonly used four-class classification.

• Constatives: committing the interlocutor to something’s being the case.
• Directives: attempts by the interlocutor to get the addressee to do something.
• Commissives: committing the interlocutor to some future course of action.
• Acknowledgments: express the interlocutor’s attitude regarding the addressee with

respect to some social action.

Thus, we can think of DAs as a tagset that can be used to classify utterances based on
a combination of pragmatic, semantic, and syntactic criteria.

3.3. Schema-Guided Paradigm

Rastogi et al. [4] proposed a novel approach named schema-guided dialogue to facili-
tate dialogue-state tracking by using natural language descriptions to define a dynamic
set of service schemata. A schema-guided ontology is an ontology that characterizes the
domain and is confined by a specific schema or set of schemas. In this context, a schema
specifies the organization of the data and the associations between the concepts and entities
that are expected to be present in the dialogue. A frame is a data structure that represents
the current state of the dialogue at a specific time point. It is comprised of key-value pairs,
where the keys represent the entities and concepts that are relevant to the conversation,
and the values represent the corresponding values of these concepts. Typically, a frame
corresponds to a specific schema or set of schemas, and it can be updated as the dialogue
progresses. For instance, in a restaurant booking system, a frame may contain informa-
tion such as the date and time of the reservation, the number of diners, and the desired
cuisine type. In the schema-guided paradigm, frames are predetermined, and the system
anticipates the user’s input to conform to one of the predefined frames. Although this
approach can improve the robustness and accuracy of the dialogue system by providing a
structured and domain-specific representation of knowledge, it also limits the flexibility of
the system to handle novel and unforeseen input. A frame is typically comprised of the
following components:

• Intents: represent the goal of the interlocutor; they define the task or action that the
dialogue system is trying to accomplish.

• Slots: represent the information that is being requested or provided; they describe the
properties of the entities or concepts that are relevant to the task.

• Slot values: represent the value of the slots; they are the actual information that has
been extracted or provided during the conversation.

• Dialogue history: represents the conversation so far; it includes all the previous turns
of dialogue in the current conversation.

• Constraints: represent the additional information that is useful for the task; they are
used to guide the dialogue towards a successful outcome.

3.4. Dialogue-State Tracking (DST)

Dialogue-state tracking [31] is the process of maintaining an accurate representation of
the current state of a conversation. This involves identifying the user’s intentions and goals,
as well as the entities and concepts that are mentioned in the conversation, in order to
provide relevant and precise responses. To tackle the challenge of representing the dialogue
state, Young et al. [32] proposed a method that leveraged dialogue acts. They employed a
partially observable Markov decision process (POMDP) to build systems that could handle
uncertainty, such as dialogue systems. To achieve a practical and feasible implementation
of a POMDP-based dialogue system, the state can be factorized into discrete components
that can be effectively represented by probability distributions over each factor [33]. These
factorized distributions make it more feasible to represent the most common slot-filling
applications of POMDP-based systems, where the complete dialogue state is reduced to
the state of a small number of slots that require filling.
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In 2020, Rastogi et al. [4] proposed the schema-guided paradigm to tackle dialogue-
state tracking, which involved predicting a dynamic set of intents and slots by using their
natural language descriptions as input. They also introduced a schema-guided dataset to
evaluate the dialogue-state tracking tasks of dialogue systems, including domain prediction,
intent prediction, and slot filling. Additionally, they developed a DST model capable of
zero-shot generalization. The schema-guided design utilizes modern language models,
such as BERT, to create a unified dialogue model for all APIs and services by inputting a
service’s schema, which enables the model to predict the dynamic set of intents and slots
within the schema. This approach has gained significant attention, and annual competitions,
such as the Dialogue Systems Technology Challenge (DSTC), track the progress in this
field [34].

To achieve slot filling, a sequence model can be trained using different types of
dialogue acts as classification labels for each individual domain. Additionally, pretrained
language models, such as GPT [35], ELMo [36], BERT [37], and XLNet [38], have shown
significant promise in recent years with regards to natural language processing. These
models have outperformed prior algorithms in terms of generalization and zero-shot
learning. Consequently, they offer an effective approach to performing zero-shot learning
for language understanding. Furthermore, by leveraging pretrained language models in
the schema-guided paradigm, dialogue systems can generalize to unseen service schema
elements and improve their accuracy and robustness.

The primary objectives of dialogue-state tracking (DST) encompass predicting the
active user intention, requested slots, and values of slots in a given conversation turn.
Within the context of DST, the user intention closely relates to the service supplied by the
dialogue system. The intention refers to the user input’s purpose or goal, while the service
represents the functionality offered by the dialogue system to achieve the user’s intent. The
user’s intention is typically deduced from the input and ongoing conversation state and
can be expressed as a label or a set of labels that indicate the user’s objective. A service
denotes the task or action the dialogue system intends to perform and can be defined by
a group of intentions and slots. The slots indicate the requested or supplied information.
For example, an intention might involve “booking a flight,” while the slots could consist
of “destination,” “departure date,” “return date,” and other related information. Services
may vary over time, making it critical to have a flexible and adaptable ontology that can be
modified as required.

DST’s capacity to handle either a closed set of slots (static ontology) or an open set
of slots (dynamic ontology) is a crucial attribute. In the former, the model is capable
of predicting only those predefined slot values and cannot assimilate new slot values
from example data. The model generally comprises three modules: an input layer that
translates each input token into an embedding vector, an encoder layer that encodes the
input to a hidden state, and an output layer that predicts the slot value based on the
hidden state. In the former, where the set of possible slot values is predefined, the output
layer may be approached in two ways: (i) a feed-forward layer that generates all possible
values associated with a specific slot; or (ii) an output layer that contrasts both the input
representation and slot values and provides scores for each slot value. The scores can be
normalized by applying non-linear activation functions, such as SoftMax or sigmoid, to
convert them into probability distributions or individual probabilities.

In DST, the zero-shot setting enables a model to handle new intents or slots that it
has not seen before without requiring additional training data. This allows the model to
generalize to new contexts or situations based on the knowledge gained during training.
Unlike traditional supervised learning approaches, where a DST model is trained on a
specific dataset with a specific set of intents and slots, a zero-shot DST model can handle
new intents and slots without prior exposure. Techniques such as transfer learning, pre-
training, or meta-learning can be used to achieve this goal and learn a more general and
robust model. For instance, a zero-shot DST model can utilize pre-trained language models
or embeddings, which have already learned significant knowledge about language from a
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large corpus of text data. The model can then be fine-tuned on a smaller dataset specific to
the DST task at hand.

4. The Proposed SG-CSE Attack State Tracker

4.1. Description

We propose the SG-CSE Attack State Tracker (SG-CSEAST), a system that estimates
the dialogue state during a CSE attack state by predicting the intention and slot-value pairs
at turn t of the dialogue. The SG-CSEAST consists of the following four units depicted in
Figure 1.

• NLU: converts the utterances into a meaningful representation.
• SG-CSE BERT: takes into account the dialogue history, and outputs the estimated state

of the CSE attack.
• CSE Policy: decides which mitigation action to take.
• Mitigation Action: applies the selected mitigation action.

 

Figure 1. The SG-CSE attack State Tracker main units.

In this work, we implement the SG-CSE BERT unit, which detects information leakage
and deception attempts. The information concerns SME, Information Technology (IT), and
personal details, while in our context, we define deception as the attempt of a malicious
user to persuade a user to use an IT resource. We follow the schema-guided paradigm
utilizing Das and dialogue history. The steps toward SG-CSE BERT implementation are the
following (Figure 2):

1. Using CSE Corpus [17], we extract related dialogue acts (SG-CSE Das) by mapping
the utterance intention to a proposed DA.

2. We create a new corpus (SG-CSE Corpus) appropriate for DST, labeled with SG-CSE
Das. This corpus is used to fine-tune and evaluate our detection model.

3. We utilize the CSE conceptual model and the CSE ontology [17] to create a schema-
based ontology. Thus, different attack types are extracted.

a. Four different CSE attack types are extracted and will be represented as services.
b. Each service will be mapped to a specific schema.
c. The schema will have several intents which will be mapped to the correspond-

ing DA.
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Figure 2. Implementing SG-CSE BERT.

The schema-guided paradigm makes use of a domain’s ontology to create the required
schema that describes each service existing in the domain. In our research, the domain
is the CSE attacks, and we predict the service, user intention, and requested slot-value
pairs. For example, for an utterance like: “What is the CEO’s first name?” the SG-CSE BERT
model should be able to build a representation like the one presented in Table 2.

Table 2. Sample representation of frame slots.

Acquire Value

Service CSE_SME_Info_Extraction
Intent WH-SME_Question
Employee_name Null
Employee_position CEO

A CSE attack is unleashed through the exchange of utterances in turns of a dialogue.
Time is counted in turns, and thus at any turn t, the CSE attack is at the state st and this state
comprises the summary of all CSE attack history until time t. State st encodes the attacker’s
goal in the form of (slot, value) pairs. The different slot and value pairs are produced by
the CSE ontology [17] and the proposed DAs that represent the in-context entities, intents,
and their interconnection. The values for each slot are provided by the attacker during the
CSE attack and represent her goal, e.g., during a CSE attack, at turn t the state st could be
st = {(employeename, NULL), (employee_position, CEO)}}. In such a state, the attacker’s
goal has been encoded for slots employee_name, employee_position during the dialogue.

Figure 3 depicts the dialogue system concepts and evolution that are related to our
research and the concepts transferred from the dialogue systems field to the CSE attack
domain for the purpose of CSE attack recognition via CSE attack-state tracking. As Figure 3
depicts, a dialogue can be realized between humans or between humans and machines.
The latter is called dialogue systems and can be task-oriented or conversational. The
architecture of dialogue systems can be described using frames, and among their properties,
dialogue-state tracking is a property that represents the state of the dialogue at any given
moment. The schema is created based on the SG-CSE domain ontology, and we can perform
prediction tasks using state-of-the-art language models such as BERT.

188



Appl. Sci. 2023, 13, 5110

 

Figure 3. Dialogue System concepts related to CSE attack.

The SG-CSE BERT unit, as proposed, adheres to the schema-guided approach for
zero-shot CSE attack state tracking by employing a fine-tuned BERT model. By taking
various CSE attack schemas as input, the model can make predictions for a dynamic set
of intents and slots. These schemas contain the description of supported intents and slots
in natural language, which are then used to obtain a semantic representation of these
schema elements. The use of a large pre-trained model such as BERT enables the SG-CSE
BERT unit to generalize to previously unseen intents and slot-value pairs, resulting in
satisfactory performance outcomes on the SG-CSE Corpus. The SG-CSE BERT unit is made
up of two different components. A pre-trained BERT base cased model from Hugging
Face Transformers to obtain embedded representations for schema elements, as well as
to encode user utterances. The model is capable of returning both the encoding of the
entire user utterance using the ‘CLS’ token, as well as the embedded representation of each
individual token in the utterance, including intents, slots, and categorical slot values. This
is achieved by utilizing the natural language descriptions provided in the schema files in
the dataset. These embedded representations are pre-computed and are not fine-tuned
during the optimization of model parameters in the state update module. The second
component is a decoder that serves to return logits for predicted elements by conditioning
on the encoded utterance. In essence, this component utilizes the encoded user utterance
to make predictions regarding the user’s intent and the relevant slot values. Together, these
various components comprise the SG-CSE BERT unit.
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4.2. The SG-CSE Dialogue Acts

Given the inherent differences between CSE attack dialogues and standard dialogues,
a carefully designed set of dialogue-act labels is necessary to meet the requirements of
CSE attack recognition. These dialogue acts should be able to capture the intentions of the
attacker while remaining easily understandable. To create a set of appropriate dialogue
acts, the utterances of both interlocutors in the CSE corpus [17] were analyzed, classified,
and combined into pairs. Building on Young’s paradigm outlined in [32], we propose a set
of fourteen dialogue acts. Each SG-CSE DA is represented by an intent slot and has a data
type and a set of values that it can take. The full list of the dialogue acts is presented in the
following table (Table 3). The percentage of each dialogue act frequency is also given in the
last column for the total number of utterances in the SG-CSE Corpus.

Table 3. Frequency of Dialogue Acts in SG-CSE Corpus.

Dialogue Act Example %

Greeting Hello, my name is John 6
Statement I’ve lost the connection 21
Uninterpreted :-) 2
Agreement Sure, I can 7
Question Is this the Sales department? 11
Yes-No Question Can you give me a copy? 9
WH-SME-Question What is the HQ Address? 5
WH-IT-Question What is your IP address? 8
WH-Personal Question Which one is your personal email? 4
Rephrase Do you have a network address? 1
Directive Click this link, please 16
Yes Answer No, not possible 5
Reject I can’t do this 3
Bye Cheers! 2

The following Table 4 contains examples of dialogue acts mapped to real word utter-
ances from the SG-CSE Corpus.

Table 4. Sample utterances and corresponding dialogue acts.

Utterance Dialogue Act

Hello Angel, I’m experiencing a problem with my Charge 2 Greeting
I saw that the battery was leaking Statement
Can you confirm the email associated with my [ANON] account? Directive
Cheers! Bye

4.3. The SG-CSE Corpus

The SG-CSE Corpus is a task-oriented dialogue corpus specifically designed for CSE
attacks and is derived from the CSE corpus. Its main purpose is to serve as a training set for
intent prediction, slot-value prediction, and dialogue-state tracking in the context of CSE
attacks. The evaluation set of the SG-Corpus contains previously unseen services from the
CSE domain, which allows us to evaluate the SG-CSE BERT model’s ability to generalize in
zero-shot settings. The corpus comprises various types of CSE attacks, including real-life
cases and fictional scenarios. The hybrid approach used to create the SG-CSE Corpus
combines characteristics of both balanced and opportunistic corpora [39,40], and it is
based on the schema-guided paradigm. The SG-CSE Corpus contains 90 dialogues and is
presented in Table 5.
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Table 5. SG-CSE Corpus identity.

Characteristic Value

Corpus name SG-CSE Corpus
Collection Methods Web scraping, pattern-matching text extraction
Corpus size (N) 90 text dialogues/5798 sentences
Vocabulary size (V) 4500 terms
Total no. of turns 5798
Avg. tokens per turn 8.42
No. of slots 18
No. of slot values 234
Content chat-based dialogues
Collection date June 2018–December 2020
Creation date Aug. 2022

The original CSE corpus was preprocessed, and all dialogues were converted into
pairs of utterances and annotated. In order to enhance the corpus, we utilized paraphrasing
techniques and replaced significant verbs and nouns to generate additional dialogues.
More specifically, to address the potential limitations of a small corpus, we created a list
of 100 critical nouns and 100 critical verbs categorized under one of three sensitive data
categories, and for each noun and verb, we generated ten new sentences where the noun
was substituted with a similar word. In this regard, we utilized the Word Embeddings
technique, which utilizes dense vector representations to capture the meaning of words.
The embeddings are learned by moving points in the vector space based on the surrounding
words of the target word. To discover synonyms, we employed a pre-trained word2vec
model based on the distributional hypothesis, which posits that linguistic items with similar
contextual distributions have similar meanings. By grouping words with similar contextual
distributions, we created a segregation of different domain words based on their vector
values. This resulted in a vector space where each unique word in the dialogues was
assigned a corresponding vector, representing a vector representation of the words in the
collected dialogues. The critical verbs and nouns were replaced and combined to create
new phrases. The following figure (Figure 4) depicts the distribution of the number of turns
in the dialogues involved.

Figure 4. Distribution of turns in the SG-CSE Corpus.

Figure 5 presents the distribution of types of dialogue acts existing in the SG-CSE
Corpus:

The annotation task has significantly enhanced the value and quality [41] of the
SG-CSE Corpus, allowing it to be utilized for task-oriented dialogue tasks, such as DST.
Additionally, natural language descriptions of the various schema elements (i.e., services,
slots, and intents) are included in the corpus. To test the zero-shot generalization ability, the
evaluation set includes at least five services that are not present in the training set. The SG-
CSE Corpus is composed of CSE attack dialogues between two interlocutors, where each
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dialogue pertains to a specific CSE attack service in the form of a sequence of turns. Each
turn is annotated with the active intent, dialogue state, and slot spans for the different slot
values mentioned in the turn. The schema includes information such as the service name,
the supported tasks (intents), and the attributes of the entities used by the service (slots).

Figure 5. Distribution of types of dialogue acts in the SG-CSE Corpus.

4.4. The SG-CSE Ontology

The CSE ontology [17] is an ontology that connects social engineering concepts with
cybersecurity concepts and focuses on sensitive data that could be leaked from an SME
employee during a chat-based dialogue. It is an asset-oriented ontology that was derived
from the corresponding concept map [17] depicted in Figure 6. The sensitive data may
pertain to SME, IT, or personal details.

Figure 6. Concept map of the CSE attack domain.

The CSE ontology groups similar concepts in context to facilitate the hierarchical
categorization of assets and is designed to be efficient for text classification tasks by limiting
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the depth to no more than three levels. It was created through a custom information
extraction system that leveraged various text documents such as corporate IT policies, IT
professionals’ CVs, and ICT manuals. An excerpt of the CSE ontology created in Protégé is
illustrated in Figure 7 below, along with the arc types.

 

Figure 7. Excerpt of CSE ontology.

The SG-CSE ontology comprises a collection of schemas that describe the CSE attack
domain based on the CSE ontology and the proposed set of fourteen SG-CSE DAs [42]. The
use of a schema-based ontology enables a structured and domain-specific representation of
knowledge, enhancing the robustness and accuracy of the detection task. This is achieved
through the provision of predefined frames, encompassing predetermined entities and
concepts, which the system can expect to encounter as input. Table 6 presents the 18 slots
existing in SG-CSE in tabular form with accompanying example values.

The services present in the training set are the following four:

• CSE_SME_Info_Extraction
• CSE_IT_Info_Extraction
• CSE_Personal_Extraction
• CSE_Department_Extraction

where the slots related to each service are combinations of the aforementioned slots in
Table 6.

Figure 8 depicts an excerpt of the example schema for the CSE_SME_Info_Extraction
service. The dots between the boxes denote that more slots and intents exist.

4.5. The SG-CSE BERT Model

This section introduces the SG-CSE BERT model, which operates in a schema-guided
setting and can condition the CSE attack service schema using the descriptions of intents
and slots. To enable the model to represent unseen intents and slots, a BERT-based model
pre-trained on large corpora is employed. As a result, the proposed SG-CSE is a model
for zero-shot schema-guided dialogue-state tracking in CSE attack dialogues. The SG-CSE
BERT model encodes all schema intents, slots, and categorical slot values into embedded
representations. Since social engineering attacks can take many forms, schemas may differ
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in their number of intents and slots. Therefore, predictions are made over a dynamic set of
intents and slots by conditioning them on the corresponding schema embedding.

Table 6. Slots in SG-CSE Corpus.

Slot Type Example Values

Hardware Dictionary CD, DVD, USB stick
Network Numbers 192.168.13.21
Server String subdomain.domain.tld
Service String Email, FTP, ssh
Software String RDP, Firefox
Personal_Email String user@domain.tld
Personal_Name String George, Sandra
Personal_Telephone Numbers 0123456789
Dept_Email String dept@domain.tld
Dept_Name String Sales, Marketing
Employee_Name String George, Maria
Employee_Email String name@domain.tld
Employee_Telephone Numbers 0123456789
Employee_Position String Executive, Manager
Office_Number Numbers 12, 23
Enterprise_Address String 26th Av. Somewhere
Enterprise_Location String Athens, Thessaloniki
Enterprise_Name String ACME, Other

 

Figure 8. Example schema for CSE_SME_Info_Extraction.

The sequence pairs used for the embeddings of intent, slot, and slot value are presented
in Table 7, and they are fed as input to the pre-trained BERT model (Figure 9) where
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a1, . . . , an and v, . . . , vn are the two sequence tokens that are fed as a pair to SG-CSE BERT
encoder. The UCLS is the embedded representation of the schema and t, . . . , tn+m are the
token-level representations.

Table 7. Sequence pair used for embeddings.

Sequence 1 Sequence 2

Intent CSE attack description Intent description
Slot CSE attack description Slot description
Value Slot description value

 
Figure 9. Pre-trained BERT model A pair of two sequences a, v is fed as input to the BERT encoder
which outputs the pair’s embedding UCLS and the token representations {t1, . . . , tn+m}.

Schema Embeddings: Let I, S be the intents and slots of CSE attack service and
{

ij
}

where 1 ≤ j ≤ I and
{

sj
}

where 1 ≤ j ≤ S their embeddings. The embeddings of the

N non-categorical slots are denoted by
{

sn
j

}
where 1 ≤ j ≤ N ≤ S and the embeddings

for all possible values that the kth categorical slot can take are denoted by
{

vk
j

}
where

1 ≤ j ≤ Vk and 1 ≤ k ≤ C. C is the number of categorical slots and N + C = S.
Utterance Embedding: A pair of two consecutive utterances between the two in-

terlocutors is encoded and represented to embeddings as uCLS and the token level rep-
resentations {ti} where 1 ≤ i ≤ M and M the total number of tokens in the pair of
utterances.

The model utilizes the schema and utterance embeddings and a set of projections [4] to
proceed to predictions for active intent, requested slot, and user goal. More specifically, the
active intent, which is the intent requested by the attacker that we are trying to recognize,
takes the value ‘NONE’ if the model currently processes no intent. Otherwise, if i0 is the
trainable parameter in R

d then the intent is given by:

l j
int = Fint

(
u, ij, 1

)
, 0 ≤ j ≤ I

SoftMax function is used to normalize the logits l j
int are normalized and produce a

distribution over the set of intents plus the “NONE” intent. The intent with the highest
probability is predicted as active.

The requested slots, which means the slots whose values are requested by the user in
the current utterance, are given by:

l j
req_slot = Freq_slot

(
u, sj, 1

)
, 0 ≤ j ≤ S

195



Appl. Sci. 2023, 13, 5110

The sigmoid function I is used to normalize the logits l j
req_slot and get a score in the

range of [0, 1]. During inference, all slots with a score > 0.6 are predicted as requested.
The user goal is defined as the user constraints specified over the dialogue context till

the current user utterance, and it is predicted in two stages. In the first stage, a distribution
of size 3 denoting the slot status taking values none, harmless, and current is obtained using:

l j
status = Fstatus

(
u, sj, 3

)
, 1 ≤ j ≤ S

If the status is predicted as none, its value is assumed unchanged. If the predicted
status is harmless, then the slot gets the value harmless. Otherwise, the slot value is predicted
using the following:

l j,k
value = Fstatus

(
u, vk

j , 1
)

, 1 ≤ j ≤ Vk, 1 ≤ k ≤ C

The SoftMax algorithm is used to map the categorical values of a variable into a
distribution over the entire range of possible values. For each non-categorical slot, logits
are obtained using the following:

l j,k
start = Fstart

(
tk, sn

j , 1
)

, 1 ≤ j ≤ N, 1 ≤ k ≤ M

lj,k
end = Fend

(
tk, sn

j , 1
)

, 1 ≤ j ≤ N, 1 ≤ k ≤ M

Each of these two distributions above represents the starting and end points for
the actual span of text that references the specific slot. The indices a ≤ v maximizing
start[a] + end[v] will be the boundary between spans, and the value associated with that
span is assigned to that slot.

In Figure 10 above, we see the predicted CSE attack dialogue state using two turns
from two different utterance pairs. In the green boxes, the active intent and slot assignments
are shown, and in the orange box, we can see the related schema of the CSE attack service.
The CSE attack state representation is conditioned on the CSE attack schema, which is
provided as input along with the victim and attacker utterances.

 

Figure 10. Two example pairs of utterances with predicted dialogue states (in dashed edges). The
dialogue-state representation is conditioned on the CSE attack schema under consideration, shown
in orange.

5. Results

We consider the following metrics for evaluation of the CSE attack state tracking:

196



Appl. Sci. 2023, 13, 5110

• Active Intent Accuracy: The fraction of user turns for which the active intent has been
correctly predicted.

• Requested Slot F1: The macro-averaged F1 score for requested slots overall eligible
turns. Turns with no requested slots in ground truth and predictions are skipped.

• Average Goal Accuracy: For each turn, we predict a single value for each slot present in
the dialogue state. This is the average accuracy of predicting the value of a slot correctly.

• Joint Goal Accuracy: This is the average accuracy of correctly predicting all slot
assignments for a given service in a turn. Additionally, Harmonic means between seen
and unseen classes.

We implemented the SG-CSE BERT model using the Hugging Face library and the
BERT uncased model with 12 layers, 768 hidden dimensions, and 12 self-attention heads.
To train the model, we used a batch size of 32 and a dropout rate of 0.2 for all classification
heads. We also employed a linear warmup strategy with a duration of 10% of the training
steps, in addition to the AdamW optimizer with a learning rate of 2 × 10−5.

In Figure 11, the performance of the SG-CSE BERT model is depicted. SG-CSE BERT
shows efficiency in Active Intent Accuracy and Requested Slots F1 and less efficiency in
Average Goal Accuracy and Joint Goal Accuracy.

Figure 11. SG-CSE BERT model performance.

The following Table 8 presents the performance results.

Table 8. SG-CSE Attack state tracker performance.

System Model Parameters
Active
Intent

Accuracy

Req Slot
F1

Acg Goal
Accuracy

Joint Goal
Accuracy

Seen BERTBASE 110 M 85.2 89.6 74.1 56.7
Unseen BERTBASE 110 M 53.8 48.3 31.4 24.9

All BERTBASE 110 M 69.5 68.9 52.7 40.8

6. Discussion

Early dialogue-state tracking (DST) datasets were developed to be specific to a particu-
lar domain due to the difficulty in building models that can effectively track dialogue states
for multiple domains. However, with the recent release of multi-domain datasets and the
incorporation of machine learning-based methods, it has become possible to build models
that can track states for multiple domains using a single set of training data. To evaluate
the ability of models to generalize in zero-shot settings, we created the SG-CSE Corpus
and included evaluation sets containing unseen services. To address the issue of limited
dialogue resources, data augmentation can be explored as an option. Augmenting the
training dataset by adding more diverse examples can improve performance. Source-based
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augmentation generates sentences by changing a single variable value in a sample utter-
ance, while target-based augmentation takes portions of sentences from different places in
the training data and recombines them.

SG-CSE BERT is a model that is built around BERT, a pre-trained transformer-based
model that has been trained on a large corpus of text data. BERT has demonstrated strong
generalization ability across a wide range of natural language processing tasks and domains.
When fine-tuned on a specific task and domain, BERT is able to learn specific patterns and
features of the task and domain, which allows it to achieve good performance. However,
if BERT is not fine-tuned, it may be able to detect new unseen intents, but it would not
have enough information to generate the corresponding slot values. Moreover, it may
not be able to detect new unseen services or new unseen domains. Large-scale neural
language models trained on massive corpora of text data have achieved state-of-the-art
results on a variety of traditional NLP tasks. However, although the standard pre-trained
BERT is capable of generalizing, task-specific fine-tuning is essential for achieving good
performance. This is confirmed by recent research, which has shown that pre-training alone
may not be sufficient to achieve high accuracy in NLP tasks. For example, the performance
of a pre-trained model on a downstream task may be significantly improved by fine-tuning
it on a smaller in-domain dataset.

The SG-CSE Corpus is designed to test and evaluate the ability of dialogue systems to
generalize in zero-shot settings. The evaluation set of the corpus contains unseen services,
which is important to test the generalization ability of the model. Our evaluation set does
not expose the set of all possible values for certain slots. It is impractical to have such a
list for slots like IP addresses or time because they have infinitely many possible values or
for slots like names or telephone numbers for which new values are periodically added.
Such slots are specifically identified as non-categorical slots. In our evaluation sets, we
ensured the presence of a significant number of values that were not previously seen in
the training set to evaluate the performance of models on unseen values. Some slots, like
hardware, software, etc., are classified as categorical, and a list of all possible values for
them is provided in the schema.

SG-CSE BERT is designed to handle dialogue-state tracking for a larger number of
related services within the same domain. Its schema-guided paradigm provides a structured
and domain-specific representation of knowledge, which increases the model’s robustness
and accuracy. This, in turn, allows the system to better understand and interpret user input
and track the dialogue state more accurately. The schema and frames work together to
create this representation, with the schema constraining the possible states of the dialogue
and the frames tracking the current state. The proposed system has shown satisfactory
performance, and the experimental results demonstrate its effectiveness. Its simplistic
approach also leads to more computational efficiency, which makes it a good candidate
for use as a separate component in a holistic CSE attack recognition system, as proposed
in previous works [3,43,44]. Additionally, SG-CSE BERT is computationally efficient and
scalable to handle large schemata and dialogues. It should be noted that the performance of
SG-CSE BERT is dependent on the quality and completeness of the training data. Moreover,
incorporating additional sources of information, such as user context and sentiment, can
enhance the system’s performance in real-world scenarios. Overall, SG-CSE BERT provides
a promising solution for zero-shot schema-guided dialogue-state tracking in the domain of
CSE attack recognition.

A static ontology, which is a predefined and unchanging set of intents and slots,
can be used for zero-shot detection in DST. However, there are some limitations to its
effectiveness [45]. While a comprehensive ontology can cover a wide range of possible
situations and contexts, it may not be able to encompass all possible scenarios. As a
result, a model trained on such an ontology may struggle to generalize to new and unseen
intents and slots. Moreover, since the ontology remains static and is not updated during the
training process, it may not be able to adapt to changes in the domain over time or new types
of attacks. In contrast, a dynamic ontology can be updated during the training process
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to adapt to new situations and contexts. This can be achieved by using unsupervised
methods to extract the ontology from the data or by incorporating active learning methods
that allow the system to query human experts when encountering unseen intents and
slots. By using a dynamic ontology, the system can learn to recognize new intents and
slots over time, improving its ability to generalize to new and unseen scenarios. Zero-shot
detection in DST remains an active area of research, with new methods and approaches
being developed to improve the performance of DST models in detecting unseen intents
and slots. By incorporating dynamic ontologies and other techniques, future DST models
may be better equipped to recognize and respond to previously unseen user input.

7. Conclusions

The aim of this study was to investigate schema-guided dialogue-state tracking in
the context of CSE attacks. We created a set of fourteen dialogue acts and developed the
SG-CSE Corpus using the CSE ontology and corpus. We followed the schema-guided
paradigm to introduce the SG-CSE BERT, a simplistic model for zero-shot CSE attack state
tracking. The performance results were promising and demonstrated the effectiveness of
the approach. To provide context for the study, we discussed dialogue systems and their
characteristics, which helped us define our approach. Then, we examined how concepts
and terminology from task-based dialogue systems and dialogue-state tracking can be
transferred to the CSE attack domain.

We focused on creating the SG-CSE DAs and SG-CSE Corpus, mapping slots and
intents, and proposing the SG-CSE BERT model. The model achieved satisfactory per-
formance results using a small model and input encoding. Although various model
enhancements were attempted, no significant improvement was observed. The study
suggests that data augmentation and the addition of hand-crafted features could improve
the performance of the CSE attack state tracking, but further experimentation is necessary
to explore these methods. The proposed model offers an advantage in the few-shot experi-
ments, where only limited labeled data is available. Such an approach can help to create
a more comprehensive and accurate understanding of CSE attacks and their underlying
mechanisms, as well as to develop more effective detection and prevention strategies. For
example, experts in natural language processing can help to improve the performance of
dialogue-state tracking models, while experts in psychology and sociology can provide
insights into the social engineering tactics used in CSE attacks and the psychological factors
that make users susceptible to these attacks. Cyber-security experts can provide a deeper
understanding of the technical aspects of CSE attacks and help to develop more robust and
effective defense mechanisms.

In addition, it is important to emphasize the need for ethical considerations in the
development of CSE attack detection systems. As these systems involve the processing of
sensitive and personal information, it is crucial to ensure that they are designed and used
in a way that respects privacy and protects against potential biases and discrimination.
This requires a careful and transparent design process, as well as ongoing monitoring and
evaluation of the system’s performance and impact. Overall, a multi-disciplinary and
ethical approach is essential for the development of effective and responsible CSE attack
detection systems.

Future works will focus on the SG-CSE corpus augmentation techniques to present
new CSE attack services. Furthermore, the proposed SG-CSE BERT will be incorporated
into an ensemble system that will detect CSE attacks, where it will act as an individual
component responsible for practicing dialogue-state tracking.
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Abbreviations

A Attacker
ANON Anonymized content
ASR Automatic Speech Recognition
BERT Bidirectional Encoder Representations from Transformers,
CEO chief executive officer
CSE Chat-based Social Engineering
CV Curriculum Vitae
D3ST Description-Driven Dialogue-State Tracking
DA Dialogue Act
DAMSL Dialogue Act Markup in Several Layers
DS Dialogue State
DST Dialogue-State Tracking
DSTC Dialogue-State Tracking Challenge
GPT Generative Pre-trained Transformer
GUS Genial Architecture System
ICT Information and Communication Technology
IT Information Technology
MRC Machine Reading Comprehension
MSDU Multi-turn Spoken Dialogue Understanding
NLG Natural Language Generation
NLU Natural Language Understanding
POMDP Partially Observable Markov Decision Process
RNN Recurrent Neural Network
SG Schema-Guided
SG-CSE Das Schema-Guided Chat-based Social Engineering Dialogue Acts
SG-CSEAST Schema-Guided Chat-based Social Engineering Attack State Tracker
SME Small-Medium Enterprises
SOM Selectively Overwriting Memory
SWBD-DAMSL Switchboard-DAMSL
SwDA Switchboard Dialogue Act Corpus
TTS Text-to-Speech
V Victim
WH WH question (who, what, whose, which, when, where, why)
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