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Periodic Flows in a Viscous Stratified Fluid in a Homogeneous
Gravitational Field

Yuli D. Chashechkin * and Artem A. Ochirov

Ishlinsky Institute for Problems in Mechanics RAS, 119526 Moscow, Russia; ochir@ipmnet.ru
* Correspondence: chakin@ipmnet.ru; Tel.: +7-(495)-434-01-92

Abstract: The density of a fluid or gas, which depends on the temperature, pressure and concentration
of dissolved substances or suspended particles, changes under the influence of a large number of
physical factors. We assume that an undisturbed liquid is heterogeneous. The propagation of periodic
flows in viscous, uniformly stratified fluids is considered. The analysis is based on a system of
fundamental equations for the transfer of energy, momentum and matter in periodic flows. Taking
into account the compatibility condition, dispersion relations are constructed for two-dimensional
internal, acoustic and surface linear periodic flows with a positive definite frequency and complex
wave number in a compressible viscous fluid exponentially stratified by density. The temperature
conductivity and diffusion effects are neglected. The obtained regularly perturbed solutions of the
dispersion equations describe the conventional weakly damped waves. The families of singular
solutions, specific for every kind of periodic flow, characterize the before unknown thin ligaments
that accompany each type of wave. In limited cases, the constructed regular solutions transform
into well-known expressions for a viscous homogeneous and an ideal fluid. Singular solutions are
degenerated in a viscous homogeneous fluid or disappear in an ideal fluid. The developing method of
the fundamental equation system analysis is directed to describe the dynamics and spatial structure
of periodic flows in heterogeneous fluids in linear and non-linear approximations.

Keywords: heterogeneous fluid; stratification; viscosity; compressibility; linear models; complete
description; dispersion relations

MSC: 76A02; 76Q05; 76M45

1. Introduction

In natural, laboratory and industrial conditions, the density of a liquid or gas depends
on the temperature, pressure, concentration of dissolved substances or suspended particles.
It is not constant and changes under the influence of a large number of physical factors. An
oscillating source forms waves that propagate over long distances in a medium with a weak
dissipation. Historically, it is customary to distinguish acoustic waves, the existence of
which is provided by the compressibility of the medium and gravitational waves associated
with the action of the gravity field. Inertial waves propagate in a globally rotating medium
and capillary waves run at the interface between the media. The existence of a large group
of hybrid waves is provided by the combined action of a number of factors [1,2].

In the mass forces (gravity and inertia) field, the fluid medium is separated. Heavy
particles sink, light particles float up, and the medium is naturally stratified. Compress-
ibility under the action of hydrostatic pressure has an additional impact on density. The
choice of the coordinate system depends on the overall geometry of the problem. The
consideration of flows with scales much smaller than the Earth’s radius is carried out in a
Cartesian coordinate system with an axis z pointing vertically upwards. The acceleration
of gravity g is directed downwards.

Mathematics 2023, 11, 4443. https://doi.org/10.3390/math11214443 https://www.mdpi.com/journal/mathematics
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The density distribution in the direction of gravity ρ(z) is characterized by the scale
Λ = |d ln ρ(z)/dz|−1, frequency N =

√
g/Λ and buoyancy period Tb = 2π/N. In the at-

mosphere and ocean, the average buoyancy period lies in the range
of 3 < Tb < 10 min [3,4]. In the “instantaneous” density profiles of the atmosphere
and ocean, thin, highly gradient interfaces are expressed. They separate thick, more homo-
geneous layers, thereby forming a “fine structure” of the medium [4,5].

In practice, several characteristic types of average density distributions have been
identified. Further, the models of continuous (linear or exponential), two-layer or multi-
layer stratification (the last two with a persistent density gap) will be used. In a large group
of flows, density variations are much less than the average value.

At the end of the 18th century, B. Franklin observed sea fluctuations in the free
surface and the interface between water and olive oil in a ship lighting lamp, which was
later mounted on a swing. He noted the need to analyze the influence of fluid density
heterogeneity in mathematical research [6]. Initially, the effects of stratification began to
be taken into account in calculations of the internal wave propagation in the atmosphere
and ocean, which were carried out by famous English scientists G.G. Stokes [7], Lord
Rayleigh [8], H. Lamb [9] and others.

A systematic study of the influence of stratification on the pattern of flows in the
atmosphere and ocean, including navigation (the “dead water” effect), which was noticed
in ancient times, gained interest after the publication of the scientific results from F. Nansen’s
polar expeditions [10]. V. Ekman developed the methodology and planned the experiments.
In order to conduct laboratory studies of the phenomenon of the “dead water”, he used
a review of the first publications on the theory of internal waves in the treatise [11]. In a
series of thorough experiments, V. Ekman determined the conditions for the generation of
large waves using a moving model of a ship at a smoothed interface between fresh and
salt (sea) water and determined the influence of the movement mode on the position of
the model’s hull and drag [10]. However, in general, the work on the consideration of
the equations of internal waves and the “exotic” phenomenon of “dead water” fell out of
scientific circulation for more than half a century and did not affect the development of the
general theory of fluid flows.

At least two of the reasons have to be noted: the smallness of the density variations
compared to its average value, limiting the effect on inertial properties, and the insuffi-
cient development of the mathematical apparatus. G.G. Stokes noted in a fundamental
article [12], written several years before a thorough study of wave propagation in homoge-
neous and layer-by-layer stratified media [13], “As it is quite useless to consider cases of
the utmost degree of generality, I shall suppose the fluid to be homogeneous. . .” However,
a few years later, he also emphasized the limitations of the approximation used: “The three
equations of which (l) is the type are not the general equations of motion which apply to a
heterogeneous fluid when internal friction is taken into account, which are those numbered
(10) in my former paper, but are applicable to a homogeneous incompressible fluid, or to
a homogeneous elastic fluid subject to small variations of density, such as those which
accompany sonorous vibrations” [7].

Accordingly, when studying the waves of other types—acoustic [14] or gravitational-
capillary—at the interface between the atmosphere and the hydrosphere [1,15], the unper-
turbed density was assumed to be homogeneous. Here and further, general rotation effects
and associated inertial waves [1,16] are not considered.

The interest in the mathematical study of the stratification influence started to form
in the middle of the last century. During this period, the precision instruments identified
the thin, highly gradient structure of the Baltic Seawaters [5]. Next, the flows induced by
diffusion on an inclined wall in a continuously stratified atmosphere were discovered [17].
The development of interest in studying the influence of stratification was facilitated by the
papers [18,19], which showed the important role of diffusion-induced flows on topography
not only in the atmosphere, where they manifested themselves not only in the form of
mountain and valley winds but also in the ocean. At the same time, experimental [20] and
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theoretical studies of internal waves in continuously stratified media [21] were developing.
Numerous expeditions have shown the existence of fine structure and its influence on the
dynamics of the atmosphere and ocean in various regions of the Earth.

The number of original articles and reviews describing the influence of stratification on
individual phenomena (internal waves, currents and vortices) was increasing rapidly. The
propagation of acoustic vibrations in a continuously stratified medium was considered [22].
The influence of viscosity was initially taken into account only in terms of the exponential
attenuation of wave amplitudes [1,21]. It was analyzed in more detail when describing
the propagation of gravitational surface [23–29], internal [30] and acoustic waves [31],
considering the boundary layers formed simultaneously with the waves.

From the general content of papers and monographs [1,2,11,15,16], it follows that the
basis of a rational mathematical description of inhomogeneous fluid flows is a system of
fundamental equations-differential analogues of the momentum, energy and matter con-
servation laws with physically justified initial and boundary conditions. All the equations
that were originally presented in the first edition of the treatise [1], published in 1944, were
quite complex for general analysis. In practice, the reduced forms of the general system of
equations are usually used, which makes it possible to study the properties of individual
flow components, such as waves, vortices, jets, and wakes with the required degree of
completeness. In this work, the main attention is paid to the analysis of periodic flows, the
temporal variability of which is proportional to a function of the form f ∝ exp(−iωt).

In the experiment, as in the early stage of the development of the analytical theory of
waves [11], it was emphasized that the measured physical quantities-parameters of periodic
flows, such as the period Tw (frequency ω,), length λ, group cg and phase cph velocity of
the wave, are characterized by real numbers. From the very beginning of the theoretical
study, periodic flows began to be described using complex numbers, introduced to reduce
the notation and convenience of calculations. The immersion of problems in the algebra of
complex numbers leads to the expansion of the dimension of the problem space and the
emergence of additional “physically unrealizable” solutions. Accordingly, there is a need to
select a part of the solutions corresponding to the initial formulation, with the introduction
of criteria explaining the procedure.

The physical interpretation of the solutions depends on the choice of the algorithm
for the rules for immersing the problem in the algebra of complex numbers. Traditionally,
starting with the works of scientists in the 19th century, the frequency ω of a waveform
f ∝ exp(ikx − iωt) has been chosen as a complex value. Its real part determines the
dispersion relation, the functional relationship between frequency ω and wave vector
k, and the imaginary part determines the stability condition and the wave attenuation
coefficient [1]. An innumerable number of works, including popular monographs, are
devoted to the study of flow and wave stability [32,33]. The history of the develop-
ment of flow stability studies is traced in detail in [34]. Researchers investigated the
problem of finding the liquid surface shape and the criteria for the development of in-
stability under the action of various destabilizing factors, such as surface electric charge
(Tonks–Frenkel instability) [35,36], Rayleigh-Taylor and Marangoni thermal convective
instabilities [37], etc.

However, the amplitude and wavelength change within the distance of the source, but
the frequency of periodic motion remains constant, as it follows from the consideration of
the experimental patterns of non-dispersive waves, propagation in a medium at rest. In this
regard, it is natural to maintain the frequency, which is a measure of the wave energy, as a
positive definite real quantity in calculations, and take the wave number to be complex [38].
Substituting expansions of this type into a linearized system of fundamental equations, the
solution of which is found using methods of singular perturbation theory [39], allows for a
new classification of the structural components of periodic flows based on the properties of
complete solutions.

This part of the solutions of the fundamental equation system, which includes regularly
perturbed functions, characterizes waves slowly decaying in the direction of propagation

3
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in weakly dissipative media. Singularly perturbed components of the solution describe
ligaments—thin flows that determine the structure of the medium in both linear and weakly
nonlinear approximations [40–42].

In the hydrosphere and atmosphere, there are types of waves that differ significantly
in frequency (in particular, acoustic and internal waves in the thickness of a stratified
liquid [1,11,21,22,31]) or in the distribution of displacement amplitudes in depth (surface
and internal waves) [1,11,21]. This makes it possible to study their properties within the
framework of individual specialized equations-acoustics [1,22,31], internal [21] surface
gravity or capillary waves [11,43]. Modern researchers often consider the problem of
acoustic wave propagation in compressible media with complex structures using numerical
and analytical methods [44,45]. At the same time, an important part of the periodic flow,
which determines the fine structure of the flow, remains without attention.

The patterns of propagation of a set of two-dimensional periodic disturbances—waves
and ligaments—in an incompressible fluid, when the reduced continuity equation allows us
to introduce a stream function convenient for analysis, are considered in the thickness [38]
and on the surface of a viscous stratified fluid [46]. This paper is the first to consider
the problem of propagating a complete set of two-dimensional infinitesimal periodic
disturbances in a continuously stratified compressible fluid.

2. System of Fundamental Equations of Periodic Flows in the Atmosphere and Ocean

2.1. The Complete System of Equations Determining the Flow of the Liquid

Periodic wave processes occurring in a viscous liquid are considered. The liquids
existing in nature are heterogeneous. The inhomogeneous distribution of density ρ is
determined using the equation of state:

ρ = ρ(P, S, sn, T). (1)

The symbol P denotes pressure, S stands for entropy, sn denotes salinity of the n-th impurity
and T stands for temperature

Far from the conditions of phase transitions, the values of the temperature gradient
and the impurity content are limited, and it is permissible to use a linearized equation of
state:

ρ = ρ0

(
1 − αT(T − T0) + αP(P − P0) + ∑

n
αsn(sn − sn0)

)
αT = − 1

ρ
∂ρ
∂T , αP = 1

ρ

(
∂ρ
∂P

)
S
, αsn = 1

ρ
∂ρ
∂sn

. (2)

Here, αT denotes the coefficient of thermal expansion of the liquid; αP stands for the coeffi-
cient of adiabatic compressibility of the liquid; αsn denotes the coefficient of contraction of
the n-th impurity; and T0, P0, sn0 refer to the reference level of temperature, pressure and
salinity, respectively.

The fundamental system of equations in addition to the equation of state consists of
the equations for describing the matter transfer, the concentration of impurity, temperature
and momentum. Taking into account that the neglect of thermophores is the Ludwig–Soret
effect [47,48] and Dufour effect [49], the system of equations is written as follows [38,46]:

G = G(P, S, sn, T), ρ = ρ(P, S, sn, T) (3)

∂tρ +∇j

(
pj
)
= Qρ, (4)

∂t

(
pi
)
+∇jΠij = ρgi + 2εijk pjΩk + Qi, (5)

∂t(ρT) +∇j

(
pjT

)
= Δ(κTρT) + QT , (6)

4
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∂t(ρsn) +∇j

(
pjsn

)
= Δ(κsρsn) + Qsn . (7)

Here, G is Gibbs potential; Qρ, Qi, QT , Qsn represent the source of mass, momen-
tum, temperature and the salinity concentration, respectively; p denotes momentum;
Πij = ρuiuj + Pδij −σij stands for the momentum flux density tensor; ui is the component of
the fluid velocity u = p/ρ; δij is the Kronecker delta; σij = μ

(
∂ui

∂xj +
∂uj

∂xi − 2
3 δij ∂uk

∂xk

)
+ ζδij ∂uk

∂xk

denotes the viscous stress tensor; μ, ζ are dynamic and bulk viscosities, respectively; g

is the gravity acceleration; εijk is the Levi-Civita symbol; Ω is the global rotation angular
velocity; and κT , κsn stand for thermal and mass diffusivity, respectively.

Equations (1), (3)–(7) form a fundamental system of equations that determine the fluid
flow. The complete solution of the system of Equations (3)–(7) defines all components of
flow in liquids—waves: acoustic, gravitational (internal and surface), capillary, hybrid
and ligaments—accompanying components that identify the fine flow structure. Usually,
researchers ignore the fine structure, limiting themselves to a partial solution of a system of
equations. In this work, we construct a theory that takes into account all flow components.

To complete the formulation, it is necessary to add initial and boundary conditions
of the problem. The initial conditions depend on the shape and type of the oscillation
source. Often, when studying the properties of periodic flows, instead of initial conditions,
researchers specify the type of solution and look for steady-state solutions of a given type.
No-slip, no-flux boundary and initial conditions on the surface of a solid impermeable
body Σ are written as follows:

u|Σ = 0, u| t≤0 = 0, P|t≤0 = P0, sn|t≤0 = sn0, T|t≤0 = T0, (8)

If the distance to the boundaries greatly exceeds the characteristic dimensions of the
observed phenomena, then a model of an unbounded medium is often used. In this case,
the boundary conditions are transformed into the conditions of physical implementation–
attenuation with removal:

u| r→∞ → 0, (9)

If the model under consideration contains a free surface or interface between layers of
immiscible liquids, then it is necessary to add standard hydrodynamic boundary conditions:
kinematic and dynamic boundary conditions. The kinematic boundary condition is written
for both contacting layers (or for one medium in the case of a free surface): the substantial
derivative of the function F defining the shape of the free surface is equal to zero at the
boundary:

DF
Dt

≡ ∂F
∂t

+ (u · ∇)F = 0, (10)

Dynamic boundary conditions are determined using the balance of forces at the
interface (free surface of the liquid):

nk
(1)σ

ik
(1) + nk

(2)σ
ik
(2) = 0, (11)

Here, n is the unit normal vector, and the subscript (1) and (2) refer to the two contacting
media. If the model takes into account the effects of surface tension, then on the right side
of (11), it is necessary to take into account Laplace forces as well.

2.2. The Reduced System of Equations

The fundamental system of equations is complete and allows one to determine the
patterns of changes in basic physical quantities during the propagation of periodic distur-
bances in continuous media. Since the complete system of equations is of a high order and
very complex to analyze, it is simplified to study the properties of individual processes.
An extremely simplified model in which it is possible to track the dynamics and evolution

5



Mathematics 2023, 11, 4443

of the structure of periodic flows takes into account the uneven distribution of density,
without indicating the physical nature of the heterogeneity formation.

The system of Equations (3)–(7) is noticeably reduced in the constant temperature
model in the absence of impurities in a weakly compressible fluid. The consideration is
carried out in a Cartesian coordinate system Oxyz in which the Oz axis is directed against
the direction of the gravity acceleration g. The Oxy plane determines the position of the
reference level. In a weakly compressible viscous fluid, bulk viscosity takes on a zero value.
In the absence of mass sources, Qρ = 0 and under the assumptions made, the reduced
system of equations will take the following form:

ρ(∂tu + (u · ∇)u) = ρνΔu −∇P + ρg (12)

∂tρ + u · ∇ρ + ρdivu = 0 (13)

ρ = ρ0(z)(1 + ρ̃(x, y, z, t)) (14)

The initial stratification ρ0(z) when describing models is often defined as a linear
ρ0(z) = ρ00(1 − z/Λ) or exponential ρ0(z) = ρ00 exp(−z/Λ) function. The symbol ρ00

indicates the density value at the reference level z = 0, and the symbol Λ = |d ln ρ/dz|−1

characterizes the stratification scale. In nature, liquids are usually weakly stratified and the
scale of stratification is on the order of tens or hundreds of kilometers. When considering
phenomena with characteristic dimensions much smaller than the scale of stratification, the
density value in the linear and exponential stratification models turns out to be practically
the same. In this case, the researchers select the more user-friendly mathematical model.
Real measurements show that in an atmosphere with good accuracy, stratification can be
considered linear or exponential [3].

A stably stratified liquid is characterized by the limiting frequency of its own mechan-
ical vibrations [8]—buoyancy frequency—the square of which is given by

N2 = − g
ρ

dρ

dz
(15)

The equation of state (2) under the assumptions made is simplified as follows:

ρ = ρ0(z)(1 − αP(P − P0)) (16)

Fluid pressure is represented as the sum of reference level pressure P, hydrostatic
pressure and perturbation pressure P̃:

P = P0 +
∫ 0

z
ρ(x, y, ξ, t)gdξ + P̃(x, y, z, t) (17)

Taking into account the equation of state (16), the definition of the velocity of sound
c2 = (∂P/∂ρ)S and the definition of pressure (17), the relation (15) for the buoyancy
frequency takes the following form:

N2 =
g2

c2

(
cp

cV
− 1

)
, (18)

Here, cP, cV is the heat capacity at constant pressure and at constant volume, respec-
tively.

The resulting system of equations, despite significant simplifications, qualitatively
completely describes periodic flows in viscous inhomogeneous continuous media. The
boundary and initial conditions will not change.

In the model under consideration, there are intrinsic parameters. These parameters
determine the characteristic scales of the flow components and the characteristic times of
their observation. A set of kinetic coefficients allows one to form their own parameters.

6
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Intrinsic parameters for liquids with the parameters of water and air are presented in
Tables 1 and 2, respectively.

Table 1. Intrinsic parameters of hydrosphere.

Parameter

Fluid

Stratified Homogeneous

Strongly Weakly Potentially Actually

Buoyancy frequency N, s−1 1 0.01 0.00001 0.0

Buoyancy period Tb 10 s 10 min 10 days ∞

Scale of stratification Λ 10 m 100 km 108 km ∞

Viscous wave scale
δ

gν
N = (gν)1/3N−1, cm 2 200 2 · 105 ∞

Stokes microscale δν
N =

√
ν/N, cm 0.1 1 30 ∞

Table 2. Intrinsic parameters of the atmosphere.

Parameter

Fluid

Stratified Homogeneous

Strongly Weakly Potentially Actually

Buoyancy frequency N, s−1 1 0.01 0.00001 0.0

Buoyancy period Tb 10 s 10 min 10 days ∞

Scale of stratification Λ 10 m 100 km 108 km ∞

Viscous wave scale
δ

gν
N = (gν)1/3N−1, cm 5 500 5 · 105 ∞

Stokes microscale δν
N =

√
ν/N, cm 0.4 4 120 ∞

The natural parameters presented in the table have to be supplemented with temporal
and spatial scales that do not depend on the level of fluid stratification. Taking into account
compressibility, a time scale τν

c = ν/c2 is added. It takes values for water τν
c � 4 · 10−13 s

and for air τν
c � 10−10 s. Spatial scale δν

c = ν/c is added. It takes values for water
δν

c � 7 · 10−10 m, and for air δν
c � 5 · 10−8 m. In viscous liquids (homogeneous and

heterogeneous), a capillary-viscous time scale appears τ
γ
νg = γ/νg. The symbol γ = σ/ρ00

denotes the surface tension coefficient of the liquid σ normalized to the equilibrium density
value ρ00. For water, the capillary-viscous time scale takes on values τ

γ
νg � 7 s, and for air

τ
γ
νg � 400 s. The spatial scale in viscous liquids δν

g = 3
√

ν2/g has the value δν
g � 5 · 10−5 m

in water and δν
g � 3 · 10−4 m in air. The capillary length δ

γ
g =

√
γ/g is in both the viscous

liquid model and in the inviscid liquid one. For water capillary length, it takes the value
δ

γ
g � 3 · 10−3 m, and for air it is δ

γ
g � 8 · 10−2 m.

Small disturbances of physical quantities (pressure, density, velocity) often occur in
nature. Let us solve the problem using the decomposition method for a small parameter
that plays the role of the amplitude of periodic movements.

3. Periodic Flows in the Thickness of a Uniformly Stratified Liquid

3.1. Linearization of the Equation System

The perturbations of the target values (velocity, density and pressure) are considered
small. To obtain dispersion relations, we linearize the system of Equations (12)–(14), (16).
If we assume that the fluid is exponentially stratified, then in a linear approximation in

7
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terms of the amplitude of periodic motion, the reduced system of fundamental equations is
written as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tρ̃ − w
Λ + ∂xu + ∂yv + ∂zw = 0

∂tu − νΔu + 1
ρ00

∂xP̃ = 0
∂tv − νΔv + 1

ρ00
∂yP̃ = 0

∂tw − νΔw + 1
ρ00

∂zP̃ + gρ̃ = 0
1

ρ00c2 ∂t P̃ − wg
c2 + ∂xu + ∂yv + ∂zw = 0

(19)

Here u, v, w are the components of the velocity field u = (u, v, w). We look for the
solution of the equation system (19) in the form of periodic flows ∝ exp(iωt):⎛⎜⎜⎜⎜⎝

u
v
w
P̃
ρ̃

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Um
Vm
Wm
Pm
Pm

⎞⎟⎟⎟⎟⎠ exp(ikr − iωt) =

⎛⎜⎜⎜⎜⎝
Um
Vm
Wm
Pm
Pm

⎞⎟⎟⎟⎟⎠ exp
(
ikxx + ikyy + ikzz − iωt

)
(20)

Here, Um, Vm, Wm, Pm, Pm are the amplitudes of the corresponding quantities; k is the
wave vector, the components of which have the right to be complex values kx, ky, kz; and
the frequency of periodic motion ω is considered positive definite.

3.2. Dispersion Relation: Classification of Flow Components

By substituting the type of solution (20) into the system of Equation (19), we obtain
a system of algebraic equations. The compatibility condition of the algebraic equations
system determines the dispersion relations between the components of the wave vector
and the frequency of periodic motion:

Dν(k)
(
ω2D2

ν(k)− ωN2Dν(k) + c2k2
⊥N2

c − c2ωk2Dν(k)
)
= 0,

Dν(k) = ω + iνk2, k2 = k2
x + k2

y + k2
z, k2

⊥ = k2
x + k2

y, N2 = g
Λ , N2

c = N2 − g2

c2

(21)

Dispersion relation (21) coincides with the relation obtained earlier [50] in which the
limiting transition to a non-rotating weakly compressible fluid (second viscosity ζ → 0)
has been made. It is convenient to find and analyze the regular and singular components
of the solution to the dispersion relation (21) in dimensionless variables if one chooses
the scales of the problem as non-dimensional parameters. Intrinsic scales characterize the
spatial and temporal dimensions of the observed phenomena (see Tables 1 and 2). We
choose the inverse buoyancy frequency τb = N−1 as the time scale, and the viscous wave
scale δ

gν
N = (gν)1/3N−1 as the spatial scale. With the selected non-dimensional parameters,

the dispersion relation (21) is written as follows:

(
ik2∗ε + ω∗

)(
k2
⊥∗

(
ε
η − 1

ε2

)
+ ω2∗

(
ik2∗ε + ω∗

)2 − ω∗
(
ik2∗ε + ω∗

)− k2∗ω∗ ε
η

(
ik2∗ε + ω∗

))
= 0,

ε =
δν

g

δ
gν
N

=
√

ν/N
(gν)1/3 N−1

= Nν1/3

g2/3 , η = τν
c

τb
= Nν

c2

(22)

The ratio of the natural parameters of the medium-viscous scale δν
g and viscous wave

scale δ
gν
N and the time scale ratio η characterize the small parameters of the problem.

The dimensionless components of the wave vector and the dimensionless frequency are
indicated by the subscript «*». Since at the highest degree of Equation (22), there is a small
parameter, the equation is singularly perturbed with respect to k∗z. Consequently, the
solution of the form k∗z = k∗z

(
k∗x, k∗y, ω∗

)
contains regular and singular components. The

solutions of Equation (22) are written as follows:

k∗z = ±
√
−k2

∗⊥ +
iω∗

ε
(23)

8



Mathematics 2023, 11, 4443

k∗z = ±

√√√√−εω∗
(
ω∗ + 2k2

∗⊥ε(i + ηω∗)− iη(2ω2∗ − 1)
)−√

−ε2ω2∗(η + iω∗) + 4ω∗k2
∗⊥(ε3 − η)(i + ηω∗)

2ε2ω∗(i + ηω∗)
(24)

k∗z = ±

√√√√−εω∗
(
ω∗ + 2k2

∗⊥ε(i + ηω∗)− iη(2ω2∗ − 1)
)
+
√
−ε2ω2∗(η + iω∗) + 4ω∗k2

∗⊥(ε3 − η)(i + ηω∗)
2ε2ω∗(i + ηω∗)

(25)

In dimensional form, the roots (23)–(25) are written as follows:

kz = ±
√
−k2

⊥ +
iω
ν

(26)

k∗z = ±

√√√√√−(
iνN2 + 2νω

(
νk2

⊥ − iω
)
+ c2

(
2iνk2

⊥ + ω
))−√

−ν2N4 + 2νc2
(
2νk2

⊥N2
c − iωN2

)
+ c4

(
ω2 +

4iνN2
c k2

⊥
ω

)
2ν(ic2 + νω)

(27)

k∗z = ±

√√√√√−(
iνN2 + 2νω

(
νk2

⊥ − iω
)
+ c2

(
2iνk2

⊥ + ω
))

+

√
−ν2N4 + 2νc2

(
2νk2

⊥N2
c − iωN2

)
+ c4

(
ω2 +

4iνN2
c k2

⊥
ω

)
2ν(ic2 + νω)

(28)

The choice of a sign in solutions (23)–(25) or (26)–(28) is determined by the boundary
conditions for the decay of periodic motion with distance from the source of disturbances.
The solutions (25) and (28) describe the regular component and determine the wave motion,
the solutions (23)–(24) and (26)–(27) determine the singular component of the solution and
define two types of ligaments. Wave roots (25) or (28) can be obtained approximately using
regular decomposition. Ligament roots (23)–(24) or (26)–(27) can be obtained approximately
using singular value decomposition [39]. The presented expressions are exact solutions
of the dispersion relation. By substituting numerical values of kinetic coefficients, the
components of the wave vector corresponding to both ligament and wave solutions can be
calculated.

To verify the solutions obtained, we consider some limiting cases.

4. High-Frequency Acoustic Waves

Let us consider the limit of high-frequency oscillations corresponding to acoustic
oscillations if their oscillation frequency significantly exceeds the buoyancy frequency of
the medium ω 
 N [22,50]. In this approximation, the dispersion Equation (21) is rewritten
as follows:

Dν(k)
(

Dν(k)ω
(

Dν(k)ω − c2k2
)
− g2k2

⊥
)
= 0, (29)

The solution of dispersion relation (29) is written as follows:

kz = ±
√
−k2

⊥ + iω
ν ;

kz = ±

√
−k2

⊥ − c2ω−2iνω2+

√
c4ω2− 4g2νk2⊥

ω (ic2+νω)

2ν(ic2+νω)
;

kz = ±

√
−k2

⊥ − c2ω−2iνω2−
√

c4ω2− 4g2νk2⊥
ω (ic2+νω)

2ν(ic2+νω)
;

(30)

The roots (30) describe the wave motion and two attached ligaments. The sign-in
solution (30) is chosen based on the need for attenuation of periodic motion Im(kz) > 0
when moving in the positive direction of the axis Oz. For oppositely directed motion, the
solutions are symmetrical.

9
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When moving to a 2D formulation (if we consider the movement to be independent of
the horizontal coordinate y), one of the ligaments degenerates and the solution contains
one wave and one ligament component:

kz = ±

√
−k2

x −
c2ω−2iνω2+

√
c4ω2− 4g2νk2

x
ω (ic2+νω)

2ν(ic2+νω)
;

kz = ±

√
−k2

x −
c2ω−2iνω2−

√
c4ω2− 4g2νk2

x
ω (ic2+νω)

2ν(ic2+νω)
;

(31)

In the limit of an inviscid fluid, the dispersion relation (29) is simplified even further
and written in the following form:

ω2
(

ω2 − k2c2
)
− g2k2

⊥ = 0, (32)

The ligament components of the solution to relation (32) degenerate and only the wave
component remains:

kz = ±
√
−k2

⊥ − g2k2
⊥

c2ω2 +
ω2

c2 (33)

5. Low-Frequency Gravity Waves

In the limit of low-frequency oscillations ω � N, the dispersion relation (21) takes the
following form:

Dν(k)
(

c2ωik4ν − c2N2k2
⊥ + c2k2ω2 + N2ωDν(k) + g2k2

⊥
)
= 0, (34)

The relation (34) also contains a solution in the form of a wave disturbance and two
attached ligaments:

kz = ±
√
−k2

⊥ + iω
ν ;

kz = ±
√
−k2

⊥ − ic2ω2−N2νω+
√

N4ν2ω2+4ic2k2
⊥ων(g2−c2 N2)−c4ω4

2c2νω
;

kz = ±
√
−k2

⊥ − ic2ω2−N2νω−
√

N4ν2ω2+4ic2k2
⊥ων(g2−c2 N2)−c4ω4

2c2νω
;

(35)

When transitioning to a flat formulation, one of the ligaments degenerates.
Relation (34) also contains a solution in the form of a wave disturbance and two

attached ligaments:

kz = ±
√
−k2

x − ic2ω2−N2νω+
√

N4ν2ω2+4ic2k2
xων(g2−c2 N2)−c4ω4

2c2νω
;

kz = ±
√
−k2

x − ic2ω2−N2νω−
√

N4ν2ω2+4ic2k2
xων(g2−c2 N2)−c4ω4

2c2νω
;

(36)

In an ideal liquid, the dispersion relation (34) is simplified as follows:

c2k2ω2 − c2k2
⊥N2 + N2ω2 + g2k2

⊥ = 0, (37)

The solution (37), which is represented only by a wave component, in an ideal
liquid transforms into a well-known expression that does not include the wavelength
ω2 = N2 sin2 θ, which describes the geometry of the wave packet in the shape of a “St.
Andrew’s cross” (θ is the angle of inclination of the wave vector to the horizontal) [20,21].
Ligaments in the ideal fluid model degenerate:

kz = ±
√
−k2

⊥ + k2
⊥

N2c2 − g2

c2ω2 − N2

c2 ; (38)

10
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The limiting cases discussed in paragraphs 4 and 5 show that ligaments are observed
in the entire frequency range from infra-low-frequency mechanical vibrations to high-
frequency sound vibrations. The fine structure of the flow accompanies wave motion and
requires attention when analyzing phenomena.

6. Periodic Flows in a Two-Layer System of Stratified Liquids

In a two-layer system, which consists of a stratified weakly compressible ocean and a
stratified compressible atmosphere, it is necessary to write down the boundary conditions
at the interface. In a two-layer system, the pressure in both media is written in the form of
the sum of hydrostatic pressure and perturbation pressure, so in a 2D formulation (if we
consider the movement independent of the horizontal coordinate y) it is written as follows:

Po,a =
∫ ζ

z
ρo,a(x, ξ, t)gdξ + P̃o,a(x, z, t) (39)

Here and further, the superscripts “o” and “a” denote quantities related to the ocean
(the lower denser liquid) and the atmosphere (the upper less dense liquid), respectively.
The symbol ζ = ζ(x, t) denotes the function that determines the deviation of the interface
between media from the equilibrium position z = 0. The system of equations of motion,
taking into account Expression (39), is written as follows:

z < ζ : ∂tu
o − νoΔuo +

1
ρo

00
∇Po − ρog = 0 (40)

∂tρ
o + uo · ∇ρo + ρodivuo = 0 (41)

ρo = ρo
0(z)(1 − αo

P(Po − Po
0 )) (42)

z > ζ : ∂tu
a − νaΔua +

1
ρa

00
∇Pa − ρag = 0 (43)

∂tρ
a + ua · ∇ρa + ρadivua = 0 (44)

ρa = ρa
0(z)(1 − αa

P(Pa − Pa
0 )) (45)

The system of Equations (40)–(45) is supplemented with the boundary conditions at
the interface: z = ξ

z = ζ : ∂tζ + uo∂xζ = wo (46)

∂tζ + ua∂xζ = wa (47)

Po − 2ρoνon · ((n · ∇)uo) = Pa − 2ρaνan · ((n · ∇)ua)− σdivn (48)

uo · τ = ua · τ (49)

ρoνo(τ · ((n · ∇)uo) + n · ((τ · ∇)uo)) = ρaνa(τ · ((n · ∇)ua) + n · ((τ · ∇)ua)) (50)

n =
∇(z − ζ)

|∇(z − ζ)| =
⎛⎝ −∂xζ√

1 + (∂xζ)2
,

1√
1 + (∂xζ)2

⎞⎠, τ =

⎛⎝ 1√
1 + (∂xζ)2

,
∂xζ√

1 + (∂xζ)2

⎞⎠

11
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Here, σ is the coefficient of surface tension at the interface between contacting media,
and n,τ are the normal and tangent vectors to the interface, respectively. After carrying out
the linearization procedure and transferring the boundary conditions to the equilibrium
surface z = 0 [51], the mathematical formulation in a linear approximation takes the
following form:

z < 0 :
∫ ζ

z e−
ξ

Λo g∂x ρ̃o(x, ξ, t) + e−
ζ

Λo g∂xζ + ∂tuo − νoΔuo + ∂xP̃o = 0
e−

z
Λo ∂two − νoe−

z
Λo Δwo + ∂z P̃o

ρo
00

= 0

∂tρ̃
o − wo

Λo + ∂xuo + ∂zwo = 0
1

ρo
00co2 ∂t P̃o − wo g

co2 + ∂xuo + ∂zwo = 0

(51)

z > 0 :
∫ ζ

z e−
ξ

Λa g∂x ρ̃a(x, ξ, t) + e−
ζ

Λa g∂xζ + ∂tua − νaΔua + ∂xP̃a = 0
e−

z
Λa ∂twa − νae−

z
Λa Δwa + ∂z P̃a

ρa
00

= 0

∂tρ̃
a − wa

Λa + ∂xua + ∂zwa = 0
1

ρa
00ca2 ∂t P̃a − wag

ca2 + ∂xua + ∂zwa = 0

(52)

z = 0 : ∂tζ − wo = 0, ∂tζ − wa = 0, uo − ua = 0,
P̃o − P̃a + 2ρa

00νa∂zwa − 2ρo
00νo∂zwo + σ∂xxζ = 0,

ρoνo(∂zuo + ∂xwo)− ρaνa(∂zua + ∂xwa) = 0
(53)

We look for a solution to the system of Equations (51)–(53) in the form of periodic
flows ∝ exp(iωt):⎛⎜⎜⎜⎜⎝

uo,a

wo,a

P̃o,a

ρ̃o,a

ζ

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Uo,a

m
Wo,a

m
Po,a

m
Po,a

m
Am

⎞⎟⎟⎟⎟⎠ exp(iko,ar − iωt) =

⎛⎜⎜⎜⎜⎝
Uo,a

m exp(iko,a
z z)

Wo,a
m exp(iko,a

z z)
Po,a

m exp(iko,a
z z)

Po,a
m exp(iko,a

z z)
Am

⎞⎟⎟⎟⎟⎠ exp(ikxx − iωt) (54)

Substituting the type of solution (54) into the main Equations (51) and (52) leads to a
system of algebraic equations connecting the components of wave vectors kx, ko,a

z and the
frequency of periodic disturbances ω:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−gk2
x +

ω(i+ko
zΛo)(νo(k2

x+ko2
z )−iω)

Λo −kx
(

No2(i + ko
zΛo) + ω

(
νo(k2

x + ko2
z
)− iω

))
0 0

0 νo(k2
x + ko2

z
)− iω iko

ze
z

Λo

ρo
00

0

ikx iko
z − 1

Λo 0 −iω
ikx − g

co2 + iko
z − iω

ρo
00co2 0

−gk2
x +

ω(i+ka
zΛa)(νa(k2

x+ka2
z )−iω)

Λa −kx
(

Na2(i + ka
zΛa) + ω

(
νa(k2

x + ka2
z
)− iω

))
0 0

0 νa(k2
x + ka2

z
)− iω ika

ze
z

Λa

ρa
00

0

ikx ika
z − 1

Λa 0 −iω
ikx − g

ca2 + ika
z − iω

ρa
00ca2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(55)

The resulting system is divided into two independent systems of equations that
describe the relationships between the upper and lower media. The compatibility condition
for each of the systems leads to dispersion relations for the lower one:

ω
co2Λo2

[
ω
(
νo(k2

x + ko2
z
)− iω

)(−gk2
xΛo + ω

(
i + k0

zΛo)(νo(k2
x + ko2

z
)− iω

))
+

+e
z

Λo ko
z
((

g + ico2ko2
z
)(−gk2

xΛo + ω
(
i + k0

zΛo)(νo(k2
x + ko2

z
)− iω

))
+

+ co2k2
xΛo(No2(iko

zΛo − 1) + ω
(
iν
(
k2

x + ko2
z
)
+ ω

)))]
= 0

(56)

12



Mathematics 2023, 11, 4443

and top liquid:

ω
ca2Λa2

[
ω
(
νa(k2

x + ka2
z
)− iω

)(−gk2
xΛa + ω(i + ka

zΛa)
(
νa(k2

x + ka2
z
)− iω

))
+

+e
z

Λa ka
z
((

g + ica2ka2
z
)(−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)− iω

))
+

+ ca2k2
xΛa(Na2(ika

zΛa − 1) + ω
(
iν
(
k2

x + ka2
z
)
+ ω

)))]
= 0

(57)

Let us consider expressions (56) and (57) in a dimensionless form. We choose the
natural parameters of each medium as non-dimensional scales: as the time scale, we take
the inverse buoyancy frequency τb = N−1, and as the spatial scale, we select the viscous
wave scale δ

gν
N = (gν)1/3N−1:

ω∗
εo2

[
εoηoω∗

(
εoω∗(ko

z∗ + iεo)
(
εoko2

z∗ − iω∗
)
+ εok4

x∗
(−1 + εo2ω∗ko

z∗ + iεo3ω∗
)
+

+k2
x∗
(
2εo3ω∗ko3

z∗ − 2iεo2ω2∗ko
z∗ + ω∗

(
i + 2εo3ω∗

)
+ ko2

z∗
(−εo + 2iεo4ω∗

)))
+

+e
z

Λo ko
z∗
(
iεo4ω∗k4

x∗+ εoω∗(ko
z∗ + iεo)

(
εo2ko

z∗ − iηo)(iεoko2
z∗ + ω∗

)−
− k2

x∗
(
ηo − 2iεo4ω∗ko2

z∗ + εo5ω∗ko
z∗ − εo2ηoω∗ko

z∗ + εo3(1 − iηoω∗ − ω2∗
)))]

= 0

(58)

ω∗
εa2

[
εaηaω∗

(
εaω∗(ka

z∗ + iεa)
(
εaka2

z∗ − iω∗
)
+ εak4

x∗
(−1 + εa2ω∗ka

z∗ + iεa3ω∗
)
+

+k2
x∗
(
2εa3ω∗ka3

z∗ − 2iεa2ω2∗ka
z∗ + ω∗

(
i + 2εa3ω∗

)
+ ka2

z∗
(−εa + 2iεa4ω∗

)))
+

+e
z

Λa ka
z∗
(
iεa4ω∗k4

x∗+ εaω∗(ka
z∗ + iεa)

(
εa2ka

z∗ − iηa)(iεaka2
z∗ + ω∗

)−
− k2

x∗
(
ηa − 2iεa4ω∗ka2

z∗ + εa5ω∗ka
z∗ − εa2ηaω∗ka

z∗ + εa3(1 − iηaω∗ − ω2∗
)))]

= 0

(59)

εa = Na 3

√
νa

g2 , εo = No 3

√
νo

g2 , ηa =
Naνa

ca2 , ηo =
Noνo

co2 .

Expressions (58) and (59) are reduced to the dispersion relations in an incompressible
fluid when passing to the limit co,a → ∞ ( ηo,a → 0):

ω∗
(

iεo
(

k2
x∗ + ko2

z∗
)
+ ω∗

)(
εoω∗(ko

z∗ + iεo)
(

εoko2
z∗ − iω∗

)
+ k2

x∗
(
−1 + εo2ω∗ko

z∗ + iεo3ω∗
))

= 0 (60)

ω∗
(

iεa
(

k2
x∗ + ka2

z∗
)
+ ω∗

)(
εaω∗(ka

z∗ + iεa)
(

εaka2
z∗ − iω∗

)
+ k2

x∗
(
−1 + εa2ω∗ka

z∗ + iεa3ω∗
))

= 0 (61)

The small parameter ηo,a for liquids with the parameters of water and air turns out
to be significantly smaller than the small parameter εo,a. The approximate solutions of
dispersion relations (58) and (59) ko,a∗z have the following form:

ko,a∗z = ko,a
0∗z + ηko,a

1∗z (62)

In solution ko,a
0∗z (62) takes one of the following values:

ko,a
0∗z = 0; (63)

ko,a
0∗z = − iεo,a

4
− 1

2

√
− εo,a

4
− 2εo,ak2

x∗ − iω∗
εo,a + θ ± 1

2

√√√√− εo,a2

2
− 2εo,ak2

x∗ − iω∗
εo,a − θ − iεo,a3 − 8i(εo,ak2

x∗ − iω∗) + 4i(2εo,ak2
x∗ − iω∗)

4
√
− εo,a2

4 + θ − 2εo,ak2
x∗−iω∗

εo,a

(64)

ko,a
0∗z = − iεo,a

4
+

1
2

√
− εo,a

4
− 2εo,ak2

x∗ − iω∗
εo,a + θ ± 1

2

√√√√− εo,a2

2
− 2εo,ak2

x∗ − iω∗
εo,a − θ +

iεo,a3 − 8i(εo,ak2
x∗ − iω∗) + 4i(2εo,ak2

x∗ − iω∗)

4
√
− εo,a2

4 − 2εo,ak2
x∗−iω∗

εo,a + θ

; (65)

θ =

(
i +

√
3
)(

α +
√

α2 − 4β3
)1/3

6 · 21/3εo,aω∗
+

2εo,ak2
x∗ − iω∗

3εo,a +

(
i −√

3
)

21/3β

3εo,a
(

α +
√

α2 − 4β3
)1/3

β =
(
−16εo,a2k4

x∗ω∗ + ω2∗(3iεo,a + ω∗) + k2
x∗
(
−3εo,a4ω∗ + 4iεo,a

(
−3 + 4ω2∗

)))
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α = ω2∗
(

128iεo,a3ω∗k6
x∗ + 2ω3∗

(
−9iεo,a3 + ω∗

)
+ 12εo,a2k4

x∗
(
−12 + 3iεo,a3ω∗ + 16ω2∗

)
+ 3k2

x∗
(

9εo,a4
(
−1 + 2ω2∗

)
− 4iεo,aω∗

(
−6 + 5ω2∗

)))
and ko,a

1∗z takes the corresponding (63)–(65) values:

ko,a
1∗z =

(
ko,a

0z∗ + εo,ae−
z

Λo,a
(

εo,aω∗
(

k2
x∗ + ko,a2

0z∗ − iω∗
)))(

εo,aω∗
(
ko,a

0z∗ + iεo,a)(εo,ako,a2
0z∗ − iω∗

)
+ k2

x∗
(−1 + εo,a2ko,a

0z∗ω∗ + iεo,a3ω∗
))

εo,a3
(
−iεo,aω∗k4

x∗ + ω∗ko,a
0z∗

(
−5iεo,ako,a3

0z∗ + 4εo,a2k2
0z∗ − 3ω∗ko,a

0z∗ − 2iεo,aω∗
)
+ k2

x∗
(

1 − 6iεo,aω∗ko,a2
0z∗ + 2εo,a2ω∗ko,a

0z∗ − ω2∗
)) (66)

Additional conditions for physical implementation are imposed on solutions (63)–(66):

Im(k∗x) > 0, Im(ko∗z) < 0, Im(ka∗z) > 0 (67)

Taking (67) into account, solution (63) turns out to be physically unrealizable in both
media. Solution (64) describes a regular solution with respect to a small parameter εo,a and
the corresponding wave component of a periodic flow. Solution (65) describes a singular
solution with respect to a small parameter εo,a and corresponds to the ligament component
of the periodic flow. To distinguish the roots, we introduce a redesignation for singular
solutions ko,a

∗l . Mathematically, the solutions corresponding to the wave component are
determined by the following condition:

|Re(ko,a∗z )| 
 |Im(ko,a∗z )| (68)

and the solutions corresponding to the ligament component are determined by the follow-
ing mathematical condition: ∣∣Re

(
ko,a
∗l
)∣∣ ∼ ∣∣Im(

ko,a
∗l
)∣∣ (69)

Taking into account the ligament components, the form of the complete solution (54)
is rewritten as follows:⎛⎜⎜⎜⎜⎝

uo,a

wo,a

P̃o,a

ρ̃o,a

ζ

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Uo,a

m
(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Wo,a
m

(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Po,a
m

(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Po,a
m

(
exp(iko,a

z z) + Θ exp
(
iko,a

l z
))

Am

⎞⎟⎟⎟⎟⎠ exp(ikxx − iωt) (70)

Substituting the form of solution (70) for the boundary conditions (53), we obtain the
dispersion relations connecting the components of the wave vector kx with the frequency
of wave motion ω. Substituting the approximate solutions (64), (66), (65) and (66) into the
resulting relation, we obtain a dispersion equation. Restrictions (67) are imposed on the
solution, and thus physically realizable roots are selected. The resulting expressions are
cumbersome and difficult to analyze. Let us consider some limiting cases.

We consider the behavior of oscillations far from the interface between the media. In
this case, we assume that |z| 
 1 for the lower liquid and for the upper liquid. Thus, for the
ocean in the dispersion relation (56), we can neglect the second term and use the following:

ω2(νo(k2
x + ko2

z
)− iω

)(−gk2
xΛo + ω

(
i + k0

zΛo)(νo(k2
x + ko2

z
)− iω

))
co2Λo2 = 0 (71)

or in a dimensionless form:

ω2∗ηo
(

ω∗(ko
z∗ + iεo)

(
εoko2

z∗ − iω∗
)
+ k4

x∗
(
−1 + εo2ω∗ko

z∗ + iεo3ω∗
)
= 0 (72)

The solutions to expression (71) (or (72)) are found exactly, but due to their cumber-
someness, they are not given here.

For the atmosphere in the dispersion relation (57), based on similar reasoning, we
neglect the first term and obtain the dispersion relation, which is far from the interface:

ωka
z
((

g + ica2ka2
z
)(−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)− iω

))
+ ca2k2

xΛa(Na2(ika
zΛa − 1) + ω

(
iν
(
k2

x + ka2
z
)
+ ω

)))
ca2Λa2 = 0 (73)
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or in a dimensionless form:

ω2∗
εa ηa(εaω∗(ka

z∗ + iεa)
(
εaka2

z∗ − iω∗
)
+ εak4

x∗
(−1 + εa2ω∗ka

z∗ + iεa3ω∗
)
+

+k2
x∗
(
2εa3ω∗ka3

z∗ − 2iεa2ω2∗ka
z∗ + ω∗

(
i + 2εa3ω∗

)
+ ka2

z∗
(−εa + 2iεa4ω∗

)))
= 0

(74)

The solutions of expression (73) (or (74)) are not given here due to their cumbersome-
ness. For waves near the surface, we can assume that the dispersion relations (56) and (57)
are simplified:

ω
co2Λo2

[
ω
(
νo(k2

x + ko2
z
)− iω

)(−gk2
xΛo + ω

(
i + k0

zΛo)(νo(k2
x + ko2

z
)− iω

))
+

+ko
z
((

g + ico2ko2
z
)(−gk2

xΛo + ω
(
i + k0

zΛo)(νo(k2
x + ko2

z
)− iω

))
+

+ co2k2
xΛo(No2(iko

zΛo − 1) + ω
(
iν
(
k2

x + ko2
z
)
+ ω

)))]
= 0

(75)

ω
ca2Λa2

[
ω
(
νa(k2

x + ka2
z
)− iω

)(−gk2
xΛa + ω(i + ka

zΛa)
(
νa(k2

x + ka2
z
)− iω

))
+

+ka
z
((

g + ica2ka2
z
)(−gk2

xΛa + ω(i + ka
zΛa)

(
νa(k2

x + ka2
z
)− iω

))
+

+ ca2k2
xΛa(Na2(ika

zΛa − 1) + ω
(
iν
(
k2

x + ka2
z
)
+ ω

)))]
= 0

(76)

or in a dimensionless form:

ω∗
εo2

[
εoηoω∗

(
εoω∗(ko

z∗ + iεo)
(
εoko2

z∗ − iω∗
)
+ εok4

x∗
(−1 + εo2ω∗ko

z∗ + iεo3ω∗
)
+

+k2
x∗
(
2εo3ω∗ko3

z∗ − 2iεo2ω2∗ko
z∗ + ω∗

(
i + 2εo3ω∗

)
+ ko2

z∗
(−εo + 2iεo4ω∗

)))
+

+ko
z∗
(
iεo4ω∗k4

x∗+ εoω∗(ko
z∗ + iεo)

(
εo2ko

z∗ − iηo)(iεoko2
z∗ + ω∗

)−
− k2

x∗
(
ηo − 2iεo4ω∗ko2

z∗ + εo5ω∗ko
z∗ − εo2ηoω∗ko

z∗ + εo3(1 − iηoω∗ − ω2∗
)))]

= 0

(77)

ω∗
εa2

[
εaηaω∗

(
εaω∗(ka

z∗ + iεa)
(
εaka2

z∗ − iω∗
)
+ εak4

x∗
(−1 + εa2ω∗ka

z∗ + iεa3ω∗
)
+

+k2
x∗
(
2εa3ω∗ka3

z∗ − 2iεa2ω2∗ka
z∗ + ω∗

(
i + 2εa3ω∗

)
+ ka2

z∗
(−εa + 2iεa4ω∗

)))
+

+ka
z∗
(
iεa4ω∗k4

x∗+ εaω∗(ka
z∗ + iεa)

(
εa2ka

z∗ − iηa)(iεaka2
z∗ + ω∗

)−
− k2

x∗
(
ηa − 2iεa4ω∗ka2

z∗ + εa5ω∗ka
z∗ − εa2ηaω∗ka

z∗ + εa3(1 − iηaω∗ − ω2∗
)))]

= 0

(78)

Nevertheless, despite their simpler appearance, the roots of expressions (77) and (78),
as well as complete expressions, can only be found asymptotically or numerically.

7. Discussion

The expressive properties of periodic flows in fluids—the regularity of wave displace-
ments of the liquid-free surface, the high speed of sound vibrations propagation and the
clarity of the pattern of periodic internal waves beams—formed the basis for the generally
accepted classification of waves and predetermined the rules for constructing mathemat-
ical models of the phenomenon. To describe each wave process in a linear [1,2,16,21] or
nonlinear approximation [41], its own system of equations was developed based on the
system of fundamental equations of mechanics of fluids and gases [1,2,4,16], and general
physical considerations [31,52].

Under natural conditions, sharp disturbances lead to the formation of several types
of waves, which propagate with their own phase and group velocities and differ in atten-
uation laws. The parameters of wave processes—periods, wavelength, group and phase
propagation velocities—are described by real numbers. The mathematical description of
periodic flows is carried out in the algebra of complex numbers. The use of wave represen-
tations by exponential functions of complex frequency and complex wave vector allows
us to construct the dispersion relations [1,2] and evaluate the stability of the flows under
study [32,33].

Taking into account the special physical properties of the wave frequency—the mea-
sure of the energy of periodic motion—in this work, as in [38,40,42,46], the wave frequency
ω is assumed to be real, and the wave number k is taken to be complex. In this approx-
imation, the degree of the dispersion relation corresponds to the order of the system of
differential equations. The solutions of the system of governing equations, constructed
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using methods of singular perturbation theory and by taking into account the type of
small parameter of the process under study, contain two types of solutions. The real part
of some wave numbers is large, and the imaginary part is small. The other types have
real and imaginary parts of the same order. Accordingly, some of the solutions, including
solutions with small values of the imaginary part of the wave vectors, contain functions
that are regular in the small parameter and describe waves. For each type of wave, its own
dispersion equation is constructed.

Another part of the solutions with large values of the wave vector imaginary parts
determines the ligaments, which correspond to thin high-gradient fibers and interfaces
in the thickness of a stratified liquid [30,38]. From the given analysis, it follows that
specific ligaments accompany all types of waves—surface, internal and acoustic ones. The
consideration of the ligaments’ influence made it possible to pre-calculate the parameters
of reflected and leaking waves, which occur when the reflecting beams of the internal
waves of the critical level separate the medium with a high buoyancy frequency from a
low-frequency layer not exceeding the wave frequency [5]. It is consistent with the data of
later experiments [53].

From the theoretical point of view, the number of ligaments accompanying the wave
is determined by the completeness degree taking into account the factors influencing the
density and the dimension of the problem space. The minimum number—two ligaments—
accompany two-dimensional waves in a medium with one dissipative parameter (kine-
matic viscosity). Their thickness is determined by the scale of the periodic Stokes flow
δν

ω =
√

ν/ω [13]. Considering the three-dimensionality of space, the effects of thermal
diffusivity and diffusion lead to an increase in the number of ligaments with different
properties [40]. The effects of nonlinear interaction between ligaments can increase the
mutual influence of waves of different types [42].

The developed methodology for constructing complete solutions makes it possible
to describe not only the wave component of a periodic flow but also the fine structure,
manifested in the form of ligaments—thin jets accompanying the wave motion. The param-
eters of the observed phenomena in the process of propagation of periodic disturbances in
liquids and gases, which are determined using the properties of the medium, define the
requirements for the experimental methodology and the resolution (spatial and temporal)
of the equipment for observing the complete picture of flows.

8. Conclusions

For the first time in a unified formulation, the propagation of infinitesimal periodic
disturbances in the thickness and on the surface of a viscous compressible exponentially
stratified fluid has been studied based on a system of fundamental equations. The analysis
of linearized equations has been carried out using the methods of singular perturbation
theory, taking into account the compatibility condition. The dispersion relations for periodic
flows with a real positive definite frequency and complex wave number are calculated and
analyzed. Complete solutions of the dispersion relations containing regular and singular
roots are found. Regular roots, which determine the wave components of periodic flows,
are regularly reduced to known dispersion relations for waves in a homogeneous viscous
or ideal fluid. Singular roots define the ligament components of periodic flows. Ligaments
describe the fine structure of periodic flows and characterize thin high-gradient jets and
interfaces.

The general properties of solutions are that acoustic or internal waves propagating in
the thickness, as well as gravitational waves at the interface of infinitely deep media, are
accompanied by ligaments forming a fine structure of the medium. In extreme cases, the ob-
tained relationships transform into known expressions for waves a viscous incompressible
and an ideal homogeneous fluid.

The further application of the obtained expressions in studying the physical properties
of periodic flows in configuration space and in comparison with experimental data using
high-resolution instruments is of scientific and practical interest.
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Abstract: The power-law nanofluid natural convection in a chamber with a thermally generating
unit and a solid ribbed structure has been studied in this work. A mixture of carboxymethylcellulose
with water and copper nanoparticles is a working fluid illustrating pseudoplastic properties. The
effective properties of the nanoliquid have been described by experimental correlations reflecting the
temperature effect. The governing equations have been formulated on the basis of the conservation
laws of mass, momentum and energy employing non-primitive parameters such as stream function
and vorticity. The defined boundary value problem has been worked out by the finite difference
technique using an independently developed calculation system. The Rayleigh number is fixed for
analysis (Ra = 105). The paper analyzes the influence of the nanoparticles volume fraction, an increase
in which reduces the temperature in the case of the one edge presence. An analysis of the rib height
has shown that its growth leads to a weakening of the convective heat transfer, but at the same time,
the source temperature also decreases. Increasing the number of fins from 1 to 3 also helps to reduce
the average temperature of the heat-generated element by 15%.

Keywords: natural convection; pseudoplastic nanofluid; square enclosure; mathematical modeling;
finned structure; radiator

MSC: 76A05; 76M20; 76R10; 80A20

1. Introduction

Cooling or heating due to convective heat transfer is one of the most attractive mecha-
nisms of heat transfer in thermal engineering systems, as it has a number of advantages in
simplicity and economy. Natural convection in various geometric configurations has a wide
range of applications in many fields of technology, such as aerospace engineering, textile
engineering, the automotive industry, heat storage systems, microelectronic devices design,
etc. But researchers are constantly looking for more efficient heat transfer modes that can
be obtained by changing the geometry of the system or working fluid [1–3]. One way to
improve the heat transfer is to use expanded surfaces or fins. In many supplements in
mechanical engineering, chemical engineering, power engineering, heat recovery, surface
research, etc., fins have a wide range of applications. Based on this, many researchers inves-
tigate the efficiency of their use through analytical, numerical, or experimental studies [4].
Another way to intensify the heat transfer is to use highly thermally conductive liquids
as working media. These media include nanofluids, which consist of a base medium and
highly thermally conductive solid additives, which increase the thermal characteristics of
the entire liquid.

The combination of these mentioned improvements can lead to more efficient cool-
ing/heating of various elements. For example, Hidki et al. [5] have studied the thermal
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convection of a Cu+Al2O3/water hybrid nanoliquid in a closed chamber with two heat-
generating blocks. Simulations have shown that the presence of solid particles reduces the
temperature of the blocks by up to 18%. Mounting the fins on the blocks surface reduces
their temperature by up to 12%. The influence of the heated fin presence on the hybrid
nanofluid natural convection has been studied by Iftikhar et al. [6]. The working medium
is a mixture of ethylene glycol with copper and silver nanoparticles. The outcomes have
demonstrated that the presence of nanoadditives enhances the fluid flow rate by 47.4%,
in contrast to the case of a pure base medium. The work of M. Hatami [4] is similar to the
study of Iftikhar et al. [6], but the side walls and the upper one are cooled. Additionally, two
types of nanoparticles, namely, TiO2 and Al2O3, are studied. The authors have found that
the use of titanium oxide nanoparticles leads to an intensification of the convective energy
transport in the chamber. The influence of the ribs number, nanoparticles volume fraction
and Rayleigh number on the thermal convective energy transport of the Cu/H2O nanofluid
in the annular space has been investigated by Waqas et al. [7]. The analysis has demon-
strated that a growth in the solid particles concentration and Rayleigh number improves
the energy transport and flow velocity. Shahsavar et al. [8] have studied the Ag/water
nanofluid natural convection in a concentric channel. Additionally, entropy generation has
been analyzed. The authors have found that a growth in the number of edges results in a
rise in the mean Nusselt number to 35.50% and entropy production rate to 39.07%. A similar
geometry was used by Tayebi et al. in [9] where the authors also investigated the influence
of the Lorentz force on the Al2O3/H2O nanoliquid thermogravitational convection. It has
been shown that the strength of the convective energy transport decreases with a growth
of the fins size and the Hartmann number, but increases with Ra and φ. Yasmin et al. [10]
used a hexagonal nanofluid chamber under the impact of a ribbed circular cylinder. The
horizontal borders of the cavity are hot, the rest are cold. As a result of the study, it has
been ascertained that a growth in the fins’ height and the nanoadditives’ concentration
improves the energy transport. Hejri and Malekshah [11] have analyzed the best geometric
characteristics for a cooling system consisting of a finned structure filled with CuO/H2O
nanofluid. The authors have also studied the influence of the shape of nanoparticles on
the process. The analysis has shown that thin ribs and plate-shaped particles are more
efficient for the considered phenomenon. The presence of two heat-conducting ribs in a
tilted porous chamber filled with ferrofluid Fe3O4/H2O has been studied by Al-Farhany
et al. [12]. The authors found that the fins’ length and the distance between them have a
significant effect on the intensity of the convective heat transfer. We should note that the
addition of Fe3O4 nanoparticles intensifies the convective heat transfer regardless of the
ribs’ length and the distance between them. A similar geometry was investigated by Yan
et al. [13], where the main difference is that the edges can have different inclination angles.
The influence of the Al2O3 nanoparticles’ shape has been also studied in this work. The
main conclusion is that an increase in the concentration of nanoparticles does not always
lead to an intensification of the convective heat transfer. The highest energy transport
coefficient was obtained in the case of inclined fins. An analogous system has been studied
by Siavashi et al. [14] but with porous fins. The authors revealed that a growth in Da
enhances the heat transfer in the cavity. An increase in the number of ribs or their length
does not have an essential impact on the mean Nusselt number.

Esfe et al. [15] modeled a 3D free convection in a differentially heated chamber under
the porous ribs; influence on a hot wall. CuO/H2O nanofluid has been used as a work-
ing medium. The simulation results have demonstrated that an addition of porous fins
decreases the fluid flow rate, and a growth in the nanoadditives’ volume fraction leads
to an intensification of convective energy transport. Gireesha et al. [16] considered the
free-convective energy transport between a hybrid Ag+MgO/H2O nanofluid and a hot
moving porous fin. It has been found that the presence of nanoadditives intensifies the
energy transport, and an increase in the Biot number increases the rate of the heat removal
from the fin surface. A ribbed square body with a rotating hot rectangular block inside
has been examined by Aly et al. [17]. The chamber was filled with Cu/H2O nanofluid,
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and the hot block also had two hot ribs on the sides. The results demonstrated that the
presence of ribs reduces the distribution of isotherms and lines of constant concentration
inside the cavity and changing the block angle from 0◦ to 90◦ can increase the flow rate by
9.59% and 31.53%, respectively. Ganesh et al. [1] performed the mathematical modeling
of the Casson nanofluid MWCNT/sodium alginate flow in a casing with wavy horizontal
walls. In the housing center, there is a circular heat-insulated barrier and two differentially
heated fins. The simulation has shown that a growth in the Rayleigh number, Casson
parameter, nanoadditives concentration, and wall waviness amplitude increases the heat
transfer rate. The work of Siva et al. [18] is devoted to an analytical study of the electro-
magnetic hydrodynamic flow of a non-Newtonian fluid in a microchannel. The authors
found that an increase in couple stresses leads to an increase in the flow velocity, but the
critical Hartmann number is unchanged. Mehta and Mondal [19] carried out a numerical
simulation of a natural convective heat transfer in a cavity with wavy walls, which was
filled with MWCNT+Fe3O4/water nanofluid. The performed analysis showed that an
increase in the volume fraction of nanoparticles and the amplitude of the wall wave leads
to an increase in the values of the average Nusselt number. Mondal and Wongwises [20]
studied the unsteady electro-MHD nanofluid flow in a rotating channel. The authors
showed that the combination of the Coriolis and Lorentz forces with the rheological liquid
nature has an interesting result for the flow reversal in the channel. Moreover, for a higher-
rotation Reynolds number, the flow reversal owing to the strong Coriolis force influence is
impossible due to a growth in the nanoliquid’s effective viscosity.

A brief analysis of studies of the convective heat transfer of nanofluids in various
cavities with ribs showed that this topic is very popular and useful from a theoretical
and practical point of view. However, there are still many unexplored phenomena in this
area. Therefore, the purpose of this work is to evaluate the efficiency of using a ribbed
solid structure for cooling a local heat source employing laminar free-convective energy
transfer of a power law nanofluid. The novelty of this study is an analysis of the combined
effect of the pseudoplastic nanofluid and solid finned heat sink on the cooling of the heat-
generating element. Moreover, the nanofluid’s physical properties have been described
using experimentally based correlations with the temperature influence. At the same
time, the computational analysis was conducted using non-primitive variables that allow
reducing the computational time and improving the physical analysis. Obtained results
can be used in the modeling and optimizing of the passive cooling systems for various
electronic systems.

2. Formulation of the Problem

The geometric scheme of the solution region (see Figure 1) is a square closed cavity, the
upper and part of the side borders of which are maintained at a fixed low temperature Tc.
A heating element of the fixed volumetric thermal production Q is placed in the center of
the chamber lower wall. Above the source there is a heat-conducting copper profile, along
the perimeter of which the outer walls are heat-insulated. The height of the ribs H varies
during the study. The cavity is filled with a suspension of carboxymethylcellulose (CMC)
with water and copper nanoparticles. The thermal characteristics of the materials used
are presented in Table 1. The analyzed finned heat sink with nanoenhanced CMC/water
suspension can be considered as a passive cooling system for more effective thermal energy
removal from the heat-generating element. Such a combination of two different approaches
allows enhancing the heat removal compared to each of these techniques.
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Figure 1. Geometry for the considered problem.

Table 1. Thermal properties of materials [21,22].

Properties cp [J/kg·K] ρ [kg/m3] k [W/m·K]

Base fluid
CMC (0.1%)/water 4179 997.1 0.613

Nanoparticles (Cu) 385 8933 400
Heat source (silicon) 710 2330 150

Ribbed heat sink (Cu) 385 8920 400

The pseudoplastic behavior of the liquid motion is defined by the Ostwald–deWaele
power law [23]:

τij = 2μn f Dij (1)

The effective viscosity coefficient of a nanofluid is simulated employing the relation of
Guo et al. [24]:

μn f

μb f
=

(
1 + 2.5φ+ 6.5φ2

)(
1 + 350

φ

dp

)
(2)

The viscosity of the host liquid was defined using the relationship: μb f = K(2DklDkl)
n−2

2 .
Here, K is the flux density factor; Dkl are components of the strain rate tensor; n is the fluid
behavior index, which is equal to 0.91. Considering that for n < 1, the working fluid has a
pseudoplastic nature. Such fluids are described by viscosity that reduces with a growth in
the strain rate, which is very efficient for the cooling problems.

The nanoliquid heat conductivity was calculated using the experimental correlation of
Jang and Choi [25]:

kn f

kb f
= (1 −φ) + 0.01

kp

kb f
φ+

(
18 · 106

)db f

dp
Re2Prφ (3)

The control equations reflecting the process of laminar transient convective energy
transport employing the Oberbeck–Boussinesq approach based on the dimensional primi-
tive variables “velocity and pressure” are:

∂u
∂x

+
∂v
∂y

= 0 (4)

ρn f

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ 2

∂

∂x

[
μn f

∂u
∂x

]
+

∂

∂y

[
μn f

(
∂u
∂y

+
∂v
∂x

)]
(5)
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ρn f

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= − ∂p

∂y
+

∂

∂x

[
μn f

(
∂u
∂y

+
∂v
∂x

)]
+ 2

∂

∂y

[
μn f

∂v
∂y

]
+ g(ρβ)n f (T − Tc) (6)

(ρc)n f

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
=

∂

∂x

(
kn f

∂T
∂x

)
+

∂

∂y

(
kn f

∂T
∂y

)
(7)

Heat conduction equations for the energy source and the solid finned heat sink are:

(ρc)hs
∂T
∂t

= khs

(
∂2T
∂x2 +

∂2T
∂y2

)
+ Q (8)

(ρc)r
∂T
∂t

= kr

(
∂2T
∂x2 +

∂2T
∂y2

)
(9)

To reduce the mathematical difficulties, the stream function ψ
(
u = ∂ψ/∂y, v = −∂ψ/∂x

)
and

vorticity (ω = ∂v/∂x − ∂u/∂y), as well as reference parameters presented in Table 2, are introduced
into system (4)–(9). L is chosen as the length scale and ΔT = QL2/khs is used for the temperature
difference.

Table 2. Reference parameters.

Parameters Formula

Velocity
√

gβLΔT
Time

√
L/(gβΔT)

Stream function
√

gβL3ΔT
Vorticity

√
gβΔT/L

Temperature ΔT = QL2/khs

As a result, the non-dimensional governing equations are:

∂2Ψ
∂X2 +

∂2Ψ
∂Y2 = −Ω (10)

∂Ω
∂τ

+
∂Ψ
∂Y

∂Ω
∂X

− ∂Ψ
∂X

∂Ω
∂Y

= H1(φ)

(
Ra
Pr

) n−2
2 [

∇2(MΩ
)
+ SΩ

]
+ H2(φ)

∂Θ
∂X

(11)

∂Θ
∂τ

+
∂Ψ
∂Y

∂Θ
∂X

− ∂Ψ
∂X

∂Θ
∂Y

=
H3(φ)√
Ra · Pr

[
∂

∂X

(
kn f

kb f
· ∂Θ

∂X

)
+

∂

∂Y

(
kn f

kb f
· ∂Θ

∂Y

)]
(12)

The heat conduction equations for the energy source and the radiator are:

∂Θhs
∂τ

=
αhs/αb f√

Ra · Pr

(
∂2Θhs
∂X2 +

∂2Θhs
∂Y2 + 1

)
(13)

∂Θr

∂τ
=

αr/αb f√
Ra · Pr

(
∂2Θr

∂X2 +
∂2Θr

∂Y2

)
(14)

Here, the used additonal functions are M (non-dimensional viscosity of the host liquid), SΩ
(source term) and H1(φ), H2(φ), H3(φ) (additional functions reflecting the thermal characteristics of
the nanosuspension). These additional functions can be presented as follows:

M =

[
4
(

∂2Ψ
∂X∂Y

)2

+

(
∂2Ψ
∂Y2 − ∂2Ψ

∂X2

)2] n−1
2

, SΩ = 2
[

∂2 M
∂X2

∂2Ψ
∂Y2 +

∂2 M
∂Y2

∂2Ψ
∂X2 − 2

∂2 M
∂X∂Y

∂2Ψ
∂X∂Y

]

H1(φ) =
μn f
μb f

ρb f
ρn f

=
μn f /μb f

(1−φ+φρp/ρb f )
, H2(φ) =

(ρβ)n f

(ρβ)b f

ρb f
ρn f

=
1−φ+φ(ρβ)p/(ρβ)b f

1−φ+φρp/ρb f
,

H3(φ) =
(ρc)b f

(ρc)n f
= 1

1−φ+φ(ρc)p/(ρc)b f
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The initial and boundary conditions for the system (10)–(14) in a dimensionless form are as
follows:

τ = 0 → Ψ = Ω = 0, Θ = 0.0;
τ > 0 →
X = 0 & X = 1, 0 ≤ Y ≤ 0.1, ∂Θ

∂X = 0;
X = 0 & X = 1, 0.1 < Y ≤ 1, Ψ = 0, ∂Ψ

∂X = 0, Θ = 0;
Y = 0, 0 ≤ X ≤ 1, ∂Θ

∂Y = 0;
Y = 1, 0 ≤ X ≤ 1, Ψ = 0, ∂Ψ

∂Y = 0, Θ = 0.

At the heat source surface, one can find:
{

Θhs = Θr, khs
kr

∂Θhs
∂n = ∂Θr

∂n .

At the radiator surface, we have: Ψ = 0, Ω = − ∂2Ψ
∂n2 ,

{
Θn f = Θb f , kn f

kr

∂Θn f
∂n = ∂Θr

∂n .
For a solution to the formulated system of unsteady differential Equations (10)–(14) with the

corresponding restrictions, the finite difference technique was used [26–28]. A successive under-
relaxation algorithm was used to work out the approximated Poisson equation. The non-dimensional
viscosity was discretized employing a regularization technique [26]. The Samarskii locally one-
dimensional difference procedure [27,28] was applied to reduce Equations (11) and (12) to the system
of one-dimensional equations. Further on, the convective terms were approximated using the donor
cells scheme, and the diffusion terms were discretized by central differences. The obtained systems of
linear algebraic equations were solved by the Thomas method.

The developed numerical tehcnique and the prepared computation code were verified employ-
ing the model problems. Figure 2 demonstrates the geometry of the model problem. Power-law
fluid circulates in a differentially heated enclosure. The horizontal walls are thermally insulated.
Comparison of the outcomes was performed for the average Nusselt number calculated at the hot

wall

(
Nuavg = −

1∫
0

∂Θ
∂X dY

)
, depending on time and the fluid behavior index n as shown in Figure 3.

Obtained results are represented by white symbols, while the results of [24] are shown in black. It can
be seen that the difference in the results does not exceed 4%; this illustrates a very good agreement.

 
 

(a) (b) 

Figure 2. Testing the program code: (a) Model domain of interest; (b) Average Nusselt number
behavior in comparison with [29].

An additional study was performed for the mesh effect on the solution convergence using the
mean Nusselt number and mean heater temperature presented in Figure 4 for three ribs at Ra = 105,

φ = 0.01, δ = 0.2. The mean Nusselt number was defined by Nuavg = − 1
1.8

1.8∫
0

∂Θ
∂n dς at the finned heat

sink border, where ς is the natural coordinate along the finned heat sink border. It can be seen that
the meshes of 300 × 300 and 400 × 400 units did not lead to significant discrepancies; therefore, the
further calculations were carried out on a uniform rectangular grid of 300 × 300 elements to optimize
the computation time.
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Figure 3. Influence of grid parameters.

 

Figure 4. Nanoparticles volume fraction influence on the streamlines and isotherms in the case of
one edge at δ = 0.2.

3. Results

This research simulates the process of free convective energy transport of a power-law nanofluid
in an enclosure with a heat source and a rib structure. In the course of the study, the impact of the
governing characteristics was analyzed, including the volume fraction of nanoparticles (φ = 0.0–0.03),
the height of the ribs (δ = 0.1–0.3) and the number of ribs (1–3). The Rayleigh number is fixed for all
results (Ra = 105). The outcomes are shown by the distribution of streamlines and isotherms, as well
as curves of the average Nusselt number over the radiator surface and the mean heater temperature.

Figure 4 demonstrates the distribution of streamlines and isotherms depending on the nanopar-
ticles’ volume fraction in the case of one heat sink fin at δ = 0.2. The streamlines in the first row
illustrate the structure of the nanofluid motion within the chamber. It consists of two symmetrical
convective cells, the flow in which occurs in opposite directions. It should be noted that their shape
practically does not change with a growth in the nanoadditives’ concentration. The second row
presents isotherms that reflect the temperature stratification in the chamber. If you look at them
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closely, you can see that a two-dimensional heat plume has formed above the rib, which characterizes
an intense convective heat transfer. At the same time, according to the isotherm with a value of 0.26,
one can trace a slight reduction in the chamber temperature, which indicates the efficiency of using
such a cooling system for a heated element.

The impact of the copper nanoparticles’ concentration has also been estimated from the values of
the mean Nusselt number and mean heater temperature, which are demonstrated in Figure 5 at δ = 0.2.
It can be seen that with an increase in φ, the average Nusselt number decreases, which indicates
a weakening of the convective energy transport in the enclosure. In this case, the average source
temperature changes insignificantly, but still decreases with an increase in φ. This phenomenon is
explained by a growth in the thermal conductivity of the working fluid due to nanoadditives. It
should also be noted that the decrease in the values of Nuavg and Θavg occurs by the same amount
with an increase inφ. That is, Nuavg decreases by 0.2, and Θavg by 0.01 with a rise in the nanoadditives’
concentration.

 

Figure 5. Nanoparticles’ volume fraction influence on the average Nusselt number and mean
temperature for one rib at δ = 0.2.

An analysis of the nanoadditives’ volume fraction influence was carried out for all options for
the ribs number. It should be noted that the results in the cases of two and three ribs are similar;
therefore, the φ effect is presented on the results of modeling the free convection in an enclosure with
two solid ribs at δ = 0.2.

It can be seen in Figure 6 that the flow structures were not changed significantly when the
second rib was added; the cavity also contains two convective cells. Their size was reduced as
the space for the fluid flow was reduced also with the addition of the second fin. In this case, it is
noticeable that the streamline density changes with an increase in φ. In addition, according to the
values of streamlines, it can be noted that the strength of the flow decreases with a growth in the
nanoadditives’ concentration. If we look closely at the isotherms, we can see that in the cases of
φ = 0.0 and 0.01 they practically coincide. Furthermore, the thermal plume degrades to an almost
horizontal arrangement of isotherms. This means that in the latter case, the conductive mechanism of
heat transfer predominates. At the same time, according to the nearest isotherm to the source, it can
be seen that the temperature in the cavity noticeably increases with an increase in φ.

Figure 7 reflects the nanoparticles’ concentration effect on the integral characteristics of the
process at δ = 0.2. Again, we note that with three fins, similar results are obtained; therefore, a variant
with two fins is presented. It can be seen from the figure that the mean Nusselt number decreases
with increasing ]φ, which illustrates the attenuation of convective energy transport. It should be
noted that in the cases of φ = 0.0, 0.01, and 0.02, Nuavg uniformly decreases by 0.1, but at φ = 0.03, the
decrease occurs only by 0.03. In this case, the average source temperature behaves differently. It can
be seen that the cases of φ = 0.0 and 0.01 coincided over time and have exactly the same values for
the dimensionless time τ from 250 to the end. With further addition of nanoparticles, Θavg actively
increases. In the case of φ = 0.03, it has a maximum value, and also requires more time to reach the
stationary regime.
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Figure 6. Nanoparticles’ concentration influence on the streamlines and isotherms in the case of
two fins at δ = 0.2.

 

Figure 7. Nanoparticles’ volume fraction influence on the average Nusselt number and mean
temperature for two fins at δ = 0.2.

Next, an analysis of the rib structure height influence was carried out. Figure 8 shows the
distribution of streamlines and isotherms at φ = 0.01 in the case of one rib. The isotherms show that
two convective cells are preserved. Changes occurred only in the places where the cells adjoin the
edge. Isotherms illustrate a two-dimensional heat plume. A rise in the fin height leads to compaction
of the temperature isolines.

Figure 9 reflects the influence of changing the fin height on the mean Nusselt number and the
average temperature in the heat-generated element at φ = 0.01. It can be seen that both parameters
decrease with an increase in δ. At the same time, Nuavg decreases more actively than Θavg. It should be
noted that at δ = 0.1 and 0.2, the temperature values practically coincide. The case δ = 0.3 corresponds
to the lowest temperature of the source, since in this case the enlarged fin removes heat more actively
by means of a conductive heat exchange.
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Figure 8. Effect of fin height on streamlines and isotherms at φ = 0.01.

 

Figure 9. Effect of fin height on the mean Nusselt number and mean temperature at φ = 0.01.

Next, we considered the influence of three ribs height in the cavity at φ = 0.01. It should be
noted that the results for two and three ribs are similar, so only three ribs are shown in Figure 10.
The streamlines illustrate two convective cells in the chamber. The circulation for the right one is
clockwise, while for the left one it is counterclockwise. With a rise in the fins’ height, the size of the
cells decreases, as well as the density of the streamlines. This is due to the reduced space for the fluid
to flow. Note that in the case of δ = 0.3, the cells almost take the form of a square. Isotherms also
represent a two-dimensional heat plume. According to the isotherm closest to the source, we can
trace the decrease in temperature: for δ = 0.1 it is 0.46, for δ = 0.2 it is 0.42, while for δ = 0.3 it is 0.38.
This result indicates an efficient cooling of the heated unit for three fins with a maximum height.
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Figure 10. Effect of fin height on streamlines and isotherms in the case of three fins at φ = 0.01.

Parameters Nuavg and Θavg depending on the ribs’ height and time are shown in Figure 11.
Both parameters decrease with an increasing δ, as in the case of one rib. Despite the attenuation of
convective energy transport in the chamber, the average source temperature also decreases. This
phenomenon is also explained by the predominance of conductive energy transport.

Figure 11. Impact of the fin height on the mean Nusselt number and mean temperature in the case of
three fins at φ = 0.01.

An assessment of the solid ribs number influence on the natural convective heat transfer is
shown in Figure 12 at φ = 0.01 and δ = 0.2. It can be seen that the most intense convective heat transfer
corresponds to calculations with one fin, because in this case Nuavg has the maximum value. But
for the same case, Θavg also has the maximum value. The most efficient cooling, taking into account
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the selected parameters, occurs in the presence of three fins, despite the fact that the convective heat
transfer is the weakest here.

 

Figure 12. Impact of the fins number on the average Nusselt number and average temperature at
φ = 0.01, δ = 0.2.

4. Conclusions

Mathematical modeling of the power-law nanoliquid natural convection in an enclosure with a
solid heat sink and a heater of constant internal volumetric heat generation was carried out in this
study. In the course of the work, the influence of the nanoadditives’ concentration (φ = 0.0–0.03), the
ribs’ height (δ = 0.1–0.3) and their number on the intensification of the heated element cooling was
analyzed. The analysis of the results allowed us to draw the following conclusions:

1. An increase in the concentration of nano-additives in the case of one rib leads to a decrease in
the average temperature of the heater, while in the case of two ribs, an increase in the average
temperature of the heater is observed with a reduction in the nanoparticles’ concentration.
Therefore, it is necessary to perform additional analysis for the nanoparticles’ concentration
influence that depends on the fins number.

2. Increasing the fin height makes it possible to intensify the cooling of the source with any solid
fins number.

3. The lowest average source temperature corresponds to the presence of three fins in the cooling
system.

The performed analysis showed advantages of the considered cooling system. In future, this
formulation can be extended to the following cases—porous finned heat sink, a heat-generating
element of variable internal volumetric heat flux, three-dimensional analysis.
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Abstract: Despite the wide application of combustion in reactive materials, one of the challenges faced
globally is the auto-ignition of such materials, resulting in fire and explosion hazards. To avoid this
unfortunate occurrence, a mathematical model describing the thermal decomposition of combustible
polymer material in a rectangular stockpile is formulated. A nonlinear momentum equation is
provided with the assumption that the combustible polymer follows a Carreau constitutive relation.
The chemical reaction of the polymer material is assumed to be exothermic; therefore, Arrhenius’s
kinetic theory is considered in the energy balance equation. The bivariate spectral local linearization
scheme (BSLLS) is utilized to provide a numerical solution for the dimensionless equations governing
the problem. The obtained results are validated by the collocation weighted residual method (CWRM),
and a good agreement is achieved. Dimensionless velocity, temperature, and thermal stability results
are presented and explained comprehensively with suitable applications. Some of the obtained results
show that thermal criticality increases with increasing power law index (n) and radiation (Ra) values
and decreases with increasing variable viscosity (β1) and material parameter (We) values.

Keywords: Carreau fluid; thermal stability; variable thermal conductivity; variable viscosity; BSLLS

MSC: 80A19

1. Introduction

In engineering and industries, burning combustible materials in a slab is important
for storing cellulosic materials, solid combustion, refuse cremation, heavy oil recovery, and
other processes [1–3]. Polymers can undergo combustion and release a large amount of
energy, which can then be used for transportation, generating electric power, and providing
heat for various domestic and industrial applications. Compared with other energy sources,
like solar cells, wind generators, and turbines, polymers are quite inexpensive. However,
there are some challenges with polymer burning, such as fire ignitions due to human
negligence and the physical characteristics of hydrocarbon polymers. These have caused
extensive property destruction and claimed the lives of an unknown number of people.
From this perspective, several authors have been prompted to study the causes of fire
ignition in the combustion process and how it can be controlled.

Drysdale [4] described ignition as the process of initiating a fast exothermic reaction,
which then propagates and causes changes in the materials involved and as well gener-
ates temperatures in excess. Also, ref. [4] distinguished between two kinds of ignition:
(1) piloted ignition, in which a flammable mixture is ignited by a pilot such as an electrical
spark or an autonomous flame, and (2) auto-ignition, in which flame develops sponta-
neously within the mixture. Shi and Chew [5] studied polymers’ responses to fire under
auto-ignition conditions within a cone-shaped calorimeter and concluded that the CO and
CO2 production process for polymers is a two-step reaction. In the first-step reaction, CO

Mathematics 2023, 11, 3510. https://doi.org/10.3390/math11163510 https://www.mdpi.com/journal/mathematics
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and other flammable substances are generated following Arrhenius’s law. The second
stage is the oxidation reaction of CO in the presence of air. The whole process is expressed
as follows: {

Step1 : Polymer + O2 → H2O + CO + others product
Step2 : CO + 0.5O2 → CO2.

It was also discovered in [5] that the CO and CO2 emissions from flaming combustion
are greater than those from non-flaming combustion.

Moreover, the combustion of polyethylene and polyvinyl chloride was examined in [6–8].
These investigations used experimental settings, allowing researchers to acquire more informa-
tion and factors for pyrolysis, ignition, and combustion. Geschwindner et al. [9] incorporated a
mix of high-speed planar laser-induced fluorescence of the HO radical (OH-PLIF) and a thermal
decomposition analysis to examine the combustion of micrometer-sized polypropylene (PP)
particles. They found that the highest density of flame-retardant polymer particles decreases
during ignition and the early stage of burning. Lohrer et al. [10,11] investigated the effects of
physical factors such as material wetness, atmospheric humidity, and concentrations of oxygen
on the combustion of reactive materials and discovered that water in the reactive material
increases auto-ignition.

Some mathematical models that are less expensive and faster than experimental
approaches have been implemented in the literature to explain the auto-ignition of com-
bustible materials in a stockpile. For instance, a one-step combustion process of heat
transfer in a spherical channel was investigated in [12,13]. According to their reports, the
system maintains stability as heat escapes into the atmosphere. In addition, enhancement
in the chemical reaction rate leads to increased heat generation in the stockpile, resulting in
quick auto-ignition. Lebelo et al. [14–16] examined the two-step thermal decomposition of
combustible materials in a sphere. They identified that elevation in the two-step kinetic
parameter diminishes the rate of heat loss on the sphere’s surface, which, in turn, speeds
up auto-ignition.

In the literature above reviewed, the authors did not consider flow behavior in their
studies. However, an increase or decrease in flow speed contributes to the heat transfer
performance of combustible materials. It was discovered in the literature that the Carreau
fluid model well describes the flow behavior of polymeric solutions because of its shear
rate properties [17]. Several studies on Carreau fluid constitutive relations have been
documented. For instance, Siska et al. [18] examined the terminal velocity of non-spherical
particles falling through a Carreau fluid and concluded that the Carreau fluid model can
well characterize the rheology of various polymeric solutions, such as 1% methylcellulose
tylose in glycerol solutions and 3% hydroxyethyl–cellulose Natrosol HHX in glycerol
solutions. Ref. [19] reported an intriguing study on the entropy production of Carreau
fluid in the presence of infinite shear rate viscosity. Also, the behavior of a Carreau fluid
flow past a stretching sheet was extensively analyzed in [20,21]. In addition, the peristaltic
movement of a Carreau fluid was also extensively studied in [22–24]. For more on the
Carreau fluid model with different configurations, see [25–27].

Motivated by the reviewed literature in [12–14,22,28], this study focuses on an in-
vestigation of the thermal decomposition of Carreau fluid in a rectangular stockpile with
variable thermophysical properties. It is believed that this present study has not been
reported in the literature. However, the outcome of this study could be useful for engineers
dealing with the combustion of polymers by determining the conditions necessary for
explosions and how to control them. The rest of the article is structured as follows: a math-
ematical model for the unsteady, fully developed flow and temperature of the polymer is
presented in Section 2; Section 3 deals with the application of BSLLM to the dimension-
less initial-boundary value problem; in Section 4, an extensive discussion of the obtained
findings is provided; and concluding remarks are provided in Section 5.

33



Mathematics 2023, 11, 3510

2. Mathematical Analysis

A transient laminar flow of a reactive incompressible Carreau fluid material in a
combustible stockpile positioned at a distance of 2h apart is considered (see Figure 1).
x̂ − axis is parallel to the flow direction, and ŷ − axis traversed to it. Initially, the fluid is
assumed to be fully developed in the stockpile of the temperature, T0, and the material’s
viscosity and thermal conductivity, denoted as μ = μ0 and κ = κ0, respectively, are assumed
to be constant. At time t̂ > 0, the combustion process begins, and the material properties
become temperature-dependent: μ = μ(T) and κ = κ(T). The chemistry involved in
this problem assumes two-step Arrhenius kinetics. The reactant consumption is assumed
negligible in this model. We also assume that the means of heat loss into the environment
of the temperature, Ta, is mainly via radiation and convection. The influence of density
variation with temperature is approximated following Boussinesque approximation. The
equations governing the momentum and energy balance under the assumptions above are
as follows [14–16,20,26]:

ρ
∂û
∂t̂

= −∂P̂
∂x̂

+
∂

∂ŷ

⎛⎝μ(T)

(
1 + Γ2

(
∂û
∂ŷ

)2
) n−1

2
∂û
∂ŷ

⎞⎠+ ρgβ(T − T0), (1)

ρcp
∂T
∂t̂ = ∂

∂ŷ

(
κ(T) ∂T

∂ŷ

)
+ μ(T)

((
1 + Γ2

(
∂û
∂ŷ

)2
) n−1

2 (
∂û
∂ŷ

)2
)
+

Q1 A1C1e−
E1
RT + Q2 A2C2e−

E2
RT − εσ

(
T4 − T4

0
)
,

(2)

with the initial-boundary conditions

û(ŷ, 0) = 0, T(ŷ, 0) = T0
∂û
∂ŷ
(
0, t̂

)
= 0, ∂T

∂ŷ
(
0, t̂

)
= 0, for t̂ > 0

û
(
h, t̂

)
= 0, −κ(T) ∂T

∂ŷ (h, t̂) = ht[T(h, t̂)− Ta], for t̂ > 0

⎫⎪⎬⎪⎭ (3)

 

Figure 1. Problem physical geometry.
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û¯axial velocity, P̂¯modified pressure, T¯absolute temperature, Ta¯ambient temper-
ature, T0¯initial temperature of the stockpile, μ0¯material’s dynamic viscosity at temper-
ature T0, κ0¯material’s thermal conductivity at T0, cp¯specific heat at constant pressure,
ρ¯material’s density, Q1, Q2¯first- and second-step heat of reaction, A1, A2¯first- and second-
step rate constants, C1, C2¯first- and second-step reactant’s concentration, E1, E2¯first and
second step activation energies, ε¯stockpile’s emissivity (0 < ε < 1), σ¯Stefan–Boltzmann
constant, β¯volumetric coefficient, g¯gravitational acceleration, ht¯coefficient of heat trans-
fer, Γ¯time constant, n¯dimensionless power law index. n < 1 represents shear-thinning
fluids, n = 0 represents Newtonian fluids, and n > 1 represents shear-thickening fluids
The variable viscosity and thermal conductivity, μ(T) and κ(T), are expressed, respectively,
as

μ(T) = μ0e−b1(T−T0) and κ(T) = κ0e−b2(T−T0), (4)

where b1 and b2 are dynamic viscosity and thermal conductivity variation parameters. We
then introduce the below dimensionless parameters to Equations (1)–(3):

y = y
h , x = x

h , t = νt
h2 , u = uh

ν , μ = μ
μ0

, κ = κ
κ0

, ν = μ0
ρ , P = Ph2

ν2 , θ = E1(T−T0)

RT2
0

, θa =
E1(Ta−T0)

RT2
0

, β1 =
b1RT2

0
E1

, β2 =
b2RT2

0
E1

, We =
Γν
h2 , Pr = μ0cp

κ0
, λ = Q1E1 A1h2C1e

− E1
RT0

T2
0 Rκ0

, A = − ∂P̂
∂x , Gr = gβRT2

0 h3ρ2

E1μ2
0

ε1 = RT0
E1

, ε2 = E2
E1

, Vd =
μ3

0e
E1

RT0

ρ2Q1 A1h4C1
, Ra =

εσh2E1T2
0

Rκ0
, ω = Q2 A2E2

Q1 A1E1
e
(E1−E2)

RT0 , Bi = hht
κ0

.

(5)

The following dimensionless equations are then obtained:

∂u
∂t

= A +
∂

∂y

⎛⎝e−β1θ

(
1 + W2

e

(
∂u
∂y

)2
) n−1

2
∂u
∂y

⎞⎠+ Grθ, (6)

Pr ∂θ
∂t = ∂

∂y

(
e−β2θ ∂θ

∂y

)
+ λ

(
e

θ
1+ε1θ + ωe

ε2θ
1+ε1θ + Vde−β1θ

(
1 + W2

e

(
∂u
∂y

)2
) n−1

2 (
∂u
∂y

)2
)

−Ra
(
(ε1θ + 1)4 − 1

)
,

(7)

u(y, 0) = 0, θ(y, 0) = 0,
∂u
∂y (0, t) = 0, ∂θ

∂y (0, t) = 0, for t > 0
u(1, t) = 0, ∂θ

∂y (1, t) = −Bieβ2θ [θ(1, t)− θa], for t > 0

⎫⎪⎬⎪⎭, (8)

where β1, β2, We, Pr, λ, ε1, ε2, A, Gr, Vd, Ra, ω, Bi, θa are, respectively, the variable viscosity
parameter, the variable thermal conductivity parameter, the material parameter, the Prandtl
number, the Frank–Kamenetskii parameter, the activation energy parameter, the activation
energy ratio parameter, the pressure gradient, the Buoyancy parameter, the viscous heating
parameter, the radiation parameter, the two-step exothermic reaction parameter, the Biot
number, and the ambient temperature parameter. We also considered the Nusselt number,
defined as follows:

Nu =
hE1qw

κ(T)RT2
0
= − ∂θ

∂y

∣∣∣∣
y=1

, where qw = −κ(T)
∂T
∂ŷ

∣∣∣∣
ŷ=h

.

3. Solution Method

In this section, the BSLLS is implemented to provide a numerical solution for Equations (6)–(8),
as outlined in [29,30]. For further studies on the convergence analysis of the BSLLS, see [31]. To
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adopt the BSLLS, the nonlinear equations, (6) and (7), and the nonlinear convective boundary
conditions (8) are, respectively, represented by F, Θ, and Bc.

F = A +
∂

∂y

⎛⎝e−β1θ
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1 + W2

e

(
∂u
∂y

)2
) n−1

2
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∂t

, (9)
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e−β2θ ∂θ
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)
+ λ
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e

θ
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(
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e

(
∂u
∂y

)2
) n−1

2 (
∂u
∂y

)2
)

−Ra
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− Pr ∂θ

∂t ,

(10)

Bc =
∂θ

∂y
(1, t) + Bieβ2θ(1,t)[θ(1, t)− θa] (11)

The iteration technique (quasi-linearization method) is applied independently to
Equations (9)–(11) to arrive at

α0,r(y, t) ∂2ur+1
∂y2 + α1,r(y, t) ∂ur+1

∂y + α2,r(y, t) ∂ur+1
∂t = R1,r(y, t), (12)

β0,r(y, t)
∂2θr+1

∂y2 + β1,r(y, t)
∂θr+1

∂y
+ β2,r(y, t)θr+1 + β3,r(y, t)

∂θr+1

∂t
= R2,r(y, t), (13)

c0,r(1, t)
∂θr+1

∂y
+ c1,r(1, t)θr+1 = dr(1, t), (14)

where

α0,r(y, t) = ∂F

∂

(
∂2u
∂y2

) = e−β1θ

(
1 + nW2

e

(
∂u
∂y

)2
)(

1 + W2
e

(
∂u
∂y

)2
) n−3

2
,

α1,r(y, t) = ∂F
∂
(

∂u
∂y

) = e−β1θ

⎛⎜⎜⎝ (n − 1)W2
e

∂u
∂y

(
3 + nW2

e

(
∂u
∂y

)2
)

∂2u
∂y2 −

β1

(
1 + W2

e

(
∂u
∂y

)2
)(

1 + nW2
e

(
∂u
∂y

)2
)

∂θ
∂y

⎞⎟⎟⎠(
1 + W2

e

(
∂u
∂y

)2
) n−5

2
,

α2,r(y, t) = ∂F
∂( ∂u

∂t )
= −1, β0,r(y, t) = ∂T

∂

(
∂2θ
∂y2

) = e−β2θ , β1,r(y, t) = ∂T
∂
(

∂θ
∂y

) = −2β2e−β2θ ∂θ
∂y ,

β2,r(y, t) = ∂T
∂θ =

λ

⎛⎝β2Vd

(
∂u
∂y

)2
(−e−β2θ)(ε1θ+1)2

(
W2

e

(
∂u
∂y

)2
+1

) n−1
2

+ωε2e
ε2θ

ε1θ+1 +e
θ

ε1θ+1

⎞⎠
(ε1θ+1)2 +

β2
2e−β2θ

(
∂θ
∂y

)2 − β2e−β2θ ∂2θ
∂y2 − 4Raε1(ε1θ + 1)3,

β3,r(y, t) =
∂T

∂
(

∂θ
∂t

) = −Pr, c0,r(1, t) =
∂Bc

∂
(

∂θ
∂y

) = 1,

c1,r(1, t) = ∂Bc
∂θ = β2Biθr(1, t) + Bieβ2θr(1,t) − β2Biθaeβ2θr(1,t),

dr(1, t) = c0,r(1, t) ∂θr
∂y + c1,r(1, t)θr − Bcr(1, t),

R1,r(y, t) = α0,r(y, t) ∂2ur
∂y2 + α1,r(y, t) ∂ur

∂y + α2,r(y, t) ∂ur
∂t − Fr(y, t),

R2,r(y, t) = β0,r(y, t) ∂2θr
∂y2 + β1,r(y, t) ∂θr

∂y + β2,r(y, t)θr + β3,r(y, t) ∂θr
∂t − Θr(y, t).
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The next step is to transform the physical domains, t ∈ [0, T] and y ∈ [0, 1], respectively,
into domains τ ∈ [−1, 1] and x ∈ [−1, 1] using transformations t = T(τ+1)

2 and y = (x+1)
2 ,

with collocation points

xi =

{
cos(

πi
Nx

)

}Nx

i=0
and τj =

{
cos(

π j
Nτ

)

}Nτ

j=0
.

It is assumed that solutions to u(τ, x) and θ(τ, x), in the form of bivariate Lagrange’s
interpolating polynomials, are defined as:

u(x, τ) ≈
Ny

∑
p=0

Nt
∑

q=0
u
(
xi, τj

)
Lp(x)Lq(τ),

θ(x, τ) ≈
Ny

∑
p=0

Nt
∑

q=0
θ
(
xi, τj

)
Lp(x)Lq(τ),

(15)

where function Lp(x) represents the Lagrange cardinal polynomial of the Chebyshev–Gaus–
Lobatto grid points,

Lp(x) =
Nx

∏
p=0
p �=i

x − xi
xp − xi

, (16)

with Lp(xi) = δip =

{
0, i �= p
1, i = p

.

The Lq(τ) function is defined similarly. The derivative values at the Chebyshev–Gaus–
Lobatto points (xi, τj) are computed as follows:

∂ru
∂xr (xi, τj) = 2r

Nx
∑

p=0
Dr

i,pu(xp, τj) = Druj,

∂u
∂τ (xi, τj) =

2
T

Nτ

∑
q=0

dj,qu(xi, τq) =
Nτ

∑
q=0

d̂j,quq,

∂rθ
∂xr (xi, τj) = 2r

Nx
∑

p=0
Dr

i,pθ(xp, τj) = Drθj,

∂θ
∂τ (xi, τj) =

2
T

Nτ

∑
q=0

dj,qθ(xi, τq) =
Nτ

∑
q=0

d̂j,qθq,

(17)

where r is the order of the derivative, and Dr = 2rDr
i,p and d̂j,q = 2

T dj,q are Chebyshev
differentiation matrices (Nx + 1)× (Nx + 1) and (Nτ + 1)× (Nτ + 1) respectively. uj and
θj are defined as

uj = [u(x0, τj), u(x1, τj), u(x2, τj), . . . , u(xNx , τj)]
T , f or j = 0, 1, 2, . . . , Nτ ,

θj = [θ(x0, τj), θ(x1, τj), θ(x2, τj), . . . , θ(xNx , τj)]
T , f or j = 0, 1, 2, . . . , Nτ ,

(18)

Superscript T denotes a transpose. Substituting Equations (17) and (18) into (12) and (13) yields

α0,r(x, τj)D
2ur+1,j + α1,r(x, τj)Dur+1,j + α2,r (x, τj)

Nτ

∑
q=0

d̂j,qur+1,q = R1,r(x, τj),

β0,r (x, τj)D
2θr+1,j + β1,r(x, τj)Dθr+1,j + β2,r(x, τj)I + β3,r(x, τj)

Nτ

∑
q=0

d̂j,qθr+1,q = R2,r(x, τj),
(19)
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where

αk,r(x, τj) (k = 0, 1, 2) =

⎛⎜⎝ αk,r(x0, τj)
. . .

αk,r(xNx , τj)

⎞⎟⎠,

βk,r(x, τj) (k = 0, 1, 2, 3) =

⎛⎜⎝ βk,r(x0, τj)
. . .

βk,r(xNx , τj)

⎞⎟⎠,

R1,r(x, τj) = α0,r(x, τj)D
2ur,j + α1,r(x, τj)Dur,j + α2,r (x, τj)

Nτ

∑
q=0

d̂j,qur,q − Fr(x, τj),

R2,r(x, τj) = β0,r(x, τj)D
2θr,j + β1,r(x, τj)Dθr,j + β2,r(x, τj)θr,j + β3,r(x, τj)

Nτ

∑
q=0

d̂j,qθr,q − Θr(x, τj),

and I is an identity matrix. Applying spectral collocation to the boundary conditions (8)
and the convective boundary condition (14), we have

Nx
∑

p=0
2DNx ,pur+1(xp, τj) = 0, ur+1

(
x0, τj

)
= 0,

Nx
∑

p=0
2DNx ,pθr+1(xp, τj) = 0, c0,r(x0, τj)

Nx
∑

p=0
2D0,pθr+1(xp, τj) + c1,r(x0, τj)θr+1(x0, τj) = dr(x0, τj).

Imposing boundary conditions on Equation (19) for j = 0, 1, . . . , Nτ − 1, we obtain the
following Nτ(Nx + 1)× Nτ(Nx + 1) system of matrices:

⎡⎢⎢⎢⎣
A1(0,0) A1(0,1) . . . A1(0,Nτ−1)
A1(1,0) A1(1,1) . . . A1(1,Nτ−1)

...
...

...
...

A1(Nτ−1,0) A1(Nτ−1,1) . . . A1(Nτ−1,Nτ−1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ur+1,0
ur+1,1

...
ur+1,Nτ−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
R1(x, 0)
R1(x, 1)

...
R1(x, Nτ − 1)

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
A2(0,0) A2(0,1) . . . A2(0,Nτ−1)
A2(1,0) A2(1,1) . . . A2(1,Nτ−1)

...
...

...
...

A2(Nτ−1,0) A2(Nτ−1,1) . . . A2(Nτ−1,Nτ−1)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

θr+1,0
θr+1,1

...
θr+1,Nτ−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
R2(x, 0)
R2(x, 1)

...
R2(x, Nτ − 1)

⎤⎥⎥⎥⎦,

(20)

with

A1(j,j) = α0,r(x, τj)D
2 + α1,r(x, τj)D + α2,r (x, τj)d̂j,jI =, j = 0, 1, · · · , Nτ − 1,

A1(j,i) = α2,r (x, τj)d̂j,iI, when j �= i,
R1(x, τj) = R1,r(x, τj)− α2,r (x, τj)d̂j,Nτ

ur+1,Nτ , f or j = 0, 1, · · · , Nτ − 1,
A2(j,j) = β0,r (x, τj)D

2 + β1,r(x, τj)D + β2,r(x, τj)I + β3,r(x, τj)d̂j,jI, j = 0, 1, · · · , Nτ − 1,
A2(j,i) = β3,r(x, τj)d̂j,i, when j �= i,
R2(x, τj) = R2,r(x, τj)− β3,r (x, τj)d̂j,Nτ

θr+1,Nτ , f or j = 0, 1, · · · , Nτ − 1,

The vectors ur+1,Nτ and θr+1,Nτ correspond to the initial condition given in Equation (8).
The matrices (20) are solved iteratively until suitable results are obtained.

Convergence Analysis

The convergence of the BSLLS is evaluated by considering the error norms between
two successive iterations. Error norms are defined as

Eu = max
0<i<Nt

‖ur+1,i − ur,i‖,

Eθ = max
0<i<Nt

‖θr+1,i − θr,i‖,
(21)
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Eu and Eθ decrease swiftly as the number of iterations increases (see Figure 2a. This
shows that the BSLLS converges within a few iterations. Also, residual error norms are
computed to show the accuracy of the BSLLS. Residual error norms are expressed as

Ru = max
0<i<Nt

‖∂u(F)‖,

Rθ = max
0<i<Nt

‖∂θ(Θ)‖,
(22)

where ∂u and ∂θ are corresponding nonlinear partial differential equations: Equations (9) and (10),
respectively. Figure 2b depicts residual errors Ru and Rθ against the number of iterations.
Residual errors are found to decrease rapidly with an increasing number of iterations.

 
(a) (b) 

Figure 2. (a) Solution convergence against the number of iterations. (b) Residual errors against the
number of iterations.

4. Results and Discussion

In this section, we employ the parameter values, n = 0.5, We = 0.5, A = 1, β1 = 0.1,
β2 = 0.1, λ = 0.1, ε1 = 0.1, ε2 = 0.1, ω = 1, Ra = 0.1, Pr = 10, Gr = 1, Vd = 0.5, θa = 0.1,
A = 1, T = 120, as default values, unless otherwise stated in graphs and tables. The results
obtained by using the BSLLS are validated with the ones obtained using the collocation weighted
residual method (see Table 1), and a good agreement is observed.

Table 1. Validation of bivariate spectral local linearization method with Chebyshev collocation method.

y uBSLLM uCWRM θBSLLM θCWRM

0.00 0.8472544166 0.8472544291 0.5231137461 0.5231137500

0.25 0.7969166162 0.7969166280 0.5149631360 0.5149631391

0.50 0.6436905650 0.6436905747 0.4901023867 0.4901023899

0.75 0.3812086637 0.3812086696 0.4472855132 0.4472855163

1.00 −9.59276 × 10−14 −1.12618 × 10−23 0.3843857453 0.3843857480

4.1. Transient Profiles for Velocity and Temperature

Figures 3 and 4 show the time development of the velocity and temperature profiles.
As time passes, the velocity (Figure 3a) and temperature (Figure 3b) profiles rise until they
reach steady-state maximum values. Furthermore, the velocity profile reaches a steady
state faster than the temperature profile. This is expected since velocity acts as a source of
heat for the combustion process and, hence, increases the temperature profile.
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(a) (b) 

Figure 3. (a): Velocity steady state condition. (b): Temperature steady state condition.

 

(a) (b) 

Figure 4. (a) Three-dimensional velocity profile. (b) Three-dimensional temperature profile.

4.2. Solution Blow-Up Profile

The bifurcation plot of the maximum temperature, (θ(0)), versus the Frank–Kamenetskii
parameter, λ, is provided to examine the thermal criticality condition of the system. The
critical value, λc, is computed at a steady state (when combustion is independent of time) to
explain auto-ignition during the combustion process. Figure 5 displays a bifurcation diagram
explaining the thermal behavior of the system as λ increases. The bifurcation diagram illustrates
that the solution to Equation (7), at a steady state, is finite for λ between interval 0 and λc.
Auto-ignition is observed at the upper limit of the interval, λc, and a real solution does not
exist when λ > λc.

To prevent or control spontaneous ignition, the impact of the thermophysical param-
eters on the thermal criticality is examined (see Table 2). Thermal criticality increases
with increasing values of the power law index (n), radiation (Ra), and the Biot number
(Bi) and decreases with increasing values of variable viscosity (β1), the variable thermal
conductivity parameter (β2), and the material parameter (We). This implies that these
factors are important in minimizing auto-ignition. In other words, for thermal stability to
be maintained during combustion processes, these parameters should be made significant.
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Figure 5. Bifurcation curve.

Table 2. Variations in criticality values for A = 1, ω = 1, Gr = 1, Pr = 10,
ε1 = 0.1, ε2 = 0.1, Vd = 0.5, T = 120.

β1 β2 We n Ra Bi λc

0.1 0.1 0.5 0.5 0.1 1.0 0.17064
0.3 0.1 0.5 0.5 0.1 1.0 0.15603
0.5 0.1 0.5 0.5 0.1 1.0 0.14231
0.1 0.1 0.5 0.5 0.1 1.0 0.17064
0.1 0.3 0.5 0.5 0.1 1.0 0.15942
0.1 0.5 0.5 0.5 0.1 1.0 0.14860
0.1 0.1 0.1 0.5 0.1 1.0 0.18038
0.1 0.1 0.3 0.5 0.1 1.0 0.17695
0.1 0.1 0.5 0.5 0.1 1.0 0.17064
0.1 0.1 0.5 0.5 0.1 1.0 0.17064
0.1 0.1 0.5 1.0 0.1 1.0 0.18081
0.1 0.1 0.5 1.5 0.1 1.0 0.18591
0.1 0.1 0.5 0.5 0.1 1.0 0.17064
0.1 0.1 0.5 0.5 0.3 1.0 0.19447
0.1 0.1 0.5 0.5 0.5 1.0 0.21836
0.1 0.1 0.5 0.5 0.1 0.5 0.10362
0.1 0.1 0.5 0.5 0.1 1.0 0.17064
0.1 0.1 0.5 0.5 0.1 1.5 0.22120

4.3. Dependence of Velocity and Temperature Profiles on Flow Parameters

Figures 6 and 7 depict the impacts of We on the velocity and temperature profiles,
respectively. Both profiles are elevated as the We values increase. This is ascribed to the fact
that an increase in We makes the fluid thinner, and the resistance force to the flow decreases;
hence, the velocity profile increases. Furthermore, internal heat generation, as a result of the
viscous term, is high when We increases. This leads to an enhancement of the temperature
profile. Figures 8 and 9 present the effect of the power law index, n, on the velocity and
temperature distributions, respectively. As such, the velocity distribution decreases with
increasing n values. When n > 1, the resistance force to the flow for shear-thickening
fluids becomes maximal, and the velocity profile decreases (see Figure 8). A decrease in
fluid speed results in a decrease in viscous heating, and the temperature profile reduces
significantly (see Figure 9).
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Figure 6. Velocity distributions for We.

Figure 7. Temperature distribution for We.

Figure 8. Velocity profiles for n.
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Figure 9. Temperature profiles for n.

Figures 10 and 11 examine the behavior of velocity and temperature distributions
subjected to a variable viscosity parameter, β1. The velocity profile is elevated with in-
creasing values of β1, as observed in Figure 10. The reason for this is that fluid viscosity
reduces as β1 increases, and the kinetic energy of the fluid molecules increases, leading to
velocity distribution enhancement. An increase in the velocity profile naturally enhances
the heat source term in the energy equation, resulting in an elevation in the temperature
field (see Figure 11). The impact of variable thermal conductivity, β2, on the velocity and
temperature distributions is provided in Figures 12 and 13, respectively. An increase in
the values of β2 increases the temperature profile (see Figure 13). This is attributed to
the fact that a rise in β2 leads to a reduction in the thermal conductivity term, e−β2θ . This
leads to the slow, random movement of fluid molecules and thus facilitates heat transfer
through the fluid, which consequently enhances the temperature profile. A significant rise
in temperature as β2 increases results in a reduction in the fluid viscosity and thus enhances
the flow speed (see Figure 12). Figure 14 depicts the impact of the radiation parameter,
Ra, on the fluid temperature. It can be observed that the temperature profile reduces as
the Ra values rise. This indicates that more heat exits the stockpile through radiation and,
thus, reduces the fluid temperature profile. The same scenario is seen in Figure 15 as the
temperature profile reduces with an increasing Biot number, Bi, because more heat escapes
the stockpile through the walls. Enhancement in the temperature profile is observed in
Figure 16 as the two-step parameter, ω, values increase. This is due to extra heating created
by higher values of ω. Figures 17 and 18 illustrate the variation in the Nusselt number, Nu
(heat transfer rate at the wall) for different combinations of thermophysical parameters.
Nu increases with higher values of the Frank–Kamenetskii parameter, λ, and the two-step
reaction parameter, ω, and decreases with higher values of the radiation parameter, Ra,
and the Biot number, Bi. These results agree with the work in [32].
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Figure 10. Velocity graph for variation in β1.

Figure 11. Temperature graph for variation in β1.

Figure 12. β2 effect on velocity profiles.
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Figure 13. β2 effect on temperature profiles.

Figure 14. Impact of Ra on temperature distribution.

Figure 15. Influence of Bi on temperature profiles.
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Figure 16. Temperature profiles with change in ω.

Figure 17. Influence of Ra and λ on the Nusselt number.

Figure 18. Influence of Bi and ω on the Nusselt number.

5. Concluding Remarks

This article considered the combustion of polymer material in a rectangular stockpile.
The rheology of the polymer was assumed to follow a Carreau fluid constitutive relation.
The spectral local linearization method was implemented to provide a numerical solution
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to the problem. The impacts of various thermokinetics factors on the flow and thermal
behaviors were examined. From the obtained results, it was found that some parameters
(We, β2, and ω) improve the combustion process since the temperature profiles increase
as the values of these parameters increase. This may speed up thermal ignition and, thus,
lead to an explosion. The opposite case can be observed for an increase in the values of
n, Ra, and Bi. This slows down the chemical reaction and, thus, minimizes the combustion
process.
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Abstract: In this study, confined slot nano-jet impingement cooling of a hot moving surface is
investigated under the combined utilization multiple rotating cylinders and magnetic field. Both
convective heat transfer and entropy generation analysis are conducted using a finite element method.
Parametric variation of the rotational Reynolds number (Rew between −500 and 500), velocity ratio
(VR between 0 and 0.25), Hartmann number (Ha between 0 and 20) and the horizontal location
of cylinders (Mx between −8 and 8) are considered. Rotation of the cylinders generally resulted
in the degradation of cooling performance while increasing the wall velocity, and the horizontal
location of the cylinder was found to positively contribute to this. Heat transfer rate reductions of
20% and 12.5% are obtained using rotations at the highest Rew for the case of stationary (VR = 0)
and moving wall (VR = 0.25). When magnetic field at the highest strength is imposed in the rotating
cylinder case, the cooling performance is increased by about 18.6%, while it is reduced by about
28% for the non-rotating cylinder case. The hot wall movement contributes, by about 14%, to the
overall cooling performance enhancement. Away from the inlet location of the rotating cylinders,
thermal performance improvement of 12% is obtained. The entropy generation rises with higher
hot wall velocity and higher horizontal distances of the rotating cylinders, while it is reduced
with a higher magnetic field for non-rotating cylinders. The best configurations in terms of cooling
performance provide 8.7% and 34.2% enhancements for non-rotating and rotating cylinders compared
with the reference case of (Rew, VR, Ha, Mx) = (0, 0, 0, 0), while entropy generation becomes 1% and
15% higher.

Keywords: magnetic field; slot jet impingement; finite element method; multiple rotating cylinders;
entropy generation; moving wall
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1. Introduction

The use of impinging jets has been considered for effective cooling in many thermal ap-
plications, including solar power, drying, electronic cooling and materials processing such
as glass annealing, among others [1–3]. Higher localized heat and mass transfer coefficients
can be obtained by using impinging jets. The flow features and basic heat transfer (HT)
mechanism by using impinging jets have been provided with important design and operat-
ing parameters [4–6]. Due to the complicated nature of the flow field and its interaction
with the thermal field, complex geometry and pressure gradients, theoretical treatment of
the convective HT with impinging jets is challenging. Magnetic field (MGF) in jet impinge-
ment has been considered in several studies. The applications in jet flow with MGF may
be relevant in electromagnetic braking. The utilization of MGF in convective HT has been
considered in many studies as HT and flow control method. An external MGF, which may
be active, partial, non-uniform or time dependent, can be imposed for thermal system and
several studies used MGF in slot jet impingement (SJ-I) HT applications. The performance
of the SJ-I cooling can be improved by using nanofluids (NFs). This technology of NFs
has already been implemented in diverse engineering systems, including energy storage,
refrigeration, renewable energy and many more [7–9]. For electrically conducting fluids,
nanoparticles can be used in base fluid to alter the thermophysical properties, including
thermal and electrical conductivity, while application of MGF will be more efficient. Sheik-
holeslami and Rokni [10] performed a review for application of NFs in the existence of
MGF effects by analyzing many numerical and analytical studies. They also considered
the Brownian motion and thermophoresis effects of NFs. Improvements in the thermal
performance were reported with NFs while discrepancies between single and two-phase
models were noted. M’hamed et al. [11] performed an extensive review of the application
of MGF considering NFs. They noted successful application of the flow control with MGF,
while some challenges were also mentioned, such as the stability and cost of using NFs.
In jet impingement, NFs have been used. In their review work, [12] analyzed the existing
studies for NF applications in impinging jet HT. Many aspects of the NF were covered,
including non-Newtonian fluid behavior and single- and two-phase modeling approaches.
They noted that single-phase non-Newtonian models required higher pumping power
even if they had higher HT rates. They recommended considering the application of hybrid
NFs, multiphase model and erosion impacts of NFs in jet impingement applications. Even
though diverse studies have been considered for the application of NF in jet impingement
HT [13–15], there are few works that have considered the MGF and NF impacts with jets
together [16–18].

Many different methods of HT enhancement have been considered in J-I cooling.
MGF and NF applications have been discussed above. The utilization of rotating circular
cylinders (CCs) in HT has been considered before in many studies. The size, rotational
speed, conductivity ratio and location of the CCs are some of the most influencing factors
for the overall thermal performance [19–21]. In J-I systems, cooling of rotating hot surfaces
has been considered in several studies [22–24], but rotating CCs as a control method for
cooling performance of SJ-I onto a hot flat surface has only been considered in [25].

Entropy generation analysis (EG-A) can be used in thermal system for performance
evaluations and design optimizations. The basics and some applications of EG minimiza-
tion can be found in several sources [26–28]. The HT and fluid friction irreversibility
analysis can be performed by using EG studies in convective HT. EG-A have been con-
sidered in NF studies [29–31]. A review of EG in NF systems has been performed by
Mahian et al. [32]. They considered different NF and various geometry with different
boundary conditions. They noted that the EG can be reduced by using NF depending
upon the geometry and flow regime while in viscous dominated micro-channels, and using
NFs resulted in increased EG. In another review, Huminic and Huminic [33] presented an
overview of the NF and hybrid NF applications for EG of different thermal systems. Micro-
channel flow and cavities were considered while both experimental and numerical studies
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were covered. The potential of using NFs in EG minimization was explored. In MGF with
NF, EG-A has been been performed in many different studies [34–36].

In this study, slot J-I (SJ-I) cooling of moving hot surface under the combined effects
of using MGF and multiple rotating CCs are considered. The combined method can be
considered either as a novel HT enhancement technique for SJ-I or rotating CCs or MGF
can be present in the thermal system. In the literature, utilization of MGF and NF together
has been considered in several studies, while only one study exists for a single rotating
CC in SJ-I cooling. As novel contributions to the exiting literate, multiple rotating CCs are
used, and movement of the hot surface to be cooled is considered along with the MGF
and NF. The study also includes EG analysis for the evaluation of system performance.
Figure 1 shows the schematic view of the available HT enhancement methods that can
be used for J-I cooling system with the jet and wall features considered in this study. The
coupled impacts of moving wall, rotation of multiple CCs and MGF will be explored for
cooling of an isothermal hot surface by using confined SJ-I. Performance of the system
for varying parameters of interest is indicated in terms of EG, which results in higher
possibility to assess the system performance. The outcomes of the current work are useful
in initial design and optimization studies for development of cooling systems with SJ-I.
The applications can be encountered in microfluidic devices, photovoltaic (PV) /thermal
systems, material processing, drying and diverse HT equipment.

Figure 1. Different available methods that can be used for flow control and thermal performance
improvement of jet impingement cooling.
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2. Numerical Model

We consider SJ-I cooling of a hot moving wall under the combined utilization of three
identical rotating CCs and inclined MGF effects. A schematic view is given in Figure 2.
Cold fluid enters with velocity of uc and temperature of Tc, while a hot wall is moving with
velocity uw and is kept at a temperature of Th. Velocity ratio (VR) is defined as VR = uw/uc.
The slot size is wj, and the hot plate length is L = 150wj and the vertical distance between
them is H = 7wj. The rotating CCs are identical and have radius of r = 0.1H and are rotating
with same speed of ω. Their center locations are (xc1, yc1) = (0.5L + Mx, 0.35H), (xc2,
yc2) = (0.5L + Mx + 0.6H, 0.35H) and (xc3, yc3) = (0.5L + Mx + 0.3H, 0.65H). An external
uniform MGF is imposed with inclination of γ with horizontal. The hybrid NF, which
contains Ag–MgO nanoparticles in water, is utilized while the solid volume fraction of
2% is considered. The Pr of the base fluid is 6.9. The flow is 2D and laminar. The MGF
is uniform, and induced MGF effects along with the electric currents are not taken into
account. The impacts of natural convection, radiation and viscous dissipation are ignored.

Figure 2. Schematic description of the SJ-I cooling system for a moving hot wall under combined
effects of MGF and multiple rotating CCs.

The conservation equations under the above assumptions are:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρn f

∂p
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+ νn f

(
∇2u

)
+

σn f B2
0

ρn f

(
v sin(γ) cos(γ)− u sin2 γ

) (2)

u
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(
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)
+
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0
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) (3)

u
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= αn f∇2T. (4)
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The related non-dimensional parameters and numbers are:

X =
x

Dh
, Y =

y
Dh

, U =
u
uc

, V =
v
uc

, P =
p

ρn f u2
c

θ =
T − Tc
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Pr =
ν f

α f
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νn f
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√
σn f

ρn f ν f
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ωDhDh
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(5)

where Dh = 2w is the characteristic length.
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In the above representation, b1 =
νn f
ν f

, b2 =
ρ f
ρn f

σn f
σf

and b3 =
αn f
α f

.
In dimensional form, the boundary conditions are given as:

• Jet inlet, u = 0, v = −uc, T = Tc

• Outlet: ∂u
∂x = ∂T

∂x = 0, v = 0
• At the target plate: u = u0, v = 0, T = Th

• Upper plate walls: u = v = 0, ∂T
∂x = 0

• At the rotating cylinder walls: u = −ω(y − yci), v = ω(x − xci), ∂T
∂n = 0

Local and average Nusselt numbers (Nu) are used for thermal performance evalua-
tions, which are given as:

Nus = − kn f

k f

(
∂θ

∂n

)
, Num =

1
L

∫ L

0
Nusds. (10)

The EG equation is stated as in the following:
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(11)

where impacts of HT, viscous dissipation and MGF effects are represented by various terms
in the above equation.

The Galerkin weighted (GW) residual finite element method (R-FEM) is employed as
the solution method. The application of FEM and basic steps in modeling for HT and flow
problems can be found in many sources [37,38]. The FEM-based solution of convective
HT problems including SJ-I cooling has been considered in many studies [39–41]. In the
method, the field variables ( f ) are approximated by using different ordered Lagrange finite
elements as in the following:

f =
N f

∑
k=1

Ψ f
k Fk, (12)
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where Ψ f denotes the shape function and F is the nodal value. The weighted average of
the resulting residual (R) is set to be zero as:∫

V
WRdV = 0. (13)

SUPG method is used to handle the numerical instability while BICGStab is considered
for the flow and HT modules of the code. The convergence of the solution is assumed when
the relative error for each of the variables satisfy convergence criteria of 10−6.

Grid independence test results are shown in Figure 3a considering average Nu varia-
tions with different grid sizes at two different rotations of CCs (Rew = 0 and Rew = −500).
A grid with 470,870 number of triangular elements is selected, and its variation in the
domain near the CCs is given in Figure 3b. Near-wall refinement is performed.
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Figure 3. Test results for grid independence: Average Nu for different grid sizes considering rotating
and non-rotating CCs (a) (Ha = 5, Mx = −1) and grid distribution near the CCs (b).

Validation of the code is performed by using different available studies. In the first
work, convection in a differentially cavity under MGF effects is analyzed. Comparison
results of average Nu at three different MGF strength are shown in Figure 4a by using the
available results in [42]. The value of the Grashof number is fixed to Gr = 2 × 105 while
Ha values of 0, 50 and 100 are taken. The highest difference is seen at Ha = 0, and it is
below 5%. For SJ-I cooling, the results available in [43,44] are used. An isothermal plate is
considered while Re values of 100 and 300 are taken. The maximum difference between the
available results is below 4% (Figure 4b). The MGF effects in convection and SJ-I cooling
effects are accurately captured by using the current solver.
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Figure 4. Code validation 1: Average Nu comparisons at three different Ha considering the convec-
tion in a differentially heated enclosure. Results in [42] are used, and Grashof number is fixed to
Gr = 2 × 105 (a). Code validation 2: Stagnation point Nu comparison for SJ-I cooling of an isothermal
surface by using the reference results in [43,44] at Reynolds number 100 and 300 (b).

3. Results and Discussion

Convective HT and EG analysis for confined SJ-I cooling of a moving hot surface
under the combined effects of using MGF and triple rotating CCs is conducted. The CCs
are identical and rotating at the same speed, while the hot wall is moving with constant
speed. The numerical study is conducted for various values of rotational speed of the
CCs (Rew between −500 and 500), velocity ratio (VR between 0 and 0.25), MGF strength
(Ha between 0 and 20) and horizontal distance of the rotating CCs to the jet entrance (Mx
between −8 and 8). EG-A is also conducted for the varying parameters of interest. Hybrid
nanoparticles volume fraction is considered as 2%.

Figure 5 shows the impacts of rotational speeds of the CCs on the streamline variation
at two different velocity of the hot wall. In the case of non-moving wall and without the
activation of the CCs, vortices form near the inlet due to confinement and entrainment,
while the right vortex is smaller in size due to the existence of the CC. A large elongated
vortex near the right CC is formed, which extends toward the upper plate. When the
CCs start to rotate with higher speeds, the sizes of the inlet region vortices are reduced,
while vortices near the left and right CC on the bottom wall are established, and their sizes
increase with higher speeds. When the hot bottom wall moves in +x direction without
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rotation of the CCs, a large vortex on the left bottom wall is formed. When the value of Rew
is increased, this vortex zone expands in vertical direction while suppression of the inlet
vortices with rotations of the CCs is obtained with higher Rew. Due to the wall movement,
no vortex is formed on the right part of the inlet near the bottom wall which exists at
VR = 0.

(a) Rew = −500, VR = 0 (b) Rew = −250, VR = 0 (c) Rew = 0, VR = 0

(d) Rew = −500, VR = 0.25 (e) Rew = −250, VR = 0.25 (f) Rew = 0, VR = 0.25

Figure 5. Effects of Rew on streamline variations considering two different velocities of hot wall
(Ha = 5, Mx = −1).

Impacts of hot bottom wall velocity on the flow pattern distribution are shown in
Figure 6 for two cases of CCs. In the case of non-rotating CCs, on the left part of the bottom
wall, a large elongated vortex is formed with higher values of VR. This is attributed to the
higher velocity of the hot wall, which induces drag force on the fluid while the flow field is
distorted. A vortex is also formed below the left CC, and this region becomes larger with
higher VR. When rotations become active, the existence of this elongated vortex on the left
part is also seen due to the hot wall movement. Some slight modifications of the vortices
near the upper CCs are observed. At highest speed wall velocity (VR = 0.25), rotation of
the cylinders results in formation of the large vortices near the right CC adjacent to top
wall, while the vortex near the left CC extends in size. The inlet vortex on the left part
elongates toward the left due to the rotations of the CCs. Characteristics of the HT are seen
in Figure 7 considering the variation of average Nu with respect to changes in Rew and
VR. The rotation of the CCs results in reduction of HT performance for CW rotations of the
CCs for both stationary (VR = 0) or moving wall (VR = 0.25) cases. In the case of VR = 0,
the reduction amount becomes 20%, while it is 12.5% at VR = 0.25 when configurations with
rotations CCs at Rew = −500 are compared with the case of non-rotating CCs. The impact
of rotation on the HT reduction becomes lower with movement of the hot wall due to the
increased HT. When CCW rotations are considered, there is 10% reduction at VR = 0.25,
while it becomes 2% increment at VR = 0 when configuration of non-rotating (Rew = 0) and
rotating CCs at Rew = 500 are compared. The wall velocity is small compared with the jet
velocity, whereas the shear-driven impacts due to wall movement are not significant when
the rotations of the CCs are the determining factors. When VR is increased, the average Nu
becomes higher for the case of rotating or non-rotating CCs. In both cases, the movement
of the wall at the highest velocity contributes 14% increment in the average Nu compared
with the stationary wall configuration.
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(a) Rew = −500, VR = 0 (b) Rew = −500, VR = 0.15 (c) Rew = −500, VR = 0.25

(d) Rew = 0, VR = 0 (e) Rew = 0, VR = 0.15 (f) Rew = 0, VR = 0.25

Figure 6. Effects of hot wall velocity on streamline variations for rotating and non-rotating CC cases
(Ha = 5, Mx = −1).
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Figure 7. Average Nu versus Rew (a) and versus VR (b) (Ha = 5, Mx = −1).

The impacts of MGF strength on streamline variations are shown in Figure 8a–h
considering both rotating and non-rotating CC cases. When CCs are not rotating (Rew = 0)
at Ha = 0, large vortices near the bottom wall (left part), near the right CC on the top wall
and near the inlet are established. When MGF strength is increased to Ha = 5, the top
and bottom wall vortices are significantly suppressed while at the highest MGF strength
(Ha = 20), and most have disappeared. Similar observations can be made with higher MGF
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strength when the rotations of the CCs become active. In the case of no MGF, two large
elongated vortices are formed in the left and right part of the bottom wall that result from
the combined utilization of rotation and movement of the hot wall. As the Ha value is
increased, the extent of this vortex is largely suppressed. The suppression of vortices due to
the complex interaction of the SJ-I, shear effects due to the wall movement and rotation of
the CCs are seen by imposing the MGF and increasing its strength. The HT behavior shows
different characteristics when imposing the MGF effects depending upon if the rotations
are active or not. When the rotations of the CCs are not considered, reduction of the HT is
seen until Ha = 10, and after this Ha, it is slightly varying. The amount of HT reduction
becomes 28% until Ha = 10 at Rew = 0 (Figure 8i). However, when rotations become active
at Rew = −200, the average Nu rises by about 18.6% by increasing the MGF strength at
Ha = 5. Further increment of MF strength has little influence on the variation of average Nu.
As the rotations of the CCs are activated, the average Nu values are higher until Ha = 10
compared with the non-rotating cylinder case and then become almost identical after this
value until Ha = 20. This is attributed to the rotations of the cylinders, which deflect the
fluid flow toward the upper wall in the left region of the inlet while effective impinging to
the hot wall is hindered. When MGF is used for rotating case, the amount of deflection of
this fluid flow toward the upper wall becomes reduced.

The horizontal location of the multiple rotating CCs influence on the flow patterns, as
shown in Figure 9a–f considering rotating and non-rotating CCs. When the rotating CCs
are away from the inlet jet, large recirculations are formed near the inlet while effective
impinging of the jet onto the hot moving plate is obtained. When the rotating CCs are near
the inlet jet, due to the rotations of the CCs, inlet vortices are damped out and mechanism
of the HT is mainly due to the rotating effects of CCs in contrast to jet impingement HT.
When rotations are not used at location Mx = 0, the deflection of the impinging jet on the
hot surface is seen due to the presence of stationary bottom cylinder, while below it, a small
vortex is established. Average Nu versus location (Mx) of the CCs is shown in Figure 9g.
The horizontal location closer to the inlet results in lower HT rates when rotations are
active at Rew = −500. Higher Nu values are obtained when the rotating CCs become way
from the inlet in horizontal direction. Compared with the case of Mx = 0, average Nu
enhancements of 12% and 7.5% are obtained for cases with locations of Mx = −8 and 8.
For both rotating and non-rotating CC case, the location of Mx = −2 provides the lowest
value of average Nu, where the upper CC is just located below the inlet jet and horizontal
distance between the cylinder center and jet center becomes 0. A sudden increment in
average Nu is seen when the rotations are not active if Mx is increased from Mx = −2 to
Mx = 0, which is not the case with rotations of the CCs due to the rotational effects that
hinder the effective impingement of cold fluid onto the hot surface.

EG-A is also considered for the SJ-I problem under combined effects of rotational CCs
and MGF. Variations of normalized EG with respect to changes rotational speed of the
CCs (Rew) and hot wall velocity (VR) are given in Figure 10. As the velocity of the hot
wall is not significant, the shear-driven effects due to wall movement are not profound.
The SG values show the dominance of HT irreversibility, while EG generation achieves the
minimum value when non-rotating CC case is considered. Higher velocities of the moving
wall result in higher entropy production due to the higher HT and viscous irreversibility.
At the highest VR, the discrepancy between the rotating and non-rotating increases. The EG
rises by about 6.25%/5.25% for non-rotating/rotating cases when comparing the moving
wall case (VR = 0.25) with the stationary wall case (VR = 0). The reductions of the EG by
activation of rotations in CW direction of the CCs at the highest speed become 18.5% and
16.5% for cases of VR = 0 and VR = 0.25. Depending upon whether the rotations are active
or not, the EG shows different behavior with higher MGF strength. For stationary CCs, EG
is reduced by about 23% at the highest MGF strength, while it is increased by about 66% for
non-stationary CCs at Rew = −200. The behavior shows similar trends as in the average Nu
variations due to the higher irreversibility in the HT, as the wall velocity is not significant.
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The location of the rotating CCs closer to the inlet position in horizontal direction produces
less entropy, while for both cases the EG rises with higher Mx (Figure 11).

(a) Ha = 0, Rew = −200 (b) Ha = 5, Rew = −200

(c) Ha = 10, Rew = −200 (d) Ha = 20, Rew = −200

(e) Ha = 0, Rew = 0 (f) Ha = 5, Rew = 0

(g) Ha = 10, Rew = 0 (h) Ha = 20, Rew = 0
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Figure 8. Impacts of MGF strength on the streamline distributions considering rotating (a–d), non-
rotating CC cases (e–h) and on the average Nu variations (i) (VR = 0.25, Mx = −1).

A summary of different cases in terms of thermal performance and production of
entropy is shown in Figure 12. Case 1 (C1) shows the reference configuration for the set
of parameters (Rew = 0, VR = 0, Ha = 0, Mx = 0) where non-rotating CCs with stationary
hot wall is considered without MGF effects. When rotations are active at Rew = −500,
the best case is obtained for (Ha, VR, Mx) = (0, 0.25, −4wj), while thermal performance
improvement becomes 8.7%, and without rotation, improvement of up to 34.2% is obtained
at (Ha, VR, Mx) = (20, 0.25, −8wj). When no cylinders are installed in the SJ-I system,
thermal performance improvements of 14.2% and 5.9% are obtained compared with the
reference case at Ha = 0 and Ha = 20. When EG performances are compared, the highest
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EG is obtained for case 3, which is 15% higher than the reference case. Case 2 has only 1%
higher EG than the reference case. When movement of the wall is not considered, even
without installation of CCs, the EG becomes higher either with (Ha = 20) or without MGF
effects (Ha = 0).

(a) Mx = −8wj, Rew = −500 (b) Mx = 0, Rew = −500 (c) Mx = 8wj, Rew = −500

(d) Mx = −8wj, Rew = 0 (e) Mx = 0, Rew = 0 (f) Mx = 8wj, Rew = 0
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Figure 9. Variations of streamlines with changes in the horizontal location of the multiple CCs consider-
ing rotational (a–c) and stationary (d–f) cases of CCs and impacts of horizontal location of CCs on the
variation of average Nu considering rotating and non-rotating CC cases (g) (Ha = 5, Mx = −1).
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Figure 10. Cont.
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Figure 10. Impacts of rotational Re on the variation of EG for stationary (VR = 0) and moving wall
(VR = 0.25) cases (a) and impacts of VR on EG for rotating (Rew = −500) and non-rotating CC cases
(Rew = 0) CC cases (b) (Ha = 5, Mx = −1).
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Figure 11. Effects of MGF strength (a) horizontal location of the CCs (b) on the variation of EG
considering rotating and non-rotating CC cases (VR = 0.25, Mx = −1).
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Figure 12. Comparison of best cases in terms of thermal performance (a) and EG (b) considering both
rotating and non-rotating CC case.

4. Conclusions

Convective HT and EG analysis of a SJ-I cooling system for a moving hot wall was
conducted under the combined utilization of MGF effects and multiple rotating CCs. Some
of the important outcomes can be listed as:

• Rotations of the CCs near the jet inlet have negative impacts of the HT enhancement
for both stationary and moving hot wall cases. Reductions in the average Nu of up to
20% and 12.5% are obtained by using rotations at Rew = −500 for stationary (V = 0)
and moving wall (VR = 0.25) cases.

• The wall movement contributes positively to the cooling performance while HT
enhancements up to 14% are achieved by wall velocity at the highest speed (VR = 0.25).

• Depending upon the activation of cylinder rotations, the impacts of MGF strength
on the HT characteristics are different. For non-rotating CCs, cooling performance
is reduced by about 28% until Ha = 10, while by using rotations at Rew = −200, it is
increased by about 18.6%.

• For the rotating CC case, average Nu variations up to 12% can be achieved by vary-
ing the horizontal location of the CCs while away from the inlet, higher cooling
performances are obtained.
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• When the hot wall starts to move at VR = 0.25, the EG increments up to 6.25% and 5.25%
are obtained for non-rotating and rotating CC cases compared with the stationary wall
(VR = 0) configuration.

• The MGF acts to reduce the EG by about 23% for non-rotating cylinders while incre-
ment of EG by about 66% is obtained for rotating cylinders at Rew = 200. Away from
the jet inlet, the EG rises.

• The best configuration for the case of non-rotating CCs is achieved at (Ha, VR, Mx) =
(0, 0.25, −4), and HT increment becomes 8.7% compared with the reference case of
(Rew = 0, VR = 0, Ha = 0, Mx = 0). For the non-rotating CC case, the optimum set of
parameters is achieved at (Ha, VR, Mx) = (20, 0.25, −8) with HT enhancement of 34.2%
compared with the reference.

• The maximum EG is obtained for configuration with (Ha, VR, Mx) = (20, 0.25, −8)
with non-rotating CCs, while the value is 15% higher than the reference case. When
rotations are active at Rew = −500, the case (Ha, VR, Mx) = (0, 0.25, −4) has only 1%
higher EG when compared to reference.
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Nomenclature

B0 Magnetic field strength
Ha Hartmann number
H separating distance
h heat transfer coefficient
k thermal conductivity
L plate length
n unit normal vector
Nus local Nusselt number
Num average Nusselt number
p pressure
Pr Prandtl number
r cylinder radius
Re Reynolds number
Rew rotational Reynolds number
T temperature
u, v x-y velocity components
uc jet velocity
uw wall velocity
VR velocity ratio
wj slot width
x, y Cartesian coordinates
Greek Characters

α thermal diffusivity
γ magnetic field inclination
θ non-dimensional temperature
ν kinematic viscosity
ρ density of the fluid
σ electrical conductivity
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φ solid volume fraction
ω rotational speed
Subscripts

c cold
h hot
m average
nf nanofluid
w wall
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Abstract: A mathematical investigation of a thermodynamical system linked with energy management
and its impact on the environment, especially climate change, is presented in this study. In this regard,
a numerical investigation of the flow and heat transfer of hydromagnetic third-grade liquid through a
porous medium. The permeability of the medium and electrical conductivity of the fluid are assumed
to be temperature functions. The appropriate mathematical formulations for momentum, energy,
and entropy equations are presented in both dimensional and dimensionless forms. We obtained the
numerical solutions using the spectral version of the Chebyshev collocation method and compared the
result with the shooting Runge–Kutta method. Numerical results for velocity, temperature, entropy,
and Bejan profiles are communicated through tables and graphs with adequate physical interpretation.
The thermal stability of the thermo-fluid system that guarantees the prevention of spontaneous fluid
heating that fuels climate change is also included in the analysis.

Keywords: variable electrical conductivity; third-grade fluid; variable porous permeability; thermal
stability; entropy analysis

MSC: 76-10

1. Introduction

One typical relationship between some of the Sustainable Development Goals (SDG),
including industrialization, a clean environment, and climate change is that of energy usage.
In this context, the impact of thermodynamics in thermal engineering and other energy
generation settings cannot be overemphasized due to the interconnectivity between heat
generation, dissipation, and its net effect on climate change. Over the last few decades, the
thermodynamics analysis of third-grade fluid (TGF) flow through a porous medium has
been of interest to researchers, scientists, and engineers, due to its numerous and diverse
applications in nature. The study finds its application in several branches of agriculture,
science, and engineering, to mention just a few. Based on the aforementioned geophysical
importance, Adesanya et al. [1] reported thermal analysis for a reactive third-grade liquid
through a non-Darcian medium bounded by Riga walls subjected to Newtonian cooling.
By applying the rapidly converging homotopy analysis method, Sajid and Hayat [2]
presented the solution to a third-grade fluid flow in a porous channel filled with permeable
materials by applying a modified Darcy law. Makinde et al. [3] reported a numerical
approach to solving unsteady, fully developed flow problems in variable viscous TGF
through a porous medium subjected to asymmetrical convective heating in which the fluid
undergoes an exothermic chemical reaction. Hayat et al. [4] discussed the steady, fully
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developed flow of third-grade liquid in a porous space under no-slip and non-moving wall
conditions using a homotopy analysis approach. Rundora and Makinde [5] examined the
influence of vertical penetration on reactive TGF flow through a Darcian medium under
heat-dependent viscosity. Baoku et al. [6] studied numerical solutions to heat and mass
transfer in a boundary layer flow of a third-grade fluid flow in an enclosed porous region.
Adesanya and Falade [7] analyzed the heat irreversibility inherent in the heat transfer of
TGF through a porous medium using the perturbation method. Salawu and Fatunmbi [8]
investigated the inherent heat irreversibility in the convective flow of variable, viscous,
third-grade combustible liquid experiencing a transverse magnetic field. Magnhsoudi
et al. [9] constructed an analytical solution to the heat transfer problem in TGF flowing
steadily through a medium with flow barriers by applying the weighted residual least
square method. Readers can see other exciting results on TGF through a restricted medium
in reference [10–13] and references cited within the work.

Over the last few decades, studies on electrical conducting fluids are becoming more
popular due to their wide range of applications in hydroponics, aquaponics, aquaculture,
electrolytes, polymers, molten metals, and many more that are too numerous to be listed.
Based on a wide application, Rahman et al. [14] used the linear dependence of electrical
conductivity on flow velocity to obtain a numerical approximation of a micropolar fluid flow
over an infinitely long inclined plane with a variable heat source. Additionally, Makinde
and Onyejekwe [15] considered the heat-dependent electrical conductivity of the power law
type for the flow and thermal analysis of a time-independent Couette flow. Hossain and
Gorla [16] presented another variant of electrical conductivity relation based on free steam
and tangential velocity for the developing flow analysis of hydromagnetic liquids. In a
related study by Eguia et al. [17], electrical conductivity was assumed to be a linear function
of temperature for unsteady dusty flow analysis. Similarly, Sivaraj and Kumar [18] studied
the unsteady developing flow of reacting Walter-B fluid along a vertical cone. Eegunjobi and
Makinde [19] utilized the power law dependence of electrical conductivity on temperature
to study the hydromagnetic slip flow between leaking walls. Salawu et al. [20] presented
the heat-dependent electrical conductivity property of an unsteady flow of Eyring–Powell
fluid undergoing Arrhenius kinetics in a non-Darcian setting. Obalalu et al. [21] analyzed
the convective magnetohydrodynamic flow of Casson nanofluid subjected to an exothermic
chemical reaction. Adeosun and Ukaegbu [22] considered the squeezed flow of a reactive
fluid experiencing variable electrical conductivity. The literature is inexhaustive when
considering the variable electrical conductivity property of hydromagnetic fluid.

Motivated by the studies in [14–22], the first interest is in investigating variable elec-
trical conductivity’s influence on the flow of third-grade liquid in the porous medium.
Secondly, the studies in [1–9] assumed constant porous permeability. In the real sense,
the permeability of any porous medium allowing the passage of viscous fluid depends
on temperature, pressure/stress field, and non-homogeneity of the permeable material
used. For example, in oil/well engineering, the flows of polymetric fluids in oil recov-
ery/steam injection in petroleum engineering, groundwater, oil in geological flows, some
areas involving water seepage in agricultural engineering, and lots more. As a result, the
main objective of this paper is to study the steady flow of hydromagnetic third-grade
fluid through a porous medium with temperature-dependent porous permeability and
electrical conductivity. The problem will be formulated in the following section with some
mathematical analysis. Section 3 will be dedicated to the numerical method of solution, and
in the Section 4, the results will be presented and discussed while the Section 5 concludes
the article.

2. Mathematical Formulation

This work studies the steady, unidirectional, fully developed flow of an electrically
conducting, pressure-driven, third-grade fluid through a porous medium with no vertical
wall penetration. The third-grade liquid is assumed to undergo a strong exothermic
chemical reaction. A magnetic field of intensity B0 is applied across the horizontal channel.
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It is further assumed that both electrical conductivity and porous permeability of the
medium are nonlinear functions of temperature as shown in the flow geometry in Figure 1.

Figure 1. Flow geometry.

Neglecting the unsteadiness or temporal changes and the convective components of
acceleration, the appropriate balanced pressure and viscous forces driving the flow can be
written as:

0 = −dP′

dx′ +
d

dy′

(
μ

du′

dy′ + 2β3

(
du′

dy′

)3
)

−
(
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(
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)

u′
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0u′, (1)

and the energy balance equation
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, (2)

Alongside the non-moving wall and no-slip conditions at the solid boundaries,

u′ = 0, T = Ta, y′ = a;
u′ = 0, T = Ta, y′ = −a.

(3)

While the wall shear stress for the determination of skin friction and heat transfer rate
can be written as

τxy = μ
du′

dy′ + 2β3

(
du′

dy′

)3
∣∣∣∣∣
y=−1

, qw = −k
dT
dy

∣∣∣∣
y=−1

(4)

Entropy changes from the spontaneous process due to heat transfer and viscous
interaction can be written as

EG =
k

T2
0

(
dT′
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+
1
T0

{(
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(
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)(
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(
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+ σ(T)B2

0

)
u′2

}
(5)

The first part of (5) is the heat transfer component of heat irreversibility while the other
part arises from viscous interaction. The permeability of the porous medium is assumed to
vary slightly with temperature, i.e., the thermal effect on permeability is of the form:

K(T) = K0eα(T−T0) ≈ K0(1 + α(T − T0)) + H.O.T, 0 < α << 1 (6)
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While the dependence of electrical conductivity on temperature is given by [20–22]:

σ(T) = σ0

(
E(T − T0)

T2
0 R

)r

, (7)

here, α represents the coefficient of the temperature difference and r is the exponent of
temperature, x′, y′ represents the Cartesian coordinates of the channel, (P, μ, β3) are fluid
pressure, viscosity, and non-Newtonian material effect, (u′, T, K(T)) are the dimensional
velocity, temperature, and porous permeability. (σ(T), B0, k) are the electrical conductivity,
magnetic field intensity, and thermal conductivity, (Q, C0, A) represents the heat of reaction,
initial concentration, and rate constant. (ι, m, υ) are Plank’s constant, reaction exponent,
and frequency of vibration. Using the following dimensionless parameters and variables,
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we arrive at the following dimensionless nonlinear and coupled boundary-value problem:
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The contribution of each parameter to the entropy profile can be monitored using the ratio:
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The dimensionless quantities (u, θ, G) are velocity, temperature, and pressure gradi-
ent, (H, ε, Da) are Hartmann number, activation energy parameter, and Darcy number,(
S2, α, Ns

)
are shape factor, coefficient of electrical conductivity, and dimensionless entropy

generation, (κ, λ, Be) are the third-grade parameter, Frank–Kameneskii parameter, and
Bejan ratio, respectively.

3. Spectral Collocation Method of Solution

To obtain the solution to the coupled boundary-value problem (9), we apply the
idea of the dense set to take a polynomial approximation as suggested in the Weierstrass
approximation theorem for the existence of a solution. In this way, we assume that the
solution of (9) can be approximated by taking:

u(y) ≈ uN(y) =
N
∑

j=0
bjΦj(y),

θ(y) ≈ θN(y) =
N
∑

j=0
cjΦj(y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (11)
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where Φj(y) represents spectral Chebyshev polynomials and
(
bj, cj

)
are the unknown

coefficients to be determined. In this way, the residues that denote the difference between
the exact solution of (9) and the approximated solutions are given by
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where yi are points within [−1, 1] = [y0,yN ]. Then the Gauss–Lobato points for the colloca-
tion points are

yj = − cos
(

jπ
N

)
, j = 0, 1, 2, . . . , N. (14)

Which are evaluated at

R1
(
yj
)
= 0 = R2

(
yj
)
, j = 0, 1, 2, . . . , N. (15)

The derivatives for dependent variables are obtained as

dru
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N
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j=0
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druj
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drθ
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Np
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j=0

cj
drθj

dyr . (16)

The differentiation matrices at each Gauss–Lobato point are

dru
dry

= D(r)u = Dru r = 1, 2, 3, . . . and
drθ

dry
= D(r)θ = Drθ, r = 1, 2, 3, . . . (17)

So that the vector forms, defined as

u = (u(y0), u(y1), . . . , u(yN))
T

θ = (θ(y0), θ(y1), . . . , θ(yN))
T

}
, (18)

which are used to convert the coupled, nonlinear, boundary-value problem into a set of
algebraic equations. By utilizing the NDSolve algorithm code in Wolfram Mathematica,
the spectral collocation result for (9) is confirmed by the shooting Runge–Kutta method as
reported in Tables 1 and 2.

Table 1. Numerical validation when λ = 0.5, ε = 0.2, m = 0.5, Bi = 20, α1 = 0.1 = α2, κ = 0.5,
G = γ = H = r = S = 1.

y u(y)CWRM u(y)RK45 |u(y)CWRM−u(y)RK4|
0 0.29059333168978096 0.2905933626764475 3.098666651046855 × 10−8

0.1 0.2875531229984736 0.28755315707369733 3.407522375376004 × 10−8

0.2 0.2784580603387541 0.27845809831693963 3.797818554085452 × 10−8

0.3 0.26337977611466257 0.2633798176311869 4.151652432948793 × 10−8

0.4 0.24242311286613746 0.24242315706503897 4.419890151097228 × 10−8

0.5 0.21571064483575425 0.21571069190190728 4.70661530305172 × 10−8

0.6 0.18336924938712212 0.18336929955583225 5.016871013063806 × 10−8

0.7 0.14552094841986923 0.14552100275459876 5.433472952121043 × 10−8

0.8 0.10227800886883381 0.10227806869495099 5.982611717136876 × 10−8

0.9 0.05374120503311206 0.053741270769143465 6.573603140297424 × 10−8

1.0 −2.306642251952988 × 10−20 7.112594643000738 × 10−8 7.112594643003045 × 10−8
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Table 2. Numerical validation when λ = 0.5, ε = 0.2, m = 0.5, Bi = 20, α = 0.1, κ = 0.5, G = γ =

H = r = S = 1.

y θ(y)CWRM θ(y)RK45 |θ(y)CWRM−θ(y)RK4|
0 0.38590264401948615 0.38590263681021386 7.209272290253921 × 10−9

0.1 0.38190747745163284 0.3819074704013799 7.050252937013113 × 10−9

0.2 0.36994346490495467 0.36994345794711025 6.957844411736858 × 10−9

0.3 0.3500734997990253 0.35007349292163265 6.877392655368908 × 10−9

0.4 0.322397158501689 0.3223971517395266 6.762162385598458 × 10−9

0.5 0.28704280983610114 0.28704280313984776 6.696253385118922 × 10−9

0.6 0.24415664136968146 0.24415663474092741 6.628754045667762 × 10−9

0.7 0.1938888308327938 0.19388882426219917 6.570594623944714 × 10−9

0.8 0.13637721443702794 0.13637720796479974 6.472228197829111 × 10−9

0.9 0.07172886591491089 0.07172885987750592 6.037404964853721 × 10−9

1.0 −2.853996136427998 × 10−17 −5.010838847582127 × 10−9 5.010838819042166 × 10−9

4. Results and Discussion

Tables 1 and 2 reveal the results of comparing the two numerical methods used to
solve (9) with parameter values used for the computation. The two results point to a unique
numerical approximation. Table 3 shows the rapid convergence of the weighted residual
method based on spectral collocation. Table 4 presents the effects of various parameters
on thermal flow stability. As seen from the table, porous permeability extends the critical
value of the Frank–Kameneskii parameter, thus stabilizing the flow. Similarly, the third-
grade parameter also delays the early occurrence of instability in the flow field. However,
increasing magnetic field intensity and shape factor parameter values encourage thermal
instability in the flow field.

Table 3. Convergence of critical values α = κ = H = S = 0.1, γ = 1 = G = r.

N Nu(ε=0.1,m=0) λc(ε=0.1,m=0) Nu(ε=0.2,m=0.5) λc(ε=0.2,m=0.5)

5 2.846627970782652 0.9374126233474899 3.3625398187527153 0.9572961968391648
10 2.8501958216533407 0.9361333473082082 3.3789867582903286 0.9568015766586552
15 2.8501681280213513 0.9361332230608462 3.378984457190358 0.9568015916975717
20 2.8501680805234675 0.9361332229338021 3.3789844559157363 0.9568015917674281
25 2.8501680600340458 0.9361332229334971 3.3789844559157363 0.9568015917671002
30 2.850168051013584 0.9361332229334965 3.3789844559157363 0.9568015917670978

Table 4. Numerical result for stability analysis r = 1,∈= 0.2.

α κ γ H S λc

0.1 0.1 1 0.1 0.1 0.9568015917674281
0.3 0.1 1 0.1 0.1 0.9568150977269292
0.5 0.1 1 0.1 0.1 0.9568287821788171
0.1 0.3 1 0.1 0.1 0.9602351070037033
0.1 0.5 1 0.1 0.1 0.9624900150111185
0.1 0.1 2 0.1 0.1 0.9182714895582226
0.1 0.1 1 0.3 0.1 0.9563995116349202
0.1 0.1 1 0.5 0.1 0.9562084981492455
0.1 0.1 1 0.1 0.5 0.9563131736440517
0.1 0.1 1 0.1 1 0.9571020598593034

Figure 2 reveals the Frank–Kameneskii parameter’s effect on the third-grade fluid’s
temperature-dependent electrical conductivity. From the plot, an increase in the heat of
the reaction from the initial liquid concentration produces a slight drop in the maximum
flow velocity. This decline in flow peak is directly connected with the electrical resistance
of the fluid to allow for passage of the electric current due to reduced ion formation in the
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liquid. In Figure 3, the rise in the Frank–Kameneskii parameter shows that the temperature
distribution within the flow domain increases. This positive rise in temperature is due
to a rise in the heat of the reaction, indicating that heat significantly flows into the flow
domain from the surroundings. The significant increase in fluid temperature distribution
(as shown in Figure 3) and the almost negligible decrease in the velocity maximum, as
shown in Figure 2, reveal that the system’s entropy mainly depends on heat transfer rather
than viscous interactions, as shown in Figure 4. Moreover, Figure 5 represents the effect
of the Frank–Kameneskii parameter on the Bejan profile. From the plot, it is evident that
the viscosity of the fluid becomes infinite at the center, thus BE(λ, y) = 0 at the core center.
Beyond this point, towards the channel walls, the magnitude of attains BE(λ, y) = 0.25.
This means that, at the walls, heat transfer irreversibility contributes to heat irreversibility.

 
Figure 2. Effect of the Frank–Kameneskii parameter on flow velocity.

 
Figure 3. Effect of the Frank–Kameneskii parameter on fluid temperature.
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Figure 4. Effect of the Frank–Kameneskii parameter on entropy profile.

 
Figure 5. Effect of the Frank–Kameneskii parameter on Bejan profile.

Figure 6 represents the effect of the porous permeability variation parameter on flow
velocity. The plot reveals that the flow velocity maximum rises with increasing values
of the passable permeability parameter. This is because as temperature increases, there
is a reduction in the viscosity of the third-grade fluid. This encourages flow due to the
increased permeability of the porous matrix. The increase in porous permeability with the
temperature of the fluid is presented in Figure 7. The result shows that the fluid’s porous
permeability improves temperature distribution within the flow channel. This is connected
with the reduced activation energy of the combustible liquid. Figure 8 shows the effect
of variations in porous permeability on the entropy generation rate. The fact that flow
velocity and temperature distribution increases with this parameter indicates that frictional
interaction within the fluid layer is negligible. Therefore, the entropy profile is on the rise
across the channel. Finally, fluid viscosity-related irreversibility dominates significantly
over heat-transfer irreversibility at the core center of the flow channel. In contrast, heat
transfer irreversibility is more prominent at the walls, as seen in Figure 9.
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Figure 6. Effect of the porous permeability variation parameter on flow velocity.

 

Figure 7. Effect of the porous permeability variation parameter on fluid temperature.

 
Figure 8. Effect of the porous permeability variation parameter on entropy profile.
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Figure 9. Effect of the porous permeability variation parameter on Bejan profile.

Figure 10 shows the effect of magnetization on the flow of third-grade fluid. The
velocity peak declines with increasing magnetic field strength, as seen in the plot. This
decline is physically correct since the spinning of fluid particles encourages fluid thickening;
therefore, flow velocity declines with the increasing intensity of the magnetic field. Similarly,
the kinetic energy of the fluid particles is expected to decrease due to fluid thickening.
Therefore, the liquid temperature distribution declines, as seen in Figure 11. The combined
effect of reducing flow velocity and temperature shows that heat transfer and fluid friction
irreversibility will uniformly decrease across the flow channel, as observed in Figure 12.
The Bejan ratio signifies the dominating viscous effect over heat transfer irreversibility at
the core region of the flow channel, while irreversibility from heat transfer is more at the
walls as seen in Figure 13. The bifurcation study in Figure 14a,b shows the variation of the
Nusselt number with the Frank–Kameneskii parameter. The reaction exponent, m, has a
stabilizing effect on third-grade fluid’s thermal stability.

 
Figure 10. Effect of Hartmann number on flow velocity.
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Figure 11. Effect of Hartmann number on fluid temperature.

 
Figure 12. Effect of Hartmann number on entropy profile.

 
Figure 13. Effect of Hartmann number on Bejan profile.

76



Mathematics 2023, 11, 1882

 
 

(a) (b) 

c c

Figure 14. (a)-Bifurcation for bimolecular reaction. (b)-Bifurcation for Arrhenius kinetics.

5. Conclusions

In this work, numerical simulations have been conducted to study the heat irre-
versibility inherent in the steady flow of hydromagnetic third-grade fluid through a porous
medium with temperature-dependent porous permeability and electrical conductivity. The
spectral collocation method solved the dimensionless nonlinear equations and validated
the results using the shooting Runge–Kutta method. The agreement between the two
numerical results suggests the accuracy of the two numerical methods in handling the
coupled nonlinear boundary-value problem. The significant contributions to knowledge
from this study are:

i. The effect of the increasing values of temperature-dependent porous permeability
in the present study reveal that it stabilizes the flow and elevates both velocity and
temperature while encouraging entropy generation;

ii. The influence of rising temperature-dependent electrical conductivity parameters
destabilizes the flow, lowering both flow and temperature peaks while discouraging
entropy generation in the flow field.
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Abstract: This paper discusses the development of two different bi-phase flows. Fourth-grade fluid
exhibiting the non-Newtonian fluid nature is taken as the base liquid. Two-phase suspension is
obtained by using the spherically homogeneous metallic particle. Owing to the intense application
of mechanical and chemical multiphase flows through curved and bent configurations effectively
transforms the flow dynamics of the fluid. Differential equations for electro-osmotically driven fluid
are modeled and solved with the help of the regular perturbation method. The obtained theoretical
solution is further compared with the ones obtained by using two different numerical techniques and
found to be in full agreement.

Keywords: fourth-grade fluid; homogeneous; configurations; perturbation method suspension

MSC: 35Q35

1. Introduction

In various applications, the flow of non-Newtonian fluids (such as blood, greases,
drilling muds, and suspension, etc.) cannot be expressed by the classical Navier–Stokes
theory, and these fluids are categorized as tangent hyperbolic fluids, power-law fluids,
generalized Newtonian fluids, Ellis fluids, Williamson fluids, Burgers fluids, Johnson–
Segalman fluids, Sisko fluid model, Eyring–Powell fluid, third grade fluid, etc. Due to
complex rheological properties and behavior, the fourth-grade fluid [1] is a special type of
non-Newtonian fluid that describe the shear thinning and shear thickening phenomena
which cannot be expressed by the classical Navier–Stokes equations. The applications
of fourth-grade fluids in industry, petroleum and food manufacturing, etc., have signifi-
cant involvement of diffusion reaction [2] and thermal transports in parallel flows. The
constitutive relation [3] of fourth-grade fluid is more complex as compared to second-
and third-grade fluids due to more material parameters. So, the study of such highly
viscous fluids is hard to model and predict the flow properties, due to scores of parameters.
Salawu et al. [4] reported important results on fourth-grade fluid. The investigation is
carried out for a parallel flow that obeys the fundamentals of Couette flow mechanism. The
numerical results are reached via finite semi-discretization difference method.

Fourth-grade fluid is treated as biological flow in [5] in the curved artery channel
by Khan et al. with the help of numerical technique. An approximate study of circular
flows with temperature-dependent viscosity of fourth-grade fluid through is the focal

Mathematics 2023, 11, 1832. https://doi.org/10.3390/math11081832 https://www.mdpi.com/journal/mathematics
79



Mathematics 2023, 11, 1832

point of different authors in [6,7]. Aziz and Mahomed [8] present a theoretical analysis of
fourth-grade fluid over a porous plate.

The flow of bulk fluids through the membrane, porous channel, capillary tube, mi-
crochannel, or any other fluid channel under the action of the electric field applied at the
end of the conduit is termed electro-osmosis flow. The electroosmotic flow getting the
attention of researchers and authors due to its wider applications in medical science, natural
chemistry, industrial processes [9], etc. The electro-osmotic flow in non-Newtonian fluids,
namely, colloidal suspension, blood, polymeric and protein arrangements, have significant
usages. Currently, various studies on the electro-osmotic flow of non-Newtonian fluids
have been reported by researchers by considering different constitutive models such as
Eyring–Powell fluid [10], Williamson fluid [11], Casson fluid [12], Sutterby fluid [13], gener-
alized Newtonian fluid [14], fractional Maxwell fluid [15], Walters’-B fluid [16], Phan Thien
Tanner fluid [17], Power-law fluid [18], Oldroyd-B fluid [19] and third-grade fluid [20], etc.

In addition to the above literature, close analysis of some recent studies on the mul-
tiphase flow of fourth-grade fluid under the action of the electric field in two complex
configurations, namely, convergent and divergent channels, is worthful investigation. The
analysis of this study is a significant contribution to understanding the behavior of the
multiphase flow of fourth-grade fluid in terms of physical and mathematical point of view.
The modeled highly nonlinear differential equations are dealt with “Perturbation technique”
to achieve an approximate solution.

2. Development of a Mathematical Model of Multiphase Flow of Non-Newtonian
Fluid with Electro-Osmotic Phenomena

Consider a two-phase flow of fourth-grade fluid through channels as shown in
Figures 1 and 2, respectively. The configuration of convergent [21] and divergent [22]
channels can be defined as:

Geometry 1:

H(x) =

{
a − b

√
1 − cos

(
πx
λ

)
; When 11λ

7 < x < 33λ
7

0.5a; Othwewise
, (1)

Geometry 2:

H(x) =
{

a − b sin2(πx
λ

)
When 11λ

7 < x < 33λ
7 ,

0.5a; Othwewise.
(2)

If Vv f =
[
uv f (x, y), 0, 0

]
and Vvp =

[
uvp(x, y), 0, 0

]
denote the velocity of fluid and

particle phase, respectively. The governing equations for this dissemination of fluid and
particle phases are:

 
Figure 1. Convergent geometry.
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Figure 2. Divergent geometry.

2.1. Flow Equations for Fluid Phase

The equation of continuity which governs the conservation of mass of the flow is

∇.Vv f = 0, (3)

similarly, the conservation of momentum [23,24] for the fluid phase of the considered
problem is given as

ρ f (1 − C)
D Vv f

D t
= −(1 − C)∇.p + (1 − C)∇.T − SC

(
Vvp − Vv f

)
+ J × B + gρ f . (4)

The mathematical expression of “T” is defined as [2]

T = S1 + S2 + S3 + S4, (5)

S1 = μA1, (6)

S2 = α1A2 + α1A2
1, (7)

S3 = β1A3 + β2(A2A1 + A1A2) + β3(trA2
1)A1, (8)

S4 = γ1A4 + γ2(A3A1 + A1A3) + γ3A2
2 + γ4(A2A2

1 + A2
1A2)

+γ5(trA2)A2 + γ6(trA2)A
2
1 + γ7(trA3) + γ8(tr(A2A1))A1,

(9)

A1 = L + LT, (10)

An =
dAn−1

dt
+ An−1L + LTAn−1, n>2, (11)

L = ∇Vv f . (12)

In the above one can identify

J = σ(E + Vv f × B), (13)

The equation of continuity and momentum equations are defined in the following manner

∇.Vvp = 0, (14)
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ρpC
D Vvp

D t
= −C∇.p +−SC

(
Vvp − Vv f

)
. (15)

It is presumed that the velocity of the bi-phase fluid is zero and the particle concen-
tration remains the same during the study, so the Equations (3), (4), (13) and (15) in the
component’s forms can be written as

∂uv f

∂y
= 0. (16)

The momentum of the fluid phase can be obtained as

ρ f (1 − C)
(

∂uv f
∂t + uv f

∂uv f

∂
�
x

+ vv f
∂uv f
∂y

)
= −(1 − C) ∂p

∂x+

(1 − C)

{
μ

∂2uv f
∂y2 + 6β

(
∂uv f
∂y

)2
(

∂2uv f
∂y2

)}
− SC

(
uvp − uv f

)
+
(

∂2φ
∂x2 + ∂2φ

∂y2

)→
E x, where β = β2 + β3.

(17)

The overhead expression has a lot of significance because if β3 is zero, the Equation (17)
turns into a momentum equation for third-grade fluid and if both are equal to zero, then
the resulting equation is also a momentum equation of second-grade Newtonian fluids and
if both are not turned into zero the result will be momentum equation of four grade.

ρ f (1 − C)
(

∂vv f
∂t + uv f

∂vv f
∂x + vv f

∂vv f
∂y

)
= −(1 − C) ∂p

∂y + (1 − C){
α
(

∂uv f
∂y

)(
∂2uv f
∂y2

)
+ γ

(
∂uv f
∂y

)3
(

∂2uv f
∂y2

)}
− SC

(
vvp − vv f

)
.

(18)

where α = 4α1 + 2α2 and γ = 16(γ3 + γ4 + γ5 + 0.5γ6).

2.2. Governing Equations (Particle Phase)

The Equations (14) and (15) can be expressed in the following form as

∂uvp

∂y
= 0. (19)

ρ f C
(

∂uvp

∂t
+ uvp

∂uvp

∂x
+ vvp

∂uvp

∂y

)
= −C

∂p
∂x

+ SC
(

uvp − uv f

)
. (20)

ρ f C
(

∂vvp

∂t
+ uvp

∂vvp

∂x
+ vvp

∂vvp

∂y

)
= −C

∂p
∂y

+ SC
(

vvp − vv f

)
. (21)

For steady flow Equations (17), (18), (20) and (21) gained the shape{
μ

∂2uv f

∂y2 + 6β

(
∂uv f

∂y

)2
(

∂2uv f

∂y2

)}
− 1

(1 − C)

∂p
∂x

+
1

(1 − C)

(
∂2φ

∂x2 +
∂2φ

∂y2

)→
E x = 0, (22)

∂p
∂y

−
{

α

(
∂uv f

∂y

)(
∂2uv f

∂y2

)
+ γ

(
∂uv f

∂y

)3
(

∂2uv f

∂y2

)}
= 0, (23)

C
∂p
∂x

= SC
(

uvp − uv f

)
. (24)

Equation (23), is solved for modified pressure, which gives

∂p
∂y

= 0. (25)
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The boundary conditions are given as

uv f (y) = uv fat wall
; When y = −H(x), (26)

uv f (y) = uv fat wall
; When y = H(x). (27)

3. Dimensionalization of the Problem

To predict the contribution of the most significant variables and parameters, it is
mandatory to reduce or accumulate certain quantities which are of the least importance.
Therefore, the following dimensionless transformation is of effective use.

x = x
L , y = y

L , uv f =
uv f
u∗ , uvp =

uvp
u∗ , ρrel =

ρ f
ρp

,

p = pL
μsu∗ , � = βu∗2

μL2 , M = BoL
√

σ
μ .

⎫⎬⎭. (28)

The dimensionless form of Equations (20)–(27) is achieved by using the expression
defined in Equation (28) in the following form as (bars are omitted)

∂2uv f

∂y2 + 6�

(
∂uv f

∂y

)2
(

∂2uv f

∂y2

)
− M2

(1 − C)
uv f − 1

(1 − C)
∂p
∂x

+

(
m2UHS
(1 − C)

)
cosh(mx)
cosh(mh)

= 0, (29)

uvp = uv f − m2
∂p
∂x

, (30)

uv f (y) = 0; When y = −h(x), (31)

uv f (y) = 0; When y = h(x). (32)

Similarly, the dimensionless form of the relations described in Equations (1) and (2)
are narrated as

h(x) =
{

a − β√1 − cos(πx); When 0.5 < x < 4.5,
0.5; Othwewise.

(33)

h(x) =
{

1 − β sin2(πx) When 0.5 < x < 4.5,
0.5; Othwewise.

(34)

We assume that
dp
dx

= P. (35)

Then, Equations (29) and (30) become,

∂2uv f

∂y2 + 6�

(
∂uv f

∂y

)2
(

∂2uv f

∂y2

)
− M2

(1 − C)
uv f − 1

(1 − C)
P +

(
m2UHS
(1 − C)

)
cosh(mx)
cosh(mh)

= 0, (36)

uvp = uv f − m2P. (37)

4. Perturbation Solution

To find the approximate analytical solution to Equation (36) can easily be achieved
due to the nonlinear term. Therefore, the most effective and reliable solution with the least
margin of error can be obtained if the perturbation technique is applied. For this purpose,
we assume that:

uv f = uv f0 + εuv f1 + ε2uv f2 + o(ε3), (38)
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and more suppose that,
� = λε. (39)

The above equation ε is known as the perturbation parameter. In view of Equations (38)
and (39), Equation (36) becomes

∂2
(

uv f0
+εuv f1

+ε2uv f2
)

∂y2 + 6λε

(
∂(uv f0

+εuv f1
+ε2uv f2

)

∂y

)2(
∂2(uv f0

+εuv f1
+ε2uv f2

)

∂y2

)
−M2(uv f0

+εuv f1
+ε2uv f2

)

(1−C)
− 1

(1−C)
P +

(
m2UHS
(1−C)

)
cosh(mx)
cosh(mh) = 0.

(40)

Equating and determining the equation of each order of ε0, ε1 and ε2:

ε0 :
∂2uv f0

∂(y)2 − M2

(1 − C)
uv f0 −

1
(1 − C)

P +

(
m2UHS
(1 − C)

)
cosh(mx)
cosh(mh)

= 0, (41)

uv f0(±h(x)) = 0. (42)

Similarly,

ε1 :
∂2uv f1

∂y2 + 6λ

(
∂uv f0

∂y

)2
(

∂2uv f0

∂y2

)
− M2uv f1

(1 − C)
= 0, (43)

uv f1(±h(x)) = 0, (44)

ε2 :
∂2uv f1

∂y2 + 6λ

(
∂uv f0

∂y

)[(
∂uv f0

∂y

)(
∂2uv f1

∂y2

)
+ 2

(
∂2uv f0

∂y2

)(
∂uv f1

∂y

)]
− M2uv f2

(1 − C)
= 0, (45)

uv f2(±h(x)) = 0. (46)

The solution to Equation (41) is given below

uv f0 = (a4 cosh[my] + P(a5 − a6 cosh[ya1]) + a7 cosh[ya1]). (47)

The solution to Equation (43) is given below

uv f1 =

(
a34 + a35P+
a36P2 + a37P3

)(
cosh[a1y]−
sinh[a1y]

)
+

(
a38 + a39P+
a40P2 + a41P3

)(
cosh[a1y]+
sinh[a1y]

)
+⎛⎝ a8ysinh[ya1] + a9 cosh[ya1] + a10 cosh[3ya1] + a11sinh[2ya1]

sinh[my] + a12 cosh[my](9 − 5 cosh[2ya1]) + a13 cosh[my]
sinh[ya1]

2 + a14sinh[2my]sinh[ya1] + a15 cosh[my]2 cosh[ya1]

⎞⎠
+P

⎛⎝ a16ysinh[ya1] + a17 cosh[ya1] + a18 cosh[3ya1] + a19sinh[my]
sinh[2ya1] + a20 cosh[my](9 − 5 cosh[2ya1]) + a21 cosh[my]
sinh[ya1]

2 + a22sinh[2my]sinh[ya1] + a23 cosh[my]2 cosh[ya1]

⎞⎠
+P2

⎛⎝ a24ysinh[ya1] + a25 cosh[3ya1] + a26 cosh[ya1] + a27sinh[my]
sinh[2ya1] + a28 cosh[my] cosh[2ya1] + a29 cosh[my] + a30 cosh
[my]sinh[ya1]

2

⎞⎠
+P3(a31ysinh[ya1] + a32 cosh[ya1] + a33 cosh[3ya1]).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (48)
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The solution of Equation (45) is not presented here due to lengthy expressions
that appeared after solving it. The final expression of the velocity can be obtained from
Equation (48), i.e.,

A11 = (a4 cosh[my] + P(a5 − a6 cosh[ya1]) + a7 cosh[ya1])+

�

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
a34 + a35P + a36P2 + a37P3)(cosh[a1y]− sinh[a1y])
+
(
a38 + a39P + a40P2 + a41P3)(cosh[a1y] + sinh[a1y])

+(a8ysinh[ya1] + a9 cosh[ya1] + a10 cosh[3ya1] + a11
sinh[2ya1]sinh[my] + a12 cosh[my](9 − 5 cosh[2ya1])

+a13 cosh[my]sinh[ya1]
2 + a14sinh[2my]sinh[ya1]+

a15 cosh[my]2 cosh[ya1]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(49)

A12 = P

⎛⎜⎜⎝
a16ysinh[ya1] + a17 cosh[ya1] + a18 cosh[3ya1] + a19
sinh[my]sinh[2ya1] + a20 cosh[my](9 − 5 cosh[2ya1])

+a21 cosh[my]sinh[ya1]
2 + a22sinh[2my]sinh[ya1]+

a23 cosh[my]2 cosh[ya1]

⎞⎟⎟⎠+

P2

⎛⎝ a24ysinh[ya1] + a25 cosh[3ya1] + a26 cosh[ya1] + a27
sinh[my]sinh[2ya1] + a28 cosh[my] cosh[2ya1] + a29

cosh[my] + a30 cosh[my]sinh[ya1]
2

⎞⎠+

P3(a31ysinh[ya1] + a32 cosh[ya1] + a33 cosh[3ya1])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (50)

uv f = A + B+ . . . (51)

Similarly, we can get the expression for the velocity of the particulate phase uvp.

up = (a4 cosh[my] + P(a5 − a6 cosh[ya1]) + a7 cosh[ya1])+

�

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(
a34 + a35P + a36P2 + a37P3)(cosh[a1y]− sinh[a1y])
+
(
a38 + a39P + a40P2 + a41P3)(cosh[a1y] + sinh[a1y])

+(a8ysinh[ya1] + a9 cosh[ya1] + a10 cosh[3ya1] + a11
sinh[2ya1]sinh[my] + a12 cosh[my](9 − 5 cosh[2ya1])

+a13 cosh[my]sinh[ya1]
2 + a14sinh[2my]sinh[ya1]+

a15 cosh[my]2 cosh[ya1]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

P

⎛⎜⎜⎝
a16ysinh[ya1] + a17 cosh[ya1] + a18 cosh[3ya1] + a19
sinh[my]sinh[2ya1] + a20 cosh[my](9 − 5 cosh[2ya1])

+a21 cosh[my]sinh[ya1]
2 + a22sinh[2my]sinh[ya1]+

a23 cosh[my]2 cosh[ya1]

⎞⎟⎟⎠+

P2

⎛⎝ a24ysinh[ya1] + a25 cosh[3ya1] + a26 cosh[ya1] + a27
sinh[my]sinh[2ya1] + a28 cosh[my] cosh[2ya1] + a29

cosh[my] + a30 cosh[my]sinh[ya1]
2

⎞⎠+

P3(a31ysinh[ya1] + a32 cosh[ya1] + a33 cosh[3ya1])−
( μs

aδλS
)

P + . . .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(52)

The volumetric flow rates (fluid and particle phases) can be determined from the
following expressions:

Q f =
∫ h

0
u f dy, (53)

Qp =
∫ h

0
updy. (54)

The mathematical expression for the total volumetric flow rate is defined as

Q = Q f + Qp. (55)

The expression for pressure P can be obtained by solving the above Equation (55).
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5. Comparative Analysis

The comparison between numerical and perturbation solutions is displayed in Table 1.
The perturbation solution is obtained in second order while the numerical solution is obtained
through the spectral collocation method. In this method, we discretize the derivatives by
using the Jacobi orthogonal polynomials or Chebyshev. The nonlinearity is handled through
the Newton–Raphson method and finite difference approximation of the Jacobean (discrete
Jacobean). Both solutions are obtained in convergent geometry. For this comparison, we
obtained the numerical values of fluid velocity and particle velocity against the variation of
the Hartmann number. From Table 1, it can be observed that both solutions are well-matched
with each other. To validate the numerical results, we used another scheme, namely, the
shooting method, and noted that both numerical results are accurate, as listed in Table 2.

Table 1. Absolute error between perturbation and numerical solutions.

Perturbation Solution Numerical Solution Absolute Error

M uvf uvp uvf uvp uvf uvp

1.0 1.45064 1.45089 1.45198 1.45001 0.134% 0.088%

2.0 1.35730 1.35744 1.35598 1.35671 0.132% 0.073%

3.0 1.21666 1.21680 1.21549 1.21612 0.117% 0.068%

4.0 1.04626 1.04638 1.04519 1.04590 0.107% 0.048%

5.0 0.86436 0.86446 0.86332 0.86399 0.104% 0.047%

Table 2. Absolute error between shooting method and pseudo-spectral collocation method.

Pseudo-Spectral Collocation Method Shooting Method

C uvf uvp uvf uvp

0.1 1.41085 1.41110 1.41090 1.41001

0.2 1.33491 1.33506 1.33231 1.33325

0.3 1.23917 1.23932 1.23523 1.23567

6. Results and Discussion

A comprehensive parametric study is carried out in this section. The momentum of the
particulate flow is predicted via the change in the numerical values of fourth-grade parameter
“�”, electro-osmotic “m”, particle concentration “C” and volumetric flow rate “Q”. Because
of the diverse shapes and layout, the velocity acts entirely differently. In Figures 3 and 4, the
graphs of the most significant parameter �, the fourth-grade parameter are drawn against
the different values � in both channels. It is of great interest that the velocity of both phases
inclines with the respect to the variation in the dimensionless quantity. However, both
geometries affect the flow quite differently. This opposite impression of the geometry of the
multiphase flow can easily be apprehended due to Bernoulli’s principle of fluid dynamics.

The variation of the electro-osmotic parameter “m” on fluid and particle phases is shown
in Figures 5 and 6. It can be viewed from the plotted graphs that the electro-osmotic parameter
inversely impacts the velocity profile of the fluid and particle phases, respectively. This inverse
relationship introduces a force of hindrance across the flow. Therefore, the momentum of the
fluid and particles diminishes gradually. Variation in the concentration of metallic particles
is depicted in Figures 7 and 8. Unlike previous graphs, the impact of C is quite different, all
depending on the configuration of the geometry through which the bi-phase suspension is
transported. The momentum of both phases declines by opting for the convergent channel.
On the other hand, there is a tremendous enhancement in the velocity of fluid and particle
phases when the channel is considered to be the divergent one.

The volumetric flow rate is also a pivotal parameter of this analytic study. In the most
recent decade, when every appliance has reduced in size, the need of the hour is to conduct
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such research where micro-size geometries and channels are considered; so, in this regard,
the volumetric flow rate is especially important to measure. The volumetric flow rate is also
known as the rate of fluid flow or volume velocity. This is the volume of the fluid which is
passing through the considered geometry per unit of time. Its units in system international
(SI) are cubic meter/second; however, cubic centimeters per minute is also in practice. The
volumetric flow rate is mathematically defined as

Q =

.

V = Lim
Δt→→0

ΔV
Δt

=
dV
dt

(56)

and this is the scalar quantity. In Figures 9 and 10, the graphs of the volumetric flow rate are
plotted against the different values of the parameters Q for both the phases in convergent and
divergent channels. As the values of Q enhanced, the velocity profile of fluidic and particulate
phases increased in convergent and divergent channels. The same behavior of the graph
has been seen in both phases and the simultaneous effect is observed for diversely shaped
convergent and divergent channels. This is because when the volumetric flow rate is increased,
the velocity in the geometries experienced pressure and the velocity is enhanced due to extra
pressure of the flowing fluid, the fluid entering the channel and gaining high velocity.
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Figure 3. Impact of fourth-grade parameter on fluid velocity.

87



Mathematics 2023, 11, 1832

x

u
P
a
r
t
i
c
l
e

x

u
P
a
r
t
i
c
l
e

Figure 4. Impact of the four-grade parameter on particle velocity.
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Figure 5. Impact of electro-osmotic parameters on fluid velocity.
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Figure 6. Impact of electro-osmotic parameters on particle velocity.
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Figure 7. Impact of particle concentration on fluid velocity.

91



Mathematics 2023, 11, 1832

C

C

C

x

u
P
a
r
t
i
c
l
e

C

C

C

x

u
P
a
r
t
i
c
l
e

Figure 8. Impact of particle concentration on particle velocity.
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Figure 9. Impact of volumetric flow rate on fluid velocity.
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Figure 10. Impact of volumetric flow rate on particle velocity.
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7. Concluding Remarks

A closed-form pronouncement for the velocity dispersal of utterly evolve flow of
hafnium particles and fourth-grade base fluid adjournment via two different geometries
diverse in shape are dispensed. The impact of germane parameters such as fourth-grade
parameters, electro-osmotic parameter, the concentration of nanoparticles and volumetric
flow rate in a couple of channels such as convergent and divergent flow has been exhibited
and inspected graphically. The most noteworthy remarks itemized are:

� An increase in the behavior of both particle and fluid phase velocities is viewed in conver-
gent and divergent geometries when enhancement is made in the fourth-grade parameter;

� A remarkable decrease in the velocity profiles of fluid and particle phases in both
channels is noted when the value of the electro-osmotic parameter is enhanced;

� The credible incline is measured in the velocity profile of both phases in the divergent
channel when the value of particle concentration is increased, and a very dubious
decline has been seen in the velocities of both phases in the convergent channel;

� When the volumetric flow rate upraised in both channels the velocity profile of fluid
and particle phases improved as the volumetric flow rate more in velocities.

Author Contributions: Conceptualization, M.N., M.M.G., M.R.G. and M.K.H.; Methodology, N.F.
and M.M.A.L.; Software, M.N. and M.K.H.; Validation, N.F., M.N., M.M.G., M.R.G. and M.K.H.;
Formal analysis, M.M.A.L.; Investigation, N.F. and M.R.G.; Data curation, M.M.A.L.; Writing—
original draft, M.N., M.M.G. and M.K.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by [Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia] grant number [PNURSP2023R152].

Data Availability Statement: The datasets used and/or analyzed during the current study are
avail-able from the corresponding author upon reasonable request.

Acknowledgments: The authors would like to acknowledge Princess Nourah bint Abdulrahman
University Researchers Supporting Project number (PNURSP2023R152), Princess Nourah bint Abdul-
rahman University, Riyadh, Saudi Arabia for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Islam, S.; Bano, Z.; Siddique, I.; Siddiqui, A. The optimal solution for the flow of a fourth-grade fluid with partial slip. Comput.
Math. Appl. 2011, 61, 1507–1516. [CrossRef]

2. Hayat, T.; Noreen, S. Peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field. Comptes Rendus
Mécanique 2010, 338, 518–528. [CrossRef]

3. Sajid, M.; Hayat, T.; Asghar, S. On the analytic solution of the steady flow of a fourth grade fluid. Phys. Lett. A 2006, 355, 18–26.
[CrossRef]

4. Salawu, S.; Fatunmbi, E.; Ayanshola, A. On the diffusion reaction of fourth-grade hydromagnetic fluid flow and thermal criticality
in a plane Couette medium. Results Eng. 2020, 8, 100169. [CrossRef]

5. Khan, A.A.; Masood, F.; Ellahi, R.; Bhatti, M. Mass transport on chemicalized fourth-grade fluid propagating peristaltically
through a curved channel with magnetic effects. J. Mol. Liq. 2018, 258, 186–195. [CrossRef]

6. Sobamowo, M.; Akinshilo, A. Analysis of flow, heat transfer and entropy generation in a pipe conveying fourth grade fluid with
temperature dependent viscosities and internal heat generation. J. Mol. Liq. 2017, 241, 188–198. [CrossRef]

7. Nadeem, S.; Ali, M. Analytical solutions for pipe flow of a fourth grade fluid with Reynold and Vogel’s models of viscosities.
Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2073–2090. [CrossRef]

8. Aziz, T.; Mahomed, F. Reductions and solutions for the unsteady flow of a fourth grade fluid on a porous plate. Appl. Math.
Comput. 2013, 219, 9187–9195. [CrossRef]

9. Yan, S.-R.; Toghraie, D.; Abdulkareem, L.A.; Alizadeh, A.; Barnoon, P.; Afrand, M. The rheological behavior of MWCNTs–
ZnO/Water–Ethylene glycol hybrid non-Newtonian nanofluid by using of an experimental investigation. J. Mater. Res. Technol.
2020, 9, 8401–8406. [CrossRef]

10. Palencia, J.L.D.; Rahman, S.U.; Redondo, A.N. Regularity and reduction to a Hamilton-Jacobi equation for a MHD Eyring-Powell
fluid. Alex. Eng. J. 2022, 61, 12283–12291. [CrossRef]

95



Mathematics 2023, 11, 1832

11. Subbarayudu, K.; Suneetha, S.; Ankireddy, B. The assessment of time dependent flow of Williamson fluid with radiative blood
flow against a wedge. Propuls. Power Res. 2020, 9, 87–99. [CrossRef]

12. Majeed, A.H.; Mahmood, R.; Shahzad, H.; Pasha, A.A.; Raizah, Z.; Hosham, H.A.; Reddy, D.S.K.; Hafeez, M.B. Heat and mass
transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: Higher-order FEM computations. Case Stud.
Therm. Eng. 2023, 42, 102730. [CrossRef]

13. Asfour, H.A.H.; Ibrahim, M.G. Numerical simulations and shear stress behavioral for electro-osmotic blood flow of magneto
Sutterby nanofluid with modified Darcy’s law. Therm. Sci. Eng. Prog. 2023, 37, 101599. [CrossRef]

14. Asghar, Z.; Waqas, M.; Gondal, M.A.; Khan, W.A. Electro-osmotically driven generalized Newtonian blood flow in a divergent
micro-channel. Alex. Eng. J. 2022, 61, 4519–4528. [CrossRef]

15. Wang, X.; Xu, H.; Qi, H. Numerical analysis for rotating electro-osmotic flow of fractional Maxwell fluids. Appl. Math. Lett. 2020,
103, 106179. [CrossRef]

16. Ali, F.; Iftikhar, M.; Khan, I.; Sheikh, N.A.; Aamina; Nisar, K.S. Time fractional analysis of electro-osmotic flow of Walters’s-B fluid
with time-dependent temperature and concentration. Alex. Eng. J. 2019, 59, 25–38. [CrossRef]

17. Trivedi, M.; Maurya, S.; Nirmalkar, N. Numerical simulations for electro-osmotic flow of PTT fluids in diverging microchannel.
Mater. Today Proc. 2022, 57, 1765–1769. [CrossRef]

18. Miao, H.; Dokhani, V.; Ma, Y.; Zhang, D. Numerical modeling of laminar and turbulent annular flows of power-law fluids in
partially blocked geometries. Results Eng. 2023, 17, 100930. [CrossRef]

19. Pan, T.-W.; Chiu, S.-H. A DLM/FD method for simulating balls settling in Oldroyd-B viscoelastic fluids. J. Comput. Phys. 2023,
484, 112071. [CrossRef]

20. Tahraoui, Y.; Cipriano, F. Optimal control of two dimensional third grade fluids. J. Math. Anal. Appl. 2023, 523, 127032. [CrossRef]
21. Mekheimer, K.S.; El Shehawey, E.F.; Elaw, A.M. Peristaltic Motion of a Particle-Fluid Suspension in a Planar Channel. Int. J. Theor.

Phys. 1998, 37, 2895–2920. [CrossRef]
22. Hussain, F.; Ellahi, R.; Zeeshan, A. Mathematical Models of Electro-Magnetohydrodynamic Multiphase Flows Synthesis with

Nano-Sized Hafnium Particles. Appl. Sci. 2018, 8, 275. [CrossRef]
23. Ellahi, R.; Zeeshan, A.; Hussain, F.; Abbas, T. Thermally Charged MHD Bi-Phase Flow Coatings with Non-Newtonian Nanofluid

and Hafnium Particles along Slippery Walls. Coatings 2019, 9, 300. [CrossRef]
24. Ellahi, R.; Zeeshan, A.; Hussain, F.; Abbas, T. Two-Phase Couette Flow of Couple Stress Fluid with Temperature Dependent

Viscosity Thermally Affected by Magnetized Moving Surface. Symmetry 2019, 11, 647. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

96



Citation: Ene, R.-D.; Pop, N.;

Badarau, R. Heat and Mass Transfer

Analysis for the Viscous Fluid Flow:

Dual Approximate Solutions.

Mathematics 2023, 11, 1648. https://

doi.org/10.3390/math11071648

Academic Editor: Ramoshweu

Solomon Lebelo

Received: 15 February 2023

Revised: 11 March 2023

Accepted: 20 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Heat and Mass Transfer Analysis for the Viscous Fluid Flow:
Dual Approximate Solutions

Remus-Daniel Ene 1,†, Nicolina Pop 2,*,† and Rodica Badarau 3,†

1 Department of Mathematics, Politehnica University of Timisoara, 2 Victoria Square,
300006 Timisoara, Romania

2 Department of Physical Foundations of Engineering, Politehnica University of Timisoara, 2 Vasile Parvan
Blvd, 300223 Timisoara, Romania

3 Department of Mechanical Machines, Equipment and Transportation, Politehnica University of Timisoara,
1 Mihai Viteazul Blvd., 300222 Timisoara, Romania

* Correspondence: nicolina.pop@upt.ro
† These authors contributed equally to this work.

Abstract: The aim of this paper is to investigate effective and accurate dual analytic approximate
solutions, while taking into account thermal effects. The heat and mass transfer problem in a
viscous fluid flow are analytically explored by using the modified Optimal Homotopy Asymptotic
Method (OHAM). By using similarity transformations, the motion equations are reduced to a set
of nonlinear ordinary differential equations. Based on the numerical results, it was revealed that
there are dual analytic approximate solutions within the mass transfer problem. The variation of
the physical parameters (the Prandtl number and the temperature distribution parameter) over the
temperature profile is analytically explored and graphically depicted for the first approximate and
the corresponding dual solution, respectively. The advantage of the proposed method arises from
using only one iteration for obtaining the dual analytical solutions. The presented results are effective,
accurate and in good agreement with the corresponding numerical results with relevance for further
engineering applications of heat and mass transfer problems.

Keywords: Optimal Homotopy Asymptotic Method; boundary layer flow; viscous fluid flow; heat
transfer; exponential stretching sheet

MSC: 65L60; 76A10; 76D10; 76D05; 76M55

1. Introduction

Boundary layer behaviour over a moving continuous solid surface can be observed
in many important technological processes and involves thermal effects, which show the
characteristics of non-Newtonian fluids.

An important effect is viscous dissipation when the velocity gradient is high. The
analysis of the temperature field as modified by the generation or absorption of heat
in moving fluids is relevant for some physical problems, as presented by Sparrow and
Cess [1], Topper [2], and Khashi et al. [3]. Further, the contributions of the suction parameter,
Prandtl number, the heat source/sink parameter and the Eckert number to the heat transfer
characteristics are found to be quite significant in [4].

In recent years, many the analytical methods have attempted to provide the solutions
of different nonlinear models involving thermal effects.

Xu [5] analytically solved the mixed convection flow of a hybrid nanofluid in an
inclined channel with top wall-slip due to wall stripe and constant heat flux conditions.
Hayat et al. [6] analytically examined the melting phenomenon in the two-dimensional
(2D) flow of fourth-grade material over a stretching surface, while taking into account the
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existence of the Cattaneo–Christov (C-C) heat flux. The heat and mass transfer charac-
teristics for a self-similarity boundary layer of an exponentially stretching surface were
investigated by [7] using the Homotopy Analysis Method (HAM). This method is per-
formed by several researchers, such as Khan et al. [8], Khan et al. [9], Khan et al. [10],
Khan et al. [11], Zuhra et al. [12], Bilal et al. [13], and Shehzad et al. [14], who examine
the thermal effect. Alizadeh et al. [15] solved the transient flow and heat transfer of a
non-newtonian fluid (Casson fluid) between parallel disks in the presence of an external
magnetic field semi-analytically using Least Square Method. Huaxing et al. [16] combined
the effects of molecular and thermal diffusion processes by means of a generalized integral
transform technique (GITT).

Some methods provide numerical solutions, such as those of Nadeem et al. [17], Ab-
basi et al. [18], Xie et al. [19], Abdelaziz et al. [20], Muhammad et al. [21], Mabood et al. [22],
and Eid et al. [23], who numerically analyzed the flow and heat transfer resulting from an
exponentially decreased sheet of hybrid nanoparticles, using the Runge–Kutta–Fehlberg
method (RKF45) with the shooting technique. Boumaiza et al. [24] numerically investi-
gated the effects of variable thermal conductivity in mixed convection in the presence of
an external magnetic field using the Runge–Kutta–Fehlberg method (RKF) based on the
shooting technique, and analytically by using the differential transform method (DTM).
Gireesha et al. [25] numerically explored the thermal performance of a fully wet stretch-
ing/shrinking longitudinal fin with an exponential profile. Waini et al. [26] numerically
solved the magnetohydrodynamic (MHD) mixed convection flow by considering thermal
radiation. Tang et al. [27] applied some parallel finite element (FE) iterative methods for
stationary incompressible magnetohydrodynamics (MHD).

For the analysis of many physical phenomena, numerical schemes or analytical/
geometrical methods are applied in [28–35].

The Optimal Homotopy Asymptotic Method (OHAM) developed by Marinca
et al. [36–41], and successfully applied to solve nonlinear equations arising in heat trans-
fer [42–49], is used in the present paper to obtain effective and accurate dual analytic
approximate solutions while taking into account the thermal effects.

The advantages of this procedure in comparison with HAM include the independence
of small or large parameters, and the ease of optimally controlling the convergence of the
approximate solutions.

Based on the mathematical model development in [7], in the present work, the OHAM
technique is used to obtain effective and accurate dual analytic approximate solutions, while
taking into account the thermal effects. Therefore, the novelty of our work is represented
by the dual solutions of the mathematical model with the OHAM technique using only
one iteration in comparison with [7], where only one solution is presented with the HAM
method. Furthermore, ref. [7] did not elaborate on the possibility of dual solutions.

The paper is organized as follows: The Introduction is followed by a brief description
of the two-dimensional flow of an incompressible viscous fluid passing a continuous
stretching surface, taking into account the thermal effect. The steps of the OHAM technique
are presented in Section 3. Section 4 presents the heat and mass transfer problem by the
modified OHAM. Our results and some interesting behaviours of the effects of nonlinear
stretching on flow and heat transfer characteristics are discussed in Section 5. The paper
ends with conclusions.

2. Equations of Motion

In this section, the two-dimensional flow of an incompressible viscous fluid passes a
continuous stretching surface in the half-plane, y > 0, taking into account the thermal effect.
Additionally, the occurrence of the flow without suction/blowing and without partial slip
is explored.

The schematic of the physical model is presented in Figure 1.
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Figure 1. Schematic diagram of the physical model.

For the constant pressure at the boundary layer, the continuity, momentum and
temperature equations governing the fluid flow are given by [7]:

∂u
∂x + ∂v

∂y = 0,

ρ ·
(

u ∂u
∂x + v ∂u

∂y

)
= μ ∂2u

∂y2 ,
(1)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 . (2)

The physical initial/boundary conditions can be written in the following form [7]:

y = 0 : u = u0 · e
x
l , v = vw , T = T∞ + T0 · e

k·x
2l ,

y → ∞ : u → U∞ , T → T∞ .
(3)

By means of the similarity transformations,

η =
√

u0·ρ·l
2μ · y

l · e(k·x)/(2l) , u = u0ex/l f ′(η),

v = − μ
ρl ·

√
u0·ρ·l

2μ · ex/(2l)[ f (η) + η · f ′(η)],

T = T∞ + T0 · e(k·x)/(2l)θ(η)

(4)

and by inserting Equation (4) into Equations (1)–(3), we obtain:

f ′′′ + f f ′′ − 2
(

f ′
)2

= 0, (5)

θ′′ + pr
(

f θ′ − k · f ′θ
)
= 0 . (6)
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with the initial/boundary conditions:

f (0) = 0 , f ′(0) = 1 , θ(0) = 1 ,

f ′ → 0 , θ → 0 for η → ∞,
(7)

where the prime denotes differentiation with respect to η.

3. The Modified Optimal Homotopy Asymptotic Method (OHAM)

The steps of the modified OHAM technique [36] are presented in detail below:

(i) The nonlinear differential equation has the following general form:

Lϕ

(
ϕ(η)

)
+Nϕ

(
ϕ(η)

)
= 0, (8)

under the boundary/initial conditions

Bϕ

(
ϕ(η),

dϕ(η)

dη

)
= 0, (9)

where Lϕ is an arbitrary linear operator, Nϕ is the corresponding nonlinear operator
and Bϕ is an operator describing the boundary conditions.

(ii) The homotopic relation is given by:

Hϕ

[
Lϕ

(
ϕ(η, p)

)
, H(η, Ci), Nϕ

(
ϕ(η, p)

)]
=

= Lϕ

(
ϕ0(η)

)
+ G0(η) + p

[
Lϕ

(
ϕ1(η, Ci)

)
− H(η, Ci)Nϕ

(
ϕ0(η)

)]
,

(10)

where G0(η) is a given continuous function, p ∈ [0, 1] is the embedding parameter
and H(η, Ci) �= 0 is an auxiliary convergence–control function depending on the
variable η and of the convergence–control parameters C1, C2, . . . , Cs, and choosing
the unknown function ϕ(η) in the following form:

ϕ(η, p) = ϕ0(η) + pϕ1(η, Ci), (11)

and by equating the coefficients of p0 and p1, respectively, we obtain:

- the zeroth-order deformation problem

Lϕ

(
ϕ0(η)

)
+ G0(η) = 0, Bϕ

(
ϕ0(η),

dϕ0(η)

dη

)
= 0, (12)

- the first-order deformation problem

Lϕ

(
ϕ1(η, Ci)

)
= H(η, Ci)Nϕ

(
ϕ0(η)

)
,

Bϕ

(
ϕ1(η, Ci),

dϕ1(η,Ci)
dη

)
= 0, i = 1, 2, . . . , s.

(13)

(iii) ϕ0(η) could be obtained by solving the linear Equation (12).
(iv) In Equation (13), the expression Nϕ has the following general form:

Nϕ(ϕ0(η)) = ∑n
i=1 hi(η)gi(η), (14)

where n is a positive integer, and hi(η) and gi(η) are known elementary functions
that depend on ϕ0(η) and on Nϕ.
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The Equation (13) is a non-homogenous differential equation.
By means of the general theory of the differential equations, the computation of the
function ϕ1(η, Ci) has the following form:

ϕ1(η, Ci) = ∑m
i=1 Hi(η, hj(η), Cj)gi(η), j = 1, . . . , s, (15)

or
ϕ1(η, Ci) = ∑m

i=1 Hi(η, gj(η), Cj)hi(η), j = 1, . . . , s,

Bϕ

(
ϕ1(η, Ci),

dϕ1(η,Ci)
dη

)
= 0 ,

(16)

where m ∈ N∗ is an arbitrary number.
The above expressions of Hi(η, hj(η), Cj) contain linear combinations of the elemen-
tary functions hj, j = 1, . . . , s and the parameters Cj, j = 1, . . . , s.

(v) By means of Equation (11) for p = 1, the first-order analytical approximate solution of
Equations (8) and (9), namely the OHAM-solution, is:

ϕ(η, Ci) = ϕ(η, 1) = ϕ0(η) + ϕ1(η, Ci). (17)

The parameters C1, C2, . . . , Cs can be optimally identified by means of various methods,
such as the Galerkin method, the collocation method, the Kantorowich method, the least
square method or the weighted residual method.

Thus, the first-order approximate solution (17) is well-determined.

4. Heat and Mass Transfer Problem

Based on a previous paper [50], the dual approximate solutions f̄ (η) for Equation (5)
are established.

The skin-friction coefficient is f̄ ′′(0) = −1.2818085481 for the first solution and
f̄ ′′(0) = −1.2916563038 for the corresponding dual solution, respectively.

Using the same modified OHAM procedure, the approximate solutions, denoted by θ̄
of Equations (6) and (7) (for the unknown function θ), were obtained.

The expression of the linear operator Lθ(η) could be:

Lθ(η) = θ′′ + K1θ′, (18)

where K1 > 0 is an unknown parameter at this moment.
From Equation (6), the nonlinear operator Nθ corresponding to the unknown function

θ becomes:

Nθ(η) = −K1θ′ + pr
(

f θ′ − k · f ′θ
)
. (19)

There are a number of possibilities to choose from for the known function G0(η),
including the following:

G0(η) = (a0 + a1η + a2η2) · e−K2η , (20)

or
G0(η) = (a0 + a1η + a2η2 + a3η3) · e−K2η ,

or
G0(η) = (a0 + a1η) · e−K2η + (b0 + b1η + b2η2) · e−2·K2η ,

or
G0(η) = (a0 + a1η + a2η2) · e−K2η + (b0 + b1η + b2η2) · e−K3η ,

and so on.
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4.1. The Zeroth-Order Deformation Problem

Choosing for G(η) the expression given by Equation (20), Equation (12) becomes:

θ′′0 + K1θ′0 + (a0 + a1η + a2η2) · e−K2η = 0, θ0(0) = 1, θ0(∞) = 0 (21)

with the solution

θ0(η) = (1 − b0)e−K1η + (b0 + b1η + b2η2) · e−K2η , (22)

where b0, b1, b2 depend on a0, a1, a2, K1, K2 and will be optimally identified.

4.2. The First-Order Deformation Problem

Taking into account the function θ0(η) (22), the nonlinear operator Nθ0(η) from Equa-
tion (19) is:

Nθ0(η) = m0e−K1η + m1e−(K+K1)η+

+(n0 + n1η + n2η2) · e−K2η + (p0 + p1η + p2η2) · e−(K+K2)η ,
(23)

where the unknown convergence-control parameters m0, m1, n0, n1, n2, p0, p1, p2, K1, K2
will be optimally identified and they depend on b0, b1, b2, K (K = −1.1041868797, for the
first solution and K = −3.2611576654, for the corresponding dual solution, respectively [50])
and the physical parameters pr, k, respectively.

The comparison between the Equations (14) and (23) yields:

h∗1(η) = m0, g∗1(η) = e−K1η ,

h∗2(η) = m1, g∗2(η) = e−(K+K1)η ,

h∗3(η) = n0 + n1η + n2η2, g∗3(η) = e−K2η ,

h∗4(η) = p0 + p1η + p2η2, g∗4(η) = e−(K+K2)η .

(24)

For the first-order deformation problem given by Equation (13), the first approximation
θ1(η, Di), from Equation (15), becomes:

θ1(η, Di) = H∗
1 (η, Di)e−K1η + H∗

2 (η, Di)e−(K+K1)η+

+H∗
3 (η, Di)e−K2η + H∗

4 (η, Di)e−(K+K2)η ,
(25)

where Di are the unknown real numbers and the unknown auxiliary functions H∗
1 (η, Di),

. . . , H∗
4 (η, Di) could be written in the form:

H∗
1 (η, Di) = D0η, H∗

2 (η, Di) = D7, H∗
3 (η, Di) = D1 + D2η + D3η2,

H∗
4 (η, Di) = D4 + D5η + D6η2,

(26)

where D7 = −D1 − D4.
Substituting Equation (26) into Equation (25) one can obtain:

θ1(η, Di) = D0ηe−K1η + D7e−(K+K1)η+

+(D1 + D2η + D3η2)e−K2η + (D4 + D5η + D6η2)e−(K+K2)η .
(27)
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4.3. The First-Order Analytical Approximate Solution θ̄

From Equations (22) and (27) the first-order approximate solution given by Equation (17)
is obtained:

θ̄(η, Di) = θ0(η) + θ1(η, Di) = (1 − b0 + D0η)e−K1η + D7e−(K+K1)η+

+
[
b0 + D1 + (b1 + D2)η + (b2 + D3)η

2]e−K2η + (D4 + D5η + D6η2)e−(K+K2)η .
(28)

5. Results and Discussion

The accuracy of the obtained results is shown by comparison of the above obtained
approximate solutions with the corresponding numerical integration results, computed by
means of the shooting method combined with the fourth-order Runge-Kutta method using
Wolfram Mathematica 9.0 software. The goal of this section is to compute the convergence-
control parameters K1, K2, b0, b1, b2 and Di, which appear in Equation (28), by the least
square method for different values of the known parameters k and pr.

For fixed value of the parameter k and different values of the Prandtl number pr, four
approximate solutions θ̄(η) for temperature obtained from Equation (28), are presented be-
low:

(a1) the parameter k = 0.25, the Prandtl number pr = 0.5.

The first-order approximate solution is:

θ̄(η) = 6.4270002120 · e−0.5270407713·η + (1 + 1.0977591304 · η) · e−1.6312276511·η+
+(−0.4903842473 − 0.8677675300 · η − 0.0655183831 · η2) · e−1.7700844051·η+
+(−5.6792005322 − 0.5323882885 · η − 0.0584055951 · η2) · e−0.6658975254·η+
+(−0.2574154323 − 0.1860126005 · η − 0.0354344370 · η2) · e−1.7700844051·η

(29)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.4203972946 · e−0.1531387065·η + (1 + 0.0224661936 · η) · e−1.2573255862·η+
+(−0.1188278766 − 0.1003865016 · η − 0.0318369145 · η2) · e−3.1410563458·η+
+(−0.8375405893 − 0.3581935944 · η − 0.0048598683 · η2) · e−1.5705281729·η+
+(0.5359711713 − 0.0282283101 · η + 0.0012582354 · η2) · e−0.4663412931·η .

(30)

Other cases (a2–a6) for different values of the physical parameters k and pr are treated
in Appendix A.

Tables 1 and 2 provides a comparison between the OHAM approximate solutions θ̄OHAM
(temperature) given by Equations (29), (A1) and (A3) for the first solution, and the corresponding
dual approximate solutions θ̄OHAM (temperature) given by Equations (30), (A2) and (A4), and
numerical results for k = 0.15 for different values of the Prandtl number pr.

In Tables 3 and 4, respectively, the effect of the mass transfer coefficient θ′(0) ob-
tained from Equations (29), (A1), (A3) and (A5) for both approximate solutions θ̄(η) and
corresponding numerical values are presented.

In the case of the approximate solution θ̄(η) given by Equation (28), the residual from
Equation (6) becomes:

Rθ̄(η) = θ̄′′(η) + pr · ( f̄ (η)θ̄′(η)− k · f̄ ′(η)θ̄(η)
)
. (31)

The numerical values of the integral of the square residual given by Equation (31) are
shown in Table 5.
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Table 1. Comparison between the first-order approximate solutions θ given by Equations (29), (A1)
and (A3) and the corresponding numerical results for k = 0.25 and different values of the Prandtl
parameter pr (absolute errors: εθ = |θnumerical − θ̄OHAM|).

pr = 0.5 pr = 1 pr = 2.5

η θnumerical θnumerical θnumerical

0 1 1 1.
7/10 0.7489771062 0.6049297342 0.3645655020
7/5 0.5542053824 0.3451592660 0.1026555405
14/5 0.2979176957 0.1031937444 0.0055540922
7/2 0.2175152070 0.0553624933 0.0011533541
21/5 0.1586233161 0.0295455695 0.0002005939
28/5 0.0842151436 0.0083554452 −0.000042451
7 0.0446648315 0.0023547811 −0.000052955

θ̄OHAM θ̄OHAM θ̄OHAM

η given by Equation (29) given by Equation (A1) given by Equation (A3)

0 1 1 1
7/10 0.7489754987 0.6049296367 0.3645643475
7/5 0.5542074180 0.3451592418 0.1026577273
14/5 0.2979183855 0.1031938730 0.0055556103
7/2 0.2175209607 0.0553624331 0.0011544802
21/5 0.1586257234 0.0295454423 0.0001987361
28/5 0.0842093003 0.0083555208 −0.0000415991
7 0.0446671512 0.0023548325 −0.0000527572

εθ εθ εθ

η for Equation (29) for Equation (A1) for Equation (A3)

0 0 0 0
7/10 1.607455882179920 × 10−6 9.742094708720117 × 10−8 1.154538486203282 × 10−6

7/5 2.035591219806676 × 10−6 2.419851896640068 × 10−8 2.186829855102545 × 10−6

14/5 6.897985110887461 × 10−7 1.286033818881371 × 10−7 1.518143775084551 × 10−6

7/2 5.753703639754804 × 10−6 6.013523504849738 × 10−8 1.126029875720986 × 10−6

21/5 2.407287287453652 × 10−6 1.271883639693272 × 10−7 1.857745851002750 × 10−6

28/5 5.843302489164093 × 10−6 7.561148052809274 × 10−8 8.526737934899268 × 10−7

7 2.319736837258501 × 10−6 5.142016535871277 × 10−8 1.977883636694968 × 10−7

Table 2. Comparison between the corresponding dual approximate solutions θ given by Equations
(30), (A2) and (A4) and the corresponding numerical results for k = 0.25 and different values of the
Prandtl parameter pr (absolute errors: εθ = |θnumerical − θ̄OHAM|).

pr = 0.5 pr = 1 pr = 2.5

η θnumerical θnumerical θnumerical

0 1 1 1
7/10 0.7858094356 0.6190556769 0.3688458421
7/5 0.6228249648 0.3691930827 0.1074930546
14/5 0.4085135781 0.1323390363 0.0072619140
7/2 0.3388566718 0.0822984147 0.0019692645
21/5 0.2852286001 0.0530118448 0.0006029330
28/5 0.2095004124 0.0244710236 0.0001201557
7 0.1593196243 0.0127723199 0.0000713911
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Table 2. Cont.

θ̄OHAM θ̄OHAM θ̄OHAM

η given by Equation (30) given by Equation (A2) given by Equation (A4)

0 1 1 1
7/10 0.7858136455 0.6190546849 0.3688476879
7/5 0.6228223796 0.3691937408 0.1074929959
14/5 0.4085152511 0.1323390010 0.0072605998
7/2 0.3388541904 0.0822992211 0.0019705677
21/5 0.2852266049 0.0530118072 0.0006039728
28/5 0.2095026184 0.0244705609 0.0001187666
7 0.1593190414 0.0127728948 0.0000719311

εθ εθ εθ

η for Equation (30) for Equation (A2) for Equation (A4)

0 0 0 0
7/10 4.209839553404038 × 10−6 9.919631346333446 × 10−7 1.845765404961952 × 10−6

7/5 2.585204789018469 × 10−6 6.580974769021530 × 10−7 5.869076206976853 × 10−8

14/5 1.673009802138914 × 10−6 3.525957825711856 × 10−8 1.314288065634369 × 10−6

7/2 2.481370770357482 × 10−6 8.064145169128789 × 10−7 1.303131223448148 × 10−6

21/5 1.995245388297650 × 10−6 3.768198066078643 × 10−8 1.039826044727616 × 10−6

28/5 2.205963331475269 × 10−6 4.627662200211435 × 10−7 1.389042267445562 × 10−6

7 5.828584578315699 × 10−7 5.749493005424017 × 10−7 5.400103917853105 × 10−7

Table 3. Comparison between the heat transfer coefficient θ̄′(0) obtained by means of the OHAM
for different values of the Prandtl number pr and the parameter k, respectively, in the case of the
first-order approximate solution.

Numerical Solution OHAM Solution Absolute Errors

pr k θ′numerical(0) θ̄′OH AM(0) εθ′(0) = |θ′numerical(0)− θ̄′OH AM(0)|
0.5 0.15 −0.3727417350 −0.3727417250 1.000000127149292 × 10−8

0.5 0.25 −0.4014940569 −0.4014939569 9.999999639465074 × 10−8

0.5 0.5 −0.4686586964 −0.4686585964 9.999899136525770 × 10−8

1 0.15 −0.6171741875 −0.6171740875 9.999999328602627 × 10−8

1 0.25 −0.6608537627 −0.6608537527 1.000000671158574 × 10−8

1 0.5 −0.7647932545 −0.7647931545 9.999999373011548 × 10−8

2.5 0.15 −1.1185512466 −1.1185511466 9.999999783794067 × 10−8

2.5 0.25 −1.1923711840 −1.1923710840 9.999999694976225 × 10−8

2.5 0.5 −1.3666535048 −1.3666534948 1.000000171558213 × 10−8

Table 4. Comparison between the heat transfer coefficient θ̄′(0) obtained by means of the OHAM
for different values of the Prandtl number pr and the parameter k, respectively, in the case of the
corresponding dual approximate solution.

Numerical Solution OHAM Solution Absolute Errors

pr k θ′numerical(0) θ̄′OH AM(0) εθ′(0)

0.5 0.15 −0.3238611974 −0.3238611874 1.000000138251522 × 10−8

0.5 0.25 −0.3473663384 −0.3473662384 9.999999683873995 × 10−8

0.5 0.5 −0.4014554630 −0.4014554530 1.000000332540551 × 10−8
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Table 4. Cont.

Numerical Solution OHAM Solution Absolute Errors

pr k θ′numerical(0) θ̄′OH AM(0) εθ′(0)

1 0.15 −0.5929179987 −0.5929179887 9.999954753148188 × 10−9

1 0.25 −0.6393617637 −0.6393617537 9.999972516716582 × 10−9

1 0.5 −0.7402284508 −0.7402283508 9.999999661669534 × 10−8

2.5 0.15 −1.1110208487 −1.1110208387 1.000000215967134 × 10−8

2.5 0.25 −1.1848129415 −1.1848129315 1.000000104944831 × 10−8

2.5 0.5 −1.3591246415 −1.3591246315 1.000000637851883 × 10−8

Table 5. Integral of the square residual given by Equation (31) respectively, for different values of the
parameters k and pr.

The First Solution The Corresponding Dual Solution

k pr
∫ ∞

0 R2
θ̄
(η) dη

∫ ∞
0 R2

θ̄
(η) dη

0.15 0.5 6.575432601542083 × 10−9 2.908978433213571 × 10−10

0.25 0.5 2.692683749426807 × 10−8 6.130825386312505 × 10−8

0.5 0.5 2.877470397657074 × 10−10 2.329753093802392 × 10−7

0.15 1 4.686687280794850 × 10−9 4.935777384019864 × 10−8

0.25 1 2.769513856968707 × 10−10 3.168740967468855 × 10−9

0.5 1 1.390428703762422 × 10−9 9.337205151229265 × 10−6

0.15 2.5 2.424695938193004 × 10−6 1.109703562037575 × 10−6

0.25 2.5 2.547691207587611 × 10−7 8.786794816590718 × 10−8

0.5 2.5 3.953512700816478 × 10−10 5.589488626508835 × 10−6

5.1. Influence of the Prandtl Number pr

From Figures 2–5 we can notice that the variation of the temperature θ̄(η) decreases
with the increasing of the Prandtl number pr, for some fixed values of the parameter k.

the first solution Θ
�

for pr � 0.5, 1, 2.5

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
�Η�

Figure 2. Variation of the temperature θ̄(η) given by Equations (29), (A1) and (A3) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.15: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.
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the dual solution Θ
�

for pr � 0.5, 1, 2.5

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
�Η�

Figure 3. Variation of the temperature θ̄(η) given by Equations (30), (A2) and (A4) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.15: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.

the first solution Θ
�

for pr � 0.5, 1, 2.5

2 4 6 8 10
Η

0.2
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0.8

1.0
Θ
�
�Η�

Figure 4. Variation of the temperature θ̄(η) given by Equations (29), (A1) and (A3) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.25: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.

the dual solution Θ
�

for pr � 0.5, 1, 2.5

2 4 6 8 10
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
�Η�

Figure 5. Variation of the temperature θ̄(η) given by Equations (30), (A2) and (A4) with the Prandtl
number pr = 0.5, 1, 2.5 for k = 0.25: OHAM solution (with lines) and numerical solution (dashing
lines), respectively.

107



Mathematics 2023, 11, 1648

5.2. Influence of the Temperature Distribution Parameter k

Additionally, Figures 6 and 7 show that the variation of the temperature θ̄(η) decreases
with the increase in the parameter k for some fixed values of the Prandtl number pr.

the first solution Θ
�

for pr � 1 and
k � 0.15, 0.25, 0.5

1 2 3 4 5
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
�Η�

Figure 6. Variation of the temperature θ̄(η) given by Equations (A1), (A7) and (A9) with the parameter
k = 0.15, 0.25, 0.5 for pr = 1: OHAM solution (with lines) and numerical solution (dashed lines),
respectively.

the dual solution Θ
�

for pr � 1 and
k � 0.15, 0.25, 0.5

1 2 3 4 5
Η

0.2

0.4

0.6

0.8

1.0
Θ
�
�Η�

Figure 7. Variation of the temperature θ̄(η) given by Equations (A2), (A8) and (A10) with the
parameter k = 0.15, 0.25, 0.5 for pr = 1: OHAM solution (with lines) and numerical solution (dashed
lines), respectively.

From all the Tables 1–5 and Figures 2–7 we can summarize that the OHAM solutions
are effective and very accurate.

The advantages of the modified OHAM technique by comparison of the OHAM-
solutions with the corresponding iterative solutions obtained by means of the iterative
method developed in [51] are presented below.

The Equations (5) and (6) convert in the following system:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f ′1(η) = f2(η)
f ′2(η) = f3(η)
f ′3(η) = 2 f 2

2 (η)− f1(η) f3(η)
θ′1(η) = θ2(η)

θ′2(η) = pr ·
(

k · f2(η)θ1(η)− f1(η)θ2(η)
) , (32)

where f1(η) = f (η), f2(η) = f ′(η), f3(η) = f ′′(η), θ1(η) = θ(η), θ2(η) = θ′(η).
By integration of the system (32) over the interval [0, η], the following expressions

are obtained:

f1(η) = f1(0) +

η∫
0

f2(s) ds

f2(η) = f2(0) +

η∫
0

f3(s) ds

f3(η) = f3(0) +

η∫
0

(
2 f 2

2 (s)− f1(s) f3(s)
)

ds

θ1(η) = θ1(0) +

η∫
0

θ2(s) ds

θ2(η) = θ2(0) +

η∫
0

pr ·
(

k · f2(s)θ1(s)− f1(s)θ2(s)
)

ds

. (33)

The iterative algorithm is written as:

f1,0(η) = f1(0) , f1,1(η) = N1( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

f2,0(s) ds ,

f2,0(η) = f2(0) , f2,1(η) = N2( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

f3,0(s) ds ,

f3,0(η) = f3(0) , f3,1(η) = N3( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

(
2 f 2

2,0(s)− f1,0(s) f3,0(s)
)

ds ,

θ1,0(η) = θ1(0) , θ1,1(η) = N4( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

θ2,0(s) ds ,

θ2,0(η) = θ2(0) , θ2,1(η) = N5( f1,0, f2,0, f3,0, θ1,0, θ2,0) =

η∫
0

pr ·
(

k · f2,0(s)θ1,0(s)− f1,0(s)θ2,0(s)
)

ds ,

· · ·
f1,m(η) = N1

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N1

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

f2,m(η) = N2

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N2

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

f3,m(η) = N3

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N3

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

θ1,m(η) = N4

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N4

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

θ2,m(η) = N5

(
m−1

∑
i=0

f1,i,
m−1

∑
i=0

f2,i,
m−1

∑
i=0

f3,i,
m−1

∑
i=0

θ1,i,
m−1

∑
i=0

θ2,i

)
− N5

(
m−2

∑
i=0

f1,i,
m−2

∑
i=0

f2,i,
m−2

∑
i=0

f3,i,
m−2

∑
i=0

θ1,i,
m−2

∑
i=0

θ2,i

)
,

m ≥ 2 .

(34)
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By carrying out the iterative method, the solutions of the Equations (5) and (6) have
the form:

f1iter (η) =
∞

∑
m=0

f1,m(t) , f2iter (η) =
∞

∑
m=0

f2,m(η) , f3iter (η) =
∞

∑
m=0

f3,m(η) , θ1iter (η) =
∞

∑
m=0

θ3,m(η) , θ2iter (η) =
∞

∑
m=0

θ2,m(η) .

Using five iterations, with the initial conditions f1(0) = 0, f2(0) = 1, f3(0) =
−1.2818085481, θ1(0) = 1, θ2(0) = −0.6608537627 (presented in the Table 3) and the
physical constants k = 0.25, pr = 1, taking into account of the algorithm (33), the iterative
solutions become:

f1iter (η) =
5

∑
m=0

f1,m(η) = η − 0.6409042740η2 + 0.3333333333η3 − 0.1602260685η4+

+0.0744091621η5 − 0.0160226068η6 + 0.0016144588η7 + 0.0008177037η8 ,

θ1iter (η) =
5

∑
m=0

θ1,m(η) = 1 − 0.6608537627η − 0.3304268813η2 − 0.1101422937η3−
−0.0275355734η4 − 0.0055071146η5 .

(35)

A comparison between the OHAM solutions f̄OHAM, θ̄OHAM and the corresponding
iterative solutions f1iter , θ1iter given in Equation (35) is highlighted graphically in Figures 8
and 9 and tabularly in Table 6, respectively.
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Figure 8. Comparison between the approximate analytical solution f̄ (η), of the Equation (5) given by
Equation [50], the iterative solution f1iter (η) given by Equation (35) and the corresponding numerical
solution: numerical solution (with lines), OHAM solution (dashed lines), and iterative solution
(dotted curve), respectively.
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Figure 9. Comparison between the approximate analytical solution θ̄(η), of the Equation (6) given
by Equation (A1), the corresponding numerical solution and the iterative solution θ1iter (η) given by
Equation (35): numerical solution (with lines), OHAM solution (dashed lines), and iterative solution
(dotted curve), respectively.

The precision and efficiency of the OHAM method (using just one iteration) against
to the iterative method described in [51] (using five iterations) arising from the presented
comparison.

Table 6. Comparison between the approximate analytical solution f̄ (η) given by Equation [50], the
iterative solution f1iter (η) given by Equation (35) and the corresponding numerical solution.

η fnumerical f̄OH AM [50] f1iter

0 0 0 0
1/10 0.0939089690 0.0939087919 0.0939089962
1/5 0.1767959477 0.1767950192 0.1767969422

3/10 0.2501798542 0.2501779276 0.2501903246
2/5 0.3153313350 0.3153286203 0.3153863643
1/2 0.3733200865 0.3733170634 0.3735172090
3/5 0.4250519374 0.4250491302 0.4256065973

7/10 0.4712981406 0.4712959627 0.4726209608
4/5 0.5127187008 0.5127173844 0.5155172621

9/10 0.5498810935 0.5498806830 0.5552901957
1 0.5832753856 0.5832757722 0.5930217087

Case Study

In the following we apply our analytical results in the case of the hydraulic oil with a
large application at the hydraulic drive systems as turbines, pumps, naval propellers.

We consider the fluid flow scenario from a hydraulic installation with the following
values of the characteristic quantities: the reference velocity u0 = 0.05 [m/s], the reference
temperature T0 = 40, the kinematical viscosity ν = 46 · 10−6 [m2/s] and the environmental
temperature T∞ = 22, respectively.

The analytical obtained results in our paper using the specific physical sizes, are
presented in Figures 10 and 11 for the first solution and in Figures 12 and 13 for the
corresponding dual solution, respectively.
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Figure 10. The vector field (u, v) from Equation (4) for hydraulic oil at a temperature of 40 ◦C, in the
case of the first-solution given by Equation [50].
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Figure 11. The 3D-profile of the temperature T from Equation (4) for k = 0.25, pr = 1 for hydraulic
oil at a temperature of 40 ◦C, in the case of the first-solution given by Equation (A1).

The obtained results are in agreement with the Fluid Mechanics [52,53].
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Figure 12. The vector field (u, v) from Equation (4) for hydraulic oil at a temperature of 40 ◦C, in the
case of the corresponding dual solution given by Equation [50].
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Figure 13. The 3D-profile of the temperature T from Equation (4) for k = 0.25, pr = 1 for hydraulic
oil at a temperature of 40 ◦C, in the case of the corresponding dual solution given by Equation (A2).

6. Conclusions

The steady boundary layer flow and heat transfer over a stretching sheet were analyzed
by using a nonlinear differential equation. The variation of the temperature θ(η) decreases
with the increase in the Prandtl number pr for some fixed values of the parameter k. As a
result, we can observe a decrease in the fluid temperature. This shows that more heat is
released from the sheet and the Prandtl number decreases in the boundary layer thickness.
Therefore, the heat transfer rate increases.

The processes with strongly nonlinear behaviors appear in different technological
applications. Thus, an approximate analytical solution is a more realistic option.
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The OHAM treatment related to the heat and mass transfer problem without partial
slip in the flow of a viscous fluid over an exponentially stretching sheet without suc-
tion/blowing is considered and provides an accurate solution for the nonlinear differential
equation with initial and boundary conditions.

In this paper, the thermal effects of the Prandtl number and the temperature distri-
bution parameter are analytically analyzed. The variations of the dimensionless surface
temperature and heat transfer characteristics with the governing parameters are graphed
and tabulated. In particular, the analytically obtained results are applied from the hy-
draulic system.

The advantage of the method applied in this work is the efficiency by only one
iteration. Other advantages, including accuracy, flexibility, validity and convergence, of
the approximate solutions are highlighted by comparing the OHAM solutions with the
corresponding iterative solutions.

Some characteristics of the heat and mass transfer, such as the vector field (u, v) and
the temperature profile T are graphically depicted in a case study of the hydraulic oil using
the obtained approximate solutions via OHAM.

This study is useful for many engineering applications of heat and mass transfer
problems such as strand casting processes, polymeric liquids, the extraction of metals and
polymers, glass-fiber production, and physiological fluid dynamics.
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Nomenclature/Notation

Symbols Names

u, v Velocity components (m/s)
x, y Cartesian coordinates (m)
ν Kinematical viscosity (m2/s)
μ Viscosity
ρ Fluid density
U∞ Velocity of uniform flow
u0, T0 Reference velocity and reference temperature
N Velocity slip factor
l Characteristic length
pr Prandtl number
k Parameter of temperature distribution
T∞ Environment temperature (K)
η Independent dimensionless variable
f (η) Stream function
θ(η) Temperature
OHAM solution approximate analytical solution by means of the modified Optimal Homotopy

Asymptotic Method

Appendix A

In this section there are presented in details the first-order approximate solution
given by Equation (28) and the corresponding dual solution for different values of the
physical parameters.
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(a2) the parameter k = 0.25, the Prandtl number pr = 1.

θ̄(η) = 1.1600261597 · e−0.9234397221·η + (1 − 0.3362966408 · η)e−2.0276266018·η+
+(−1.3520589334 + 0.2475145276 · η − 0.0094831510 · η2)e−2.0138501698·η+
+(0.1720819672 + 0.0218466525 · η − 0.0001162030 · η2)e−0.9096632901·η+
+(0.0199508065 + 0.0189709502 · η + 0.0059452174 · η2)e−4.0277003397·η

(A1)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.2369245422 · e−0.5134938585·η + (1 + 1.0513455728 · η)e−1.6176807383·η+
+(0.0238401179 − 0.0020255651 · η + 0.0000568573 · η2)e−0.1207882199·η+
+(0.8098858748 + 0.2652845586 + 0.0285288295 · η2)e−2.4499501993·η+
+(−1.0706505351 + 0.4609131356 · η + 0.0444370182 · η2)e−1.2249750996·η

(A2)

(a3) the parameter k = 0.25, the Prandtl number pr = 2.5.

θ̄(η) = −0.0000694691 · e−0.0373028427·η + (1 − 0.6822337697 · η)e−1.1414897224·η+
+(−0.4228006041 − 0.1276408784 · η − 0.7048478809 · η2)e−2.0265756010·η+
+(−0.2530559522 − 0.5915096926 · η − 0.3170935172 · η2)e−4.0531512020·η+
+(0.6759260256 + 0.0914555047 · η − 0.0099048402 · η2)e−0.9223887212·η

(A3)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.0001260254 · e−0.0745075617·η + (1 − 0.0964643097 · η)e−1.1786944415·η+
+(−0.3203284037 + 1.8308083903 · η − 0.0762347077 · η2)e−2.6623999026·η+
+(−0.3417840921 − 0.4098840584 · η − 0.0321843260 · η2)e−1.5582130229·η+
+(0.6619864704 + 0.8089615723 · η + 0.3222124279 · η2)e−5.3247998053·η

(A4)

(a4) the parameter k = 0.15, the Prandtl number pr = 0.5.

θ̄(η) = 1.0983077175 · e−0.4534958469·η + (1 + 0.4654950159 · η)e−1.5576827266·η+
+(−1.5363389724 + 0.3221215358 · η − 0.0234501255 · η2)e−1.1308627520·η+
+(0.0026808712 + 0.0000481427 · η + 1.652544 · 10−6 · η2)e−0.0266758723·η+
+(0.4353503835 + 0.1426803574 · η + 0.0157885694 · η2)e−2.2617255040·η

(A5)

and the corresponding dual approximate solution becomes:

θ̄(η) = 0.5391981597 · e−0.4822945356·η + (1 + 0.5250981944 · η)e−1.5864814153·η+
+(0.3818837053 − 0.0092643162 · η + 0.0000912270 · η2)e−0.1278543543·η+
+(0.3480470015 + 0.1414195195 · η + 0.0192266212 · η2)e−2.4640824681·η+
+(−1.2691288666 + 0.2082420703 · η + 0.0374340788 · η2)e−1.2320412340·η

(A6)

The influence of the temperature distribution parameter k on the heat transfer is
presented below. In this way, we provide the approximate analytical solutions for the case
of pr = 1.5 and different values for k.

(a5) In this case, we consider k = 0.5 and pr = 0.5.

θ̄(η) = 0.0007206409 · e−0.0000131202·η + (1 − 0.1316345278 · η)e−1.1042000000η+

+(−1.0617752958 − 0.2671398226 · η − 0.0590973088 · η2)e−1.5423591909·η+
+(0.9992265151 − 0.0158696110 · η + 0.0001546813 · η2)e−0.4381723112·η+
+(0.0618281397 + 0.0411022791 · η + 0.0096407838 · η2)e−3.0847183818·η

(A7)

and the corresponding dual approximate solution is:

θ̄(η) = 0.5513428358 · e−0.1531064052·η + (1 + 2.1654964846 · η)e−1.2572932849·η+
+(−0.5837332313 + 0.1717462354 · η − 0.3926304130 · η2)e−2.2051877057·η+
+(0.4350443625 + 0.4520872315 · η + 0.1673037370 · η2)e−4.4103754114·η+
+(−0.4026539670 − 1.6609327359 · η + 0.2537560261 · η2)e−1.1010008259·η

(A8)
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(a6) In the second case, if k = 0.15 and pr = 1, then:

θ̄(η) = 2.0683347602 · e−0.9155012717·η + (1 + 0.6833539452 · η)e−2.0196881514·η+
+(−0.8031347222 − 0.7492677018 · η − 0.1062182432 · η2)e−2.2813648143·η+
+(−1.2654357598 + 0.0862848192 · η − 0.0427535328 · η2)e−1.1406824071·η+
+(0.0002357217 + 0.0000111023 · η + 2.111508 · 10−7 · η2)e−0.0364955274·η

(A9)

and the corresponding dual approximate solution is:

θ̄(η) = 0.1878857950 · e−0.4637756403·η + (1 + 1.2766230888 · η)e−1.5679625200·η+
+(0.0201352353 − 0.0009567685 · η + 0.0000525361 · η2)e−0.0600476542·η+
+(1.1008756684 + 0.3253629902 · η + 0.0338366627 · η2)e−2.3284690680·η+
+(−1.3088966989 + 0.5018533528 · η + 0.0380250588 · η2)e−1.1642345340·η

(A10)

(a7) In the third case, if k = 0.15 and pr = 2.25:

θ̄(η) = 0.0752690301 · e−1.3036641988·η + (1 − 0.7216448042 · η)e−2.4078510785·η+
+(−0.3478069740 − 0.4476541650 · η − 0.2238753041 · η2)e−6.1184936238·η+
+(0.6232764356 + 0.4531574839 · η − 0.1414849066 · η2)e−1.9550599322·η+
+(−0.3507384917 + 0.1210593773 · η + 1.3248866865 · η2)e−3.0592468119·η

(A11)

and the corresponding dual approximate solution is:

θ̄(η) = −0.0094833474 · e−1.8199222326·η + (1 + 4.8903828049 · η) · e−2.9241091123·η+
+(−0.2794803592 − 3.8038471274 · η − 1.1301670707 · η2)e−3.4371389008·η+
+(0.2022965663 + 0.1763166133 · η − 0.0935804838 · η2)e−1.7185694504·η+
+(0.0866671403 − 0.0267283075 · η + 0.0022982197 · η2)e−0.6143825706·η

(A12)
In this way, we can construct other accurate approximate solutions.
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Abstract: Solar water heaters (SWHs) are widely used in HVAC industries as well as in households
for different heating purposes. The present numerical simulation focuses on the investigation of
the thermo-hydraulic performance of novel semi-arc-rib SWHs. Semi-arc-shaped ribs in the square
channel of the absorber plates with different pitch and height ratios are investigated in this study. The
present novel modification disturbs the boundary layers by generating vortices, and thus, enhanced
fluid mixing takes place. Water with a Reynolds number (Re) ranging from 4000 to 25,000 is used as a
working fluid, and a 1.0 kW/m2 heat flux is imposed on the tube wall. The results demonstrate a
significant increase in the Nusselt number (Nu) as the fluid layers localize behind each rib near the
absorber plates, and at the same time, the number of swirls generated inside the tube and the frictional
losses both increased noticeably. To ensure the effectivity of the present novel SWH geometry, the
thermo-hydraulic performance (η) for each case was calculated, and it was found that in all the cases,
it was greater than unity, which signifies that the present semi-arc-rib SWH is promising and can be
used in HVAC industrial and household applications.

Keywords: solar water heater; semi-circular arc; heat transfer; enhancement; swirl flow; thermal
performance

MSC: 76-10

1. Introduction

Energy consumption has increased as a result of welfare development and ongoing
population rise across the world. Energy efficiency and sustainability are becoming more
significant in today’s world as a result of a supply and demand imbalance. Therefore, a
significant amount of effort is being made to develop energy-efficient devices without any
major financial investment.

A solar water heater is an important device that uses solar energy to heat water for
domestic or commercial use. It consists of a solar collector, which absorbs the sun’s energy,
and a storage tank for hot water. The solar collector can be flat plate or evacuated tube and
is typically mounted on a roof or a wall facing the sun. The storage tank is typically located
near the collector and is insulated to reduce heat loss. The hot water produced by the solar
collector is transferred to the storage tank, where it can be used as needed. Solar water
heaters are an environmentally friendly and cost-effective alternative to traditional water
heating systems that rely on fossil fuels.

Heat transfer enhancement for a solar water heater refers to methods used to improve
the heat transfer rate from the solar collector to the water in the storage tank. This can be
achieved by increasing the heat transfer area, the heat transfer coefficient, or the temperature
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difference between the two fluids. The common method for heat transfer enhancement
is to improve the design of the solar collector by incorporating fins or other structures
to increase the heat transfer area and, at the same time, use more thermally conductive
fluids, such as water, with a high thermal conductivity, which can be used to transfer
heat more efficiently. Implementing these heat transfer enhancement methods can lead
to an improved performance and increased efficiency of a solar water heater. Generally,
the technique of heat transfer enhancement (HTE) is divided into three categories: active
techniques [1]; passive techniques [2,3]; and combined or combinational techniques [4,5].
Conventional heat exchangers (HEs) are incapable of satisfying the demand of heating and
cooling in modern industries with their limited capacity. Modifications are being applied
to the heat exchangers to enhance their thermal and flow performance. This includes
use of ribs, turbulators, ultrasound, vibrations, magnetic field, electric field, advance heat
transfer fluids, etc. [6]. The objective is to increase the thermohydraulic performance of a
thermal device, whether by increasing the surface area for fluid interaction, by increasing
the swirling motion of the fluid, or by increasing the thermal conductivity of the fluid.
The thermohydraulic performance of a heat exchanger refers to its ability to transfer heat
from one fluid to another. This performance is influenced by various factors, such as the
temperature difference between the two fluids, the flow rate of the fluids, the heat transfer
area, and the heat transfer coefficient. The overall thermohydraulic performance can be
evaluated by calculating the heat transfer rate, the thermal efficiency, and the pressure
drop across the heat exchanger. Improving the thermohydraulic performance of a heat
exchanger can be achieved by optimizing these factors and increasing the heat transfer area
and the heat transfer coefficient.

Among the various techniques of HTE in SWHs, ribs are the simplest, and the en-
hancement is appreciable when compared with other methods [7–10]. Deo et al. [8] exper-
imentally investigated the influence of staggered inclined ribs on the thermal and flow
performance of solar air heaters and reported significant enhancements in the perfor-
mance and efficiency of solar air heaters (SAHs) when compared with a plane channel.
Zhang et al. [9] studied the effect of longitudinal intersecting ribs on the thermohydraulic
performance of gas turbine blades and reported an increase in the overall efficiency. Singh
and Ekkad [11] reported on the implementation of ribs, along with dimples, for improving
the cooling performance of gas turbine blades. It has been noted that the presence of both
ribs and dimples enhanced the heat transfer (HT) and improved thermal hydraulic perfor-
mance. Yang et al. [12] carried out a simulation study to study the impacts of high-blockage
ribs on the HT and pressure drop (PD) characteristics of gas turbine blades. It was reported
that the HT coefficient increases with an increase in the Re, the rib space to height ratio,
and area of the ribbed portion covered in the channel. Alfarawi et al. [13] experimentally
evaluated the thermal and hydrodynamic characteristics of air inside a rectangular ribbed
channel. Tanda [14] presented performance results of SAHs fitted with four sets of ribs and
found significant enhancements in the HT as well as the PD. Kumar et al. [15] reported
on multiple arc-shaped ribs for SAHs, and although changing the roughness parameters
resulted in an increase in the solar air heater’s pumping power, there was a notable im-
provement in the thermal performance of the device. Hans et al. [16] examined single
discrete arc ribs and how they affected SAH performance with constant parameter values.
In single arc (discrete) ribs, the Nu was improved by 2.63 times more than the smooth SAH.
Promvonge [17] experimentally reported on the influences of quadruple-twisted tapes ar-
ranged in four different combinations and V-fins on the HT and PD performance of square
HE ducts. The V-finned counter-twisted tape had a much better thermal performance than
the quadruple-twisted tapes. Mokkapati and Lin [18] reported on the thermohydraulic
performance of corrugated tube HE tubes fitted with twisted tapes. The findings indicate
that, as compared to plain tubes and corrugated tube HEs without twisted tapes, annularly
corrugated tube heat exchangers with twisted tape boost the rate of HT by about 235.3%
and 67.26%, respectively. Abraham and Vedula [19] investigated straight, V-shaped, and
W-shaped ribs with apex angles of 45◦. The ribs’ height was kept as constant, and the pitch
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was varied. It was reported that the variation in the Nu ratios for the V and W configura-
tions was negligible for the same pumping capacity. Chung et al. [20] reported on simple
square ribs placed at a 60o angle in line with the direction of flow. They compared the
performance of inclined ribs with that of intersecting ribs. The aspect ratio of the channel
was varied between 1 and 4. It was found that the presence of intersecting ribs aided in
the generation of more vortices, which resulted in a higher heat transfer enhancement for
all the aspect ratios. Gawande et al. [7] employed L-shaped ribs for HTE in SAHs. The
dimensions of the ribs remained constant, and the pitch or gap between the ribs varied from
10 to 25 mm. Configuration with a higher pitch ratio resulted in higher augmentation. Liu
et al. [21] numerically investigated perforated square ribs for cooling channel application.
The ribs under investigation were perforated with square and circular holes. It was reported
that the perforated ribs showed an enhanced thermal performance when compared with
non-perforated ribs and were suitable for cooling application. Bhattacharyya et al. [22]
investigated alternating inclined ribs for their thermohydraulic performance in a circular
channel. Four angles of attack were investigated for a wide range of Re values, covering
laminar, transition, and turbulent flow regimes.

2. Objective

The use of novel arc-shaped ribs as a means of enhancing heat transfer is a new
technique in the field of HTE. Arc-shaped ribs are small devices that are attached to the
surface of a heat exchanger wall and cause the fluid flow to become turbulent, which
can enhance the convective heat transfer and improve the overall heat transfer coefficient.
From the literature, it was found that many researchers are working on circular tubes to
enhance heat transfer by inserting only unidirectional ribs, and it was also noticed that in
many cases, the thermo-hydraulic performance of the system falls below unity. As per the
authors’ knowledge, thus far, no research has been conducted on square channels with
semi-arc-shaped ribs on four sides of the channel to enhance HT. Overall, the use of ribs
for heat transfer enhancement remains an active area of research and development, with
a significant degree of novelty and potential for continued innovation. In this study, a
turbulent HTE in the square channel with the augmentation of the flow pattern using novel
arc-shaped ribs in SWHs is presented.

3. Computational Domain, Boundary Conditions and Meshing

The dimensions of the 3D square channel are 20 mm × 20 mm, and a length of
2500 mm is taken for the present computational investigation; these dimensions are con-
stant throughout the study. To enhance the convective HT rate, semi-arc ribs are attached
to the SWH walls. The computational domain is shown in Figure 1. The current study
concerns the region of the turbulent flow regime with a high Re ranging from 4000 to 25,000.
A fully developed velocity profile is incorporated at the SWH inlet for different Re values.
All side walls are assumed to have iso-heat flux boundary conditions with 1.0 kW/m2

throughout the test section. Table 1 presents the tested parameters. To make efficient use of
the computer resources, simulations were conducted based on the assumptions below:

• The flow is incompressible, and steady-state equations are solved to predict the results.
• The air travels easily over the solid surface with a no-slip boundary condition.
• In ambient circumstances, water as the working fluid, enters in the computational domain.

Table 1. Computational Parameters.

Parameter Range

Inner diameter of the tube, D 20 mm
Height ratio, d/D = H 0.5, 0.4, 0.25

Pitch ratio, p/D = s 1, 1.5, 2.0
Reynolds number (Re) 4000–25,000
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Figure 1. Computational domain.

The steady incompressible viscous flow is computationally simulated using a modified
SWH with semi-arc cross-sectional roughness elements. The roughness elements are
positioned on each corner of the square channel. The flow field and HT through the SWH
are governed by the Navier–Stokes equation and the energy equation, which are written as
follows [22]:
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∂

∂xi

(
ρūiūj
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The variables P, u, and T in the equation above represent pressure, velocity, and
temperature, respectively.
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The important RANS turbulent model, using the k-ω RNG model, is implemented
because this model includes an additionalω-equation that improves the accuracy of the
projected results. This model includes the following equation:
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− ∂

∂xj
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αkμe f f
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− Gk + ρε = 0 (4)
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ε2
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= Rε (5)

μe f f = μ f + μt = μ f + ρCμ
k2

ε
(6)

The simulation software ANSYS Fluent 18.1 is used to simulate the HT and PD
characteristics in the modified SWH with semi arc-shaped ribs. To discretize, the gov-
erning equations, second-order numeric techniques are used to improve the accuracy
and reduce literation errors. In addition, the convergence threshold for the continuity
and momentum components is established as 10−6, and for the energy equation, it is
10−8 [22]. Steady-state calculations are performed on the quantities required to estimate
the thermal–hydraulic performance.

In the test section, all the properties such as the velocity, pressure, temperature, etc.,
are measured under steady-state conditions. The tetrahedral element is formed in the
semi-arc-shape-ribbed SWH. The Y+ value is kept as smaller than one for the rib roughness
and the heated wall. ANSYS ICEM is used to construct the meshing, and the values of all
the meshed elements are guaranteed to be more than 0.75. The procedure of constructing
the mesh begins with 10 mm-sized coarse components, and the process is continued until
the results have no or minimal influence on the mesh refinement (or element size). The
meshing is shown in Figure 2, and Table 2 presents the specifics of the grid refinement
along with the appropriate solution for the average Nu and friction factor (f). As a result,
the grid of 2,987,675 nodes, which is grid 1 in Table 1, is used for all the simulations in
order to save computational time and resources.

Figure 2. Meshing of the computational domain.
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Table 2. Grid independence test.

Nodes Nu f η

Re = 10,000, Semi-Arc-Shaped Rib, P = 1.0, H = 0.5

Grid 1 2,987,675 132.370 0.037 1.455

Grid 2 3,345,789 132.373 0.037 1.455

Grid 3 3,876,444 132.391 0.038 1.456

Heat transport to the working fluid is quantified using the first law written below. It is
known from the first law of thermodynamics that the rate of net HT to the working fluid is
proportional to the temperature difference between the inlet and outlet fluids, as well as
the mass flow rate and specific heat of the induced fluid [3,23].

Q = mcp(To − Ti) (7)

The heat transfer coefficient is calculated using the following equation, as stated by
Bhattacharyya et al. [3]:

h =
qw

Tw − Tb
(8)

The Nusselt number measures the extent to which convection contributes to the total
heat transfer relative to conduction. A comparison of the superiority of convective heat
transfer vs. conductive heat transfer may be conducted using this dimensionless metric. In
other words, a rising Nu value suggests that convection is a more important heat transfer
mechanism than conduction. One possible expression of this is [23]:

Nuavg =
hD
k

(9)

where k is the thermal conductivity of the material.
One of the most critical parameters for assessment is known as Darcy’s Friction Factor.

This parameter is indicated by f and may be determined using the formula listed below [22]:

f =
ΔP

L
D

1
2 ρV2 (10)

Here, ρ, D, and L signify the density of the fluid, hydraulic diameter, and length of
the SAH, respectively. Based on the free cross-section of an insert, the bulk fluid velocity
and the static pressure drop are both designated by the ΔP. Reynolds number is used to
compute the velocity of the working fluid (Re). The formula is as follows [3]:

Re =
ρVD

μ
(11)

The increment in Nuavg and f due to the semi-arc-shaped ribs’ imposition on the
SAHs, with respect to smooth SAHs, is determined by Nuc and fc, where Nuc and fc can be
determined as [22]:

Nuc =
Nuavg

∣∣
with rib

Nuavg
∣∣
smooth

(12)

fc =
f |with rib
f |smooth

(13)

From Equations (12) and (13), the thermo-hydraulic performance (THP) can be deter-
mined as [22]:

THP = Nuc × f−
1
3

c (14)
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4. Validation

It is essential to validate the present simulations with the literature. The Nusselt
numbers for plain channels obtained by simulation are compared in Figure 3a with those
from Dittus–Boelter [23]. Figure 3b contrasts the friction factor with the historically reliable
Blasius correlation [24]. The average absolute variance for the Nusselt number was found
to be 4.0% and the average deviation for the friction factor was found to be 2.0% when
comparing the simulated findings with the projected data. The current computational
model can be used to calculate the flow and HT in a square channel with semi-arc-shaped
ribs if the simulation accuracy is accepted.

Nu = 0.0023Re0.8Pr0.4 (15)

f =
0.316

Re
1
4

(16)

 
(a) (b) 

Figure 3. Validation of the computation study: (a) Nu and (b) f.

5. Results and Discussion

This important discussion section provides a detailed summary of the present compu-
tation investigation on the novel semi-arc-shaped ribs. Semi arc-shaped ribs are mainly
responsible for disturbing the hydrodynamic and thermal boundary layers of the water
flow, which leads to the formation of vortices near the heated walls and better mixing of
the fluid layers. Due to the above-mentioned phenomenon, convective heat transfer is
superior to conductive heat transfer. The current study concerns turbulent flow with Re
ranging from 4000 to 25,000. Heat transfer, pressure drop, the j-factor, Bejan number, and
thermo-hydraulic performance, as a function of the Re results, are discussed in this section.

Heat transfer in SWH was enhanced significantly by the incorporation of semi-arc-
shaped ribs inside the square tube, as shown in Figure 4a. A decrease in the conduction HT
and an increase in the convection HT occur when ribs are added to the SWH walls, and
this is because the ribs increase the convective surface area. In addition, the development
of the boundary layer acts as a fence for the HT, as this is a forced convection heat transfer
scenario, and, as a result, the ribs installed in the flow field aid in the disruption of the
boundary layer and boost the rate of HT.

Considering three different pitch ratios (P) of the semi-arc-shaped ribs, Figure 4a
shows a plot of the average Nu as a function of Re for different height and pitch ratios.
Convective heat transfer coefficients increase with increasing Re or flow velocities because
this type of heat transfer is driven by forced convection. Increases in flow velocity raise
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the Re, which causes the flow to become more turbulent. This means that the fluid layers
may be travelling over many other fluid layers, leading to greater mixing in the flow and a
consequently greater heat transfer from the channel wall. The insertion of the novel-shaped
ribs will increase the Nusselt number in heat transfer situations by creating turbulence in
the fluid flow and enhancing the convective heat transfer. This will lead to an increase in
the overall heat transfer coefficient and result in an increased Nusselt number. One can
see from Figure 4a that the Nu increases uniformly with the Re for all the tested cases. In
addition, when the roughness pitch ratio increases, the Nu drops for a certain Re. The ratio
of the rib pitch to the rib height is the relative roughness pitch.

 
(a) (b) 

Figure 4. (a) Nu as a function of Re at different pitch and height ratios, and (b) Colburn j-factor as a
function of Re at different pitch and height ratios.

The Colburn j-factor is a dimensionless number used in the field of HT to predict the
convective HT coefficient in forced convection. It is defined as the ratio of the convective
HT coefficient to the product of the fluid’s dynamic viscosity, the density of the fluid, and
the square of the characteristic length (L) over which the HT occurs. It is important to
note that the Colburn j-factor is an empirical coefficient, meaning that it is determined
experimentally and may vary depending on the specific conditions of the HT process. In
Figure 4b, it is apparent that the Colburn j-factor decreases with a rise in Re. This may be
due to the novel rib creating turbulence in the fluid flow, which enhances the convective
heat transfer and increases the overall heat transfer coefficient. Moreover, placing rib inserts
in SWHs enhances the j-factor, meaning that higher heat transfer occurs due to the better
mixing of the fluid. A higher j-factor can be observed when a small pitch ratio and high
height ratio of the ribs are present. However, the effect of rib insertion on the Colburn
j-factor will depend on the specific configuration and the thermal–fluid properties involved.

In the presence of semi-arc-shaped ribs, there is a flow separation that can be appreci-
ated by examining Figure 5a,b and this can lead to a breakdown of the boundary layer, as
well as the reattachment of the separated boundary layer, eddy generation at the rib tips
and in the inter-rib regions, and enhanced mixing owing to the development of localized
turbulence. The flow is obstructed (as one can see from Figure 5a,b), the boundary layer is
stunted, and the local turbulence is increased as the number of ribs is increased. This leads
to a greater rate of HT.
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(a) (b) 

(c) 

(d) 

Figure 5. (a) Flow pattern around semi-arc-shaped ribs at Re 10,000, (b) flow pattern around semi-
arc-shaped ribs at Re 25,000, (c) temperature contour around semi-arc-shaped ribs at Re 10,000, and
(d) temperature contour around semi-arc-shaped ribs at Re 25,000.

In HT and fluid flow problems, the PD, in terms of f, is very important in order to
calculate and, accordingly, understand the performance of the system. The f is a measure
of the resistance to flow in a channel. It is an important factor for determining the pressure
drop and flow rate in a system. In an SWH, the insertion of rib inserts can increase the
friction factor by creating a more turbulent flow of water through the pipe. In the present
study, it was observed that placing ribs inside the SWH increases the HT rate significantly.
On the other hand, an increase in frictional loss is also observed after imposing the ribs
inside the channel. Figure 6 shows that f decreases with a rise in Re. While modified
SWHs are analyzed here, a noticeable increase in f is observed in comparison with smooth
channel SWHs. The friction factor increases with a decrease in the pitch ratio and increase
in the height ratio. A small pitch ratio signifies smaller gaps between two consecutive ribs,
and the height ratio signifies the height of the ribs. From Figure 6, it is clearly apparent
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that when the gaps between the ribs decrease, the friction factor increases, because in this
scenario, the number of vortices is high, and due to the localization of the fluid, the friction
factor increases significantly. The height of the ribs plays a significant role in creating
vortices. Increases in height mainly create larger vortices, and thus, f increases with an
increase in the height of the ribs.

Figure 6. Friction factor as a function of Re at different pitch and height ratios.

Entropy analysis is an important aspect to study in thermal systems. The Bejan number
is defined as the ratio of the system irreversibility to the total system irreversibility due
to flow dynamics. It is often used to predict the flow patterns and HT characteristics of
fluids in channels. The Bejan number can be used to design heat exchangers and predict
the performance of heat transfer equipment. In general, a high Bejan number indicates
that convective heat transfer is more important than conductive HT, while a low Bejan
number indicates the opposite. The Bejan number is often used in conjunction with other
dimensionless numbers, such as the Re and the Prandtl number, to predict the behavior of
fluids in different flow regimes.

Generally, thermal entropy generation can be defined as [25,26]:

.
Sg,th =

Q2
avg

NuπkTiT0L
(17)

Similarly, frictional entropy generation can be defined as [25,26]:

.
Sg. f =

8 f
.

m3L
ρ2π2D5

i (T0 − Ti)
ln
(

To

Ti

)
(18)
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Finally, the Bejan number is defined as [26]:

Be =

.
Sg,th

.
Sg,th +

.
Sg, f

(19)

In Figure 7, one can see that the Bejan number decreases with an increase in Re. An
enhancement of the Bejan number due to the placement of the ribs was clearly observed in
the present study. This signifies that the HTE is due to the placement of ribs in SWHs.

Figure 7. Bejan number (Be) as a function of Re at different pitch and height ratios.

Thermo-hydraulic performance (THP) is a parameter used to predict efficient modifi-
cation in heat exchangers. THP is the ratio of Nu and f (Equation (11)). In the present study,
thermo-hydraulic performance mainly signifies the effectivity of the rib inserts in SWHs.
Figure 8 shows a decrease in THP with increasing Re. The placement of ribs improves
the THP, which means that Nu increases higher than the increase in frictional loss. This
signifies that ribs are an effective way to enhance the efficiency of SWHs. A lower pitch
ratio and higher height ratio (P = 1.0, H = 0.5) perform better, as per Figure 8a. Keeping
pitch ratio constant (P = 1.0), it is apparent that a higher height ratio (H = 0.5) results
in higher performance increments. Similarly, when H = 0.5 is kept as constant, a lower
pitch ratio (P = 1.0) results in high performance enhancement for each given height ratio.
Moreover, it is important to note that for all the tested cases, the THP is greater than unity,
which means that the present SWH system is promising and can be implemented.
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(a) 

(b) 

Figure 8. (a) Thermo-hydraulic performance varies with Re at different pitch and height ratios.
(b) Comparison of the present study with the literature [27–32].

Figure 8b presents a comparison plot of the present study (best case: y = 0.5, h = 0.2,
θ = 60o) with the literature (research in similar areas). It is clearly illustrated in Figure 8b
that the outcomes of the present study are superior when compared with the literature
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on similar domains, such as that of Wang et al. [27], Tang [28], Mohammed et al. [29],
Eiamsa-ard et al. [30], Promvonge [31], and Chang et al. [32].

6. Conclusions

A computational study on HT and PD in a square-channel SWH with the insertion of
semi-arc-shaped ribs was presented. As the working fluid, water was utilized, and the Re
ranged from 4000 to 25,000. The present geometry encompassed semi-arc-shaped ribs with
pitch ratios of 1.0, 1.5, and 2.0 and rib height ratios of 0.5, 0.4, and 0.25.

From the above computational study, the following conclusions may be drawn:

1. The insertion of novel-shaped ribs increases the Nusselt number by creating swirl
flow in the flow field and enhancing the convective HT, and eventually, this leads to
an augmentation of the overall heat transfer coefficient and results in an increased
Nusselt number.

2. With an increase in the semi-arc-shaped rib height, the heat transfer rate increases,
and at the same time, the friction factor is also increased significantly.

3. A decrease in the semi-arc-shaped rib pitch leads to enhancements in the heat transfer.
However, more enhancement is noted when the rib height ratio is highest and the
pitch ratio is lowest.

4. The Colburn j-factor and Bejan number were also presented, and the outcome is
promising.

5. The thermal performance factor remains higher than unity for all the configurations
investigated in the present numerical investigation. A pitch ratio of 1.0 and height
ratio of 0.5 show the highest performance. The enhanced geometry is promising and
may be implemented in the HVAC sector.

Some practical guidelines for optimizing the performance of novel arc-shaped rib
inserts in a solar water heater are as follows:

1. Arc-shaped rib pitch ratio: Choose a pitch ratio that is optimal for the specific flow
conditions. A higher pitch ratio can increase turbulence, but a pitch ratio that is too
high can also cause excessive pressure drop.

2. Arc-shaped rib height ratio: The height of the rib can affect the amount of turbulence
generated, with large rib heights generally causing more turbulence. One should
choose a rib height that balances the desired level of turbulence with the pressure
drop acceptable for the given system.

3. Rib material: The material of the rib can affect the heat transfer and corrosion resistance
of the system. One should consider using a material with good thermal conductivity
and resistance to corrosion for a specific application.

4. Flow rate: The flow rate through the system can affect the heat transfer and turbulence
generated by the novel arc-shaped rib insert. One should choose a flow rate that
balances the desired level of heat transfer with the pressure drop acceptable for the
given system.
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Abstract: These days, heat transfer plays a significant role in the fields of engineering and energy,
particularly in the biological sciences. Ordinary fluid is inadequate to transfer heat in an efficient
manner, therefore, several models were considered for the betterment of heat transfer. One of the
most prominent models is a single-phase nanofluid model. The present study is devoted to solving
the problem of micropolar fluid with a single-phase model in a channel numerically. The governing
partial differential equations (PDEs) are converted into nonlinear ordinary differential equations
(ODEs) by introducing similarity transformation and then solved numerically by the finite difference
method. Response surface methodology (RSM) together with sensitivity analysis are implemented
for the optimization analysis. The study reveals that sensitivity of the skin friction coefficient (Cfx) to
the Reynolds number (R) and magnetic parameter (M) is positive (directly proportional) and negative
(inversely proportional) for the micropolar parameter.

Keywords: micropolar fluid; nanofluid; thermal radiation; response surface methodology; sensitiv-
ity analysis

MSC: 76D55

1. Background

In previous decades, a demand to represent the fluid that depends on micro-components
has concluded in the establishment of micropolar fluid. Eringen [1,2] was the first researcher
to use the term micropolar. This term then became an area of dynamic exploration. A
simple microfluid, by definition, is a fluent medium whose properties and actions in each
of its volume elements are influenced by local movements of the material particles; such
a fluid has local inertia. Eringen [2] presents a complete discussion of motion and micro-
motions in the presentation of the theory, as well as evidence of the newly introduced
micro-deformation rate tensors, which is a prerequisite for the creation of the constitutive
equations used to characterise a simple microfluid. These classes of fluids identify many
engineering and industrial applications physically and mathematically. On the other hand,
a class of conventional Newtonian fluids cannot specifically identify the fluid flow for a
range of applications in the area of engineering. The examples of such fluids are polymeric,
colloidal solutions, paints, etc. In micropolar fluid, the micro-rotation vectors explain the
rotational motion in microfluid. Therefore, the curl of the velocity vector in this case will
be non-zero.

The control of magnetic induction past a plate in the existence of a micropolar fluid
have mainly been evaluated by Gorla and Mohammeadein [3]. Pedieson [4] evaluated and
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studied boundary layer theory of micropolar fluids. Gupta [5] pursued this work in a study
in which they examined the impact of the transmission of the heat of a fluid over a surface
that was stretched. The flow of fluid across a stretched surface was then determined in
order to do further research on Gupta’s work [6].

1.1. Literature Review

The importance of heat transfer and heat exchangers cannot be overstated. For instance,
raising the temperature will be necessary to increase the efficiency of the thermal processes
for the production of heat and electricity [7,8]. The transfer of energy from one place (high
concentration) to another place (low concentration) is known as heat transfer. Applications
of heat transportation can be seen in our daily lives; for example, the human body emits
heat continuously, and adjustment of the human body temperature is achieved by using
clothing to adapt changing climatic conditions. Heat transportation is also utilised to
manage temperature in our structures [9] and is required for cooking, refrigeration, and
drying. It is also utilised for temperature regulation in automotive radiators [10] and mobile
devices [11]. Solar thermal collectors [12,13] and spaceship thermal control elements [14]
use heat conversion to turn solar energy into heat and power. Many of these systems require
rapid heat dissipation to enable successful performance and optimum productivity inside
the system [15]. As modern sciences progress, devices have become tiny, necessitating
preferable temperature control. Basically, the smaller the scale, the more efficient cooling
technology is required [16]. In thermal engineering, heat transfer enhancement is therefore
a very important field.

Choi and Eastman [17] prepared nanofluids, which are colloidal suspensions of nano-
scale metallic or non-metallic particles in a host fluid (HF). There are few fundamental
conditions which met, low agglomeration of nanoparticles and steady-state suspension and
the HF should be chemically constant. Nanofluids have two subcategories: non-metallic
nanofluids (carbides: carbon, TiC, materials: SWCNT/MWCNT, graphene, diamond, etc.)
and metallic nanofluids (metals: Cu, Fe, Al, Ag, Au; metal oxides: SiO2, Al2O3, TiO2,
CuO). There are two methods to develop nanofluid: a one-step method, which involves
developing the HF and nanoparticles at the same time; and the two-step method, in which
it is generated separately and then mixed up [18]. For several applications, nanofluids have
important properties, such as good stability, high heat conductivity, reduced erosion and
friction coefficient, ultrafast heat transfer ability, and good lubrication.

Mathematical simulations by Rashid et al. [19] showed the combined effects of an
angled magnetic field and a predetermined surface temperature (PST) on Cu-Al2O3-type
nanoparticles in water. They found that the temperature rises by solid volume fraction φ,
magnetic parameter M, and slip-parameter for both Cu-H2O and Al2O3-H2O. Haq and
Aman [20] quantitatively evaluated the thermal performance of a water-based copper
oxide (CuO) nanofluid in a trapezoidal cavity with the use of the finite element method
(FEM). They concluded from this investigation that the velocity steadily decreases as the
fluid thickens and becomes denser due to the presence of a solid volume fraction (=0–0.2).
In a similar way, the rate of heat transmission is likewise decreasing as =0–0.2 increases,
owing to convection. The characteristics of non-uniform melting heat transmission of a
nanofluid over a sheet were investigated by Hayat et al. [21]. The base fluid (water, H2O)
was injected with copper (Cu) nanoparticles, and HAM was used to solve a governing
self-similar system of differential equations. In this investigation, they found that when the
volume fraction, Hartman number, and porosity parameter values increased, so did the skin
friction coefficient and local Nusselt number. The effects of heat transmission on aluminium
alloy nanoparticles suspended across a sheet under the influence of a magnetic field were
studied by Sandeep et al. [22]. They took into consideration two distinct kinds of nanopar-
ticles, AA 7072 (98% Al, 1% Zn, and 1% additives) and AA 7075 (90% Al, 5.6 Zn, 2.3 Mg,
1.2 Cu, and additives). Due to a larger proportion of copper used, the mathematical research
revealed that AA 7075 had a substantially higher heat transfer rate than AA 7072. (Cu).
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Shah et al. [23] conducted a mathematical investigation of aluminium and ethylene glycol
nanoparticles on a sheet while taking the second law of thermodynamics into account.

1.2. Motivations

The great efforts and expertise of the researchers have succeeded in publishing the
results of fluid flow between confined parallel plates. Suitable similar variables and numer-
ical approaches were adopted in order to generate the results. The following constituents
give the motivations of this research work.

• The problem of viscoelastic fluid in a confined space (channel) with extending walls
was discussed by Misra et al. [24]. According to the study, reverse flow occurs
close to the region’s (channel’s) centre and can be managed by applying an external
magnetic field.

• Ashraf et al. [25] looked into the issue of micropolar fluid flow with heat transmission
in a channel with stretching walls. Equations of fourth order coupled nonlinear
ordinary differential type were solved using the quasi-linearization approach. The
study exposed the fact that shear, coupled stresses and heat transfer rate at the walls are
increased by stretching the channel walls. They also quantified that their investigation
may be valuable for the flow and thermal control of polymeric processing.

• Researcher [26–28] examined the effect of heat transfer and nanoparticles on MHD
water/kerosene-based nanofluid in a channel numerically. The studies revealed the
fact that there exists a linear relationship between the thermal boundary layer thickness
and the solid volume fraction.

The above-mentioned motivations of the study are either a problem of simple microp-
olar fluid or simple nanofluid in a channel with stretching walls. Therefore, without any
doubt, it can be argued that there exists a potential research gap to investigate the problem
related to micropolar nanofluid flow in a channel with stretching/shrinking walls.

1.3. Contributions

The following items are the main contribution of the current research.

• It proposes the single-phase nanofluid model of micropolar copper–blood nanoparti-
cles in a channel with stretching and shrinking walls.

• Thermal radiations are also present in the channel to make the problem more appealing
for heat transfer.

• To control the reversibility of the flow due to the stretching walls, we impose a
transverse magnetic field.

• This research also investigates sensitivity analysis using response surface
methodology (RSM).

2. Proposed Model

Consider two-dimensional steady laminar incompressible micropolar nanofluid in a
channel with stretching and shrinking walls in the presence of a magnetic field and thermal
radiation. In this study, copper nanoparticles are the solid dispersed phase while blood is
the fluid continuum phase. The lower and upper walls of the channel stretch and shrink in
the direction of the fluid (x-axis) with some constant rate u = bx ∀ b ∈ R. If b > 0, then the
case is known as stretching and b < 0 is for shrinking walls of the channel (see Figure 1).
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Figure 1. Physical sketch of the problem.

2.1. Governing Equations

The general equations of micropolar fluids as given by Eringen [1] can be represented
in component form V = (u(x, y), v(x, y), 0), ν = (0, 0, N(x, y)), where N = ∇× V �= 0 as:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
−1
ρ

∂p
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+
μ + κ

ρ
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κ

ρ

∂N
∂y

− σf B2◦

ρn f
u (2)

∂v
∂x

+ v
∂v
∂y

=
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ρ
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ρn f j
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∂N
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+ v
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∂y

)
= γn f∇2N + κ

(
∂v
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− ∂u
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)
− 2κN (4)

(
u

∂T
∂x

+ v
∂T
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)
=

kn f(
ρCp

)
n f

(
∂2T
∂x2 +

∂2T
∂y2

)
− 1(

ρCp
)

n f

∂qr

∂y
(5)

Here, p is the pressure, N is the micro-rotational velocity, γn f = j
(

k
2 + μn f

)
is the spine

gradient viscosity, and u and v are the axial and transverse velocities components, respectively.
The appropriate boundary conditions for the current investigation are:

u = ±bx, v = 0, N = −k
∂u
∂y

, T = T1 at y = −a (6)

u = ±bx, v = 0, N = −k
∂u
∂y

, T = T2 at y = +a (7)

These physical quantities are described mathematically as:

ρn f = ρ f (1 − ϕ) + ϕρs (8)

μn f =
μ f

(1 − ϕ)2.5 (9)
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(
ρCp

)
n f =

(
ρCp

)
f (1 − ϕ) +

(
ρCp

)
s ϕ (10)

kn f

k f
=

ks + 2k f − 2ϕ
(

k f − ks

)
ks + 2k f + ϕ

(
k f − ks

) (11)

Here, ϕ is the solid volume fraction, ϕs is for the nanosolid-particles, and ϕ f is for the
base fluid.

We apply a Rosseland approximation for radiation as:

qr = −4σ∗

3k∗
∂T4

∂y
(12)

Here, the Stefan–Boltzmann constant is given by σ∗ = 5.6697 × 10−8 Wm−2K−4 and
the mean spectral absorption coefficient is denoted by k*. Further, blackbody emission
power, eb in terms of the Stefan–Boltzmann constant and absolute temperature, is given
by eb = σ∗T4.

It is assumed that the temperature differences within the flow, such as the term T4,
may be expressed as a linear function of temperature. We obtain the Taylor series expansion
for T4 at a free stream temperature T∞.

T4 = T4
∞ + 4T3

∞(T − T∞) + 8T2
∞(T − T∞)2 + . . .

After neglecting higher-order terms as:

T4 = 4T4
∞T − 3T4

∞ (13)

Using Equation (12) in (13), we obtain:

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 (14)

Equation (5) is now converted in the light of (14) as:
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2.2. Similarity Solution

Now we introduce the similarity transformation as:

η =
y
a

, u = bx f ′(η), v = −ab f (η), θ(η) =
T − T2

T1 − T2
(16)

Using Equation (16) in Equation (1), we see that Equation (1) is identically satisfied and
eliminating the pressure term from (2) and (5), we obtain the required similarity coupled
system of the ordinary differential equation as:(
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κ
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Subject to the boundary conditions:

f (−1) = 0, f ′(−1) = ±1, g(−1) = 0, θ(−1) = 1 (20)

f (1) = 0, f ′(1) = ±1, g(1) = 0, θ(1) = 0 (21)

Here, R = a2b
ν f

is the Reynolds number, M2 =
σf B2◦ a2

μ f
is the magnetic parameter, K = k

ν f

is the micropolar parameter, Pr =
ν f (ρCp) f

k f
is the Prandtl number, and Rd = σ∗T3

∞
3k∗k f

is the
radiation parameter. Also,
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ρ f
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f
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)
3. Results and Discussion

The numerical results have been handled in this section in the form of tables and
graphs. Equations (17)–(19), subject to boundary conditions (20) and (21), are solved
with the aid of a numerical scheme called Runge–Kutta 4th order and finite difference
base scheme (bvp4c) [29]. Equations (17)–(19) are higher order ODEs, so we converted
them into a system of first order ODEs, however three (03) initial conditions were missing(

d2 f
dη2

∣∣∣η=0, d3 f
dη3

∣∣∣η=0, d2g
dη2

∣∣∣η=0, dθ
dη

∣∣∣
η=0

)
. To find these missing initial conditions, we employed

a shooting method. Once these missing conditions were found, then the solution computed
and satisfied the boundary conditions (20) and (21). Thermophysical properties of blood
and copper nanoparticles [27] are fetched from Table 1.

Table 1. Thermophysical properties of the blood and copper nanoparticles (see [27]).

Properties Blood Copper

Density
(

Kg
m3

)
1150 8933

Thermal conductivity
(

W
mK

)
0.53 401

Specific Heat
(

JKg−1K−1
)

3617 385

Figures 2–12 provide information on the hydrokinetic effects on velocity, angular
velocity, temperature, and concentration. The comparison of the two different approaches
of the numerical results is presented graphically in Figure 2 and it is depicted that the
results coincide with each other. Figure 3 depicts how the micropolar parameter affects the
velocity profile f ′(η) for stretching and contracting the wall. The velocity profile, which
is parabolic in character, is shown to decline as the micropolar parameter rises. However,
we deduced from Figure 4 that the micro-rotation g(η) profile gradually increases as the
micropolar parameter K increases after decreasing from the bottom wall to the channel
centre. The micro-rotation profile displays an entirely different pattern in the case of
diminishing walls. On other hand, the temperature profile θ(η) rises while the walls are
extending and falls when the walls are contracting. As can be observed from Figure 8, the
velocity profile decreases as the solid volume percentage increases for stretching walls and
rises for contracting walls. The impact of the stretching Reynolds number R on the velocity
profile is explained in Figure 9. This graphic demonstrates how the velocity profile for the
stretched walls reduces towards the channel borders and increases near the channel centre.
However, it can be seen in Figure 10 that the micro-rotation profile rises from the lower
wall to the channel’s centre, and then falls when the values of the Reynolds number for the
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stretched walls are raised. Figure 11 also illustrates the effect of the Reynolds number on
the temperature profile. We can observe that the temperature profile changes for the bottom
and upper halves of the channel when the Reynolds number values are increased. Figure 12
shows the effect of the radiation parameter on the temperature profile. The temperature
profile of the tube drops from the lower wall to the middle and climbs from the centre to
the top wall as the radiation parameter rises. The reverse result, however, can be seen in
the case of the diminishing walls.

Figure 2. Code verification.

Figure 3. The effect of the micropolar parameter on the velocity profile.
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Figure 4. The effect of the micropolar parameter on the micro-rotation.

Figure 5. The effect of the micropolar parameter on the temperature profile.
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Figure 6. The effect of the solid volume fraction on the velocity profile.

 

Figure 7. The effect of the solid volume fraction on the micro-rotation profile.
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Figure 8. The effect of the solid volume fraction on the temperature profile.

 

Figure 9. The effect of the Reynolds number on the velocity profile.
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Figure 10. The effect of the Reynolds number on the micro-rotation profile.

Figure 11. The effect of the Reynolds number on the temperature profile.
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Figure 12. The effect of the radiation parameter on the temperature profile.

3.1. Application of Response Surface Methodology (RSM)
3.1.1. Optimization Process

RSM is one of many useful tools for describing a wide range of variables, together
with limited resources, quantitative data, and the required test design (response surface
methodology). The following steps were taken into account in this process:

1. To reach the suitable and believable requirements for the intended response, we
planned and investigated the data values.

2. We outlined the most appropriate mathematical models for the response surface.
3. We described the mathematical models for the response surface that are most suited.
4. We used an analysis of the variance to examine the parametric direct and interaction

impacts (ANOVA).

3.1.2. Optimization Analysis by RSM

The relation between the factor variables and the response variable (temperature
gradient) was investigated using a face-centred central composite design. Tables 2 and 3 in-
dicates the three factors and their levels. The quadratic model is presented in Equation (22),
where three linear, square, and interactive terms are involved.

Response = α0 + α1 A + α2B + α3C + α11 A2 + α22B2 + α33C2 + α12 AB + α13 AC + α23BC (22)

Table 2. Parameters with their levels for C fx(−1).

Parameters Symbols
Level

−1 0 1

R A −5 2 5
M B 0 1 1.5
K C 0.1 1 2
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Table 3. Parameters with their levels Nux(−1).

Parameters Symbols
Level

−1 0 1

R A −5 2 5
ϕ B 0 0.05 0.2

Rd C 0.1 1 2

Here (Equation (22)), αi and αij represent the regression coefficients. The statistical
analysis was performed for 20 runs, as prescribed by the defined conditions.

C fx(−1) = 3.0015 + 0.08816R + 0.1126M − 0.1056K + 0.000686R2 + 0.0843M2

+0.0479K2 − 0.00175RM − 0.02615RK − 0.0731MK
(23)

Nux(−1) = 0.758 + 0.1441R − 2.00ϕ − 0.288Rd + 0.00412R2 + 3.64ϕ2

+0.0665Rd2 − 0.2273Rϕ − 0.03759Rd.R + 0.614ϕRd
(24)

The values of skin friction coefficient and Nusselt number for coded values are given
in Table 4. The ANOVA Tables 5 and 6 provide a measure of accuracy for the approximate
model. A parameter is important when the p-value is less than 0.05 (with 95 percent
confidence). Since the p-value in the model is greater than 0.05, the linear, quadratic, and
interaction terms may be omitted. Nonetheless, as seen in Table 5,6 the model proves to be
superior since its coefficient of determination R2 is higher. The correct regression equation
is now as follows:

C fx(−1) = 3.0015 + 0.08816R + 0.1126M − 0.1056K + 0.0843M2 + 0.0479K2

−0.02615RK − 0.0731MK
(25)

Nux(−1) = 0.758 + 0.1441R − 0.288Rd − 0.03759Rd.R (26)

Table 4. Experimental design and responses.

Runs
Coded Values

A B C Response Cfx(−1) Response Nux(−1)

1 −1 −1 −1 2.569977654 0.039218876
2 1 −1 −1 3.4412049 1.706219612
3 −1 1 −1 2.931369225 0.182650354
4 1 1 −1 3.797708428 0.975161305
5 −1 −1 1 2.808665994 0.256515544
6 1 −1 1 3.173524221 0.828662877
7 −1 1 1 2.954689881 0.315102036
8 1 1 1 3.315963627 0.717271607
9 −1 0 0 2.832551727 0.185583893

10 1 0 0 3.347006534 0.981815599
11 0 −1 0 3.092057592 0.701100814
12 0 1 0 3.302840544 0.617231054
13 0 0 −1 3.340485946 0.860674809
14 0 0 1 3.124384046 0.614658362
15 0 0 0 3.187362637 0.679561304
16 0 0 0 3.187362637 0.679561304
17 0 0 0 3.187362637 0.679561304
18 0 0 0 3.187362637 0.679561304
19 0 0 0 3.187362637 0.679561304
20 0 0 0 3.187362637 0.679561304
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Table 5. ANOVA for C fx(−1).

Source DF Adjusted Sum of Square Adjusted Mean Square F-Value p-Value Remarks

Model 9 1.27499 0.141666 211.26 0.000 Significant
Linear 3 1.05111 0.350369 522.48 0.000 Significant

R 1 0.87703 0.877027 1307.85 0.000 Significant
M 1 0.14695 0.146950 219.14 0.000 Significant
K 1 0.03201 0.032010 47.73 0.000 Significant

Square 3 0.03435 0.011451 17.08 0.000 Significant
R.R 1 0.00055 0.000546 0.81 0.388 Not Significant

M.M 1 0.00474 0.004738 7.07 0.024 Significant
K.K 1 0.00509 0.005093 7.59 0.020 Significant

2-Way Interaction 3 0.15276 0.050919 75.93 0.000 Significant
R.M 1 0.00036 0.000362 0.54 0.480 Not Significant
R.K 1 0.12739 0.127394 189.97 0.000 Significant
M.K 1 0.02220 0.022204 33.11 0.000 Significant
Error 10 0.00671 0.000671

Lack-of-Fit 5 0.00671 0.001341 * *
Pure Error 5 0.00000 0.000000

Total 19 1.28170
R2 =99.48% Adjusted R2 = 99.01%

Table 6. ANOVA for Nux(−1).

Source DF Adj SS Adj MS F-Value p-Value Remarks

Model 9 2.39452 0.26606 26.11 0.000 Significant
Linear 3 1.76127 0.58709 57.62 0.000 Significant

R 1 1.65970 1.65970 162.90 0.000 Significant
Phi 1 0.03905 0.03905 3.83 0.079 Not Significant
Rd 1 0.06770 0.06770 6.64 0.028 Significant

Square 3 0.09999 0.03333 3.27 0.067 Not Significant
R.R 1 0.01970 0.01970 1.93 0.194 Not Significant

Phi.Phi 1 0.00191 0.00191 0.19 0.674 Not Significant
Rd.Rd 1 0.00982 0.00982 0.96 0.349 Not Significant

2-Way Interaction 3 0.41288 0.13763 13.51 0.001 Significant
R.Phi 1 0.11203 0.11203 11.00 0.008 Not Significant
R.Rd 1 0.26292 0.26292 25.81 0.000 Significant

Phi.Rd 1 0.02855 0.02855 2.80 0.125 Not Significant
Error 10 0.10188 0.01019

Lack-of-Fit 5 0.10188 0.02038 * *
Pure Error 5 0.00000 0.00000

Total 19 2.49640
R2 =95.92% Adjusted R2 = 92.25%

Tables 2 and 3 present the various levels of the parameters for C fx(−1) and Nux(−1),
respectively. However, Table 4 represents the values of the response function for 20 dif-
ferent points. In Tables 5 and 6, the R2 for C fx(−1) and Nux(−1) (99.48% and 95.92%
respectively), which was obtained by the testing methods and statistical analysis of the
model, is presented. However, the R2-adj amounts for C fx(−1) and Nux(−1) (99.01% and
92.25%, respectively) are ≤R2, but the model fits the data reasonably [30–33]. Moreover, the
importance of the model for the response variables C fx(−1) and Nux(−1) is depicted from
the F-value, which is equal to 211.26 and 26.11, respectively. According to Figure 13a,b, it is
observed that the plots of normal probability are well-behaved and in good condition [33].
From these two figures, the residual histograms exhibit a skewed distribution. When the
residual diagrams and fitted values were compared, the observed and fitted values showed
a strong correlation.
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(a) 

(b)

Figure 13. Residual plot for (a) C fx (b).

Figures 14 and 15 show the mean total skin friction coefficient and Nusselt number
variations as effective parameters functions. The deviation of the skin friction coefficient in
terms of M and R are shown in Figure 14a. The skin friction coefficient increases as M and R
are increased, with the highest value (+1) and lowest value (−1) for M and R, respectively.
The variation in the response variable (skin friction) with respect to K and R are shown in
Figure 14b. It is observed that reducing the values of K and increasing the value of R causes
an increase in the skin friction coefficient. The highest value of skin friction is obtained in
the level of (−1) and (+1) and its lowest value is observed in the level of (+1) and (+1)
for K and R, respectively. The variance of the skin friction coefficient in terms of K and M
is shown in Figure 14c. The skin friction is increased when the value of K is reduced and
the value of M is increased. Furthermore, for K and M, the highest and lowest values of
the skin friction coefficient can be found at the levels of (−1) and (+1), respectively. The
variance of the total Nusselt number in terms of the solid volume fraction of a nanofluid
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and the Reynolds number R is shown in Figure 15a. The Nusselt number is increased
when the solid volume fraction is lower and the Reynolds number is higher. Moreover,
the Nusselt number gains its minimum value in (+1) and (−1) and its maximum in (−1)
and (+1) for ϕ and R, respectively. Figure 15b shows that the Nusselt number increases
by increasing the values of R and decreasing the values of Rd. Nevertheless, the Nusselt
number gains a maximum in level (−1) and (+1) and a minimum in (+1) and (−1) for
Rd and R, respectively. In the same vein, Figure 15c shows that the Nusselt number reaches
its highest value in (−1) and (−1) and its lowest value in (+1) and (+1) for Rd and the
solid volume fraction.

(a) 

(b) 

Figure 14. Cont.
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(c) 

Figure 14. Three-dimensional surfaces and contour plots for all continuous parameters of M, R, and
K on Cfx.

(a) 

Figure 15. Cont.
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(b) 

(c) 

Figure 15. Three-dimensional surfaces and contour plots for all continuous parameters of R, Phi, and
Rd on Nux.
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The regression Equations (25) and (26) are used to calculate the sensitivity. The
sensitivity functions are the partial derivatives of the response variables with respect to the
factor variables, as shown below:

∂C fx

∂A
= 0.08816 − 0.02615K (27)

∂C fx

∂B
= 0.1126 + 0.1686M − 0.0731K (28)

∂C fx

∂C
= −0.1056 + 0.0958K − 0.02615R − 0.0731M (29)

∂Nux

∂A
= 0.1441 − 0.03759Rd (30)

∂Nux

∂B
= 0 (31)

∂Nux

∂C
= −0.288 − 0.03759R (32)

The positive sensitivity value indicates that the objective function has improved as a
result of the improved input parameters. Its negative value, on the other hand, denotes a
decline in the objective function due to the increased input parameters. From Table 7, it is
seen that the sensitivity of C fx to A and B is positive and negative for C. Similarly, from
Table 8, the sensitivity of Nux to A is positive and negative for C.

Table 7. Sensitivity analysis of the response C fx.

A B C Sensitivity to A Sensitivity to B Sensitivity to C

0 −1 −1 0.11431 0.0171 −0.1283
0 −1 0 0.08816 −0.056 −0.0325
0 −1 1 0.06201 −0.1291 0.0633
0 0 −1 0.11431 0.1857 −0.2014
0 0 0 0.08816 0.1126 −0.1056
0 0 1 0.06201 0.0395 −0.0098
0 1 −1 0.11431 0.3543 −0.2745
0 1 0 0.08816 0.2812 −0.1787
0 1 1 0.06201 0.2081 −0.0829

Table 8. Sensitivity analysis of the response Nux.

A B C Sensitivity to A Sensitivity to B Sensitivity to C

−1 0 −1 0.18169 0 −0.25041
−1 0 0 0.1441 0 −0.25041
−1 0 1 0.10651 0 −0.25041
0 0 −1 0.18169 0 −0.288
0 0 0 0.1441 0 −0.288
0 0 1 0.10651 0 −0.288
1 0 −1 0.18169 0 −0.32559
1 0 0 0.1441 0 −0.32559
1 0 1 0.10651 0 −0.32559

4. Conclusions

In this investigation, we considered two-dimensional steady laminar incompressible
micropolar nanofluid in a channel with stretching and shrinking walls in the presence of
a magnetic field and thermal radiation. The copper nanoparticles are the solid dispersed
phase, while blood is the fluid continuum phase. The lower and upper walls of the channel
stretch and shrink in the direction of the fluid (x-axis). The governing similar ODEs were
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solved and verified by two different numerical schemes. After in-depth discussions of the
model, the main findings are drawn as below:

• The velocity of the fluid particles decreases by increasing the values of the micropolar
parameter.

• As the radiation parameter increases, the temperature profile decreases from the lower
wall to the middle and increases from the centre to the upper wall of the tube.

• The velocity profile declines as a solid volume fraction φ enhances for the stretching
walls and increases for the shrinking walls.

• The skin friction coefficient increases as the magnetic and Reynolds number
are increased.

• The Nusselt number is increased when the solid volume fraction is lower.
• The sensitivity of C fx to the Reynolds number and magnetic parameter is positive and

negative for the micropolar parameter.
• Nux is optimized by taking higher values of the Reynolds number and lower values

of the radiation parameter.
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Abstract: In this study, the Casson fluid flow through an inclined, stretching cylindrical surface is
considered. The flow field is manifested with pertinent physical effects, namely heat generation,
viscous dissipation, thermal radiations, stagnation point flow, variable thermal conductivity, a
magnetic field, and mixed convection. In addition, the flow field is formulated mathematically. The
shooting scheme is used to obtain the numerical data of the heat transfer coefficient at the cylindrical
surface. Further, for comparative analysis, three different thermal flow regimes are considered. In
order to obtain a better estimation of the heat transfer coefficient, three corresponding artificial neural
networks (ANN) models were constructed by utilizing Tan-Sig and Purelin transfer functions. It was
observed that the heat transfer rate exhibits an inciting nature for the Eckert and Prandtl numbers,
curvature, and heat generation parameters, while the Casson fluid parameter, temperature-dependent
thermal conductivity, and radiation parameter behave oppositely. The present ANN estimation will
be helpful for studies related to thermal energy storage that have Nusselt number involvements.

Keywords: thermal energy; mixed convection; thermal radiation; nusselt number; artificial neural
networking; casson fluid

MSC: 76R10; 76-10; 65K05

1. Introduction

It is a well-known fact among researchers that the study of heat transfer has numerous
applications, such as in combustion chambers, furnaces, individual nuclear reactors, heat
exchangers with high temperatures, and recuperating thermal energy storage systems, to
name just a few. In this regard, the heat transfer coefficient, namely the Nusselt number,
contributed to a better heat exchange rate. Due to this motivation, various researchers
investigate the heat transfer aspects of the Casson fluid model [1], such as Casson fluid
flow in the vicinity of a stagnation point in the direction of a stretched sheet as described
by Meraj et al. in [2]. The analysis is also done on the properties of heat transmission
with viscous dissipation. In addition, through appropriate transformations, the equations
describing heat transport in Casson fluid were reduced. The Casson fluid, velocity ratio
parameters, Prandtl and Eckert numbers were the factors controlling the flow. The ho-
motopy analysis method (HAM) was used to calculate the analytical solutions across the
entire geographical domain. The Nusselt number and the skin friction coefficient were
computed and analyzed. The heat transfer in Casson fluid flow across a nonlinearly ex-
tending surface was investigated by Swati [3]. The momentum and energy equations were
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transformed into reduced equations by utilizing the appropriate transformations. Further,
with the aid of the shooting approach, numerical solutions were obtained. The velocity
field was suppressed while temperature increased toward the Casson parameter. The
heat transmission in a Casson fluid past a symmetric wedge with mixed convection was
examined by Swati et al. [4]. The graphical representations of a representative collection of
graphic outcomes were produced by the shooting method. It was discovered that while the
temperature fell with a higher Falkner-Skan exponent, the velocity increased. Although the
temperature was observed to drop in this situation. The temperature is found to decrease as
the Prandtl number rises. Pramanik [5] looked into the boundary layer flow of Casson fluid
combined with heat transfer in the presence of suction or blowing at the surface toward an
exponentially extending surface. The equation for the temperature field included a factor
for thermal radiation. The momentum and heat transmission equations were reduced by
using suitable transformations. Then, numerical answers to these equations were discov-
ered. Both velocity and temperature show an opposite nature toward the Casson fluid
parameter. The temperature rises as a result of thermal radiation, which improves effective
thermal diffusivity. Mahdy [6] offered numerical solutions for heat transfer in Casson fluid
past a cylinder. Additionally, by using similarity transformations, the controlling partial
differential equations were reduced to ordinary differential equations, and the resulting
equations were then numerically solved using the shooting method. The primary goal was
to look into how the governing variables affected the velocity, temperature profiles, skin
friction coefficient, and temperature gradient at the surface.

In an unstable flow of a Casson fluid approaching a stagnation point across a stretch-
ing/shrinking sheet in the presence of thermal radiation, Abbas et al. [7] provided the heat
and mass transfer study for Casson fluid. They took into account the linear Rosseland
approximation for thermal radiation. In considering chemical reactions as a function of
temperature, the influence of binary chemical reactions with Arrhenius activation energy
was also taken into account. The bivariate spectral collocation quasi-linearization approach
was used to produce the numerical solutions of the system of nonlinear PDEs that are
constant throughout the entire domain and at all times. Subsequently, the numerical results
for a number of relevant physical parameters were visually discussed as fields of velocity,
temperature, and concentration. A moving wedge containing gyrotactic microorganisms
was the subject of the study by Raju et al. [8] on the effects of thermophoresis and Brownian
motion on two-dimensional magnetohydrodynamics (MHD) radiative Casson fluid. Using
Runge-Kutta and Newton’s methods, numerical results were presented graphically as well
as in tabular form. In the two flow instances of suction and injection, the effects of pertinent
parameters on the distributions of velocity, temperature, concentration, and density of
motile organisms were given and addressed. Further, in comparing the obtained results
to the existing prior studies, the results were validated and determined to be in good
agreement. The temperature and concentration field are increased as the thermophoresis
parameter values rise. The fact that gyrotactic microorganisms can speed up mass and heat
transfer rates was a significant discovery of the present study. Reddy et al. [9] examined
the consequences of conjugate heat transfer (CHT) on the idea of a heat function. The
Casson fluid was physically represented as it passed through a thin, vertical cylinder. The
hollow cylinder’s inner wall was kept at a constant temperature. Additionally, by using
an implicit methodology, the solutions to the linked, non-linear governing equations are
discovered. All of the governing parameters were shown graphically in the flow charts. The
Casson fluid parameters’ steady-state times were prolonged. The heat function contours
were concentrated near the leading edge at the cylinder’s hotter wall. Furthermore, by
increasing the values of all the regulating parameters, the heat lines’ departures from the
hot wall continue to decrease. In comparison to the Newtonian fluid, the Casson fluid
is more important at the hot wall. The influence of nanoparticles suspended in the flow
regime of Casson fluid towards an inclined plate was presented by Sulochana et al. [10].
The frictional heating, heat generation, and thermal radiation effects were all included
in the energy and diffusion equations. TiO2-water and CuO-water were considered two

156



Mathematics 2023, 11, 342

different types of nanofluids to make the analysis more interesting. The analytical solutions
to the transmuted governing partial differential equations (PDEs) were achieved by using
the regular perturbation approach. In using graphical and tabular representations, the
effects of relevant flow variables on thermal, momentum, mass transport, and mass and
thermal transport rates were studied. According to the findings, heat radiation and limits
on chemical reactions tend to increase the rates of thermal and mass transmission. Ali
et al. [11] investigated the micropolar-Casson fluid flow in a restricted channel with MHD.
The governing model of the issue was converted into a formulation based on the vorticity-
stream function, and a finite difference method was used to solve it numerically. The
effects of wall shear stress (WSS), axial velocity, and micro-rotation velocity on various flow
regulating parameters, such as the Strouhal, Hartmann, porosity, micropolar, and Casson
fluid parameters, were illustrated graphically and discussed. With increasing porosity
parameter values, the WSS declines. It was discovered that the flow separation region was
significantly influenced by the Hartman number as well. All of the axial locations had
parabolic velocity profiles. The greatest velocity value was found near the throat of the
constriction.

Gbadeyan et al. [12] looked at the impacts of nonlinear radiation, non-Darcian porous
media, and variable thermal conductivity and viscosity on MHD Casson MHD nanofluid
flow for vertical surfaces. The resulting flow equations were transformed into ordinary
differential equations. The set of equations that resulted from this was then solved using the
Galerkin weighted residual method (GWRM). The temperature, velocity, and nanoparticle
volume percent were calculated using numbers (nanoparticle concentration). It is observed
that as the nanoparticle volume fraction and temperature decrease, the viscosity and
thermal conductivity increase. Alizadeh et al. [13] examined the impinging Casson fluid
flow over a cylinder manifested with porous material, Soret, and Dufour effects. The
flow equations were numerically solved, and Sherwood, Nusselt, and Bejan numbers
were predicted. The results demonstrate that the Nusselt number decreased significantly,
although the Sherwood number decreased less. It was also established that the fluid’s
improved non-Newtonian properties had a considerable impact on flow, temperature, and
mass transfer irreversibilities. In terms of heat transport and entropy, Jamshed et al. [14]
explored the Casson time-independent nanofluid. The impact of slip state and solar
thermal transport on Casson nanofluid flow convection was comprehensively examined.
The nanofluid was treated on a slippery surface with convective heat to evaluate the flow
characteristics and thermal transport. The equations defining the flow problem were
written using PDEs. After converting the equations to ODEs, their self-similar solution was
discovered using a numerical approach known as the Keller box. The copper-water and
titanium-water mixtures are two unique groups of nanofluids under consideration for the
study. The numerical results for several flow parameters, such as skin friction, heat transfer,
Nusselt number, and entropy, were visually depicted. Furthermore, increasing the Reynolds
number enhanced the entropy in the system. In the case of the Casson phenomenon, rather
than normal fluid, thermal conductivity increases. The recent developments on the subject
enclosed above can be accessed in Refs. [15–18].

Additionally, on the basis of the literature reported above on non-Newtonian fluid,
namely Casson fluid, we offer an estimation of the heat transfer coefficient at an inclined
cylindrical surface. Further, mixed convection-casson fluid with a stagnation point is
considered. The heat transfer aspects include heat generation, viscous dissipation, thermal
radiation, and temperature-dependent variable thermal conductivity effects. The three
different thermal flow fields and magnetic field assumptions are formulated mathematically.
The obtained flow equations are reduced in terms of order and solved by using the shooting
method. A Nusselt number as a heat transfer coefficient is predicted by using ANN models.
The present article will help researchers obtain an accurate estimation of heat transfer
coefficients from thermal engineering standpoints.

157



Mathematics 2023, 11, 342

2. Mathematical Formulation

The heat transfer aspects of mixed convective magnetized Casson fluid flow over a
stretching cylindrical surface are considered. Heat generation, viscous dissipation, thermal
radiation, and temperature-dependent thermal conductivity are the key thermal effects
held by energy equations. The mathematical formulation [9,10,13] concluded in this regard
is as follows:
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with endpoint conditions:

ũ(x̃, r̃) = Ũw = ax̃, ṽ(x̃, r̃) = 0, T̃ = T̃w at r̃ = c,
ũ = ũe = dx̃ , T̃ → T̃∞ as r̃ → ∞.

(4)

The relation between thermal conductivity and radioactive heat flux is as follows:
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For the solution of Equations (1)–(4), we have variables [13].
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Equations (1)–(3) under Equation (7) take the form

(1 + 1/β)( f ′′′ (1 + 2γη) + 2γ f ′′ )− f ′2 + f f ′′ − M2( f ′ − A) + A2 + Gθ cos(α) = 0, (8)
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(9)

while the reduced boundary conditions are:

f ′ = 1, f = 0, θ = 1 at η = 0,
f ′ = A, θ = 0 as η → ∞.

(10)

The mathematical relation for the Nusselt number is as follows:
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2.1. Formulation without Thermal Radiation

In the present case, the heat transfer is examined in the absence of thermal radi-
ation [7,14]. The flow field includes physical effects such as viscous dissipation, heat
generation, temperature-dependent thermal conductivity, mixed convection, an externally
applied magnetic field, and a stagnation point. The flow field is mathematically concluded
as follows:
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while endpoint conditions for the present case are:

ũ(x̃, r̃) = Ũw = ax̃, ṽ(x̃, r̃) = 0, T̃ = T̃w at r̃ = c,
ũ = ũe = dx̃ , T̃ → T̃∞ as r̃ → ∞.

(16)

The relation for thermal conductivity is given as follows:

κ
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)
= κ∞
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1 + ε
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)
, where ΔT = T̃w − T̃∞. (17)

To obtain the solutions of Equations (1)–(3), we have used the variables given in
Equation (7).

The reduced set of equations to describe the heat transfer in Casson fluid flow over
the inclined surface are concluded as follows:

(1 + 1/β)( f ′′′ (1 + 2γη) + 2γ f ′′ )− f ′2 + f f ′′ − M2( f ′ − A) + A2 + Gθ cos(α) = 0, (18)
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while the respective boundary conditions are:

f ′ = 1, f = 0, θ = 1 at η = 0,
f ′ = A, θ = 0 as η → ∞.

(20)

Since the thermal radiations are not considered, the mathematical relation for Nusselt
number reduces to
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. (21)
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2.2. Formulation without Heat Generation

In this case, we have considered the thermal flow regime without the heat gener-
ation effect. The energy equation is carried in the presence of temperature-dependent
thermal conductivity and viscous dissipation, while the momentum equation makes as-
sumptions about stagnation point flow, mixed convection, and the magnetic field [15,16].
The concluding mathematical equations in this regard are as follows:
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with boundary conditions:

ũ(x̃, r̃) = Ũw = ax̃, ṽ(x̃, r̃) = 0, T̃ = T̃w at r̃ = c,
ũ = ũe = dx̃ , T̃ → T̃∞ as r̃ → ∞.

(26)

The relation for thermal conductivity and radioactive heat flux is the same as in
Equations (5) and (6), respectively. In changing the order of Equations (24) and (25), we
used variables given in Equation (7). The ultimate outcome in this regard is as follows:
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The reduced boundary conditions are as follows:

f ′ = 1, f = 0, θ = 1 at η = 0,
f ′ = A, θ = 0 as η → ∞.

(29)

In following all thermal flow fields, it should be noted that heat generation coefficient,
free stream velocity, dynamics viscosity, temperature, electrical conductivity, fluid density,
uniform magnetic field, inclination, gravitational acceleration, thermal exponential coeffi-
cient, mean absorption coefficient, kinematic viscosity, Stefan-Boltzmann constant, Eckert
number, heat generation parameter, Prandtl number, mixed convection, magnetic field,
ratio of free stream to stretching velocity, and radiation parameters are denoted as Q0, ũe, μ,
T̃, ρ, σ, B0, α, g0, βT , k∗, υ, σ∗, Ec, H, Pr, G, M, A, and R, respectively. Further, the involved
flow parameters are defined as follows:
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(30)

3. Numerical Method

In the ANN Model-I, the characteristics of heat transfer for mixed convective mag-
netized Casson fluid flow are considered. The main thermal effects held by energy equa-
tions include heat generation, viscous dissipation, thermal radiation, and temperature-
dependent thermal conductivity. Subject to these physical effects, Equations (1)–(6) are
the ultimate flow-narrating differential equations. The reduced system obtained by means
of Equation (7) is given in Equations (8)–(10). The dimensionless relation for the Nusselt
number is given in Equation (12). In the ANN Model-II, the heat transfer aspects with-
out thermal radiation are addressed. The Equations (13)–(17) represent the mathematical
formulation for ANN Model-II, which is heat transfer aspects without thermal radiations.

In addition, using Equation (7), the dimensionless differential equations for the ANN
Model-II are summarized as Equations (18)–(20). In the absence of thermal radiations, the
dimensionless form of the Nusselt number is offered in Equation (22). In ANN Model-III,
we considered heat transfer aspects in the absence of a heat generation effect for the Casson
fluid flow over a stretched surface. The originating partial differential equation for ANN
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Model-III is concluded in Equations (23)–(26). The reduced differential system for ANN
Model-III is summarized as Equations (27)–(29). In the absence of the heat generation
effect, the Nusselt number relation holds as it does for Model-I. Our key interest is to
obtain the numerical data of the Nusselt number for each case, namely ANN Model-I,
ANN Model-II, and ANN Model-III. Firstly, we deal with the major case, which is ANN
Model-I. Various schemes [19–22] exist to narrate the fluid flow problems, but to execute
the shooting method [23,24] along with the Runge-Kutta scheme, the following necessary
procedure is carried out:

Y1 = f (η), Y2 = f ′(η), Y3 = f ′′ (η), Y4 = θ(η), Y5 = θ′(η). (31)

Owning Equation (31) in Equations (8) and (9), one has
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(32)

and
Y1 = 0, Y2 = 1, Y4 = 1 at η = 0,

Y2 → A, Y4 → 0 as η = ∞.
(33)

Then the self-coding is implemented in Matlab, and outcomes are reported for ANN
Model-I in terms of graphs and tables. Similarly, we find numerical solutions for ANN
Model-II and ANN Model-III.

4. Development of ANN Models (I,II,III)

The ANN models were created using the multilayer perceptron (MLP) method, one
of the models that researchers frequently adopt due to its strong learning capabilities. In
terms of structure, MLP networks consist of three linked primary layers.

The prediction data is derived from the input layer, the hidden layer, and the output
layer, which are the first, second, and third layers, respectively. In the developed ANN
model, MLP structures with a single hidden layer are preferred. In the performance
analysis of the designed ANN model, it has been shown that, in order to achieve ideal
results, the number of hidden layers is sufficient and that it is not necessary to experiment
on MLP models with multiple hidden layer structures. An MLP network model’s symbolic
architecture is depicted in Figure 1. In each of the three distinct MLP network models,
different input parameters were defined in order to estimate Nu values. Table 1 displays the
input and output parameters of three distinct ANN models that were created. Moreover,
R1 and R2 represent the thermal radiation parameter values 0 and 0.5, respectively. The
same is the case for heat generation parameters H1 and H2. The performance of forecasts is
impacted by the best data optimization during the building of ANN models. According to
the grouping technique frequently employed in the literature, the data utilized in ANN
models, each of which was produced with a different number of data sets, were segmented.
A total of 15% of the data is set aside for validation, 15% for testing, and 70% is set aside
for training. Table 2 provides details about the data set used to create three distinct ANN
models. The optimization of the computational component known as the neuron in the
hidden layer of MLP models is one of the challenges. Further, there is no model or guideline
for calculating the number of neurons, which is the fundamental cause of this challenge.
In the hidden layer, the number of neurons between 5 and 25 was tested. The MLP
network model with 10 neurons in the hidden layer was chosen after the performances
of other MLP networks with various numbers of hidden layer neurons were assessed. In
determining the optimal number of neurons, parameters such as deviation rates, mean
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squared error (MSE) values, and coefficient of determination (Rm) values were taken into
account. The Levenberg-Marquardt method, a popular training technique with excellent
estimate performance, served as the ANN model’s training procedure [25]. In the hidden
and output layers, respectively, there are Tan-Sig and Purelin functions acting as transfer
functions. The transfer function mathematical expressions are shown below [26]:

f (x) =
1

1 + e−x , (34)

Pureline(x) = x. (35)

Figure 1. The symbolic architecture of an MLP network model.

Table 1. Output and input values of three different ANN models.

Inputs Output

ANN Model-I β γ Ec Pr ε R H Nu

ANN Model-II β γ Ec Pr ε H R1 R2 Nu

ANN Model-III β γ Ec Pr ε R H1 H2 Nu

Table 2. Information about the data set used in the development of three different ANN models.

ANN Model-I ANN Model-II ANN Model-III

Training Data 48 84 84

Validation Data 11 18 18

Test Data 11 18 18

Total Data 70 120 120

The MSE, Rm, and margin of deviation (MoD) metrics, which are often used in the
literature, were chosen to examine the estimated performance of three ANN models.
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The following lists the mathematical formulas [27–30] used to calculate the performance
parameters:

MSE =
1
N

N

∑
i=1

(Xnum(i) − XANN(i))
2. (36)

Rm =

√√√√√√√√1 −

N
∑

i=1
(Xnum(i) − XANN(i))

2

N
∑

i=1
(Xnum(i))

2
, (37)

MoD(%) =

[
Xnum − XANN

Xnum

]
. (38)

5. Comparative Analysis

The aim of this study is to predict the values of the heat transfer coefficient at a
cylindrical surface when a non-Newtonian fluid passes over the surface. A total of three
different flow regimes have been considered when constructing the corresponding ANN
models. The ANN Model-I is developed by considering the Casson fluid flow over an
inclined stretching cylinder along with the involved physical effects, namely an externally
applied magnetic field, stagnation point flow, mixed convection, heat generation, viscous
dissipation, thermal radiations, and variable thermal conductivity. In this model, we
consider seven inputs and the Nusselt number as an output. The ANN Model-II is used to
predict the Nusselt number values for two different thermal regimes, namely, the thermal
regime with radiations and the thermal regime without radiations. The ANN Model-III
offers the prediction of the Nusselt number for two different thermal regimes, namely,
thermal regimes with and without heat generation. In using the shooting method, we
obtained the numerical values of the Nusselt number for three different models (see
Tables 3–21). The impact of the Casson fluid parameter on the Nusselt number is presented
in detail in Table 3. The numerical information for the Nusselt number for a positive
iteration of the curvature parameter is presented in Table 4. Table 5 demonstrates the
influence of Eckert number on Nusselt number, and as can be observed, Nusselt number
exhibits a direct relationship with larger Eckert number values, i.e., Nusselt number grows
in magnitude as Eckert number rises. Table 6 shows how Pr affects the Nusselt number.

Table 3. Effect of Casson fluid parameter on Nusselt number.

β θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −2.0221 2.5613

0.3 −1.9371 2.4536

0.4 −1.8933 2.3982

0.5 −1.8664 2.3641

0.6 −1.8481 2.3409

0.7 −1.8347 2.3239

0.8 −1.8246 2.3112

0.9 −1.8165 2.3009

01 −1.8100 2.2927

02 −1.7794 2.2539
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Table 4. Impact of curvature parameter on Nusselt number.

γ θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −0.9511 1.2047

0.3 −1.0468 1.3259

0.4 −1.1443 1.4494

0.5 −1.2441 1.5759

0.6 −1.3466 1.7057

0.7 −1.4515 1.8386

0.8 −1.5587 1.9744

0.9 −1.6681 2.1129

01 −1.7794 2.2539

02 −2.9651 3.7559

Table 5. Impact of Eckert number on Nusselt number.

Ec θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −1.9015 2.4086

0.3 −2.0216 2.5608

0.4 −2.1397 2.7104

0.5 −2.2560 2.8577

0.6 −2.3705 3.0027

0.7 −2.4832 3.1455

0.8 −2.5943 3.2862

0.9 −2.7037 3.4247

01 −2.8116 3.5615

02 −3.2282 4.0892

Table 6. Impact of Prandtl number on Nusselt number.

Pr θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −1.3536 1.7146

0.3 −1.3813 1.7496

0.4 −1.4084 1.7840

0.5 −1.4348 1.8175

0.6 −1.4607 1.8502

0.7 −1.4861 1.8824

0.8 −1.5109 1.9139

0.9 −1.5353 1.9448

01 −1.5593 1.9752

02 −1.7794 2.2540
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Table 7. Impact of variable thermal conductivity on Nusselt number.

ε θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −3.0653 3.8828

0.3 −2.8466 3.6057

0.4 −2.6458 3.3514

0.5 −2.4588 3.1146

0.6 −2.2821 2.8907

0.7 −2.1121 2.6754

0.8 −1.9457 2.4646

0.9 −1.7794 2.2540

01 −1.6097 2.0390

02 −1.0271 1.3010

Table 8. Impact of radiation parameter on Nusselt number.

R θ
′
(0) −[1 + 4/3R] θ

′
(0)

0.2 −1.7794 2.2539

0.3 −1.6752 2.3452

0.4 −1.5591 2.3906

0.5 −1.4325 2.3875

0.6 −1.2956 2.3320

0.7 −1.1483 2.2200

0.8 −0.9895 2.0449

0.9 −0.8162 1.7956

01 −0.6202 1.4471

02 −0.3629 1.3306

Table 9. Influence of heat generation parameter on Nusselt number.

H θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

0.2 −1.8322 2.3208

0.3 −1.8836 2.3859

0.4 −1.9338 2.4495

0.5 −1.9827 2.5115

0.6 −2.0305 2.5720

0.7 −2.0772 2.6312

0.8 −2.1230 2.6892

0.9 −2.1678 2.7459

01 −2.2118 2.8017

02 −2.2421 2.8401
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Table 10. Impact of curvature parameter on Nusselt number for non-radiative and radiative flow fields.

γ θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −1.0677 −0.9493 1.0677 1.5822

0.3 −1.3171 −1.2061 1.3171 2.0105

0.4 −1.5766 −1.4739 1.5766 2.4569

0.5 −1.8443 −1.7494 1.8443 2.9163

0.6 −2.1182 −2.0306 2.1182 3.3851

0.7 −2.3970 −2.3160 2.3970 3.8607

0.8 −2.6796 −2.6045 2.6796 4.3417

0.9 −2.9653 −2.8953 2.9653 4.8264

1.0 −3.2535 −3.1881 3.2535 5.3146

2.0 −6.2049 −6.1651 6.2049 10.277

Table 11. Impact of Casson fluid parameter on Nusselt number for radiative and non-radiative flow fields.

β θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.3407 −3.2765 3.3407 5.4619

0.3 −3.3106 −3.2453 3.3106 5.4099

0.4 −3.2950 −3.2294 3.2950 5.3834

0.5 −3.2854 −3.2196 3.2854 5.3660

0.6 −3.2788 −3.2130 3.2788 5.3561

0.7 −3.2740 −3.2081 3.2740 5.3479

0.8 −3.2703 −3.2044 3.2703 5.3417

0.9 −3.2674 −3.2015 3.2674 5.3369

1.0 −3.2650 −3.1992 3.2650 5.3331

2.0 −3.2535 −3.1881 3.2535 5.3145

Table 12. Impact of Eckert number on Nusselt number for radiative and non-radiative flow fields.

E θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.2969 −3.2327 3.2969 5.3889

0.3 −3.3403 −3.2773 3.3403 5.4632

0.4 −3.3836 −3.3219 3.3836 5.5376

0.5 −3.4270 −3.3665 3.4270 5.6119

0.6 −3.4704 −3.4111 3.4704 5.6863

0.7 −3.5138 −3.4558 3.5138 5.7608

0.8 −3.5572 −3.5004 3.5572 5.8352

0.9 −3.6006 −3.5451 3.6006 5.9096

1.0 −3.6440 −3.5898 3.6440 5.9841

2.0 −4.0787 −4.0372 4.0787 6.7301
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Table 13. Impact of Prandtl number on Nusselt number for non-radiative and radiative flow fields.

Pr θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.0932 −3.0717 3.0932 5.1205

0.3 −3.1265 −3.0956 3.1265 5.1604

0.4 −3.1592 −3.1191 3.1592 5.1995

0.5 −3.1912 −3.1424 3.1912 5.2384

0.6 −3.2227 −3.1654 3.2227 5.2767

0.7 −3.2535 −3.1881 3.2535 5.3145

0.8 −3.2839 −3.2105 3.2839 5.3519

0.9 −3.3137 −3.2326 3.3137 5.3887

1.0 −3.3431 −3.2546 3.3431 5.4254

2.0 −3.6149 −3.4617 3.6149 5.7706

Table 14. Impact of variable thermal conductivity on Nusselt numbers for radiative and non-radiative
flow fields.

ε θ’(0) −[1 + 4/3R] θ
′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −2.7937 −2.7799 2.7937 4.6341

0.3 −2.5894 −2.5450 2.5894 4.2425

0.4 −2.4047 −2.3224 2.4047 3.8714

0.5 −2.2353 −2.1076 2.2353 3.5134

0.6 −2.0777 −1.8965 2.0777 3.1614

0.7 −1.9285 −1.6847 1.9285 2.8084

0.8 −1.7848 −1.4671 1.7848 2.4456

0.9 −1.6436 −1.2373 1.6436 2.0625

1.0 −1.5720 −0.9852 1.5720 1.6423

2.0 −1.2825 −0.6896 1.2825 1.1496

Table 15. Impact of heat generation parameter on Nusselt number for radiative and non-radiative
flow fields.

H θ
′
(0) −[1 + 4/3R] θ

′
(0)

R = 0 R = 0.5 R = 0 R = 0.5

0.2 −3.2670 −3.2020 3.2670 5.3377

0.3 −3.2805 −3.2159 3.2805 5.3609

0.4 −3.2938 −3.2298 3.2938 5.3841

0.5 −3.3072 −3.2436 3.3072 5.4071

0.6 −3.3204 −3.2573 3.3204 5.4299

0.7 −3.3337 −3.2709 3.3337 5.4526

0.8 −3.3468 −3.2845 3.3468 5.4753

0.9 −3.3599 −3.2981 3.3599 5.4979

1.0 −3.3730 −3.3116 3.3730 5.5204

2.0 −3.5007 −3.4432 3.5007 5.7398
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Table 16. Impact of Casson fluid parameter on Nusselt number with and without heat generation.

β θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.2951 −3.3603 4.1739 4.2565

0.3 −3.2642 −3.3305 4.1347 4.2187

0.4 −3.2483 −3.3152 4.1146 4.1994

0.5 −3.2386 −3.3058 4.1023 4.1875

0.6 −3.2319 −3.2994 4.0938 4.1794

0.7 −3.2271 −3.2947 4.0877 4.1734

0.8 −3.2233 −3.2911 4.0829 4.1688

0.9 −3.2204 −3.2883 4.0793 4.1653

1.0 −3.2180 −3.2860 4.0762 4.1624

2.0 −3.2066 −3.2750 4.0618 4.1484

Table 17. Impact of curvature fluid parameter on Nusselt number with and without heat generation.

γ θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −0.9679 −1.1551 1.2256 1.4632

0.3 −1.2281 −1.3848 1.5556 1.7542

0.4 −1.4969 −1.6307 1.8961 2.0656

0.5 −1.7722 −1.8885 2.2448 2.3922

0.6 −2.0528 −2.1552 2.6003 2.7299

0.7 −2.3372 −2.4286 2.9605 3.0763

0.8 −2.6248 −2.7070 3.3248 3.4289

0.9 −2.9147 −2.9895 3.6921 3.7867

1.0 −3.2066 −3.2750 4.0618 4.1484

2.0 −6.1786 −6.2150 7.8264 7.8725

Table 18. Impact of Eckert number on Nusselt number with and without heat generation.

E θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.2508 −3.3182 4.1177 4.2032

0.3 −3.2950 −3.3613 4.1737 4.2577

0.4 −3.3392 −3.4045 4.2297 4.3125

0.5 −3.3835 −3.4477 4.2858 4.3672

0.6 −3.4277 −3.4909 4.3418 4.4219

0.7 −3.4720 −3.5341 4.3979 4.4766

0.8 −3.5162 −3.5773 4.4539 4.5313

0.9 −3.5605 −3.6206 4.4501 4.5862

1.0 −3.6048 −3.6638 4.5662 4.6409

2.0 −4.0481 −4.0967 5.1277 5.1893
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Table 19. Impact of Prandtl number on Nusselt number with and without heat generation.

Pr θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.0786 −3.0996 3.8996 3.9263

0.3 −3.1050 −3.1360 3.9331 3.9724

0.4 −3.1310 −3.1717 3.9661 4.0176

0.5 −3.1566 −3.2068 3.9984 4.0621

0.6 −3.1818 −3.2412 4.0304 4.1058

0.7 −3.2066 −3.2750 4.0618 4.1484

0.8 −3.2311 −3.3083 4.0928 4.1906

0.9 −3.2553 −3.3410 4.1234 4.2321

1.0 −3.2791 −3.3732 4.1536 4.2728

2.0 −3.5026 −3.6719 4.4367 4.6512

Table 20. Impact of variable thermal conductivity on Nusselt number with and without heat generation.

ε θ
′
(0) −[1 + 4/3R] θ

′
(0), R = 0.2

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −2.7477 −2.8195 3.4805 3.5715

0.3 −2.5369 −2.6115 3.2135 3.3079

0.4 −2.3414 −2.4194 2.9658 3.0646

0.5 −2.1571 −2.2393 2.7324 2.8365

0.6 −1.9804 −2.0679 2.5086 2.6194

0.7 −1.8079 −1.9017 2.2901 2.4088

0.8 −1.6357 −1.7376 2.0719 2.2011

0.9 −1.4601 −1.5721 1.8495 1.9914

1.0 −1.2761 −1.4015 1.1664 1.7751

2.0 −0.8518 −1.0240 1.0789 1.2971

Table 21. Impact of thermal radiation parameter on Nusselt number with and without heat generation.

R θ
′
(0) −[1 + 4/3R] θ

′
(0)

H = 0 H = 0.5 H = 0 H = 0.5

0.2 −3.2066 −3.2750 4.0618 4.1484

0.3 −3.1941 −3.2629 4.4717 4.5681

0.4 −3.1833 −3.2526 4.8799 4.9862

0.5 −3.1740 −3.2436 5.2911 5.4071

0.6 −3.1658 −3.2356 5.6984 5.8241

0.7 −3.1585 −3.2286 6.1054 6.2408

0.8 −3.1519 −3.2222 6.5141 6.6593

0.9 −3.1459 −3.2164 6.9209 7.0761

1.0 −3.1404 −3.2111 7.3265 7.4915

2.0 −3.1012 −3.1731 11.372 11.635
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The impact of the temperature-dependent variable viscosity parameter on the Nusselt
number is inspected and given in Tables 7–9 shows the impact of heat generation and
thermal radiation parameters on the Nusselt number. In detail, larger values of the thermal
radiation parameter cause a decline in the Nusselt number while for large heat generation
parameter, the Nusselt number shows inciting values.

Collectively, for Tables 3–9, it has been observed that the heat transfer normal to the
cylindrical surface enhances for curvature parameter, Prandtl number and heat generation
parameter while for Casson fluid, thermal conductivity, radiation parameters and Eckert
number. In addition, it behaved in opposition to the impact of the curvature parameter on
the Nusselt number is observed for two different values of the thermal radiation parameter
that is R = 0 and R = 0.5 see Table 10. Further, for the two alternative values of the thermal
radiation parameter, R = 0 and R = 0.5, are used to examine the impact of the Casson fluid
parameter on the Nusselt number. Table 11 is provided in this context. It was observed that
the Nusselt number dramatically decreases for positive Casson fluid parameter fluctuation.
In both the presence and non-existence scenarios of thermal radiations, the influence of the
Eckert number on the Nusselt number is seen see Table 12. Table 13 offers the impact of Pr
on the Nusselt number for both radiative and non-radiative cases. Furthermore, in both
cases, the Nusselt number is an increasing function of positive variation in Pr. Table 14
examines and provides information on the impact of a temperature-dependent variable
viscosity parameter on the Nusselt number. The effects of heat generation on the Nusselt
number are shown in Table 15. In this case, there were higher values of the heat production
parameter reveal increasing levels for the Nusselt number. Collectively for Tables 10–15,
the magnitude of heat transfer normal to the cylindrical surface is higher for the case of
presence of the thermal radiation effect. Table 16 offered the influence of the Casson fluid
parameter on the Nusselt number is noticed for two different values namely H = 0 and
H = 0.5. Further, H = 0 corresponds to the non-existence of the heat generation effect while
H = 0.5 implied the existence of heat generation effect. In both cases, it is seen that the
Nusselt number shows an inverse relation towards Casson fluid parameter.

The effects of the curvature fluid parameter on the Nusselt number are shown in
Table 17 for two distinct values, H = 0 and H = 0.5. In addition, the Nusselt number is
stronger in the case of the heat generating effect.

For two distinct scenarios, a thermal flow field with heat generation and a thermal
flow field without heat generation, the impact of the Eckert number on Nusselt is explored
see Table 18. The finding on the Nusselt number toward a positive fluctuation in the Prandtl
number is presented in Table 19. As seen by past events, the Nusselt number rises sharply
when provoked. Both the presence and absence of the heat generating effect are noted
by such measurements. Additionally, it is noted that the Nusselt number’s magnitude is
greater for thermal flow fields with heat generating effects. For both thermal fields, namely
thermal flow regimes with and without heat generating effect, the effect of changing
thermal conductivity parameter on Nusselt number is perceived. To that end, Table 20 is
provided. When there is a thermal flow regime and a heat generating impact, the Nusselt
number is larger. The observation of the Nusselt number toward a positive fluctuation in
the thermal radiation parameter is shown in Table 21. Both the presence and absence of the
heat generating effect are observed and recorded. Furthermore, it is shown that the Nusselt
number magnitude is a little bit bigger when the influence of heat generation is present.
While the heat transfer normal to the cylindrical surface exhibits encouraging values for the
Prandtl number, curvature parameter, Eckert number, and thermal radiations, the Casson
fluid parameter and the temperature dependent variable viscosity parameter exhibit the
opposite behavior. Furthermore, we have shown that the magnitude of the Nusselt number
is larger when thermal radiations are present. The estimated MSE and R values for every
ANN model for the training, validation, and testing phases are displayed in Table 22. The
fact that the R-value is extremely near to 1 and the MSE value is low demonstrates the great
accuracy with which the generated ANN models can predict the Nusselt number. For each
flow regime, we have constructed ANN models and the procedure is supported graphically.
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In particular, the validation that the training period, which began with the entrance of
the data into the system, is ideally finished, is the first stage in the construction of ANN
models. In Figure 2a, the ANN Model-I training performance graphs are created while the
training performance of the ANN Model-II is developed in Figure 2b. Figure 2c provides
the training performance of the ANN model-III. In networks with MLP design, the training
cycle is repeated until there is the minimal error between the target data and the prediction
data acquired in the output layer. With each epoch, the MSE values, which are large at
the start of the training phase, go smaller. The findings shown in Figure 2a–c demonstrate
that the constructed ANN models for predicting the Nusselt number have successfully
completed their training phases. The examination of error histograms are a further step in
evaluating the training performance of ANN models to forecast the Nusselt number. The
error histograms for ANN models I, II, and III are shown in Figure 3a–c, respectively. The
error histograms display the discrepancies between the goal values attained during the
training phase and the anticipated values. The errors obtained for each ANN model are
shown to cluster around the zero-error line, according to our observations. The numerical
quantities of the inaccuracies are also relatively modest, which should be emphasized.

Table 22. Performance results for ANN models.

MSE Rm

Training Validation Test Training Validation Test

ANN Model-I 9.88 × 10−3 3.87 × 10−2 3.24 × 10−3 0.98624 0.96049 0.96282

ANN Model-II 3.34 × 10−4 1.31 × 10−3 2.11 × 10−3 0.99993 0.99972 0.99201

ANN Model-III 3.59 × 10−4 1.73 × 10−2 1.78 × 10−3 0.99993 0.99576 0.99861

Figure 2. Cont.
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Figure 2. (a) Training performance of ANN model-I. (b) Training performance of ANN model-II.
(c) Training performance of ANN model-III.
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Figure 3. Cont.
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Figure 3. (a) Error histograms for of ANN model-I. (b) Error histograms for of ANN model-II.
(c) Error histograms for of ANN model-III.

The findings from the error histograms demonstrate that a little error is carried out
throughout the training stages of the three distinct ANN models that were created to predict
the Nusselt number. Figure 4a–c depict the output values and target values obtained from
the ANN models, designated as Model-I, Model-II and Model-III, each of which was
developed using data sets with different data numbers.

In the analysis of each data point, it is evident that the goal data and the data from the
ANN models (I,II,III) are in perfect harmony. The generated ANN models can estimate the
Nusselt number with great accuracy, as demonstrated by the perfect match of the outputs
derived from the ANN estimations with the target data. Figure 5a. Figure 5b,c display
the MoD values that represent the proportional deviation between the target data and the
outputs from three distinct ANN models created for predicting Nusselt number parameters
based on various input parameters.

It can be noted that the data points are typically close to the zero-deviation line and
have low values when the data points reflecting the MoD values for ANN Models I, II, and
III are inspected. The average MoD values calculated for Model-I, Model-II and Model-III
are obtained as 0.01%, 0.01% and 0.06%, respectively. The low MoD values show that there
is relatively little variation between the goal values and the projected values derived from
the created ANN models. In addition to the MoD values, the disparities between the target
values and the ANN models’ outputs are examined for each output value in Figure 6a–c.
Each ANN model has, in general, relatively modest differences when the different values
obtained for each data point utilized in ANN model training are taken into account. The
findings from the analysis of MoD and difference values show that both ANN models
(I,II,III) developed can predict Nusselt number with very low errors. Figure 7a–c titled
Model-I, Model-II, and Model-III, respectively, illustrate the targeted and ANN outputs
for each of the three ANN models. The data for each ANN model is often found on the
zero-error line when the positions of the data points are taken into account. Additionally, it
should be mentioned that the data points fall within a 10% error range. It is noticed that in
the absence of magnetic field and heat generation effects, our problems reduced to Hayat
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et al. [31]. Additionally, for comparison, the Nusselt number is taken into consideration. In
this direction, Table 23 is offered in this regard. A perfect match that yields the surety of
the present study was found.

 

 
Figure 4. Cont.
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Figure 4. (a) The output values and target values obtained from ANN model-I. (b) The output values
and target values obtained from ANN model-II. (c) The output values and target values obtained
from ANN model-III.

Table 23. Comparison of Nusselt number with Hayat et al. [31].

ε β γ Hayat et al. [31] Present Study

0.0 1.0 0.2 0.5276 0.5054

0.0 1.4 0.2 0.5316 0.5203

0.0 1.8 0.2 0.5336 0.5124

0.0 2.0 0.0 0.5442 0.5220

0.0 2.0 0.12 0.5336 0.5213

0.0 2.0 0.19 0.5279 0.5016

0.0 2.0 0.19 0.5739 0.5216

0.2 2.0 0.19 0.5308 0.5124

0.3 2.0 0.19 0.5123 0.5061
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Figure 5. Cont.
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Figure 5. (a) The MoD values for ANN model-I. (b) The MoD values for ANN model-II. (c) The MoD
values for ANN model-III.

Figure 6. Cont.
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Figure 6. (a) The variations between the targeted values and the outputs of the ANN model-I. (b) The
variations between the goal values and the outputs of the ANN model-II. (c) The variations between
the goal values and the outputs of the ANN model-III.

179



Mathematics 2023, 11, 342

 

 
Figure 7. Cont.

180



Mathematics 2023, 11, 342

Figure 7. (a) The target and prediction values for ANN model-I. (b) The target and prediction values
for ANN model-II. (c) The target and prediction values for ANN model-III.

6. Conclusions

An artificial neural networking models are developed to predict the heat transfer
normal to the cylindrical surface for the incompressible flow of a two-dimensional mixed
convection Casson fluid. The magnetic field is generated outside. In addition, it is presumed
that the surface temperature is stronger than the surrounding fluid temperature. Further,
the energy equation is carried with viscous dissipation, variable thermal conductivity, heat
production, and thermal radiations. The following are the main results:

• Nusselt number shows inciting nature towards the Eckert number, curvature parame-
ter, Prandtl number, and heat generation parameter

• Nusselt number admits declining trends toward the Casson fluid parameter, temperature-
dependent thermal conductivity, and radiation parameters.

• The MSE and R values for Models I, II, and III are low and hence the developed ANN
models can predict the Nusselt number with good accuracy.

• MoD outcomes show that there is not much of a discrepancy between the predicted
and targeted values of the Nusselt number produced by the ANN models I, II, and III.

• The data points are often positioned on the zero-error line and fall within the 10%
error region for ANN models I, II, and III to forecast the Nusselt number.

• Obtaining future data by using ANN models can provide many advantages in terms
of both time and finance. In particular, obtaining specific parameters that can be
obtained as a result of experimental studies by using ANN models can be considered
an important advantage in both industrial applications and scientific studies.
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Nomenclature

ũ, ṽ Velocity components M Magnetic field parameter
υ Kinematic viscosity R Radiation parameter
x̃, r̃ Cylindrical coordinates G Mixed convection parameter
β Casson fluid parameter Pr Prandtl number
βT Thermal expansion coefficient τr Yield stress
g0 Gravitational acceleration A Velocities ratio parameter
α Angle of inclination γ Curvature parameter
T̃∞ Ambient temperature R Radiation parameter
T̃ Temperature of fluid Ec Eckert number
B0 Magnetic field constant Nu Nusselt number
ũe Free stream velocity σ∗ Stefan-Boltzmann constant
σ Fluid electrical conductivity Q0 Heat generation
cp Specific heat at constant pressure L Characteristic length
ρ Fluid density ε Small parameter
q Radiative heat flux c Radius of cylinder
κ Variable thermal conductivity U0 Reference velocity
μ Dynamic viscosity

T̃w Surface temperature
θ(η) Fluid temperature
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Abstract: In this article, we constructed an artificial neural networking model for the stagnation point
flow of Casson fluid towards an inclined stretching cylindrical surface. The Levenberg–Marquardt
training technique is used in multilayer perceptron network models. Tan–Sig and purelin transfer
functions are carried in the layers. For better novelty, heat and mass transfer aspects are taken
into account. The viscous dissipation, thermal radiations, variable thermal conductivity, and heat
generation effects are considered by way of an energy equation while the chemical reaction effect is
calculated by use of the concentration equation. The flow is mathematically modelled for magnetic
and non-magnetic flow fields. The flow equations are solved by the shooting method and the
outcomes are concluded by means of line graphs and tables. The skin friction coefficient is evaluated
at the cylindrical surface for two different flow regimes and the corresponding artificial neural
networking estimations are presented. The coefficient of determination values’ proximity to one and
the low mean squared error values demonstrate that each artificial neural networking model predicts
the skin friction coefficient with high accuracy.

Keywords: Casson fluid; mixed convection; thermal radiations; shooting method; artificial neural
networking; Levenberg–Marquardt technique

MSC: 76R10; 76-10; 65K05

1. Introduction

Alfven [1] was the pioneer of the field of magnetohydrodynamics (MHD) and since
the study of MHD is still a subject that researchers are quite interested in Due to its
extensive applications in daily life, for example blood flow control during surgery, magnetic
endoscopy, cell separation, magnetic devices, tumor treatment, and drug targeting to
mention just a few. Collectively, MHD plays a key role in industrial and biomedical
sciences [2]. Owing to such importance, various recent studies performed by researchers
such as Mustafa [3] have studied magnetized viscous flow by way of nonlinear surfaces. It
has been demonstrated that temperature and flow fields have a straightforward analytical
expression. He offered precise formulations for wall shear stress. He concludes that strong
magnetic fields thin both the momentum and temperature layers. Additionally, as opposed
to lower branches, upper branch solutions were more thoroughly chilled, resulting in
increased heat transfer rates. The magnetized fluid by way of a porous channel with a
radiation assumption was investigated by Akinbowale [4]. Heat and mass transfer are
examined in relation to important rheological parameters such as the magnetic and pressure
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gradient, the radiation parameter, and Prandtl and Reynolds numbers. It was found that
increasing the pressure results in an increase in velocity, with the greatest effect occurring
toward the center of the flow channel, whereas increasing the radiation parameter causes
the temperature distribution to decrease, with the greatest effect occurring toward the
electrically conducting wall. Hanumesh et al. [5] studied MHD peristaltic flow through
an asymmetric tapered tube. Through a porous material, fluid with varied transport
characteristics is transported. A low Reynolds number and a long wavelength were the
fundamental assumptions used to formulate the problem. The momentum and energy
equations’ solutions were obtained using the perturbation method. The graphed answers
show that a key factor in controlling the fluid velocity in the channel’s center is the varying
viscosity. The MHD fluid caused by an unstable stretched sheet with an expanded heat
flux was into consideration by Ahmed et al. [6]. It was presumed that thermal conductivity
and viscosity would change with the temperature. The flow equations were solved by
an efficient shooting method and the Runge–Kutta algorithm. Graphical representations
and in-depth analysis were carried out to examine the flow field. Liaqat et al. [7] studied
heat transfer using self-propelled bioconvective microorganisms submerged in a water-
based MHD nanofluid that included Cattaneo–Christov characteristics. Through Matlab
programming, a finite element method was used to establish the numerical outcomes of
the collection of non-linear equations. An important finding was that the density of the
liquid was enhanced toward the melting factor. MHD micropolar tangent hyperbolic fluid
flow toward the stretched surface was investigated by Pardeep et al. [8]. The collection of
partial differential equations was transformed using similarity transformations to obtain the
theoretically specified ordinary differential system. The issue was mathematically resolved
using the bvp4c method. The major goal of this extensive investigation was to enhance
heat transformation under the influence of numerous parameters. A number of physical
factors were used to depict the heat transfer, skin friction, temperature, and velocity. It
was discovered that changes in velocity and temperature profiles drove changes in the
parameters that affected the size of the nanoparticles and the rate of heat transfer.

The Casson fluid model [9] has received a lot of attention from researchers due to its
unique characteristics. Compared to conventional viscoplastic models, the Casson fluid
model more closely matches rheological data for a variety of materials. Casson fluid, a shear-
thinning fluid, is predicted to have a yield stress below which there is no flow, an infinite
viscosity at a zero shear rate, and zero viscosity at an infinite shear rate. Casson fluids
include intense fruit liquids, tomato sauce, soup, honey, and jellies. Furthermore, it is an
approximate rheological model for chocolate and blood. Additionally, Casson fluid exhibits
yield stress and is crucial in the biomechanics and polymer processing sectors. Owing to
such importance, various researchers have considered the examination of the Casson flow
field in various configurations such as Reddy et al. [10] who investigated the importance
of the Soret and Hall effects on Casson fluid toward a vertical surface. The dimensional
equations that control flow were converted into dimensionless equations by dimensionless
variables, leading to the discovery of the analytical solution via the homotopy analysis
method (HAM), which was then contrasted with the Adomain decomposition method
(ADM) solution. With a particular focus on the physical factors involved in the current
investigation, the heat and mass transfer rates against the Casson fluid parameter were
visually illustrated. When the upper disk is assumed to be impermeable and the bottom
one is assumed to be porous, Mohyud-Din and Khan [11] explored the time-dependent
Casson fluid flow. The controlling equations were transformed by using transformations.
The formulas for the temperature and velocity were obtained using HAM. The effects
of several physical parameters were explored towards Eckert, squeeze numbers, and
dimensionless length. The system’s overall inaccuracy was calculated for both the suction
and injection situations using Mathematica Package BVPh2.0. For emerging parameters,
surface quantities were reported. For both the presence and absence of a magnetic field,
Casson fluid was studied by Abro and Khan [12]. The Fabrizio–Caputo fractional derivative
was used to obtain the flow formulation. Analytical solutions were identified. The Fox-H
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and Mittag–Leffler functions were used to express the generic solutions for the flow field.
Finally, a graphical representation was provided using the relevant parameters, and it was
seen that the behavior of the Caputo–Fabrizio and ordinary fractional fluid models for the
fluid flow was reciprocal. The analysis of time independent naturally convective flow was
identified by Kataria and Patel [13]. A vertical plate was passed over by a Casson fluid flow.
The flow equations were resolved numerically in Matlab and resolved analytically using
the Laplace transform method. Sherwood, Nusselt numbers, and skin friction expressions
were discovered. By creating graphs, the properties of the flow field were examined, and
the physical elements were thoroughly explained. The examination of the Casson liquid
over a disk as a semi-infinite zone was presented by Rehman et al. [14]. The Casson
nano-liquid flow was achieved by rotating a rigid disk at a fixed angular frequency. By
creating a homogenous magnetic field normal to the axial direction, magnetic interaction
was taken into consideration. The chemical reaction, heat generation, heat absorption, and
Navier’s slip condition were manifested during disk rotation. In order to create an ordinary
differential system, the obtained flow narrating differential equations was reduced. The
Von Karman method of the scheme was used to achieve this. Instead of continuing with
the standard built-in system, a computational approach was developed to produce correct
trends. By using graphical and tabular structures, the effects of the flow parameters were
studied. It was found that the Casson fluid parameter caused both the tangential and radial
velocities to decrease. Neeraja et al. [15] explored convective and viscous dissipation effects
on magnetized Casson fluid. Using the gunshot method, the flow equations were resolved.
The governing parameters affected the temperature, solid displacement, liquid velocity,
and concentration. For the Casson parameter, the liquid velocity and consequently the
solid displacement were reduced. When compared to the previous results, the current
results showed a logical agreement. In the context of emerging mass and heat transfer
technologies, Rasool et al. [16] examined the properties of Casson nanofluid flow via porous
media across a non-linear stretching surface. The Darcy–Forchheimer relation allows for an
incompressible viscous nanofluid of the Casson type to pass through the specified porous
material. For the nanoparticles’ velocity, temperature, and concentration, slip boundary
conditions were applied. Attendance was made to Brownian diffusion and thermophoresis.
To numerically solve the problem, a Runge–Kutta (RK) scheme of fourth order was used.
Graphs were created for a range of progressive non-dimensionalized parameter values,
and numerical data were used to examine changes in wall drag factor, heat transfer rates,
and mass transfer rates. The results show that the porous media offer resistance to fluid
flow and the strength of the inertial impact decreases the momentum boundary layer. The
thermophoresis and Brownian motion were discovered to have a progressive relationship
with temperature. For increasing values of the slip parameters, there is a decrease in the
magnitude of the rate of heat and mass transfers. Over a horizontal plate the Casson
nanofluid flow through use of the non-Darcy porous medium, Farooq et al. [17] reported
their findings. By utilizing the proper non-similar transformations, the equations were
converted into a dimensionless model. Through the use of bvp4c, local non-similarity was
used to solve the dimensionless partial differential system. In-depth research was carried
out on the effects of the newly discovered non-dimensional characteristics on the flow field.
Additionally, the influences of variables on the skin friction and the rate of heat transfer
were investigated. Finally, using publicly available data, comparisons between locally
similar solutions and non-similar solutions were completed. Ramesh et al. [18] investigated
the time-dependent and incompressible Casson squeezing flow in between disks. In the
flow phenomena, the nanofluid theory (Buongiorno model) was realized. For the lower
disks, concentration, temperature, and velocity slip were also included. The similarity
functions were completed first to ultimate flow equations and they were solved by the
RK-5 scheme. The results were presented in relation to the various physical quantities. A
higher Reynolds number caused a decline in radial velocity. The vortex viscosity parameter
first increases and subsequently decreases the microrotational field.
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Owing to the importance of the Casson fluid model, artificial neural networking mod-
els are constructed for two different boundary layer flow regimes, namely non-magnetized
and magnetized flow fields. The Casson fluid flow towards the stretching cylinder is mathe-
matically formulated in the presence of a heat generation effect, viscous dissipation, mixed
convection, temperature-dependent variable thermal conductivity, thermal radiations, and
first-order chemical reaction effects. The ultimate flow equations are solved by the use
of the shooting method. The skin friction coefficient (SFC) is estimated at the cylindrical
surface. We constructed artificial neural networking models for better estimation of the skin
friction coefficient. We believe that by following the present outcomes of the Casson fluid
flow regime, one can extend the idea to investigate the time-independent shear rate and
shear stress characteristics of molten chocolate, yogurt, blood, and many other culinary and
biological materials. The present research contributes to answering the following concerns:

• Formulation of Casson fluid flow towards cylindrical surfaces with pertinent physical
effects.

• Comparative examination of Casson velocity for magnetized and non-magnetized
flow fields.

• Examination of Casson concentration for chemically reactive and non-reactive flow
fields.

• Evaluation of the SFC at the cylindrical surface for non-magnetized and magnetized
flow fields.

• Estimation of the SFC by using an artificial neural networking model.

2. Mathematical Formulation

The Casson fluid flow field is considered towards the inclined surface in the presence of
mixed convection, a magnetic field, and stagnation point flow. Both heat and mass transfer
aspects are considered for better novelty. Thermal effects, namely thermal radiations,
viscous dissipation, variable thermal conductivity, and heat generation, are considered by
way of an energy equation while the first-order chemical reaction effect is calculated by the
use of a concentration equation. Both the concentration and temperature at the cylindrical
surface are presumed higher in strength as compared to the field far away from the surface.

The geometry of the problem is given in Figure 1a. The ultimate mathematical equa-
tions [19,20] for the present problem are stated as follows:

∂(R̃Ũ)

∂X̃
+
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∂R̃
= 0 , (1)
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Ũ
∂C̃
∂X̃

+ Ṽ
∂C̃
∂R̃

= Dm
∂2C̃
∂R̃2

− kc(C̃ − C̃∞). (4)

In Equations (1)–(4), B0 is the uniform magnetic field, Dm is the mass diffusivity, C̃ is
the concentration, βC denotes the solutal expansion coefficient, βT is the thermal expansion
coefficient, and kc is the rate of the chemical reaction,. The relation for radioactive heat flux
is given as:

q = − ∂T̃
∂R̃

16σ∗T3
∞

3k∗ . (5)
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The variable thermal conductivity relation is given as:

κ
(

T̃
)
=

(
ε

T̃ − T̃∞

ΔT
+ 1

)
κ∞, (6)

with
ΔT = T̃w − T̃∞. (7)

The flow endpoint conditions are particularized as:

Ũ(X̃, R̃) = Ũw = aX̃, Ṽ(X̃, R̃) = 0 ,C̃ = C̃w, T̃ = T̃w, at R̃ = R1 , (8)

Ũ = Ũe = dX̃ , C̃ → C̃∞, T̃ → T̃∞, as R̃ → ∞ . (9)

To obtain a reduced differential system, we have:

Ũ = X̃ U0
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With Equation (10) in Equations (2)–(4), we obtain:
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The reduced endpoint conditions are:

FC = 0, FC
′ = 1 ,θC = 1, φC = 1, at η = 0 (14)

FC
′ = A, θC = 0, φC = 0, as η → ∞ . (15)

The flow parameters are identified as:
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(16)

The chemical reaction parameter, radiation, magnetic field, heat generation parameters,
Prandtl, Schmidt, Eckert, concentration Grashof, temperature Grashof numbers, Casson
fluid parameter, curvature parameter, and velocities ratio parameter are symbolized as Rc,
R, M, H, Pr, Sc, E, GC, GT , β, γ and A, respectively. For the present case, our interest lies in
evaluating the SFC at the cylindrical surface. Therefore, the mathematical relationship for
SFC is as followes:

Cf =
2τw
ρU2

w
,

τw = μ
(

∂ũ
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,
√
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⎫⎪⎪⎬⎪⎪⎭ . (17)
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Figure 1. Cont.
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(c) 

(d) 

Figure 1. (a) Geometry of the problem. (b) Impact of β on f ′(η). (c) Impact of γ on f ′(η). (d) Impact
of A on f ′(η).
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3. Non-Magnetized Mathematical Model

The heat transfer characteristics in the magnetized flow field of Casson fluid at the
cylindrical surface are considered. Mixed convection, stagnation point flow, viscous dis-
sipation, heat generation, variable thermal conductivity, thermal radiation effects, and
first-order chemical reaction effects are combined for better novelty. The flow narrating the
differential system for a non-magnetized flow regime can be obtained by using M = 0 in
Equations (11)–(15) and we have:

(1 + 1/β)(FC
′′′ (1 + 2γη) + 2γFC

′′ ) + FCFC
′′ − FC

′2 + GTθC cos(α) + GCφC cos(α) + A2 = 0 , (18)(
1 + 4

3 R
)(
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′′ (1 + 2ηγ) + 2γθC

′)+ ε
(
(θCθC

′′ + θC
′2)(1 + 2ηγ) + 2γθCθC

′
)

+PrE(1 + 2ηγ)
(

1 + 1
β

)
FC

′′ 2 + PrHθC + PrFCθC
′ = 0 ,

(19)

φC
′′ (1 + 2ηγ) + 2γφC

′ + Sc f φC
′ − ScRcφC = 0 , (20)

The boundary conditions for the present cases remain the same:

FC = 0, FC
′ = 1 ,θC = 1, φC = 1, at η = 0 (21)

FC
′ = A, θC = 0, φC = 0, as η → ∞ . (22)

It is important to note that for the evaluation of SFC, see Equation (17) to see that the
mathematical relationship remains the same.

4. Solution Methodology

The flow equations are highly non-linear therefore one cannot obtain an exact solution.
For the numerical solution, we choose the shooting scheme along with the Runge–Kutta
algorithm due to higher convergence. To implement the shooting method [21,22], we need
to transform Equations (11)–(15) into a set of first-order initial value systems (IVSs). To
achieve such IVSs, we considered:

Y1 = FC(η), Y2 = FC
′(η), Y3 = FC

′′ (η), Y4 = θC(η),

Y5 = θC
′(η), Y6 = φC(η), Y7 = φC

′(η),
(23)

Using Equation (23) into Equations (11)–(15), we have:

Y1
′ = Y2, (24)

Y2
′ = Y3, (25)

Y′
3 =

1(
1 + 1

β

)
(1 + 2ηγ)

[
−2γY3

(
1 + 1

β

)
+ Y2

2 − Y1Y3 − GTY4 cos α − GCY6 cos α

−M2(Y2 − A)− A2

]
, (26)

Y4
′ = Y5, (27)

Y5
′ = − 1(

1 + 4
3 R

)
(1 + 2ηγ) + ε(1 + 2ηγ)Y4

[
(1 + 4

3 R)(2γY5) + ε((1 + 2ηγ)Y2
5 + 2γY4Y5)+

PrY1Y5 + PrE(1 + 2ηγ)(1 + 1
β )Y

2
3 + PrHY4

]
, (28)

Y6
′ = Y7, (29)

Y7
′ = ScRcY6 − ScY1Y6 − 2γY7

(1 + 2ηγ)
. (30)
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Meanwhile, the conditions are transformed as:

Y6 = 1, Y4 = 1, Y2 = 1, Y1 = 0, at η = 0,

Y6 → 0, Y4 → 0 , Y2 → A, as η = ∞.
(31)

5. Numerical Outcomes

The numerical outcomes are detailed as line graphs and tables. Figure 1b–d is plotted
for the examination of velocity while Figure 2a,b offers the concentration outcomes. In
detail, for the velocity analysis, two separate flow fields, namely the magnetic flow field
and the non-magnetic flow field, are taken into consideration. We possess a non-magnetic
flow field by selecting M = 0 and M = 0.5 for the magnetic regime. For velocity dependency,
we focused on the following inputs, namely the curvature, Casson fluid [23], and velocities
ratio parameters for these two regimes.

(a) 

 

(b) 

Figure 2. (a) Impact of Sc on φ(η). (b) Impact of γ on φ(η).

192



Mathematics 2023, 11, 326

Figure 1b displays the influence of the Casson fluid parameter on the velocity in
scenarios involving magnetic and non-magnetic fields. For higher Casson parameters, the
velocity profile significantly increases. Both magnetic and non-magnetic fluid flows have
the same effect. It is important to remember that greater Casson fluid parameter values
cause the viscosity to decrease and as a result the velocity increases. In addition, it should
be noted that the velocity is greater for a non-magnetic flow regime than it is in a magnetic
flow field. When an external magnetic field was taken into consideration, the Lorentz
force existed as a resistive force. The effect of the curvature parameter on the Casson fluid
velocity is shown in Figure 1c for the flow regimes. The Casson fluid velocity noticeably
increases for positive variations in the curvature parameter, and this effect is shared by
both flow fields. This is due to the fact that the radius of the curvature decreases when
the curvature parameter is iterated positively. As a result, there is less of a surface area
in contact with the fluid flow, resulting in reduced resistance for the fluid particles. It is
important to keep in mind that the strength of the velocity is higher for non-magnetic flow
fields than for magnetic flow fields. This is because of Lorentz force’s existence when a
magnetic field is applied externally.

The effect of the velocities ratio is seen in Figure 1d. We have seen that the Casson
fluid velocity is directly dependent on the velocities ratio parameter, and that larger values
in the velocities ratio parameter led to higher magnitudes of fluid velocity. It is key to
remember that the velocities ratio parameter is the ratio of free stream velocity to stretching
velocity. When the ratio parameter has a value lower than one, it is inferred that the role
of the free stream is less important than the stretching velocity. As a result, the inclined
stretched cylindrical surface causes a considerable disturbance in fluid flow. It is necessary
to keep in mind that the effect of the velocities ratio parameter on the Casson fluid flow is
the same for the magnetic and non-magnetic flow fields for the stagnation point flow. The
study of the impact of flow parameters on Casson fluid concentration is seen in Figure 2a,b.
For the purpose of examining concentrations, we specifically took into account the reactive
and non-reactive flows. We take Rc = 0 for a non-reactive flow field and Rc = 0.5 for a
chemically reactive environment.

We took into account differences in the curvature parameter and Schmidt number for
these two regimes. The combined effect of the Sc on the concentration for reactive and
non-reactive scenarios is depicted in Figure 2a. We noticed that the concentration profile
greatly declines for higher values of the Schmidt number. Both reactive and non-reactive
fluid flow scenarios have the same effect. In addition, it is important to remember that the
strength of the concentration profile is higher in the case of a reactive flow regime than it is
in a non-reactive flow field. The influence of the curvature parameter on the concentration
of Casson fluid is shown in Figure 2b for both reactive and non-reactive flow patterns.

The Casson fluid concentration decreases noticeably for positive variations In the
curvature parameter, as we have seen. The effects are the same in both flow fields. This
is because the radius of curvature decreases when we iterate the curvature parameter
affirmatively. As a result, there is a reduced surface area in contact with the fluid flow, which
lowers the resistance that the fluid particles must overcome. In the current flow problem,
SFC is physical quantity at cylindrical surfaces; see Tables 1–8. The deviation in skin friction
is noticed when chemically reactive Casson fluid flow at cylindrical surfaces is assumed
along with magnetic, mixed convection, stagnation point flow, heat generation, viscous
dissipation, and variable thermal conductivity effects. Tables 1–8 offer an investigation into
the impact of flow parameters on skin friction for two distinct values of the magnetic field
parameter, M = 0, and M = 0.2. In detail, Tables 1 and 2 provide an analysis of the effect of
the Casson fluid parameter [24] on the SFC.

Here, M = 0 denotes the flow of non-magnetized Casson fluid, whereas M = 0.2 denotes
the flow of magnetized Casson fluid. Tables 1 and 2 demonstrate that the SFC exhibits
a decreasing trend as the Casson fluid parameter values increase. These findings hold
true for both flow fields. It is noticeable that the magnetic flow field has stronger skin
friction coefficients than the non-magnetic flow field. The fluctuation in the SFC for positive
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variations in the velocities ratio parameter is shown in Tables 3 and 4. Such observations
are evaluated for both flow fields. We have seen that the SFC decreases noticeably for
higher values of the velocities ratio parameter. Additionally, in the case of non-magnetized
Casson fluid, the SFC is lower in magnitude. For two distinct values of the magnetic field
parameter, Tables 5 and 6 display the impact of the curvature parameter on the SFC. We
have seen that the SFC considerably rises with an increasing curvature parameter.

It should be noted that for magnetic flow fields, the skin friction coefficient values are
higher. The fluctuation in the SFC for positive values of the thermal Grashof number is seen
in Tables 7 and 8. We have seen that as for initial values of the thermal Grashof number,
the skin friction coefficient tends to decrease but for positive values of the thermal Grashof
number, the SFC increases. It can be seen that the strength of skin friction is substantially
higher for non-magnetic flow fields than for magnetic flows.

Table 1. Impact of the Casson fluid parameter on the SFC for the nonmagnetic flow field.

β
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.8224 −4.9344 5.205703
0.3 −0.8633 −3.7409 3.64113
0.4 −0.8965 −3.1377 3.207106
0.5 −0.9241 −2.7723 2.685965
0.6 −0.9474 −2.5264 2.468694
0.7 −0.9673 −2.3492 2.21511
0.8 −0.9846 −2.2154 2.107406
0.9 −0.9998 −2.1106 2.041828
1.0 −1.0131 −2.0262 1.926957
2.0 −1.0928 −1.6392 1.526076

Table 2. Impact of the Casson fluid parameter on the SFC for the magnetic flow field.

β
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.8517 −5.1102 5.127272
0.3 −0.9017 −3.9074 3.906281
0.4 −0.9420 −3.1377 3.142552
0.5 −0.9752 −2.9256 2.913623
0.6 −1.0039 −2.6771 2.689821
0.7 −1.0271 −2.4944 2.491419
0.8 −1.0478 −2.3575 2.352806
0.9 −1.0659 −2.2503 2.252857
1.0 −1.0818 −2.1639 2.16358
2.0 −1.1763 −2.3526 2.370091
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Table 3. Impact of the velocities ratio parameter on the SFC for the nonmagnetic flow field.

A
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.4365 −1.8913 1.798471
0.3 −0.4153 −1.7995 1.775878
0.4 −0.3859 −1.6721 1.761253
0.5 −0.3486 −1.5105 1.47786
0.6 −0.3036 −1.3154 1.397436
0.7 −0.2511 −1.0881 1.114926
0.8 −0.1914 −0.8293 0.84088
0.9 −0.1245 −0.5395 0.560701
1.0 −0.0497 −0.2154 0.221825
2.0 −0.0097 −0.0421 0.044358

Table 4. Impact of the velocities ratio parameter on the SFC for the nonmagnetic flow field.

A
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.4757 −2.0612 2.061184
0.3 −0.4457 −1.9312 1.937046
0.4 −0.4081 −1.7683 1.776405
0.5 −0.3633 −1.5742 1.580536
0.6 −0.3114 −1.3494 1.351205
0.7 −0.2526 −1.0945 1.090686
0.8 −0.1871 −0.8107 0.81182
0.9 −0.1146 −0.4965 0.498124
1.0 −0.0344 −0.1491 0.150031
2.0 −0.0067 −0.0291 0.028967

Table 5. Impact of the curvature parameter on the SFC for the nonmagnetic flow field.

γ
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.5089 −2.2052 2.054256
0.3 −0.5595 −2.4243 2.433774
0.4 −0.6068 −2.6293 2.688039
0.5 −0.6523 −2.8264 2.789083
0.6 −0.6965 −3.0179 3.168692
0.7 −0.7396 −3.2046 3.04553
0.8 −0.7820 −3.3884 3.265665
0.9 −0.8236 −3.5686 3.535665
1.0 −0.8647 −3.7467 3.75129
2.0 −1.2520 −5.4249 5.194255
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Table 6. Impact of the curvature parameter on the SFC for the magnetic flow field.

γ
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.5547 −2.4035 2.397728
0.3 −0.6038 −2.6163 2.618119
0.4 −0.6499 −2.8161 2.820131
0.5 −0.6944 −3.0088 3.010963
0.6 −0.7377 −3.1964 3.195347
0.7 −0.7800 −3.3797 3.376525
0.8 −0.8216 −3.5599 3.55692
0.9 −0.8626 −3.7376 3.738581
1.0 −0.9030 −3.9126 3.923491
2.0 −1.2857 −5.5709 5.600951

Table 7. Impact of the temperature Grashof number on the SFC for the nonmagnetic flow field.

GT
f”(0) (1+1/β)f”(0) ANN Values

M = 0 M = 0 M = 0

0.2 −0.3822 −1.6561 1.545852
0.3 −0.3107 −1.3463 1.296924
0.4 −0.2319 −1.0048 1.027428
0.5 −0.1363 −1.0016 0.938263
0.6 −1.1515 −4.9894 5.305239
0.7 −1.1315 −4.9027 4.950683
0.8 −1.1115 −4.8162 4.683114
0.9 −1.0715 −4.6428 4.742156
1.0 −1.0915 −4.7295 4.449012
2.0 −2.0515 −8.8892 8.987435

Table 8. Impact of the temperature Grashof number on the SFC for the magnetic flow field.

GT
f”(0) (1+1/β)f”(0) ANN Values

M = 0.2 M = 0.2 M = 0.2

0.2 −0.8802 −3.8139 3.786153
0.3 −0.8563 −3.7103 3.708539
0.4 −0.8324 −3.6067 3.609377
0.5 −0.8084 −3.5027 3.498244
0.6 −0.7845 −3.3993 3.403159
0.7 −0.7606 −3.2956 3.298737
0.8 −0.7367 −3.1921 3.187463
0.9 −0.7128 −3.0885 3.082916
1.0 −0.6889 −2.9850 2.986601
2.0 −0.4509 −1.9537 1.955074

6. Artificial Neural Networking Outcomes

The Casson flow field was mathematically modelled and solved by use of the shooting
method. At the surface, skin friction is a quantity of interest. We evaluated the values of the
skin friction coefficient at the cylindrical surface by assuming two different flow regimes.

In the first case, we considered the flow regime without an externally applied magnetic
field while in another case the flow regime was assumed in the presence of the externally
applied magnetic field. For both cases, we have developed an artificial neural networking
(ANN) model. For a non-magnetic flow field, we selected M = 0, and for the magnetic
flow field, we selected M = 0.2. Multilayer perceptron (MLP) is used because of its strong
structural characteristics. MLP networks are made up of layers, and each layer is coupled
to the next. Because the input factors influencing each estimated skin friction coefficient
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(SFC) value vary, two distinct ANN models were created, with distinct input and output
values produced for each. Figure 3a depicts the MLP architecture, which depicts the layered
structure of the produced ANN models. Table 9 shows the input and output parameters for
each generated model. It is critical to optimize the data set used in the construction of ANN
models [25]. Seventy percent of the data set used to create the two separate models was
set aside for training, 15% for validation, and 15% for testing [26]. One of the challenges
in developing ANN models is the lack of a rule for identifying the neurons in the hidden
layer [27]. Figure 3b,c depicts the structural topologies of two different ANN models. From
both figures, one can see that four input values are defined in the input layer of each of the
given structural topologies, while the number of neurons in the hidden layers is 20 and
10, respectively. In the output layer, it is seen that the SFC parameter, which is the only
value, is obtained. For ANN models, it is important to ideally optimize the data set being
used [28]. Seventy percent of the data set used for the two different models developed was
reserved for training the model, 15% for testing, and 15% for validation. The lack of a set
formula for calculating the number of neurons in the hidden layer is one of the challenges
in designing ANN models. For this reason, the performance of ANN models with different
numbers of neurons in the hidden layer has been examined and the number of neurons in
the hidden layer has been ideally optimized.

 
(a) 

 
(b) 

Figure 3. Cont.
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(c) 

Figure 3. (a) The layered structure of the developed ANN models for SFC. (b) Structural topology of
the ANN model for the non-magnetized flow field. (c) Structural topology of the ANN model for the
magnetized flow field.

Table 9. The output and input parameters for each developed model.

Model Inputs Output

Model 1 (M = 0) A γ GT β SFC
Model 2 (M = 0.2) A γ GT β SFC

Table 10 contains information about the data set utilized in each ANN model as well
as the number of neurons in each models hidden layer. The Levenberg–Marquardt training
technique, which is extensively utilized due to its great learning performance, is used in
MLP network models. The hidden and output layers both have access to purelin and
tan–sig transfer functions. The following are the mathematical expressions for the transfer
functions utilized:

f (x) =
1

1 + exp(−x)
, (32)

purelin(x) = x. (33)

Table 10. Information about the data set used in each ANN model and the number of neurons.

Model Number of Neuron Training Validation Test Total

Model 1 (M = 0) 20 28 6 6 40
Model 2 (M = 0.2) 10 28 6 6 40

Mean squared error (MSE), coefficient of determination (R), and margin of deviation
(MoD) parameters, which are extensively used in the literature, were chosen to evaluate
the performance of two different ANN models [29,30]. The mathematical equations used
to calculate the performance parameters are as follows:

MSE =
1
N

N

∑
i=1

(Xtarg(i) − Xpred(i))
2, (34)

R =

√√√√√√√√1 −

N
∑

i=1
(Xtarg(i) − Xpred(i))

2

N
∑

i=1
(Xtarg(i))

2,
, (35)

MoD(%) =

[Xtarg − Xpred

Xtarg

]
× 100. (36)
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The training accuracy of the ANN models designed to predict SFC values in two
different situations has been thoroughly studied. Training performance graphs for two
ANN models are shown in Figure 4a,b for M = 0 and M = 0.2, respectively. The graphs in
both figures depict the training cycle (epoch) that occurs in an MLP network. Furthermore,
the MSE values of each ANN model are greater at the start of the training period and drop
as the model progresses.

 

 

Figure 4. (a,b). The training performance graph of the ANN model for M = 0 and M = 0.2.

It is seen that the ANN model’s training phases ended with the MSE values obtained
for each data set meeting the most optimal position. The error histograms for the ANN
model of both magnetized (M = 0.2) and non-magnetized (M = 0) flow fields are shown in
Figure 5a,b. It should be observed that the calculated error rates for three different data sets
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are positioned quite close to the zero-error line in the error histograms. The error levels in
the error histograms are also quite low. The results of the performance and error histograms
reveal that the training stages of the ANN models designed for estimating SFC values have
been completed optimally.

Figure 5. (a,b). Error histogram of the ANN model for M = 0 and M = 0.2.
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Figure 6a,b shows the SFC values for both magnetic (M = 0.5) and non-magnetized
(M = 0) flow fields, as well as the values produced using the ANN models (b).

 

Figure 6. (a,b). The predicted and target values for M = 0 and M = 0.2.

When the outcomes for each data point are analyzed, the graphs clearly show that
the ANN model results are in very good agreement with the goal values. This excellent fit
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of the goal and ANN outputs demonstrates that the created ANN models can accurately
anticipate SFC values.

Figure 7a,b demonstrates the deviation ratio between the SFC values derived from
two different ANN models with the goal data. Such observations are completed for M = 0
and M = 0.2, respectively. Examining the MoD values obtained for each data point utilized
in the creation of the ANN models reveals that the data are often concentrated around
the zero-error line. The MoD data to the zero-error line indicate that the ANN outputs
have low deviation rates. For a close error study of the ANN models (M = 0, M = 02), the
discrepancies between the ANN model outputs and the target data are designed for the
individual data points and are shown in Figure 8a,b. When the difference values for the
two different ANN models are considered, it is apparent that for all of the data points, the
calculated differences are quite low. The examination of the MoD and difference values
reveals that both ANN models can predict SFC values with relatively low error values. The
target values are on the x-axis in Figure 9a,b, and the ANN outputs are on the y-axis. When
the data for two distinct ANN models (M = 0, M = 02) were reviewed, the data points were
found to be quite close to the zero-error line. The numbers also show that the data points
are inside the +10% error band range. Table 11 shows the performance parameters derived
for two different ANN models created to estimate SFC values under different scenarios.
The MoD values calculated for the ANN models are quite low, as can be observed. The low
MoD values suggest that the deviation rates of the ANN model outputs are quite low. The
R values’ proximity to one and the low MSE values demonstrate that each ANN model can
make predictions with high accuracy. The collected results suggest that each ANN model
can accurately calculate the output parameter that is the SFC.

Figure 7. Cont.
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Figure 7. (a,b). MoD values for each data point for M = 0 and M = 0.2.

Figure 8. Cont.
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Figure 8. (a,b). The differences between the target values and the ANN outputs for each set of data
when M = 0 and M = 0.2.

 

Figure 9. Cont.
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Figure 9. (a,b). Target and prediction values for M = 0 and M = 0.2.

Table 11. The performance parameters calculated for the two different ANN models.

Model MSE R MoDmin (%) MoDmax (%)

Model 1 (M = 0) 5.28 × 10−2 0.96081 −0.12 6.9
Model 2 (M = 0.2) 2.39 × 10−5 0.99998 0.0008 −0.74

7. Conclusions

The stagnation point flow of Casson fluid has been mathematically modelled for
magnetized and non-magnetized flow fields. The novelty was enhanced by considering
heat generation, viscous dissipation, mixed convection, temperature-dependent variable
thermal conductivity, thermal radiations, and chemical reaction effects. The ultimate flow
equations were solved by using the shooting method. The SFC values were evaluated at
the cylindrical surface and the corresponding ANN models were constructed. The key
outcomes are as follows:

• The margin of deviation and difference values reveals that both ANN models can
predict SFC values with relatively low error values.

• The error levels in the error histograms are also quite low. Furthermore, for both ANN
models, we noticed that the data points were inside the +10% error band range.

• The coefficient of determination values’ proximity to one and the low mean squared
error values demonstrate that each ANN model can carry out predictions with high
accuracy.

• The magnitude of velocity is higher for the case of non-magnetized Casson fluid flow
as compared to non-magnetic flow.

• For both chemically reactive and non-reactive flows, the concentration profiles show a
declining nature towards the Schmidt number and curvature parameter.

• The SFC is found to be the decreasing function of the Casson fluid parameter and the
velocities ratio parameter while the opposite is the case for the curvature parameter.
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• For variation in the Casson fluid parameter, thermal Grashof number, and curvature
parameter, the magnitude of SFC is higher for the case of magnetized flow as compared
to the non-magnetized flow regime.
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Nomenclature

X̃, R̃ Cylindrical coordinates
Ũ, Ṽ Velocity components
ν Kinematic viscosity
β Casson fluid parameter
βT Thermal expansion coefficient
g0 Gravitational acceleration
α Angle of inclination
βC Solutal expansion coefficient
T̃∞ Ambient temperature
T̃ Temperature of fluid
B0 Magnetic field constant
C̃ Concentration of fluid
C̃∞ Ambient concentration
Ũe Free stream velocity
σ Fluid electrical conductivity
cp Specific heat at constant pressure
ρ Fluid density
q Radiative heat flux
κ Variable thermal conductivity
μ Dynamic viscosity
Q0 Heat generation coefficient
L Characteristic length
ε Small parameter
R1 Radius of cylinder
kc Chemical reaction rate
C̃w Surface concentration
U0 Reference velocity
T̃w Surface temperature
Dm Mass diffusivity
FC′(η) Fluid velocity
θC(η) Fluid temperature
φC(η) Fluid concentration
GT Temperature Grashof number
GC Concentration Grashof number
Pr Prandtl number
A Velocities ratio parameter
R Radiation parameter
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γ Curvature parameter
k∗ Coefficient of mean absorption
E Eckert number
M Magnetic field parameter
Rc Chemical reaction parameter
Sc Schmidt number
σ∗ Stefan–Boltzmann constant
H Heat generation parameter
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Abstract: This article describes a two-dimensional steady laminar boundary layer flow and heat
mass transfer caused by a non-Newtonian nanofluid due to a horizontally stretching sheet. The
non-dimensional parameters take into consideration and regulate the effects of convective boundary
condition, slip velocity, Brownian motion, thermophoresis and viscous dissipation. The thermal
radiation, which affects the flow’s thermal conductivity and the nanofluid’s variable viscosity are also
taken into consideration. We propose that a hot fluid could exist beneath the stretching sheet’s bottom
surface, which could aid in warming the surface via convection. The physical boundary conditions
are non-dimensionalized, as are the governing transport set of nonlinear partial differential equations.
By using the shooting approach, numerical values for dimensionless velocity, temperature and
nanoparticle concentration are achieved. Distributions of velocity, temperature and concentration are
plotted against a number of newly important governing factors, and the outcomes are then provided
in accordance with those graphs. Additionally, the local skin-friction coefficient, the local Sherwood
number and the local Nusselt number are discussed in order to further clarify and thoroughly explain
the current problem. In order to validate the numerical results, comparisons are made with previously
published data in the literature. There is a really good accord. Additionally, the current work has
implications in the nanofluid applications.

Keywords: Maxwell nanofluid; thermal radiation; convective boundary condition; variable conduc-
tivity; viscous dissipation

MSC: 76A05; 76D10; 76W05

1. Introduction

Nanofluid is a crucial fluid type for energy conveyance since it includes both base
fluid and nanoparticles. In light of the demands of applications across decades, nanofluid
subjects are hence sustainable. There have been a number of general hypotheses put forth
on the thermophysical properties and heat transport of changed base fluid nanoliquids
up until this point. Choi [1] created the word “nanofluids” to describe the investigation
and examination of nanoparticles. Additionally, he looked into how adding nanoparticles
to the basic fluid improves the thermal characteristics of fluids. When a nanoparticle has
at least one of its major dimensions smaller than 100 nm, it is said to be suspended in
a thin liquid, or a nanofluid. Due to their amazing ability to increase heat conductivity,
nanofluids have proven beneficial in a variety of technical and industrial applications.
Because common heat transfer fluids have poorer thermal conductivities, it is impossible to
meet cooling rate requirements with them. The nanoparticles can be dispersed to improve
the thermal conductivity and the total thermal performance of common heat transfer fluids.
Nanofluids have unique features that make them potentially useful in a variety of heat
transfer processes, including microelectronics, fuel cells, hybrid engines, etc.
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Engine oils, radiators, engines, coolants, automatic transmission fluids, lubricants
and other synthetic high-temperature heat transfer fluids are all common components of
conventional truck thermal systems. These might profit from the increased heat conduc-
tivity provided by nanofluids as a result of the addition of nanoparticles [2]. Due to its
numerous manufacturing applications, certain numerical and experimental investigations
on nanofluids that focus on the thermal conductivity under different physical conditions
have been carefully examined [3–9].

The mechanism by which the work done by a nanofluid on adjacent layers as a result
of shear stresses is irreversibly transformed into heat is known as the viscous dissipation
phenomena. The viscous dissipation phenomenon, which shows as an increase in fluid
temperature, is caused by the irreversible work done by the fluid motion to resist the layers
of shear stresses in the flow. The viscous dissipation phenomenon is crucial in heat transport
research, particularly in boundary layer flows, because of the greater velocity gradients
inside the boundary layer’s region. The impact of viscous dissipation in nanofluids may
vary due to the influence of particle migration, which significantly alters the distribution
of temperature and nanoparticle concentration. Heat transfer is significantly impacted by
the viscous dissipation phenomena, especially in high-velocity flows and very viscous
flows at low velocities. Many scientists [10–15] have already looked at a range of real-
world issues connected to the phenomenon of viscous dissipation in nanofluid flow under
varied circumstances.

Most physical models are controlled by a system of differential equations, some of
which cannot be solved analytically. In order to solve this problem, we must use some
numerical methods that are connected to numerical analyses. Numerical approximation is
sufficient in many situations, including most practical engineering applications, chemistry,
economics, physics and biology. As a result, numerous models are addressed numerically
using different techniques [16,17]. According to the research described above, many re-
searchers have investigated the Newtonian and non-Newtonian nanofluid flow problems
using a variety of numerical methodologies. The current study, which is inspired by the
aforementioned literature and applications, investigates numerically the boundary layer
flow and heat transfer of a Maxwell nanofluid model that is exposed to a magnetic field
and thermal radiation. Along with convective boundary conditions, slip velocity, viscous
dissipation and the variable properties of nanofluids are also examined. Utilizing the shoot-
ing technique, numerical solutions are obtained for the domains of velocity, temperature
and concentration.

2. Problem Formulation

Consider an incompressible nanofluid flowing through a permeable stretched sheet in
a boundary layer with effects from radiation, viscous dissipation and convective heating.
The x-axis and y-axis are perpendicular to each other in the problem geometry, with the
surface lying along the x-axis. Here, heat and mass transmission mechanisms are explained
in terms of the Brownian and thermophoresis characteristics with diffusion coefficient DB
and thermophoretic diffusion coefficient DT , respectively. Additionally, the phenomenon of
convective heat transfer is also taken into account. In the x-direction, the sheet is stretched
with velocity uw = ax, where a is a positive constant with dimension s−1. Likewise, the
nanofluid flow is assumed to have the velocity vector

−→
U with two components u and v,

which can take the form: −→
U = u

−→
i + v

−→
j . (1)

In this investigation, we assume that a hot fluid exists beneath the stretching sheet’s
bottom surface. By using a convection phenomenon, this hot fluid, which has a temperature
of Tf , significantly contributes to warming the stretching sheet’s surface. So, the heat
transfer coefficient h f is created as a result. This temperature Tf is thought to be in the
following form:

Tf = T∞ + Ax2, (2)
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where T∞ refers to a constant ambient cold fluid temperature, A is constant. Here, we
have that Tf > T∞ is the highest temperature in the system. Furthermore, the nanofluid
concentration Cw(x) is assumed to take the form:

Cw(x) = C∞ + cx2, (3)

where C∞ stands for the nanofluid concentration away from the sheet and c is a constant.
Additionally, it is anticipated that the vector of the applied magnetic field would permeate
the Maxwell nanofluid with electrical conductivity σ, which can be considered to be
as follows: −→

B (x) = B0
−→
j , (4)

where B0, as shown in Figure 1, is a factor that indicates the intensity of the magnetic field
acting in the y-positive axis’s direction.

Figure 1. Schematic diagram for the nanofluid flow.

Further, we assume that the sheet is porous and the nanofluid moves through the
holes at a constant speed vw. In Cartesian coordinates, x and y, the fundamental steady
equations for the conservation of mass, momentum, thermal energy and nanoparticles for
nanofluids can be expressed as [18]:

∂u
∂x

+
∂v
∂y

= 0, (5)

u
∂u
∂x

+ v
∂u
∂y

=
1

ρ∞

∂

∂y

(
μ(T)

∂u
∂y

)
− β1

(
u2 ∂2u

∂x2 + v2 ∂2u
∂y2 + 2uv

∂2u
∂x∂y

)
− σB2

0
ρ∞

u, (6)

u
∂T
∂x

+ v
∂T
∂y

=
1

ρ∞cp

∂

∂y

(
κ(T)

∂T
∂y

)
+

1
ρ∞cp

(
μ(T)(

∂u
∂y

)2 − ρ∞β1

(
2uv

∂u
∂x

∂u
∂y

+ v2(
∂u
∂y

)2
))

+

τ

[
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
]
− 1

ρ∞cp

∂qr

∂y
,

(7)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 , (8)

where, β1 is the Maxwell coefficient, ρ∞ is the ambient nanofluid density, μ(T) is the
nanofluid viscosity, T is the nanofluid’s Maxwell temperature and κ is the nanofluid
thermal conductivity. Here, we must remember that the Maxwell fluid class, characterized
by the Maxwell coefficient β1, is the most basic category of non-Newtonian fluids. The
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properties of the relaxation time can be accurately described by this model. Furthermore,
we must point out that if β1 = 0, our model can be reduced to a Newtonian model. Further,
according to the Rosseland approximation, the radiative heat transfer qr is represented by
the expression [19]:

qr = −4σ∗

3k∗
∂T4

∂y
. (9)

The term T4 in the last equation is used to denote the slight temperature variation in
the fluid. The Taylor’s series about T∞ is used to expand the variable T4 as a linear function.
Consequently, disregarding the higher order terms produces the following [20]:

T4 ∼= 4T3
∞T − 3T4

∞. (10)

In order to fully formulate the suggested problem, following is an introduction to the
boundary conditions for the distributions of velocity, temperature and concentration [21]:

u = ax + (
λ1

μ∞
)

(
μ(T)

∂u
∂y

− ρ∞β1(2uv
∂u
∂x

+ v2 ∂u
∂y

)

)
, v = −vw,

− κ(T)
(

∂T
∂y

)
w
= h f

(
Tf − Tw

)
, C = Cw(x) = C∞ + cx2, at y = 0,

(11)

u → 0, T → T∞, C → C∞ as y → ∞, (12)

where μ∞ is the ambient viscosity of the nanofluid and λ1 is the slip velocity factor. We
now begin with dimensionless variables that can transform partial differential equations
into ordinary differential equations before creating the solution procedure [21]:

η =

(
a

ν∞

) 1
2
y, u = ax f ′(η), v = −(aν∞)

1
2 f (η), (13)

θ(η) =
T − T∞

Tf − T∞
, φ(η) =

C − C∞

Cw − C∞
, (14)

where f is the non-dimensional stream function, θ is the non-dimensional fluid tempera-
ture, φ is the dimensionless concentration and η is the dimensionless similarity variable.
Furthermore, we assume in this study that the dimensionless temperature impacts the
nanofluid thermal conductivity κ(T) as well as the nanofluid viscosity μ(T) according to
these laws [22]:

μ = μ∞e−αθ , κ = κ∞(1 + εθ), (15)

where κ∞ is the thermal conductivity away from the sheet, ε is the factor of the thermal
conductivity, α is the viscosity parameter, μ∞ is a constant viscosity of the nanofluid at the
ambient. Here, we must observe that κ = κ∞ when the nanofluid temperature T is equal to
the ambient temperature T∞. Therefore, the thermal conductivity of the nanofluid varies
with temperature along the thermal boundary layer before being constant at ambient. The
governing ordinary differential equations with boundary conditions are written as follows
when the aforementioned Equations (13) and (14) are introduced into the momentum,
energy and concentration equations:(

f ′′′ − α f ′′θ′
)
e−αθ + f f ′′ − f ′2 + β

(
2 f f ′ f ′′ − f 2 f ′′′

)
− M f ′ = 0, (16)

1
Pr

(
εθ′2 + (1 + R + εθ)θ′′

)
+ f θ′ − 2θ f ′ + Ntθ′2 + Nbθ′φ′ + Ec f ′′

(
e−αθ f ′′ + β

(
2 f f ′2 − f 2 f ′′

))
= 0, (17)

φ′′ + PrLe
(

f φ′ − 2φ f ′
)
+

Nt
Nb

θ′′ = 0. (18)
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According to the following modified boundary condition:

f = fw, f ′ = 1+λ
(

e−αθ f ′′ + β(2 f f ′2 − f 2 f ′′)
)

, φ = 1,

θ′ = −δ

(
1 − θ

1 + R + εθ

)
, at η = 0,

(19)

f ′ → 0, θ → 0, φ → 0, as η → ∞. (20)

Nevertheless, it is crucial to remember that the current non-Newtonian model can be
converted into a Newtonian model if β is missing from the previous system. In addition,
the equations above include the following dimensionless quantities and parameters:

β = aβ1, M =
σB2

0
aρ∞

, λ = λ1

√
a

ν∞
, Nb =

τDB(Cw − C∞)

ν∞
, Ec =

a2

Acp
, (21)

Nt =
τDT

(
Tf − T∞

)
ν∞T∞

, R =
16σ∗T3

∞
3κ∞k∗ , δ =

h f

κ∞

√
ν∞

a
, Le =

κ∞

ρ∞cpDB
, Pr =

μ∞cp

κ∞
, (22)

where β is the Maxwell parameter and measures the relaxation time and M, λ, Nb, Ec are
the magnetic number, slip velocity parameter, Brownian motion parameter and Eckert
number, which denote the viscous dissipation phenomenon. Nt is the thermophoresis
parameter, R is the thermal radiation parameter and δ, Le, Pr are the surface-convection
parameter, Lewis parameter and Prandtl number, respectively.

Skin friction C fx, heat transfer rate in term of Nux and mass transfer rate in terms of
Shx are the physical characteristics of Maxwell nanofluid flow. These terms are denoted
as follows:

C fx

2
Re

1
2
x = −

[
e−αθ(0) f ′′(0)− β( f ′′(0) f 2(0)− 2 f (0) f ′2(0))

]
,

Nux√
Rex

= −θ′(0), Shx√
Rex

= −φ′(0),
(23)

where Rex = uwx
ν∞

is the local Reynolds number.

3. Physical And Graphical Interpretation of Results

Here, a comprehensive investigation of radiative, MHD Maxwell nanofluid flow is
described in this research using the shooting method, under the impact of slip velocity,
viscous dissipation and convective heating phenomenon. Firstly, a comparison of numerical
values representing the rate of heat transfer (−θ′(0)) for various suction parameters fw and
the Prandtl number Pr with results previously published (Ishak et al. [23]) is presented in
Table 1 as evidence of the reliability of the existing solutions.

Figure 2 shows three different values of the Maxwell parameter side-by-side com-
parisons of the fields of velocity, temperature and concentration. As can be seen, Figure 2
depicts a significant resistance to flow velocity with increasing Maxwell parameter values
due to the development of shear stress. Additionally, the temperature of the sheet θ(0) as
well as the temperature θ(η) and concentration φ(η) distributions were all dramatically
increased by the same parameter.
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Table 1. Comparison of Nusselt number −θ′(0) for different values of fw and Pr with the results of
Ishak et al. [23] when α = β = M = Ec = λ = R = ε = Nt = Nb = 0.

Pr fw, Ishak et al. [23] Present Work

0.72 −1.5 0.4570 0.457001520
1.0 −1.5 0.5000 0.500000000
10 −1.5 0.6542 0.654211910

0.72 0.0 0.8086 0.808589088
1.0 0.0 1.0000 1.000000000
3.0 0.0 1.9237 1.923689985

10.0 0.0 3.7207 3.720699510

0.72 1.5 1.4944 1.494389791
1.0 1.5 2.0000 2.000002010
10 1.5 16.0842 16.08419892
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Figure 2. (a) The f ′(η) for chosen β, (b) θ(η) and φ(η) for chosen β.

According to the change of the suction parameter fw, Figure 3 shows the analysis of
the flow and heat mass transportation performance of Maxwell nanofluid. An intriguing
finding is that the classical model specifies the lowest fluid flow for high values of the
suction parameter while having the fastest velocity profile for low values. Higher suction
parameter values lessen the mass distribution while enhancing the cooling of the nanofluid
and the sheet temperature θ(0) since the fluid displays the fastest heat and mass transfer in
the absence of the suction parameter (impermeable sheet).
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Figure 3. (a) The f ′(η) for chosen fw, (b) θ(η) and φ(η) for chosen fw.

Figure 4 depicts variations in velocity f ′(η), temperature θ(η) and concentration φ(η)
caused by the magnetic field’s M impact on the Maxwell nanofluid. Various inputs of the
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non-dimensional magnetic parameter M are used in this investigation while holding the
inputs of other related physical parameters constant. The velocity of the nanofluid is observed
to be restricted by an increase in the magnetic parameter. The existence of the Lorentz force
is the physical component that causes this result. One of the viscous forces of this type, the
Lorentz force, works in the opposite direction of nanofluid flow and slows down the fluid
velocity. As a result, the creation of these viscous forces has a profound impact and causes
the fluid to be warmed and concentrated to enhance the magnetic parameter.
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Figure 4. (a) The f ′(η) for chosen M, (b) θ(η) and φ(η) for chosen M.

For various values of the viscosity parameter α, Figure 5 explains the demeanor of the
velocity f ′(η), temperature θ(η) and concentration φ(η) fields. The graphic shows that as
the viscosity parameter climbs, the momentum boundary layer thickness and velocity field
slow down. The essential duty of nanofluid viscosity, which mostly depends on temperature,
is to promote mass and heat transfer rates within the boundary layer. As a result, it is evident
that as the viscosity parameter improves, the concentration and temperature of nanofluid
as well as the sheet temperature θ(0) and the thickness of the thermal boundary layer rise.
Clearly the velocity distribution through the boundary layer was greatly impacted by the
viscosity parameter α since the viscosity parameter directly influences the velocity field, as
seen from Equation (16). While the concentration and temperature fields are both indirectly
influenced by the viscosity parameter, and as a result, both are only marginally impacted.
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Figure 5. (a) The f ′(η) for chosen α, (b) θ(η) and φ(η) for chosen α.

Figure 6 examines the impact of the slip velocity parameter λ on the velocity f ′(η),
temperature θ(η) and concentration φ(η) fields while the other physical governing pa-
rameters are unchanged. We notice that anytime the slip velocity λ increases, both the
sheet velocity f ′(0) and the nanofluid velocity f ′(η) dramatically decrease with the di-
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mensionless variable η. Additionally, we see that the velocity distribution changes as η is
increased in the interval 0 ≤ λ < 2. Further, when the slip velocity parameter λ improves,
the same drop tendency is shown for both the temperature distribution θ(η) and the sheet
temperature θ(0). Moreover, we can see from the following graphic that with rising values
of λ, the boundary layer thickness and the concentration field both get better.

Η

�Η�

� Β�

� �

� Α�

Λ�

Η

� � �

� Δ� �

� �

� ��

Θ�Η�

Φ�Η�

Λ�

Figure 6. (a) The f ′(η) for chosen λ, (b) θ(η) and φ(η) for chosen λ.

According to the influence of the Eckert number Ec, the temperature distribution θ(η)
shows modification in Figure 7a. In the nanofluid heat transfer mechanism, the principal
objective of the viscous dissipation phenomena is to alter the thermal performance with
sources of energy. Larger Eckert number values indicate that heat is dissipating and traveling
in the direction of the fluid as a result of viscous force. Fluid particles travel quickly as
a result, causing more collisions between them. This greater collision produces thermal
energy by converting kinetic energy. Furthermore, the graph of the temperature field θ(η)
for miscellaneous values of thermal radiation parameter R is designed in Figure 7b. With the
higher thermal radiation parameter along the sheet, as opposed to away from it, a significant
drop in both the sheet temperature θ(0) and the nanofluid temperature is seen.
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Figure 7. (a) θ(η) for chosen Ec (b) θ(η) for chosen R.

Figure 8 shows how the surface-convection parameter δ affects the temperature dis-
tributions θ(η) in the region of the thermal boundary layer. The nanofluid temperature
θ(η) is seen to dramatically increase along the sheet wall but only modestly rise away
from the sheet, especially when η is greater than 4.0. As a result, the nanofluid along the
sheet warmed due to higher values of the surface-convection parameter, which thickened
the thermal boundary layer. Figure 8b illustrates the graphical behavior of the nanofluid’s
dimensionless temperature for various values of the thermal conductivity parameter ε. It is
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evident that as ε increases, the Maxwell nanofluid temperature and the thermal boundary
layer thickness grow away from the sheet wall, whereas the reverse trend is noted beside the
sheet. In contrast to nanofluids with constant thermal conductivity, this causes the thermal
boundary layer thickness of the nanofluid with variable thermal conductivity to be greater.
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Figure 8. (a) The θ(η) for chosen δ, (b) θ(η) for chosen ε.

Additionally, Figure 9 shows the temperature field θ(η) outcomes for the Brownian
motion parameter Nb and the thermophoresis parameter Nt. The particles’ erratic motion
generates extra kinetic energy, which boosts the thermal energy that is already there. As a
result, a rise in Nb causes the fluid temperature in the boundary layer’s thermal domain to
increase faster. The Maxwell nanofluid temperature and the sheet temperature θ(0) both
accelerated similarly as a result of the increase in the thermophoresis parameter Nt.
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Figure 9. (a) The θ(η) for chosen Nb, (b) θ(η) for chosen Nt.

Before we have finished our analysis, we must concentrate on the drag force, which

can be calculated using the skin-friction coefficient C fx
2 Re

1
2
x , rate of heat transfer (which can

be evaluated using the local Nusselt number Nux√
Rex

), and the rate of mass transfer, which

can be determined using the local Sherwood number Shx√
Rex

. Therefore, we are interested to
examine the key physical characteristics that can influence how these quantities behave.
In order to obtain these values for this work, we constructed Table 2. It is evident from
Table 2 that as the Maxwell number, viscosity parameter, slip velocity parameter and
surface-convection parameter grow, the local skin-friction coefficient changes inversely.
Additionally, a reduction in the Sherwood number is brought about by rising values of
the Maxwell number, magnetic number, viscosity parameter and slip velocity parameter,
whereas the remaining parameters affect the Sherwood number in the opposite direction.
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In addition, increasing the suction, slip and surface-convection parameters elevates the
values of the local Nusselt number, but the opposite trend is shown for the remaining
parameters. Last but not least, the thermal conductivity parameter can increase the local
Sherwood number and the skin friction coefficient values while having an opposite impact
on the Nusselt number.

Table 2. Values of C fx
2 Re

1
2
x , Nux√

Rex
and Shx√

Rex
for various values of β, fw, M, α, λ, Ec, R, δ and ε with

Nb = 0.8, Le = 1.0, Pr = 1.0 and Nt = 0.1.

β fw M α λ Ec R δ ε C fx
2 Re

1
2
x

Nux√
Rex

Shx√
Rex

0.0 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 1.010101 0.106808 1.404140
0.2 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.980241 0.105987 1.361981
0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.937128 0.104581 1.291542

0.1 0.0 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.845444 0.105775 1.168950
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.8 0.2 0.2 0.2 0.2 0.5 0.2 0.2 1.095980 0.106979 1.536251

0.1 0.5 0.0 0.2 0.2 0.2 0.5 0.2 0.2 0.937012 0.107398 1.414660
0.1 0.5 0.5 0.2 0.2 0.2 0.5 0.2 0.2 1.071621 0.105056 1.342411
0.1 0.5 1.0 0.2 0.2 0.2 0.5 0.2 0.2 1.179310 0.103068 1.284550

0.1 0.5 0.2 0.0 0.2 0.2 0.5 0.2 0.2 1.003950 0.106514 1.388790
0.1 0.5 0.2 1.0 0.2 0.2 0.5 0.2 0.2 0.958801 0.105961 1.360981
0.1 0.5 0.2 2.5 0.2 0.2 0.5 0.2 0.2 0.888192 0.104945 1.308652

0.1 0.5 0.2 0.2 0.0 0.2 0.5 0.2 0.2 1.329681 0.104874 1.515341
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.5 0.2 0.5 0.2 0.2 0.734743 0.106767 1.258561

0.1 0.5 0.2 0.2 0.2 0.0 0.5 0.2 0.2 0.997361 0.112547 1.383421
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.2 0.5 0.5 0.2 0.2 0.991547 0.097316 1.383845

0.1 0.5 0.2 0.2 0.2 0.2 0.0 0.2 0.2 0.994306 0.152219 1.379111
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.2 0.2 1.0 0.2 0.2 0.995541 0.081922 1.386090

0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.0 0.2 0.997938 0.057677 1.389350
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.995036 0.106410 1.383612
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.5 0.2 0.988322 0.215834 1.370541

0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 0.0 0.995008 0.108859 1.383361
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 1.5 0.995196 0.093315 1.384910
0.1 0.5 0.2 0.2 0.2 0.2 0.5 0.2 3.5 0.995396 0.079346 1.386282

4. Conclusions

Maxwell nanofluid flow caused by stretching surfaces has presented numerous chal-
lenges to the fluid mechanics research community as a result of widespread applications in
the commercial and industrial sectors. As a result, the main goal of this work is to elucidate
how the convective heating and viscous dissipation phenomena, which are connected to
the variable thermo-physical properties, affect the slippery flow of the Maxwell MHD
nanofluid toward a stretching horizontal sheet. The simplified reduced core governing
equations are numerically solved using the shooting method. Graphs and tables are used
to investigate how physical parameters affect fluctuations in velocity, temperature, concen-
tration, skin-friction coefficient, Sherwood number and the Nusselt number. The following
findings are achieved after computation and observation.

1. The increased Maxwell parameter, slip velocity parameter, viscosity parameter, mag-
netic number and suction parameter diminishes the nanofluid velocity.

2. Eckert number and surface-convection parameter values that are larger result in
magnifying values for the temperature field.
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3. The suction parameter, thermal conductivity parameter and magnetic parameter all
raise the skin-friction coefficient.

4. The results showed that the existence of thermophoresis and Brownian motion makes
the heat transmission phenomena more effective.

5. Higher radiation and suction parameter values result in a larger Sherwood number,
while Maxwell and slip velocity parameter values result in a smaller Sherwood number.

6. A larger magnetic number, Brownian motion parameter, viscosity parameter and
Maxwell parameter will result in a temperature rise whereas a higher suction parame-
ter and slip velocity parameter will reduce the temperature.

7. The concentration of the nanofluid is severely degraded as the viscosity, magnetic
number, Maxwell and slip velocity parameters drop.
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Greek Symbols

ρ nanofluid density (kg m−3)
ρ∞ the ambient nanofluid density (kg m−3)
β the dimensionless Maxwell parameter
β1 the Maxwell coefficient (S)
μ coefficient of viscosity (kg m−1s−1)
μ∞ the ambient nanofluid viscosity (kg m−1s−1)
ν kinematic viscosity (m2 s−1)
ν∞ the ambient kinematic viscosity (m2 s−1)
θ dimensionless temperature
φ dimensionless concentration
λ1 slip velocity factor (m)
λ slip velocity parameter
σ electrical conductivity (S m−1)
σ∗ Stefan–Boltzmann constant (W m−2 K−4)
δ the surface convection parameter
η similarity variable
κ thermal conductivity (W m−1 K−1)
κ∞ the ambient nanofluid thermal conductivity (W m−1 K−1)
ε thermal conductivity parameter

Superscripts

′ differentiation with respect to η

∞ free stream condition
w wall condition
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Nomenclature

a velocity coefficient (s−1)
A is a constant (K m−2)
B0 strength of a uniform magnetic field (T)
c is a constant (mol L−1 m−2)
cp specific heat at constant pressure (J kg−1 K−1)
C nanoparticles concentration (mol L−1)
C fx skin friction coefficient
Cw surface nanoparticles concentration (mol L−1)
C∞ ambient nanoparticles concentration (mol L−1)
DB Brownian diffusion coefficient (m2 s−1)
DT thermophoresis diffusion coefficient (m2 s−1)
Ec Eckret number
f dimensionless stream function
fw suction parameter
h f the heat transfer coefficient (W m−2 K−1)
k∗ mean absorption coefficient (m−1)
Le Lewis parameter
M magnetic parameter
Nb Brownian motion parameter
Nt thermophoresis parameter
Nux local Nusselt number
Pr Prandtl number
R radiation parameter
Rex local Reynolds number
Shx local Sherwood number
T nanofluid temperature (K)
Tf convection temperature (K)
T∞ ambient temperature (K)
u velocity component in the x-direction (m s−1)
v velocity component in the y-direction (m s−1)
vw suction velocity (m s−1)
x, y Cartesian coordinates (m)
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Abstract: Accurate determination of optimum flow and heat transfer condition is one of the major
challenges faced in the application of magnetic fluid in the field of medicine and engineering,
especially when applied as ferrofluids for targeted drug deliveries, treatment of hyperthermia,
sealants in computer hard drives, lubricants in car shafts. In view of these important applications,
a mathematical investigation of the flow and heat transfer behavior of reactive magnetic fluids
containing nanostructures is presented based on a couple of stress constitutive models. The reactive
fluid is assumed to flow through inclined magnetized solid boundaries for energy conversion. The
formulation leads to nonlinear coupled equations. The dimensionless equations are numerically
solved using the spectral Chebyshev assumed solution for the weighted residual technique, and
the correctness of the solution is confirmed using the shooting Runge–Kutta method. The effects of
various fluid parameters on velocity, temperature, skin friction, and heat transfer rates are described in
tabular and graphical form, along with suitable physical explanations. Thermal analysis computations
are also presented. According to the findings, an enhanced couple of stress fluid and variable
viscosity parameters reduced the skin drag and heat transfer rate at the bottom wall. Furthermore,
the thermal stability of the flow can be achieved with increasing values modified Hartman number
while increasing couple stress parameter encourages thermal instability in the flow domain.

Keywords: reactive magnetic fluid; couple stress; Riga surface; Chebyshev spectral method

MSC: 76D99; 76W99

1. Introduction

The biomedical and rheological properties of ferrofluids have recently been widely
studied. This is due to their applications in some areas of medicine and engineering [1–3].
Regarding real-world applications, the bulk of ferrofluids has non-Newtonian properties.
The couple stress fluid is one of the most well-known non-Newtonian fluid models. The
theory of couple stress is a broad notion of viscous fluid that allows for polar effects like the
presence of couple stresses and body couples in classical theory. Couple stress fluids have
a high viscosity and polar effects (Abbas et al. [4]). This is first considered by Stokes [5]
and has been an area of potential interest in many physical and engineering processes.
Hence, the study of flow and heat transfer analysis of couple stress fluid has captured
the mind of several researchers [6–9]. The work in [4] examines the mixed convection
flow of an electrically conducting couple stress fluid in an inclined channel. They noticed
a reduction in the thermal field as the channel was tilted. The concept of channel flow
having non-zero inclination has been instrumental in diverse industrial processes such
as chemical processing, iron removal, and electrical system. Because of its applications,
Sui et al. [10] examined the behavior of physical components on non-Newtonian fluid flow

Mathematics 2022, 10, 4713. https://doi.org/10.3390/math10244713 https://www.mdpi.com/journal/mathematics
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past an inclined surface. RamReddy et al. [11] reported the nonlinear convective flow of
non-Newtonian liquid over an inclined porous regime. Significant change is observed
as the angle of inclination is improved. Yusuf et al. [12] also presented a semi-analytical
solution on a micropolar fluid flow over an inclined geometry with velocity slip. Very
recently, Ahmad et al. [13] analytically examined Stoke’s theory of couple stress fluid over
an inclined channel under variable viscosity.

To improve the fluid thermophysical characteristics of some industrial liquids that are
poor conductors of electricity, an external device known as a Riga plate is introduced to
enhance the heat transfer attributes. Riga plate is an array of a magnetic bar supported
by permanent magnets and alternating electrons. It could also act as an external device
to boost fluid electricity. Gailitis and Lielausis [14] built a Riga plate under the influ-
ence of magnetic and electrical fields that generate a Lorentz force along the wall, which
helps to control fluid flow. Given this, several researchers have discussed laminar flow
under the influence of magnetic force along the Riga surface under various geometries
afterward [15–18]. Nadeem et al. [19] studied the slip effect on a rotation fluid over a
Riga channel. They discovered that the momentum boundary layer thickness declined
due to the Riga surface. Naseem et al. [20] examined a grade three fluid flow with the
influence of Cattaneo-Cristov heat flux over a Riga surface. Recently, stagnation point
fluid flow and heat transfer over a vertical surface consisting of magnetic electrodes have
been investigated by Khashi’ie et al. [21]. They indicated a diminution in the heat transfer
rate due to an upsurge in the magnet and electrode width. Furthermore, fluid physical
properties are affected by temperature changes. Previous heat conduction research relied
heavily on the ambient fluid’s unchanging physical properties. However, certain qualities,
remarkably fluid viscosity, are known to alter with temperature. It is vital to account for
the temperature-dependent fluctuation of viscosity in order to effectively describe flow
and heat transfer rates. In this regard, the influence of temperature-dependent viscosity
on a transient flow along a slanted surface is examined by Chinyoka et al. [22]. Further,
Nadeem et al. [23] discussed nanofluid flow with magnetic and variable viscosity effects
over a curved surface. They further established that thermal distribution declined for aug-
menting variable viscosity. Megahed et al. [24] considered the slip effect on a viscoelastic
fluid flow over a surface with variable viscosity.

Except for a few problems, numerical algorithms have proven to be useful in solving
continuum mechanics problems in which flow and heat transport are approximated by
highly nonlinear differential equations. This typically results in the issue of convergence
and computational time. Several approximate methods have become enormously popular
in solving nonlinear models. However, of interest is the Chebyshev spectral collocation
method. The main advantage of these methods lies in their accuracy for a given number of
unknowns. For problems whose solutions are sufficiently smooth, they exhibit exponential
convergence/spectral accuracy rates as in Mai-Duy and Tanner [25]. For instance, the
method’s efficiency is described in some different kinds of nonlinear partial differential
equations by Khater et al. [26]. Comprehensive discussions on Chebyshev spectral colloca-
tion methods are available in different review articles [27–29]. The investigations mentioned
above have demonstrated reactive flow along the Riga surface, but they have yet to examine
how reactive fluid flow is across a Riga channel. This investigation will address this gap
and offer a thorough understanding of fluid flow through heated, magnetic boundaries.
As a result, three areas are the focus of our attention: first, the flow of a reactive couple
stress fluid in incline walls with temperature-dependent viscosity; second, the impact of
the fluid reactiveness through a magnetized heated channel; and third, the analysis of the
numerical solution using a reliable solution technique. The Solutions to the nonlinear ODEs
are generated via the Chebyshev spectral collocation technique, and results are displayed
through graphs. Further, the solution compared with a different numerical scheme is also
presented to corroborate our results.
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2. Model Formulation

This paper establishes a continuous incompressible flow and heat transfer of a temperature-
dependent reactive couple stress fluid in a non-porous inclined Riga plate. As demonstrated
by the flow geometry (see Figure 1), the (x, y) Cartesian coordinate is chosen along the
plates so that the x-axis is parallel to the flow and the y-axis is perpendicular to it. The plates
are at an angle M to the horizontal. Furthermore, when considering a gravity-driven steady
flow, the fully evolved incompressible fluid implies V = (u(y),0,0), T = T(y), as indicated in
the flow geometry. The governing equations for this problem are based on the Cartesian
system for continuity, momentum, and energy equations as follows:

∇.V = 0 (1)

ρ
DV
Dt

= ∇τ − η∇4V + ρ f + J × B (2)

ρCP
DT
Dt

= k∇2T + τL + QAC0e−
E

RT (3)

In Equations (1)–(3), V represents the velocity vector, ∇ is the grad operator, (ρ, CP, t, T)
—represents the fluid density, specific heat, time, and fluid temperature, respectively,(

k, τ, L, D
Dt

)
are the thermal conductivity of the fluid, Cauchy stress tensor, the gradient

of the velocity vector and material derivative. (η, f , J, B)—couple stress coefficient, body
force, the current density of electric field and a sum of the magnetic field, (Q, A, C0), (E, R),
Q—the heat of reaction, A—rate constant, C0 initial reactant concentration, E—activation
energy, R—universal gas constant,
where

τ = −PI + μA1, A1 = L + LT ,
D(∗)

Dt
=

∂(∗)
∂t

+ v.∇(∗) (4)

are the formal definitions of the Cauchy tensor, the First Rilivin–Ericksen tensor, and the
material derivative.

 
Figure 1. Flow Channel.

Using the Ginsberg approximation, then the Lorentz force is expressed as

J × B ≈ σ(E × B) =
π

8
J0M0e−

π
l y′ (5)

Given the combustible fluid assumptions, Equations (1)–(3) can be written as

∂u′

∂x′ = 0 (6)

224



Mathematics 2022, 10, 4713

0 = −dp
dx

+
d

dy′

(
μ′du′

dy′

)
− η

d4u′

dy′4
+ ρg cos M +

π

8
J0M0e−

π
l y′ (7)

0 = k
d2T
dy′2

+ μ′
(

du′

dy′

)2

+ η

(
d2u′

dy′2

)2

+ QAC0e−
E

RT (8)

Together with the boundary conditions

u′(±h) = 0 =
d2u′

dy′2
(±h), T(±h) = T0 (9)

The inverse relationship between fluid temperature and temperature is a well-known
phenomenon in the literature

μ′ = μ0e−α′(T−T0) ∼= μ0
(
1 − α′(T − T0)

)
(10)

Since viscosity variation temperature is usually, i.e., 0 < α′ << 1. To make Equa-
tions (7)–(9) dimensionless, we introduce the following dimensionless variables and pa-
rameters

y = y′
h , u = μ0u′

ρgh2 cos M , H2 = π J0 M0
8ρg cos M , β2 = μ0h2

η , γ = πh
l , θ = E(T−T0)

RT2
0

, Nu = hEqw
kRT2

0

α =
α′RT2

0
E , λ = QEAh2C0e

− E
RT0

T2
0 RK

, ε = RT0
E , δ =

(
ρg cos M

h

)2 e
E

RT0

QC0 Ah2 , CF = μ0τw
hρg cos M .

(11)

So that the dimensionless form of (7)–(9) becomes:

0 = 1 +
d

dy

(
(1 − αθ)

du
dy

)
− 1

β2
d4u
dy4 + H2e−γy; u(±1) = 0 =

d2u
dy2 (±1) (12)

0 =
d2θ

dy2 + λ

(
e

θ
1+εθ + δ(1 − αθ)

(
du
dy

)2
+

δ

β2

(
d2u
dy2

)2)
; θ(±1) (13)

The shear stress at the wall τw and heat flux qw are respectively expressed as

τw = μ′ du′

dy′ − η
d3u′

dy′3

∣∣∣∣∣
y′=−h

and qw = −k
dT
dy′

∣∣∣∣
y′=−h

(14)

Using Equation (11) in (14), we get

SF = (1 − αθ)
du
dy

− 1
β2

d3u
dy3

∣∣∣∣
y=−1

, Nu = − dθ

dy

∣∣∣∣
y=−1

(15)

3. Spectral Chebyshev Collocation Method of Solution

In view of the nonlinear nature of the model, Equations (12) and (13) are numerically
solved. A collocation method based on the Chebyshev polynomial is remarkable and
instrumental in addressing the solution to the boundary value problem. The numerical
solutions obtained in [−1, 1] are expanded as a finite series in Chebyshev polynomial
expressed as

u(y) ≈ uNp(y) =
Np

∑
i=0

anTn(y), and θ(y) ≈ θNp(y) =
Np

∑
i=0

bnTn(y) (16)

where {an}Np
n=0 and {bn}Np

n=0 are sets of expansion coefficients to be determined. Now,
substituting un(y) and θn(y) in Equations (12) and (13) yields the residual approximation
of the form:
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R1(y) = 1 +
((

1 − αθNp
)

uNp
y

)′ − 1
β2 uNp

y,y,y,y + Ha2e−γy, (17)

R2(y) = θ
Np
y,y + λ

(
e

θNp

1+εθNp + δ
(

1 − αθNp
)(

uNp
y

)2
+

δ

β2

(
uNp

y,y

)2
)

(18)

the approximation formula must be exact at y equal to yi by the transformed zeros of the
Chebyshev Gauss- Lobato collocation nodes to [−1, 1].

yi =

(
− cos

(
iπ
Np

))
, i = 0, 1, 2, . . . , Np (19)

The relation

R1(yi) = 0, and R2(yi) = 0, i = 0, 1, 2, . . . , Np (20)

must be established. The rth-order derivative of the variables is then yielded through
differentiation as

dru
dyr =

Np

∑
n=0

an
drTn

dyr and
drθ

dyr =
Np

∑
n=0

bn
drTn

dyr (21)

The values of the derivative with n = 1, 2, . . . , r at the Gauss–Lobatto can be evalu-
ated by

d
�
u

dy = D(1)�u = D
�
u

d2�u
d2y = D(2)�u = D2�u

. . . . . . . . . . . .
dr�u
dry = D(r)�u = Dr�u

and

d
�
θ

dy = D(1)
�
θ = D

�
θ

d2
�
θ

d2y = D(2)
�
θ = D2

�
θ

. . . . . . . . . . . .
dr

�
θ

dry = D(r)
�
θ = Dr

�
θ

(22)

where
�
u =

(
u(y0), u(y1), . . . , u

(
yNp

))T and
�
θ =

(
θ(y0), θ(y1), . . . , θ

(
yNp

))T are the vec-
tors, D(•) are the differential matrices. Using (16), the ordinary differential equations are re-
duced to systems of algebraic equations. For the sake of validation, Equations (12) and (13)
are also solved iteratively via the Runge–Kutta–Fehlberg (RKF) integration technique. This
computation is carried out on a computer symbolic package. The RKF is introduced to
guarantee the accuracy of the present method.

4. Results and Discussion

In this section, the solutions obtained using Chebyshev polynomial as an admissible
trial function for the nonlinear problem are displayed graphically and explained for the
profile of velocity, the temperature distributions, the coefficient of skin friction, and the local
Nusselt number are presented for various emerging parameters. Tabular results are also
presented for comparison in Tables 1–3. In Tables 4 and 5, stability analysis and convergence
results are displayed. Table 1 establishes the correctness of the spectral collocation method
when compared with its exact solution. The uniqueness of the solution is confirmed since
α << 1 is infinitely small. Therefore, the Chebyshev trial function provides a very good
approximation for the uncoupled problem. Moreover, for the Coupled system when α �= 0,
tables for the comparison of the numerical solutions by spectral collocation and the Runge–
Kutta–Fehlberg (RKF) integration technique are presented for Equations (12) and (13). In
Tables 2 and 3, the error ranges from 10−17and 10−8 for Equation (12) which means that
the two results converge to one. The error range for the solution of (13) is 10−18and 10−8.
Therefore, there is a perfect agreement between the two numerical solutions; as a result,
the approximation is okay. Table 4 represents the influence of flow parameters on the wall
friction and heat transfer rate. The result revealed that increasing values of the viscous
dissipation parameter reduces the wall skin friction while it increases the wall Nusselt
number. This is true due to the irreversible work done in converting kinetic energy to
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heat energy. Furthermore, the Nusselt number increases due to decreasing heat transfer by
conduction across the channel width.

Moreover, magnets and electrodes at the solid boundaries increase the skin friction
and the wall Nusselt number. This shows that flow resistance and rate of heat transfer at the
wall become higher with the increasing values of the modified Hartmann number. Similar
behavior is noticed with increasing couple stress inverse parameters. Finally, increasing
values of the viscosity variation parameter show that momentum transfer from the laminar
flow to the wall increases with the variation of the viscosity parameter. Table 5 shows the
flow parameters’ effect on the flow’s thermal stability. The result shows that the activation
energy parameter increases the critical values, thus stabilizing the flow. The contribution of
the modified Hartman number is seen to encourage thermal instability in the flow. This is
correct physically since the magnetic term increases the fluid temperature. It is expected
to encourage thermal runaway in the flow domain. A similar explanation holds for the
viscosity variation parameter and the inverse of the couple stress parameter in terms of
encouraging thermal instability in the flow domain. In Table 6, the convergence of the
Chebyshev series is obtained when the number of terms in the approximating polynomial
is 10 for the given parameter values.

Table 1. Comparison of Exact solution and Numerical solution when α = 0 , β = 0.1, H = 1, γ = 1.

y Exact SCM Absolute Error

−1 −5.03992583264522 × 1014 0.000000000000000000 5.039925832645223 × 1014

−0.75 0.0017454436901435553 0.001745454926416422 1.123627286700457 × 10−8

−0.5 0.003173227582038684 0.003173231306211247 3.724172563217276 × 10−9

−0.25 0.004076000485437167 0.004076004401859833 3.916422666207231 × 10−9

0 0.0043502281691282264 0.004350231164298437 2.995170210809417 × 10−9

0.25 0.003981732876595737 0.003981735066616083 2.190020346494459 × 10−9

0.5 0.0030344730267644108 0.003034472001333134 1.025431276783367 × 10−9

0.75 0.0016418517123099419 0.001641848839780530 2.872529411600613 × 10−9

1 4.46751760135205 × 10−14 −4.910861206864707 × 10−9 4.910905882040721 × 10−9

Table 2. Validation of result of Equation (12) when δ = β = γ = H = 1, λ = ε = α = 0.1 .

y u(y)SCM u(y)RK4 |u(y)SCM − u(y)RK4|

−1 1.35477 × 10−17 0.000000 1.35477 × 10−17

−0.75 0.126368 0.126368 3.73265 × 10−9

−0.50 0.228617 0.228617 7.89402 × 10−10

−0.25 0.292212 0.292212 1.68506 × 10−9

0.0 0.310659 0.310659 1.45745 × 10−9

0.25 0.283667 0.283667 1.01772 × 10−10

0.50 0.216004 0.216004 3.25084 × 10−9

0.75 0.116914 0.116914 8.42008 × 10−9

1 −7.58235 × 10−19 1.41621 × 10−8 1.41621 × 10−8
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Table 3. Validation of result of Equation (13) when δ = β = γ = H = 1, λ = ε = α = 0.1 .

y θ(y)WRM θ(y)RK4 |θ(y)WRM − θ(y)RK4|

−1.0 −2.32225 × 10−18 0.0000000 2.32225 × 10−18

−0.75 0.0333263 0.0333263 6.36403 × 10−9

−0.50 0.0578145 0.0578142 6.82415 × 10−9

−0.25 0.0725453 0.0725453 6.93838 × 10−9

0.0 0.0770979 0.0770979 1.05644 × 10−8

0.25 0.0715674 0.0715674 1.21143 × 10−8

0.50 0.0564163 0.0564163 1.43481 × 10−8

0.75 0.0323197 0.0323197 1.81587 × 10−8

1.0 −2.63179 × 10−19 −2.03698 × 10−8 2.03698 × 10−8

Table 4. Skin Friction and Nusselt number for various fluid parameters.

H δ ε λ α β γ SF Nu

1 1 0.3 0.5 0.1 1 1 2.54320 0.89053

1 2 0.3 0.5 0.1 1 1 2.54319 1.17403

1 3 0.3 0.5 0.1 1 1 2.54318 1.46102

2 1 0.3 0.5 0.1 1 1 7.17259 2.58254

3 1 0.3 0.5 0.1 1 1 14.8866 9.30193

1 1 0.3 0.5 0.1 2 1 2.54350 1.20465

1 1 0.3 0.5 0.1 3 1 2.54385 1.36500

1 1 0.3 0.5 0.2 1 1 2.54333 0.89233

1 1 0.3 0.5 0.3 1 1 2.54345 0.89417

Table 5. Computation of Critical values of Frank–Kameneskii parameter.

δ ε α β γ H λC

1 0.1 0.1 1 1 1 0.861553

1 0.2 0.1 1 1 1 1.046770

1 0.3 0.1 1 1 1 1.838140

1 0.1 0.1 1 1 2 0.560669

1 0.1 0.1 1 1 3 0.305436

1 0.1 0.2 1 1 1 0.858432

1 0.1 0.3 1 1 1 0.855150

1 0.1 0.1 2 1 1 0.793590

1 0.1 0.1 3 1 1 0.778710
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Table 6. Rapid convergence of the Spectral Weighted Residual Method.

N δ ε α β γ H λC

5 1 0.1 0.1 1 1 1 0.961880

10 1 0.1 0.1 1 1 1 0.861512

15 1 0.1 0.1 1 1 1 0.861553

20 1 0.1 0.1 1 1 1 0.861553

25 1 0.1 0.1 1 1 1 0.861553

30 1 0.1 0.1 1 1 1 0.861553

Figure 2 relates the influence of the viscosity variation parameter on the velocity
profile. The graphical result shows that flow velocity rises with increasing value of the
viscosity variation parameter, showing that viscous fluid becomes lighter with thermal
effect. In other words, the heat transfer to the fluid from an exothermic chemical reaction
has a thinning effect on the fluid viscosity. In Figure 3, the effect of the viscosity variation
parameter on the temperature distribution within the flow channel is presented. The result
shows that the viscosity parameter increases the maximum temperature. This effect is
directly connected with the irreversible energy conversion from kinetic to heat. The effect
of nanoparticles on the flow and thermal distribution is displayed n Figures 4 and 5. These
nanoparticles could present as drugs for a specific treatment, polymer additives to enhance
the fluid rheological properties of some lubricants, etc. As these nano-sized particles are
added, internal friction is created, and the velocity of the fluid decreases, as shown in the
inverse of the couple stress parameter. Evidently, as the fluid thickens, inter-molecular
interaction declines. This is also associated with a decline in fluid temperature as observed
in the plot of temperature distribution with couple stress inverse.

Figures 6 and 7 demonstrate the impact of modified Hartmann number (H) on both
velocity and temperature distributions, respectively. It is noticed in Figure 6 that an
improvement in the velocity profile occurred as the modified Hartmann number (H)
increased. This is because the external magnetic field strengthens as the values of the
modified Hartmann number (H) become more significant, consequently improving the
flow motion. This is a well-behaved solution since +H2eηy represents a positive definite
function as used in Equation (12) for all values of Ha, η. Moreover, increasing the same
parameter (H) leads to an upsurge in temperature distribution. This effect can be seen in
the momentum transfer through viscous dissipation, which acts as a heat source in the flow
domain, as seen in Figure 7.

The influence of the velocity and temperature field against the Frank–Kameneskii
parameter (λ) is displayed in Figures 8 and 9, respectively. The emerged parameter results
from the Arrhenius kinetics that releases energy from heat into the fluid stream. As depicted
in Figure 8, an increment in the Frank–Kameneskii parameter is noticed to enhance flow
velocity. This is physically correct due to the heat of the reaction that produces a melting
effect on the viscous fluid. The thinning effect guarantees enhanced flow down the inclined
channel. The exothermic nature of the Arrhenius kinetics is seen to increase the temperature
distribution as the Frank–Kameneskii parameter (λ) value increases, as shown in Figure 9.
The diagram for the bifurcation slice that is typical of all laminar flames in combustion
problems is illustrated in Figure 10. This shows the effect of the maximum temperature
against the Frank–Kameneskii parameter (λ). In the region I and II where λc < 0.861553 two
values of λ exist for the maximum temperature. Only one solution exists at the point when
λc = 0.861553 while no solution is possible beyond λc > 0.861553 where heat generation is
far greater than heat dissipation, this corresponds to the hazardous blow-up point where
spontaneous ignition occurs. Accurate determination of critical values is vital in ensuring
the safety of lives and properties
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Figure 2. Velocity profile with viscosity variation parameter (α).

Figure 3. Thermal distribution with viscosity variation parameter (α).

230



Mathematics 2022, 10, 4713

Figure 4. Velocity profile with couple stress inverse parameter (β).

Figure 5. Temperature distribution with couple stress inverse parameter (β.
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Figure 6. Velocity profile with modified Hartman number (H).

Figure 7. Temperature distribution with modified Hartman number (H).
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Figure 8. Velocity profile with Frank–Kameneskii parameter (λ).

Figure 9. Temperature distribution with Frank–Kameneskii parameter (λ).
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Figure 10. Bifurcation slice.

5. Conclusions

A mathematical model of a magnetized reactive variable viscous couple stress fluid
flow down an inclined Riga plate has been investigated. Solutions are obtained numerically
using the spectral collocation technique. Runge–Kutta–Fehlberg (RKF) integration tech-
nique is additionally employed in the model to validate the spectral collocation method.
Tables and graphical results are available and analyzed. The significant outcomes of this
current investigation are as follows:

• The fluid motion strengthened with an increase in the modified Hartman number and
the couple stress parameter.

• As the fluid viscosity varies, the fluid motion and the heat balance enhance along the
inclined channel.

• Large values of the Frank–Kameskii parameter significantly boost the thermal field.
Also, the flow becomes thermal stable with an activation energy parameter increase.

• The velocity gradient at the lower wall increases for larger values of modified Hartman
and couple stress parameters while slightly dropping for increasing values of the
viscous heating parameter.

• At the lower wall, the heat transfer rate dramatically improves as the values of modi-
fied Hartman, viscous heating, and couple stress parameters enhance.
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Nomenclature

M Inclination angle of channel
M0 magnetization of the magnets
J0 applied current density in the electrodes
g acceleration due to gravity
H2 modified Hartman number
Q heat of reaction
A rate constant
C0 initial concentration of the reactant species
E activation energy
R universal gas constant
T fluid temperature [K]
K thermal conductivity [Wm−1 K−1]
l magnets and electrodes width
u′, u dimensinal and dimensionless velocity [ms−1]
h channel width [m]
x, y Cartesian coordinates [m]
p fluid pressure
T0 geometry wall temperature
Greek

μ′ dynamic viscosity [Pas]
μ0 viscosity constant
σ electrical conductivity
ρ density of the fluid [kgm−3]
α temperature-dependent viscous parameter
α’ temperature-dependent viscous parameter
β couple stress parameter
θ dimensionless temperature
γ dimensionless parameter
λ Frank–Kameneskii parameter
ε activation energy parameter,
δ viscous heating parameter
η coefficient of couple stress
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Abstract: In this work, we consider the problem of a semiconductor half-space formed of varying
thermal conductivity materials with and without Kirchhoff’s transforms. Specifically, we deal with
one thermal relaxation time within the context of generalized photothermoelastic theory. It is expected
that the thermal conductivity of the material will vary with temperature. The finite element method
is used to numerically solve this problem. The Laplace transform and the eigenvalues method are
used to determine analytical solutions to the linear problem. Various hypotheses are investigated,
both with and without the use of Kirchhoff’s transformations, to consider the influence of thermal
conductivity change. To verify the accuracy of the proposed approach, we provide a comparison of
numerical and analytical results by ignoring the new parameters and investigating the behaviors of
physical quantities for numerical outcomes.

Keywords: finite element method; variable thermal conductivity; semiconductor materials; thermal
relaxation time

MSC: 35Q81

1. Introduction

The versatility of semiconducting materials in modern technology makes them a vital
topic for study in the sciences. Most of these studies concentrate on investigating various
forms of renewable energy. Semiconductors are a model for the utilization of renewable
energy when they are exposed to sunshine. Neither the internal structures of these materi-
als when subjected to external fields and activated by a laser beam, nor the link between
thermal conductivity and temperature were considered in most previous experiments.
Deformations during the microinertia of the microelement contribute to the body’s temper-
ature rise, in addition to external and internal thermal causes. In many of these uses [1],
the effects of sunlight or laser beams on the surface of semiconductors materials are exam-
ined without considering the media’s internal structures. Different materials, especially
temperature-dependent semiconductor devices, require different thermal load analyses.
The micromechanical structures of thermal, elastic and plasma field in Green and Naghdi
theory has been previously analyzed by Todorovic et al. [2–4]. The theory developed by
Lord and Shulman [5] uses a single relaxation time to compute the motion generated by
a finitely fast thermal field. Marin et al. [6] studied the extensions of the domain of influ-
ences theory for generalized thermoelastic of anisotropic materials with voids. Ezzat and
El-Bary [7] studied the effects of fractional derivatives and magnetic field in thermoelastic
material under phase-lag GN models. Abbas [8] applied eigenvalue approaches to the
fractional order model of thermo-diffusion problems for an unbounded elastic medium
with spherical cavities. Abbas et al. [9] studied the propagations of waves in a generalized
thermoelastic plane by an eigenvalue approach. Alharbi et al. [10] studied the influences of
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initial stresses and varying thermal conductivity on fiber-reinforced magneto-thermoelastic
media under microtemperatures. Shuangquan and Tianhu [11] presented a study on the
transient responses of porous mediums with strain and thermal relaxations. Abouelregal
and Tiwari [12] studied the effects of memory-dependent heat conduction on thermoe-
lastic vibrations of a nano-sized rotating beam with varying thermal properties under
axial load. Several authors [13–20] have proposed solutions to various problems by using
the thermoelasticity theory. Ailawalia and Kumar [21] investigated how photothermal
interactions manifest in semiconductor media due to ramp-type heating. Abbas et al. [22]
looked at photothermal interactions in semiconductors using the DPL model. Heat transfer
in convective fins of varying thermal conductivity and heating generation was studied by
Ghasemi et al. [23]. Energy pile displacement under thermal and mechanical loading was
the subject of a numerical study by Yang et al. [24]. Using photo-thermoelastic excitations,
Lotfy et al. [25] discussed the Thomson and electromagnetic effects of laser pulses on semi-
conductor materials. The effects of ramp-type heating on photo-thermo-elastic waves in a
semi-conductor have been investigated by Hobiny et al. [26]. Mohamed et al. [27] looked
at the absorption illuminations of semi-infinite thermoelastic materials with a rotator in
two dimensions using a modified GL model.

Most thermoelastic studies consider thermal conductivity independent of temper-
ature, which is only the case for some situations. At higher temperatures, as common
in pipes conveying hot flow, missiles, nuclear reactors, etc., material properties may not
remain constant. In the view of variable thermal conductivity with Kirchhoff’s transforms,
Youssef et al. [28] looked at the temperature dependence of the thermal conductivity and
elastic modulus of a material in an unbounded medium containing spherical cavities.
In [29], Sherief and Hamza model a thermoelastic hollow cylinder with variable thermal
conductivity. Khoukhi et al. [30] evaluated the impact of varying thermal conductivity
inside wall-encased insulations. Zenkour and Abbas [31] used a finite element model to
analyze the nonlinear thermal transient stress of a temperature-dependent hollow cylin-
der. Mahdy et al. [32] studied the influences of variable thermal conductivity on wave
propagations for ramp-type heating semiconductors in magneto-rotator hydrostatic stress
media during photo-excited micro temperature processes. Abbas et al. [33] investigated
the photothermal interaction in semiconductor media with cylindrical holes and varying
thermal conductivity. In addition, the authors [34–41] applied Kirchhoff’s transforms to
solve nonlinear problems as linear problems.

The purpose of this study is to investigate how variations in thermal conductivity
influence the transmission of waves through semiconductors. The nonlinear issue was
solved using the finite element approach (without the use of Kirchhoff’s transform). The
linear problem (with Kirchhoff’s transform) was solved using the Laplace transform and
the eigenvalues technique. All physical quantities have numerical outcomes that are
graphically shown. The accuracy of the suggested technique is confirmed by comparing
the numerical solution to previously obtained analytic solutions by others while neglecting
the new parameters, and by exploring the behavior of the solutions.

2. Mathematical Model

For homogeneous and isotropic semiconductor materials, the basic formulations are
as follows, assuming the absence of any external heat source and body force [42–44]:

μui,jj + (λ + μ)uj,ij − γnN,i − γtT,i = ρ
∂2ui
∂t2 . (1)

(
KT,j

)
j +

Eg

τ
N =

(
1 + τo

∂

∂t

)(
ρce

∂T
∂t

+ γtTo
∂uj,j

∂t

)
, (2)

DeN,jj − N
τ
+

k
τ

T =
∂N
∂t

. (3)

σij = μ
(
ui,j + uj,i

)
+ (λuk,k − γnN − γtT)δij, (4)
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where ρ is the density of material, N = n − no, no refer to the carrier concentration
at equilibrium, i, j, k = 1, 2, 3, ce points to the heat specific at constant strain, λ, μ are
the Lame’s constants, γn = (3λ + 2μ)dn, dn is the coefficient of electronic deformation,
γt = (3λ + 2μ)αt, αt refers to the coefficients of linear thermal expansion, To is the reference
temperature, t refers to the time, De refers to the carrier diffusion coefficient, ui refers to
the components of displacement, σij are the stresses components, T = T∗ − To, T∗ is the
increment of temperature, k = ∂no

∂T is the coupling parameter of thermal activation [42],
and τ is the photo-generated carrier lifetime. Considered to be temperature-dependent,
K denotes thermal conductivity. We shall analyze the linear expression for the thermal
conductivity as in [45]:

K(T) = Ko(1 + KsT), (5)

where Ko is the thermal conductivity when T = To and Ks ≤ 0 points to the non-positive
parameter. Considering the case of infinite isotropic semiconductor mediums whose states
may be represented as functions of the spatial variable x and the time variable t leads to
the formulation of the Equations (1)–(4) by [29]:

(λ + 2μ)
∂2u
∂x2 − γt

∂T
∂x

− γn
∂N
∂x

= ρ
∂2u
∂t2 , (6)

Ko(1 + KsT)
∂2T
∂x2 + KoKs

(
∂T
∂x

)2
+

Eg

τ
N =

(
1 + τo

∂

∂t

)(
ρce

∂T
∂t

+ γtTo
∂2u
∂t∂x

)
, (7)

∂N
∂t

= De
∂2N
∂x2 +

k
τ

T − N
τ

, (8)

σxx = (λ + 2μ)
∂u
∂x

− γtT − γnN. (9)

3. Application

The starting condition should be homogenous, and the boundary conditions at x = 0
are given by

u(0, t) = 0, (10)

T(0, t) = T1H(t), (11)

De
∂N(x, t)

∂x

∣∣∣∣
x=0

= s1N(0, t), (12)

where T1 is the constant temperature, s1 is the surface recombination velocity and H(t) is the
Heaviside unit function. The non-dimensional parameters may be conveniently stated as:(

x′, u′) = ηc(x, u), K′
s = ToKs, N′ = N

no
, T′ = T

To
, σ′

xx =
σxx

λ + 2μ
,
(
t′, τ′, τ′

o
)
= ηc2(t, τ, τo), (13)

where η = ρce
K and c =

√
λ+2μ
ρ .

Now, if we ignore the dashes, we may write out the governing equations in a non-
dimensional form using parameters (13).

∂2u
∂x2 − a1

∂N
∂x

− a2
∂T
∂x

=
∂2u
∂t2 , (14)

∂2N
∂x2 − a3

τ
N +

α

τ
T = a3

∂N
∂t

, (15)
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(1 + KsT)
∂2T
∂x2 + Ks

(
∂T
∂x

)2
+

a4

τ
N =

(
1 + τo

∂

∂t

)(
∂T
∂t

+ a5
∂2u
∂t∂x

)
, (16)

σxx =
∂u
∂x

− a1N − a2T, (17)

u(0, t) = 0, T(0, t) = T1H(t),
∂N(x, t)

∂x

∣∣∣∣
x=0

= a6N(0, t), (18)

where a1 = γnno
λ+2μ , a2 = γtTo

λ+2μ , a3 = 1
ηDe

, a4 =
Egno
Toρce

, a5 = γt
ρce

, a6 = s1
Deηc and α = Tok

noc2Deη2 .

4. Numerical Solution (Finite Element Method)

In this section, we establish the fundamental forms of the equations, which are nonlin-
ear partial differential equations. The potential solutions to this problem are investigated
using the finite element technique (FEM). Similar to [46,47], this strategy employs the stan-
dard weak formulation techniques. The weak formulations of the essential equations are
fixed in a non-dimensional setting. The sets of independent weight functions are presented,
which include the carrier density N, temperature T, and displacement u. Integrating across
the spatial domain involves multiplying the basic equations by the independent weight
functions, as dictated by the problem’s boundary conditions. So, we may express the carrier
density, temperature, and displacement values at each node as follows:

T =

m

∑
j=1

MjTj(t), N =

m

∑
j=1

MjNj(t), u =

m

∑
j=1

Mjuj(t), (19)

where m denotes the node’s number of elements, and M refers to the shape functions, where the
shape functions and weight function are identical to Galerkin’s standard methods. Therefore,

δT =

m

∑
j=1

MjδTj, δN =

m

∑
j=1

MjδNj, δu =

m

∑
j=1

Mjδuj. (20)

The implicit techniques should be used to derive the time derivatives of the unknown
variables in the following phase. The weak formulations for FEM that correspond to
(14)–(16) are now as follows:

∫ L

0

∂δu
∂x

(
∂u
∂x

− a1N − a2T
)

dx +
∫ L

0
δu

(
∂2u
∂t2

)
dx = δu

(
∂u
∂x

− a1N − a2T
)L

0
, (21)

∫ L

0

∂δN
∂x

(
∂N
∂x

)
dx +

∫ L

0
δu

(
a3

τ
N − α

τ
T + a3

∂N
∂t

)
dx = δu

(
∂N
∂x

)L

0
. (22)

∫ L

0

∂δT
∂x

(1 + KsT)
∂T
∂x

dx +
∫ L

0
δT

(
− a4

τ
N +

(
1 + τo

∂

∂t

)(
∂T
∂t

+ a5
∂2u
∂t∂x

))
dx = δT

(
(1 + KsT)

∂T
∂x

)L

0
, (23)

5. Linear Cases (with Kirchhoff’s Transforms)

In order to change the basic equations from a nonlinear form into a linear one, we use
Kirchhoff’s transforms mapping [45] to varying thermal conductivity, which is shown in
the equation. This allows us to convert the essential forms (5)

θ =
1

Ko

∫ T

0
K(T)dT, (24)
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where the recently added function represents the conduction of heat. We may get [45] by
substituting from Equation (24) in (5), then integrating.

θ = T +
1
2

KsT2. (25)

The following may be concluded from Equations (24) and (25):

Koθ,i = K(T)T,i, Koθ,ii = (K(T)T,i),i, Ko
∂θ

∂t
= K(T)

∂T
∂t

. (26)

Consequently, the governing Equations (14)–(18), may be stated in the linear form:

∂2u
∂x2 − a1

∂N
∂x

− a2
∂θ

∂x
=

∂2u
∂t2 , (27)

∂2N
∂x2 − a3

τ
N +

α

τ
θ = a3

∂N
∂t

, (28)

∂2θ

∂x2 +
a4

τ
N = (1 + τo

∂

∂t
)(

∂θ

∂t
+ a5

∂2u
∂t∂x

), (29)

σxx =
∂u
∂x

− a1N − a2

Ks

(
−1 +

√
1 + 2Ksθ

)
, (30)

u(0, t) = 0, θ(0, t) = T1H(t) +
1
2

Ks(T1H(t))2,
∂N(x, t)

∂x

∣∣∣∣
x=0

= a6N(0, t), (31)

6. Analytical Solution

For the g(x, t) function, Laplace transforms were written as

g(x, s) = L[g(x, t)] =
∞∫

0

g(x, t)e−stdt, (32)

where s is the Laplace transformation parameter. Thus, the essential equations may be
rewritten in the following ways:

d2u
dx2 = s2u + a1

dN
dx

+ x2
dθ

dx
, (33)

d2N
dx2 = a3

(
s +

1
τ

)
N − β

τ
θ, (34)

d2θ

dx2 = s(1 + τos)θ − a4

τ
N + a5s(1 + τos)

du
dx

, (35)

σxx =
du
dx

− a1N − a2

Ks

(
−1 +

√
1 + 2Ksθ

)
, (36)

u(0, t) = 0,
dN(x, t)

dx

∣∣∣∣
x=0

= x6N(0, t), θ(0, t) =
T1

s

(
1 +

1
2s

T1Ks

)
, (37)

Now, using the eigenvalue approach provided in [48–50], we will get the solutions of
the coupled differential system (33)–(35) with the boundary conditions (37). We may get
the matrices and vectors from Equations (33)–(35) as

dV
dx

= AV, (38)
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where V =
[
u N φ du

dx
dN
dx

dφ
dx

]T
and A =

[
aij
]

6×6 with aij = 0, expect a14 = 1,

a25 = 1, a36 = 1, a41 = s2, a45 = a1, a46 = a2, a52 = a3

(
s + 1

τ

)
, a53 = − β

τ , a62 = − a4
τ ,

a63 = s(1 + τos), a64 = s(1 + τos)a5.

The equations that characterize matrix A are given

ω6 − b1ω4 + b2ω2 + b3 = 0, (39)

where b1 = a52 + a63 + a41 + a46a64, b3 = a41a62a53 − a63a41a52, b2 = −a64a45a53 + a41a63 +
a64a46a52 + a52a41 + a63a52 − a53a62. The six roots of Equation (40) are the six eigenvalues
of matrix A, which are written as ±ω1, ±ω2 and ±ω3. Thus, the eigenvectors Y are com-
puted as: Y1 =

(
a52 − ω2)a46ω − a45a53ω, Y2 = a53

(
a41 − ω2), Y3 =

(
a52 − ω2)(ω2 − a41

)
,

Y4 = ωY1, Y5 = ωY2 , Y6 = ωY3.

The solutions of Equation (40) have the following form:

V(x, s) =
3

∑
i=1

(
AiYie−ωi x + Ai+1Yi+1eωi x

)
(40)

The rising exponential nature of the variable x has been removed to infinity due to the
regularity constraint of the solution. Hence, the general solutions (40) may be shown as

V(x, s) =
3

∑
i=1

AiYie−ωi x (41)

where A1, A2 and A3 are constants which can be calculated through the use of the problem’s
boundary conditions. To get the final solutions of displacement, temperature, carrier
density, and stresses distributions, the Fourier series approximation [51] may be employed
as a numerical inversion approach.

7. Discussion of Numerical Results

The results are theoretically investigated using the physical constants and physical
characteristics of silicon as an elastic semiconductor material. Calculations and explanations
of results from numerical simulations are made possible using constants derived from
silicon (Si). The constants of Si are [52]:

λ = 3.64 × 1010 N
m2 , Eg = 1.11 eV, μ = 5.46 × 1010N

m2 , To = 300 k, Ts = 1,

ce = 695 J/kgk, dn = −9 × 10−31m3, αt = 3 × 10−6k−1, τ = 5 × 10−5s,

s f = 2
m
s

, ρ = 2330 kg/m3, no = 1020m−3, De = 2.5 × 10−3m3/s.

Using these values, we can do numerical simulations of the physical variables over
the distance x to evaluate the effect of varying thermal conductivity within the context
of the coupled photothermal theory with one relaxation time (see Figures 1–16). The
field distributions, such as carrier density distributions (plasma waves), stress distributions
(mechanical wave distributions), displacement distributions (strain wave distributions), and
thermal wave distributions (thermal temperature distribution), are used in the numerical
calculations. For the time t = 0.8, a numerical calculation is performed. Figure 1 predicts
the increment of temperature along the distance x. For the generalized photo-thermal
theory, it has been observed that the temperature begins at its maximum value, according
to the applied boundary condition, then decreases with increasing x. It then decreases
gradually as the distance x increases until it approaches zero beyond a wavefront.
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Figure 1. The variation of temperature under various values of Ks.

 

Figure 2. The displacement variations under various values of Ks.
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Figure 3. The carrier density variations under various values of Ks.

 

Figure 4. The stress variations under various values of Ks.
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Figure 5. The variations of temperature with and without Kirchhoff transforms when Ks = −1.

 

Figure 6. The variations of displacement with and without Kirchhoff transforms when Ks = −1.
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Figure 7. The variations of carrier density with and without Kirchhoff transforms when Ks = −1.

 

Figure 8. The variations of stress with and without Kirchhoff transforms when Ks = −1.
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Figure 9. The variations of temperature with and without Kirchhoff transforms when Ks = −0.5.

 

Figure 10. The variations of displacement with and without Kirchhoff transforms when Ks = −0.5.
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Figure 11. The variations of carrier density with and without Kirchhoff transforms when Ks = −0.5.

 

Figure 12. The stress variations with and without Kirchhoff transforms when Ks = −0.5.
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Figure 13. The study on temperature comparison.

Figure 14. The study on displacement comparison.
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Figure 15. The study on carrier density comparison.

Figure 16. The study on stress comparison.

Figure 2 shows how the displacement changes with respect to the distance x. It was
observed that the displacement of the zero values, according to the applied boundary
condition, then rises with rising x, reaches a peak at a certain point relatively near to the
surface, and then gradually falls to zero. Different carrier densities are shown as a function
of x distance in Figure 3. At x = 0, where the surface is located, the carrier density is at its
highest. As x increases, the carrier density slowly decreases until it is close to zero.

Figure 4 shows how the stress changes as x gets farther away. It is clear that the stress
reaches some negative values, then slowly goes up until it reaches a peak of negative values,
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and then slowly goes back down to zero. A comparison of the Kirchhoff transforms (WKT)
and non-Kirchhoff transforms (NKT) results are shown in Figures 5–16. When Ks = −1,
temperature, displacement, carrier density, and stress are all shown to vary along x. The
usage of the Kirchhoff transforms (WKT) is shown by the solid line, whereas the absence
of the transforms in the nonlinear situation is denoted by the dotted line (NKT). Figure 4
shows that the curves coincide at the surface since the temperature boundary condition is
T1 = 1. After that, the difference ratio grows with distance until x = 0.74, before falling to
zero at x = 2.55. Figures 5–16 show the difference between using the Kirchhoff transforms
(WKT) and not using the Kirchhoff transforms (NKT).

Figures 5–8 display how the temperature, displacement, carrier density, and stress
change with respect to the distance x when Ks = −1. The solid line depicts the case when
Kirchhoff transforms (WKT) are used, while the dotted line show the case when Kirchhoff
transforms are not used (NKT). As shown in Figure 5, the curves are the same at the
surface because the temperature boundary condition is T1 = 1. After that, the difference
ratio goes up as the distance goes up until x = 1, and then it goes down until it reaches
zero at x = 3.15. Figure 6 depicts the displacement variation with and without Kirchhoff
transforms. The curves coincide at the surface under the displacement boundary condition
(u = 0), where the difference ratio grows with distance until x = 1, and then reduces to
zero at x = 2.5.

Figure 7 shows the carrier density variation with Kirchhoff transforms (WKT) and
without Kirchhoff transforms (NKT), in which the curves have the ratio of a maximum
difference on the surface x = 0. Figure 8 shows the variations of stress with Kirchhoff
transforms (WKT) and without Kirchhoff transforms (NKT), where on the surface x = 0,
the curves have the greatest difference ratio. When Ks = −0.5, the changes in temperature,
displacement, carrier density, and stress along x are shown in Figures 9–12. It was discov-
ered that, when comparing results obtained with and without Kirchhoff transforms (WKT),
the differences are striking (NKT).

When Ks = 0, the analytical solutions (Laplace transforms and eigenvalue method
with Kirchhoff transforms) are shown to be superior to the numerical solutions (finite
element method without Kirchhoff transforms) in Figures 13–16. The analytical data
strongly agree with the numerical results of temperature change, displacement variation,
carrier density variation, and stress variation over x. As expected, the variable thermal
conductivity parameter has significant effects on the speed of the wave propagation of all
studied fields.

8. Conclusions

In this paper, the mathematical implications of changing thermal conductivity in semi-
conductor media with and without Kirchhoff’s transformations are investigated. Without
using Kirchhoff’s transformations, the finite element approach yields numerical solutions
for nonlinear equations. For nonlinear equations using Kirchhoff’s transformations, the
eigenvalue approach is used to provide an analytical solution. It was determined that the
variable thermal conductivity has a considerable effect on the deformation behaviors of
various physical field components. The numerical results and findings reported in this
study should be helpful for scholars working on the advancement of solid mechanics as
well as those in scientific and technical domains. Numerous thermodynamics problems
may be solved by using the approaches presented in this article. The theoretical conclusions
presented here can be of interest for experimental scientists and researchers working on
this topic.
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Abstract: We obtain similarity transformations to reduce a system of partial differential equations
representing the unsteady fluid flow and heat transfer in a boundary layer with heat generation/ab-
sorption using Lie symmetry algebra. There exist seven Lie symmetries for this system of differential
equations having three independent and three dependent variables. We use these Lie symmetries for
the reduced-order modeling of the flow equations by constructing invariants corresponding to linear
combinations of these Lie point symmetries. This procedure reduces one independent variable of
the concerned fluid flow model when applied once. Double reductions are achieved by employing
invariants twice that lead to ordinary differential equations with one independent and two dependent
variables. Similarity transformations are constructed using these two sets of derived invariants
corresponding to linear combinations of the Lie point symmetries. These similarity transformations
have not been obtained earlier for this flow model. Moreover, the corresponding reduced systems of
ordinary differential equations are different from those which exist in the literature for fluid flow and
heat transfer that we have been dealing with. We obtain multiple similarity transformations which
lead us to new classes of systems of ordinary differential equations. Accurate numerical solutions of
these systems are obtained using the combination of an adaptive fourth-order Runge–Kutta method
and shooting procedure. Effects of variation of unsteadiness parameter, Prandtl number and heat
generation/absorption on fluid velocity, skin friction, surface temperature and heat flux are studied
and presented with the help of tables and figures.

Keywords: boundary layer unsteady flow; reduce-order modeling; Lie symmetry; Runge–Kutta;
shooting method; heat and mass transfer

MSC: 76M60; 58J70; 35A30; 34B15

1. Introduction

With the advancements in industrial manufacturing processes, the accurate prediction
of flow and heat transfer is of prime importance. Many industrial and food processes
involve heat transfer in thin film flow, e.g., polymer coatings, metal sheets extractions, wire
coatings, heat exchangers, reactor fluidization, surface paint processing, etc. In most of these
processes, the surface finish, thickness and quality of coatings depend on the fluid flow and
heat transfer in the boundary layer/thin films. Moreover, in numerous applications, fluid
flow and heat transfer in the boundary layer involve heat generation/absorption effects,

Mathematics 2022, 10, 4640. https://doi.org/10.3390/math10244640 https://www.mdpi.com/journal/mathematics
254



Mathematics 2022, 10, 4640

such as electric kettles, air conditioning, aerodynamic heating, solar water heaters, cooling
in electronic devices using heat sinks, and temperature control techniques in the stacks of
batteries. In many of these applications, the heat transfer rate and fluid velocity changes
with time, thereby making the behavior of the problem unsteady.

The unsteady boundary layer flows involving heat transfer are modeled using Navier–
Stokes equations. Normally, their solution could only be possible using numerical integra-
tion [1] due to the non-existence of the exact solutions in most of the cases for such nonlinear
equations. However, if we restrict the motion of fluid to a specific group of coordinates and
time dependence, we can derive similarity transformations to map flow equations into their
simpler and analytically solvable forms. By using similarity transformations, the system of
partial differential equations (PDEs) representing the unsteady fluid and heat transfer in
the boundary layer flow is mapped into a system of coupled nonlinear ordinary differen-
tial equations (ODEs). Such reductions fall into the category of reduced-order modeling.
Reduced-order modeling is a mathematical procedure that reduces the computational
complexity of the concerned systems. The similarity transformations provide reductions of
the dependent and independent variables of the fluid flow model, which brings down the
computational complexity of these models. Numerous exact, analytic or/and approximate
solution techniques for these systems of ODEs are available as compared to system PDEs
for fluid flow and heat transfer in thin films.

In [2], the idea of [3] is implemented to model the unsteady fluid flow in thin film
and [4] incorporated the heat transfer effects in it. Many researchers have studied these
flow and heat transfer models [5–15] using a few similarity transformations. These studies
have been conducted under multiple physical conditions, e.g., unsteady heat transfer
in non-Newtonian fluid using power-law, fluid flow in an unsteady sheet by integrating
thermocapillarity effects, fluid flow in an unsteady sheet by incorporating thermocapillarity
effects with variable fluid properties, MHD flow with heat transfer in an unsteady stretching
sheet with a non-uniform heat source, heat transfer with viscous dissipation on an unsteady
stretching sheet, fluid flow and heat transfer on an unsteady surface with thermocapillarity
and radiation effects, fluid flow and heat transfer on an unsteady stretching surface in the
presence of radiation and with variable fluid properties, heat transfer in nanofluid thin
film on an unsteady stretching sheet, etc. The reductions in the above cited works through
similarity transformations are valid for a specific time interval. An extensive numerical and
analytic treatment of flow in thin films has been completed to present optimum flow and
heat transfer to acquire the desired refinements of many industrial products depending on
such flows.

The Lie symmetry method is a mathematical technique by which one obtains similarity
reductions for differential equations (DEs) if there exist Lie point symmetries [16–18] for
these DEs. Previously, researchers used Lie point symmetries to derive similarity transfor-
mations for differential equations [19–28], e.g., for modified 1D shallow-water equations,
the spatial motion on a rotating plane of incompressible fluid on shallow water, free con-
vective nanofluid flow with heat generation/absorption on a chemically reacting sheet
in porous medium, the Green Naghdi model hyperbolic and shallow water equations, a
Schwartzian (2 + 1)-dimensional wave equation with a variable coefficient for shallow
water, rotating shallow water equations, 2D shallow water equations in Lagrangian co-
ordinates with a constant Coriolis parameter, a family of 1 + 1 5th-order PDEs, unsteady
boundary layer flow on a vertical sheet with free convection and shallow water equations
with Coriolis force, etc. However, in most of these studies, either single reduction is made,
or double reduction is completed using general boundary conditions.

In this study, we derive Lie symmetries for heat transfer and fluid flow in an unsteady
stretching sheet in the presence of heat generation/absorption. These Lie point symmetries
may reduce the dependent and/or independent variables of flow equations considered
through functions that remain invariant under Lie symmetry generators that are called
invariants. In these flow equations, we have three independent and three dependent
variables subject to specific boundary conditions. Using invariants associated with linear
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combinations of derived symmetries that is again a Lie symmetry, we reduce the PDEs
of the flow and heat transfer into systems of equations with two independent and three
dependent variables. Repeating the same procedure on these first reductions of PDEs,
i.e., we obtain Lie symmetries of these systems, and using invariants corresponding to
the obtained symmetries, we provide another reduction which finally leads to systems of
ODEs. By combining invariants employed in these two reductions, we construct similarity
transformations. These similarity transformations can map the flow equations straight to
ODEs; for a detailed procedure, the reader is referred to [29]. A similar study is conducted
by [30], using a similarity transformation of the form employed by, e.g., [2,4]. These
are different from those presented here. Hence, the systems of ODEs deduced by using
them and the ranges in which these similarity transformations are applicable are also
different from those imposed in [30]. Moreover, we present the velocity and heat profiles in
those ranges of the parameters involved, which either have not been considered earlier or
solutions have not been approximated there.

In Section 2, the mathematical formulation of the flow, construction of Lie symmetries,
invariants, similarity transformations and reductions to ODEs of the flow equations are
presented. Section 3 discusses the numerical solution procedure. In Section 4, we have
presented the results, which are followed by the conclusions.

2. Mathematical Formulation, Lie Symmetries, Similarity Transformations and
Reductions of Flow Equations

An incompressible, viscous, laminar and unsteady fluid coming out of origin of the co-
ordinate system on a thin horizontal surface along with the heat transfer is considered here,
as shown in Figure 1. In addition to that, it is also assumed that the temperature variations
are small, and thus, the viscosity of fluid remains constant. The pressure and gravitational
effects are also negligible. Initially, the temperature and velocity are taken as arbitrary func-
tions of x-coordinate and time t. It is further assumed that the flow is free from any kind
of surface waves, and streamwise diffusion is negligible. Under the stated assumptions,
the governing 2D boundary layer equations with uniform heat generation/absorption are
written as

∂u
∂x

+
∂v
∂y

= 0,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= ν

(
∂2u
∂y2

)
,

ρCp

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
= κ

(
∂2T
∂y2 + H

)
, (1)

subject to

at y = 0 : u = U, v = 0, T = Ts,

at y = h(t) : v =
dh
dt

,
∂u
∂y

=
∂T
∂y

= 0. (2)

boundary layer, h(t)

Ts

T (x,t)

u (x,t)

x

y

U

∂T
∂y = 0∂u

∂y = 0

Figure 1. Schematic of flow in boundary layer.
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In (1) and (2) x, y are the coordinates parallel and normal to the stretching surface and
u, v are the velocities in these directions, respectively. T is the temperature, t is the time,
ρ is the density, ν is the kinematic viscosity, Cp is the specific heat at constant pressure, κ
is the thermal diffusivity and H is the heat generation/absorption per unit volume and is
defined as

H =

(
Ũ(T − T0)

xν

)
G∗, (3)

where Ũ is considered as velocity in the x-direction due to the flow in [30], which implies

Ũ = U =
bx

(1 − at)
. (4)

In (3), T0 is temperature at the origin and G∗ is the temperature-dependent heat gener-
ation/absorption parameter [30]. After simplifying, H is observed to be a function of
temperature, t−1 and G∗. For heat addition, G∗ > 0, and for heat absorption, G∗ < 0. By re-
stricting the motion in its own horizontal plane and imposing specific time dependence,
the surface velocity U and temperature Ts in [30] are written as (4) and

Ts = T0 −
(

dxr1

ν

)
Tre f (1 − at)−r2 , (5)

respectively, where Tre f is a reference temperature, r1 and r2 are positive constants and
d is a positive proportionality constant with dimension length2−rtime−1 [9]. A similarity
transformation that is compatible with (4) and (5) is

η =
y
β

√
b

ν(1 − at)
, u =

bx
(1 − at)

f ′(η), v = −
√

bν

(1 − at)
β f (η),

T = T0 −
(

dxr1

ν

)
Tre f (1 − at)−r2 ϑ(η), (6)

where a and b are positive constants and have the dimensions of t−1. β is the dimensionless
boundary layer/film thickness, f is the stream function, ϑ is the dimensionless temperature
and η is the similarity variable. Aziz et al. [30] employed these transformations on (1) and
obtained the system of ODEs as

f ′′′ + λ
(

f f ′′ − S( f ′ + η

2
f ′′)− f ′2

)
= 0,

ϑ′′

Pr
+ λ

(
f ϑ′ − r1 f ′ϑ − S(

η

2
ϑ′ + r2Sϑ) +

1
Pr

G∗ϑ

)
= 0. (7)

Likewise, considering (4) and (5) in (2) and transforming them via (6), we obtain

at η = 0 : f = 0, f ′ = 1, ϑ = 1,

at η = 1 : f ′′ = 0, ϑ′ = 0, f =
1
2

S, (8)

where prime denotes the derivative with respect to η, S = a/b denotes the dimensionless
unsteadiness parameter, Pr = ρνCp

κ is the Prandtl number and λ = β2 is the dimensionless
film thickness. It is important to note that the above similarity transformations are valid
only for t < a−1. In the subsequent sections, we are performing reduced-order modeling
using Lie symmetry algebra.
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2.1. Lie Symmetries and Invariants

To derive similarity transformations for the system of PDEs (1), we first obtain Lie
point symmetry generators for this system that is a vector field as

X = ξi
∂

∂ψi
+ φi

∂

∂ζi
, (9)

where i = 1, 2, 3, ξ and φ are infinitesimal coordinates and they are functions of independent
x, y, t and dependent variables u, v, T, respectively. The system (1) and boundary condi-
tions (2) contain both first and second-order partial derivatives. For this, we require first
and second extensions of (9) to operate on them. MAPLE contains an algebraic procedure
to derive Lie point symmetries for DEs; here, we use it to obtain Lie point symmetries of
system (1). In (3), we consider Ũ = bx

at , that is different from U(t, x), given in conditions (2)
which provides

H =
b

aνt
G∗(T − T0). (10)

The stretchable sheet velocity U(t, x), is obtained in the subsequent section by applying
the Lie symmetry generators. Hence, it is not expected to be similar for all symmetries that
are derived using (10) in system (1). System (1) admits an infinite dimensional Lie point
symmetry algebra that is spanned by the following symmetry generators

X
∞

1 =
∂

∂x
+ f1(t, x)

∂

∂y
+ ( f1,t + u f1,x)

∂

∂v
,

X
∞

2 = t
∂

∂x
+ f2(t, x)

∂

∂y
+

∂

∂u
+ ( f2,t + u f2,x)

∂

∂v
,

X
∞

3 = x
∂

∂x
+ f3(t, x)

∂

∂y
+ u

∂

∂u
+ ( f3,t + u f3,x)

∂

∂v
,

X
∞

4 = f4(t, x)
∂

∂y
+ (T − T0)

∂

∂T
+ ( f4,t + u f4,x)

∂

∂v
,

X
∞

5 = t
∂

∂t
+ (

y
2
+ f5(t, x))

∂

∂y
− u

∂

∂u
+ ( f5,t + u f5,x − v

2
)

∂

∂v
,

X
∞

6 = f6(t, x)
∂

∂y
+ t

bκG∗
aCpρν

∂

∂T
+ ( f6,t + u f6,x)

∂

∂v
,

X
∞

7 =
∂

∂t
+ f7(t, x)

∂

∂y
+

(T − T0)bκG∗

aCpρνt
∂

∂T
+ ( f7,t + u f7,x)

∂

∂v
,

X
∞

8 = f8(t, x)
∂

∂y
+ ( f8,t + u f8,x)

∂

∂v
. (11)

By considering fi(t, x) = 0, for i = 1, 2, . . . , 8, we obtain a finite dimensional algebra.
The reason to use finite dimensional algebra is to extract scaling transformations to per-
form the reduced-order modeling. Scaling transformations are the most suitable map-
pings that are employed for reduction of the independent variables of the flow models.
Table 1 presents the finite dimensional symmetry algebra and corresponding invariants
for system (1). These symmetry generators X1, . . . , X7 and their linear combinations leave
system (1) and associated conditions invariant. The boundary conditions (2) also remain
invariant under these generators. Both U and T at y = 0 are functions of x-coordinate
and time t. There, invariant forms under X1, . . . , X7 are determined by applying these
generators on them and evaluating the resulting expressions on these conditions. However,
when a single symmetry is used in this procedure, both U and T become either functions of
x or t. In this work, we want to keep them functions of both x and t. We achieved it through
linear combinations of the symmetry generators X1, . . . , X7 by adding two at a time, which
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also leave boundary conditions (2) invariant. We obtain seven such combinations in which
these conditions remain functions of both space and time, as shown in Table 2.

Table 1. Lie point symmetry generators and invariants.

Symmetry Invariants-Conserved Quantities

X1 = ∂
∂x x, y, T, u, v

X2 = t ∂
∂x + ∂

∂u t, y, T, u
x , v

X3 = x ∂
∂x + u ∂

∂u t, y, T, u
x , v

X4 = (T − T0)
∂

∂T t, x, y, u, v

X5 = t ∂
∂t +

y
2

∂
∂y − u ∂

∂u − v
2

∂
∂v x, y

t , T, ut, v

X6 =

(
t

bκG∗
aCpρν

)
∂

∂T t, x, y, u, v

X7 = ∂
∂t +

b(T−T0)κG∗
aCpρνt

∂
∂T x, y, T−T0

t , u, v

Table 2. First invariants for similarity transformations.

Case Symmetry and Invariants Corresponding Boundary Conditions

1 X3 + X4

t, y, u
x , v, T−T0

x

at y = 0 : v = 0, u = xŪ(t), T = T0 + xT̄s(t)

at y = h(t) : v = ∂h
∂t , ∂u

∂y = ∂T
∂y = 0

2 X2 + X5

x − t, y√
t
, ut − t,

√
tv, T

at y = 0 : v = 0, u = 1 + Ū(x−t)
t , T = T̄s(x − t)

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

3 X3 + X5

x
t , y√

t
, u,

√
tv, T

at y = 0 : v = 0, u = Ū( x
t ), T = T̄s(

x
t )

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

4 X3 + X6

t, y, u
x , v, T − ln(x)

(
t

bκG∗
aCpρν

) at y = 0 : v = 0, u = xŪ(t), T = T̄s(t) + ln(x)t
bκG∗
aCpρν

at y = h(t) : v = ∂h
∂t , ∂u

∂y = ∂T
∂y = 0

5 X4 + X5

x, y√
t
, tu,

√
tv, T−T0

t

at y = 0 : v = 0, u = Ū(x)
t , T = T0 + tT̄s(x)

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

6 X5 + X6

x, y√
t
, tu,

√
tv, T − aCpρν

bκG∗ t
bκG∗
aCpρν

at y = 0 : v = 0, u = Ū(x)
t , T =

aCpρν
bκG∗ t

bκG∗
aCpρν + T̄s(x)

at y = a3
√

t : v = a3
2
√

t
, ∂u

∂y = ∂T
∂y = 0

7 X5 + X7
x, y√

1+t
, u(t + 1),

√
1 + tv,

(1 + t)
bκG∗
aCpρν (T − T0)t

− bκG∗
aCpρν

at y = 0 : v = 0, u = Ū(x)
t+1 , T = T0 + (1 + t)

− bκG∗
aCpρν t

bκG∗
aCpρν T̄s(x)

at y = a3
√

1 + t : v = a3
2
√

1+t
, ∂u

∂y = ∂T
∂y = 0
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2.2. Double Reductions and Construction of Similarity Transformations

Similarity transformations are derived through double reductions of differential equa-
tions (DEs) using Lie point symmetry generators. Consider Case 1 in Table 2, which is
X3 + X4. Except for u = U(t, x) and T = Ts(t, x), it leaves all other boundary conditions (2)
invariant. The conditions u = U(t, x) and T = Ts(t, x) when inserted in the invariance
criterion read as

[X3 + X4](u − U(t, x))|u=U(t,x) = 0,

[X3 + X4](T − Ts(t, x))|T=Ts(t,x) = 0. (12)

Applying these symmetry generators and expanding the resulting expressions at u =
U(t, x) and T = Ts(t, x) provides the following linear PDEs

x
∂U(x, t)

∂x
− u = 0,

x
∂Ts(x, t)

∂x
− T + T0 = 0. (13)

Solving these equations, we obtain

u = xŪ(t), and T = T0 + xT̄s(t). (14)

Now, for the derivation of 0th-order differential invariants, we apply X34 = X3 + X4, in the
following invariance criterion

X34 J(t, x, y, u, v, T) = 0, (15)

which leads to the following PDE

x
∂J
∂x

+ u
∂J
∂u

+ (T − T0)
∂J
∂T

= 0. (16)

Solving it using MAPLE, we obtain five invariants {t, y, u
x , v, T−T0

x } with two independent
t, y and three dependent variables u

x , v, T−T0
x . We obtain first components of the claimed

similarity transformations by renaming these invariants as follows

c1 = t, c2 = y, P =
u
x

, Q = v, R =
T − T0

x
. (17)

This maps the system of PDEs (1) and conditions (2) to

P +
∂Q
∂c2

= 0,

∂P
∂c1

+ P2 + Q
∂P
∂c2

= ν

(
∂2P
∂c22

)
,

ρCp

(
∂R
∂c1

+ PR + Q
∂R
∂c2

)
= κ

(
∂2R
∂c22 + H

)
, (18)

and

at c2 = 0 : P = F(c1), Q = 0, R = G(c1),

at c2 = h : Q =
dh
dc1

,
∂P
∂c2

=
∂R
∂c2

= 0. (19)

For the second reduction, symmetry generators for system (18) are obtained that
admits a three-dimensional Lie symmetry algebra
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Y1 = R
∂

∂R
, Y2 = c1

∂

∂c1
+

c2

2
∂

∂c2
− P

∂

∂P
− Q

2
∂

∂Q
,

Y3 =
∂

∂c1
+

(
bRκG∗
aCpc1ρν

)
∂

∂R
. (20)

The combination Y1 + Y2 further converts the boundary conditions (19) to

at c2 = 0 : P =
a1

c1
, Q = 0, R = a2c1,

at c2 = a3
√

c1 : Q =
a3

2
,

∂P
∂c2

=
∂R
∂c2

= 0. (21)

The invariants obtained using these symmetries Y1 +Y2 are { c2√
c1

, Pc1, Q
√

c1, R
c1

}, where now
c2√
c1

is the new independent variable and Pc1, Q
√

c1, R
c1

are the new dependent variables,
which are given the following notations

χ =
c2√
c1

, Pc1 = L, Q
√

c1 = M,
R
c1

= N. (22)

Using (22), the second reductions are performed that transform the system (18) and
associated conditions (21) to

L + M′ = 0,

L2 − L − χ

2
L′ + ML′ = νL′′,

LN + N − χ

2
N′ + MN′ =

κ

ρCp
N′′ + bκG∗N

aρCpν
, (23)

and

at χ = 0 : L = a1, M = 0, N = a2,

at χ = a3 : M =
a3

2
, L′ = N′ = 0, (24)

where prime denotes differentiation with respect to χ. In system (7), we have Pr, S and
β. We introduce these variables in the similarity transformations constructed here by
combining (17), (22) and

χ = ηβ

√
aν

b
, L = − b

a
f ′(η), M = β

√
bν

a
f (η), N = ϑ(η), (25)

which leads to claimed similarity transformations

u = − bx
at

f ′(η), v = β

√
bν

at
f (η), T = T0 + xtϑ(η), η =

1
β

√
b

atν
y. (26)

The set of similarity transformations (26) maps the system of PDEs (1) and boundary
conditions (2) into system of ODEs as

f ′′′ + λ

(
S f ′ − f f ′′ + Sη

2
f ′′ + f ′2

)
= 0,

1
Pr

ϑ′′ + λ

(
− f ϑ′ + Sη

2
ϑ′ − Sϑ + f ′ϑ +

1
Pr

ϑG∗
)

= 0, (27)
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and

at η = 0 : f = 0, f ′ = 1, ϑ = 1,

at η = 1 : f =
1
2

S, f ′′ = 0, ϑ′ = 0. (28)

Using linear combinations of symmetries X1 − X7, we perform double reductions and
obtain a set of similarity transformations against each combination that reduces the system
of PDEs (1) into systems of ODEs given in Table 3. The reason to consider only these
linear combinations in Table 3 is the form of U(t, x) and Ts(t, x) they provide; i.e., both
of them are functions of the x-coordinate and time-t in all cases. Once invariance of
the conditions (2) under the admitted Lie point symmetries of the system (1) has been
established, then it implies that any linear combination of these symmetries also leaves the
associated conditions invariant.

Table 3. Similarity transformations and systems of ODEs.

Case Symmetry Generator and Similarity Transformation System of ODEs

1 X3 + X4

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + xtϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ − Sϑ + f ′ϑ + 1
Pr ϑG∗

)
= 0

2 X2 + X5

v = β
√

bν
at f (η), u = 1 − b(x−t)

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + (x − t)ϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′ϑ + 1
Pr ϑG∗

)
= 0

3 X3 + X5

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 +
x
t ϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + Sϑ + f ′ϑ + 1
Pr ϑG∗

)
= 0

4 X3 + X6

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + (ϑ(η) + ln(x))t
bκG∗
aCpρν

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′
)
= 0

5 X4 + X5

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + xtϑ(η)

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ − Sϑ + f ′ϑ + 1
Pr ϑG∗

)
= 0

6 X5 + X6

v = β
√

bν
at f (η), u = − bx

at f ′(η)

η = 1
β

√
b

atν y, T = T0 + xϑ(η) +
aCpρν
bκG∗ t

bκG∗
aCpρν

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′ϑ + 1
Pr ϑG∗

)
= 0

7 X5 + X7

v = β
√

bν
a(1+t) f (η), u = − bx

a(1+t) f ′(η)

η = 1
β

√
b

aν(1+t)y, T = T0 + xϑ(η)(1 + t)
− bκG∗

aCpρν t
bκG∗
aCpρν

f ′′′ + λ
(

S f ′ − f f ′′ + f ′2 + Sη
2 f ′′

)
= 0

1
Pr ϑ′′ + λ

(
− f ϑ′ + Sη

2 ϑ′ + f ′ϑ + 1
Pr ϑG∗

)
= 0
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The skin friction Cf and heat flux qs are important physical parameters, and they are
written as

Cf =

(
2τs

ρu2

)
, (29)

qs = − κ

(
∂T
∂y

)
y=0

, (30)

where τs is the shear stress

τs = μ

(
∂u
∂y

)
y=0

, (31)

Using the similarity transformations (26), i.e., for Case 1, we have

Cf =
2

β
√

Rex
f ′′(0), (32)

qs = − xκ

βμ

√
b(1 + x)ρ3

a
ϑ′(0), (33)

where Rex is the local Reynolds number.

3. Numerical Solutions

The solution of a nonlinear coupled system of ODEs, e.g., (7) subject to (8) is obtained
by using the combination of most efficient Runge–Kutta Fehlberg numerical integration
technique and shooting method. It is a fourth-order O(h4) accurate scheme with the fifth-
order O(h5) error estimation. This method is known as RKF45. This method automatically
varies the step size at specified locations based on the approximation accuracy required.
This adaptive grid sizing helps to reduce the computational cost [31]. In system (7),
if dimensionless film thickness λ is known, the solution can be approximated by using
only the first five conditions from (8). We write system (7) in the form of system of five 1st
coupled ODEs by considering

f = y1 , f ′ = y2 , f ′′ = y3 , f ′′′ = y′
3
, ϑ = y4 , ϑ′ = y5 , ϑ′′ = y′

5
. (34)

By substituting the above assumptions (34) in system (7) and boundary conditions (8),
we obtain

y′
1
= f ′, y′

2
= f ′′, y′

3
= λ

(
−y1 y3 +

Sη

2
y3 + y2

2 + Sy2

)
, y′

4
= ϑ′,

y′
5
= λPr

(
− y1 y5 + 2y2 y4 +

Sη

2
y5 + y4(

3
2

S − 1
Pr

B∗)
)

, (35)

and

y1(0) = 0, y2(0) = 1, y3(0) = b1 , y4(0) = 0, y5(0) = b2 . (36)

Three simultaneous shooting techniques are applied to transform the boundary value
problem into an initial value problem. The transformed initial conditions b1 and b2 are
found iteratively by using Newton’s method until the error is 10−12. In the RKF45 in-
tegration procedure, the numerical integration in performed until the error is less than
10−10.

As the film/boundary layer thickness β is unknown, so the value of λ is approximated
iteratively until the last condition of (8); that is, f (1) = S

2 is satisfied within a range of less
than 10−9. The film thickness λ varies with the unsteadiness parameter S, so at different
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values of S, first, the film thickness λ is approximated before analyzing the effects of
Prandtl number Pr and heat generation/absorption G∗. The results obtained for system (7)
with conditions (8) using this procedure are compared with the 10th order Homotopy
Analysis Method (analytical method) employed by Wang [32]. In Table 4, the effects of
unsteadiness on film thickness λ and skin friction f ′′(0) are compared with the analytical
results. In Table 5, the effects of change in Prandtl number Pr on surface temperature
ϑ(1) and heat flux −ϑ′(0) are compared. It is clear from Tables 4 and 5 that the numerical
approach used in the present study is in good agreement with the analytical method.

Table 4. Validation of numerical results.

S
Present Study Wang [32]

β −f ′′(0) β −f ′′(0)

1.2 1.1277809 1.4426253 1.127780 1.442631
1.3 0.9642181 1.2183196 0.964219 1.218322
1.4 0.8210322 1.0127802 0.821032 1.012784
1.5 0.6931444 0.8218421 0.693144 0.821842
1.6 0.5761730 0.6423970 0.576173 0.642397

Table 5. Validation of numerical Results at S = 1.2 and G* = 0.

Pr
Present Study Wang [32]

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

0.01 0.9823314 0.0377342 0.982331 0.037734
0.1 0.8462218 0.3439312 0.843622 0.343931
1.0 0.2867165 1.9995915 0.286717 1.999590
2.0 0.1281219 2.9759051 0.128124 2.975450
3.0 0.0676448 3.7013202 0.067658 3.698830

4. Results

From Table 3, it is evident that despite having the unique symmetry generators and
invariants (except for Case 1 and 5 for which the corresponding systems of ODEs are also
similar), the transformed systems of ODEs for Case 2, Case 6 and Case 7 are the same. The
system of ODEs in Case 4 is not containing any heat generation/absorption parameter
G∗ and thus is not considered further for a solution. It is important to note that the Lie
similarity transformations in Table 3 are valid at any time interval, i.e., for t > 0. Moreover,
the ranges of S for which we are providing the variations in film thickness, velocity of the
flow and temperature have not been revealed in [30].

4.1. Effect of Unsteadiness on Film Thickness and Fluid Velocity

The first equation is not coupled with the second one and is the same for all cases of
Table 3. It controls the dimensionless boundary layer thickness, fluid velocity and skin
friction. The variable in these equations is the dimensional unsteadiness parameter S.
Table 6 shows the effect of variation of unsteadiness S on film thickness λ, surface velocity
f ′(1) and skin friction f ′′(0). Figure 2 shows the variation of velocity distribution f ′(η) in
the boundary layer with unsteadiness parameter S. The film thickness β is observed to
decrease with the increase in unsteadiness S in the flow. The surface velocity f ′(1) and so
the skin friction f ′′(0) are observed to increase with the increase in unsteadiness S.
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Table 6. Variation of velocity f ′(1) and dimensionless film thickness β with unsteadiness parameter S.

S β f ′(1) f ′′(0)

4.0 0.46222258 2.54527934 2.64859856
6.0 0.42256741 4.11506337 5.12669108
8.0 0.38196786 5.68906454 7.57845493
10.0 0.34939989 7.26442893 10.0221543

S = 4, 6, 8, 10

Figure 2. Velocity distribution f ′(η) variation with unsteadiness parameter S.

4.2. Effect of Unsteadiness on Temperature

As the unsteadiness in the fluid increases, the flow velocity f ′(η) increases. This also
increases the heat flux −ϑ′(0), and thus, a drop in the surface temperature ϑ(1) is observed
for Case 1 and Case 5. For Cases 2, 3, 6, and 7, the surface temperature ϑ(1) increases
with the increase in unsteadiness S in the fluid. Figure 3 and Table 7 show the effects of
unsteadiness S on surface temperature ϑ(1) and heat flux −ϑ′(0) for all the cases.

Table 7. Variation of temperature distribution with unsteadiness parameter at Pr = 1 and G∗ = 1.

S
Case 1 and 5 Case 2, 6 and 7 Case 3

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

4.0 0.9254323 0.2063995 1.5018941 0.8804902 3.2395043 3.7582109
6.0 0.8800376 0.3375851 1.6365029 1.0733105 5.6566690 7.5566639
8.0 0.8559376 0.4088891 1.6905412 1.1414694 8.0118998 11.224076
10 0.8412676 0.4528668 1.7180535 1.1725929 10.128307 14.510949

(a) Case 1 and 5

S = 4, 6, 8, 10

(b) Case 2, 6 and 7

S = 4, 6 , 8, 10

(c) Case 3

S = 4, 6 , 8, 10

Figure 3. Variation of temperature distribution ϑ(η) with the unsteadiness parameter S at Pr = 1 and
G∗ = 1.
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4.3. Effect of Prandtl Number on Temperature

As the Prandtl number increases, the ratio of momentum diffusivity to thermal dif-
fusivity increases. This increases the heat flux −ϑ′(0), and thus, a temperature ϑ(1) drop
is observed for Case 1 and Case 5. For Cases 2, 3, 6, and 7, the surface temperature ϑ(1)
increases with the increase in Prandtl number Pr in the fluid. Figure 4 and Table 8 show the
effect of Prandtl number Pr on the temperature distribution ϑ(η), surface temperature ϑ(1),
and heat flux −ϑ′(0).

(a) Cases 1 and 5

Pr = 0.8, 1.0, 1.2, 1.4

(b) Cases 2, 6 and 7

Pr = 0.8, 1.0, 1.2, 1.4

(c) Case 3

Pr = 0.8, 1.0, 1.2, 1.4

Figure 4. Variation of temperature distribution ϑ(η) with Prandtl number Pr at S = 4 and G∗ = 1.

Table 8. Variation of temperature distribution ϑ(η) with Prandtl number at S = 4 and G∗ = 1.

Pr
Case 1 and 5 Case 2, 6 and 7 Case 3

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

0.8 0.9595775 0.1261086 1.4071290 0.7190225 2.4052188 2.3063102
1.0 0.9254323 0.2063995 1.5018941 0.8804902 3.2395043 3.7582109
1.2 0.8930815 0.2836747 1.6093876 1.0579964 4.7864442 6.2626166
1.4 0.8623943 0.3581463 1.7320289 1.2589990 7.6471113 10.783625

4.4. Effect of Heat Generation/Absorption on Temperature

When fluid generates heat, i.e., G∗ > 0, the surface temperature ϑ(1) increases and
when it absorbs heat, i.e., G∗ < 0, the surface temperature is ϑ(1). This corresponds to the
increase and decrease in heat flux −ϑ′(0), respectively. Similar effects are observed here for
all cases as shown in Figure 5 and Table 9.

(a) Cases 1 and 5

G* = −2.0, −1.0, 0.0, 1.0

(b) Cases 2, 6 and 7

G* = −2.0, −1.0, 0.0, 1.0

(c) Case 3

G* = −2.0, −1.0, 0.0, 1.0

Figure 5. Variation of temperature distribution ϑ(η) with heat generation/absorption parameter G∗

at S = 4 and Pr = 1.
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Table 9. Variation of temperature distribution ϑ(η) with heat generation/absorption parameter G∗ at
S = 4 and Pr = 1.

G∗ Case 1 and 5 Case 2, 6 and 7 Case 3

ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0) ϑ(1) −ϑ′(0)

−2.0 0.6980416 0.6846427 1.0296499 0.0020397 1.7502717 1.3163411
−1.0 0.7626680 0.5501907 1.1551679 0.2443599 2.0816556 1.8831544

0.0 0.8376079 0.3886397 1.3090560 0.5316521 2.5452882 2.6576106
1.0 0.9254323 0.2063995 1.5018941 0.8804902 3.2395043 3.7582109

5. Conclusions

Reduced-order modeling has been performed by systematically deriving the similarity
transformations using Lie symmetry algebra to map the system of PDEs representing heat
transfer in unsteady flow with heat generation/absorption to ODEs. Similarity transforma-
tions are deduced through invariants corresponding to each linear combination of the Lie
symmetries (considering two at a time) of the flow equations. These similarity transfor-
mations are used to perform double reductions to map the said system of PDEs into the
system of ODES. We present only those cases here in which specific boundary conditions
remain functions of both space and time variables. Seven such cases are obtained. Case 4
has not been pursued here because it has no heat generation/absorption parameter in the
corresponding system of ODEs.

In all cases, the film thickness λ = β2 decreases, and the flow velocity f ′(η) increases
with an increase in unsteadiness parameter S. For Cases 1 and 5, the surface temperature
ϑ(1) decreases with an increase in unsteadiness S, Prandtl number Pr and heat absorption
G∗ < 0. While for Cases 2, 3, 6 and 7, the surface temperature ϑ(1) increases with increase
in unsteadiness S, Prandtl number Pr and heat generation G∗ > 0. The Lie symmetry
method provides more than one type of similarity transformation and correspondingly
reduces the system of ODEs, which enables a comprehensive study of the flow and heat
transfer through approximate solutions of the systems of ODEs corresponding to concerned
flow equations.

In this study, we show that there exists more than one type of similarity transformation
which provides three different systems of ODEs when employed on PDEs describing the
unsteady fluid flow and heat transfer in a boundary layer with heat generation/absorption.
To the best of our knowledge, the similarity transformations and corresponding reductions
of the flow model are different from those which exist in the literature. We have considered
linear combinations of two symmetries by assigning a unique positive value, i.e., 1 to each
coefficient in these linear combinations. Keeping arbitrary constant coefficients in these
linear combinations may lead to more general forms of the similarity transformations and
corresponding systems of ODEs. The inclusion of arbitrary constant coefficients in the linear
combinations may yield similarity transformations and corresponding systems of ODEs
with these constant coefficients. With the involvement of the arbitrary constants in resulting
systems of ODEs, the convergence of the analytic solutions can be controlled, i.e., the flow
and heat transfer rates can be altered with a variation in the arbitrary constants. Moreover,
by constructing optimal systems of Lie sub-algebras, the classes of ODEs derived in this
work can be retrieved along with maybe a few more. The inequivalence of these classes of
systems of ODEs can also be established. Although the construction of optimal systems
has not been included in the scope of the present study, it may lead to more general results.
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Abstract: A mathematical model is created to analyze the impact of Thompson and Troian slip bound-
aries over a contracting/expanding surface sustaining nanofluid-containing carbon nanotubes along
a stagnation point flow. Both multi-wall (MWCNTs) and single-wall (SWCNTs) carbon nanotubes
are taken into consideration, with water serving as the base liquid. The flow is obtained due to
the stretching or contracting of the surface. The thermal radiation, activation energy, buoyancy
impacts, and chemical processes called quartic autocatalysis are additionally added to the original
mathematical model. The MATLAB-constructed bvp4c function involving the three-stage Lobatto
IIIa formula for the numerical results of dimensionless velocity, concentration, and temperature
profiles are used. By contrasting it against a published paper in this limited instance, it is determined
whether the suggested mathematical model is legitimate. In this sense, a remarkable consensus is
achieved. Graphical representations are used to depict the behavior of many non-dimensional flow
variables, such as the slip velocity parameter, the inertia coefficient, the porosity parameter, and the
solid volume fraction. Surface drag force computations are reported to examine the effects at the
permeable stretching surface. It has been shown that increasing the slip velocity factor increases the
fluid streaming velocity while decreasing the surface drag force. If the endothermic/exothermic
coefficient increases, the local thermal transfer efficiency falls. For nanofluids, the changing viscosity
factor increases axial velocity while decreasing temperature distribution. Additionally, the solid
volumetric fraction improves the temperature distributions by lowering the concentration profile
and speed.

Keywords: stagnation point; magnetohydrodynamics; endothermic and exothermic reaction; heat
generation/absorption; activation energy; carbon nano tubes

MSC: 76W05; 76D05; 7604

1. Introduction

When industries and scientists were seeking out greater and better thermal charac-
teristics in fluids used on a regular basis for diverse tasks, Mesuda et al. [1] suggested the
introduction of nano-sized particles in ordinary fluids in 1993. Later, the term nanofluid
was officially defined by Choi and Eastman [2], and these fluids became a prime focus of
researchers. Nanoparticles are typically 1–100 nm in size, but this might vary significantly
depending on their sizes and shapes. Water, ethylene glycol, and oil are commonly used
base fluids. A nanofluid is a combination of nanosized materials and a base liquid. These
nanoparticles are suspended in a base fluid that is colloidal in nature and has weaker
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thermal conductivity. The major goal of nanosized particles is intended to improve the
thermal conductivity of fluids, as well as increase heat transmission. Because of their
structure, nanosized particles have unique physical and chemical features and contribute to
the development of thermophysical systems. Nanofluids have a wide range of applications,
such as in nano-drug delivery, pharmaceutical operations, heating/cooling appliances, fuel
cells, and microelectronics. Nanofluids are utilized as coolants in the thermal exchange
systems of automobiles and nuclear reactors. However, they are also useful due to their
regulated optical features.

Carbon nanotubes are cylinder-type shapes that are formed by rolling or folding a
graphite sheet. They have unique mechanical, thermophysical, and chemical properties.
Because of their cylindrical form, huge surface area, and small size, carbon nanotubes offer
advantages over other macro/nanoparticles. Carbon nanotubes are categorized as SWCNTs
or MWCNTs based on their number of graphene layers. The effects of the nanofluid in the
physiological examination of cilia were highlighted by Sadaf and Nadeem [3].
Sivasankaran et al. [4] investigated the heat production of nanofluids in the cavity.
Ahmed et al. [5] investigated the flow of multi-walled and single-walled carbon nan-
otubes (MWCNT and SWCNT) across a circular stretchable semi-infinite zone containing
water as the base fluid. Hosseinzadeh et al. [6] concentrated on the MWCNTs and SWC-
NTs combined in ethylene glycol flowing between the two rotating discs with extensible
qualities in it; the effects of MHD and thermal radiations were considered, and findings
revealed that the fluid system’s instability and the volume fraction of the nanosized parti-
cles decreases as the radiation increases. Ramzan et al. [7] investigated a physical system
of gyrotactic microorganisms and CNTs submerged in water that was flowing on the top
of a vertical cone immersed in a permeable medium by using the bvp4c MATLAB soft-
ware and discovered that increasing the suction parameter reduces the nanofluid stream
velocity. They also considered chemical reactions, thermal radiation, and species strati-
fication. Khan et al. [8] examined the flow at the stagnation point of carbon nanotubes
moving across an extended surface in the applied magnetic field, as well as thermal ra-
diation, homogeneous and heterogeneous reactions, and heat absorption/generation. By
applying the shooting method, numerical consequences revealed that MWCNTs had a
greater induced magnetic field than SWCNTs. Ramazan et al. [9] studied CNTs and gy-
rotactic microorganisms in a fluid moving through a vertical cone enclosed by porous
media. Joule heating, thermal radiation, MHD, and the homogeneous and heterogeneous
reactions were all thought to be important inside the fluid system. According to the results
obtained by using bvp4c MATLAB software, the flow of the fluid decreases with increasing
magnetic force. Khan et al. [10] used the homotopy analysis method (HAM) to study
a radiant bioconvective MHD nanofluid flow across an elongated oscillating plane and
discovered that the temperature of the nanofluid increases as the buoyancy ratio increases.
Sergii et al. [11] presented an analytical theory for the electrostatic interactions between two
spherical dielectric particles with arbitrary charge distributions expanded in multipolar
terms submerged in a polarizable ionic solvent and with arbitrary radii and dielectric
constants. Yu [12] presented a new formalism regarding reciprocity and arbitrarily accom-
modated many dielectric spheres of different dielectric constants and sizes while being
rigorous at the Debye–Hückel level. Some further prominent articles highlighting the use
of nanofluid are as follows: refs. [13–17]. A chemical reaction is the interaction of two or
more chemicals, which leads to the composition of one or more new chemical substances.
A chemical reaction is the breaking of old bonds in order to form a new bond chemically.
This is also known as the chemical change caused by the interaction of two or more chemical
substances. The temperature of the system rises or decreases when energy is transferred
to or from the environment during a chemical process. Exothermic reactions are chemical
processes for which energy is discharged into the atmosphere (i.e., outside of the system).
Energy is typically conveyed as heat energy, which causes the atmosphere to heat up.
The burning process is an illustrative example of an exothermic reaction. Endothermic
reactions are chemical reactions that extract energy from their environment. Normally,
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the energy is shifted as heat, raising the temperature of the reaction mixture. Chemically
reactive models, such as biological systems and combustion, are represented by homoge-
neous/heterogeneous reactions. The surfaces of the catalysts experience heterogeneous
reactions, but the fluid itself experiences homogenous reactions. In practice, homogeneous
and heterogeneous reactions can be observed in a number of different fields, including
air pollution, food processing, ignition, and biological processes. The species of chemical
reactions together with the activation energy phenomenon plays a major role in various
engineering fields. Mass transport and chemical processes can be seen in the consumption
as well as production of reactant species. Regarding the existence of thermal dissipation,
Maleque [18] was interested in the study of the impact of endothermic/exothermic chemical
processes having Arrhenius activation energy on magnetohydrodynamic-free convective
and the mass transfer flow. Recently, Bejawada et al. [19] investigated a magnetohydrody-
namic Casson fluid flow with chemical reaction properties along with a porous Forchheimer
medium over a non-linear sheet. Suleman et al. [20] used the shooting technique to show
how the concentration of nanoparticles in a silver-water nanofluid mixture decayed due to
upsurging homogeneous and heterogeneous reactions influenced by viscous dissipation,
MHD, thermal radiation that was not linear, and Joule heating moving through a non-
linear extending cylinder. Imtiaz et al. [21] explored the streaming of the two-dimensional
magnetohydrodynamic viscous fluid flow passing over a stretched sheet. The solution was
approximated with the use of a quasi-linearization method and the implicit finite difference
approach, taking into account the significant impact of homogeneous and heterogeneous
reactions, thermal radiation, and Joule heating. The study discovered that viscous fluids
had lower fluid speed and concentration than viscoelastic fluids, and both homogeneous
and heterogeneous reactions have a negative effect on fluid viscosity. Suleman et al. [22]
used the shooting approach to analyze silver-water nanofluids with MHD, nonlinear heat
radiation, and homogeneous and heterogeneous reactions through a nonlinear extended
cylinder. Despite a greater radiation impact, the results showed better thermal conditions.
Doh et al. [23] further investigated homogeneous and heterogeneous reactions with silver
water nanofluids on a revolving permeable disc with changing disc thickness.

During fluid flow research, it is frequently thought that small-scale slips can happen at
a fluid-solid interface as a result of uncertainty at the intense stress levels in methodologies
such as polymer extraction. Fluid motion at a geometry surface is affected by such fluid
slip impacts. Khan et al. [24] investigated the viscous hydromagnetic fluid flow across the
permeable rotatable disk with non-linear thermal radiation and partial slip by considering
the shooting method. The findings revealed a clear decline in surface friction as slip
estimation increased. Using the Crank–Nicolson approach, Hamid et al. [25] investigated
the natural convection of the Prandtl fluid, which was flowing at a point of stagnation
across an infinite elongated plate. The geometry of the model is presented on the Figure 1.
When studying slip at the sheet surface and MHD, it was discovered that when a slip
impact was combined with a low magnetic field, the velocity increased dramatically.
Reddy et al. [26] investigated magnetohydrodynamic Eyring–Powell fluid flow regarding
nonlinear radiation, solutal slippage, temperature, velocity, and chemical processes using
a Range–Kutta 4th order scheme. Kiyasatfar [27] investigated the convective slip flow
of a non-Newtonian fluid among parallel plates with circular microchannels using the
power-law model. The results show that for both geometries, lowered fluid stream speed
and increased heat exchange rates and molecule stability occurred in rising slip situations.

According to the aforementioned studies, fewer expeditions are explored for the study
of the Thompson and Troian slip forms. In the existence of suction/injection, for nanofluids
based on the Yamada and Ota model consisting of two nanoparticles, i.e., single and multi-
wall carbon nanotubes suspended in a base fluid (water), the flow velocity, temperature,
and concentration of nanofluid in the presence of the Cattaneo–Christov heat flux model
are taken into account. Stagnation point flow is taken over the infinitely expanding sheet.
Chemical reactions, nonlinear heat generation, and activation energy are the main key
points that are focused on the current problem. The modeled equations are solved by the
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bvp4c technique. Graphs are drawn for the different parameters to better understand their
impact on velocity and temperature.

Figure 1. Geometry of the model [25].

2. Mathematical Model

Here, we consider the two-dimensional Newtonian nanofluid flowing over the sheet
which is linearly stretched along the x-axis. A stagnation point flow is considered along
with a magnetic field which is applied normally to the flow. Heat generation, chemical
reaction, activation energy, and convection are also prominent impacts that are taken into
account. Importantly Thompson and Troian slip mechanisms are employed on the surface.
Single and multi-wall carbon nanotubes are taken as nanoparticles which are mixed in water.
The fluid flow is compressible, and the Boussinesq approximation is valid for the case of the
present problem. Free convection behavior is taken due to buoyancy forces. The momentum
equation comprises the buoyancy phenomenon, stagnation point, and free convection
phenomenon. Heat transfer is determined in a more precise manner with the utilization
of the Cattaneo–Christov heat flux expression instead of classical Fourier law expression
in the energy equation. Sometimes, extra energy is required to proceed with a chemical
reaction due to the slow collision of fluid molecules. This is why an activation energy
expression is utilized in energy as well as concentration equations. The governing modeled
PDEs are derived from the law of conservation of mass, Newton’s second law of motion,
the second law of thermodynamics, and Fick’s second law of diffusion. After accounting
for the boundary layer estimation, the system can be represented as follows [6–8,18].

∂v
∂y

+
∂u
∂x

= 0, (1)

v
∂u
∂y

+ u
∂u
∂x

= νn f
∂2u
∂y2 + U∞

dU∞

dx
+ g

(1 − φ)β f ρ f + φβsρs

ρn f
(T − T∞)− σn f B2(x)

ρn f
(u − U∞), (2)
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v
∂C
∂y

+ u
∂C
∂x

= Dm
∂2C
∂y2 − Kr

2
(

T
T∞

)m
exp

[
− Ea

KT

]
(C − C∞), (4)

where T represents the fluid temperature, C represents the concentration, and (v, u) rere-
sents the velocity components in the (y, x). The parameter Dm stands for the mass diffusion
coefficient, Kr which is the rate of limiting factor for the chemical process, (β = ±1) is the

endothermic/exothermic factor, and
(

T
T∞

)n
exp

[
− Ea

KT

]
represents the Arrhenius expression,

where n represents a unit-less rate constant (−1 < n < 1). The thermophysical characteris-
tics of the nanofluid are presented in Table 1. The corresponding boundary conditions are
as follows:

u|y=0 = ut + uw(x) = mx + γ∗(1 − ξ∗ ∂u
∂y

)−1/2 ∂u
∂y

, v|y=0 = 0, C|y=∞ → C∞, C|y=0 = Cw,

u|y=∞ → U∞(x), T|y=∞ → T∞, T = Tw(x) = (T0x + T∞)|y=0,
(5)

Table 1. Thermophysical characteristics of nanofluid and base.

Physical Attributes Base Fluid (H2O) MWCNT SWCNT

Cp(J/kgK) 4179 796 425
ρ(kg/m3) 997 1600 2600
K(W/mK) 0.613 3000 6600
σ(Ωm)−1 5.5 × 10−6 107 106

The thermophysical properties are represented as defined from the Yamada and Ota
model:

μn f =
μ f

(1 − φ)2.5 , αn f =
kn f

ρn f (Cp)n f
, νn f =

μn f

ρn f
,
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kn f

k f
=
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2k f
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2k f
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,
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= 1 +

3
(
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(
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)

φ
.

(6)

Introducing dimensionless variables, we obtain:

η = y

√
c

ν f
, v = −√

ν f c f (η), u = U∞ f ′(η), θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C − C∞

Cw − C∞
(7)

After simplification, we convert the system of PDEs into the following ODEs:

1
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[
− E

1 + γTθ

]
φ] = 0,

(9)
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φ′′
c + Sc f φ′

c − σSc(1 + γTθ)mexp
[ −E

1 + γTθ

]
φc = 0. (10)

The transformed boundary conditions of (5) are:

f (0) = 0, f ′(0) = ε + γ1[1 − ξ f ′′(0)]−1/2 f ′′(0), φc(0) = 1, θ(0) = 1,

f ′(η) = 1, θ(η) = 0, φc(η) = 0 at η → ∞.
(11)

The different non-dimensional parameters seen in Equations (8)–(11) are explained as:

M =
σn f B2(x)

cρ f
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v f

α f
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c(ρcp) f
, γ = τc,
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m
c
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v f
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KT∞
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2

c
, Sc =

v f

DA
, λ1 = β

Cw − C∞

Tw − T∞
, γ1 = a

√
c

v f
.

(12)

The skin friction coefficient Cf and local Nusselt number Nux are explained as:

Cf =
τw

ρ f U2 , τw = (
∂u
∂y

μn f )y=0, (13)

Nux =
xqw

k f (Tw − T0)
, qw = (−∂T

∂y
kn f )y=0, (14)

The dimensionless form of the surface drag and the heat transfer rate is given below:

R1/2
e Cf =

(
1

(1 − φ)2.5

)
f ′′(0), R−1/2

e Nux =

(
− kn f

k f

)
θ′(0) and Re =

cx2

v f
. (15)

3. Numerical Solution

With the help of the bvp4c technique, which is a built-in function in MATLAB, the
mathematical Equations (8)–(10) subject to condition (11) are solved numerically after set-
ting η = ηmax, where ηmax is different for different combinations of the physical parameters.
Alternatively, the [0, ∞) domain is restricted to [0, ηmax]. For the purpose of the solution,
we first convert the system of equations into first-order ODEs. The following variables are
used for the purposes of conversion.

y7 = φ′, y6 = φ, y5 = θ′, y4 = θ, y3 = f ′′, y2 = f ′, y1 = f . (16)

Hence, the system of equations are transformed as:
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y2 = y′1, 0 = y1(0)
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}
Every numerical solution is obtained by putting ε = 10−5, where ε is defined

as the tolerance.

4. Step-by-Step Graphical Detail of the Problem

4.1. Problem Formulation

The governing modeled PDEs are highly nonlinear in nature and derived from the
law of conservation, Newton’s second law of motion, the second law of thermodynamics,
and Fick’s second law of diffusion. Yamada and Ota’s nanofluid has been employed in the
case of SWCNT and MWCNT in order to check the behavior of nanoparticles on fluid flow.
The momentum of fluid flow is scrutinized with the inclusion of MHD, stagnation point,
and buoyancy effects. A heat transfer analysis has been carried out with the inclusion of
heat generation, Cattaneo–Christov and activation energy effects, whereas mass transfer
analysis is studied with the utilization of the activation energy phenomenon.

4.2. Modeling

The governing modeled PDEs are highly nonlinear in nature and embedded with
various physical effects. The PDEs are renovated into ODEs with the utilization of similarity
transformations in order to dimensionalize the PDEs. It is easy to understand the behavior
of fluid in the case of dimensionless parameters such as the Prandtl number Pr, Schmidt
number Sc, Nusselt number Nu, etc.

4.3. Numerical Process

The dimensionless system of equations can be handled numerically with the utiliza-
tion of the Lobatto IIIA scheme incorporated with the MATLAB built-in bvp4c scheme.
During this procedure, the nonlinear modeled PDEs with the inclusion of various effects in
momentum, energy, and concentration equations are transformed into ODEs with the help
of similarity variables. In the second step, these dimensionless ODEs are stepped down
into first-order ODEs for the Lobatto IIIA scheme. The tolerance level for the case of the
present problem was 10−6, with an interval of computation of [0,4] instead of [0,∞]. All the
numerical results have been obtained by considering η = 4. The detailed procedure of the
proposed numerical scheme is presented in the table mentioned below.
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4.4. Numerical Results

The behavior of the obtained numerical outcomes was scrutinized in terms of its
impact on velocity, temperature, and concentration fields. The physical quantities of
interest, such as heat transfer, Nusselt number, and Sherwood number, were computed as a
result of magnification in various dimensionless numbers obtained during the numerical
simulation of the problem. The impact of the dimensionless parameters on the velocity,
temperature, and concentration fields is portrayed in terms of figures and tables.

4.5. Analysis

The accuracy and convergence of the proposed numerical scheme have been checked
with the comparison of obtained numerical results with the existing literature. In order to
obtain the convergence criterion, the tolerance level for the case of the present problem was
10−6, and the domain for the case of the numerical solution was taken to be η = 4 instead of
η = ∞. The convergence criterion was achieved if the value of the obtained outcome was
less than the tolerance level.

5. Results and Discussions

After employing the bvp4c model, we obtained the required results in the form of
graphs and tables that highlight the impact of various parameters on the velocity, temper-
ature, concentration, skin friction, and Nusselt number. The values of the dimensionless
parameters used in this study are in the range of 0.1 ≤ K ≤ 1; for the magnetic number,
the range is 0.1 ≤ M ≤ 2, while the range for the shear rate is 0.1 ≤ ξ ≤ 0.8. The volume
fraction of nanoparticles is in the range of 0.01 ≤ φ ≤ 0.06, the Schmidt number is in
the range of 0.5 ≤ Sc ≤ 1.5, the Prandtl number has a value in 3 ≤ Pr ≤ 9, the velocity
ratio parameter is in the range of 0.1 ≤ ε ≤ 0.5, the velocity slip lies in 0.1 ≤ γ1 ≤ 0.5,
the chemical reaction effect is in the range of 0.1 ≤ β ≤ 0.5, the activation energy lies
in 0.1 ≤ E ≤ 1, the power law index is in the range of 0.1 ≤ m ≤ 0.5, and the fitted rate
constant is in the range of 0.1 ≤ n ≤ 0.5.

Figures 2 and 3 show the impact of the solid volume fraction of CNTs on the thermal
situation and axial velocity. For higher φ, the fluid stream speed decreases, while tempera-
ture increases because of the direct relationship between the concentration of nanoparticles
and their thermal conductivity. Higher values of the parameter φ have a favorable influence
on a system having higher thermal conductivity, resulting in an improved temperature
profile. Figure 4 shows the influence of a velocity ratio parameter ε on the fluid speed.
The velocity profile improves as a result of the direct impact of ε based on the stream
flow rate. Figure 5 shows the effect of a slip velocity parameter γ1 on f ′(η), indicating the
positive influence of γ1 on the stream velocity of the fluid. As the slip effects on a wall
become more significant, there is a small amount of friction and hence small resistance to
fluid motion. Figure 6 shows an increasing behavior in the velocity field against increasing
magnetic parameters. Usually, the magnetic field acts as an opposing agent and resists the
fluid motion due to the presence of external Lorentz forces, but here, due to the employed
slip mechanism, the behavior reverses, and an inclination in fluid velocity is observed.

Figure 2. Problem formulation of the proposed model.
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Figure 3. Modelling of the proposed modeled PDEs and their conversion into ODEs.

Figure 4. Conversion of PDEs into first-order ODEs and Lobatto111a scheme.

Figure 5. Impact of obtained numerical results on velocity, temperature and concentration fields.
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Figure 6. Analysis of obtained results.

Figure 7 shows the thermal behavior caused by heat generation through Dc. The heat
transfer surrounded by the adjoining fluid layers and surface improves as Dc increases.
Higher parameters ultimately generate more heat internally, which causes an increase
in the temperature of the nanofluid. Figure 8 shows the effect of the Prandtl number Pr
on the temperature profile. The temperature is found to be decreased for expanding Pr.
The Prandtl number is the quotient of momentum to thermal diffusivity, and it is used
to measure the heat transfer within the solid surface and moving liquid. As the Prandtl
number rises, the thermal diffusivity becomes weaker as the fluid temperature decreases.
The thermal relaxation parameter γ has an effect on temperature distribution, as shown in
Figure 9. For greater values of γ, the temperature, as well as the thickness of the boundary
layer, is found to decrease. Figure 10 depicts the effect of the shear rate ξ on a velocity. A
high shear rate indicates a lower viscosity, which increases the fluid velocity. Because of
the inverse relationship between the mass diffusivity and Schmidt number (Sc), Figure 11
shows an increasing trend in the nanoparticle concentration for increasing values of Sc.

As seen in Figure 12, the value of β, which represents the strength of the chemical
reaction, increases as the concentration field φc(η) decreases. The chemical reaction reduces
the movement of the mass of the fluid. Physically, this is accurate since a chemical reaction
is called an exothermic reaction when energy is released into the environment, and an
endothermic reaction is when energy is taken from the environment. Figure 13 shows how
the concentration profile improves as the activation energy parameter increases. The species
B, which contains nanoparticles embedded in it, is amplified by the chemical reaction factor
(λ1). Therefore, the manufacturing of nanoparticles increases. This explains why the
system φc(η) is increased, as shown in Figure 14. The concentration profile decreases as the
rate constant increases, as shown in Figure 15. This is owing to the fact that as σ increases,
so does the destructive intensity of chemical reactions. As can be seen in Figure 16, the
concentration profile declines as m is magnified.

Figures 17–19 show the velocity and thermal behavior caused by exothermic/
endothermic parameters through β. Exothermic reactions are when energy is released
due to the interference of two chemical species, while in endothermic reactions, energy is
absorbed. If the ratio of energy absorption versus energy release is the same, then the state
of this chemical reaction is called isothermic because, in it, the overall energy is balanced.
Heat transfer surrounded by the adjoining fluid layers and surface improves as β increases,
leading to a velocity profile f ′(η) that rises. The effect of a velocity ratio parameter ε on
the skin friction coefficient Cf R1/2

e is seen in Figure 20. A decreasing behavior in skin
friction when increasing the values of ε is noted, and a reverse pattern is observed for the
augmented values in λ. The value of ε increases and the free stream velocity overpowers
the extending velocity, generating an enlarged motion about the stagnation point, lowering
the drag force on a surface and causing Cf R1/2

e to drop.
The effect of the thermal relaxing time γ and velocity ratio parameter ε on the Nusselt

number θ′(0) is shown in Figure 21. θ′(0) becomes higher for escalating γ. With increasing
γ, the time it would take to transport heat between neighboring particles increases, resulting

279



Mathematics 2022, 10, 4636

in a decrement in heat transfer characteristics. On the other hand, an opposing relationship
is noted for ε, which improves the rate of heat transfer characteristics by increasing the
fluid speed. The idea behind the plotting of the Figures 22–26 is inspired from the following
references [13,15,16].

Figure 7. Influence of φ on temperature pattern.

Figure 8. Influence of φ on velocity behavior.

Figure 9. Influence of ε on velocity profile.
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Figure 10. Impact of γ1 on f ′(η).

Figure 11. Consequences of M on velocity pattern.

Figure 12. Consequences of Dc on temperature pattern.
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Figure 13. Consequences of Pr on temperature behavior.

Figure 14. Consequences of γ on temperature pattern.

Figure 15. Consequences of ξ on velocity profile.
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Figure 16. Consequences of Sc on concentration pattern.

Figure 17. Consequences of β on concentration behavior.

Figure 18. Consequences of E on concentration behavior.
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Figure 19. Consequences of λ1 on concentration behavior.

Figure 20. Consequences of σ on concentration behavior.

Figure 21. Consequences of m on concentration behavior.
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Figure 22. Consequences of β on velocity portfolio.

Figure 23. Consequences of β on temperature portfolio.

Figure 24. Consequences of β on temperature portfolio.
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Figure 25. Consequences of λ on skin friction.

Figure 26. Consequences of γ on temperature gradient.

The findings from bvp4c MATLAB software and the earlier work of Ramzan et al. [7]
for increasing φ values exhibit great consistency, as shown in Table 2. From comparison
analysis, it is quite clear that the obtained results are quite reliable.

Table 2. The work of Ramzan et al. [7]’s limited case is compared with statistical data on surface drag
force as well as local Nusselt number versus Prandtl number.

Ramzan et al. [7] f ′′(0) Ramzan et al. [7] −θ′(0)
Present
f ′′(0)

Results
Present
−θ′(0)

Results

φ SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT SWCNT MWCNT
0.01 0.338910 0.337270 1.105710 1.079040 0.338995 0.337276 1.105710 1.079043
0.1 0.408120 0.390070 4.806290 4.277160 0.408107 0.390084 4.806290 4.277160
0.2 0.504530 0.464660 12.30352 10.56796 0.504522 0.464669 12.30358 10.56796

Table 3 displays a comparison of numerically achieved outcomes with Othman et al. [28]
and Wang [29] for diverse values of ε by keeping other parameters M = λ = γ1 = ξ = 0.
From the comparison analysis, it is quite evident the proposed numerical is quite trustwor-
thy, and the obtained outcomes are quite accurate.
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Table 3. Comparison of current numerical outcomes with Othman et al. [28] and Wang [29].

R1/2
e Cf

Parameters Comparison Analysis

φ ε Othman et al. [28] Wang [29] Current

0 2 −1.887306668 −1.88731 −1.88795
0 1 0 0 0
0 0.5 0.71329495 0.7133 0.7136
0 0 1.232587647 1.232588 1.232600
0 −0.5 1.495669739 1.49567 1.49590
0 −1 1.328816861 1.32882 1.32900

The effects of the volume fraction of the nano-size particle φ, non-dimensional velocity
profile parameter ε, slip factor γ1, Schmidt number Sc, exothermic/endothermic parameter
β, activation energy E, dimensionless chemical reaction rate constant λ1 and σ, unitless rate
constant m and n, as well as λ, are statistically shown in Table 4, which refers to Cf Re1/2.
The pattern shows increasing drag force corresponding to λ, E, Sc and φ, but Cf Re1/2

decreases as the influence of m, n, γ1, σ, and ε increases.

Table 4. Rheological numerics of −(1 + β) f ′′(0) and −θ′(0).

R1/2
e Cf

ε γ1 φ2 λ Sc β E m σ n SWCNT MWCNT

0.1 0.1 0.01 0.1 0.5 0.5 1 0.5 0.1 0.1 1.118505 1.113907
0.3 0.909755 0.906056
0.5 0.678612 0.675895
0.2 0.1 1.178579 1.175287

0.2 1.037153 1.034589
0.3 0.924627 0.922584
0.5 0.01 0.719589 0.718489

0.03 0.753620 0.750208
0.05 0.790372 0.784373
0.01 0.2 0.709207 0.707394

0.3 0.721306 0.719536
0.4 0.733302 0.731576
0.1 0.1 0.796844 0.793677

0.3 0.908853 0.905215
0.5 1.015271 1.011183
0.5 0.1 1.045206 1.044045

0.5 0.933344 0.921626
0.5 0.815149 0.805263
0.9 0.1 0.631555 0.618866

0.5 0.755968 0.743733
1 0.875441 0.863706
1 0.2 0.835110 0.825900

0.3 0.745517 0.737508
0.4 0.655203 0.648064
0.1 0.1 0.559715 0.552366

0.5 0.465787 0.459695
0.9 0.364019 0.365172
0.1 0.2 0.745179 0.737164

0.3 0.654127 0.647323
0.4 0.555421 0.5558216

6. Conclusions

The bvp4c MATLAB software was used to examine the buoyant flow of a nanofluid
containing carbon nanotubes, including homogeneous and heterogeneous reactions as well

287



Mathematics 2022, 10, 4636

as heat absorption/generation. The fluid is in a stagnation point flow past a porous shrink-
ing/expanding plane, and the Thompson and Torian slip situations have also been taken
into consideration at the boundary. Through naturally occurring factors, the fluid streaming
speed, thermodynamic conditions, CNT nano-size particle density, heat transfer rates, and
surface drag were investigated. The main observations are summarised as follows:

� Larger magnetic parameters, slip parameters, and velocity ratio factors all cause fluid
flow to speed up, but the solid volume fraction causes it to slow down.

� As with the measurements of the heat generation and solid volume ratio, the system is
observed to gradually cool down.

� When increasing the slip parameters and velocity ratio, fluid tends to flow smoothly,
whereas for the solid volume fractions, surface roughness increased.

� The concentration profile decreases for the larger values of activation energy and
exothermic/endothermic parameters.

� The process of heat transmission inside the system was influenced in opposing ways by
the velocity ratio parameter as well as the thermal expansion parameter.
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Nomenclature

Symbols

u, v Velocity component along the x and y directions
Q0 Volumetric rate of a heat source
Pr Prandtl number
U∞(x) Free-stream velocity of the fluid
Sc Schmidt number
Cf Surface drag force
Nu Local heat transfer
f ′ Dimensionless stream velocity
E Activation energy
Dc Dimensionless heat generation parameter
m, n Unitless rate constants
Greek Symbols

ρn f Density of nanofluid
ρ f Density of fluid
γ∗ Navier slip length density
ε Velocity ratio parameter
μn f Dynamic viscosity shear stress
μ f Dynamic viscosity shear stress
τw Dynamic viscosity shear stress
αn f Thermal diffusivity of nanofluid
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τ Ratio of specific heats
ξ∗ Reciprocal of some critical shear rate
ξ Critical shear rate
(ρCp)n f Heat capacity of nanofluid
β f , βs Coefficient of thermal expansion
(ρCp) f Heat capacity of fluid
γ1 Non-dimensional slip velocity parameter
σn f Electric conductivity of fluid
σf Electric conductivity of fluid
σf Electric conductivity of nanofluid
βCNT Coefficient of thermal expansion of carbon nanotubes
φ Nanofluid volume fraction
γ Dimensionless thermal relaxation time
β Exothermic/endothermic parameter
σ, λ1 Dimensionless chemical reaction rate
kn f Thermal conductivity of nanofluid
k f Thermal conductivity of fluid
νn f Kinematic viscosity of nanofluid
kCNT Thermal conductivity of carbon nanotubes
ρCNT Density of carbon nanotubes
(ρCp)CNT Heat capacity of carbon nanotubes
B2(x) Magnetic field strength
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Statistical Descriptions of Inhomogeneous Anisotropic Turbulence
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Abstract: Descriptions are given of the Langevin and diffusion equation of passively marked fluid
particles in turbulent flow with spatially varying and anisotropic statistical properties. The descrip-
tions consist of the first two terms of an expansion in powers of C−1

0 , where C0 is an autonomous
Lagrangian-based Kolmogorov constant: C0 ≈ 7. Solutions involve the application of methods of
stochastic analysis while complying with the basic laws of physics. The Lagrangian-based descrip-
tions are converted into Eulerian-based fixed-point expressions through asymptotic matching. This
leads to novel descriptions for the mean values of the fluctuating convective terms of the conservation
laws of continua. They can be directly implemented in CFD codes for calculating fluid flows in
engineering and environmental analysis. The solutions are verified in detail through comparison
with direct numerical simulations of turbulent channel flows at large Reynolds numbers.

Keywords: statistical turbulence; Langevin and diffusion equation; nonlinear convection statistics

MSC: 37M10

1. Introduction

Fluid flow that exhibits turbulence is more of a rule than an exception. It occurs when
the Reynolds number of the flow Re is sufficiently large. The number is specified as

Re = ULν−1, (1)

where U [m/s] is the fluid velocity, ν [m2/s] is the kinematic viscosity of the fluid and L
[m] is the spatial dimension of the flow configuration, e.g., the diameter of a tube, length
of an air foil, or height above the earth’s surface. Values for ν in the cases of water and
air are typically 10−6 and 10−5 m2/s, with the corresponding velocities 0.1 and 1 m/s. A
configuration where L = 0.1 m results in a value of Re of 105. This exceeds, by far, the
critical value of approximately 103, where turbulence starts to occur.

Turbulence can be considered as a statistical process. General descriptions of the
statistical parameters have yet to be found. What is known are partial results, such as the
solutions for the log layer by Von Karman and the theory of the small viscous scales by
Kolmogorov: e.g., Monin and Yaglom [1]. However, a general description for the statistical
parameters of the large scale is missing. The key problem is the description of the statistics
of the fluctuations of the convective accelerations in the governing conservation equations.

The averaged representations of the conservation equations lack well-founded statisti-
cal descriptions of the non-linear convective terms. Instead, semi-empirical versions are
used, which are adapted and calibrated from case to case. These are a common feature
of the methods used in fluid mechanics, including computational fluid mechanics (CFD),
which are widely used in engineering and environmental analysis (Bernard and Wallace [2],
Hanjalic and Launder [3]). The presented analysis does not resort to empirical construction.
Instead, statistical descriptions are derived by applying the methods of stochastic analysis
(Stratonovich [4], Van Kampen [5]) and obeying the basic laws of physics.

The first part of the analysis is a presentation and update of previous work [6–9]
concerning the Langevin and diffusion equations for the motion of passively marked
fluid particles. In the Langevin equation, the autonomous universal Lagrangian-based
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Kolmogorov constant C0 appears. Its reciprocal value is about 0.14. Its smallness forms
the basis for approximation. Solutions are given in descending powers of C−1

0 where the
leading and next to leading terms are retained.

All these solutions comply with the known laws of physics. The Lagrangian-based
descriptions are subsequently converted into Eulerian-based fixed-point expressions by
matching using C−1

0 as the small parameter. They can directly be employed in the averaged
equations of fluid mechanics. The outcome of the C−1

0 expansion is tested through com-
parison with the results of Hoyas et al. [10,11] and Kuerten et al. [12] for direct numerical
simulations (DNS) of turbulent channel flow at a high Reynolds number.

2. Langevin Equation Including Kolmogorov Similarity

Turbulent flow occurs for large values of Reynolds numbers, Re, a situation that is
frequently encountered in practice. For Re 
 1, the time over which fluid particle acceler-
ations decorrelate compares to the decorrelation times of particle velocity as Re−1/2 to 1,
e.g., [1]. This forms the basis for assuming that the velocity process can be represented by a
Markov process, where accelerations are modelled as delta correlated. The corresponding
Langevin equation reads as

dv′
i

dt
= ai(v′, y) + bij(v′, y)wj(t), (2)

where the time-dependent position of the moving fluid particle is described by

dyi
dt

= u0
i (y(t)) + v′i, (3)

and i, j = 1, 2, 3. In the above equations:

t = time.

v′t = a statistical representation of the fluctuating fluid particle velocity at time t.

yi(t) = a statistical representation of the particle position at time t.

ai(v
′, y) = a damping function.

bij(v
′, y) = the amplitude of white noise.

wj(t) =white noise of unit intensity.

u0
i (y(t)) = the velocity based on the mean Eulerian velocity evaluated at the particle

position y(t).

Fluid velocities at a fixed point in a fixed frame of reference using the Eulerian descrip-
tion are indicated by u, while velocities of fluid particles that move with the flow using
the Lagrangian description, are indicated by v. The coordinate x is used to denote a fixed
position in the non-moving fixed coordinate system, while y(t) is the position of a moving
particle. The turbulent flow field is considered to be stationary in a fixed frame of reference.
Statistical averages of Eulerian flow variables can be calculated by time averaging, which is
indicated by angled brackets or superscript 0. The white-noise amplitude can be specified
by implementing the Lagrangian version of Kolmogorov’s similarity theory of 1941, also
referred to as K-41 theory: [13] and [1] Section 21.3. This yields

bij(v′,y)wj(t) = {C0ε(y)} 1
2 wi(t), (4)

where C0 is a universal Lagrangian-based Kolmogorov constant, and ε = ε(y) is the mean
energy dissipation rate averaged at a fixed position x and evaluated at particle position y(t)
when applied in Equation (4):

ε =
1
2

ν

〈(
∂u′

i
∂xj

+
∂u′

j

∂xi

)2〉
, (5)
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where u′
i is a fluctuating component of Eulerian velocity at fixed position x.

The observation that second-order correlations of fluid particle accelerations tend to
those of a delta-correlated process, when Re 
 1, is, in itself, not sufficient to justify the
Langevin model [9]. The description of the forcing term by Gaussian white noise leads to
applying ordinary non-intermittent Kolmogorov (K-41) theory. The effects of intermittency,
apparent in corrections in higher-order structural functions, are not accounted for in the
Langevin model [9]. For that purpose, one can adopt a fractal model based on Kolmogorov’s
refined similarity theory: [1] Section 25.2.

However, the statistical averages of particle displacement that determine turbulent
dispersion change little under such an approach: [1] and Borgas [14]. The effect of inter-
mittency is apparent in small viscous scales, which govern the acceleration process, rather
than in large energetic scales, which govern the velocity process of turbulence. In many
applications, a Langevin model resting on K-41 theory can be considered to be a sound
approach for describing the mean dispersion on distances of large-scale turbulence.

Individual values of displacement y(t) and velocity v(t) obtained from Equations (2)
and (3) do not represent the actual values of fluctuating displacements and velocities of
fluid particles as they occur in turbulent flow. Instead, they are dummy variables that
enable the specification of statistical averages of actual fluid flow. This is achieved by
generating many realizations using w(t) as a random generator and averaging the results.
In the case of passive marking of fluid particles all starting at position y = x0 at t = 0, the
fluctuating velocities v′ should, for every realization, be selected randomly in accordance
with the distribution of the Eulerian fluctuating velocity at position x0:

t = 0; y = x0; v′ = u′ (6)

During a simulation, the coefficients in Equations (2) and (3) vary in magnitude with
the particle position in accordance with their value at y = x. A probabilistic description of
particle displacement and its velocity is obtained after performing many simulations and
averaging the result at every moment in time. This enables evaluating the average spatial
distribution of particles with time. This type of Lagrangian averaging is denoted by an
overbar: In the case of the simulated variable fn(t), it can be written as

f (t) = lim
N→∞

N

∑
n=1

fn(t), (7)

where fn(t) is the value of f at time t in the case of simulation n.
As alternative to time simulation using the Langevin equation the same statistical

distributions of fluid particle velocity and position can be obtained from the Fokker–Planck
equation associated with Equations (2) and (3). It is given by

∂p
∂t

+ u0
i

∂p
∂yi

+ v′i
∂p
∂yi

= − ∂

∂v′i

(
ai(v

′,y)p
)
+

1
2

C0ε
∂2 p

∂v′i∂v′i
(8)

where p = p(v,y, t) is the joint probability density function of velocity and position at time t.

3. Specification of Damping Function by C−1
0 -Expansion

Thus far, I have not specified the damping term ai(v′, y) in the Langevin equation.
The specification of the damping term in a form that is generally applicable has long been
an issue [6–9,15]. A method was proposed in which Kolmogorov constant C0 is used
as the basis for an expansion. Solutions are described in terms of an expansion [7–9] in
consecutive powers of C−1

0 . The expansion is not related to a dimensionless combination of
parameters, which can attain a vanishingly small or large value. Such a combination does
not exist. Instead, C0 is used as a scaling parameter, facilitated by its autonomous position
in statistical turbulence at a large Reynolds number [9].

The scaling parameter enters by the white-noise term and results in specific powers
of C0 in each of the terms on the basis of the required balances between them. The
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accuracy of the expansion depends on the truncation of subsequent terms. According to the
measurements and data from numerical simulations, C0 has a value of about 7: Sawford [16]
and Section 9. The accuracy of the resulting expressions is discussed in Sections 8 and 9.

Realistic solutions in the limit of C−1
0 → 0 are obtained from the Langevin equation

when all terms scale in the same manner with C0. For this to happen, the damping term
must scale as C0, and the time of correlation, which is the statistically relevant time as C−1

0 ;
thereby, noting that the white noise term w(t) scales as C−1/2

0 . The displacement due to
fluctuations during correlation scales is C−1

0 . This initial scaling allows for a number of
approximations [9]. To the leading order in C−1

0 , the displacement of a particle is small, and
values of fixed-point statistical quantities used in the parameters of the Langevin equation
can be represented by their values at the marking point x = x0.

We can thus discuss a homogeneous statistical process in the initial stages after mark-
ing [6–9]. During that short time, the dissipation of energy by viscous action is small. The
change in the Hamiltonian by viscous dissipation (d/dt)H ≈ ε(x0) is small and propor-
tional to C−1

0 . The statistical process is initially one that can be described by Einstein’s
fluctuation theory, e.g., Reichl [17]. In the leading order formulation in powers of C−1

0 ,
the damping term is linear in velocity, satisfies Onsager symmetry, and its magnitude is
determined by the fluctuation–dissipation theorem [8,9]. As a result,

a′i = −1
2

C0λijεv′j, (9)

where λij is the inverse of the covariance tensor of the Eulerian velocity field

λij = σ−1
ij =

〈
u′

iu
′
j

〉−1
(10)

4. Higher-Order Formulation of the Langevin Equation

Until now, attention has been focused on the leading-order term in the expansion with
respect to C−1

0 . The resulting descriptions involve a truncation error of O(C−1
0 ). Such an

error will become smaller, the larger C0 is. However, in turbulence, the value of C0 is limited
to about 7. This corresponds to C−1

0 = 0.14 and implies that the truncation error can become
large. Deriving expressions for higher-order terms is, thus, desired [7]. For that purpose,
one can resort to the well-mixed principle of Thomson [15]. Given an initial distribution,
particles will, in the course of time, mix up with the fluid and attain the distribution of fluid
velocity. This equilibrium distribution satisfies the Eulerian interpretation of Equation (8),
which is given by [7]

u0
i

∂pE
∂xi

=
1
2

ε0C0
∂2 pE

∂u′
i∂u′

i
− ∂

∂u′
i
(ai pE)− u′

i
∂pE
∂xi

(11)

where ai = ai(u′,x) and pE = pE(u′) is the distribution of the fluctuating component of
the fixed-point Eulerian fluid velocity u′. There is no time derivative in Equation (11) when
considering stationary turbulence: Statistical averages at a fixed point do not vary with
time. Note further that x is not a statistical variable but a fixed position. Statistical averages
can be obtained from time averaging at fixed point x. Derivatives of pE with respect to x

attain values whenever the statistical parameters of pE (covariances, etc.) vary in space
(inhomogeneous turbulence).

The Eulerian distribution pE is equivalent to the non-equilibrium steady state distribu-
tion in statistical mechanics. Equation (11) represents the general form of the fluctuation–
dissipation theorem that is appropriate for turbulence. Given pE(u′

i), Equation (11) can
be used to derive expressions for the damping function a′i. Noting the leading-order
formulation with respect to C0, cf. Equation (9), we have

ai = −1
2

C0λijεu′
j + a′i, (12)
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where a′
i = a′

i(u′,x) is to be determined. The Eulerian velocity distribution can be taken
as Gaussian to the leading order,

pE = pG + C−1
o fe pG, (13)

where pG = pG(u′) is the zero-mean Gaussian while fc = fc(u′) is the correction on the
Gaussian behavior. Values of the zero, first-, and second-order moments are fully captured
by the Gaussian part of the description,∫ +∞

−∞
fc(u

′)pG(u
′)du′ =

∫ +∞

−∞
u′

i fc(u
′)pG(u

′)du′

=
∫ +∞

−∞
u′

mu′
n fc(u

′)pG(u
′)du′ = 0,

(14)

values of cumulants higher than second order are determined by fc(u′). Substituting the
description for pE and Equation (12) into Equation (11), one obtains, for a′i, the equation

∂a′i
∂u′

i
− λiju′

ja
′
i

=
1
2

[
λ−1(u0

i + u′
i)

∂λ

∂xi
− (u0

i + u′
i)

∂λmn

∂xi
u′

mu′
n

]
+

1
2

ε

(
∂2 fc

∂u′
i∂u′

i
− λiju′

j
∂ fc

∂u′
i

)
,

(15)

where there are dropped terms of relative magnitude O(C−1
0 ) in the contributions due to

non-Gaussianity, i.e., the second term on the right-hand side of Equation (15). Equation (15)
is exact, i.e., it does not involve any approximation or truncation with regard to C0 in the
case of Gaussian Eulerian velocities ( fc = 0). The solution of Equation (15) is [7]

a′i =
1
2

λjmu0
k

∂σmi
∂xk

u′
j +

1
2

λjn
∂σij

∂xm
(u′

mu′
n + σmn) + gi, (16)

where gi = gi(u′,x),
gi =

1
2

ε
∂ fc

∂u′
i
+ a′Hi , (17)

where a′H
i = a′H

i (u′,x) is the solution of the homogeneous problem

(∂/∂u′
i)(a′Hi pG) = 0 or (∂/∂u′

i)a′Hi = λiju′
ja
′H
i . (18)

A variety of solutions exists for a′Hi , linear and nonlinear in u′; however, each of them
contains a degree of indeterminacy apparent in unspecified constants. When confining the
damping function to linear representations in ui, the solution of Equation (18) is

a′Hi = bkσijεkiju′
j (19)

where εkij is the alternating unit tensor. Solution (19) constitutes an antisymmetric extension
to the symmetric damping tensor derived in the previous section as described by the first
term of solution (12). In this solution bk are three dimensionless constants whose values are
unknown. It is a reflection of the nonuniqueness problem: Except for isotropic turbulence,
it is impossible to fully specify the damping function on the basis of a specified fixed-
point Eulerian velocity distribution. Yet, there is a practical way out of the nonuniqueness
problem [7–9].

It appears that a′Hi yields only contributions of relative magnitude O(C−2
0 ) compared

to the previously determined leading terms in the statistical distributions of particle dis-
placement. This conclusion is arrived at when deriving the diffusion equation from the
Langevin equation: see Section 5. This reveals the contributions of relative magnitude
O(C−2

0 ) in diffusivity and convection only. The same result is obtained for the other term
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in solution (17), which describes the effect of non-Gaussianity. In general, the contribution
of gi in solution (16) can be disregarded in any description, which allows for a relative error
of O(C−2

0 ) in the diffusion limit. Setting gi = 0, we arrive at a Langevin model, which has,
as a damping function,

ai =− 1
2

C0λijεv′j +
1
2

λjmu0
k

∂σmi
∂xk

v′j

+
1
2

λjn
∂σij

∂xm
(v′mv′n + σmn).

(20)

While the first term in this solution corresponds to the result of the Hamiltonian
base case, the second and third terms represent the correction due to inhomogeneity
in an otherwise locally homogeneous statistical field. The corrections can be related to
the change of energy, which was disregarded in the leading-order formulation where
underlying particle mechanics can be considered Hamiltonian [7,8]. The second term
describes the change of energy due to changes of covariances in the direction of the mean
flow. Accelerating or decaying the mean flow results in non-zero values of the second term.
The third term describes the effects of the spatial gradient of the fluid velocity covariance.
This can be associated with shearing due to external forcing.

Solution (20) corresponds to a previous result of Thomson [15]. It was one of several
proposals made for the damping functions, which all satisfy the well-mixed criterion and
which correspond to an entirely Gaussian Eulerian velocity distribution. This is a reflection
of indeterminacy because of the nonuniqueness. The present analysis provides an answer.
It reveals descriptions for statistical displacement obtained from Equation (20), which are
unique up to an error of O(C−2

0 ).

5. The Diffusion Limit

The diffusion limit concerns the description of random particle displacements on a
time scale that is much larger than the correlation time of the fluctuating velocity. As
indicated by a balance between the acceleration term and damping term in the Langevin
equation, the correlation time can be expressed as

τc = C−1
0 τE, τE = |u′|2ε−1 (21)

where |u′| is the magnitude of velocity flucutations and τE is the characteristic time of large
scales or of the eddy turn-over time. The description of the time scale t 
 τc is known as
coarse graining, e.g., [1] vol.I, Section 10.3. The magnitude of the fluctuating fluid particle
displacement during correlation can be represented by

lc = τc|u′| = C−1
0 |u′|3ε−1 (22)

where |u′|3ε−1 represents the size of the eddies, which is also the distance over which the
statistical parameters vary in magnitude.

The Langevin model is centered around the fluctuating particle velocity relative to
the mean Eulerian velocity: cf. Equations (2) and (3). In line with this representation, the
displacement of a fluid particle by the sum of a component due to the mean flow and a
component representing the zero-mean random displacement are described (see also [18]
and [5] Section XVI.5):

yi(t) = y′i0 + y′i(t) (23)

where y′i0 is the particle track according to the Eulerian mean velocity:

dy′i0
dt

= u0
i (y

′
0) , y′i0 = x0 at t = 0 (24)

For general inhomogeneous turbulent flow, the Eulerian-based coefficients in the
Langevin model vary in magnitude with the space coordinates. This makes the coefficients
time-dependent in the Langrangian-based description of the Langevin model. Representing
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displacement by Equation (23), the time dependency occurs in two ways [8]: (i) through
spatial variations when following the particle according to the mean velocity y′

0 and
(ii) through dependency on random displacement y′

λij = λij(y
′
0 + y′), ε = ε(y′

0 + y′), σij = σij(y
′
0 + y′),

u0
i = u0

i (y
′
0 + y′), a′Hi = a′Hi (v′, y′

0 + y′)
(25)

In the next analysis, I shall disregard the dependency on y′. Furthermore, I disregard
the non-linear third term in the damping function as well as a′Hi . Requiring the Gaussian
behavior in the leading order formulation and mixing for next-to-leading order, all these
terms yield contributions of relative magnitude O(C−2

0 ) in the diffusion model: see Ap-
pendix of [8]. The Langevin model, which specifies diffusion to the leading order and
next-to-leading order now follows from Equations (2) and (3) as

dv′j
dt

=

(
−1

2
C0λij(y

′
0)ε(y

′
0) +

1
2

λjm(y
′
0)u

0
k(y

′
0)

∂σmi(y
′
0)

∂y′k0

)
v′j

+
(
C0ε(y′

0)
)1/2wi(t)

(26)

From Equations (3), (23) and (24), we obtain

v′i =
dy′i
dt

(27)

Fluctuating Equations (26) and (27) can be transformed into a Fokker–Planck equation
for the joint probability of v′ and y′. The solution is a multi-dimensional Gaussian distribu-
tion with time-dependent parameters: [5] Section VIII.6. The zero-mean probability density
distribution for the fluid particle position in the fixed coordinate system x′, which moves
with the mean Eulerian velocity u0 is specified by the diffusion equation

∂p(x’, t′)
∂t′ =

∂

∂x′i

(
y′kv′i

∂p(x’, t′)
∂x′k

)
(28)

subject to a suitably chosen initial distribution at t′ = 0, i.e., the delta pulse δ(x′) in the
case of passive marking of particles at t′ = 0 and x′ = 0. Note that the time derivative in
the above Eulerian description applies to the coordinate system, which moves with the
mean velocity according to Equations (23) and (24) (∂/∂t′ = ∂/∂t + u0

i ∂/∂xi). To evaluate
the diffusion coefficient y′kv′i, note that

d
dt

y′kv′i = v′kv′i + y′k
dv′i
dt

= σki(y
′
0) + y′k

dv′i
dt

(29)

where the latter term can be calculated by multiplying Equation (26) with x′k and averaging

y′k
dv′i
dt

= −1
2

C0λij(y
′
0)ε(y

′
0)y

′
kv′j +

1
2

λjm(y
′
0)u

0
n(y

′
0)

∂σmi(y
′
0)

∂y′n0
y′kv′j (30)

There is no contribution of the last term of Langevin Equation (26) because wi(t) is
only correlated with v′i(t). Substituting Equation (30) into the r.h.s. of Equation (29) results
in the following first-order differential equation for the diffusion coefficient

d
dt

(
y′kv′i

)
+

1
2

C0λij(y
′
0)ε(y

′
0)y

′
kv′i =

σki(y
′
0) +

1
2

λjm(y
′
0)u

0
n(y

′
0)

∂σmi(y
′
0)

∂y′n0
y′kv′j

(31)

subject to the initial condition y′kv′i = 0 at t′ = 0. The equation describes the transient of the
diffusion coefficient towards its value valid in the diffusion limit when t 
 τc. This limit
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value can be time-dependent on the time-scale t 
 τc and can be obtained by iteration
using C−1

0 as the small parameter [8]. The leading order follows from a balance between
the second term on the l.h.s. and the first term on the r.h.s. Substituting this solution into
the neglected other terms and noting that, according to our definitions, y′kv′i = Dki when
t 
 τc, we obtain, in terms of the Eulerian coordinates of the non-moving frame [8]

Dkn = 2C−1
0 ε−1σkiσin + 2C−2

0 ε−2σinσkmu0
l

∂σmi
∂xl

− 4C−2
0 ε−1σinu0

l
∂

∂xl

(
ε−1σkmσmi

) (32)

The leading order term in the diffusion tensor is symmetric; however, the terms that
are next to the leading order are not. However, the non-symmetric part of the tensor is
found to make contributions of O(C−2

0 ) in the convection of fluid particles and admixture
only: [8]. The non-symmetric part makes no contribution to the next-to-leading order terms
in the diffusion coefficient.

In the above derivation, I considered the limit t 
 τc by which velocities de-correlated
from their initial value at t = 0. At the same time, one can take t � |u′|2ε−1, which is
the time scale of the large eddies and the time scale of inhomogeneous behavior. Under
this condition, the values of parameters can be represented by their values at the initial
marking: yt

0 = x0. As one can repeat the derivation for any other point of marking, one can
replace x0 by x: i.e., u0

i = u0
i (x), σij = σij(x) and ε = ε(x) in (32).

The diffusion equation in a non-moving Eulerian frame now follows from Equations (28)
and (32) as

∂p
∂t

+ u0
i

∂p
∂xi

=
∂

∂xk

(
Dkn

∂p
∂xn

)
(33)

where p = p(x, t) is the probability density of a marked fluid particle at position x and
time t. The probability distribution applies equally to parameters whose values are linearly
connected to the value of the particle position: i.e., concentrations of passive or almost
passive admixtures, such as aerosols or the temperature in incompressible or almost in-
compressible fluids; see also Section 7. To determine the distributions from (33), the mean
values u0

i , co-variances σij and mean dissipation rates ε need to be known. These can be
obtained using techniques of Computational Fluid Dynamics.

6. Statistical Descriptions of Momentum Flux

Momentum flux plays a central role in the conservation equations of fluid mechanics.
An issue is the specification of the Reynolds stresses, i.e., the mean value of the fluctuat-
ing components of the momentum flux tensor. The conservation equations are typically
formulated with respect to a fixed coordinate system, viz. the Eulerian formulation. The
aim of the present analysis is to derive expressions for the mean value of the fluctuating
components that fit in the Eulerian frame. First, the Lagrangian-based momentum flux
tensor vi(t)vj(t) is considered where vi(t) are the velocities of moving fluid particles that
all pass at t = 0 through the surface at xj0 (alternatively, one can choose the velocity vj(t)
and the surface xi0 but with ultimately the same Eulerian result due to the symmetry of the
diffusion tensor).

Statistical averages are determined at close distance from xj0 using Lagrangian-based
expressions for vi(t), which were derived in the previous sections. Taking the diffusion
limit of the Lagrangian-based solutions and letting the distance from xj0 approach zero
on the coarse scale of the diffusion approximation, a connection can be made with the
Eulerian-based value of the tensor: < ui(x0, t)uj(x0, t) >. This enables the completion of
the description of the averaged representation of the conservation equations of momentum
for fluid mechanics.

The displacement of a marked fluid particle that is at position x0 at time t = 0 follows
from (3) as
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yi(t) =
∫ t

0
u0

i (y)dt + y′i(t) + xi0, (34)

where u0(y) is value of the Eulerian mean velocity at particle position y = y(t) and

y′i(t) =
∫ t

0
v′i(t)dt. (35)

To describe the position of the particle at times close to t = 0, expand the r.h.s. of (35) as:

yi(t) = xi0 + u0
i0t + y′i(t) +

∂u0
i0

∂xn0

(
1
2

u0
n0t2 +

∫ t

0
y′n(t)dt

)
, (36)

where u0
i0 is the Eulerian mean velocity at x0. Neglected terms on the r.h.s. of (36) are

larger than the quadratic in t and y′. It can be shown that these terms only contribute
to O(C−3

0 ) in the diffusion approximation. In accordance with the above expansion, the
particle velocity is described by

vi(t) =
dyi(t)

dt
= u0

i0 + v′i(t) +
∂u0

i0
∂xn0

(
u0

n0t + y′n(t)
)

. (37)

The objective is to describe the average momentum of particles that approach the
surface at xj0 with velocity v′i(t). The particles are situated in an area that is small compared
to the size of the large eddies so that Eulerian statistical averages can be treated as homo-
geneous in space. Furthermore, the area considered is large compared to the area where
the particle velocities are correlated. For these conditions to be satisfied, C−1

0 � t/τE � 1,
which is the condition for the diffusion limit to apply. This involves a limit process
whereby time approaches zero but on the time scale of coarse graining of the diffusion
limit: t 
 τc, t → 0, where τc = C−1

0 τE is the correlation time of the particle velocities.
The momentum for small negative times is given by

vi(−t)vj(−t) = u0
i0u0

j0 + u0
j0

∂u0
i0

∂xn0

(
−tu0

n0 + y′n(−t)
)
+ u0

j0v′i(−t)

+ u0
i0

∂u0
j0

∂xk0

(
−tu0

k0 + y′k(−t)
)

+
∂u0

i0
∂xn0

∂u0
j0

∂xk0

(
−tu0

n0 + y′n(−t)
)(

−tu0
k0 + y′k(−t)

)
+ v′i(−t)

∂u0
j0

∂xk0

(
−tu0

k0 + y′k(−t)
)
+ v′j(−t)u0

i0

+ v′j(−t)
∂u0

i0
∂xn0

(
−tu0

n0 + y′n(−t)
)
+ v′i(−t)v′j(−t).

(38)

The average value of the momentum of all particles passing the surface xj0 is

vi(−t)vj(−t)
∣∣∣−t
τc ,t→0

= u0
i0u0

j0 + v′i(−t)v′j(−t)
∣∣∣−t
τc ,t→0

+ v′i(−t)y′k(−t)
∣∣∣−t
τc ,t→0

∂u0
j0

∂xk0

+ v′j(−t)y′n(−t)
∣∣∣−t
τc ,t→0

∂u0
i0

∂xn0
,

(39)

with the property that v′i(t) = 0 and y′i(t) = 0 at t = 0. Fluid particles will cross the plane
xj0 at different positions. However, the particles under consideration are in an area whose
size is limited. The spatial variations of the mean Eulerian velocities are small and can
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be disregarded within the order of approximation of the developed perturbation scheme.
In (39), they are taken to be equal to the value at the point of the crossing x0 of (38).

When applying Langevin Equation (2) to negative values of t, the damping term has
to change sign in order to yield the required decay with t → −∞. Hence, v′j(−t) = v′j(t),
y′j(−t) = −y′j(t), and

v′i(−t)y′j(−t) = −v′i(t)y
′
j(t). (40)

The correlation v′i(t)y
′
j(t) can be determined in accordance with (31) and (32), where

the energy dissipation rate and the co-variances can be taken to be equal to their values at
x0 under the limit process of the diffusion limit. The result equals the expression for the
diffusion coefficient of (32).

y′j(t)v
′
i(t)

∣∣∣−t
τc ,t→0
= Dij(x0). (41)

When shear and mean flow gradients are absent, an isotropic state exists, a feature
that is seen in grid turbulence. In this case,

v′i(−t)v′j(−t) =
2
3

k0δij, (42)

where k0 is the kinetic energy of the isotropic state. Invoking (40)–(42) in (39), we have

vi(−t)vj(−t)
∣∣∣−t
τc ,−t→0

= u0
i0u0

j0 +
2
3

k0δij − Dik
∂u0

j0

∂xk0
− Djk

∂u0
i0

∂xk0
(43)

Result (43) applies in an area where the diffusion limit holds. The area is of volume l3

where C−1
0 L 
 l 
 L and where C−1

0 L is the length of velocity correlations and L is the
size of the large eddies or flow configuration. The presented descriptions are valid in the
limit of C−a

0 → 0, 0 < a < 1. The smallness of C−1
0 is limited: C−1

0 ≈ 1/7. Yet, comparison
with a range of results of measurements and direct numerical simulations shows fairly
good agreement (Section 9). The reason is that terms of order C−2

0 are incorporated into the
expansion, and the correlations decay exponentially with time C0t/τE where τE is the eddy
turnover time (cf. Equation (21)).

Reducing the volume of the area l3 to zero, it becomes identical to a point in the
Eulerian description of the flow field. We can, thus, take

vi(−t)vj(−t)
∣∣∣−t
τc ,−t→0

=< ui(x0, t)uj(x0, t) > . (44)

Noting that

< ui(x0, t)uj(x0, t) >= u0
i0u0

j0+ < u′
i(x0, t)u′

j(x0, t) >, (45)

where
< u′

i(x0, t)u′
j(x0, t) >= σij(x0) (46)

is covariance or Reynolds stress, we have from (43)–(46)

σij(x0) =
2
3

k0 − Dik
∂u0

j0

∂xk0
− Djk

∂u0
i0

∂xk0
. (47)

The mean value of the fluctuating kinetic energy k is given by

k =
1
2
< u′

1
2
(x0, t) + u′

2
2
(x0, t) + u′

3
2
(x0, t) >=

1
2
(σ11 + σ22 + σ33) =

1
2

σnn, (48)

where repeated indices n imply summation. Substituting (47) into (48), one obtains

k = k0 − Dnk
∂u0

n0
∂xk0

, (49)
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which can be used to eliminate k0 from (47) with the result

σij(x0) =
2
3

(
k + Dnk

∂u0
n0

∂xk0

)
δij − Dik

∂u0
j0

∂xk0
− Djk

∂u0
i0

∂xk0
(50)

Similar to the analysis in the previous section, one can repeat the above procedures for
any other point x0 and extend the results (45) and (50) to all positions x by replacing x0 by
x. The resulting statistical descriptions account for inhomogeneity of the turbulence field.

Equation (50) allows all six co-variances to be determined for given values of k, ε, Dij

and u0
i . Having implemented Equations (32), (45), (46) and (50), the values of the mean

velocities u0
i can be derived from the averaged versions of the equations of conservation of

momentum. To obtain a closed set of equations, two equations determining k and ε have
to be included. In this respect, it is noted that relation (48) is implied by (50) and does not
represent an extra relation for k. The extra equations are provided by the two equations of
the k − ε model that describes these variables [2,3]. The closed system of coupled equations,
thus, obtained is a straightforward extension of the equations of the widely used k − ε
model. The model may be termed the anisotropic k − ε model, and this enables the mean
values of the statistical parameters of an anisotropic inhomogeneous turbulent flow to
be calculated.

7. Statistical Descriptions of Scalar Flux

Examples of scalar flux are the dispersion of substances immersed in fluids and of
temperature distributions in incompressible and almost incompressible fluids. Turbulence
is known to have a significant effect on these phenomena. Similar to the analysis of the
previous section, consider an area that is small to the area of inhomogeneity but large
compared to the area where particle velocities are correlated. The Lagrangian scalar flux is
described by vi(t)φ(t), where vi(t) are the velocities of marked fluid particles that all pass
at t = 0 through a surface at xj0, and φ(t) is the value of the scalar quantity at the position
of each moving particle. When considering the velocities of particles at a short distance, the
time from the surface of passing (37) can be employed. For the value of the scalar quantity
at the position of the particle, we have

φ(t) = θ0
0 + (y′n + u0

n0t)
∂θ0

0
∂xn0

+ φ′(t). (51)

The first and second term on the right-hand side represent dispersion of the scalar
quantity due to fluid particle displacement whereby the scalar does not vary in magnitude
while moving with the fluid particle. The third term is autonomous random changes of
the value of the scalar quantity while moving with the fluid particle. For the first term,
take the Eulerian-based mean value at x0. Similar to the analysis of the previous section,
particles pass through different positions at the surface xj0. However, all these positions
are at a limited distance from each other in accordance with the coarse graining of the
diffusion limit.

On this scale, spatial variations in value of the first term of the expansion can be
disregarded. They can be taken to be equal to the Eulerian mean value at the single point
x0. Furthermore, the first term is allowed to vary deterministically with time t∗, where t∗ is
the time in the Eulerian fixed frame of reference: θ0

0 = θ0
0(x0, t∗). Lagrangian averaging can

take place by adding the simulation results of the Langevin equations at a fixed value of t∗
and subsequently repeating for every other value of t∗. The variation with t∗ is considered
to be slow compared to the rapid variation of the random fluctuations of τc.

Multiplying the right-hand sides of Equations (37) and (51), replacing t by −t, applying
Lagrangian averaging and letting −t → 0 after applying the diffusion limit, one obtains
(similar to the procedure of the previous section)
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φ(−t)vi(−t)
∣∣∣−t
τc ,−t→0

= θ0
0u0

i0 + y′n(−t)v′i(−t)
∣∣∣−t
τc ,−t→0

∂θ0
0

∂xn0

+ φ′(−t)y′n(−t)
∣∣∣−t
τc ,−t→0

∂u0
i0

∂xn0
+ φ′(−t)v′i(−t)

∣∣∣−t
τc ,−t→0
.

(52)

The third and fourth terms on the right-hand side are contributions due to autonomous
fluctuation of the scalar when moving with the fluid particles. To determine the values of
these terms, fluctuation equations of φ(t) need to be known. No attempts will be made to
derive such equations. We assume that φ‘(−t) is a conserved quantity whose value does
not change while moving with the fluid particle: φ′(−t) = 0. Noting that

y′n(−t)v′i(−t) = −y′n(t)v′i(t) (53)

and implementing (41) then yields

φ(−t)vi(−t)
∣∣∣−t
τc ,−t→0

= θ0
0u0

i0 − Din
∂θ0

0
∂xn0

, (54)

where φ(−t)vi(−t) equals the Eulerian-based value at x0. As the relation holds for every
position x, we have

< θui >= θ0u0
i − Din

∂θ0

∂xn
, (55)

where θ is a conserved quantity that satisfies the Eulerian-based conservation equation

∂θ

∂t∗ +
∂

∂xi
(θui) = 0. (56)

Applying equation ensemble averaging to the above, substituting Equation (55) and
replacing t∗ by t, yields

∂θ0

∂t
+ u0

i
∂θ0

∂xi
=

∂

∂xi

(
Din

∂θ0

∂xn

)
, (57)

where I employed the averaged version of continuity: (∂/∂xi)u0
i = 0. The above result

equals the equation for fluid particle distribution given by Equation (33). This is consistent
with the feature that the distribution of the particle must be equal to the distribution of a
conserved quantity whose value does not change with value of x following the path of a
fluid particle.

8. Decaying Grid Turbulence

Decaying grid turbulence has been studied many times during the previous century,
and many results are available. Turbulence is generated by a uniform mean flow that
passes through a grid of squarely spaced bars. The grid is perpendicular to the incoming
mean flow. At some distance behind the grid, a homogeneous field of isotropic turbulence
develops and decays in the downstream direction with the mean flow. For grid turbulence,
exact results for the Langevin and diffusion equations are known. In the present section, I
recapitulate these results and compare them with the present results based on the two-term
C−1

0 expansion.
For convenience in presentation, turbulence is described in a frame that moves with

the uniform mean velocity. I thus describe the equivalent situation where the grid moves
with constant speed from right to left through a fluid that is initially at rest. When the
grid has passed, a uniform field of isotropic zero-mean Gaussian fluctuations exists, which
decays in time. The strength is the same in all three coordinate directions. Therefore,
analysis is restricted to fluctuations in one direction only. Corresponding variables are
indicated by a subscript of 1. Regarding the independence of fluctuations in three directions,
a problem of nonuniqueness, as discussed in Section 5, does not exist. The appropriate
Langevin equation in one-dimensional form can be written as
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dv′1
dt

= −1
2

(
εC0

σ1
− 1

σ1

∂σ1

∂t

)
v′1 + (εC0)

1/2w(t), (58)

where σ1 is the Eulerian mean square of the fluctuations

σ1 =< u′2
1 > . (59)

Expressions for σ1 and ε can be derived from the Von Karman-Howarth equation for
conservation of the mean kinetic energy of fluctuations. For large Reynolds numbers, these
expressions are: [19]

ε = ε0(t/t0)
−2; σ1 = σ10(t/t0)

−1; ε0 =
3
2

σ10t−1
0 , (60)

where t0 is the reference time, i.e., a moment in time where the grid has passed the observer
at a fixed position. The value of σ10 depends on the dimensioning of the grid and can be
established by measurements at time t0. Implementing (60) into (58), we have

dv′1
dt

= − ε

2σ1
(C0 + 2/3)v′i + (C0ε)1/2w(t). (61)

From this result, one can derive (analogous to the derivation in Section 5) the diffu-
sion equation

∂p
∂t

= D1
∂2 p
∂x2 , (62)

where the diffusion coefficient is given by

D1 =
2σ2

10

ε0C0(1 + (2/3)C−1
0 )

. (63)

Note that the diffusion coefficient does not decrease in the stream-wise direction. A
decay in the strength of fluctuations is compensated for by an increase in the correlation time.

Results (61)–(63) were obtained without using the C−1
0 expansion. The Langevin equa-

tion according to a two term C−1
0 expansion is given by Equations (2) and (20). Introducing

the features of grid turbulence results in an equation that is the same as Equation (61). The
diffusion coefficient according to the two term C−1

0 expansion is given by Equation (32).
This reduces, in the case of grid turbulence, to D1 = 2σ2

10(1 − (2/3)C−1
0 )/(ε0C0). Ex-

panding the exact result given by Equation (63) in powers of C−1
0 yields D1 = 2σ2

10(1 −
(2/3)C−1

0 + (4/9)C−2
0 + ...)/(ε0C0).

The first two terms in the diffusion coefficient of the exact result thus agree with
the two-term C−1

0 expansion. The third term amounts to a relative contribution of 0.9%
when C0 = 7. In conclusion, the two-term expansion complies with the corresponding
expansion of the exact result, and the error of truncating the third term is small. The latter
conclusion is, however, of limited value as the grid turbulence is isotropic and only slightly
inhomogeneous in the stream-wise direction. In practice, turbulence is mostly anisotropic
and appreciably inhomogeneous. The next section analyses such a case.

9. Turbulent Channel Flow

Turbulence is a well-known feature of flows in pipes and channels and in boundary layers
along walls, including the boundary layers along the earth’s surface. A representative case for
such flows is a developed turbulent flow in a channel of two parallel flat plates. The statistical
values are constant in the direction of the mean flow between the plates and in the direction
that is parallel to the plates and perpendicular to the mean flow but changes significantly in
magnitude in the direction normal to the plates. The fluctuations are strongly anisotropic.

9.1. Exact Results

Some exact results can be derived from the averaged Navier–Stokes (N-S) Equations:
([1] vol I, p. 268). The averaged equations are given by

303



Mathematics 2022, 10, 4619

∂

∂xi
< uiuj >= −1

ρ

∂ < p >

∂xj
+ ν

∂2 < uj >

∂xi∂xi
, (64)

where p is the pressure relative to the pressure of the fluid at rest, and ρ is the density. In the
case of a developed turbulent channel flow, the mean values involving fluctuating velocities
and pressure gradients vary only with the wall normal coordinate x2. The averaged N-S
equations then reduce to

− 1
ρ

∂p0

∂x1
=

∂

∂x2
σ12 (65)

− 1
ρ

∂p0

∂x2
=

∂

∂x2
(σ22), (66)

where x1 is the coordinate of the mean flow direction, σij =< u′
iu

′
j > are the co-variances of

fluctuating velocities, and p0 =< p > is the mean pressure. The contribution of the viscous
stress represented by the last term in Equation (64) was disregarded in the above equations.
The effect is limited to thin viscous layers near the wall. Their effect on the flow outside
these thin layers can be accounted for by the boundary condition imposed on the shear
stress σ12 at the wall. From Equations (65) and (66), one obtains the solutions

1
ρ

p0 = −u2
τx1/H − σ22 (67)

σ12 = −u2
τ(1 − x2/H), (68)

where uτ is the shear velocity and 2H is the distance between the parallel plates. The shear
velocity uτ can be related to the pressure drop in the channel by solving the flow in the
boundary layer at the wall. The relationship is also known from measurements: e.g., [1].
The value of uτ is representative for the magnitude of the fluctuations.

9.2. Results from the C−1
0 -Expansion

The exact results of Section 9.1 can be extended by supplementing the expressions for
the turbulent momentum diffusion of Equation (50). For the channel flow, these become

σ22 =
2
3

k +
2
3

D12
du0

1
dx2

(69)

σ33 = σ22 (70)

σ11 =
2
3

k − 4
3

D12
du0

1
dx2

(71)

σ12 = −D22
du0

1
dx2

(72)

where u0
1 = u0

1(x2) is the mean flow in the channel and where the diffusion coefficients are
given by

D12 =
2

εC0
σ12(σ11 + σ22) (73)

D22 =
2

εC0

(
σ2

12 + σ2
22

)
(74)

Equations (67)–(74) constitute eight relations for 10 variables: p0, σ11, σ22, σ33, σ12,
k, D12, D22, ε and u0

1. A closed system of equations requires two extra equations. These are
provided by the conservation equations for kinetic energy k and dissipation rate ε known
from CFD models [2,3]. Our aim is not to study a complete and closed system of equations
but to analyze all those components that describe turbulent transport in such equations.
For this purpose, one can calculate the values of the left-hand sides and right-hand sides of
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the developed relations using the data of direct numerical simulations and compare them
with each other. This provides a direct test of the outcome of the C−1

0 expansion. An article
in which the complete set of equations is formulated and analyzed is in preparation.

9.3. Comparison with the DNS Results

Super computers have created the possibility to simulate turbulent fluid flows through
direct numerical simulations (DNS) of the equations that govern fluid flow, i.e., the Navier–
Stokes equations. Initially, attention was focused on grid turbulence at modest values of
Reynolds numbers. The calculation power has increased with time. This allows handling
flows at larger Reynolds numbers and with more complex configurations of channel flow.
Hoyas et al. [11] recently published results for channel flow at a friction Reynolds number
Re of 104. This corresponds to a bulk flow Reynolds number of about 3 × 105. DNS is the
most reliable technique to study turbulence, and its outcome can be considered as exact. The
results of Hoyas et al. provide an excellent opportunity to verify the present results.

9.3.1. Statistical Values of Fluctuations

Making u0
1 dimensionless by uτ, σij and k by u2

τ, x2 by H and P and ε by u3
τ/H, and

dropping the subscript 2 from x2, one can derive, from Equations (67)–(74), the relations

σ22 = σ33 = (1 − x)(γ−1 − 1)1/2 (75)

σ11 = σ22(1 + 2γ)/(1 − 2γ) (76)

where
γ =

2
C0

P/ε (77)

and P is the production of energy defined as

P = (1 − x)
d

dx
u0

1 (78)

From Equations (75)–(77), it can be verified that, at x = 1: σ11 = σ22 = σ33 = 2
3 k0. This

is consistent with the solution for a zero mean flow gradient. At x = 0, the solutions for the
log law apply, according to which, P/ε = 1. From Equations (75)–(77), one then finds

σ22 = σ33 = (
C0

2
− 1)1/2 at x = 0 (79)

σ11 = σ22(C0 + 4)/(C0 − 4) at x = 0 (80)

These reveal anisotropy whose magnitude depends on the magnitude of C0.
Figure 1 shows the values of the root mean square of fluctuations σ11, σ22, σ33 according

to Equations (75)–(77) versus x for P/ε taken from DNS and C0 = 7. The values are
compared with the corresponding DNS values of these parameters. Close to the wall at
x = 0, the effect of the viscous layer is seen. Its thickness is about 100/Reτ, which amounts
to 1% of the height of the channel. The results of the C−1

0 expansion only apply outside this
area. Here, it is seen that strong anisotropy in the longitudinal direction is predicted.

A difference between fluctuations in normal and the span-wise direction as forecast
by DNS is not revealed. Differences between the longitudinal fluctuations and normal
fluctuations near the axis x = 1 are not revealed either. Near x = 0, differences between rms
values in the normal and span-wise direction are at maximum. The differences between
longitudinal and transverse fluctuations are at a maximum at x = 1. Otherwise, the
differences between the DNS and C−1

0 expansion are rather limited—keeping in mind the
limited smallness of the perturbation parameter C−1

0 .
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Figure 1. The root mean square values of the velocity fluctuations versus the dimensionless distance
from the wall. The root mean square values obtained from DNS are represented by full lines.
The root mean square values of the C−1

0 expansion are represented by broken lines. They result
from Equations (75) and (76) in which the right-hand sides were evaluated using the DNS values.
Differences between full and broken lines can be ascribed to truncation of the C−1

0 expansion.

9.3.2. Statistical Values of Turbulent Fluxes

An issue in turbulence theory is the statistical description of the non-linear fluctuating
convective terms in the equations of conservation of momentum and energy. The issue is
known as the closure problem. The present analysis provided an answer by the expressions
for turbulent flux and turbulent diffusion coefficients. Figures 2 and 3 present the results
obtained for these terms and compare them with the DNS results.

Turbulent fluxes according to the C−1
0 expansion are present in the descriptions of the

diffusion terms of Equations (69)–(71). The accuracy of these descriptions has been been
tested by the DNS results. The results are shown in Figure 2.

Figure 2. The mean momentum fluxes versus the dimensionless distance from wall. The values of
σ11, σ22 and σ12 are obtained using DNS and are represented by full lines. The values of D12(d/dx)u0

1
and D22(d/dx)u0

1 result from the C−1
0 expansion and are represented by broken lines. They follow from

Equations (69), (71) and (72) in which the right-hand sides were evaluated using the DNS values.

9.3.3. Diffusion Coefficients

Coefficients of diffusion in the wall normal direction are compared in Figure 3. Dif-
fusion of both momentum using the data of Hoyas et al. [11] and of the conserved scalar
temperature using the DNS data of Kuerten et al. [12] are analyzed.
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Figure 3. Coefficients of diffusion in the wall normal direction for momentum transport < u′
1u′

2 > and
heat transport < θ′u′

2 > versus dimensionless distance from wall. The values of < u′
1u′

2 > /(d/dx)u0
1

and < θ′u′
2 > /(d/dx)θ0 are obtained using DNS and are presented by full lines. The values of D22

result from the C−1
0 expansion. They follow from Equation (74) in which the right-hand side was

evaluated using the DNS values. They are represented by a broken line.

9.3.4. Kolmogorov Constant

In general, it is found that a value of 7 for C0 gives a good fit to the DNS. This value
is somewhat higher than the value of 6.2 mentioned previously considering the DNS of
turbulent channel flow at Re of 0.2 × 104 [8]. A value of C0 of 7 at high Reynolds number
has been claimed by Sawford referring to DNS of grid turbulence [16].

10. Conclusions

The presented statistical descriptions fit within the asymptotic structure of turbulence
at a large Reynolds number with Kolmogorov theory. The descriptions apply to large scales,
which determine the main flow outside small viscous boundary layers at adjoining walls
of the configuration considered. The given representations of the velocity and position of
marked fluid particles are Lagrangian-based and concern Langevin and diffusion equations.
In these equations, the universal Kolmogorov constant C0 appears with a value of about
7. This is used as an autonomous parameter in developing solutions by the first two
terms of perturbation expansions in powers of C−1

0 . The leading solution complies with
the conditions of Hamiltonian dynamics, Gaussian behavior and Onsager symmetry as
C−1

0 → 0. The second term of the solution satisfies mixing with the Eulerian-based statistical
distribution of the flow field.

The Lagrangian-based descriptions were connected to Eulerian statistics through
asymptotic matching. When considering a small but sufficiently large area around a fixed
point in space where the diffusion limit applies, shrinking this area to a point accomplishes
matching the Eulerian description at the corresponding point. The matching involves the
limit process C−a

0 → 0, 0 < a < 1 where 0 < a is required for obtaining the diffusion
limit, and a < 1 to ensure that the considered area is much smaller than the area of
inhomogeneous behavior of the main flow.

The two-term descriptions meet the requirements that follow from the laws of physics
and the methods of stochastic analysis. The presented solutions reveal the functional
relationships between the statistical averages of various fluctuating quantities, such as
turbulent diffusivity. They do not rely on semi-empirical hypotheses and fitted constants.
Limiting factors include inaccuracies due to truncation of the higher order terms. For slowly
decaying grid turbulence, these are small. However, in the case of strong inhomogenity,
the matching of Lagrangian and Eulerian results appears to require small values of C−a

0 ,
0 < a < 1. Yet, comparison with the DNS of turbulent channel flow at high Reynolds num-
ber reveals deviations of limited magnitude despite large inhomogeneity and anisotropy.
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An underlying reason is likely the inclusion of next to leading terms and exponential
decay of velocity correlations by C0t/rE, where τE is the eddy turnover time or characteristic
time of large-scale turbulence: (21).

The results for the main Eulerian statistical parameters in the case of channel flow are
shown in Figures 1–3. They reveal fairly good agreement between the predictions of the
C−1

0 model when compared with those of DNS. This conclusion applies to turbulent channel
flow, which is a case of turbulence that is significantly anisotropic and inhomogeneous. As
the C−1

0 model has a general basis, this entails the prospect of yielding reliable results for
other cases of anisotropic inhomogeneous turbulent flow.
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Abstract: The study of convective heat transfer in differently shaped fins with radiation, internal heat
generation and variable thermal conductivity was considered. The energy equation of the model was
converted into the dimensionless form by adopting the proper variables, which was later solved using
the differential transformation method. The impact of the parameters on the thermal performance,
efficiency and heat transfer of the fins was analyzed graphically and also by performing thermal
analysis on the fins. It was noticed that there was a significant effect on the thermal performance
of the fins with different shapes, and also the heat transfer rate of the fin increased for improved
values of the internal heat generation and radiation parameters. The exponential profile showed
better results than other profiles, and the results obtained were supported by thermal analysis using
ANSYS software.

Keywords: convection-radiation heat transfer; thermal analysis; differential transformation method;
internal heat generation and variable heat conductivity
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1. Introduction

Heat enchantment has become an important factor that has captured the interest
of many researchers. Increasing the heat transfer mainly depends on the heat transfer
coefficient, the surface area available and the temperature difference between the surface
and surrounding fluid. Fins are used as heat dissipators by increasing the surface area
of the heated surface that is exposed to an ambient fluid. In particular, fins are electronic
components, and diodes, transistors, etc., are made up of fins. Karus et al. [1] presented
a general overview of fins. Using the above concepts, Gireesha and Sowmya [2] solved
fin problems with heat distribution in an inclined fin. The study of horizontal fins with
natural convection was considered by Popiel et al. [3]. In most cases, the electrical current
generates internal heat that can be detected in electrical filaments or nuclear reactors
exposed to the temperature. This is a nonlinear factor that does not allow an analytical
solution. It can be solved using numerical or semi-analytical methods. A mathematical
study of the fin with an internal heat source was studied by Minkler and Rouleau [4].
Recently, many researchers [5–7] have used a numerical approach to solve the fins of
various shapes with an internal heat source. Sobamowo [8] investigated the effect of
internal heat initiation and temperature-dependent heat conduction. Turkyilmazoglu [9]
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used variable heat conduction and heat distribution coefficients to obtain the rate of heat
transfer through radial fins. Variable thermal properties in straight fins were reported by
Ndlovu and Moitsheki [10]. Rohit et al. [11] studied temperature-relative heat transfer
in a moving fin using the decomposition method. In recent years, thermal enhancement
flow problems have been analyzed by a few authors [12,13]. The study of heat conduction
between fins with a motion and in the presence of convection energy using the homotopy
scheme was performed by Aziz and Khani [14]. Sowmya et al. [15] examined the heat
performance in longitudinal fins with a heat source due to natural convection. A study of a
porous medium and the radiation parameter was conducted by Hatami and Ganji [16] in
a circular fin. Heat transfer and temperature distribution in circular convective radiative
porous fins of different shapes were analyzed by Pasha [17]. Heat propagation in fins with
radiation for different geometries was studied by Tarobi et al. [18]. A handful of researchers
studied the effect of rectangular fins used in heat exchange systems and determined the
dimensions of the fin to achieve better efficiency [19–21]. Shi et al. [22] studied the bio-
convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with
activation energy.

Fins are widely used in industries to reduce the heat transfer rate of the appliances
produced by them. As an example, Farhad et al. [23,24] studied the application of fins in
air-conditioning and ice storage systems by arranging the fins in different combinations.
Their study revealed that the length, shape and arrangement of the fins expedited heat
transfer. Sabu et al. [25] studied the significance of nanoparticles’ shape and thermo-
hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating
heated disk. Jamal et al. [26] considered partially inclined baffles in a rectangular enclosure
to study the turbulent and thermal behaviors of air using the finite volume method. They
reported that the thermal performance of a heat exchanger and the reduction in pressure
loss by adopting the designs that allow the maximum heat transfer rate with minimum
energy coincide with the results of Demartini et al. [27]. Moreover, they found out that
the heat transfer rate is directly related to the number of baffles present in the system.
Meanwhile, Omid et al. [28] studied the performance of airflow in rectangular-shaped
solar heaters with V-shaped ribs. Increasing the inclination of the ribs produces higher
velocity and heat transfer. In this article, the DTM was used to solve the nonlinear energy
equation describing the temperature distribution in fins with variable thermal conductivity,
radiation and internal heat generation. DTM is a semi-analytical technique proposed by
Zho [29] in 1986 to solve the initial value problems in electrical circuits to obtain precise
nth derivative values. The solution for a system of differential equations by the DTM was
explained by Fatma [30]. Two-dimensional DTM used to solve the differential equation was
developed by Chen and Ho [31]. Ayaz [32] proved that DTM is better to solve a nonlinear
problem than the Taylor series method. The DTM has been used to solve various problems
in applied mathematics and physics such as systems of differential equations [33]. Fallo
et al. [34] applied the 3D DTM for the first time to study heat transfer in a cylindrical spine
fin with variable thermal properties. Chiba et al. [35] solved the one-dimensional phase
change problem in a slab of finite thickness using the DTM. The finite Taylor series and
the iteration operation described by the transformed equations derived from the original
equation employing differential transformation operations can be utilized to assess the
approximating solution. Several authors used the DTM concept to solve various types of
equations [36–39].

This work aims to study the heat transfer of longitudinal fins with different geometries
in the presence of a temperature-dependent heat source, thermal radiation and variable
thermal conductivity by providing an analytical solution for the heat equation using
the DTM approximation technique. A review of the above literature shows no attempt
has been made to analyze the heat transfer for the above-considered profiles and effects
using the DTM. Graphical comparison of heat transfer rate between the three profiles and
the efficiency of the fins are discussed in this study, and also our study is supported by
performing thermal analysis using ANSYS software.
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2. Fundamental Operations of DTM

Let φ(r) be a function that is continuously differentiable in the domain D. Power series
can be used for the representation of φ(r) and can be articulated in terms of the Taylor
series [40] as follows:

φ(r) =
∞

∑
e=0

(
r − r f

)e

e!

[
dey(r)

dte

]
r=r f

∀ r ∈ D (1)

The Maclaurin series φ(r) is obtained by taking ri = 0 in Equation (1) and can be
expressed as:

φ(r) =
∞

∑
e=0

(r)e

e!

[
deφ(r)

dre

]
r=0

∀ r ∈ D (2)

Franco [41] explained the use of differential transforms and expressed the function
φ(r) as follows:

ϕ(e) =
∞

∑
e=0

He

e!

[
deφ(r)

dre

]
r=0

(3)

ϕ(v) is the converted function, and φ(r) is the initial function. The differential function
ϕ(v) is restricted to r ∈ [0 , H] where H is a permanent value and is assumed to be unity.
The inverse differential transform ϕ(v) can be expressed as:

φ(v) =
∞

∑
e=0

( v
H

)e
ϕ(e) (4)

The functions and transformations used in our study are presented in Table 1. From
this, it can be deduced that the differential transform is similar to the Taylor series. To get
more accuracy, we consider a higher number of terms in the above series.

Table 1. Fundamental definitions of DTM.

Initial Function Converted Function

φ(r) = dg(r)
dx

ϕ(v) = (v + 1)G(v)

φ(r) = d2g(r)
dx2

ϕ(v) = (v + 1)(v + 2)G(v + 1)
φ(r) = 1 ϕ(v) = δ(v)
φ(r) = t ϕ(v) = δ(v − 1)

φ(r) = rm
ϕ(v) = δ(v − w) =

{
1 i f v = w
0 i f v �= w

φ(r) = g(r)h(r) ϕ(v) =
v
∑

w=0
H(v)G(v − w)

φ(r) = ear ϕ(v) = av

v!

3. Mathematical Formulation

The fin length is L with the variable area P(x) as shown in Figure 1. Tb is base tempera-
ture, Ta is ambient temperature, and the tip is presumed to be in convection. Constant heat
h is maintained throughout the fin, while thermal conduction is temperature dependent
and varies linearly. The energy equation is obtained considering the following assumptions:

• The temperature is a function of x and remains constant over time.
• The temperature variance due to fin thickness is neglected.
• The fin bed is kept at a steady temperature.
• Solid matrix and fluid are in a dynamic state of equilibrium.
• Fin is considered to be in a steady state.
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Figure 1. Representation of a rectangular fin.

The balanced energy equation under the above assumptions for the small element
dx is:

d
dx

[
k(T)× P(x)× dT

dx

]
− εσ

(
T4 − T4

a

)
− h(T − Ta) + q∗ = 0 (5)

The corresponding boundary constraints are defined as:

dT(0)
dX

= 0

T(L) = Tb

Here, the variable heat conduction is stated as:

k(T) = ka[1 + ζ(T − Ta)] (6)

where ka is heat conduction at ambient temperature, and ζ is persistent. The fin is segre-
gated into different profiles according to the difference in thickness along its length.

P(x) = bΓ(x) (7)

where ω is the girth, and Γ(x) is thickness along the length. Various geometries Γ(x) can
be considered as shown in Figure 2:

• For quadrilateral fin

Γ(x) = Γb (8)

• For exponential fin

Γ(x) = Γbea(x/L) (9)

• For convex fin

Γ(x) = Γb

( x
L

)0.5
(10)
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Dimensionless parameters are:

θ =
T
Tb

,θa =
Ta

Tb
X =

x
L

,N2 =

(
hL2

kb Ab

)
Nr =

εσL2T3
b

Abka
G =

L2q∗

AbkaTb
(11)

   
Figure 2. Schematic representation of fins with different profiles.

By applying equations in Equations (7)–(11) into Equation (5), we obtain:

• For rectangular profile

β

(
dθ

dX

)2
+ [1 + β(θ − θa)]

d2θ

dX2 − Nr
(

θ4 − θ4
a

)
− N2(θ − θa) + G = 0 (12)

• For exponential profile

eaX [1 + β(θ − θa)]
d2θ
dX2 + a[1 + β(θ − θa)]eaX dθ

dX + eaX β
(

dθ
dX

)2

−Nr
(
θ4 − θ4

a
)− N2(θ − θa) + G = 0

(13)

• For convex profile

β

(
dθ

dy

)2
+ [1 + β(θ − θa)]

d2θ

dy2 − Nr4y
(

θ4 − θ4
a

)
− N2(θ − θa)4y + G4y = 0 (14)

where β = ζTb and convective environment boundary conditions are:

dθ(0)
dX

= 0, θ(1) = 1

4. Solution Method with DTM

Equations (12)–(14) are reduced to the Taylor series using the properties mentioned in
Table 1. We obtain:

• For rectangular profile

(e + 1)(e + 2)Q(e + 2) + β
e
∑

f=0
Q( f )(e − f + 1)(e − f + 2)Q(e − f + 2) + β

e
∑

f=0
( f + 1)Q( f + 1)(e − f + 1)Q(e − f + 1)

−βθa(e + 1)(e + 2)Q(e + 2)− Nr
e
∑

f=0

e− f
∑

k=0

f−k
∑

m−0
Q( f )Q(e − f )Q( f − k)Q(k − m)− N2Q(e) +

(
Nrθ4

a + N2θa + G
)
δ( f ) = 0

(15)

• For exponential profile

e
∑

f=0

a f
d! (e − f + 1)(e − f + 2)Q(e − f + 2) + β

e
∑

f=0

a f
f !

e− f
∑

s=0
Q( f )(e − f − s + 1)(e − f − s + 2)Q(e − f − s + 2)− βθa

e
∑

d=0

a f
f ! (e − f + 1)(e − f + 2)Q(e − f + 2)

+a
e
∑

f=0

a f
f ! (e − f + 1)Q(e − f + 1) + aβ

e
∑

f=0

a f
f !

e− f
∑

s=0
Q( f )(e − f − s + 1)Q(e − f − s + 1)− aβθa

e
∑

f=0

a f
f !

e− f
∑

s=0
(e − f − s + 1)Q(e − f − s + 1)

β
e
∑

f=0

a f
f !

e− f
∑

s=0
( f + 1)Q( f + 1)( f − e − s + 1)Q( f − e − s + 1)− Nr

e
∑

f=0

e− f
∑

k=0

f−k
∑

m−0
Q( f )Q(e − f )Q( f − k)Q(k − m)− N2Q(e) +

(
Nrθ4

a + N2θa + G
)
δ( f ) = 0

(16)
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• For convex profile

(e + 1)(e + 2)Q(e + 2) + β
e
∑

f=0
( f + 1)Q( f + 1)(e − f + 1)Q(e − f + 1) + β

e
∑

f=0
Q( f )(e − f + 1)(e − f + 2)Q(e − f + 2)

−βθa(e + 1)(e + 2)Q(e + 2)− 4Nr
e
∑

f=0

f−e
∑

k=0

k− f
∑

s−0

s−k
∑

m=0
δ( f − 1)Q( f − e)Q(k − f )Q(s − k)U(s − m) + 4Nrθ4

a
e
∑

f=0
δ( f − 1)Q(e − f )

−4N2
e
∑

f=0
δ( f − 1)Q(e − f ) + 4N2θa

e
∑

f=0
δ( f − 1)Q(e − f ) + 4Gδ(e − 1) = 0

(17)

Boundary conditions can be reduced to:

Q(1) = 0,
∞

∑
d=0

Q( f ) = 1 (18)

Considering Q(0) = a and using boundary constraints with the assistance of MATLAB
software, the terms of the series can be obtained as follows:

• For rectangular profile

Q[2] = −G+aN2+a4 Nr−N2θa−Nrθ4
a

2(1+aβ−βθa)

Q[3] = 0

Q[4] = N2Q[2]−6βQ[2]2

12(1+aβ−βθa)

Q[5] = 0

Q[6] = N2Q[4]−30βQ[2]Q[4]
30(1+aβ−βθa)

Q[7] = 0

(19)

and so forth

• For exponential profile

Q[2] = −G+aN2+a4 Nr−N2θa−Nrθ4
a

2(1+aβ−βθa)

Q[3] = −2aQ[2]−aβQ[2]−a2 βQ[2]+2aβθaQ[2]
3(1+aβ−βθa)

Q[4] =

−3a2Q[2] + N2Q[2]− 2aβQ[2]− 2a2βQ[2] + 3a2βθaQ[2]− 4aβQ[2]2 − a2βQ[2]2 − 9aQ[3]− 6aβQ[3]
−3a2βQ[3] + 9aβθaQ[3]

12(1+aβ−βθa)

(20)

. . . and so forth

• For convex profile

Q[2] = 0

Q[3] = − 2(G−aN2+aN2θa+aNrθ4
a)

3(1+aβ−βθa)

Q[4] = 0
Q[5] = 0

Q[6] = 4N2Q[3]−4N2θaQ[3]−4Nrθ4
a Q[3]−15βQ[3]2

30(1+aβ−βθa)

Q[7] = 0
Q[8] = 0

(21)

. . . and so forth

By substituting Equation (19) in Equation (4) for H = 1

• For rectangular profile

θ(X) = a +
−G + aN2 + a4Nr − N2θa − Nrθ4

a
2(1 + aβ − βθa)

X2 +
N2Q[2]− 6βQ[2]2

12(1 + aβ − βθa)
X4 + . . . (22)
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To obtain the values of a, we use Equation (18)

θ(1) = a +
−G + aN2 + a4Nr − N2θa − Nrθ4

a
2(1 + aβ − βθa)

+
N2Q[2]− 6βQ[2]2

12(1 + aβ − βθa)
+ . . . (23)

Solving Equation (23) using MATLAB software we obtain the exact value of a. The
same procedure is repeated for the other profiles.

Fin Efficiency

The amount of heat transferred in a fin is determined with the help of the parameter
called efficiency. It is a correlation between the actual heat shift in a fin to heat that would
be transmitted if a complete fin is of the temperature of the fin bed. The non-dimensional
equation for the efficiency of a rectangular profile is given by:

η =
(1 + β(θ − θa))

(
dθ
dx

)
x=1

Nr
(
θ4

b − θ4
a
)
+ N2(θb − θa)− G

(24)

5. Results

The current investigation presents the exploration of temperature differences associ-
ated with variable thermal conductivity, internal heat generation and radiation over the
longitudinal fin of different profiles. The dimensionless energy equations of the fins are
solved using the DTM. Results mainly referring to temperature field and thermal profiles
are depicted graphically for three types of fins, namely rectangular, exponential and con-
vex. The effects of Nr, G, Nc, θa and β on temperature fields are analyzed and discussed.
Moreover, for all results reported here, the following values of variables are used unless
otherwise indicated by the graphs or tables: β = 0.5, N = 1, G = 0.1, Nr = 1&θa = 0.4.
Thermal analysis is performed and discussed using ANSYS software. The results of the
present study are compared with the existing results of Languri et al. [42] and Arslan-
turk [43] (Table 2).

Table 2. Comparison of θ(X) obtained by different studies for rectangular fins by considering
β = 0, G = 0, Nr = 0, θa = 0 and N = 0.5.

X HPM
(Languri et al. [42])

ADM
(Arslanturk [43])

VIM
(Languri et al. [42])

DTM
(Current Study)

θ(X)

0 0.886819 0.886819 0.886819 0.886818
0.2 0.891257 0.891257 0.891257 0.8912567
0.4 0.904614 0.904615 0.904614 0.940614
0.6 0.927026 0.927026 0.927026 0.927027
0.8 0.958715 0.958716 0.958715 0.958715
1 1.000000 1.000000 1.000000 1.000000

The fluctuation in fin temperature due to variable heat conduction (β) is shown in
Figure 3 for three different profiles. From this graph, it is noticed that the thermal gradient
reduces gradually from the base to the tip of the fin for different values of β. The increment
in β enhances the temperature field due to heat loss to the surrounding fluid from the fin
surface. The results show that the fin-tip temperature for exponential profiles is greater
than that of the other profiles.
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Figure 3. Temperature distribution of different profiles for diverse values of β.

Figure 4 shows the influence of the N on the thermal attribute of the fin. As the
parameter N intensifies, the enriched heating pattern in the fin is noted which reduces the
temperature rise. The contribution of this flow parameter is significant for enhancing the
thermal transport of the fin. From the graph, we can notice that the exponential profile
shows better performance which is followed by the rectangular and convex for various
values on radiation parameters.

Figure 4. Temperature distribution of different profiles for diverse values of N.

The effect of the internal heat generation parameter (G) is depicted in Figure 5. For
this, it is observed that the temperature of the fin can be enhanced with the values of G.
Higher heat generation enhances fin temperature in steady-state conditions owing to the
fact of larger dissipation of the heating environment due to the fin.
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Figure 5. Temperature distribution of different profiles for diverse values of G.

The radiative parameter impact (Nr) is shown in Figure 6. With an increment in the
radiation number, the thermal profile θ decreases steadily. The lower temperature inside
the fin indicates a loss of ambient fluid temperature with radiative parameters.

Figure 6. Behavior Nr on θ.

The Figure 7 shows variation in dimensionless ambient temperature (θa) on the
temperature field. As θa increases, the temperature of the surrounding liquid increases,
which affects the rate of heat transmission from fin to surface. This is noted with a rise in θa.
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Figure 7. Behavior θa on θ.

The effect of parameters on temperature for rectangular, exponential and convex
profiles is obtained on the same graph to understand the difference between each profile.
Similar observations discussed above can be seen in the other two profiles. Meanwhile, the
exponential-shaped fins exhibit better performance than the others. Heat transference at
the fin base is an important study, which has many applications and is of the form

Qb =
dθ(1)

dX

The effect of simultaneously varying Qb with N for two different values of β and θa
can be seen in Figure 8a,b, respectively, for all three profiles. From the graphs, it can be
concluded that the value of Qb is inversely related to the values of β and θa. Heat transfer
is more at the base and then reduces to become constant at the fin tip. Which shows that
the fin cools down earlier at the tip.

 
(a) (b) 

Figure 8. (a) Variation of Qb with N for several assigned values of β. (b) Variation of Qb with N for
several assigned values of θa.
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6. Thermal Analysis

ANSYS is a tool that helps us understand the routine of a model from our study in a
virtual environment. It uses governing equations to study the behaviors of the problem. To
investigate the thermal behaviors, the following assumption is made on the fins:

• Aluminum alloy (AA6061) is considered a fin material as it is a good thermal and
electrical conductor with heat conduction of 300 W/m K.

• Heat conduction is considered 1D and longitudinal.
• h is considered to be 39.9 W/m2K above the fin surface.
• The fin base is kept at 550 K, and 283 is the ambient temperature.

Figure 9a–c illustrate longitudinal fin thermal propagation for rectangular, exponential
and convex profiles, respectively. The maximum temperature observed was 550 K in all
three profiles, and the fin tip temperature was 546 K, 530.28 K and 545 K, respectively. The
temperature gradually decreased from the bed of the fin to the tip. Exponential fins have
better results compared to other profiles. The results are drawn from the thermal analysis,
which agrees well with our numerical results.

   
(a) (b) (c) 

Figure 9. Temperature distribution of (a) rectangular; (b) exponential; (c) convex profile for aluminum
alloy (AA6061).

The efficiency of the fin for several values of internal heat generation (G) versus the
thermal expansion coefficient can be seen in Figure 10a. From the graph, we can depict that
a smaller value of β efficiency is higher and decreases gradually. Moreover, as the value
of heat production is increased, the efficiency is enhanced. This shows that by keeping
the values of β smaller and values of G higher we can obtain efficient fins. A similar
observation can be observed with the three different profiles considered in our study, but
the exponential fin has fin efficiency in general.

Figure 10b shows the efficiency of the fin versus θa for different values of a radiative
parameter. It can be observed that for a lower value of a radiative parameter and θa the
efficiency is higher and reduces gradually as the values are increased. An exponential
profile with a lower value of θa and Nr can be used to obtain the higher efficiency of the fin.
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(a) 

(b) 

Figure 10. Influence of: (a) G and β on fin efficiency; (b) Nr and θa on fin efficiency.

7. Conclusions

The framework for temperature rate is presented in a longitudinal fin subject to
internal heating, variable thermal conductivity and convective radiation. The Rosseland
theory is used to determine the features of a radiative phenomenon. DTM approximations
are followed for the simulation process. Graphical explanations are manifested for the
consequence of parameters in the heat transfer of the fin. The key findings of this analysis
are as follows:

• Upon enhancing the convection–conduction parameter, the thermal dispersal in the
fin lowers.
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• A strengthened heat transfer fine is observed for the radiative-conduction constant.
• The thermal rate of the fin improves with an augmented change in a heat-generating

parameter.
• This scrutiny convinces us that DTM algorithms are efficient and convenient methods

for nonlinear differential systems.
• Thermal radiation and natural convection have a significant influence on the cooling

of a fin.
• In the steady state, fins dissipate heat to the environment because heat production

within a fin surges the temperature of the fins.
• The temperature scatters of a fin for different profiles are calculated using the ANSYS

software, considering aluminum alloy (AA6061) as the fin body material. The fin base
has a higher temperature and reduces drastically toward the fin tip.

This work can be extended by considering the porous fins in the presence of a magnetic
field and also by considering the porous fins with the nano and hybrid nanofluid with the
effect of the shape factor.
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Nomenclature

P fin cross-section (m2)
a exponential parameter
h heat transfer coefficient (wm−1k−1)
k heat conduction (wm−1k−1)
Nr radiative parameter
G heat generation parameter
L fin length (m)
N convective parameter
T temperature (k)
ϕ transformed function
φ original analytic function
a fin base temperature
β thermal expansion coefficient (K−1)
ζ dimensional constant (K−1)
η efficiency of the fin
U transformed equation
θ dimensionless temperature
a ambient temperature
b base of the fin
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