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Abstract: Colorectal poorly differentiated adenocarcinoma (ADC) is known to have a poor prognosis
as compared with well to moderately differentiated ADC. The frequency of poorly differentiated ADC
is relatively low (usually less than 5% among colorectal carcinomas). Histopathological diagnosis
based on endoscopic biopsy specimens is currently the most cost effective method to perform as part
of colonoscopic screening in average risk patients, and it is an area that could benefit from AI-based
tools to aid pathologists in their clinical workflows. In this study, we trained deep learning models to
classify poorly differentiated colorectal ADC from Whole Slide Images (WSIs) using a simple transfer
learning method. We evaluated the models on a combination of test sets obtained from five distinct
sources, achieving receiver operating characteristic curve (ROC) area under the curves (AUCs) up to
0.95 on 1799 test cases.

Keywords: deep learning; transfer learning; poorly differentiated adenocarcinoma; colon

1. Introduction

According to global cancer statistics in 2020 [1,2], colorectal cancer (CRC) is amongst
the most common leading causes of cancer deaths in the world and the second most com-
mon in the United States [1]. In 2020, approximately 147,950 individuals were diagnosed
with CRC, and 53,200 died from the disease. Screening and high-quality treatment can
help in improving survival prospects. This is evidenced by the decrease in CRC death
rates from 2008 to 2017 by 3% annually in individuals aged 65 years and older and by 0.6%
annually in individuals aged 50 to 64 years. However, as the incidence of CRC in young
and middle-aged adults (younger than 50 years) has been increasing (by 1.3% annually [1]),
the American Cancer Society lowered the recommended age for screening initiation for
individuals at average risk from 50 to 45 years in 2018 [2,3]. The development of endoscopy
provided a major impact on the diagnosis and treatment of CRC, especially colonoscopy
which allows observation of the colonic mucosal surface with biopsies of identified and/or
suspicious lesions [4].

Deep learning has been successfully applied in computational pathology in the past
few years for tasks such cancer classification, cell segmentation, and outcome prediction for
a variety of organs and diseases [5–18]. For the classification of tumour in colorectal WSI,
Iizuka et al. [18] trained a model on a large dataset of colorectal WSIs for the classification
of well differentiated ADC; however, it did not include poorly differentiated ADC.

Histopathologically, adenocarcinoma (ADC) account for more than 90% of CRCs.
Most colorectal ADCs are well to moderately differentiated types with gland-forming and
configuration of the glandular structures. If more than 50% of the tumor is formed by
non-gland forming carcinoma cells, the tumor is classified as poorly differentiated (or
high grade) ADC [19–21]. The frequency of poorly differentiated ADC is relatively low
(3.3% to 18% of all CRCs) [22–26]. The 5-year survival rate for patients with colorectal

Diagnostics 2021, 11, 2074. https://doi.org/10.3390/diagnostics11112074 https://www.mdpi.com/journal/diagnostics
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poorly differentiated ADC is 20% to 45.5%, which indicates that poorly differentiated ADC
has a less favorable prognosis compared with that of well or moderately differentiated
ADC [23,26–28].

In this paper, we trained deep learning models for the classification of diffuse-type
ADC in endoscopic biopsy specimen whole slide images (WSIs). We have used the partial
transfer learning method [29] to fine-tune the models. We obtained models with ROC
AUCs up to 0.95 for on the combined test set with a total of 1799 WSIs, demonstrating the
potential of such methods for aiding pathologists in their workflows.

2. Methods

2.1. Clinical Cases and Pathological Records

For the present retrospective study, a total of 2547 endoscopic biopsy cases of human
colorectal epithelial lesions HE (hematoxylin & eosin) stained histopathological specimens
were collected from the surgical pathology files of five hospitals: International University
of Health and Welfare, Mita Hospital (Tokyo) and Kamachi Group Hospitals (consisting
of Wajiro, Shinmizumaki, Shinkomonji, and Shinyukuhashi hospitals) (Fukuoka) after
histopathological review of those specimens by surgical pathologists. The experimental
protocol was approved by the ethical board of the International University of Health and
Welfare (No. 19-Im-007) and Kamachi Group Hospitals. All research activities complied
with all relevant ethical regulations and were performed in accordance with relevant
guidelines and regulations in the all hospitals mentioned above. Informed consent to use
histopathological samples and pathological diagnostic reports for research purposes had
previously been obtained from all patients prior to the surgical procedures at all hospitals,
and the opportunity for refusal to participate in research had been guaranteed by an opt-
out manner. The test cases were selected randomly, so the obtained ratios reflected a real
clinical scenario as much as possible. All WSIs were scanned at a magnification of ×20,
and the average dimension was 30 K × 15 K pixels. This protocol is similar to [18,30–32].

2.2. Dataset and Annotations

Prior to this study, the diagnosis of each WSI was verified by at least two pathologists,
and they excluded cases that were inappropriate or of poor scanned quality. In particular,
about 20% of poorly differentiated ADC cases were excluded due to disagreement between
pathologists. Table 1 breaks down the distribution of the dataset into training, validation,
and test sets. Hospitals which provided histopathological cases were anonymised (e.g.,
Hospital 1–5). The training and test sets were solely composed of WSIs of endoscopic biopsy
specimens. The patients’ pathological records were used to extract the WSIs’ pathological
diagnoses. In total, 36 WSIs from the training and validation sets had a poorly differentiated
ADC diagnosis. They were manually annotated by a group of two surgical pathologists
who perform routine histopathological diagnoses. The pathologists carried out detailed
cellular-level annotations by free-hand drawing around poorly differentiated ADC cells.
The well to moderately differentiated ADC (n = 71), adenoma (n = 110) and non-neoplastic
subsets (n = 531) of the training and validation sets were not annotated and the entire
tissue areas within the WSIs were used. Each annotated WSI was observed by at least two
pathologists, with the final checking and verification performed by a senior pathologist.
This dataset preparation is similar to [18,30–32].

2.3. Deep Learning Models

We trained all the models using the partial fine-tuning approach [29]. This method
simply consists of using the weights of an existing pre-trained model and only fine-tuning
the affine parameters of the batch normalisation layers and the final classification layer. We
used the EfficientNetB1 [33] model starting with pre-trained weights on ImageNet. The
total number of trainable parameters was only 63,329.

The training method that we have used in this study is exactly the same as reported in
a previous study [30]. For completeness, we repeat the method here. To apply the CNN on
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the WSIs, we performed slide tiling by extracting square tiles from tissue regions. On a
given WSI, we detected the tissue regions and eliminated most of the white background
by performing a thresholding on a grayscale version of the WSI using Otsu’s method [34].
During prediction, we performed the tiling in a sliding window fashion, using a fixed-
size stride, to obtain predictions for all the tissue regions. During training, we initially
performed random balanced sampling of tiles from the tissue regions, where we tried to
maintain an equal balance of each label in the training batch. To do so, we placed the WSIs
in a shuffled queue such that we looped over the labels in succession (i.e., we alternated
between picking a WSI with a positive label and a negative label). Once a WSI was selected,
we randomly sampled batch size

num labels tiles from each WSI to form a balanced batch. To maintain
the balance on the WSI, we oversampled from the WSIs to ensure the model trained on
tiles from all of the WSIs in each epoch. We then switched into hard mining of tiles once
there was no longer any improvement on the validation set after two epochs. To perform
the hard mining, we alternated between training and inference. During inference, the CNN
was applied in a sliding window fashion on all of the tissue regions in the WSI, and we then
selected the k tiles with the highest probability for being positive if the WSI was negative
and the k tiles with the lowest probability for being positive if the WSI was positive. This
step effectively selected the hard examples with which the model was struggling. The
selected tiles were placed in a training subset, and once that subset contained N tiles, the
training was run. We used k = 16, N = 256, and a batch size of 32.

From the WSIs with poorly-differentiated ADC, we sampled tiles based on the free-
hand annotations. If the WSI contained annotations for cancer cells, then we only sampled
tiles from the annotated regions as follows: if the annotation was smaller than the tile size,
then we sampled the tile at the centre of the annotation regions; otherwise, if the annotation
was larger than the tile size, then we subdivided the annotated regions into overlapping
grids and sampled tiles. Most of the annotations were smaller than the tile size. On the
other hand, if the WSI did not contain diffuse-type ADC, then we freely sampled from the
entire tissue regions.

The models were trained on WSIs at ×20 magnification. To obtain a prediction on a
WSI, the model was applied in a sliding window fashion using a tile size of 512 × 512 px
and a stride of 256 × 256 px, generating a prediction per tile. The WSI prediction was
then obtained by taking the maximum from all of the tiles. The prediction output for the
ensemble model was obtained as simply the average output of the three models used.

We trained the models with the Adam optimisation algorithm [35] with the following
parameters: beta1 = 0.9, beta2 = 0.999, and a batch size of 32. We used a learning rate of
0.001 when fine-tuning. We applied a learning rate decay of 0.95 every 2 epochs. We used
the binary cross entropy loss function. We used early stopping by tracking the performance
of the model on a validation set, and training was stopped automatically when there was
no further improvement on the validation loss for 10 epochs. The model with the lowest
validation loss was chosen as the final model.

2.4. Software and Statistical Analysis

We implemented the models using TensorFlow [36]. We calculated the AUCs in
python using the scikit-learn package[37] and performed the plotting using matplotlib [38].
We performed image processing, such as the thresholding with scikit-image [39]. We
computed the 95% CIs estimates using the bootstrap method [40] with 1000 iterations. We
used openslide [41] to perform realtime slide tiling.

3. Results

The aim of this study was to train a deep learning model based on convolutional
neural networks (CNNs) to classify poorly differentiated ADC in WSIs of colorectal biopsy
specimens. We had a total of 748 WSIs which were available for training of which only
36 WSIs had poorly differentiated ADC. Given the small number of WSIs, we opted for us-
ing a transfer learning method which was suitable for such a task. Transfer learning consists

3
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of fine-tuning the weights of a model that was pre-trained on another dataset for which a
larger number of images were available for training. To this end, we evaluated four models:
(1) a model that was fine-tuned starting with pre-trained weights on ImageNet [42], (2) a
model that was fine-tuned starting with pre-trained weights on a stomach WSIs dataset [30],
(3) a model that was pre-trained for the classification of gastric poorly differentiated ADC
which we did not fine-tune [30], and (4) a model which consisted of an ensemble [43] of
the previous three models. Figure 1 shows an overview of our training method.

Figure 1. Method overview. (a) An example of poorly differentiated ADC annotation that was carried out on the WSIs
by pathologists using in an in-house web-based application. (b) The initial training consisted in fully-random balanced
sampling of positive (poorly differentiated ADC) and negative tiles to fine-tune the models. (c) After a few epochs of
random sampling, the training switched into iterative hard mining of tiles that alternates between training and inference.
During the inference step, we applied the model in a sliding window fashion on all of the WSI and selected the k tiles with
the highest probabilities if the WSI was negative, and k tiles with the lowest probabilities if the WSI was positive. The tiles
were collected in a subset that was batched and used for training. This process allows training to reduce false positives.

4
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Evaluation on Five Independent Test Sets from Different Sources

We evaluated our models on five distinct test sets consisting of biopsy specimens, three
of which were from hospitals not in the training set. Table 1 breaks down the distribution of
the WSIs in each test set. For each test set for for their combination, we computed the ROC
AUC and log loss for the WSI classification of poorly differentiated ADC as well as the log
loss, and we have summarised the results in Table 2 and Figure 2. Figures 3 and 4 show
true positive and false positive example heatmap outputs, respectively. Table 3 shows a
confusion matrix for the combined test set using the ensemble model and a probability
threshold of 0.5. When operating with a high sensitivity threshold (sensitivity 100%), the
specificity for the best model on the combined test set was 75%.

(a) (b)

(c) (d)
Figure 2. ROC curves for the four models as evaluated on the combined test sets and each test set separately. (a) Evaluation
of the four models on the combined test set (n = 1741), (b) TL stomach model on the test sets that had poorly differentiated
ADC, (c) TL ImageNet model on the test sets that had poorly ADC, (d) Stomach model on the test sets that had poorly
differentiated ADC.
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Table 1. Distribution of WSIs in the training, validation, and test sets.

Poorly Diff. ADC Well-to-Moderately-Diff. ADC Adenoma Non-Neoplastic Total

Test

Hospital 1 12 125 61 251 449
Hospital 2 9 41 78 44 172
Hospital 3 18 20 210 39 287
Hospital 4 18 74 239 158 489
Hospital 5 17 144 55 186 402

Training Hospital 1 & 5 30 60 90 500 680
Validation Hospital 1 & 5 6 11 20 31 68

Table 2. ROC and log loss results on the different test sets using the different transfer learning
methods.

Method Source ROC AUC Log Loss

Ensemble combined 0.950 [0.925, 0.971] 0.135 [0.122, 0.148]
TL stomach combined 0.953 [0.937, 0.966] 0.466 [0.426, 0.506]
TL ImageNet combined 0.947 [0.923, 0.968] 0.555 [0.511, 0.594]
Stomach model combined 0.896 [0.862, 0.923] 0.863 [0.814, 0.911]
TL stomach Hospital 1 0.976 [0.936, 0.997] 0.236 [0.196, 0.271]
TL stomach Hospital 2 0.964 [0.927, 0.991] 0.459 [0.347, 0.576]
TL stomach Hospital 3 0.982 [0.966, 0.995] 0.195 [0.143, 0.244]
TL stomach Hospital 4 0.964 [0.94, 0.983] 0.44 [0.36, 0.515]
TL stomach Hospital 5 0.932 [0.886, 0.97] 0.949 [0.855, 1.081]
TL ImageNet Hospital 1 0.903 [0.774, 0.993] 0.325 [0.284, 0.367]
TL ImageNet Hospital 2 0.973 [0.939, 0.999] 0.613 [0.468, 0.72]
TL ImageNet Hospital 3 0.983 [0.965, 0.997] 0.268 [0.209, 0.326]
TL ImageNet Hospital 4 0.97 [0.948, 0.987] 0.48 [0.398, 0.549]
TL ImageNet Hospital 5 0.923 [0.868, 0.969] 1.085 [0.972, 1.219]
Stomach model Hospital 1 0.851 [0.739, 0.928] 1.055 [0.953, 1.167]
Stomach model Hospital 2 0.865 [0.768, 0.951] 0.882 [0.722, 1.032]
Stomach model Hospital 3 0.924 [0.864, 0.96] 0.607 [0.506, 0.716]
Stomach model Hospital 4 0.923 [0.843, 0.981] 0.554 [0.475, 0.62]
Stomach model Hospital 5 0.933 [0.881, 0.972] 1.2 [1.102, 1.326]

Table 3. Confusion matrix for the ensemble model with a threshold of 0.5.

Predicted Label

Other Poorly ADC

True label
Other 1572 153
Poorly ADC 11 63

6
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Figure 3. A representative true positive poorly differentiated colorectal ADC case from the endoscopic
biopsy test set. Heatmap images show true positive predictions of poorly differentiated ADC cells
and they correspond, respectively, to H&E histopathology (a, c, d) using stomach model (upper

panel), transfer learning from stomach model (middle panel), and transfer learning from ImageNet
model (lower panel). According to the pathological diagnosis provided by surgical pathologists,
histopathological evaluation for each tissue fragment is as follows: #1, #2, #4, #5, and #7 were positive
for poorly differentiated ADC; #3 and #6 were negative for poorly differentiated ADC. The high
magnification image (b) shows representative H&E histology (#3 fragment), which is negative for
poorly differentiated ADC.

7
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Figure 4. A representative example of poorly differentiated colorectal adenocarcinoma (ADC) false positive prediction
output on a case the from endoscopic biopsy test set. Histopathologically, this case is a non-neoplastic lesion (colitis).
Heatmap images exhibited false positive prediction of poorly differentiated ADC using transfer learning from stomach
model (upper panel) and transfer learning from ImageNet model (lower panel). The inflammatory tissue with plasma cell
infiltration (a and b) is the primary cause of false positive due to its analogous nuclear and cellular morphology to poorly
differentiated ADC cells.

4. Discussion

In this study, we trained deep learning models for the classification of poorly differentiated
ADC from colorectal biopsy WSIs. We used transfer learning with a hard mining of false
positives to train the models on a training set obtained from two hospitals. We evaluated four
models—one of which was an ensemble of the other three—on five different test sets originating
from different hospitals, and on the combination of all five, given the small number of cases
with poorly differentiated ADC. Overall, we obtained high ROC AUC of about 0.95.
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Given the histopathological similarity between gastric and colonic ADC, the stomach
model—which was previously trained on poorly differentiated cases of gastric ADC—was
still able to perform well on the colonic cases. There was improvement in further fine-
tuning the model, where the ROC AUC increased from 0.89 to 0.95. However, the result is
similar to having fine-tuned a model that was previously only trained on ImageNet. The
ensemble model had similar AUC, albeit with the lowest log loss of all the models.

The primary limitation of this study was the small number of poorly differentiated
ADC cases; overall, there were only 36 in the training set and 74 in the test set. The small
number of poorly differentiated ADC is to be expected given that well to moderately
differentiated ADC is typically more common. The combined test set contained a large
number of well to moderately differentiated ADC and non-neoplastic, which increases the
chances of false positives. Nonetheless, the models performed well and did not have a high
false positive rate across a wide range of thresholds, based on the ROC curves in Figure 2.

Most ADCs in colon are moderately to well differentiated types. On the other hand,
because poorly differentiated ADC exhibits the worst prognoses among the various types
of colorectal cancer, it is important to classify on endoscopic biopsy specimens [26]. In
this study, we have shown that deep learning models could potentially be used for the
classification of poorly differentiated ADC. Using a simple transfer learning method, it was
possible to train a high performing model relatively quickly compared to having to train a
model from scratch. Deep learning models show high potential for aiding pathologists and
improving the efficiency of their workflow systems.

Poorly differentiated ADC tends to grow and spread more quickly than well and
moderately differentiated ADC, and this makes early screening critical for improving
patient prognosis. The promising results of this study add to the growing evidence that
deep learning models could be used as a tool to aid pathologists in their routine diagnostic
workflows, potentially acting as a second screener. One advantage of using an automated
tool is that it can systematically handle large amounts of WSIs without potential bias due to
fatigue commonly experienced by surgical pathologists. It could also drastically alleviate
the heavy clinical burden of daily pathology diagnosis. AI is considered a valuable tool
that could transform the future of healthcare and precision oncology.
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Abstract: Background & Aims: We aimed at identifying specific emergency department (ED) risk
factors for developing complicated acute diverticulitis (AD) and evaluate a machine learning model
(ML) for predicting complicated AD. Methods: We analyzed data retrieved from unselected con-
secutive large bowel AD patients from five hospitals from the Mount Sinai health system, NY. The
study time frame was from January 2011 through March 2021. Data were used to train and evaluate
a gradient-boosting machine learning model to identify patients with complicated diverticulitis,
defined as a need for invasive intervention or in-hospital mortality. The model was trained and
evaluated on data from four hospitals and externally validated on held-out data from the fifth hospi-
tal. Results: The final cohort included 4997 AD visits. Of them, 129 (2.9%) visits had complicated
diverticulitis. Patients with complicated diverticulitis were more likely to be men, black, and arrive by
ambulance. Regarding laboratory values, patients with complicated diverticulitis had higher levels
of absolute neutrophils (AUC 0.73), higher white blood cells (AUC 0.70), platelet count (AUC 0.68)
and lactate (AUC 0.61), and lower levels of albumin (AUC 0.69), chloride (AUC 0.64), and sodium
(AUC 0.61). In the external validation cohort, the ML model showed AUC 0.85 (95% CI 0.78–0.91) for
predicting complicated diverticulitis. For Youden’s index, the model showed a sensitivity of 88%
with a false positive rate of 1:3.6. Conclusions: A ML model trained on clinical measures provides a
proof of concept performance in predicting complications in patients presenting to the ED with AD.
Clinically, it implies that a ML model may classify low-risk patients to be discharged from the ED for
further treatment under an ambulatory setting.

Keywords: machine learning; artificial intelligence; acute diverticulitis; outcome prediction;
emergency; complications

1. Introduction

Diverticulosis of the colon is a common condition in Western societies; by the age of 85,
two-thirds of Western countries’ populations will have developed colonic diverticula [1,2].

Diagnostics 2021, 11, 2102. https://doi.org/10.3390/diagnostics11112102 https://www.mdpi.com/journal/diagnostics
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While most patients remain asymptomatic, a minor portion will suffer from diverticu-
lar disease, most commonly acute diverticulitis (AD) occurring in 10–25% of patients [2–6]
or even less—up to 4% according to recent literature [7].

Data from recent years show an increase in hospitalization rates for AD in most
countries. In the US, more than 216,000 hospital admissions due to AD were reported in
2012, an increase of 21% from 2003 [8]. In Europe, a yearly increase in the admission rate
of approximately 2% was shown in Italy between 2008–2015 [9], with a similar increase
in the admission rate in the UK between 1996 to 2006 from 0.56 per 1000 person-years to
1.2 per 100 person-years [10].

Complications of AD affect 10–12% of patients [11]. The most common complica-
tion affecting 70% of patients is abscess formation, followed by peritonitis, obstruction,
and fistula.

Patients suffering from complicated AD are at an increased risk of mortality compared
to patients with an uncomplicated disease [11,12]. A population-based study from the
UK found a 20% one-year mortality for patients suffering from complicated diverticulitis,
compared to 4% in age- and sex-matched controls [12].

On the other hand, patients with an uncomplicated disease can safely be managed in
an ambulatory setting [13–15].

Therefore, it is clear that assessing patients’ risk factors for developing a complicated
disease is highly important during the clinical decision-making process.

Few recent studies found a correlation between either CRP levels and the white
blood cell count (WBC) and severe disease [14,16–21]. Other reporter risk factors were the
comorbidity index (ASA) [20], body mass index [22], and diabetes mellitus [23]. Most of
the studies were relatively small, and a recent literature review concluded that evidence in
the current literature of risk factors for complicated AD is not strong [13].

In the last decade, there has been much progress in the field of machine learning.
Various machine learning applications are being investigated for optimizing healthcare.
Emphasis is placed on the use of algorithms for predicting the clinical course [24,25]. Such
decision support tools can affect the diagnostic workup and treatment plan.

Therefore, in our current multi-site study assessing 4997 emergency department (ED)
visits during the years 2011–2021, we aimed at identifying specific risk factors for devel-
oping complicated AD and evaluating different machine learning models for predicting
complicated AD.

2. Materials and Methods

2.1. Study Design

We retrieved data for consecutive patients with acute diverticulitis, as defined by a
computerized data system using the ICD-10 diagnosis code. Data came from 5 hospital
campuses serving different geographic populations: Mount Sinai Hospital (MSH), Mount
Sinai Brooklyn (MSB), Mount Sinai Queens (MSQ), Mount Sinai Morningside (MSM), and
Mount Sinai West (MSW). The Mount Sinai Institutional Review Board (IRB) approved
this study. The IRB committee waived informed consent. The time frame of the study was
between 1 January 2011 and 29 March 2021.

Data were retrieved from the Epic electronic medical records (EMR) system, which is
unified for the five included hospitals (Epic Systems Corporation, Verona, WI, USA).

Variables included demographics; comorbidities; arrival mode (walk-in, by ambulance,
or by intensive care ambulance); chief complaints; vital signs measurements at admission;
acuity level, also called emergency severity index (ESI), which is a five-level acuity score
assigned by the triage nurse and which provides a clinically relevant stratification of
patients into five groups from 1 (most urgent) to 5 (least urgent) on the basis of acuity and
resource needs; and laboratory results obtained at admission.

All patients included transit through the ER, and the lab results were collected in the
ER. Thus, patients’ evaluation was performed in the ER setting.
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Complicated diverticulitis was defined as a need for intervention (surgical or drainage)
or in-hospital mortality. All complications necessitating intervention were CT-proven and
showed an overt abscess and/or free perforation. All patients were followed for recurrent
ER visits. A recurrent visit within 7 days from discharge was regarded as a same visit. Data
were split into training, internal validation (MSH, MSB, MSM, MSW), and external testing
(MSQ) sets. Machine learning models were trained on the data to predict a complicated
diverticulitis.

2.2. Inclusion and Exclusion Criteria

We included adult patients (≥18) diagnosed with acute large bowel diverticulitis in
the emergency department (ED) or hospital wards. We excluded patients younger than 18
and patients with small bowel diverticulitis.

2.3. Machine Learning Models

Comorbidities were coded as International Classification of Diseases (ICD-10) records
and grouped using the diagnostic clinical classification software (CCS). Categorical factors
were one-hot-encoded. Missing values were imputed using the training cohort median.

We have compared two machine learning model: gradient boosting (GB) and random
forest (RF). The GB model was implemented using the XGBoost library. The RF algorithm
was implemented using the scikit-learn library. Recursive feature selection was used to
find an estimate of the number of features in the models. The recursive feature selection
experiments were conducted in the training/internal validation cohort (MSH, MSB, MSM,
MSW), using the bootstrapping of 100 random 90/10 split. Model hyper-parameters were
also tuned in the training/internal validation cohort, using the same split method. (GB—
number of estimators: 25, eta: 0.3, max depth: 3, RF: number of estimators: 200, criterion:
“gini”, max depth: “None”). Data balancing techniques using scale weighting did not
improve the models’ accuracies and thus were not employed. The final GB and RF models
were trained on the entire internal validation cohort and tested on the external validation
cohort. SHAP summary explainability plots were constructed to assess the final GB and RF
models’ feature importance.

Programming was done with Python (Version 3.6.5 64 bits).

2.4. Statistical Analysis

Categorical variables were compared using the χ2 test. Continuous variables were
compared using Student’s t-test.

The area under the receiver curve (AUC) metric assesses the models’ performance
on the external validation cohort. Further metrics were evaluated for the GB final model.
Youden’s index was used to find an optimal sensitivity-specificity cutoff point on the
receiver operating characteristic (ROC) curve. Different metrics were also evaluated for
fixed specificities of 90%, 95%, and 99%. Metrics included sensitivity, specificity, false-
positive rate (FPR), negative predictive value (NPV), positive predictive value (PPV), and
F1 score. Bootstrapping validations (1000 bootstrap resamples) were used to calculate 95%
confidence intervals (CI) for the different metrics.

3. Results

The study’s inclusion flow diagram is presented in Figure 1. The final cohort included
4997 visits with large bowel diverticulitis. These corresponded to 3600 unique patients.
Of the 4997 visits, 1821 (40.5%) were admitted to the hospital from the ED. Five (0.1%)
patients returned to the hospital with complicated AD within a week from discharge from
a noncomplicated AD visit.
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Figure 1. Study flow chart. Abbreviations: Mount Sinai Hospital MSH; Mount Sinai Brooklyn MSB;
Mount Sinai Morningside MSM; Mount Sinai West MSW; Mount Sinai Queens MSQ.

Overall, 129 (2.9%) visits had complicated diverticulitis (59 surgical intervention,
71 drainage intervention, seven mortality cases; with overlap). Table 1 presents the charac-
teristics of the entire cohort, stratified by complicated diverticulitis status.

Table 1. Baseline characteristics of the study cohort comparing the complicated AD group to the uncomplicated AD group.

Uncomplicated AD
(n = 4368, 97.1%)

Complicated AD
(n = 129, 2.9%)

p Value

Demographics
Age, median (IQR), y 58.0 (48.0–69.0) 56.0 (48.0–67.0) 0.348

Female, N. (%) 2561 (58.6) 57 (44.2) 0.001
Black, N. (%) 750 (17.2) 34 (26.4) 0.010
White, N. (%) 1390 (31.8) 45 (34.9) 0.523

ED Triage
Arrival Mode: EMS, N. (%) 466 (10.7) 25 (19.4) 0.003
Arrival Mode: BLS, N. (%) 254 (5.8) 19 (14.7) <0.001

ESI, median (IQR), Acuity level (1–5) 3.0 (3.0–3.0) 3.0 (3.0–3.0) <0.001

Vital Signs
SBP, median (IQR), mmHg 135.0 (122.0–150.0) 132.0 (117.0–148.0) 0.171
DBP, median (IQR), mmHg 78.0 (70.0–86.0) 77.0 (66.0–88.0) 0.511

Heart rate, median (IQR), b/min 87.0 (76.0–98.0) 98.0 (86.0–110.0) <0.001
Temperature, median (IQR), Celsius 36.7 (36.4–37.1) 36.8 (36.5–37.2) 0.026

Respirations, median (IQR), num/min 18.0 (18.0–19.0) 18.0 (18.0–19.0) 0.295
O2 saturation, median (IQR)% 98.0 (97.0–99.0) 98.0 (97.0–99.0) 0.042

Pain scale, median (IQR), (0–10) 7.0 (5.0–9.0) 7.0 (5.0–10.0) 0.652

Comorbidities
CAD, N. (%) 452 (10.3) 11 (8.5) 0.600
CHF, N. (%) 262 (6.0) 13 (10.1) 0.086
DM, N. (%) 933 (21.4) 27 (20.9) 0.993

HTN, N. (%) 1443 (33.0) 46 (35.7) 0.597
CKD, N. (%) 270 (6.2) 6 (4.7) 0.598

COPD, N. (%) 305 (7.0) 10 (7.8) 0.871
NEOPLASTIC, N. (%) 873 (20.0) 21 (16.3) 0.353

Past or present smoking, N. (%) 1455 (33.3) 47 (36.4) 0.518
BMI, median (IQR), kg/m2 28.3 (24.9–32.7) 28.7 (25.1–34.0) 0.455
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Table 1. Cont.

Uncomplicated AD
(n = 4368, 97.1%)

Complicated AD
(n = 129, 2.9%)

p Value

Laboratory values
WBC, median (IQR), x103/uL 10.5 (8.1–13.2) 13.9 (11.1–17.7) <0.001

NEUT, median (IQR), ×103/uL 7.6 (5.4–10.1) 11.6 (8.5–15.1) <0.001
HGB, median (IQR), g/dL 13.5 (12.4–14.5) 13.0 (11.9–14.4) 0.005
PLT, median (IQR), g/dL 243.0 (202.0–292.0) 300.0 (234.0–382.0) <0.001

Albumin, median (IQR), g/dL 3.9 (3.6–4.1) 3.6 (3.1–3.9) <0.001
Lactate, median (IQR), mg/dL 1.2 (0.9–1.6) 1.3 (1.1–2.1) 0.001
BUN, median (IQR), mg/dL 13.0 (10.0–17.0) 13.0 (10.0–18.0) 0.022

Cr, median (IQR), mg/dL 0.8 (0.7–1.0) 0.9 (0.7–1.2) 0.112
Na, median (IQR), mEq/L 139.0 (137.0–140.0) 137.0 (135.0–140.0) <0.001
K, median (IQR), mEq/L 4.1 (3.8–4.4) 4.1 (3.7–4.4) 0.373
Cl, median (IQR), mEq/L 104.0 (102.0–106.0) 102.0 (100.0–104.0) <0.001

Abbreviations: IQR—Interquartile range; ED—Emergency department; BLS—Basic life support; EMS—Emergency medical ser-
vices; ESI—Emergency severity index; SBP—Systolic blood pressure; DBP—Diastolic blood pressure; BMI—Body mass index;
CAD—Coronary artery disease; CHF—Congestive heart failure; DM—Diabetes mellitus; HTN—Hypertension; CKD—Chronic kidney dis-
ease; COPD—Chronic obstructive pulmonary disease; HGB—Hemoglobin; NEUT—Neutrophils; WBC—White blood cells; PLT—Platelets;
CR—Creatinine; BUN—Blood Urea nitrogen; GLC—Glucose; NA—Sodium; K—Potassium; CL—Chloride; NYC—New York City.

Patients with complicated diverticulitis were more likely to be men, black, and arrive
by basic life support ambulance or emergency medical services ambulance (Table 1).

Table 2 presents a single variable analysis of the laboratory variables associated with
complicated diverticulitis in the entire cohort. Patients with complicated diverticulitis had
higher absolute neutrophils (NEUT), white blood cells (WBC), platelets count (PLT), and
lactate levels, and lower albumin, chloride (Cl), and sodium (Na) levels. NEUT had the
highest AUC (0.73), followed by WBC (0.70).

Table 2. Areas under the receiver operating characteristic curves (AUC) of laboratory values for
predicting worse outcome.

Laboratory Variable AUC Youden’s Index

NEUT 0.73 (95% CI: 0.68–0.78) 10.5 × 103/μL
WBC 0.70 (95% CI: 0.65–0.76) 12.3 × 103/μL

Albumin 0.69 (95% CI: 0.63–0.74) 3.4 g/dL
PLT 0.68 (95% CI: 0.62–0.73) 312.0 × 103/μL
Cl 0.64 (95% CI: 0.59–0.69) 103.0 mEq/L

Lactate 0.61 (95% CI: 0.56–0.67) 0.9 mg/dL
Na 0.61 (95% CI: 0.56–0.66) 138.0 mEq/L

HGB 0.56 (95% CI: 0.50–0.61) 12.6 g/dL
Abbreviations: NEUT—Neutrophils; WBC—White blood cells; PLT—Platelets; Cl—Chloride; Na—Sodium;
HGB—Hemoglobin.

Figure 2 presents the ten most common chief complaints in the cohort. Abdominal
pain was by far the most common complaint, with 3299/4497 (73.4%) of the visits.

Machine Learning Models

Figure 2A,B presents the average AUCs of the recursive feature selection results. Both
graphs show that the models improve up to about 7–8 features, then reach a plateau, with a
slight gradual decline after 20 features. Both models peaked at an average AUC of 0.84–0.85
in the internal validation cohort.
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Figure 2. (A,B) Averaged areas under the receiver operating characteristic curves (AUC) of the recursive feature selection
results. The models were trained and evaluated using 100 random splits of 90/10.

The models for evaluating the external validation cohort were built using the first
20 selected GB or RF features, respectively. GB slightly outperformed RF in the external
validation cohort (GB AUC 0.85, 95% CI 0.78—0.91 vs. RF AUC 0.82, 95% CI 0.72—0.90).
The SHAP explainability plots of the final GB and RF models are presented in Figure 3A,B.
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(A) 

 
(B) 

Figure 3. (A,B) SHAP explainability plots of the final gradient-boosting and random forest models.

For Youden’s index, the final GB model showed a sensitivity of 88% with FPR 1:3.6
(Table 3).
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Table 3. Metrics of the final gradient-boosting model.

Fixed Specificity Sensitivity Specificity FPR PPV NPV F1

Youden’s index 0.88 (95% CI:
0.71–1.00)

0.72 (95% CI:
0.70–0.75) 1:3.6 0.05 (95% CI:

0.03–0.08)
0.99 (95% CI:

0.99–1.00)
0.10 (95% CI:

0.06–0.14)

90% 0.50 (95% CI:
0.30–0.70) 0.90 1:10 0.08 (95% CI:

0.04–0.13)
0.99 (95% CI:

0.98–1.00)
0.14 (95% CI:

0.07–0.22)

95% 0.38 (95% CI:
0.18–0.57) 0.95 1:20 0.12 (95% CI:

0.05–0.20)
0.99 (95% CI:

0.98–0.99)
0.18 (95% CI:

0.08–0.28)

99% 0.04 (95% CI:
0.00–0.14) 0.99 1:100 0.08 (95% CI:

0.00–0.25)
0.98 (95% CI:

0.98–0.99)
0.05 (95% CI:

0.00–0.16)

Abbreviations: FPR—False positive rate; PPV—Positive predictive value; NPV—Negative predictive value; F1—Harmonic mean of
sensitivity and PPV.

4. Discussion

In recent years, there has been a clear rise in the incidence of hospitalizations for AD
worldwide [8–10]. The rising numbers and the new therapeutic approach towards uncom-
plicated disease presentation, which supports outpatient conservative treatment [13,14],
emphasize the need for effective risk stratification. While patients at risk of complications
should be further evaluated, low-risk patients can be safely discharged from the ED for
ambulatory treatment.

Herein, we present a gradient-boosting model derived from a large multi-site cohort
including approximately 5000 ED visits that predicts the composite outcome of invasive
intervention (either surgical or imaging-guided drainage) or in-hospital mortality. The
model showed a sensitivity of 88%, FPR of 1:3.6, and NPV of 99%. Thus, it can help identify
low-risk patients to be discharged from the ED with no need for further evaluation.

A recent study aimed at developing a diagnostic prediction model to differentiate
complicated from uncomplicated AD [26]. This study included a single-center homoge-
neous group of 910 patients and used the surgical Hinchey classification for the definition
of a complication [27]. Hinchey above 1A was classified as complicated. This classification
included milder cases, and as a result 18% of patients were classified as complicated, while
our study found 2.9% of patients with complicated diverticulitis. Since the classification of
Hinchey class 1B as complicated is questionable, as patients at this stage have a favorable
outcome in conservative treatment [28], we chose to only include patients treated with
invasive interventions for a better disease stratification.

Similar to our results, the final validated diagnostic model included a high WBC as a
prognostic factor. Other factors included in this model were CRP levels and abdominal
guarding, which were not measured in our study.

Another recent study [29] developed a clinical score aiming at predicting complicated
diverticular disease. This study was conducted on approximately 1000 patients, and
the main complication presented by 67% of patients categorized as complicated was
diverticular hemorrhage, which usually does not correlate with bowel inflammation and
was not included in our study. The study used a multivariate logistic regression analysis
and reached an AUC of 0.67.

To the best of our knowledge, our study is the largest ML-based multi-site study
aimed at predicting the risk of complicated AD in the ED setting. The study inspects
clinically relevant outcome measures and uses the composite outcome to assist in the triage
of low-risk patients that can be managed safely in an ambulatory setting. Our patients’
cohort is diverse in terms of ethnicity and socioeconomic status and comprises patients
from five different hospitals. We assessed two types of models during data processing to
compare their performance on this database in order to maximize the utility of the model
in clinical practice.

Our model has reached a high accuracy in identifying low-risk patients, with a sensi-
tivity of 88% for the prediction of high-risk patients. The FPR was 1:3.6 (Table 3), which
indicates that one in four patients will be identified as at risk by mistake. Though not
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perfect, we believe that in the setting of finding a needle in a haystack and considering the
risk of a missed complication, this is a reasonable trade-off.

Our study had several limitations. First, not all relevant laboratory results were
available. Thus, though the CRP levels were shown in various studies [14,16–21,29] to
correlate with the disease severity and prognosis, only 5% of our patients had this data, as
CRP is not a routine laboratory examination in the ERs included in our study. Therefore,
CRP levels were not included in the data analysis. Second, data were retrieved from
electronic medical records and were retrospective. This might have caused some bias due
to missing data. However, we believe that the large volume and patients’ diversity can
overcome this bias’s impact.

Third, although patients were followed for recurrent ER visits, it is possible that a
recurrent visit might have been missed if the patient chose to attend a different hospital.
However, since data was collected from several hospitals covering a wide geographic
distribution in New York City (NYC), it is very likely that a recurrent admission would
have been registered.

In conclusion, an ML model trained on clinical measures provided a proof of concept
performance in classifying low-risk patients presenting to the ED with AD.

Clinically, this implies that low-risk patients identified by our model may be dis-
charged from the ED for further treatment under an ambulatory setting. Moreover, high-
risk patients are identified by the model with a relatively high sensitivity, while only one
out of four will be a false positive. We believe that ML can prevent unnecessary hospital-
izations and assist in patients’ risk stratification under clinical settings. Our results need to
be validated in different geographic areas where there are populations of different ethnic
origins, and more clinical studies are needed for further evaluations of the effect of ML
models on clinical decision-making.
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Abstract: CT volumetry (CTV) has been widely used for pre-operative graft weight (GW) estimation
in living-donor liver transplantation (LDLT), and the use of a deep-learning algorithm (DLA) may
further improve its efficiency. However, its accuracy has not been well determined. To evaluate the
efficiency and accuracy of DLA-assisted CTV in GW estimation, we performed a retrospective study
including 581 consecutive LDLT donors who donated a right-lobe graft. Right-lobe graft volume (GV)
was measured on CT using the software implemented with the DLA for automated liver segmentation.
In the development group (n = 207), a volume-to-weight conversion formula was constructed by linear
regression analysis between the CTV-measured GV and the intraoperative GW. In the validation group
(n = 374), the agreement between the estimated and measured GWs was assessed using the Bland–Altman
95% limit-of-agreement (LOA). The mean process time for GV measurement was 1.8 ± 0.6 min (range,
1.3–8.0 min). In the validation group, the GW was estimated using the volume-to-weight conversion
formula (estimated GW [g] = 206.3 + 0.653 × CTV-measured GV [mL]), and the Bland–Altman 95% LOA
between the estimated and measured GWs was −1.7% ± 17.1%. The DLA-assisted CT volumetry
allows for time-efficient and accurate estimation of GW in LDLT.

Keywords: deep learning; CT volumetry; segmentation; living right liver donors

1. Introduction

Living-donor liver transplantation (LDLT) is an effective therapeutic option for pa-
tients with end-stage liver disease [1]. An adequate graft mass is a major component of
a successful LDLT. The use of small-for-size grafts, with graft-to-recipient weight ratios
of less than 0.8 to 1%, is associated with graft malfunction, while an insufficient remnant
liver mass after harvesting a graft may threaten donor safety [2,3]. Therefore, the accurate
preoperative estimation of graft weight is a prerequisite step in LDLT to ensure the safety
of both recipients and donors.

CT volumetry has been widely used for preoperative graft volume measurement in
LDLT [4–12]. Graft weight is usually estimated using CT-measured graft volume and a
volume-to-weight conversion formula [10–15]. Although several studies have assessed the
performance of CT volumetry in graft weight estimation [5,7,8,10–17], these studies had lim-
itations. The volume-to-weight conversion formulae used in the previous studies were not
reliable since they were derived from small study populations (i.e., ≤16 subjects) [10,11,14],
pathologic liver conditions [10], or the assumption that the liver and water have the same
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density [12,13,15], which may have led to biased estimations of graft weight. Moreover,
previous studies assessed the correlations or mean differences between the estimated and
actual graft weights, but did not evaluate the measurement error of CT volumetric graft
weight estimation [5–12], which is important to predict the range of actual graft weight in
individual LDLT donors.

One obstacle that limits the clinical use of CT volumetry has been the time-consuming
organ segmentation process. Recently, deep learning has emerged as a method for auto-
mated image analysis. Recent studies have demonstrated that a deep-learning algorithm
(DLA) enables fully automated segmentation of the liver using CT images with high ac-
curacy, allowing for automated liver volume measurement without user interaction [18].
Thus, the application of DLA for CT-based liver segmentation would dramatically improve
the time efficiency of CT volumetry in estimating graft weight for LDLT.

Therefore, the purpose of our study was to construct a graft volume-to-weight con-
version formula, and to evaluate the accuracy and time efficiency of DLA-assisted CT
volumetry for estimating graft weight in a large cohort of living liver donors who donated
right-lobe liver grafts.

2. Material and Method

This retrospective study was approved by our institutional review board, which
waived the requirement for patients’ informed consent.

2.1. Study Population

We retrospectively and consecutively enrolled living liver donors in our institution
who donated right-lobe grafts from 2013 to 2015. Eligible donors were those who had
undergone CT examinations within 3 months before liver donation and had data on
intraoperative graft weight measurement. A total of 581 donors who satisfied the eligibility
criteria comprised the study population (Figure 1). The study population was then divided
into the development (liver donation in 2013, n = 207) and validation (liver donation from
2014 to 2015, n = 374) groups. A subset of 50 donors who were randomly selected from the
validation group comprised the subgroup used to assess inter-reader agreement in graft
volume measurement.

2.2. CT Examination

CT examinations were performed using various CT scanners and techniques (Supplementary
Table S1). CT scans were obtained using 16-channel (Sensation 16, Simens Healthineers,
Erlangen, Germany), 64-channel (Definition AS, Siemens Healthineers or Lightspeed VCT,
GE Healthcare, Milwaukee, WI, USA), or 128-channel (Definition Flash, Siemens Healthi-
neers) scanners. Portal venous phase images were obtained 76 s after intravenous contrast
administration with tube voltages of 100 or 120 kVp, tube currents of 200–440 mA with
automatic exposure control, matrix of 512 × 512, and section thicknesses of 3 or 5 mm with
no gap. The total number of images ranged from 95 to 115 for the examinations with 5 mm
slice thickness, and ranged from 155 to 188 for those with 3 mm slice thickness.

2.3. Graft Volume Measurement Using a Deep Learning Algorithm

The graft volume was measured by a reader who was a third-year radiology resident
(P.R.) on portal venous phase CT images. The reader first analyzed CT data from the
first 30 donors in the development group, together with an experienced radiologist (L.S.S,
with 23 years of experience in abdominal imaging) for training purposes. The CT data
were analyzed using the GoCDSS software (SmartCareworks Inc., Seoul, Korea), which
applied a DLA for automated liver segmentation. The detailed information of the DLA
was described previously [18], and its source code is provided at https://github.com/
seungsoolee0007/liver_spleen_segmentation (accessed on 22 February 2022). Briefly, the
algorithm performed whole-liver segmentation, excluding large hepatic vessels, with a
dice similarity score of 97% in a computation time of 33 s for a typical abdominal CT
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examination [18]. Once the CT data were uploaded, the software automatically performed
liver segmentation. Then, the reader reviewed CT images along with the deep-learning-
generated liver segmentation results and corrected any segmentation errors. The liver
volumes measured by automated segmentation by the deep learning algorithm and those
measured after the reader’s correction were recorded. The reader defined the resection
plane for the right-lobe graft based on the Cantlie line by drawing two dividing lines
(one along the main axis of the middle hepatic vein, superiorly, and the other along
the imaginary line between the gallbladder and inferior vena cava, inferiorly) on the
selected images (Figure 2). The software completed the resection plane by interpolation
of the two dividing lines. The volumes of the whole liver and right-lobe liver graft were
automatically calculated by summation of the area multiplied by the slice interval. The
times required for reviewing CT images, correcting segmentation errors, and defining the
resection plane were recorded. To assess inter-reader agreement, the second reader (L.S.S)
independently measured graft volume in a subset of 50 donors from the validation group.

Figure 1. Flow diagram of the study population.

2.4. Clinical and Pathologic Data and Intraoperative Graft Weight Measurement

Clinical data including age, sex, height, weight, and body mass index (BMI) were
obtained on the day of the CT examinations. The degree of hepatic steatosis (HS) was
assessed by pathologic analysis of ultrasonography-guided percutaneous liver biopsy
specimens, which was performed 1–78 days (median, 17 days) before liver donation as
a part of donor workup. The degree of HS was graded as none (<5%), mild (5–33%),
moderate (34–66%), or severe (>66%), as defined by the Non-alcoholic Steatohepatitis
Clinical Research Network scoring system [19]. The graft weight was measured during
the donor hepatectomy and served as the reference standard in our study. The donor
hepatectomy was performed as described previously [5]. Briefly, the demarcation line
of the right lobe was drawn based on the color change of the liver surface that occurred
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during temporary clamping of the right portal vein and right hepatic artery. Parenchymal
dissection was performed with the middle hepatic vein as the anatomic landmark, i.e.,
along the right (graft without middle hepatic vein) or left (graft with middle hepatic vein)
side of the middle hepatic vein. Dissection of the dorsal part of the liver was performed
using a hanging maneuver that allowed transection of the liver parenchyma down to the
inferior vena cava. After harvesting a right-lobe graft, the surgeons shook the excised graft
to spill out the remaining blood, waited a few seconds for natural drainage, then measured
the blood-free graft weight on an electronic laboratory scale (FD 110; Excel Precision,
New Taipei City, Taiwan).

Figure 2. Measurement of the right-lobe graft volume using deep-learning-algorithm-assisted CT
volumetry. An axial portal venous phase CT image in a 44-year-old male donor is overlaid with a
right-lobe mask (purple), a left lobe mask (brown), and a dividing line (red line). CT image data
were first processed by the deep learning algorithm for whole liver segmentation. The radiologist
reviewed these results, corrected any segmentation errors, and defined the resection plane for the
right-lobe graft by drawing the dividing lines.

2.5. Statistical Analysis

The characteristics of the development and validation groups were compared using
independent t-tests or Fisher’s exact tests. Agreements between the whole-liver volumes
automatically measured by DLA and those measured after the radiologist’s correction
were evaluated using the Bland–Altman 95% limit of agreement (LOA). Bland–Altman
95% LOAs were expressed as percentages of the measured values and as the mean dif-
ferences ± 1.96 × standard deviation (SD) of the difference, where the mean difference
represented systemic bias, and 1.96 × SD of the difference represented the measurement
error. In the developmental group, to evaluate the confounding effect of HS on the graft
weight, multivariable linear regression analysis was performed by including the HS- and
CT-measured graft volume as independent variables and graft weight as the dependent
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variable. Then, the formula to convert CT-measured graft volume to graft weight was built
using univariable linear regression analysis. In the validation group, the graft weight was
estimated using CT-measured graft volume, and the conversion formula derived from the
development group. The agreement between the estimated and measured graft weights
was then assessed using the concordance correlation coefficient (CCC) and Bland–Altman
95% LOA. In the subgroup including 50 donors in the validation group, the inter-reader
agreement in the graft volumes between the two radiologists was assessed using the CCC
and Bland–Altman 95% LOA. To assess the factors influencing the magnitude of error
in graft weight estimation, multivariable linear regression analysis was performed in the
validation cohort; this included the age, sex, BMI, HS, interval between CT scan and
liver donation, and type of liver graft (right-lobe graft with or without middle hepatic
vein) as independent variables; and the percentage difference between the estimated and
measured graft weights, i.e., (estimated graft weight—measured graft weight)/measured
graft weight, as the dependent variable. Statistical analyses were performed using IBM
SPSS Statistics for Windows, version 21.0 (IBM Corp., Armonk, NY, USA) and MedCalc
version 14.8.1 (MedCalc, Ostend, Belgium). p-values < 0.05 were considered to indicate
significant differences.

3. Results

3.1. Characteristics of the Study Population

Table 1 summarizes the characteristics of the study population. The study popu-
lation included 581 donors (413 men and 168 women; mean age, 27.7 years; age range,
17–54 years). Most donors had non-steatotic liver, and clinically relevant HS was present
in 89 (15.3%) donors, with mild HS in 87 (15.0%) and moderate HS in two (0.3%) donors.
The development and validation groups included 207 (132 men and 75 women; mean age,
27.6 years; age range, 18–54 years) and 374 (281 men and 93 women; mean age, 27.8 years;
age range, 17–52 years) donors, respectively. The developmental and validation groups
showed significant differences in sex (p = 0.004), BMI (p = 0.015), body weight (p = 0.022),
and intraoperatively measured graft weight (p = 0.004).

Table 1. Characteristics of the study population.

KERRYPNX Total Developmental Group Validation Group p-Value *

Number of patients 581 207 374

Age (years) † 27.7 ± 7.2 27.6 ± 6.9 27.8 ± 7.3 0.661

Sex
Male 413 (71.1) 132 (63.8) 282 (74.8) 0.004

Hepatic steatosis 0.816
None 492 (84.7) 177 (85.5) 315 (84.2)
Mild 87 (15.0) 29 (14.0) 58 (15.5)

Moderate 2 (0.3) 1 (0.5) 1 (0.3)

BMI (kg/m2) † 22.9 ± 2.9 22.5 ± 2.9 23.1 ± 2.9 0.015
Height (cm) † 170.4 ± 8.1 169.9 ± 8.4 170.7 ± 7.9 0.268
Weight (kg) † 66.8 ± 11.4 65.4 ± 11.7 67.6 ± 11.1 0.022

Type of liver graft
0.151RLG without MHV 559 (96.2) 196 (94.7) 363 (97.1)

RLG with MHV 22 (3.8) 11 (5.3) 11 (2.9)

Interval between CT and
graft donation (days) † 30.6 ± 19.0 30.9 ± 18.8 30.4 ± 19.1 0.728

Graft weight (g) † 748.8 ± 129.3 728.1 ± 123.5 760.2 ± 131.2 0.004

Unless otherwise indicated, data are shown as the number of patients, with percentages in parentheses.
RLG = right-lobe graft, MHV = middle hepatic vein. * p-values for comparisons between the development
and validation groups; † Mean ± standard deviation.
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3.2. Liver Segmentation and Graft Volume Estimation Using DLA

DLA-generated automated segmentation of the whole liver showed segmentation
errors requiring radiologists’ correction in 166 (28.6%) donors. Most segmentation errors
were minor and were associated with a short correction time (the mean time required for
the radiologists’ correction ± standard deviation [SD], 12.8 ± 33.6 s) and a small change
in volume (Bland–Altman 95% LOAs, 0.05% ± 3.0% of the measured liver volume). The
mean process time, including the DLA-generated segmentation review, and correction and
division of the segmented liver, was 1.8 ± 0.6 min (range, 1.3–8.0 min).

3.3. Construction of Graft Volume-to-Weight Conversion Formula in the Development Group

In the development group, the CT-measured graft volume and intraoperatively mea-
sured graft weight ranged from 454.9 mL to 1187.0 mL (mean ± SD, 1249.0 ± 237.9 mL) and
from 420.0 g to 1025.0 g (mean ± SD, 728.1 ± 123.5 g), respectively. In multivariable linear
regression analysis, HS did not have a significant effect on graft weight (coefficient, −0.34;
p = 0.667) after accounting for the effect of graft volume on graft weight (coefficient, 0.655;
p < 0.001). Therefore, we constructed the formula to convert CT-measured graft volume to
graft weight in the entire development group, without excluding donors with HS (Figure 3).
The conversion formula was as follows: estimated graft weight (g) = 206.3 + 0.653 × CT-
measured graft volume (mL) (r = 0.878, p < 0.001).

Figure 3. Scatter plot of the CT-measured graft volume versus intraoperative graft weight in the
development group. The solid line indicates the best-fit regression line. The linear regression equation
is also shown.
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3.4. Agreement between the Estimated and Measured Graft Weights in the Validation Group

In the validation group, the CT-measured graft volume, estimated graft weight, and
intraoperatively measured graft weight ranged from 722.9 mL to 2259.6 mL (mean ± SD,
1281.9 ± 233.4 mL), from 520.0 g to 1153.7 g (mean ± SD, 743.6 ± 104.0 g), and from 456.0 g
to 1400.0 g (mean ± SD, 760.2 ± 131.2 g), respectively. The CCC for the agreement between
the estimated and measured graft weights was 0.834 (95% confidence interval [CI], 0.804
to 0.860) (Figure 4). The Bland–Altman 95% LOA was −1.7% ± 17.1% (p = 0.002 for the
difference of mean bias from zero), indicating a mean bias of −1.7% and measurement
error of 17.1% of the graft weight (Figure 5).

Figure 4. Scatter plot of the estimated and measured graft weights in the validation group. The dashed
line is the reference line indicating complete agreement. The concordance correlation coefficient
between the estimated and measured graft weights was 0.834 (95% confidence interval, 0.804 to 0.860,
p < 0.001).

The inter-reader agreement for graft volume measurement was assessed in the subset
of 50 donors in the validation cohort. The CCC for the agreement in the graft volume
measurement between the two readers was 0.998 (95% CI, 0.996–0.999), and the Bland–
Altman 95% LOA was 0.2% ± 1.8% (p = 0.069).

3.5. Factors Associated with Differences in Estimated and Measured Graft Weights

In the validation cohort, multivariable linear regression analysis revealed that sex
(coefficient, −1.73; p = 0.001) and BMI (coefficient, −0.2; p < 0.001) showed significant inde-
pendent associations with the percentage difference between the estimated and measured
graft weights, while age (p = 0.076), HS degree (p = 0.577), interval between CT and liver do-
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nation (p = 0.111), and type of liver graft (p = 0.279) did not. The Bland–Altman 95% LOAs
between the estimated and measured graft weights were −2.6% ± 16.8% (p < 0.001) and
0.9% ± 16.8% (p = 0.306) for men and women, respectively. When donors were sub-grouped
according to BMI, the Bland–Altman 95% LOAs between the estimated and measured graft
weights were −1.3% ± 16.2% (p = 0.009) and −4.2% ± 17.0% (p <.001) for donors with
BMI <25 kg/m2 and overweight or obese donors with BMI ≥25 kg/m2, respectively.

Figure 5. Bland–Altman plot of the agreement between the estimated and measured graft weights in
the validation group. The solid line indicates the mean difference, while the dashed lines indicate the
upper and lower limits of the 95% limits of agreement. The Bland–Altman 95% limit of agreement (LOA)
was −1.7% ± 17.1% (p = 0.002 for the difference of mean bias from zero). SD = standard deviation.

4. Discussion

Our study evaluated the efficiency and accuracy of CT volumetry using a DLA for the
preoperative estimation of right-lobe graft weight in LDLT. We found that the DLA allowed
for a time-efficient measurement of graft volume on CT. The CT data analysis with the
DLA was performed as a background process so that the reader reviewed CT images with
DLA-generated liver segmentation results. The DLA enabled highly accurate segmentation
of the liver. The DLA-generated liver segmentation results did not require additional
correction in approximately 70% of donors; moreover, minor segmentation errors, which
were rapidly corrected by the reviewing radiologist, were observed in only 30% of donors.
As a result, CT volumetric assessment of right-lobe grafts was rapidly performed in an
average process time of 1.8 min.
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We developed the graft volume-to-weight conversion formula in a large number of
donors (i.e., 207 donors) in the development group. In the validation group, graft weights
that were estimated using the CT-measured graft volume and conversion formula showed
an overall good agreement with the measured graft weights (CCC = 0.834). The Bland–
Altman 95% LOA indicated a measurement error of graft weight of ±17.1%. Although
this measurement error appears large, the range encompasses most (i.e., 95%) of the
actual difference between the estimated and measured graft weights. Compared to our
study, previous studies reported even greater differences between estimated and measured
graft weights, ranging from −48.2% to 66.2% [5,8,12]. As suggested by previous studies,
multiple factors may have contributed to the error in CT volumetric estimation of graft
weight, including mismatches between expected and actual resection planes [6,12], graft
dehydration [7,12], and variable amounts of blood remaining in the graft [8].

Our validation results showed a small but significant bias in the estimated graft
weights, indicating that graft weight was underestimated by 1.7% in the validation group.
The mean bias of 1.7% in our study was smaller than those reported previously (i.e., −9.8%
to 2.4% of graft weight) [5,8], which may have been partly due to our use of a conversion
formula developed in a larger study population. Though not yet fully understood, the bias
in the estimated graft weights in the validation group may have been related to different
characteristics between the development and validation groups. Our study showed that sex
and BMI were significantly associated with the percentage difference between the estimated
and measured graft weights. Graft weights tended to be underestimated in men (mean
bias, −2.6%) and in donors with a higher BMI (mean bias, −4.2%). Thus, a significantly
higher proportion of men and donors with a higher BMI in the validation group than in
the development group may have led to a small underestimation of graft weight in the
validation group.

We observed nearly perfect inter-reader agreement in graft volume measurement
between the two readers (CCC = 0.998; Bland–Altman 95% LOA = −1.6% to 2.0% of the
measured volume). This finding is noteworthy given the different level of experience
between the two readers (i.e., third-year radiology resident vs. abdominal radiologist
with 23 years of experience). The use of automated liver segmentation with the DLA
may help to reduce inter-reader variability in liver segmentation, making CT-based graft
volume measurement simple enough for a less experienced reader to learn after a short
training session.

In our study, HS did not show a significant confounding effect on the association
between graft volume and graft weight in the development cohort. In addition, the degree
of HS was not a significant factor for the percentage difference between the estimated
and measured graft weights. However, this finding should be interpreted with caution
as most donors in our study population had no or mild HS. Despite some controversies,
there have been a few prior reports suggesting the association of HS with increased liver
volume [20–22]. Therefore, our results may not be directly generalizable to donors with
moderate-to-severe HS.

Our study had several limitations. First, the retrospective design may be subject to
selection bias and bias from missing data, despite our efforts to minimize such biases by
enrolling consecutive donors. Second, we evaluated only right-lobe grafts since that is
the preferred graft for LDLT to meet recipients’ metabolic demands [23,24]. Thus, the
measurement error range for CT volumetric graft weight estimation in our study may
not be directly applicable to other types of liver graft. Finally, the development and
validation groups in our study were enrolled in the same institution. External validation in
a completely different population may have provided more conclusive validation results.

5. Conclusions

In conclusion, we proposed a graft volume-to-weight conversion formula for pre-
operative CT volumetric estimation of graft weight in LDLT. The DLA-assisted CT vol-
umetry provided a time-efficient and accurate estimation of graft weight in LDLT. The
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measurement error of the CT volumetric estimation of right-lobe graft weight was approxi-
mately 17% of the graft weight.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12030590/s1, Table S1: CT imaging techniques used
in the development and validation groups.
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Abstract: Background: Adequate bowel cleansing is important for colonoscopy performance evalua-
tion. Current bowel cleansing evaluation scales are subjective, with a wide variation in consistency
among physicians and low reported rates of accuracy. We aim to use machine learning to develop a
fully automatic segmentation method for the objective evaluation of the adequacy of colon prepa-
ration. Methods: Colonoscopy videos were retrieved from a video data cohort and transferred to
qualified images, which were randomly divided into training, validation, and verification datasets.
The fecal residue was manually segmented. A deep learning model based on the U-Net convolutional
network architecture was developed to perform automatic segmentation. The performance of the
automatic segmentation was evaluated on the overlap area with the manual segmentation. Results:
A total of 10,118 qualified images from 119 videos were obtained. The model averaged 0.3634 s to
segmentate one image automatically. The models produced a strong high-overlap area with manual
segmentation, with 94.7% ± 0.67% of that area predicted by our AI model, which correlated well
with the area measured manually (r = 0.915, p < 0.001). The AI system can be applied in real-time
qualitatively and quantitatively. Conclusions: We established a fully automatic segmentation method
to rapidly and accurately mark the fecal residue-coated mucosa for the objective evaluation of
colon preparation.

Keywords: artificial intelligence; automated segmentation; U-NET; colonoscopy; colonoscopy preparation
quality

1. Introduction

Colorectal cancer (CRC) is one of the main malignancies affecting humans, accounting
for the second and third most common causes of cancer-related death, respectively, in
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males and females globally [1]. In the Asia–Pacific area, CRC incidence is also increasing
rapidly, and CRC was ranked as the most common cancer over 10 years in Taiwan [1,2].
Colonoscopy is used to image the mucosa of the entire colon and is an effective method for
reducing the CRC burden, since colonoscopy can detect CRC early and be used to remove
adenomatous polyps, which can significantly improve CRC survival [3,4]. Despite this fact,
interval cancer can sometimes be noted in patients who underwent a CRC surveillance
program, which may stem from missed lesions due to an incomplete colonoscopy caused
by inadequate bowel preparation [5–8].

Both the American and European Societies of Gastrointestinal Endoscopy have pub-
lished guidelines on colon preparation to ensure the quality of bowel preparation during
colonoscopy [9–11]. Inadequate bowel preparation may lead to repeated colonoscopies, pro-
longed prospective procedure time, increased operative risk, and rising medical costs [12].
Currently, there are three main validated bowel preparation scoring systems for evalu-
ating the quality of colonoscopy preparation, including the Aronchick Scale, the Ottawa
Bowel Preparation Scale (OBPS), and the Boston Bowel Preparation Score (BBPS) [13–15].
The Aronchick Scale and OBPS evaluate colon preparation before washing and suction-
ing, while the BBPS evaluates it afterwards [13–15]. OBPS also subjectively evaluates the
amount of washing and suctioning required to achieve optimal visualization. In addition,
the grading system, and the segments used to evaluate preparation (from the whole colon
to five divided segments), are also different between the three systems [16,17]. The main
concern with these scoring systems is that these scales depend on subjective evaluations to
grade bowel cleanliness, which suffer from opinion-related bias [18,19]. That is to say, the
inter-observer reliability, measured by intraclass correlations (ICC) or kappa coefficients,
would be the major concern of these scales. For example, the Aronchick Scale showed a
fair-to-substantial ICC of 0.31–0.76. The ICC of OBPS seems good at 0.94, but this was
actually the result from a small-scale study on just a single gastroenterologist and a staff
fellow for 97 colonoscopies. In addition, OBPS showed a fair agreement between nurses
and physicians with a Pearson’s r = 0.60 [20]. The reliability of BBPS is more frequently
studied with a fair weighted kappa of 0.67 to 0.78. Among the three scales, the BBPS
is the most thoroughly validated and is the most recommended one for use in a clinical
setting [18]. Generally, the application of these three scales is time-consuming and requires
detailed assessments and documentations. Therefore, in prospectively collected data from
a large national endoscopic consortium, the proper application of these scales is rare; only
about 11% of doctors in the United States thoroughly evaluate and document the suggested
BBPS in clinical practice [21].

In recent years, with the application of artificial intelligence (AI), computer-aided de-
tection and diagnosis software systems have been developed to help endoscopists enhance
and characterize polyps during colonoscopy [22–25]. AI and machine learning techniques
have also emerged to evaluate the quality of bowel preparation. Two previous studies
explored the evaluation of bowel cleanliness in capsule endoscopy and colonoscopy [26,27].
These applied AI to classify bowel cleanliness based on experts’ subjective grading. With
this approach, human factors can still lead to potential bias in scoring due to the fair
interobserver reliability of the grading scales used in these reports (capsule endoscopy,
ICC = 0.37–0.66; colonoscopy, weighted kappa of 0.67–0.78 with BBPS). In our current study,
we used a completely different approach by using a segmentation method to precisely label
fecal material in the training dataset. With this method, we attempted to develop a fully
automatic segmentation method through the application of convolutional neural networks
(CNNs) to mark the mucosal area coated with fecal material using prospectively collected
colonoscopy video imaging data. The proposed model can be a useful and novel tool for
objectively evaluating the quality of colon preparation. To achieve this goal, we used U-Net,
an AI architecture that focuses on biological images, as the backbone in the process [28].
The U-Net architecture won the 2015 International Symposium on Biomedical Imaging
(ISBI) cell tracking challenge and is often used for brain tumor cutting [29], retinal image
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segmentation [30,31], endoscopy image segmentation [32,33], and other medical image
segmentation tasks [34–36].

2. Materials and Methods

2.1. Data Collection

Endoscopy video and images from Jan 2019 to Feb 2020 were obtained from the
Colonoscopy Video Database from the Endoscopy Center of Taipei Veterans General Hos-
pital. The Colonoscopy Video Database was established by patients who were willing to
contribute their colonoscopy video and related profiles for clinical study and consists of
520 videos as of February 2020. All the patients signed an informed consent form to
contribute their colonoscopy video for clinical study, and a validated questionnaire for
enquiring as to the possible factors contributing to the cleanliness of the bowel preparation
was distributed to the participants. All patients received standardized bowel preparation
with either 2 L of polyethylene glycol solution or BowKlean® powder (containing sodium
picosulfate and magnesium oxite, Genovate Biotechnology, Taiwan) before the colonoscopy.
Their endoscopy videos were prospectively obtained from the Colonoscopy Video Database
from the Endoscopy Center. All colonoscopies were performed by using an Olympus Evis
Lucera Elite CV-290 video processor and a high-definition colonoscope CF-HQ 290 or
CF-H290 (Olympus Co., Ltd., Tokyo, Japan). The colonoscopy videos were recorded with
a resolution of 1920 × 1080. The patients’ individual information was de-identified and
stored in the database. The study was approved by the Institutional Review Board of Taipei
Veterans General Hospital.

2.2. Image Preprocessing

Initially, all videos were transformed into images according to their sampling rate
in frames per second (FPS). Unqualified images were filtered out to ensure good image
quality. The unqualified images were too blurred or murky to be recognized, low resolution,
or in the improper format, or included frames without stool, or full of stool. Extranious
information, such as the examination time, patient ID, name, and sex, were removed. These
images were randomly divided into training (90% of the total images) and validation (10%
of the total images). After establishing the final model, an independent verification dataset
was collected from our center in different period to the time for training/validation [37]. The
images used in the different datasets (training/validation/verification) were independent
at patient level, indicating that the images from the same patients should be attributed
to one particular dataset. The training and validation datasets were used to establish AI
models, and the verification dataset served to verify the performance of established AI
models. In this task, the data augmentation skill was applied to overcome the limitation of
the data quantity and reinforce the performance of the AI model. It is worth mentioning
that augmentation skill was only applied to the training dataset to enhance the variation in
the training image, and measurement (augmentation) was not used in the validation and
verification dataset. The augmentation methods included (1) random rotation (randomly
rotated images with preservation), (2) random horizontal flip (horizontally flipped images
with random radians), (3) random zoom in/out (zoomed in/out images at random scales),
and (4) random Gaussian noise (randomly adding Gaussian noise to images).

2.3. Image Labeling

LabelMe (https://github.com/wkentaro/labelme, accessed on 1 October 2021), an
annotation tool for executing image segmentation, is an open-source software and has
been widely applied to perform image annotation tasks. The software was installed on a
Windows system, and 3 senior endoscopic technicians were trained to perform endoscopy
image segmentation labeling (Figure 1). The images show the areas where staining, residual
stool, and/or opaque liquid, which influenced the visualization of mucosa, were marked
for segmentation [14]. After the annotation, another senior technician rechecked the images
to ensure labeling quality. When facing difficulty in image labeling, an experienced endo-
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scopist (Wang YP) was consulted to make the final decision. All images with discernible
information were removed and given a random serial number for subsequent model use.

 

Figure 1. The manual segmentation samples. The figure represents the different types of fecal
residues that were annotated and applied in this study.

2.4. Establishment and Validation of AI Models

U-Net was selected as the main architecture for developing our AI model since U-Net
has been deemed valid for medical image recognition [28]. U-Net included 2 parts, the
encoder and the decoder. The encoder extracted the important features of the images
using the convolution method, and then the decoder applied these features to perform
the segmentation task (Figure 2). Various encoders can be selected as the backbone in
U-Net architecture for executing feature extraction, such as VGG19, ResNet34, InceptionV3,
and EfficientNet-B5 [38]. EfficientNet-B5 was selected in our model because of its better
accuracy and lower computational power (Table 1). One of the characteristics of U-Net
was that it extracted features that can be transmitted and superimposed on subsequent
layers to enhance the information and resolution of neural networks. The output result of
U-Net was a probability map, and each pixel of an image had a binary value (0 or 1). The
value of the pixels at the target location was segmented as 1, and the other pixel values
were assigned to 0. Finally, the result of image segmentation was visualized based on each
pixel value.

In U-Net, there still existed some hyperparameters that could be adjusted to enhance
the AI performance, such as learning rate, number of epochs, and batch size. During
the training process, the validation dataset was used to validate the performance in each
trained model. Then, the model with the best performance was saved as the final model.
The AI models were trained using Google cloud’s platform with a two-core vCPU, 7.5 GB
RAM, and an NVIDIA Tesla K80 GPU. Keras 2.2.4 and TensorFlow 1.6.0 running on CentOS
7 were used for training and validation.
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Figure 2. The architecture of U-Net. U-Net contained 2 parts: encoder and decoder. Initially, the
input image included features extracted by the encoder, and those features were transmitted to the
decoder as the important information for identifying whether each pixel was the target location. The
red line and green line indicate the encoder and decoder, respectively, in the U-Net AI model.

Table 1. Comparison of accuracy using U-Net with different encoders.

Model Top 1 Accuracy (%) Top 5 Accuracy (%) Parameters (M)

VGG19 71.1 89.8 143
Resnet34 73.31 91.4 26

ResNet50+SE 76.86 93.3 28
ResNeXt50 77.15 94.25 25
SENet-154 82.7 96.2 145.8

Inception V3 78 93.9 23.8
DenseNet121 74.5 91.8 8
MobileNet_v2 74.9 92.5 6
EfficientNet-B5 83.3 96.7 30

2.5. Verification of AI Models and Statistical Analysis

An independent dataset was selected for the verification of the best-established train-
ing model. The concept of a confusion matrix was applied to verify the performance of
our trained AI model. In our image, the manually marked mucosal area coated by fecal
residue was set as the ground truth, which was defined as the union area of false negative
(FN) and true positive (TP) (Figure 3). The AI model-predicted area, i.e., the automated
segmentation of fecal residue-covered mucosa, involved both the TP and false positive
(FP). The intersection area of the ground truth and AI-predicted area was the TP. The area
outside of the union of the ground truth and the AI-predicted area was defined as the true
negative (TN). Accuracy was calculated as the addition of TP plus TN in proportion to
the total mucosal area and was used to represent the performance of our AI model. The
defined parameters are given in the following equations:

Intersection over Union (IOU) = TP/(TP + FP + FN)

Accuracy (Acc) = TP + TN/total area

Predict = (TP + FP)/total area

GroundTruth = (FN + TP)/total area

Non_union_percent = TN/total area

Intersection_percent = TP/total area
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Figure 3. The major parameters in this study. The confusion matrix contained 4 parameters. The
yellow area (true positive, TP) represents the intersection area of ground truth and the AI-predicted
area. The union of red (false negative, FN) and yellow (true positive, TP) indicate the ground truth
area. The blue area (false positive, FP) and yellow area (true positive, TP) indicate the AI-predicted
area. The rest of the area out of the union of ground truth and the AI-predicted area was the true
negative (TN).

The obtained area in pixels was measured, and all the data are presented as the mean
± S.E.M. The number of pixels in the AI-predicted surface area coated by fecal residue was
computed. The proportion of AI-predicted surface area coated by fecal residue against total
mucosa area as the octagonal area in the image was also computed and displayed in real
time. Pearson correlation and a two-sided t-test were used to evaluate the association of the
proportion of labelled areas against total area between automatic and manual segmentation.
All statistical tests were performed at the α < 0.05 level.

We also selected 3 short videos, each representing poor, good, and excellent prepara-
tion, for real-time verification. The final AI model was applied in the video to perform the
auto-segmentation of mucosa covered by fecal residue in the video.
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3. Results

3.1. Data Collection

A total of 119 endoscopy videos were collected from 119 patients (mean age: 53.13 years;
male/female: 54/65). Successive image frames were then extracted from these videos.
After image quality control, a total of 9066 images were selected and randomly divided into
two groups, i.e., a training dataset with 8056 images (90% of all images) and a validation
dataset with 1010 images (10% of all images). Another dataset for verification containing
1052 images was independently collected from those patients who underwent colonoscopy
in a different time period from the training/validation datasets.

3.2. The Details of Model Establishment

U-Net, an AI architecture focused on biological image segmentation, was selected
as the core architecture in this research. In the training stage, each image was resized to
288 × 288 pixels, the optimizer was set as Adam, the learning rate was set to 1e-4, and the
loss function was set as binary cross-entropy. The total training epoch was set to 30, and
the batch size was set to four (Table 2).

Table 2. The detailed parameters for training the models.

Model U-Net

Backbone EfficientNet-B5
Optimizer Adam

Loss function binary cross entropy
Learning rate 1e-4

Batch size 4
Total number of epochs run during training 30

3.3. The Performance of Automatic Segmentation (Results of Model Verification)

The average time required for the model to generate the automatic segmentation
of each image was 0.3634 s. The accuracy of our AI model achieved 94.7 ± 0.67% with
an IOU of 0.607 ± 0.17. The ground truth (technician-labelled) area of the total area was
14.8 ± 0.43%, while the AI-predicted area was 13.1 ± 0.38% of the total area. The intersection
area of the ground truth and AI-predicted area was 11.3 ± 0.36% (fecal material detected
by both technician and AI), and the area outside of the union of the ground truth and the
AI-predicted area (nonunion area) was 83.4 ± 0.45% of the total measured area (Table 3).

Table 3. The detailed performance of the final trained models.

Mean S.E.M.

IOU 0.607 0.17
Accuracy 0.947 0.0067
Prediction 0.131 0.0038

Ground truth 0.148 0.0043
Intersection area 0.113 0.0036
Nonunion area 0.834 0.0045

IOU = Intersection over union.

Such results suggest that the AI-detected area is 3.5% less than the ground truth
(technician-labelled area) (14.8% minus 11.3%), and the rate at which our model misdetected
normal mucosa as fecal material is smaller at 1.8% (13.1% minus 11.3%). Example images
of the best and worst results of our AI model are displayed in Figures 4 and 5.
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Figure 4. The better annotation example of AI model segmentation. The intersection over union
(IOU) of those samples achieved approximately 0.90, meaning that the annotation result of the AI
was similar to manual labeling. In those figures, the left, middle, and right columns represent the
raw, manually annotated, and AI-annotated images, respectively. The green and blue lines indicate
the segmentation labeled by endoscopy technicians and the trained AI model.
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Figure 5. The worse annotation samples of the AI model segment. In each image, the left, middle,
and right columns represent the raw, manually annotated, and AI-annotated images, respectively.
The green and blue lines indicate the segmentation labeled by endoscopy technicians and the trained
AI model. The IOU of these samples was less than 0.5.

In each visualized result, the left panel represents the raw image of the verification
dataset. The green line in the middle panel indicates the ground truth annotated by
endoscopic technicians, and the navy blue line in the right panel represents the result
from the AI model prediction. The scatterplots in Figure 6 show that the area segmented
manually was highly correlated to the area predicted by the AI (r = 0.915, p < 0.001), which
suggested the independence of the accuracy with the bowel preparation adequacy. Our AI
model was applied in real time in a colonoscopy video with a simultaneous display of the
area of auto-segmentation and its percentage of AI-predicted fecal residue-covered mucosa.
Example videos of poor, good, and excellent colon cleanliness are shown in Supplementary
Videos S1–S3.
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Figure 6. Scatterplots show a comparison of the area produced from manual and automatic segmen-
tation methods.

4. Discussion

In the current study, we used machine learning to evaluate colon preparation using
automated segmentation of the mucosal area covered by fecal residue. We demonstrated
that this automated segmentation displayed comparable results and high accuracy when
compared with manual annotation. To the best of our knowledge, our current article may
present the first examples of deep CNN being used for automatically segmenting in the
evaluation of the quality of bowel preparation during colonoscopy.

Proper reporting of the preparation quality after colonoscopy is extremely important.
Inadequate bowel preparation in colonoscopy will lead to an increased risk of missed
lesions, increased procedural time, increased costs, and potentially increased adverse
events [21,37]. Furthermore, good preparation scored by the validated bowel preparation
scale is associated with an increased polyp detection rate [18]. Currently, there are three
main validated bowel preparation scoring systems for evaluating the quality of colonoscopy
preparation, including the Aronchick Scale, the OBPS, and the BBPS [13–15]. It has been
reported that reliability varies between studies and between scales [18,19]. All these scoring
systems depend on the endoscopists’ subjective evaluations and are dependent on the raters’
interpretation of visual descriptions. The potential subjective opinion-related bias may
lead to a wide difference in grading the adequacy of bowel preparation among physicians,
especially in patients with moderate preparation quality that may lead to poor scoring
and to a repeat colonoscopy [19]. In this study, we first established an objective evaluation
system for bowel preparation by measuring the area of clearly visible mucosa and colon
mucosa not clearly visualized due to staining, residual stool, and/or opaque liquid. This
machine learning-based scoring system can shift the subjective grading into objectively
obtained mucosal areas. The accuracy of this CNN-based model is highly comparable to
the manually marked measurement. With this objective measurement system, we may
evaluate colon preparation more precisely compared with the subjective grading system.
Future studies are mandatory to apply the current AI model to real-world practice and set
up an objective threshold for adequate bowel preparation.

Most of the past studies on AI for medical image recognition used retrospectively
collected images or video frames to develop their AI models [38–40]. In our study, however,
we only used video frames to develop our model, which will experience more difficulty
achieving a satisfactory result than studies using images or images combined with video
frames. This is because video frames are more easily influenced by focus distance, lighting,
and vibrations. Therefore, the quality of the frame will often be much lower than that of
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still images. In some studies, the video verification dataset was significantly lower than
the image verification dataset [41–43]. Nevertheless, our current model, developed from
video frames, displayed satisfactory performance with high auto-segmentation accuracy.
Furthermore, after the establishment of our AI model, we verified our model using a dataset
that was independent from the dataset used to develop the model. This approach was used
to avoid overlap of the training and validation datasets [43].

As shown in the Introduction, we chose U-Net as the core architecture because of
its good performance. It may be argued that other architectures may perform better. For
example, DeepLab achieved a higher IOU than U-Net in other reports [44–48]. In the decode
part, DeepLab would directly quadruple the encoder features as the output result [49], while
U-Net obtained the output result by repeating the up-sampling process four times [28].
Hence, U-Net can preserve more low-level features in the final output result. In our case,
the fecal material in the image may be relatively small when compared to the entire image.
Therefore, we suggest that U-Net may be able to detect more fecal materials, at greater
detail, which is more suitable for our purpose. Recent research does suggest that there may
be new lightweight encoder networks that may be able to achieve performance on par with
the current available encoder with fewer samples while having faster image processing [50].
Future investigations comparing different backbones, especially the lightweight ones, may
be necessary to further improve the accuracy and efficiency in AI-assisted fecal material
detection during colonoscopy.

Limitations are present in this study. The accuracy of our model when detecting
material is high (94%), while the IOU is relatively low (0.61). This may be due to the
relatively small annotated area when compared to the entire image, contributing to a high
TN in the current model. In addition, our data showed that the area between our model and
the ground truth sat in the best line below 0.4 (40% of total area), and it seemed to become
more disparate after 0.4 on the scatterplot. Such a result suggests that the current AI model
can be less predictive upon poor bowel preparation (images with fecal material more than
40% of total area). The disparate results may be due to the relatively small amount of
fecal material in most images used for training. By including more images of poor bowel
preparation containing more fecal material during training, we may be able to increase the
IOU and improve the accuracy. Concerns may also be raised regarding the accuracy of the
manual segmentation as the ground truth, since there are multiple potential variabilities
during human annotation. In addition, the cut-off value used to represent the adequacy of
bowel preparation and its comparability with the currently validated scoring system are
unknown. Additionally, severe bowel inflammation, ulcerations or bleeding may mimic
poor colon preparation that influence the evaluation accuracy. Furthermore, we treated
the current model as a proof of concept, so the model was established with relatively few
images in the validation dataset and lacks the application of k-fold cross-validation. Future
studies are mandatory to see whether there are differences among endoscopic technicians
on the same images and whether our model falls into the same percentage of errors and
deviations in future confirmatory clinical trials.

5. Conclusions

In conclusion, we used deep CNN to establish a fully automatic segmentation method
to rapidly and accurately mark the mucosal area coated with fecal residue during colonoscopy
for the objective evaluation of colon preparation. It is important to evaluate the clinical
impact by comparing the application of this novel AI system with the currently available
bowel preparation scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12030613/s1, Video S1: Example video of poor colon
cleanliness, Video S2: Example video of good colon cleanliness, Video S3: Example video of excellent
colon cleanliness.
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Abstract: Neuroendocrine neoplasms (NENs) and tumors (NETs) are rare neoplasms that may
affect any part of the gastrointestinal system. In this scoping review, we attempt to map existing
evidence on the role of artificial intelligence, machine learning and deep learning in the diagnosis and
management of NENs of the gastrointestinal system. After implementation of inclusion and exclusion
criteria, we retrieved 44 studies with 53 outcome analyses. We then classified the papers according
to the type of studied NET (26 Pan-NETs, 59.1%; 3 metastatic liver NETs (6.8%), 2 small intestinal
NETs, 4.5%; colorectal, rectal, non-specified gastroenteropancreatic and non-specified gastrointestinal
NETs had from 1 study each, 2.3%). The most frequently used AI algorithms were Supporting
Vector Classification/Machine (14 analyses, 29.8%), Convolutional Neural Network and Random
Forest (10 analyses each, 21.3%), Random Forest (9 analyses, 19.1%), Logistic Regression (8 analyses,
17.0%), and Decision Tree (6 analyses, 12.8%). There was high heterogeneity on the description of the
prediction model, structure of datasets, and performance metrics, whereas the majority of studies did
not report any external validation set. Future studies should aim at incorporating a uniform structure
in accordance with existing guidelines for purposes of reproducibility and research quality, which are
prerequisites for integration into clinical practice.

Keywords: neuroendocrine tumors; neuroendocrine neoplasms; carcinoid; gastroenteropancreatic;
GEP-NETs; Pan-NENs; SI-NETS; artificial intelligence; machine learning; deep learning

1. Introduction

Neuroendocrine neoplasms (NENs) of the gastrointestinal tract and the pancreas are
rare tumors that tend to be diagnosed incidentally but with an increasing frequency [1,2].
GEP-NENs arise from the neural crest and may be located in the stomach, the small in-
testine, the appendix, the colon, the rectum, the pancreas, the ampulla of Vater, and the
extrahepatic bile ducts, as well as the liver in the form of metastases. For the purposes
of this review, we will focus on the former group of organs. For purposes of systemati-
zation, NENs can be divided into well differentiated neuroendocrine tumors (NETs) and
poorly differentiated neuroendocrine carcinomas (NECs), the latter representing 10–20% of
NENs [3]. This classification is not arbitrary, as NETs and NECs represent two genetically
and biologically separate entities. NETs may be further classified into NETs arising from
the gastrointestinal tract (GI-NETs, also known as carcinoids; ~50% of GEP-NETs) and ones
affecting the pancreas (Pan-NENs; ~30% of GEP-NETs). NENs may or may not be func-
tional. Nonfunctioning NENs are usually asymptomatic (especially early-stage ones), but
may cause gastrointestinal bleeding and anemia, as well as obstructive effects which may
present as jaundice, small bowel obstruction, intussusception, appendicitis and palpable
abdominal mass depending on their anatomic location. Functioning GI-NENs may cause
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flushing, diarrhea, endocardial fibrosis and wheezing, owing to the synergistic effect of se-
creted vasoactive substances such as prostaglandins, kinins, serotonin and histamine. These
symptoms signal the so-called carcinoid syndrome and usually herald liver metastases,
because normally the liver inactivates products secreted into the portal circulation [4]. On
the other hand, functioning Pan-NENs cause distinctive syndromes depending on the se-
creted product (i.e., gastrinoma–Zollinger-Ellison syndrome (ZES), insulinoma–Whipple’s
triad, glucagonoma–necrolytic erythema and hyperglycemia, VIPoma–watery diarrhea-
hypokalemia-achlorhydria syndrome, somatostatinoma–diabetes, gallstone formation and
steatorrhea etc) [1,2]. Gastric NETs merit special mention, as they may manifest with atypi-
cal symptoms that are not related to hormone secretion [1]. Type 1 gastric NETs (70–80%
of gastric NETs) are related to atrophic gastritis that leads to secondary hypergastrinemia,
which in turn causes hyperplasia of the enterochromaffin-like (ECL) cells. With continuous
stimulation, ECLs give rise to aggregates which constitute foci of NETs. Type 2 gastric
NETs (approximately 30%) are associated with ZES and multiple endocrine neoplasia type
1 (MEN-1). Type 3 gastric NETs are not related to other syndromes, are sporadic and are the
most aggressive, as they tend to metastasize in 50–100% of the cases. Finally, type 4 gastric
NETs are poorly differentiated and typically non-amenable to surgical manipulations.

Various biomarkers (mainly in immunohistochemistry) serve different purposes in the
spectrum of NENs: Ki-67 is the most well-known among them, it has a prognostic relevance
and is an essential component of the WHO grading of NENs [5]; SSTR-2/5 are useful for
the detection of somatostatin receptors when functional imaging (with 68Ga-DOTATATE
PET/CT) is not possible; DAXX/ATRX has a prognostic relevance for Pan-NETs and is use-
ful for distinguishing between NETs and NECs; p53/pRb are used for the classification of
poorly differentiated NECs and the distinction from G3 NETs; and MGMT has a predictive
response for the chemotherapeutic temozolomide [3]. Chromogranin A (CgA) is a useful
circulating biomarker, especially for the diagnosis of asymptomatic NETs [1]. The NETest
is a multigene mRNA assay that provides a broad molecular characterization GEP-NENs
with high sensitivity and specificity and better diagnostic accuracy when compared to
isolated biomarkers such as CgA [2]. Functional imaging with 68Ga-DOTATATE, which
binds to somatostatin receptors (SSRTs), is the cornerstone of diagnosis (and particularly
localization and staging) of NETs, especially in the cases of small intestinal NETs (SI-NETs),
large NETs and metastatic NETs [1].

Artificial intelligence (AI) is the process of simulating human learning by a machine,
in the context of which large quantities of digitized data (input) are fed to a computer,
the computer processes them with the aid of AI algorithms, and it ultimately reaches
conclusions, makes decisions, or adjusts its function (output). Input data may derive from
electronic health records (EHRs) and large databases, such as the Surveillance, Epidemiol-
ogy, and End-Results Program (SEER) registry, digitized histology samples and whole slide
images (WSIs), digital imaging studies (computed tomography—CT, magnetic resonance
imaging—MRI, endoscopic ultrasonography—EUS, positron emission tomography—PET
etc.), endoscopic study videos and so forth. AI is an umbrella term and includes supervised
machine learning (ML), unsupervised machine learning, deep learning (DL) and reinforce-
ment learning [6]. Each discipline differs from the preceding one in that it entails a greater
degree of autonomy from the operator’s supervision. AI with its subcategories is gradually
entering healthcare and pertinent studies have had an exponential publication rate over
the last five years, with various applications being integrated into clinical practice [7]. For
the non-familiar clinician, AI should not be deemed as a substitute to their pivotal role
in the patient care continuum or as an incomprehensible field belonging exclusively to
computer experts but should rather be approached as a valuable tool in the process of
decision-making, as well as a novel statistical method which, unlike traditional ones, may
reveal hidden relationships between causes of disease and diagnosis, management and
potentially cure.

With the present study we attempt to map the current status of AI and its applications
in the diagnosis and management of gastroenteropancreatic NENs (GEP-NENs). Given on
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the one hand that NENs are relatively rare entities and on the other hand that AI, ML and
DL are novel in the field of Medicine, we deemed it a rather uncharted area of interest and
opted for a scoping review.

2. Materials and Methods

This review was performed according to the PRISMA extension for scoping reviews [8].
We performed literature search using the PubMed database in January 2021. The com-
bined search terms were [artificial intelligence; machine learning; deep learning] AND
[neuroendocrine; NET; NEN; carcinoid; insulinoma; glucagonoma; gastrinoma; VIPoma]
AND [gastrointest*; GI; small intest*; appendi*; colon*; rect*; colorect *; stomach; gas-
tric; duoden*; pancrea*; biliary; bile duct; Vater; ampulla; liver; hepa*]. There was no
chronological restriction. Included articles had to have study populations with diagnosed
NEN or NEN should be included in the differential diagnosis. They should also have at
least 1 ML/DL algorithm for the process of their data, irrespective of the study design.
The presence of a comparison group (external validation) was desired but not mandatory.
Similarly, the report of at least one benchmarking metric, among accuracy, F1-score, area
under receiver operator characteristic curve (AUROC) or area under precision-recall curve
(AUPRC) were desired but not mandatory. Table 1 summarizes eligibility criteria. Only
full-text publications were considered. Articles not in English language or not providing
full text were excluded.

Table 1. Inclusion criteria.

Parameter Inclusion Criteria

Population Diagnosed cases with NEN (NET/NEC) or NEN included
in the differential diagnosis.

Intervention Analysis with a ML/DL algorithm.
Comparison External validation desired but not mandatory.

Outcome Report of accuracy, F1-score, AUROC or AUPRC desired
but not mandatory.

Study design Any. Abstract-only studies were excluded
NEN: neuroendocrine neoplasm; NET: neuroendocrine tumor; NEC: neuroendocrine carcinoma; ML: machine
learning; DL: deep learning; AUROC: area under receiver operator characteristic (ROC) curve; AUPRC: area
under precision-recall (PR) curve.

Data extraction was performed by two independent researchers (A.G.P., P.A.P.) using
a predefined template with the eligibility and exclusion criteria. In case of disagreement,
a third researcher (D.P.L.) made the decision whether to include the article or not. For
the collection of relevant data we consulted the Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research [9]. We collected data on year
of publication, country of origin, DOI number, study design (prospective vs. retrospective),
classification vs. regression, NEN type studied, dataset (number of patients or samples),
input (predictors), output (outcomes), tested AI algorithm(s), training set, test set, internal
and external validation sets, cross-validation method, accuracy, F1-score, AUROC (with
95% CI, if available) and AUPRC (with 95% CI, if available).

Numerical variables are presented as mean ± standard deviation (SD). Categorical
variables are presented using frequencies and percentages. Calculations and statistical
analysis were carried out using the online tool Prism®, GraphPad Software, San Diego, CA,
USA.

3. Results

Literature search across PubMed yielded 1327 articles. In addition, 9 articles were
retrieved through other sources (Google® search, screening through articles’ literature).
After screening of titles and abstracts, removal of duplicates, and implementation of
eligibility criteria, 44 unique articles were included in the final analysis (Figure 1) [10–53].
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Figure 1. Flowchart depicting the selection process of sources of evidence. ML: machine learning;
DL: deep learning.

Regarding geographical distribution (Figure 2), the included studies originated from
12 different countries, with major contributors being the USA (22 studies, 50%), China
(12 studies, 27.3%) and Italy (3 studies, 6.8%). Among them, there were 4 coalitions of
countries. The studies spanned a 13-year period (2007–2021), with a significant rise over
time (Figure 3). Notably, 2/3 of studies were published over 2019–2021, which follows the
general increase of publications regarding AI [54].

Figure 2. Geographic distribution of the studies included in the review. The darker the hue, the larger
the number of studies coming from this particular country.
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Figure 3. Temporal distribution of the studies included in the review according to year of publication.

In order to identify the prediction problem of each study, we collected data on study
design, nature of the prediction, and continuity of the target variable, as per Luo et al. [9].
Consequently, there were 19 prospective (42.2%) and 26 retrospective (57.8%) analyses.
Notably, one study had 2 stages, one prospective and one retrospective [13], hence the
discrepancy between the total number of studies (44) and the sum of analysis based on
prospective-retrospective study design (45). Regarding the nature of the prediction, we
dichotomized the studies into diagnostic vs. prognostic, depending on whether the predic-
tion referred to healthy subjects or subjects with already diagnosed NET, respectively [55].
The analysis yielded 24 diagnostic (54.5%) and 20 prognostic (45.5%) studies. Finally, all
studies but one [24] had to do with classification. The prediction characteristics of each
study are summarized in Table 2.

We then classified the papers according to the type of studied NET. Twenty-six studies
were about Pan-NETs (59.1%) [10,11,15–20,24,25,27,28,30,31,34,38,41–43,45–47,49,51–53],
3 studies had to do with (metastatic) liver NETs (6.8%) [36,37,44], 2 studies analyzed SI-NETs
(4.5%) [14,35], whereas colon and rectum [12], rectum [22], non-specified GEP [39], and non-
specified GI NETs [50] had from 1 study each (2.3%). There were 4 studies with multiple
types of NETs with separate data for each one of them provided (9.1%) [21,23,29,33], and
another 2 studies with non-specified multiple types of NETs (4.5%) [13,48]. Figure 4 shows
the relevant distribution of studies by NET type.

Regarding the source of data, there were 15 studies with histology-based
analyses [10,15,20,23,24,33,38–43,45,47,50] and another 15 studies with imaging-based anal-
yses (34.1% each). Six studies were structured based on patient databases (16.7%) [13,22,27,
29,32,48], 5 on genetic assays (11.4%) [18,21,30,35,36], and 3 on plasma/serum (6.8%) [12,
14,26]. Imaging-based studies were further distinguished in CT-based (6/15, 40%) [17,
28,34,46,51,53], EUS-based (4/15, 26.7%) [11,19,25,31], MRI-based (3/15, 20%) [44,49,52],
and PET/CT (2/15, 13.3%) [16,37]. Genetic assays included gene expression assays [35,36]
and miRNA analyses [18,21] (2 studies each), as well as 1 genome-wide association study
(GWAS) [30]. Figure 5 shows the relevant distribution of studies by source of data.
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Figure 4. Distribution of studies by type of NET analyzed. GEP: gastroenteropancreatic; GI: gastroin-
testinal.

Figure 5. Distribution of studies by source of data. CT: computed tomography; EUS: endoscopic
ultrasound; MRI: magnetic resonance imaging; PET: positron emission tomography.

In the set of 44 studies, there were 53 outcome analyses, i.e., 7 studies with more
than 1 outcome (5 with two outcomes [13,38,43,45,53], and 2 with three outcomes [15,33]).
The most popular outcome analyses were tumor type identification and tumor grade
(10 analyses each, 18.9%), tumor detection (5 analyses, 9.4%), and 5-year survival, cell
segmentation, disease progression, disease recurrence and Ki-67 scoring (2 analyses each,
3.8%). Table 3 summarizes these outcome analyses, along with the references to relevant
studies.
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Table 3. Most popular outcome analyses within the included studies.

Outcome Number of Studies (%) Reference No.

Tumor type identification 10 (18.9) [12,18,19,21,23,25,31,36,37,51]
Tumor grade 10 (18.9) [10,11,17,34,46,47,49,50,52,53]

Tumor detection 5 (9.4) [14,20,26,33,43]
5-year survival 2 (3.8) [22,27]

Cell segmentation 2 (3.8) [40,42]
Disease progression 2 (3.8) [13,29]
Disease recurrence 2 (3.8) [28,53]

Ki-67 scoring 2 (3.8) [38,39]

The next analysis we performed was on the number of AI algorithms mentioned within
the included studies. As it is expected, a number of studies included more than one AI
algorithms, either in an attempt to find the most accurate among them or in the form of
comparison of a novel AI model against established ones. In total, we identified 47 differ-
ent models, with 10 among them being the most utilized ones (Figure 6), i.e., Supporting
Vector Classification/Machine (14 analyses, 29.8%) [11,17,21,22,27–29,33,36,38,39,47,51,53],
Convolutional Neural Network (10 analyses, 21.3%) [15,17,20,23,31,37,40–42,49], Ran-
dom Forest (9 analyses, 19.1%) [11,14,17,22,27,29,46,51,53], Logistic Regression (8 anal-
yses, 17.0%) [11,17,27,29,32,47,51,53], Decision Tree (6 analyses, 12.8%) [11,13,29,33,48,51],
Gradient Boosting Decision Tree [29,46,51,53], Multi-Layer Perceptron [25,29,33,47], and
(Gaussian) Naïve Bayes [22,29,32,51] (4 analyses each; 8.5%), and AdaBoost [22,46,51], and
Linear Discriminant Analysis [10,47,51] with 3 analyses each (6.4%).

 

Figure 6. The most frequently appearing artificial intelligence algorithms within the included studies.
SVC: Supporting Vector Classification; SVM: Supporting Vector Machine; CNN: Convolutional
Neural Network; RF: Random Forest; LR: Logistic Regression; DT: Decision Tree; GBDT: Gradient
Boosting Decision Tree; MLP: Multi-Layer Perceptron; NB/GNB: (Gaussian) Naïve Bayes; LDA:
Linear Discriminant Analysis.

We then proceeded with the potential of quantitative assessment of the included
studies. Again, we utilized the seminal study of Luo et al. [9] and evaluated the included
studies for reporting their training sets, testing sets, cross-validation method and external
validation sets. As surrogate metrics of performance for the studied AI algorithms, we
considered Accuracy, F1-score, AUROC (95% CI) and AUPRC (95% CI). Only 33 studies
out of the included 44 (75%) reported clearly on their training set [10,12,14–17,19,21–23,25–
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34,37,39,41–47,49–51,53], 19 mentioned a cross-validation method (43.2%) [10,14,15,17,21,22,
25,27–29,32–34,37,39,45,47,49,51], 36 reported their test set (81.8%) [10,11,13,15,17–23,25,27–
29,31,33,34,36–53], and only 4 had an external validation set (9.1%) [22,28,42,53]. Thirty-five
studies (79.5%) reported at least 1 performance metric in at least 1 dataset (training or
test). However, this feature was very heterogenous and non-consistent and we decided
not to proceed with further analysis (Supplemental Table S1). Regarding training sets,
the highest reported Accuracy value was 1.000 (SVM, MLP) [21,33] and the lowest was
0.540 (noisy threshold classifier) [32], the highest reported F1-score was 0.876 (SVC) [29]
and the lowest was 0.578 (FCRNA) [43], and the highest reported AUROC was 1.000
(algorithm not specified) [44], while the lowest one was 0.570 (CNN) [17]. With respect
to test sets, the highest reported Accuracy value was 1.000 (SVM) [21] and the lowest
was 0.310 (CNN) [23], the highest reported F1-score was 0.989 (Decision Tree, Random
Forest) [51] and the lowest was 0.578 (FCRNA) [43], and the highest reported AUROC
was 1.000 (SVM) [35], whilst the lowest one was 0.462 (Generative Adversarial Domain
Adaptation) [45]. Table 2 summarizes the prediction characteristics, the source of data, the
implemented AI algorithm(s), and the datasets for each of study included in our scoping
review.

4. Discussion

This scoping review deals with the current applications of artificial intelligence in the
diagnosis and management of gastrointestinal and pancreatic neuroendocrine neoplasms
(GEP-NENs). GEP-NENs are inherently rare neoplasms, as such an empirical approach to
their management would be unreliable. One of the advantages of AI and its application
through machine learning and deep learning is that it can integrate a vast amount of data
collected anywhere in the world (big data) and then render them applicable into clinical
practice in an individualized manner.

Despite the rarity of NENs, our research yielded a total of 44 relevant studies, the vast
majority of which have been published over the last three years. On the one hand, this
harmonizes with the general tendency of incremental accumulation of pertinent evidence
in Medicine [54,56], on the other hand it may reflect an increasing diagnosis rate of NENs,
as it has been documented by the SEER registry [2]. In any case, this establishment may
pave the way for future research.

Nevertheless, available studies have several limitations. First, a major restriction are
the small datasets of the majority of the studies. There were only 3 among them which used
data from large databases with populations of 13,830 [48], 10,580 [22] and 9,663,315 [27]
patients, whereas the rest of the studies had populations of 50–361 individuals. Another
serious point is that most of the studies did not provide clear information on the structure
of the prediction problem (i.e., study design, prognostic vs. diagnostic, classification vs.
regression), as such these pieces of information were derived after strenuous digest through
the text. Most importantly, there is a non-negligible number of studies with poorly defined
training and test sets. Another area of confusion is the lack of universal nomenclature
regarding the discrete data sets (i.e., training, validation and test). Some studies use the
terms “test set” and “validation set” interchangeably, whereas others are structured based
on all three datasets. Future studies should also present their findings on AI algorithm
performance in a robust way, including accuracy, F1-score, AUROC and AUPRC, because
each one measures different performance aspects and may be a better predictor than the
other ones under certain circumstances [57]. Also, such quantification will pave the way for
meta-analyses. Furthermore, the ultimate goal of AI is the implementation of the findings
of relevant studies into clinical practice. This can be achieved only if the performance of AI
algorithms is benchmarked against established tests. Given the small number of studies
with an external validation dataset, there is plenty of room for improvement in the field.
As mentioned earlier, future endeavors in the field should follow a universal structure as
per the existing guidelines, for purposes of both reproducibility and quality [9,58].
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As one proceeds from the structure to the content of relevant studies, as we docu-
mented, the most popular topics are tumor type identification and grade, tumor detection,
5-year survival, cell segmentation, disease progression, disease recurrence and Ki-67 scor-
ing. In a recent review, Yang et al. showed similar applications of AI with satisfactory
prediction accuracy in the diagnosis, risk stratification and prognosis of small intestinal
tumors [59]. Interestingly, this review shares 3 studies with the review in hand [14,21,33],
which is not surprising given the rarity of small intestinal tumors and the major share of
NENs among them. Kim et al. performed a similar analysis of the usefulness of AI in
gastric neoplasms [60].

The combination of radiomics, i.e., the multitude of features and technical parameters
that can be extracted from imaging studies, with the capability of big data processing
offered by AI has opened new frontiers and has led to an exponential burst of pertinent
literature. The fundamentals of the process of transforming an imaging study into data that
can be processed by an AI algorithm are image acquisition, segmentation (i.e., selection of
a region of interest in two dimensions), preprocessing (which allows data homogenization),
data extraction, data selection and modelization. Given the routine performance of a
constellation of imaging studies in clinical practice, this concept could contribute to the
prompt diagnosis of NENs even at a preclinical stage. Promising evidence from imaging of
pancreatic tumors with CT and MRI shows that this technology could find more widespread
application in the field of NENs [61]. Partouche et al. performed a systematic review and
meta-analysis of 161 studies on AI and imaging for Pan-NETs [62]. In accordance with our
review, they documented wide heterogeneity of practices, poor procedural compliance
with international guidelines, and poor reporting of clinical protocols. They reach the
conclusion that standardization and homogenization is the key to future research if AI
has the aspiration to enter clinical practice as a standard of care. In an another recent
review on the role of radiomics in Pan-NETs, Bezzi et al. also acknowledge the need for
further validations before widespread clinical adoption, nevertheless this discipline has
great potential in decision-making regarding diagnosis and management [63].

In a process similar to data extraction from imaging studies, histology images can
be utilized for processing with the aid of AI algorithms, following a pipeline from whole
slide images (WSIs), segmentation into tiles, biomarker visualization and classification.
Kuntz et al. recently published a review of 16 studies that used CNN in order to analyze
gastrointestinal cancer histology images and showed good performance metrics with
external validation, but none of them had clinical implementation for the time being [64].

The main limitation of the review in hand is the heterogeneity of the included studies,
on grounds of methodology, dataset allocation and performance benchmarking, which
did not allow for a meta-analysis. Structured publications are consequently mandatory in
order to facilitate reproducible evidence of high quality. Another predicament for our study
is set by the heterogeneity of NENs itself, which may raise methodological limitations.
Nevertheless, given the probing nature of our research, an inclusive search strategy was
inevitable. Future reviews could focus on specific histologic neuroendocrine types or
disease stages.

5. Conclusions

To our knowledge, this is the first attempt to systematize existing evidence on the
applications of AI in the field of NENs. Published studies focus mostly on diagnosis
(tumor detection, tumor identification and tumor grading) rather than management and
decision-making, mainly with the use of imaging studies and histology samples. Future
directions should take into serious consideration the reporting and quality prerequisites set
by already existing guidelines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12040874/s1, Table S1: Raw data.
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Abstract: Colorectal cancer is one of the most frequent malignancies. Colonoscopy is the de facto
standard for precancerous lesion detection in the colon, i.e., polyps, during screening studies or
after facultative recommendation. In recent years, artificial intelligence, and especially deep learning
techniques such as convolutional neural networks, have been applied to polyp detection and localiza-
tion in order to develop real-time CADe systems. However, the performance of machine learning
models is very sensitive to changes in the nature of the testing instances, especially when trying to
reproduce results for totally different datasets to those used for model development, i.e., inter-dataset
testing. Here, we report the results of testing of our previously published polyp detection model
using ten public colonoscopy image datasets and analyze them in the context of the results of other
20 state-of-the-art publications using the same datasets. The F1-score of our recently published
model was 0.88 when evaluated on a private test partition, i.e., intra-dataset testing, but it decayed,
on average, by 13.65% when tested on ten public datasets. In the published research, the average
intra-dataset F1-score is 0.91, and we observed that it also decays in the inter-dataset setting to an
average F1-score of 0.83.

Keywords: colorectal cancer; deep learning; convolutional neural network (CNN); polyp detection;
polyp localization

1. Introduction

In the last few years, significant research has been published on the application of deep
learning (DL) for colorectal polyp detection and characterization in colonoscopy images,
as demonstrated by the growing number of reviews on the topic [1–4]. Polyp detection is
way more advanced than characterization, and several randomized control trials (RCT)
have already been conducted [5–10], some of which are associated with the development
of commercial systems [3].

This difference is also reflected in the availability of public colonoscopy image datasets.
In the case of polyp detection, one of the most relevant events in this field was the cele-
bration of the MICCAI 2015 conference [11], since it hosted a sub-challenge on automatic
polyp detection for which the first and most well-known public colonoscopy datasets
were published. These are the CVC-ClinicDB [12], ETIS-Larib [13], and ASU-Mayo Clinic
Colonoscopy Video [14] datasets. Since then, several new datasets have been released,
significantly increasing the number publicly available data. In addition, in the particular
case of the CVC-ClinicDB dataset, its creators have extended it with three more public
datasets: CVC-ColonDB [15,16], CVC-PolypHD [15,16], and CVC-ClinicVideoDB [17,18].
The growth in the volume of public data has seen a remarkable increase in recent years
with the release of PICCOLO [19], Kvasir-SEG [20], LDPolypVideo [21], SUN [22], and
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KUMC [23], each including several thousands of polyp images, with the latter three ex-
ceeding the total volume of images published so far. All these datasets include annotations
of the polyp locations as either bounding boxes or binary masks and, therefore, are suit-
able for polyp localization. In contrast, there are only three public datasets suitable for
polyp characterization. The first dataset was published by Mesejo et al. [24] in 2016 and,
since then, only the PICCOLO [19] and KUMC [23] datasets have included the necessary
annotations for this task.

In our previous review [1], we collected the most relevant studies applying DL for
polyp detection and characterization in colonoscopy and analyzed them from a technical
point of view, focusing on the low-level details for the implementation of the DL models.
Together with the review, we created a GitHub repository (https://github.com/sing-
group/deep-learning-colonoscopy (accessed on 22 February 2022)) containing the most
relevant information, especially the performance metrics reported by each study and the
test datasets used. Since then, we have been continuously updating the repository to add
new works and datasets as they were published. As a result of carrying out the work
presented here, we improved the repository by adding information about the train datasets
used in each analysis and by detailing the type of evaluation carried out in polyp detection.
It is important to note that we do not consider preprints for inclusion in the repository
due to the high activity in the field and the fact that we are not able to track and curate
all of them in an appropriate and sustainable way. Nevertheless, there are some recent
preprints, such as the work of Ali et al., 2021, presenting the PolypGen [25] dataset, that
will be included as soon they are published in a peer-reviewed journal.

Despite this, comparing the models developed in different works is not straightfor-
ward, since they use different ways of assessing their performance. Most of them use
private datasets for model development and testing, hindering the reproducibility. Other
works use only public datasets for both model development and testing. Finally, there
are hybrid works where the performance of a model developed with a private dataset is
evaluated on a public dataset.

In a recent work, we published a real-time polyp detection model based on a YOLOv3 [26]
pretrained with PASCAL VOC datasets [27] that we fine-tuned using a private dataset
(28,576 annotated images from 941 different polyps). This model achieved an F1-score of
0.88 (recall = 0.87, precision = 0.89) in a bounding-box-based evaluation using still images
(a test partition of our private dataset).

Nevertheless, the performance of ML models is very sensitive to changes in the
nature of the testing instances when compared to those instances used for developing
them, especially when trying to reproduce results on completely different datasets to those
used for model development (inter-dataset testing). Aiming at gaining insights for taking
further steps for improving our model following a data-centric approach, in this work, we
systematically evaluate the performance of our published model, without retrain, on ten
public datasets. This is, to the best of our knowledge, the first time that such extensive
evaluation has been carried out. In addition, we also include a comparison of published
research on polyp localization, including the best performances reported by each study on
public datasets. In this regard, there is interest in comparing intra-dataset performances
(i.e., a performance evaluation on a test split of the dataset used for model development,
either private or public) versus inter-dataset performances (i.e., a performance evaluation
on a dataset different than the one used for model development).

2. Materials and Methods

2.1. Our Polyp Localization Network

In a previous work [26], we reported the results of training and evaluating a real-time
automatic polyp detection system based on YOLOv3. For this purpose, in the context of
the PolyDeep project (http://polydeep.org (accessed on 22 February 2022)), we created
a private dataset containing 28,576 polyp images from 941 different polyps, out of which
21 046 were acquired under white light (WL) and 7530 under narrow-band imaging (NBI)
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light. The images were manually annotated by expert endoscopists to specify the polyp
locations as bounding boxes. This image dataset is part of a larger collection of anno-
tated polyp videos and images, named PIBAdb, which is already available through the
IISGS BioBank (https://www.iisgaliciasur.es/home/biobanco/cohorte-pibadb (accessed
on 22 February 2022)).

For model development, we set aside a test partition containing 30% of the polyps
(283; 8658 images) to perform a bounding-box-based evaluation. The remaining 70% was,
in turn, split into train (70%; 460 polyps; 13,873 images) and validation (30%; 198 polyps;
6045 images) partitions. It is important to note that this image dataset only includes polyp
images with exactly one polyp.

The YOLOv3 model used as a basis was the Apache MxNet [28] implementation
that the GluonCV toolkit [29] provides pre-trained with the PASCAL VOC 2007 and 2012
challenges’ [27] train and validation datasets. This base model was fine-tuned using the
train partition of our dataset, achieving an F1-score of 0.88 (recall = 0.87, precision = 0.89)
and an average precision (AP) of 0.87 in a bounding-box-based evaluation using the test
partition. The results are on par with other state-of-the-art models, and the model was able
to process frames at a rate of 0.041 s/frame, thus being able to operate in real time.

This model was used, without retrain, to carry out the experiments described in
Section 2.4 in order to evaluate its performance on different public datasets. Although the
dataset used to develop the model does not include images with multiple polyps or images
without polyps, given the nature of YOLOv3, the model is able to predict multiple polyps
when necessary, as it will be shown.

2.2. Public Colonoscopy Image Datasets and Polyp Localization Studies Selection

Figure 1 shows the criteria for selecting public colonoscopy image datasets and polyp
localization studies. This selection started with the 44 studies and 13 public datasets
collected as of February 2022 in the GitHub repository associated with our review on DL
for polyp detection and classification in colonoscopy, mentioned above.

Since one of our objectives is to draw a comparison of published research that reports
performance metrics of public datasets, 17 studies were excluded in the first place because
they only evaluated the models on private datasets. In addition, two datasets were also
excluded for different reasons: (i) the CP-CHILD dataset [30] was also excluded since
it only provides frames labeled as “polyp” and “non-polyp” and not a suitable ground
truth including the polyp localizations; and (ii) the ASU-Mayo Clinic Colonoscopy Video
dataset [14] was excluded since we were not able to access the dataset after repeated
attempts to contact the authors without obtaining a response. Because of the exclusion of
the ASU-Mayo Clinic Colonoscopy dataset, three studies that used it were also discarded.

From the remaining 23 studies, the following three were excluded: (i) the study by
Misawa et al., 2021 [22] was excluded since they evaluate the detection performance instead
of the localization performance, despite the fact they were using an object detection network
architecture (YOLOv3); and (ii) the studies from Tashk et al., 2019 [31] and Sánchez-Peralta
et al., 2020 [19] were excluded since they performed polyp segmentation and, therefore,
provide pixel-based performance metrics, which are not comparable with the bounding-
box-based performance metrics of the polyp localization studies. This latter cause of
exclusion also motivated the discard of the CVC-EndoSceneStill dataset.

So, after applying the selection criteria seen in Figure 1, 20 studies and 10 public
datasets were selected for evaluating the performance of our polyp localization model.
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Figure 1. Criteria for selecting polyp localization studies and public colonoscopy image datasets.

2.3. Public Colonoscopy Image Datasets Description and Preprocessing

Table 1 shows the most relevant details of the ten public colonoscopy image datasets se-
lected for the analysis. Regarding the type of ground truth provided, seven of them provide
polyps annotated with binary masks, namely CVC-ClinicDB [12], CVC-ColonDB [15,16],
CVC-PolypHD [15,16], ETIS-Larib [13], CVC-ClinicVideoDB [17,18], and PICCOLO [19].
In these cases, we converted the binary masks into bounding boxes to be able to ana-
lyze them with our model (the procedure is described below in this section). Three of
them provide polyp locations as bounding boxes, namely the KUMC [23], SUN [22], and
LDPolypVideo [21] datasets. Finally, Kvasir-SEG [20] provides both segmentation and
localization information.

The public datasets show a lot of variability in terms of number of images, number
of polyps, image resolution, capturing device, etc., as shown in Table 1. The trend in the
most recent datasets is to include non-polyp images. In addition, as can be seen in Figure 2,
which shows one random image of each dataset included, the variability in the appearance
of the images themselves and the polyps contained in them is also high (e.g., Kvasir-SEG
contains images with superimposed text and/or the presence of instruments, etc.).

As explained before, almost all datasets provide polyp locations as binary masks, and
thus are suitable for object segmentation models. Since our model works with bounding
boxes information, the binary masks were converted into this representation using the
scikit-image Python library. Figure 3 shows an example of this conversion procedure,
where it can be seen that the scikit-image functions allow obtaining the minimum bounding
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boxes that cover the original binary masks. In addition, the organization of the images
and annotations in the datasets was also adapted to the PASCAL VOC dataset format
that our evaluation pipeline uses as input. This adaptation process usually required three
steps: (i) folder reorganization, in which all original and mask images are moved into two
separate folders if necessary; (ii) format conversion, to covert the original images to the
JPG format if necessary; and (iii) conversion to PASCAL VOC dataset format, in which
the dataset is adapted to this format, including the transformation of binary masks into
bounding boxes when needed.

Table 1. Descriptions of the ten public colonoscopy image datasets for polyp localization.

Dataset
Paper

Publication
Year

Description Resolution Ground Truth
Presence of

Multiple
Polyp Images

Presence of
Non-Polyp

Images

CVC-ClinicDB
[12] 2015

612 sequential WL
images with polyps

extracted from
31 sequences

(23 patients) with
31 different polyps

384 × 288 Binary mask to
locate the polyp yes no

CVC-ColonDB
[15,16] 2012

300 sequential WL
images with polyps

extracted from
13 sequences
(13 patients)

574 × 500 Binary mask to
locate the polyp no no

CVC-PolypHD
[15,16] 2018 56 WL images 1920 × 1080 Binary mask to

locate the polyp yes no

ETIS-Larib [13] 2014

196 WL images with
polyps extracted from

34 sequences with
44 different polyps

1225 × 966 Binary mask to
locate the polyp yes no

Kvasir-SEG [20] 2020 1000 polyp images 332 × 487
1920 × 1072

Binary mask
and bounding
box to locate

the polyp

yes no

CVC-
ClinicVideoDB

[17,18]
2017

11,954 images in total
with 10,025 images

of polyps
384 × 288 Binary mask to

locate the polyp no yes

PICCOLO [19] 2020

3433 images (2131 WL
and 1302 NBI) from

76 lesions from
40 patients

854 × 480
1920 × 1080

Binary mask to
locate the polyp yes yes

KUMC dataset
[23] 2021

37,899 images in total,
including the

CVC-ColonDB,
ASU-Mayo Clinic

Colonoscopy Video, and
Colonoscopic Dataset

datasets

Various
resolutions

Bounding box
to locate

the polyp
no yes

SUN [22] 2021
49,136 images with
polyps. The polyp

samples of 100 cases
1240 × 1080

Bounding box
to locate

the polyp
no no *

LDPolypVideo
[21] 2021

160 videos
(40,187 frames: 33,876

polyp images and
6311 non-polyp images)

with 200 labeled polyps.

560 × 480
Bounding box

to locate
the polyp

yes yes

* The SUN dataset contains 109,554 non-polyp frames that were not downloaded for our experiments.
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Figure 2. Examples of polyp images from the included datasets. Upper row (left to right): CVC-
ClinicDB, CVC-ColonDB, CVC-PolypHD, ETIS-Larib, and Kvasir-SEG. Bottom row (left to right):
CVC-ClinicVideoDB, PICCOLO, KUMC, SUN, and LDPolypVideo.

The scripts to make such conversions were published in the following GitHub repos-
itory: https://github.com/sing-group/public-datasets-to-voc (accessed on 22 February
2022). The specific process of converting each of the datasets to this common format is
discussed below. In Supplementary Table S1, we summarize the most relevant information
regarding the datasets structure (number and image formats, scripts used to process them,
etc.). This table also shows the number of bounding boxes obtained for each dataset along
with the average relative bounding box size with respect to the whole image.

 
Figure 3. Conversion from binary mask annotations to bounding boxes. First column: original polyp
images. Second column: binary mask annotations. Third column: obtained bounding box annotations
over the original polyp images.

The CVC-ColonDB and CVC-ClinicDB datasets share the same folder structure and
include several mask types for each image. The original polyp images are provided
in their own folder, while the images of each mask type are placed in separate folders.
All the images are provided in a BMP format, except for the “gtpolyp” mask images in
CVC-ClinicDB, which are provided in a TIFF format. For our experiment, the “gtpolyp”
mask images were used. The original polyp images were first converted to JPG using the
convert_format.sh script. Finally, the dataset was converted into the PASCAL VOC dataset
format using the CVC-ToVOC.py script.
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The CVC-ClinicVideoDB dataset is structured as two folders, containing development
(train and validation) and test partitions, and provides original polyp and mask images
in a PNG format. Because the test partition does not include annotations, its images were
discarded, and therefore only the images from the development partition were used. In
this partition, original polyp and mask images are stored in separate folders by polyp. The
original polyp and mask images were first separated into two different folders using the
separate_folder_ClinicVideo.sh script, and then the original polyp images were converted
into a JPG format using the convert_format.sh script. Finally, the dataset was converted
into the PASCAL VOC dataset format using the ClinicVideoToVOC.py script.

The CVC-PolypHD dataset provides a single folder containing both the original polyp
and mask images in BMP and TIFF formats, respectively. The original polyp and mask im-
ages were first separated into two different folders using the separate_folder_PolypHD.sh
script, and then the original polyp images were converted into a JPG format using the
convert_format.sh script. Finally, the dataset was converted into the PASCAL VOC dataset
format using the PolypHDToVOC.py script.

The ETIS-Larib dataset is structured as two folders containing the original polyp and
binary mask images in a TIFF format. The original polyp images were first converted into a
JPG format using the convert_format.sh script, and then the dataset was converted into the
PASCAL VOC dataset format using the ETIS-LaribToVOC.py script.

The Kvasir-SEG dataset is structured as two folders containing the original polyp
and binary mask images in a JPG format and a JSON file that contains the bounding box
locations of each image. The conversion of this dataset to the PASCAL VOC dataset format
was carried out using the KvasirToVOC.py script.

The PICCOLO dataset is structured as three folders, containing the train, validation,
and test partitions, and provides original polyp and mask images in PNG and TIFF formats,
respectively. In this case, the original polyp and binary mask images were moved into
two single separate folders using the merge_PICCOLO.sh script in order to get rid of the
partitions and be able to use the whole dataset as a test set. Then, the original polyp images
were converted into a JPG format using the convert_format.sh script, and the dataset was
converted into the PASCAL VOC dataset format using the PICCOLOToVOC.py script.

The KUMC dataset is structured as three folders, containing the train, validation, and
test partitions, respectively, which are already in the PASCAL VOC dataset format. In
this case, we grouped the images into a single folder (i.e., merge train, validation, and
test partitions) in order to be able to use the entire dataset as a test set. It is important to
note that this dataset includes some annotations that do not have an image associated and,
therefore, we excluded those annotations to create a usable version of this dataset. Also,
this dataset includes labels for “adenomatous” and “hyperplastic” polyps, which were also
merged into a single “polyp” annotation to be able to use them with our model (trained to
locate images of class “polyp”). The whole conversion process of this dataset was carried
out using the KUMCToVOC.sh script.

The SUN dataset provides one folder for each polyp, containing one or more images
of the polyp in a JPG format and a text file with the bounding box location and the class
(polyp vs. non-polyp) of each image. In this case, we grouped the images into a single
folder in order to be able to use the entire dataset as a test set, using the merge_SUN.sh
script. Finally, the dataset was converted into the PASCAL VOC dataset format using the
SUNToVOC.sh script.

Finally, the LDPolypVideo dataset is structured as two folders, containing the devel-
opment (train and validation) and test partitions, and provides original polyp images in a
JPG format and a text file with the bounding box location of each image. In this case, we
grouped the images into a single folder in order to be able to use the entire dataset as a test
set, using the merge_and_rename_LDPolypVideo.sh script, which also renames the original
image names to avoid duplicates when all images are put in the same folder. Finally, the dataset
was converted into the PASCAL VOC dataset format using the LDPolypVideoToVOC.py script.
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2.4. Experiments

The experiments consisted in evaluating the performance of our model (presented in
Section 2.1) in the ten public colonoscopy image datasets selected, without retrain. The
model was developed using a set of Compi pipelines [32,33] available at this GitHub
repository: https://github.com/sing-group/polydeep-object-detection (accessed on
22 February 2022). In order to carry out the experiments presented in this work, the test
pipeline (test.xml) was used to load the trained model and analyze the performance on
the ten public datasets after converting them to the PASCAL VOC format (as described in
Section 2.3). This allowed us to obtain the performance results presented in Section 3.

2.5. Performance of Studies on Public Colonoscopy Image Datasets

Table 2 includes all published studies reporting bounding-box-based performance
metrics (i.e., comparing predicted bounding boxes against the true bounding boxes of
the ground truth) in at least one of the selected public colonoscopy image datasets, as
resulted from the selection process explained in Section 2.2. These data were used then to
analyze the performance of various models on the public datasets included in this study
and compare our detection model with them. It is important to note that some studies
evaluate the performance of several models and, in this case, we selected only the metrics
of the best performing ones to perform our analyses and compare them.

The table includes one row for each study experiment with the following information:
training set, testing set, recall, precision, F1-score, and F2-score. It is important to note that:
(i) we only included the performance metrics for the selected public datasets, although
some works reported performances with other datasets (e.g., Shin Y. et al., 2018 [34] reports
the performance for the ASU-Mayo Clinic Colonoscopy Video, but it is not included, as
we could not access the dataset); (ii) we included the performance metrics for private
dataset partitions (Wang et al., 2018 [35], Wittenberg et al., 2019 [36], and Young Lee J. et al.,
2020 [37]) since they able to compare those studies against us.

Each row of Table 2 (i.e., experiment performance) can be categorized as: (i) intra-
dataset performance, when the evaluation was carried out on a test split of the dataset used
for model development; or (ii) inter-dataset performance, when the performance evaluation
was carried out on a dataset different than the one used for model development. From the
20 studies, there are 10 that only show their performance results for evaluating one public
dataset, 8 that use at least two public datasets, 2 that use three datasets, and 1 that uses four
public datasets.

Table 2. Performance results of studies evaluating DL models for polyp localization in at least one of
the selected public colonoscopy image datasets.

Paper Train Test
Results

Recall Precision F1-Score F2-Score

Brandao et al., 2018 [38]
CVC-ClinicDB +

ASU-Mayo
ETIS-Larib 0.90 0.73 0.81 0.86

CVC-ColonDB 0.90 0.80 0.85 0.88

Zheng Y. et al., 2018 [39] CVC-ClinicDB +
CVC-ColonDB ETIS-Larib 0.74 0.77 0.76 0.75

Shin Y. et al., 2018 [34] CVC-ClinicDB
ETIS-Larib 0.80 0.87 0.83 0.82

CVC-Clinic VideoDB 0.84 0.90 0.87 0.85

Wang et al., 2018 [35] Private
CVC-ClinicDB 0.88 0.93 0.91 0.89

Private * 0.94 0.96 0.95 0.95
Qadir et al., 2019 [40] CVC-ClinicDB CVC-ClinicVideoDB 0.84 0.90 0.87 0.85
Tian Y. et al., 2019 [41] Private ETIS-Larib 0.64 0.74 0.69 0.66
Ahmad et al., 2019 [42] Private ETIS-Larib 0.92 0.75 0.83 0.88

Sornapudi et al., 2019 [43] CVC-ClinicDB
ETIS-Larib 0.80 0.73 0.76 0.79

CVC-ColonDB 0.92 0.90 0.91 0.91
CVC-PolypHD 0.78 0.83 0.81 0.79
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Table 2. Cont.

Paper Train Test
Results

Recall Precision F1-Score F2-Score

Wittenberg et al., 2019 [36] Private
ETIS-Larib 0.83 0.74 0.79 0.81

CVC-ClinicDB 0.86 0.80 0.82 0.85
Private 0.93 0.86 0.89 0.92

Jia X. et al., 2020 [44]
CVC-ColonDB CVC-ClinicDB 0.92 0.85 0.88 0.91
CVC-ClinicDB ETIS-Larib 0.82 0.64 0.72 0.77

Ma Y. et al., 2020 [45] CVC-ClinicDB CVC-ClinicVideoDB 0.92 0.88 0.90 0.91
Young Lee J. et al.,

2020 [37] Private
CVC-ClinicDB 0.90 0.98 0.94 0.96

Private 0.97 0.97 0.97 0.97

Podlasek J. et al., 2020 [46] Private

ETIS-Larib 0.67 0.79 0.73 0.69
CVC-ClinicDB 0.91 0.97 0.94 0.92
CVC-ColonDB 0.74 0.92 0.82 0.77
Hyper-Kvasir 0.88 0.98 0.93 0.90

Qadir et al., 2021 [47] CVC-ClinicDB
ETIS-Larib 0.87 0.86 0.86 0.86

CVC-ColonDB 0.91 0.88 0.90 0.90

Xu J. et al., 2021 [48] CVC-ClinicDB
ETIS-Larib 0.72 0.83 0.77 0.74

CVC-ClinicVideoDB 0.66 0.89 0.76 0.70

Pacal et al., 2021 [49] CVC-ClinicDB
ETIS-Larib 0.83 0.92 0.87 0.84

CVC-ColonDB 0.97 0.96 0.96 0.97
Liu et al., 2021 [50] CVC-ClinicDB ETIS-Larib 0.88 0.78 0.82 0.85

Li K. et al., 2021 [23] KUMC KUMC-Test ** 0.86 0.91 0.89 0.87

Ma Y. et al., 2021 [21] CVC-ClinicDB
CVC-ClinicVideoDB 0.64 0.85 0.73 0.67

LDPolypVideo 0.47 0.65 0.55 0.50

Pacal et al., 2022 [51]

SUN + PICCOLO +
CVC-ClinicDB ETIS-Larib 0.91 0.91 0.91 0.91

SUN SUN *** 0.86 0.96 0.91 0.88
PICCOLO PICCOLO 0.80 0.93 0.86 0.82

* Wang et al., 2018 evaluated the test performance using a different private dataset from the one used for
model training. However, we consider this as an intra-dataset experiment since the private dataset for model
development was collected in the Endoscopy Center of Sichuan Provincial People’s Hospital between Jan-
uary 2007 and December 2015 and the private test dataset was collected in the same center using the same
devices between January and December 2016, and we understand that the distribution should be very similar.
** Li K. et al., 2021 used a partition of the KUMC dataset as testing set in their experiments (KUMC-Test in the table).
*** Pacal et al., 2022 used a partition of the SUN dataset that includes “non-polyp” images and, therefore, it is not
comparable to our performance with the SUN dataset, which includes all polyp images.

Among the public datasets, as Figure 4 shows, the ETIS-Larib dataset was the most
widely used for testing the detection models (14 out of 20 studies), probably due to the
fact that it was one of the test datasets for the automatic polyp detection subchallenge
at MICCAI 2015 [11]. The highest F1-score in this dataset was achieved by Pacal et al.,
2022 [51] (0.91). The next datasets used by the greatest number of studies (5 out of 20)
were CVC-ColonDB, for which the highest F1 (0.96) was achieved by Pacal et al., 2021 [49],
CVC-ClinicDB, for which both Young Lee J. et al., 2020 [37] and Podlasek J. et al., 2020 [46]
achieved an F1 of 0.94, and CVC-ClinicVideoDB, for which Ma Y. et al., 2020 [45] achieved
the top F1-score of 0.90.
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Figure 4. Usage of datasets for model evaluation among studies in Table 2. Each study using several
datasets contributes one point for each testing dataset used.

3. Results and Discussion

Table 3 shows the performance results of our model when evaluated on the ten
selected public colonoscopy image datasets. As shown in Figure 5, the F1-score of our
model decayed in all public datasets with respect to the performance in our private test
partition (F1 = 0.88, recall = 0.87, precision = 0.89). The average F1 decay was 13.65%,
reaching its maximum with the whole LDPolypVideo dataset (F1 = 0.52), for which we also
had the lowest recall (0.49).

Table 3. Performance results of our model when evaluated on the ten selected public colonoscopy
image datasets.

Dataset
Number of

Images for Test

Results

Recall Precision F1-Score F2-Score AP

CVC-ClinicDB 612 0.82 0.87 0.85 0.83 0.82
CVC-ColonDB 300 0.84 0.81 0.83 0.83 0.85
CVC-PolypHD 56 0.75 0.86 0.80 0.77 0.79

ETIS-Larib 196 0.72 0.71 0.72 0.72 0.69
Kvasir-SEG 1000 0.78 0.84 0.81 0.82 0.79
PICCOLO 3433 0.60 0.76 0.67 0.62 0.63

CVC-ClinicVideoDB 11,954 0.80 0.75 0.77 0.79 0.77
KUMC dataset 37,899 0.81 0.83 0.82 0.81 0.83

KUMC dataset–Test 4872 0.76 0.81 0.78 0.77 0.79
SUN 49,136 0.78 0.83 0.81 0.79 0.81

LDPolypVideo 40,186 0.49 0.56 0.52 0.50 0.44

The three datasets in which our model decayed the most were LDPolypVideo (−40.75%),
PICCOLO (−24.27%), and ETIS-Larib (−18.54%). These datasets share two characteristics
that the private dataset used to develop and test our model does not have: (i) the presence
of non-polyp images (LDPolypVideo and PICCOLO), which may decrease our precision as
we are showing more test images without polyps and our model has more chances to emit
false positives; and (ii) the presence of images with multiple-polyp images (LDPolypVideo,
PICCOLO, and ETIS-Larib), which may decrease our recall even though our model is able
to locate multiple polyps (e.g., PICCOLO contains almost 10% of images annotated with
multiple polyps, and our recall in this dataset (0.60) was significantly lower than in others).
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Figure 5. F1 decay (%) in public colonoscopy image datasets compared to the performance of our
model in our private dataset reported in Nogueira-Rodríguez et al., 2021 (0.88) [26].

The low performance in the LDPolypVideo dataset is not surprising, as authors state
in their publication that the dataset contains images selected to include a high degree of
diversity in polyp morphology, multiple polyps, motion blur, and specular reflections, in
order to create a challenging dataset [21]. In fact, they fine-tuned several state-of-the-art ob-
ject detection models (including YOLOv3, the same as us) using the CVC-ClinicDB dataset
and evaluated their performance using the CVC-ClinicVideoDB dataset and their new
LDPolypVideo dataset, obtaining a significantly lower performance in the LDPolypVideo
dataset evaluation with all models. Their best F1-score (0.55) in the LDPolypVideo dataset
was obtained using RetinaNet, while their YOLOv3 model obtained an F1-score of 0.41
(compared to our F1-score of 0.52).

Intrigued by the low F1-score in the whole PICCOLO dataset, we analyzed the perfor-
mance of our model in the three original partitions of the dataset separately, obtaining an
F1-score 0.71 in the train partition (recall = 0.63, precision = 0.80, 2203 images), an F1-score
0.53 in the validation partition (recall = 0.49, precision = 0.61, 897 images), and an F1-score
0.74 in the test partition (recall = 0.69, precision = 0.80, 333 images). As can be seen, the
performance in the validation partition was significantly worse than in the other two parti-
tions, which we believe to be the main cause of the performance decrease when testing with
the whole dataset. Figure 6 shows several incorrect predictions of our model against the
ground truth in the train, validation, and tests splits of the PICCOLO dataset. We noted that
the validation split contains many big bounding boxes as ground truth, and we computed
the average relative size of the bounding boxes with respect to the whole image in the three
partitions, obtaining 0.20 in train, 0.33 in validation, and 0.16 in test. Thus, bounding boxes
in the validation set are clearly bigger than in the other two partitions. We also observed
the majority of polyps in the validation partition look like the three images shown in the
middle column of Figure 6, while polyps in our dataset look like the three images taken
from the PICCOLO training set in the first column. We understand that polyp images
in the validation set, where our model decayed the most, follow a different distribution
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than the ones in our private training set. Nevertheless, some of these errors (seen in the
bottom-left or upper-right images in Figure 6) are caused because the intersection between
the predicted and the actual bounding boxes is below the threshold, but in practical terms,
an endoscopist would be able to localize the polyp in real-time when using the model.

 

Figure 6. Incorrect prediction examples of our detection model over the different splits of the
PICCOLO dataset. From left to right, there are three examples taken from the train, validation, and
test splits. Predicted boxes are depicted in green, whereas ground truth boxes are in white.

Only 3 out of the 20 studies had the same exact setup that we had: training the
model with a private dataset, testing it with a test partition of the private dataset (intra-
dataset performance), and finally testing it using one or more public datasets (inter-dataset
performance estimation). As shown in Figure 7, the F1-score also decayed in those studies
when analyzing the public datasets with respect to the private test set. In the case of the
CVC-ClinicDB dataset, used by the four studies, the average decay was about 5%. In the
ETIS-Larib dataset, the Wittenberg et al., 2019 [36] study decayed by 11.24%, compared to
our 18.54% decrease.

With the aim of further exploring the intra-to-inter performance decay in other studies,
we analyzed the evaluations on public datasets collected in Section 2.5. Such evaluations are
heterogeneous regarding the datasets used for training and testing, the models used, and
other similar factors. Thus, we compared the intra-dataset performances (i.e., a performance
evaluation on a test split of the dataset used for model development, either private or
public) against the inter-dataset performances (i.e., a performance evaluation on a dataset
different than the one used for model development). As Figure 8A shows, the intra-dataset
performances were usually higher than the inter-dataset performances. Figure 8B shows
the inter-dataset distribution disaggregated by the public dataset on which the evaluation
was carried out. It is important to note that three public datasets (PICCOLO, KUMC, and
SUN) are under the intra-dataset performance box, as they are only used in intra-dataset
setups. These results are in line with the results obtained in our experiment that show a
decay in the F1-score when the evaluation was carried out on a different test dataset.
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Figure 7. Comparison of F1-score decay on public colonoscopy image datasets of those studies
reporting their performance for the private test set partition.

Figure 8. (A) Comparison of intra-dataset and inter-dataset performances of the 20 selected studies.
(B) Same as A, with the inter-dataset performances disaggregated by dataset.

Interestingly, the two datasets in which the decay of our model was lower (CVC-
ClinicDB and CVC-ColonDB) are also two of the three datasets in which the published
studies obtained performances closer to the intra-dataset ones; also, two of the three
datasets in which the performance was worse in the published studies (ETIS-Larib and
LDPolypVideo) were two of the most challenging for our model. In the light of these
observations, we correlated our performance in the seven datasets shown in Figure 8B
with the median inter-dataset performances of the published studies. Figure 9 allows us to
observe that such correlation exists (p-value < 0.001), showing that our exhaustive testing
reveals the inherent degree of difficulty of the public datasets; a single model (ours) showed
the same behavior as the aggregation of the published research, taking into account that
studies are heterogeneous (different models and different training datasets) and that we
picked the highest F1-scores of those performing several analyses.
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Figure 9. Correlation between the median inter-dataset F1-score of published studies and ours in
seven public colonoscopy image datasets.

4. Conclusions

In this work, we performed the biggest systematic evaluation of a polyp localization
model trained using a private dataset and tested it on ten public colonoscopy image datasets,
including the most recent PICCOLO, SUN, and KUMC datasets. The biggest evaluation
to date was carried out by Podlasek J. et al., 2020 [46], who tested their model with four
datasets. As a result of performing such an evaluation, we have published a set of scripts
for converting the public datasets into the PASCAL VOC format for polyp localization,
providing a valuable resource for other researchers aiming to perform similar analyses.

Our experiments and the analysis of the published research allowed us to observe
that there is a performance decay when performing an inter-dataset evaluation. The
F1-score of our model was 0.88 when evaluated on a private test partition and decayed, on
average, 13.65% when tested on the ten public datasets selected. In the published research,
the average F1-score was 0.91 when the evaluation was performed on a test split of the
dataset used for mode development, compared to the 0.83 average F1 obtained when such
models were tested with external datasets, keeping in mind that these F1-scores are the
best ones among the reported performances. This confirms our initial hypothesis that
models developed using one dataset are sensitive to changes in the nature of the testing
instances. Also, we observed that this decay is associated with the test dataset; while
studies on datasets such as CVC-ClinicDB and CVC-ColonDB obtain F1-scores closer to
their development performances, other datasets such as ETIS-Larib and LDPolypVideo, are
more challenging.

In light of these findings, our future work to keep improving our model will be data-
centric. In the first place, we will use an updated version of our dataset (now available
through the IISGS BioBank: https://www.iisgaliciasur.es/home/biobanco/cohorte-pibadb
(accessed on 22 February 2022)) that includes more annotated images for polyp localization.
In this updated version, we have also included annotated non-polyp images, which some
studies also used during training to improve the performance of the model [22]. Finally,
we will also evaluate the possibility of augmenting our training data with public datasets,
as some studies have attempted [51], giving priority to those datasets where our model
decays the most, such as ETIS-Larib, PICCOLO, or LDPolypVideo. Doing this would also
allow us to train our model using images annotated with multiple polyps.
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Abstract: Colonoscopy is the gold standard to detect colon polyps prematurely. Early detection,
characterization and resection of polyps decrease colon cancer incidence. Colon polyp missing rate
remains high despite novel methods development. Narrowed-band imaging (NBI) is one of the image
enhance techniques used to boost polyp detection and characterization, which uses special filters to
enhance the contrast of the mucosa surface and vascular pattern of the polyp. However, the single-
button-activated system is not convenient for a full-time colonoscopy operation. We selected three
methods to simulate the NBI system: Color Transfer with Mean Shift (CTMS), Multi-scale Retinex
with Color Restoration (MSRCR), and Gamma and Sigmoid Conversions (GSC). The results show
that the classification accuracy using the original images is the lowest. All color transfer methods
outperform the original images approach. Our results verified that the color transfer has a positive
impact on the polyp identification and classification task. Combined analysis results of the mAP and
the accuracy show an excellent performance of the MSRCR method.

Keywords: colonoscopy; narrow-band image; colon polyp; Retinex; gamma and sigmoid conversion; YOLO

1. Introduction

Colonoscopy is considered as the standard method for the diagnosis and surveil-
lance of colon polyps. Subsequent polypectomy after colonoscopy is the most effective
colorectal cancer (CRC) prevention [1]. Early colonoscopy detection and removal of polyps
reduces the incidence of colorectal cancer (CRC) by 76% [2]. The most common polyps are
hyperplastic and adenomatous. According to the American Society for Gastrointestinal
Endoscopy, the “resect and discard” and “diagnose and leave” strategies propose that the
hyperplastic polyp need not to be removed. Since hyperplastic polyps are most diminutive
and non-malignant, these strategies save a great deal of resection time and pathologic anal-
ysis cost [3,4]. The traditional white light (WL) colonoscopy yields an adenoma miss rate of
26%, especially for those <5 mm in size [5,6]. Adenomatous polyps are the primary lesion
which evolve to CRC and develop to an interval cancer missed in an initial colonoscopy.
The identification and resection of adenomatous polyp is essential to prevent CRC [7].
Innovative methods have been introduced to decrease polyp and adenoma miss rate [8,9].

As the field of colonoscopy technology thrives, new diagnostic modalities have been
introduced to improve polyp detection. Image-enhanced endoscopy (IEE) is one of the state-
of-the-art tools. Digital IEE includes Olympus narrowed-band imaging (NBI), PENTAX
i-scan, and FUJI linked-color imaging (LCI), which improves the diagnostic ability by
enhancing polyp mucosa microstructure and microvasculature. The Olympus NBI filters
the specific wavelengths to enhance mucosa and vascular pattern. PENTAX i-scan is a real
time post-image software-driven modification of contrast, hue and sharpness to enhance
polyp mucosa. The NBI remains the most adopted and widely used method at present [10].
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NBI incorporated Olympus colonoscopy has a superb ability to detect and identify
hyperplastic and adenomatous polyps. This one-button-activated electrical system is
an innovative image technology and aids endoscopists to better detect and characterize
polyps [11]. NBI technology allows only blue and green lights to pass through a filter placed
in the colonoscope light source. The NBI wavelength of the trichromatic optical filters is
between 415 and 540 nm with a bandwidth of 30 nm, which has a shallow penetration
depth [12]. Two peaks of tissue hemoglobin are absorbed with the wavelength at 415 nm
(blue light) and 540 nm (green light) [13]. The narrowed spectrum light highlights the
mucosa surface microvasculature pattern to differentiate non-neoplastic (hyperplastic) from
neoplastic (adenoma) polyp [14,15] (Figure 1). However, the bowel content of fecal material,
debris or filthy water appears bright red color in contrast to the deep dark brown normal
mucosa in the NBI environment, which is a visual irritant. The full-time activated NBI
system might trigger visual fatigue and discomfort owing to the high color contrast image.
Studies indicate that NBI increases polyp and adenoma detection rate with the full-time
activated system [12,16–18]. In the real world, endoscopists only activate the NBI system in
the circumstances of analyzing the type and margin of the polyp. Switching between WL
and NBI back and forth during the withdrawal phase in a colonoscopy is time consuming
and not cost-effective. As a consequence, endoscopists leave the system off in most of the
colonoscopy observation period. The polyp and adenoma detection rates are not increased
with the NBI system in daily clinical practice. In the era of artificial intelligence, we can
overcome this issue with a tailor-made image enhancement CNN model to boost the polyp
detection and classification without affecting an endoscopist’s routine performance.

Figure 1. Physics of the NBI endoscopy system. The optical filter on the xenon lamp filters the red
light to enhance the vascular and mucosa surface pattern.

The output connection of the Olympus NBI system from the colonoscopy equipment
to an external computer is not feasible. We need to convert the original WL image from
the colonoscopy source to an NBI simulated CNN-based model on the background and
show the WL image with the bounding box in the monitor (Figure 2). We selected three
methods to simulate the NBI system for image enhancement: Color Transfer with Mean
Shift (CTMS), Multi-scale Retinex (MSR), and gamma and sigmoid conversions. We also
compared the selected methods with two conventional image enhancement methods, His-
togram Equalization (HE) [19,20] and Contrast Limited Adaptive Histogram Equalization
(CLAHE) [21].

The CTMS conversion process is inspired by the work of Xiao et al. [22], who trans-
ferred the insufficient training dataset images from the RGB color space to the CIE-LAB
color space using a U-Net architecture, to generate the data augmented images.
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Figure 2. NBI simulated image enhancement system workflow. The polyp images are labeled and
trained with YOLOv4 before color transfer to boost detection and classification accuracy.

MSR algorithm is an image enhancement method mimicking human visual perception
which provides dynamic range compression, tonal rendition and color constancy [23–26].
Our eyes perceive colors by the light reflection back from an object with a certain wave-
length. The human visual system captures colors irrespective of the illumination source
under different spectral lighting conditions from a scene. The MSR algorithm separates the
original image into a base and a detailed layer, which are processed to improve nonuni-
form illumination [27]. It has been used for various issues as image dehazing [28], image
enhancement and defogging [29] and color constancy computation [30]. In real-world
colonoscopy images, the illumination varies with uneven darkness and brightness owing
to the light source on the tip of the colonoscope [31]. Luo et al. [32] used a modified MSR
with detailed layer to solve the nonuniform and directional illumination on the surgical
endoscopy field. Their combined visibility was improved from 0.81 to 1.06 and outper-
formed existent Retinex methods. Wang et al. [33] corrected color images based on a MSR
with a nonlinear functional transformation. They improved the overall brightness and
contrast of an image and preserved the image details. Vani et al. [31] discussed the use of
MSR and Adaptive Histogram Equalization to suppress noise and improve visibility in
wireless capsule endoscopy. Deeba et al. [34] proposed a two-stage automated algorithm
with Retinex and saliency region detection algorithm. They achieved a sensitivity of 97.33%
and specificity of 79%. MSR provides superb endoscopy image enhancement with balanced
brightness and contrast to detect subtle lesions in colonoscopy.

The sigmoidal-remapping function is accomplished by enhancing the image contrast
in the limited dynamic range. That is, the lightness between the highlight and shadow in
an image can be controlled with the lightness and darkness of the contrast in the sigmoid
function [35]. The sigmoidal-remapping function is a continuous nonlinear activation
curve [36]. Deeba et al. [37] used a sigmoidal remapping curve to enhance the blue and
green light channels in the endoscopy image combined with saliency map formation and
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histogram of gradient for feature extraction. They achieved a recall and F2 score of 86.33%
and 75.51%, respectively.

In this study, we aim to establish a NBI simulated image enhancement technique
combined with the computer-aided system to boost polyp detection and classification. We
chose three different methods and compared them to each other for their effectiveness in
endoscopy image enhancement.

2. Materials and Methods

2.1. Materials

The colonoscopy images were taken from colonoscopies performed with high-definition
colonoscopes (CF-H290I, Olympus, Tokyo, Japan) in Dalin Tzu Chi hospital, a teaching hos-
pital in Taiwan, from December 2021 to March 2022, with the approval of the Institutional
Review Board (B11004010).

2.1.1. Dataset

The polyp dataset for the training of the deep learning network model was divided
into two parts according to the obtaining method. The first part was the static colonoscopy
images that were manually selected and captured. Most of the manually selected polyp
images were clear compared with those captured from colonoscopy videos. The manual
selection process ensured the better image quality and avoided the similarity of polyp
images. There were a total of 3796 images, of which 3693 images had more than one
polyp. The remaining 103 images were background images which did not contain polyp.
The second part of the dataset was extracted from 25 recorded colonoscopy videos per-
formed by senior endoscopists. The total duration of the 25 videos was about 3.1 h (around
336,780 frames), and the number of detected polyps in each video varied. There were
3 complete colonoscopy inspection videos, and the remaining 22 were the segments of
detected polyp videos. After deleting the unrecognizable images, 2719 images were in-
cluded in this study and 1347 images were without polyps. The images were stored with a
resolution of 1920 × 1080.

The dataset was divided into three categories according to the types of polyp, i.e.,
hyperplastic polyp (HP), tubular adenomatous polyp (TA), and sessile serrated adenoma
(SSA). The TA and SSA polyps require resection and the HP polyps are considered to not
need resection during colonoscopy. There were 1486 images of HP, 2687 images of TA, and
892 images of SSA polyps. Table 1 shows the statistics of the images.

Table 1. The number of images in each polyp category of the dataset.

TA SSA HP Background

Number of
images 2687 892 1486 1450

2.1.2. Data Labeling

Polyps were labeled using the LabelImg image label tool in this study. The labeled
images in this study were divided into three categories. The first step was to label all polyps
in the dataset, which was to identify the presence of polyp in the image. The identified
polyps were divided into three types: TA, HP, and SSA.

2.1.3. Data Augmentation

Data augmentation is a common technique in object recognition. By scaling, cropping,
and rotating, the amount of training data for the model training increases to improve the
accuracy of the model. In Yolo v4 network training, the image is randomly rotated by plus
or minus 180 degrees. The hue and saturation are adjusted. The images are randomly
scaled, cropped, and collaged with Mosaic’s data augmentation method for training.
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2.2. Methods
2.2.1. Color Transfer with Mean Shift

Xiao et al. proposed a novel Color Transfer with Mean Shift method, a data augmenta-
tion technique to improve the performance of the deep learning network model for small
data. Xiao et al. transferred the training data from the RGB color space to the CIE-LAB
color space, a color space defined by the International Commission on Illumination (CIE),
through a matrix. The method proposed by Xiao et al. selected a target image and calcu-
lated the color mean value of the target image; the mean value is imposed on the original
image to generate a new image. The process is formulated as Equation (1). Ctransferred
represents the converted value, Coriginal represents the value of the image to be converted,
Coriginal represents the mean value of channel C calculated from the main coloring area of
the original image, and Ctarget represents the mean value of channel C in the transferred
area of the target image.

Ctransferred = Coriginal − Coriginal + Ctarget (1)

Their study proved that the proposed data augmentation method had better perfor-
mance than the traditional geometric data augmentation methods (scaling and rotation).
The network model trained with this data augmentation method generalized better [22].

We applied the Color Transfer with Mean Shift to the polyp detection. For mimicking
the features of NBI colonoscopy image using WL images, we converted the channels A* and
B* using Equation (2). The C is the converted channel value, CWL represents the channel
value of WL colonoscopy images, CWL represents the mean value of WL colonoscopy image
channels, CNBI represents the mean value of channels in NBI colonoscopy image, x is the
coefficient to adjust the NBI image value of the channel, and y is the constant to fine-tune
the color tone.

Ctransferred = CWL − CWL + x ∗ CNBI + y (2)

Figures 3 and 4 are the color transfer examples of two types of polyps, adenomatous
and hyperplastic polyps. Figures 3 and 4 show the images of TA and HP polyps after Color
Transfer with Mean Shift.

Figure 3. Images of TA polyps after Color Transfer with Mean Shift. ((Left): Original WL,
(Right): Color Transferred).
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Figure 4. Images of HP polyps after Color Transfer with Mean Shift. ((Left): Original WL,
(Right): Color Transferred).

2.2.2. Retinex

Retinex is a common method for image enhancement, a term combining retina and
cortex. Retinex minimizes the effect of a light source on the image to achieve color constancy.
Retinex has three steps to maintain the color constancy. First, the image is dynamically
compressed to preserve the details of the original image. The second step is to isolate the
color from the spectrum of the scene’s light source. Finally, the color of the object in the
image is restored and reproduced.

We formulate the above mentioned three steps into the following mathematic expres-
sions. Each pixel in the image is expressed as the product of the light source intensity and
the reflection intensity as Equation (3), where S is the pixel value of coordinate (x, y) in the
image, R is the reflection expression, and L is the intensity of the light source.

S(x, y) = R(x, y) ∗ L(x, y) (3)

Dynamic range compression is used to compress the original signal into a smaller
range. In the digital image, the signal is compressed into the range of the according
signal. To obtain the details in the image, Retinex dynamically compresses the image
logarithmically as Equation (4).

log(R(x, y)) = log(S(x, y))− log(L(x, y) (4)

The natural color is independent of the spectrum of the light source. The goal of
Retinex is to eliminate the influence of a different light source intensity. The elimination
is expressed as Equation (5), where Ri is the result of the output on channel I, Ii is the
pixel value of channel i in the image. F is the Gaussian Surround Function that simulates
the illumination of light sources in nature, as Equation (6); c is the Gaussian surround
space constant.

Ri(x, y) = log[Ii(x, y)]− log[F(x, y) ∗ Ii(x, y)] (5)

F(x, y) = e−r2/c2
(6)

When the Gaussian surrounding space constant is small (c < 20), it has an improved
dynamic range compression effect and retains more image details. When the constant is
increased (c > 200), better color restoration is achieved [38]. The Gaussian surrounding
space constant is used only once in the Single Scale Retinex (SSR); trade-off is made
between the two. Therefore, Multi-Scale Retinex (MSR) was developed, which uses multiple
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Gaussian surrounding space constants in the image to gain the advantages of different
scales simultaneously, as in Equation (7).

RMSRi = ∑N
n=1 wnRni (7)

Fn(x, y) = ke−r2/c2
n (8)

RMSRi in Equation (7) is the output of the ith channel of MSR, wn is the weight, Rni is
the result of SSR output using cn as the Gaussian surrounding space constant, and Equation
(8) is the Gaussian surrounding function in MSR. In several experiments, it is shown that
three scales are sufficient for MSR, a small scale (cn < 20), a large scale (cn > 200), and an
intermediate scale. The weights were assigned equally for the 3 scales, i.e., 1/3 of each
scale [23].

Originally, the Retinex algorithm was based on the Gray-World Assumption. As
the reflectance of the image is the same in all three primary color channels, it meets the
Gray-World Assumption. This assumption is violated when the image is not colorful or
has a large number of single blocks of color, which results in Retinex being grayed out or
having severely reduced saturation. Therefore, D. J. Jobson proposed that adding a color
restoration function to the MSR and converting it to the Multi-Scale Retinex with Color
Restoration (MSRCR) as in Equations (9) and (10), where β = 46, α = 125, b = −30, and
G = 192 [38].

RMSRCRi (x, y) = G
[
Ci(x, y)RMSRi (x, y) + b

]
(9)

Ci(x, y) = β log
[
αI′i (x, y)

]
= β log[αIi(x, y)]− β log[∑S

i=1 Ii(x, y)] (10)

Parthasarathy and Sankaran improved MSRCR by proposing an automated multiscale
Retinex for color restoration, adding a hue conversion function to the MSRCR output. They
used a histogram to calculate color pixel thresholds, limiting all to two thresholds [39].

Figures 5–7 are the Retinex examples of three polyp types, TA, HP, and SSA.

Figure 5. Images of TA polyp after Retinex. ((Left): Original WL, (Right): Retinex).
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Figure 6. Images of HP polyp after Retinex ((Left): Original WL, (Right): Retinex).

Figure 7. Images of SSA polyp after Retinex. ((Left): Original WL, (Right): Retinex).

2.2.3. Gamma and Sigmoid Conversions

Deeba et al. proposed a computer-aided polyp detection algorithm for wireless capsule
endoscopy [37]. Their proposed method is divided into three steps. The image is enhanced,
followed by the generation of salient graphics to highlight the location of possible polyps,
and finally the histogram of gradient values (HOG) is calculated for feature extraction.
Deeba et al. enhanced the blue and green light channels by using the sigmoid curve in the
image, as in Equation (11).

Is = IMAX ∗ 1
1 + e−a(I−c)

(11)

The values at both ends of the sigmoid curve are compressed, and the values in the
middle are stretched between 0 and 1. The Is is the result of sigmoid calculation, IMAX
is the maximum pixel value in a single channel, a and c are constants, the size of the
constant is adjusted according to the image, and the red channel is suppressed using the
Transform-based Gamma Correction (TGC) curve in Equation (12).

IG = (IMAX − S) ∗ (I/IMAX)
r (12)
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The IG is the calculated result of the gamma curve and S is a constant that controls
the effect of curve suppression [37]. Figure 8 shows the gamma and sigmoid conversion of
RGB channels. Figure 9 shows the images after adjusting the parameters of the sigmoid
curve and gamma correction curve using colonoscopy images.

Figure 8. Conversion diagram of RGB in gamma and sigmoid conversion.

Figure 9. Image of SSA polyp after gamma and sigmoid conversion. ((Left): Original WL,
(Right): Gamma and Sigmoid Conversion).

2.2.4. YOLOv4

YOLOv4 is a one-stage object recognition method proposed by Alexey Bochkovskiy
et al. in 2020 [40]. Based on Yolov3 [41], YOLOv4 has made improvements in various areas.
YOLOv4 has improved both the speed and accuracy of recognition compared with previous
versions. The recognition AP of MS COCO dataset on Tesla V100 GPU reaches 43.5%, and
the recognition speed is about 65FPS. The network model of object recognition is divided
into four parts according to their different functions, which are the input layer responsible
for image input, the backbone of the main body of the object recognition network, the
neck connecting the backbone and the head, and the layer responsible for classification
and bounding boxes. The head of YOLOv4 follows the original YOLOv3, the trunk uses
CSPDarknet53 previously developed by the author, and the neck uses Spatial Pyramid
Pooling (SPP) and Path Aggregation Network (PANet).

YOLOv4 refers to several of the latest object recognition methods mentioned on the
Browse State-of-the-Art website in the field of object recognition, which are applied to
various parts of the network to evaluate their quality. YOLOv4 selects the best performance
method and was further improved. The author conducted experiments and improvements
on six parts, including data amplification, activation function, bounding box regression loss,
normalization, normalization of network activation through mean and variance, and skip-
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connections. After experiments and comparisons, YOLOv4 finally added CutMix, Mosaic
data amplification, Class Label Smoothing, DropBlock, Mish activation function, Cross-
stage partial connections and Multi-input weighted residual connections to the backbone
part; and CIoU loss, CmBN, DropBlock, Mosaic data augmentation, Self-Adversarial
Training, Eliminate grid sensitivity, Cosine annealing scheduler, Optimal hyperparameters,
Mish activation function, SPP, SAM, PANet, and DIoU to the head section—technologies
such as NMS.

In addition to the improvement in accuracy and speed, YOLOv4 proves that com-
plete training on a general consumer-grade graphic card is possible, making the YOLOv4
algorithm more widely adopted [40].

2.2.5. Research Design

In this research, the colorectal polyp identification is performed using two experimen-
tal designs. In the first experimental design (Figure 10), the color transfer is performed on
the entire colonoscopy image. In the implementation, we found that when the color transfer
is performed on the entire high-resolution image, it takes some extra time to convert every
pixel of the entire image. However, in the actual diagnosis process, it is expected that
the system can generate instant results. Therefore, in order to improve this immediacy
problem, this study further proposes a second experimental design (Figure 11). First, the
WL endoscopic image is used to identify the polyp and performs color transfer in the
identified polyp areas. The entire process takes less time and enhances its immediacy due
to a smaller area for color transfer.

Figure 10. Experimental Design 1.

Figure 11. Experimental Design 2.

Figure 10 is the structure diagram of the first experimental design. The first step is
the collection and arrangement of the dataset. The video of the colonoscopy is captured
into static images. Poor quality images are filtered out. They are merged with the static
images of the colonoscopy. The LabelImg tool is adopted to label the location and type
of polyps. The second step is pre-processing, converting the labeled data using the color
transfer function, then randomly splitting the data into a training dataset and a testing
dataset in a ratio of 8 to 2, and using K-means to convert the object frames into groups. The
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third step is to add the data into the deep learning network for training and evaluate the
network model with the test dataset.

The second experiment design is to add an image classification network of Efficientnet
v2-m after obtaining the polyp identification results from the first experiment as shown
in Figure 11. In the first experiment design, we collected 11,957 images with polyps and
9369 images without polyps and trained a polyp recognition model using Yolov4 to detect
polyps in images. The final mAP of the model was 92.4%. After the recognition results
of Yolov4, we performed color transfer on the object frame output by the network and
trained the types of polyps using the Efficientnet v2-m network. Because the color transfer
is only performed on the object frames rather than the entire image, we reduced the time
complexity, making polyp image recognition quicker than the first experiment.

This study attempts to remove unimportant information in colonoscopy images using
a special color transfer processing method to preserve or highlight the details of polyps.
Three different color transfer methods are used, Color Transfer with Mean Shift, automatic
multi-scale Retinex for color restoration, and gamma and sigmoid conversion. In this study,
it is believed that Color Transfer with Mean Shift and NBI have similar concepts in reducing
original data, and the gamma and sigmoid conversion simulate the same pattern as NBI
suppresses red light. Since the colonoscopy is illuminated by a direct single light source,
the bright area is interspersed with uneven dark shadows owing to folds or fecal debris. In
this study, the color and detail contours which disappeared in the image are restored using
the automatic MSR algorithm.

2.2.6. Model Training

This research uses YOLOv4 to train the model. First, the dataset is grouped into
9 scales that conform to the ground truth of the dataset using k-means. The model uses the
calculated 9 scales as the anchor boxes size in the final output layer of the network. In the
model training, the loss graph of the model is monitored until the loss becomes flat, and
the training stops, that is, the model has converged.

2.2.7. Evaluation Metrics

This research adopts the mean Average Precision (mAP) to measure the accuracy of
the model. The calculation of mAP is an AP calculation for all categories which takes the
average. mAP is used as a metric for object detection. Intersection over union (IoU) is also
added to measure the correctness of the target position marked by the model. The IoU is
the intersection of the model-predicted box and the ground truth divided by the union of
the two boxes as in Equation (13). The calculation of AP is as in Equation (14). In short, the
AP is the average precision of one category and mAP is the mean average precision of all
categories. The higher the mAP value, the higher the accuracy of the search results.

IoU(A, B) =| A ∩ B
A ∪ B

| (13)

AP =
1
11 ∑r∈{0,0.1...,1} f Pinterp(r) (14)

In the calculation of mAP, an IoU is usually set as the critical value (usually set to
0.5). When the IoU is greater than the preset critical value, it is classified as True Positive
(TP); otherwise, it is classified as a false positive (FP). The real object is not predicted by
the model classified as false negatives (FN), and the false object is not predicted as true
negatives (TN). AP is calculated according to these values and estimates the area under the
PR curve (Precision-Recall) (AUC). In machine learning, there are two methods to measure
the model: Precision as Equation (14) and Recall as Equation (15).

Precision =
TP

TP + FP
(15)
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Recall =
TP

TP + FN
(16)

In the PASCAL VOC challenge, Equation (14) is used to calculate the AP average
of 11 Recall interpolation points as the AP of the object. Finally, the AP of all objects in
the model is averaged to gain the mAP. The mAP in this research is calculated using the
program on Yolo v4-AlexeyAB GitHub.

In the Efficientnet v2-m classification network, the accuracy is used as the evaluation
standard. If the quasi-class predicted by the model is the same as the real situation, it
belongs to TP or TN, and if the predicted result does not match the real situation, it belongs
to FP or FN. Finally, the accuracy is calculated using the four values of the confusion
matrix. As in Equation (17), the accuracy is the percentage of correct predicted results in
the total sample.

Accuracy =
TP + TN

TP + FP + FN + TN
(17)

3. Results

In this study, different color transfer methods were trained using deep learning net-
works and were compared with the model trained on the original images to evaluate the
effect of color transfer methods on polyp identification and classification. The data are
divided into three datasets according to different classification methods. The first dataset is
divided into three types of polyps (TA, HP and SSA). The second dataset divides polyps
into neoplastic (TA and SSA) and non-neoplastic (HP). The third dataset excludes the SSA
due to them being scarce in number.

3.1. YOLOv4 Training Results in Experimental Design 1

In this section, the three datasets use MSRCR, gamma and sigmoid conversion, Color
Transfer with Mean Shift, and original images to train the model with Yolov4 network, and
we compare the model results. The neoplastic polyps, TA and SSA, are grouped into the
same category for color transfer comparison. We use the MSRCR to compare with other
color transfer methods and it shows the highest value at 77.6162 in mAP. The results of
the conventional HE and CLAHE are also included to benchmark with the selected color
transfer methods. The images are first transferred from the RGB color space to LAB color
space and the HE and CLAHE are performed on the lightness L channel. There are two
main operational parameters, tile size and clip limit, in the CLAHE image enhancement
process. The tile size is the number of the non-overlapping tiles to which the original image
is partitioned and is set to 8 × 8 in the experiments. The clip limit is the threshold that will
be used to trim the histograms of the pixel distribution and is set to 2 in the experiments.
The MSRCR performs best in the two groups of polyps (Table 2). Therefore, MSRCR is the
most suitable color transfer method to use in two classes.

Table 2. mAP results of 3 color transfer methods in HP vs. combination of TA and SSA.

Method HP TA+SSA mAP

Original Image 76.18 76.08 76.1296

HE 73.86 75.89 74.8799

CLAHE 75.31 75.92 75.615

Multi-scale Retinex with Color Restoration 78.53 76.70 77.6162

Gamma and Sigmoid Conversions 76.54 76.38 76.4582

Color Transfer with Mean Shift 78.30 76.40 77.3478
HE: Histogram Equalization, CLAHE: Contrast Limited Adaptive Histogram Equalization.

Then, the dataset is divided into three categories according to different types of polyps
for further comparison of color transfer methods. The gamma and sigmoid conversion
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mAP have the highest value of 72.1863 (Table 3). Therefore, gamma and sigmoid conversion
are suitable for color transfer in terms of the three polyp classes.

Table 3. mAP results of 3 color transfer methods in 3 polyp classes.

Method HP TA SSA mAP

Original Image 74.80 84.09 46.17 68.3590

HE 73.42 84.4 55.24 71.0244

CLAHE 73.6 85.5 55.37 71.4944

Multi-scale Retinex with Color Restoration 75.40 86.16 48.08 69.8782

Gamma and Sigmoid Conversions 75.69 87.85 53.02 72.1863

Color Transfer with Mean Shift 75.19 84.44 45.88 68.1714

HE: Histogram Equalization, CLAHE: Contrast Limited Adaptive Histogram Equalization.

Since the SSA is a rare polyp with insufficient data, it affects the accuracy of the
identification result. We exclude the SSA category and compared the mAP results of the
two categories of HP and TA for color transfer. The mAP demonstrates that the MSRCR is
the most suitable color transfer method, and its mAP value is 86.8422 (Table 4).

Table 4. mAP results of 3 color transfer methods in 2 polyp classes, HP and TA.

Method HP TA mAP

Original Image 80.40 86.15 83.2753

HE 79.48 87.23 83.3543

CLAHE 80.56 86.24 83.3963

Multi-scale Retinex with Color Restoration 84.43 89.35 86.8422

Gamma and Sigmoid conversions 79.83 87.30 83.5650

Color Transfer with Mean Shift 81.71 88.07 84.8913
HE: Histogram Equalization, CLAHE: Contrast Limited Adaptive Histogram Equalization.

Comparing the results of the three color transfer methods, the MSRCR has the best
mAP result in two polyp classes. Although gamma and sigmoid conversion has a better
result in three polyp classes analysis, we need to consider the low probability in the SSA
group owing to scarce data. By excluding the SSA, the mAP of MSRCR color transfer
is higher than using gamma and sigmoid conversion with TA and SSA combined. We
speculate that the higher accuracy of gamma and sigmoid conversion on SSA results in
better mAP than the MSRCR in three polyp classes. After considering the distribution of
the dataset and the mAP results, this study selects MSRCR as the color transfer method.

3.2. Classifier Training Results in Experimental Design 2

In this section, the MSRCR, gamma and sigmoid conversion, Color Transfer with
Mean Shift and original image dataset are adopted to train the model using Efficientnet
v2-m network in three datasets. The polyps are automatically cropped from images and
the classification task is performed based on the cropped polyp images. The accuracy is
used as the criteria for polyp classification evaluation. The classification is correct if the
type of polyp identified by the model matches the ground truth.

The results in the case of HP vs. combination of TA and SSA polyps can be seen
from the above table (Table 5). The result shows the best accuracy of MSRCR with 0.8643.
Therefore, the MSRCR is the most accurate method for color transfer classification.
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Table 5. Accuracy of 3 color transfer methods in HP vs. combination of TA and SSA.

Method Accuracy

Original Image 0.8377

HE 0.8394

CLAHE 0.8377

Multi-scale Retinex with Color Restoration 0.8643

Gamma and Sigmoid Conversions 0.8533

Color Transfer with Mean Shift 0.8502
HE: Histogram Equalization, CLAHE: Contrast Limited Adaptive Histogram Equalization.

Then, the classification was performed in three polyp classes. The gamma and sigmoid
conversion show the best accuracy of 0.7517, and the accuracy of MSRCR is 0.7491 (Table 6).
The values are similar. In this classification analysis, both methods are suitable for the task.

Table 6. Accuracy of 3 color transfer methods in 3 polyp classes.

Method Accuracy

Original Image 0.7257

HE 0.7474

CLAHE 0.7487

Multi-scale Retinex with Color Restoration 0.7491

Gamma and Sigmoid Conversions 0.7517

Color Transfer with Mean Shift 0.7474
HE: Histogram Equalization, CLAHE: Contrast Limited Adaptive Histogram Equalization.

For the results after excluding SSA polyps, the MSRCR accuracy is the highest with
a value of 0.8428 (Table 7). Under this classification task, the most suitable color transfer
method is MSRCR.

Table 7. Accuracy of the 3 color transfer methods in 2 polyp classes, HP and TA.

Method Accuracy

Original Image 0.8017

HE 0.8200

CLAHE 0.8384

Multi-scale Retinex with Color Restoration 0.8428

Gamma and Sigmoid Conversions 0.8394

Color Transfer with Mean Shift 0.8308
HE: Histogram Equalization, CLAHE: Contrast Limited Adaptive Histogram Equalization.

From the accuracy comparison of the different methods in several classes, the clas-
sification accuracy of the original image is the lowest. All color transfer methods using
datasets other than the original image perform better. The results demonstrated that the
color transfer has a positive impact on the polyp identification. Combining the mAP results
from the previous section and the accuracy results in this section, we concluded that the
Retinex has an excellent outcome and is the best choice for color transfer.

4. Discussion

We aim to demonstrate that color transfer is useful for the correct identification of
polyps. We developed a deep learning network to predict the test dataset; three color
transfer methods are compared with the base prediction of the original image dataset
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for the optimal identification model selection. Several image results were selected for
comparison. The detected image result of MSRCR vs. Original Image are shown in
Figures 12–14. In the original image models of Figures 12–14, the polyps were undetected
or misclassified.

Figure 12. The correct results of MSRCR vs. the undetected polyp in original image. ((Left): MSRCR,
(Right): Original).

Figure 13. The correct results of MSRCR vs. the misclassified polyp of original image. ((Left): MSRCR,
(Right): Original).

Figure 14. The correct results of MSRCR vs. the undetected polyp of original image. ((Left): MSRCR,
(Right): Original).
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5. Conclusions

In this study, color transfer methods were successfully applied to polyp identification.
The colon polyp detection accuracy and classification increased. From different experimen-
tal settings in this study, the comparison of the three color transfer methods showed that
the MSRCR method outperforms others. The scarce SSA polyp images led to suboptimal
results. The dataset ought to increase for the accuracy improvement of SSA detection.

We developed two research designs in this study. The first design converts each pixel
of the image individually because of the nature of the color transfer. We concluded that the
computation time was reduced to improve the response time. The second research design
was proposed to identify the position of polyps, perform the color transfer, and classify
them according to the conversion results. This ensures immediacy by reducing the area of
conversion to increase the speed of the entire process.
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Abstract: Background: Colon capsule endoscopy (CCE) is an alternative for patients unwilling or
with contraindications for conventional colonoscopy. Colorectal cancer screening may benefit greatly
from widespread acceptance of a non-invasive tool such as CCE. However, reviewing CCE exams
is a time-consuming process, with risk of overlooking important lesions. We aimed to develop an
artificial intelligence (AI) algorithm using a convolutional neural network (CNN) architecture for
automatic detection of colonic protruding lesions in CCE images. An anonymized database of CCE
images collected from a total of 124 patients was used. This database included images of patients
with colonic protruding lesions or patients with normal colonic mucosa or with other pathologic
findings. A total of 5715 images were extracted for CNN development. Two image datasets were
created and used for training and validation of the CNN. The AUROC for detection of protruding
lesions was 0.99. The sensitivity, specificity, PPV and NPV were 90.0%, 99.1%, 98.6% and 93.2%,
respectively. The overall accuracy of the network was 95.3%. The developed deep learning algorithm
accurately detected protruding lesions in CCE images. The introduction of AI technology to CCE
may increase its diagnostic accuracy and acceptance for screening of colorectal neoplasia.

Keywords: colon capsule endoscopy; artificial intelligence; convolutional neural network;
colorectal neoplasia

1. Introduction

Capsule endoscopy (CE) is a primary diagnostic tool for the investigation of patients
with suspected small bowel disease. Colon capsule endoscopy has been recently introduced
as a minimally invasive alternative to conventional colonoscopy for evaluation of the
colonic mucosa [1,2]. This system allows overcoming some of the drawbacks associated
with conventional colonoscopy, including the potential for pain, use of sedation, and the
risk of adverse events, including bleeding and perforation [3]. The clinical application of
this tool has been most extensively studied in the setting of colorectal cancer screening,
particularly for patients with previous incomplete colonoscopy, or for whom the latter
exam is contraindicated, unfeasible or unwanted [4,5]. The role of CCE as an alternative to
conventional colonoscopy in the setting of colorectal cancer screening is growing. A recent
meta-analysis by Vuik and coworkers reported similar performance levels for conventional
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colonoscopy and CCE as well as the superiority of CCE compared to computed tomography
colonography (virtual colonoscopy) [6]. Moreover, a single full-length CCE video may
produce over 50,000 images, and reviewing these images is a monotonous and time-
consuming task, requiring approximately 50 min for completion [2]. Furthermore, any
given frame may capture only a fragment of a mucosal abnormality and lesions may be
depicted in a very small number of frames. Therefore, the risk of overlooking important
lesions is not insignificant [2].

The combination of enhanced computational power with large clinical datasets has
potentiated the research and development of AI tools for clinical implementation. The
application of automated algorithms to diverse medical fields has provided promising
results regarding disease identification and classification [7–9]. Convolutional neural
networks (CNN) are a type of multi-layered deep learning algorithm tailored for image
analysis. The application of these technological solutions to small bowel CE has provided
promising results in the detection of several types of lesions [10–13]. The introduction
of AI tools for real-time detection of colorectal neoplasia in conventional colonoscopy
has suggested a high diagnostic yield for CNN-based algorithms [14]. The impact of AI
algorithms for detection of colorectal neoplasia in CCE images has been scarcely evaluated.
Enhanced reading of CCE images through the application of these tools may improve the
diagnostic accuracy of CCE for colorectal neoplasia, which is currently unsatisfactory [2].
Importantly, the implementation of automated algorithms may help to reduce the time
required for reading a single CCE exam. The aim of this study was to develop and validate
a CNN-based algorithm for the automatic detection of colonic protruding lesions using
CCE images.

2. Materials and Methods

2.1. Study Design

A multicenter study was performed for development and validation of a CNN for
automatic detection of colonic protruding lesions. CCE images were retrospectively col-
lected from two different institutions: São João University Hospital (Porto, Portugal) and
ManopH Gastroenterology Clinic (Porto, Portugal). One hundred and twenty-four CCE
exams (124 patients, 24 from São João University Hospital and 100 from ManopH Gas-
troenterology Clinic), performed between 2010 and 2020, were included. The full-length
video of all participants was reviewed, and a total of 5715 frames of the colonic mucosa
were ultimately extracted. Significant frames were included regardless of image quality
and bowel cleansing quality. Inclusion and classification of frames were performed by
three gastroenterologists with experience in CCE (Miguel Mascarenhas, Hélder Cardoso
and Miguel Mascarenhas Saraiva), each with an experience of >1500 CE previous to this
study. A final decision on frame labelling required the agreement of at least two of the
three researchers.

This study was approved by the ethics committee of São João University Hospital
(No. CE 407/2020). The study protocol was conducted respecting the original and sub-
sequent revisions of the declaration of Helsinki. This study is retrospective and of non-
interventional nature. Thus, the output provided by the CNN had no influence on the
clinical management of each included patient. Any information susceptible to identify the
included patients was omitted, and each patient was assigned a random number in order to
guarantee effective data anonymization for researchers involved in CNN development. A
team with Data Protection Officer (DPO) certification (Maastricht University) confirmed the
non-traceability of data and conformity with the general data protection regulation (GDPR).

2.1.1. Colon Capsule Endoscopy Procedure

For all patients, CCE procedures were conducted using the PillCam™ COLON 2 sys-
tem (Medtronic, Minneapolis, MN, USA). This system consists of three major components:
the endoscopic capsule, an array of sensors connected to a data recorder, and a software
for frame revision. The capsule measures 32.3 mm in length and 11.6 mm in width. It has
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2 high-resolution cameras, each with a 172◦ angle of view. The system frame rate varied au-
tomatically between 4 and 35 frames per second, depending on bowel motility. Each frame
had a resolution of 512 × 512 pixels. The battery of the endoscopic capsule has an estimated
life of ≥10 h [2]. This system was launched in 2009 and was not submitted to hardware
updates since then. Thus, no significant changes in image quality were evident during this
period. The images were reviewed using PillCam™ software version 9.0 (Medtronic, Min-
neapolis, MN, USA). Each frame was processed in order to remove information allowing
patient identification (name, operating number, date of procedure).

Each patient received bowel preparation according to previously published guide-
lines [15]. Summarily, patients initiated a clear liquid diet in the day preceding capsule
ingestion, with fasting in the night before examination. A solution consisting of polyethy-
lene glycol was used in split-dosage (2 L in the evening and 2 L in the morning of capsule
ingestion). Prokinetic therapy (10 mg domperidone) was used if the capsule remained in
the stomach 1 h after ingestion, upon real-time image review on the recorder. Two boosters
consisting of a sodium phosphate solution were applied after the capsule has entered the
small bowel and with a 3 h interval. Only complete CCE exams were included. A complete
exam was considered if the capsule was excreted.

2.1.2. Development of the Convolutional Neural Network

A deep learning CNN was developed for automatic detection of colonic protrud-
ing lesions. Protruding lesions included all polyps, epithelial tumors, and subepithelial
lesions. From the collected pool of images (n = 5715), 2410 showed protruding lesions
and 3305 displayed normal mucosa or other mucosal lesions (ulcers, erosions, red spots,
angiectasia, varices and lymphangiectasia). This pool of images was split for constitution of
training and validation image datasets. The training dataset was composed by 80% of the
consecutively extracted images (n = 4572). The remaining 20% were used as the validation
dataset (n = 1143). The validation dataset was used for assessing the performance of the
CNN (Figure 1).

To create the CNN, we modified the Xception model with its weights trained on
ImageNet (a large-scale image dataset aimed for use in development of object recognition
software). To transfer this learning to our data, we kept the convolutional layers of the
model. We replaced the last fully connected layers with 2 dense layers of size 2048 and
1024, respectively, and then attached a fully connected layer based on the number of classes
we used to classify our endoscopic images. To avoid overfitting, a dropout layer of 0.3 drop
rate was added between convolutional and classification components of the network. We
applied gradient-weighted class activation mapping on the last convolutional layer [16], in
order to highlight important features for predicting protruding lesions. The size of each
image was set for 300 pixels of height and width. The learning rate of 0.0001, batch size of
128 and the number of epochs of 30 was set by trial and error. We used Tensorflow 2.3 and
Keras libraries to prepare the data and run the model. The analyses were performed with a
computer equipped with a 2.1 GHz Intel® Xeon® Gold 6130 processor (Intel, Santa Clara,
CA, USA) and a double NVIDIA Quadro® RTX™ 8000 graphic processing unit (NVIDIA
Corporate, Santa Clara, CA, USA).

2.1.3. Model Performance and Statistical Analysis

The primary outcome measures included sensitivity, specificity, positive and negative
predictive values, and accuracy. Moreover, we used receiver operating characteristic (ROC)
curve analysis and area under the ROC curve (AUROC) to measure the performance of
our model in the distinction between the categories. For each image, the trained CNN
calculated the probability for each of the categories (protruding lesions vs. normal colonic
mucosa or other findings). A higher probability value translated in a greater confidence
in the CNN prediction. The software generated heatmaps that localized features that
predicted a class probability (Figure 2A). The category with the highest probability score
was outputted as the CNN’s predicted classification (Figure 2B). The output provided by the
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network was compared to the specialists’ classification (gold standard). We performed a 3-
fold cross validation. Therefore, the entire dataset was split into 3 even-sized image groups.
Training and validation datasets were created for each of the five groups, at a proportion of
80% and 20% for training and validation datasets, respectively. Sensitivities, specificities,
positive and negative predictive values are presented as means ± standard deviations
(SD). Additionally, the image processing performance of the network was determined by
calculating the time required for the CNN to provide output for all images in the validation
image dataset. Sensitivities, specificities, positive and negative predictive values were
obtained using one iteration and are presented as percentages. Statistical analysis was
performed using Sci-Kit learn v0.22.2 [17].

 
Figure 1. Summary of study design for the training and validation phases. PR—protruding lesion;
N—normal mucosa or other findings.

98



Diagnostics 2022, 12, 1445

Figure 2. Heatmaps (A) and output (B) obtained from the application of the convolutional neural
network. (A) Examples of heatmaps showing CCE features of protruding lesions as identified by the
CNN. (B) The bars represent the probability estimated by the network.

3. Results

3.1. Construction of the Network

One hundred and twenty-four patients were submitted to CCE and enrolled in this
study. A total of 5715 frames were extracted, 2410 showing protruding lesions (2303 polyps,
8 subepithelial lesions and 99 epithelial tumors) and 3305 showing normal colonic mucosa
or other findings. The training dataset was constituted by 80% of the total image pool. The
remaining 20% of frames (n = 1143) were used for testing the model. This validation dataset
was composed by 482 (42.2%) images with evidence of protruding lesions and 661 (57.8%)
images with normal colonic mucosa/other findings. The CNN evaluated each image and
predicted a classification (protruding lesions vs. normal mucosa/other lesions), which was
compared with the classification provided by gastroenterologists. Repeated inputs of data
to the CNN resulted in the improvement of its accuracy (Figure 3).

3.2. Overall Performance of the Network

The confusion matrix between the trained CNN and expert classifications is shown in
Table 1. Overall, the developed model had a sensitivity and specificity for the detection of
protruding lesions of 90.0% and 99.1%, respectively. The positive and negative predictive
values were, respectively, 98.6% and 93.2%. The overall accuracy of the network was 95.3%
(Table 1). The AUROC for detection of protruding lesions was 0.99 (Figure 4).
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Figure 3. Evolution of the accuracy of the convolutional neural network during training and valida-
tion phases, as the training and validation datasets were repeatedly inputted in the neural network.

Table 1. Confusion matrix and performance marks.

Expert Classification

Protruding Lesion Normal Mucosa

C
N

N
cl

as
si

fi
ca

ti
on Protruding lesion 434 6

Normal mucosa 48 655
Sensitivity 90.0%
Specificity 99.1%

PPV 98.6%
NPV 93.2%

Accuracy 95.3%
Abbreviations: CNN—convolutional neural network; PPV—positive predictive value; NPV—negative predic-
tive value.

We performed a 3-fold cross validation, where the entire dataset was randomized and
split in 3 equivalent parts. The performance results for the three experiments are shown in
Table 2. Overall, the estimated model accuracy was 95.6 ± 1.1%. The mean sensitivity and
specificity of the model were 87.4 ± 4.6% and 96.1 ± 1.4%. The algorithm had a mean AUC
of 0.976 ± 0.006.

3.3. Computational Performance of the CNN

The CNN completed the reading of the testing dataset in 17.5 s (approximately
15.4 ms/frame). This translates into an approximated reading rate of 65 frames per second.
At this rate, the CNN would complete the revision of a full-length CCE video containing
an estimate of 50,000 frames in approximately 13 min.
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Figure 4. ROC analyses of the network’s performance in the detection of protruding lesions vs. normal
colonic mucosa/other findings. ROC—receiver operator characteristics. PR—protruding lesion.

Table 2. Three-fold cross validation.

Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC

Fold 1 82.8 97.5 62.6 99.1 96.9 0.980
Fold 2 87.4 95.9 57.1 99.2 95.4 0.970
Fold 3 92.1 94.7 48.4 99.6 94.6 0.980

Overall, mean
(±SD)

87.4 ± 4.6 96.1 ± 1.4 56.0 ± 7.1 99.3 ± 0.2 95.6 ± 1.1 0.976 ± 0.006

Abbreviations: ±SD—±standard deviation; PPV—positive predictive value; NPV—negative predictive value;
AUC—area under the receiving operator characteristics curve.

4. Discussion

The exploration of AI algorithms for application to conventional endoscopic tech-
niques for automatic detection of colorectal neoplasia has been producing promising results
over the last decade. The development and implementation of these systems has been
recently endorsed (although with limitations) by the European Society of Gastrointestinal
Endoscopy [18]. Furthermore, a recent meta-analysis has suggested that the application
of AI models for adenoma and polyp’s identification may substantially increase the ade-
noma detection rate and the number of adenomas detected per colonoscopy [19]. These
improvements in commonly used performance metrics have shown not to be affected by
factors known to influence detection by the human eye, including the size and morphology
of the lesions [19]. Artificial intelligence is expected to play a major role in improving the
acceptability and the diagnostic yield of CCE [20]. These systems may help in several steps
of the CCE process, from predicting the quality of colon cleanliness, lesion detection and
the distinction of colorectal lesions [20–22].

In our study, we have developed a deep learning tool based on a CNN architecture for
automatic detection of protruding lesions in the colonic lumen using CCE images. This
study has several highlights. First, our model demonstrated high levels of performance,
with a sensitivity of 90.0%, a specificity of 99.1, an accuracy of 95.3% and an AUROC of
0.99. Obtaining fairly high levels of sensitivity and negative predictive value is paramount
for CNN-assisted reading systems, which are designed to lessen the probability of missing
lesions, while maintaining a high specificity. Third, our network had a remarkable image
processing performance, being capable of reading 65 images per second.
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The precise role of CCE in everyday clinical practice is yet to be defined. Thus far, most
studies highlight its potential when applied in the setting of colorectal cancer screening. Al-
though colonoscopy remains the undisputed gold standard, studies have suggested that CCE
could be viewed as a non-invasive complement, rather than substitutive of conventional
colonoscopy, particularly in the setting of a previous incomplete colonoscopy [23]. Current
guidelines on colorectal cancer screening list CCE as a valid alternative to colonoscopy
for the screening of an average-risk population [15]. Studies comparing the diagnostic
yield of CCE with another non-invasive screening test, CT colonography, have shown the
superiority of CCE [24]. Moreover, when following a first positive fecal-immunological
test, CCE may reduce the need for more invasive conventional colonoscopy [25]. Although
conflicting evidence exist, some studies have shown that adoption of CCE as a screening
method may lead to a higher uptake rate compared to conventional colonoscopy [26].
Moreover, CCE may not only be seen as an alternative to conventional colonoscopy but
rather as a complementary solution in programmed screening settings. Indeed, CCE may
help to shorten waiting lists, decrease hospital appointments and make screening available
to remote areas [27]. In this setting, the cost-effectiveness of CCE appears to be greater
when the prevalence of colorectal cancer is lower and the uptake rate is superior to that
of conventional colonoscopy [28]. However, the use of CCE is hampered by its purely
diagnostic character, the need for a rigorous bowel cleansing protocol, as well as the time
required for reading each CCE exam.

The development of AI tools for detection of colorectal neoplasia in CCE images has
been poorly explored. Automatic detection of these lesions is limited by the poor resolution
of CCE images combined with their variable morphology, size and color. To our knowledge,
only two other studies have assessed the potential of the application of CNN models to
CCE images. Yamada et al. was the first to explore the implementation of AI algorithms
for the identification of colorectal neoplasia in frames extracted from CCE exams. Their
network was developed using a relatively large pool of CCE images (17,783 frames from
178 patients). Overall, their algorithm achieved a good performance (AUROC of 0.90) [29].
However, the sensitivity of their model was modest (79%) compared to that of our network.
Blanes-Vidal et al. adapted a preexisting CNN (AlexNet) and trained it for the detection of
colorectal polyps. The sensitivity, specificity and accuracy expressed in their paper were
97%, 93% and 96%, respectively. In our perspective, the development of these technologies
should aim to support a clinical decision rather than substitute the role of the clinician.
Therefore, these systems must remain highly sensitive in order to minimize the risk of
missing lesions.

Our network demonstrated a high image processing performance (65 frames/second).
To date, no value for comparison exists regarding CCE. Nevertheless, these performance
marks exceed those published for CNNs applied to other CE systems [11,30]. The devel-
opment of highly efficient networks may, in the near future, translate into shorter reading
times, thus overcoming one of the main drawbacks of CCE. Further well-designed studies
are required to assess if a high image processing capacity in experimental settings can be
reproduced as an enhanced time efficiency regarding reading times of CCE exams compar-
ing to conventional reading. The combination of enhanced diagnostic accuracy and time
efficiency may have a pivotal role in widening the indications for CCE and its acceptance
as a valid screening and diagnostic tool.

This study has several limitations. First, it is a retrospective study. Therefore, further
prospective multicentric studies in a real-life setting are desirable to confirm the clinical
value of our results. Second, although we included a large number of patients from two
distinct medical centers, the number of extracted images is small. This limited number of
extracted images was mainly dictated by the low number of frames showing protruding
lesions. In order to produce a balanced dataset while minimizing the risk of missing
lesions, an equilibrium between the number of images showing protruding lesions and
normal mucosa was fostered. This may partially explain the suboptimal sensitivity. We
are currently expanding our image pool in order to increase the robustness of our model,
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thus contributing to decrease the rate of false negative CE exams, which should be one
of the main endpoints in developing these algorithms. The multicentric nature of our
work reinforces the validity of our results. Nevertheless, multicentric studies including
larger populations are required to ensure the clinical significance of our findings. Moreover,
future studies for clinical validation of these tools must contemplate the comparison
of performance between AI software and conventional colonoscopy, the gold standard
technique for the detection and characterization of these lesions.

In conclusion, we developed a highly sensitive and specific CNN-based model for
detection of protruding lesions in CCE images. We believe that the implementation of AI
tools to clinical practice will be a crucial step for wider acceptance of CCE for non-invasive
screening and diagnosis of colorectal neoplasia. Future studies should assess the impact of
AI algorithms in mitigating the limitations of CCE in a real-life clinical setting, particularly
the time required for reviewing each exam, as well as evaluate the potential benefits in
terms of diagnostic yield.
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Abstract: Background and aims: The applicability of colon capsule endoscopy in daily practice is
limited by the accompanying labor-intensive reviewing time and the risk of inter-observer variability.
Automated reviewing of colon capsule endoscopy images using artificial intelligence could be
timesaving while providing an objective and reproducible outcome. This systematic review aims to
provide an overview of the available literature on artificial intelligence for reviewing colonic mucosa
by colon capsule endoscopy and to assess the necessary action points for its use in clinical practice.
Methods: A systematic literature search of literature published up to January 2022 was conducted
using Embase, Web of Science, OVID MEDLINE and Cochrane CENTRAL. Studies reporting on the
use of artificial intelligence to review second-generation colon capsule endoscopy colonic images
were included. Results: 1017 studies were evaluated for eligibility, of which nine were included.
Two studies reported on computed bowel cleansing assessment, five studies reported on computed
polyp or colorectal neoplasia detection and two studies reported on other implications. Overall, the
sensitivity of the proposed artificial intelligence models were 86.5–95.5% for bowel cleansing and
47.4–98.1% for the detection of polyps and colorectal neoplasia. Two studies performed per-lesion
analysis, in addition to per-frame analysis, which improved the sensitivity of polyp or colorectal
neoplasia detection to 81.3–98.1%. By applying a convolutional neural network, the highest sensitivity
of 98.1% for polyp detection was found. Conclusion: The use of artificial intelligence for reviewing
second-generation colon capsule endoscopy images is promising. The highest sensitivity of 98.1% for
polyp detection was achieved by deep learning with a convolutional neural network. Convolutional
neural network algorithms should be optimized and tested with more data, possibly requiring the set-
up of a large international colon capsule endoscopy database. Finally, the accuracy of the optimized
convolutional neural network models need to be confirmed in a prospective setting.

Keywords: colon capsule endoscopy; artificial intelligence; polyp detection; bowel cleansing

1. Introduction

Colon Capsule Endoscopy (CCE) provides a promising non-invasive alternative to
colonoscopy for exploration of the colonic mucosa [1,2]. It uses an ingestible, wireless,
disposable capsule to explore the colon without the need for sedation or gas insufflation.
The first generation CCE was introduced in 2006 and a second generation CCE was de-
veloped in 2009 (PillCam Colon 2, Medtronic, Minneapolis, MN, USA) [3]. The second
generation colon capsule endoscopy (CCE-2) has a high diagnostic accuracy for the detec-
tion of colorectal polyps, with a sensitivity of 85% and specificity of 85% for polyps of any
size, sensitivity of 87% and specificity of 88% for polyps ≥ 6mm, and a sensitivity of 87%
and specificity of 95% for polyps ≥ 10 mm [4].

An important limitation of the applicability of CCE in daily practice is the accompany-
ing labor-intensive reviewing time for the CCE images. A recent study showed a median
reading time of 70 min for the entire gastrointestinal tract and 55 min for review of the
colon alone [5]. On top of that, agreement in and between different readers may also be
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a topic of concern. Literature regarding intra- and inter-observer variability in reviewing
CCE images is scarce, but one study demonstrated a poor level of agreement among both
expert and beginner readers in determining the indication for follow-up colonoscopy based
on the number and size of detected polyps [6]. There was also a poor level of agreement in
determining the bowel cleansing quality.

Automated reviewing of CCE images using artificial intelligence (AI) could be timesav-
ing for clinicians while providing an objective and reproducible outcome. AI is a very broad
term that describes a computerized approach that includes machine and deep learning
methods for interpreting data that normally requires human intelligence [7,8]. Basic AI
methods can classify images by computing scores based on features such as texture and
color. Machine learning based on pre-defined features is a another AI method used to
classify images, where a classifying algorithm is created based on feature classification by
experts. An important example of this method is the support vector machine (SVM). Deep
learning is a sub-class of machine learning where features do not have to be pre-defined.
It is based on a neural network structure that can learn discriminative features from data
automatically, giving them the ability to solve very complex problems. Convolutional
neural network (CNN) is the most common deep learning algorithm for classifying images.
It uses many images to develop and train a classification model by learning rich features
and repeating patterns from these images [9].

In colonoscopy, research investigating the use of AI as an aid for the detection of
colorectal lesions is already rapidly evolving [10,11]. However, blindly applying the same
automated methods to CCE would be blunt due to the differences in the images provided
by CCE and colonoscopy. For example, localizing polyps and determining their exact
number is more difficult using CCE since the capsule spins around and moves back and
forth while the lack of air insufflation causes the intestinal wall to protrude into the lumen,
sometimes mimicking polyps. Therefore, a reliable AI method specifically developed for
reviewing CCE images is warranted. Some literature is available regarding automated
methods for reviewing small bowel capsule endoscopy (SBCE) [7], but literature on AI
using CCE is scarce. This systematic review aims to give an overview of the available
literature on AI methods for reviewing the colonic mucosa by CCE and assess the necessary
action points to evolve AI technology for the use of CCE in daily clinical practice.

2. Methods

A systematic search aiming to retrieve published trials and abstracts reporting on AI
using CCE was conducted following the guidelines of the Preferred Reporting Items for
Systematic Review and Meta-Analyses (PRISMA) [12]. A systematic search was conducted
on literature databases from inception until the 4th of January 2022. Embase, Web of Science,
OVID MEDLINE and Cochrane CENTRAL were used as potential sources. The search was
conducted using controlled vocabulary supplemented with several key words (Table 1).

In 2006, the first-generation colon capsule (CCE-1) was developed, and in 2011, the
second-generation colon capsule (CCE-2) came to the market. New technology was imple-
mented in the second-generation colon capsule: the capsule frame rate increased from 4 to
35 images per second; the angle of view increased from 156◦ to 172◦ for each lens and the
data recorder was improved. The CCE-2 achieved a substantially higher sensitivity and
specificity to detect polyps compared to the first-generation colon capsule [3]. Therefore,
studies using CCE-1 were excluded. Two independent reviewers (S.M. and F.E.R.V.) first
screened the selected studies by title and abstract. Studies reporting on AI for reviewing
CCE-2 colonic images were selected. Included studies could report on the use of AI for
the detection of abnormalities, determining the location of the capsule in the colon and
assessing bowel cleansing quality. A full-text examination of the selected publications was
performed by the same reviewers independently. Reference lists of the included studies
were hand-searched to identify potentially relevant studies that were not retrieved in the
original search.
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Table 1. Systematic literature search. * = symbol that broadens a search by finding words that start with the
same letters.

Embase.com (1971-)

(‘capsule endoscopy’/exp OR ‘capsule endoscope’/de OR ((capsule * OR videocapsule *) NEAR/3 (endoscop * OR
colonoscop *)):ab,ti) AND (‘large intestine’/exp OR ‘large intestine disease’/exp OR ‘large intestine tumor’/exp OR

colonoscopy/exp OR (colon * OR colorectal * OR rectal OR rectum OR large-intestin *):ab,ti) AND (‘artificial intelligence’/exp OR
‘machine learning’/exp OR ‘software’/exp OR ‘algorithm’/exp OR automation/de OR ‘computer analysis’/de OR ‘computer

assisted diagnosis’/de OR ‘image processing’/de OR ((artificial * NEAR/3 intelligen *) OR (machine NEAR/3 learning) OR
(compute * NEAR/3 (aided OR assist * OR technique *)) OR software * OR algorithm * OR automat * OR (image NEAR/3
(processing OR matching OR analy *)) OR support-vector * OR svm OR hybrid * OR neural-network * OR autonom * OR

(unsupervis * NEAR/3 (learn * OR classif *))):Ab,ti) NOT ([animals]/lim NOT [humans]/lim)

Medline ALL Ovid (1946-)

(Capsule Endoscopy/OR Capsule Endoscopes/OR ((capsule * OR videocapsule *) ADJ3 (endoscop * OR colonoscop *)).ab,ti.) AND
(Intestine, Large/OR Colorectal Neoplasms/OR exp Colonoscopy/OR (colon * OR colorectal * OR rectal OR rectum OR
large-intestin *).ab,ti.) AND (exp Artificial Intelligence/OR exp Machine Learning/OR Software/OR Algorithms/OR

Automation/OR Diagnosis, Computer-Assisted/OR Image Processing, Computer-Assisted/OR ((artificial * ADJ3 intelligen *) OR
(machine ADJ3 learning) OR (compute * ADJ3 (aided OR assist * OR technique *)) OR software * OR algorithm * OR automat * OR
(image ADJ3 (processing OR matching OR analy *)) OR support-vector * OR svm OR hybrid * OR neural-network * OR autonom *

OR (unsupervis * ADJ3 (learn * OR classif *))).ab,ti.) NOT (exp animals/ NOT humans/)

Web of Science Core Collection (1975-)

TS=((((capsule * OR videocapsule *) NEAR/2 (endoscop * OR colonoscop *))) AND ((colon * OR colorectal * OR rectal OR rectum
OR large-intestin *)) AND (((artificial * NEAR/2 intelligen *) OR (machine NEAR/2 learning) OR (compute * NEAR/2 (aided OR
assist * OR technique *)) OR software * OR algorithm * OR automat * OR (image NEAR/2 (processing OR matching OR analy *))
OR support-vector * OR svm OR hybrid * OR neural-network * OR autonom * OR (unsupervis * NEAR/2 (learn * OR classif *)))))

Cochrane CENTRAL register of Trials (1992-)

(((capsule * OR videocapsule *) NEAR/3 (endoscop * OR colonoscop *)):ab,ti) AND ((colon * OR colorectal * OR rectal OR rectum OR
large-intestin *):ab,ti) AND (((artificial * NEAR/3 intelligen *) OR (machine NEAR/3 learning) OR (compute * NEAR/3 (aided OR

assist * OR technique *)) OR software * OR algorithm * OR automat * OR (image NEAR/3 (processing OR matching OR analy *)) OR
support-vector * OR svm OR hybrid * OR neural-network * OR autonom * OR (unsupervis * NEAR/3 (learn * OR classif *))):Ab,ti)

Google scholar

“capsule|videocapsule endoscopy|colonoscopy” colon|colonoscopy|colorectal “artificial intelligence”|”machine
learning”|”computer aided|assisted”|software|algorithm|automated|”image processing|matching|analysis”|”support

vector”|”neural network”

Details regarding the development of the proposed AI models and numbers on the
performance of these models were extracted from the final set of included studies. A
meta-analysis could not be performed due to the heterogeneity of the study designs.

Quality Assessment of the Included Studies

The quality of the included studies in terms of risk of bias and concerns regarding
applicability were independently assessed by two reviewers (S.M. and F.E.R.V.) using the
Quality Assessment of Diagnostic Accuracy Studies (QUADAS) -2 assessment tool [13].

3. Results

3.1. Literature Search

After removal of duplicates, retrieved articles were screened for eligibility based on
their title and/or abstract (Figure 1). A total of 1017 articles were evaluated for eligibility,
after which 903 were excluded. The remaining 114 studies underwent full-text review, after
which 105 were excluded for various reasons. No additional studies were retrieved by
hand-search. A total of nine studies were included in the final review.
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Figure 1. Flow chart of study selection.

3.2. Study Characteristics

Baseline characteristics of the included studies are shown in Table 2. All included
studies were full-text papers presenting cohort studies reporting on AI for reviewing CCE-2
colonic images. Two studies reported on computed assessment of bowel cleansing, five
studies reported on computed polyp or colorectal neoplasia detection, one study reported
on computed blood detection and one study reported on computed capsule localization.
For the studies reporting on bowel cleansing, one study evaluated bowel cleansing for each
video frame while the other study evaluated bowel cleansing for the entire video. All other
studies evaluated the presence of polyps, presence of blood or capsule localization for each
frame. Regarding the AI method, five studies developed a SVM or CNN model, where a
selection of frames is needed for the training of the model. To evaluate the performance
of the proposed AI methods, all studies used a separate evaluation of the CCE images as
a reference. Seven studies used the evaluation of CCE readers as a reference, one study
used the known outcomes from a CCE database and one study used the findings from
subsequent colonoscopy.
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3.3. Quality of the Included Studies

The risk of bias and applicability concerns in the included studies, which were de-
termined by using the QUADAS-2 tool, are presented in Table 3. All studies had a high
risk of bias regarding patient selection, since they included CCE videos derived from
previous trials or databases and information on the patient population behind the CCE
videos was limited or lacking. One study regarding AI bowel cleansing assessment also
raised applicability concerns regarding patient selection, since CCE videos were excluded
when they were too poor in quality after the first lecture or when the CCE videos were
incomplete [14]. Two studies had a high risk of bias regarding their index test, since they
determined their models’ optimal cut-off values yielding the highest diagnostic perfor-
mance by using a ROC curve, which could have led to overoptimistic results, which could
likely be poorer when using the same threshold in an independent sample [14,15]. Three
studies raised applicability concerns regarding their index test, since they did not report on
the performance of their AI models in terms of sensitivity and specificity [16–18].

Table 3. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) analysis for the assessment
of the risk of bias in the included studies.

Risk of Bias Applicability Concerns

Patient
Selection

Index Test
Reference
Standard

Flow and
Timing

Patient
Selection

Index Test
Reference
Standard

Becq [14] + + − − + − −
Buijs [16] + − − − − + −

Figueiredo [17] + − − − − + −
Mamonov [15] + + − − − − −

Nadimi [19] + − − − − − −
Yamada [20] + − − − − − −
Saraiva [21] + − − − − − −
Saraiva [22] + − − − − − −
Herp [18] + − − − − + −

− = low risk of bias; + = high risk of bias.

3.4. Artificial Intelligence for the Assessment of Bowel Cleansing Quality in CCE-2

Two studies reported on computed assessment of bowel cleansing in CCE-2 (Table 4,
Figure 2).

Figure 2. (A) Adequately cleansed CCE frame; (B) Inadequately cleansed CCE frame.
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3.4.1. Development of the Proposed AI Models for Computed Assessment of Bowel Cleansing

The first study created two computed assessment of cleansing (CAC) scores using
the ratio of color intensities red over green (R/G ratio) and red over brown (R/(R + G)
ratio) [14]. After sorting and random selection, for each ratio a set of frames representative
of the range of these ratios were obtained. These sets of frames were also evaluated by
two experienced CCE readers who were blinded to the CAC scores. The experienced
readers classified the frames as having either poor, fair, good or excellent bowel cleansing.
Frames with poor or fair quality were defined as inadequately cleansed and frames with
good or excellent quality were defined as adequately cleansed. Using the assessment of
the experienced reviewers as a reference, the optimal cut-off values yielding the highest
diagnostic performance for cleansing assessment were determined for both ratios using a
receiver operating characteristic (ROC) curve.

The second study developed two CAC models, a non-linear index model and a support
vector machine (SVM) model [16]. In both models, each pixel was defined as being clean
or dirty, after which, the cleanliness of each frame was determined based on the number
of clean and dirty pixels it contained. The cleansing level of the complete video was
determined by the median cleansing of all frames and weighted based on the number of
pixels in the frames. The non-linear index model classified pixels as either clean or dirty
based on the distribution of the colors red, green and blue. The SVM model is based on
machine learning concepts. A medical doctor classified pixels as being either clean or dirty.
Using these evaluated pixels, a SVM algorithm was created through machine learning
to assess the cleanliness of each pixel. For defining the cleanliness of each frame, and
subsequently for each video, thresholds for unacceptable, poor, fair and good cleansing
were predicted and corrected using learning techniques within the algorithm. To be able
to evaluate both models, the bowel cleansing quality of each video was also classified by
four CCE readers, including two international experts and two medical doctors with short
formal training.

3.4.2. Performance of the Proposed AI Models for Computed Assessment of Bowel
Cleansing

The CAC scores developed in the first study resulted in a bowel cleansing evaluation
for each CCE frame defined as either adequately or inadequately cleansed [14]. The R/G
ratio discriminated adequately cleansed frames from inadequately cleansed frames with a
sensitivity of 86.5% and a specificity of 78.2%, whereas the R/(R + G) ratio did this with a
higher sensitivity of 95.5% but a lower specificity of 63.0%.

The CAC models developed in the second study resulted in a bowel cleansing classifi-
cation for each CCE video defined as either unacceptable, poor, fair or good [16]. Evaluation
of the performance of their models was not expressed in terms of sensitivity and specificity,
but in levels of agreement with the CCE readers. The non-linear index model classified 32%
of the videos in agreement with the CCE readers, while the SVM model reached a higher
agreement level of 47%. The non-linear index model misclassified 32% of the videos with
more than one level of cleanliness compared to 12% in the SVM model.

3.5. Artificial Intelligence for Polyp Detection in CCE-2

Five studies reported on AI polyp detection in CCE-2 (Table 5, Figure 3).
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Figure 3. Polyp visualized in CCE.

3.5.1. Development of the Proposed AI Models for Polyp Detection

The first two studies developed algorithms for automated polyp detection based on
the geometric characteristic of polyps that they have a roundish protrusion into the colonic
lumen compared to the surrounding mucosal surface. In the first study, the amount of
protrusion was gauged into a special function called P, where the value of P is closely related
to the size of the protrusion in the images [17]. Findings from a subsequent colonoscopy
were used as a reference to determine which frames contained polyps. In the second study,
a binary classification algorithm was developed that resulted in the output “polyp” or
“normal” [15]. Frames that potentially contained polyps were first pre-selected based on the
texture content. The surface of polyps is often highly textured, however too much texture
implies the presence of bubbles or trash liquid. Therefore, in the preselection procedure
all frames with too little or too much texture were discarded. Subsequently, a measure
of protrusion was created which was used as the decision parameter of the final binary
classifier with pre-selection. From the used CCE dataset, it was known which frames
contained polyps. Based on the entire dataset, the optimal threshold of the created binary
classifier with pre-selection used to classify a frame as containing a polyp was determined
by using a ROC curve. To limit the number of frames that need to be manually re-assessed
by an expert, a desired level of 90% specificity was used.

The other three studies on CCE polyp detection developed a convolutional neural
network (CNN) that classified frames as either “normal” or “containing a polyp/colorectal
neoplasia/protruding lesion” [19–21]. CNN uses many images to develop and train a
model by learning rich features from these images. Ideally, a large amount of data is needed
to develop and train these models. However, available data in the form of CCE images is
limited which makes it difficult to create a CNN for CCE polyp detection from scratch. To
partially overcome this problem, all three studies used an existing CNN architecture and
trained this model with CCE images to improve its performance. To test the performance
of the proposed CNN models, all studies used separate images that were not used for
the training of the models. The third study used manual analyses performed by trained
nurses and gastro-enterologists as the reference group [19]. The fourth study used manual
analyses performed by three expert gastroenterologists [20]. The fifth study used manual
analyses performed by two expert gastroenterologists [21]. The proposed CNN model
in the fourth study was not only developed to detect polyps but also colorectal cancer
(colorectal neoplasia) and the CNN model in the fifth study was developed to detect
protruding lesions such as polyps, epithelial tumors, submucosal tumors and nodes. These
last two studies created a ROC curve to measure the performance of their CNN model.
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3.5.2. Performance of the Proposed AI models for Polyp Detection

The first study did not evaluate the accuracy of their developed algorithm in terms of
sensitivity and specificity [17]. They only provided a description of the amount of protru-
sion into the lumen of CCE images expressed in p-values for different colonic anomalies.
80% of all polyps had a p-value higher than 500. All polyps that expressed a p-value higher
than 2000 were polyps that were larger than 1 cm. The p-value was always under 500 in
frames with cecal ulcer, diverticula, bubbles or trash liquid. However, some examples were
shown that some folds mimicked polyps and were associated with a high p-value.

The other studies did provide numbers on the accuracy of their AI models for auto-
mated polyp detection in CCE. The binary classifier with pre-selection developed in the
second study resulted in a sensitivity of 47.4% and a specificity of 90.2% on a per frame
basis using a threshold value of 37 [15]. Since in a clinical setting it is important that each
polyp is detected in at least 1 frame, a ROC curve was also determined on a per polyp
basis. At the same threshold value, this resulted in a sensitivity of 81.3% and a specificity of
90.2%. At a threshold of 40 a specificity of 93.5% was reached while maintaining the same
per polyp sensitivity.

Even though the CNN model created in the third study was only evaluated on a per
frame basis, their model resulted in an even better performance with a sensitivity of 98.1%
and a specificity of 96.3% [19].

The fourth study also evaluated performance on both per frame and per lesion basis,
but again this did not result in a better performance than the CNN model in the third study.
The model from the fourth study resulted in a sensitivity of 79.0% and a specificity of 87.0%
for colorectal neoplasia on a per frame basis. Per lesion analysis increased the sensitivity to
96.2% [20]. The CNN model in the fifth study was only evaluated on a per frame basis and
resulted in a sensitivity of 90.7% and a specificity of 92.6% [21].

3.6. Other Artificial Intelligence for CCE-2

Besides the studies on artificial intelligence for the assessment of bowel cleansing
and polyp detection in CCE-2, two other studies were included. One study reported on
the detection of blood in the colonic lumen [22]. They developed a convolutional neural
network (CNN) that classified frames as either “normal” or “containing blood.” The same
strategy for CNN development was used as in the previously mentioned study on polyp
detection conducted by the same research group [21]. The CNN model only evaluated
the presence of blood on a per frame basis and resulted in a sensitivity of 99.8% and a
specificity of 93.2%.

Another study reported on artificial intelligence for the localization of CCE-2 [18]. A
model describing the shape of the intestine was created and feature points such as edges,
corners, blobs or ridges were identified. Subsequently, capsule movement and speed were
estimated by determining movement towards, away or rotated from these feature points,
also taken the capsule’s frames per second (Hz) into account. The model was run many
times and resulted in similar colonic shaped paths. Points usually associated with the
ascending colon, hepatic flexure, transverse colon, splenic flexure and descending colon
were identified. The model’s predictions of colonic sections were compared to expert
labeled sections. The average accuracy of the model for frame colonic section classification
was 86%.

4. Discussion

To our knowledge, this is the first systematic review providing an overview on the
use of AI methods for reviewing CCE-2 colonic images. CCE provides a non-invasive
alternative to colonoscopy for exploration of the colonic mucosa, but its applicability
is limited by the accompanying labor-intensive reviewing time and by the risk of inter-
observer variability. Automated reviewing of CCE images is an important step in the
evolution of CCE. AI methods show promising results, with high sensitivity but lower

115



Diagnostics 2022, 12, 1994

specificity for the assessment of bowel cleansing and high sensitivity and specificity for
polyp or colorectal neoplasia detection and blood detection.

Only one study reported on the AI assessment of CCE-2 bowel cleansing in terms of
sensitivity and specificity [14]. However, this study shows promising results for its two
developed CAC scores yielding high sensitivities (86.5% and 95.5% respectively) but lower
specificities (78.2% and 63.0% respectively) for discriminating adequately cleansed from
inadequately cleansed images. Adequately cleansed frames were only observed in 16.7%
and 9.9%, respectively. CCE videos were excluded when they were identified as being too
poor in quality after the first lecture and when they were incomplete, so the actual overall
adequate cleansing levels were even lower. In a previous meta-analysis on the accuracy
of CCE compared to colonoscopy, the rate of adequate bowel preparation varied from
40–100%, where most studies reported adequate cleansing levels over 80% [4]. The low
number of adequately cleansed frames in the study included in this current review makes
the risk of falsely identifying frames as adequately cleansed higher, which could explain
the lower specificities of the CAC scores compared to its sensitivities. Since this was the
only study reporting on AI for CCE bowel cleansing assessment in terms of sensitivity and
specificity, the observed accuracy of bowel cleansing assessment by the CAC scores in this
study cannot be compared to previous literature. However, optimal cut-off values yielding
the highest diagnostic performances were determined for scores using a ROC curve, which
could have led to overoptimistic results, which could likely be poorer when using the same
threshold in an independent sample [13].

The other study reporting on the AI assessment of CCE bowel cleansing did not report
accuracy results of their proposed AI models in terms of sensitivity and specificity or the
percentage of adequately cleansed videos [16]. However, the low agreement levels of the
non-linear index model (32%) and the SVM model (47%) with the reference group CCE
readers are alarming. More studies on the AI assessment of CCE bowel cleansing in terms
of sensitivity of specificity, with realistic adequate cleansing levels, are needed to be able to
evaluate newly developed AI models accurately.

The proposed AI models for polyp or colorectal neoplasia detection resulted in high
sensitivities of 47.4–98.1% and high specificities of 87.0% to 96.3% in per-frame analy-
sis [15,19–21]. Two studies performed per-lesion analysis, in addition to per-frame analysis,
which improved sensitivity of polyp- or colorectal neoplasia detection to 81.3–98.1% [15,20].
It should be noted that the abovementioned results from four included AI studies were
all compared to CCE-2 readers, so the concluded sensitivities and specificities represent
the ability of the AI models to reach the same performance levels as CCE-2 readers. The
previously mentioned meta-analysis on the accuracy of per-lesion detection by CCE-2
readers compared to colonoscopy reported a sensitivity of 85% and a specificity of 85% for
polyps of any size [4].

One study determined the optimal threshold of their binary classifier with pre-selection
by using a ROC curve, which may have led to overoptimistic estimates of its perfor-
mance [15]. Still, the highest sensitivities were reached in the other three studies that
developed a CNN model for polyp or colorectal neoplasia detection [19–21]. We believe
future development of AI methods for reviewing CCE images should be focused on the
creation of CNN models. While other AI methods fail to reach the same performance as
humans, previous literature has shown that CNN is able to match human performance in
different tasks [8,23]. However, optimal CNN requires training the algorithms with large
amounts of data, which can be a challenge in the field of CCE for which the availability of
data is limited.

Only one study reported on the computed detection of blood in the colonic lumen [22].
Even so, their CNN model shows a promising result with a high sensitivity of 99.8%.
Computed localization of the capsule within the colon was also only reported in one study.
The accuracy for classifying frames to a specific colonic section was high (86%), but further
studies are needed to validate this application in terms of sensitivity and specificity.
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While conducting our literature search, it was remarkable how many articles did
not specify whether they used small bowel capsule endoscopy (SB-CE) or colon capsule
endoscopy (CCE). Even when the use of CCE was reported, it was not always reported
whether the first-generation (CCE-1) or second-generation (CCE-2) capsule was used.
CCE-1 is an outdated version of the colon capsule with low sensitivity for detection of
polyps compared to CCE-2. Therefore, articles not specifying the use of CCE-2 were
excluded from this review. Future studies on the AI assessment of reviewing CCE images
should report on the type of capsule that was used.

Overall, literature on AI for reviewing CCE-2 colonic images is scarce. Two studies
reported on the AI assessment of bowel cleansing and five studies reported on AI polyp or
colorectal neoplasia detection. Only one study reported on the detection of blood in the
colonic lumen and only one study created a rough AI model for determining the location of
the capsule within the colon. The AI methods and study designs used were heterogeneous.
Therefore, we could not perform a formal meta-analysis. Most studies had a limited sample
size to test the performance of their AI models. Especially for studies using machine or
deep learning, a large proportion of CCE images is needed for training the model, limiting
the amount of images left for testing the models. Three out of nine studies included in this
review did not report on the performance of their AI models in terms of sensitivity and
specificity, making it hard to determine their value [16–18].

Nevertheless, the studies presented in this systematic review show promising results
for the use of AI for reviewing CCE-2 colonic images with high sensitivities for both
bowel cleansing assessment as well as polyp or colorectal neoplasia detection and blood
detection. Manual CCE review is time-consuming and faces problems regarding inter
observer variability. Improvements in imaging recognition will improve the reading time
and inter observer variability, and may accelerate the use of CCE. This systematic review
gives hope that AI can provide a timesaving, objective and reproducible method for
reviewing CCE images.

Necessary Action Points to Reach Implementation of AI Technology for CCE in Daily Practice

Actual implementation of AI for reviewing CCE-2 colonic images is a crucial step in
the applicability of CCE in daily clinical practice. Future studies should preferably focus
on CNN, because of its high potential for reaching human-like performance. In order
to reach its implementation, several steps need to be taken. CNN algorithms need to be
optimized and tested with more data, possibly requiring the set-up of a large international
CCE database. To ensure adequate evaluation of the added value of the AI method, studies
should always report the version of the capsule used and the accuracy of their models
in terms of sensitivity and specificity. Additionally, studies should preferably only use
the results from expert CCE readers to test the performance of their AI methods, since
the concluded sensitivities and specificities represent the ability of the AI models to reach
the same performance levels as these readers. Besides CNN, which requires an adequate
number of coloscopy images, synthetic samples can also be used as artificial intelligence
methods [24,25]. Finally, when these gaps and barriers have been overcome, prospective
clinical trials have to confirm the accuracy of the optimized CNN models.
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Abstract: The trade-off between speed and precision is a key step in the detection of small polyps in
wireless capsule endoscopy (WCE) images. In this paper, we propose a hybrid network of an inception
v4 architecture-based single-shot multibox detector (Hyb-SSDNet) to detect small polyp regions
in both WCE and colonoscopy frames. Medical privacy concerns are considered the main barriers
to WCE image acquisition. To satisfy the object detection requirements, we enlarged the training
datasets and investigated deep transfer learning techniques. The Hyb-SSDNet framework adopts
inception blocks to alleviate the inherent limitations of the convolution operation to incorporate
contextual features and semantic information into deep networks. It consists of four main components:
(a) multi-scale encoding of small polyp regions, (b) using the inception v4 backbone to enhance more
contextual features in shallow and middle layers, and (c) concatenating weighted features of mid-level
feature maps, giving them more importance to highly extract semantic information. Then, the feature
map fusion is delivered to the next layer, followed by some downsampling blocks to generate new
pyramidal layers. Finally, the feature maps are fed to multibox detectors, consistent with the SSD
process-based VGG16 network. The Hyb-SSDNet achieved a 93.29% mean average precision (mAP)
and a testing speed of 44.5 FPS on the WCE dataset. This work proves that deep learning has the
potential to develop future research in polyp detection and classification tasks.

Keywords: deep transfer learning; multi-scale encoding; weighted feature maps fusion; image
augmentation; polyp; inception module; single-shot multibox detector (SSD); wireless capsule
endoscopy images (WCE)

1. Introduction

Gastrointestinal cancer is the third major cause of death worldwide [1]. Colorectal
cancer begins as a benign growth of glandular tissue in the colonic mucosa, known as
adenomatous polyps, which may turn into malignant tumors over time. The number of
patients affected by this disease has increased considerably in recent years [2–4]. The non-
invasive technique of wireless capsule endoscopy (WCE) is widely utilized in clinics to
examine the GI tract as an advanced medical imaging technology [5]. Contrary to traditional
colonoscopy devices, it enables physicians to fully visualize the inner cavities of the small
bowel from the inside without pain or sedation [6,7]. However, many circumstances
hinder the diagnosis process; some polyps may be overlooked due to their small size, low
illumination inside the GI tract, or the skills of the gastroenterologist. A WCE produces
two or more color images per second, which lasts 8 hours, to capture an approximation of
55,000 frames per patient. A large amount of data makes the task of detection laborious
and tedious for trained endoscopists to identify suspicious areas and manually locate
polyp regions in each WCE frame. Therefore, a computer-aided system (CAD) is required,
which may help clinicians automatically locate large and small polyps and reduce the
miss rate. Even for highly-skilled clinical practitioners, the detection process is more
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difficult owing to the complicated characteristics of the polyp regions (shape, texture,
size, and morphology). Recently, many polyp detection solutions have been proposed to
assist endoscopists in providing an automated system acquiring some knowledge without
requiring the physical presence of the specialists [8,9]. Deep learning (DL) architectures
have rapidly grown in the medical image analysis field, owing to their superior performance
in image classification compared to the handcrafted methods [10–14]. This study aimed
to classify abnormalities and automatically detect and localize polyp regions on both
colonoscopy and capsule endoscopic images [15–18]. The transfer of information between
the CNN blocks can automatically learn features from raw data and avoid the obstacles
of manual feature extraction. In WCE polyp detection, the lack of public and annotated
datasets pushed most previous studies to utilize private data sets. Other studies on
colonoscopy employed public data sets according to their initiatives (e.g., MICCAI 2015
sub-challenge on automatic polyp detection in the colonoscopy). Region-based object
detection and scale variations are the primary focuses of computer vision. In this context,
CNN-based object detectors can be divided into two categories: two-stage detectors, such
as R-CNNs [19], and their many variants (Faster R-CNN [20], R-FCN [21], etc.), and one-
stage detectors (YOLO [22], SSD [23], etc.). Two-stage detectors show low speed and high
computation rates by selecting a one-scale feature map and using a fixed receptive field,
which limits the practical application of deep learning in small polyp region detection. Thus,
two-stage detectors are accurate but relatively slow compared to one-stage detectors that
map image pixels directly to the coordinates of the bounding boxes. One-stage detectors
are more accurate for speed and memory but sacrifice precision for small object detection.
Recently, many researchers have effectuated corresponding research on improving the
small object detection ability of SSD models. However, the trade-off between accuracy
and speed is still the goal of object detection research in medical image analysis. The SSD
model’s detector succeeded in preserving the location information in either shallower or
deep layer networks. However, semantic information may be lacking in feature maps
generated by shallow layers, particularly for small polyp regions, resulting in performance
degradation over time.

The motivation of this study is to achieve an encouraging mean average precision
(mAP) for polyp detection purposes while reducing the running time by implementing
tremendous deep learning frameworks. For that reason, we redesigned a new SSD model
using the inception-v4 (as a backbone), which can solve the problem of over-fitting and
increased computation during the optimization process. Thus, the inception frameworks
can capture more target information compared to the VGG networks without increasing
network complexity. The inception-v4 has a more uniform simplified architecture and
more inception modules than inception-v3. However, it may not be necessary to add
more inception layers to obtain significant increases in the performances as stated in [24].
Therefore, a weighted mid-fusion of two successive modified inception-A modules of
inception v4 is introduced in order to replace the conv4_3 layer of the VGG16 network for
further contextual and semantic information extraction. The modified version of inception
v4 aims to reduce the number of layers used to speed up the run time with remarkable gain
in precision.

Inspired by the feature fusion single-shot multibox detector (FSSD) [25] and the
GoogLeNet inception v4 [26] Szegedy et al. 2017), this paper proposes a hybrid network-
based single-shot multibox detector (Hyb-SSDNet) to tackle the problem of small polyp
region detection in both WCE and colonoscopy frames. To achieve this goal, the proposed
method benefits from the powerful architectural designs of inception modules to produce
ultimate architecture used as the backbone of the SSD detector. Indeed, it replaces the
classical strategy of alternating convolutional and pooling layers of the shallow part of the
VGG16 network with stacked inception modules. Since inception networks tend to be very
deep, it is natural to effectively redesign them in the higher part of inception v4 (backbone)
consistent with the VGG16 architecture’s small polyp target detection. This would allow
the Hyb-SSDNet framework to reap all the benefits of inception blocks while retaining its
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computational efficiency; thus, enabling the network to detect polyp patterns of various
sizes within the same layer and avoid heavy parameter redundancies. To give higher
importance to the region of interest, we designed a weighted mid-fusion module (WFM)
that enhances more contextual features in shallow layers by assigning weights to different
channels and positions on the feature maps. The simplest strategy of concatenating mid-
level inception modules is aimed at incorporating contextual and semantic information
into deep networks and constructing a multi-scale feature map. Finally, a downsampling
block was applied to generate a new feature pyramid that is fed to the multibox detectors
to produce the final detection results consistent with the SSD process. Using proper fine-
tuning parameters, we conducted extensive experiments on the WCE and the challenging
CVC-ClinicDB and ETIS-Larib datasets. The results show that the Hyb-SSDNet obtains
a higher mAP than the conventional SSD with gains of 16.09, 17.43, and 16.98 points on
the WCE, CVC-ClinicDB, and ETIS-Larib datasets, respectively, especially for small polyp
regions with small speed drops.

The main contributions of this paper are as follows:

1. The application of a lightweight version of inception v4 architecture as the backbone
to improve the SSD detector ability in small polyp detection.

2. A weighted mid-fusion block of two adjacent modules of the modified version of
inception-A is used to replace the Conv4_3 layer of the VGG16 network;
thus, tackling the problem of missing target details.

3. The filter numbers of the first convolution layers in the stem part of the inception
v4 backbone were modified from (32 to 64) to capture more patterns and relevant
information similar to the original SSD.

4. The modification of the inception v4 model through the reduction of layers is used to
achieve faster speed while maintaining the computational cost.

5. The Hyb-SSDNet uses a weighted mid-fusion block to add new convolution layers to
construct the multi-scale feature pyramid differently from the conventional SSD.

6. The Hyb-SSDNet model robustness is verified through repeated experimentation on
three well-known datasets in the field (WCE, CVC-ClinicDB, and ETIS-Larib) for a
fair comparison with the competitor’s state-of-the-art methods.

7. The discussion of the advantages and limitations of the proposed framework.

The remainder of this paper is organized as follows. Section 2 presents the related
studies. Section 3 describes the proposed Hyb-SSDNet model in detail. Section 4 re-
ports the experimental results and compares them with those of other models. Finally,
the conclusions are presented in Section 5.

2. Literature Review

2.1. Hand-Crafted and CNN Methods

Automatically detecting polyps in WCE images is a challenging task because of their
variations in terms of size, shape, and morphology. Recently, significant progress has
been made in investigating handcrafted features for gastrointestinal classification purposes.
In this regard, a framework-based pyramid histogram for polyp classification based on
T-CWT and gamma parameters were presented in a previous study [6]. Understanding
these biological mechanisms remains highly complex. Thus, handcrafted features encode
only some parts and neglect the intrinsic information of the entire frame. Recently, with the
rapid development of CNN, several attempts have been made to classify colonoscopy
polyp abnormalities using existing deep learning frameworks, such as VGGNet [27],
GoogLeNet [28], and ResNet [29]. Limited by the size of medical datasets owing to privacy
concerns, a proper fine-tuning setting leads to good results in many fields compared to
retraining architectures from scratch, especially in the context of colonoscopy/endoscopy
polyp recognition [30]. This is the main motivation behind transferring knowledge to
wireless capsule endoscopy polyp detection tasks.
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2.2. SSD-Based and Other Object Detectors

Polyps localization in WCE/colonoscopy images by drawing a bounding box around
the localized region is the purpose of this paper, whereas polyp classification is conducted
directly as an internal stage of localization. The frameworks of domain-specific object
detection methods are primarily categorized into two types. One is the two-stage algorithm
that first generates region proposals and then classifies each proposal into different object
categories (e.g., Faster R-CNN [31]). The second one is a one-stage algorithm based on re-
gression (e.g., YOLO [32] and SSD [33]). The authors of [34] proposed an improved version
of the mask R-CNN framework for polyp detection and segmentation tasks. Jia et al. [35]
presented a two-stage framework based on deep learning for automatic polyp recogni-
tion in colonoscopy images. An improved version of the CNN algorithm was proposed
by TASHK et al. [36], which used DRLSE to automatically locate polyps in an image.
However, a meta-analysis showed that the detection speed of the two-stage algorithm is
slow, making it difficult to meet the real-time requirements of polyp detection even if it
performs high localization and object recognition performance. In contrast, the one-stage al-
gorithm achieved a high inference speed by using the predicted boxes from the input images
directly, without the region proposal step. Misawa et al. [37] proposed a polyp detection
system based on YOLOv3, which achieved real-time detection with over 90% sensitivity
and specificity. The advantages are that there is only one processing step, so a preliminary
step to extract an ROI is not performed. However, the limitation of the YOLO algorithm is
that it struggles with small objects within the image due to the spatial constraints of the
algorithm, especially for small polyp detection purposes. Liu et al. [38] proposed a deep
framework-based single-shot detector (SSD) that uses ResNet50 and VGG16 architectures
as backbone networks to detect polyps in colonoscopy videos. However, the traditional
SSD-based VGG16 network only uses a 1 × 1 and 3 × 3 convolution kernel for one convo-
lution layer making its feature extraction ability inefficient. Therefore, a more powerful
backbone (such as inception v4) is needed to strengthen the polyp detection process.
Some attempts have been made to address the problems of small polyp detection using
the SSD algorithm. Zhang et al. [39] presented an architecture (SSD-GPNet) based on the
SSD model in which they combined low-level feature maps with the deconvolution of
high-level feature maps. Jeong et al. [40] proposed an enhanced version of the SSD model,
in which they fully utilized the direction information of the feature maps by performing a
simple concatenation and deconvolution operation. These improvements made the Rain-
bow SSD suitable for small-target detection. Although some attempts have been made to
improve the accuracy of small polyp region detection by simplifying the SSD architecture,
the addition of deconvolution layers leads to excessive computational complexity at the
expense of speed. Within the same scope, Sheping et al. [41] proposed an enhanced SSD
network-based dense convolutional network (DenseNet), in which a residual block was
established before object prediction to further improve the model performance. They
performed a fusion mechanism of multi-scale feature layers to enhance the relationships
between the levels in the feature pyramid. However, information from multiple scales was
treated equally during fusion. For feature extraction enhancement, a weighted mid-fusion
to capture more informative patterns and contextual information is needed, giving weight
to more important features and reducing the model complexity while maintaining high ex-
ecution speed; thus, reaching the requirements for a complete detection process. The ability
to perform both real-time detection and high precision is an indispensable factor in clinical
applications [42]. A lightweight concatenation of mid-level visual and semantic features is
investigated to fully utilize the synthetic information that leads to the improvement in the
performance of small polyp detection in WCE images.

2.3. Single-Shot Multibox Detector (SSD)

The single-shot multibox detector (SSD) uses VGG16 as the backbone network and
is truncated with other convolutional layers [23]. SSD uses ConvNet to generate a se-
ries of fixed-size bounding boxes and scores. Subsequently, it employs a non-maximum
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suppression (NMS) method for final detection. Figure 1 shows the SSD300 design frame-
work separated into two parts; backbone and pyramid networks. The input sizes of the
original images are 300 × 300 × 3. The VGG-16 network is used in the SSD300 model as
the backbone, the first part constitutes four layers, and the second part is the application
of a convolution operation to the Conv4_3 layer of the VGG16 network to generate five
additional layers [18]. Shallower layers are investigated to predict smaller regions, while
deeper layers for bigger ones. However, the problem of small object detection persists as
the semantic information is not well extracted in shallower layers.

Figure 1. Framework of the traditional SSD.

2.4. Feature Pyramids Hierarchy

For object detection in medical imaging, various deep network architectures have been
investigated to trade-off between precision and speed. Faster R-CNN [31] and R-FCN [21]
perform one-scale feature maps to propose anchors for different scales. However, they
cannot efficiently detect multi-scale objects as well as regions of small sizes. FPN [43] and
DSSD [44] have used bottom-up and top-down architectures, respectively. For the rapid
detection process, layer-by-layer feature map fusion is not recommended. The traditional
SSD [23] uses the features of shallower layers, concatenates, and scales them from bottom to
top to make predictions. Then, it generates a pyramidal feature map. Inspired by the feature
fusion module, the proposal adopts the FSSD network structure [25]. However, the feature
pyramid network has been altered to enhance the fusion effect in which an improved
inception network is proposed to optimize SSD for improving the small object feature
extraction ability in the shallow network and to tackle the problem of scale variations in
detecting small polyp regions more effectively. The detailed information is presented in the
following sections.

3. Materials and Methods

A systemic overview of the Hyb-SSDNet architecture for polyp detection is shown in
Figure 2. The low-level feature layer with rich object information is not well reused in the
conventional SSD using the VGG16 backbone, and the polyp region information is partially
lost in the multi-layer transmission process. Therefore, the resulted feature information
at each layer is unbalanced. To boost the detection effect of the model, an improved
version of the SSD model-based inception v4 network (as the backbone) is proposed with
further modification in regards to the deep network part. This study aimed to develop an
optimization method for the detection results without sacrificing speed by fully utilizing
the synthetic information of all the feature layers and increasing the effective receptive field.
Thus, more object feature information can be extracted. We first describe the pre-processing
step, in which the surrounding black regions in the WCE images are removed to extract
the region of interest (ROI) patches that provide only useful information. The training
phase of Hyb-SSDNet is divided into two parts: (i) data augmentation strategies to handle
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overfitting in deep learning models owing to the data insufficiency problem. Then, we
pre-trained the Hyb-SSDNet model on the ILSVRC CLS-LOC dataset [45] and fine-tuned
it on the WCE/colonoscopy polyp datasets. (ii) The backbone network inception v4 for
feature extraction (including a weighted mid-fusion block of the inception modules) for
small polyp detection and the classification sub-network on multi-scale feature maps.

Figure 2. Flowchart of the proposed Hyb-SSDNet method for small polyp detection in WCE images.

3.1. Mid-Fusion Block

Different multi-modal fusions have been widely used in deep learning. Mid-fusion
operates independently at each scale. It then merges and passes them to complete the
network processes. However, information from multiple scales is treated equally dur-
ing fusion. Capturing variance in visual patterns as well as more informative patterns
in class prediction is one of the requirements of the complete classification approach.
Besides, the traditional SSD-based VGG16 network only uses the 1 × 1 and 3 × 3 convo-
lution kernel for one convolution layer, making its feature extraction ability inefficient.
To address this shortcoming, two weighted inception-A modules based on inception v4
were adapted to the mid-fusion block, giving more weight to important features. The mod-
ified inception-A module is presented in Figure 3. To enhance the feature extraction,
the network width is increased by exploiting sparsity in the network connectivity. A cas-
cade convolution layer composed of two convolution kernels with different sizes and an
average pooling layer are combined in parallel. First, the 1 × 1 convolution reduces the
dimension before the convolution operation and after the pooling operation, which sig-
nificantly reduces the calculation cost. The inception-A module of (inception v4 network)
uses two 3 × 3 continuous convolutions instead of the 5 × 5 convolution kernel to extract
more detailed object features and improve the calculation speed. Finally, the information of
different receptive fields is concatenated in one single layer in order to improve the feature
representation ability of the network. The L2 weight regularization is added to the convo-
lutional layers, the most common type used for neural networks with a sensible default
weighting of 0.00004 specifying the type of regularization as He_normal initializers. In ad-

125



Diagnostics 2022, 12, 2030

dition, after the convolution layer, batch normalization (BN) and ReLU activation functions
are used to accelerate the network training speed and enhance the detection robustness.

Figure 3. Modified inception structure.

The main fusion structure is shown in Figure 4. We considered SLi as the mid-level
inception module feature and SLi+1 as its adjacent inception module feature maps. After ex-
tracting mid-level features at two scales, we apply the mSE-Network to each inception
feature map in each channel (F) and spatial position, enabling the extraction of the most
representative features in highlighting the region of interest computed as:

S̄F
Li
= (mSE − Network(SLi ); mSE − Network(SLi+1)) (1)

The S̄F
Li

and S̄F
Li+1

have the same channel sizes and are fused using a simple concate-
nation strategy. In the literature, there are other fusion approaches, such as element-wise
summation, element-wise multiplication, averaging process, etc. To verify the best con-
catenation strategy, several experiments were conducted. Inspired by the [46] connection
module, a simple concatenation strategy was adopted in this study for the global feature
fusion module, as it is more effective. The concatenation operation provides more feature
representations for feature maps of the same size. The map merging operation can be
described as:

S
′
HL = D(S̄F

Li
; S̄F

Li+1
) (2)

where D is the feature concatenation operation, S̄F
Li

and S̄F
Li+1

are the channel-adjusted

feature maps from two successive mid-level layers, and S
′
HL is the fused feature map

producing a new high-resolution image that contains both rich semantic features and
location information. An L2 normalization operation and ReLU activation were then
applied to all filters after the concatenation procedure because the feature values in the
layers were significantly different in scale. The feature fusion module also localizes small
polyp regions by assigning higher weights to pixels containing the object class. Furthermore,
the fusion block tends to increase the discrimination capacity of the network by highlighting
small polyp edges in some of the feature maps. Thus, the most informative features of the
background were extracted and discriminated from the object in the weighted feature maps.
In this study, the mid-fusion block is used to generate spatial and multi-scale score maps
for the features extracted from two successive inception modules at the mid-level of the
inception v4 network. Polyp regions show great variation in shape, size, and orientation
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at different scales. This is the main motivation behind using a heterogeneous weighted
feature fusion of polyp regions. Thus, making the network sensitive to unique contextual
image features improved the classification performance for polyp regions.

Figure 4. The mid-fusion framework. Input feature maps were created at two successive incep-
tion modules of the inception v4 network to encode contextual information. All scale sizes are
35 × 35× 384. Extracted features were passed to the mSE-Network to generate the score maps,
reflecting the importance of features at different positions and scales. Weighted features were then
concatenated and normalized to complete the network process.

mSE-Network

This is motivated by the squeeze-and-excitation network’s success [47] in showing sig-
nificant improvement in the performance related to medical image analysis. Hyb-SSDNet
uses a learnable mechanism, highlighting the most salient feature maps, and avoiding
no-useful information of background. The structure of the squeeze-and-excitation block
(mSE-Network) used in this proposal is shown in Figure 4.
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cSE Block The squeeze-and-excitation network uses a squeeze operation as a primary
process by applying a global average pooling (Shen et al., 2015) to spatially compress
the input feature maps, and reduce the dimensionality from W × H × C to 1 × 1 × C.
The squeeze operation can be described in Equation (3) as follows: We consider the input
feature map Y = [y1, y2, y3, . . . , yc], yi ∈ R

H×W

xl =
1

W × H

W

∑
j

H

∑
k

yl(i, j). (3)

where x is the vector output, x ∈ R
1×1×c with its lth element. The spatial squeeze op-

eration only embeds the global spatial information in the output vector (x). Therefore,
the channel-wise dependencies will not be well encoded. Hence, the squeeze-and-excitation
network uses the excitation operation to solve the channel’s weight inefficiency. One of
the more significant issues of the excitation operation is to properly learn the non-linear
interaction between channels as they have to be activated simultaneously. Therefore, two
fully-connected layers F1 ∈ R

C× c
r , F2 ∈ R

c
r ×C, and the ReLU operation δ(.) were used.

The excitation operation is calculated in Equation (4) as follows:

x̄ = F1(Relu(F2 × x)). (4)

where C and r mean the number of channels and the scaling parameters, respectively. To re-
duce the computational complexity of the modified inception-A modules, the r parameter
is set to 2. Finally, a channel-wise recalibration of the output vector was performed with
the input feature maps to be scaled consistently to original sizes. We consider sig as the
sigmoid activation. The final step reconstructs the spatial squeeze and channel excitation
block (cSE). The merging operation expressed in Equation (5) is as follows:

x̃ = [sig(x̄1)y1, sig(x̄2)y2, sig(x̄3)y3, . . . , sig(x̄C)yC]. (5)

sSE block: The channel squeeze and spatial excitation (sSE block) assume the im-
portance of squeezing the input feature map along the channels and mutually exciting
them spatially. Therefore, a convolutional layer is applied to compress the input fea-
ture map. The sigmoid function is activated to obtain spatially distributed information.
Finally, the sSE block processed a concatenation operation for the feature map fusion with
the input feature map, computed in Equation (6) as:

ẍ = Sig(Wd, Y)× Y. (6)

where Y = [y1,1, y2,2, y3,3, . . . , yH×W ], yi,j ∈ R
1×1×C is the input feature map and

Wd ∈ R
1×1×1×C , generating a projection tensor d ∈ R

W×H , ẍ is the final vector for
the sSE block. To mutually recalibrate feature information in both spatial and channel
directions, the mSE-block performs a joint version of the spatial squeeze and channel
excitation (cSE) block and channel squeeze and spatial excitation (sSE) block [48], which
can be calculated in Equation (7) as follows:

YscSE(i, j, C) = max(x̃(i, j, C), ẍ(i, j, C)). (7)

This is based on the experiments conducted in the work of [48]. Concatenation obtains
the best results compared to other strategies that target the spatial and channel squeeze
excitation SE. However, it increases the channel number that implicitly increases the model
complexity. Thus, we used the max-out strategy to merge the two blocks as it obtains
approximately similar results to the concatenation procedure.
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3.2. Multi-Scale Feature Pyramid

This is motivated by FSSD [18,25]. The feature maps from the weighted feature fusion
module (Figure 4) using the inception v4 network (backbone) were considered as inputs
for the multi-scale feature pyramid, as shown in Figure 5. The lightweight feature fusion
module (S

′
HL) is designed to utilize a spatially coarser but a semantically richer feature

map from the middle pyramid level incorporating proprieties of both high level and its
relatively lower-level features. Figure 5 presents a top-down Hyb-SSDNet architecture that
incorporates semantic information of shallow and mid-level layers into textural features
of high levels. The entire process is as follows: First, a mid-fusion block of two adjacent
inception-A modules was performed. Then, L2 normalization and ReLU activation were
applied. The input size of the WCE/colonoscopy images was 299 × 299, and the network
structure of the Hyb-SSDNet could be divided into two parts: the backbone network in-
ception v4 feature extraction and feature fusion module, and multi-scale feature pyramid
for polyp region detection. The filter numbers of the first convolution layers in the stem
part of the inception v4 backbone were modified from 32 to 64 to reinforce the model to
capture more patterns and relevant information similar to the original SSD. Sequential ex-
periments proved that these steps enrich the semantic information of shallow and mid-level
features, and improve the model performance in small polyp regions. After concatenation,
a batch normalization operation was performed. The detailed structure of the model is
illustrated in Figure 6. Based on experiments conducted in the work of [25], a feature map
of resolution smaller than 10 px × 10 px may not contain much information to reuse. This
was inspired by the feature fusion SSD (FSSD) [25]. We constructed multi-scale feature
layers based on the SSD network, which added new layers, Conv6_2, Conv7_2, Conv8_2,
and Conv9_2, for object classification and location regression. To ensure precision and detec-
tion speed, the Hyb-SSDNet network investigated new feature fusion module layers based
on the inception v4 network, Conv1_WF, Conv2_WF, Conv3_WF, Conv4_WF, Conv5_WF,
and Conv6_WF, for the detection of small polyps. The target sizes of the resulting feature
layers were 35 × 35, 18 × 18, 9 × 9, 5 × 5, 3 × 3, and 1 × 1, different from those of the
FSSD model.

Figure 5. Overview of the Hyb-SSDNet architecture with a 299 × 299 × 3 input size and inception v4
as the backbone. Features from two successive modified inception-A layers (SL1, SL2) were fused by
a mid-fusion block producing an intermediate feature representation (S

′
HL).
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Figure 6. Detailed structure of the Hyb-SSDNet network.

4. Experiments

4.1. Datasets

The Fist WCE dataset was acquired from PillCam©COLON 2 polyps [49]. The original
image’s resolution was 256 pixels × 256 pixels. As depicted in Figure 7, the WCE dataset
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contains 120 polyps and 181 normal images obtained from one patient’s VCE test. To avoid
the overfitting problem owing to the small dataset size, we increased the training dataset
size by the pre-processing step, as described in this section. Therefore, the revised dataset
included 1250 polyp patches and 1864 normal patches. Subsequently, two trained experts
reviewed and manually defined binary masks corresponding to the polyp regions covered
to provide ground truths after being manually labeled and annotated as positive and
negative samples. The ground truth bounding box was drawn based on the mask ground
truth provided by specialists to meet the requirements of the polyp detection tools, using
a graphical image annotation tool and label object bounding boxes in images (LabelImg)
and corrected by experts. A popular colonoscopy dataset called CVC-ClinicDB [50] was
also used in this work, which contained frames showing polyp regions of different shapes.
A total of 25 colonoscopy videos were used by researchers to select at least 29 sequences
containing one polyp region in every frame. Subsequently, a set of frames was selected for
each sequence. As depicted in Figure 8, the CVC-ClinicDB dataset comprises 612 polyp
images (size: 384 × 288; format: tiff). Experts created the ground truth by manually
defining masks corresponding to the regions covered by the polyps in each frame. To meet
the requirements of polyp detection tools, the ground truth bounding box was drawn based
on the ground truth provided by specialists. The annotated ETIS-Larib [51] dataset was
used to assess the detection results. A total of 34 colonoscopy videos were used to generate
196 polyp images of different shapes and sizes. The ground truths of the ETIS-Larib dataset
were annotated by competent endoscopists members of clinical institutions as depicted in
Figure 9. The colonoscopy CVC-ClinicDB [52] and ETIS-Larib [53] datasets were adopted in
the 2015 MICCAI sub-challenge on automatic polyp detection. The normal and abnormal
images were rescaled to 299 × 299 pixels to reach the pre-trained inception v4 network
input size. We split the data into training 70%, validation 10%, and model testing 20%. The
five-fold cross-validation [54] was used, in which the state and convergence of the model
were checked after each epoch was completed. The hyperparameter number of iterations
and learning rate were adjusted automatically during the validation data. In general,
the validation set only adjusts the hyperparameters, such as the number of iterations and
learning rate. Subsequently, they were adopted according to the five group performances
in the models. The results were then averaged over the splits to estimate the mean average
precision metric.

Figure 7. Example of WCE polyp images (a–c).
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Figure 8. Example of CVC-ClinicDB polyp images (a–c).

Figure 9. Example of ETIS-Larib polyp images (a–c).

4.2. Evaluation Indexes

In this study, the mean average precision (mAP) metric was adopted to evaluate polyp
detection performance. Using an intersection over union (IoU) of 0.5, the mAP is defined
as the average of the average precision (AP) of all object categories. It is formulated by
Equation (8).

mAP =
∑Q

q=1 AveP(q)

Q
(8)

where Q is the number of queries in the set and q is the query for average precision.
Given a set of ground truth bounding boxes annotated by the experts, and a set of

predicted bounding boxes produced by the network with a confidence score above a specific
threshold (for example, 0.5), precision, recall, and F1-score can be defined in Equations (9)
and (10) as:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(9)

F − measure/F1 − score =
(2 × Recall × Precision)

Recall + Precision
(10)

where TP denotes true positives; that is, IoU > 0.5, FP indicates false positives and FN
indicates false negatives. Frame per second (FPS) is used to measure the detection speed
and indicates the number of frames transmitted per second. More details regarding the
evaluation metrics can be found in [18].

4.3. Experimental Setup
4.3.1. Experimental Environment Configuration

The experiments were performed using Colab Pro Plus solution provided by Google,
with a maximum RAM of 52 Gb and a disk of 166,83 Gb. All experiments were conducted
using CUDA 8.0.61-1, CuDNN6.0, Keras 2.0.5, Python 3.5, h5py 2.10.0, NumPy 1.16.3,
TensorFlow 1.15, TensorFlow-GPU 1.15, and OpenCV 3.1. According to the ground truth
bounding boxes of the small polyp region, the same aspect ratio within a range of 1–2 was
maintained for all employed datasets.
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4.3.2. Model Training

To verify the capability of the Hyb-SSDNet model, various indicators and parameters
in the field of medical imaging were investigated and adjusted. As a primary process,
the surrounding black regions containing no useful information about the WCE polyp
image were removed, as they may have degraded the performance of WCE polyp detection
and increased the computation time. The input images were resized to 299 × 299 × 3,
and the batch size was 32. Concerning data augmentation strategies [55], we investi-
gated flipping, rotation by 270◦, and cropping schemes. Further details can be found in
previous studies [56,57]. We pre-trained the model on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset, as it showcased massive progress in large-scale
object recognition over the past five years. We then fine-tuned the model on the WCE and
colonoscopy datasets. This method dynamically decreases the learning rate based on the
number of epochs, training times, and losses. Adaptive moment estimation (Adam) is an
optimization method for the adaptive learning rate. Practically, the Adam optimizer is
utilized in this work due to its efficiency with large problems. The initial learning rate
is set to 0.0001, and the learning rate decay policy is approximately different from the
original SSD with a drop of 0.5 and epochs_drop of 10. Other hyperparameters were
adjusted, beta_1 = 0.9, epsilon of 1 × 10−8, and beta_2 = 0.999. Using Keras, the learning
rate schedule is defined as follows: 0.0001 if epoch < 50, 0.00001 if epoch < 80, and 0.000001
otherwise. Hyb-SSDNet is an improved model for the in-depth feature fusion of SSD300.
For a fair comparison with the state-of-the-art approaches, target polyp detection was
used [18]. The model uses 100 epochs and 500 steps per training epoch. The mean average
precision (mAP), the number of picture frames that could be detected by the model per
second (FPS), and other indicators were used to evaluate the detection performance. Simi-
lar to conventional SSD [23], the same loss function was used in the Hyb-SSDNet model.
The hyper-parameter neg_pos_ratio was set to 3 and the α parameter was adjusted by
cross-validation to 1. More SSD_Loss details are presented in [41].

4.4. Results and Discussion
4.4.1. Ablation Studies

In this section, we investigate the effectiveness of the different components that affected
the experimental results of the main structure of the Hyb-SSDNet detector through an
ablation study on the WCE, CVC-ClinicDB, and ETIS-Larib colonoscopy datasets. Different
Hyb-SSDNet model settings are shown in Table 1 in which the inception v4 backbone
was kept. A mid-fusion block was designed based on the middle part of the detection
network to incorporate the semantic information of small polyps into the Hyb-SSDNet
network. Training and testing were performed on the WCE images, or in the CVC-ClinicDB
and ETIS-Larib joint training set and tested on the CVC-ClinicDB and ETIS-Larib test
sets. First, we compare two mainstream normalization methods (Batch Normalization and
L2 Normalization) and report their effects on the performance mAP (%) of the proposed
system. As reported in Table 1 (row 5, row 7 and row10), L2 normalization yielded better
results (90.11%, 93.29% and 92.53% mAP), whereas it is (88.42%, 89.96% and 89.75% mAP)
using batch normalization on the WCE train and test. The CVC-ClinicDB and ETIS-Larib
test sets support the results obtained on the WCE test set (col 5–row 17 and row 20) and
(col 4–row 27 and row 30). Thus, it is reasonable to choose L2 normalization instead
of batch normalization in mid-fusion design. Various feature fusion techniques have
been investigated to determine the most appropriate one for the Hyb-SSDNet framework.
Considering the WCE test set, it can be seen in Table 1 (rows 7) that the framework adopting
simple concatenation to fuse and scale the feature maps of shallow and middle layers
obtains the best result, 3.18 points higher than the average strategy and 4.6 points higher
than element-wise summation while it costs low performances in term of mAP Table 1
(row 1 and row 8) without utilizing a weighted fusion structure. This means assigning a
weighted score to each feature map in each layer and scale, giving them relative importance
in contributing to small polyp detection. In addition, experiments on the CVC-ClinicDB
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and ETIS-Larib test set Table 1 (row 11–20) and (row 21–30) support the results obtained
on the WCE images and demonstrate the high efficiency of the concatenation strategy for
mid-level fusion with L2 normalization, highlighting more important features for small
polyp detection.

Table 1. Effects of different design factors of the mid-fusion block on the Hyb-SSDNet performances.
The mAP is measured on the WCE, CVC-ClinicDB, and ETIS-Larib test sets.

Training Data Testing Data Mid-Fusion Block Weighted Feature Fusion Normalization Feature Fusion mAP (%)

Inception-A (×2) × × Concatenation 89.85
Inception-A(× 2) � × Summation 88.69

Stem & Inception-A(×1) × B.Norm Concatenation 88.42
Stem & Inception-A(×1) � × Summation 89.28

WCE WCE Inception-A(×2) � L2.Norm Average 90.11
Inception-A(×2) � B.Norm Average 89.96
Inception-A(×2) � L2.Norm Concatenation 93.29

Stem & Inception-A(×2) × B.Norm Concatenation 89.75
Stem & Inception-A(×2) � × Summation 91.42
Stem & Inception-A(×2) � L2.Norm Average 92.53

Inception-A (×2) × × Concatenation 88.25
Inception-A(×2) � × Summation 87.37

Stem & Inception-A(×1) × B.Norm Concatenation 88.21
Stem & Inception-A(×1) � × Summation 88.98

CVC-ClinicDB Inception-A(×2) � L2.Norm Average 89.74
& CVC-ClinicDB Inception-A(×2) � B.Norm Average 88.65

ETIS-Larib Inception-A(×2) � L2.Norm Concatenation 91.93
Stem & Inception-A(×2) × B.Norm Concatenation 88.87
Stem & Inception-A(×2) � × Summation 89.68
Stem & Inception-A(×2) � L2.Norm Average 90.14

Inception-A (×2) × × Concatenation 88.49
Inception-A(x2) � × Summation 88.03

Stem & Inception-A(×1) × B.Norm Concatenation 87.82
Stem & Inception-A(x1) � × Summation 89.46

CVC-ClinicDB Inception-A(×2) � L2.Norm Average 89
& ETIS-Larib Inception-A(×2) � B.Norm Average 88.94

ETIS-Larib Inception-A(×2) � L2.Norm Concatenation 91.10
Stem & Inception-A(×2) × B.Norm Concatenation 87.73
Stem & Inception-A(×2) � × Summation 89.41
Stem & Inception-A(×2) � L2.Norm Average 90.05

Where B.Norm and L2. Norm mean batch normalization and L2 normalization, respectively. Concatenation
is a simple concatenation strategy. Summation refers to an element-wise addition strategy, and average is an
element-wise mean strategy.

Table 2 lists the results of the proposed method on the WCE, CVC-ClinicDB, and ETIS-
Larib test sets, as well as some state-of-the-art detector-based SSDs. The (mAP) of SSD300
using VGG16 (backbone) were 77.2%, 74.5%, and 74.12% for the WCE, CVC-ClinicDB,
and ETIS-Larib test sets, respectively. The feature fusion strategy provides richer details
and semantic information, showing remarkable results compared to the conventional SSD.
As depicted in Table 2 (rows 5–6 and rows 15–16), FSSD300 and FSSD500 frameworks were
increased by (12.58% and 9.25%), (12.76% and 9.16%), and (12.18% and 11.47%) in terms of
(mAP) in WCE, CVC-ClinicDB, and ETIS-Larib test sets. By replacing the backbone network
VGGNet with DenseNet-S-32-1, the DF-SSD300 model exceeded the FSSD300 by 1.46%,
2.66%, and 0.54 mAP (91.24% vs. 89.78%), (89.92% vs. 87.26%), and (86.84% vs. 86.3%)
for all test sets, respectively. The detection speed decreases by half. The VGG16 network
was replaced with the ResNet-101 backbone in the L_SSD model (row 8 and row 18) to
perform feature fusion, which contained rich details and semantic information. The mAP
of ResNet-101 was slightly better than that of FSSD300 for both WCE and colonoscopy
datasets. The proposed Hyb-SSDNet algorithm outperforms the FSSD300, DF-SSD300,
and L_SSD models by 3.51 points (93.29% vs. 89.78%), 2.05 points (93.29% vs. 91.24%),
and 3.31 points (93.29% vs. 89.98%) on WCE dataset, while it achieves almost similar
performance with the MP-FSSD network on the WCE dataset; 0.22 points (93.29% vs.
93.4%). The Hyb-SSDNet framework achieved promising results, with a small drop in
speed. However, it still achieved real-time detection with 44.5 FPS, compared with DF-
SSD300 and L-SSD with 11.6 FPS and 40 FPS, respectively. Figure 10a–c supports the results
obtained in Table 2 as it shows the recall vs. precision plots obtained for this experiment on
WCE, CVC-ClinicDB, and ETIS-Larib test sets. The Hyb-SSDNet has strong feature reuse
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and extraction abilities. The mid-fusion block uses a weighted concatenation of spatial
features at each location and scale. Therefore, the features of unrelated regions, such as the
background, are suppressed. Thus, the fusion inception modules help the model focus on
real targets and improve the precision of the detection of small polyps.

Table 2. Comparison with previously published methods based on SSD, WCE, CVC-ClinicDB,
and ETIS-Larib test sets. Pre-train means that a pre-trained backbone was adopted to initialize the
model or it was initialized from scratch. The speed (FPS) and the (mAP) performances were tested
using google Colab pro+ GPU.

Training Data Methods Backbone Input Size Pre-Train FPS mAP@0.5(%)

WCE

WCE

SSD300 VGG16 300 × 300 × 3 � 46 77.2
SSD300 ResNet-101 300 × 300 × 3 � 47.3 81.65
SSD500 VGG16 300 × 300 × 3 � 19 79.45
SSD500 ResNet-101 300 × 300 × 3 � 20 84.95

FSSD300 VGG16 300 × 300 × 3 � 65.9 89.78
FSSD500 VGG16 500 × 500 × 3 � 69.6 88.71

DF-SSD300 [41] DenseNet-S-32-1 300 × 300 × 3 � 11.6 91.24
L_SSD [58] ResNet-101 224 × 224 × 3 � 40 89.98

MP-FSSD [18] VGG16 300 × 300 × 3 � 62.57 93.4
Hyb-SSDNet (ours) Inception v4 299 × 299 × 3 � 44.5 93.29

CVC-ClinicDB ETIS-Larib

SSD300 VGG16 300 × 300 × 3 � 46 74.5 74.12
SSD300 ResNet-101 300 × 300 × 3 � 47.3 78.85 75.73

CVC-ClinicDB SSD500 VGG16 500 × 500 × 3 � 19 78.38 75.45
& SSD500 ResNet-101 500 × 500 × 3 � 20 82.74 80.14

ETIS-Larib FSSD300 VGG16 300 × 300 × 3 � 65.9 87.26 86.3
FSSD500 VGG16 500 × 500 × 3 � 69.6 87.54 86.92

DF-SSD300 [41] DenseNet-S-32-1 300 × 300 × 3 � 11.6 89.92 86.84
L_SSD [58] ResNet-101 224 × 224 × 3 � 40 88.18 87.23

MP-FSSD [18] VGG16 300 × 300 × 3 � 62.57 89.82 90
Hyb-SSDNet (ours) Inception v4 299 × 299 × 3 � 44.5 91.93 91.10

4.4.2. Comparison with the State-of-the-Art Method

For fair comparison experiments with the proposed Hyb-SSDNet framework, we
selected the most highlighted methods in the literature-based SSDs models, YOLOv3, and
DSSD, as listed in Table 3. To quantitatively compare Hyb-SSDNet with other state-of-the-
art models, the performances of the trained model on the ETIS-Larib and CVC-ClinicDB
training sets were evaluated on the publicly available ETIS-Larib dataset. As depicted
in Table 3, the Hyb-SSDNet model obtains encouraging results of the (mAP) metric on
the WCE dataset compared with other models. This is attributable to the fact that polyp
abnormalities exhibit great variation in terms of color and shape. In addition, WCE, CVC-
ClinicDB, and ETIS-Larib images differ in nature, texture, and illumination acquisition
conditions. However, they achieved similar metrics. Additionally, the colors of the polyps
vary across different images within a patient’s VCE and other patients’ examinations.
Compared to previous approaches targeting polyp detection, Hyb-SSDNet achieved the
best mAP, which reached 93.29%, 91.93%, and 91.10%, respectively. The joint training of
the ETIS-Larib and CVC-ClinicDB datasets exceeded some competitor models or achieved
approximately similar metrics on the ETIS-Larib test set. Overall, the Hyb-SSDNet shows
promising results in terms of the mAP with a slight speed drop.
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Table 3. WCE or colonoscopy test detection results, or both (IOU > 0.5, batch-size 1).

Training
Dataset

Methods
Testing
Dataset

Backbone
Network

Pre-Train Input Size Prec Recall F1 Score

WCE images Hyb-SSDNet
(ours) WCE images Inception v4 � 299 × 299 93.29%(mAP) 89.4%(mAR) 91.5%(mAF)

ETIS-
Larib+CVC-

ClinicDB

Hyb-SSDNet
(ours) CVC-ClinicDB Inception v4 � 299 × 299 91.93%(mAP) 89.5%(mAR) 90.8%(mAF)

ETIS-
Larib+CVC-

ClinicDB

Hyb-SSDNet
(ours) ETIS-Larib Inception v4 � 299 × 299 91.10%(mAP) 87%(mAR) 89%(mAF)

WCE +CVC-
ClinicDB

Souaidi et al.,
2022 [18] ETIS-Larib VGG16 � 300 × 300 90.02%(mAP) × ×

CVC-ClinicDB
+ ETIS-Larib

Shin et al.,
2018 [59] ETIS-Larib Inception

ResNet � 768 × 576 92.2% 69.7% 79.4%

SUN+
PICCOLO+

CVC-ClinicDB

Ishak et al.,
2021 [32] ETIS-Larib YOLOv3 � 448 × 448 90.61% 91.04% 90.82%

CVC-ClinicDB Liu et al.,
2021 [60] ETIS-Larib ResNet-101 � 384 × 288 77.80% 87.50% 82.40%

GIANA 2017 Wang et al.,
2019 [61] ETIS-Larib AFP-

Net(VGG16) � 1225 × 996 88.89% 80.7% 84.63%

CVC-ClinicDB Qadir et al.,
2021 [62] ETIS-Larib ResNet34 � 512 × 512 86.54% 86.12% 86.33%

CVC-ClinicDB
Pacal and
Karaboga,
2021 [63]

ETIS-Larib CSPDarkNet53 � 384 × 288 91.62% 82.55% 86.85%

CVC-ClinicDB Wang et al.,
2019 [61] ETIS-Larib Faster R-CNN

(VGG16) × 224 × 224 88.89% 80.77% 84.63%

CVC-
VideoClinicDB

Krenzer et al.,
2019 [64]

CVC-
VideoClinicDB YOLOv5 × 574 × 500 73.21%(mAP) × 79.55%

4.4.3. Visualization of Detection Results

The main objective is to prove the efficiency of the proposed Hyb-SSDNet frame-
work, not only for WCE polyp images detection but also for colonoscopy polyp localiza-
tion cases (CVC-ClinicDB and ETIS-Larib). Polyp detection involves the identification
of polyp regions and the rejection of parts containing normal, blurry tissues, and others
showing feces or water jet sprays to clean the colon. Figures 11–13 show some detec-
tion cases of the FSSD and their analogs of the Hyb-SSDNet model on the WCE, CVC-
ClinicDB, and ETIS-Larib polyp test sets, respectively. The false negative rate decreased
because the Hyb-SSDNet model Figures 11h and 12b,d showed a relative improvement
in small polyp localization from the normal intestinal mucosa in comparison with the
FSSD model Figures 11g and 12a,c. Specifically, the FSSD model failed to observe the
context information of the object because it uses a small receptive field that can only
detect smaller objects from shallow layers. Other circumstances have hindered the iden-
tification of small polyp regions. Their similarity in appearance to the surrounding nor-
mal mucosa, their complicated characteristics (color, texture, contrast, and size), and the
presence of air bubbles, food, and other debris, limits the visualization of the actual ex-
tent of the lumen by capsule endoscopy. Therefore, Hyb-SSDNet performs a weighted
mid-fusion module of middle layers and embeds it into the final fusion block, which
can capture scene contexts and differentiate polyp edge regions from normal mucosa.
Figures 11e, 12g, and 13c,e show the false positive identifications of the FSSD model in the
normal mucosa areas of the WCE, CVC-ClinicDB, and ETIS-Larib test sets. Compared to the
Hyb-SSDNet framework, Figures 11f, 12h, and 13d,f show some true-positive identification
cases of Hyb-SSDNet in different normal mucosa areas. Regarding the WCE images, the dif-
ference in appearance between the polyp regions and the normal mucosa was not obvious.
Thus, the WCE frames captured in the case of insufficient light produced poor pixels,
which hindered the detection process as depicted in Figure 11h. However, the proposed
Hyb-SSDNet algorithm also shows a remarkable improvement in large polyp detection
for the WCE, CVC-ClinicDB, and ETIS-Larib test sets, and accurately distinguishes them
from the surrounding normal areas. Limited by different debris, Figures 12b and 13h show
hard cases of small polyps behind the folds of the CVC-ClinicDB and ETIS-Larib test sets,
respectively. Even specialists sometimes mistakenly recognize these parts when they are
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hidden from view behind a fold or wrapped around a fold in a clamshell fashion and find
them difficult to ’resect’.

However, the proposed Hyb-SSDNet model successfully detected a hard polyp case
in which the ground truth was not annotated by experts Figure 12b.

(a)

(b)

(c)
Figure 10. Precision vs. recall for (a) WCE test set, (b) CVC-ClinicDB test set, and (c) ETIS-Larib test
set using the Hyb-SSDNet framework.
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Figure 11. Qualitative results comparison between FSSD300 (a,c,e,g) and the proposed Hyb-SSDNet
(b,d,f,h) on the WCE polyp test set. True bounding boxes with IoU of 0.5 or higher with the bounding
predicted boxes are drawn in green and red colors, respectively.

Figure 12. Qualitative results comparison between FSSD300 (a,c,e,g) and the proposed Hyb-SSDNet
(b,d,f,h) on the CVC-ClinicDB polyp test set. True bounding boxes with IoU of 0.5 or higher with the
bounding predicted boxes are drawn in green and red colors, respectively.

Figure 13. Qualitative results comparison between FSSD300 (a,c,e,g) and the proposed Hyb-SSDNet
(b,d,f,h) on the ETIS-Larib polyp test set. True bounding boxes with IoU of 0.5 or higher with the
bounding predicted boxes are drawn in green and red colors, respectively.
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5. Conclusions

In this paper, an improved FSSD detection model (Hyb-SSDNet) was proposed for
accurate polyp abnormality localization and detection in both WCE and colonoscopy
datasets. In addition to the problem of medical ethics, researchers have been pushed to use
their datasets for polyp detection owing to the lack of standard and public WCE datasets.
Therefore, research in this field is limited and the performance metrics may be subjective.
The lightweight version of the Hyb-SSDNet aims to model the visual appearance of small
polyp regions via a weighted mid-fusion of inception modules for a polyp detection net-
work using the inception v4 backbone. The mid-fusion block uses the modified inception-A
modules to magnify the mid-level feature maps instead of using simple convolution layers.
Therefore, the Hyb-SSDNet model shows promising results in the (mAP) metric with little
speed drop. An efficient feature fusion module using a simple concatenation strategy and
L2 normalization was applied to the SSD framework to combine the intermediate inception
layers to further generate new pyramid feature maps. The effectiveness of the weighted
feature fusion was confirmed on three annotated testing datasets: WCE, CVC-ClinicDB,
and ETIS-Larib. The Hyb-SSDNet framework adequately integrates low- and mid-level
details, and high-level semantic information using a novel top-down feature fusion module.
It also adopts one horizontal connection to reduce the number of repetitive computations,
which shortens the detection time. In the future, a filtration strategy will be investigated to
regularize the intermediate layer and reduce the false negative rate. Although the proposed
model achieves satisfactory detection precision, the presence of the circumstances (e.g.,
debris, feces, and other factors) certainly influence the results as they cannot be completely
omitted. This shortcoming should be examined through subsequent work, such as how to
improve the performance of the model while maintaining a higher detection speed.
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Abstract: Endoscopic ultrasound (EUS) morphology can aid in the discrimination between mucinous
and non-mucinous pancreatic cystic lesions (PCLs) but has several limitations that can be overcome
by artificial intelligence. We developed a convolutional neural network (CNN) algorithm for the
automatic diagnosis of mucinous PCLs. Images retrieved from videos of EUS examinations for PCL
characterization were used for the development, training, and validation of a CNN for mucinous
cyst diagnosis. The performance of the CNN was measured calculating the area under the receiving
operator characteristic curve (AUC), sensitivity, specificity, and positive and negative predictive
values. A total of 5505 images from 28 pancreatic cysts were used (3725 from mucinous lesions and
1780 from non-mucinous cysts). The model had an overall accuracy of 98.5%, sensitivity of 98.3%,
specificity of 98.9% and AUC of 1. The image processing speed of the CNN was 7.2 ms per frame.
We developed a deep learning algorithm that differentiated mucinous and non-mucinous cysts with
high accuracy. The present CNN may constitute an important tool to help risk stratify PCLs.

Keywords: pancreatic cystic lesions; mucinous cystic neoplasm; intraductal papillary mucinous
neoplasm; endoscopic ultrasound; artificial intelligence

1. Introduction

Pancreatic cystic lesions (PCLs) are very common. A recent systematic review in-
cluding 17 studies found a pooled prevalence of 8% [1]. PCLs include a wide range of
entities, namely congenital, inflammatory, and neoplastic lesions. Patients with PCLs
have an increased risk of pancreatic malignancy compared with the general population [2].
However, malignancy occurs virtually only in those with PCLs of mucinous phenotype.
Intraductal papillary mucinous neoplasm (IPMN) is the most common pancreatic cystic
neoplasia, accounting for nearly half of pancreatic resections due to cystic lesions at a
reference academic hospital in the USA [3].

The diagnosis of PCLs based on endoscopic ultrasound (EUS) has important limita-
tions [4]. In fact, the range of accuracy in differentiating mucinous from non-mucinous
lesions is 48–94% with a sensitivity of 36–91% and a specificity of 45–81% [4]. However,
one of the main limitations of EUS is its low interobserver agreement for the diagnosis of
neoplastic versus non-neoplastic lesions and the determination of the specific type of PCL.
These concerns remain valid for a wide spectrum of endoscopists, with different degrees of
expertise in EUS (experts, semi-experts, or novices) [5,6].
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The application of artificial intelligence (AI) algorithms for the interpretation of med-
ical imaging has been the focus of intense research across several areas [7,8]. The imple-
mentation of these automated systems for the automatic analysis of endoscopic images
has provided promising results [9]. The ever-increasing computational power allows the
analysis of large image datasets through deep learning algorithms. Convolutional neural
networks (CNNs) are a type of multi-layer deep learning algorithm resembling the visual
cortex, which is tailored for automatic image analysis [10].

To date, only a small number of studies reported the use of deep learning systems for
the automatic interpretation of EUS images [11]. To optimize the diagnosis based on EUS
morphology and mitigate the low interobserver agreement, we aimed to develop a CNN
algorithm for the automatic diagnosis of mucinous PCLs using EUS images.

2. Materials and Methods

2.1. Patient Population and Study Design

We conducted a retrospective study using a prospectively maintained hospital database
of patients submitted to EUS for PCL characterization. All patients whose EUS exam was
recorded as a video file were included. All videos were recorded using the same EUS
device. Images retrieved from these examinations were used for the development, training,
and validation of a CNN-based model for the automatic identification of mucinous PCLs.

This study was approved by the ethics committee of São João University Hospi-
tal/Faculty of Medicine of the University of Porto (CE 41/2021) and was conducted re-
specting the Declaration of Helsinki. This study is of a non-interventional nature.

2.2. Data Collection

We retrieved the videos from 28 patients for high-quality EUS image analysis. These
images comprised still frames acquired during the EUS procedure as well as images
obtained through the decomposition of recorded videos into frames. The fragmentation
of videos into still images was performed using the VLC media player (VideoLAN, Paris,
France). The complete set of images was evaluated by an expert in EUS (FVB) with an
experience of more than 1000 EUS exams. All non-relevant frames were excluded. A total
of 5505 images were ultimately extracted. From this pool, 3725 depicted mucinous PCLs
and 1780 showed non-mucinous PCLs.

Clinical and demographic data were obtained from the electronic clinical record of each
patient. Any information deemed to potentially identify the subjects was omitted. Each
patient was assigned a random number in order to guarantee effective data anonymization.
A team with Data Protection Officer (DPO) certification confirmed the non-traceability of
data and conformity with the general data protection regulation (GDPR).

2.3. Endoscopic Ultrasound Procedures and Definitions

All EUS procedures were performed under anesthesiologist-directed sedation using
linear echoendoscopes (Olympus® GF-UCT180 and Olympus® GF-UC140) coupled with
an Olympus® EU-ME2 ultrasound processor under anesthesiologist-directed sedation.
Cyst type was determined based on surgical specimen, intracystic biopsy forceps samples
(Moray® micro forceps, STERIS) or cyst fluid cytology combined with carcinoembryonic
antigen (CEA) and glucose fluid levels. PCLs were considered mucinous if cytology
revealed mucinous epithelial cells or, in their absence, CEA fluid levels >192 ng/mL
and glucose levels <50 mg/dL. Patients with cystic neuroendocrine tumors and solid
pseudopapillary neoplasms were excluded.

2.4. Development of the Convolutional Neural Network

A deep learning CNN was developed for the automatic identification and differen-
tiation of mucinous and non-mucinous PCLs. In the former group, we included IPMNs
and mucinous cystic neoplasms (MCN), while the latter included neoplastic (serous cys-
tadenoma) and non-neoplastic (pseudocyst) lesions. From the collected pool of images
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(n = 5505), 3725 depicted mucinous and 1780 showed non-mucinous lesions. This pool of
images was divided for the constitution of training and validation datasets. The training
dataset was composed of 80% of the extracted images (n = 4404). The remaining 20% was
used as the validation dataset (n = 1101). The performance of the CNN was assessed using
the validation dataset. A flowchart summarizing the study design is presented in Figure 1.

Figure 1. Study design for the construction of the convolutional neural network and subsequent
evaluation of its performance. EUS—endoscopic ultrasound; PCLs—pancreatic cystic lesions;
M—mucinous pancreatic cystic lesion; NM—non-mucinous pancreatic cystic lesion; AUC—area
under the receiving operator curve.

The CNN was created using the Xception model with its weights trained on ImageNet
(a large-scale image dataset aimed for use in development of object recognition software).
To transfer this learning to our data, we kept the convolutional layers of the model. We
removed the last fully connected layers and attached fully connected layers based on the

145



Diagnostics 2022, 12, 2041

number of classes we used to classify our endoscopic images. We used two blocks, each
having a fully connected layer followed by a dropout layer of 0.25 drop rate. Following
these two blocks, we add a dense layer with a size defined as the number of categories to
classify (three: normal pancreatic parenchyma, mucinous PCLs and non-mucinous PCLs).
The learning rate of 0.00015, batch size of 32, and the number of epochs of 30 was set by
trial and error. We used Tensorflow 2.3 and Keras libraries to prepare the data and run the
model. The analyses were performed with a computer equipped with a 2.1 GHz Intel®

Xeon® Gold 6130 processor (Intel, Santa Clara, CA, USA) and a double NVIDIA Quadro®

RTX™ 4000 graphic processing unit (NVIDIA Corporate, Santa Clara, CA, USA).

2.5. Model Performance and Statistical Analysis

The primary outcome measures included sensitivity, specificity, positive and negative
predictive values (PPV and NPV, respectively), and the accuracy in differentiating mucinous
and non-mucinous lesions. Moreover, we used receiver operating characteristic (ROC)
curves analysis and area under the ROC curves (AUC) to measure the performance of our
model in the distinction between categories. The classification provided by the CNN was
compared to the definitive diagnosis (mucinous or non-mucinous cyst), the latter being
considered the gold standard. For each image, the trained CNN calculated the probability
for each category. A higher probability translated in a greater confidence in the CNN
prediction. The category with the highest probability score was outputted as the CNN’s
predicted classification (Figure 2). Additionally, the image processing performance of the
network was determined by calculating the time required for the CNN to provide output
for all images in the validation image dataset. Clinical and demographic data are presented
as median (interquartile range) or frequency (percent). Continuous data were compared
using the Mann–Whitney U test. Differences in the distribution of categorical variables
were assessed using the chi-square test. Statistical analysis was performed using Sci-Kit
learn v0.22.2 [12].

Figure 2. Output provided during the validation phase of the convolutional neural network. The
bars represent the probability estimated by the algorithm. The finding with the highest probability
was outputted as the predicted classification. A blue bar represents a correct prediction. Red
bars represent an incorrect prediction. M—mucinous pancreatic cystic lesion; NM—non-mucinous
pancreatic cystic lesion.
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3. Results

3.1. Clinical and Demographic Data

A total of 28 videos from patients submitted to EUS for pancreatic cystic lesion charac-
terization between November 2017 and August 2021 were used for image retrieval. From
these patients, 16 were female (57%) and had a median age of 65 years (IQR 53–70). A
total of 17 (61%) individuals had a final diagnosis of mucinous cysts, while 11 (39%) were
ultimately diagnosed with a non-mucinous lesion. Surgical specimens were reported for
eight lesions. Histology using intracystic biopsy forceps samples (Moray® micro forceps,
STERIS) was available for five patients. The remaining cysts (n = 15) were considered
mucinous based on fluid cyst analysis (cytology plus CEA and glucose levels). Concerning
cyst histotype, we included 16 IPMNs, 1 mucinous cystic neoplasm (MCN), 8 SCA (five
of which were of the macrocystic variant), and 3 pseudocysts (PC). The median follow-
up time was 18 months (3–29). The characteristics of the patients and lesions including
demographic data and lesion size and location are summarized in Table 1. Most lesions
(86%) were incidentally found, 30% were located in the head and neck of the pancreas and
the median size was 34.5 mm (19.3–44.8 mm). In this cohort, 14 patients underwent EUS
for presumed mucinous lesions with worrisome features as per international consensus
guidelines and 14 because of indeterminate cyst type after clinical and imaging integra-
tion (unilocular/oligocystic lesion without clear communication with the main pancreatic
duct). Mucinous cysts were smaller in size compared to non-mucinous lesions, respectively,
26.0 mm (IQR 17.5–44.5) vs. 37.0 mm (IQR 26.0–46.0), although this difference was not
statistically significant (p = 0.29). The location of the lesions had a similar distribution for
mucinous and non-mucinous lesions (p = 0.90) and were more frequently found in the head
and neck of the pancreas (47% and 55%, respectively). No adverse events were reported for
the EUS procedures, nor for EUS-FNA (including through-the-needle biopsies).

Table 1. Baseline clinical and demographic data.

Mucinous PCLs
(n = 17)

Non-Mucinous PCLs
(n = 11)

p Value

Sex 0.57
Female, n (%) 10 (58.8) 6 (54.5)

Age 0.64
Years, median (IQR) 64.0 (53.0–69.5) 65.0 (53.0–72.0)

Presentation 0.22
Incidental, n (%) 13 (76.5) 11 (100.0)

Abdominal pain, n (%) 2 (11.8) -
Pancreatitis, n (%) 2 (11.8) -

Indication for EUS <0.01
Worrisome features, n (%) 13 (76.5) 1 (9.1)

Indeterminate cyst type, n (%) 4 (23.5) 10 (90.9)
Cyst location on EUS 0.90
Pancreatic head, n (%) 8 (47.1) 6 (54.5)
Pancreatic body, n (%) 6 (35.3) 3 (27.3)
Pancreatic tail, n (%) 3 (17.6) 2 (18.2)

Cyst morphology 0.63
Unilocular, n (%) 6 (35.3) 4 (36.4)

Multilocular, n (%) 11 (64.7) 7 (63.6)
Cyst diameter

mm, median (IQR) 26.0 (17.5–44.5) 37.0 (26.0–46.0) 0.29
Abbreviations: EUS—endoscopic ultrasound; PCLs—pancreatic cystic lesions; IQR—interquartile range.

Overall, a total of 5505 frames were extracted for the construction of the CNN: 3725
of mucinous cysts (IPMNs and MCN) and 1780 of non-mucinous lesions (SCA and PC).
The accuracy of the algorithm increased as data were repeatedly input into the multi-layer
architecture of the CNN (Figure 3).
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Figure 3. Evolution of the accuracy of the convolutional neural network during training and valida-
tion phases, as the training and validation datasets were repeatedly input in the neural network.

3.2. Performance of the Convolutional Neural Network

The full-size dataset was split for the constitution of training and validation datasets as
follows: 80% of the retrieved images were used as a training dataset, and the remaining 20%
were used as a validation dataset for evaluation of the CNN’s performance. The confusion
matrix between the trained CNN and final diagnosis is shown in Table 2. Overall, the algo-
rithm had an accuracy of 98.5%. The sensitivity, specificity, PPV and NPV for the detection
and differentiation of mucinous cysts versus normal or non-mucinous structures were,
respectively, 98.3%, 98.9%, 99.5% and 96.4%. The AUC of the CNN for the discrimination
of mucinous and non-mucinous cystic lesions was 1.00 (Figure 4).

Table 2. Confusion matrix of the automatic detection versus final diagnosis.

Final Diagnosis

Mucinous Non-Mucinous

C
N

N Mucinous 743 9
Non-mucinous 12 337

Abbreviations: CNN—convolutional neural network; Mucinous—mucinous pancreatic cystic lesions; Non-
mucinous—non-mucinous pancreatic cystic lesions.

Figure 4. ROC analysis of the network’s performance in the detection of mucinous pancreatic cystic
lesions. AUC—area under the receiver operating characteristic curve. M—mucinous pancreatic
cystic lesion.
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3.3. Computational Performance of the CNN

The CNN completed the reading of the validation dataset in 6 seconds at a speed of
5.2 ms/frame. This translates into an approximated reading rate of 191 frames per second.

4. Discussion

The development of AI algorithms is a hot topic in medical literature. Several reports
show promising results regarding gains in diagnostic accuracy, particularly for medical
specialties highly dependent on imaging [9]. The application of machine learning (ML) in
endoscopy has shown encouraging results [10].

In this proof-of-concept study, we have developed a CNN for the automatic identifica-
tion of mucinous pancreatic cysts during EUS. The algorithm demonstrated an excellent
discriminatory ability with 98.5% accuracy for the differentiation of mucinous cysts from
non-mucinous lesions. This proof-of-concept study represents a pilot effort to minimize
the limited interobserver agreement regarding the EUS characterization of pancreatic cysts.
Evidence on the application of AI to EUS for the study of pancreatic lesions is limited.
Particularly, studies focusing on the detection and differentiation between mucinous and
non-mucinous pancreatic cystic lesions based on EUS images are scarce. To the authors’
knowledge, only one study focusing on this subject has been previously published [13].
Nevertheless, the development of AI algorithms for the evaluation of pancreatic diseases is
a subject of increasing interest [14–19].

The development of a deep learning model accurately predicting the phenotype of
PCLs during EUS procedures may have a substantial impact on patient management. The
main goals when approaching these lesions is defining their type (mucinous vs. non-
mucinous) and, subsequently, attaining a definite histotype. The first step of this sequence
is of particular relevance, as the malignant potential is virtually restricted to mucinous
lesions. Therefore, we developed a deep learning algorithm for the automatic classification
of PCLs as mucinous vs. non-mucinous. Nguon and coworkers implemented a CNN
model to differentiate MCN and SCA using EUS images [13]. Their algorithm achieved
an overall accuracy around 80%, which is in line with the classification performance of
experienced endosonographers. The authors explained this suboptimal accuracy as the
result of the inclusion of EUS images obtained using both radial and linear echoendoscopes
as well as variations in the demarcation of single or multiple regions of interest (ROI),
which included the cyst as well as surrounding tissue. This study differs from ours as
we only included linear EUS images and our CNN model included complete images,
without pre-selected ROI. Nevertheless, the main difference between the studies resides
in the spectrum of included lesions, as our study focuses on group classification rather
than differentiating between two different cyst types. Our model was built including
EUS images from IPMNs in the mucinous group, in addition to MCN. IPMNs are the
most frequent pancreatic cystic neoplasia and constitute a big challenge when it comes to
correctly risk stratifying the malignant potential of each lesion. The work by Kuwahara
et al. expands the reach of our study [15]. This group developed a deep learning algorithm
to predict the malignancy potential of IPMNs using images from patients with malignant
and non-malignant IPMNs. The authors used the output value of deep learning calculated
after training as the predictive value of malignancy (AI value). The mean AI value of
malignant lesions was higher than that of benign IPMNs. In this study, the CNN had a
higher diagnostic performance than that of the endoscopists diagnosis and the predictive
factors provided by scientific societies guidelines. Further studies on deep learning tools for
application to EUS should expand the knowledge in this issue and address the challenge of
automatic detection of cysts with advanced neoplasia, therefore minimizing the need for
cyst puncture, ultimately preventing unnecessary surgeries.

The development of AI solutions for PCLs differentiation has expanded to other endo-
scopic tools complementary to conventional EUS. Confocal laser endomicroscopy (CLE)
has been proven useful for differentiating various types of PCLs and more recently was
shown to outperform international guidelines in the prediction of malignancy in IPMNs.
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However, image interpretation is observer dependent, and CLE is not widely available [20].
Recently, Machicado et al. described the development of a CNN algorithm based on CLE
images to risk stratify IPMNs [16]. They used CLE videos from 35 histopathologically
confirmed IPMNs and developed two CNN algorithms whose accuracy was compared to
International Consensus Guidelines and American Gastroenterology Association criteria
for advanced lesion/surgical indication. The results showed the higher accuracy of the
CNN algorithm compared with the guidelines.

We conducted a proof-of-concept study assessing the potential of deep learning tools
for the differentiation of mucinous and non-mucinous PCLs. This study has several
highlights. First, to our knowledge, it is the first study to provide a clinically useful tool
for the differentiation of PCLs as mucinous or non-mucinous. The accurate differentiation
between both entities allows a prompt estimate of malignant potential, which has significant
impact in patient management and follow-up. Second, our model was demonstrated to be
highly sensitive, specific, and accurate. Finally, our algorithm had a high image processing
performance with an approximate reading rate of 139 frames per second. An adequate
image processing performance is a key element for subsequent real-time implementation
of this proof-of-concept CNN model.

This study has several limitations. First, a small number of patients were enrolled
and, therefore, some cyst types were underrepresented. The inclusion of a large pool of
frames extracted from full-length videos, in addition to the routine still frames included
in the standard EUS report, with distinct resolution and viewing angles contributed to
provide an adequate variability to our dataset. Second, we performed a single-center
retrospective study. Subsequent robust multicenter prospective studies are required to
assess the clinical significance of our results. Further development of this technology will
require the inclusion of large numbers of patients. Additionally, the refinement of the
algorithm will require the inclusion of other types of pancreatic cysts as this should be
required before it reaches clinical practice, providing automatic differentiation between
several classes. Third, our proof-of-concept algorithm was developed and assessed using a
single EUS suite. Therefore, our results may not be generalizable to other EUS platforms.
Finally, the absence of surgical specimens or histological samples as the gold standard for
all the included cysts is a significant limitation for establishing a reliable and reproducible
gold standard for the development of the automated algorithm. An automated predic-
tive model can only be as good as the gold standard for defining the true classification.
Furthermore, the future application of AI tools into real-life EUS practice will require
going through a strict regulatory pathway. The Food and Drug Administration (FDA) has
approved several AI/ML-based Software as medical device (SaMD) with locked algorithms
and changes beyond original market authorization requiring FDA premarket review [21].
Additionally, the FDA accepts the evolving and changing nature of AI/ML-based SaMD,
namely convolutional neural networks. This particular matter constitutes a change from
the previous paradigm for medical device regulation, as it was not initially designed for
adaptive deep learning models. Indeed, a new framework is being gradually developed to
provide appropriate regulatory oversight.

Artificial intelligence is gradually changing the landscape in digestive health care.
Indeed, accurate, faster, and tireless AI tools will disrupt clinical practice and play a key
role in endoscopic ultrasound. The potential of deep learning algorithms to impact the care
of patients with pancreatic disease is vast and may contribute to improving the prognosis
of these patients. We believe this AI model constitutes a significant milestone in the pheno-
typic differentiation of PCLs. Indeed, this work highlights the technological feasibility of
accurately achieving morphologic pattern identification of pleomorphic pancreatic lesions.
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Abstract: Most of the microbiome studies suggest that using ensemble models such as Random Forest
results in best predictive power. In this study, we empirically evaluate a more powerful ensemble
learning algorithm, multi-view stacked generalization, on pediatric inflammatory bowel disease and
adult colorectal cancer patients’ cohorts. We aim to check whether stacking would lead to better
results compared to using a single best machine learning algorithm. Stacking achieves the best test
set Average Precision (AP) on inflammatory bowel disease dataset reaching AP = 0.69, outperforming
both the best base classifier (AP = 0.61) and the baseline meta learner built on top of base classifiers
(AP = 0.63). On colorectal cancer dataset, the stacked classifier also outperforms (AP = 0.81) both
the best base classifier (AP = 0.79) and the baseline meta learner (AP = 0.75). Stacking achieves
best predictive performance on test set outperforming the best classifiers on both patient cohorts.
Application of the stacking solves the issue of choosing the most appropriate machine learning
algorithm by automating the model selection procedure. Clinical application of such a model is not
limited to diagnosis task only, but it also can be extended to biomarker selection thanks to feature
selection procedure.

Keywords: gut microbiome; machine learning; classification; inflammatory bowel disease; colorectal
cancer; stacked generalization; ensemble learning

1. Introduction

The human microbiota are connected to health and disease in many clinical appli-
cations [1,2], e.g., cancer [3] or immune-mediated inflammatory diseases [4] including
e.g., inflammatory bowel disease [5]. Traditionally, the medical microbiology community
used univariate statistical hypothesis tests to identify significantly different species across
patient cohorts [6]. Such methods have their limitations since they neither include complex
non-linear interactions among species, nor do they provide a prognostic value for a new
unseen dataset [7]. Hence, most of the modern human microbiome studies rely on machine
learning models to identify biomarkers of health and disease [7,8]. Machine learning also
provides tools to integrate microbial data with other -omics datasets and to identify the
most important species involved in health and disease [9,10]. For example, inflammatory
bowel diseases such as Crohn’s disease or ulcerative colitis have similar symptoms, but
their etiology and hence the treatment regimens are different [6]. Cancer treatment is an-
other example where finding a prognostic microbial marker can be important. For instance,
due to the tumor growth, the microbiota composition changes and one can detect such
changes early enough to diagnose and hence intervene when treatment has the best effect
on patients [11].

The choice of the machine learning algorithm for microbial and clinical data-driven
problems is methodologically and computationally challenging. Since both microbial
and clinical features are represented as tabular data, specialized neural network models
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e.g., Convolutional Neural Networks [12–14] are not directly suitable on such datasets. In
terms of predictive performance, due to the so-called “no free lunch” theorem there is
no universally best algorithm which would perform equally well across all datasets [15].
Therefore, most of the microbiome studies related to looking for solution to this challenge
are empirical and often apply a large suite of models on microbial data one-by-one with the
aim of finding a model which performs the best [16–19]. Such studies often suggest that
using ensemble models such as Random Forest or Gradient Boosted Decision Trees results
in best predictive power. However, this is still a heuristic choice and even application of
such complex models individually might still lead to suboptimal results.

Moreover, the application of machine learning on practical microbiology problems
must be done with great care, because the consequences of wrong decisions based on
model predictions can harm patients during treatment. For example, it has been shown
that black-box models like Neural Networks can make accurate predictions even when
they exploit clinically undesired data patterns [20,21]. Therefore, model interpretability
becomes an important issue next to the model accuracy. It is known that there is a trade-off
between model interpretability and model accuracy [7]. For example, complex black-box
models such as Extreme Gradient Boosting [22] or Random Forest [23] are accurate but
not interpretable, whilst simple models like Logistic Regression are interpretable, but
often slightly less accurate [17]. To understand how the model makes its predictions
and consequently increase trust in the model, Explainable (also sometimes interchangeably
called Intelligible or Interpretable) machine learning models [24] should be used in biomedical
applications involving microbiome data.

In summary, a clinically applicable machine learning diagnostic model must be (a) ac-
curate, (b) explainable, (c) capable of integrating multiple data sources and d) reasonably
efficient in terms of computation time. Generalized stacking [25] (often called stacking
for the sake of simplicity) satisfies these requirements and solves the problem of selecting
the most suitable machine learning model. Like Random Forest, stacking is also an en-
semble learning algorithm, but instead of aggregating weak learners, i.e., decision trees,
stacking combines the output of strong learners. Those strong learners make prediction
errors on different subsets of samples, i.e., stacking directly benefits from a diversity of
classifiers in terms of their predictions. Each of the base learners is akin a judge in a jury
committee, which sees something unseen by other of his/her colleagues, but collectively
using a higher level judge’s help, entire committee achieves best judgement. The output of
the base learners is not combined by simple averaging, but learnt using a so-called meta
learner. Meta learning has been shown to improve predictive power, because the meta
learner combines strengths of each base learner and compensates their weaknesses [26,27].
Additionally, the flexible approach of stacking allows to train base learners on different
subsets of features stemming from various data views, resulting in a multi-view learning
setting [28]. Moreover, stacking delivers a computational trade-off between running a
single powerful machine learning algorithm (hence achieving possibly suboptimal result)
and running virtually all possible algorithms one-by one (hence not achievable on practice).

In this study, we evaluate stacking on two different patient cohorts, a pediatric in-
flammatory bowel disease cohort [29,30] and adult patients of colorectal cancer [31]. We
demonstrate that stacking leads to better result (Test Average Precision = 0.69 on inflamma-
tory bowel disease dataset and Test Average Precision = 0.81 on colorectal cancer dataset)
than using a single best machine learning algorithm, despite that each dataset poses its
unique challenges from both medical and machine learning aspects. On the one hand, clas-
sifying two diseases such as Crohn’s disease and ulcerative colitis is expected to be a more
difficult task rather than comparing healthy patients and patients diagnosed with cancer.
On the other hand, microbiota classification of newly-onset inflammatory bowel disease
in treatment-naive children should be easier than classification of adult cancer patients
who have undergone various treatments during their disease progression. Comparing
results on both datasets, we assess reasons why stacking can be an alternative to applying a
single model. We also evaluate empirically how base learners are mutually similar to each
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other with respect to predictions as well as how multi-view settings can potentially lead to
an improved predictive performance. For model interpretability, we also provide feature
importance values retrieved from both the meta learner and the entire stacking pipeline.

2. Materials and Methods

2.1. Datasets and Preprocessing

Table 1 provides an overview of basic characteristics of both datasets, including
number of features included in both clinical and microbial views as well as number of
unique values on genus taxonomic level in microbial view.

Table 1. Dataset characteristics for inflammatory bowel disease and colorectal cancer.

Clinical View Features Microbial View Features

# Numerical # Categorical # Total # Unique Genera

Inflammatory bowel disease 1 6 6737 533
Colorectal cancer 2 7 5982 239

The 16s rRNA microbial data features and clinical patient data features for inflam-
matory bowel disease patient’s cohort dataset were retrieved using the MicrobeDS R-
library [32]. Only samples from a pediatric RISK cohort were included, excluding any
patients who had any prior treatment using steroids and/or antibiotics. Among this subset,
only samples of patients with ulcerative colitis and Crohn’s disease were included. To
prevent overoptimistic model performance and prevent training label’s leakage, we re-
moved disease-related features which implicitly disclose patient status e.g., disease subtype,
disease extent in bowel, disease duration etc. Full list of removed features is provided
in Appendix Table A1. Full list of included features is provided in Appendix Table A2.
With this feature choice, we prevent the model learning shortcuts, e.g., that all patients
diagnosed with certain subtype of ulcerative colitis are indeed patients diagnosed with
ulcerative colitis. Moreover, from a clinical viewpoint, diagnosing a patient for whom the
disease subtype is known becomes a trivial task. Our final data set consists of 535 examples
with 7 features for the clinical data view and 6737 features for the microbiology view. Clin-
ical data contains 223 missing values and no data imputation was applied. 443 samples
are labeled with Crohn’s disease (negative class) and 92 labeled with ulcerative colitis
(positive class).

The 16s rRNA microbial data features and clinical patient data features for colorectal
cancer were retrieved from the GitHub repository [33] referred to by the authors of the
original paper [31]. Only samples of patients with colorectal cancer and healthy controls
were included, excluding all patients with adenoma. To prevent training labels’ leakage,
disease-related features e.g., history of cancer, history of polyps etc., were removed. Full
list of removed features is provided in Appendix Table A3. Full list of included features
is provided in Appendix Table A4. As a result, the dataset prepared for colorectal can-
cer classification consists of 291 examples with 9 features for the clinical data view and
5982 features for the microbiology view. Clinical data contains 5 missing values and no
data imputation was applied. 172 samples are labeled as healthy controls (negative class)
and 119 samples are labeled as with cancer patients (positive class).

Both datasets were randomly split into 80% training and 20% test sets. To be able to
assess overfitting, we held out the test set completely during model training, including the
cross-validation experiments.

2.2. Machine Learning Model and Training Procedure

The multi-view stacked model consists of base learners which are trained indepen-
dently from each other on original features per each view of the training set and a meta
learner which is trained on predictions of base learners. To reduce computational time,
the microbial features were filtered during training procedure. Namely, the microbial data
was prepared as input for base learners by removing features which had zero variance,
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i.e., features with constant values. Furthermore, data was pre-filtered using ANOVA cor-
rected by multiple test correction procedure after being power-transformed to achieve
normal distribution [34]. To get a better error estimation, the training set was split into k
folds and in k sequential iterations k − 1 folds were used for training. During each round
of stratified cross-validation, the remaining fold was used as validation set and only those
validation set predictions were combined, subsequently stacked and provided as a training
data to the meta learner. This procedure reduces overfitting, since meta learner is trained
on predictions made on validation set, not on training set. As training features for the meta
learner, the predicted probabilities of the base learners were used instead of predicted clas-
sification labels. The illustrative example of a multi-view stacked generalization framework
is depicted in Figure 1.

Figure 1. Multi-view stacked generalization framework’s illustrative example. Methodologically
this computational framework’s example consists of three base machine learning models and a
meta learner. The predictions of the base learners on validation folds are stacked together as meta
features and presented for training to the meta learner model which outputs the final prediction. The
illustrative example pipeline was trained on two subsets of features that allowed multi-view setting
by training base learners 1 and 2 on features of view 1 and the base learner 3 on features of view 2.
For the sake of simplicity, the example using only two views and three base learners is explained. In
principle, number of views and base learners is not limited.

We selected a diverse set of classifiers from different model classes as candidates for
the base learners. The linear classifiers are Stochastic Gradient Descent classifier with
Logistic Loss (SGD_LL), Stochastic Gradient Descent classifier with modified Huber Loss
(SGD_HL) and the K-nearest Neighbors Classifier (KNN). The non-linear classifiers are
Multi-layer Perceptron (MLP), Quadratic Discriminant Analysis (QDA), Random Forest
(RF) and Histogram-based Gradient Boosting Classification (HGBC). Since HGBC is the
only classifier in this suite which can directly be applied on data with missing values
and categorical features, HGBC was applied on both microbial data (HGBC_otu) and
clinical data (HGBC_clin). All other models were applied to microbial data only, because
their applications to clinical data would require imputing missing values with a risk of
introducing mistakes and one-hot encoding of categorical features, which would hugely
increase the feature space and hence it might increase possible overfitting. Stacking provides
a simple, yet powerful pipeline with reasonable development effort by combining and
learning outputs of suboptimal base learners, hence we did not perform hyperparameter
tuning of base learners.

As a meta learner, we chose Logistic Regression with Elastic Net regularization with
exhaustive grid search hyperparameter optimization and k-fold cross-validation. Logistic
Regression is advantageous to black-box models, because it is more interpretable and
empirically it results in comparable performance to black-box models [28]. We additionally
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applied a soft voting procedure (SoftVote) on output of base classifiers, which returns the
class label as argmax of the sum of predicted probabilities for comparison. All models were
trained using Python v3.7 programming language, scikit-learn v1.0.2 package [35].

2.3. Performance Metrics and Handling Class Imbalance

Both of the datasets exhibit class imbalance, because the number of negative classes
is larger than number of positive ones. The dataset for inflammatory bowel disease has a
high class imbalance with only 17% examples labeled with a positive class, while for the
dataset of colorectal cancer this number is 41%. Such imbalanced data requires specialized
performance metrics, because using metrics like Area Under Receiver Operating Charac-
teristic (AUROC) curve may lead to misleading results with over-optimistic performance
evaluation [36]. To obtain a more relevant performance estimate, we used Precision-Recall
(PR) curves, because they should be preferred to the Receiver Operating Characteristic
(ROC) curves in classification of rare diseases [37] and their summarization as Average
Precision (AP) values [38]. We report values on training, validation and test sets. For
training and validation, we report the median values over the cross-validation folds. Test
set values are calculated on the hold-out test set. The training set values are calculated on
the entire training set using hyperparameters found during cross-validation. To estimate
diversity and prediction errors of classifiers, Matthews’s Correlation Coefficient (MCC) was
calculated, which was recommended as a more informative score in evaluating imbalanced
binary classifications than accuracy and F1 score [39]. Unlike AP, MCC values are bound
by [−1;+1], where +1 represents a perfect prediction, 0 an average random prediction and
−1 an inverse prediction.

In addition to choosing performance metric appropriate to imbalanced class data, we
also applied data space weighting approach, which allows obtaining a modified distribution
biased towards the costly rare classes during training base learners [40]. We did not apply
any under-sampling methods, because this may eliminate useful examples which might
contain rare microbial species as potential disease biomarkers. Neither we applied any over-
sampling methods, because they may increase the likelihood of overfitting and increase
computational effort [36].

2.4. Model Interpretability

Conceptually, we are interested in model interpretation on two levels, i.e., on the level
of meta learner features and on the level of original features. The former shows which of
the base learners contributed to which extend to the final prediction. The latter shows how
the model including the base learners uses the original input features for the prediction.

Firstly, the regression weights of the meta learner were retrieved and normalized by
dividing by the absolute maximum value, so that the top feature importance absolute value
would be equal to one, which simplifies comparison between values. These normalized
values were then ranked in decreasing order and presented as a model explanation for
meta learner, providing insight on relative contribution of each base classifier on final
prediction. Secondly, to evaluate feature importance of the entire model, permutation
feature importance values were calculated. To calculate a permutation feature importance
a baseline metric is evaluated on a training dataset, i.e., features of both clinical and
microbiology views. Then, a feature column is permuted and the metric is evaluated again
without retraining the full model. The permutation importance is defined as the difference
between the baseline metric and metric from permuting the feature column [23]. For a
feature that does not contribute to the model’s decision, the model should be robust to
changes in its value. For a highly important feature, we expect—on average—large changes
in prediction for a data point if this feature values are changed.
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3. Results

3.1. Classification of Gut Microbiota from Inflammatory Bowel Disease Patients

Figure 2 provides an overview of the performance of the stacked classifier and its
independent base models. Figure 2a,b depict PR curves and the corresponding AP values
of base classifiers, the SoftVote aggregation and the stacked classifier. On test set, the
stacked classifier demonstrates the best performance (AP = 0.69), outperforming the best
base classifier (MLP; AP = 0.61) and the simple ensemble meta learner (SoftVote; AP = 0.63).
All models show signs of overfitting, their performance is worse on test set than on the
training set.

(a) (b)

(c) (d)

(e)

Figure 2. Model performance comparison between base learners and stacked model, inflamma-

tory bowel disease dataset. (a) Precision-Recall (PR) curves and corresponding Average Precision (AP)
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values of base classifiers, SoftVote classifier and the stacked classifier applied on training set; (b) PR
curves and corresponding AP values of base classifiers, SoftVote classifier and the stacked classifier
applied on test set; (c) Matthews’s Correlation Coefficient (MCC) values matrix heatmap of base
classifier predictions, classification labels and the stacked classifier predictions applied on training
set; (d) MCC values matrix heatmap of base classifier predictions, classification labels and the stacked
classifier predictions applied on test set; (e) AP values of each model during cross-validation on
training and validation sets. Red horizontal line refers to AP value obtained from a random classifier.

Figure 2c,d depict the MCC values as heatmap. On the training set, the highest
agreement among base classifiers is observed between RF and HGBC_otu (MCC = 0.75),
while the lowest agreement is observed between QDA and HGBC_clin (MCC = 0.06).
We observe a general low agreement between base classifiers, indicating that they learn
different patterns which can be exploited by a meta learner. On test set, we observe the
highest agreement between SGD_LL and SGD_HL (MCC = 0.62), and the lowest between
SGD_LL and HGBC_clin (MCC = −0.08). The stacked classifier does not demonstrate
the highest correlation with the training set labels reaching MCC = 0.72, but the highest
correlation of its predictions with the test set labels (MCC = 0.57) outperforming best base
classifier (MLP; MCC = 0.44). This indicates that the stacked classifier learns patterns that
are better generalizable to unseen test data.

Figure 2e depicts the AP values of cross-validation on training and validation sets.
The stacked classifier demonstrates the highest median AP on validation sets (≈0.49),
outperforming all base models with QDA being the closest to random guessing (AP of 0.17).
None of the models is free from overfitting with HGBC_clin having the least difference
between median AP on training and validation sets. To estimate overfitting, we calculated
AP difference between median AP on training and validation sets for both stacked model
and all base learners split by the data view. Those median values are depicted on Appendix
Figure A1.

Figure 3 shows most important features of the predictive model, with Figure 3a show-
ing the sorted normalized regression weights of the meta learner. HGBC_clin demonstrates
the highest importance value followed by SGD_HL and KNN which have roughly equal
weight values of around 0.4 each. QDA classifier’s importance value though being non-
zero is negligible, indicating that meta learner ignored predictions made by QDA base
classifier. Figure 3b depicts the permutation feature importance values. The top 3 highest
scores were assigned to the clinical features such as inflammation status, age and race with
median importance values of about 0.10, 0.05 and 0.02 respectively. All other features in
the top 10 list have lower feature importance scores (less than 0.02) and most of them are
microbial features. Among them are microorganisms which are identified belonging to the
taxonomic families Ruminococcaceae, Comamonadaceae and Alcaligenaceae, while two features
are identified belonging to taxonomic order of Clostridiales.

3.2. Classification of Gut Microbiota from Colorectal Cancer Patients

Figure 4 shows an overview of the performance of the stacked classifier and its base
models. Figure 4a,b depict PR curves and corresponding AP values of base classifiers, Soft-
Vote aggregation and the stacked classifier. On test set, the stacked classifier demonstrates
the best performance (AP = 0.81) outperforming both the best base classifier (SGD_LL;
AP = 0.79) and simple ensemble meta learner (SoftVote; AP = 0.75). The best base learner
performs better than a simple ensemble meta learner on test set (SoftVote; AP = 0.75 vs.
SGD_LL; AP = 0.79). Overall, all models perform worse on test set compared to training
set, which indicates overfitting.
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(a) (b)

Figure 3. Sorted feature importance values, inflammatory bowel disease dataset, training set.

(a) Normalized regression weights obtained from a meta learner used in stacked classifier; (b) Violin
plots of permutation feature importance values obtained from a stacked classifier. Red vertical line
represents zero importance value.

Figure 4c,d depict MCC values as heatmap. The stacked classifier demonstrates the
best correlation of its predictions with the test set labels reaching MCC=0.55, outperforming
best base classifier (HGBC_otu; MCC = 0.43). The highest agreement can be observed
between linear methods (SGD_LL vs. SGD_HL, MCC = 0.59), while KNN shows an overall
low agreement with other base learners. HGBC_clin MCC values indicate lowest correlation
with any other base classifier trained on microbial data often reaching negative MCC values.
The mutual agreement between base classifiers is generally low, because the predictions
made by base models are diverse enough to correctly predict different subsets of data.

Figure 4e depicts the AP values of cross-validation on training and validation sets.
The stacked classifier demonstrates the highest median AP on validation set (≈ 0.83). All
base models achieve lower median validation set AP, with QDA and MLP classifiers being
the closest to the random AP of 0.41. None of the models is free from overfitting with
HGBC_clin having the least difference between median AP on training and validation sets.
To estimate overfitting, we calculated AP difference between median AP on training and
validation sets for both stacked model and all base learners split by the data view. Those
median values are depicted on Appendix Figure A2.

Figure 5 shows most important features of the predictive model, with Figure 5a show-
ing sorted normalized regression weights of the meta learner. HGBC_clin demonstrates the
highest importance value followed by SGD_LL and HGBC_otu which have weight values
of around 0.6 and 0.5 respectively. The importance score of KNN is negative, indicating
that meta learner used predictions made by KNN base classifier, but considered them
as negatively correlated to the positive class probability prediction. This aligns with the
finding in Figure 4c where KNN MCC values show the lowest correlation with any other
base classifiers, and it indicates that the stacked classifier can learn to utilize incorrect
predictions by negating their influence. Figure 5b shows the importance of input features
calculated by permutation feature importance. The highest score is assigned to the patients’
age with median importance value of about 0.05. All other features in the top 10 list have
lower feature importance score (less than 0.01) and most of them are microbial features.
Among them are microorganisms which are identified belonging to the taxonomic families
Porphyromonadaceae, Bacteroidaceae, Prevotellaceae, Peptostreptococcaceae and Lachnospiraceae.

160



Diagnostics 2022, 12, 2514

(a) (b)

(c) (d)

(e)

Figure 4. Model performance comparison between base learners and stacked model, colorectal

cancer dataset. (a) PR curves and corresponding AP values of base classifiers, SoftVote classifier
and the stacked classifier applied on training set; (b) PR curves and corresponding AP values of
base classifiers, SoftVote classifier and stacked classifier applied on test set; (c) MCC values matrix
heatmap of base classifier predictions, classification labels and the stacked classifier predictions
applied on training set; (d) MCC values matrix heatmap of base classifier predictions, classification
labels and stacked classifier predictions applied on test set; (e) AP values of each model during
cross-validation on training and validation sets. Red horizontal line refers to AP value obtained from
a random classifier.
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(a) (b)

Figure 5. Sorted feature importance values, colorectal cancer dataset, training set. (a) Normalized
regression weights obtained from a meta learner used in stacked classifier; (b) Violin plots of permu-
tation feature importance values obtained from a stacked classifier. Red vertical line represents zero
importance value.

4. Discussion

4.1. Stacking as a More Powerful Ensemble Method than Random Forest

The aim of this study was to investigate whether stacking would lead to better perfor-
mance than a single model when applied to multi-view microbiome data. Previous similar
studies [16–19] compared multiple machine learning models one-by-one and concluded
that RF is often the best model in terms of predictive performance. We showed on two
different real-world datasets that stacking outperforms RF in terms of generalization error,
i.e., performance on unseen test data. Consistency of results among both inflammatory
bowel disease and colorectal cancer datasets is particularly encouraging taking into account
differences in patient cohorts and disease types. Higher performance of stacking seems
logical because much like RF which combines output of multiple weak learners, stacking
also combines output of multiple base learners. However, unlike RF, stacking combines
the predictions of strong and diverse learners using training labels. If stacking is better
than applying a single model, there must be a reason why it is not yet widely applied in
microbiome community. In subsequent subsections we hypothesize reasons why stacking
worked well on these two datasets and which recommendations we can conclude from
our results.

4.2. Meta Learner’s Role in Stacking

Application of stacking on real-world datasets requires making certain choices and
tricks which were referred as ’black art’ [27]. Even when stacking is applied correctly, it
might still perform only as well as best base classifier [26] or with marginal improvement
of about 3% compared to the best individual base classifier [41]. In our study, we achieved
results higher than a single base classifier, with improvement of over 8% on test set for
inflammatory bowel disease, possibly due to combining prediction probabilities rather
than predicted classification labels themselves, which is in line with general recommenda-
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tions [42]. Moreover, we showed that even a simple meta learner like soft voting can still
result in a good performance, if base classifier probabilities are well calibrated. The study
addressing issues in stacking [42] also recommends using a linear model as a meta learner,
which is in line with another empirical study on microbiome [28] where Logistic Regression
was recommended to aggregate predictions of base learners. For comparison, we addition-
ally trained stacking using RF as a meta learner. PR curves for both data sets are depicted
in Appendix Figure A3. RF as meta learner did not result in improvement of test AP on any
of the datasets: compared to the stacked model with Logistic Regression as meta learner,
test AP degraded from 0.69 to 0.56 on inflammatory bowel disease dataset (Appendix
Figure A3a) and from 0.81 to 0.77 on colorectal cancer dataset (Appendix Figure A3b).
Besides achieving better AP values, applying linear model like Logistic Regression is also
advantageous due to better interpretability of stacking. This is helpful for understanding
which base learner models contributed highest for the final model prediction. For example,
we observed in Figure 3a that the meta learner ignored predictions made by QDA base
classifier. Looking back at Figure 2c,d we observed that QDA had a poor predictive per-
formance, and the agreement with other classifiers was also low. Hence, the QDA base
classifier mostly made wrong predictions which the meta learner learned to ignore. This
demonstrates why stacking is more preferable than average voting.

4.3. Diversity of Base Learner’s Role in Stacking

Another issue is the choice of base learners. Generally, it is recommended that base
classifiers should be both accurate and diverse [27], though notion of diversity is rather
vague and has no formal definition. In this study, we used domain knowledge by combining
classifiers which are diverse based on their underlying mathematical roots, e.g., we trained
linear models, ensemble models and a neural network model. The diversity of the classifiers
outputs was confirmed empirically by large difference in MCC values between each model’s
prediction, while their high accuracy was confirmed by similarly high MCC values w.r.t.
classification labels. Based on performance of base learners, we would discourage blindly
using RF as a single classifier, because it did not always result in better performance
compared to other models.

The diversity of classifiers can be increased by applying base classifiers on different
sets of variables or, in biomedical applications, on different -omics views. In fact, multiple
microbiome studies often encourage integration of multi-omics data [8–10,43] in a single
model. One of the previous studies [43] combined multiple -omics views using stacking,
but unlike in our study, authors used exactly the same linear model across all views instead
of applying different models. Both of the previous studies [30,31] from which we extracted
datasets for this study, lack access to other -omics views, but they provide us access to
clinical patient metadata which we successfully used as a complementary view for stacking.
Previous study on Crohn’s Disease [30] did not use clinical traits data. On the contrary, the
colorectal cancer study [31] used some of the clinical variables in a separately trained model.
Authors of that study concluded that extra dataset can be complementary to microbial
data as a source of diagnostic information. We demonstrated that stacking benefits from
adding extra view for both colorectal cancer and inflammatory bowel disease datasets.
MCC values, hence the mutual agreement, of base models trained on clinical data tend
to be lower compared to the ones obtained from training base models on microbial data,
meaning that those classifiers make errors on different subsets of samples. This improves
the diversity of classifiers, hence improving overall stacking performance. The importance
of adding clinical data is also indirectly confirmed by higher feature importance of the
base learner trained on a clinical data. Such a diversity can potentially stem from the fact
that clinical data reflects traits with long term effects on disease e.g., adaptive immune
responses [6], race-related [44] or sex-related [31] differences, while microbial features
reflect more dynamic traits, e.g., microbial dysbiosis [4,29] or response to treatment [11].
The performance of stacking model trained on inflammatory bowel disease can be further
improved by including more clinical features. For instance, adding extra features which
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implicitly indicate the extent of the disease in a gut can help the model to learn differences
between Crohn’s disease and ulcerative colitis. Ulcerative colitis starts at the rectum and
progresses continuously through the colon and it affects only colon. Crohn’s disease is
different, as it has a discontinuous pattern of spread and can affect entire gastrointestinal
tract [45]. Such localization-related clinical features were explicitly excluded from the
datasets in our experiments and are marked in Appendix Table A1 as ”Implicit training
label leakage”. The PR curves on training and test sets of the stacking model trained on
such an extended dataset are provided on Appendix Figure A6. Training AP increased to
0.93, Test AP also improved to 0.73, largely because HGBC_clin performance improved
(Training AP = 0.65, Test AP = 0.48). We would generally discourage using such localization-
related clinical features during training, since such model does not use complex interactions
between microbial and clinical features. Diagnosis of two diseases is a challenging task and
microbial traits are more interesting to discover from a research point of view [6,46]. We
consider that Test AP value of 0.69 is high for such a complex classification task, because
the random AP value for such an imbalanced dataset is 0.17. Hence stacking model’s
performance improved more than three times compared to the one of the random predictor.

Analysis of median AP values on validation and training sets of each base learner for
both datasets indicates moderate or high level of overfitting. This can also be observed
while comparing PR curves between training and test sets. Higher overfitting of the
base learners trained on microbial data compared to base learners trained on clinical data
is expected due to higher feature numbers in microbial view. Nevertheless, on test set
stacking performs the best, indicating that training meta learner on overfitted base learner
predictions operates like a regularizer by assigning lower weights on models with higher
generalization error, i.e., on the ones trained using microbial data. This information is
usually not known beforehand and it can be discovered empirically by training models
and comparing their performance values on a validation set. In a case of using a single
model, data practitioner has to manually choose the best model among all base learners.
However, this task is taken care of by a meta learner in stacked model. During training
the stacked model, only the meta learner hyperparameters were extensively optimized,
while base learners were trained using default hyperparameters. Taking into account
smaller dimensionality of the dataset presented to the meta learner and simplicity of the
meta-learner itself, training time of entire stacking pipeline was low and it still yielded a
reasonable generalization error. Hence, stacking might be a good alternative to an extensive
hyperparameter tuning of a single model when quick insights are preferable to the highest
possible model performance.

Based on these conclusions, we would recommend to apply stacking as a tool to
achieve increased performance by using diverse classifiers trained on diverse data views.
This recommendation is empirical and we cannot guarantee that stacking is going to
work better or worse on other diseases or patient cohorts, because there is no consensus
on the most optimal stacking configuration [27]. However, conclusions and examples
provided in this subsection suggest that stacking would perform better than a single
model on complex biomedical phenomena with multiple processes involved on molec-
ular level, e.g., aging [28], head and neck cancer [41], pregnancy [43] or protein sequence
compression [47]. Such biological processes can have patterns which can be reflected on
multiple levelse.g., proteomics, metabolomics, metagenomics, patient history data etc.
Those patterns can be modeled using diverse set of machine learning models which are
complementary to each other, i.e., they show similar performance but make different de-
cisions for the same data points reflected by low mutual agreement scores depicted on
Figures 2c,d and 4c,d.

4.4. Overfitting Analysis

AP values depicted on Figures 2a,b and 4a,b indicate moderate overfitting of the
stacked model, because the Test AP values are lower than Training AP values. However,
such an observation is possible only when the proper model testing is implemented, i.e.,
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when the model is applied on unseen test set. Both of the previous studies which used
those two datasets [30,31] lack any indication of using independent test sets. Inflammatory
bowel disease study [30] reports average cross-validation scores on training set, while
colorectal cancer study [31] reports out-of-bag scores. The latter is shown to be as an
unreliable measure of the classification performance [48]. We performed extensive analysis
of overfitting using cross-validation and independent test set. We found out that stacking
achieves better AP on training and validation sets compared to any of the base classifiers.
Main source of overfitting comes from base learners trained on microbial data rather
than from ones trained on clinical data (Appendix Figures A1 and A2). This might be
due to the “curse of dimensionality“ because the number of features in microbial view is
magnitudes higher than the number of features in clinical view (Table 1). Hence, reducing
input dimensionality of the microbial view data is one of the simplest and computationally
inexpensive ways to reduce overfitting. This step is essentially a feature selection method
often called variable ranking or filtering [49]. We used statistical filtering, but due to
large number of features a multiple test correction procedure is essential to reduce false
discovery rate [50,51]. By using multiple test corrected pre-filtering procedure on microbial
features, overfitting can be further decreased for both inflammatory bowel disease dataset
to Training AP = 0.78; Test AP = 0.66 (Appendix Figure A4) and for colorectal cancer
dataset to Training AP = 0.96; Test AP = 0.79 (Appendix Figure A5). However, such a
strict univariate filtering can miss potentially important microbial features which otherwise
would have been detected by multivariate base learners. Moreover, although overfitting
decreased, so did the Test AP on both datasets. Therefore, such a decreased overfitting
comes with the price of reduced test performance and it should be considered balancing
all of the associated compromises attached to it. As mentioned in Section 4.3, the meta
learner in stacking framework takes care of regularization task and it can be considered as
an efficient replacement for extensive hyperparameter tuning of base learners to achieve
improved performance on test set.

4.5. Model Interpretation and Further Examples of Stacking

As for the model interpretation, it can be done in several ways thanks to flexibility
of stacking framework. We calculated feature importance values in a meta learning scale
by retrieving weights of Logistic Regression used as a meta learner. This gave us insight
into which of the base models were the most contributing ones. Those results confirmed
“no free lunch” theorem empirically, because different base models were identified as
important ones between two different datasets. We also retrieved feature importance
values of the entire pipeline using permutation feature importance. Those results indicated
that clinical variables are the most important ones across both datasets, despite being under-
represented in terms of feature cardinality in feature space. Previous study on Crohn’s
disease [30] identified a few microbial features among which microorganisms belonging
to taxonomic order of Clostridiales. Microbes of the same order were also identified as
important ones using permutation importance on stacking classifier used in our study.
Direct comparison of results between previous study and our study is not possible, because
the clinical research question of our study is different, i.e., comparing Crohn’s disease
patients with ulcerative colitis patients instead of comparing Crohn’s disease patients with
healthy patients. In previous study of colorectal cancer [31], authors found associations
of microorganisms belonging to order of Porphyromonadaceae and Lachnospiraceae. In our
study, we also identified a few features belonging to the same taxonomic order along with
a few others such as Bacteroidaceae, Prevotellaceae and Peptostreptococcaceae.

In a broader sense, stacking is not a single algorithm, but rather a family of ensemble
algorithms with many variants [27]. Moreover, stacking can be performed in multiple
stages of modeling and it is not limited to combining predictions only. For example, stacked
ensemble of learners can be used as a tool to improve feature selection [52,53], achieve better
protein sequence compression [47], integrate outputs of multiple neural networks [54] or
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integrate input of neural network from several normalization methods [55] when applied
on microbiome data.

4.6. Study Limitations

This study has two major limitations. First of all, it might have not achieved the best
possible predictive performance on either of the datasets. Hyperparameters of base learners
were not extensively optimized, because it would be computationally expensive, but most
importantly because achieving highest AP on test set for each base learner was not our goal.
We aimed to demonstrate that stacking performs better than application of a single machine
learning algorithm and there is no need to choose one “best” model which is not possible
due to “no free lunch” theorem. Instead, we showed that application of a machine learning
can help to identify which other machine learning algorithms can perform best and let
the practitioner focus on model interpretation. Thus, based on our findings we would
recommend to apply stacking as a tool for model selection, for multi-view data integration
and as an alternative to extensive hyperparameter optimization of a single model.

Another limitation is that we used only two datasets. Those datasets are very different
from each other, but stacking demonstrated similar patterns on both of them. Since we
aimed to get an understanding of stacking, we limited ourselves on a detailed analysis
of the internal mechanics applied to two most representative datasets, providing data
practitioners with tips why stacking worked well and what can we learn from it.

5. Conclusions

This study presents an application of the multi-view stacked machine learning model
on two microbial datasets from different diseases, i.e., inflammatory bowel disease and
colorectal cancer. The model combines multiple heterogeneous machine learning models
and it achieves best predictive performance on the test set outperforming the best single
classifier. Detailed analysis of the model provided insight on why stacking achieves such
a high performance, mainly due to diversity of classifiers as well as using a meta learner
which regularizes overfitted prediction labels from base learners. Thanks to the flexibility
of the stacked model, combined usage of multiple views is possible and clinical data usage
is encouraged as a complementary view to the microbial data.

From a practical point of view, the results of the study suggest that the stacked model
partially solves the issue of choosing the most appropriate machine learning model by
automating the selection using the meta learner algorithm. Results empirically confirmed
the “no free lunch" theorem on two different microbial datasets with rather different
patient cohorts and disease types. Clinical application is not limited to diagnosis task only,
but it also can be extended to biomarker selection thanks to model interpretation using
permutation feature selection procedure.
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The following abbreviations are used in this manuscript:

AP Average Precision
AUROC Area Under Receiver Operating Characteristic
MCC Matthews’s Correlation Coefficient
SGD_LL Stochastic Gradient Descent classifier with Logistic Loss
SGD_HL Stochastic Gradient Descent classifier with modified Huber Loss
KNN K-nearest Neighbors Classifier
MLP Multi-layer Perceptron
QDA Quadratic Discriminant Analysis
RF Random Forest
HGBC Histogram-based Gradient Boosting Classification

Appendix A

Figure A1. Overfitting analysis for inflammatory bowel disease dataset comparing stacked

model’s and base learners’ performance separated by view during cross-validation. Point val-
ues refer to median AP values and bars refer to estimated confidence intervals. Values for base
learners trained on microbial view are aggregated together without distinction with regard to an
individual base learner.
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Figure A2. Overfitting analysis for colorectal cancer dataset comparing stacked model’s and base

learners’ performance separated by view during cross-validation. Point values refer to median AP
values and bars refer to estimated confidence intervals. Values for base learners trained on microbial
view are aggregated together without distinction with regard to an individual base learner.

(a) (b)

Figure A3. Training and Test set PR curves for stacked model with Random Forest as a meta

learner. (a) Inflammatory bowel disease dataset; (b) Colorectal cancer dataset.

(a) (b)

Figure A4. PR curves for stacked model applied on inflammatory bowel disease dataset with

strict pre-filtering of microbial features. (a) Training set; (b) Test set.
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(a) (b)

Figure A5. PR curves for stacked model applied on colorectal cancer dataset with strict pre-

filtering of microbial features. (a) Training set; (b) Test set.

(a) (b)

Figure A6. PR curves for stacked model applied on inflammatory bowel disease dataset with

additional clinical features. (a) Training set; (b) Test set.
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Table A1. List of features removed from the inflammatory bowel disease clinical view dataset.

Feature name Type Reason

diagnosis Categorical Training label
external_id Categorical Irrelevant
run_prefix Categorical Irrelevant
body_site Categorical Training label leakage
diseasesubtype Categorical Explicit training label leakage
gastrointest_disord Categorical Explicit training label leakage
host_subject_id Categorical Irrelevant
disease_stat Categorical Implicit training label leakage
disease_extent Categorical Implicit training label leakage
ileal_invovlement Categorical Implicit training label leakage
gastric_involvement Categorical Implicit training label leakage
antibiotics Categorical Irrelevant
steroids Categorical Irrelevant
collection Categorical Irrelevant
biologics Categorical Irrelevant
birthdate Categorical Irrelevant
body_habitat Categorical Implicit training label leakage
body_product Categorical Irrelevant
disease_duration Numerical Irrelevant
immunosup Categorical Irrelevant
mesalamine Categorical Irrelevant
sample_type Categorical Irrelevant
smoking Categorical Irrelevant

Table A2. List of features included in the inflammatory bowel disease clinical view dataset.

Feature Name Type Description

Age Numerical Age in years

b_cat Categorical Montreal classification of
inflammatory bowel disease

biopsy_location Categorical Location of biopsy
inflammationstatus Categorical Inflammation status
perianal Categorical Extension to anal area
race Categorical Race
sex Categorical Biological gender

Table A3. List of features removed from the colorectal cancer clinical view dataset.

Feature Name Type Reason

Dx_Bin Categorical Training label
Site Categorical Irrelevant
Location Categorical Irrelevant
Ethnic Categorical Irrelevant
fit_result Numerical Training label leakage
Hx_Prev Categorical Training label leakage
Hx_Fam_CRC Categorical Training label leakage
Hx_of_Polyps Categorical Training label leakage
stage Categorical Training label leakage
Gender Categorical Encoded as “Sex”
White Categorical Encoded as “Ethnicity”
Native Categorical Encoded as “Ethnicity”
Black Categorical Encoded as “Ethnicity”
Pacific Categorical Encoded as “Ethnicity”
Asian Categorical Encoded as “Ethnicity”
Other Categorical Encoded as “Ethnicity”
Weight Numerical Encoded as “BMI”
Height Numerical Encoded as “BMI”
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Table A4. List of features included in the colorectal cancer clinical view dataset.

Feature name Type Description

BMI Numerical Body Mass Index
Age Numerical Age in years
Smoke Categorical Smoking
Diabetic Categorical Diabetes Melitus

NSAID Categorical Anti-inflammatory
medication

Diabetes_Med Categorical Anti-diabetes medication
Abx Categorical Antibiotic medication
Ethnicity Categorical Race
Sex Categorical Biological gender
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Abstract: This study reviews the recent progress of explainable artificial intelligence for the early
diagnosis of gastrointestinal disease (GID). The source of data was eight original studies in PubMed.
The search terms were “gastrointestinal” (title) together with “random forest” or ”explainable artifi-
cial intelligence” (abstract). The eligibility criteria were the dependent variable of GID or a strongly
associated disease, the intervention(s) of artificial intelligence, the outcome(s) of accuracy and/or
the area under the receiver operating characteristic curve (AUC), the outcome(s) of variable impor-
tance and/or the Shapley additive explanations (SHAP), a publication year of 2020 or later, and
the publication language of English. The ranges of performance measures were reported to be
0.70–0.98 for accuracy, 0.04–0.25 for sensitivity, and 0.54–0.94 for the AUC. The following factors were
discovered to be top-10 predictors of gastrointestinal bleeding in the intensive care unit: mean arterial
pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean), Glasgow Coma Scale,
age, respiratory rate (mean), prothrombin time (max) and aminotransferase aspartate (max). In a
similar vein, the following variables were found to be top-10 predictors for the intake of almond,
avocado, broccoli, walnut, whole-grain barley, and/or whole-grain oat: Roseburia undefined, Lach-
nospira spp., Oscillibacter undefined, Subdoligranulum spp., Streptococcus salivarius subsp. thermophiles,
Parabacteroides distasonis, Roseburia spp., Anaerostipes spp., Lachnospiraceae ND3007 group undefined,
and Ruminiclostridium spp. Explainable artificial intelligence provides an effective, non-invasive
decision support system for the early diagnosis of GID.

Keywords: gastrointestinal disease; early diagnosis; artificial intelligence

1. Introduction

1.1. Gastrointestinal Disease

Gastrointestinal disease (GID) is a major cause of disease burden in the world [1–6].
GID is defined as the disease of the gastrointestinal tract, e.g., the esophagus, liver, stomach,
small and large intestines, gallbladder, and pancreas. Common GIDs are gastroesophageal
reflux disease (GERD), cancer, irritable bowel syndrome, lactose intolerance, and hiatal
hernia. Their common symptoms are bleeding, bloating, constipation, diarrhea, heartburn,
nausea, pain, and vomiting [1]. GID is reported to contribute to 8 million deaths across
the globe every year [2] and USD 120 billion of total expenditure in the United States as
of 2018 [3]. Likewise, its disability-adjusted life years (1730 per 100,000, 5.9%) ranked 8th
among 21 disease groups in Korea for the year 2015 [4], whereas its medical cost amounted
to USD 4 billion or 13% of all medical costs in the country for the year 2007 [5]. GID has a
variety of causes including: (1) bad health behavior, e.g., low-fiber diet, insufficient exercise,
disrupted routine, high-dairy diet, excessive stress; (2) unhealthy bowel habits; (3) excessive
anti-diarrheal/antacid medication; and (4) pregnancy [6].

There are two types of GID, functional and structural. In the case of functional GID, the
gastrointestinal tract looks normal but reveals motility problems in medical examination.
Its common examples include bloating, constipation, diarrhea, gas, GERD, irritable bowel
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syndrome, nausea, and poisoning. In the case of structural GID, the gastrointestinal tract
has the issues of an abnormal outlook and motility at the same time. Colorectal polyps,
colorectal cancers, diverticular disease, hemorrhoids, inflammatory bowel disease, stenosis,
and strictures belong to the category of structural GID. GID can be prevented based on
sound health behaviors, healthy bowel habits, and regular health screening such as regular
colonoscopies from the age of 45. For instance, a majority of colorectal cancers develop
when colorectal polyps, non-cancerous growths of colorectal tissues, begin to invade their
surrounding tissues. Most of these colorectal polyps can be removed with no pain based
on colonoscopy, whereas more advanced colorectal cancers require more complex surgical
operations [1,6].

1.2. Explainable Artificial Intelligence

Recently, the notions of artificial intelligence and machine learning have garnered
global attention. The definition of artificial intelligence is “the capability of a machine to
imitate intelligent human behavior” (the Merriam–Webster dictionary). As a division of
artificial intelligence, machine learning is denoted as “extracting knowledge from large
amounts of data” [7]. The artificial/deep neural network, the decision tree, the naïve
Bayesian predictor, the random forest, and the support vector machine are popular machine
learning approaches (See [7] for a detailed explanation of these approaches). Specifically,
a random forest is a group of decision trees which make majority votes on the depen-
dent variable (“bootstrap aggregation”). Let us take a random forest with 1000 decision
trees as an example. Let us assume that the original data include 10,000 participants.
Then, the training and test of this random forest takes two steps. First, new data with
10,000 participants are created based on random sampling with the replacement, and a
decision tree is created based on these new data. Here, some participants in the original
data would be excluded from the new data, and these leftovers are called out-of-bag data.
This process is repeated 1000 times, i.e., 1000 new data are created, 1000 decision trees
are created, and 1000 out-of-bag data are created. Second, the 1000 decision trees make
predictions on the dependent variable of every participant in the out-of-bag data, their
majority vote is taken as their final prediction on this participant, and the out-of-bag error
is calculated as the proportion of wrong votes on all participants in the out-of-bag data [7].
An artificial neural network is a group of neurons (information units) that are networked
based on weights. It normally has one input layer, one, two, or three intermediate layers,
and one output layer. A deep neural network is an artificial neural network with a large
number of intermediate layers, e.g., 5, 10, or even 1000 [8].

Conventional research covers a limited range of predictors for the early diagnosis of
disease, using logistic regression with an unrealistic assumption of ceteris paribus, i.e., “all
the other variables staying constant”. For this reason, emerging literature employs artificial
intelligence for the early diagnosis of disease, e.g., arrhythmia [8], birth outcome [9,10], can-
cer [11,12], comorbidity [13], depression [14], liver transplantation [15], menopause [16,17],
and temporomandibular disease [18,19]. It is free from unrealistic assumptions of “all
the other variables staying constant”. It delivers the importance values and rankings of
predictors for the early diagnosis of the dependent variable. Moreover, the notion of ex-
plainable artificial intelligence is enjoying immense popularity now. Explainable artificial
intelligence can be defined as “artificial intelligence to identify major predictors of the
dependent variable”, and there are four approaches of explainable artificial intelligence
at this point, i.e., random forest impurity importance, random forest permutation impor-
tance [20,21], machine learning accuracy importance, and Shapley additive explanations
(SHAP) [15,22–32]. Random forest impurity importance calculates the node impurity de-
crease from the creation of a branch on a certain predictor. It is a sum over all trees in a
random forest with the range of 0 and the number of all trees. Random forest permutation
importance measures the overall accuracy decrease from the permutation of data on the
predictor. It is an average over all trees in the random forest with a value of 0 to 1 [20,21].
Machine learning accuracy importance (an extension of random forest permutation impor-
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tance) calculates the accuracy decrease from the exclusion of data on the predictor. The
SHAP value of a predictor for a participant measures the difference between what machine
learning predicts for the probability of GID with and without the predictor [15,22–32]. For
example, let us assume in a hypothetical figure (Figure 1) that the SHAP values of diabetes
(x033) for GERD have the range of (−0.05, 0.30). Here, some participants have SHAP values
as low as −0.05, and other participants have SHAP values as high as 0.30. The inclusion of
a predictor (diabetes) into machine learning will decrease or increase the probability of the
dependent variable (GERD) by the range of −0.05 and 0.30. In other words, there exists
a positive association between diabetes and GERD in general. Random forest impurity
importance and random forest permutation importance had been the only explainable
artificial intelligence methods before machine learning accuracy importance, and the SHAP
was introduced as their extension or alternative very recently.

Figure 1. SHAP summary plot. The SHAP value of a predictor for a participant measures the
difference between what machine learning predicts for the probability of GERD with and without
the predictor. For example, in this hypothetical figure, the SHAP values of diabetes (x033) for GERD
have the range of (−0.05, 0.30). Here, some participants have SHAP values as low as −0.05, and other
participants have SHAP values as high as 0.30. The inclusion of a predictor (diabetes) into machine
learning will decrease or increase the probability of the dependent variable (GERD) by the range
of −0.05 and 0.30. In other words, there exists a positive association between diabetes and GERD
in general.

In practice, experts in artificial intelligence use random forest impurity importance,
random forest permutation importance, or machine learning accuracy importance to derive
the rankings and values of all predictors for the prediction of the dependent variable.
Then, they employ the SHAP plots to evaluate the directions of associations between the
predictors and the dependent variable. Linear or logistic regression used to play this
role before the SHAP approach took it over. This is because the SHAP approach has a
notable strength compared to linear or logistic regression: the former considers all realistic
scenarios, unlike the latter. Let us assume that there are three predictors of GERD, i.e., age,
diabetes, and (calcium channel blocker) medication. As defined above, the SHAP value
of diabetes for GERD for a particular participant is the difference between what machine
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learning predicts for the probability of GERD with and without diabetes for the participant.
Here, the SHAP value for the participant is the average of the following four scenarios
for the participant: (1) age excluded, medication excluded; (2) age included, medication
excluded; (3) age excluded, medication included; and (4) age included, medication included.
In other words, the SHAP value combines the results of all possible sub-group analyses,
which are ignored in linear or logistic regression with an unrealistic assumption of ceteris
paribus, i.e., “all the other variables staying constant”. In this context, the purpose of this
study is to review the recent progress of explainable artificial intelligence for the early
diagnosis of GID.

2. Methods

Figure 2 shows the flow diagram of this study. Eight original studies were selected
for review out of twenty-four original studies in PubMed with the search terms “gas-
trointestinal” (title) together with “random forest” or ”explainable artificial intelligence”
(abstract). The inclusion criteria of this review were: (1) the intervention(s) of the arti-
ficial/deep neural network, the decision tree, the naïve Bayesian predictor, the random
forest, and/or the support vector machine; (2) the outcome(s) of accuracy and/or the area
under the receiver operating characteristic curve for the early diagnosis of GID or a strongly
associated disease; (3) the outcome(s) of variable importance and/or the SHAP for the
early diagnosis of GID or a strongly associated disease; (4) a publication year of 2020 or
later; and (5) the publication language of English. The following summary measures were
adopted: artificial intelligence methods, sample size, data type, performance measures,
and important predictors. Accuracy denotes the proportion of correct predictions over all
observations. The area under the receiver operating characteristic curve (AUC) represents
the area under the plot of the true positive rate (sensitivity) against the false positive rate
(1-specificity) at various threshold settings.

Figure 2. Flow diagram.
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3. Results

3.1. Summary

The summary of the review for the eight original studies [33–40] is presented in Table 1.
The table includes five summary measures such as artificial intelligence methods, sam-
ple size, data type, performance measures, and important predictors (independent vari-
ables). The ranges of performance measures were reported to be 0.70–0.98 for accuracy,
0.04–0.25 for sensitivity, and 0.54–0.94 for the AUC. The following determinants were
discovered to be top-10 predictors of gastrointestinal bleeding in the intensive care unit:
mean arterial pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean),
Glasgow Coma Scale, age, respiratory rate (mean), prothrombin time (max), and amino-
transferase aspartate (max). In a similar vein, the following factors were found to be top-10
predictors for the intake of almond, avocado, broccoli, walnut, whole-grain barley, and/or
whole-grain oat: Roseburia undefined, Lachnospira spp., Oscillibacter undefined, Subdoligran-
ulum spp., Streptococcus salivarius subsp. thermophiles, Parabacteroides distasonis, Roseburia
spp., Anaerostipes spp., Lachnospiraceae ND3007 group undefined, and Ruminiclostridium
spp. The most important predictors for the prediction of early intestinal resection with
Crohn’s disease were clinical variables of age and disease behavior as well as the single
nucleotide polymorphisms of rs28785174, rs60532570, rs13056955, and rs7660164. However,
artificial intelligence is a data-driven approach, and more research is needed for more
general conclusions.

Table 1. Summary of review.

ID Method
Sample

Size
Data
Type

Performance Important Predictor

[33]

ANN
DT
LR *
NB
RF *
SVM

731 Numeric

Accuracy
0.79–0.87

AUC
0.54–0.76

RFVI for the prediction of preterm birth, which has a strong
association with GERD: Age, education, upper gastrointestinal

tract symptom, Helicobacter pylori, region

[34] APACHE
XGB * 5691 Numeric

Sensitivity
1.00

Specificity
0.04–0.27

AUC
0.80–0.85

SHAP for the prediction of mortality from gastrointestinal
bleeding in the intensive care unit: mean arterial pressure (max),

bicarbonate (min), creatinine (max), PMN, heart rate (mean),
Glasgow Coma Scale, age, respiratory rate (mean), prothrombin

time (max), aminotransferase aspartate (max), albumin (min),
oxygen saturation (mean), white blood cell, AlkPhos (max),

platelet (min), lactate (max), intubation, bilirubin (max),
international normalized ratio (max), vasopressor, glucose (max),

blood urea nitrogen (max), PTT (max), hemoglobin (min),
potassium

[35] RF * 340 Genomic

Accuracy
0.70

AUC
0.92

RFVI for the prediction of food intake (almond, avocado, broccoli,
walnut, whole-grain barley, whole-grain oat): Roseburia

undefined, Lachnospira spp., Oscillibacter undefined,
Subdoligranulum spp., Streptococcus salivarius subsp. thermophiles,

Parabacteroides distasonis, Roseburia spp., Anaerostipes spp.,
Lachnospiraceae ND3007 group undefined, Ruminiclostridium

spp.

[36] CB * 337 Genomic AUC
0.81–0.84

SHAP for the prediction of early intestinal resection with Crohn’s
disease: age, disease behavior (clinical predictors), rs28785174,

rs60532570, rs13056955, rs7660164 (single nucleotide
polymorphisms)

[37] RF * 71 Radiomic Accuracy
0.78–0.94

RFVI for the prediction of pneumatosis: dissecting gas in the
bowel wall, intramural gas beyond a gas-fluid/fecal level, a

circumferential gas pattern
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Table 1. Cont.

ID Method
Sample

Size
Data
Type

Performance Important Predictor

[38]
ANN *

LR *
RF *

405,586 Numeric Accuracy
0.93–0.98

RFVI for the prediction of preterm birth, which has a strong
association with GERD: socioeconomic status, age, region (city)

[39] RF * 710 Numeric AUC
0.76–0.80

RFVI for the prediction of COVID-19 hospitalization based on
gastrointestinal factors: aspartate transaminase, diabetes mellitus,

chronic liver disease, alanine transaminase, diarrhea, age,
bloating

[40] RF * 590 Numeric AUC
0.68

RFVI for the prediction of gastrointestinal sequelae months after
COVID-19 infection: acute diarrhea, antibiotics administration

ANN—Artificial Neural Network, AUC—Area under the Receiver Operating Characteristic Curve, CB—CatBoost,
DT—Decision Tree, LR—Logistic Regression, NB—Naïve Bayes, RF—Random Forest, RFVI—Random Forest
Variable Importance, SHAP—Shapley Additive Explanations, SVM—Support Vector Machine, XGB—XGBoost,
* Method with the best performance.

3.2. Numeric Data

This section summarizes original studies with numeric data regarding explainable
artificial intelligence for the early diagnosis of GID or a strongly associated disease. A recent
study [33] used single-center data and random forest permutation importance for the predic-
tion of preterm birth, which has a strong association with GERD. Data on 36 demographic,
socioeconomic, and clinical determinants came from Anam Hospital in Seoul, Korea, with
731 obstetric patients during January 1995—August 2018. In terms of accuracy, the random
forest (0.8681) was similar with the logistic regression (0.8736). Based on random forest
permutation importance, the major predictors of preterm birth were age (0.1211), education
(0.0332), upper gastrointestinal tract symptom (0.0274), GERD (0.0242), Helicobacter pylori
(0.0151), and region (0.0139). Likewise, a follow-up study [38] employed population data
and random forest impurity importance to confirm these findings. Retrospective cohort
data on 29 demographic, socioeconomic, and clinical determinants came from Korea Na-
tional Health Insurance Service claims data for all women who were aged 25–40 years and
gave birth for the first time as a singleton pregnancy during 2015–2017 (405,586 women).
According to random forest impurity importance, the main predictors of preterm birth
during 2015–2017 were socioeconomic status in 2014 (240.28), age in 2014 (221.13), GERD
for the years 2012 (42.24), 2014 (38.86), 2010 (37.76), 2013 (36.64), 2007 (35.01), and 2009
(34.39), region in 2014 (34.36), and GERD for the year 2006 (31.98). These studies conclude
that preterm birth has a stronger association with GERD than it does with periodontitis,
and it would be vital to promote active counseling for general GERD symptoms (neglected
by pregnant women).

A recent study [34] used multi-center data and the SHAP for the prediction of mor-
tality from gastrointestinal bleeding in the intensive care unit. The source of the data on
34 demographic and clinical factors was 5691 patients of gastrointestinal bleeding regis-
tered in the Electronic Intensive Care Unit Collaborative Research Database. The XGBoost
outperformed the APACHE IVa for prediction: specificity 0.27 vs. 0.04 at 1.00 sensitivity;
AUC 0.85 vs. 0.80. Based on the SHAP, the major predictors of mortality from gastroin-
testinal bleeding in the intensive care unit were mean arterial pressure (max), bicarbonate
(min), creatinine (max), PMN, heart rate (mean), Glasgow Coma Scale, age, respiratory rate
(mean), prothrombin time (max), aminotransferase aspartate (max), albumin (min), oxygen
saturation (mean), white blood cell, AlkPhos (max), platelet (min), lactate (max), intubation,
bilirubin (max), international normalized ratio (max), vasopressor, glucose (max), blood
urea nitrogen (max), PTT (max), hemoglobin (min), and potassium. In conclusion, explain-
able artificial intelligence provides an effective, non-invasive decision support system for
the prediction of high-risk gastrointestinal bleeding in the intensive care unit.
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Two recent studies [39,40] highlight the effectiveness of explainable artificial intel-
ligence in investigating strong associations of gastrointestinal factors with COVID-19
hospitalization or infection. The first study [39] employed single-center data and random
forest permutation importance for the prediction of COVID-19 hospitalization based on
gastrointestinal factors. Data on 19 demographic and clinical variables came from the
University Hospital in Martin, Slovakia, with 710 participants in the COVID-19 test during
February 2021–May 2021. The AUC range of the random forest was (0.76, 0.80). Based
on random forest permutation importance, the major predictors of COVID-19 hospitaliza-
tion were aspartate transaminase (0.1451), diabetes mellitus (0.0248), chronic liver disease
(0.0169), alanine transaminase (0.0110), diarrhea (0.0068), age (0.0139), and bloating (0.0011).
In a similar vein, the second study [40] utilized single-center data and random forest per-
mutation importance for the prediction of gastrointestinal sequelae months after COVID-19
infection. The source of data on 23 demographic and clinical variables was the University
Hospital in Martin, Slovakia, with 590 participants in the COVID-19 test during February
2021–October 2021. The AUC of the random forest was 0.68. According to random forest
permutation importance, the main predictors of gastrointestinal sequelae months were
acute diarrhea (0.066) and antibiotics administration (0.058).

3.3. Genomic and Radiomic Data

This section summarizes original studies with genomic and radiomic data regarding
explainable artificial intelligence for the early diagnosis of GID or a strongly associated
disease. A recent study [35] used existing literature and random forest permutation im-
portance for the prediction of intake for almond, avocado, broccoli, walnut, whole-grain
barley, and whole-grain oat. The data on 4375 amplicon sequence variants came from five
randomized control trials with 340 observations on microbiota composition. The accu-
racy and AUC of the random forest were 0.70 and 0.92, respectively. Based on random
forest permutation importance, the top 10 predictors for the intake of almond, avocado,
broccoli, walnut, whole-grain barley, and/or whole-grain oat were Roseburia undefined
(0.097), Lachnospira spp. (0.043), Oscillibacter undefined (0.039), Subdoligranulum spp. (0.039),
Streptococcus salivarius subsp. thermophiles (0.039), Parabacteroides distasonis (0.032), Roseburia
spp. (0.026), Anaerostipes spp. (0.023), Lachnospiraceae ND3007 group undefined (0.022),
and Ruminiclostridium spp. (0.022).

A recent study [36] employed multi-center data and the SHAP for the prediction of
early intestinal resection with Crohn’s disease. The source of the data on seven demo-
graphic/clinical factors and 102 single nucleotide polymorphisms was the IMPACT Study
with 337 Crohn’s disease patients during May 2017–May 2020. The AUC range of the Cat-
Boost was (0.81, 0.84). Based on the SHAP, the major predictors of early intestinal resection
with Crohn’s disease were the clinical variables of age and disease behavior as well as the
single nucleotide polymorphisms of rs28785174, rs60532570, rs13056955, and rs7660164.
Another study [37] utilized single-center data and random forest permutation importance
for the prediction of pneumatosis. The source of data on four radiomic factors was the
radiological reports of 71 pneumatosis patients between 2012 and 2019. The accuracy range
of the random forest was (0.78, 0.94). According to random forest permutation importance,
the main predictors of pneumatosis were dissecting gas in the bowel wall (0.19), intramural
gas beyond a gas–fluid/faecal level (0.15), and a circumferential gas pattern (0.12). These
studies conclude that explainable artificial intelligence, together with genomic or radiomic
data, also provides an effective, non-invasive decision support system for the prediction of
GID or a strongly associated disease.

4. Discussion

Previous studies on the early diagnosis of GID based on explainable artificial intelli-
gence had some limitations. Firstly, existing literature was characterized by single-center
data with small sample sizes. Using multi-center or population data (e.g., national health
insurance claims data) will further the horizon of research in this direction. Secondly,
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the AUC of some studies (0.68) might not be optimal as a diagnostic test yet. Thirdly,
the four approaches of explainable artificial intelligence at this point (i.e., random forest
impurity importance, random forest permutation importance, machine learning accuracy
importance, and SHAP) can lead to different results in certain circumstances. Random
forest impurity importance can vary depending on how variables are categorized, whereas
random forest permutation importance is relatively free from this possible variation [21].
This would explain why only one of the eight original studies reviewed here used random
forest impurity importance. It can be noted, however, that the random forest has a unique
strength of incorporating sequential information and that this strength is much more ap-
parent with impurity importance than with permutation importance. In this context, a
comprehensive comparison for the four approaches of explainable artificial intelligence
would be a great contribution for this line of research. Fourthly, the eight original studies
reviewed above were selected with the search terms “gastrointestinal” (title) together with
“random forest” or ”explainable artificial intelligence” (abstract). These terms would be
quite specific or broad. Employing a greater variety of search terms and comparing their
results would make a great contribution to this line of research. Fifthly, this review did
not consider other types of explainable artificial intelligence including local interpretable
model-agnostic explanations (LIME) [41].

Indeed, some suggestions for this line of research are presented here. Firstly, com-
bining different types of explainable artificial intelligence for different types of GID data
would break new ground and bring more profound clinical insights. An increasing num-
ber of research endeavors combine image, genetic, and numeric artificial intelligence for
disease diagnosis, prognosis, prevention, and management (wide and deep learning). This
strand of research involves the extensive employment of multi-input multi-out models with
Tensorflow or Keras. For example, one recent study [42] developed a glaucoma prediction
system based on convolutional neural networks extracting key image features from multi-
ple video inputs and recurrent neural networks predicting glaucoma outcomes from the
trajectory of the key image features over time. In the convolutional neural network, feature
detectors slide across input data, and their detections of certain features (their operations
of “convolution”) predict the status of a cell as normal vs. GID. In the recurrent neural
network, the current output is determined, in a “recurrent” pattern, by the current input
and the previous hidden state (here, the previous hidden state is the memory of all the past
inputs) [7,8]. Little literature is available, and more examination is needed regarding the
combination of different types of explainable artificial intelligence for different types of
GID data.

Secondly, little research has been conducted and more examination is needed on
explainable artificial intelligence for reinforcement learning. Reinforcement learning is
a branch of machine learning in which (1) the environment presents a series of rewards,
(2) an agent takes a series of actions to maximize the cumulative reward in response, and
(3) the environment moves to the next period with given transition probabilities [43]. In
fact, it has been reinforcement learning that has brought the notion of artificial intelligence
to worldwide popularity since the publication of a seminal article on Alpha-Go in 2016.
Two revolutionary ideas behind reinforcement learning were that artificial intelligence
(e.g., Alpha-Go) starts like a human player, i.e., takes a series of actions and maximizes the
cumulative reward (chance of victory) from the limited information available in limited
periods only, and that it moves far beyond the best human player ever based on the sheer
power of big data covering all human players to date. In other words, it is reinforcement
learning (or temporal difference learning in a professional language) that epitomizes the
salient characteristics of artificial intelligence as “being similar with but superior to human
intelligence” [43]. Reinforcement learning has gained immense popularity in finance given
that it does not require unrealistic assumptions but does register superb performance
compared to conventional statistical models [44]. This success has been replicated in
healthcare, covering treatment recommendation, diagnosis automation, resource allocation,
and other domains of service in chronic disease and critical care alike from both structured
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data and unstructured information [45]. However, little literature has been available, and
more investigation is needed on explainable reinforcement learning. A recent review reports
that there have been a few studies on this issue, and these studies have relied on simplified
models with easy interpretation but insufficient performance and little consideration of the
psychological and social factors behind optimization processes [46].

In summary, this study reviewed the recent progress of explainable artificial intelli-
gence for the early diagnosis of GID. The ranges of performance measures were 0.70–0.98 for
accuracy, 0.04–0.25 for sensitivity, and 0.54–0.94 for the AUC. The following determinants
were top-10 predictors of gastrointestinal bleeding in the intensive care unit: mean arterial
pressure (max), bicarbonate (min), creatinine (max), PMN, heart rate (mean), Glasgow
Coma Scale, age, respiratory rate (mean), prothrombin time (max), and aminotransferase
aspartate (max). The following factors were top-10 predictors for the intake of almond, avo-
cado, broccoli, walnut, whole-grain barley, and/or whole-grain oat: Roseburia undefined,
Lachnospira spp., Oscillibacter undefined, Subdoligranulum spp., Streptococcus salivarius subsp.
thermophiles, Parabacteroides distasonis, Roseburia spp., Anaerostipes spp., Lachnospiraceae
ND3007 group undefined, and Ruminiclostridium spp. Likewise, most important predic-
tors for the prediction of early intestinal resection with Crohn’s disease were the clinical
variables of age and disease behavior as well as the single nucleotide polymorphisms
of rs28785174, rs60532570, rs13056955, and rs7660164. In conclusion, explainable artifi-
cial intelligence provides an effective, non-invasive decision support system for the early
diagnosis of GID.
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Abstract: Colorectal Cancer is one of the most common cancers found in human beings, and polyps
are the predecessor of this cancer. Accurate Computer-Aided polyp detection and segmentation
system can help endoscopists to detect abnormal tissues and polyps during colonoscopy examination,
thereby reducing the chance of polyps growing into cancer. Many of the existing techniques fail to
delineate the polyps accurately and produce a noisy/broken output map if the shape and size of
the polyp are irregular or small. We propose an end-to-end pixel-wise polyp segmentation model
named Guided Attention Residual Network (GAR-Net) by combining the power of both residual
blocks and attention mechanisms to obtain a refined continuous segmentation map. An enhanced
Residual Block is proposed that suppresses the noise and captures low-level feature maps, thereby
facilitating information flow for a more accurate semantic segmentation. We propose a special
learning technique with a novel attention mechanism called Guided Attention Learning that can
capture the refined attention maps both in earlier and deeper layers regardless of the size and shape
of the polyp. To study the effectiveness of the proposed GAR-Net, various experiments were carried
out on two benchmark collections viz., CVC-ClinicDB (CVC-612) and Kvasir-SEG dataset. From
the experimental evaluations, it is shown that GAR-Net outperforms other previously proposed
models such as FCN8, SegNet, U-Net, U-Net with Gated Attention, ResUNet, and DeepLabv3. Our
proposed model achieves 91% Dice co-efficient and 83.12% mean Intersection over Union (mIoU)
on the benchmark CVC-ClinicDB (CVC-612) dataset and 89.15% dice co-efficient and 81.58% mean
Intersection over Union (mIoU) on the Kvasir-SEG dataset. The proposed GAR-Net model provides
a robust solution for polyp segmentation from colonoscopy video frames.

Keywords: medical image analysis; polyp segmentation; colonoscopy; deep learning; attention
mechanism; semantic segmentation; healthcare informatics

1. Introduction

Colorectal Cancer is one of the most common variants of cancer found in human
beings. The predecessor of this cancer is the formation of polyps which are found in the
colon region. The malignancy degree assessment of colorectal adenocarcinoma consists
of two stages. The first stage involves the detection and delineation of polyps from the
colon region via colonoscopy examinations. In this stage, the polyps are identified and
delineated by an expert clinician. The second stage involves biopsy sample analysis from
the segmented polyps using Hematoxylin and Eosin (H&E) staining technique. To reduce
the risk of colorectal cancer, the polyps are often analyzed under H&E Staining to assess
the malignancy degree and eventually resected [1]. The morphological segmentation of the
gland for histopathology is commonly performed by pathologists to determine the stage of
cancer/tumor. Accurate segmentation of the glands is a crucial stage in obtaining reliable
morphological statistics for quantitative diagnosis. Hence, this is generally performed by
the expert pathologist who segments and studies the structure of the glands in the biopsy
sample. However, to proceed with the H&E staining on the biopsy sample, there is a need to

Diagnostics 2023, 13, 123. https://doi.org/10.3390/diagnostics13010123 https://www.mdpi.com/journal/diagnostics
185



Diagnostics 2023, 13, 123

detect, segment, and delineate polyps from colonoscopy video frames. Unfortunately, even
with the careful perusal of each frame in a colonoscopy video, an expert clinician might
miss some polyps [2]. Hence, there is a need for a real-time Computer-Aided Detection
(CAD) system that can detect and segment polyps in the first stage itself, which is the focus
of this research work. The development of such a system can assist clinicians with the
delineation of polyps from the colon and can reduce the miss-rate of polyps.

Automated polyp segmentation is a challenging task mainly due to the varied appear-
ance, shape, and size of polyps. Even though there is a progressive change in the texture,
size, and shape of the colorectal polyps in the later stages, it is small and may have no
obvious differentiating texture appearance in the earlier stages. This makes it difficult to
differentiate with intestinal tissue. Some polyps might even take the entire field of view in
the colonoscopy camera. Also, each frame is susceptible to image artifacts, the pattern of
shadows, highlights, and even occlusions due to the illuminations in colon screening. In
some types of polyps, there is no obvious boundary between a polyp and the surrounding
tissue, and the same polyp may look significantly different depending on the camera angle.
So, the reliability of polyp segmentation by manual delineation is greatly affected by the
lab’s guidelines and the experience of the clinician. Hence, it is hard to determine the gold
standard for an automatic segmentation method to deal with all possible types of polyps
efficiently, thereby increasing the difficulty of developing a reliable polyp segmenting CAD
system. The earlier techniques, such as template matching, contour detections, and texture-
based analysis, required manual intervention. Many machine learning and computer vision
techniques were applied to solve the polyp segmentation problem. Ref. [3] studied the
application of active contours for the segmentation of polyps. As the above approach relies
heavily on pre-defined template and shape models, it failed to detect small polyps. Ref. [4]
introduced the “depth of valley” concept to detect more general polyp shapes-segmenting
the polyps through evaluation of their relationship between the detected edge and the
pixels. Their region segmentation algorithm could not handle all types of polyps and lacked
robustness. It not only fails to identify some of the small polyps but also segments the
endoluminal scene incorrectly as a polyp. To address the challenges in the measurement
of segmented colon, different image processing techniques along with statistical analysis
were performed [5], but it is a time-consuming and tedious process and could not detect a
new type of polyps. Also, the above approaches do not consider contextual information
and are not robust.

Recently, deep learning techniques have proven to solve many real-world problems
with high robustness. Many variants of deep neural network architectures have been
reported in the literature for the task of semantic segmentation for various applications,
viz., remotely sensed data segmentation [6], road-scene segmentation, indoor scene seg-
mentation [7], and biomedical image segmentation [8]. The study by [9] shows the su-
perior performance of a Fully Convolutional Network (FCN) for semantic segmentation
in colonoscopy images but is not able to yield an accurate prediction in the case of noisy
images. In another work by [10], FCNs are employed for the segmentation of polyps along
with a probabilistic-based post-processing algorithm. In this approach, a heuristic-based
threshold was used to differentiate the polyp from the normal tissues, which is error-prone
and could not characterize well all types of polyps that are irregular in shape and size.

The incorporation of the attention mechanism in deep neural networks can help the
model generate a less noisy and more refined output map. For the diagnosis of coronary artery
diseases [11], the attention-based vessel segmentation approach has been applied by adding
low-level and high-level features. The sparse contour attention mechanism has been applied
to obtain accurate region boundaries for liver segmentation in abdominal CT images [12].
They combined the sparse contour attention along with an auto-context algorithm and applied
the self-supervised algorithm to improve the performance of segmentation.

In this research work, we propose a novel deep end-to-end architecture for segmenting
polyps from colon screening frames by employing a modified residual network with a
special attention mechanism. In the proposed approach, the lower semantic information
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captured in initial layers is also considered to handle different sizes, and shapes of polyps
and to suppress the noise in the input. A novel Guided Attention mechanism is proposed
that allows the model to generate and apply attention maps for each feature map in the
input to obtain a refined and accurate segmentation output. We evaluated our model on
two datasets, viz., the CVC-ClinicDB polyp dataset and the recent Kvasir-Seg [13] dataset
and achieved state-of-the-art performance over other proposed deep learning models. Our
significant contributions to this research work are summarized below:

• A novel end-to-end deep learning framework for segmenting polyps from colonoscopy
video frames.

• A modified and enhanced Residual Block is proposed that suppresses the noise and
preserves the low-level feature maps for a more accurate semantic segmentation.

• A special learning technique is introduced with a novel attention mechanism for
obtaining an accurate segmentation map.

• A novel attention mechanism to capture the refined attention maps regardless of the
size and shape of the polyp, also under improper illumination conditions.

• Design of a competitive and robust model with consistent performance over the
benchmark CVC-ClinicDB dataset and the Kvasir-SEG Dataset.

This paper is organized as follows: The related works are discussed in Section 2. The
proposed methodology is elaborated on in Section 3. The results and discussions of all
experiments are presented in Section 4 followed by a conclusion in Section 5.

2. Related Works

Many machine learning and deep learning methods were proposed by various re-
searchers in the field of medical image analysis that includes, including lesion identification
in pulmonary nodules, lung nodules, colonial cancer, brain lesion segmentation, polyp
segmentation, etc. Ref. [14] presented a detailed survey on image-based cancer detection
using various deep learning architectures. In their study, they have outlined the methods
suitable for different types of cancers, including breast cancer, lung cancer, skin cancer,
prostate cancer, brain cancer, colonial cancer, cervical cancer, bladder cancer, etc. They
discussed the issues of the lack of large data sets required for training the better models and
the various available solutions like image augmentation and transfer learning to address
the same. Computer Aided Detection (CAD) plays a major role in detecting lesions by
providing assistance in the workflow of the radiologist. Ref. [15] studied the problems
in identifying lesions in pulmonary nodules. To address the issues of highly imbalanced
data and to reduce the false negatives in classification, they have proposed a multi-kernel
approach. In their work, feature fusion and oversampling have been employed to select the
important subset of relevant features. Ref. [16] proposed a deep learning-based technique
for lung nodule detection on low-dose thoracic helical CT (LDCT) dataset and exploited
the Convolutional Neural Network (CNN) and the traditional Artificial Neural Network
(ANN). In their study, they observed that CNN architecture is good at capturing low-level
and high-level features compared to ANN.

In this research work, we mainly focus on the polyp segmentation problem. Many
solutions were proposed to automate the segmentation process of polyps in colon screening.
In many cases, polyps have well-defined shapes and structures. Hence, earlier methods
tried to leverage this to perform polyp segmentation. Ref. [17] proposed the usage of the
canny edge detector technique to process the images and identify relevant edges with the
assistance of template matching techniques. Following this, Ref. [3] studied the application
of active contours for the segmentation of polyps, but these template-based models are not
suitable for detecting small polyps.

Many texture-based methods were also introduced as a solution to the polyp segmen-
tation problem. Karkanis et al. [18] used Grey-Level Co-occurrence Matrix (GLCM) and
wavelet methods to detect polyps. Ref. [19] proposed an SVM-based method to detect and
classify the abnormalities in endoscopic images. They mainly focused on feature extraction
and developed an algorithm that can assign the weights for the relevant features and
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to remove the useless ones from the hand-crafted features that were extracted from the
endoscopic image. With their deep sparse SVM-based approach, they were able to reduce
the feature dimension and build a better model for classifying the endoscopic images on
their own dataset. In another work, an SVM-based approach with hand-crafted features
was applied [19] to detect the abnormalities in endoscopic images. As their SVM model
could not handle the noisy and poor-quality images, they introduced a rejection stage. The
image quality was pre-assessed based on its pixels, and only if it was at an acceptable level
was it fed to the next segmentation stage by SVM. Otherwise, the image was rejected in the
pre-processing stage itself, thereby limiting its usage. Ref. [20] attempted to characterize
the polyps by traditional methods such as edge detection, feature extraction, and feature
reduction and then applying an ensemble-based approach for classification. But these
handcrafted features were not accurate for delineating the polyp boundary.

For colonic polyp measurement, Ref. [21] followed a topographical height map ap-
proach. They computed the topographic features from the generated height maps of the
polyp. The concentric patterns from the height maps were then used for the texture analysis.
By applying the SVM classifier, the normal surface of the colon was differentiated from the
colonic polyps. They analyzed the experimental measurements with that of the height map
approach, and it was found to be more efficient than the other methods. Recently, a rapid
change has been observed in these tasks as Convolutional Neural Networks (CNN) are
being employed to provide more robustness compared to hand-crafted features.

All the above approaches are not sufficient for the polyp segmentation task, as they fail
to capture the contextual information from the images. To address the above problems, Fully
Convolutional Networks (FCN) proposed by [22] were adapted for semantic segmentation.
Later, U-Net [8] architecture was widely used for developing an end-to-end model for
semantic segmentation. Following these works, Ref. [9] proposed a standard FCN for
the segmentation of polyps and used the Random Forest algorithm to decrease the false
positive results.

From neural machine translation to sentence classification, applying the attention
mechanism has allowed models to focus on important features, resulting in less noisy, more
refined feature maps [23]. Recently, Ref. [24] tried to incorporate an attention mechanism,
and their study suggests that attention mechanisms can substantially reduce the noise
in the output and help the model generate a more refined output map. Hence, it can be
concluded that a better attention mechanism can further improve the performance of the
models. Ref. [25] tried various methods, from Machine Learning to Deep CNN models,
and suggested various methods for classifying Gastrointestinal (GI) tract diseases.

As deep learning methods have proven to learn robust features for segmentation
problems, we have applied them to get a robust model for the segmentation of polyps of
varied textures, shapes, and sizes. However, recent deep learning approaches in polyp
segmentation output noisy outputs and broken segmentation maps. Hence, the incorpora-
tion of a better attention mechanism can help the model generate a less noisy and more
refined output map. In this work, we have proposed a Guided Attention Residual Network
(GAR-Net) by employing both residual blocks and attention mechanisms to obtain a refined
segmentation map for polyp segmentation.

Materials and Methods should be described with sufficient details to allow others
to replicate and build on the published results. Please note that the publication of your
manuscript implies that you must make all materials, data, computer code, and protocols
associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols
should be described in detail, while well-established methods can be briefly described and
appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
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submission, please state that they will be provided during review. They must be provided
prior to publication.

Interventional studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

3. Proposed Methodology

The proposed Guided Attention Residual Network (GAR-Net) architecture for polyp
segmentation is presented here with its building blocks. We present our novel Guided Atten-
tion Learning (GAL) along with the proposed loss function of the proposed GAR-Net model.

3.1. Building Blocks of GAR-Net

The basic residual block, which is incorporated in the proposed model, is presented
below. It is followed by our modified residual block and the Guided Attention Module
(GAM)-the attention mechanism that we have proposed in this research.

3.1.1. Residual Block

The residual block, ResNet [26], provides an exceptional performance boost and faster
convergence because of the skip connections present in the block. The authors have shown
that, even if the network depth increases by stacking many layers, it is not guaranteed to
get an increase in accuracy. Because the network depth is limited by the issue of vanishing
gradients. The gradient becomes very small, or even zero, in the earlier layers, and in
such cases, even the shallow networks perform better than the deeper networks. To
address this issue, the concept of skip connections was introduced, which provides better
gradient flow and helps in avoiding exploding and vanishing gradients. By using skip
connections, the information captured in the initial layers can be allowed to the later layers,
thereby enabling the later layers to learn the lower semantic information captured in earlier
layers. It is incorporated in many deep learning models to improve the performance of
classification and semantic segmentation problems [6]. Figure 1 shows the overview of the
used residual block.

 

Figure 1. The overview of the Residual Block used.

The K in Figure 1 is the number of filters applied in the convolution operation used
in the residual block. Although residual networks have shown great performance, they
have a drawback of noise added to the low-level features captured in the earlier stages of
the network due to the plain addition of the skip connection. The ResNet adds the skip
connection bypassing the non-linear transformations with an identify function, which helps
the gradient to flow directly to the earlier layers from later layers. Even though it preserves
the information from earlier layers by additive identity transformation, noise is also added.
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To suppress that noise, we have modified this architecture to learn the refined low-level
feature maps by adding a convolutional block in the skip connection, as explained below.

3.1.2. Modified Residual Block

We proposed a modified residual block and applied it in our GAR-Net model to
alleviate the problem found in normal residual networks. We have introduced a convolution
layer in the skip connection before the addition, and this helps the model in two ways,
(i) suppresses the amount of noise added in the feature maps and (ii) helps the model to
learn in the skip connection and to capture refined low-level feature maps. The overview
of the modified residual block is shown in Figure 2.

 

Figure 2. The overview of the Modified Residual Block.

In the proposed modified residual block, the two important parameters are K[i] and
S[L]. K[i] is the number of filters applied at the ith convolution operation in the main flow.
S[L] indicates the striding for the last convolution layer. The input layer is taken through
two paths-main paths and a skip path. In the main path, a series of convolutions are
applied, and the last convolution alone with a stride of S[L]. In the skip connection, a single
convolution is introduced with a stride of S[L]. Finally, the output of both paths is added to
get the final output feature maps.

3.1.3. Guided Attention Module

Attention mechanisms can drastically improve the performance of deep learning
models. A general attention mechanism consists of a query(Q) and a value(V) and it boosts
the set of features present in the values to which the query is related. In other words,
the attention lets the model focus on the information it needs from the values using the
query. Ref. [24] proposed an attention-gated mechanism for semantic segmentation tasks
on medical images. The major drawback of this work is that a single attention map is
broadcasted and multiplied across the entire set of feature maps. This can lead to a noisy
feature map at the beginning of the training making the entire training process slower
with a higher convergence time. Furthermore, this can disrupt the feature map set, as each
feature map consists of information that facilitates the model to output more refined output.
To address the above drawbacks, we propose a new attention mechanism called Guided
Attention Module (GAM), which allows the model to generate and apply attention maps
for each feature map in the input feature sets. Furthermore, GAM is fine-tuned to generate

190



Diagnostics 2023, 13, 123

a more refined attention map with a special technique called Guided Attention Learning
(GAL). The overview of the proposed Guided Attention Module is presented in Figure 3.

 

Figure 3. The overview of the Guided Attention Module with Guided Attention Learning.

Consider a low-level feature map L ε Rh×w×k and a high-level feature map H ε Rh×w×k,
where h, w, k denote the height, width and number of channels in the feature map set.
To apply GAM, a 1 × 1 convolution with k filters is applied on the low-level feature map
L and another 1 × 1 convolution with k filters is applied on high-level feature map H,
simultaneously. The outputs of these two operations are added together and activated
with a non-linear relu() function. This output is passed through a 1 × 1 convolution with
k filters and is activated with a non-linear sigmoid() function to obtain the attention map
set A ε R

h×w×k. A is then multiplied elementwise with the up-sampled low-level features
to get the final attention-weighted feature maps O ε R

h×w×k. Batch-Normalization [27] is
applied before every non-linear activation function to improve the training process. With
the attention map set A, we obtain individual pixel-wise attention maps for each feature
map, thereby allowing the noise due to multiplying a single attention map. To further
refine the attention maps, we train this set of attention maps A using our proposed Guided
Attention Learning (GAL) technique.

3.2. GAR-Net for Polyp Segmentation

The working principle of the proposed Guided Attention Learning (GAL), along with
the loss function used in our GAR-Net architecture, is presented below.

3.2.1. GAR-Net Architecture

The overview of GAR-Net architecture is shown in Figure 4. The input of the proposed
GAR-Net architecture is 256 × 256 × 3 normalized between [0.0, 1.0]. The encoder learns
the features from the given input, which is then fed to a set of bottleneck layers to get
the consolidated encoded feature maps. The decoder reconstructs the output from the
encoded feature maps. The skip connection plays a crucial step in the reconstruction process
as it helps the decoder access the low-level information from the encoder layers. These
low-level feature maps consist of the spatial/location information and help the decoder
reconstruct the output map, viz., the skip connection. We incorporated a Guided Attention
Module (GAM) with GAL to effectively reconstruct a refined output map at each stage in
the decoder. The GAM takes the up-sampled High-Level feature maps and the low-level
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feature maps from the skip connection and merges the map efficiently to reconstruct a
refined output map in the decoder.

 

Figure 4. The overview of the proposed GAR-Net Architecture.
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3.2.2. Guided Attention Learning

The high-level features consist of more information pertinent to the segmentation
task, while the low-level features consist of information that helps the model reconstruct
the output segmentation map. The purpose of attention is to use the information from
the high-level coarse feature map, and spatial/location information from the low-level
feature maps to reconstruct a more refined set of feature maps, hence, combining both
high-level and low-level feature maps effectively. However, an attention mechanism can be
detrimental to the performance of the model if it fails to capture meaningful information
from the training set. To address this issue, we propose Guided Attention Learning (GAL)
mechanism. Guided Attention Learning is a training mechanism that allows one to train
the attention map according to their needs and to have control over its focus on specific
features. To implement GAL, a simple 1 × 1 convolution is applied with a single filter
over the attention map set A. It is then followed by batch normalization and a non-linear
sigmoid() activation. GAL results in a consolidated single attention map a ε R

height×width×1

representing all the information present in the attention map set A. Next, we train the
output a using binary cross-entropy to suit our desired attention map. The incorporation of
GAL in the loss function for our proposed GAR-Net is elaborated below.

3.2.3. Loss Function for GAR-Net

The model proposed in Figure 4 gives five outputs, namely: The main segmentation
map output (ypred), and the attention maps (a1, a2, a3, a4) from the GAM module. For
training the model, the dice loss Lmain for our main output (ypred) is initially calculated
using the following equation:

Lmain = 1.0 − 2 | ypred ∩ ygnd |
|ypred|+|ygnd| (1)

where, ypred is the set of pixels in the predicted output map, ygnd is the set of pixels in the
ground truth segmentation map.

In general, the attention layer is allowed to train on its own. But in this proposed
work, Guided Attention Learning is introduced to control what must be focused on by the
attention mechanism. The crux of GAL is to train the attention mechanism on where to
focus. To focus on the region of interest using the proposed attention mechanism (GAM),
each attention layer is trained alongside the main objective in a multi-tasked learning
approach. For each attention map ai ε [a1, a2, a3, a4], the binary cross-entropy loss is
calculated. At this stage, the following question arises in our mind: With respect to what
will we find the loss? What is the ground truth attention map? This can be answered by
understanding what a perfect attention map is. The main reason for applying attention
at each up-sampling stage is that we wish to reconstruct higher resolution feature maps
effectively using the up-sampled high-level features maps and the low-level skip connection
feature maps. A perfect attention map, in such cases, must resemble the segmentation map.
Hence, the ground truth for the attention maps will simply be the segmentation map itself
but resized to the size of that attention map ai. For example, let’s take a3 ε R

64×64 and
ygnd ε R

256×256 be the ground-truth segmentation map, then the ground truth attention
map for a3 will be ygnd itself but resized to 64 × 64 to match the dimension of a3. By using
this method, we can train all four attention mechanisms using binary cross-entropy. The
guided attention loss Lai for each attention map ai ε [a1, a2, a3, a4] can be calculated by the
following equation:

La = − ∑
x ε Ω

log
(

P
(

ai pred(x), aignd(x)
))

(2)

where Ω implies the image space from which each pixel x is considered. P
(

aipred(x), aignd(x)
)

is the calculated sigmoid probability of the attention map ai on the corresponding pixel x.
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The total loss Ltotal is the aggregation of all these loss functions and can be calculated by
the following equation:

Ltotal = Lmain +
4
∑

i=1
Lai (3)

4. Results and Discussion:

To evaluate the performance of the proposed method, various experiments were
carried out. A detailed discussion of the experimental setup and results are presented in
this section, along with the attention visualization.

4.1. Dataset

For the polyp segmentation task from images, each pixel in the training images must
be labeled as either the polyp class or the non-polyp class. For evaluating our proposed
GAR-Net model, we have used two benchmark datasets-the CVC-ClinicDB [28] and the
Kvasir-SEG [13]. The CVC-ClinicDB is an open-access dataset of 612 images, each with a
resolution of 384× 288, acquired from 31 colonoscopy sequences. The Kvasir-SEG dataset is
a considerably huge dataset of 1000 polyp images given along with their annotated ground
truth masks. The annotations of these masks were performed by expert endoscopists from
the Oslo University Hospital (Norway). The resolution of the individual images in the
Kvasir-SEG dataset varies from 300 × 300 to 1920 × 1080 and beyond in certain cases.

4.2. Experimental Setup

All the architectures used for comparison and evaluation in this research were imple-
mented in TensorFlow version 2.0. The models were built using the high-level Keras API,
while the training process was performed with TensorFlow 2.0’s gradient tape training
mechanism. The loss and metrics were evaluated using TensorLayer [29]. The models were
trained with an Intel i7-7700HQ CPU with 16GB DDR4-2400MHz RAM and an Nvidia GTX
1060 GPU with 6GB VRAM. The system environment is Windows 10 OS and had the latest
Nvidia CUDA v10.2 installed with CuDNN v7.6.5. The implementation code is developed
in python version 3.6.8.

4.3. Training Setup

The size of the image within the same dataset varies significantly. Hence, for effective
GPU utilization and to reduce the training time, we resized the training images to 270× 270
and applied a series of augmentation techniques to increase the training dataset. The
final input training images of size 256 × 256 are acquired from random cropping of the
augmented training images. We extensively used data augmentation techniques such as
random HSV saturation, random brightness, random contrast, random horizontal and
vertical flip, random scaling, and random rotation (rotation range ε [0o, 90o]). We also used
noise and blurring augmentation techniques such as median blur, gaussian blur, motion
blur, and gaussian noise. It is to be noted that augmentation techniques were applied only
during the training process and not for testing and validation. For validation and testing,
we resized the input image to 256 × 256 using a bicubic resizing algorithm [30] before
feeding the images to the model.

For all the experiments, 80% of the dataset was used for training, 10% for validation,
and the remaining 10% for testing. All the models were trained for 120 epochs with a batch
size of 4. We used Adam optimizer and Dice loss to train the model. The initial learning rate
was set to 1.0 × 10−4 and was eventually reduced upon reaching a plateau in the validation
loss. This type of learning rate reduction is called learning rate plateau-a technique that
monitors the validation loss and reduces the learning rate upon no improvement in the
validation loss for the corresponding epoch. For testing and evaluating the model after
training, we used the models which gave the least validation loss. All hyper-parameters
were tuned manually and found that the above setting helped all the models perform well
on both datasets.
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4.4. Results

We implemented and compared the proposed model with the existing techniques
to study the effectiveness of this approach. We compared our proposed GAR-Net model
with FCN [22], U-Net [8], U-Net with gated attention [24], SegNet [7], ResUNet [6], and
DeepLabv3 [31]. We implemented all the aforementioned models on our own except the
DeepLabv3 model. The implementation code for the DeepLabv3 model was taken from
their GitHub repository [GitHubRepo]. We trained all the models on both the CVC-ClinicDB
dataset and the Kvasir-SEG dataset. We used the dice coefficient and meant Intersection
over Union (mIoU) as our main metric of evaluation, as these metrics are much more
suitable for evaluating semantic segmentation tasks.

4.4.1. Results on CVC-ClinicDB Dataset

The models were evaluated with the CVC-ClinicDB dataset, and the results are shown
in Table 1.

Table 1. The Results on the CVC-ClinicDB Dataset.

S No Model Dice Score mIoU Pixel Accuracy

1 FCN8 0.8724981 0.74308 0.9757281
2 SegNet 0.73168665 0.811956 0.97676927
3 UNet 0.8803434 0.767874 0.97531813
4 UNet-Attn 0.89131886 0.783651 0.97713906
5 ResUNet 0.89080334 0.781462 0.97680587
6 DeepLabv3 0.90001955 0.819477 0.9817561
7 GAR-Net 0.9100929 0.831234 0.9831491

From Table 1, our proposed model outperforms other models with the highest dice
coefficient (0.910) and mIoU score (0.831). Even in the pixel-wise accuracy (0.983), the
proposed model outperforms all the other models.

The performance of the proposed GAR-Net was analyzed by plotting a graph with
the obtained Dice Coefficient and mIoU for the training set (left side of the graph) and
validation set (right side of the graph), respectively. From Figure 5, it is observed that
DeepLabv3 performs well only on the training set (depicted in the top-left and bottom-
left of the graph) but lacks generalization, which has led to poor performance on the
validation set (top-right and bottom-right). But our proposed model GAR-Net shows its
superiority in the validation set also with a competitive performance in the training set,
hence, providing a robust solution on the CVC-ClinicDB dataset. Similarly, other existing
models also fail to provide a robust solution, and the performance on the validation set
is not as good as the proposed GAR-Net. So, we can conclude that our proposed model
provides consistent performance in terms of Dice Co-efficient and mIoU over both the
training and validation set.

4.4.2. Results on Kvasir-SEG Dataset

All the models were also evaluated on the Kvasir-SEG dataset, and the results are
summarized in Table 2.

Table 2. The Results for the Kvasir-SEG Dataset.

S No Model Dice Score mIoU Pixel Accuracy

1 FCN8 0.73635364 0.548514 0.9176181
2 SegNet 0.78634053 0.784731 0.9607266
3 UNet 0.85862905 0.750284 0.959373
4 UNet-Attn 0.8637741 0.754757 0.9587085
5 ResUNet 0.86858636 0.761282 0.9630264
6 DeepLabv3 0.87866044 0.805872 0.9693878
7 GAR-Net 0.8915458 0.815802 0.9717203
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Figure 5. Training and Validation results on the CVC-ClinicDB dataset.

From the results, it is evident that our proposed model outperforms all the other models
with the highest dice coefficient (0.891), mIoU score (0.815), and pixel-wise accuracy (0.971).

From the plotted graphs, as shown in Figure 6, we can observe that our model perfor-
mance is consistent in both the training and validation set on the Kvasir-SEG dataset also.
Our proposed model shows competitive performance in terms of dice coefficient and out-
performs all other models in mIoU in the validation set, thus providing a robust solution.

4.5. Further Discussions

To evaluate the significance of the proposed Guided Attention mechanism, we present
the visualization of the outputs of all the models for some test samples randomly taken
from both datasets and compare its performance with existing methods

4.5.1. Output Visualization for CVC-ClinicDB Dataset

A set of random test samples were taken from the CVC-ClinicDB dataset and is
visualized. The comparison with all the other trained models is depicted in Figure 7.
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Figure 6. The Training and Validation Graphs for the Kvasir-SEG Dataset training.

From Figure 7, it can be observed that our proposed model produces a more refined
map than all other models. It is also evident that almost all models predict well for
samples 1 and 2. In sample 3, DeepLabv3 predicts with noise, while in sample 4 and
sample 5, the DeepLabv3 model fails to provide proper continuous maps. All models,
except our proposed GAR-Net model, fail to capture a refined output map for the Sample 6
model. This is due to improper illumination. However, our proposed model adapts to it to
an extent and provides an overall refined output map. Hence, we can conclude that our
model outperforms all the other models showing the superiority of the proposed GAR-Net
architecture on the CVC-ClinicDB dataset.

4.5.2. Output Visualization for Kvasir-SEG dataset

A set of random test samples were taken from the Kvasir-SEG dataset and visualized
(Figure 8) and compared with all the trained models.

From Figure 8, one can quickly notice the visual noises present in the Kvasir-SEG
input images. These noises include writings, random color patches, etc., which make the
Kvasir-SEG dataset, a challenging dataset. FCN8 fails to provide any refined output for
all the samples. Most models perform well on sample 1, but UNet and UNet-Attention
fail to handle the visual noises present in the input image of samples 2, 3, and 7, hence,
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resulting in a broken and irregular output map. SegNet provides a decent output compared
to UNet and UNet-Attention on all the samples except sample 6, where it fails to find
two separate polyp objects. DeepLabv3 outputs decent maps but fails to capture any
output from sample 3 and sample 7. Also, DeepLabv3 completely misses the smaller polyp
in sample 6. Our proposed GAR-Net model outputs a refined segmentation map for all the
samples. There is a small noise in the output map of sample 6 from our GAR-Net model.
However, considering all the samples, our model outperforms other models with high
efficacy, thus showing the superior performance of the proposed GAR-Net architecture on
the Kvasir-SEG dataset also.

 

Figure 7. The output comparison for all the models on the CVC-ClinicDB Dataset.
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Figure 8. The output comparison for all the models on the Kvasir-SEG Dataset.

From Figures 7 and 8, we can conclude that the proposed GAR-Net provides a more
refined output map regardless of the noise or improper illuminations, providing a robust
model for segmenting polyps from colonoscopy video frames.

4.5.3. Strength of the Proposed Guided Attention Learning

To understand the significance of Guided Attention Learning in our GAR-Net archi-
tecture, we compared and visualized the attention map from the existing Attention Gated
Mechanism [24] and the proposed GAM with GAL by taking a random test sample from
both datasets. The attention visualization is presented in Figures 9 and 10 for a random test
sample in the CVC-ClinicDB dataset and Kvasir-SEG dataset, respectively.
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Figure 9. The attention visualization comparison: Attention Gated Network vs. Guided Attention
Module with a test sample from CVC-ClinicDB dataset. Even in deeper layers, GAM is still able
to capture refined attention maps, while Attention Gated Network only outputs coarse and broken
attention maps.

 

Figure 10. The attention visualization comparison compares Attention Gated Network vs. Guided
Attention Module with a test sample from the Kvasir-SEG dataset. Notice even in deeper layers,
GAM is still able to capture refined attention maps, while Attention Gated Network-only outputs
coarse and broken attention maps.

From Figure 9, it is evident that the attention map of the Attention-Gated Network
fails to capture the entire region of interest, hence, resulting in a broken, uneven output
map. Moreover, as we go deeper into the network, the attention-gated network fails to
provide a refined map and results in a very coarse attention map. However, the attention
maps from our proposed GAM with GAL are highly refined even in the deeper layers of
the network. Hence, we can get a more refined continuous output map.

From Figure 10, it is again evident that the attention-gated network completely fails to
capture the region of interest at low-level layers (early stages of the network). However,
in the deeper layers of the network, we can see that the attention-gated network results
in a coarse feature map with a lot of noise, as it captures only some part of the output
and lacks to obtain a refined attention map. But our proposed Guided Attention Learning
successfully captures a refined attention map both in earlier and in deeper layers of the
model. Hence, we can conclude that our Guided Attention Module with Guided Attention
Learning outperforms the previously proposed Attention-gated network and boosts the
model’s performance by capturing refined output maps.
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5. Conclusions

In this paper, we presented GAR-Net: Guided Attention-based Residual Network,
which is an architecture designed to address the need for a more accurate and refined
segmentation map for the colorectal polyps found in colonoscopy examinations. The
proposed architecture takes advantage of residual blocks, and attention mechanisms to
output refined segmentation maps. We have modified the residual block by including
a convolution layer in the skip connection to suppress the noise and capture the refined
low-level feature map. We have proposed a new attention mechanism that successfully
captures a refined attention map both in earlier and in deeper layers of the model. The
Guided Attention mechanism proposed for this GAR-Net architecture generates a more
refined output map regardless of improper illuminations, providing a robust model for
segmenting polyps from colonoscopy video frames.

Comprehensive examinations and experiments were conducted using the benchmark
CVC-ClinicDB dataset and Kvasir-SEG dataset to evaluate and assess the proposed model
with the existing state-of-art architectures. Through experimental results, it is shown that
our proposed GAR-Net model can provide a reliable and robust model with the highest Dice
co-efficient and mIoU score, outperforming other proposed semantic segmentation models
such as FCN8, U-Net, U-Net with Gated Attention, ResUNet, SegNet, and DeepLabv3.
The computation overload is slightly high in our proposed GAR-Net architecture, as we
used normal convolution over depth-wise separable convolution. We did an experiment
with depth-wise separable convolution and found it quite detrimental, especially to the
attention mechanisms. There is further research scope to improve this model by making it
lightweight and incorporating spatial information in Guided Attention Learning. We can
conclude that the proposed GAR-Net architecture can be considered a strong baseline for
further investigation in the direction of developing a robust and clinically useful method
for polyp segmentation from colonoscopy video frames.
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Abstract: Small bowel polyps exhibit variations related to color, shape, morphology, texture, and size,
as well as to the presence of artifacts, irregular polyp borders, and the low illumination condition
inside the gastrointestinal GI tract. Recently, researchers developed many highly accurate polyp
detection models based on one-stage or two-stage object detector algorithms for wireless capsule
endoscopy (WCE) and colonoscopy images. However, their implementation requires a high com-
putational power and memory resources, thus sacrificing speed for an improvement in precision.
Although the single-shot multibox detector (SSD) proves its effectiveness in many medical imaging
applications, its weak detection ability for small polyp regions persists due to the lack of information
complementary between features of low- and high-level layers. The aim is to consecutively reuse
feature maps between layers of the original SSD network. In this paper, we propose an innovative
SSD model based on a redesigned version of a dense convolutional network (DenseNet) which em-
phasizes multiscale pyramidal feature maps interdependence called DC-SSDNet (densely connected
single-shot multibox detector). The original backbone network VGG-16 of the SSD is replaced with
a modified version of DenseNet. The DenseNet-46 front stem is improved to extract highly typical
characteristics and contextual information, which improves the model’s feature extraction ability.
The DC-SSDNet architecture compresses unnecessary convolution layers of each dense block to
reduce the CNN model complexity. Experimental results showed a remarkable improvement in the
proposed DC-SSDNet to detect small polyp regions achieving an mAP of 93.96%, F1-score of 90.7%,
and requiring less computational time.

Keywords: polyp; wireless capsule endoscopy images (WCE); single-shot multibox detector (SSD);
image augmentation; multiscale DenseNet

1. Introduction

Recently, small bowel tumors have been the third leading cause of death in the word.
Adenomatous polyps formed by glandular tissue are considered as one of the most com-
mon cases of colorectal cancer. Contrary to hyperplastic polyps, which have no malignant
potential, adenomas are considered precancerous and can transform into malignant struc-
tures despite being benign tumors. The prevalence of this disease is expected to rise in the
coming years [1]. For that reason, the endoscopic removal of benign and early malignant
polyp regions in the GI tract in their early stage is required. Thus, doctors need a full direct
visualization of the GI tract [2]. Wireless capsule endoscopy (WCE) is an advanced tool
that revolutionizes the diagnosis technology [3]. It provides a feasible noninvasive method
for detecting the entire gastrointestinal (GI) tract without pain and sedation compared with
traditional colonoscopies. However, its short working time, low image resolution, and low
frame rates restrict its wide application. In fact, the large quantity of data produced per
examination per patient (approximation 55,000 images) is a laborious task for physicians to
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accurately locate the polyp regions in each WCE frame. An automated tumor detection
technique is required to relieve specialists of the time-consuming task of reviewing the
whole video before making a diagnosis. The presence of artifacts and complex characteris-
tics (e.g., texture, shape, size, and morphology) inside the GI tract may hinder the detection
process of polyp regions, as shown in Figure 1. As a result, small polyp regions are invisible
to the naked eye, preventing doctors from identifying suspicious areas and manually locat-
ing polyp regions in each WCE frame. With the rise of artificial intelligence, deep learning
(DL) frameworks, as opposed to handcrafted methods, have widely been investigated
in medical image analysis due to their superior performance in image classification [4–6].
Many CAD systems have been proposed for polyp detection purposes to assist endo-
scopists by providing an automated tool that acquires some knowledge without requiring
their physical attendance [7]. Therefore, they help clinicians to correctly determine the
polyp frame’s ground truth and make the correct decision by reducing human error. Some
manuscripts aimed to automatically detect and localize polyp regions on both colonoscopy
and capsule endoscopic images [8–10]. The lack of public and annotated datasets for
polyp detection purpose is a common issue in the field. However, researchers use their
own dataset, and the results may lack of subjectivity. According to their initiative, other
studies on colonoscopy have used public data sets (e.g., the MICCAI 2015 subchallenge
on automatic polyp detection in colonoscopy). Based on their architecture, preexisting
cross-domain image object detectors are split into two categories: one-stage detectors, such
as YOLO [11], SSD [12], etc., and two-stage detectors (R-CNNs [13] and their numerous
variations (Faster R-CNN [14], R-FCN [15], etc.)). One-stage detectors are generally faster
but less accurate. Even though speed-focused object detection research in medical image
analysis runs in real time on high-end GPUs, a trade-off between precision and speed
prevents SSD models from detecting small objects quickly. Even though it succeeds in
keeping location information in shallow/deeper layers of the network, the SSD model’s
detector fails to preserve semantic information for small polyp regions. Two-stage detec-
tors are typically more accurate but slower, and using a fixed receptive field limits deep
learning’s practical application in detecting small polyp regions. The main motivation
of this work is to improve the performance of the polyp detection task in term of mean
average precision (mAP) with less computational cost, using more powerful deep learning
frameworks. Thence, a new SSD model is redesigned based on a modified version of
DenseNet. The original backbone network, VGG16, is replaced by DenseNet-46, which
can address the issue of high computational runs and overfitting during the optimization
process. The redesigned DenseNet framework significantly reduces the number of model
parameters while improving the backbone network’s feature extraction capability. It can
also capture more target information than VGG networks. The unnecessary convolution
layers of each dense block are compressed to get significant increases in performance
without increasing network complexity. The DenseNet-46 design reduces the number of
layers used to speed up the run time while gaining significant precision, and the front stem
is improved to enable the extraction of more powerful contextual information. Inspired
by the DenseNet-S-32-1 [16], this manuscript presents a densely connected single-shot
multibox detector (DC-SSDNet) for detecting small polyp regions in WCE and colonoscopy
frames. To reach the main target, the proposed network takes advantage of the power
architectural design of dense blocks to create an ultimate architecture that serves as the
backbone of the SSD detector. It changes the traditional procedure of the shallow part of
the VGG16 network’s alternating convolutional and pooling layers with a couple of dense
blocks and transition blocks. The DenseNet architecture tends to be very deep, and an
effective DenseNet compression is essential for reaping all the benefits of dense blocks,
consistent with the VGG16 architecture, to target the small polyp detection while retaining
computational efficiency. As a result, an entire extraction of polyp patterns of various sizes
within the same layer is possible while avoiding heavy parameter redundancy. The strategy
of altering dense blocks and transition blocks is aimed at incorporating contextual and se-
mantic information into deep networks and construct a multiscale feature map. Inspired by
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stacking-based models, the proposal adopts the SSD network structure [12]. The backbone
pyramidal network is modified to reuse missed information. Moreover, we propose a new
DenseNet network to optimize the SSD network’s ability to improve small object feature
extraction in the shallower network and to overcome scale variation limitations in detecting
small polyp regions. Properly tuning the hyperparameters of the proposed DC-SSDNet,
our experiments yield a higher mAP than the conventional SSD, with gains of 16.76, 17.74,
and 16.74 points on the WCE, CVC-ClinicDB, and Etis-Larib datasets, respectively, with an
enhancement of the speed–precision trade-off for the detection of small polyp regions.

Figure 1. Examples of polyp image artifacts used in the current study. (a) Bubbles; (b) images
with medical instruments; (c) white liquid and specular reflections; (d) cloudy liquid and specular
reflections; (e) debris; (f) blurry images caused by different factors; (g) bile and specularity; (h) low
contrast between polyp region and normal tissues.

The following are the primary contributions of this study:

1. The application of a modified version of DenseNet called DenseNet-46 as a backbone and
smoothly adapted to the SSD detector to improve its ability for small polyp detection.

2. Based on the inception v4 stem part, the backbone DenseNet-46 front stem is improved,
allowing the extraction of highly relevant features and contextual information.

3. To capture enough patterns and representative information, we increased the filter
numbers of the first convolution layers in the stem part of the DenseNet-46 backbone
from 32 to 64.

4. We omitted the unnecessary convolution layers of each dense block of the DenseNet-46
backbone to reduce the DC-SSDNet model’s complexity and to achieve a faster speed
while preserving a lesser computation time.

5. DC-SSDNet adds a couple of new dense and transition blocks to match the structure
of SSD that detects targets in images using a single deep neural network.

6. DC-SSDNet introduces additional convolution layers to the multiscale feature pyra-
mid, which is consistent with the traditional SSD.

7. The proposed model is trained from scratch.
8. We conducted several experiments on three well-known datasets in the field (WCE,

CVC-ClinicDB, and Etis-Larib) to verify the DC-SSDNet model’s effectiveness for a
fair comparison with previously published methods of the literature.

9. This manuscript provides a thorough examination of the benefits and drawbacks of
the proposed framework.

The rest of this paper is structured as follows: Section 2 contains references to related
works. The proposed DC-SSDNet model is presented in detail in Section 3. The experi-
mental results are reported and compared to those of other models in Section 4. Finally,
Section 5 discusses the conclusions.
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2. Literature Review

WCE images exhibit great variations in terms of size, shape, and morphology making
the automated polyp detection process more difficult. Handcrafted features have been
widely investigated, showing a significant progress for gastrointestinal classification tasks.
A previous study [17] presented a model-based pyramid histogram for polyp classification
using T-CWT and gamma. The major problem is the misunderstanding of biological
mechanisms. They rely heavily on prior knowledge and have limited generalizability.
Thus, handcrafted methods encode only a portion of the image and ignore the intrinsic
data of the whole frame. They use low-level features created manually to describe the
structures of regions that are not sufficiently robust to be applied for automatic polyp
detection. Recently, the development of deep learning and powerful computing devices
made the realization of deep CNNs (DCNNs) feasible. Several attempts have been made
to use existing deep-learning frameworks to classify colonoscopy polyp abnormalities:
VGGNet repeatedly stacked 3 × 3 convolution layers and 2 × 2 pooling layers to reach a
maximum depth of 19 layers; GoogleNet [18] increased both the network depth and the
width to enhance the feature representation by parallelly performing multiple convolution
and pooling operations at each layer; and ResNet [19]. However, the vanishing-gradient
problem always persists when training DCNNs. Inspired by the end-to-end frameworks
for the polyp recognition task, Yuan et al. [16] used the most recent DenseNet model in
2019 as the basic model to directly calculate representative features from image information
rather than using low-level handcrafted features to characterize the WCE image. Thus, they
improved feature propagation through dense connections and significantly reduced the
number of tuning while maintaining a high performance. The main proposal was to localize
polyps in WCE/colonoscopy images by drawing a bounding box around the emphasis
region, whereas polyp classification was a localization interstage conducted directly. In
general, CNN-based methods are divided into two categories: the two-stage algorithms
that generate region proposals as a first step and then classify them into different object
categories (e.g., Faster R-CNN [20]), and the one-stage algorithms based on regression
(e.g., YOLO [21] and SSD [22]). The Faster R-CNN [20] and R-FCN [23]) proposed anchors
for different scales using a one-scale feature map. However, they failed to detect multiscale
objects of small sizes. The FPN [24] and DSSD [25] methods used bottom-up and top-down
frameworks, respectively; however, using the layer-by-layer feature map fusion results
slowed the detection process. As a solution, the conventional SSD [12] made predictions
by utilizing the feature of shallower layers and scaling them from the bottom to the top to
generate a new pyramidal feature map. In this context, a two-stage framework based on
deep learning was presented by Jia et al. [26] for automatic polyp recognition in colonoscopy
images. The authors of [27] presented a modified version of the mask R-CNN model for
performing polyp detection and for segmentation purposes. TASHK et al. [28] proposed an
improved version of the CNN algorithm based on DRLSE to automatically locate polyps
within a frame. However, two-stage algorithms sacrifice speed for a high-performing
localization and object recognition performance. Thus, they hardly meet the real-time
requirements of polyp detection. Oppositely, the one-stage algorithms achieve a high
inference speed by ignoring the region proposal step and using the predicted boxes directly
from the input images. To detect polyps in colonoscopy videos, Liu et al. [29] investigated
the potential of the ResNet50 and VGG16 frameworks used as a backbone to propose a
new architecture-based single-shot detector (SSD). However, the traditional SSD using the
VGG16 network as a backbone repeatedly stacks convolution and pooling layers, and its
feature extraction ability is inefficient due to its use of only 1 × 1 and 3 × 3 convolution
kernels. Improving the polyp detection process necessitates a robust backbone (such as
DenseNets [30]). Regarding the advantages of you only look once (YOLO) algorithms
in real-time detection speed at the expense of precision, they eliminate a preprocessing
step to obtain an ROI and abandon the process of proposal generation. Misawa et al. [31]
presented a YOLOv3-based polyp detection system that achieved real-time detection
with greater than 90% sensitivity and specificity. However, the spatial constraints of the
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algorithm limited it to perform with small regions within the image. Researchers made
many efforts based on SSD algorithms to tackle the limitations of small polyp detection
and localization. In this context, the authors of [32] proposed a rainbow SSD-based method.
It applied a simple concatenation and deconvolution operation of feature maps produced
from SSD layers. Zhang et al. [33] presented an SSD-GPNet-model-based SSD network
by combining feature maps of the low level with the deconvolution of high-level feature
maps. However, adding deconvolution layers increased the computational complexity of
the SSD architectures at the expense of speed, even if it improved the performance of small
polyp region detection. Regarding the success of DenseNet frameworks in many fields,
Zhai et al. [16] presented an improved SSD network that used the residual prediction block
and switched the network backbone to DenseNet. They then used a multiscale feature layer
fusion mechanism to reinforce the relationships between the levels in the feature pyramid.
However, it exhibited a decrease in detection speed by using a complex network and
adding complicated feature fusion modules. To extract more semantic information while
keeping the detection speed constant, we propose a densely connected single-shot detector
called DC-SSDNet. The characteristic ramification of the feature maps within the same
block would become quite beneficial if the purpose was to reuse them to perform stacked
dense and transition blocks with the capacity of the SSD network to be more compact while
going deeper. A typical compression method of a network’s feature maps is to remove
unnecessary layers by reducing parameter dimensions. Concretely, there is no need for
feature extraction enhancement using a lightweight feature fusion of shallower and deeper
layers due to the power of dense networks for capturing more representative patterns and
reassembling contextual and semantic information. Indeed, meeting the requirements of a
detection process involves the reduction of the model complexity while preserving a high
detection speed. Thus, clinical applications require a real-time detection and promising
precision [34].

3. Proposed Method

Figure 2 depicts the network structure of DC-SSDNet for the polyp detection task.
A redesigned SSD-detector-based compact DenseNet-46 network used as a backbone
is proposed to strengthen the network detection ability. The conventional SSD with the
VGG16 as a backbone fails to preserve contextual information in the multilayer transmission
process. Therefore, unbalanced feature maps appear at each layer. To reuse the rich object
information of low-level layers and incorporate it with high-level layers, DC-SSDNet splits
the network structure into two sections: a compact version of DenseNet (a DenseNet-46
network as a backbone) for feature reuse and extraction and the front-end network to
perform multiscale object detection. Firstly, a preprocessing step is performed to remove
the black regions in the WCE images and keep only useful information. Then, a data
augmentation strategy is investigated to handle overfitting in deep learning models due to
the data insufficiency problem. The model input size is 299 × 299. For object classification
and location regression, the conventional SSD model selects VGG-16 layers Conv4_3 and
Conv_7 and adds new ones Conv8_2, Conv9_2, Conv10_2, and Conv11_2. Consistent
with the SSD network, we construct a multiscale feature pyramid under the premise
of maximizing the use of synthetic information from all feature layers and improving
precision without sacrificing speed. To improve the model’s detection ability, we use our
own multiscale feature pyramid Dense_C1, Dense_C2, Dense_C3, Dense_C4, Dense_C5,
and Dense_C6. The main parts of the DC-SSDNet detector are described in detail below.
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Figure 2. Architecture of the proposed densely connected single shot multibox detector (DC-SSDNet).

3.1. Compact DenseNet-46

A deep CNN uses many repeated convolution layers resulting in the bottom-level
features being destroyed. Many medical imaging applications utilize DenseNet to improve
precision caused by the vanishing gradient in high-level neural networks. DenseNet reuses
some not-useful redundant information to concatenate the high-level features with the
residual sparse low-level ones, even if it does not propagate them effectively. In this paper,
we propose a compact DenseNet-46 as a backbone network of DC-SSDNet by applying
certain modifications to DenseNet. Table 1 depicts the main structure based on the number
of layers. DenseNet-46 use the feature maps from all previous layers as input in the next
layer to alleviate the lack of region location information of high-level features, as depicted
in Table 1. Despite the success of deep DenseNets applications in many fields, we believe
that using this network directly as an ultimate SSD backbone is probably not going to
be an effective solution for small polyp detection. Compared to other deep DenseNet
versions, the compact DenseNet-46 compresses some repeated dense connections in each
dense block to allow fewer feature propagations and reduce the destruction of low-level
features. Compressing each block’s unnecessary convolution layers, the compact DenseNet-
46 avoids generating more redundant information, preventing the small polyp’s features
from being submerged, and reducing the system’s complexity. Unlike the commonly
used structure in the DenseNet model design, the backbone network consists of a stem
block and six phases of dense and transition blocks. Only the sixth phase does not use a
transition block.

208



Diagnostics 2023, 13, 733

Table 1. Compact DenseNet-46 architecture (growth rate k = 32) in each dense block.

Phase Layer Setting
Output Size

(Input 299 × 299 × 3)

Stem block 75 × 75 × 96

Phase 1
Dense block (1)

(
1 × 1 Conv

3 × 3 Conv�Pad − Valid�

)
× 2 75 × 75 × 160

Transition block (1)
1 × 1 Conv�Pad − valid� 75 × 75 × 160

2 × 2 AveragePool�stride2� 38 × 38 × 160

Phase 2
Dense block (2)

(
1 × 1 Conv

3 × 3 Conv�Pad − Valid�

)
× 3 38 × 38 × 256

Transition block (2)
1 × 1 Conv�Pad − valid� 38 × 38 × 256

2 × 2 AveragePool�stride2� 19 × 19 × 256

Phase 3
Dense block (3)

(
1 × 1 Conv

3 × 3 Conv�Pad − Valid�

)
× 3 19 × 19 × 352

Transition block (3)
1 × 1 Conv�Pad − valid� 19 × 19 × 352

2 × 2 AveragePool�stride2� 10 × 10 × 352

Phase 4
Dense block (4)

(
1 × 1 Conv

3 × 3 Conv�Pad − Valid�

)
× 3 10 × 10 × 448

Transition block (4)
1 × 1 Conv�Pad − valid� 10 × 10 × 448

2 × 2 AveragePool�stride2� 5 × 5 × 448

Phase 5
Dense block (5)

(
1 × 1 Conv

3 × 3 Conv�Pad − Valid�

)
× 2 5 × 5 × 512

Transition block (5)
1 × 1 Conv�Pad − valid� 5 × 5 × 512

2 × 2 AveragePool�stride2� 3 × 3 × 512

Phase-6 Dense block (6)
(

1 × 1 Conv
3 × 3 Conv�Pad − Valid�

)
× 2 3 × 3 × 576

3.1.1. Stem Block

The motivation behind the DenseNet-46 stem block design originates from the consid-
erable success of the Inception-v4 structure [35] in small polyp detection. It is designed in
the same manner before the first dense block, as depicted in Figure 3. Experimentally, the
DenseNet-46 stem block can slightly reduce the information loss from input frames com-

209



Diagnostics 2023, 13, 733

pared with the conventional structure of DenseNet, which includes a 7 × 7 convolutional
layer and a 3 × 3 max pooling before the first dense block. The redesigned stem block can
also reinforce the DC-SSDNet network’s ability for feature extraction with less computa-
tional cost. However, the DenseNet-46 stem block structure excerpted from the asymmetric
convolution kernel structure used in Inception-v4 reduces the model complexity while
maintaining a small loss of feature information.

Figure 3. Structure of stem block.

3.1.2. Dense Block

The dense block is the basic unit of the compact DenseNet-46 structure, as shown in
Figure 4. We denote the feature maps of the K − 1 layer as m × n × p0, where m and n
represent the width and height of feature maps, and p0 means the number of channels.
R(·) represents a nonlinear transformation consisting of a rectified linear unit (Relu) as an
activation function, a 1 × 1 convolution layer, and a 3 × 3 convolution layer. It changes the
number of channels to k (k = 32) without altering the size of the feature maps. To reduce
the number of channels, we used the 1 × 1 convolution operation, and we adopted the
3 × 3 convolution operation for feature restructuring and to improve the network perfor-
mance. Each dense block reduces the redundancy of dense connectivity represented by
the long dashed arrow, in which feature maps of the K − 1 layer are connected directly to
those of the K layer and then make a concatenation with the output of R(·), thus resulting
in m × n × (p0 + p). The output of the K + 1 layer is m × n × (p0 + 2p). Previous studies
based on DenseNet used a fixed number of dense blocks (4 dense blocks in all DenseNet
architectures) to keep the same scale of outputs. They also added new layers to each
DenseNet network’s dense blocks to increase framework depth. A connectivity increase
may decrease network performance due to contextual and semantic information redun-
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dancy. For this reason, the proposed DenseNet-46 backbone structure adds two additional
dense blocks to increase the network depth rather than increasing the connections of each
dense block. The DenseNet-46 backbone structure used in this work has two base blocks
in dense blocks (1), three in dense blocks (2), three in dense blocks (3), three in dense
blocks (4), two in dense blocks (5), and two in dense blocks (6).

Figure 4. Structure of dense block.

3.1.3. Transition Block

After several dense connections, the number of feature maps of the DenseNet-46
grows dramatically. Consistent with the original DenseNet, we designed transition layer
blocks to reduce the dimension of previous dense blocks’ features, as depicted in Figure 5.
The transition block includes a 1 × 1 convolution layer with valid padding to reduce the
number of channels of the previous layers. Then, it performs a 2 × 2 average pooling layer
to decrease half of the feature map sizes. In the last phase, the transition block is not used
to not reduce the final feature map resolution for further modification related to the SSD
output requirements.

Figure 5. Structure of transition block.

3.1.4. Growth Rate

Table 1 shows the details of the compact DenseNet-46 backbone. The growth rate of
the DenseNet denoted as ’k’ is referred to as the number of 3 × 3 convolution kernels in
each dense block. It changes the number of channels of the input feature maps in each dense
block. Since each dense block is concatenating to its previous ones, the succeeding layer
channels grow by k after each dense block. The number of base blocks in the dense block,
which consists of 4k 1 × 1 convolutions and 1k 3 × 3 convolutions, varies depending on the
dense block location. It is well known an increase in growth rate gives good performance
due to the large amount of information circulating in the network. This assumption is
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not always verified as it depends on the context environment, and the system complexity
will also increase. In the DenseNet-64 base model used in this proposal, we utilized three
settings: k = 16, k = 32, and k = 48. The growth rate choice was validated experimentally.

3.2. Multiscale Feature Pyramid Network

Several feature layers (Conv6_2, Conv7_2, Conv8_2, and Conv9_2) are added to the
original SSD via the base network’s end (VGG16) for object classification and location
regression from multiple feature maps at different depths. Inspired by the pyramidal
feature hierarchy, the proposed approach adopts the SSD network structure [12]. However,
the original backbone network VGG-16 of SSD is replaced with DenseNet-46 to enhance the
feature extraction ability of the SSD model and address the problem of scale variations in
detecting small polyp regions. The DC-SSDNet network uses the output of each transition
block as the input of the multiscale feature pyramidal except for the sixth phase, to keep
the final feature map resolution not reduced. Convolutional layers are used to perform
pyramidal feature maps for small polyp detection but with different configurations. Con-
sistent with the SSD model, the final feature layers have target sizes of 38 × 38, 19 × 19,
10 × 10, 5 × 5, 3 × 3, and 1 × 1.

4. Experiments

4.1. Datasets and Experimental Environments

The WCE dataset is from PillCam©COLON 2 polyps [36]. It consists of 120 polyps
and 181 normals images collected from one patient’s VCE test with a resolution of
256 pixels × 256 pixels, as shown in Figure 6. A preprocessing stage was performed to
avoid overfitting and increase the training dataset size. Hence, the regenerated dataset
comprised 1250 polyp patches and 1864 normal ones. Two highly qualified experts manu-
ally labeled and annotated frames as positive and negative samples. To provide ground
truths, they defined binary masks corresponding to the polyp regions covered. To meet the
needs of polyp detection tools, the bounding boxes of polyp regions were delimited using
the specialists’ ground-truth mask using a graphical image annotation tool to label objects’
bounding boxes in images (LabelImg). Then, experts corrected them. The second dataset
was the popular CVC-ClinicDB [37]. In this regard, researchers reviewed 25 colonoscopy
videos to choose at least 29 sequences with at least one polyp region and selected a set
of frames for each of them. The CVC-ClinicDB dataset contains 612 polyp images with
a resolution of 384 × 288. The specialists manually defined masks for the polyp-covered
regions in each image to provide the ground truths. Then, they were drawn based on the
ground truth provided by the specialists using advanced medical annotation tools. To
confirm the proposed model’s credibility, we used the annotated ETIS-Larib dataset [38]
in which 34 colonoscopy videos produced 196 polyp images of various shapes and sizes,
as shown in Figure 6. Skilled experts annotate the ETIS-Larib dataset ground truths. The
colonoscopy images were from the MICCAI 2015 subchallenge on the automatic polyp
detection task. Polyps’ images were rescaled to 299 × 299 pixels. We divided the data
into 70% for training, 10% for validation, and 20% for model testing. We employed a
fivefold cross-validation to validate the model’s state and convergence after each epoch.
The validation data step automatically adjusted the iterations and the learning rate. The
model adopted a validation set according to the five group performances in the models.
Finally, the performances were averaged across the splits to calculate the mean average
precision measure.

In this study, we performed the training and testing phases using the Colab Pro Plus
solution provided by Google, with a maximum RAM of 52 Gb and a disk of 166.83 Gb. The
CUDA 8.0.61-1, CuDNN6.0, Keras 2.1.0, Python 3.7, protobuf 3.20.*, h5py 2.10.0, NumPy
1.16.3, TensorFlow 1.14, TensorFlow-GPU 1.14, OpenCV-python, scikit-learn, scikit-image,
tqdm, beautifulsoup4, lxml, html5lib, bs4, ipykernel, and OpenCV 3.1 packages were used
to implement the algorithm. For all used datasets, an aspect ratio between one and two was
adopted depending on the small polyp regions’ true bounding boxes.
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Figure 6. Example of samples: (a–c) WCE polyp images; (d–f) Etis-Larib polyp images; (g–i) CVC-
ClinicDB polyp images.

4.2. Training

Many training hyperparameters were adjusted to strengthen the DC-SSDNet capability
for detecting polyp abnormalities in WCE and colonoscopy frames as shown in Table 2.
The presence of black regions in WCE images may impair detection performance and
lengthen computation time. Hence, the original capsule endoscopy image was reduced to a
center square-shaped image in the peripheral area as a first preprocessing step in order to
remove unwanted black regions. We used a batch size of 32 and rescaled the input images
to (299 × 299 × 3). The model employed 100 training epochs and 500 steps per epoch. The
motivation behind the data augmentation was a lack of data for the WCE classification and
detection tasks. Moreover, data access was tightly restricted owing to privacy concerns. In
this regard, we applied popular augmentation methods used in recent studies [10,35]. We
applied geometric methods which altered the geometry of the resulted region-of-interest
(ROI) image as a second preprocessing step, by mapping the individual pixel values to
new destinations. To perform data augmentation techniques, the flipping approach was
examined in order to mirror the ROI WCE frames across their vertical and horizontal axes
at first, then across both in the second pass. Finally, we rotated the ROI WCE images by
270◦ about their center, as shown in Figure 7.
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Table 2. Hyperparameter settings of the densely connected single-shot multibox detector (DC-SSDNet).

Hyperparameters Values

Optimizer Adam
beta_1 0.9
beta_2 0.999
epsilon 1 × 10−8

Initial learning rate 0.0001
Learning rate decay drop factor 0.5

Epoch drop factor 10
epoch < 80: 0.0001

Learning rate epoch < 100: 0.00001
0.000001 otherwise

α parameter 1
neg_pos_ratio 3

Batch size 32
Training epochs 100
Steps per epoch 500

Aspect ratio 1–2

Figure 7. A flow-chart of the preprocessing steps: (a) acquiring the region of interest (ROI) of the
WCE polyp image (b); sample of image from the WCE dataset with geometric transformation.

We trained the proposed model from scratch to not rely on any model pretrained
on classification tasks to initialize the network, as commonly known visual purposes
of classification and detection are distinct. For training DC-SSDNet, we used adaptive
moment estimation (Adam) as the optimizer (beta_1 of 0.9, beta_2 of 0.999, and an epsilon
of 1 × 10−8). The learning rate was initially set to 0.0001, and the learning rate decay policy
differed slightly from the original SSD with a drop of 0.5 and an epoch drop of 10, which
allowed the network to converge by controlling its learning rate. If the epoch number was
less than 80, the learning rate was 0.0001, 0.00001 if the epoch number was less than 100,
and 0.000001 otherwise. Recent state-of-the-art approaches targeting polyp detection were
investigated in this study to compare them with the proposed model [10]. We used a loss
function consistent with that used in the traditional SSD [12]. The cross-validation method
adjusted the α parameter to one and the neg_pos_ratio to three. More information about
SSD_Loss can be found in [16]. The proposal evaluated the detection performance with the
most used metrics in the field, the mean average precision (mAP), the number of frames
per second (FPS), and other indicators.
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4.3. Evaluation Indexes

This study evaluated polyp detection performance using the mean average precision
(mAP) and frames per second (FPS), which are well-known in target object detection. The
mAP represents the average of all object categories’ average precision (AP), expressed as:

mAP =
∑S

s=1 AveP(s)
S

(1)

where S denotes the number of queries in the set and s denotes the average precision query.
The precision indicator represents a measure of exactness and the recall a measure of

completeness. The expected overlap between the ground-truth bounding box annotated
by the experts and the predicted one produced by the network expresses the intersection
over union (IoU). The following equations formulate the precision, recall, and F1-score
indicators as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(2)

F − measure/F1 − score =
(2 × Recall × Precision)

Recall + Precision
(3)

where TP represents the true positives with an IoU greater than 0.5, FP represents the
false positives, and FN represents the false negatives. The frames per second (FPS) metric
measures the detection speed and denotes the number of frames sent per second. A detailed
evaluation metric of the model’s performance is provided in the work of [10].

4.4. Results and Discussion
4.4.1. Ablation Studies

On the WCE, CVC-ClinicDB, and ETIS-Larib colonoscopy datasets, we performed an
ablation study to investigate the impact of each component of the DC-SSDNet detector on
performance. Table 3 shows different model settings using the compact DenseNet-46 as a
backbone, where the training was conducted on the WCE images, the CVC-ClinicDB+ETIS-
Larib joint training sets, and tested on the WCE, CVC-ClinicDB, and ETIS-Larib test sets.
Using three values of the growth rate K, the performance was 81.96% when K = 16 and
improved to 85.41% mAP at K = 32. The use of a small growth rate produced better
results for K = 32, and a larger K = 48 could also provide a better model performance
according to the DF-SSD as it showed a smaller mean AP of 84.54% than K = 32. It is
highly recommended not to set a higher growth rate to reduce network complexity and
computing costs. The growth rate of DC-SSDNet was set to 32. Table 3 demonstrates that
the stem block improved the model’s mAP performance by 7.78% (89.74% vs. 81.96%) at
K = 16, 8.55% (93.96% vs. 85.41%) at K = 32, and 7.08% (91.62% vs. 84.54%) at K = 48 on
the WCE dataset. The results proved the relative importance of stem blocks in preserving
information in the original input image and contributing to small polyp detection. Then,
we evaluated transition pooling techniques (average pooling and max pooling) and report
their influence on the proposed system’s performance mAP (%). We can see from Table 3
that an average pooling on the WCE test set obtained a higher mAP of 93.96% compared
with max pooling (90.56% mAP) using the stem block at K = 32. Consistent with the
traditional DenseNet, we used the average pooling layer to decrease the resolution of the
feature maps. As reported in Table 3 (row 5, row 6, and row 8), without batch normalization
for each conv layer, the proposed approach obtained better results (mAP of 85.41%, 90.56%,
and 93.96%) at K = 32, whereas the mAP was 83.54% and 84.97% when utilizing batch
normalization on the WCE training and test sets at K = 32 and K = 48, respectively. The
ETIS-Larib and CVC-ClinicDB test sets in Table 3 (rows 11–20 and 21–30) complement the
WCE image results and illustrate the efficacy of the stem block and growth rate parameters
in emphasizing more salient aspects for small polyp identification.

215



Diagnostics 2023, 13, 733

Table 3. Results of an ablation study on the WCE and colonoscopy datasets. BN denotes the addition
of a batch normalization layer to each convolution layer. K refers to the growth rate. The stem block
represents the front layers of the DenseNet-46 backbone. The transition pool is either an average
pooling layer or a max pooling layer. The mAP represents the mean average precision on the WCE,
Etis-Larib, and CVC-ClinicDB test sets.

Training Data Test Data Stem Block K BN Transition Pool mAP (%)

× 16 × Average 81.96
× 32 � Max 83.54
� 48 � Average 91.62
× 48 � Max 84.97

WCE WCE × 32 × Average 85.41
� 32 × Max 90.56
� 16 × Max 88.16
� 32 × Average 93.96
� 16 × Average 89.74
× 48 × Average 84.54

× 16 × Average 80.68
× 32 Max 81.32
� 48 � Average 89.22
× 48 � Max 83.14

CVC-ClinicDB × 32 × Average 83.75
joint CVC-CLinicDB � 32 × Max 88.09

Etis-Larib � 16 × Max 87.09
� 32 × Average 92.24
� 16 × Average 89.36
× 48 × Average 84.77

× 16 × Average 79.98
× 32 � Max 81
� 48 � Average 89.46
× 48 � Max 83.98

CVC-ClinicDB × 32 × Average 84.52
joint Etis-Larib � 32 × Max 87.55

Etis-Larib � 16 × Max 87.14
� 32 × Average 90.86
� 16 × Average 89.34
× 48 × Average 82.72

4.4.2. SSD Results on WCE and Colonoscopy Datasets

We trained the detector-based SSDs on the WCE, CVC-ClinicDB, and ETIS-Larib
combined training set and tested on each dataset separately as depicted from Tables 4 and 5.
SSD300 with VGG16 (as a backbone) showed that the WCE, CVC-ClinicDB, and ETIS-Larib
test sets had mAPs of 77.2%, 74.5%, and 74.22%, respectively. Tables 4 and 5 (rows 5–6)
prove that the FSSD300 and FSSD500 models showed gains of 12.58% and 9.25%, 12.76% and
9.16%, and 12.18% and 11.47% in terms of mAP compared to the original SSD. DenseNet-
S-32-1 replaces VGGNet as the backbone network on the DF-SSD300. Thus, for the WCE,
CVC-CLinicDB, and Etis-Larib data sets, it outperformed the FSSD300 model by 1.46%,
2.66%, and 0.54% for the mAP with 91.24% vs. 89.78%, 89.92% vs. 87.26%, and 86.84%
vs. 86.3%, respectively. To incorporate contextual and semantic information, the L_SSD
model in Tables 4 and 5 (row 8) replaced the VGG16 network with the ResNet-101 backbone
showing an improvement in terms of mAP compared to the FSSD model for all employed
datasets. The DF-SSD300 algorithm outperformed the L_SSD algorithm in terms of mAP
with a gain of 1.26 points (91.24 % vs. 89.98%), 1.74 points (89.92 % vs. 88.18%) on the
WCE and CVC-ClinicDB test sets, respectively, due to the power of DenseNet in feature
reuse and extraction abilities. However, it showed a slight drop in mAP on the Etis-Larib
test set. The proposed DC-SSDNet model surpassed the DF-SSD300, MP-FSSD, and Hyb-
SSDNet networks by 2.72 points (93.96% vs. 91.24%), 0.56 points (93.96% vs. 93.4%), and
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0.67 points (93.96% vs. 93.29%) on the WCE dataset. The DC-SSDNet framework achieved a
32.5 FPS real-time detection, compared to 11.6 FPS, 17.4 FPS, and 40 FPS for the DF-SSD300,
DSOD300, and L-SSD, respectively.

Table 4. SSD comparison with previously reported approaches based on the WCE test set. Pretrain
denotes a pretrained backbone to initialize the model, as opposed to starting from scratch. The
Google Colab pro+ GPU was used to assess the speed (FPS) and performance (mAP).

Training Data Methods Backbone Input Size Pretrain FPS mAP@0.5 (%)

WCE

SSD300 VGG16 300 × 300 × 3 � 46 77.2
SSD300 ResNet-101 300 × 300 × 3 � 47.3 81.65
SSD500 VGG16 300 × 300 × 3 � 19 79.45
SSD500 ResNet-101 300 × 300 × 3 � 20 84.95

FSSD300 VGG16 300 × 300 × 3 � 65.9 89.78
FSSD500 VGG16 500 × 500 × 3 � 69.6 88.71

DF-SSD300 [16] DenseNet-S-32-1 300 × 300 × 3 × 11.6 91.24
L_SSD [39] ResNet-101 224 × 224 × 3 � 40 89.98

MP-FSSD [10] VGG16 300 × 300 × 3 � 62.57 93.4
Hyb-SSDNet [35] Inception v4 299 × 299 × 3 � 44.5 93.29

DSOD300 [40] DS/64-192-48-1 300 × 300 × 3 × 17.4 91.70
DC-SSDNet (ours) DenseNet-46 299 × 299 × 3 × 32.5 93.96

Table 5. SSD comparison with previously reported approaches based on CVC-ClinicDB and Etis-Larib
test sets. Pretrain denotes a pretrained backbone to initialize the model, as opposed to starting from
scratch. The Google Colab pro+ GPU was used to assess the speed (FPS) and performance (mAP).

Training Data Methods Backbone Input Size Pretrain FPS mAP@0.5 (%)

CVC-ClinicDB ETIS-Larib

SSD300 VGG16 300 × 300 × 3 � 46 74.5 74.12
SSD300 ResNet-101 300 × 300 × 3 � 47.3 78.85 75.73

CVC-ClinicDB SSD500 VGG16 500 × 500 × 3 � 19 78.38 75.45
joint SSD500 ResNet-101 500 × 500 × 3 � 20 82.74 80.14

ETIS-Larib FSSD300 VGG16 300 × 300 × 3 � 65.9 87.26 86.3
FSSD500 VGG16 500 × 500 × 3 � 69.6 87.54 86.92

DF-SSD300 [16] DenseNet-S-32-1 300 × 300 × 3 × 11.6 89.92 86.84
L_SSD [39] ResNet-101 224 × 224 × 3 � 40 88.18 87.23

MP-FSSD [10] VGG16 300 × 300 × 3 � 62.57 89.82 90
Hyb-SSDNet [35] Inception v4 299 × 299 × 3 � 44.5 91.93 91.10

DSOD300 [40] DS/64-192-48-1 300 × 300 × 3 × 17.4 90 89.3
DC-SSDNet (ours) DenseNet-46 299 × 299 × 3 × 32.5 92.24 90.86

4.4.3. Comparison with Existing Detection Methods

We compared the performance of the proposed DC-SSDNet approach to the most
prominent networks in the literature-based SSDs models, YOLOv3 and Faster R-CNN, as
shown in Table 6. For further comparing DC-SSDNet with previous studies’ target polyp
detection, we trained the model on the joint ETIS-Larib and CVC-ClinicDB training sets
and evaluated it on the publicly accessible ETIS-Larib dataset. The DC-SSDNet model
achieved promising results or similar metrics in the worst cases on the three employed test
sets compared to other state-of-art approaches. One of the main reasons for the difference
in results was that the nature, texture, and lighting conditions of the WCE and colonoscopy
images change inside the GI tract. Following a series of improvements to the initial SSD
model, DC-SSDNet achieved an mAP of 93.96% utilizing only the WCE for both training
and test sets, and outperforming other methods on the CVC-ClinicDB and Etis-Larib test
sets by 92.24% and 90.86%, respectively. Due to the fact the WCE images were gathered from
a single patient’s VCE test, and CVC-ClinicDB images were acquired from 25 colonoscopy
recordings to choose at least 29 sequences with at least one polyp area and a series of
frames for each of them, even if the WCE was accurately divided into training, validation,
and testing sets, there would be some overlap. As a result, the network might have been
familiar with certain hard cases. Moreover, it showed superior performance compared to
the YOLOv3 model [21] and close to that of Hyb-SSDNet [35]. DC-SSDNet yielded good
results in terms of mAP while maintaining the computational cost and a small speed drop.
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Table 6. Results of the WCE or the colonoscopy test with an IoU greater than 0.5 and a batch size of 1.

Training
Dataset

Methods
Testing
Dataset

Backbone
Network

Pretrain Input Size Prec (%) Recall (%) F1 Score (%)

WCE DC-SSDNet
(ours) WCE DenseNet-46 × 299 × 299 93.96% 90.82% 90.7%

CVC-ClinicDB
+ ETIS-Larib

DC-SSDNet
(ours) CVC-ClinicDB DenseNet-46 × 299 × 299 92.24% 91% 88.40%

CVC-ClinicDB
+ ETIS-Larib

DC-SSDNet
(ours) ETIS-Larib DenseNet-46 × 299 × 299 90.86% 90.4% 89.12%

CVC-ClinicDB
+ ETIS-Larib

Shin et al.,
2018 [2] ETIS-Larib Inception

ResNet � 768 × 576 92.2% 69.7% 79.4%

ETIS-
Larib+CVC-

ClinicDB

Souaidi et al.,
2022 [35] ETIS-Larib Inception v4 � 299 × 299 91.10% 87% 89%

SUN+
PICCOLO+

CVC-ClinicDB

Ishak et al.,
2021 [21] ETIS-Larib YOLOv3 � 448 × 448 90.61% 91.04% 90.82%

WCE +CVC-
ClinicDB

Souaidi et al.,
2022 [10] ETIS-Larib VGG16 � 300 × 300 90.02% × ×

CVC-ClinicDB Liu et al.,
2021 [41] ETIS-Larib ResNet-101 � 384 × 288 77.80% 87.50% 82.40%

GIANA 2017 Wang et al.,
2019 [42] ETIS-Larib AFP-

Net(VGG16) � 1225 × 996 88.89% 80.7% 84.63%

CVC-ClinicDB Qadir et al.,
2021 [43] ETIS-Larib ResNet34 � 512 × 512 86.54% 86.12% 86.33%

CVC-ClinicDB
Pacal and
Karaboga,
2021 [44]

ETIS-Larib CSPDarkNet53 � 384 × 288 91.62% 82.55% 86.85%

CVC-ClinicDB Wang et al.,
2019 [42] ETIS-Larib Faster R-CNN

(VGG16) × 224 × 224 88.89% 80.77% 84.63%

CVC-
VideoClinicDB

Krenzer et al.,
2019 [45]

CVC-
VideoClinicDB YOLOv5 × 574 × 500 73.21% × 79.55%

4.4.4. Visualization

The main objective of this study was to show the impact of the condensed model
in highlighting small polyp regions for the detection and localization tasks on the WCE,
Etis-Larib, and CVC-ClinicDB test sets. Polyp detection aims at selecting polyp areas and ig-
noring normal parts, feces, artifacts, and water jet sprays to clean the colon. Some examples
of polyp detection of the SSD model and DC-SSDNet network on the employed datasets are
depicted in Figures 8–10. Compared to DC-SSDNet (Figures 8b,f, 9b,d, and 10b,d,h),
Figures 8a,e, 9a,c, and 10a,c,g show false negative results in which the conventional
SSD failed to detect small and flat polyp regions. The polyp region appeared similar
to the surrounding normal mucosa as well the existence of food, air bubbles, and other
debris may have hindered its localization process. Polyp areas showed variations re-
lated to color, texture, size, and shape and required more compact models to limit the
number of false negatives and avoid missed detection. DC-SSDNet performed feature
reuse by directly connecting shallower and deeper layers to distinguish polyp edge areas
from normal ones. Figure 9g shows a false positive case of the SSD model on the ETIS-
Larib test set with an error in detecting the polyp region while it was not there, whereas
Figures 8b,f, 9b,d,g, and 10b,d,h show the correct identifications of the DC-SSDNet net-
work. Besides small polyp detection, the proposed DC-SSDNet network achieved promis-
ing performance even for detecting large polyps on the WCE, CVC-ClinicDB, and ETIS-
Larib test sets; see Figure 8b. With the presence of multiple polyps in one frame and a low
contrast between the polyps and the background regions, both SSD and DC-SSDNet missed
localizing small polyp regions, as illustrated in Figures 9c,d and 10c,d. In these cases, the
problem was most likely one of contrast since the polyp was oversaturated. As a result, the
F1 score decreased significantly. Although DC-SSDNet produced promising mAP results, it
failed to detect some small polyp instances that seemed similar to portions of the colon due
to lighting and contrast, resulting in a misleading bounding box and lowering the mAP
and F1 scores. Even endoscopists may miss some small parts that cannot be detected by the
naked eye or that are hidden from view behind a fold. However, the proposed DC-SSDNet
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model proved its efficiency in localizing small polyp regions at a fast detection speed while
ensuring precision.

Figure 8. On the WCE test set, visualization results comparing SSD300 (a,c,e,g) and the proposed
DC-SSDNet network (b,d,f,h). True bounding boxes with IoU of 0.5 or greater are drawn in green,
whereas predicted bounding boxes are in red.

Figure 9. On the Etis-Larib test set, visualization results comparing SSD300 (a,c,e,g) and the proposed
DC-SSDNet network (b,d,f,h). True bounding boxes with IoU of 0.5 or greater are drawn in green,
whereas predicted bounding boxes are in red.
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Figure 10. On the CVC-ClinicDB test set, visualization results comparing SSD300 (a,c,e,g) and the
proposed DC-SSDNet network (b,d,f,h). True bounding boxes with IoU of 0.5 or greater are drawn in
green, whereas predicted bounding boxes are in red.

5. Conclusions

This work suggested an improved SSD detector based on a redesigned DenseNet
(DC-SSDNet) emphasizing polyp detection in the WCE, Etis-Larib, and CVC-ClinicDB
datasets. Many researchers in the field use their own datasets due to medical imaging
ethics and the lack of publicly available and annotated WCE polyp datasets. Thus, their
results may suffer from subjectivity. The DC-SSDNet network aimed to exploit the potential
of feature reuse as opposed to relearning features in later layers. The proposed approach
used stacked dense and transition blocks instead of simple convolution layers with a
capacity of the SSD network to be more compact while going deeper, yielding condensed
models that were easy to train and highly parameter-efficient. The compact DenseNet-46
compressed unnecessary convolution layers of each dense block to reduce the amount
of feature redundancy, resulting in fewer overall parameters and faster training times.
The small polyp areas’ visual appearance was modeled by directly connecting layers
throughout the network and generating novel pyramidal feature maps. While training data
from scratch, the DC-SSDNet detector achieved comparable, if not superior, performance
in mAP compared to other state-of-the-art pretrained models with real-time processing
speed on the WCE and public datasets (CVC-ClinicDB and Etis-Larib). Artifacts and other
factors may degrade performance and negatively affect the detection process. We will
conduct further studies in the future around this shortcoming while maintaining the smaller
running time. Rather than proposing polyp identification tasks on WCE and colonoscopy
frames, future studies will investigate hybrid architectures to present a unique detection
method for video colonoscopy. Furthermore, it would be interesting to use a hybrid 2D/3D
architecture and assess its performance by employing other promising backbones.
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Abbreviations

GI tract Gastrointestinal tract
WCE Wireless capsule endoscopy
MICCAI Medical Image Computing and Computer Assisted Intervention
YOLO You only look once
SSD Single-shot multibox detector
R-CNN Region-based convolutional neural network
R-FCN Region-based fully convolutional network
DenseNet Dense network
DCNN Deep convolutional neural network
pool pooling
ResNet Residual network
FPN Feature pyramid network
DSSD Deconvolutional single-shot detector
ROI Region of interest
Conv Convolutional layer
DC-SSDNet Densely connected single-shot multibox detector network
MaxPool Max pooling
Pad Padding
AveragePool Average pooling
L2 Regul L2 regularization
VCE Video capsule endoscopy
Adam Adaptive moment
neg-pos-ratio negative positive ratio
mAP Mean average precision
FPS Frames per second
TP True positive
FP False positive
IoU Intersection over union
FN False negative
BN Batch normalization
FSSD Fusion single-shot multibox detector
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Abstract: Deep learning object-detection models are being successfully applied to develop computer-
aided diagnosis systems for aiding polyp detection during colonoscopies. Here, we evidence the
need to include negative samples for both (i) reducing false positives during the polyp-finding phase,
by including images with artifacts that may confuse the detection models (e.g., medical instruments,
water jets, feces, blood, excessive proximity of the camera to the colon wall, blurred images, etc.) that
are usually not included in model development datasets, and (ii) correctly estimating a more realistic
performance of the models. By retraining our previously developed YOLOv3-based detection model
with a dataset that includes 15% of additional not-polyp images with a variety of artifacts, we were
able to generally improve its F1 performance in our internal test datasets (from an average F1 of
0.869 to 0.893), which now include such type of images, as well as in four public datasets that include
not-polyp images (from an average F1 of 0.695 to 0.722).

Keywords: colorectal cancer; deep learning; convolutional neural network (CNN); polyp detection;
polyp localization

1. Introduction

Computer-aided diagnosis (CAD) systems for polyp detection are now reality, thanks
to the advances in and the application of deep learning (DL). So far, many randomized
control trials (RCT) have already been performed [1–6], some of them associated with
commercial systems [7], and many more are being developed. The growing number of
reviews on this topic demonstrates that polyp detection is much more advanced than
polyp characterization [5,7–9], and a recent meta-analysis of six RCTs showed that there
is an increase in both adenoma and polyp detection rates with the utilization of artificial
intelligence (AI)-assisted colonoscopy [5].

In the context of the PolyDeep project (https://www.polydeep.org, accessed on
11 January 2023), we developed and reported, in 2021, a real-time polyp detection model
based on a YOLOv3 pre-trained with PASCAL VOC datasets [10]. The base model was
fine-tuned using a private dataset containing 941 different polyps and 28,576 images anno-
tated by expert endoscopists [11]. The performance of this model in a bounding box-based
evaluation using still images (a test partition of our private dataset) was an F1 score of 0.88
(recall = 0.87, precision = 0.89), reaching a state-of-the-art level.

In follow-up work [12], we reported, in 2022, the results of testing this model on ten
public colonoscopy image datasets, which, to the best of our knowledge, was the biggest
systematic evaluation of a polyp detection model without retraining. We also analyzed
these results in the context of the results from another 20 state-of-the-art publications
using the same public datasets. We observed that our model had an average F1 score
decay of 13.65% when tested on the ten public datasets. This number may seem high,
but it must be taken into account the high degree of variability in the public datasets, as
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some of them contain not-polyp images and multiple-polyp images, resulting in a slightly
different scenario compared to the type of images used to develop our base model (only
polyp-containing images).

Since then, we have also released an updated version of our dataset and other com-
plementary datasets through the PIBAdb Colorectal Polyp Image Cohort (https://www.
iisgaliciasur.es/home/biobanco/cohorte-pibadb, accessed on 11 January 2023), which is
publicly available at the biobank of the Galicia Sur Health Research Institute (IISGS). This
image cohort was created with the aim of making public the data collected during the
PolyDeep project, including, mainly, images with polyps located with bounding boxes an-
notated by expert endoscopists, but also other colon images without polyps and the videos
of colonoscopies from which the images were extracted. Notably, one of the complementary
datasets published includes ~14,000 not-polyp images (the “PIBAdb Not Polyp” image
gallery). These images without polyps have been extracted automatically (one image per
second) from annotated videos and they may contain artifacts (e.g., instrumental, on-screen
information, etc.), be blurred or very close to mucosa. This follows the general trend of the
latest public datasets available, which are larger and include images without polyps.

In light of the findings of our previous works, our efforts to keep improving our model
have been data-centric. In this regard, some studies have already used not-polyp images
during training to improve the performance of the model [13], and, therefore, in this work
we assess the usefulness of the recent not-polyp images included in the PIBAdb database
to improve the performance of our previous model. Our belief is that training using these
images will allow us to improve the predictive positive value of the model (precision),
while maintaining its sensitivity levels (recall).

Rationale (Hypothesis)

The rationale behind the inclusion of no-object images, or negative samples, in an
object detection network is guided by the fact that, when such models are implemented in
a real setting, the model could face out-of-distribution samples, that is, image types that
have content that was not used during the model development.

A polyp detection network trained only with polyp-containing images (at least one
polyp per image) uses the outside-boxes image content as the “negative” samples, learning
not to predict bounding boxes there. This may be sufficient if all the possible negative
content is there, but this is not the case in endoscopies, especially during the polyp-finding
phase. The normal mucosa content behind a polyp is not the only negative content to
learn from. There are many other scenarios (out-of-distribution) that will arise during the
exploration (e.g., medical instruments, water jets, feces, blood, excessive proximity of the
camera to the colon wall, blurred images, etc.) that could lead the network to identify parts
of the image as something similar to a polyp, or, at least, more similar to a polyp than to
normal mucosa, producing many false positives.

With this study, we aim at exploiting this hypothesis by retraining our model with
such out-of-distribution images in order to improve its positive predictive value, while
maintaining its sensitivity. Moreover, we will put special focus on testing the model with
this kind of image at different proportions, since test datasets that do not include them are
not able to capture the real performance of detection models in the real setting. In summary,
we want to move out-of-distribution samples to in-distribution samples.

2. Materials and Methods

2.1. Our Base Model for Polyp Detection

In 2021, we reported the results of a real-time colorectal polyp detection model based
on YOLOv3 [11]. This model was trained and evaluated with a private dataset built using
28,576 images with located polyps from the PIBAdb cohort, both with white light (WL) and
narrow-band imaging (NBI) light. This dataset includes a subset of images automatically
extracted at a rate of one image per second (16,691) and a subset of images manually
selected by expert endoscopists (11,885).
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For the model development, the private dataset was divided into three partitions:
(i) a training partition (49%; 13,873 images) for model training during the development
phase, (ii) a validation partition (21%; 6045 images) for model evaluation and selecting the
best model during the development phase, and (iii) a test partition (30%; 8658 images) for
best model evaluation after the development phase. The resulting model, pre-trained with
the PASCAL VOC 2007 and 2012 challenges and fine-tuned with the dataset comprising
both the training and validation partitions, achieved an F1 score of 0.88 (recall = 0.87,
precision = 0.89) and an average precision (AP) of 0.87 evaluated on the test partition. As
noted in the introduction, this model was later evaluated on ten public datasets, without
retraining, in order to assess its generalization capabilities [12], showing an average F1
decay of 13.65%.

2.2. Public Datasets

Table 1 shows the most relevant details of the ten public colonoscopy image datasets
selected in our previous study [12], which are also the subject of this study. Regarding
polyp location in the dataset images, four dataset provide it as bounding boxes (KUMC [14],
SUN [13], LDPolypVideo [15], and Kvasir-SEG [16]), while seven datasets use binary masks
(CVC-ClinicDB [17], CVC-ColonDB [18,19], CVC-PolypHD [18,19], ETIS-Larib [20], CVC-
ClinicVideoDB [21,22], PICCOLO [23], and Kvasir-SEG [16]). As the polyp detection
model evaluated in this work uses bounding boxes, it was necessary to transform the
binary masks into bounding boxes in six datasets (ClinicDB [17], CVC-ColonDB [18,19],
CVC-PolypHD [18,19], ETIS-Larib [20], CVC-ClinicVideoDB [21,22], and PICCOLO [23].
The process followed to perform these transformations was explained in our previous
study [12], and the conversion scripts are available at https://github.com/sing-group/
public-datasets-to-voc (accessed on 11 January 2023).

Table 1. Summary of the ten public colonoscopy image datasets for polyp location including: the
name and publication/s related with the dataset (Dataset), the year when the dataset was published
(Year), the image resolution (Resolution), the number of images in the dataset (No. of images), the
method used to provide image location (Ground Truth), and whether the dataset includes images
without polyps and the percentage of images with polyps in case they are included (Without polyps?).

Dataset Year Resolution No. of Images Ground Truth Without Polyps?

CVC-ColonDB [18,19] 2012 574 × 500 300 Mask No
ETIS-Larib [20] 2014 1225 × 966 196 Mask No
CVC-ClinicDB [17] 2015 384 × 288 612 Mask No
CVC-ClinicVideoDB [21,22] 2017 384 × 288 11,954 Mask Yes (16.14%)
CVC-PolypHD [18,19] 2018 1920 × 1080 56 Mask No

Kvasir-SEG [16] 2020 332 × 487 to 1920 × 1072 1000 Bounding box
and mask No

PICCOLO [23] 2020 854 × 480,
1920 × 1080 3433 Mask Yes (1.25%)

KUMC [14] 2021 Various resolutions 37,899 Bounding box Yes (5.08%)
SUN [13] 2021 1240 × 1080 49,136 Bounding box No *
LDPolypVideo [15] 2021 560 × 480 40,186 Bounding box Yes (15.7%)

* The SUN dataset contains 109,554 frames without polyps that were not downloaded for our experiments.

Taking into account the characteristics of the different datasets, a high degree of
variability can be observed with respect to the number of images included, and whether
they contain not-polyp images or not [8,24]. Nevertheless, the trend in recent years is to
create increasingly larger datasets with the presence of images without polyps.

2.3. Experimental Setup

The experiments consist of training new models using the original polyp image dataset
of our base model and progressively injecting it with different percentages of not-polyp
images. The original dataset partitions (i.e., training, validation, and test) were augmented
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with not-polyp images at rates around 2%, 5%, 10%, and 15% of the initial number of
images in the partition.

Starting from the images of each original partition, where each polyp only belongs to
one single partition, we progressively added each percentage of images without polyps.
The image injection was performed incrementally for each percentage, ensuring that the
same not-polyp image was in the same partition type (training, validation, or test) and
that the images found in the lower percentage datasets were part of the higher percentage
datasets, creating supersets for each partition and dataset. For example, all the images
in the 2% training are also included in the 5% dataset, along with an additional 3% of
new not-polyp images. The number of resulting images for each partition is shown in the
following, Figure 1.

Figure 1. Not-polyp datasets created from the original polyp images dataset [11].

Figure 2 shows diverse examples of not-polyp images that have been used to train the
new networks. As can be seen, these images may contain medical instruments, water jets,
feces, blood, excessive proximity of the camera to the colon wall, blurred images, etc.

As in our previous works [11,12], the model development and evaluation was done
using Compi [25,26] pipelines, which can be found at the GitHub repository: https://github.
com/sing-group/polydeep-object-detection (accessed on 11 January 2023). Specifically,
the model training was performed using the train.xml pipeline, while the model evaluation
was performed using the text.xml pipeline of this repository.

Once retrained (see details in “Model development and selection”), we evaluated the
performance of each new model in an (i) intra-dataset evaluation, using the test partition
of the base model, as well as the not-polyp augmented test partitions, and in an (ii) inter-
dataset evaluation, using the ten public colonoscopy imaging datasets selected in the
previous study.

2.4. Evaluation Metrics

Since the main goal of a colorectal polyp detection model is to identify all the polyps
shown on camera during a colonoscopy, we have selected recall (or sensitivity) as one of the
evaluation measures. In addition, as the ability to not show detections in locations where
there is no polyp is also important, because they can disturb or distract an endoscopist, we
have also selected precision (or positive predictive value) as a second evaluation measure.
Finally, since it acts as a summary of the two evaluation measures mentioned above, we
have chosen F1 as the main evaluation measure.

Given that the output of the detection model is a bounding box, in this work we define:

• True Positive (TP): as a predicted bounding box that is over a true bounding box.
• False Positive (FP): as a predicted bounding box that is not over a true bounding box.
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• False Negative (FN): as a true bounding box where there is no predicted bounding
box over it.

Taking into account these definitions, the selected performance metrics (i.e., recall,
precision, and F1) are defined as follows:

recall(or sensitivity) =
TP

TP + FN

precision(or positive predictive value) =
TP

TP + FP

F1 = 2 × precision·recall
precision + recall

=
2 × TP

2 × TP + FP + FN

Figure 2. Random sample of the not-polyp images included in the injected datasets.

3. Results and Discussion

The experiments are focused on obtaining the performance metrics of each model in a
test partition with similar images with which it was trained (intra-dataset evaluation) and,
also, evaluating the models with a test partition where the images belong to public datasets
(inter-dataset evaluation). The results are completed with a frame analysis to see how false
positive identifications are removed.
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3.1. Model Development and Selection

Following the same strategy as in our previous works [11,12], each model was retrained
again, starting from the initial pre-trained YOLOv3 and using the training partition for
50 epochs. The same training parameters were used for all the models. The best model is
selected by the maximum AP achieved in the validation partition during those 50 epochs.
Once the best model is selected, it is configured with the confidence score threshold that
maximizes the F1 score in the validation partition. Table 2 shows the metrics of the selected
models with the best AP achieved in the validation partition images during the training
process. AP is equivalent to the Area Under the Precision-Recall Curve (AUPRC), being
the average precision at various confidence score thresholds.

Table 2. Performance metrics in each validation partition for the selected models.

Confidence Score Threshold Recall Precision F1 AP

Nogueira et al. [11] 0.19 0.905 0.912 0.909 0.920
Model injection 2% 0.24 0.897 0.917 0.907 0.920
Model injection 5% 0.18 0.911 0.915 0.913 0.923

Model injection 10% 0.22 0.884 0.918 0.901 0.918
Model injection 15% 0.15 0.903 0.920 0.912 0.923

As a result, we have the original model (“Nogueira et al.”), plus four additional models
(“Model injection p”, where p is the percentage of injection of not-polyp images into the
dataset partitions used to develop the model).

3.2. Intra-Dataset Evaluation

First, we evaluated the models trained after the injection of not-polyp images using
the test partition of the base model (Nogueira et al., i.e., without not-polyp images). The
results are shown in Table 3.

Table 3. Performance metrics of each model on the original test partition of Nogueira et al., which
does not contain not-polyp images.

Training Dataset Recall Precision F1

Nogueira et al. [11] 0.872 0.890 0.881
Model injection 2% 0.867 0.894 0.880
Model injection 5% 0.875 0.902 0.888

Model injection 10% 0.850 0.904 0.876
Model injection 15% 0.880 0.910 0.895

Regarding recall, all the models show a slight fluctuation, ranging from 0.85 in the
model trained with the addition of 10% not-polyp images, to 0.88 in the model trained with
the addition of 15% not-polyp images. On the other hand, the precision increases as the
models are trained with increasing numbers of not-polyp images, and thus achieves the
highest value in the model trained with the addition of 15% of not-polyp images (0.91),
which also obtains the best F1 score (0.895). In comparison with the base model, the models
trained with the addition of 5% and 15% not-polyp images show a slightly better F1 score,
whereas the 2% and 10% models a slightly lower one. In summary, the difference is small,
and no model shows a clear improvement in the original test partition.

However, as we are looking for a test scenario that better reflects the out-of-distribution
samples that the models will face in a real setting, mimicked by including not-polyp images
in the test partition, we also performed the evaluation with the test partitions that include
different proportions of not-polyp images (also from 2% up to 15%). Since the true polyp
images remain the same in all the new not-polyp-containing test partitions, the recall of
any given model will remain exactly the same as shown in Table 3, but the precision, and
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thus the F1, are expected to be affected. Concretely, Table 4 shows the different precision
metrics obtained by testing all the models with the different test partitions.

Table 4. Precision metrics obtained with different models against different not-polyp injections into
the original test partition.

Model
Test Partitions (Percentage of Not-Polyp Augmentation)

2% 5% 10% 15%

Nogueira et al. [11] 0.882 0.871 0.852 0.836
Model injection 2% 0.890 0.886 0.879 0.871
Model injection 5% 0.899 0.895 0.888 0.881

Model injection 10% 0.902 0.901 0.897 0.895
Model injection 15% 0.909 0.907 0.904 0.901

As can be seen, precision is positively correlated with the number of not-polyp images
used for training the different models, which evidences the benefit of training with not-
polyp images, and it is inversely correlated with the number of not-polyp images in the
test partition, which is a statistically expected effect.

Putting it all together, Figure 3 shows the recall and precision comparing two distant
test partitions: the original one, which does not contain any not-polyp images, and the
largest not-polyp containing test partition, which contains the addition of 15% of not-
polyp images.

Figure 3. Recall of the five trained models (blue) and their precision in both the original test partition
(pink) and the same with the addition of 15% of not-polyp images (dark red) [11].

It can be observed from Figure 3 that the precision decay of the original model is the
biggest one (red bars in the leftmost column of Figure 3). However, as we create models
trained with an increasing number of not-polyp images, this precision recovers (dark red
bars’ progression in Figure 3).

In order to compare all the models, Figure 4 shows the F1 score of all the models in
both test scenarios (without not-polyp images and with the addition of 15% of not-polyp
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images). As it can be seen, the test partition that includes the addition of 15% of not-polyp
images (dark bars in Figure 4) is more challenging, and each model attains a lower F1 score.
Moreover, the addition of not-polyp images for training does not show a consistent benefit
in the original test partition (light bars in Figure 4), whereas it does in the test partition that
adds 15% of not-polyp images (dark bars in Figure 4). We draw attention to the lowest
value obtained with the original model in the not-polyp test partition (from the original
0.88 to 0.85). Finally, in terms of the F1 score, the model trained with the highest number of
not-polyp images showed the best F1 score in both test partitions (0.895 and 0.891).

Figure 4. F1 of the five trained models in both the original test partition (light green) and the same
with the addition of 15% of not-polyp images (dark green) [11].

3.3. Inter-Dataset Evaluation

Table 5 shows the performance of our five models, i.e., the baseline model presented
in Nogueira et al. [11], plus the four new models trained with different percentages of
not-polyp image injections, on the same public datasets analyzed in our previous work [12].
Globally, the average F1 score remains almost the same, with an F1 around 0.75 (see
global averages in Table 5). As a result, we could discard an unexpected worsening in the
public datasets.

However, when the testing results are divided into functions of whether the testing
dataset contains not-polyp images or not, the results differ. In the case of the results
obtained in the datasets that contain not-polyp images, the models trained with not-polyp
images attain, on average, greater than or equal to the F1 scores of the original model,
where the model with a 15% injection of not-polyp images is able to increase the F1 in
the four datasets, raising the original average of 0.695 to 0.722. The behavior of the same
models in the datasets that only contain polyp images is more heterogeneous, but a general
decrease in the average F1 is observed, ranging from 0.749 to 0.799 in comparison with the
original average of 0.800.

In order to visualize the performance changes among our four new models in each
public dataset, Figure 5 compares the F1 performances obtained by our baseline model
(X axis) and the F1 performances obtained by the four new models trained with not-polyp
images (Y axis). The public datasets that contain not-polyp images are marked in light blue.
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Table 5. F1 score of the five trained models in the 10 public datasets. Averages are provided for all
datasets, datasets with both polyp and not-polyp images (4 datasets), and for datasets with only
polyp images (6 datasets).

Training Dataset

Nogueira et al. [11]
Not-Polyp Injection

2% 5% 10% 15%

Datasets with both polyp and not-polyp images

LDPolypVideo 0.522 0.563 0.516 0.491 0.564
ClinicVideoDB 0.774 0.803 0.813 0.809 0.800
KUMC 0.818 0.811 0.819 0.762 0.831
PICCOLO 0.667 0.601 0.691 0.759 0.691
average 0.695 0.694 0.710 0.705 0.722

Datasets only with polyp images

ClinicDB 0.845 0.843 0.867 0.786 0.824
ColonDB 0.826 0.848 0.883 0.689 0.797
SUN 0.805 0.764 0.738 0.765 0.746
KVASIR 0.807 0.800 0.797 0.840 0.830
Etis-Larib 0.718 0.732 0.679 0.594 0.685
PolypHD 0.800 0.729 0.826 0.820 0.820
average 0.800 0.786 0.799 0.749 0.784
global average 0.758 0.749 0.763 0.731 0.759

 

Figure 5. Comparison between the F1 performances obtained by our baseline model in the ten public
datasets (X axis) and the F1 performances obtained by the four new models trained with not-polyp
images (Y axis). Public datasets containing not-polyp images are marked in light blue. Points above
the diagonal line represent benefit.

Focusing more on the relative variations, Figure 6 shows the relative change on F1
among all the public datasets between the models trained with not-polyp images with
respect to the original model (trained without not-polyp images) in the same test dataset.

Again, we have grouped the results according to the presence or not of not-polyp
images in the test partition. The left part of Figure 6 shows a general benefit in the four
public datasets with not-polyp images (dark boxes). By contrast, regarding the performance
in the public datasets without not-polyp images, a general worsening is observed (light
boxes). When the results are disaggregated by model, the right part of Figure 6 shows that
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the better performance is always obtained in datasets that include not-polyp images for all
the models. Finally, the model trained with 15% of additional not-polyp images attains the
highest benefit in the not-polyp-containing datasets (dark box in the right-most column
in Figure 6), being the only one showing a benefit of all of the four public datasets with
not-polyp images.

Figure 6. Relative F1 differences in the same test dataset with respect to our baseline model (trained
without not-polyp images), and grouped test dataset type (i.e., containing or not containing not-
polyp images).

3.4. Qualitative Analysis

To perform a qualitative analysis, the five models (the base model presented in
Nogueira et al. plus the new four models trained with different percentages of not-polyp
image injections) have been used to process two videos at a rate of 25 fps: (i) an 18 s video
of a polyp (450 frames); and (ii) a 14 s video of normal mucosa (not-polyp) (350 frames).
The two videos are provided as Supplementary Videos S1 and S2, respectively. Table 6
shows a global summary of the predictions made over the two videos.

Regarding the polyp video, in Table 6 we see a general recall of 90%, in terms of distinct
frames that contain at least one emitted bounding box, and very small differences among
all the models (see relative change, third column in Table 6). Regarding the not-polyp
video, we see a drastic reduction in the total number of bounding boxes, with respect to the
original model, which were all false positives (see relative change, last column in Table 6).

In order to give some illustrative examples within these two videos, Figure 7 contains
some frames with bounding box predictions in the polyp video. As expected, the five
models are able to detect the polyp correctly in almost all the frames (first row of Figure 7).
However, in this specific polyp video, the new models even surpass the detection ability
of the base model (slightly better recall, as shown in Table 6), where some of the false
negatives (white box in the second row of Figure 7) in the original model were corrected
by the not-polyp-trained models. Moreover, some false positive identifications (boxes
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not in the correct location of the polyp) emitted by the baseline model disappear in the
not-polyp-trained models (second and third rows of Figure 7).

Table 6. Summary of the network predictions in both polyp and not-polyp videos. For the polyp
video, the total number of distinct frames with at least one bounding box is reported, as a proxy of
the recall (assuming that, at least one of the bounding boxes in the frame is placed over the polyp).
For the not-polyp video, the total number of bounding boxes is reported, which are all false positives.
Relative changes if these metrics are also reported among different models.

Polyp Video (450 Frames) Not-Polyp Video (350 Frames)

Frames with at
Least One

Bounding Box

Relative
Change

Total Bounding
Boxes

(False Positives)

Relative
Change

Nogueira et al. [11] 404 (89.78%) - 90 -
Model injection 2% 418 (92.89%) +3.47% 43 −52.22%
Model injection 5% 419 (93.11%) +3.71% 24 −73.33%

Model injection 10% 416 (92.44%) +2.97% 16 −82.22%
Model injection 15% 407 (90.44%) +0.74% 63 −30.00%

 

Figure 7. The five models with three sample frames of the polyp video analyzed (Supplementary
Video S1). The false positive identifications are marked with red cross marks. The false negatives are
marked in white boxes (added manually for illustration purposes) [11].

Regarding the not-polyp video, Figure 8 again shows three example frames. The
base model produces false positive identifications in the three frames, while most of the
not-polyp-trained models do not.

Focusing on the real out-of-distribution samples that we wanted to address in this
study, we include two additional video clips found in two exploration videos. Figure 9
shows some frames of different situations found in two exploration videos included in the
PIBAdb (provided as Supplementary Videos S3 and S4). These include, for instance, close
to the wall of the colon images (first row), water jet (fourth row), or blurry images due to
water (fifth row). The base model tends to produce false positives in such situations, as the
first column shows, that the not-polyp-trained models tend to eliminate.
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Figure 8. The five models with three sample frames of the not-polyp video segment analyzed
(Supplementary Video S2). While the baseline model makes incorrect predictions (red cross marks) in
the three cases, most of the not-polyp-trained models do not [11].

 

Figure 9. The five models facing different situations found in two exploration videos included in
PIBAdb (provided as Supplementary Videos S3 and S4), including close to the wall of the colon (first
row), water jet (fourth row), or blurry images due to water jet (fifth row). False positives are marked
as red cross marks [11].
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4. Conclusions

In this work, we retrained our polyp detection model with negative samples that
were out-of-distribution images for our previous model in order to improve its positive
predictive value (precision), while maintaining its sensitivity (recall), in the real setting. We
have trained several models with different amounts of not-polyp images, incrementing
our original training set from 2% up to 15% not-polyp images. We have evaluated them
with both internal and public test partitions that include different amounts of such not-
polyp images.

Regarding the performance of the models in our test partitions, or intra-dataset evalu-
ation, we have observed that precision always increases as more not-polyp images are used
for training the models, while recall oscillates slightly among them. The model trained
with a 15% injection of not-polyp images was able to maintain the recall and reach the
best precision of all the test partitions that include not-polyp images (average F1 of 0.893).
Moreover, the original model was unable to maintain its original performance in the test
partition that included the not-polyp images (descending from 0.881 to an average of 0.869),
which illustrates the need for a test partition that includes this kind of image, which was
kept out-of-distribution during the initial development.

On the other hand, we observed that the performance of the models in the public
datasets containing not-polyp images also increases as more not-polyp images were used
for training. Again, the model trained with a 15% injection of not-polyp images attained
the best average F1 (0.722), and the biggest difference from the baseline model (average F1
of 0.695). In the public datasets with only polyp images, the results are more heterogeneous
and differ depending on the dataset and model used. Altogether, the average F1 of each
new model remained almost the same (~0.75), and, therefore, an unexpected worsening in
the public datasets due to training with not-polyp images is discarded.

As noted before, the general trend is that the latest public datasets available include
images without polyps, and our results suggest that it is worth using them (i) as negative
samples for training, as it improves the performance in scenarios closer to real colono-
scopies, and (ii) to correctly estimate the real performance of the detection models. The
benefits are even observed when testing in datasets that only contain polyp images, al-
though with higher variability.

Based on these observations, we think that there is room for improvement in polyp
detection models using more data. Thus, future work to improve our model will be data-
centric, as well. First, as the best performing model was the one trained with the highest
amount of not-polyp images, also maintaining a good recall, it seems that the ceiling has
not been reached in terms of the best proportion of not-polyp images to inject. More
experiments in this direction could give us interesting insights. Our PIBAdb database still
contains both annotated polyp images and not-polyp images that were not used to train the
models, and it would be interesting to see if using more training data with both polyp and
not-polyp images can increase the performance. Also, a lot of public datasets are available,
and it would be interesting to see if training with some images from them (maybe the
most challenging ones) can improve the performance in both our dataset and in the other
public datasets.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics13050966/s1, Supplementary Video S1
(S1_Video_polyp.mp4): an 18 s video of a polyp (450 frames). Supplementary Video S2 (S2_Video_
Not_Polyp.mp4): (ii) a 14 s video of normal mucosa (not-polyp) (350 frames). Supplementary
Video S3 (S3_Exploration_1.mp4): a 15 s video of an exploration from PIBAdb. Supplementary
Video S4 (S4_Exploration_2.mp4): a 15 s video of an exploration from PIBAdb.
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Abstract: The reported prevalence of non-alcoholic fatty liver disease in studies of lean individuals
ranges from 7.6% to 19.3%. The aim of the study was to develop machine-learning models for the
prediction of fatty liver disease in lean individuals. The present retrospective study included 12,191
lean subjects with a body mass index < 23 kg/m2 who had undergone a health checkup from January
2009 to January 2019. Participants were divided into a training (70%, 8533 subjects) and a testing
group (30%, 3568 subjects). A total of 27 clinical features were analyzed, except for medical history
and history of alcohol or tobacco consumption. Among the 12,191 lean individuals included in the
present study, 741 (6.1%) had fatty liver. The machine learning model comprising a two-class neural
network using 10 features had the highest area under the receiver operating characteristic curve
(AUROC) value (0.885) among all other algorithms. When applied to the testing group, we found the
two-class neural network exhibited a slightly higher AUROC value for predicting fatty liver (0.868,
0.841–0.894) compared to the fatty liver index (FLI; 0.852, 0.824–0.81). In conclusion, the two-class
neural network had greater predictive value for fatty liver than the FLI in lean individuals.

Keywords: lean fatty liver; machine learning model; fatty liver index

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of liver
disease worldwide and is associated with increased risks of cirrhosis and hepatocellular
carcinoma (HCC) [1]. Incidence rates of HCC have been higher in patients with nonalco-
holic steatohepatitis (NASH) cirrhosis than in those with non-cirrhotic NAFLD. In Asian
populations, a Japanese study revealed a 5-year HCC incidence of 11.3% among patients
with NASH cirrhosis [2]. The global prevalence of NAFLD has been reported as 25.24%,
with a regional prevalence of 27.37% in Asia [3]. Fatty liver in lean individuals has similar
clinical characteristics to NAFLD [4]. In fact, a Swedish registry study found that although
lean individuals with NAFLD had a lower baseline fibrosis severity than did non-lean
individuals, they were still at high risk for developing severe liver disease [5]. Lean in-
dividuals with NAFLD are at increased risk of developing type 2 diabetes mellitus (DM)
and metabolic syndrome and increased risk of mortality from cardiovascular and liver dis-
eases [4,6]. Lean and non-lean individuals with NAFLD share several metabolic risk factors,
including hypertriglyceridemia, low high-density lipoprotein (HDL) levels, type 2 DM,
hypertension, metabolic syndrome, increased body mass index (BMI) and increased waist
circumference. Generic characteristics, such as the PNPLA3 G allele, also play an important
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role in the development of NAFLD among lean individuals. The prevalence of NAFLD in
lean individuals according to different BMI criteria (23–25 kg/m2) reportedly ranges from
7.6% to 19.3% [7]. The prevalence of NAFLD in a population with a BMI < 24 kg/m2 from
south Taiwan was reported as 18.5% [8].

NAFLD can be diagnosed by liver biopsy or image. The gold standard method for
the diagnosis of steatosis is liver biopsy; however, this approach is invasive and carries
some bleeding risk. Meanwhile, diagnostic imaging, such as ultrasonography, computed
tomography and magnetic resonance imaging, is time-consuming, costly and not always
available in remote areas. Early diagnosis of hepatic steatosis based on risk factors helps
clinicians identify the adverse events of NAFLD and prescribe more lifestyle interventions
to prevent them. In addition, the diagnosis of NAFLD in lean individuals can easily be
missed. Several biomarkers have been investigated as predictors of fatty liver, including
markers of apoptosis and oxidative stress, the BARD score and the fatty liver index (FLI) [9].
The FLI is the most validated tool for predicting hepatic steatosis in the general and lean
population [10]. Artificial intelligence (AI) has also been used to predict NAFLD for several
years. Electronic health records and imaging data are the two main sources of data used to
develop machine-learning models [11]. The area under the receiver operating characteristic
(AUROC) for predicting NAFLD was higher for AI-assisted ultrasound (0.98) compared
to AI-assisted clinical data sets (0.85). Our previous report demonstrated that a machine
learning model using extreme gradient boosting (XGBoost) had a greater predictive value
for fatty liver [12]. However, there was limited data on using machine learning models to
predict lean fatty liver in the world. The aim of our study is trying to develop machine
learning models for the prediction of lean fatty liver and to compare these models with FLI
in the lean population.

2. Materials and Methods

2.1. Patient Selection

This retrospective study included subjects that had received a health checkup at
Changhua Christian Hospital between January 2009 and January 2019. All subjects were
adults (20–80 years old) and “lean,” as defined by a BMI < 23 kg/m2. Collected clinical data
and ultrasound findings were from the same day. Only subjects with complete data for all
parameters, including complete blood counts and biochemistry and lipid profiles, were
included in the study analysis. We excluded subjects with incomplete clinical parameters
and those whose BMI was ≥23 kg/m2. Initially, 45,006 subjects were enrolled. We then
excluded 13,076 subjects with incomplete clinical datasets and 19,739 subjects whose BMI
was ≥ 23 kg/m2. Finally, a total of 12,191 subjects were included in the study (Figure 1).
The present study was approved by the Ethics Committee of Changhua Christian Hospital
(CCH IRB No: 191012), and informed consent was waived as all data were deidentified.

2.2. Ultrasound Imaging

Fatty liver disease was defined as moderate-to-severe fatty change on ultrasonography.
All participants fasted for at least 6 h prior to ultrasound examinations. Ultrasonography
was performed by three independent ultrasound operators who were blinded to clinical
data. Moderate-to-severe fatty changes on ultrasound were defined as the presence of
at least 3 of the following 4 features: (1) hepatorenal echo contrast, (2) liver brightness,
(3) deep attenuation and (4) vascular blurring [13,14].

2.3. Model Construction and Validation

The dataset was divided into a training group (70%, 8533 subjects) and a testing group
(30%, 3568 subjects) using a randomized 70–30 split. Due to the low prevalence of fatty liver
among the lean individuals included in the present study, healthy controls and participants
with fatty liver disease were randomized into each group using a 2:1 ratio (Figure 1). The
training set and validation set were randomly selected from the training group using an
80–20 split and a 10-fold cross-validation model. The machine learning platform used in
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the present study was Azure Machine Learning, a cloud-based computing platform (Azure
ML; Microsoft, Redmond, WA, USA). Nine 2-class classification algorithms were compared,
including a neural network, averaged perceptron, a locally-deep support vector machine,
logistic regression, a support vector machine, a Bayes point machine, a decision jungle, a
boosted decision tree and a decision forest. After building the machine learning algorithms,
the testing group was used to identify the algorithm with the greatest predictive power for
fatty liver compared to the FLI.

Figure 1. Participant flow chart for the training and testing groups in the present study.

2.4. Feature Selection

The clinical features included in our dataset were age, gender, height, weight, waist, BMI,
systolic blood pressure (SBP), diastolic blood pressure (DBP), white blood cell count, red blood
cell, hemoglobin, platelet, mean corpuscular volume, mean corpuscular hemoglobin, mean
corpuscular hemoglobin concentration, red cell distribution width, aspartate aminotransferase,
alanine aminotransferase (ALT), r-glutamyl transpeptidase (r-GT), total cholesterol, HDL,
low-density lipoprotein, triglyceride (TG), creatinine, fasting serum glucose, Fibrosis-4 (FIB-4)
score and FLI. Filter-based feature selection was used to rank each feature according to the
calculated scores for each feature. Six feature scoring methods were used in the present study:
Pearson’s correlation, mutual information, Kendall correlation, Spearman’s correlation, the
chi-squared test and the Fisher score. After comparisons between ranking lists, we selected
the 10 features most commonly used in clinical practice to build a prediction model.

2.5. FLI

The FLI was developed to predict hepatic steatosis in the general population by
Giorgio Bedogni et al. [15] The FLI was calculated using the following equation:

(e0.953 × loge (triglycerides) + 0.139 ×BMI + 0.718 × loge (r-GT) + 0.053 × waist circumference − 15.745)/(1 +
e0.953 × loge (triglycerides) + 0.139 × BMI + 0.718 × loge (r-GT) + 0.053 × waist circumference − 15.745) × 100

2.6. Statistical Analysis

The chi-squared test was used to compare categorical variables, and the Mann–
Whitney U test was used to compare continuous variables between groups. AUROC
values were calculated using optimal cut-off values identified using the Youden index test.
All statistical analyses were performed using SPSS version 22.0 (IBM Corp., Armonk, NY,
USA), with 2-tailed p values < 0.05 indicating statistical significance.
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3. Results

3.1. Clinical Characteristics of the Participants

Of the 12191 lean subjects, 741 (6.1%) had fatty liver. The training group comprised
8533 subjects (70%), of which 508 (6%) had fatty liver. The testing group comprised
3568 subjects (30%), of which 233 (6.4%) had fatty liver. The clinical characteristics of study
subjects in the training group according to the presence or absence of fatty liver are shown
in Table 1. Subjects with fatty liver were older, with a male predominance, compared to
subjects without fatty liver. Significant differences in waist circumference, BMI, blood
pressure, white blood cell count, serum hemoglobin, platelet count, serum glucose, serum
biochemistry parameters, serum lipid profiles and FLI were observed between subjects
with and without fatty liver. Histogram findings for both groups are shown in Figure 2.
Accordingly, the figure shows that the distribution of the FLI is skewed to the right, with a
slight difference between the two groups.

Table 1. Clinical parameters in lean subjects with and without fatty liver.

With Fatty Liver
(n = 508)

Without Fatty Liver
(n = 1016)

p-Value

Age (years) 52.69 ± 8.97 47.32 ± 11.17 <0.001
Gender, male 304 (59.8%) 438 (43.1%) <0.001
Height (cm) 164.47 ± 8.11 163.52 ± 7.8 0.010
Weight (kg) 59.8 ± 6.31 56.04 ± 6.95 <0.001

Waist circumference (cm) 78.54 ± 5.1 73.14 ± 5.77 <0.001
SBP (mmHg) 127.24 ± 15.82 116.44 ± 14.57 <0.001
DBP (mmHg) 80.44 ± 9.5 74.42 ± 9.21 <0.001
BMI (kg/m2) 22.05 ± 0.78 20.9 ± 1.48 <0.001

WBC (×109/L) 5.84 ± 1.49 5.18 ± 1.44 <0.001
RBC count (×109/L) 4.76 ± 0.54 4.58 ± 0.48 <0.001

Hb (g/dL) 14.28 ± 1.36 13.73 ± 1.48 <0.001
MCV (fL) 42.57 ± 3.82 41.06 ± 4.1 <0.001

RBC volume (fL) 90.02 ± 7.46 90.1 ± 7.32 0.568
MCH (pg) 30.23 ± 2.95 30.14 ± 2.86 0.387

MCHC (g/dL) 33.54 ± 0.95 33.41 ± 0.88 0.001
Platelet (×103/L) 226.59 ± 52.13 219.24 ± 49.68 0.009

RBC-RDW (%) 13.32 ± 1.04 13.51 ± 1.22 0.004
Glucose (mg/dL) 106.73 ± 31.21 91.48 ± 13.12 <0.001

AST (IU/L) 28.04 ± 15.42 23.03 ± 10.01 <0.001
ALT (IU/L) 31.36 ± 19.93 20.7 ± 12.26 <0.001
r-GT (U/L) 31.39 ± 56.94 17.68 ± 12.91 <0.001

Total cholesterol (mg/dL) 198.89 ± 37.48 190.62 ± 33.34 <0.001
HDL (mg/dL) 46.82 ± 10.66 57.06 ± 13.96 <0.001
LDL (mg/dL) 124.6 ± 34.5 115.23 ± 28.68 <0.001

Triglyceride (mg/dL) 138.14 ± 78.5 81.93 ± 45.67 <0.001
Cr (mg/dL) 0.78 ± 0.2 0.75 ± 0.18 0.001

FIB-4 1.26 ± 0.6 1.21 ± 0.63 0.014
FLI 18.66 ± 12.43 7.13 ± 6.75 <0.001

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WBC, white
blood cell count; RBC, red blood cell; Hb, hemoglobin; MCV, mean corpuscular volume; MCH, mean corpuscular
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell distribution width; AST,
aspartate aminotransferase; ALT, alanine aminotransferase; r-GT, r-glutamyl transpeptidase; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; Cr, creatinine; FIB-4, fibrosis index based on four factors; FLI, fatty
liver index.

242



Diagnostics 2023, 13, 1407

Figure 2. Histogram of fatty liver index (FLI) from lean fatty liver and control in the training group.

3.2. Feature Selection and Comparison of Classification Algorithms in the Training Set

Table 2 shows the 10 features selected by the six different scoring methods. The 10 high-
est scoring features were BMI, waist circumference, weight, age, serum TG, serum HDL,
serum glucose, serum ALT, SBP and DBP. Table 3 shows the nine different classification
algorithms of the machine learning models using the 10 selected features and all 27 features.
The best predictive model was the two-class neural network using 10 features, with an
AUROC value of 0.885, an accuracy of 0.816, a recall of 0.661, an F1 score of 0.72 and a
precision of 0.791. (Figure 3).

Table 2. The 10 features selected by the six different scoring methods.

Method
(Correlation Coefficient)

Scored Features

Steatosis Waist TG BMI HDL Glucose SBP ALT DBP Weight Age
Pearson correlation 1 0.417 0.412 0.388 0.349 0.325 0.321 0.313 0.292 0.254 0.235

Steatosis TG BMI Waist rGT ALT Glucose HDL SBP DBP Age
Mutual information 1 0.105 0.097 0.094 0.089 0.086 0.078 0.067 0.055 0.045 0.039

Steatosis TG Waist rGT ALT BMI Glucose HDL SBP DBP AST
Kendall correlation 1 0.364 0.348 0.341 0.334 0.325 0.310 0.297 0.264 0.243 0.212

Steatosis TG Waist rGT ALT BMI Glucose HDL SBP DBP Weight
Spearman correlation 1 0.444 0.419 0.409 0.403 0.398 0.374 0.359 0.320 0.293 0.258

Steatosis TG Waist ALT BMI rGT Glucose HDL SBP DBP AST
Chi-squared 1 316.830 272.800 264.647 260.506 255.513 236.273 197.071 164.514 136.655 117.880

Steatosis Waist TG BMI HDL Glucose SBP ALT DBP Weight Age
Fisher Score 1 0.210 0.204 0.177 0.139 0.118 0.115 0.109 0.093 0.069 0.058

Abbreviations: TG, triglycerides; ALT, alanine aminotransferase; r-GT, r-glutamyl transpeptidase; BMI, body
mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; AST, aspartate aminotransferase; HDL,
high-density lipoprotein.

3.3. Comparison of Machine Learning Models and the FLI Using the Testing Set

The FLI index was calculated in the testing group and compared to the machine
learning model comprising a two-class neural network. The AUROC value was higher for
the machine learning model using 10 selected features (above-mentioned; 0.868, 95% CI
0.841–0.894) compared to the FLI (0.852, 95% CI 0.824–0.881) and machine learning model
using four selected features (same as factors in FLI including waist, BMI, r-GT and TG)
(0.851, 95% CI 0.823–0.879; Figure 4). The optimal cut-off value, according to the Youden
index test for the FLI, was 9, with a sensitivity of 82.4% and specificity of 74.9%.
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Table 3. Results from the nine machine learning models using the 10 selected features and all 27
features.

Model Features AUROC Accuracy Recall F1 Score Precision

Two-class neural network
10 0.885 0.816 0.661 0.72 0.791

27 0.877 0.793 0.624 0.683 0.756

Two-class averaged perceptron
10 0.875 0.8 0.624 0.69 0.773

27 0.874 0.79 0.615 0.677 0.753

Two-class locally-deep support
vector machine

10 0.845 0.797 0.569 0.667 0.805

27 0.833 0.77 0.505 0.611 0.775

Two-class logistic regression
10 0.867 0.793 0.596 0.674 0.774

27 0.874 0.787 0.596 0.667 0.756

Two-class support vector machine
10 0.872 0.8 0.633 0.693 0.767

27 0.866 0.793 0.642 0.69 0.745

Two-class Bayes point machine
10 0.86 0.77 0.505 0.611 0.775

27 0.878 0.77 0.495 0.607 0.783

Two-class decision jungle
10 0.849 0.78 0.624 0.67 0.723

27 0.851 0.784 0.578 0.656 0.759

Two-class boosted decision tree
10 0.859 0.764 0.624 0.654 0.687

27 0.871 0.793 0.67 0.699 0.73

Two-class decision forest
10 0.852 0.784 0.56 0.649 0.772

27 0.846 0.774 0.578 0.646 0.733

Abbreviations: AUROC, area under the receiver operating characteristic.

Figure 3. Area under the receiver operating characteristic curve for the machine learning model
using a two-class neural network (AUROC value, 0.885).
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Figure 4. Area under the receiver operating characteristic (AUROC) curves of the machine learning
(ML) model 1 comprising a two-class neural network using 10 selected features (body mass index,
waist, weight, age, triglyceride (TG), high-density lipoprotein, glucose, alanine aminotransferase,
systolic blood pressure and diastolic blood pressure), ML model 2 comprising a two-class neural
network using four selected features (body mass index, waist, TG and r-glutamyl transpeptidase)
and the fatty liver index (FLI) for predicting steatosis in lean individuals using the testing set.

4. Discussion

The present study is the first to use machine learning models to predict fatty liver in
lean individuals. Our results demonstrate that a machine learning model had a slightly
greater ability to discriminate between fatty liver and non-fatty liver in lean subjects from an
Asian population compared to a conventional scoring system for predicting fatty liver (FLI).
These machine learning algorithms may have utility in predicting fatty liver in regions
where ultrasonography is not available and in analyzing pathophysiologic correlations
with other clinical outcomes, such as cardiovascular events or mortality.

There is significant heterogeneity in the reported prevalence of fatty liver in lean
individuals from previous studies due to the use of an upper limit of BMI ranging from
23 to 25 kg/m2 to define “lean” individuals in different populations. Two previous meta-
analyses reported an overall prevalence of NAFLD in lean populations of 10.2% and
10.6% [16,17]. A lower prevalence of NAFLD was observed when lower BMI criteria were
used and in populations based on patients attending health check-ups. The definition of
“lean” in the present study was a BMI < 23 kg/m2, and the prevalence of fatty liver in
lean individuals was 6.1%. This prevalence of NAFLD in lean individuals was lower than
reported by a similar study in a Taiwanese population conducted in 2019 which reported
a prevalence of NAFLD of 18.5% in individuals with a BMI < 24 kg/m2 [8]. Other than
differences in BMI cut-off values, criteria for diagnosing NAFLD using ultrasound may
represent a further confounding factor as fatty liver was defined as moderate-to-severe
fatty change on ultrasound in the present study. A similar prevalence (10.37%) of NAFLD
in a non-obese population (BMI < 25 kg/m2) was reported from a study conducted in
China which observed a higher prevalence of NAFLD in patients aged 50–59 years [18].

Differing factors are associated with NAFLD in lean and obese patients. The most
common factors related to NAFLD in lean patients included BMI, waist circumference,
serum triglyceride levels, serum HDL levels, DM, metabolic syndrome, blood pressure
and serum liver enzyme levels [5]. Genetic factors are associated with the development
of NAFLD in lean individuals, including patatin-like phospholipase domain-containing
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3 (PNPLA3, rs738409 C > G) and transmembrane 6 superfamily member 2 (TM6SF2,
rs58542926 C > T) [19,20]. The FLI contains four risk factors, including triglyceride, BMI,
r-GT and waist circumference. Age is also an important risk of NAFLD in lean people.
According to a meta-analysis, lean individuals with NAFLD were older than lean con-
trols, with a mean difference of 2.87 years [21]. Sex differences have also been noted in
NAFLD, such that a higher prevalence of NAFLD was found among males than among
females. Liver outcomes in both sexes have been controversial, given that the effects of a
dysmetabolic state might be greater in females than in males [22]. However, studies on
the effects of sex on NAFLD in lean individuals have currently been limited. The present
study used a cloud-based computing platform and filter-based selection to identify waist
circumference, serum TG, BMI, weight, serum HDL, serum glucose, SBP, serum ALT, DBP
and age as the 10 highest scoring factors. Although baseline characteristics showed male
predominant in lean fatty liver, sex was not identified as an important feature in our model.
These findings were similar to the results of previous studies [23,24].

AI has been used to predict NAFLD and classify the severity of liver fibrosis for many
years [25]. A range of machine learning models and deep learning modules have been de-
veloped using large-scale electronic health records and images from clinical investigations,
including histology, ultrasonography, computed tomography and magnetic resonance
imaging [26]. Several public cloud-based platforms can be used to develop machine learn-
ing models, including Tensorflow (Google Brain Team, Menlo Park, CA, USA), WEKA
(University of Waikato, Hamilton, New Zealand), the Orange Data Mining platform (Bioin-
formatics Lab, University of Ljubljana, Slovenia) and Azure Machine Learning (Microsoft,
Redmond, WA, USA) [11]. According to a meta-analysis, AI-assisted ultrasonography
had a higher area under the curve for the detection of NAFLD than an AI-assisted clinical
data set (0.98 vs. 0.85) [9]. Several machine learning algorithms have been used to predict
NAFLD, including extreme gradient boosting (XGBoost), neural network, support vector
machine, logistic regression, decision forests and decision jungles. XGBoost is easy to inter-
pret and has been shown to have good predictive utility in diagnosing NAFLD (AUROC,
0.882–0.931) in several studies [12,27,28]. While neural networks can address non-linear
correlations and complex models, they require large computer resources and have a ten-
dency to overfit. Meanwhile, support vector machines can handle high-dimensional data
and non-linear correlations but have low efficacy due to their high computational costs.
Logistic regression models are easy to train and interpret but cannot address non-linear
problems. There was no available publication that used machine learning for the detection
of lean NAFLD in the lean population. This is the first study to predict fatty liver in
lean individuals using Azure Machine Learning which utilized nine different machine
learning tools with a two-class neural network found to be the best machine learning
algorithm (AUROC, 0.885). The predictive power is better in machine learning algorithms
using 10 features than 27 features. The situation that performance was reduced by adding
features may be explained by two possible reasons. First, when too many features are
added to a machine learning model, it can lead to overfitting and influence the results from
validation and test sets. Second, some features may not be useful in predicting outcomes
or may be highly correlated with other features. When these features are added to the
machine learning model, they can introduce noise and reduce the predictive value. After
incorporating the neural network and the FLI into the testing group, we found that the
neural network using 10 selected features had a slightly greater AUROC than did the FLI
and neural network using four selected features (same as factors in FLI). This suggests the
presence of non-linear correlations between these 10 features, which can be detected using
certain specific machine learning algorithms. However, better information quality may
be another possible explanation because the AUROCs are similar between the machine
learning model using four features and FLI.

Scoring algorithms have been developed to predict hepatic steatosis. The FLI was
developed in 2006 and had an accuracy for predicting steatosis of 0.84 [15]. Recently, the FLI
has also been used to predict 10-year cardiovascular disease risks and mortality. [29] A study
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including a Korean population showed the individual who had a higher FLI (≥60) had a
higher Framingham 10-year CVD risk (odds ratio 2.56). Another study from Korea showed
that FLI could be a poor prognostic factor, particularly in the underweight population
(BMI < 18.5 kg/m2). [30] Moreover, a study from China showed that a triglyceride and
glucose index (TyG) developed to predict insulin resistance could also be used to identify
NAFLD, although its AUROC was not particularly good (0.782). [31] Different cut-off
values for the FLI for the prediction of fatty liver have been assessed in lean populations,
with a previous study conducted in Taiwan demonstrating a cut-off value of 15 had the
highest discriminant ability in a lean population and a further study conducted in Turkey
demonstrated a cut-off value of 5.68 had the highest AUROC (0.748) for predicting NAFLD
in lean females with polycystic ovary syndrome [8,32]. In the present study, the FLI had an
AUROC value of 0.852 for predicting steatosis in lean individuals using a cut-off value of
9 identified using the Youden index test. We compared FLI cut-off values of 9 and 15 using
a machine learning model in the testing group, with AUROC values of 0.784 for the FLI
using a cut-off value of 9, 0.752 for the two-class neural network (scored probability > 0.5)
and 0.722 for the FLI using a cut-off value of 15.

The present study had some limitations. First, we did not collect data on hepatitis
B and C virus status or history of alcohol consumption or diabetes. The present study
comprised subjects with fatty liver on ultrasound which may have included patients with
NAFLD and alcoholic fatty disease. Although patients with viral hepatitis and alcohol
liver disease may have been included in the present study, further studies are required
to determine the predictive ability of machine learning models in detecting steatosis in
populations with a single liver disease etiology. Metabolic-associated fatty liver disease
(MAFLD) is not a suitable representation of our study subjects, given that our subjects do
not satisfy the diagnostic criteria for MAFLD. Second, some clinical parameters were not
included in the present study, such as uric acid, HbA1C, C-reactive protein and homeostasis
model assessment for insulin resistance (HOMA-IR). These parameters have been shown
to be associated with lean NAFLD [21,33]. Third, we did not collect histological data from
liver biopsies or other non-invasive imaging techniques, such as the controlled attenuation
parameter measured by FibroScan® or magnetic resonance imaging-derived proton density
fat fraction to confirm the degree of the steatosis. Our use of ultrasonography may have
resulted in the underdiagnosis of hepatic steatosis in our patients relative to that using
histology. Accordingly, the prevalence of fatty liver may have been underestimated in the
present study. This would suggest that the machine learning model cannot be used to
predict mild steatosis in the general population.

5. Conclusions

The present study describes the development of machine learning models to predict
fatty liver in lean individuals, with a two-class neural network model found to have
the greatest predictive ability. The AUROC value was slightly higher using the machine
learning model than the FLI. In addition, the prevalence of fatty liver in lean individuals
was 6.1%, and the optimal FLI cut-off value was 9 in the present study. These results
can help clinicians promptly and accurately diagnose fatty liver disease in lean subjects
considering that hepatic steatosis in lean populations can be easily overlooked or treated
late. Further studies with larger sample sizes using other forms of clinical information and
image are required to validate the utility of novel machine-learning models in predicting
steatosis and fibrosis.
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Abstract: Background and aims: Patients frequently have concerns about their disease and find it
challenging to obtain accurate Information. OpenAI’s ChatGPT chatbot (ChatGPT) is a new large
language model developed to provide answers to a wide range of questions in various fields. Our aim
is to evaluate the performance of ChatGPT in answering patients’ questions regarding gastrointestinal
health. Methods: To evaluate the performance of ChatGPT in answering patients’ questions, we
used a representative sample of 110 real-life questions. The answers provided by ChatGPT were
rated in consensus by three experienced gastroenterologists. The accuracy, clarity, and efficacy of
the answers provided by ChatGPT were assessed. Results: ChatGPT was able to provide accurate
and clear answers to patients’ questions in some cases, but not in others. For questions about
treatments, the average accuracy, clarity, and efficacy scores (1 to 5) were 3.9 ± 0.8, 3.9 ± 0.9, and
3.3 ± 0.9, respectively. For symptoms questions, the average accuracy, clarity, and efficacy scores were
3.4 ± 0.8, 3.7 ± 0.7, and 3.2 ± 0.7, respectively. For diagnostic test questions, the average accuracy,
clarity, and efficacy scores were 3.7 ± 1.7, 3.7 ± 1.8, and 3.5 ± 1.7, respectively. Conclusions: While
ChatGPT has potential as a source of information, further development is needed. The quality of
information is contingent upon the quality of the online information provided. These findings may
be useful for healthcare providers and patients alike in understanding the capabilities and limitations
of ChatGPT.

Keywords: OpenAI’s ChatGPT; chatbot; natural language processing (NLP); medical information;
gastroenterology; patients’ questions

1. Introduction

Gastrointestinal (GI) complaints and symptoms account for approximately 10% of
all general practice consultations [1,2] and are apparently very common in the general
population. As healthcare providers specializing in this field, we are frequently called upon
to answer a wide range of patients’ gastrointestinal health questions. In recent years, large
language models, such as OpenAI’s recent release of the ChatGPT chatbot [3], have been
developed to provide answers to a wide range of questions in various fields, including
healthcare [4].

AI chatbots employ deep learning-based natural language processing (NLP) that eval-
uates natural human language input and replies accordingly in a conversational mode [5].
These models have the potential to provide patients with quick and easy access to accurate
and reliable information about their gastrointestinal health with 24/7 availability, high
cost-effectiveness, and potentially less bias based on patients’ demographic characteristics
such as gender, race, or age [6]. A recent systematic review assessing the value of AI
chatbots in healthcare showed promising results in terms of the effectiveness provided [7].

Diagnostics 2023, 13, 1950. https://doi.org/10.3390/diagnostics13111950 https://www.mdpi.com/journal/diagnostics
250



Diagnostics 2023, 13, 1950

The recent release of OpenAI’s ChatGPT in November 2022 [3] has garnered immense
popularity, as its technical abilities are believed to be superior to previous chatbot ver-
sions [8]. In a recent article [8], the chatbot was described as “astonishingly skilled at
mimicking authentic writing” and was regarded as “So Good It Can Fool Humans”. It was
believed to have passed the ultimate” Turing test”—which states that a machine will be
regarded as intelligent if its responses are indistinguishable from those given by a human
comparator [9].

The effectiveness of large language models in answering patients’ questions in the
field of gastroenterology has not yet been thoroughly evaluated. In this paper, we aim to
evaluate the performance of OpenAI’s ChatGPT chatbot in answering patients’ questions
concerning gastrointestinal (GI) topics. This evaluation will focus on several key areas,
including the accuracy and clarity of the information provided, the ability of the model to
handle a wide range of questions, and the overall effectiveness of the model in addressing
patients’ concerns and providing them with the information they need to make informed
decisions about their health.

Our evaluation aims to provide insights into the capabilities and limitations of large
language models in answering patients’ questions in various gastroenterology subjects.
Ultimately, our goal is to contribute to the ongoing development of large language models
and their use in the field of gastroenterology, with the aim of improving the quality of care
and information available to patients.

2. Methods

To evaluate the performance of the newly- released large language model, OpenAI’s
ChatGPT chatbot, in answering patients’ GI-related questions, we conducted a compre-
hensive study using a representative sample of real-life questions from patients in this
field. The study was designed to assess the accuracy and clarity of the information pro-
vided by the chatbot, as well as its overall effectiveness in addressing patients’ concerns
and providing them with the information they need to make informed decisions about
their health.

The study sample consisted of 110 real-life questions from patients in the field of
gastroenterology, gathered from open internet sites providing medical information to
diverse patients’ questions. These questions were selected to cover a wide range of topics,
including common symptoms, diagnostic tests, and treatments for various gastrointestinal
conditions. The questions were selected to reflect the types of questions typically asked
by patients in gastroenterology and to provide a representative sample of the types of
questions that the chatbot would encounter in a real-world setting.

The questions were provided to the OpenAI chatbot and the answers were recorded.
The answers provided by the chatbot were then assessed in consensus by three experienced
gastroenterologists, each with more than 20 years of experience. All gastroenterologists
work in a tertiary medical center, as well as in community clinics, and together cover all
sub-specializations of gastroenterology: IBD experts, motility, hepatology, nutrition, and
advanced endoscopy.

The physicians graded each chatbot answer according to a scale of 1–5 (1 the lowest score,
5 the highest) in 4 categories: accuracy, clarity, up-to-date knowledge, and effectiveness in a
consensus agreement between all three gastroenterologists. Since the questions were divided
according to specific topics—common symptoms, diagnostic tests, and treatments—results
are shown in a separate table for every topic. (Table 1—treatments, Table 2—symptoms,
Table 3—diagnostic tests.) Results are summarized visually in Figures 1–3, respectively. All
questions and chatbot answers are attached in the Supplementary Materials.
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Table 1. Grades of the OpenAI chatbot answers to treatment-related questions.

Question No. Accuracy Clarity Up-to-Date Efficacy Remarks

1 3 2 3 3
2 3 4 3 3
3 4 3 4 3
4 4 4 4 3
5 4 4 3 2
6 5 5 4 4
7 4 4 3 2
8 4 4 3 2
9 4 3 4 3
10 5 5 4 4
11 4 4 4 3
12 4 4 3 3
13 3 3 3 2
14 4 3 4 3
15 2 4 2 2
16 4 3 4 4
17 4 3 4 3
18 4 5 5 4
19 3 3 2 2
20 3 4 4 3
21 2 3 2 2
22 4 4 4 5
23 4 2 3 2
24 3 4 3 3
25 4 4 5 4
26 4 5 5 4
27 5 5 4 4
28 4 5 5 4
29 4 5 4 4
30 5 4 5 5
31 4 5 4 4
32 4 5 4 3
33 5 5 5 5
34 4 3 4 3
35 5 4 4 4
36 3 3 4 3
37 2 3 2 2
38 4 3 4 3
39 5 4 5 5
40 4 5 4 4
41 5 5 5 5
42 4 4 5 4

Average ± SD 3.9 ± 0.8 3.9 ± 0.9 3.8 ± 0.9 3.3 ± 0.9
Median (IQR) 4 (4–4) 4 (3–5) 4 (3–4) 3 (3–4)

Table 2. Grades of the OpenAI chatbot answers to symptoms-related questions.

Question No. Accuracy Clarity Up-to-Date Efficacy Remarks

1 3 4 3 3
2 5 5 5 5
3 3 4 3 3
4 3 4 3 3
5 3 4 3 3
6 3 3 3 3
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Table 2. Cont.

Question No. Accuracy Clarity Up-to-Date Efficacy Remarks

7 4 4 4 4
8 3 4 3 3
9 3 4 3 3
10 4 4 4 4
11 3 3 3 3
12 3 3 3 3
13 2 3 2 2
14 3 2 3 2
15 4 4 4 3
16 3 4 3 3
17 3 4 3 3
18 4 4 3 3
19 3 3 3 3
20 3 4 3 3
21 5 3 4 4
22 3 4 3 3
23 5 5 5 5

Average ± SD 3.4 ± 0.8 3.7 ±0.7 3.3 ± 0.7 3.2 ± 0.7
Median (IQR) 3 (3–4) 4 (3–4) 3 (3–3.5) 3 (3–3)

Table 3. Grades of the OpenAI chatbot answers to diagnostic-related questions.

Question No. Accuracy Clarity Up-to-Date Efficacy Remarks

1 5 5 5 5
2 5 4 4 3
3 4 5 5 5
4 4 5 5 4
5 5 4 5 4
6 5 4 4 5
7 0 0 0 0 Not found
8 5 4 5 4
9 1 1 1 1 Mistake

10 5 5 5 5
11 5 5 5 5
12 4 5 4 4
13 5 5 5 5
14 5 5 5 4
15 5 5 5 5
16 5 4 5 4
17 5 4 5 4
18 4 4 5 4
19 5 4 5 4
20 4 5 4 4
21 5 3 3 3 Asks info
22 5 5 5 5
23 0 0 0 0 Not found
24 5 5 5 5
25 3 4 4 3
26 3 4 4 3
27 4 4 4 4
28 5 5 5 5
29 5 5 5 5
30 3 4 3 3
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Table 3. Cont.

Question No. Accuracy Clarity Up-to-Date Efficacy Remarks

31 5 5 5 5
32 4 5 5 4
33 3 4 4 3
34 5 5 4 5
35 5 5 5 5
36 1 1 1 1 Mistake
37 0 0 0 0 Not found
38 0 0 0 0 Not found
39 3 4 3 3
40 4 5 4 4
41 0 0 0 0 Not found
42 0 0 0 0 Not found
43 3 5 0 2
44 5 5 4 5
45 4 5 4 4

Average ± SD 3.7 ± 1.7 3.8 ± 1.7 3.6 ± 1.8 3.5 ± 1.7
Median (IQR) 4 (3–5) 4 (4–5) 4 (3–5) 4 (3–5)

Figure 1. Graphic distribution pattern of grades assigned to the responses provided by the OpenAI
chatbot in relation to treatment-related questions.
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Figure 2. Graphic distribution pattern of grades assigned to the responses provided by the OpenAI
chatbot in relation to symptoms-related questions.

Figure 3. Graphic distribution pattern of grades assigned to the responses provided by the OpenAI
chatbot in relation to diagnostic-related questions.

Statistical Analysis

Python (Ver. 3.9) was used for all statistical calculations. The average score ± standard
deviation (SD) was calculated for each category and is shown in a table. A distribution
graph of the answer grades for all groups by answer category was plotted. A Kruskal–
Wallis one-way analysis of variance was used to determine the statistical difference between
the groups.
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3. Results

Overall, 110 various typical patient questions were presented to the OpenAI chatbot.
Forty-two included various questions regarding treatment options in diverse gastroen-
terology fields. Questions were chosen to include the whole spectrum of specification
from very specific questions (e.g., treatment for GI cancers according to the stage) to wider
questions not referring to definite disease staging or severity (e.g., “what is the treatment for
ulcerative colitis”?). All questions chosen were short and clear for better standardization.
The results of the evaluation for the treatment questions are shown in Table 1.

A full list of all questions and answers is presented in the Supplementary Materials.
Overall, the OpenAI chatbot answers to the questions dealing with treatment options

varied wildly between the different topics and were inconsistent in their level. Notably, at
the end of almost all the answers, the patient is referred to a doctor/healthcare provider for
further evaluation.

The results of the evaluation for questions related to symptoms are shown in Table 2.
In the answers to the symptom-related questions, the OpenAI chatbot shows the same
pattern, and the majority of answers referred the patient to consult a physician.

The results of the evaluation for questions related to diagnostic examinations are
shown in Table 3.

Diversity in the quality of answers to the diagnostic examination was the highest of
all groups. While many answers were correct and informative, other medical terms were
simply not recognized by the chatbot (Table 3).

Figures 1–3 graphically display the distribution pattern of grades assigned to the re-
sponses provided by the OpenAI chatbot in relation to treatment, symptoms, and diagnostic-
related questions, respectively.

As shown graphically in Figures 1–3, the distribution of grades by answer group in
the treatment-related and symptoms-related groups are similar and relatively consistent,
while the distribution of the diagnostic-related group is wide and inconsistent.

Statistical difference between the groups was shown for the subjects of accuracy
(p = 0.019) and up-to-date (p = 0.009), but not for the subjects of clarity (p = 0.071) and
efficacy (p = 0.071).

4. Discussion

Overall, our study provides a comprehensive evaluation of the performance of a large
language model, OpenAI’s ChatGPT chatbot, in answering patients’ questions in the field
of gastroenterology. The results of the study will hopefully be valuable for healthcare
providers and patients alike, as they will provide important insights into the capabilities
and limitations of these models in providing accurate and reliable information about
gastrointestinal health.

Generally, the results of our evaluation of OpenAI’s ChatGPT large language model,
as a potential tool for answering patients’ GI-related questions, are concerning. Despite
the impressive capabilities of this model in other applications, our study found that it was
insufficient for reliably answering patients’ questions in this domain.

In our study, we presented the model with a range of common gastroenterological
questions and assessed its ability to provide accurate and helpful responses. While the
model could generate responses for all questions, the accuracy and helpfulness of these
responses varied significantly. In many cases, the model’s responses were either incomplete
or entirely incorrect, indicating a lack of understanding of the subject matter.

These findings are particularly concerning given the importance of accurate informa-
tion in the medical field. Patients often rely on Internet information to make decisions about
their health and well-being, and inaccurate information can have serious consequences. As
such, it is essential that any tool used to provide medical information to patients be able to
provide accurate and reliable responses.

Interestingly, while the answers to treatment-based questions and symptom-based
questions showed a similar and relatively steady quality and effectivity (Tables 1 and 2,
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Figure 1), diagnostic-related results diverged between high performance to incorrect/missing
data (Table 3, Figure 1). These results may improve with time as the OpenAI chatbot ac-
quires more data.

Furthermore, our study also highlighted the limitations of OpenAI’s ChatGPT chatbot
in the medical domain. The ability to understand and accurately respond to complex
medical questions requires a deep understanding of the subject matter, as well as the ability
to process and integrate information from a variety of sources [10]. While ChatGPT is an
impressive model with many capabilities, it is not yet advanced enough to fulfill this role.
Notably, it should be acknowledged that the utilization of real-world questions in our study
resulted in the inclusion of numerous acronyms, which could potentially pose challenges
in web-based research settings. However, due to our intention to assess the effectiveness
of ChatGPT in addressing authentic patient inquiries, we refrained from including the
complete expressions, despite the potential difficulties associated with the acronyms.

Our results are in line with previous data assessing other artificial intelligence con-
versational agents in healthcare [6,7,11]. As a group, the bot’s function was found to be
relatively satisfactory and useful, with moderate effectiveness. It is, therefore, important
to characterize specific strengths and weaknesses of the chatbot in order to maximize
its benefits.

Recent data from the last months suggest that LLMs hold the potential for significant
impacts in medicine [12,13].

In our previous work, we examined the utility of ChatGPT in identifying top research
questions in gastroenterology. Our conclusion was that ChatGPT may be a useful tool
for identifying research priorities in the field of GI, yet we noted the need to improve the
originality of the research questions identified [12].

In telehealth, LLMs such as ChatGPT could improve efficiency and scalability, and
provide unbiased care [14]. Despite its proficiency in generating differential diagnosis
lists, ChatGPT does not surpass human physicians [15]. Moreover, LLMs can offer innova-
tive methods in medical education [16]. Yet, it is crucial to address LLM’s limitations to
maintain accuracy and reliability in patient care. Furthermore, Rasmussen et al. [17] and
Samaan et al. [18] evaluated the accuracy of ChatGPT in generating responses to typical
questions related to vernal keratoconjunctivitis and bariatric surgery, respectively. Both
found the model to be broadly accurate. Xie et al. [19] conducted a similar study using
a simulated rhinoplasty consultation, and while they observed that ChatGPT provided
easily comprehensible answers, it was less effective at providing detailed, personalized
advice. Yeo et al. [20] tested ChatGPT on questions about cirrhosis and hepatocellular carci-
noma, finding the AI capable but not comprehensive in its knowledge. Johnson et al. [21]
investigated the accuracy of ChatGPT in generating responses to common cancer myths
and misconceptions, concluding that it often provided accurate information. Lastly, a
comprehensive pilot study on ChatGPT by Johnson et al. [22] discovered that its responses
were largely accurate across a wide range of medical questions.

Significantly, it is worth mentioning that all of these studies have been published
within the recent months subsequent to the initial release of the inaugural version of
ChatGPT. This accumulation of research findings attests to the remarkable potential impact
and significance that ChatGPT holds for the field of medicine in the foreseeable future.

Our study had a few limitations. First, the choice of questions naturally influenced
the answers obtained by the OpenAI chatbot. However, the wide variety of questions and
their relatively high number minimized the chance for bias. Furthermore, the answers were
graded with the consensus of three physicians; there is a possibility that other physicians
might have had a different point of view. Nevertheless, to minimize that risk, we chose
highly experienced gastroenterologists with wide clinical experience and more than 70 years
of practicing gastroenterology both in a tertiary medical center and in community practice.
Lastly, there were no comparisons with other chatbots to gauge the relative merits of
ChatGPT against other similar technologies, and no blinded comparison between human
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and chatbot answers was performed. These research directions necessitate further dedicated
exploration to explore and investigate its potential in greater detail.

Importantly, our study did not include patients’ comments and, therefore, is not valid
in terms of assessing patients’ points of view. This merits further specific research.

Overall, our study suggests that caution should be exercised when considering the use
of a large language model, such as OpenAI’s ChatGPT, for providing medical information
to patients. While the model has the potential to be a powerful tool, it is not yet ready to be
relied upon for this critical task. Further research and development are needed to improve
its capabilities in the medical domain before it can be used with confidence.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13111950/s1, File S1: Common patient questions.

Author Contributions: A.L. and E.K. formulated the idea and designed the study. A.L., B.A. and
E.S. prepared the data. B.G. performed the analysis. A.L., E.S. and B.A. provided clinical expertise.
A.L., E.K., B.A. and B.G. critically reviewed the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Due to data privacy regulations, the raw data of this study cannot
be shared.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Seifert, B.; Rubin, G.; de Wit, N.; Lionis, C.; Hall, N.; Hungin, P.; Jones, R.; Palka, M.; Mendive, J. The management of common
gastrointestinal disorders in general practice: A survey by the European Society for Primary Care Gastroenterology (ESPCG) in
six European countries. Dig. Liver Dis. 2008, 40, 659–666. [CrossRef] [PubMed]

2. Holtedahl, K.; Vedsted, P.; Borgquist, L.; Donker, G.A.; Buntinx, F.; Weller, D.; Braaten, T.; Hjertholm, P.; Månsson, J.; Strandberg,
E.L.; et al. Abdominal symptoms in general practice: Frequency, cancer suspicions raised, and actions taken by GPs in six
European countries. Cohort study with prospective registration of cancer. Heliyon 2017, 3, e00328. [CrossRef] [PubMed]

3. Available online: https://openai.com/blog/chatgpt/ (accessed on 1 March 2023).
4. Lee, H.; Kang, J.; Yeo, J. Medical Specialty Recommendations by an Artificial Intelligence Chatbot on a Smartphone: Development

and Deployment. J. Med. Internet Res. 2021, 23, e27460. [CrossRef] [PubMed]
5. Montenegro, J.L.Z.; da Costa, C.A.; Righi, R.D.R. Survey of conversational agents in health. Expert Syst. Appl. 2019, 129, 56–67.

[CrossRef]
6. Palanica, A.; Flaschner, P.; Thommandram, A.; Li, M.; Fossat, Y. Physicians’ Perceptions of Chatbots in Health Care: Cross-

Sectional Web-Based Survey. J. Med. Internet Res. 2019, 21, e12887. [CrossRef] [PubMed]
7. Milne-Ives, M.; de Cock, C.; Lim, E.; Shehadeh, M.H.; de Pennington, N.; Mole, G.; Normando, E.; Meinert, E. The Effectiveness of

Artificial Intelligence Conversational Agents in Health Care: Systematic Review. J. Med. Internet Res. 2020, 22, e20346. [CrossRef]
[PubMed]

8. Available online: https://www.bloomberg.com/news/articles/2022-12-07/openai-chatbot-so-good-it-can-fool-humans-even-
when-it-s-wrong (accessed on 1 March 2023).

9. Turing, A.M. Computing Machinery and Intelligence. In Mind; New Series; Oxford University Press on Behalf of the Mind
Association: Oxford, UK, 1950; Volume 59, pp. 433–460.

10. Vayena, E.; Blasimme, A.; Cohen, I.G. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018, 15, e1002689.
[CrossRef] [PubMed]

11. Powell, J. Trust Me, I’m a Chatbot: How Artificial Intelligence in Health Care Fails the Turing Test. J. Med. Internet Res. 2019,
21, e16222. [CrossRef] [PubMed]

12. Lahat, A.; Shachar, E.; Avidan, B.; Shatz, Z.; Glicksberg, B.S.; Klang, E. Evaluating the use of large language model in identifying
top research questions ingastroenterology. Sci. Rep. 2023, 13, 4164. [CrossRef] [PubMed]

13. Ge, J.; Lai, J.C. Artificial intelligence-based text generators in hepatology: ChatGPT isjust the beginning. Hepatol. Commun. 2023,
7, e0097. [CrossRef] [PubMed]

14. Lahat, A.; Klang, E. Can advanced technologies help address the global increase in demand for specialized medical care and
improve telehealth services? J. Telemed. Telecare 2023, 1357633X231155520. [CrossRef] [PubMed]

258



Diagnostics 2023, 13, 1950

15. Hirosawa, T.; Harada, Y.; Yokose, M.; Sakamoto, T.; Kawamura, R.; Shimizu, T. Diagnostic Accuracy of Differential-Diagnosis
Lists Generated by Generative Pretrained Transformer 3 Chatbot for Clinical Vignettes with Common Chief Complaints: A Pilot
Study. Int. J. Environ. Res. Public Health 2023, 20, 3378. [CrossRef] [PubMed]

16. Eysenbach, G. The Role of ChatGPT, Generative Language Models, and Artificial Intelligence in Medical Education: A Conversa-
tion with ChatGPT and a Call for Papers. JMIR Med. Educ. 2023, 9, e46885. [CrossRef] [PubMed]

17. Rasmussen, M.L.R.; Larsen, A.C.; Subhi, Y.; Potapenko, I. Artificial intelligence-based ChatGPT chatbot responses for patient and
parent questions on vernal keratoconjunctivitis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023. [CrossRef] [PubMed]

18. Samaan, J.S.; Yeo, Y.H.; Rajeev, N.; Hawley, L.; Abel, S.; Ng, W.H.; Srinivasan, N.; Park, J.; Burch, M.; Watson, R.; et al. Assessing
the Accuracy of Responses by the Language Model ChatGPT to Questions Regarding Bariatric Surgery. Obes. Surg. 2023,
33, 1790–1796. [CrossRef] [PubMed]

19. Xie, Y.; Seth, I.; Hunter-Smith, D.J.; Rozen, W.M.; Ross, R.; Lee, M. Aesthetic Surgery Advice and Counseling from Artificial
Intelligence: A Rhinoplasty Consultation with ChatGPT. Aesthetic Plast Surg. 2023. [CrossRef] [PubMed]

20. Yeo, Y.H.; Samaan, J.S.; Ng, W.H.; Ting, P.S.; Trivedi, H.; Vipani, A.; Ayoub, W.; Yang, J.D.; Liran, O.; Spiegel, B.; et al. Assessing
the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma. Clin. Mol. Hepatol. 2023.
[CrossRef] [PubMed]

21. Johnson, S.B.; King, A.J.; Warner, E.L.; Aneja, S.; Kann, B.H.; Bylund, C.L. Using ChatGPT to evaluate cancer myths and
misconceptions: Artificial intelligence and cancer information. JNCI Cancer Spectr. 2023, 7, pkad015. [CrossRef] [PubMed]

22. Johnson, D.; Goodman, R.; Patrinely, J.; Stone, C.; Zimmerman, E.; Donald, R.; Chang, S.; Berkowitz, S.; Finn, A.; Jahangir, E.; et al.
Assessing the Accuracy and Reliability of AI-Generated Medical Responses: An Evaluation of the Chat-GPT Model. Res. Sq. 2023,
preprint. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

259



Citation: Gallos, I.K.; Tryfonopoulos,

D.; Shani, G.; Amditis, A.; Haick, H.;

Dionysiou, D.D. Advancing

Colorectal Cancer Diagnosis with

AI-Powered Breathomics: Navigating

Challenges and Future Directions.

Diagnostics 2023, 13, 3673.

https://doi.org/10.3390/

diagnostics13243673

Academic Editors: Eun-Sun Kim and

Kwang-Sig Lee

Received: 10 November 2023

Revised: 12 December 2023

Accepted: 13 December 2023

Published: 15 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Advancing Colorectal Cancer Diagnosis with AI-Powered
Breathomics: Navigating Challenges and Future Directions

Ioannis K. Gallos 1,*, Dimitrios Tryfonopoulos 1, Gidi Shani 2, Angelos Amditis 1, Hossam Haick 2

and Dimitra D. Dionysiou 1,*

1 Institute of Communication and Computer Systems, National Technical University of Athens, Zografos
Campus, 15780 Athens, Greece; d.tryfonopoulos@iccs.gr (D.T.); a.amditis@iccs.gr (A.A.)

2 Laboratory for Nanomaterial-Based Devices, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
gidishani@gmail.com (G.S.); hhossam@technion.ac.il (H.H.)

* Correspondence: ioannis.gallos@iccs.gr (I.K.G.); dimitra.dionysiou@iccs.gr (D.D.D.)

Abstract: Early detection of colorectal cancer is crucial for improving outcomes and reducing mor-
tality. While there is strong evidence of effectiveness, currently adopted screening methods present
several shortcomings which negatively impact the detection of early stage carcinogenesis, including
low uptake due to patient discomfort. As a result, developing novel, non-invasive alternatives is an
important research priority. Recent advancements in the field of breathomics, the study of breath
composition and analysis, have paved the way for new avenues for non-invasive cancer detection
and effective monitoring. Harnessing the utility of Volatile Organic Compounds in exhaled breath,
breathomics has the potential to disrupt colorectal cancer screening practices. Our goal is to outline
key research efforts in this area focusing on machine learning methods used for the analysis of
breathomics data, highlight challenges involved in artificial intelligence application in this context,
and suggest possible future directions which are currently considered within the framework of the
European project ONCOSCREEN.

Keywords: breathomics; colorectal cancer; volatile organic compounds; machine learning; artificial
intelligence; automated diagnosis; validation; manifold learning; ONCOSCREEN

1. Introduction

Cancer is a group of complex diseases linked to abnormal cell growth with devastating
consequences for the patient. It ranks as a leading cause of death and a profound barrier
to increasing life expectancy worldwide [1]. Detection of cancer in early stages along
with timely and appropriate treatment is a critical component of reducing cancer-related
mortality and morbidity [2]. Currently, there is a lack of reliable screening modalities for
highly fatal cancers like pancreatic and gastric cancer [3]. Similarly, for highly prevalent
malignancies such as breast and colorectal cancer (CRC), there is plenty of room for enhanc-
ing the existing screening practices. In particular, colonoscopy and fecal immunochemical
test (FIT) are widely accepted as the cornerstones for the early detection of CRC [4]. During
a colonoscopy procedure, early precancerous lesions can be detected and removed by a
clinical expert. Nevertheless, colonoscopy is an invasive and costly procedure with low
rates of compliance [5]. FIT serves as a complementary or alternative screening modality to
colonoscopy for patients that decline the latter [4]; it is a non-invasive and low-cost test
that serves as a widely adopted screening procedure for the large part of the average-risk
population. Nevertheless, FIT shows modest accuracy in detecting CRC and advanced
adenoma (AA), with sensitivity remaining under 70% and 50%, respectively [6]. Hence,
CRC screening suffers from both low rates of adherence to the test (e.g., colonoscopy) as
well as low detection rates (e.g., FIT).

In an effort to address the aforementioned problems, recent technological advances
have brought up new novel non- or minimally invasive approaches such as breath, blood,
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and imaging-based tests [7,8]. In recent years, metabolomics has steadily gained momentum
in various frontiers including disease detection and personalized medicine [9,10]. Breath
volatolomics, also known as breathomics, can be seen as a branch of metabolomics, focusing
on human breath. Breathomics studies volatile organic compounds (VOCs) and their metabo-
lites that come from our respiratory system and internal organs. By simply exhaling air
through a breathing device, it becomes possible to capture and analyze the profile of VOCs
that are exhaled and present in the sample. Typically, a “breath biopsy” can be acquired in a
non-invasive manner through the use of analytical methods like gas chromatography–mass
spectrometry (GC-MS) or by utilizing sensors of various electronic nose devices [11]. Over
two thousand VOCs have been reported to emanate from the human body [12], forming
an inexhaustible treasure trove of biomarkers, which in turn have been linked to various
diseases, including cancer [13,14]. Cancer cells undergo metabolic alterations which can
result in the release of specific VOCs. For example, it has been shown that these cells tend to
metabolize glucose via aerobic glycolysis rather than oxidative phosphorylation, an effect
known as the Warburg effect [15]. Researchers posit the hypothesis that these VOCs are
released into the bloodstream and eventually expelled through exhalation, passing through
the endobronchial cavity [16]. A free web-based database, also known as the Cancer Odor
Database (COD), contains comprehensive information about cancer-related VOCs, with its
data being extracted directly from the scientific literature [17]. Another more general and
recent database, the Human Breathomics Database (HBD) [18], contains comprehensive
information about VOCs reported in 2766 publications. It provides biomedical information,
underlying biochemical pathways and current scientific evidence regarding the association
of each VOC with various diseases. In particular, research efforts on the determination
of cancer-related VOCs have shown that some may contribute to more than five different
cancer types [14,19]. For example, Nakhleh et al. utilized 13 VOCs for the detection and
discrimination between 17 different disease conditions from 813 patients [14]. Despite the
fact that breath analysis is still in early stages of development, analyzing breath composition
holds significant potential for contributing to several subfields of cancer research such as
detection [11,13], screening/monitoring [20], prognosis [21], and treatment response [11,22].
This review will focus on the relevance of volatolomics to CRC and recent theoretical and
technological advancements derived from the field of breathomics in this regard.

GC-MS is undeniably the gold standard in breath analysis in terms of precision, as it
enables separation, identification, and quantification of the different VOCs in the exhaled
breath gas. Alternative ways such as sensor-based techniques have also been introduced
with increasing interest [23]. Since GC-MS is resource-intensive, time-consuming, and
requires special expertise, sensor arrays in the form of breathing electronic devices/noses
(e-noses) constitute mobile, cost-effective, and user-friendly diagnostic alternatives that
are capable of providing quick results. Studies employing e-noses and breath-based VOCs
towards detection of CRC and AA are emerging at an increasing rate [24–28]. As a trade-off
for their virtues, the latter detect mixtures of VOCs instead of identifying the actual mass
of specific compounds. In other words, sensor arrays or e-noses are designed to imitate
the human olfactory system with the use of chemical sensors [29]. Applications of e-nose
devices in terms of odor perception are most often treated as black box models, focusing
more on the accuracy of the task to be performed (e.g., diagnosis/monitoring) and less on
understanding of how and why the subsequent results are derived [29].

While the use of chemical sensors holds the potential to revolutionize today’s medical
diagnostics on CRC breath, it also faces significant challenges and limitations [30]. First and
foremost, confounding factors such as age, diet, genetics, and smoking habits can introduce
variability in breath composition, threatening with inaccurate results [14]. Second, timing
and method of breath sample collection are critical considerations also, as exhaled breath
profiles can change rapidly with fluctuations in blood chemistry [31]. Third, standardized
protocols for uniform and repeatable breath sampling are imperative. Technical sensitivity,
particularly regarding sensor responses to temperature and humidity, presents obstacles
that necessitate controlled and sterile environments for analysis [32]. Fourth, data analysis
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also poses difficulties, with the choice of statistical methods, validation, and complex
modeling needing careful consideration [33]. For example, the breath signature of CRC
derives from statistical procedure; one has to seek differences between hundreds of VOCs
that might be present. Searching for statistically significant differences between breath
profiles of CRC patients and healthy controls, one needs to take into account the multiple
comparison problem to ensure no false discoveries [33]. Today, breath-based VOCs reported
as biomarkers for CRC detection exhibit a substantial amount of variation in the scientific
literature [8,34–44]. Fifth, achieving strong predictive values for disease diagnosis and
monitoring large-scale, multicenter clinical trials with blind validation are required [30].
Sixth, special emphasis on reproducibility and adaptation to real-world clinical conditions
have to be given so as to formulate widely accepted technical and clinical standards in
order to accelerate research and finally integrate breath analysis into routine medical testing.
A study discussing technical standards and recommendations for sample collection and
analytic approaches for lung disease can be found in [45]. Addressing these challenges is
crucial to establishing breath-based diagnosis in the clinical practice.

In this article we particularly focus on how advancements from the field of ma-
chine learning (ML) and artificial intelligence (AI) can be used towards useful, reliable,
accurate, and reproducible research towards breath-based diagnosis. It is the first re-
view article that exclusively focuses on AI applications for CRC detection using breath-
omics; it aims to present the latest findings reported on the use of AI techniques and
methods targeting breath-based VOCs for CRC diagnosis and has been performed in
the context of the Horizon Europe project ONCOSCREEN (https://oncoscreen.health/,
accessed on 10 December 2023). The project seeks to develop novel methodologies for can-
cer screening and early detection, ultimately aiming to enhance citizen awareness, partic-
ipation, and adherence to relevant protocols. Among the various solutions proposed by
the project, CRC diagnosis using breath-based VOCs is planned to be pursued utilizing
both analytical and sensor-based methodologies. As a first step, a GC-MS instrument
will be used for collecting prospective breath samples from healthy controls as well as
CRC-diagnosed patients, thereby establishing a VOC signature database. Subsequently, a
previously developed sensor array-based breath analyzer prototype [46], originally used
for the detection of gastric cancer VOCs, will be modified based on the gas biomarkers
defined in the GC-MS analysis phase. The basic analytical principle of the breath ana-
lyzer is based on the activity of a gold nanoparticle sensor array. This array was made of
8 different chemistries detecting the transient effect of the breath sample on the resistance
of each of these sensors for 60 s. This led to the generation of 8 × 60 observations for
each breath sample. The recent model has been upgraded to harbor 48 sensors resulting
in 48 × 60 time points for each breath sample to enable a richer picture best analyzed by
different AI frameworks. In our opinion, this mode of VOC mixture detection and labeling
best resembles the principle of smell distinction existing in the mammalian olfactory bulb.
Finally, an AI module of the device will be trained on electrochemical signal responses
between healthy and CRC samples. The resulting new prototype will be tested prospec-
tively for its ability to offer a portable and quick way of early CRC diagnosis. The project
foresees a comprehensive testing and validation process, including a clinical validation
study involving the enrollment of 4100 patients/citizens.

The rest of the article is structured as follows: we start with a brief introduction
around CRC and then we explore its breath blueprint as it is derived from past studies. We
then report the capabilities of contemporary diagnosis models for CRC and, subsequently,
we dive into each step of a typical AI pipeline towards the diagnosis of CRC. We place
special emphasis on identifying future challenges and considerations for the extension
of the existing breathomics AI toolbox against CRC. We hope that this overview forms a
basis upon which the community can further elaborate towards new advances taking into
consideration the current challenges. A schematic representation of the topics discussed in
this work can be seen in Figure 1.
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Figure 1. Schematic representation of the topics discussed within the scope of this study.

2. Colorectal Cancer

Colorectal cancer can be categorized as colon or rectal cancer depending on where it
initially develops. Despite their differences, these cancers are often grouped together [47].
The majority of colorectal tumors emerge from small clusters called polyps on the inner lin-
ing of the colon or rectum. The probability of a polyp transforming into cancer varies greatly
depending on its type, with some of them never turning into cancer [48]. Polyps can be
widely characterized as adenomatous, hyperplastic, inflammatory, or sessile serrated [49].
Hyperplastic and inflammatory polyps are frequently detected, with the adenomatous
polyps being considered precancerous [50]. Due to a higher risk of developing into CRC,
polyps characterized as sessile serrated are also regarded as adenomas [51]. Certain char-
acteristics of polyps such as the size being larger than 1 cm, the segregation of more than
three of them, or the detection of dysplasia after removal are linked with elevated risk of
cancer development [52,53]. Over time, some precancerous polyps progress into cancer-
ous growths within the walls of the colon or rectum [54]. The majority of CRC cases are
adenocarcinomas originating from mucus-producing cells in the inner layer that play the
role of lubrication and protection for the colon and rectum [55]. Of the adenocarcinomas,
signet ring cell and mucinous cancers may have a less favorable prognosis [56,57]. Finally,
less common types of CRC include carcinoid and gastrointestinal tumors, lymphomas, and
sarcomas [58,59]. Typically, the progression of a polyp to a malignant state takes several
years [54]. In many cases, patients do not experience symptoms until the cancer has already
progressed to either an early or advanced stage of development [60,61]. Therefore, early
detection, diagnosis, and staging by making use of diverse biomarkers are essential for
effective cancer treatment [62].
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3. Breath Blueprint as Biomarker for Early Detection and Monitoring of CRC

Scientific efforts towards the discovery of a CRC blueprint in breath began in the
early 2000s [44,63,64]. Overall, CRC has been consistently linked with classes of VOCs
such as alcohols, alkanes, aldehydes, and ketones [65,66], with the last two commonly
found in cancer metabolism [67]. Multiple studies have tried to come up with a CRC breath
profile [8,14,38,42–44,64]. Typically, these studies conduct VOC analysis in breath samples
using GC-MS analysis and later check for differences between groups of CRC patients
and healthy controls. If statistically significant differences are found in the levels of VOC
prevalence between groups, then these VOCs are suggested as potential biomarkers for
the disease. However, due to several differences in methodologies, technical equipment,
pre-processing routine, sample sizes, or even different cancer stages (known to affect the
VOC profile), a reliable and reproducible pattern of VOCs as biomarkers for general clinical
practice is yet to become available. The list of CRC breath-based VOC biomarkers that
have been reported in the scientific literature can be inspected in Table 1. Their underlying
biochemical pathways and functionalities are further explored in [38,65,68].

Table 1. Biomarkers reported for CRC.

Technique Sample Size VOC Reference

GC-MS CRC (15); Controls (20) Acetone; heptanoic acid;
2,6,10-trimethyldodecane; Śmiełowska et al., 2023 [34]

GC-MS CRC (30); Controls (84)

2-propenoic acid ethenyl ester; lactic
acid; 2,4-dimethyl-pyrrole;

p-menth-3-ene; 6-methyl heptane;
2,2,4,4-tetramethylpentane;

2-methylfuran; propyl pyruvate; and 2
unknown identified VOCs

Cheng et al., 2022 [35]

GC-MS CRC (162); Controls (1270)

propyl propionate; dimethyl sulfide;
1-penten-3-ol;

3,4-dimethyl-1,5-cyclooctadiene;
2-propenyl ester of acetic acid;

branched tetradecane;
2-methyl-2-propanol; 4-ethyl-1-octyn-

3-ol;2,2,4-trimethyl-3-pentanol;
cyclopropane; 2-ethoxypropane;

2-phenoxy-ethanol; heptane; branched
tridecane;

Woodfield et al., 2022 [36]

IMR-MS CRC (52); Controls (45)
Dinitrogen Oxide; Nitrous Acid;

1,3-Butadiene; Acetic Acid; Unknown
identified VOCs (9)

Politi et al., 2021 [37]

GC-MS CRC (83); Controls (90)

Tetradecane; ethylbenzene;
5,9-undecadien-2-one, 6,10-dimethyl

(E); decane; benzoic acid;
1,3-bis(1-methylethenyl) benzene;
decanal; unidentified compound;

ethyl-1-hexanol; dodecane; ethanone;
1{[}4-(1-methylethenyl)phenyl{]}; acetic

acid

Altomare et al., 2020 [66]

SIFT-MS CRLM(51); Controls (54) (E)-2-Nonene; acetaldehyde; triethyl
amine Miller-Atkins 2020 [39]

SIFT-MS CRC (50); Controls (100) * Propanal Markar et al., 2019 [40]

GC-MS CRC (71); Controls (89)

2-ethylhexanol; 3-methylhexane;
5-ethyl-3-methyloctane; acetone;

ethanol; ethyl acetate; ethylbenzene;
isononane; isoprene; nonanal; styrene;

toluene; undecane

Nakhleh et al., 2017 [14]
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Table 1. Cont.

Technique Sample Size VOC Reference

GC-MS CRC(65); Controls (122) Acetone, 6 ethyl acate, ethanol,
4-methyl octane Amal et al., 2016 [8]

GC-MS CRC (48); Controls (32) **

1,2-pentadiene; beta-pinene;
2-methylbutane; 1-methyl-3-

(1-methylethyl)benzene;
2-methylpentane; 1-(1-methylethenyl)-

2-(1-methylethyl)benzene;
5-butylnonane; methylcyclopentane;

undecane; cyclohexane; heptane;
nonanal; methylcyclohexane; dodecane;

4-methyl-2-pentanone; decanal;
1-methylnaphthalene;

1-ethyl-1,2,4-trimethylbenzene;
1-octene 1-ethyl-2,4,5-trimethylbenzene;

octane;
2,3-dihydro-1,6-dimethyl-1H-indene;

1,2,3-trimethylbenzene;
2,3-dihydro-4,7-dimethyl-1H- indene;
1,3-dimethylbenzene; 1,3-dimethyl-5-

(1-methylethyl)benzene;
1,4-dimethylbenzene;

2-methylnaphthalene; propylbenzene;

Altomare et al., 2015 [41]

GC-MS CRC (20); Controls (20)

Cyclohexanone, 2,2-dimethyldecane;
dodecane; 4-ethyl-1-octyn3-ol;
ethylailine; cydoctyimethanol;

trans-2-dodecen-1-ol; 3- hydroxy-2,4,4-
timethylpentyl2-methyipropanoate;

6-t-buty4-
2,29,9-tetramethyl-3,5-decadien-7-yne

Wang et al., 2014 [42]

GC-MS CRC (37); Controls (41)

Nonanal; 4-methy1-2-pentanone;
decanal; 2-methylbutane;

1.2-pentadiene,
2-metyipentane,3-methylpentane;
methylcyclopentane; cyclohexane;

methylcyclohexane;
1,3-dimethylbenzene; 4 methyloctane;

1,4-dimethylbenzene; a(4-
methylundecane, rt = 11-3);

b(timethyldecane, RT = 13-2)

Altomare et al., 2013 [43]

GC-MS CRC (26); Controls (22)

1,10-(1-butenylidene)bisbenzene;
1,3-dmethy benzene; 1- iodononane;

{[}(1,1-dimethyiethyl)thio{]}acetic acid;
4-(4-propylcyclohexyl)-40

cyano{[}1,10-biphenyl{]}-4-yl ester
benzoic acid; 2-amino-5isopropyl-8-

methyl-1-azulenecarbonitrile

Peng et al., 2010 [44]

Note: CRLM: colorectal cancer liver metastases; GC-MS: gas chromatography—mass spectrometry; SIFT-MS:
selected ion flow tube mass spectrometry; IMR-MS: ion molecule reaction–mass spectrometry. * 50 of controls
with normal LGI tract endoscopy and 50 found positive including inflammatory bowel diseases (IBD), diverticular
disease, and polyps. ** Former patients found disease free after oncologic follow up.

Meta-analyses on the diagnosis of cancer focusing exclusively on breath-based VOCs
have consistently shown optimistic results [68,69]. Specifically, on a systematic review and
meta-analysis on different cancer types, Hanna et al. reported that despite a substantial
variability among 63 studies, the pooled sensitivity reached 79% along with a pooled
specificity of 89%. Xiang et al. further ratified previous results by focusing exclusively
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on gastrointestinal cancer and CRC, thus reporting pooled sensitivity of 85% and pooled
specificity of 89%. They both concluded that while breath-based VOCs have the potential
for clinical screening, standardized tools and protocols have to be introduced in an effort
to mitigate the heterogeneity in the discriminatory VOCs reported and the subsequent
diagnostic metrics. Finally, a more recent meta-analysis [23] considering 52 studies and
3677 patients with cancer, including CRC, reported 90% sensitivity and 87% specificity.
The study exclusively focused on the diagnostic power of e-noses and though the authors
reported optimistic results, they stated that most of the studies considered involved a small
sample size and poor standardization.

Apart from meta-analyses relying only on breath-based VOCs, there have been some
studies considering VOCs coming from different sources, such as fecal and urine VOCs.
That being said, according to a meta-analysis on CRC screening using VOCs from different
sources [70], the authors considered 10 studies spanning from 2012 to the end of 2019. The
reported pooled sensitivity and specificity were found to be 82% and 79%, respectively. The
results suggested that VOCs can be considered a stable and robust tool for CRC screening
but not as a single and exclusive diagnostic test. Interestingly, VOCs associated with breath
exhibited higher sensitivity and specificity than their counterparts (e.g., VOCs from feces
and urine). Another meta-analysis from Wang. et al. [71] focused on diagnosis of neoplasms
of the digestive system including CRC, using VOCs from different sources. Specifically for
CRC, the authors included 16 studies (out of a total of 36 with over 3000 participants) and
reported 84% pooled sensitivity and 82% specificity. Remarkably, the authors reported that
breath-based VOCs behaved better (i.e., in terms of diagnostic metrics) than VOCs from
other sources. Specifically, by considering only breath-based studies, the reported pooled
sensitivity and specificity were both 87%. In Table 2 we present sensitivity and specificity
rates reported in studies using breath-based VOCs as biomarkers for diagnosing CRC.

Table 2. Reported sensitivity and specificity on diagnosis of CRC based on exhaled VOCs.

Technique Sample Size Sensitivity Specificity Reference

Sensors CRC (105); Controls (186) 0.79 0.53 Pol,aka et al., 2023 [72]

GC-MS CRC (15); Controls (20) 0.94 1 Śmiełowska et al., 2023 [34]

GC-MS CRC (30); Controls (84) 0.8 0.7 Cheng et al., 2022 [35]

GC-MS CRC (162); Controls (1270) 0.79 0.86 Woodfield et al., 2022 [36]

IMR-MS CRC (52); Controls (45) 0.96 0.73 Politi et al., 2021 [37]

GC-MS + sensors CRC (82); Controls (87) 0.9 0.93 Altomare et al., 2020 [38]

SIFT-MS CRLM (51); Controls (54) 0.28 0.89 Miller Atkins et al., 2020 [39]

e-nose CRC (62) * 0.88 0.75 Steenhuis et al., 2020 [26]

e-nose CRC (70); Controls (125) 0.95 0.64 Keulen et al., 2020 [27]

SIFT-MS
CRC (50); Controls (50)
CRC (50); Controls (50) **

0.96
0.90

0.76
0.66 Markar et al., 2019 [40]

e-nose CRC (15); Controls (15) 0.93 0.1 Altomare et al., 2016 [73]

GC-MS + sensors CRC (65); Controls (122) 0.85 0.94 Amal et al., 2016 [8]

GC-MS CRC (48); Controls (32) *** 1 0.98 Altomare et al., 2015 [41]

GC-MS CRC (37); Controls (41) 0.86 0.83 Altomare et al., 2013 [43]

Note: CRLM: colorectal cancer liver metastases; GC-MS: gas chromatography—mass spectrometry; SIFT-MS: selected
ion flow tube mass spectrometry; IMR-MS: ion molecule reaction–mass spectrometry. * Detection of extraluminal
local recurrences or metastases in the follow-up of curatively treated CRC patients. ** Inflammatory bowel diseases
(IBD), diverticular disease, and polyps. *** former Patients found disease free after oncologic follow up.

4. Applications of Machine Learning in Exhaled Breath Analysis: The Case of CRC

Machine learning (ML) can be seen as a part of AI that revolves around the devel-
opment of methods aiming to enable machines to learn from data. Applications of ML
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span various domains, including medicine and disease diagnosis, particularly in situations
where traditional algorithms are impractical and/or insufficient. Roughly speaking, ML
approaches can be divided into three broad categories of learning, namely supervised,
unsupervised, and reinforcement learning. The main difference between the supervised
and the unsupervised learning paradigm lies in the fact that in the first case the computer is
learning from labeled examples with known inputs and desired outputs. On the other hand,
unsupervised learning tries to discover inherent structures from unlabeled data without
explicit guidance, typically with consideration of some measure of similarity between the
data entities. Finally, reinforcement learning typically involves an agent that is learning to
make decisions through trial and error, receiving feedback in the form of rewards/penalties.
Through an iterative process, long-term cumulative rewards are maximized based on the
observed outcomes. For the rest of this review, we will focus on the supervised and the
unsupervised learning paradigms.

In the following, we sketch the main pillars of the standard ML methodology in
VOC analysis. Typically, the analysis pipeline starts with data acquisition, either with an
analytical or a sensor-based method (for their relative advantages and disadvantages see
Section 1). It continues with the pre-processing and feature extraction steps. Preprocessing
is a stage where we transform the raw data into a comprehensible format to augment the
downstream analysis. Feature extraction is the process of generating new values (features)
from the initial measurements that are informative, non-redundant, and aid in the subse-
quent learning, ultimately leading to useful and informed models. The next step usually
includes feature selection, a level of analysis where we choose the most discriminatory
features/biomarkers present in our dataset, towards parsimonious modeling to enhance
predictive and generalization capabilities. Then, we proceed to the actual modeling for dis-
crimination between patients and healthy controls in a supervised/unsupervised manner.
Finally, model validation takes place to assess the model’s performance and confirm the
usefulness of the model in real world applications.

In Table 3 we present the key characteristics of the pipeline used in studies considering
breath-based VOCs towards the diagnosis of CRC.

Table 3. Analysis pipelines of studies using breath-based VOCs towards CRC diagnosis.

Technique Sample Size
Preprocessing
Pipeline/Feature
Extraction

Feature
Selection

# of
Features

Classifier Validation
Validation
Type

Reference

Sensors
CRC (105);
Controls (186)

Data
normalization;
removal of
erroneous sensor
signals; extraction
of statistical
measures

Greedy
stepwise
selection;
evolution-
ary
search

75 (model
with best
results
based on
accuracy
reported)

Random
Forest, C4.5
(decision tree
classifier);
Artificial
Neural
Network;
Naïve Bayes

70–30% split
training and
validation
set

Internal Pol,aka et al.,
2023 [72]

GC-MS
CRC (15);
Controls (20)

Removal of
artifacts;
imputation using
median;
Shapiro–Wilk test;

Mann–
Whitney U
test; DFA;
forward
stepwise
method;
filtering
based on
certain
metabolic
reactions;

3
Artificial
Neural
Networks

10-fold Cross
validation Internal Śmiełowska

et al., 2023 [34]

GC-MS
CRC (30);
Controls (84)

Noise removal;
baseline correction;
alignment;
normalization;
peak picking;
scaling

Features
detected in
at least
20% of all
classes
considered

10 Isolation Forest LOOCV Internal Cheng et al.,
2022 [35]
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Table 3. Cont.

Technique Sample Size
Preprocessing
Pipeline/Feature
Extraction

Feature
Selection

# of
Features

Classifier Validation
Validation
Type

Reference

GC-MS
CRC (162);
Controls (1270)

Log-
transformation;
variance
stabilization;
normalization

ANOVA;
Random
forest

-

Random
Forest,
alphanet, SVM,
LASSO; elastic
net regression;

Repeated
5-fold Cross
validation

Internal Woodfield et al.,
2022 [36]

IMR-MS
CRC (52);
Controls (45)

Exclusion of
specific chemicals
(via t-test with
reference sample);
Standardization
prior to modelling;

LASSO
15 (13
VOCs,
Age, Sex)

Logistic
Regression

50-fold Cross
validation Internal Politi et al.,

2021 [37]

GC-MS +
sensors

CRC (82);
Controls (87) -

Mann–
Whitney U
test;
univariate
analysis
and
ranking of
features;
multivari-
ate
Stepwise
Logistic
Regres-
sion;

15 (14
VOCs,
Age)

Logistic
Regression LOOCV Internal Altomare et al.,

2020 [38]

SIFT-MS
CRLM (51);
Controls (54)

Log-
transformation;
PCA noise removal;
imputation of
missing values
(mean)

-
24 (22
VOCs, Sex,
Age)

Random Forest

LOOCV on
95% of the
dataset. 5%
as a Test set

Internal Miller Atkins
et al., 2020 [39]

e-nose CRC (62) * TUCKER3 - -
Artificial
Neural
Networks

10-fold cross
validation Internal Steenhuis et al.,

2020 [26]

e-nose
CRC (70);
Controls (125)

Standardization;
TUCKER3 -

11 (compo-
nents
derived
from
TUCKER3)

Artificial
Neural
Networks

10-fold cross
validation Internal Keulen et al.,

2020 [27]

SIFT-MS

CRC (50);
Controls (50)
CRC (50);
Controls (50) **

-

Univariate
statistics;
Multivari-
ate
Logistic
Regression

1 Logistic
regression

100% of data
as training
set

Internal Markar et al.,
2019 [40]

e-nose
CRC
(15);Controls
(15)

Calculation of
mean response of
the signal

PCA based
on
variance
explained

2 (1st and
2nd
principal
compo-
nent)

Probabilistic
Neural
Networks

LOOCV Internal Altomare
et al., 2016 [73]

GC-MS +
sensors

CRC (65);
Controls (122) - -

1
(Canonical
variable
from DFA
applied to
all sensing
features)

DFA

70–30% split
training and
validation
set

Internal Amal et al.,
2016 [8]

GC-MS
CRC (48);
Controls (32)
***

-
Mann–
Whitney U
test

11
Probabilistic
Neural
Networks

LOOCV Internal Altomare et al.,
2015 [41]
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Table 3. Cont.

Technique Sample Size
Preprocessing
Pipeline/Feature
Extraction

Feature
Selection

# of
Features

Classifier Validation
Validation
Type

Reference

GC-MS
CRC (37);
Controls (41) -

Mann–
Whitney U
test

15
Probabilistic
Neural
Networks

LOOCV Internal Altomare et al.,
2013 [43]

Note: GC-MS: gas chromatography—mass spectrometry; IMR-MS: ion molecule reaction–mass spectrometry;
SIFT-MS: selected ion flow tube mass spectrometry; CRLM: colorectal cancer liver metastases; LOOCV: Leave
one out cross validation; PCA: Principal Component Analysis; LASSO: Least absolute Shrinkage and selection
operator; SVM: support vector machine. * Detection of extraluminal local recurrences or metastases in the Follow
Up of curatively treated CRC patients. ** Inflammatory bowel diseases (IBD), diverticular disease, and polyps.
*** former patients found disease free after oncologic follow up.

4.1. Pre-Processing and Feature Extraction

Pre-processing is the initial stage of processing raw data. Roughly speaking, pre-
processing involves transforming raw data into a format that is comprehensible and aug-
ments the performance of the following steps. The most commonly applied strategies
can be broadly categorized as baseline manipulation, compression, and normalization
transforms [74]. The baseline manipulation refers to the transformations that attempt to
correct for the baseline of the signal with the aim of suppressing the effect of sensor drifts
(e.g., signal slowly deviates independently of the measured property due to changes in
temperature, electronic aging of components, etc.). Compression transformations address
the problem of dimensionality, effectively reducing the number of measurements trying
to optimize the trade-off between an accurate representation and a reasonable size of the
final dataset. Normalization transformations are commonly applied to smooth variations
between sensors, such as for example an inherently higher signal magnitude of some sensor
over the others. Other forms of preprocessing align more to the quality assurance of the
data. Such procedures include the removal of artefacts, suppression of noise, and handling
the missing values via imputation [34]. These types of transformations can also enhance the
performance of ML algorithms in terms of faster convergence in the optimization process,
robustness of results, and accuracy [75].

In the context of ML and pattern recognition, feature extraction plays a crucial role as
it involves taking an initial set of measurements and generating new values (features) that
are informative, non-redundant, and aid in the subsequent learning and generalization
processes. Despite the fact that it is very difficult to categorize the different families of
methodologies, feature extraction methods can be divided into three main groups, the
piecemeal, the curve fitting/statistical measures, and the transformation-based techniques.
Regarding the piecemeal features, these are the features that are directly computed on
the sensor’s response, including first and second derivatives which can be translated as
the reaction rate of the sensor and the acceleration, respectively. Other features in this
category involve measures such as the computation of maximum value, the rising and
the falling slopes during steady state, transient response, and others [76]. In the case
of the curve fitting methods, we actually fit a model on the sensor’s response in order
to measure specific model parameters [77]. Models that are commonly used for fitting
purposes include polynomial function, exponential, and auto-regressive models. Here,
we could also consider statistical measures that are computed directly on the distribution
of the sensor-response such as mean, median, skewness, kurtosis, etc. Finally, there are
transformation-based methods involving the conversion of our signal to the frequency
domain such as the Discrete Fourier Transform (DFT) or the Discrete Wavelet Transform
(DWT), which combine the virtues of DFT but also preserves temporal information. An
example of successful application of DWT can be found in [78]. The authors pre-processed
their data using DWT and later applied Principal Component Analysis (PCA) trying to
discriminate between the different odors.

Since the preprocessing routine plays a significant role in the subsequent steps of a
long pipeline, it is particularly important to be reported in detail, so as to have a common
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ground and the diverse results reported by different authors can be compared. In Table 3 the
reader can inspect the different preprocessing pipelines used in studies considering breath-
based VOCs towards CRC diagnosis. It is remarkable that for 5 out of 14 studies included
in Table 3, we did not manage to find comprehensible information on the preprocessing
pipeline applied by the authors.

4.2. Feature Selection

Distinct from feature extraction, feature selection focuses on choosing a subset of
existing features rather than creating new ones. Overall, feature selection plays a crucial
role in enhancing the efficiency and effectiveness of data analysis. It aims to simplify
models, reduce computational times, increase accuracy, robustness of learning, and enable
the interpretability of the final model (such as suggesting a few biomarkers that are probably
connected to a disease) [79]. The rationale/hypothesis behind feature selection is that the
data usually contain redundant and/or irrelevant features that can be eliminated without
significant information loss. While the simplest approach involves testing each possible
subset to minimize the error rate, this exhaustive search is computationally impractical for
large feature sets. The feature selection algorithms are divided into three broad categories:
filter, wrapper, and embedded methods [24].

Filter methods are computationally efficient and capture the usefulness of the features
based on statistical measures such as correlation but are not tuned to a specific model. For
example, there is no complex predictive model involved and, thus, no parameter selection
is needed. Instead, these methods may measure the degree of association between the
target and the independent variables (e.g., in our case, how the healthy population differs
from the diseased; with respect to which features?). They tend to produce more general
feature sets but they usually score lower in prediction performance than wrappers or
embedded methods. Examples of such methods and their applications include the Analysis
Of Variance (ANOVA) [36,40], Welch’s t-test [8], and the Mann–Whitney U test [41,43].
Wrapper methods use a predictive model to score feature subsets. Each subset is used to
train and test a model with its error rate, producing a final score. While computationally
intensive, wrapper methods are most likely to produce better results than filter methods.
Examples and applications include stepwise selection [38,72], the recursive feature elimina-
tion process [21], and the evolutionary search [72]. Embedded methods incorporate feature
selection as part of the model construction process. Examples of such methods and their
applications include the Least Absolute Shrinkage and Selection Operator (LASSO), which
penalizes regression coefficients using L1 norm regularization [37,80], ridge regression (L2
norm regularization), Elastic Net regularization [36] (which combines L1 and L2 norm
regularization), and Random Forests which utilize the Gini impurity index or information
gain/entropy for ranking features by relative importance [36,39]. These methods offer a
balance between filters and wrappers in terms of computational complexity.

4.3. Modeling and Classification

The most relevant features considered in the previous steps constitute the final feature
set that is naturally used for modeling and classification. This can be performed in either a
supervised or unsupervised manner. The latter does not involve class labels and tries to
blindly find statistical similarities between data points with the ultimate goal of finding
associations or distinct clusters of similar data points in a sample. A popular algorithm for
data-driven modeling in an unsupervised manner is the Principal Component Analysis
(PCA) [73,81], which can be used in conjunction with the K-means clustering algorithm
for classification purposes. K-means have been utilized in cancer research including
CRC [82,83]. On the other hand, supervised learning uses class labels as ground truth
to train a model performing over specific tasks. Applications of supervised learning
include algorithms such as Random Forests [35,39], Support Vector Machines (SVM) [36],
Logistic Regression [37,38,40], Artificial Neural Networks (ANN) [26,27,41,43,73], and
Linear discriminant Analysis (LDA) [8]. Despite the fact that supervised learning is more
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extensively used in disease diagnosis, unsupervised learning is particularly helpful for
visualizing the data through clustering and gaining insights into the nature of a particular
phenomenon or disease.

It should be noted that every algorithm has its own strengths and weaknesses and no
consensus on the general use of specific algorithms exists in the literature. The algorithms
can be further divided into linear and non-linear. The non-linear algorithms assume a
nonlinear relationship between the target variable and predictors used for classification. In
the linear case, separation between groups can be achieved through a linear combination of
the explanatory variables and, in simplifying terms, this can be thought of as a straight line
on a 2D plane. The nonlinear case involves nonlinear relationships among predictors to
achieve separation. Despite the conceptual superiority of non-linear algorithms and the
often better predictive performance, they are more complex and therefore often hinder the
ability to interpret the final model [84,85]. Explainability in the context of AI applications
refers to our ability to explain why and under which circumstances a decision is made by
a trained model. For example, in a clinical setting, medical experts are interested in the
clinical inference, which in turn plays a crucial role in the diagnosis, staging, or following
of a specific curative treatment [86]. Finally, other factors to consider when it comes to the
selection of a specific algorithm are the computational complexity and the proneness to
overfitting which must be assessed thoroughly through the process of model validation [87].

4.4. Model Training and Validation

Model training and validation can be seen as two distinct parts towards modelling.
Training refers to the process of fitting the best combination of parameters to the model using
a training set, while validation refers to the evaluation of performance using a validation
set (e.g., to tune hyperparameters) and a test set. In practice, in order to develop an AI
model, multiple models are fitted and we ultimately choose the best candidate (with specific
parameters and hyperparameters) judging by its performance on the validation set. If we
incorrectly assess a model’s performance, then we might choose a useless configuration.
Naturally, the validation strategy affects both the internal parameters (such as weights
and biases, which are parameters automatically derived during the training process) and
hyperparameters (which are essential for optimizing the model and are externally set by
the researcher) of a model. In cases where we consider a feature selection process during
training (i.e., candidate models consider different feature sets), insufficient validation may
affect the suggested biomarkers [88–90]. That said, model validation is involved whenever
training occurs, either only to estimate (e.g., in an unbiased manner) prediction performance
(e.g., accuracy, sensitivity, specificity, etc.) or to tune parameters with respect to them. At
last, the final error estimate is obtained when the best candidate model is finally applied
on unseen test samples. Of course, we expect that the model scores more or less the same
as when applied to the validation data. In a case where the test error is much larger than
the validation error, overfitting can occur. Hence, model validation gives us a hint of the
expected test error while testing aims for an unbiased estimate of the model’s performance
in a real clinical setting, battling the well-known phenomenon of overfitting [88,91]. The test
dataset should be independent of the training and validation sets.

Commonly applied validation strategies for both tuning AI algorithms and estimation
of performance are the Hold-out strategy (e.g., splitting into train, validation, and test
set) and CV. The Hold-out strategy splits the data into training, validation, and test sets
and follows the procedure described above. CV divides data into k subsets. The model is
trained and evaluated repeatedly k times, each time using different subsets leaving one
subset out for validation and the rest for training purposes. Next, performance metrics
are obtained and averaged with the aim of providing estimates of the model’s prediction
error. When k matches the number of samples in the data set, the method is called Leave
One Out Cross Validation (LOOCV). The main difference between the two approaches
is that cross-validation utilizes the entire dataset enabling all data to be incorporated in
model training and validation. CV may help in reducing the variance in model performance
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estimates induced by a specific split into training and testing data [91]. The last step is again
to test the best candidate model (e.g., based on CV score) on an unseen and independent
testing dataset.

Finally, the validation strategy can be characterized as internal or external depending
on the cohorts/datasets used for validation. Internal validation refers to the validity of the
model inside a single cohort, while external validation refers to the validity of the model
spanning external cohorts. External validation is much more powerful than internal in the
sense that the model is capable of performing as intended even when there are substantial
differences among data sources. For a diagnosis model on CRC, external validation would
mean to test the ability of the model to diagnose the disease in cohorts of hospitals in
different countries, for patient populations with different demographics, etc. Here, we have
to note that none of the 14 studies included in Table 3 used an external dataset to validate
findings. Moreover, most of the time the authors reported the validation error (e.g., mainly
due to the fact of using limited samples) since the cross validation is applied on the entirety
of the available datasets (Table 3).

5. Future Considerations: Extending the AI Toolbox towards Disease Diagnosis

This section delves into future considerations that extend the AI toolbox currently
in use, regarding breath-based diagnosis of CRC. These forward-looking directions are
framed within the context of the ONCOSCREEN project’s ongoing advancements and de-
velopments. We explore three key axes: manifold learning, deep learning, and explainable
AI, each representing a critical dimension in the quest to enhance the understanding and
performance of the contemporary models on diagnosis of CRC.

Over the past years, linear data-driven approaches such as PCA and LDA have become
part of the conventional breath analysis research towards preprocessing, dimensionality
reduction, visualization, and modelling in terms of a few “dominant”, discriminatory
variables [8,73,81]. In the context of dimensionality reduction, nonlinear alternatives of the
aforementioned methodologies have been introduced like the kernel Principal Component
Analysis (kPCA), ISOmetric feature MAPping (ISOMAP), Locally linear Embedding (LLE),
and Diffusion Maps [92–95]. Originating from the field of manifold learning, the funda-
mental assumption is based on the manifold hypothesis, suggesting that high-dimensional
data often lie on or near a lower-dimensional manifold within the high-dimensional space.
In simpler terms, it is assumed that the data can be effectively represented in a lower-
dimensional space taking into account nonlinear (or locally linear) measures (such as the
geodesic distance between data points [90]) of similarity between data points. By exploring
and leveraging the intrinsic structure of high-dimensional data, one can enhance not only
the diagnostic capabilities of a model, but also uncover subtle patterns and relationships
within complex datasets. For example, given a number of features resembling either a sen-
sor’s resistance or the levels (e.g., abundance) of VOCs in the breath samples, we can find
eigenvectors that capture non-linear combinations of our initial feature set and tentatively
follow the intrinsic geometry of the underlying manifold. This may allow for visualization
and exploration of non-trivial and subtle properties. Such techniques have been successful
in various fields where big, complex data and non-linear phenomena are involved. Applica-
tions include the diagnosis of schizophrenia with the use of functional magnetic resonance
imaging data [90,96], classification of images of handwritten digits [92], forecasting of brain
signals [97] and financial time series [98], bifurcation analysis from spatio-temporal data
produced by lattice Boltzmann simulations [99], and others. Specifically, Gallos et al. [96]
used a variety of manifold learning techniques to construct (embedded) brain connectivity
networks (e.g., by mapping correlation matrices in the low dimensional space prior to net-
work construction), utilizing graph theoretic measures towards diagnosis of schizophrenia.
Diffusion Maps outperformed their linear counterparts in terms of diagnostic capability.
In a follow up study [90], ISOMAP was also applied to demonstrate that learning and
feature selection on the low dimensional space was again beneficial in simplifying and
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raising the predictive performance of the model, ultimately leading to the discovery of a
few informative biomarkers for the disease.

Beyond the classic ML methodologies, a subset of ANN-based frameworks also known
as deep learning (DL) led to breakthroughs in several fields such as medical image process-
ing [100] and medical diagnosis [101]. DL’s ability to process large scale data enables the
analysis of raw data even without pre-processing, frequently with high precision [24,102].
In particular, applications on breath-based VOCs towards cancer diagnosis have been intro-
duced [103] and frameworks have been suggested. These include time series stemming
from e-nose devices [104]. Specifically, for CRC, the efforts have targeted colonoscopic [105],
endoscopic [106] and histopathological [107] images, mostly by using Convolutional Neu-
ral Networks (CNN), an architecture designed for analyzing visual data. These types of
ANNs utilize convolutional layers to automatically extract meaningful features and have
achieved remarkable success in computer vision tasks such as image recognition and object
detection. A review can be found in [108]. Within the context of DL, different architectures
exist. These include Autoencoders, which utilize a bottleneck layer to extract meaningful
features or reduce the dimensionality [103]. An additional method is Recurrent Neural
Networks (RNN), which consist of recurrent connections to preserve information across
time steps, hence allowing for them to capture temporal dependencies. The latter are also
suitable for time series analysis and have been applied towards the optimization of e-nose
systems [109] and odor classification [110]. Despite their merits, DL frameworks have their
own limitations and challenges. Typically, they need vast amounts of data in order to reach
their full potential, they are computationally expensive, have elevated probabilities of over-
fitting, and are accompanied by high complexity and low interpretability. A comprehensive
discussion can be found in [111].

In an effort to address the interpretability of the AI models, remarkable advancements
have been made towards the establishment of tools and frameworks that provide under-
standable explanations regarding outputs and decisions made by the AI models [112–114].
In the literature, the predominant terminology for this field is Explainable AI (XAI) [115].
A characteristic framework is the so-called Shapley additive explanations (SHAP), an ap-
proach originating from game theory that attempts to explain the output of AI models. The
Shapley values can be used in a model agnostic way [116], thus serving as a useful tool that
may accompany various machine learning algorithms. Conceptually, it can be regarded as
an extension of the Local Interpretable Model-agnostic Explanations (LIME) approach [117].
In simple terms, the absolute Shapley value reflects how each feature contributes to the
final outcome as it is derived from an AI model [113]. However, only a few studies have
considered such frameworks on CRC [112]. For example [112], tried to classify CRC pa-
tients based on the gut microbiome, and managed to both find CRC-associated bacteria and
explore subgroups of CRC patients based on PCA that was imposed on SHAP values. Other
frameworks include Gradient-weighted Class activation mapping (Grad-Cams), and these
can be applied to CNN-based models to provide transparency and visual explanations [118].
Applications on the diagnosis of CRC include the diagnostic evaluation from colonoscopy
images [105] and, more recently, CRC diagnosis and grading utilizing histopathological
images [107]. Since this methodology is compatible with CNN-based models, it is natural
that it can also be used on time series data employing 1D CNN models [119,120] or even
encoding (multivariate) time series data (e.g., one univariate time series per sensor of an
e-nose) into two-dimensional images (e.g., a correlation matrix or a dissimilarity matrix
in general) towards classification/diagnosis (e.g., CRC patients and healthy controls) via
pattern recognition [121].

6. Challenges and Pitfalls in the Use of AI Modelling towards Diagnosis

While the use of AI and especially ML towards diagnosis has been predominant
in the past years, one has to put a significant emphasis on model validation to ensure
their model generalizes into new unseen data [91]. Estimation of the true capabilities
of the contemporary AI models should not be taken lightly. First of all, in cases where
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the dataset is imbalanced, something very common in disease diagnosis, splits of the
dataset (e.g., into training and test splits) should be performed in a stratified manner. This
means to practically keep the same percentages of classes in each split. Second, in order
to avoid data leakage, transformations such as standardization of data or PCA should
consider only the training data. This applies because we do not want our model to be
trained using information contained on the unseen test dataset, for this would strongly
bias our estimates of performance and likely the true capabilities of the model. Third, it is
of paramount importance that wherever a CV procedure is used (with the exception for
LOOCV), the estimated performance of the model should be reported in terms of average
and standard deviation, which reflect the variability of the model’s performance [89]. For
even better/refined estimates of model performance or parameter tuning, repeats of CV
can also be beneficial [122]. Fourth, even a loop of CV may not be enough to come up
with an unbiased estimate of the model’s performance, especially when feature selection is
taking place at the same time inside the same loop [90,123]. Fifth, feature selection should
be used in conjunction with CV (especially when embedded methods are used), as the
opposite has been shown to strongly overestimate model’s performance [122]. To put it
simply, it is crucial that the feature selection process does not “see” all data and then use
the optimal feature set to evaluate the performance of a model on the same set. Hence, it is
strongly advised that the validation of AI models should take place in the form of a nested
CV consisting of an inner loop for optimizing hyperparameters and an outer loop of CV
for evaluating performance. Sixth, it is highly recommended to always test the final model
on an unseen test dataset (i.e., that is not considered during the model construction phase)
after estimating the predicted performance of using a CV scheme. Specifically, Varma
et al. [123] reported that the difference between the single CV error estimate and the true
error was in some cases greater than 20%, which can be dramatically significant, especially
in cases where the classification rates are moderate. Finally, it should be made clear that a
CV for assessing a model’s performance produces an estimation of prediction error and
by no means can this be considered the true test error, which can only be inducted by
using sufficiently large unseen test samples (i.e., external validation). This is a common
misconception in the scientific community [122,124].

7. Conclusions

This article focused on AI/ML methods used for the analysis of breathomics data in the
context of CRC. The needs for improved CRC screening and monitoring were highlighted
in parallel with the reported shortcomings of the contemporary standard protocols. VOCs
that have been identified as potential biomarkers in previous studies have been presented.
Further, we presented the diagnostic performances of contemporary models along the
AI pipelines. We explored the main steps of typical AI pipelines in breath analysis for
both analytical and sensor-based techniques. The latter are promising methods holding
several potential advances over analytical methods in terms of cost, time, portability,
and ease of use. Next, we stated future considerations and challenges with a view on
extending the AI toolbox that is currently used towards CRC diagnosis via breathomics.
The review discusses new potentials in the use of AI, such as the applications of non-linear
dimensionality reduction/manifold learning algorithms, DL frameworks, and XAI sets
of tools. These tools can potentially enhance diagnostic performance, explore non-linear
and complex relationships among features, and provide insights into a “finer” choice of
biomarkers with contribution to diagnosis. Despite the optimistic results of breath-based
diagnosis in terms of sensitivity and specificity, there is substantial variability among
studies and a reliable device and/or pipeline is yet to be developed. In this direction,
model training and validation procedures have to be strictly defined and the model’s
capabilities need to be reported in terms of both internal and external validation. Finally,
preprocessing pipelines should be reported transparently and in more detail towards
reproducible research.
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Abstract: Most of the development of gastric disease prediction models has utilized pre-trained
models from natural data, such as ImageNet, which lack knowledge of medical domains. This study
proposes Gastro-BaseNet, a classification model trained using gastroscopic image data for abnormal
gastric lesions. To prove performance, we compared transfer-learning based on two pre-trained
models (Gastro-BaseNet and ImageNet) and two training methods (freeze and fine-tune modes).
The effectiveness was verified in terms of classification at the image-level and patient-level, as well
as the localization performance of lesions. The development of Gastro-BaseNet had demonstrated
superior transfer learning performance compared to random weight settings in ImageNet. When
developing a model for predicting the diagnosis of gastric cancer and gastric ulcers, the transfer-
learned model based on Gastro-BaseNet outperformed that based on ImageNet. Furthermore,
the model’s performance was highest when fine-tuning the entire layer in the fine-tune mode.
Additionally, the trained model was based on Gastro-BaseNet, which showed higher localization
performance, which confirmed its accurate detection and classification of lesions in specific locations.
This study represents a notable advancement in the development of image analysis models within
the medical field, resulting in improved diagnostic predictive accuracy and aiding in making more
informed clinical decisions in gastrointestinal endoscopy.

Keywords: gastroscopy; transfer learning; deep learning; Gastro-BaseNet; ImageNet; endoscopy

1. Introduction

According to 2020 GLOBOCAN statistics, gastric cancer is the most common ma-
lignancy among men and women, with more than 1 million new cases worldwide and
the fifth highest incidence (5.6%) and fourth highest mortality (7.7%) among men and
women combined. The highest incidence of gastric cancer in the world is in East Asia
and Eastern Europe [1]. Gastric cancer is diagnosed through endoscopy, which visually
confirms the location and type of tumor in the stomach. Histologic confirmation through
biopsy is necessary to make a final diagnosis [2]. However, gastroscopy misses gastric
cancer between 4.6% and 14.3% of the time because it requires the examiner to detect the
lesion with the naked eye [3].

Recently, researchers have been applying artificial intelligence (AI) and convolutional
neural networks (CNN) to detect advanced gastric cancer and early gastric cancer. Lee
et al. [4] developed a malignancy prediction model with an accuracy of 96.49% (normal and

Diagnostics 2024, 14, 75. https://doi.org/10.3390/diagnostics14010075 https://www.mdpi.com/journal/diagnostics
281



Diagnostics 2024, 14, 75

gastric cancer classification) and 77.12% (gastric cancer and gastric ulcer) using CNN-based
models of ResNet50, InceptionV3, and VGG16. Ma et al. [5] developed an early gastric
cancer classification model with an accuracy of 98.84% and an F1 score of 98.18% using
GAIN-ResNet50 using attention maps. Wei et al. [6] developed a DCNN model using
VGG16 and ResNet50 to classify non-malignant mucosa (normal) and gastric cancer, with
an accuracy of 92.50% and a sensitivity of 94%. In particular, both senior and novice
endoscopists showed higher accuracy and performance. Teramoto et al. [7] developed a
gastric cancer prediction model based on VGG, DenseNet, InceptionV3, and ResNet; the
DenseNet121 model showed the highest performance with a sensitivity of 97.0% and a
specificity of 99.4%. Yuan et al. [8] trained a diagnostic model using the YOLO architecture
to determine the most predicted results as the final diagnosis, with a classification accuracy
of 93.5%, sensitivity of 59.2%, and specificity of 99.3% for early gastric cancer and a clas-
sification accuracy of 98.4%, sensitivity of 100ss%, and specificity of 98.1% for advanced
gastric cancer. Cho et al. [9] developed a binary classification model to classify cancer and
non-cancer using InceptionResNetV2, with an accuracy of 76% and an AUC of 0.706.

Those previous studies developed a CNN model for detecting and predicting the
diagnosis of both early and advanced stages of gastric cancer. This did not involve train-
ing a new model with randomly assigned weight values. Instead, a pre-trained model
was fine-tuned on a large dataset using the weights of the initial model, referred to as
transfer learning. The widely used dataset for pretraining models was ImageNet [10],
and its weights were utilized during the transfer learning process. However, ImageNet
was an image dataset of a thousand classes for various objects and was pre-trained with
images from a completely different environment than gastroscopy images. This study
presented the development of a pre-trained model called Gastro-BaseNet, which utilized
gastroscopic images to classify normal and abnormal diagnoses, such as gastric cancer
and ulcers. During the pre-training phase, Gastro-BaseNet acquired information about the
characteristics of abnormal gastric lesions as opposed to those found in a normal stomach.
This pre-trained knowledge in endoscopic images formed the basis of our pre-trained
information and enhanced training efficiency compared to other pre-trained models such
as ImageNet, which relied on knowledge from other natural image domains.

Our study involved the development of Gastro-BaseNet through the training of model
layers and weights, specifically for the classification of abnormal gastric diseases. This
model proved valuable in predicting specific gastric diagnoses and replaced pre-trained
models in more specialized studies that involve gastroscopic images. Therefore, we utilized
Gastro-BaseNet to classify gastric cancer and ulcers, comparing its performance with a
predictive model that employed the weights of pre-trained models to confirm the feasibility
of using an optimized model for research on endoscopic datasets.

2. Materials and Methods

2.1. Data Acquation

We constructed a training database for Gastro-BaseNet to predict abnormal gastric
lesions utilizing gastroscopic image data. We had examined the medical and pathology
records of patients who visited Gachon University Gil Hospital (IRB No. GBIRB 2021-383)
between January 2019 and December 2022 and underwent gastroscopy to establish their
final diagnosis (Table 1). We selected a total of 1902 patients, 1135 men and 767 women,
with a mean age of 68.03 (±12.00), and divided into three categories: 1070 patients diag-
nosed with gastric cancer, 720 men and 350 women, with a mean age of 70.45 (±11.05),
532 patients diagnosed with gastric ulcer, 317 men and 215 women, with a mean age of
67.19 (±12.61), and 300 patients with normal patients with no abnormal findings, 98 men
and 202 women, with a mean age of 60.86 (±11.09), based on the pathology results. The
images collected from patients consisted of frozen images manually captured from the
screen during gastroscopy by a gastrointestinal specialist. For patients with a diagnosis,
only images containing regions of cancer or ulcer were collected, while for normal patients,
all images taken during the examination were collected. Therefore, the number of images
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collected for each patient varies by disease. The average number of frozen images collected
per patient, by diagnosis, was approximately 5.76 (±3.48) of gastric cancer, 6.20 (±4.15)
of ulcers, and 33.52 (±10.65) of normal cases. Finally, the dataset consisted of a total of
19,518 images and consisted of 6164 images of gastric cancer, 3297 images of gastric ulcers,
and 10,057 images of normal regions.

Table 1. Number of datasets built for training Gastro-BaseNet and datasets for deep learning training.

Normal
Abnormal

Total
Gastric
Cancer

Gastric Ulcer

Train 7297 4476 2409 14,182

Validation 738 493 263 1494

Test 2022 1195 625 3842

Total
(Number of patients) 10,057 (300) 6164 (1070) 3297 (532) 19,518 (1902)

Then, we constructed another dataset to verify the performance of transfer learning
by Gastro-BaseNet. We collected still images of patients diagnosed with gastric cancer and
gastric ulcers through histologic examination from June 2018 to November 2021 who visited
Gachon University Gil Hospital. When selecting the patient’s data for evaluating transfer
learning according to a model pre-trained by gastroscopic data, the patients collected for
training Gastro-BaseNet were excluded. To evaluate the efficiency of the transfer learning
on Gastro-BaseNet, additional studies were conducted to develop diagnostic models for
two types of gastric lesions: gastric cancer (study 1) and gastric ulcers (study 2). In
Table 2, we selected a total of 1033 patients, 660 men and 373 women, with a mean age
of 65.56 (±13.00), and divided them into three categories: 707 patients diagnosed with
gastric cancer used for study 1484 men and 223 women, with a mean age of 68.01 (±11.82),
178 patients diagnosed with gastric ulcer used for study 2121 men and 57 women, with
a mean age of 62.45 (±14.52), and 148 patients with normal patients that had nothing
abnormal findings, 55 men and 93 women, with a mean age of 57.62 (±12.56), based on the
pathology results. The average number of frozen images collected per patient, by diagnosis,
was approximately 5.27 (±3.09) of gastric cancer, 6.31 (±3.98) of gastric ulcers, and 34.82
(±11.24) of normal cases. Finally, the dataset consisted of a total of 10,001 images and
consisted of 3724 images of gastric cancer, 1124 images of gastric ulcers, and 5153 images of
normal regions.

Table 2. Number of patients and image datasets for training models to classify gastric cancers
(study 1) or gastric ulcers (study 2) by using transfer learning based on Gastro-BaseNet.

Study 1: Gastric Cancer Study 2: Gastric Ulcer

Normal
Gastric
Cancer

Total Normal
Gastric
Ulcer

Total

Train 3662 2671 6333 3617 789 4406

Validation 416 273 689 461 92 553

Test 1075 780 1855 1075 243 1318

Total
(Number of patients)

5153
(148)

3724
(707)

8877
(855)

5153
(148)

1124
(178)

6277
(326)

All images were captured in the white-light imaging mode. The image was extracted
into JPG format, and the resolution of the original image was very varied, ranging from
187 × 186 to 1350 × 1062 pixels.
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2.2. Study Environment

The system environment for deep learning employed an IBM Power System AC922
8335-GTH (IBM, Armonk, NY, USA) with a single NVIDIA Tesla V100-SXM2 32 GB
(NVIDIA, Santa Clara, CA, USA). The operating system used was Ubuntu 18.04.5. We
used Python (version 3.7.10) with TensorFlow frameworks (version 2.6.0) and Keras
(version 2.6.0) for training and evaluating models. For image processing, the OpenCV
(version 4.6.0) libraries were used.

2.3. Data Preprocess

Freeze image, captured screen in esophagogastroduodenoscopy, included useless
information about patient name, patient ID, study date, endoscopy device, etc. These
were located outside of the video frame in most of the images. To extract a valid area of
gastroscopy video, we applied a frame-extraction algorithm and cropped the images of a
valid region to train models from them (Figure 1). In a few images, some areas of marked
information invaded the valid frame. However, these data included the training dataset
because it improved the generality of the trained model as a result of noise and prevented
the loss of clear cancer or ulcer areas.

 

Figure 1. The process of cropping useless information regions from the initial collected gastroscopic
images and building an image database.

To train deep learning models, we resized the collected images with the ImageNet
dataset to the image size of the pre-trained models’ input shape. The pre-trained models
used in this study were ResNet50 and EfficientNetB0, both with a resolution of 224 × 224.

2.4. Transfer Learning

Transfer learning is a training technique that transfers the processing ability of a pre-
trained model to solve one task and utilizes it to solve another task [11,12]. By using a
large amount of data, the feature extraction phase of a well-trained model is recalled and
transferred to learn the new task. In this case, the training time is reduced, and the trained
model’s performance is improved. Transfer learning trains the weights in two different
ways, according to the users’ objectives [13]. One is called freeze mode, which freezes
the feature extraction phase of the pre-trained model and allows only the new classifier
part to be trained. This is used when the pre-trained model and the new training dataset
have a similar problem or domain image. The other is called fine-tune mode through
the pre-trained model, and the new training dataset has completely different problems or
domain images; both feature extraction and classifiers are trained and tuned [14]. This can
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be carried out by training all layers of the feature extraction part, or by freezing some layers
(lower layer part) that extract general features and training the rest of the layers (upper
layer part) that extract problem-specific features.

For transfer learning, the fully connected (FC) layer responsible for the classifier of
the existing trained CNN model is removed, and new FC layers are connected to adjust
the weights through training for our purpose [15]. Gastro-BaseNet was used a pre-trained
model from the ImageNet database to classify normal or abnormal (including gastric cancer
and ulcers) in gastroscopic images to transfer learning. To develop a predictive model for
gastric cancer or ulcer, we used two pre-trained models (ImageNet, which is generally
used, and Gastro-BaseNet, which is trained by a gastroscopic database) and compared their
performance (Figure 2).

Figure 2. Flowchart of the process for developing Gastro-BaseNet, a pretraining model used for
gastroscopic images, and validating the training results with the pretraining model; the red line
means the developed pretrained Gastro-BaseNet was used for the initial weight setting.

In this study, ResNet50 [16] and EfficientNetB0 [17] were used as base architectures.
These CNN models were built with a base architecture and applied with pre-trained
weights open to the public. These were built by removing the existing FC layers and adding
layers for global average pooling, batch normalization, and a new FC layer for binary
classification. Models were fine-tuned to predict gastric diseases using a newly constructed
training and validation dataset.

2.5. Setting Model Training Hyperparameters

Pre-trained models used for diagnosing gastric cancer or gastric ulcers were trained
based on ResNet50 and EfficientNetB0 architectures (Figure 3). The layers from model
architectures and the weight were loaded, and the top block that functions as a classifier
was removed. The training model was built by connecting the feature extraction part,
excluding the removed block, and a new classifier block for binary classification of normal
and gastric lesions. The new classifier block consisted of global average pooling, a batch
normalization layer, and an FC layer for predicting the final classified result. For the
training model using transfer learning, two model training methods were used: fine-tune
mode, which adjusts the weights of all layers, and freeze mode, which adjusts the weights
of the classifier only. The hyperparameters for training were set to stochastic gradient
descent (SGD), momentum 0.9, decay 0.0001, learning rate 0.0001, batch size 256, and epoch
1000, with an early stopping setting to terminate training if learning did not improve in
60 epochs. All model training was performed with the same settings. For training models
using transfer learning, two model training methods were used: fine-tune mode, which
adjusts the weights of all layers, and freeze mode, which adjusts the weights of the classifier
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only. The hyperparameters for training were set to stochastic gradient descent (SGD),
momentum 0.9, decay 0.0001, learning rate 0.0001, batch size 256, and epoch 1000, with an
early stopping setting to terminate training if learning did not improve in 60 epochs. All
model training was performed with the same settings.

Figure 3. The architectures of the models used for deep learning training are (a) ResNet50 and
(b) EfficientNetB0.

2.6. Statistical Analysis
2.6.1. Image-Level Performance

To evaluate the performance of the trained CNN model based on Gastro-BaseNet, per-
formance metrics were calculated and compared with the results obtained with ImageNet.
A new, unseen image (not involved at all in the training stage) was applied to the training
model to predict whether the image was a gastric cancer or a gastric ulcer for each purpose.
The predicted diagnosis was compared to the label (ground truth, GT) and represented
according to a confusion matrix. Based on indications including true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) calculated by the confusion
matrix, classification performance indicators with accuracy, sensitivity, specificity, and
F1 score were calculated. Receiver operating characteristic (ROC) analysis [18] and area
under the curve (AUC) were conducted to compare transfer-learned performance based on
Gastro-BaseNet and ImageNet.

2.6.2. Patient-Level Performance

The collected image dataset was built by acquiring multiple frozen images from a
single patient. However, the performance evaluation at the image level performed earlier
calculated performance indications for every result as an independent event, even if they
were the same lesions from the same patient.

Thus, we conducted patient-level analysis, and the predicted diagnosis result with the
largest number of images diagnosed by the AI model was regarded as the final diagnosis for
that patient case. At this time, if the number of counts for each decision diagnosed as normal
or abnormal by the AI system was the same in the same patient, the patient’s final diagnosis
was considered undetermined and excluded from the evaluation metric calculation.

2.6.3. Localization Performance

Grad-CAM is a proposed method for explainable AI that uses a heatmap to represent
weights to explain what the model is looking at and making decisions about [19]. Grad-
CAM extracted from the model classifying as diagnosis highlighted the areas in red color
with a high probability of localizing a lesion. Using this, a thresholding algorithm can be
applied to specify the location of the lesion as predicted by the AI model.

In this study, we set a threshold value for localization to 0.5 in grad-CAM and set the
area above the threshold value as the location of the lesion predicted by the model. We
calculated the sensitivity of the detected location by comparing the interaction over union
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(IoU) score with the lesion location manually labeled and determining the case above 0.3 of
the IoU as TP. These processes were introduced in Figure 4.

 

Figure 4. The evaluation process for calculating localization performance based on Grad-CAM;
yellow line: the location of the lesion predicted by the model, the bolded threshold: the value used
for localization in this study.

3. Results

3.1. Gastro-BaseNet

We developed a pre-trained model, Gastro-BaseNet, based on gastroscopic images.
Gastro-BaseNet was trained to classify and predicted normal cases and abnormal cases,
including stomach cancer and stomach ulcers. We developed Gastro-BaseNet by compar-
ing the performance of the model trained by setting the initial weight randomly and the
pre-trained weight with ImageNet as the initial weight, based on the ResNet50 and Efficient-
NetB0 model architectures (Table 3). In the two models using ResNet50 and EfficientNetB0,
the model trained by tuning the weights of the entire network through fine-tune mode
from the pre-trained weight as the ImageNet dataset showed the highest performances
with accuracy of 91.88% and 91.93% and sensitivity of 90.38% and 91.26% in image-level
performance. Then it showed accuracy of 95.42% and 95.92% in each model architecture in
patient-level performance and the highest sensitivity performance of 82.19% in localization
performance when trained with the ResNet50 architecture. The ROC analysis and pairwise
comparison of ROC curves were conducted on the predicted performance of the model.
Figure 5 showed the comparison of ROC curves for two model architectures. In both
cases, models trained through fine-tune mode based on ImageNet pre-trained models
exhibited the highest performance with AUCs of 96.54% and 96.95%, and the differences
were statistically significant compared to training from random initial weights and freeze
mode. The p-values for all results of the pairwise comparison of ROC curves was lower
than 0.0001.

Table 3. Result of Gastro-BaseNet performance, a classification model for abnormalities indicative of
gastric lesions, by pretrained weights and training mode.

Model
Architecture

Hyperparameters Image-Level Performance (%) Patient-Level Performance (%)
Localization
Performance

(%)

Training
Mode

Pretrained
Weight

Accuracy Sensitivity Specificity F1 Score AUC Accuracy Sensitivity Specificity Sensitivity

ResNet50

fine-tune Random 83.91 87.42 80.76 84.09 89.57 88.38 90.06 79.31 41.23

freeze ImageNet 88.50 87.09 89.76 89.15 92.39 92.68 91.61 98.31 58.11

fine-tune ImageNet 91.88 90.38 93.22 92.36 96.54 95.42 94.53 100.0 82.19
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Table 3. Cont.

Model
Architecture

Hyperparameters Image-Level Performance (%) Patient-Level Performance (%)
Localization
Performance

(%)

Training
Mode

Pretrained
Weight

Accuracy Sensitivity Specificity F1 Score AUC Accuracy Sensitivity Specificity Sensitivity

EfficientNetB0

fine-tune Random 79.54 84.29 75.27 79.48 86.10 83.11 85.94 68.33 63.43

freeze ImageNet 87.79 87.25 88.28 88.39 91.44 92.43 91.94 95.00 61.52

fine-tune ImageNet 91.93 91.26 92.53 92.35 96.95 95.92 95.13 100.0 70.74

Figure 5. Comparison of ROC curves for normal and abnormal classification models: (a) comparison
of model performance by training method based on ResNet50 architecture. (b) comparison of model
performance by training method based on EfficientNetB0 architecture.

3.2. Models Trained on Transfer Learning Based on Gastro-BaseNet

We used a gastroscopic dataset to develop a model to predict normal and abnormal
diagnosis, including gastric cancer and gastric ulcers. Using the developed Gastro-BaseNet
for classifying abnormal diagnosis as a pre-trained weight, we applied transfer learning
techniques to develop training models to predict the diagnosis of gastric cancer and gastric
ulcer, respectively. We compared the performance differences of the training models with
the traditional ImageNet weights.

3.2.1. Gastric Cancer Classification Trained by Gastro-BaseNet

We developed classification models that predict the presence of gastric cancer disease
in input images of endoscopy through transfer learning based on Gastro-BaseNet. Except
for the pre-trained model for transfer learning, the rest of the training environment was
set the same. In training using the ResNet50 architecture, the performance of the model
with transfer learning using Gastro-BaseNet was 94.07% in freeze mode and 94.72% in
fine-tune mode, and the accuracy was improved by 3.61% and 4.05% compared to the
performance of the model with transfer learning using ImageNet in the same training mode
(Table 4). However, in training with the EfficientNetB0 architecture, the performance of the
model trained with ImageNet showed higher accuracy than Gastro-BaseNet. Nevertheless,
the sensitivity performance of the model using Gastro-BaseNet is 98.97%, which is an
improvement of 10.39% and 5.64% in each mode compared to that using ImageNet, and the
AUC score of the model using Gastro-BaseNet is improved by 3.06% when trained in freeze
mode for image-level performance. The results of the ROC comparison analysis using the
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ResNet50 architecture are presented in Figure 6a. Transfer learning using Gastro-BaseNet
with the ResNet50 architecture demonstrated the highest performance, with AUC scores
of 97.90% and 97.43% in fine-tune and freeze training modes, respectively. According to
Table 5, there was a statistically significant difference with training by ImageNet in both
freeze and fine-tune modes (p-values were lower than 0.0001). Figure 6b shows the ROC
curves using the EfficientNetB0 architecture. The model performance using Gastro-BaseNet
in fine-tune mode showed an AUC of 96.42%. The result of the pairwise comparison of
ROC curves in Table 5 between Gastro-BaseNet and ImageNet in freeze mode revealed a
p-value lower than 0.0001, indicating a statistically significant difference.

Table 4. Results of gastric cancer classification model performance trained by Gastro-BaseNet and
ImageNet by pretrained weights and training mode.

Model
Architecture

Hyperparameters Image-Level Performance (%) Patient-Level Performance (%)
Localization

Performance (%)

Training
Mode

Pretrained
Weight

Accuracy Sensitivity Specificity F1 Score AUC Accuracy Sensitivity Specificity Sensitivity

ResNet50

freeze ImageNet 90.46 90.26 90.60 91.67 94.81 96.99 96.32 100.0 80.26

fine-tune ImageNet 90.67 92.44 89.40 91.74 96.22 95.29 94.29 100.0 82.94

freeze Gastro-BaseNet 94.07 93.72 94.33 94.86 97.43 97.66 97.16 100.0 83.99

fine-tune Gastro-BaseNet 94.72 94.10 95.16 95.43 97.90 97.66 97.16 100.0 87.19

EfficientNetB0

freeze ImageNet 88.79 87.82 89.49 90.24 91.73 92.26 91.37 96.55 67.15

fine-tune ImageNet 94.02 93.33 94.51 94.82 97.05 97.66 97.16 100.0 68.54

freeze Gastro-BaseNet 85.71 98.21 76.65 86.15 97.01 95.32 99.29 7667 75.72

fine-tune Gastro-BaseNet 83.45 98.97 72.19 83.49 96.42 95.88 100.0 7667 78.50

Figure 6. Comparison of ROC curves for normal and gastric cancer classification models using Gastro-
BaseNet: (a) comparison of model performance by training method based on ResNet50 architecture;
(b) comparison of model performance by training method based on EfficientNetB0 architecture.

In patient-level performance, the model using ResNet50 architecture-based Gastro-
BaseNet showed higher accuracy and sensitivity than ImageNet. In the EfficientNetB0
model, the accuracy of the model using Gastro-BaseNet increased by more than 10%,
and the sensitivity was higher than that of using ImageNet. In addition, the localization
performance shows that the model using transfer learning with Gastro-BaseNet has superior
location detection performance.
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Table 5. Results of pairwise comparison of ROC curves of the gastric cancer classification model
trained by Gastro-BaseNet and ImageNet by pretrained weights and training mode.

Model Architecture
Variable 1 Variable 2

p-Value
Training Mode Pretrained Weight Training Mode Pretrained Weight

ResNet50

ImageNet freeze ImageNet fine-tune 0.0006

ImageNet freeze Gastro-BaseNet freeze <0.0001

ImageNet freeze Gastro-BaseNet fine-tune <0.0001

ImageNet fine-tune Gastro-BaseNet freeze 0.0002

ImageNet fine-tune Gastro-BaseNet fine-tune <0.0001

Gastro-BaseNet fine-tune Gastro-BaseNet freeze <0.0001

EfficientNetB0

ImageNet freeze ImageNet fine-tune <0.0001

ImageNet freeze Gastro-BaseNet freeze <0.0001

ImageNet freeze Gastro-BaseNet fine-tune <0.0001

ImageNet fine-tune Gastro-BaseNet freeze 0.0981

ImageNet fine-tune Gastro-BaseNet fine-tune 0.8909

Gastro-BaseNet fine-tune Gastro-BaseNet freeze 0.0270

3.2.2. Gastric Ulcer Classification Trained by Gastro-BaseNet

To develop a deep learning model to diagnose gastric ulcers, we trained the model
by transferring weights based on Gastro-BaseNet. In terms of image-level performance
(Table 6), the ResNet50 architecture was used to improve the accuracy from 92.03% to
92.72% and the F1 score of 95.14% and 95.62% in two learning modes using Gastro-BaseNet
as pre-trained weights compared to ImageNet weights, showing an increase of about 4%
and a 2.5% increase in performance. The highest accuracy of 92.31% and sensitivity of
85.71% were achieved in training in freeze mode using Gastro-BaseNet on patient-level
performance. In terms of localization performance, training in freeze mode using Gastro-
BaseNet showed the highest detection accuracy, with a detection sensitivity of 90.80%. In
image-level performance using the EfficientNetB0 architecture, the learning performance of
the model using ImageNet weights was higher than that of the model using Gastro-BaseNet,
with 88.54% and 88.62% of accuracy and 93.06% and 93.11% of F1 scores. However, in
other performances about the diagnosis of gastric ulcer, the AUC scores of the model using
Gastro-BaseNet were 90.84% and 90.04%, which showed higher performance than the
model using ImageNet, especially in patient-level performance, with higher accuracy of
89.39% and 88.89%. In terms of localization performance, the freeze training mode using
Gastro-BaseNet showed 81.82% localization performance. Figure 7 shows the results of
predicting the location of lesions extracted by grad-CAM and manually labeling the lesion
location as GT. Compared to ImageNet, the model trained on Gastro-BaseNet focused on
detecting regions that were very similar to the GT regions. In particular, the model trained
on EfficientNetB0 found similar locations for two lesions that were missed by all other
training models.

In the ResNet50 architecture, the highest AUC score of 93.82% was achieved using
Gastro-BaseNet in fine-tune mode, as shown in Figure 8a. According to the pairwise
comparison results of the ROC curves in Table 7, there is a p-value of 0.0005 in the freeze
mode and a p-value of 0.0004 in the fine-tune mode. While in the EfficientNetB0 architecture
(Figure 8b), both training modes showed a p-value lower than 0.0001 in pairwise comparison
results, indicating a significant difference in the training using Gastro-BaseNet.
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Table 6. Results of gastric ulcer classification model performance trained by Gastro-BaseNet and
ImageNet by pretrained weights and training mode.

Model
Architecture

Hyperparameters Image-Level Performance (%) Patient-Level Performance (%)
Localization

Performance (%)

Training
Mode

Pretrained
Weight

Accuracy Sensitivity Specificity F1 Score AUC Accuracy Sensitivity Specificity Sensitivity

ResNet50

freeze ImageNet 88.24 71.19 92.09 92.74 88.95 87.50 76.47 100.0 68.21

fine-tune ImageNet 88.54 63.79 94.14 93.06 88.90 87.50 76.47 100.0 64.52

freeze Gastro-BaseNet 92.03 76.54 95.53 95.14 92.76 92.31 85.71 100.0 80.11

fine-tune Gastro-BaseNet 92.72 71.60 97.49 95.62 93.82 88.89 78.79 100.0 90.80

EfficientNetB0

freeze ImageNet 88.54 63.79 94.14 93.06 83.65 87.50 76.47 100.0 64.52

fine-tune ImageNet 88.62 63.79 94.23 93.11 81.97 85.71 72.73 100.0 72.90

freeze Gastro-BaseNet 74.51 95.06 69.86 81.72 90.84 89.39 100.0 76.67 81.82

fine-tune Gastro-BaseNet 83.76 76.54 85.40 89.56 90.04 88.89 78.79 100.0 68.28

Figure 7. Results of evaluating localization performance based on Grad-CAM; transfer-learned on
ResNet50 architecture (a) by ImageNet and freeze mode; (b) by ImageNet and fine-tune mode; (c) by
Gastro-BaseNet and freeze mode; (d) by Gastro-BaseNet and fine-tune mode and transfer-learned on
EfficientNetB0 architecture; (e) by ImageNet and freeze mode; (f) by ImageNet and fine-tune mode;
(g) by Gastro-BaseNet and freeze mode; (h) by Gastro-BaseNet and fine-tune mode.
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Figure 8. Comparison of ROC curves for normal and gastric ulcer classification models using Gastro-
BaseNet: (a) comparison of model performance by training method based on ResNet50 architecture;
(b) comparison of model performance by training method based on EfficientNetB0 architecture.

Table 7. Results of pairwise comparison of ROC curves of the gastric ulcer classification model
trained by Gastro-BaseNet and ImageNet by pretrained weights and training mode.

Model Architecture
Variable 1 Variable 2 p-Value

Training Mode Pretrained Weight Training Mode Pretrained Weight

ResNet50

ImageNet freeze ImageNet fine-tune 0.4423

ImageNet freeze Gastro-BaseNet freeze 0.0005

ImageNet freeze Gastro-BaseNet fine-tune <0.0001

ImageNet fine-tune Gastro-BaseNet freeze 0.0165

ImageNet fine-tune Gastro-BaseNet fine-tune 0.0004

Gastro-BaseNet fine-tune Gastro-BaseNet freeze 0.0280

EfficientNetB0

ImageNet freeze ImageNet fine-tune 0.3943

ImageNet freeze Gastro-BaseNet freeze <0.0001

ImageNet freeze Gastro-BaseNet fine-tune <0.0001

ImageNet fine-tune Gastro-BaseNet freeze <0.0001

ImageNet fine-tune Gastro-BaseNet fine-tune <0.0001

Gastro-BaseNet fine-tune Gastro-BaseNet freeze 0.4122

4. Discussion

In this study, we developed a pre-trained model using gastroscopic data and used it
to train a deep learning model to predict gastric cancer or gastric ulcer; these compared
the performance of the model trained with ImageNet, which is widely used [20]. Then,
it generated Gastro-BaseNet, a model more optimized for gastroscopic images. These
showed higher performance than the model performance that was transfer-learned by
ImageNet. To develop a pre-trained model using gastroscopic data, we trained classification
on images of abnormal lesions, including gastric cancer and gastric ulcer. To demonstrate
the training effectiveness in general transfer learning, some experiments were conducted:
first, we trained the initial model weights set at random. Second, the model was trained
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in freeze mode, using the weights of the pre-trained model like ImageNet to train only
a part of the classifier. At last, the model was trained in fine-tune mode, and the entire
network was tuned with small changes. To verify the performance of the trained model,
we fed the model with a test dataset that was not involved in training and compared the
prediction results. Two evaluation metrics were introduced and compared: image-level,
which evaluates the total number of images as independent cases, and patient-level, which
extracts individual results for images collected from the same patient and evaluates the
most frequent prediction as the final result. Additionally, we compared the localization
performance based on the location information extracted using grad-CAM, which was
generated from models trained with abnormal data containing gastric lesions.

The pre-trained model to classify the abnormal classes of gastroscopic images showed
an accuracy of 91.88% and 91.93% in the studies using ResNet50 and Efficient-NetB0,
respectively, using transfer learning in fine-tune mode based on ImageNet, with AUC
scores of 96.54% and 96.95%, and a sensitivity to localization of 82.19% in ResNet50 and
70.74% in EfficientNetB0 for very high performance in classification and localization. This
indicates that it has been learned to identify the features of gastric cancer or gastric ulcer at
the correct location. This confirms that models that were trained by ImageNet performed
faster and better than learning weights from random models, despite training endoscopic
information from completely different domains.

Next, we developed a diagnostic prediction model for gastric cancer or ulcer through
transfer learning using Gastro-BaseNet. The model trained on a dataset with the domain
of gastroscopy based on Gastro-BaseNet proved the prediction performance of using a
pre-trained model that trained on images with a similar domain by comparing the results
of transfer learning with ImageNet.

In the training of the gastric cancer classification model, the transfer learning method
in fine-tune mode using Gastro-BaseNet based on the ResNet50 architecture showed the
highest performance with 94.72% of accuracy, 94.10% of sensitivity, and an AUC score of
97.90%. Additionally, the localization performance was also excellent, with a sensitivity
to localization 87.19%. In the training based on the EfficientNetB0 architecture, transfer
learning using Gastro-BaseNet showed lower specificity compared to ImageNet (94.51%
and 72.19%, respectively, in fine-tune mode). However, the sensitivity for classification of
gastric cancer was the highest at 98.97% in fine-tune mode training using Gastro-BaseNet,
and the accuracy was 95.88% in patient-level performance evaluation. Furthermore, per-
formance in localization was 78.50%, which was 10.04% higher than ImageNet. In the
classification model for gastric ulcers, the performance of the model using Gastro-BaseNet
in the ResNet50 architecture was the highest, with an accuracy of 92.72%, an F1 score
of 95.62%, and an AUC score of.93.82%. In the localization performance, especially, the
sensitivity to localization in fine-tune mode based on Gastro-BaseNet showed a very high
indication at 90.80%. Also, similarly to the gastric cancer classification model trained on the
EfficientNetB0 architecture, it had lower accuracy and specificity compared to ImageNet.
Nevertheless, it showed high performance at a sensitivity of 95.06% in freeze mode, and
localization performance also showed a high sensitivity of 81.82%.

Until now, most of the training methods for developing deep learning models based
on medical images (especially classification training for diagnostic prediction) have been
performed based on transfer learning. The pre-trained model used at this time brought
up and used the weight values of the model using ImageNet, and it showed excellent
performance [14,21]. However, ImageNet-based pre-trained models did not have prior
learning knowledge of medical domains. Studies about pre-trained models based on
data from medical domains were not active due to many limitations on data collection,
personal information protection, etc. Therefore, our study created a pre-trained model
with knowledge gained through collecting various patients and images and learning about
gastroscopy data that trained them, named Gastro-BaseNet.

The first limitation of our study is that we set the entire layer to be trained without
proper adjustment over the number of trainable layers in the pre-trained model. The
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trans-fer learning may adjust the number of layers to be trained according to the domain of
the training data of the pre-trained model and the domain of the training data of the newly
trained model. In addition, some studies have stated that transfer learning using natural
data such as ImageNet on medical data only speeds up the convergence of learning and does
not affect performance improvement [22–24]. In this study, the performance improvement
of the new learning model was demonstrated by a model pre-trained with gastroscopy
data compared to the existing ImageNet, but it showed very high sensitivity in training
based on the EfficientNetB0 model but also reduced accuracy and specificity performance.

The second limitation of our study is that we trained only on two kinds of model
architectures. It may lead to a lack of diversity and limitations for use in various studies
that can be conducted later. Also, we developed a pre-trained model using data collected
from one medical institution and identified a diagnostic prediction model using it. Gastro-
BaseNet used more than 10k images, but the diversity may be somewhat reduced due
to the inclusion of many images taken from the same patient. This resulted in higher
predictive performance than ImageNet without prior knowledge of the medical domain,
but the lack of generalization of the model may lead to poor classification performance for
collected gastroscopic images in new environments (other endoscopic devices, imaging
systems, etc.).

The third limitation of our study is that we have learned the deep learning model
only from the collected data without obtaining and performing more training data through
data augmentation [25,26]. Deep learning requires a large amount of data, and in general,
the more learning data, the higher the training performance. Although we have collected
and trained large amounts of data compared to other previous studies, we can achieve
performance improvements by training additional data together through image processing
techniques or generative adversarial network techniques [27], etc.

The fourth limitation of our study is the lack of a more detailed analysis of the
evaluation of localization. Generally, specialized architectural models for detection, such as
YOLO [28] and SSD [29], are employed to predict the location of gastric lesions, offering
the advantage of real-time prediction [30]. In this study, the evaluation of the localization
level involved calculating the sensitivity performance for detection based on the IoU value.
This can serve as a detection algorithm because the Gastro-BaseNet-based transfer-learned
model demonstrates a significant difference compared to other trained models. For a
quantitative comparison with results based on existing detection models, an analysis of
new performance indicators such as mean average precision (mAP) and frames per second
(FPS) is required. However, when using the classification model, extracting detection
results through Grad-CAM involves additional steps. Consequently, we anticipate that the
FPS performance, indicating the rate at which detection results are obtained, will differ
significantly compared to typical detection models.

In future studies, we will secure various pre-trained models using gastroscopic image
domains through training using more CNN model architectures. The secured pre-trained
model will be widely used not only for various gastroscopy-related studies in the future
but also for training various endoscopic medical data such as colonoscopy and esophageal
endoscopy. In addition, through multicenter research, we want to build an image database
captured and stored in various environments and improve the generality of the deep
learning model through additional studies using it. In addition, studies are being actively
conducted to develop a deep learning model that combines machine learning to predict
models through selected features by applying feature fusion and selection algorithms based
on extracted image features rather than classifier methods through FC layers [31]. We
will explore various ensemble techniques and machine learning algorithms combined to
enhance model performance and aim to compare and validate the results obtained through
the application of transfer learning.
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5. Conclusions

This study represents a significant stride forward in the development of diagnostic
prediction fields for gastric diseases by developing pre-trained models specialized in
medical image domains, especially gastroscopic images, rather than conventional natural
data for deep learning models. Additionally, models pre-trained on data from a similar
domain have exhibited substantial improvements in their localization performance on
objects, indicating a high potential for use as a detection algorithm. Specifically, it implies
that a state-of-the-art classification learning model based on the transformer algorithm,
such as Vision Transformer (ViT) [32] or DeiT [33], has the capability to perform detection
concurrently. The results verified through our studies will accelerate the development of
advanced deep learning techniques that can be utilized in various endoscopic image-based
artificial intelligence areas. With the recent advent of foundation models [34], transfer
learning has emerged as an approach to improve training efficiency and reduce data
requirements. This study attempts to emphasize the need to develop more specialized pre-
trained models or foundation models. The final goal is to contribute to the improvement
of predictive capabilities for the diagnosis of gastric diseases, enabling direct use in the
actual clinical environment and paving the way for the future development of artificial
intelligence technology in the field of gastrointestinal endoscopy as an early diagnosis and
assistance system.

Author Contributions: Conceptualization and methodology, Y.J.K. (Young Jae Kim), D.K.P.,
Y.J.K. (Yoon Jae Kim) and K.G.K.; Methodology, G.P.L., Y.J.K. (Young Jae Kim) and K.G.K.; Software
and formal analysis, G.P.L.; Data curation, D.K.P., Y.J.K. (Yoon Jae Kim) and S.K.H.; writing—original
draft, G.P.L.; writing—review and editing, Y.J.K. (Young Jae Kim) and K.G.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National IT Industry Promotion Agency (NIPA) grant
funded by the Korea government (MSIT) (No. S0252-21-1001, Development of AI Precision Medical
Solution (Doctor Answer 2.0).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Gachon University Gil Medical Center
(IRB No. GBIRB 2021-383).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to restrictions, e.g., privacy
or ethical.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN
Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]

2. Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.T.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [CrossRef]
3. Hernanz, N.; Rodríguez de Santiago, E.; Marcos Prieto, H.M.; Jorge Turrión, M.Á.; Barreiro Alonso, E.; Rodríguez Escaja, C.;

Jiménez Jurado, A.; Sierra, M.; Pérez Valle, I.; Volpato, N.; et al. Characteristics and consequences of missed gastric cancer: A
multicentric cohort study. Dig. Liver Dis. 2019, 51, 894–900. [CrossRef] [PubMed]

4. Lee, J.H.; Kim, Y.J.; Kim, Y.W.; Park, S.; Choi, Y.-i.; Kim, Y.J.; Park, D.K.; Kim, K.G.; Chung, J.-W. Spotting malignancies from
gastric endoscopic images using deep learning. Surg. Endosc. 2019, 33, 3790–3797. [CrossRef] [PubMed]

5. Ma, L.; Su, X.; Ma, L.; Gao, X.; Sun, M. Deep learning for classification and localization of early gastric cancer in endoscopic
images. Biomed. Signal Process. Control 2023, 79, 104200. [CrossRef]

6. Wei, W.; Wan, X.; Jun, Z.; Lei, S.; Shan, H.; Qianshan, D.; Ganggang, M.; Anning, Y.; Xu, H.; Jun, L.; et al. A deep neural network
improves endoscopic detection of early gastric cancer without blind spots. Endoscopy 2019, 51, 522–531. [CrossRef]

7. Teramoto, A.; Shibata, T.; Yamada, H.; Hirooka, Y.; Saito, K.; Fujita, H. Detection and characterization of gastric cancer using
cascade deep learning model in endoscopic images. Diagnostics 2022, 12, 1996. [CrossRef] [PubMed]

8. Yuan, X.-L.; Zhou, Y.; Liu, W.; Luo, Q.; Zeng, X.-H.; Yi, Z.; Hu, B. Artificial intelligence for diagnosing gastric lesions under
white-light endoscopy. Surg. Endosc. 2022, 36, 9444–9453. [CrossRef] [PubMed]

295



Diagnostics 2024, 14, 75

9. Cho, B.-J.; Bang, C.S.; Park, S.W.; Yang, Y.J.; Seo, S.I.; Lim, H.; Shin, W.G.; Hong, J.T.; Yoo, Y.T.; Hong, S.H. Automated classification of
gastric neoplasms in endoscopic images using a convolutional neural network. Endoscopy 2019, 51, 1121–1129. [CrossRef] [PubMed]

10. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

11. Kora, P.; Ooi, C.P.; Faust, O.; Raghavendra, U.; Gudigar, A.; Chan, W.Y.; Meenakshi, K.; Swaraja, K.; Plawiak, P.; Rajendra Acharya,
U. Transfer learning techniques for medical image analysis: A review. Biocybern. Biomed. Eng. 2022, 42, 79–107. [CrossRef]

12. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput.
2017, 29, 2352–2449. [CrossRef] [PubMed]

13. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
14. Kim, H.E.; Cosa-Linan, A.; Santhanam, N.; Jannesari, M.; Maros, M.E.; Ganslandt, T. Transfer learning for medical image

classification: A literature review. BMC Med. Imaging 2022, 22, 69. [CrossRef] [PubMed]
15. Kaur, R.; Kumar, R.; Gupta, M. Review on Transfer Learning for Convolutional Neural Network. In Proceedings of the 2021 3rd

International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India,
17–18 December 2021; pp. 922–926.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

17. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

18. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
19. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

20. Hussain, M.; Bird, J.J.; Faria, D.R. A Study on CNN Transfer Learning for Image Classification; Springer: Cham, Switzerland, 2019;
pp. 191–202.

21. Morid, M.A.; Borjali, A.; Del Fiol, G. A scoping review of transfer learning research on medical image analysis using ImageNet.
Comput. Biol. Med. 2021, 128, 104115. [CrossRef] [PubMed]

22. Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding transfer learning for medical imaging. Adv. Neural Inf.
Process. Syst. 2019, 32, 1–22.

23. He, K.; Girshick, R.; Dollár, P. Rethinking imagenet pre-training. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4918–4927.

24. Reverberi, C.; Rigon, T.; Solari, A.; Hassan, C.; Cherubini, P.; Antonelli, G.; Awadie, H.; Bernhofer, S.; Carballal, S.; Dinis-Ribeiro, M.;
et al. Experimental evidence of effective human–AI collaboration in medical decision-making. Sci. Rep. 2022, 12, 14952. [CrossRef]

25. Park, Y.R.; Kim, Y.J.; Chung, J.-W.; Kim, K.G. Convolution Neural Network Based Auto Classification Model Using Endoscopic
Images of Gastric Cancer and Gastric Ulcer. J. Biomed. Eng. Res. 2020, 41, 101–106.

26. Kim, Y.-j.; Cho, H.C.; Cho, H.-c. Deep learning-based computer-aided diagnosis system for gastroscopy image classification using
synthetic data. Appl. Sci. 2021, 11, 760. [CrossRef]

27. Garcea, F.; Serra, A.; Lamberti, F.; Morra, L. Data augmentation for medical imaging: A systematic literature review. Comput. Biol.
Med. 2023, 152, 106391. [CrossRef]

28. Jin, T.; Jiang, Y.; Mao, B.; Wang, X.; Lu, B.; Qian, J.; Zhou, H.; Ma, T.; Zhang, Y.; Li, S.; et al. Multi-center verification of the
influence of data ratio of training sets on test results of an AI system for detecting early gastric cancer based on the YOLO-v4
algorithm. Front. Oncol. 2022, 12, 953090. [CrossRef]

29. Ikenoyama, Y.; Hirasawa, T.; Ishioka, M.; Namikawa, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Yoshio, T.; Tsuchida, T.;
Takeuchi, Y.; et al. Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks
and endoscopists. Dig. Endosc. 2021, 33, 141–150. [CrossRef] [PubMed]

30. Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.
Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.
Gastric Cancer 2018, 21, 653–660. [CrossRef] [PubMed]

31. Yacob, Y.M.; Alquran, H.; Mustafa, W.A.; Alsalatie, M.; Sakim, H.A.M.; Lola, M.S. H. pylori Related Atrophic Gastritis Detection
Using Enhanced Convolution Neural Network (CNN) Learner. Diagnostics 2023, 13, 336. [CrossRef] [PubMed]

32. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

33. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training Data-Efficient Image Transformers & Distillation
through Attention. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 10347–10357.

34. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE
2021, 109, 43–76. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

296



Citation: Sahafi, A.; Koulaouzidis, A.;

Lalinia, M. Polypoid Lesion

Segmentation Using YOLO-V8

Network in Wireless Video Capsule

Endoscopy Images. Diagnostics 2024,

14, 474. https://doi.org/10.3390/

diagnostics14050474

Academic Editors: Hajime Isomoto,

Eun-Sun Kim and Kwang-Sig Lee

Received: 12 December 2023

Revised: 26 January 2024

Accepted: 19 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Polypoid Lesion Segmentation Using YOLO-V8 Network in
Wireless Video Capsule Endoscopy Images

Ali Sahafi 1,*,†, Anastasios Koulaouzidis 2,3,4,5 and Mehrshad Lalinia 1,†

1 Department of Mechanical and Electrical Engineering, Digital and High-Frequency Electronics Section,
University of Southern Denmark, 5230 Odense, Denmark; melal@sdu.dk

2 Surgical Research Unit, Odense University Hospital, 5000 Svendborg, Denmark;
anastasios.koulaouzidis@rsyd.dk

3 Department of Clinical Research, University of Southern Denmark, 5230 Odense, Denmark
4 Department of Medicine, OUH Svendborg Sygehus, 5700 Svendborg, Denmark
5 Department of Social Medicine and Public Health, Pomeranian Medical University, 70204 Szczecin, Poland
* Correspondence: alisa@sdu.dk
† These authors contributed equally to this work.

Abstract: Gastrointestinal (GI) tract disorders are a significant public health issue. They are becoming
more common and can cause serious health problems and high healthcare costs. Small bowel tumours
(SBTs) and colorectal cancer (CRC) are both becoming more prevalent, especially among younger
adults. Early detection and removal of polyps (precursors of malignancy) is essential for prevention.
Wireless Capsule Endoscopy (WCE) is a procedure that utilises swallowable camera devices that
capture images of the GI tract. Because WCE generates a large number of images, automated polyp
segmentation is crucial. This paper reviews computer-aided approaches to polyp detection using
WCE imagery and evaluates them using a dataset of labelled anomalies and findings. The study
focuses on YOLO-V8, an improved deep learning model, for polyp segmentation and finds that
it performs better than existing methods, achieving high precision and recall. The present study
underscores the potential of automated detection systems in improving GI polyp identification.

Keywords: polypoid lesion identification; polypoid lesion segmentation; YOLO-V8; WCE images;
gastrointestinal disorders; colorectal cancer; artificial intelligence

1. Introduction

Gastrointestinal (GI) tract disorders present a significant public healthcare issue in
Europe, resulting in around 1 million deaths annually; aside from considerable mortality,
GI pathology imposes a substantial burden on healthcare macroeconomics [1]. With
a global ageing trend, it is expected that the impact of these conditions will steadily
increase in the future [2]. Typically, GI tract cancers initiate as small, benign growths
known as polyps, which have the potential to progress into cancer over time. Small-bowel
tumours (SBTs) are relatively rare, representing around 5% of GI tract neoplasms with a
variable incidence [3]. Although the prevalence varies [4], the non-specific, subtle clinical
presentation of SBTs often makes their diagnosis challenging. Timely identification of SBTs
is crucial for improving prognosis, considering that a conclusive diagnosis often involves
employing a combination of diagnostic methods, such as wireless capsule endoscopy
(WCE). Conversely, Colorectal Cancer (CRC) stands out as a widespread yet preventable
form of cancer. The prognosis of cancer patients hinges on a multitude of factors, exhibiting
variability contingent upon the stage and site of the malignancy, usually ranging from
48.6% to 59.4% [5]. As stated previously, the majority of CRC cases develop slowly from
polyps, specifically adenomatous polyps, as depicted in Figure 1. The prompt removal of
these polyps can efficiently prevent the advancement of cancer and decrease cancer-related
mortality by as much as 70%. However, there is a considerable range in the adenoma
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detection rate (varying from 7% to 53%) owing to differences in situational awareness,
technical skill, and detection aptitude among endoscopists.

Figure 1. Progression of CRC [6].

WCE is a relatively new development in GI endoscopy. The modality involves utilising
a swallowable miniature imaging device to capture digital images of the GI tract [7]. These
images are transmitted to a portable recording device, downloaded with the assistance of
relevant software, and subsequently scrutinised by gastroenterologists for pathology. A
typical WCE session generates tens of thousands of images based on a working battery
life of 8–12 h. Therefore, an effective and precise automated identification method would
alleviate clinicians from the onerous task of analysing a large volume of images per pa-
tient. Computer-aided technologies, notably computer vision, offer a means of automating
the analysis of WCE videos, leading to reduced processing time and examination efforts
for physicians. The present research has primarily concentrated on addressing two key
challenges pertinent to the analysis of GI endoscopic images: the identification and dif-
ferentiation of malignant tissue. The former pertains to the identification of malignant
abnormalities within the intestinal tract, encompassing conditions such as tumours, polyps,
ulcers, and other manifestations primarily bleeding.

The present investigation represents an important leap forward in the domain of
polypoid segmentation within WCE images. Employing artificial intelligence, particularly
leveraging the innovative YOLO-V8 methodology, this study addresses the critical demand
for heightened precision and efficiency in detecting polypoid lesions. It introduces a
valuable clinical tool with the objective of minimising overlooked diagnoses, facilitating
early identification, and contributing significantly to cancer prevention. The evaluation
of the YOLO-V8 spans its diverse iterations, denoted as YOLO-V8 n, s, m, l, and x. Our
results, revealing exceptional precision, recall, and mean average precision, underscore
the effectiveness of this approach compared to other cutting-edge deep learning-based
models. Beyond its current influence, this study establishes the foundation for forthcoming
investigations into identifying and segmenting polypoid lesions. In the swiftly changing
realm of computer vision, creating a benchmark dataset is increasingly recognised as a
crucial requirement.

The subsequent sections of this paper are structured as follows: Section 2 explores the
related works, providing an overview of relevant studies. Section 3 presents the materials
used and the applied methodology. Experimental results and discussions are elaborated
upon in Section 4. Finally, Section 5 serves as the conclusion, summarising the key findings
and insights of the paper.

2. Related Studies

In the subsequent section, we embark on a comprehensive examination of prevailing
methodologies for the analysis of WCE images, specifically focusing on their efficacy in
detecting and identifying gastrointestinal issues, particularly polyps, as elucidated within
the existing body of literature.
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Polypoid lesion detection methods involve identifying frames that contain polypoid
lesions (these frames may encompass more than one lesion without distinguishing between
single or multiple ones in a given image), and segmentation, which entails segmenting the
mucosal area within a frame that contains lesion(s).

In the realm of image classification, deep learning has achieved significant success due
to its capacity to autonomously acquire potent feature representations from data. Despite its
widespread application in natural images, the deployment of deep learning in the diagnosis
of WCE images has been comparatively limited.

In the domain of polyp segmentation, recent strides have been made, exemplified by
the Feedback Attention Network (FANet). Extending the advancements in polyp segmenta-
tion, Tomar et al. introduce a groundbreaking approach termed FANet [8]. This innovative
architecture leverages the insights gained from each training epoch to refine subsequent
predictions. FANet unifies the prior epoch’s mask with the feature map of the current
training epoch, implementing hard attention at various convolutional layers. Notably, the
model enables iterative rectification of predictions during test time. Tomar et al. demon-
strate the efficacy of FANet through substantial improvements in segmentation metrics
across seven publicly available biomedical imaging datasets. The integration of feedback
mechanisms in FANet showcases its potential to enhance the precision and robustness of
biomedical image segmentation. Polyp segmentation poses significant challenges due to
the diversity in size, colour, and texture, compounded by indistinct boundaries between
polyps and mucosa. A notable solution in recent literature is the Parallel Reverse Attention
Network (PraNet), proposed by Fan et al. [9]. PraNet employs a Parallel Partial Decoder
(PPD) to aggregate features, generating a global map for guidance. The Reverse Attention
(RA) module mines boundary cues, fostering recurrent cooperation between areas and
boundaries, thereby enhancing segmentation accuracy. The efficacy of PraNet, positions it
as a promising approach in advancing precise polyp segmentation in colonoscopy images.
Additionally, the model integrates a parallel-partial decoder to boost its performance, a
concept that has been implemented in various innovative architectures such as AMNet [10].
AMNet builds upon the edge-detection capabilities originally employed in PraNet, further
improving the segmentation process.

Another noteworthy attention-based approach is illustrated in GMSRF-Net. In this
model, multiple-resolution scales are uniformly fused throughout the architecture, present-
ing a novel method for attention. Multi-scale approaches have been explored in the context
of polyp segmentation, including MSNet [11]. While the initial success of MSNet was
noteworthy, recent progress has significantly refined its performance. For polyp segmenta-
tion, ensemble methods have gained traction in recent years, leading to the evolution of
dual-encoder and/or dual-decoder architectures, as evidenced by Galdran et al. [12]. The
study highlights the promising outcomes achieved with a dual encoder-decoder approach.
However, it is crucial to note that the implementation followed a sequential structure for the
dual model, where the output of one encoder-decoder acted as the input for the subsequent
one. Additionally, the reliance on existing pretrained architectures limited the introduction
of novel components in the network design [12].

Yang et al. developed a colon polyp detection and segmentation algorithm based
on an improved MRCNN, involving training large-scale datasets, extracting the initial
model, and retraining it with smaller private datasets from patients [13]. In the pursuit of
lightweight network structures with high classification accuracy, Wang et al. combined
VGGNets and ResNets models with global average pooling, leading to the development of
two new models, VGGNets gap and ResNets gap, featuring reduced parameters without
compromising performance [14]. Manouchehri et al. presented a novel convolutional
neural network designed for polyp frame detection, based on the VGG network. Moreover,
they introduced a comprehensive convolutional network coupled with an efficient post-
processing algorithm for polyp segmentation [15].

In the pursuit of refining polyp detection effectiveness, several algorithms rooted in the
YOLO series were created. Guo et al. introduced an automated polyp detection algorithm
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that incorporates the YOLO-V3 structure along with active learning [16]. Similarly, Cao
et al. contribute a novel approach to gastric polyp detection by introducing a feature ex-
traction and fusion module integrated with the YOLOv3 network [17]. Their methodology
surpasses alternative approaches, particularly excelling in the detection of small polyps.
This effectiveness is attributed to the module’s capacity to seamlessly combine semantic
information from high-level feature maps with low-level feature maps, thereby enhancing
the detection capabilities for smaller polyps. This study underscores the significance of
feature extraction and fusion in optimising deep neural networks for improved gastric
polyp detection. Nogueira-Rodriguez et al. introduced a deep learning model designed for
automatic polyp detection based on YOLO-V3, including an object tracking step to mitigate
false positives. Model performance was augmented through training with a specialized
dataset featuring a substantial number of polyp images [18]. Hoang et al. introduced a
capsule endoscope system designed for small bowel and colon applications, featuring 5D
position sensing and real-time automatic polyp detection. This system utilizes a YOLO-V3-
based algorithm for the detection of real-time polyps, achieving an average precision of
85% [19].

In the contribution to real-time polyp detection, Pacal and Karaboga elevate the
YOLOv4 algorithm by integrating Cross Stage Partial Networks (CSPNet), switching from
Mish to Leaky ReLu activation, and adopting Complete Intersection over Union (CIoU)
loss over Distance Intersection over Union (DIoU) [20]. Beyond algorithmic modifications,
diverse architectural structures like ResNet, VGG, DarkNet53, and Transformers enhance
YOLOv3 and YOLOv4 performance. Augmenting the method’s effectiveness, the study
employs various data augmentation techniques, an ensemble learning model, and NVIDIA
TensorRT for post-processing. To ensure objective comparisons, only public datasets
are utilised, aligning with the MICCAI Sub-Challenge on Automatic Polyp Detection
in Colonoscopy. This study presents a comprehensive approach, yielding substantial
improvements in real-time polyp detection. In a related context, Lee et al., contribute to
colon polyp detection using YOLOv4, emphasising its multiscale learning capability [21].
They enhance this feature by introducing additional scales and optimising the activation
function, leading to continuous feature extraction during layer weight updates. The
comprehensive approach results in a significant performance boost, achieving a mean
Average Precision (mAP) of 98.36. This study highlights effective strategies for refining
network structure and employing data augmentation to improve colon polyp detection.

Wan and colleagues proposed a YOLO-V5-based model designed for real-time polyp
detection [22]. Their approach integrates a self-attention mechanism, enhancing relevant
features while diminishing less pertinent ones, ultimately leading to improved performance.
In a comprehensive experimental investigation, Pacal et al. examined innovative datasets,
SUN and PICCOLO, employing the Scaled YOLO-V4 algorithm [23]. The results showcased
remarkable success in polyp detection for both the SUN and PICCOLO datasets, positioning
the Scaled YOLO-V4 algorithm as one of the most suitable object detection methods for
large-scale datasets. Souaidi et al. introduced a hybrid method based on SSDNet for polyp
detection, focusing on modelling the visual appearance of small polyp areas [24]. Notably,
this method incorporated modified initial-A modules instead of simple convolution layers
to enhance intermediate feature maps. Experimental validation of the proposed method’s
polyp detection performance was conducted using public datasets. In the work by Karaman
and Pacal [25], they enhance YOLO-based object detection through the utilisation of the
ABC algorithm. This optimisation results in a 3% enhancement in real-time polyp detection
using YOLO-V5 on the SUN and PICCOLO datasets. The research presents an adaptable
and personalised methodology that is applicable to diverse datasets and any YOLO-based
algorithm [26].

In reviewing the existing studies on the analysis of WCE images, it becomes evident
that while numerous methodologies exhibit progress, certain gaps and limitations persist
in the current body of literature. Some models, though initially showing promise, require
further refinement and validation across diverse datasets to establish their generalizability.
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Moreover, the overall assessment indicates a need for more comprehensive investigations
into real-time capabilities, dataset adaptability, and potential limitations in various clinical
scenarios. These research gaps present opportunities for future studies to address and
enhance the effectiveness of methodologies for detecting and identifying GI issues in
WCE images.

Table 1 presents a summary of the aforementioned prevailing methodologies for the
analysis of WCE images, specifically focusing on their efficacy in detecting and identifying
GI issues.

Table 1. Recent related studies.

Study Year Method

Song et al. [10] 2022 AMNet

Tomar et al. [8] 2022 FANet

Zhao et al. [11] 2021 MSNet

Galdran et al. [12] 2021 Double Encoder-Decoder Network

Yang et al. [13] 2020 MRCNN

Wang et al. [14] 2020 VGGNet + ResNet

Haj-Manouchehri et al. [15] 2020 CNN + VGGNet

Guo et al. [16] 2022 YOLO-V3

Cao et al. [17] 2021 YOLO-V3

Nogueira et al. [18] 2022 YOLO-V3

Hoang et al. [19] 2021 YOLO-V3

Pacal et al.[20] 2021 YOLO-V4

Lee et al. [21] 2022 YOLO-V4

Wan et al. [22] 2021 YOLO-V5

Pacal et al. [23] 2022 Scaled YOLO-V4

Souaidi et al. [24] 2022 SSDNet

Karaman et al. [25] 2023 ABC algorithm with YOLO-based

Karaman et al. [26] 2023 YOLO Algorithms

3. Material and Applied Method

3.1. Network Configuration

The models were created using the PyTorch version 2.1.0, with all training and infer-
ence processes running on the Google Colab cloud server, equipped with an NVIDIA T4
GPU (16 GB RAM), an Intel Xeon CPU at 2.20 GHz, 12 GB of RAM, and a high-speed SSD.

3.2. Dataset

We have used KID Dataset which is an accessible repository aimed at catalysing
the development and assessment of innovative MDSS solutions [27–29]. Designated as
KID Dataset 2, this compilation comprises meticulously annotated WCE images, cap-
tured throughout the GI tract using a MiroCam capsule endoscope with a resolution of
360 × 360 pixels. The dataset features a comprehensive array of anomalies, categorised
into 303 images of vascular anomalies (small bowel angiectasias, lymphangiectasias, and
luminal blood), 44 images of polypoid anomalies (lymphoid nodular hyperplasia, lym-
phoma, and Peutz-Jeghers polyps), 227 images of inflammatory anomalies (ulcers, aphthae,
mucosal breaks with surrounding erythema, cobblestone mucosa, luminal stenoses and/or
fibrotic strictures, and mucosal/villous edema), and 1778 normal images derived from the
oesophagus, stomach, small bowel, and colon. The strength of the dataset lies not only in
its breadth but also in the collaborative efforts of the KID working group, consisting of
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six centres that have contributed anonymised, annotated Capsule Endoscopy (CE) images
and videos from various CE models. This collaborative endeavour has resulted in a com-
prehensive repository exceeding 2500 annotated CE images and 47 videos, covering diverse
categories such as normal CE, vascular lesions, inflammatory lesions, lymphangiectasias,
and polypoid lesions [28]. To ensure standardised representation, lesion categorisation
adheres to the CE Structured Terminology (CEST), providing a robust foundation for the
utility of the dataset [30]. The dataset maintains a commitment to high-quality original
resolution, avoiding distortions introduced by additional compression. Image formats align
with ISO/IEC 15948 [31] PNG standards, a platform-independent, lossless compression
format, with alternative acceptable standards including ISO/IEC 14496-12 [32], MPEG-4,
AVC (Advanced Video Coding), and H.264 for videos, encompassing F4V and FLV (Flash
video) formats. To facilitate the training and evaluation of models, we performed a split
of the dataset into training (70%), validation (15%), and test (15%) sets. This split ensures
that our models are trained on a diverse range of data, validated for generalisation, and
tested on unseen samples. The split was conducted randomly while maintaining the distri-
bution of anomaly and normal images across the sets. Facilitating the annotation process
is the integration of software tools for video manipulation and image annotation on the
KID website. Annotations are supported by an open-access, platform-independent tool
called Ratsnake, enabling both semantic and graphic annotations [33]. Semantic annotation
utilises textual labels and adheres to standard web ontology language description logics
(OWL DL) [34].

3.3. Framework and Methodology

Our main focus in enhancing our segmentation strategy revolves around amplifying
segmentation capabilities, specifically targeting polypoid lesions in WCE images. To attain
this objective, we harness the power of YOLO-V8 [35], an advanced iteration of the original
YOLO [36].

3.3.1. YOLO-V8 Architecture

YOLO-V8 has attained cutting-edge performance by refining the model structure,
incorporating both anchor box and anchor-free schemes, and integrating a diverse array
of data augmentation techniques. Our deep learning framework is structured around five
distinct-sized versions of YOLO-V8, labelled as n, s, m, l, and x, each characterised by
varying channel depth and filter numbers as outlined in Table 2 [35]. In the backbone archi-
tecture, all five models are employed, capitalising on their balanced blend of segmentation
accuracy and processing speed. Integrating YOLO-V8 into our computer vision project
brings forth several advantages, with heightened accuracy emerging as a primary asset
compared to its predecessors within the YOLO model lineage. YOLO-V8 extends its sup-
port to a spectrum of tasks, encompassing object segmentation, instance segmentation, and
image classification, thereby enhancing its versatility for diverse applications. Positioned
as the latest evolution in YOLO’s object segmentation paradigm, YOLO-V8 places a central
emphasis on augmenting both accuracy and efficiency relative to its forerunners. This
version brings comprehensive improvements, such as an advanced network design, a new
take on anchor boxes, and an updated loss function, all contributing to significantly better
segmentation accuracy.

The superiority of YOLO-V8 shines through its exceptional accuracy, making it a
competitive choice among cutting-edge object segmentation frameworks. Engineered with
efficiency at its core, YOLO-V8 is tailored for seamless execution on standard hardware,
making it a practical and feasible choice for various object segmentation tasks, including
those involving edge computing scenarios. The incorporation of anchor boxes in YOLO-V8
serves to align predicted bounding boxes with ground-truth bounding boxes, thereby
further enhancing the overall accuracy of the object segmentation process.
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Table 2. Model specifications.

Model d (depth_multiple) w (width_multiple) r (Ratio)

YOLO-V8 n 0.33 0.25 2.0
YOLO-V8 s 0.33 0.50 2.0
YOLO-V8 m 0.67 0.75 1.5
YOLO-V8 l 1.00 1.00 1.0
YOLO-V8 x 1.00 1.25 1.0

The training process of YOLO-V8 is set to achieve significantly faster speed when
compared to two-stage object segmentation models, presenting it as an efficient option for
projects with stringent time constraints. Diverging from the structure seen in ultralytics
/YOLO-V5 [37], substantial modifications were applied to the system’s backbone. This
involved the replacement of C3 with C2f and the integration of the ELAN principle from
YOLO-V7 [38]. Notably, the initial 6 × 6 convolution in the stem was replaced with a
3 × 3 convolution, augmenting the model’s capability to capture more comprehensive
gradient flow information.

The C3 module consists of three ConvModules and n DarknetBottleNecks, while
the C2f module is made up of two ConvModules and n DarknetBottleNecks, which are
interconnected via Split and Concat operations. The ConvModule follows a Conv-BN-
SiLU activation sequence, with ’n’ representing the number of bottleneck units. In the C2f
module, the outputs from the Bottleneck, which includes two 3 × 3 convolutional layers
with residual connections, are merged [1].

Deviating from the YOLO-V5 architecture, which incorporates a linked head, this
methodology introduces a separated head, distinctly isolating the classification and seg-
mentation elements. Significantly, the model eliminates the objectness branch, maintaining
only the classification and regression branches. Anchor-Base utilises numerous anchors
within the image to calculate the four offsets representing the regression object’s location in
relation to the anchors. This mechanism enhances the accurate determination of the object’s
location by employing corresponding anchors and offsets. The architectural representation
of the model can be observed in Figure 2.
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Figure 2. Architecture of YOLO-V8 with backbone and head components.
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3.3.2. Training the Model

In the training phase of the model, the Task Aligned Assigner from Task-aligned
One-stage Object Detection (TOOD) [39] has been employed to assign positive and negative
samples. This method selects positive samples through an assessment that combines the
weighted scores from both classification and regression, as detailed in Equation (1).

t = sα · uβ (1)

In this context, s represents the predicted score associated with the identified class,
and u represents the Intersection over Union (IoU) between the predicted and the actual
bounding box. Moreover, the model incorporates branches for classification and regression.
The classification branch employs the Binary Cross-Entropy (BCE) Loss, as depicted by the
subsequent equation:

Lossn = −w[yn log(xn) + (1 − yn) log(1 − xn)] (2)

where w represents the weight, yn represents the labelled value, and xn is the predicted
value generated by the model.

Regarding the regression branch, Distribute Focal Loss (DFL) [40] and Complete
Intersection over Union (CIoU) Loss [41] have been utilised. DFL is employed to widen
the probability distribution around the object y, and its equation is expressed as follows:

DFL(Sn, Sn+1) = −((yn+1 − y) log(Sn) + (y − yn) log(Sn+1)) (3)

Here, the equations for Sn and Sn+1 are presented below:

Sn = (
yn+1 − y
yn+1 − yn

), Sn+1 = (
y − yn

yn+1 − yn
) (4)

The CIoULoss introduces an influential factor into the Distance IoU(DIoU) Loss [42],
considering the aspect ratio of both the prediction and the ground truth bounding box. The
equation is as follows:

CIoULoss = 1 − IoU +
Distance2

2

Distance2
C
+

v2

(1 − IoU + v)
(5)

where, v stands for the parameter that measures the consistency of the aspect ratio [42].
Figure 3 illustrates the training results diagrams for the applied method, encompassing

five iterations of distinct versions of YOLO-V8. These plots, designated as ‘n’, ‘s’, ‘m’, ‘x’,
and ‘l’, represent distinct versions or settings of the YOLO model. Starting with YOLO-
V8(n), both training and validation losses exhibit a consistent decrease over time, indicative
of effective learning and good generalisation, as the validation loss closely mirrors the
training loss. YOLO-V8(s) follows a similar trend, with initial volatility settling into
convergence. YOLO-V8(m) exhibits initial extreme volatility, with a sudden spike in loss
followed by stabilisation, potentially signalling an issue with early epochs. YOLO-V8(l) and
YOLO-V8(x) share a pattern of initial spikes, yet stabilise, with their training and validation
losses converging. The bottom right bar plot provides a summarised view of average or
final loss values for each model version, revealing ‘n’ and ‘l’ as top performers and ‘x’ with
the highest loss. Analysing initial spikes, convergence patterns, and potential overfitting, it
is apparent that despite the initial challenges, all models eventually converge without signs
of overfitting. Choosing the optimal model involves considering both final loss values
and loss curves, prioritising stability and lower validation loss for robust generalisation to
unseen data.
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Figure 3. Training and Validation results diagrams of applied methods in 5 versions of YOLO-V8.

4. Results and Discussion

4.1. Evaluation Metrics

This paper evaluates the performance of the algorithm in segmenting polypoid lesions
using three key metrics: Precision, Recall, and Dice score. The equations for these metrics
are provided below:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

Dice score =
2 × TP

2 × TP + FP + FN
(8)

Within these indicators, TP (true positives) refers to the number of points correctly
identified as part of polypoid lesions, indicating precise detection and labelling. FN (false
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negatives) denotes the number of points where polypoid lesions were present but not
accurately detected, highlighting missed lesion areas. TN (true negatives) encompasses
points correctly identified as not being part of polypoid lesions, contributing to the model’s
specificity assessment. Finally, FP (false positives) represents points incorrectly classified as
part of polypoid lesions, indicating areas mistakenly identified as lesions. Together, these
metrics offer a comprehensive assessment of the model’s performance in distinguishing
between polypoid and non-polypoid lesions, crucial for evaluating its overall effectiveness
and reliability.

Precision evaluates the proportion of accurately labelled polypoid lesions among all
the predicted occurrences of such lesions. It functions as a metric that gauges the precision
of predictions. In polypoid lesion segmentation, precision signifies the level of confidence
in correctly identifying a positive segmentation. A heightened precision value proves
beneficial by minimising the occurrence of false alarms, subsequently alleviating financial
and psychological stress for patients. Precision(B) (Bounding Box Precision) specifically
assesses precision at an IoU (Intersection over Union) threshold of 0.5 for bounding boxes.
It measures how accurately the model identifies polypoid lesions within bounding boxes,
considering cases where there is at least 50% overlap with the ground truth bounding
boxes.Precision(M) (Multiple IoU Precision) evaluates precision performance across a range
of IoU thresholds, typically 0.5, 0.75, etc. This provides a thorough evaluation of the model’s
accuracy in identifying objects that have different levels of spatial intersection with the
actual data, providing an understanding of its consistency in various situations.

Conversely, Recall signifies the portion of detected objects. In the context of polypoid
lesion segmentation, this metric holds substantial importance, as a higher recall guarantees
that a greater number of patients undergo timely follow-up examinations and receive
suitable treatment. As a result, this could lead to diminished mortality rates and prevent
unwarranted costs for patients. Recall quantifies the ratio of identified polypoid lesions
from all images containing such lesions. Recall (B) typically stands for Recall at IoU
(Intersection over Union) threshold of 0.5 for bounding boxes. It measures how well the
model is able to recall (detect) objects with bounding boxes that have at least 50% overlap
with the ground truth bounding boxes. Recall (M) often stands for Recall at multiple IoU
thresholds, usually 0.5, 0.75, etc. It means evaluating recall performance across a range
of IoU thresholds, providing a more comprehensive assessment of the model’s ability to
detect objects.

mAP50 (B) stands for mean Average Precision at 50% IoU threshold for bounding
boxes. Average Precision (AP) is a metric that considers both precision and recall at
different confidence thresholds. mAP50 (B) specifically looks at the average precision when
considering bounding boxes with at least 50% overlap with the ground truth. mAP (M)
stands for mean Average Precision at multiple IoU thresholds. It is a broader evaluation
that looks at the average precision across a range of IoU thresholds, providing a more
complete picture of the model’s performance. Notably, mAP50-95 (B) stands out as a
significant metric, capturing the model’s performance across a broader range of detection
thresholds, akin to the mAP50 measure.

Dice score measures the overlap between predicted and ground truth masks, offering
a concise and intuitive measure of segmentation accuracy in the context of polypoid lesions.
It ranges from 0 to 1, with 1 indicating a perfect match, making it valuable for assessing the
precision of delineating regions of interest in medical image analysis.

4.2. Performance of the Applied Method

Table 3 elaborated on the hyperparameter setting by providing the key metrics of each
model’s performance on the validation dataset. The results presented in Table 3 underscore
the outstanding performance achieved by various versions of YOLO-V8 in tasks associated
with polypoid lesion segmentation.
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Table 3. Training and deploying the five iterations of YOLO-V8: Evaluating performance and outcomes.

Y
O

L
O

T
y

p
e

P
re

ci
si

o
n

(B
)

R
e

ca
ll

(B
)

m
A

P
5

0
(B

)

m
A

P
5

0
-9

5
(B

)

P
re

ci
si

o
n

(M
)

R
e

ca
ll

(M
)

m
A

P
5

0
(M

)

m
A

P
5

0
-9

5
(M

)

D
ic

e
sc

o
re

P
a

ra
m

e
te

rs
(M

)

Im
a
g

e
S

e
g

m
e
n

ta
ti

o
n

T
im

e
o

n
C

P
U

(s
)

Im
a
g

e
S

e
g

m
e
n

ta
ti

o
n

T
im

e
o

n
T

4
G

P
U

(s
)

YOLO-V8 n 98.8 81.8 93.1 73.6 98.8 81.8 93.1 70.7 89.57 3 0.3322 0.0284
YOLO-V8 s 96.3 91.8 90.3 91.8 96.3 91.8 91.05 88.8 93.99 11 1.0768 0.0388
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YOLO-V8 x 85.2 80.6 84.4 86.6 85.2 80.6 83.9 85.6 82.78 71 5.8717 0.1045

As a concluding step, we assessed the efficacy of our approach on the KID dataset,
contrasting its outcomes with those obtained from other state-of-the-art methodologies. We
utilised the generated dataset to evaluate different state-of-the-art models. Table 4 shows the
evaluation results of different algorithms. This table presents a comprehensive comparison
of various detection methods, evaluating their performance in terms of precision, recall,
and dice score. Notably, the Resnet family exhibits high performance. This suggests their
efficiency in achieving a balance between model complexity and performance. NanoNet-A,
NanoNet-B, and NanoNet-C demonstrate competitive results, particularly NanoNet-B,
which achieves impressive recall with a significantly lower number of parameters, making
it a compelling choice for resource-efficient applications.

Visual outcomes of the applied method, along with the detected polypoid lesions and
their corresponding outlines, are illustrated in Figure 4.

Table 4. Comparative analysis of different algorithms: performance results.

Study Dataset Architecture Precision Recall Dice Score

Delagah et al. [43] Kvasir-Capsule SVM 99.5% 97.5% 98.47

Amiri et al. [44] Kvasir-Capsule Fast ROI 94.3% 90.9% 92.56

Sornapudi et al. [45] Mayo Clinic Resnet-101(Pre-TrainedWeights:COCO) 94.03% 94.03% 94.03

Sornapudi et al. [45] Mayo Clinic Resnet-101(Pre-TrainedWeights:ImageNet) 82.05% 95.52% 87.40

Sornapudi et al. [45] Mayo Clinic Resnet-101(Pre-TrainedWeights:Balloon) 98.46% 95.52% 96.96

Sornapudi et al. [45] Mayo Clinic Resnet-50(Pre-TrainedWeights:COCO) 94.12% 95.52% 94.82

Sornapudi et al. [45] Mayo Clinic Resnet-50(Pre-TrainedWeights:COCO) 92.06% 86.57% 89.21

Sornapudi et al. [45] Mayo Clinic Resnet-50(Pre-TrainedWeights:Balloon) 90% 94.03% 91.96

Goel et al. [46] AIIMS DICR-CNN 90% 92% 91.43

Goel et al. [46] KID DICR-CNN 91% 95% 92.93

Souaidi et al. [24] KID Hyb-SSDNet 93.29% 89.4% 91.29

Jha et al. [47] Kvasir-Capsule NanoNet-A 93.2% 96.9% 94.04

Jha et al. [47] Kvasir-Capsule NanoNet-B 93% 98.8% 95.87

Jha et al. [47] Kvasir-Capsule NanoNet-C 92.3% 97.5% 94.85

Our Study KID YOLO-V8 m 98% 97.9% 97.94

307



Diagnostics 2024, 14, 474

Figure 4. Segmentation results from YOLO-V8 m showcase subsets for single and multi-polypoid
lesion instances in our dataset’s test images: (a) Original Images; (b) Ground Truth Binary Mask;
(c) Segmented polypoid lesion(s) outlined in red contour with the ground truth depicted in purple;
and (d) Segmented polypoid lesion(s) Binary Mask.

4.3. Discussion

Incorporating YOLO-V8 into computer vision projects provides heightened accuracy
compared to preceding YOLO models, rendering it a versatile solution for tasks such as
object segmentation, instance segmentation, and image classification. This latest iteration
emphasises the enhancement of accuracy and efficiency through optimised network archi-
tecture, a revamped anchor box implementation, and a modified loss function. YOLO-V8
showcases superior accuracy, establishing itself as a robust contender among state-of-the-
art object detection models. Engineered for efficiency, it operates seamlessly on standard
hardware, rendering it a practical choice for real-time object segmentation tasks.

This study underscores the critical importance of early detection and prevention in the
context of GI tract disorders, particularly SBTs and CRC, and introduces and evaluates the
YOLO-V8 deep learning model for automated polypoid lesion segmentation, addressing
the pressing need for efficient and accurate computer-aided diagnosis.
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The YOLO-V8 method exhibits diverse performance across its iterations (n, s, m, l, x),
with YOLO-V8 m notably standing out due to its exceptional precision (98%) and recall
(97.9%), making it a promising choice for accurate polypoid lesion segmentation, as indi-
cated in Table 3. Comparatively, our study using YOLO-V8 m surpasses the performance
of various state-of-the-art segmentation algorithms, as illustrated in Table 4. YOLO-V8 m
outperforms other architectures in terms of precision, recall, and dice score, showcasing
its effectiveness in lesion detection. When considering application-specific requirements,
Resnets are recognised for their efficiency with fewer parameters, while NanoNet-B excels
in resource efficiency without compromising performance. Despite YOLO-V8 m’s impres-
sive metrics, it comes with a larger model size (27 M parameters). This emphasises the need
to carefully balance model complexity and performance when selecting a segmentation
method tailored to a particular use case, highlighting the comprehensive insights.

The YOLO-V8 architecture has been intricately designed to facilitate optimal infor-
mation flow, adeptly capturing intricate features relevant to the segmentation of polypoid
lesions while minimising unnecessary computational burden. This carefully crafted design
ensures smooth processing without compromising accuracy, placing a strong emphasis on
attending to various scales and resolutions present in the input image. YOLO-V8 effec-
tively addresses the multiscale nature inherent in polypoid lesions, allowing for detailed
discernment at different levels and significantly contributing to heightened precision and
recall compared to larger, less adaptable models. Moreover, the study’s reliance on the
KID Dataset, validated by the KID working group, not only enhances the credibility of
the findings but also underscores the versatility of YOLO-V8 in adapting to a wide array
of datasets.

By incorporating advanced training strategies and data augmentation techniques,
YOLO-V8 is adeptly designed to learn from diverse datasets, a critical feature for polypoid
lesion detection where size, shape, and appearance vary widely. Its adaptability signifi-
cantly boosts the model’s generalisation capabilities and robustness, leading to enhanced
performance on previously unseen data. YOLO-V8 marks a significant evolution from
its predecessor, YOLO-V5, through crucial updates and modifications that sharpen its
accuracy. These advancements enable YOLO-V8 to outperform older, more resource-heavy
models, showcasing its superiority in the field.

4.4. Limitations and Future Scopes

The approach presented signifies a substantial leap beyond its predecessors in the
realm of YOLO algorithms, showcasing notable enhancements in hyperparameter opti-
misation while addressing both temporal and financial constraints. However, the study’s
broader impact was limited by the lack of a comprehensive public dataset. Despite achiev-
ing positive outcomes, specific datasets from existing literature were omitted because of
the limited availability of polyp images and a constrained patient pool, underscoring the
essential dependence on robust datasets for deep learning approaches and the imperative
need for diverse and expansive datasets to showcase optimal performance. Nevertheless,
the methodology has made substantial progress in improving the speed and efficiency
of real-time detection, outperforming existing methods and previous iterations of YOLO.
Efforts are ongoing to leverage these advancements in clinical applications by integrating
available datasets. Nonetheless, an acknowledgement exists regarding the importance of
datasets encompassing a more extensive range of WCE images, reflecting varied patient
demographics and geographical origins [48]. In our forthcoming research, we aim to
broaden our investigative scope to facilitate more comprehensive statistical evaluations.
Our strategy includes the implementation of sophisticated statistical tests to delve into
the relationships between model characteristics and performance metrics, with a specific
emphasis on comparing models such as YOLO-V8 using advanced methodologies. This
approach seeks to furnish a more profound and accurate assessment of their effectiveness.
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5. Conclusions

In this study, we addressed the pressing issue of identification of polypoid lesions in
WCE images, a critical aspect of preventing cancer. We introduced a detection system utilis-
ing YOLO-V8 models to aid gastroenterologists in identifying and categorising polypoid
lesions accurately and efficiently. We highlighted the significance of timely polypoid lesion
segmentation and removal in reducing cancer-related mortality. To this end, we harnessed
the potential of WCE technology, which offers an innovative approach to diagnosing GI
conditions without resorting to invasive procedures.

The KID dataset, a comprehensive repository of video capsule endoscopy images,
served as the foundation for our research. We curated this dataset to focus on the polypoid
lesion class, generating corresponding ground truth masks for precise segmentation tasks.

The YOLO-V8 model emerged as our chosen deep learning architecture due to its
state-of-the-art accuracy, versatility, and efficiency. Our meticulous data augmentation
techniques ensured the diversity and robustness of the training dataset, further enhancing
the model’s performance. Upon evaluating the applied approach, we achieved impressive
results, demonstrating the capability of our model in polypoid lesion segmentation. The
metrics of precision, recall, and mean average precision were utilised for the assessment of
the different types of applied models. Among the variants and other models, YOLO-V8
m stands out with a precision of 98%, recall of 97.9% and also strikes a balance between
accuracy and computational efficiency, making it a promising choice.

This research has the potential to serve as a foundational reference for future studies on
polypoid lesion segmentation and classification. Given the rapid advancements in the field
of computer vision in recent years, the creation of a benchmark dataset becomes crucial.
Our aspiration is that the dataset generated in this study will significantly accelerate the
progress of computer-aided cancer diagnosis.
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