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João P. S. Ferreira, Filipe Vilas Boas, et al.

Deep Learning for Automatic Diagnosis and Morphologic Characterization of Malignant Biliary
Strictures Using Digital Cholangioscopy: A Multicentric Study
Reprinted from: Cancers 2023, 15, 4827, doi:10.3390/cancers15194827 . . . . . . . . . . . . . . . . 6

Zaenab Alammar, Laith Alzubaidi, Jinglan Zhang, Yuefeng Li, Waail Lafta and Yuantong Gu

Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray
Images
Reprinted from: Cancers 2023, 15, 4007, doi:10.3390/cancers15154007 . . . . . . . . . . . . . . . . 19

Jose Luis Diaz Resendiz, Volodymyr Ponomaryov, Rogelio Reyes Reyes and Sergiy

Sadovnychiy

Explainable CAD System for Classification of Acute Lymphoblastic Leukemia Based on a
Robust White Blood Cell Segmentation
Reprinted from: Cancers 2023, 15, 3376, doi:10.3390/cancers15133376 . . . . . . . . . . . . . . . . 55

Suryadipto Sarkar, Kong Min, Waleed Ikram, Ryan. W. Tatton, Irbaz B. Riaz, Alvin C. Silva,

et al.

Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer
Patients Using a Hybrid Deep-Machine Learning Approach
Reprinted from: Cancers 2023, 15, 1673, doi:10.3390/cancers15061673 . . . . . . . . . . . . . . . . 77

Salem Alkhalaf, Fahad Alturise, Adel Aboud Bahaddad, Bushra M. Elamin Elnaim, Samah

Shabana, Sayed Abdel-Khalek and Romany F. Mansour

Adaptive Aquila Optimizer with Explainable Artificial Intelligence-Enabled Cancer Diagnosis
on Medical Imaging
Reprinted from: Cancers 2023, 15, 1492, doi:10.3390/cancers15051492 . . . . . . . . . . . . . . . . 92

Bofan Song, Chicheng Zhang, Sumsum Sunny, Dharma Raj KC, Shaobai Li, Keerthi

Gurushanth, et al.

Interpretable and Reliable Oral Cancer Classifier with Attention Mechanism and Expert
Knowledge Embedding via Attention Map
Reprinted from: Cancers 2023, 15, 1421, doi:10.3390/cancers15051421 . . . . . . . . . . . . . . . . 112

Marwa Obayya, Mashael S. Maashi, Nadhem Nemri, Heba Mohsen, Abdelwahed Motwakel,

Azza Elneil Osman, et al.

Hyperparameter Optimizer with Deep Learning-Based Decision-Support Systems for
Histopathological Breast Cancer Diagnosis
Reprinted from: Cancers 2023, 15, 885, doi:10.3390/cancers15030885 . . . . . . . . . . . . . . . . . 124

Mehmet Ali Balcı, Larissa M. Batrancea, Ömer Akgüller and Anca Nichita
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Editorial: Recent Advances in Deep Learning and Medical
Imaging for Cancer Treatment

Muhammad Fazal Ijaz 1,* and Marcin Woźniak 2,*
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2 Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, Poland
* Correspondence: mfazal@mit.edu.au (M.F.I.); marcin.wozniak@polsl.pl (M.W.)

In the evolving landscape of medical imaging, the escalating need for deep-learning
methods takes center stage, offering the capability to autonomously acquire abstract data
representations crucial for early detection and classification for cancer treatment. The
complexities in handling diverse inputs, high-dimensional features, and subtle patterns
within imaging data are acknowledged as significant challenges in this technological
pursuit. This Special Issue, “Recent Advances in Deep Learning and Medical Imaging
for Cancer Treatment”, has attracted 19 high-quality articles that cover state-of-the-art
applications and technical developments of deep learning, medical imaging, automatic
detection, and classification, explainable artificial intelligence-enabled diagnosis for cancer
treatment. In the ever-evolving landscape of cancer treatment, five pivotal themes have
emerged as beacons of transformative change. This editorial delves into the realms of
innovation that are shaping the future of cancer treatment, focusing on five interconnected
themes: use of artificial intelligence in medical imaging, applications of AI in cancer
diagnosis and treatment, addressing challenges in medical image analysis, advancements
in cancer detection techniques, and innovations in skin cancer classification.

In the realm of medical sciences, particularly within the field of cancer treatment,
groundbreaking advancements have been achieved through the integration of deep learn-
ing and medical imaging technologies. This dynamic landscape has witnessed substantial
progress, thanks to pioneering research endeavors that leverage the capabilities of artificial
intelligence to revolutionize the detection and treatment of cancer. Authors in [1] utilized
digital single-operator cholangioscopy (D-SOC) and artificial intelligence (AI) to enhance
the diagnosis of indeterminate biliary strictures (BSs). Their study employed a convolu-
tional neural network (CNN) trained on 84,994 images from 129 D-SOC exams in Portugal
and Spain, achieving an impressive overall accuracy of 82.9%, with a sensitivity of 83.5%
and specificity of 82.4%. The findings highlight the potential of integrating AI into D-SOC
for substantial improvement in identifying malignant strictures.

In a parallel effort, authors in [2] tackled challenges in medical image classification,
particularly with musculoskeletal radiographs (MURA), using a novel transfer learning
(TL) approach. Their method involved pre-training deep-learning (DL) models on similar
medical images, addressing limitations associated with TL on ImageNet datasets, and
fine-tuning with a small set of annotated images. Focusing on humerus and wrist classifica-
tion, their TL approach outperformed traditional ImageNet TL methods and showcased
robustness and potential reusability across diverse medical image applications, effectively
addressing the scarcity of labeled training data. In addressing leukemia challenges, au-
thors in [3] proposed an explainable AI (XAI) leukemia classification method to overcome
the “black box problem” in deep-learning approaches. Their approach incorporated a
strong white blood cell (WBC) nuclei segmentation as a robust attention mechanism, re-
sulting in an intersection over union (IoU) of 0.91. With a testing accuracy of 99.9%, the
deep-learning classifier showcased the potential of the visual explainable CAD system to
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enhance leukemia diagnosis reliability and patient outcomes. Authors in [4] developed
the adaptive Aquila optimizer with explainable artificial intelligence-enabled cancer diag-
nosis (AAOXAI-CD) technique, leveraging the faster SqueezeNet model, AAO algorithm
for hyperparameter tuning, and a majority-weighted voting ensemble model with RNN,
GRU, and BiLSTM classifiers. The integration of the XAI approach LIME enhanced the
interpretability of the black-box method in cancer detection, demonstrating promising
results in simulation evaluations on medical cancer imaging databases compared to ex-
isting approaches. The study focused on improving colorectal and osteosarcoma cancer
classification through this methodology.

In a related study, authors in [5] emphasize the significance of early breast cancer
detection, focusing on the role of artificial intelligence, specifically deep learning. The paper
highlights the limitations of manual screening by radiologists, advocating for automated
methods and discussing recent studies using AI for improved early detection. Acknowl-
edging the crucial role of datasets in training AI algorithms for breast cancer analysis, the
review aims to be a comprehensive resource for researchers, recognizing AI’s potential in
enhancing outcomes for women with breast cancer.

In the realm of applications of artificial intelligence in cancer diagnosis and treatment,
authors in [6] highlight the global concern of skin cancer, emphasizing the crucial role of
early detection for successful treatment. The current limitation of specialized skin can-
cer professionals in developing countries leads to expensive and inaccessible diagnoses.
The paper explores the potential of AI, particularly machine learning and deep learning,
in automating skin cancer diagnosis to enhance early detection and reduce associated
morbidity and mortality rates, drawing insights from previous works and proposing fu-
ture directions for overcoming challenges in this field. Authors in [7] emphasized AI’s
transformative role in healthcare, focusing on its impact on urological cancer diagnosis,
treatment planning, and monitoring. The study, based on a comprehensive review until
31 May 2022, identified various AI forms, such as machine learning and computer vision.
The findings suggest that AI has significant potential to enhance uro-oncology, revolu-
tionizing cancer care for improved patient outcomes and overall tumor management in
the future.

On the other hand, authors in [8] highlighted that laryngeal carcinoma is the most
common upper respiratory tract malignant tumor, leading to postoperative voice loss
after total laryngectomy. They suggested employing modern deep learning, specifically
convolutional neural networks (CNNs) applied to Mel-frequency spectrogram (MFCC)
inputs, to objectively analyze substitution voicing in audio signals following laryngeal
oncosurgery. Their approach achieved the highest true-positive rate and an overall accuracy
of 89.47% compared to other state-of-the-art methods. Authors in [9] discussion on breast
cancer as a leading cause of death among women globally, they highlighted the time-
consuming nature and subjectivity of histopathological diagnosis. Their paper introduced
the CSSADTL-BCC model, utilizing Gaussian filtering for noise reduction, a MixNet-based
feature extraction model, and a stacked gated recurrent unit (SGRU) classification approach
with hyperparameter tuning using the CSSA. The CSSADTL-BCC model exhibited superior
performance in breast cancer classification on histopathological images compared to recent
state-of-the-art approaches.

In the realm of addressing challenges in medical image analysis, authors in [10] ex-
plore the complexities in diagnosing and treating liver tumors, emphasizing the vital
role of accurate segmentation and classification in conditions like hepatocellular carci-
noma or metastases. Despite challenges posed by unclear borders and diverse tumor
characteristics, the paper introduces a transformative solution by adapting the transformer
paradigm from natural language processing (NLP) to computer vision (CV). Their three-
stage approach, involving pre-processing, enhanced Mask R-CNN for liver segmentation,
and classification using enhanced swin transformer network with adversarial propaga-
tion (APESTNet), demonstrates superior performance, efficiency, and noise resilience in
experimental findings.
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On the other hand, authors in [11] discuss the challenges faced by computer-aided
diagnosis (CAD) methods in medical imaging due to diverse imaging modalities and
clinical pathologies. Despite recognizing deep learning’s efficacy, they propose an inno-
vative hybrid approach that integrates medical image analysis and radial scanning series
features, utilizing a U-shape convolutional neural network for classifying 4D data from
lung nodule images. The results demonstrate a notable accuracy of 92.84%, outperforming
recent classifiers and underscoring the efficiency of this novel method.

In a parallel effort, authors in [12] highlights the pivotal role of precise clinical staging
in enhancing decision making for bladder cancer treatment. To overcome the constraints
of current radiomics methods with grayscale CT scans, the suggested hybrid framework
combines pre-trained deep neural networks for feature extraction with statistical machine
learning for classification. This approach excels in distinguishing bladder cancer tissue
from normal tissue, differentiating muscle-invasive bladder cancer (MIBC) and non-muscle-
invasive bladder cancer (NMIBC), as well as discerning post-treatment changes (PTC)
versus MIBC. Authors in [13] enhance breast cancer diagnosis through their AOADL-HBCC
technique, which combines the arithmetic optimization algorithm with deep-learning-based
histopathological breast cancer classification. The approach employs median filtering for
noise removal and contrast enhancement and features a SqueezeNet model and a deep
belief network classifier optimized with Adamax. Comparative studies demonstrate that
the AOADL-HBCC technique surpasses recent methodologies, achieving a maximum
accuracy of 96.77% in breast cancer classification.

In realm of advancements in cancer detection techniques, a study by authors in [14]
enhance their automated method for calculating metabolic tumor volume (MTV) in diffuse
large B-cell lymphoma (DLBCL), addressing the limitations of the current semiautomatic
software. The updated method utilizes an improved deep convolutional neural network
to segment structures from CT scans with avidity on PET scans, demonstrating high
concordance in MTV calculations through rigorous validation against nuclear medicine
readers. This advancement supports the potential integration of PET-based biomarkers in
clinical trials, offering a more efficient and accurate approach to prognostic assessments
in DLBCL.

Authors in [15], addresses limitations in deep-learning models for rare skin disease
detection by emphasizing challenges related to imbalanced datasets and identifying tiny,
affected skin portions in medical images. He proposes an evolved attention-cost-sensitive
deep-learning-based feature fusion ensemble meta-classifier approach that incorporates
refined cost weights to combat data imbalance and enhances attention mechanisms for
optimal feature capture. The updated two-stage ensemble meta-classifier achieves an
impressive 99% accuracy for both skin disease detection and classification, outperforming
existing methods by 6% and 11%, respectively, positioning itself as a valuable computer-
aided diagnosis tool for early and accurate skin cancer detection in medical environments.
Authors in [16] expand the exploration of explainable artificial intelligence (XAI) for classi-
fying pulmonary diseases from chest radiographs. They enhance their CNN-based transfer
learning approach using the ResNet50 neural network, trained on a more extensive dataset
that includes a comprehensive collection of COVID-19-related radiographs. The updated
study demonstrates an improved classification accuracy of 95% and 98%, reinforcing
the potential of XAI in enhancing disease detection and providing crucial interpretable
explanations for early-stage diagnosis and treatment of pulmonary diseases. This under-
scores the ongoing commitment to refining models for accurate and transparent chest
radiograph classification.

In the realm of innovations in skin cancer classification, authors in [17] delve into skin
cancer classification, refining the analysis of HAM10000 and BCN20000 datasets to enhance
classification accuracy. They employ three feature fusion methods with CNN models
(VGG16, EfficientNet B0, and ResNet50), forming adaptive weighted feature sets (AWFS).
Introducing two optimization strategies, MOWFS and FOWFS, leveraging an artificial
jellyfish (AJS) algorithm, the authors showcase the superiority of FOWFS-AJS, achieving
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the highest accuracy, precision, sensitivity, and F1 score, particularly with SVM classifiers
attaining 94.05% and 94.90% accuracy for HAM10000 and BCN20000 datasets, respectively.
The non-parametric Friedman statistical test reinforces FOWFS-AJS as the top-performing
strategy, emphasizing its efficiency due to the quick converging nature facilitated by AJS.
Authors in [18] advance oral cancer detection by introducing the attention branch network
(ABN), addressing interpretability concerns of their prior work on convolutional neural
networks (CNNs). The ABN incorporates visual explanation, attention mechanisms, and
expert knowledge through manually edited attention maps, outperforming the baseline
network and achieving an accuracy of 0.903 with the integration of squeeze-and-excitation
(SE) blocks for improved cross-validation accuracy. The study establishes a reliable and
interpretable oral cancer computer-aided diagnosis system.

Finally, in the realm of mathematical modeling for cancer cell growth control, au-
thors in [19] address the challenge of cancer cell growth control through mathematical
modeling. The study advocates for optimal medications to counter chemotherapy’s de-
structive effects, employing techniques like Bernstein polynomial with genetic algorithm
and synergetic control for stability. The simulation results highlight synergetic control’s
effectiveness in eliminating cancerous cells within five days, presenting a promising early
reduction approach.
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Simple Summary: Diagnosis and characterization of biliary strictures is challenging, even after the
introduction of digital single-operator cholangioscopy (D-SOC). The endoscopist’s visual impression
has a suboptimal accuracy and there is a significant interobserver variability. Artificial intelligence
tools for image analysis have presented important contributions in several fields of gastroenterology.
Convolutional neural networks are highly efficient multi-layered deep neural networks for image
analysis, with great results in several fields of medicine. Nevertheless, the role of these deep learning
models in digital cholangioscopy is still in a premature phase. With this bicentric international
study, the authors aimed to create a deep learning-based algorithm for digital cholangioscopy
capable of distinguishing benign from malignant biliary lesions. The present model accurately
detected malignant biliary lesions with an image processing rate that favors its clinical applicability.
The authors believe that the use of an AI-based model may change the landscape in the digital
cholangioscopy diagnostic yield.

Abstract: Digital single-operator cholangioscopy (D-SOC) has enhanced the ability to diagnose
indeterminate biliary strictures (BSs). Pilot studies using artificial intelligence (AI) models in D-SOC
demonstrated promising results. Our group aimed to develop a convolutional neural network (CNN)
for the identification and morphological characterization of malignant BSs in D-SOC. A total of
84,994 images from 129 D-SOC exams in two centers (Portugal and Spain) were used for developing
the CNN. Each image was categorized as either a normal/benign finding or as malignant lesion (the
latter dependent on histopathological results). Additionally, the CNN was evaluated for the detection
of morphologic features, including tumor vessels and papillary projections. The complete dataset
was divided into training and validation datasets. The model was evaluated through its sensitivity,
specificity, positive and negative predictive values, accuracy and area under the receiver-operating
characteristic and precision-recall curves (AUROC and AUPRC, respectively). The model achieved a
82.9% overall accuracy, 83.5% sensitivity and 82.4% specificity, with an AUROC and AUPRC of 0.92
and 0.93, respectively. The developed CNN successfully distinguished benign findings from malig-
nant BSs. The development and application of AI tools to D-SOC has the potential to significantly
augment the diagnostic yield of this exam for identifying malignant strictures.

Cancers 2023, 15, 4827. https://doi.org/10.3390/cancers15194827 https://www.mdpi.com/journal/cancers6
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1. Introduction

Biliary strictures (BSs) are a concerning finding, often confronting patients with a poor
prognosis. The primary focus in the presence of a BS is to exclude malignancy, which
is responsible for the majority of BS cases. Malignant BSs typically result from primary
(cholangiocarcinoma) or secondary neoplasia with biliary tract extension (gallbladder,
pancreatic, hepatocellular carcinoma) [1,2]. On the other hand, around 30% of all BS cases
are benign, with the need to consider iatrogenic causes, biliary lithiasis, primary and
IgG4-related sclerosing cholangitis [2,3]. Therefore, it is crucial to differentiate between
benign and malign BSs, as the treatment and prognosis greatly differ between the different
etiologies [4,5].

Endoscopic retrograde cholangiopancreatography (ERCP) has historically been the
primary diagnostic modality in patients with biliary strictures. This technique allows
the observation of indirect signs that may suggest the malignant nature of BSs (surface
irregularity, stricture length), together with tissue sampling, either by brush cytology or
fluoroscopy-guided transpapillary biopsy. However, the diagnostic performance of ERCP
combined with brush cytology or biopsy is poor [6]. Indeed, a meta-analysis reported a
sensitivity of 45% for brush cytology and 48% for ERCP-guided biopsies. The combination
of both methods modestly increased the sensitivity for detection of malignant biliary
strictures [7].

Digital single-operator cholangioscopy (D-SOC) allows high-resolution inspection
of the bile duct, enabling its application for diagnostic and therapeutic purposes. Direct
visualization allows for more accurate morphologic characterization of BSs as well as
the possibility for targeted biopsies [8]. A recent multicentric randomized trial demon-
strated the higher sensitivity of D-SOC for the visual identification of malignant strictures,
compared to standard ERCP cholangiographic impression (96% vs. 67%, p = 0.02) [9].
Nonetheless, the specificity of the visual impression remains suboptimal (89%) [10]. In
fact, the accuracy is diminished when evaluating extrinsic BSs (most commonly pancreatic
adenocarcinoma or metastatic disease) [11]. Additionally, the presence of traumatic lesions
after stent removal or even the passage of the scope may be mistaken with malignant
lesions. Lastly, the presence of diseases associated with chronic biliary duct inflammation
(namely primary sclerosing cholangitis) is associated with a decreased diagnostic yield for
diagnosing malignant BSs.

Several morphological features are associated with an increased malignancy risk [12,13].
The identification of papillary projections is associated with a seven-times increased risk of
malignancy in a multivariate analysis [14]. Nevertheless, a significant lack of interobserver
agreement in this morphologic feature identification was observed. On the other hand,
abnormal dilated tumor vessels are commonly visualized in malignant BSs [12]. These
vessels are developed during tumoral angiogenesis and are associated with an accurate
detection of malignant BSs [15]. However, chronic inflammation can diminish the diagnostic
accuracy of D-SOC for tumoral vessels. Therefore, classification systems for prediction of
BS malignancy have been tested, namely systems based on morphological features [14,16].
Sethi et al. developed the Monaco Classification System for indeterminate BSs, reporting
an overall accuracy of 70% for malignant BSs and relevant interobserver agreement for
papillary projection (k = 0.43) and abnormal vessels identification (k = 0.26) [14]. However,
there is no universally accepted classification system for D-SOC findings and interobserver
agreement between different endoscopists remains poor [17].

The development of artificial intelligence (AI) models suited for the analysis of large
image datasets is a matter of great scientific interest, specially using deep learning al-
gorithms. Convolutional neural networks (CNN) are a human visual cortex inspired
multilayered deep learning model suitable to increase the diagnostic yield in several med-
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ical fields [18–20]. Additionally, there are several published studies about the impact of
these models in the diagnostic performance of several endoscopic techniques [21–23].The
impact of AI for the evaluation of cholangioscopy images has recently started to be in-
vestigated. However, a tool providing categorization (i.e., discriminating malignant from
non-malignant strictures) as well as morphologic classification has scarcely been assessed.
Given the current limitations in the diagnostic approach to biliary strictures and the poten-
tial of AI to provide effective image analysis, our group aimed to develop and validate a
CNN model for automatic detection and differentiation between benign and malignant BSs
in D-SOC. Additionally, our group assessed the capacity of the CNN to provide accurate
identification of significant morphological features of malignant BSs.

2. Materials and Methods

2.1. Patient Population and Study Design

For the development of the study, our group included D-SOC exams performed
between August 2017 and November 2022 at two centers in Portugal (Centro Hospitalar
Universitário de São João (CHUSJ), Porto, Portugal) and Spain (Hospital Universitario
Puerta de Hierro Majadahonda (HUPHM), Madrid, Spain). A total of 124 patients (CHUSJ,
n = 106; HUPHM, n = 18), corresponding to 129 D-SOC exams (CHUSJ, n = 111; HUPHM,
n = 18), were enrolled. A total of 84,994 still-frame images were used for the development,
training and validation phases of the CNN for automatic differentiation between malignant
and benign BSs. The still-frame images were obtained during the exam, mainly through
decomposition of the procedure videos into frames, using a VLC media player (VideoLAN,
Paris, France).

The study was performed after approval by the ethics committee of Centro Hospi-
talar Universitário de São João/Faculdade de Medicina da Universidade do Porto (CE
41/2021) and Hospital Universitario Puerta de Hierro Majadahonda (PI 153/22). This was
a retrospective non-interventional study, performed with respect for the Declaration of
Helsinki. An adequate omission of potentially identifiable patient information was assured,
with each individual patient being assigned with a random number, guaranteeing data
anonymization. The non-traceability of the data and respect to the general data protection
regulation (GDPR) was assured by a team with a Data Protection Officer (DPO).

2.2. Digital-Single Operator Cholangioscopy Procedure and Definitions

All of the D-SOC exams included in the study were performed with the SpyGlass™
DS II system (Boston Scientific Corp., Marlborough, MA, USA). The procedures were per-
formed by expert gastroenterologists (P.P., F.V.B., M.G.-H., and B.A.G), each with experience
of more than 2000 ERCPs and 100 cholangioscopies prior to this study. For the performance
of the exams the Olympus TJF-160V or TFJ-Q180V duodenoscopes (Olympus Medical
Systems, Tokyo, Japan) were used. Additionally, the SpyBiteTM forceps (Boston Scientific
Corp., Marlborough, MA, USA) were utilized for obtaining the biopsy specimens with
direct visual guidance, assuring a minimum of 4 biopsies in all the study exams.

A total of 84,994 D-SOC biliary images were classified as benign or malignant. Benign
biliary findings typically included normal bile ducts, stone disease and benign BSs. A
benign BS-confirmed diagnosis implied a negative histopathology (biopsy or surgically
obtained) with absence of malignancy after 6 months of follow up. Stone disease was
diagnosed upon direct observation and in the absence of other findings. A malignant
diagnosis implied a malign histopathology, obtained either through D-SOC biopsy or other
tissue sampling exams (namely brush cytology, fluoroscopic or endoscopic ultrasound-
guided biopsy or even surgical specimen).

2.3. Development of the Convolutional Neural Network

We developed a deep learning-based CNN to automatically detect and differentiate
malignant biliary strictures from benign biliary conditions, the latter including benign
strictures, stone disease and normal bile ducts. A total of 84,994 frames were included:
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malignant strictures were seen in 44,743 images; whereas the remaining 40,521 showed
benign biliary conditions.

The total data was separated into two sets: training and validation. The first comprised
80% of the frames (n = 67,678), while the second used 20% of the remaining images
(n = 17,316) using a patient-split design, ensuring that no data from the same patient
overlapped in both the datasets. The validation dataset was used to assess the model’s
performance. A graphical flowchart of the study design is shown in Figure 1. Additionally,
in a subset of exams (n = 62) we evaluated the performance of the CNN for the detection of
morphologic features associated with bile duct malignancy (“tumor vessels” and “papillary
projections”). Tumor vessels were defined as abnormal, dilated, tortuous vessels associated
with bile duct malignancy (n = 18,388). Papillary projections (n = 18,388) were represented
as finger-like projections associated with bile duct malignancy.

Figure 1. Study flowchart for the training and validation phases. AUC—area under the receiving oper-
ator characteristic curve; B—benign biliary findings; D-SOC—digital single-operator cholangioscopy;
M—malignant stricture; NPV—negative predictive value; PP—papillary projections; O—other; PPV—
positive predictive value; TV—tumor vessels.

The Resnet model was used to build this CNN. ImageNet, a large-scale collection
of images used for object recognition software development, was used to train weights
between units. We preserved its convolutional layers to impart its learning to our model.
The final fully connected layers were deleted and replaced with new fully connected layers
according to the number of classes we used to categorize our endoscopic frames. There was
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an initial fully connected layer in each of the two blows that we used, followed by dropout
layers with a drop rate of 0.1. After that, we added a dense layer whose size defined the
number of classification groups (two: malignant strictures and benign biliary conditions).
The learning rate was 0.00015, the batch size was 128 and the number of epochs was 10.
PyTorch was used to prepare and run the model. Performance analyses was carried out
with a computer equipped with a 2.1 GHz Intel® Xeon® Gold 6130 processor (Intel, Santa
Clara, CA, USA) and a double NVIDIA Quadro® RTX™ 4000 graphic processing unit
(NVIDIA Corporate, Santa Clara, CA, USA).

2.4. Model Performance and Statistical Analysis

The assessment of CNN’s performance was performed using an independent valida-
tion dataset (20% of all the data). For each frame, the algorithm calculated the probability
of having a malignant stricture and the probability of being considered a benign biliary
condition (Figure 2). Since a higher probability translated into greater confidence of the
CNN prediction, the model selected the category with the highest probability as its final
classification. Then, the final classification of the CNN was compared with the correspond-
ing histopathological evaluation, which was regarded as the gold standard. Sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy in
distinguishing malign strictures from benign biliary conditions were our primary outcomes.
Additionally, we performed receiver operating characteristic (ROC) curves analysis and
calculated the area under the ROC curves (AUROC) to evaluate the discriminatory capacity
of our model. Moreover, the precision-recall (PR) curve and the area under the precision-
recall curve (AUPRC) were used to measure the performance of the model, accounting
for potential data imbalance. Finally, we evaluated the computational performance of the
algorithm by measuring the time required for the CNN to process and generate output for
all the frames included in the validation dataset. We performed statistical analysis using
Sci-Kit learn v0.22.2 [24].

Figure 2. Output obtained during the training and development of the convolutional neural network.
The bars represent the probability estimated by the network. The finding with the highest probability
was output as the predicted classification. A blue bar represents a correct prediction. B—benign biliary
findings; M—malignant stricture; O—other; PP—papillary projections; PPV—positive predictive
value; TV—tumor vessels.

3. Results

3.1. Performance of the Convolutional Neural Network

In total, 129 D-SOC exams were performed in 124 patients, from August 2017 to
November 2022. In 73 patients, a diagnosis of malignancy was established. Benign findings
were established in 51 patients. We included 84,994 frames for development of this CNN, of
which 44 743 were malignant strictures. The remaining 40,521 images were benign biliary
conditions (benign strictures, stone disease and normal bile ducts).

The model was trained and developed using 80% of the total dataset (n = 67,678).
The remaining 20% (n = 17,316) was used to test the algorithm’s performance. Table 1
shows the confusion matrix between the CNN’s predictions in validation set versus the
histopathologic characterization. In terms of detecting and distinguishing malign strictures
from benign conditions, the CNN was associated with a sensitivity of 83.5%, a specificity of
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82.4% and an accuracy of 82.9%. PPV and NPV were, 79.6% and 85.8%, respectively. The
model’s AUROC and AUPRC for differentiating between the malignant lesions and benign
biliary conditions were 0.92 and 0.93, respectively, as shown in Figure 3.

Figure 3. Receiver operating characteristic (A) and precision-recall (B) analyses of the network’s
performance in the detection of malignant biliary strictures or benign biliary conditions.
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Table 1. Confusion matrix of the automatic detection versus final diagnosis, CNN—convolutional
neural network; Malignant—malignant biliary strictures; Benign—normal bile ducts or benign biliary
findings.

Final Diagnosis

Malignant Benign

CNN classification
Malignant 6527 1673

Benign 1293 7823

3.2. Detection of Morphological Characteristics Associated with Biliary Malignancy

The CNN’s performance for the detection of morphological features associated with
malignancy of the biliary tract (tumor vessels and papillary projections) were also assessed
on a subset of 62 D-SOC exams of patients with malignant biliary strictures. Two sets of
18,388 images were used for the constitution of the CNNs for the automatic detection of
TV and PP, respectively. Heatmap analysis was performed for the identification of features
contributing to the predictions of the CNN (Figure 4). Regarding tumor vessel detection,
the CNN sensitivity and specificity were 95.7% and 88.6%, respectively, with an accuracy
of 93.0%. In terms of papillary projection identification, the model’s sensitivity, specificity
and accuracy were 74.1%, 94.5% and 91.2%, respectively. The AUROC for the detection
and differentiation of tumor vessels and papillary projections by the CNN was 0.98 and
0.96, respectively (Figure 5).

 

Figure 4. Heatmap analysis showing the prediction of the algorithm for the identification of tumor
vessels (A) and papillary projections (PP), with the associated probability. (A)—Tumor vessels (VV);
(B)—Papillary projections (PP).
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Figure 5. ROC analysis of the network’s performance in the detection of morphological characteristics
of malignancy. (A)—Tumor vessels (TV); (B)—Papillary projections (PP).
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3.3. Computational Performance of the CNN

The CNN processed 4250 batches (each batch comprising of 128 frames) in 23 min and
16 s, which can be translated to an approximate reading rate of 390 frames per second.

4. Discussion

The utilization of AI tools in medical routines is experiencing rapid growth. Research
in the field of deep learning systems in the field of gastrointestinal endoscopy has primarily
concentrated on luminal endoscopy, while the research on hepatobiliary indications is sig-
nificantly less robust [25]. Obtaining a conclusive diagnosis in patients with indeterminate
bile duct strictures is crucial for tailoring treatments for each patient. Nonetheless, it is
often challenging to attain a specific diagnosis due to frequently inconclusive tissue sam-
pling. Recently, Gerges et al. demonstrated a higher sensitivity of D-SOC-guided biopsies
compared to those obtained during ERCP procedures [9]. The sensitivity of D-SOC-guided
biopsies was calculated at 74% in a recent meta-analysis [26]. Nevertheless, the introduction
of D-SOC brought about a remarkable improvement, particularly evident in the accuracy
of visually assessing significant biliary lesions. In a study conducted by Navaneethan et al.,
the estimated sensitivity for visual impression in diagnosing malignancy was reported to be
an impressive 90% [27]. However, the diagnosis of malignancy through visual impression
alone is hindered by suboptimal specificity and accuracy [14,28]. Currently, a universally
accepted classification system for visually diagnosing malignancy during single-operator
cholangioscopy is yet to be clinically established [12–14]. Furthermore, the utilization
of existing classification systems has been linked to inadequate interobserver agreement,
exacerbating the challenges in this field [14].

The primary objective in managing a biliary stricture is to effectively exclude malig-
nancy. The advent of D-SOC has notably improved the diagnostic accuracy for indeter-
minate biliary strictures. Nonetheless, a missing rate as high as 10% has been reported
for D-SOC with direct visualization or targeted biopsies [10], and a definite diagnosis of
malignancy imperatively requires histologic confirmation. Considering these constraints,
we firmly believe that integrating real-time AI technology into D-SOC has the potential to
bridge this gap and address these challenges effectively. A recent systematic review and
meta-analysis by Njei et al. suggested the application of AI systems as the most promising
solution for the distinction between malignant and benign BSs [29]. Recently, significant
interest has been devoted to AI algorithms for the identification of malignant biliary stric-
tures. Robles-Medranda et al. developed a CNN-based model for the identification of
biliary malignancy using pre-defined endoscopic classifications [30]. This algorithm has
been shown to be highly accurate in the detection of tumor vessels. Moreover, the CNN
outperformed non-expert endoscopists in the identification of malignant BSs. Nevertheless,
this study has not performed explainability analysis, thus not allowing the full assessment
of the predictions of the CNN. More recently, Zhang et al. have developed consecutive deep
learning algorithms for the selection of quality D-SOC images for subsequent development
of a CNN for the classification of biliary strictures [31]. Their deep learning algorithm
achieved a sensitivity of 92% and a specificity of 88% for the detection of malignant stric-
tures at a video level. This study simultaneously provided heatmap analysis to ascertain
suspicious areas, which allowed the identification of areas contributing significantly for
the predictions of the algorithm. The improvement in the accuracy of AI systems inte-
grated in real-time into D-SOC systems may enhance the evaluation of visual features of
biliary strictures. However, it is crucial to note that these systems are expected to assist
instead of replacing conventional tissue sampling. Integrating visual features linked to a
higher likelihood of malignancy (such as tumor vessels and papillary projections) into these
models can facilitate the precise identification of areas where suspected malignant lesions
are present. This, in turn, has the potential to enhance the diagnostic yield of existing
D-SOC-guided tissue sampling. Further development of these algorithms, combined with
ongoing efforts to improve staging and prognostication with the assistance of AI, will
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provide more personalized care to patients with suspected biliary malignancy, thus offering
the potential to improve the prognosis of these patients [32–35].

The algorithm developed in this study had a dual purpose: to categorize biliary stric-
tures as either malignant or benign and to identify the morphological features associated
with an increased risk of malignancy, such as tumor vessels and papillary projections. To
ensure a robust and diverse dataset, we included images from two large-volume centers, re-
sulting in a comprehensive collection of nearly 85,000 biliary stricture images. The findings
of our study revealed that this model demonstrated exceptional sensitivity, specificity and
accuracy. Overall, our network achieved an AUC of 0.92 in distinguishing malignant from
benign strictures. Additionally, our CNN exhibited outstanding performance in detecting
tumor vessels and papillary projections, with AUC values of 0.98 and 0.96, respectively.
Furthermore, our algorithm displayed remarkable image processing efficiency, with an
approximate reading rate of 390 frames per second. Our results are in line with a recent
study by Marya et al., which focused on the development of a CNN for the identification of
malignant BSs, which showed an adequate performance in differentiating malignant from
benign BSs, with an overall accuracy of 91% [36]. These results demonstrate the potential
of these systems in advancing the field of biliary stricture diagnosis and management.

This study has several points of merit. First, the development of this deep learning
algorithm included a large volume and variety of images obtained from D-SOC exams
performed at two European high-volume referral centers. Second, we included a robust
dataset of almost 85,000 images of patients with BSs, for whom the diagnosis of biliary
malignancy required unequivocal histological proof. Third, we have built upon previously
published work on the application of AI systems to D-SOC. In this study, we have expanded
the evidence on the application of these algorithms for the detection of morphological
features associated with an increased risk of biliary malignancy. Indeed, our system
detected tumor vessels and papillary projections with an AUC of 0.98 and 0.96. The
detection of these morphologic features is of paramount importance as they have been
demonstrated to predict the presence of malignant BSs. Indeed, Robles-Medranda and
coworkers have shown that the identification of tumor vessels predicted the presence of
a malignant biliary stricture with a sensitivity of 94% and an overall accuracy of 86%.
Nevertheless, the specificity of this finding was suboptimal (63%) [15]. The introduction
of AI models may provide a solution in decreasing the problematic issues of both false
negative and false positive results, which lead to inadequate treatments and morbidity.
Indeed, our network achieved a sensitivity of 96% and a specificity of 87%. This is in
line with previously published studies on the detection of tumor vessels in malignant
BSs [30,37]. Besides the importance of classifying a BS as malignant or benign, real-time AI
models accurately identifying the morphologic features associated with biliary malignancy
may provide guidance to D-SOC-oriented tissue sampling, therefore increasing its yield.

This study has several limitations to be acknowledged. First, despite the large dataset
for the context of a proof-of-concept study, clinical validation of this algorithm will require a
much larger volume of data. Secondly, our deep learning model was developed and tested
exclusively on a single D-SOC platform, which limits the generalizability of the algorithm
to other cholangioscopy systems. Third, at this stage, we did not assess the use of deep
learning with prior knowledge for the enhancement of the performance of our algorithm.
Moreover, distinct deep learning models other than convolutional neural networks have
been shown to be more efficient than CNNs [38], and their use should be assessed in further
studies. Interoperability remains a significant concern in the development and application
of AI technologies in the medical field, as the ability to generalize a given technology
across multiple devices is a crucial requirement for its clinical applicability. Therefore,
it is essential to develop and validate this deep learning model across different D-SOC
devices. Thirdly, while efforts were made to mitigate the risk of overfitting, it cannot be
eliminated. As other systems designed for pancreatobiliary endoscopy, the technological
maturity of our algorithm remains unfit for clinical practice. Subsequent development
of these algorithms on an adequate environment, as well as prototype validation in a
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real-life clinical setting should follow suite. Therefore, while the performance marks of this
algorithm on a preclinical stage suggest that it would provide accurate predictions in a real-
life setting, these results should be interpreted considering the stage of development of the
algorithm. Subsequent development of these algorithms should include: the development
of international multicentric studies, with the aim of increasing datasets, both in quantity
as well as in variability; engaging with practitioners for the development of user-friendly
prototypes, combining an increase in the accuracy provided by these software with the
current standards of practice of expert centers, alerting the endoscopists for meaningful
findings and preventing “noisy” overpredictions; finally, the ultimate application of these
algorithms in clinical practice should be strictly regulated by competent agencies, and
effective polices should be enforced to ensure the quality of these systems as well as their
clinical benefit.

5. Conclusions

The influence of AI in everyday clinical practice is expected to continue growing in the
near future. The potential impact of deep learning algorithms on the care of patients with
suspected biliary malignancy is significant. This study aimed to evaluate the performance
of a CNN in detecting and distinguishing between malignant and benign biliary disorders,
utilizing a large dataset of D-SOC images from two experienced centers in this field. The
favorable performance demonstrated by this model establishes a solid groundwork for
further investigation of AI technologies in this specific patient subset, with the ultimate goal
of enhancing the clinical outcomes for individuals suspected of having biliary malignancy.
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Simple Summary: In this paper, we introduce a new technique for enhancing medical image diag-
nosis through transfer learning (TL). The approach addresses the issue of limited labelled images
by pre-training deep learning models on similar medical images and then refining them with a
small set of annotated medical images. Our method demonstrated excellent results in classifying
the humerus and wrist, surpassing previous methods, and showing greater robustness in various
experiments. Furthermore, we demonstrate the adaptability of the approach with a CT case, which
showed improvements in the results.

Abstract: Medical image classification poses significant challenges in real-world scenarios. One
major obstacle is the scarcity of labelled training data, which hampers the performance of image-
classification algorithms and generalisation. Gathering sufficient labelled data is often difficult and
time-consuming in the medical domain, but deep learning (DL) has shown remarkable performance,
although it typically requires a large amount of labelled data to achieve optimal results. Transfer
learning (TL) has played a pivotal role in reducing the time, cost, and need for a large number of
labelled images. This paper presents a novel TL approach that aims to overcome the limitations
and disadvantages of TL that are characteristic of an ImageNet dataset, which belongs to a different
domain. Our proposed TL approach involves training DL models on numerous medical images
that are similar to the target dataset. These models were then fine-tuned using a small set of
annotated medical images to leverage the knowledge gained from the pre-training phase. We
specifically focused on medical X-ray imaging scenarios that involve the humerus and wrist from
the musculoskeletal radiographs (MURA) dataset. Both of these tasks face significant challenges
regarding accurate classification. The models trained with the proposed TL were used to extract
features and were subsequently fused to train several machine learning (ML) classifiers. We combined
these diverse features to represent various relevant characteristics in a comprehensive way. Through
extensive evaluation, our proposed TL and feature-fusion approach using ML classifiers achieved
remarkable results. For the classification of the humerus, we achieved an accuracy of 87.85%, an
F1-score of 87.63%, and a Cohen’s Kappa coefficient of 75.69%. For wrist classification, our approach
achieved an accuracy of 85.58%, an F1-score of 82.70%, and a Cohen’s Kappa coefficient of 70.46%.
The results demonstrated that the models trained using our proposed TL approach outperformed
those trained with ImageNet TL. We employed visualisation techniques to further validate these
findings, including a gradient-based class activation heat map (Grad-CAM) and locally interpretable
model-independent explanations (LIME). These visualisation tools provided additional evidence to
support the superior accuracy of models trained with our proposed TL approach compared to those
trained with ImageNet TL. Furthermore, our proposed TL approach exhibited greater robustness
in various experiments compared to ImageNet TL. Importantly, the proposed TL approach and the
feature-fusion technique are not limited to specific tasks. They can be applied to various medical
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image applications, thus extending their utility and potential impact. To demonstrate the concept of
reusability, a computed tomography (CT) case was adopted. The results obtained from the proposed
method showed improvements.

Keywords: musculoskeletal X-ray; deep learning; transfer learning; data scarcity; convolution neural
network (CNN); machine learning; feature fusion; gradient-based class activation heat map

1. Introduction

X-ray medical images are widely recognised as powerful tools for identifying abnor-
malities in bone classification. They provide valuable information on the structure and
condition of bones, helping to diagnose and treat various skeletal disorders. However, one
of the most-significant challenges faced in the use of artificial intelligence (AI) algorithms
for medical image analysis is the scarcity of data available for training and validation [1].

The limited availability of labelled medical images poses a substantial obstacle to the
development of accurate and reliable AI models for bone classification tasks. Obtaining a
large and diverse medical image dataset is crucial to the effective training of AI algorithms
because the performance and generalisation capabilities of AI models can be compromised
without sufficient data.

Addressing the issue of data scarcity in medical imaging is essential to unlocking the
full potential of AI to improve bone classification accuracy and aid clinical decision-making.
Researchers and practitioners continue to explore methods such as active learning (AL),
synthetic data generation [2], generative data augmentation [3], transfer learning (TL) [4],
and collaboration between institutions to overcome the challenges posed by limited medical
image datasets. By expanding the availability and quality of annotated medical images,
the performance and robustness of AI algorithms for bone classification will be enhanced
and ultimately improve patient care in the medical imaging domain [5].

Despite advancements in medical applications and the progress made in computer
vision, detecting abnormalities in the humerus and wrist using X-ray images remains a
challenge [6]. The complexity of bone structures, subtle variations in abnormalities, and
the inherent limitations of X-ray imaging techniques contribute to this challenge. Ongoing
research and development efforts focus on using AI and machine learning (ML) techniques
to improve the accuracy and efficiency of humerus and wrist abnormality detection in
X-ray images. ML models can be trained on large datasets of annotated X-ray images,
which enables them to recognise patterns and detect subtle pathological indicators.

By integrating AI and ML technologies into the field of orthopaedics, medical profes-
sionals can benefit from improved accuracy and efficiency when diagnosing and treating
patients with bone conditions. Deep learning (DL) is a branch of AI techniques that has
demonstrated exceptional abilities in accurately, reliably, and rapidly classifying medical
images into binary and multiclass categories [7,8]. DL has become the gold standard in
medical image analysis and has demonstrated remarkable performance in various areas,
such as radiology [9,10], dermatology [11], pathology [12], and ophthalmology [13,14].
These applications, which span different medical fields, are based on human experience,
thus making DL a valuable tool in a competitive domain.

The requirement for large amounts of labelled data is a significant challenge to the de-
velopment of high-performing DL models. However, the scarcity and imbalance of medical
image datasets pose significant challenges due to the cost effectiveness and time consump-
tion associated with DL approaches. Despite these challenges, DL models have consistently
demonstrated impressive performance in classifying medical images. Krizhevsky et al. [15]
introduced a model based on a convolutional neural network (CNN) architecture that
represented a significant milestone in the history of DL and computer vision. Their devel-
oping work demonstrated the potential of deep CNNs in image-classification tasks, thus
setting new standards for accuracy and inspiring further research and innovation in the
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC), a critical image classification
competition. Several studies have successfully used TL techniques in DL models to address
data scarcity. TL involves using models that were pre-trained on large-scale datasets and
fine-tuning them on target medical image datasets [16]. This approach has been shown to
be effective in improving the performance of DL models in various studies [1]. For example,
Fang et al. [17] used fine-tuning and feature augmentation methods and an area under the
curve (AUC) of 0.73. However, unbalanced data remain a limitation in certain studies [18].
Musculoskeletal radiographs (MURA) is a dataset designed specifically for musculoskeletal
medical imaging, as it comprises a large collection of radiographs (X-rays). The dataset
covers a diverse set of musculoskeletal abnormalities, as well as normal cases, which makes
it a valuable resource for training and evaluating medical image classifiers [19]. The use of
TL techniques for medical image classification has increased significantly, and this trend
highlights the growing recognition of TL as a valuable strategy for handling data scarcity
and improving the performance of DL models in the medical field.

CNNs have been widely used to classify input data as various states of disease [20].
CNNs’ deep architecture feedforward neural networks serve as the basis for many deep
neural network models (DNN) in the medical field [20]. In addition to CNNs, other
types of neural networks have also been used, such as recurrent neural networks (RNNs)
with variations such as long short-term memory (LSTM), transformers, and generative
adversarial networks (GANs) [21]. CNNs have proven to be particularly effective for
image-processing and -classification tasks. One of their key strengths lies in their ability to
extract meaningful patterns and characteristics from images regardless of scaling, mirroring,
rotation, or translation [22]. This property makes CNNs highly suitable for medical image
analysis, where the accurate identification and classification of image characteristics are
crucial for diagnosis and treatment.

Furthermore, it should be noted that most studies that focus on humerus and wrist
abnormalities do not thoroughly evaluate the “black box” explanation [23]. However,
the lack of model explainability associated with black box methods is considered a sig-
nificant obstacle to clinical adoption and user confidence [24]. To identify biases and
ensure the reliability of DL applications, it is essential to explain the decision-making
processes of the models. The use of TL is specifically recommended to address the is-
sue of data scarcity and inconsistency in the medical field. TL leverages pre-trained DL
models by using source datasets and fine-tuning them for target tasks. TL has had a
positive impact on the medical field, especially in scenarios where limited data are avail-
able. Given the challenges of gathering medical imaging data, TL has become a crucial
tool in medical image analysis. The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC-2012) competition dataset is widely recognised and widely used to improve the
performance of various image-processing tasks, including classification, segmentation,
and detection [25–27]. Although ImageNet has improved model performance, it is essential
to note that medical images differ significantly from the natural images represented in
ImageNet. These differences encompass various aspects, such as shape, colour, resolution,
and dimensionality.

Models pre-trained on ImageNet are limited in terms of performance enhancement
when dealing with medical images due to domain mismatch. Several authors have ex-
plained how TL using the same domain improved the performance of DL models in medical
imaging applications [16,28,29].

Alternatively, the fusion technique could be used as an effective way to merge the
features extracted by various CNN models for further enhancement. However, support-
ing the models’ results using the appropriate tools is necessary in order to trust the DL
outcome [30].

The trade-off lies in the ability of DL models to leverage large amounts of data and
learn complex patterns, whereas traditional techniques may have been more suitable for
cases with limited data availability [31].
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This paper aims to address the problem of data scarcity and the mismatch features
of TL. Furthermore, it also addresses feature generalisation in training ML classifiers.
Therefore, in this paper:

1. We propose a new TL approach to address the issue of data scarcity and the drawbacks
of previous TL methods in medical imaging applications.

2. An improved feature fusion is proposed to increase trust in the final decision.
3. We employed two pre-trained ImageNet models for experimenting with two X-ray

tasks to detect abnormalities in the humerus and wrist.
4. We applied a feature fusion strategy to train multiple ML classifiers in two different

training scenarios.
5. We achieved an accuracy of 87.85%, an F1-score of 87.63%, and a Cohen’s Kappa

coefficient of 75.69% in humerus classification. For wrist classification, our approach
achieved an accuracy of 85.58%, an F1-score of 82.70%, and a Cohen’s Kappa coefficient
of 70.46%.

6. We briefly review the most-recent DL techniques from the MURA dataset.
7. We explain how the decision was made to adopt two visualisation tools, i.e., gradient-

weighted class activation mapping (Grad-CAM) and local printable model-agnostic
explanations (LIME), to verify the robustness of the proposed method.

8. We show that the proposed TL approach and feature-fusion technique can be applied
to various medical image applications, thus expanding their utility and potential
impact, as demonstrated by adopting a computed tomography (CT) case that showed
significant improvements in the results.

2. Related Work

This section provides an overview of the latest techniques used in the field. One
such technique is the use of CNNs, which have demonstrated remarkable success in com-
puter vision tasks and have become crucial for image classification. As mentioned above,
the availability of large datasets and the time-consuming nature of training classifiers pose
significant challenges to achieving optimal training results. Various techniques have been
proposed to increase the size of the datasets, and one such strategy is active learning (AL).
AL involves iteratively selecting the most-informative samples from an unlabelled dataset
for annotation and model training. The primary goal of AL is to maximise the model’s
performance while minimising the amount of labelled data required for training. This is
particularly beneficial in scenarios where obtaining labelled data can be costly or time-
consuming. The AL process relies on initially training the model on a small labelled
dataset and then using a query strategy to determine which unlabelled samples should
be selected for labelling. The query strategy is crucial, as it selects samples based on their
potential impact on the model’s performance. There are several common query strategies
used, including uncertainty sampling, query-by-committee, and information-density-based
methods. After selecting and labelling these informative samples, the samples are incorpo-
rated into the training set to update the model using the newly labelled data. The training
process for AL is often repeated over time until the model reaches a desired performance
level or satisfies other specific criteria relevant to the desired application. This iterative
approach helps the model learn from diverse and informative examples, which gradually
improves its performance with fewer labelled samples. A key limitation of AL algorithms
is that they are based on labelling one sample at a time. This means that, after each sample
is labelled, the model needs to be retrained, which can be computationally expensive and
time-consuming [32]. Researchers have thus been working on optimising this process to
reduce the retraining burden.

For example, Wen et al. [33] conducted a study on using AL for nucleus segmentation
in pathology images in which they investigated how AL performance improves for three
different algorithm families: support vector machines (SVMs), random forest (RF), and
CNNs. By employing AL, the researchers aimed to enhance the efficiency and accuracy of
nucleus segmentation in medical imaging. Moreover, synthetic data generation is a power-
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ful technique used to address data scarcity or privacy concerns by creating additional data
artificially. In various domains, obtaining a sufficient amount of labelled data to train ML
models can be challenging. Synthetic data generation offers a solution by generating new
data points that are similar to the existing data, but are not direct replicas, thus expanding
the dataset [3]. GANs have emerged as highly successful and versatile approaches that can
find applications across various domains, including image generation, text generation, and
video synthesis. GANs possess the remarkable ability to generate high-quality, diverse, and
realistic synthetic data, making them invaluable for a wide range of tasks, including data
augmentation, data synthesis, and creative applications [34]. Adar et al. [35] demonstrated
the successful application of GANs for enhancing the classification performance for liver
lesion classification by employing data augmentation techniques. In their study, conducted
in 2018, the authors used GANs to increase the amount and diversity of training data,
specifically for liver lesion classification. The authors observed a significant improvement
in sensitivity and specificity compared to using traditional data-augmentation methods.
Specifically, the classification performance increased from 78.6% sensitivity and 88.4%
specificity (when using traditional enhancements) to 85.7% sensitivity and 92.4% specificity
(when using GAN-generated data). This improvement can be attributed to the GAN’s
ability to provide a more-diverse and -representative training dataset, allowing the classifier
to better generalise and make more-accurate predictions on real-world liver lesion data.

Furthermore, Yi et al. [36] extensively explored and discussed the application of
GAN image synthesis in various critical medical imaging domains. They highlighted
the significant impact of GANs on improving medical image generation, analysis, and
diagnostics across a range of applications. In the domain of brain magnetic resonance
imaging (MRI), GANs have proven to be particularly valuable. Calimeri et al. [37] and
Bermudez et al. [38] successfully used GAN-based image synthesis to generate realistic
brain MRI scans. This synthetic data augmentation has led to the improved training of brain
image analysis models and better performance in tasks such as segmentation and disease
classification. For lung cancer diagnostics, Chuquicusma et al. [39] demonstrated the
effectiveness of GANs in generating synthetic lung nodules and lesions. This data synthesis
enabled the development and validation of robust and accurate lung-cancer-detection
models, even when dealing with limited real-world data. High-resolution skin imaging is
another domain where GANs have shown promise. Baur et al. [40] used GANs to synthesise
high-resolution melanoma images. This approach enhanced the quality and diversity of
the dataset used for training skin-cancer-detection models, leading to improved diagnostic
accuracy and the early detection of skin cancer. While data augmentation is a powerful tool
for improving model performance, its lack of interpretability can be a concern, especially
in sensitive or critical applications. Ensuring transparency and explainability is essential
for building trust and confidence in AI models, enabling users to comprehend why certain
augmentations lead to improved performance. By incorporating human-understandable
augmentation strategies and leveraging model interpretability techniques, researchers and
practitioners can strike a balance between performance enhancement and interpretability,
thereby making AI systems more trustworthy and responsible [41].

Additionally, Tahmina et al. [42] applied data augmentation in their study to detect
humerus fractures. They used preprocessed images to increase the quality of the dataset,
and the performance of their study was 78%.

Despite the promise of data augmentation, there are challenges that must be con-
sidered. Selecting appropriate augmentation techniques and parameters requires careful
consideration. In addition, achieving the correct balance between augmenting and main-
taining the integrity of the medical data is crucial to ensuring that the synthetic examples
remain consistent with the real-world distribution of medical images. In this context, TL
and pre-training are two alternative strategies for learning the low-level properties in CNNs.
TL has proven to be an effective technique to train CNNs with limited data, thus improving
the performance of DL models. TL enables one to leverage the knowledge and features
learned from pre-existing models and apply them to new tasks or domains, thus reducing
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the need for extensive data collection and training time. By capitalising on pre-trained
models, TL enables the efficient and effective training of CNNs even with smaller datasets.
CNNs have been effectively trained using TL techniques in which the weights of pre-trained
CNNs are used to classify other target images [20]. TL can be broadly categorised into
two types: fine-tuned TL and feature extraction TL. The feature extraction TL approach
employs a well-trained CNN model that was trained on a large dataset. The convolutional
layers of the pre-trained model are frozen, whereas the fully connected layers are discarded.
The frozen convolutional layers act as fixed feature extractors, which capture meaningful
representations from the input images. These extracted features are then fed into a new
classifier, which can be implemented using new fully connected layers or a supervised ML
approach. During this type of TL, only the parameters of the new classifier are trained
using the pre-learned features of the pre-trained CNN model [43].

This approach transfers knowledge from the pre-trained CNN model, which has
learned rich representations from a large dataset, to the new medical task at hand. By using
the extracted features and training only the classifier, feature-extracting TL enables efficient
training with limited data, thus reducing the need for extensive computational resources
and training time.

In contrast, the fine-tuning TL approach involves replacing the classifier layers while
using the pre-trained CNN model that was trained on a large dataset as a base. In this
approach, the convolutional and classifier layers are fine-tuned during the training pro-
cess. The weights of the convolutional layers are initialised with the pre-trained weights
from the CNN model, while the classifier layers start with random weights. The entire
network is trained through this training process, allowing it to adapt and learn task-specific
representations [44].

The fine-tuning TL approach is beneficial when the target task requires more-specialised
knowledge and the available target dataset is more extensive. The model can learn task-
specific features and improve its performance by updating the weights of the convolutional
and classifier layers.

Both feature-extracting TL and fine-tuning TL have their advantages and are, thus,
used based on the specific requirements of the task at hand. Feature-extracting TL is
particularly useful when limited training data are available, as it leverages the pre-trained
model’s learned features. Fine-tuning TL, however, can enhance performance by allowing
the model to learn task-specific representations by updating both the convolutional and
classifier layers. For this reason, this study used the fine-tuning TL type.

Various studies applied DL models to detect abnormalities in X-ray images, such
as Ortiz et al. [45], who investigated three AI models to detect pneumonia in chest X-ray
images; the authors used the feature-extraction technique with three different ML classifiers,
and the accuracy of this study was 83.00% and with an 89% sensitivityfor radiomics,
an accuracy of 89.9% with a 93.6% sensitivity for fractal dimension, and 91.3% accuracy with
a 90.5% sensitivity for superpixel-based histon. Moreover, Canayaz et al. [46] implemented
feature fusion by combining AlexNet and VGG19 models to classify COVID-19, pneumonia,
and normal X-ray images; the authors’ approach achieved 99.38% accuracy. In addition,
Rajinikanth et al. [47] used InceptionV3, which was pre-trained, to detect pneumonia in
chest X-ray images. The authors used deep feature extraction and feature reduction with
the Firefly Algorithm and multi-class classification using five-fold cross-validation; the
results of the K-nearest neighbour (KNN) classifier demonstrated an accuracy of 85.18%.
Furthermore, Rajinikanth et al. [48] also applied one-fold and two-fold training by using
UNet lung section segmentation.

Indeed, DL models have been implemented in various studies to improve the detec-
tion of abnormalities in musculoskeletal images. Rajpurkar et al. [19] conducted a study
using a dataset called MURA, consisting of 40,005 musculoskeletal images. Their research
employed a DenseNet169 CNN architecture, as described in Huang et al. [49], whereby
each layer was linked to all other layers in a feedforward fashion, thus achieving a deep
network design. The model classified the images as abnormal if the prediction probability
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was greater than 0.5. The performance of the model was evaluated using two metrics: sen-
sitivity and specificity. The sensitivity, which measures the ability of the model to identify
true positives correctly, was 81.5%. The specificity, which measures the model’s ability to
identify true negatives correctly, was 88.7%. These metrics indicate the model’s ability to
detect normal and abnormal cases accurately. The model’s overall performance was also
assessed using the area under the receiver operator characteristic (AUROC) metric, which
considers the trade-off between sensitivity and specificity. The model achieved an AUROC
of 92.9%, indicating its solid discriminative power. When diagnosing abnormalities in
fingers and wrists, the model’s performance was roughly equivalent to that of the best
radiologists. Despite the model’s agreement with the gold standard being similar to that of
other radiologists, it was still relatively low. However, when diagnosing abnormalities in
elbows, forearms, hands, humerus, and shoulders, the model’s performance was worse
than that of the best radiologists [19].

To investigate this, Chada [50] conducted a study to evaluate the performance of three
state-of-the-art CNN architectures, namely DenseNet169, DenseNet201, and InceptionRes-
NetV2, on the MURA dataset. The researchers fine-tuned these CNN models using the
Adam optimiser with a learning rate of 0.001. The evaluation was performed separately for
humerus and finger images.

For the humerus task, the best performance was observed with the DenseNet201
model, which achieved a Cohen’s Kappa score of 76.4%. This indicated a substantial
agreement between the predictions of the model and the ground-truth labels. For the images
of fingers, however, the InceptionResNetV2 model demonstrated the best performance,
obtaining a Cohen’s Kappa score (which assesses the agreement between the model’s
predictions and the ground-truth beyond chance) of 55.5%. These results highlight the
effectiveness of these CNN architectures in detecting abnormalities in musculoskeletal
images, with performance variations depending on the specific anatomical areas. However,
the performance of finger X-rays was less promising, undoubtedly due to the limitations of
high inter-radiologist variation.

Another study focused on classifying proximal humerus fractures using the Neer
classification system [51]. The researchers used a pre-trained ResNet-152 classifier that
was fine-tuned for the specific task of classifying fractures. This approach leveraged the
pre-trained weights of the ResNet-152 model and trained the classifier layers on the target
dataset. Using this TL technique, the model accurately classified 86% of the proximal
humerus fractures according to the Neer classification system. Despite the fact that the
Neer classification is the most-regularly used technique for proximal humerus fracture
classification, the reliability of this study needs to improve. The author in [51] assessed
the diagnostic performance of CNNs with a cropped single-shoulder X-ray image, but this
might not be applicable to the relative clinical scenario.

Furthermore, Lindsey et al. [52] investigated the detection of wrist fractures, com-
paring the performance of radiologists with and without the assistance of CNN models.
The study aimed to assess how the use of CNN models affected radiologists’ diagnostic
capabilities. The results indicated a marked increase in radiological performance when
aided by CNN models, highlighting the potential of DL models as supportive tools in the
field of fracture detection. However, the study had a number of drawbacks, such as the
fact that the experiment was a review of the data performed through the web interface
that simulated an image archiving and communication system (PACS) used by medical
professionals for medical imaging. Furthermore, the accuracy of the physicians’ and the
model’s diagnoses in this study was restricted to the determination of what is visible
inside a radiograph. Finally, the diagnosed condition’s improvement or deterioration was
influenced by factors other than DL accuracy in diagnosis.

Saif et al. [53] proposed a capsule-network-based approach to classify abnormalities
in the musculoskeletal system. They conducted experiments by training their network
on images of different sizes, specifically images of 64 × 64, 128 × 128, and 224 × 224 px.
The goal was to determine the optimal image size to achieve an accurate classification,
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and the results indicated that, when using 224 × 224 px images, the network achieved
the highest training accuracy (96%) for wrist radiography images. However, it is possible
that the network’s performance in some studies was influenced by overfitting, a situation
where the model becomes excessively tailored to the training data, which leads to the poor
generalisation for unseen data.

However, in 2019, Varma et al. [54] introduced the MURA dataset, which included
a private dataset of 93,455 lower-extremity radiographs with images of the foot, ankle,
knee, and hip. This dataset was explicitly curated for abnormality detection using less-
adequate extremity radiographs. To evaluate the performance of different CNN architec-
tures, Varma et al. trained ResNet-50, DenseNet-161, and ResNet-101 on a subset of their
private dataset. Despite the structural differences between these architectures, the authors
found that performance did not vary significantly. However, the authors then proposed
a comparison explicitly focused on the DenseNet-161 architecture, which was trained on
both the ImageNet and MURA datasets, to assess the impact of TL on model performance.
This comparison aimed to investigate the effect of TL, where a CNN model is initially
pre-trained on a large-scale dataset (such as ImageNet) and then fine-tuned on a specific
task or domain (in this case, the MURA dataset). Using pre-trained weights and pre-learned
representations from the large-scale dataset, TL can potentially improve the performance
of CNN models for the target task. However, the limitation of this study comes from the
fact that it reviewed data with datasets from a single institution; thus, the performance of
the authors’ models may differ in the real world when different images are used.

Furthermore, Kandel et al. [55] conducted a study using the MURA dataset to examine
the performance of six CNN architectures, namely, VGG, Xception, ResNet, GoogLeNet,
InceptionResNet, and DenseNet, to detect bone abnormalities. They compared models
trained from scratch with pre-trained models using ImageNet and then fine-tuned them on
the MURA dataset. The study’s results highlighted that TL has the potential to enhance
model performance while reducing the susceptibility to overfitting. Among the five state-of-
the-art CNNs evaluated for the MURA dataset, the humerus datasets achieved the highest
precision (81.66%). Although the authors used the TL approach, the training-from-scratch
approach’s poor performance could have been due to the number of images in the dataset,
as well as the hyperparameter selection. The CNNs considered are distinguished by their
incorporation of a significant number of trainable parameters (such as weights), and the
number of images used to train these networks is insufficient to develop an effective model.
Hyperparameters indicate the significance of the learning rate. Although the authors
used a lower value of the learning rate in the fine-tuning technique to avoid significantly
modifying the original weights of the designs, the training-from-scratch strategy may
demand a higher value of the learning rate.

Feature fusion of DL techniques also was implemented by Bhan et al. [56] to classify
fracture or non-fracture in the MURA dataset; the five pre-trained models were DenseNet-
169, MobileNetV2 ResNet-50, ResNeXt-50 and VGG16, and then, these pre-trained models
were combined in this study. The results of the feature-fusion approach were that the
humerus achieved an 87.85% accuracy and a 75.72% Cohen’s Kappa, while the accuracy was
83.13% and a 66.25% Cohen’s Kappa for the shoulder. In the same study, the performance
of the wrist classification was 86.65% accuracy and a 72.59% Cohen’s Kappa.

This literature review focused on the significant challenge caused by the limited
availability of annotated data in the medical domain. The scarcity of annotated medical
datasets prevents the full potential and effectiveness of DL algorithms. This challenge has
motivated the main objective of this article, which was to explore strategies that can achieve
greater performance with minimal data in the field of medical DL.

3. Materials and Methods

3.1. Dataset

The dataset used in this study is called MURA. It consists of X-ray images that rep-
resent seven different skeletal bones, namely the elbow, finger, forearm, hand, humerus,
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shoulder, and wrist. Each bone category is divided into two subclasses: positive (abnormal)
and negative (standard). In total, the dataset contains 40,561 images. The dataset was
partitioned into separate training and test sets, the details of which are presented in Table 1
below [19].

Table 1. Number of images in the MURA dataset.

Class Training Testing

- Negative Positive Negative Positive

Elbow 2925 2006 234 230

Finger 3138 1968 214 247

Hand 4059 1484 271 189

Humerus 673 599 148 140

Forearm 1164 661 150 151

Shoulder 4211 4168 285 278

Wrist 5765 3987 364 295

Two main categories were created from the dataset:

1. Target dataset: As shown in Figure 1, the categories of the humerus and wrist were
specifically chosen as the target datasets for analysis and classification. These cat-
egories represent anatomical regions within the musculoskeletal system that are
particularly interesting for medical image processing.

2. Source of TL: The source of TL is an important consideration in DL applications. In the
context of TL, the source refers to the pre-trained models or datasets that are used as
a starting point for training a new model on a target dataset. The rest of the MURA
dataset was used as a source of TL, including the elbow, finger, forearm, hand and
shoulder.

3.2. Proposed TL Technique

A large dataset was used in the TL stage to leverage the knowledge gained from
this dataset and apply it to a smaller target dataset. One commonly used source for TL
is pre-trained models that were trained on the ImageNet dataset. The ImageNet dataset
comprises a vast collection of images categorised into 1000 classes, including various
natural objects, people, plants, and animals. The pre-trained models derived from the
ImageNet dataset have been widely used in multiple applications to address the challenge
of limited data availability [57]. These models have demonstrated remarkable performance
in object-detection and agriculture tasks, where the dataset encompasses diverse visual
characteristics and requires robust feature-extraction capabilities. When the target task
dataset shares relevant features with the ImageNet dataset, TL that uses pre-trained models
becomes particularly valuable. However, it is essential to note that the ImageNet dataset
consists primarily of colour images, which may not directly enhance the functionality of
grayscale medical imaging. This distinction between colour and grayscale images highlights
the need for careful consideration and customisation when applying TL techniques to
medical imaging tasks, which often involve specific imaging modalities and grayscale
representations [16].
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Figure 1. Four samples of the two tasks: the humerus and the wrist.

This work presents a new approach to TL and is called TL domain adaptation. This
approach aims to address the challenge of limited annotated data and improve the perfor-
mance of pre-trained ImageNet models in specific domains. The proposed method involves
updating the features of the pre-trained models by incorporating in-domain images (source
of TL) before fine-tuning the models on the target dataset (see Figure 2). This approach
aims to leverage the knowledge and features learned from a wide range of musculoskeletal
images to enhance the performance of the models. By incorporating various classes from
the MURA dataset, the models can capture a greater understanding of musculoskeletal
abnormalities and potentially generalise better to the target tasks of humerus and wrist ab-
normalities. One notable advantage of using the same image modality (X-ray) and having a
common goal of detecting abnormalities across the MURA dataset and the humerus/wrist
tasks is the similarities in the image characteristics and diagnostic objectives. These similar-
ities enable a more-effective transfer of knowledge and features from TL source classes to
the target humerus and wrist tasks. They also allow the models to capture relevant patterns,
structures, and consistent abnormalities in different musculoskeletal areas. This approach
improves the ability of the models to extract meaningful features and make predictions for
abnormalities of the humerus and wrist, thereby improving performance and diagnostic
precision. Figure 2 shows the workflow of the proposed method, which is as follows:

1. Step 1: Train the models on the source of TL (all MURA classes, except the tar-
get dataset).

2. Step 2: Load the pre-trained models.
3. Step 3: Replace the final layers (fully connected layer and classification layer).
4. Step 4: Train the model on the target (humerus or wrist) by freezing 70% of the layer

of the model, and then, train the rest.
5. Step 5: Predict and assess the performance of the trained model in the target’s test

images (humerus or wrist).
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6. Step 6: Deploy the results.

This proposed TL eliminates the need for a large number of annotated images specific
to the target task. This is beneficial when labelled data are scarce for the target task because
valuable time and resources are saved. This study used two pre-trained models, both
with and without the proposed TL approach. These models were chosen based on their
strong performance on the ImageNet dataset, a benchmark for various computer vision
tasks. The selection of diverse models allows for a comprehensive investigation of the
effectiveness of the proposed TL technique. Table 2 presents the key characteristics of
the selected models, including their sizes, depths, and image input sizes. By considering
models with different architectures and specifications, this study aimed to assess the impact
of TL in a variety of model configurations. This diversity allows a thorough evaluation
of the effectiveness of the proposed TL technique and its potential application in various
CNN models.

The limitation of this proposed TL is its need for a source of training, which requires
time and computational resources. However, the ImageNet (S1) models have already
been trained.

Figure 2. The proposed TL solution.
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Table 2. Selected models of pre-trained deep neural networks.

Model Input Size Parameters 106 Depth

InceptionResNetV2 299 × 299 × 3 55.9 164

Xception 299 × 299 × 3 22.9 71

3.3. Training Scenarios

Three groups were created from the dataset: training, validation, and testing. The train-
ing scenarios used in this study were calculated and conducted in the following ways (see
Figure 3):

Figure 3. The two training scenarios.

1. Scenario 1 (S1): TL from the ImageNet dataset was used to train the target dataset in
the DL models.

2. Scenario 2 (S2): ImageNet (S1) models were trained with the TL source collection
(in-domain images), and then, the models were trained on the target dataset. The
training parameters included Adam optimisation, a minibatch size of 15, a maximum
of 100 epochs, a shuffle for each epoch, and a starting learning rate of 0.001. An Intel
(R) Core i7/32 GB/1 TB/Nvidia RTX A3000 12 GB were the GPU specifications used
in the experiment. Matlab 2022a was used for the tests.

3.4. Deep Feature Fusion

The feature-fusion approach is used to improve overall performance by combining fea-
tures from different DL models. It aims to capture and combine complementary information
from multiple models to improve the representation of the features.

The first layers of each model learn basic features, such as colours, edges, and shapes,
while the last layers learn all the features of the object. Therefore, we extracted the features
from the last layers. Moreover, each DL model has its own structure and different filter
sizes to learn the features, and combining them provides a better representation of the
features. The two deep CNNs were trained and evaluated, and once trained, the models
extracted the relevant features from the input data. These extracted features were then
used to train the ML classifiers. In this process, the features extracted from both CNN
models were combined into a single feature space. ML classifiers were trained to categorise
and classify the abnormalities of the humerus or effectively classify the abnormalities
of the humerus. The combination of the features of the two models allows for a more-
comprehensive representation of the underlying patterns and characteristics present in
the data.

The combination of the features of multiple models offers several advantages in ML
classifiers. Combining the features extracted from various models makes a more-diverse
and -comprehensive set of information available for classifiers to learn from. This approach
allows ML classifiers to take advantage of the strengths and unique characteristics of each
CNN model, resulting in a more-holistic understanding of the target tasks. The combina-
tion of trained models and the pooling of their features provides the final ML classifiers
with the collective knowledge and discriminative power acquired from each model. This
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integration of features from multiple sources aims to improve the accuracy and robustness
of the classification process. By considering a wider range of characteristics and capturing
different aspects of the input data, classifiers can better capture the underlying patterns
and nuances of abnormalities of the humerus and wrist.

This study adopted various ML classifiers to use fused features. These classifiers
included linear discriminant analysis, neural networks, coarse KNN, cubic SVM, the
boosted tree, and the coarse tree. By applying multiple classifiers, each with its own
strengths and characteristics, this study explored different approaches and identified the
most-effective classifier for the given task, as shown in Figure 4.

Figure 4. The feature-fusion process.

3.5. Visualisation Techniques for Explainable Deep Learning Models

DL models are often referred to as “black boxes” due to the challenge of understanding
why a model makes specific decisions. Gaining insight into their decision-making processes
is essential to ensure confidence in DL models throughout the research and implementation
stages. The methodologies used in this study have a wide range of applications, including
model selection, debugging, learning, and bias assessment. One technique used to shed
light on the predictions made by a network trained on image data is the use of test images,
as depicted in Figure 5. These test images are used to clarify and understand the model
predictions, and they also ensure that the models focus on the relevant regions of interest
(ROIs) when making decisions. The gradient-weighted class activation mapping (Grad-
CAM) visualisation technique, as well as local interpretable model-agnostic explanations
(LIME) are interpretability techniques that explain the predictions of any ML model in an
interpretable and understandable manner. Unlike Grad-CAM, however, which focuses on
visualising important image regions, LIME can be applied to any input data type, including
text and tabular data.

These techniques take advantage of the gradient by highlighting areas of the image
that contribute significantly to the decision-making process of the model. The heat map is
generated by computing the gradients of the target class score with respect to the feature
maps in the final layer of the CNN.

Gradients involve taking partial derivatives of the loss function with respect to each
parameter in the network. By iteratively computing and applying the gradients to update
the parameters, the model learns to adjust its predictions and improve its performance on
the given task. Gradients are then globally averaged together to obtain the importance
weights for each feature map. A heat map is created by linearly combining the feature maps
with their corresponding weights, which indicate the regions of the image that strongly
influence the classification decision [58].
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The visualisation techniques such as Grad-CAM and LIME aim to address the “black
box” nature of DL models and enhance their interpretability and transparency. These
techniques provide valuable information on the features of the image that the model con-
siders crucial for decision-making. By analysing and understanding these critical regions,
researchers can gain a deeper understanding of the model’s reasoning process and validate
that the regions of influence align with the expectations. This helps to build confidence in
the prediction of the model, especially in medical-image-analysis and diagnostic tasks.

Figure 5. Workflow of visualisation techniques.
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4. Experimental Evaluation

This section focuses on the experimental assessment of the proposed TL method (S2)
to detect any abnormalities in the humerus and wrist.

4.1. Evaluation Metrics

All models were evaluated based on various training scenarios, which used a compre-
hensive set of evaluation metrics, including accuracy, specificity, recall, precision, the F1-
score, and Cohen’s Kappa. These metrics provide a comprehensive assessment of the
model’s performance and ability to classify instances accurately. The evaluation metrics
were calculated based on the values of the true negatives (TNs), true positives (TPs), false
negatives (FNs), and false positives (FPs). The TN and TP values represent the correct
classification of negative and positive examples, respectively, while the FP and FN values
represent the incorrect classification of positive and negative examples, respectively.

These evaluation metrics collectively provide a comprehensive understanding of the
performance of the model, thereby allowing an in-depth analysis of its strengths and
weaknesses. By examining these metrics, researchers can assess the model’s capability to
classify instances accurately and make informed decisions about its effectiveness in solving
the target tasks. Each evaluation metric is presented as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
∑ TP

TP+FP
num− classes

(2)

Specificity =
TN

FP + TN
(3)

Precision =
TP

TP + FP
(4)

F1− score = 2× Precision ∗ Recall
Precision + Recall

(5)

Cohen’s Kappa equation:

Ko =
TP + TN

TP + TN + FP + FN
(6)

Kpositive =
(TP + FP)(TP + FN)

(TP + TN + FP + FN)2 (7)

Knegative =
(FN + TN)(FP + TN)

(TP + TN + FP + FN)2 (8)

Ke = Kpositive + Knegative (9)

Cohen’s Kappa score=
Ko−Ke
1−Ke

(10)

4.2. Experimental Evaluation of End-to-End DL Models

Two DL models were tested with the help of two training scenarios, as shown in
Tables 3 and 4.
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Table 3. The results of the DL models on the test set of the MURA dataset for the humerus task on
Xception and InceptionResNetV2.

Evaluation Metric (%) Xception

- S1 S2

Accuracy 69.10 84.72

Recall 64.29 89.29

Precision 69.77 81.17

Specificity 73.65 80.41

F1-score 66.91 85.03

Cohen’s Kappa 38.02 69.83

InceptionResNetV2

Accuracy 80.21 86.11

Recall 74.29 85.00

Precision 83.81 86.23

Specificity 85.81 87.16

F1-score 78.49 85.61

Cohen’s Kappa 60.27 72.20

Table 4. The results of the DL models on the test set of the MURA dataset for the wrist task on
Xception and InceptionResNetV2.

Evaluation Metric (%) Xception

- S1 S2

Accuracy 69.10 84.07

Recall 64.29 73.56

Precision 69.77 88.93

Specificity 73.65 92.58

F1-score 66.91 80.52

Cohen’s Kappa 38.02 68.11

InceptionResNetV2

Accuracy 80.21 82.85

Recall 74.29 67.80

Precision 83.81 91.74

Specificity 85.81 95.05

F1-score 78.49 77.97

Cohen’s Kappa 60.27 64.45

1. Humerus task: As shown in Figures 6 and 7, the confusion matrix was initially calcu-
lated for all training cases. The assessment metrics were derived from the confusion
matrix values, which provided a detailed breakdown of the model classifications.
The data demonstrated the performance of the different scenarios, with S2 achieving
the best overall results. S2 obtained an accuracy of 84.72%, and the recall, also known
as the true positive rate, was 89.29%. The precision, which measures the accuracy of
positive predictions, was 81.17%, while the specificity, which represents the true nega-
tive rate, was 80.41%. The F1-score, which balances precision and recall, was 85.03%,
providing an overall measure of the performance of the model, and Cohen’s Kappa,
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which assesses the agreement between the model predictions and the ground-truth be-
yond chance, was 69.83% with the Xception DL model. S2 with the InceptionresNetV2
model had an accuracy of 86.11%, a recall of 85.00%, a precision of 86.23%, a specificity
of 87.16%, an F1-score of 85.61%, and a Cohen’s Kappa of 72.20%. In comparison, S1
with the Xception model achieved a precision of 69.10%, indicating a lower general
accuracy of the predictions. The recall, precision, specificity, and F1-score for S1 were
64.29%, 69.77%, 73.65%, and 66.91%, respectively. Cohen’s Kappa for S1 was 38.02%.
In contrast, S1 with the InceptioiresNetV2 model achieved an accuracy of 80.21%.
Meanwhile, the recall, precision, specificity, F1-score, and Cohen’s Kappa for S1 were
74.29%, 83.81%, 85.81%, 78.49%, and 60.27%, respectively.

Figure 6. Confusion matrix of the Xception model on the test set with two different training scenarios
of the humerus task.

Figure 7. Confusion matrix of the InceptionResNetV2 model on the test set with two different training
scenarios of the humerus task.

The Grad-CAM visualisation technique was used to explain the black box nature
of the DL models for the two training scenarios. In this section, we used trained
models with the test images to calculate the confidence value for Grad-CAM, and two
examples are presented to illustrate the performance of the models. The first example
is shown in Figure 8, which includes three situations with positive samples. The heat
maps reveal the behaviour of the S1 and S2 models when identifying the test samples
and focussing on the region of interest (ROI). For S1, the misusing model, the heat map
indicates that the model identified the test sample, but concentrated on areas outside
the ROI. This suggests that S1 may not accurately capture the essential features within
the ROI. However, the proposed TL (S2) method accurately identified the sample
with a high confidence value, and the associated heat map focuses on the ROI. This
demonstrates the effectiveness of S2 in capturing the relevant information within the
ROI. The second example shown in Figure 9 presents negative samples and exhibits
the same comparison of S1 and S2. In this case, S2 successfully identifies the samples
with a high confidence value, and the heat map targets the ROI. Although it has a low
confidence value, S2 still correctly identifies the samples, indicating its robustness.
In contrast, the heat map produced by S1 reveals that it focuses on regions outside
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the ROI, which suggests that it is unable to capture important features within the
intended area. These two examples highlight how the proposed TL (S2) method
significantly improves the results compared to the misusing model. Although S1
may demonstrate accurate predictions, its low confidence level and lack of an ROI-
focused approach make it unreliable. On the contrary, S2 achieves accurate predictions
with high confidence values and effectively focuses on the ROI, thus showcasing the
enhancement provided by the proposed method (S2).

Figure 8. Grad-CAM and score Grad-CAM for the humerus X-ray images. The correct classification
is positive.
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Figure 9. Grad-CAM and score Grad-CAM for the humerus X-ray images. The correct classification
is negative.

2. Wrist task: The confusion matrix was calculated for all training cases in both models of
DL, and the results are shown in Figures 10 and 11. Using the values of the confusion
matrix, various assessment measures were derived. The results demonstrate that
S2 outperforms the other model with the Xception DL model, and S2 achieves the
highest performance. Specifically, S2 achieves an accuracy of 84.07%, a recall of 73.56%,
a precision of 88.93%, a specificity of 92.58%, an F1-score of 80.52%, and a Cohen’s
Kappa of 68.11%. In contrast, S1 achieves an accuracy of 69.10%, a recall of 64.29%,
a precision of 69.77%, a specificity of 73.65%, an F1-score of 66.91%, and a Cohen’s
Kappa of 38.02%.

37



Cancers 2023, 15, 4007

As in the InceptionresNetV2 DL model, the results demonstrate that S2 achieves an
accuracy of 82.85%, a recall of 67.80%, a precision of 91.74%, a specificity of 95.05%,
an F1-score of 77.97%, and a Cohen’s Kappa of 64.45%. S1 achieves an accuracy, recall,
and precision of 80.21%, 74.29%, and 83.81%, respectively. Meanwhile, the different
performance metrics obtain a specificity of 85.81%, an F1-score of 78.49%, and a
Cohen’s Kappa of 60.27%.
These results highlight the superior performance of S2 compared to S1. S2 shows
superior precision, recall, specificity, and F1-score, highlighting its classification ability.
The higher Cohen’s Kappa value suggests better agreement between the predicted
and true labels. On the contrary, S1 exhibits lower performance in all assessment
measures, indicating its limitations in accurately classifying data.

Figure 10. Confusion matrix of the Xception model on the test set with two different training scenarios
of the wrist task.

Figure 11. Confusion matrix of the InceptionResNetV2 model on the test set with two different
training scenarios of the wrist task.

Figure 12 illustrates how S2 confirms the proposed method (S2) for the wrist task, as
well as with Grade-CAM.
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Figure 12. Grad-CAM and score Grad-CAM for the wrist X-ray images. The correct classification
is positive.

In terms of LIME and score LIME, Figure 13 provides a comparison between S1 and
S2. For S1, the figure illustrates that the model mispredicts the test sample, where
the high-intensity area is outside the ROI. This misprediction is evident from the
LIME visualisation, highlighting the incorrect area as having maximum intensity.
The confidence level of the model in this prediction is not specified. In contrast, S2
shows a significant improvement in accuracy. The model predicts the input sample
confidently with a confidence level of 100%. The LIME visualisation confirms that
the model correctly identifies the ROI, as the maximum intensity value is assigned
to the relevant area. This example serves as a demonstration of the effectiveness of
the proposed TL (S2) method. By incorporating the proposed approach, the model
prediction is transformed from an incorrect prediction (as observed in S1) to an
accurate prediction (as demonstrated in S2). The visualisation provided by LIME
further supports this improvement by highlighting the crucial regions that contribute
to the correct prediction. In general, the comparison of S1 and S2 using LIME and
score LIME emphasises the efficacy of the proposed TL (S2) method in improving the
accuracy and reliability of the prediction of the model, particularly by ensuring that
the ROI is correctly identified and considered during the decision-making process.
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Figure 13. LIME and score LIME for the humerus and wrist X-ray images. The correct classification
is negative for the humerus and positive for the wrist.

4.3. Experimental Evaluation of Deep Feature Fusion for the Humerus Task

Several ML classifiers were trained using features extracted from two models, such as
the decision tree, linear discriminant analysis, naive Bayes, support vector machine (SVM),
coarse KNN, K-nearest neighbour, logistic regression, and neural networks.

Interestingly, the coarse KNN classifier exhibited excellent performance in both scenar-
ios. Figure 14 illustrates the confusion matrix using the cotoNN classifier for each scenario.
However, the results presented in Table 5 show that both S1 and S2 significantly improved
the results compared to the baseline. Specifically, S2 achieved an accuracy rate of 87.85%,
a recall of 88.57%, a precision of 86.71%, a specificity of 87.16%, an F1-score of 87.63%, and
a Cohen’s Kappa of 75.69%. These metrics indicate a high level of performance and reliabil-
ity for S2. On the contrary, S1, which was trained using the same coarse KNN classifier,
achieved an accuracy of 84.03%, a recall of 80.71%, a precision of 85.61%, a specificity of
87.16%, an F1-score of 83.09%, and a Cohen’s Kappa of 67.98%. Although slightly lower
than S2, these results nevertheless demonstrated the effectiveness of S1 in improving overall
performance compared to the baseline. The comparison between S1 and S2 using the coarse
KNN classifier emphasised the superior performance of the proposed method (S2). Both
scenarios significantly improved the accuracy, recall, precision, specificity, F1-score and
Cohen’s Kappa. These results highlighted the effectiveness of the proposed TL (S2) method
in enhancing the overall performance of classifiers.

In comparison with another ML classifier, Table 6 displays the result for the humerus
task with the Gaussian naive Bayes ML classifier, and Figure 15 confirms the result with
the confusion matrix.
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Figure 14. Confusion matrix of the two models and the coarse KNN classifier on the test set with two
different training scenarios of the humerus task.

Table 5. The results of feature fusion with the coarse KNN classifier on a test set of the MURA dataset
for the humerus task.

Evaluation Metric (%) Two Models and the Coarse KNN Classifier

- S1 S2

Accuracy 84.03 87.85

Recall 80.71 88.57

Precision 85.61 86.71

Specificity 87.16 87.16

F1-score 83.09 87.63

Cohen’s Kappa 67.98 75.69

Table 6. The results of feature fusion with the Gaussian naive Bayes classifier on a test set of the
MURA dataset for the humerus task.

Evaluation Metric (%) Two Models and the Gaussian Naive Bayes Classifier

- S1 S2

Accuracy 80.60 86.80

Recall 80.50 86.90

Precision 80.60 86.90

Specificity 80.50 86.90

F1-score 80.50 86.90

Cohen’s Kappa 61.05 73.64

Figure 15. Confusion matrix of the two models and Gaussian naive Bayes classifier on the test set
with two different training scenarios of the humerus task.
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4.4. Experimental Evaluation of Deep Feature Fusion for Wrist Task

The features extracted from the two models for the wrist task were used to train various
ML classifiers, including the decision trees, linear discriminants, naive Bayes, support
vector machine (SVM), coarse KNN, K-nearest neighbour, logistic regression, and neural
networks. The features were obtained from the two training scenarios, and the outcomes of
the classifiers showed a similar pattern. In particular, the coarse KNN classifier exhibited
exceptional performance in both scenarios. The confusion matrix was initially constructed
using the coarse KNN classifier for each situation, as shown in Figure 16. However,
the results presented in Table 7 reveal that both S1 and S2 significantly outperformed the
baseline in terms of improving the overall results.

Figure 16. Confusion matrix of the two models and coarse KNN classifier on the test set with two
different training scenarios of the wrist task.

Table 7. The results of feature fusion with the coarse KNN Classifier on a test set of the MURA dataset
for the wrist task.

Evaluation Metric (%) Two Models and the Coarse KNN Classifier

- S1 S2

Accuracy 81.64 85.58

Recall 76.27 76.95

Precision 81.52 89.37

Specificity 85.99 92.58

F1-score 78.81 82.70

Cohen’s Kappa 62.64 70.46

Specifically, S2 achieved an accuracy of 85.58%, a recall of 76.95%, a precision of 89.37%,
a specificity of 92.58%, an F1-score of 82.70%, and a Cohen’s Kappa of 70.46%. These metrics
indicated high precision and performance for S2 on the wrist task. In comparison, S1, which
was trained using the same coarse KNN classifier, achieved an accuracy of 81.64%, a recall
of 76.27%, a precision of 81.52%, a specificity of 85.99%, an F1-score of 78.81%, and a
Cohen’s Kappa of 62.64%. Although slightly lower than S2, these results demonstrated the
effectiveness of S1 in improving the overall performance compared to the baseline.

The comparison between S1 and S2 using the coarse KNN classifier emphasised
the superior performance of the proposed TL (S2) method. Both scenarios significantly
improved the accuracy, recall, precision, specificity, F1-score, and Cohen’s Kappa. These
results highlighted the effectiveness of the proposed approach in improving the overall
performance of ML classifiers in the wrist task.

Table 8 shows the result for the feature fusion for the wrist task with the linearSVM
ML classifier on the test MURA dataset for the wrist task, and Figure 17 confirms the result
with the confusion matrix.

42



Cancers 2023, 15, 4007

Table 8. The results of feature fusion with the linearSVM classifier on a test set of the MURA dataset
for the wrist task.

Evaluation Metric (%) Two Models and the LinearSVM Classifier

- S1 S2

Accuracy 81.20 85.00

Recall 80.40 84.20

Precision 80.40 85.50

Specificity 80.40 84.20

F1-score 81.00 84.90

Cohen’s Kappa 61.48 69.26

Figure 17. Confusion matrix of the two models and the linearSVM classifier on the test set with two
different training scenarios of the wrist task.

Tables 5 and 7 provide some key conclusions:

1. The results obtained from both the humerus and wrist tasks demonstrated that, in Sce-
nario 1 (S1), the performance was inferior compared to Scenario 2 (S2), despite the
employment of feature-fusion techniques in both cases. However, it is worth noting
that the application of feature fusion without addressing the underlying problem
of data scarcity might have weakened the fusion process due to inadequate feature
representation.

2. Significantly, it should be noted that, in Scenario 2 (S2), the fusion process exhibited
remarkable improvement once the data scarcity problem was addressed. This en-
hancement can be attributed to the use of the high-quality features extracted by the
models. The introduction of sufficient and diverse data allowed for a more-robust and
-comprehensive representation of the underlying information, resulting in improved
fusion performance.

3. By integrating features from different models or sources, feature fusion plays a crucial
role in diversifying the representation of a model, thus reducing the risk of overfitting.
This process involves incorporating diverse information, which allows the model to
learn from multiple perspectives and reduces its dependence on specific features or
patterns in the training data. Consequently, the model becomes more flexible and
capable of effectively generalising its knowledge to unseen data instances. Moreover,
feature fusion contributes significantly to the achievement of high generalisation
performance. Generalisation refers to the model’s ability to perform well on data
samples that lie beyond the training set.
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4.5. Comparison Against the State-of-the-Art Methods

Our proposed method (S2) obtained good results compared to many studies, as shown
in Tables 9 and 10.

Table 9. Comparison against the state-of-the-art methods considering the test set of the MURA
dataset for the humerus detection task.

Authors Accuracy Recall Precision Specificity F1-Score
Cohen’s
Kappa

Ibrahem et al. [59] 82.08% 81.01% 80.60% 83.21% 80.80% 64.17%

Huynh et al. [60] 68.40% 64.00% 68.70% 72.20% 70.40% -

Olczak et al. [61] 83.00% - - - - -

Luong et al. [62] 84.00% - - - - -

This Study 87.85% 88.57% 86.71% 87.16% 87.63% 75.69%

Table 10. Comparison against the state-of-the-art methods considering the test set of the MURA
dataset for the wrist detection task.

Authors Accuracy Recall Precision Specificity F1 Score
Cohen’s
Kappa

Ibrahem et al. [59] 82.79% 89.89% 87.38% 71.80% 88.60% 64.60%

Mall et al. [63] 62.00% 35.40% 60.50% 82.30% 44.70% -

Karam et al. [64] 74.91% 61.98% 72.11% - 66.66% -

Saadawy et al. [65] 73.42% - - - - -

Nazim et al. [66] 78.10% - - - - -

Dang et al. [67] 79.00% - - - -

This Study 85.58% 76.95% 89.37% 92.58% 82.70% 70.46%

4.6. Robustness of Our Proposal

This section demonstrates the robustness of our methodology in the following ways:

1. Improvement of results:
Figures 18 and 19 demonstrate the comparison between S1 and S2 and visually depict
the significant contrast in the prediction outcomes, highlighting the remarkable im-
provement achieved by S2 over S1. S2 successfully transformed incorrect predictions
into correct predictions and did so with a high confidence value.
The two figures provide concrete evidence of how the proposed TL (S2) method
substantially improved the performance of the model by accurately identifying the
ROI. In the visualisations, it is evident that S2 precisely identified the crucial areas
within the image that influenced the correct prediction. This focus on the ROI was
instrumental in achieving the improved accuracy and reliability in the model predic-
tions. The comparison between S1 and S2 is compelling proof of the effectiveness
of the proposed TL (S2) method. It demonstrated the significant impact that the
consideration of the ROI and the implementation of appropriate techniques can have
on enhancing prediction outcomes. The improved performance of S2, along with the
high confidence value associated with the correct predictions, highlighted the success
of the proposed TL (S2) method in improving both the accuracy and the reliability of
the model.
In particular, Grad-CAM and score Grad-CAM in Figure 18 display a negative case of
the humerus as an input image. It is obvious in the S1 of ImageNet that the model
incorrectly classified. However, the TL approach (S2) correctly classified with a
confidence of 98.00%. On the other hand, Figure 19 displays how our approach TL
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(S2) correctly classified the input images in both cases (humerus and wrist), while
ImageNet (S1) misclassified them.

Figure 18. Grad-CAM and score Grad-CAM for the humerus X-ray images. The correct classification
is negative.

Figure 19. Comparison of S1 and S2, where S1 misclassified the samples and S2 correctly classi-
fied them.

2. Changes to sensitivity:
To demonstrate the robustness of our technique (S2), S2 was tested against various
alterations. Figures 20 and 21 show how a small adjustment, such as removing the
printed letters from the red circle, can affect the performance of S1. The estimate
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was made outside of the ROI and went from being accurate to erroneous before and
after being adjusted. However, S2 demonstrated consistent performance by correctly
predicting the samples with a high prediction and correctly identifying the ROI.
Figures 20 and 21 illustrate that, despite removing the letter from both tasks (humerus
and wrist), TL (S2) was not affected by these changes. However, ImageNet (S1) was
affected by these changes and changed the classification from positive (0.86) to nega-
tive (0.99) in the humerus task when the input image was positive and from negative
(0.75) to positive (0.89) in the wrist task, despite the input image being negative.

Figure 20. The effect of certain modifications made by eliminating the letters in the red circle. Positive
is the correct classification in the humerus task.

Figure 21. The effect of certain modifications made by eliminating the letters in the red circle.
Negative is the correct classification in the wrist task.
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3. Assessment of confidence:
- S1 had a high score with high confidence and correctly recognised the sample in
Figure 22 despite not being focused on the ROI, which is interesting. Although the
confidence level was high, S1 cannot be relied upon because the Grad-CAM visualisa-
tion suggested the opposite to be true. The sample was incorrectly classified with a
high confidence value by eliminating the background.
To approve our approach of TL (S2) by removing the background in Figure 22, TL
(S2) still had more confidence with 100% accuracy with the background and without
rather than ImageNet (S1), which failed when the background was removed and
directly changed from (0.87) positive to (0.77) negative with the positive input image.

Figure 22. Comparison of S1 and S2. The right classification is positive.

- Low score: Several test samples are shown in Figure 23, where S1 and S2 successfully
identified them. S1 anticipated the samples with low confidence values, but these
samples were unreliable because the model did not guarantee them, particularly the
samples with confidence values in the 0.50 range. However, S2 displayed a high
confidence score that corresponded to the confidence expectation.
In Figure 23, we can see the obvious difference in the score of classification between
ImageNet (S1) and TL (S2); TL (S2) correctly classified with 100% confidence. Mean-
while, ImageNet (S1) correctly classified some images with a low score of confidence.

4. Better feature representation:
- Fusing two or three DL models enhances the feature representation for ML classifiers
and improves the overall performance. Figure 24 shows that one model missed the
classification and made incorrect feature selections, while the other model correctly
classified the sample. Employing the feature-fusion technique can significantly reduce
the chances of misclassification.
Figure 24 confirms the feature-fusion technique, with the positive humerus and
positive wrist that InceptionResNetV2 correctly classified in the TL (S2). However,
the same model (InceptionResNetV2) incorrectly classified them (humerus and wrist)
with ImageNet (S1).
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Figure 23. Comparison of S1 and S2, where S1 and S2 correctly predicted the samples, but had
varying confidence scores.

Figure 24. Comparison of InceptionResNetV2 and Xception. The correct classification is positive.

5. Reusability of the Proposed Solution

To approve our TL (S2) approach, we applied our proposed method (S2) to another
dataset (chest CT scan), which includes two classes (normal and squamous.cell.carcinoma-
left). First, we trained the dataset with Xception and InceptionResNetV2 from scratch
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to generate S1. Next, we used our source of X-rays without any images of new data
(chest CT scan). Table 11 demonstrates the performance for both scenarios in the two
models. Figures 25 and 26 display the confusion matrix for both DL models (Xception and
InceptionResNetV2) on a test of the chest CT scan dataset.

Table 11. The results of the DL models on the test dataset of chest CT scan on Xception and Incep-
tionResNetV2 .

Evaluation Metric (%) Xception

- S1 S2

Accuracy 96.65 99.30

Recall 95.30 99.40

Precision 97.40 99.20

Specificity 95.30 99.40

F1-score 96.30 99.30

Cohen’s Kappa 92.34 98.57

Evaluation Metric (%) InceptionResNetV2

- S1 S2

Accuracy 96.65 98.50

Recall 95.30 98.20

Precision 97.40 98.60

Specificity 95.30 98.20

F1-score 96.30 98.40

Cohen’s Kappa 92.34 96.77

Figure 25 displays that the Xception model with ImageNet (S1) misclassified (21)
images of a normal class, when with the TL (S2), only (1) of the normal class and (3) of the
squamous.cell.carcinoma-left were misclassified. Meanwhile, Figure 26 clarifies that the
InceptionResNetV2 model misclassified (21) images of the normal class in the ImageNet
(S1), and our approach with TL (S2) misclassified (7) images of the normal class and (2)
images of the squamous.cell.carcinoma-left.

Figure 25. Confusion matrix of the Xception model on the test set with two different chests CT scan
task training scenarios.

Furthermore, the Grad-CAM and LIME tools were applied to the CT scan dataset to
confirm our proposed method of TL (S2), as shown in Figure 27.

Specifically, the model in Figure 27 demonstrates that ImageNet (S1) incorrectly classi-
fied the squamous.cell.carcinoma-left as the input image. Meanwhile, our approach of TL
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(S2) confirmed the squamous.cell.carcinoma-left images with a confidence of 100% using
the Grad-CAM and LIME tools of the visualisation technique.

Figure 26. Confusion matrix of the InceptionResNetV2 model on the test set with two different chest
CT scan task training scenarios.

Figure 27. Grad-CAM in the first row and LIME in the second row for chest CT scan images.
The correct classification is squamous.cell.carcinoma-left.

6. Conclusions and Future Work

In this paper, a robust technique was introduced for identifying abnormalities in
X-ray images of the humerus and wrist. The technique addresses the challenge of domain
mismatch between coloured natural images and grayscale X-ray images by training two
pre-trained models from ImageNet (S1) on in-domain X-ray images specifically related to
the elbow, finger, forearm, hand, humerus, and wrist. These models were then fine-tuned
using a dataset specific to the tasks of the humerus and wrist.

The proposed method (S2) was compared with two other training conditions. The first
condition (S1) involved using ImageNet (S1) directly on the intended dataset without
addressing the domain mismatch. The second condition consisted of training multiple ML
classifiers using the fused features extracted from the two models obtained in each scenario.

By overcoming the domain mismatch and training the models on in-domain X-ray
images, the proposed method (S2) aimed to improve the accuracy and effectiveness of
anomaly detection in humerus and wrist X-ray images. A comparison against other training
conditions provided information on the benefits of the proposed approach (S2) in capturing
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relevant features and improving anomaly detection performance. From this research, we
concluded the following:

1. The test dataset consisted of pure MURA images without any preprocessing applied.
It is worth noting that many state-of-the-art studies use various preprocessing tech-
niques to enhance image quality and improve their results. However, our approach
outperformed these state-of-the-art methods despite not employing preprocessing
techniques on the test dataset. By demonstrating superior performance without pre-
processing, our approach highlights the effectiveness of the proposed methodology
(S2) in accurately detecting anomalies in MURA images. It suggests that our mod-
els’ robust feature extraction and classification capabilities can capture the relevant
information directly from the raw MURA dataset.

2. The results obtained from S2 demonstrate the effectiveness of the proposed TL ap-
proach (S2) in reducing the mismatch between the two domains. By training the
models on in-domain X-ray images and then fine-tuning them on the humerus and
wrist tasks datasets, the TL method effectively bridged the gap between the coloured
natural images and the grayscale X-ray images. The reduced mismatch in the domain
is reflected in the improved performance of S2 compared to S1 and other training
conditions. The models trained using S2 exhibited enhanced prediction accuracy
and demonstrated the ability to correctly identify the ROIs in the X-ray images. This
reduction in domain mismatch can be attributed to the transfer of knowledge and
features from the pre-trained ImageNet (S1) models to the specific tasks of humerus
and wrist anomaly detection.

3. For some models of ImageNet (S1), despite specific models showing comparable
or higher performance in the evaluation metrics, the visual confirmations provided
by Grad-CAM and LIME emphasised the superiority of S2 in accurately detecting
and focusing on the relevant ROI. These visualisation techniques added a layer of
confidence to the outcomes obtained by S2.

4. The proposed approach (S2) is not limited to the specific dataset used in this study; it
has the potential to be applied to a wide range of tasks and applications. The flexibility
and adaptability of the proposed TL (S2) method allow exploration and investigation
of various domains, as validated through the significant improvements observed in
the CT case.

The next step is to include most grayscale medical modalities (MRI, CT, and ultra-
sound) in the source of TL to cover most grayscale medical applications. Thus, this type of
TL will offer a better generalisation of features and will be able to be used for any grayscale
medical modalities.
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Simple Summary: Leukemia is a type of cancer that affects white blood cells and can lead to serious
health problems and death. Diagnosing leukemia is currently performed through a combination of
morphological and molecular criteria, which can be time-consuming and, in some cases, unreliable.
Computer-aided diagnosis (CAD) systems based on deep-learning methods have shown promise
in improving diagnosis efficiency and accuracy. However, these systems suffer from the “black box
problem,” which can lead to incorrect classifications. This research proposes a novel deep-learning
approach with visual explainability for ALL diagnoses based on robust white blood cell nuclei
segmentation to provide a highly reliable and interpretable classification. The aim is to develop a
CAD system that can assist physicians in diagnosing leukemia more efficiently, potentially improving
patient outcomes. The findings of this research may impact the research community by providing a
more reliable and explainable deep-learning-based approach to blood disorder diagnosis.

Abstract: Leukemia is a significant health challenge, with high incidence and mortality rates.
Computer-aided diagnosis (CAD) has emerged as a promising approach. However, deep-learning
methods suffer from the “black box problem”, leading to unreliable diagnoses. This research proposes
an Explainable AI (XAI) Leukemia classification method that addresses this issue by incorporating a
robust White Blood Cell (WBC) nuclei segmentation as a hard attention mechanism. The segmenta-
tion of WBC is achieved by combining image processing and U-Net techniques, resulting in improved
overall performance. The segmented images are fed into modified ResNet-50 models, where the
MLP classifier, activation functions, and training scheme have been tested for leukemia subtype
classification. Additionally, we add visual explainability and feature space analysis techniques to
offer an interpretable classification. Our segmentation algorithm achieves an Intersection over Union
(IoU) of 0.91, in six databases. Furthermore, the deep-learning classifier achieves an accuracy of 99.9%
on testing. The Grad CAM methods and clustering space analysis confirm improved network focus
when classifying segmented images compared to non-segmented images. Overall, the proposed
visual explainable CAD system has the potential to assist physicians in diagnosing leukemia and
improving patient outcomes.

Keywords: acute lymphoblastic leukemia; deep-learning; XAI; nuclei segmentation; leukemia
classification

1. Introduction

Blood disorders are among the most challenging problems in medical diagnosis and
image processing, where blood samples can be used to analyze a person’s state of health
and diagnose various diseases such as allergies, infections, or cancer. Specifically, one of the
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most lethal cancers with the highest incidence rate is Leukemia, where malformation of the
white blood cells causes serious health problems that can lead to death. Although WBCs are
involved in protecting the human body, they are also susceptible to illness. The most critical
pathological conditions of the white blood cells are blood cancers. As a consequence of
malignant mutations in the lymphoid or myeloid cells, there is an uncontrolled proliferation
of malformed cells that do not function correctly in the organism, causing a decrease in
the patient’s health and even death. This process of malformation and uncontrolled
reproduction of white blood cells is called Leukemia [1,2].

Leukemia can be classified according to the type of malignant cell, either lymphoid or
myeloid, or the speed of symptoms development, chronic or acute. Acute Lymphoblastic
Leukemia (ALL) is the most common during childhood, and due to genetic factors, the most
affected ethnicity worldwide by ALL is the Hispanic population [2]. Currently, the way
to diagnose Leukemia is based on a mixture of morphological and molecular criteria. The
morphological classification relies on the FAB (French-American-British) medical criteria,
established on recognizing characteristics or patterns such as the number of white blood
cells, shape, and size, among others, where it is possible to differentiate between the
types [2,3].

One major disadvantage of this procedure is the time consumption for the specialist
in the analysis of each sample and the reliability of the diagnosis [4]. In addition, in low-
income countries where health systems are overwhelmed, the time to find an appointment
for the performance of these tests is high, which can result in a late diagnosis. Computer
Aided Diagnostic (CAD) systems assist physicians in routine tasks to diagnose more
efficiently, accurately, and with shorter diagnostic times, providing a better outcome for
the patient.

In particular, CAD systems based on Deep Learning methods have recently gained
relevance due to the good metrics obtained in research articles. However, as Loddo and
Putzu [5] stipulate, many of the systems based on Deep Learning, specifically segmen-
tation and classification systems of blood smear images, need a deeper analysis of the
results beyond the metrics and learning curves. One major challenge associated with
Deep Learning models is the “Black box problem,” where the lack of semantic associations
between input data and predicted classes hinders interpretability. This means that although
a Deep Learning model may achieve excellent metrics and accurately classify results, the
underlying associations made by the model might be incorrect. This conveys a significant
risk when applying these systems to different databases or integrating them into routine
clinical practice.

The growing spectrum of diseases and the potential of Computer Diagnosis have
sparked intense research into white blood cell (WBC) segmentation and leukemia classifica-
tion. Propelled by progress in computer vision and Deep Learning, considerable strides
have been taken in addressing the challenges intrinsic to WBC nuclei segmentation and
leukemia classification [6,7].

Recent research has shown the positive impact of appropriate pre-segmentation on
deep-learning classification in medical imaging. The research of Mahbod et al. [8] high-
lighted improved performance with the correct use of segmentation masks on dermoscopic
images, however, when segmentation was applied inaccurately, it resulted in a decrease in
model performance. Similarly, Al-masni et al. [9] found that feeding segmented skin lesions
into an integrated computer-aided diagnosis (CAD) system resulted in more effective
diagnostic classification.

In the context of WBC segmentation, one of the most relevant studies was carried out
by Vogado et al. [10], where color space transformations from RGB to CMYK and Lab*
were applied, followed by contrast adjustment and median filtering to enhance the image.
Leukocytes were highlighted by subtracting the B channel from the M channel. K-means
clustering and morphological operations were subsequently employed. Alternatively,
Makem and Tiedeu [11] introduced a WBC nucleus segmentation method by leveraging
color space transformations, arithmetical operations, and adaptive PCA fusion. Their
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approach demonstrated excellent performance with Dice Coefficients of 94.75%, 97.06%,
and 90.79% on the BloodSeg, CellaVision, and JTSC databases, respectively, validating its
effectiveness across diverse datasets. Meanwhile, Mousavi et al. [12] addressed the WBC
nucleus segmentation problem by employing a color balancing method based on the color
channels means, converting the image to CMYK and extracting the Magenta channel and
then segmenting the image. This approach was trained and tested with 985 and 250 images
from the Raabin WBC, respectively, obtaining a Dice Coefficient of 95.42%. After, Tavakoli
et al. [13] developed a three-step method for WBC nucleus segmentation. Applying color
balancing, RGB to HSL and CMYK conversions, and arithmetic operations to enhance
nuclei visibility, followed by Otsu filtering for binarization. The method achieved a Dice
Coefficient of 96.75% on a subset of 250 images from the Raabin WBC dataset.

Makem et al. [14] proposed a robust WBC segmentation method based on arithmetic
operations and the Fourier transform. They segment the WBC using RGB space operations and
Otsu thresholding, followed by Fourier-based image enhancement. The K-means algorithm is
then applied for nuclei grouping and segmentation. The method achieved high segmentation
accuracy on five databases, with Dice Coefficient results ranging from 86.02% to 97.35%. In
comparison, Mayala and Haugsøen. [15] proposed a WBC segmentation method based on
finding the minima between two local peaks in the image histogram analysis.

Ochoa-Montiel et al. [16] proposed an intermediate approach between handcrafted
and deep-learning methods for WBC segmentation and ALL classification. They em-
ploy RGB to HSI transformation, Otsu’s segmentation method, and handcrafted feature
extraction techniques. Classification is performed using handcrafted approaches and
deep-learning methods based on Alexnet and LeNet architectures.

In contrast, a few WBC segmentation schemes are based entirely on the Deep Learn-
ing approach. For example, Haider et al. [17] proposed a Deep Learning approach for
WBC segmentation, specifically nucleus and cytoplasm segmentation. They introduced
two networks, LDS-NET and LDAS-NET, which are modifications of U-NET with ad-
ditional features such as residual connections. The combination of these features helps
retain information and improve accuracy. The approach of Garcia-Lamont et al. [18] pro-
poses six methods for WBC nucleus segmentation: CPNNHSV, CPNRGB (neural network-
based), SOMHSV, SOMRGB (Self Organized Maps-based), and VarHSV, VarRGB (based on
chromatic variance). This approach has been tested using three different databases with
660 images.

Zhou et al. [19] applied a modified version of U-Net, a well-known Deep Learning
method used for segmentation. U-Net++ architecture modifies the plain skip connections
for nested and dense skip connections to combine the high-resolution map feature. This
algorithm was trained and tested with 989 and 250 images of the Raabin WBC database,
respectively, reaching a Dice Coefficient of 97.19%. Similarly, Oktay et al. [20] proposed a
new U-Net-based model with attention. This attention gate allows for highlighting relevant
features and removing irrelevant ones resulting in better segmentation. The algorithm was
implemented with the Raabin WBC dataset, trained and tested with 989 and 250 images,
respectively, resulting in a Dice Coefficient of 96.33%. Finally, He et al. [21] enhanced
the Faster R-CNN approach with the Mask R-CNN architecture for WBC segmentation.
The method improves the segmentation results by introducing a connection between the
convolutional feature maps and generating a masked ROI as an attention module.

The review of the state-of-the-art shows that WBC segmentation and Leukemia clas-
sification remains an active and evolving research area. In recent years, the significance
of model interpretability and explainability has garnered increasing attention in medical
diagnosis. Current methodologies encounter challenges regarding robustness and the
elucidation of the underlying rationale behind model predictions. Traditional Handcraft
approaches often involve intricate and non-intuitive segmentation steps and typically
perform worse than AI models. Deep Learning methods, while achieving impressive per-
formance, frequently suffer from the “Black box problem,” difficulting in the reliability of
the diagnosis. Thus, there is a pressing need to explore novel techniques prioritizing model
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interpretability and explainability. In addition, in assisted medical diagnosis systems, the
doctor must understand the reasons that lead to a particular Deep Learning classification
so that the physician can implement an accurate and reliable hybrid diagnosis.

In this article, we introduce a novel method for leukemia classification using Explain-
able Artificial Intelligence (XAI) and segmentation techniques. The unique feature of our
approach lies in its use of segmentation as a form of ’hard attention’ mechanism, which
enhances the classifier’s accuracy and interpretability by targeting the nucleus of white
blood cells (WBCs). We demonstrate the robustness of our segmentation method by testing
it across multiple databases. To make the network associations more tangible, we use
gradient attention maps that visualize the relevance of various regions, considering both
the intensity and location of the ’attention’ within the Region of Interest (ROI). By focusing
on the WBC nuclei before classification, our proposed method significantly improves the
quantitative and qualitative criteria, outperforming classifiers that do not use segmenta-
tion. We also compare Deep Learning approaches and demonstrate the superior efficacy
of the Mish activation function over the commonly used Rectified Linear Unit (ReLU).
Through these findings, we hope to advance the field of leukemia classification by offering
an approach that is not only more accurate but also more explainable.

Furthermore, this research has four main sections; Section 2 shows the datasets and the
metrics used for evaluation; Section 3 presents the proposed methodology; Section 4 exhibits
results as well as the discussion; finally Section 5 summarized scientific contributions of
this research.

2. Materials

2.1. Datasets

This research used six databases with digitalized images of blood or bone marrow
samples. A total of 2823 different images were used to test the developed method. The
databases employed have different characteristics concerning each other, such as the
number and size of white blood cells, image color, saturation, illumination, etc.

• Leukemia Dataset [16] is formed by 651 classified images of Acute Lymphoblastic
Leukemia according to FAB classification (217-ALL1, 217-ALL2, 217-ALL3), with
dimensions of 256× 320 pixels. This dataset is the only one in the state-of-the-art that
labels the different types of Acute Lymphoblastic Leukemia with reliability through
cytogenetic tests.

• CellaVision [22] is made up of 100 blood samples, and each image has dimensions of
300× 300 pixels and a bit depth of 24 bits. This dataset usually consists of a single cell,
and the core color is violet, while the background has pinkish and yellowish tints.

• JTSC [22] is made by the Jiangxi Telecom Science Corporation in China. This dataset
consists of 300 images of 120 × 120 pixels containing the GT of the nucleus and
cytoplasm for comparative analysis. It contains a wide variability among its samples
since there are cells in which the nucleus has a highly saturated coloration, while in
others, the nucleus is almost translucent. Furthermore, the image’s background varies
from an intense yellow to a pinkish white.

• SMC_ID (Blood_Seg) [23] is composed of 367 images of WBC with a size of
640× 480 pixels. Each sample characterizes by the GT of the nucleus, which facil-
itates its analysis. Commonly, the images that integrate this dataset have a cell nucleus
with low color saturation. Additionally, the WBC is located in diverse positions over
the image.

• Raabin_WBC [24]. It provides 1145 images of blood samples, with dimensions of
545 × 545 pixels, where white blood cells are subdivided into 242 lymphocytes,
242 monocytes, 242 neutrophils, 201 eosinophils, and 218 basophils. Each of these
1145 samples also contains a ground truth, both whole cell and nucleus. This is one of
the best databases by now, as it has numerous samples of different cell types classified
and annotated with ground truth for analysis and comparison of results.
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• ALL_IDB2 [25]. It consists of 260 images of 257× 257 pixels. This dataset derives from
the ALL-IDB1 dataset, where individual cells have been cropped to obtain the region
of interest.

Examples of the datasets used in the research are shown in Figure 1.

Figure 1. Used dataset images: Leukemia Dataset (a), CellaVision (b); JTSC (c); BloodSeg (d);
Raabin_WBC (e); ALL_IDB2 (f).

2.2. Metrics

For evaluating the proposed segmentation and classification method, seven of the
most widely used metrics were employed [26]:

• Accuracy value measures the appropriate classification over the total elements.

Acc =
TP + TN

TP + TN + FP + FN
. (1)

• Precision metric estimates the number of elements correctly classified among all the
positive elements to evaluate.

Pre =
TP

TP + FP
. (2)

• Recall also known as sensitivity, is used to denote the number of positive elements
that are correctly classified.

Rec =
TP

TP + FN
. (3)

• Specificity measures the proportion of true negatives that are successfully identified
by the model.

Spec =
TN

TN + FP
. (4)

• Dice Similarity Coefficient or DSC can be considered to be a harmonic mean of
precision and recall. Furthermore, known as F1-Score.

DSC = 2 ∗ Precision ∗ Recall
Precision + Recall

. (5)

• Intersection over Union also known as Jaccard Index is the most important metric in
image segmentation tasks since it measures the magnitude of overlap between the GT
and the segmented image.

IoU =
TP

TP + FP + FN
. (6)

were TP represents true positives, TN true negatives, FP false positives and FN false negatives.

59



Cancers 2023, 15, 3376

3. Proposed Method

In this work, a novel CAD system for Acute Lymphoblastic Leukemia classification
was developed. The novel approach relies on an ensemble state of art white blood cell
segmentation that acts as a hard attention mechanism for the network, increasing diagnostic
accuracy and reliability. Furthermore, a visual Grad CAM interpretation with four gradient
activations maps (GradCAM, GRADCAM++, Hi-Res-CAM, Xgrad-CAM) and a clustering
space analysis increase the reliability of the method. The proposed system diagram is
shown in Figure 2. Below, each of the three phases of the method is presented.

Figure 2. Proposed Method.

3.1. Handcrafted WBC Nuclei Segmentation

This research proposes a new robust and consistent segmentation method for dif-
ferentiating the WBC nucleus from the rest of the sample. To address the issue of color
variations between blood samples, caused by factors such as illumination, microscope type,
and staining, a method proposed by Hedge et al. [27] is employed. This method involves
multiplying the original RGB channels by a weight calculated based on the ratio between
the average grayscale intensity and the average intensity of the respective channel (Red,
Green, and Blue), as can be seen below in Equation (7). By applying this approach, the
colors in the samples are homogenized, enhancing the tonal consistency across different
datasets and improving the method’s applicability and robustness.

CCChannel = ChannelIntensity
(

mean Grayscale
mean ChannelIntensity

)
. (7)

We enhance the WBC nucleus by matching image tonalities and employing color
space transformations (RGB to CMYK and HSV). Guided by purple tonalities and high
saturation in the ROI region, the Saturation and Magenta channels are combined using
the Hadamard product to highlight nuclei and remove unwanted elements. The bilateral
filter [28] is employed after the Hadamard product to refine the segmentation process
further to eliminate image noise and blur the WBC nucleus. This step ensures that any
regions potentially lost during the Hadamard product operation are recovered while
maintaining the original shape and integrity of the cell edges. The grayscale image is then
transformed to a binary image via the adaptive Otsu Thresholding [29], resulting in an
image where the WBC nuclei are highlighted in white and the other components of the
image in black.

Since areas with holes could be found in the nucleus of the binarized image, the
morphological transformations of closing and filling holes are applied to improve the
segmentation process. The closing eliminates the small black regions, filling holes operation
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dilates the white regions within the WBC nucleus. Finally, a filter by ROI pixel area removes
small spurious elements that remain, where the elements with a smaller area of pixels than
those established by the threshold are eliminated from the image. All the presented steps
of the WBC nuclei segmentation method can be summarized in Algorithm 1.

Algorithm 1 Proposed Handcrafted WBC Nuclei Segmentation.

1: Read RGB image
2: CC_RGB ← Apply Color Constancy to RGB image
3: CMYKImage ← Trans f orm CC_RGB to CMYK
4: M ← split(CMYKImage)
5: HSVImage ← Trans f orm CC_RGB to HSV
6: S ← split(HSVImage)
7: MultImage ← M� S (Hadamard Product)
8: BilateralImage ← BilateralFilter(MultImage)
9: BinarizedImage ← Th_Otsu(BilateralImage)

10: BinarizedImage ← Closing(BinarizedImage)
11: BinarizedImage ← Fill_Holes(BinarizedImage)
12: AreaFilterImage ← BinarizedImage >= pixel number
13: SegmentedImage ← Mask(AreaFilterImage, RGB Image)

3.2. Deep Learning WBC Nuclei Segmentation

The encoder-decoder architecture, U-Net [30], was implemented for the Deep Learning
segmentation phase. The encoder downsamples the input image and extracts high-level
features, while the decoder upsamples the features to reconstruct the original image size
and generate a segmentation map. The skip connections between the encoder and decoder
help to preserve spatial information and enable precise segmentation of objects. Our im-
plementation of the UNet model has the following structure: Designed for 2-dimensional
spatial inputs, begins with an input of 3 channels. The model progresses through five
distinct levels, each corresponding to a different size of the channel, expanding from 32 to
512. At each level, the model performs downsampling using strided convolutions, with
strides of 1 at the first level, and 2 at subsequent levels. The model employs Instance Nor-
malization, includes a dropout rate of 0.5 for regularization, and uses the Mish activation
function for non-linearity [31] (see Equation (8))

Mish(x) = x ∗ tanh(ln((1 + ex)) . (8)

Furthermore, we used the state-of-the-art Unified Focal Loss function [32] as a loss
function for our UNet-based model, which can improve the segmentation due to its better
handling of class imbalance and the combination of Focal Loss, Equation (9), (distribution-
based loss) and Tversky Loss, Equation (10), (region-based loss).

LmFocalLoss = δ(1− p)1−γ ∗ LBinaryCrossEntropy . (9)

LmFocalTverskyLoss =
C

∑
c=1

(1−mTI)γ . (10)

LUn f ied Focal Loss = λLmFocalLoss + (1− λ)LmFocalTverskyLoss . (11)

For Unified Focal Loss, see Equation (11), the three tuning parameters are defined as: δ
controls the relative weighting of positive and negative classes, γ manages the suppression
of background classes and the attention of rare classes, and lastly, λ handles the weights
between the distribution-based loss and the region-based loss.
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3.3. Ensemble Segmentation

Ensemble segmentation is a technique for improving the accuracy and robustness
of image segmentation using multiple segmentation models. Combining the predictions
of several models can improve the overall performance of the segmentation. The novel
method employs a Hybrid ensemble segmentation technique. By combining the proposed
Handcrafted and Deep Learning segmentations, we can overcome the limitations of in-
dividual approaches and produce more reliable segmentation results. Since the biggest
problem in both segmentation methods was the false positives, the logical AND operation
was used to merge both masks, significantly reducing the number of false positives and
increasing the stability of the ensemble segmentation. For instance, when one of the two
methods does not correctly remove a non-ROI region and the other does, this non-ROI
region is removed from the Ensemble segmentation mask. After the fusion technique, we
applied an area opening as a post-processing operation.

Ensemble Mask = Handcra f tedMask ∧ DeepLearningMask . (12)

3.4. ALL Classification

In this study, the proposed classifier is based on ResNet-50 [33], which through their
residual connections, allows a better back-propagated gradient flow through the network,
contributing simultaneously to assembling more layers in a CNN network while improving
the network’s learning. Since the ResNet-50 architecture forms a vector of 2048 features
in the Fully Connected layer, and the proposed method attempts to classify three classes
of Leukemia, it is necessary to modify the MLP classifier layer. It has been proposed two
different configurations: One going from 2048 to 1024-512-3 (Medium) and the other from
2048 to 3 (Linear). The objective behind the different classifiers configurations is based
on the assumption that adding more hidden layers is needed to approximate the feature
function of each class, leading to a classification improvement.

To find the best classifier for this problem, eight models were trained based on ResNet-
50, changing the activation function, the number of hidden layers and neurons in the MLP
classifier, and the input images, Segmented and NoSegmented, as is shown in Table 1:

Table 1. Summary of the different modifications in the developed models.

Input Image
Segmented Train the model with the previously Segmented Images

NoSegmented
(Ablation)

Train the model with the original images (No Segmented Images)
(Traditional manner)

MLP Classifier
Linear Modify the MLP classifier from 2048 to 3 neurons

Medium Modify the MLP classifier from 2048 to 1024-512-3 neurons
Activation Function

Mish Change all the activation functions of the model to Mish, including
MLP classifier

ReLU Change all the activation functions of the model to ReLU, including
MLP classifier

3.5. Visual Explainability

A crucial component of our proposed method is the integration of a visual explainabil-
ity stage, which aims to provide insights into the network’s learning process and ensure that
the regions of interest (ROIs) are accurately identified during Deep Learning classification.
This step enhances the method’s overall effectiveness and enables clinicians to interpret the
results generated by the network. Since, in the field of Deep Learning interpretability, there
is currently no consensus on the best metrics-based approach for activation map generation,
and it is known that each method could highlight different regions. Therefore, we per-
form a comprehensive analysis of four gradient-based methods, namely GRAD-CAM [34],
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Grad CAM++ [35], HiRes-CAM [36], and XGrad-CAM [37]. By examining these methods’
outputs, we ensure a robust evaluation of the network’s attention and activation patterns.
This approach enables us to better understand the network’s decision-making process and
further strengthens the interpretability of our proposed method.

3.6. Clustering Space Analysis

We introduced a clustering space analysis to visualize class predictions in the proposed
method to enhance reliability and robustness. By obtaining the logits of each sample in the
test set and their corresponding true targets, a 3-dimensional map was generated where the
coordinates represented class predictions (L1, L2, and L3). Principal Component Analysis
(PCA) was applied to reduce dimensionality and visualize clusters. This visualization
technique allowed us to observe how the network grouped classes in the logits space,
aiming to maximize inter-class variance and minimize intra-class variance. The analysis
included calculating the Euclidean distance between cluster centroids to measure inter-
class variance and using the standard deviation of “PC1” and “PC2” within each cluster to
quantify intra-class variance. Recognizing the significance of inter-cluster distance in class
prediction, we introduced the Dist/SD Ratio, a weighted ratio of 3-1 Distance/SD intra-
class. We think that models amplifying this ratio may exhibit superior robustness when
clustering-classifying new data, reflecting better class separability and tighter intra-class
clustering for enhanced generalization performance, as is shown in Figure 3.

Figure 3. Model clustering space comparison.Where the best model is the one that enhances inter-class
distance and reduces intra-class separability.

4. Results and Discussion

4.1. Segmentation Results

The handcrafted segmentation method was implemented using a PC, with an Intel
Core i7-4510U processor, 8 GB RAM, the operating system Windows 64-bit, using Python
version 3.9.7 and the libraries Scikit-image[38] and OpenCV [39]. The deep-learning
segmentation was made in a Google Colab environment, using a Tesla T4 GPU, Pytorch
v1.12.1 [40], Scikit-learn [41] and Monai [42]. A 10-fold cross-validation was used to
assess the predictive performance of the proposed model. The dataset was randomly
shuffled and divided into 10 equal parts or folds. During each iteration, nine of these
folds were used for training the model, while the remaining fold was reserved for testing.
This process was repeated 10 times, with each fold as the test set once. The model’s
performance was evaluated on diverse data by rotating the test set across different folds
improving reliability, [43,44]. Furthermore, we applied data augmentation techniques
on the fly [45], such as VerticalFlip, HorizontalFlip, RandomRotate90, Transpose with a
probability of p = 0.5 and RandomGamma, CLAHE, GaussNoise with p = 0.2 and a Resize
(256,256) with p = 1. General hyperparameters were: Adam optimizer, unified focal loss,
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and ReduceLROnPlateau.Specific hyperparameters, for each UNet such as lambda, delta,
gamma, learning rate, dropout probability, and weight decay, can be seen in Table A2.

The proposed WBC nuclei segmentation method was evaluated in Leukemia Dataset,
CellaVision, JTSC, SMC_IDB, Raabin_WBC, and ALL_IDB2 datasets. Figure 4 compares the
three proposed methods on two images, one of JTSC and one from the Leukemia dataset. It
can be seen that the combination of both methods, Handcraft and Deep, results in improved
segmentation, even with the color differences or cell numbers in the images.

Figure 4. Comparison between HM,DEE P, and Ensemble results.

Further perceptual results of the Ensemble method are shown in Figure 5, where a
cyan border surrounds the segmented WBC nuclei. From the figure, one can perceive the
overall accuracy of the segmentation method, despite the differences in saturation, color,
transparency of the cells, etc.

Meanwhile, the quantitative results were obtained by comparing segmented images
against their GT. Seven different quality metrics were used to assess the performance
of the proposed methods. In Table 2, it can be seen that the proposed method obtains
competitive results for all the databases and all the proposed quality metrics. These
high-performance results confirm the robustness of the proposed segmentation system,
where this system appears to demonstrate minimal variability in the output results despite
changes in the input.

Table 2. Results of the proposed Ensemble method for the WBC datasets.

Dataset Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU

Leukemia Dataset 98.50 88.32 95.03 98.59 91.16 0.840
CellaVision 99.32 97.08 97.88 99.57 97.40 0.951

JTSC 99.03 96.38 96.09 99.50 96.10 0.926
SMC_IDB 99.62 95.57 96.30 99.81 95.78 0.920

Raabin_WBC 98.99 97.38 94.71 99.65 94.83 0.923
ALL_IDB2 98.51 93.45 97.14 98.60 95.14 0.910

AVERAGE 99.00 94.77 96.19 99.28 95.69 0.917

Moreover to general results, the proposed system is explicitly compared using each of
the databases and against recent state-of-the-art methods. The results derived from these
comparisons can be seen in Tables 3 and 4.
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Figure 5. Qualitative results of the ensemble segmentation method on the six datasets. Cyan color
borders the segmented nuclei.

Table 3. Leukemia Dataset WBC nuclei segmentation results. The best results are in bold, and the
second best is underlined.

Leukemia Dataset

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU

Proposed HM 97.96 82.43 97.63 97.70 89.01 0.806
Proposed DEEP 98.30 85.82 95.81 98.30 90.02 0.823

Proposed Ensemble 98.50 88.32 95.03 98.59 91.16 0.840

The training and validation plots for each fold were obtained for evaluating the
adequate training of each U-Net model, as shown in Figure 6. From these graphs, it is
possible to observe the correct network learning for Cellavision and the other databases.
The rest of the curves can be found in Figure A1.
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Figure 6. Training and Validation Intersection Over Union and Loss curves for the 10 folds.

Table 4. WBC nuclei segmentation comparison. The best results are in bold, and the second best
is underlined.

Cellavision

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 98.77 97.88 99.75 89.39 93.22 0.873 100
Makem & Tiedeu [11] 99.37 97.37 96.97 - 97.06 0.945 100

CPNNHSV [18] 99.2 94.86 97.31 99.41 96.31 0.929 100
Makem et al. [14] 99.43 97.31 97.60 99.61 97.35 0.950 100

LDS-NET [17] - 98.48 95.91 - 97.18 0.945 20
LDAS-NET [17] - 99.09 97.11 - 98.09 0.963 20

Proposed Ensemble 99.32 97.08 97.88 99.57 97.40 0.951 100

JTSC

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 97.13 93.55 98.99 83.18 87.68 0.781 300
Makem & Tiedeu [11] 97.29 91.01 93.12 - 90.79 0.843 300

VarRGB [18] 98.38 91.10 96.29 98.68 93.88 0.885 300
Makem et al. [14] 97.79 93.64 97.60 98.43 93.17 0.884 300

Mayala & Haugsøen [15] - 94.89 95.30 99.31 94.81 0.903 300
LDS-NET [17] - 98.85 92.39 - 95.56 0.917 60

LDAS-NET [17] - 94.42 98.36 - 96.35 0.931 60
Proposed Ensemble 99.03 96.38 96.09 99.50 96.10 0.926 300

SMC_IDB (BloodSeg)

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 99.15 80.51 94.51 99.30 86.46 0.761 367
Makem & Tiedeu. [11] 99.63 92.99 97.06 - 94.75 0.902 367

Makem et al. [14] 97.67 91.27 96.93 97.82 93.48 0.883 367
Proposed Ensemble 99.62 95.57 96.30 99.81 95.78 0.920 367
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Table 4. Cont.

Raabin

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

U-Net ++ [19] - 95.98 98.73 - 97.19 0.945 250
Attention U-Net [20] - 94.78 98.50 - 96.33 0.929 250

Mask R-CNN [21] - 8.59 96.80 - 91.98 0.852 250
Mousavi et al. [12] . - 93.62 98.27 - 95.42 0.912 250
Tavakoli et al. [13]. - 99.72 95.26 - 96.75 0.936 250

Proposed Ensemble 98.99 97.38 94.71 99.65 94.83 0.923 1145

ALL_IDB2

Method Acc (%) Pre (%) Rec (%) Spec (%) DSC (%) IoU # Test Images

Vogado et al. [10] 98.59 91.24 98.09 98.62 94.17 0.890 300
CPNNHSV.[18] 98.32 91.59 96.11 98.66 93.42 0.877 300

Proposed Ensemble 98.51 93.45 97.14 98.60 95.14 0.910 300

4.2. Leukemia Classification

For the classification stage of the method, previously segmented images from the
Leukemia Dataset were used for the Segmented Models and Original Images for the Non-

Segmented Models. Both datasets were divided into a 90% Train-Validation split and a 10%
Test split. A stratified K-fold with 10 folds was then applied to the Train-Validation Split.
Each model was trained for 30 epochs during each K-fold. For each training set in the K-fold,
‘on the fly’ data augmentation operations were applied, including Vertical Flip, Horizontal
Flip, RandomRotate90, Random Gamma, CLAHE, Transpose, and Gaussian Noise, each
with a probability of p = 0.5. Finally, all the images were transformed with Resize (232),
CenterCrop (224), and Normalize (mean = (0.485, 0.456, 0.406), std = (0.229, 0.224, 0.225)).
The hyperparameters of the ResNet-50 models included a batch size of 8, a learning rate of
1 × 10−5, an Adam optimizer with a weight decay of 1 × 10−4, cross-entropy loss, and the
ReduceLROnPlateau learning rate scheduler.

The top four results from the ten K-fold validations across the eight models are
presented in Table 5, while the corresponding training and validation plots can be found in
Figure A2. These results provide evidence for the accuracy of the proposed classifier.

Table 5. Best results for the train-validation 10 K-fold.

Model Acc (%)

Segmented Mish Medium 99.99
NoSegmented ReLU Medium 99.97

Segmented Mish Linear 99.97
No Segmented ReLU Linear 99.97

Comparing our method with six classifiers used by Ochoa-Montiel et al. for the
Leukemia Dataset reveals that deep-learning-based methods, such as LeNet, AlexNet, and
our proposed method, yield superior results in contrast to handcrafted methods such as
MLP and Random Forest (see Table 6). Our study presents methods that are competitive
within this landscape. However, as outlined in the Related Work (Section 1) and Methods
(Section 3) sections, we go a step further by extending our analysis beyond conventional
metrics. We incorporate Explainable AI (XAI) and clustering space analysis to affirm the
robustness and reliability of our model [5,7].
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Table 6. Performance Comparison for ALL Classification.The best results are in bold, and the second
best is underlined.

Method Validation Accuracy (%)

Random_Forest Set_Full. [16] 97.08
LeNet. [16] 98.36

AlexNet. [16] 99.98
Proposed Method 99.99

4.3. Clustering Space Analysis Results

In this phase, 10% of the hold-out datasets were used to test the robustness of the
model. Transformations commonly found in real environments [46], such as MotionBlur
(blur_limit = 5), MultiplicativeNoise, GaussNoise (var_limit = 10, mean = 0), were applied
to each image, in addition to the transformations mentioned in Section 4.2. Table 7 demon-
strates that the two most robust models, yielding the best metrics, are those trained on seg-
mented images, specifically with the Mish and ReLU activations, respectively. In contrast,
the models most sensitive to daily noise are those trained on raw, non-segmented images.

Table 7. Best and worst models in Test Dataset. The best results are in bold, and the second best
is underlined.

Test Dataset

Architecture Acc (%) Pre (%) Rec (%) F1 (%)

Segmented
Mish Medium

100 100 100 100

Segmented
ReLU Medium 98.50 98.60 98.50 98.50

No Segmented
ReLU Linear 89.40 89.70 89.40 89.40

No Segmented
Mish Medium 80.30 87.60 80.30 80.30

On the other hand, the results of the clustering analysis, shown in Table 8, indicate
that the two best models, those that improve inter-class separability and decrease intra-
class separability, are the segmented models with Mish and ReLU activations. In contrast,
the models with the poorest clustering results are the unsegmented ones. The visual
results from the aforementioned tables are presented in Figure 7. Here, the ’Segmented
Mish Medium’ model, shown in Figure 7a, performs the best in clustering and achieves
higher separability, suggesting that it is learning features that better differentiate the
classes. Conversely, the ’NoSegmented’ model, shown in Figure 7b, has lower intra-class
separability, making classification more difficult. This leads to the classification results that
can be appreciated at their respective confusion matrix.

Table 8. Prediction Cluster Analysis on the test dataset. The best separability results are bold, and
the second best is underlined.

Dist
L1–L2

Dist
L2–L3

Dist
L1–L3

Dist
Total

SD
Cluster

L1

SD
Cluster

L2

SD
Cluster

L3

SD
Total

Ratio
Dist/SD

SegmentedMish Medium 10.12 8.22 7.31 25.65 2.05 0.68 2.06 2.99 25.78
Segmented ReLU Medium 6.60 5.17 3.65 15.41 1.09 1.43 0.66 1.92 24.12

NoSegmented ReLU Linear 3.94 3.34 2.99 10.27 1.32 1.60 1.33 2.46 12.52
NoSegmented Mish Linear 3.15 2.08 1.88 7.11 0.94 1.49 0.50 1.83 11.63
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Figure 7. Clustering comparison between the best model Segmented Mish Medium in (a) and the
worst model in No Segmented ReLU Linear (b).

4.4. Class Activation Maps

The class activation maps for the ’Segmented Mish Medium’ and ’NoSegmented ReLU
Linear’ models are shown in Figure 8. From these, it is apparent that applying segmentation
to the WBC images, as shown in Figure 8a, allows the network to focus precisely where the
WBC kernels are located. Conversely, in Figure 8b, the network is easily distracted due to
the shared similarities between the WBC and blood cell characteristics.

By employing various activation maps, we can discern the semantic connections
inferred by the network for classification. This is illustrated in Figure 9, where the network
makes two distinct semantic associations from the same images in the Test Dataset, both
leading to correct classifications. The segmented image model accurately classifies L3 with
a high confidence level of 0.999, attributable to the model’s focus on the WBC. On the other
hand, the ‘NoSegmented’ model also correctly classifies L3 but with a reduced confidence
level of 0.734, indicating that the model may be making associations atypical to L3. For
additional results, see Table A3.

Finally, based on the previous results, the ‘Segmented Mish Medium’ model emerged
as the best overall for classification, as it improves both classification performance and
explainability. Summary results from our proposed method can be found in Figure 10.
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Figure 8. Comparison of Gradient Class Activation Maps between Segmented Mish Medium in
(a) and NoSegmented ReLU Linear in (b). Red highlighted areas indicate more attention, while deep
blue areas mean null attention.

Figure 9. Comparison of Gradient Class Activation Maps between Segmented Model Mish Medium
and NoSegmented Mish Linear. Red highlighted areas indicate more attention, while deep blue areas
mean null attention.
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Figure 10. Visual explainability and classification results. The input image is segmented to enhance
ResNet-50 attention; then, the image is classified with high accuracy. Red highlighted areas indicate
more attention, while deep blue areas mean null attention.

4.5. Discussion

Our experimental results underscore the advantages of integrating a highly accu-
rate handcrafted segmentation algorithm with deep-learning-based segmentation. This
combination has proven to significantly enhance the classification process. Employing a
pre-segmentation approach as a hard attention mechanism prior to the classification of
a Leukemia Dataset not only improves the quantitative outcomes but also enhances the
model’s explainability. Furthermore, segmented models have demonstrated the capability
to direct greater attention to the Region of Interest (ROI) for white blood cells (WBCs). The
fusion of these methodologies significantly boosts model interpretability and reliability
through the attention mechanism and visual explanation. It also paves the way for ana-
lyzing the logit space generated by the models through cluster space analysis. This could
provide measures of class separability and indirectly assess the model’s ability to extract
high-quality deep features that enhance classification.

This integrated segmentation approach could help to improve the segmentation and
differentiation of cytoplasm in various cells and could be a valuable preprocessing step for
classifying other malignancies.

Despite the promising results produced by our methodology, there is room for further
enhancement. The need for labeled images, while necessary, is time-consuming and prone
to errors. Future research could address these challenges by exploring unsupervised
or deep reinforcement learning. Additionally, the incorporation of modern diagnostic
techniques, such as Flow cytometric immunophenotyping, into morphology-based studies
could lead to a more comprehensive and robust diagnostic tool by combining genetic and
morphological characteristics.
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5. Conclusions

In this research, we developed a novel Computer-Aided Diagnosis (CAD) system for
Acute Lymphoblastic Leukemia (ALL) classification. This innovative system utilizes an
ensemble of state-of-the-art white blood cell segmentation techniques, functioning as a
hard attention mechanism, and has achieved a remarkable Intersection over Union (IoU)
of 0.91 across six databases. Our ResNet-50 model, equipped with the hard attention
mechanism provided by the white blood cell segmentation, demonstrated enhanced perfor-
mance. Furthermore, we ensured greater transparency by incorporating visual Grad CAM
interpretation and clustering analysis. The developed CAD system represents a significant
step forward in improving the accuracy of ALL diagnoses, potentially leading to better
patient outcomes.

In terms of future work, we plan to expand our model to classify various types
of white blood cells and synergize image and genetic data to create a more powerful
ensemble classifier.
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Appendix A. Segmentation and Classification Parameter’s and Extra Results

Appendix A.1. WBC Nuclei Segmentation

The parameters for each technique that makes up the handcraft segmentation method
are presented in Table A1.

Table A1. Handcrafted segmentation parameters.

Technique Parameter

Bilateral Filter (Kernel size) 9
Bilateral Filter (radial, spatial sigma) 50

Closing Kernel 3
Area Filter 150

Dilation 2
Dilation (Raabin-Basophil) 4

Appendix A.2. WBC Deep Learning Segmentation

The hyperparameters for each employed U-Net that conformed the Deep Learning
segmentation phase are listed in Table A2.
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Table A2. U-Net Train Parameters for each dataset.

U-Net Train Parameters

Dataset Lambda Delta Gamma
Learning

Rate
Dropout Weight Decay

Cellavision 0.4 0.7 1.0 1 × 10−4 0.1 1 × 10−3

JTSC 0.5 0.8 1.0 1 × 10−4 0.05 1 × 10−4

SMC_IDB 0.6 0.7 1.0 1 × 10−4 0.05 1 × 10−3

Raabin_WBC 0.4 0.7 1.0 1 × 10−4 0.5 1 × 10−2

ALL-IDB2 0.4 0.7 1.0 1 × 10−4 0.1 1 × 10−4

Dataset Leukemia 0.4 0.4 1.0 1 × 10−4 0.05 1 × 10−5

Learning curves for the deep-learning segmentation procedure with a 10 K-Fold. Left
column shows the IoU and at the right column the loss curve.

Figure A1. Intersection Over Union and Loss curves over 30 epochs and for each of the 10 folds.
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Appendix A.3. Deep Learning Classification

Deep-learning classification curves for the eight proposed models are presented in
Figure A2. On the left column, Train and Validation Accuracy over epochs, and on the right
column, Train and Validation Loss.

Figure A2. Average accuracy and loss curves for the eight proposed models with 10 K-fold.

Table A3 shows the nine results of “accurate” classification from ALL with four
models. Although all the images were correctly classified, the classification certainty differs
between them.

Table A3. Leukemia class prediction probabilities of nine correct diagnoses. Most reliable results are
in bold and second best results are underlined.

Class Prediction Probability

Image
Mish Linear-

S
Mish Linear-

NS
Mish Medium-

S
Mish Medium-

NS

ALL-1
1_1_7 0.998 0.426 1.000 0.945

1_3_132 0.992 0.430 0.999 0.993
1_3_158 0.998 0.464 1.000 0.993

ALL-2
2_1_33 0.998 0.750 1.000 0.991

2_2_127 0.999 0.734 1.000 0.990
2_3_202 0.999 0.778 1.000 0.970

ALL-3
3_1_3 0.973 0.570 0.997 0.846

3_1_32 0.993 0.439 0.999 0.806
3_2_11 0.998 0.492 1.000 0.838

Average 0.994 0.565 0.999 0.930
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Simple Summary: Early and accurate bladder cancer staging is important as it determines the mode
of initial treatment. Non-muscle invasive bladder cancer (NMIBC) can be treated with transurethral
resection whereas muscle invasive bladder cancer (MIBC) requires neoadjuvant chemotherapy
with subsequent cystectomy as indicated. Our hybrid machine/deep learning model demonstrates
improved accuracy of bladder cancer staging by CECT using a hybrid machine/deep learning model
which will facilitate appropriate clinical management of the patients with bladder cancer, ultimately
improving patient outcome.

Abstract: Accurate clinical staging of bladder cancer aids in optimizing the process of clinical
decision-making, thereby tailoring the effective treatment and management of patients. While
several radiomics approaches have been developed to facilitate the process of clinical diagnosis
and staging of bladder cancer using grayscale computed tomography (CT) scans, the performances
of these models have been low, with little validation and no clear consensus on specific imaging
signatures. We propose a hybrid framework comprising pre-trained deep neural networks for feature
extraction, in combination with statistical machine learning techniques for classification, which is
capable of performing the following classification tasks: (1) bladder cancer tissue vs. normal tissue,
(2) muscle-invasive bladder cancer (MIBC) vs. non-muscle-invasive bladder cancer (NMIBC), and
(3) post-treatment changes (PTC) vs. MIBC.

Keywords: bladder cancer; urothelial carcinoma; lymph node metastasis; deep learning; computed
tomography (CT) imaging; machine learning

1. Introduction

Bladder cancer imaging can be misleading. Findings such as perivesical fat stranding,
hydronephrosis, focal bladder wall thickening, or a small bladder lesion may be wrongly
perceived as a more advanced stage of bladder cancer. It is common to see small lymph
nodes in the pelvis post transurethral resection of bladder tumor (TURBT) [1–3] or at the
time of diagnosis [4]. These otherwise non-significant lymph nodes may harbor metastasis,
which in turn might be difficult to decipher relying solely on visual inspection from CT
scans [5,6]. Furthermore, bladder cancer is a heterogeneous disease with an extremely
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varied range of case-specific diagnoses [7,8]. From low-grade tumors such as Ta (noninva-
sive papillary carcinoma) and Tis (tumor in situ or “flat lesion”), which require TURBT or
less aggressive endoscopic intervention [8], to high-grade muscle-invasive tumors, which
require chemotherapy [9,10], bladder cancer diagnosis is highly dependent on the type and
stage of the tumor [4,6,11].

Radiomics can provide tools to significantly improve the accuracy of clinical staging
by analyzing multiple qualitative features, including but not restricted to texture analysis,
raw digital data and deep model-generated embeddings.

Texture analysis helps capture local patterns in images from the intensity informa-
tion contained within them. Such features are very effective in identifying tissue types
from grayscale medical scans. The texture-based features generally used in medical imag-
ing can be broadly categorized into two subdivisions, namely statistical approaches and
transformation-based approaches.

First, we will review some of the most commonly used statistical texture features
for bladder cancer detection and staging from medical scans. Ref. [12] utilized a set of
functional, second-order statistical and morphological features to perform staging between
T1 and T2 types of bladder cancer from MRI scans. The second-order statistical feature
extraction approach included a total of 25 GLCM features and 16 gray level run length
matrix (GLRLM) features obtained from 42 bladder MRIs (21 T1, 21 T2) post ROI segmen-
tation, yielding an accuracy, sensitivity and specificity of 95.24% and an AUC of 98.64%.
Furthermore, the authors also performed an extensive comparison between their proposed
model and two state-of-the-art approaches, namely [13,14]. Ref. [15] makes use of LBP
and GLCM features to perform primary tumor staging of bladder cancer into two groups:
(1) tumor stage and primary tumor located completely within the bladder; (2) tumor stage
and primary tumor extending outside the bladder. The SVM classifier, which was trained
on T2-weighted MRI scans from 65 bladder cancer patients all with stage 1, reported an
AUC of 80.60%. Ref. [16] performs prediction of recurrence and progression of urothelial
carcinoma from a dataset of 42 patients—13 without recurrence, 14 with recurrence but
not progression, and 15 with progression. Features extracted using LBP and local vari-
ance, after classification using the RUSBoost classifier, provided an accuracy of 70% and
sensitivity of 84%. Ref. [17] utilizes LBP and GLCM features to classify the invasiveness
of bladder cancer. The dataset comprised T2-weighted MRI scans from 65 preoperative
bladder cancer patients followed by radical cystectomy. The proposed model reported a
patient-level sensitivity of 74.20%, specificity of 82.40%, accuracy of 78.50% and AUC of
80.60%. Ref. [18] performed survival prediction of bladder urothelial carcinoma (BLCA)
from CECT scans by utilizing LBP, wavelet and GLCM features. The dataset comprised
scans from 62 bladder cancer patients with stages of urothelial carcinoma. The radiomics
features extracted from the CECTs were used in combination with RNA-seq data for a
complete radiogenomics signature, which in turn helped predict the survival of the patients.
This study exhibits the applicability of radiomics and transcriptomics data in predicting
BLCA survival. However, owing to the sheer small size of the dataset, the authors think
that the model needs to be validated on a larger set of samples for a more foolproof analysis.
The literature exhibits that statistical texture analysis is not only fast and easy to implement
but also very effective in performing classification, staging and segmentation of bladder
cancer from medical images.

Transformation-based approaches such as Fourier and Gabor wavelet transform are
very effective in learning textural patterns from images and are therefore a popular option
among medical imaging researchers. Ref. [19] utilized Gabor features to perform carcinoma
cell classification from biopsy images associated with 14 distinct cancer types, scanned from
14 different patients. An SVM classifier with a radial basis function (RBF) kernel was subse-
quently trained on these features. The SVM classifier provides the highest cross-validation
accuracy of 99.20% with a Gabor window size of 400 pixels and an image magnification
of 10. Ref. [20] makes use of 2D Fourier-based features to identify cancer from 182 optical
coherence tomography (OCT) scans obtained from 21 patients who were identified as high
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risk of having transitional cell carcinoma (TCC) and from 68 different areas of the bladder.
The task was two-fold: (1) to perform classification between non-cancerous, dysplasia,
carcinoma in situ (CIS), and papillary lesions; (2) to predict the invasiveness of the lesion.
Other than 2D Fourier transform, the authors also extracted four different statistical feature
extraction approaches, resulting in a total of 74 features obtained from the raw OCT images.
A simple cross-correlation-based filter with a correlation threshold of 0.85 was employed
for feature selection, which resulted in a final set of nine selected features. The decision
tree classifier was utilized to finally perform classification on the selected feature set. The
authors reported a non-cancerous versus cancerous classification sensitivity of 92.00% and
specificity of 62.00%. Ref. [21], which has been summarized earlier, reports that GLCM and
GLDM perform better than Fourier transform-based feature extractors in differentiating
between tumors and peritumoral fat tissues.

From the literature reviewed above, it is evident that texture analysis is an effective ap-
proach when performing classification tasks on medical imaging, in general, and histologic
analysis in particular.

Recently, deep learning-based models have emerged and gained popularity among
researchers owing to their automatic feature extraction capabilities. Convolutional neural
networks (CNNs) are the most commonly used type of deep models and a very popular
framework when performing classification tasks on imaging-based applications, in general,
and radiological data in particular. The authors of [22] designed a set of nine CNN-based
models for the classification of MIBC and NMIBC from contrast-enhanced CT (CECT)
images. The dataset comprised 1200 CT scans obtained from 369 patients undergoing
radical cystectomy. A total of 249 out of these patients had NMIBC, while the remaining 120
had MIBC. The CNN model was pre-trained on the ImageNet dataset in order to improve
classification performance. The model with the highest AUC on the test set was obtained
using the VGG16 algorithm—with an AUC of 99.70%, accuracy of 93.90%, sensitivity of
88.90%, specificity of 98.90%, precision of 98.80% and negative predictive value of 89.90%.
In contrast, the authors of [13] made use of Haralick features, which are a variant of GLCM,
to identify muscular invasiveness in MRI scans containing a total of 118 volumes of interest
(VOI) obtained from 68 patients—34 volumes labeled non-muscle-invasive bladder cancer
(NMIBC), and 84 labeled muscle-invasive bladder cancer (MIBC). The final SVM classifier
obtained an AUC of 86.10% and Youden index of 71.92%.

Ref. [21] performs classification between bladder cancers with and without response
to chemotherapy from a set of CT scans obtained before and after treatment. The authors
have reviewed three different models and their capabilities in performing classification:
(1) a deep learning-convolutional neural network-based model (DL-CNN); (2) a more
deterministic radiomics feature-based classifier (RF-SL); (3) an intermediate model that
extracts radiomics features from image patterns (RF-ROI). The training dataset comprised
82 patients having 87 bladder cancers, scanned pre- and post-chemotherapy. The test
set comprised 41 patients with 43 cancers. The radiomics feature-based model (RF-SL)
performed the best with an AUC of 77.00%, while the two radiologists reported AUCs of
76.00% and 77.00%, respectively.

Ref. [23] proposed a CNN-based model for performing classification between low-
and high-stage bladder cancer. The training dataset comprised 84 bladder cancer CR
urography (CTU) images obtained from 76 patients (43 CTUs contained low-stage cancer,
while 41 contained high-stage cancer). The test set consisted of 90 bladder CTUs obtained
from 86 patients. The CNN classifier had a test set prediction accuracy of 91.00%, which the
authors claim is higher as compared to texture-based classification using SVM on the same
dataset (which had a prediction accuracy of 88.00%). In comparison, ref. [21] extracted
GLCM- and histogram-based features from apparent diffusion coefficient (ADC) and
diffusion-weighted images (DWI) to perform bladder cancer grading. A total of 61 patients
were scanned for this study, 32 out of whom were in low-grade and the remaining 29 in
high-grade classes. A combination of 102 GLCM and histogram features were initially
extracted, out of which 47 were finally selected using the Mann–Whitney U-test, and an
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SVM classifier was used to perform classification between high- and low-grade bladder
cancer with an accuracy of 82.90%. Ref. [21] extracted histogram and GLCM features to
perform classification between high-grade and low-grade bladder cancer scans from a
set of diffusion-based MRIs obtained from 61 bladder cancer patients (32 of them having
low-grade and 29 having high-grade bladder cancer), yielding an accuracy of 82.90% and
area under the curve (AUC) of 86.10%. Ref. [24] made use of GLCM, wavelet filter and
Laplacian of Gaussian filter to extract features from a small dataset of 145 patients to
perform grading on bladder cancer CT scans. Out of these 145 scans, 108 were used to train
the model, and the remaining 37 were used to perform validation. The model provided an
accuracy of 83.80% on the validation set.

From the literature reviewed above, it is evident that neural network-based classifiers
are more effective than texture analysis when performing identification and staging of
bladder cancer from medical imaging alone.

The authors of [25] claim that feature extraction when governed by domain knowledge
performs better than CNN-based classifiers that are capable of automatic feature generation.
The task in this case was to classify two early stages of bladder cancer that are histolog-
ically difficult to differentiate, namely Ta (non-invasive) and T1 (superficially invasive).
The dataset comprised a total of 1177 bladder scans—460 non-invasive, 717 superficially
invasive. CNN classifiers achieved the highest accuracy of 84.00%, performing consider-
ably poorer than supervised machine learning classifiers that were trained on manually
extracted features. The aforementioned literature on CNNs comprises end-to-end models,
where both training and testing are performed on the same dataset. The problem with
such an approach is that deep neural networks require large quantities of training data
in order to avoid the pervasive issue of over-fitting. As a substitute to end-to-end deep
models, researchers make use of a concept called “transfer learning”, where the neural
network is first pre-trained on a large dataset such as ImageNet, and the learned weights
are subsequently fine-tuned on the small target data. Since we were using a small dataset
of 200 CT scans for this study, we decided to make use of transfer learning to improve
classification results and alleviate overfitting. A 71-layer ResNet-18 model pre-trained on
the publicly available ImageNet dataset was utilized to extract features from the bladder
scans. The extracted features, after feature selection using a combination of supervised
and unsupervised techniques, were finally used to perform classification by five different
machine learning classifiers, namely k-nearest neighbor (KNN), support vector machine
(SVM), linear discriminant analysis (LDA), decision tree (DT) and naive Bayes (NB).

2. Materials and Methods

Figure 1 provides a pictorial depiction of the entire workflow, starting from the raw
bladder scans to the prediction labels obtained after classification. The proposed methodol-
ogy comprises feature extraction, feature selection, and finally classification. In this hybrid
approach, we extract feature vectors from the images using the trained model weights
from the last pooling layer of the five most widely used pre-trained deep models, namely
AlexNet, GoogleNet, InceptionV3, ResNet-50 and XceptionNet. We subsequently employ
our feature selection algorithm on this feature vector. Finally, we use five machine learning
classification algorithms on the selected feature set, namely k-nearest neighbor (KNN),
naive Bayes (NB), support vector machine (SVM), linear discriminant analysis (LDA) and
decision tree (DT).

2.1. Feature Extraction Using Pre-Trained Deep Models

Five popular neural network-based deep models, namely AlexNet, GoogleNet, Incep-
tionV3, ResNet-50 and XceptionNet, all pre-trained on the ImageNet dataset [26], were
trained using our bladder CT scan data to fine-tune the model parameters. The trained
weights from the last pooling layer of each of these models were extracted and subsequently
used as feature descriptors. Table 1 provides a comprehensive description of each of these
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models—including information regarding the pooling layer and the size of the extracted
feature vector.

Figure 1. A schematic representation of the overall workflow.

Table 1. A description of the five pre-trained models used for feature extraction from the bladder
scans, namely AlexNet, GoogleNet, InceptionV3, ResNet-50 and XceptionNet. The table contains the
total number of layers per model; the last pooling layer from which features were being extracted;
the layer number of the last pooling layer; and the length of the extracted feature vector.

Pre-Trained
Model

Total No. of
Layers in the

Network

Last Pooling
Layer

Layer No. of the
Last Pooling

Layer

Feature Vector
Length

AlexNet 25 Max Pooling 16 9216

GoogleNet 144 Global Average
Pooling 140 1024

InceptionV3 315 Global Average
Pooling 312 2048

ResNet-50 177 Global Average
Pooling 174 2048

XceptionNet 170 Global Average
Pooling 167 2048

2.2. Feature Selection Mechanism

An ensemble feature selection technique was used to select the most important features
from the originally extracted feature vector—which was obtained using five different pre-
trained models, namely AlexNet, GoogleNet, Inception V3, ResNet-50 and XceptionNet, for
performing the classification of normal vs. metastatic lymph nodes. First, we make use of a
“sparsity filter” to remove the features that were not updated by the deep model. Through
this step, we not only exclude features that have low variance but also automatically
remove those that are less likely to have an impact on the classification process. Next, we
utilize the “data imputer” to impute the unchanged values of the remaining columns by the
mean value of the respective column. Subsequently, we made use of the “low coefficient
of variation (CV) filter” to drop features with a CV value of less than 0.1. CV, or standard
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deviation normalized by mean, is a measure of information content; a lower CV indicates
features with a lower normalized variance. Furthermore, in the next step, a correlation
matrix was generated, which contains information regarding the cross-correlation values
between every pair of features. For each pair with >95% correlation, the one with a lower
correlation to the output is dropped. Finally, we employed random forest, a boosted
decision tree algorithm, to train the remaining columns and target variables for feature
importance score generation. The number of trees was set to a default value of 100, and the
Gini index was used as the metric for calculating feature importance. The first four steps
were unsupervised (statistical approaches used to perform selection on features alone, not
labels); the last feature importance calculation step was supervised (relationship between
dependent and independent variables critical in determining feature selection). Figure 2
provides a schematic depiction of the feature selection algorithm.

Figure 2. A pictorial representation of the feature selection procedure.

2.3. Machine Learning-Based Classification

The important features obtained using the feature selection algorithm were used
as inputs into the machine learning classifier. The three classification tasks that were
performed were: (1) normal vs. bladder cancer, (2) NMIBC vs. MIBC, (3) post-treatment
changes (PTC) vs. MIBC. A 10-fold cross-validation was utilized to evaluate the prediction
performance of the proposed model. The samples were randomly re-arranged, then the
dataset was split into 10 equal divisions. Nine of these divisions, at every iteration, were
used for training; and the remaining was one used for testing. This process was repeated
for 10 iterations, each time the test set being a different group. The prediction evaluation
metrics calculated across the ten iterations were averaged and reported. Classification was
performed using five different machine learning classifiers, namely k-nearest neighbor
(KNN), naive Bayes (NB), support vector machine (SVM), linear discriminant analysis
(LDA) and decision tree (DT).

2.4. Evaluation Metrics

In order to evaluate the efficacy of the classification model, the following five metrics
were used:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F1 =
2× Precision× Sensitivity

Precision + Sensitivity
(5)
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where TP is the # of true positives, TN is the # of true negatives, FP is the # of false positives
and FN is the # of false negatives.

Since our dataset is small and highly imbalanced, accuracy, precision and recall are not
ideal in representing the classification performance of the models. Therefore, the F1-score
was used to determine the overall effectiveness of the classifiers. While accuracy represents
the overall percentage of correctly classified samples, precision represents the percentage of
identified samples where the condition actually exists, and recall represents the proportion
of samples with the condition that have been correctly diagnosed, none of them corrects for
data imbalance. The F1-score, which is the harmonic mean of precision and recall, has been
employed to rank classifiers in terms of diagnostic performance for this particular study.

3. Software and Tools

MATLAB version R2021b (developed by MathWorks, Massachussets USA) was used
for the purpose of feature extraction and machine learning-based classification (The Deep
Learning Toolbox was used to train the five pre-trained deep models, namely AlexNet,
GoogleNet, InceptionV3, ResNet50 and XceptionNet. The Statistics and Machine Learning
Toolbox was used to train the four machine learning-based classifiers, namely naive Bayes,
support vector machine, linear discriminant analysis and decision tree).

ImageJ (developed by National Institutes of Health, Maryland USA) and RadiAnt
Dicom Viewer (open source application) were used to analyze the CT images. BioRender
was used to generate all the illustrations in the paper (Figures 1–4).

Python 3 (open source programming language) was used to program the feature
selection workflow and generate the plots containing the F1-scores per model per classifier
(Figures 5–7).

4. Dataset

A urothelial carcinoma dataset was provided by Mayo Clinic, Arizona. The dataset
contained de-identified grayscale CT scans obtained from patients who were imaged before
radical cystectomy and pelvic lymph node dissection as part of a trial. The location of each
bladder mass was confirmed, and labels of the preoperative CT data were generated. The
labels were “cancer” (meaning malignant cells) and “normal” (normal bladder wall).

There were a total of 100 CT scans of the pelvis with intravenous contrast images
visualizing the bladder, obtained from 100 patients (one image captured per patient).
Each scan had 2 masks (normal bladder wall and bladder cancer) manually annotated
by encompassing both the entire region of biopsy-proven malignancy and the normal-
appearing bladder by two radiologists familiar with bladder imaging, which were used to
extract the respective regions of interest (ROI)—therefore resulting in 200 ROIs (100 normal
tissue and 100 abnormal tissue). These ROIs were used as input for classification instead
of the entire image. The patients were distributed across seven bladder cancer stages,
namely Ta, Tis, T0, T1, T2, T3 and T4. Figure 3 provides an axial CT scan with IV contrast,
along with its corresponding region of interest (ROI) on the bladder wall, pertaining to
each of the seven stages. T0 represents a stage where the tissue of interest shows no
evidence of malignancy, possibly but not necessarily following tumor resection and/or
chemotherapy. This indicates carcinoma in situ, where the malignant cells only involves the
innermost lining of the bladder wall. T1 represents a stage where malignant cells involve
the connective tissue beyond the innermost lining without involvement of the bladder
muscle. T2 represents the malignant spread of tumor involving the bladder muscle. T3
represents a stage where malignant mass spreads outside the confines of bladder muscle
with involvement of the perivesical fat. T4 stage indicates the spread of tumor beyond
the bladder with involvement of abdominal/pelvic wall and/or nearby organs. Ta, Tis
and T1 stages are classified as non-muscle-invasive bladder cancer (NMIBC); T2, T3 and T4
stages are classified as muscle-invasive bladder cancer (MIBC) [4,27]. Figure 4 is a pictorial
depiction of the different stages of bladder cancer. As is evident from Figure 3, the stages
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are difficult to distinguish on visual inspection—thereby making it suitable for classification
using AI-based models. Table 2 provides a summary of the number of patients per stage.

Figure 3. One bladder CT scan per stage (along with the corresponding regions of interest that were
used in the various classification tasks) have been provided. The 7 stages of urothelial carcinoma
analyzed in the study are: Ta, Tis, T0, T1, T2, T3 and T4 (T0 has not been shown in the figure because
T0 represents a stage where the tissue of interest shows no evidence of malignancy).

Figure 4. A pictorial representation of the 7 stages of urothelial carcinoma analyzed in the study (T0

has not been shown in the figure because T0 represents a stage where the tissue of interest shows no
evidence of malignancy).
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Table 2. A summary of the number of patients per stage.

Ta Tis T0 T1 T2 T3 T4

6 9 35 9 13 24 4

5. Results

The proposed model was used to perform three different classification tasks during the
course of this study: (1) normal vs. bladder cancer; (2) NMIBC vs. MIBC; (3) post-treatment
changes (PTC) vs. MIBC. In this section, for each of the three tasks, the best classification
performances corresponding to each of the five pre-trained deep model-based features
have been presented. The class-wise number of ROIs used for each of the individual tasks
has also been summarized.

5.1. Normal vs. Cancer

Normal vs. cancer classification was performed with 10-fold cross-validation on a
dataset of 165 ROIs (100 normal, 65 cancer)—35 T0 images were not relevant because they
represent post-treatment changes (PTC) and not cancer. The LDA classifier on XceptionNet-
based features provides the best performance with an accuracy of 86.07%, sensitivity
of 96.75%, specificity of 69.65%, precision of 83.07% and F1-score of 89.39%. Table 3
summarizes the classification performances of the 10-fold machine learning classifiers on
features extracted from each of the five pre-trained deep models (results visualized on the
associated Figure 5 bar plot).

Table 3. Classification performances of the 10-fold machine learning classifiers on features extracted
from each of the five pre-trained deep models.

Feature
Extractor

Classifier Accuracy Sensitivity Specificity Precision F1-Score

AlexNet

NB 0.8053± 0.0029 0.8936± 0.004 0.6694± 0.0054 0.8062± 0.0025 0.8476± 0.0024
SVM 0.7835± 0.0058 0.8944± 0.0056 0.6128± 0.0122 0.7805± 0.0055 0.8335± 0.0043
LDA 0.7987± 0.0037 0.9307± 0.0027 0.5957± 0.0078 0.7799± 0.0034 0.8486± 0.0026
DT 0.7373± 0.0113 0.8043± 0.0120 0.6342± 0.0231 0.7724± 0.0114 0.7877± 0.0089

GoogleNet

NB 0.7642± 0.0049 0.8674± 0.0058 0.6054± 0.0085 0.7718± 0.0040 0.8168± 0.0039
SVM 0.7661± 0.0053 0.8921± 0.0068 0.5722± 0.0084 0.7624± 0.0038 0.8221± 0.0043
LDA 0.7899± 0.0036 0.9368± 0.0038 0.5640± 0.0061 0.7678± 0.0027 0.8439± 0.0027
DT 0.7562± 0.0136 0.8056± 0.0167 0.6803± 0.0231 0.7954± 0.0123 0.8001± 0.0116

InceptionV3

NB 0.7988± 0.0031 0.9016± 0.0042 0.6406± 0.0052 0.7942± 0.0024 0.8445± 0.0025
SVM 0.7740± 0.0042 0.9036± 0.0041 0.5746± 0.0080 0.7657± 0.0036 0.8290± 0.0031
LDA 0.7935± 0.0012 0.9096± 0.0010 0.6148± 0.0019 0.7841± 0.0009 0.8422± 0.0009
DT 0.7295± 0.0127 0.7690± 0.0155 0.6686± 0.0211 0.7816± 0.0114 0.7749± 0.0110

ResNet50

NB 0.8248± 0.0039 0.9290± 0.0045 0.6646± 0.0073 0.8100± 0.0034 0.8654± 0.0030
SVM 0.7771± 0.0051 0.9092± 0.0065 0.5738± 0.0081 0.7665± 0.0036 0.8317± 0.0040
LDA 0.7862± 0.0028 0.9224± 0.0043 0.5766± 0.0056 0.7702± 0.0022 0.8395± 0.0022
DT 0.8079± 0.0111 0.8418± 0.0135 0.7558± 0.0256 0.8424± 0.0135 0.8416± 0.0089

XceptionNet

NB 0.8395± 0.0035 0.8866± 0.0048 0.7671± 0.0058 0.8542± 0.0031 0.8701± 0.0030
SVM 0.8322± 0.0047 0.9614± 0.0034 0.6335± 0.0100 0.8015± 0.0045 0.8742± 0.0033
LDA 0.8607± 0.0038 0.9675± 0.0027 0.6965± 0.0094 0.8307± 0.0042 0.8939± 0.0026
DT 0.8145± 0.0099 0.8453± 0.0134 0.7672± 0.0173 0.8486± 0.0095 0.8466± 0.0086
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Figure 5. F1-scores of the 10-fold machine learning classifiers on features extracted from each of the
five pre-trained deep models.

5.2. NMIBC vs. MIBC

NMIBC vs. MIBC classification was performed with 10-fold cross-validation on a
dataset of 65 ROIs (24 NMIBC, 41 MIBC). The LDA classifier on XceptionNet-based features
provides the best performance with an accuracy of 79.72%, sensitivity of 66.62%, specificity
of 87.39%, precision of 75.58% and F1-score of 70.81%. Table 4 summarizes the classification
performances of the 10-fold machine learning classifiers on features extracted from each of
the five pre-trained deep models (results visualized on the associated Figure 6 bar plot).

Figure 6. F1-scores of the 10-fold machine learning classifiers on features extracted from each of the
five pre-trained deep models.
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Table 4. Classification performances of the 10-fold machine learning classifiers on features extracted
from each of the five pre-trained deep models.

Feature
Extractor

Classifier Accuracy Sensitivity Specificity Precision F1-Score

AlexNet

NB 0.7768± 0.0067 0.6746± 0.0117 0.8366± 0.0089 0.7079± 0.0112 0.6905± 0.0090
SVM 0.7709± 0.0143 0.6692± 0.0244 0.8305± 0.0147 0.6989± 0.0214 0.6830± 0.0203
LDA 0.7963± 0.0065 0.6650± 0.0125 0.8732± 0.0076 0.7547± 0.0114 0.7067± 0.0097
DT 0.7160± 0.0215 0.6008± 0.0445 0.7834± 0.0286 0.6223± 0.0329 0.6079± 0.0324

GoogleNet

NB 0.7480± 0.0108 0.5867± 0.0202 0.8424± 0.0124 0.6864± 0.0178 0.6319± 0.0166
SVM 0.7238± 0.0088 0.4462± 0.0158 0.8863± 0.0107 0.6984± 0.0215 0.5438± 0.0154
LDA 0.7758± 0.0069 0.6583± 0.0157 0.8446± 0.0064 0.7127± 0.0099 0.6841± 0.0120
DT 0.7740± 0.0220 0.6925± 0.0408 0.8217± 0.0239 0.6968± 0.0312 0.6925± 0.0310

InceptionV3

NB 0.7575± 0.009 0.6137± 0.0194 0.8417± 0.0093 0.6945± 0.0139 0.6511± 0.0149
SVM 0.7242± 0.0069 0.4163± 0.0179 0.9044± 0.0033 0.7174± 0.0114 0.5263± 0.0167
LDA 0.7698± 0.0060 0.5854± 0.0134 0.8778± 0.0056 0.7373± 0.0098 0.6523± 0.0105
DT 0.6909± 0.0210 0.5300± 0.0409 0.7851± 0.0306 0.5963± 0.0353 0.5572± 0.0306

ResNet50

NB 0.6878± 0.0103 0.8013± 0.0135 0.6215± 0.0149 0.5539± 0.0105 0.6547± 0.0098
SVM 0.7240± 0.0065 0.3167± 0.0115 0.9624± 0.0074 0.8343± 0.0279 0.4584± 0.0138
LDA 0.7748± 0.0098 0.5375± 0.0221 0.9137± 0.0130 0.7874± 0.0220 0.6373± 0.0173
DT 0.7665± 0.0159 0.6088± 0.0300 0.8588± 0.0189 0.7190± 0.0287 0.6575± 0.0242

XceptionNet

NB 0.7240± 0.0094 0.6667± 0.0001 0.7576± 0.0149 0.6182± 0.0146 0.6411± 0.0079
SVM 0.7597± 0.0094 0.5258± 0.0219 0.8966± 0.0085 0.7489± 0.0167 0.6170± 0.0182
LDA 0.7972± 0.0058 0.6662± 0.0100 0.8739± 0.0058 0.7558± 0.0094 0.7081± 0.0086
DT 0.7403± 0.0243 0.6733± 0.0379 0.7795± 0.0286 0.6446± 0.0344 0.6567± 0.0313

5.3. Post-Treatment Changes (PTC) vs. MIBC

PTC vs. MIBC classification was performed with a 10-fold cross-validation on a dataset
of 76 ROIs (35 PTC, 41 MIBC). LDA classifier on XceptionNet-based features provided
the best performance with an accuracy of 74.96%, sensitivity of 80.51%, specificity of
70.22%, precision of 69.78% and F1-score of 74.73%. Table 5 summarizes the classification
performances of the 10-fold machine learning classifiers, on features extracted from each of
the five pre-trained deep models (results visualized on associated Figure 7 bar plot).

Figure 7. F1-scores of the 10-fold machine learning classifiers on features extracted from each of the
five pre-trained deep models.

87



Cancers 2023, 15, 1673

Table 5. Classification performances of the 10-fold machine learning classifiers on features extracted
from each of the five pre-trained deep models.

Feature
Extractor

Classifier Accuracy Sensitivity Specificity Precision F1-Score

AlexNet

NB 0.6695± 0.0097 0.5323± 0.0172 0.7866± 0.0114 0.6806± 0.0133 0.5969± 0.0139
SVM 0.6880± 0.0139 0.6894± 0.0216 0.6868± 0.0168 0.6530± 0.0145 0.6702± 0.0157
LDA 0.7100± 0.0070 0.6934± 0.0116 0.7241± 0.0121 0.6826± 0.0091 0.6877± 0.0076
DT 0.6503± 0.0187 0.6160± 0.0290 0.6795± 0.0270 0.6226± 0.0215 0.6180± 0.0214

GoogleNet

NB 0.7176± 0.0101 0.5689± 0.0139 0.8446± 0.0149 0.7589± 0.0180 0.6497± 0.0124
SVM 0.6592± 0.0085 0.5366± 0.0128 0.7639± 0.0111 0.6602± 0.0122 0.5917± 0.0110
LDA 0.7276± 0.0072 0.6129± 0.0126 0.8256± 0.0082 0.7502± 0.0094 0.6743± 0.0097
DT 0.6725± 0.0237 0.6471± 0.0321 0.6941± 0.0345 0.6464± 0.0288 0.6450± 0.0252

InceptionV3

NB 0.6495± 0.0150 0.5280± 0.0207 0.7532± 0.0205 0.6475± 0.0214 0.5808± 0.0182
SVM 0.6907± 0.0100 0.6094± 0.0169 0.7600± 0.0121 0.6846± 0.0122 0.6444± 0.0129
LDA 0.7083± 0.0068 0.6554± 0.0086 0.7534± 0.0109 0.6945± 0.0096 0.6742± 0.0070
DT 0.6589± 0.0260 0.6583± 0.0383 0.6595± 0.0327 0.6238± 0.0270 0.6391± 0.0287

ResNet50

NB 0.6688± 0.0085 0.8689± 0.0138 0.4980± 0.0125 0.5965± 0.0066 0.7072± 0.0079
SVM 0.6197± 0.0157 0.5600± 0.0251 0.6707± 0.0232 0.5930± 0.0186 0.5750± 0.0189
LDA 0.6895± 0.0094 0.7903± 0.0306 0.6034± 0.0169 0.6298± 0.0069 0.7000± 0.0144
DT 0.6161± 0.0207 0.5891± 0.0298 0.6390± 0.0313 0.5838± 0.0239 0.5851± 0.0229

XceptionNet

NB 0.6849± 0.0087 0.7726± 0.0142 0.6100± 0.0094 0.6284± 0.0075 0.6929± 0.0094
SVM 0.6868± 0.0105 0.7931± 0.0170 0.5961± 0.0102 0.6263± 0.0085 0.6998± 0.0112
LDA 0.7496± 0.0119 0.8051± 0.0193 0.7022± 0.0133 0.6978± 0.0113 0.7473± 0.0131
DT 0.6253± 0.0219 0.5806± 0.0320 0.6634± 0.0298 0.5967± 0.0251 0.5872± 0.0254

6. Discussion

Optimal management of bladder cancer requires a multidisciplinary approach, with
tumor staging an important prognostic factor that determines the mode of initial treatment.
Cystoscopy examination, together with a biopsy, remains the primary mode of tumor
detection and clinical staging in patients with suspected bladder cancer. CT is often the
first exam modality for bladder cancer detection due to its wide availability and minimal
associated complication. However, the CT findings are nonspecific with limited accuracy.
At least one article [28] reported the accuracy of CT evaluation for bladder cancer as low
as 49%.

Differentiating non-muscle-invasive bladder cancer (NMIBC), consisting of Ta, Tis,
and T1 stages, from muscle-invasive bladder cancer (MBIC), consisting of T2-T44 stages,
is important as MIBC is more likely to spread to lymph nodes and other organs requiring
radical cystectomy with or without systemic chemotherapy [29]. In contrast, NMBIC has
low risk of recurrent disease but can be effectively treated with intravesical chemotherapy,
immunotherapy, and transurethral resection of bladder tumor (TURBT) [30]. Early differ-
entiation of two bladder cancer stages is critical for the appropriate utilization of medical
resources and optimization of targeted treatment. Therefore, accurate initial staging on the
CT exam is crucial for therapeutic decision-making [31].

While histopathologic cancer detection using pre-trained neural network-based mod-
els is mainstream, in this project, we were faced with the additional issues of imbalanced
data and limited sample size. In comparison to [32], where the number of image samples
was 1350, and the number of classification categories was 2 (1200 bladder cancer tissues,
1150 normal tissues), we had a total of only 100 tissue scans distributed across 7 stages of
urothelial carcinoma (6 Ta, 9 Tis, 35 T0, 9 T1, 13 T2, 24 T3, 4 T4). The issue of class-imbalanced
samples could not be solved using SMOTE because the sheer lack of samples in some of the
categories (especially Ta and T4) meant that the synthetically generated samples were very
similar to the few original ones, and contributed towards decreased variance in the training
dataset—therefore resulting in overfitting. Next, the issue of overfitting, which we faced
while performing end-to-end classification using pre-trained networks, was tackled by:
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(1) making use of a combined deep learning-machine learning approach where the trained
weights from the pre-trained neural network were then classified using statistical machine
learning approaches. (2) An ensemble statistical- and supervised learning-based feature
selection approach that helped remove features that were unimportant. Ref. [32], which
focused on bladder cancer detection from cytoscopic images alone, reported an accuracy
of 86.36% with deep learning-based classifiers and 84.09% with human surgical experts;
however, no significant difference was found between the two (p-value greater than 0.05).

The LDA classifier on XceptionNet performed best in terms of the F1-score for all
three experiments in our study—namely, normal vs. cancer, NMIBC vs. MIBC and PTC
vs. MIBC. For normal vs. cancer classification, LDA on XceptionNet had an F1-score of
(89.39 ± 0.26)%, which will facilitate clinicians in better detection of lesions because, for
histopathologic images in general, and bladder scans in particular, flat and subtle lesions are
often missed on visual inspection. For NMIBC vs. MIBC classification, LDA on XceptionNet
had an F1-score of (70.81 ± 0.86). For PTC vs. MIBC classification, LDA on XceptionNet
had an F1-score of (74.73 ± 1.31)%, which is especially encouraging because there is an
unmet demand to develop new non-invasive techniques to assess accurate prediction of
recurrence and response to chemotherapy. Currently, patients with bladder cancer require
repeat cystoscopies and biopsies of the bladder to assess the response and recurrence of the
disease. This procedure is very costly and invasive, with several associated complications,
including bladder perforation.

Our study has certain limitations. It is a retrospective design based on a single-center
small dataset that may overestimate the diagnostic performance of our model. Therefore,
our next step is to extend the diagnostic model on prospective, multi-center datasets with
external validation.

7. Conclusions

Our model showed a high F1-score, which means that our model indicated a high
value for both recall and precision. We used the F1-score to compare our classifiers. We
opted for the ResNet-50, whose F1-score was higher among others and ResNet-50 showed
the best classification based on the F1-score for all three experiments.

Radiomics-assisted interpretation of CT by radiologists may help more accurately
diagnose bladder cancer. This can allow the timely utilization of medical resources and con-
sultation with oncologists and urologists, ultimately improving patients’ clinical outcomes.
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Simple Summary: For automated cancer diagnosis on medical imaging, explainable artificial intel-
ligence technology uses advanced image analysis methods like deep learning to make a diagnosis
and analyze medical images, as well as provide a clear explanation for how it arrived at its diagnosis.
The objective of XAI is to provide patients and doctors with a better understanding of the system’s
decision-making process and to increase transparency and trust in the diagnosis method. The manual
classification of cancer using medical images is a tedious and tiresome process, which necessitates
the design of automated tools for the decision-making process. In this study, we explored the signifi-
cant application of explainable artificial intelligence and an ensemble of deep-learning models for
automated cancer diagnosis. To demonstrate the enhanced performance of the proposed model, a
widespread comparison study is made with recent models, and the results exhibit the significance
of the proposed model on benchmark test images. Therefore, the proposed model has the potential
as an automated, accurate, and rapid tool for supporting the detection and classification process of
cancer.

Abstract: Explainable Artificial Intelligence (XAI) is a branch of AI that mainly focuses on developing
systems that provide understandable and clear explanations for their decisions. In the context of
cancer diagnoses on medical imaging, an XAI technology uses advanced image analysis methods
like deep learning (DL) to make a diagnosis and analyze medical images, as well as provide a
clear explanation for how it arrived at its diagnoses. This includes highlighting specific areas of
the image that the system recognized as indicative of cancer while also providing data on the
fundamental AI algorithm and decision-making process used. The objective of XAI is to provide
patients and doctors with a better understanding of the system’s decision-making process and to
increase transparency and trust in the diagnosis method. Therefore, this study develops an Adaptive
Aquila Optimizer with Explainable Artificial Intelligence Enabled Cancer Diagnosis (AAOXAI-CD)
technique on Medical Imaging. The proposed AAOXAI-CD technique intends to accomplish the
effectual colorectal and osteosarcoma cancer classification process. To achieve this, the AAOXAI-CD
technique initially employs the Faster SqueezeNet model for feature vector generation. As well, the
hyperparameter tuning of the Faster SqueezeNet model takes place with the use of the AAO algorithm.
For cancer classification, the majority weighted voting ensemble model with three DL classifiers,
namely recurrent neural network (RNN), gated recurrent unit (GRU), and bidirectional long short-
term memory (BiLSTM). Furthermore, the AAOXAI-CD technique combines the XAI approach LIME
for better understanding and explainability of the black-box method for accurate cancer detection.
The simulation evaluation of the AAOXAI-CD methodology can be tested on medical cancer imaging
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databases, and the outcomes ensured the auspicious outcome of the AAOXAI-CD methodology than
other current approaches.

Keywords: cancer diagnosis; explainable artificial intelligence; ensemble learning; Adaptive Aquila
Optimizer; deep learning

1. Introduction

Diagnosis of cancer is an indispensable problem in the medical sector. Initial identi-
fication of cancer is vital for better chances of treatment and the best course of action [1].
Therefore, cancer can be considered as one major topic where numerous authors carried
out various research to attain higher performance in treatment prevention and diagnosis.
Initial identification of tumors can increase treatment options and chances of survival of
patients. Medical images like Magnetic Resonance Imaging, mammograms, microscopic
images, and ultrasound were the typical technique for diagnosing cancer [2].

In recent times, computer-aided diagnosis (CAD) mechanism was utilized to help
doctors in diagnosing tumors so that the accuracy level of diagnosis gets enhanced. CAD
helps in reducing missed cancer lesions because of medical practitioner fatigue, minimiz-
ing data overloading and work pressure, and reducing the variability of intra-and-inter
readers of imageries [3]. Problems like technical reasons are relevant to imaging quality,
and errors caused by humans have augmented the misdiagnosis of breast cancer in the
interpretation of radiologists. To solve these limitations, CAD mechanisms were advanced
to automate breast cancer diagnosis and categorize malignant and benign lesions [4]. The
CAD mechanism enhances the performance of radiologists in discriminating and finding
abnormal and normal tissues. Such a process can be executed only as a double reader, but
decisions are made by radiologists [5]. Figure 1 represents the structure of explainable
artificial intelligence.

 

Figure 1. Structure of XAI.

Recent advancements in the resolution of medical imaging modalities have enhanced
diagnostic accuracy [6]. Effective use of imaging data for enhancing the diagnosis becomes
significant. Currently, computer-aided diagnosis systems (CAD) have advanced a novel
context in radiology to make use of data that should be implemented in the diagnosis of dif-
ferent diseases and different imaging modalities [7–10]. The efficacy of radiologists’ analysis
can be enhanced in the context of consistency and accuracy in diagnosis or detection, while
production can be enhanced by minimizing the hours needed to read the imageries. The
results can be extracted through several methods in computer vision (CV) for presenting
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certain important variables like the likelihood of malignancy and the location of suspicious
lesions of the detected lesions [11]. Then, DL technology has now significantly advanced,
increasing expectations for the likelihood of computer software relevant to tumor screening
again. Deep learning (DL) is a type of neural network (NNs). This NN has an output layer,
an input layer, and a hidden layer. DL can be a NN with a lot of hidden layers. In the past,
DL had more achievements, i.e., incredible performance improvements, particularly in
speech recognition and image classification [12]. Recently, DL has been utilized in various
areas. As they can solve complicated issues, DNNs are now common in the healthcare field.
However, decision-making by these methods was fundamentally a black-box procedure
making it problematic for doctors to determine whether choices were dependable. The
usage of explainable artificial intelligence (XAI) can be recommended as the key to this
issue [13].

1.1. Related Works

Van der Velden et al. [14] presented an outline of explainable AI (XAI) utilized in DL-
related medical image analysis. A structure of XAI criteria can be presented for classifying
DL-related medical image analysis techniques. As per the structure and anatomical location,
studies on the XAI mechanism in medical image analysis were categorized and surveyed.
Esmaeili et al. [15] intend to assess the performance of selective DL methods on localizing
cancer lesions and differentiating lesions from healthier areas in MRI contrasts. Despite an
important correlation between lesion localization accuracy and classification, the familiar
AI techniques inspected in this study categorize certain cancer brains dependent upon
other non-related attributes. The outcomes advocate that the abovementioned AI methods
can formulate an intuition for method interpretability and play a significant role in the
performance assessment of DL methods.

In [16], a new automatic classification system by merging several DL methods was
devised for identifying prostate cancer from MRI and ultrasound (US) imageries. To enrich
the performance of the model, particularly on the MRI data, the fusion model can be
advanced by integrating the optimal pretrained method as feature extractors with shallow
ML techniques (e.g., K-NN, SVM, RF, and Adaboost). At last, the fusion model can be
inspected by explainable AI to identify the fact why it finds samples as Malignant or Benign
Stage in prostate tumors. Kobylińska et al. [17] modeled selective techniques from the
XAI domain in the instance of methods implemented for assessing lung cancer risk in the
screening process of lung cancer using low-dose CT. The usage of such methods offers a
good understanding of differences and similarities among the three typically used methods
in screening lung cancer they are LCART, BACH, and PLCOm2012.

In [18], an explainable AI (XAI) structure was devised in this study for presenting the
local and global analysis of auxiliary identification of hepatitis while maintaining good
predictive outcomes. Firstly, a public hepatitis classifier benchmark from UCI was utilized
for testing the structure feasibility. Afterward, the transparent and black-box ML methods
were used to predict the deterioration of hepatitis. Transparent methods like KNN, LR,
and DT were selected. While the black-box method like the RF, XGBoost, and SVM were
selected. Watson and Al Moubayed [19] devised a method agnostic explainability-related
technique for the precise identification of adversarial instances on two datasets with various
properties and complexity: chest X-ray (CXR) data and Electronic Health Record (EHR).
In [20], the XAI tool can be applied to the breast cancer (BC) dataset and offers a graphical
analysis. The medical implication and molecular processes behind circulating adiponectin,
HOMA, leptin, and BC resistance were sightseen, and XAI techniques were utilized for
constructing methods for the diagnosis of new BC biomarkers.

1.2. Paper Contributions

This study develops an Adaptive Aquila Optimizer with Explainable Artificial In-
telligence Enabled Cancer Diagnosis (AAOXAI-CD) technique on Medical Imaging. The
proposed AAOXAI-CD technique uses the Faster SqueezeNet model for feature vector gen-
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eration. As well as the execution of hyperparameter tuning of the Faster SqueezeNet model
done with the AAO algorithm. For cancer classification, the majority weighted voting
ensemble model with three DL classifiers, namely recurrent neural network (RNN), gated
recurrent unit (GRU), and bidirectional long short-term memory (BiLSTM). Furthermore,
the AAOXAI-CD technique combines the XAI approach LIME for better understanding
and explainability of the black-box method for accurate cancer detection. The simulation
evaluation of the AAOXAI-CD technique is tested on medical cancer imaging databases.

2. Materials and Methods

In this article, we have developed an automated cancer diagnosis approach using the
AAOXAI-CD approach on medical images. The proposed AAOXAI-CD system attained the
effectual colorectal and osteosarcoma cancer classification process. It encompasses Faster
SqueezeNet-based feature vector generation, AAO-based parameter tuning, ensemble
classification, and XAI modeling. Figure 2 defines the overall flow of the AAOXAI-CD
approach. The overall process involved in the proposed model is given in Algorithm 1.

 

Figure 2. The overall flow of AAOXAI-CD approach.
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Algorithm 1: Process Involved in AAOXAI-CD Technique

Step 1: Input Dataset (Training Images)
Step 2: Image Pre-Processing
Step 3: Feature Extraction Using Faster SqueezeNet Model
Step 4: Parameter Tuning Process

Step 4.1: Initialize the Population and Its Parameters
Step 4.2: Calculate the Fitness Values
Step 4.3: Exploration Process and Exploitation Process
Step 4.4: Update the Fitness Values
Step 4.5: Obtain Best Solution

Step 5: Ensemble of Classifier (RNN, GRU, and Bi-LSTM)
Step 6: Classification Output

2.1. Feature Extraction Using Faster SqueezeNet

Primarily, the AAOXAI-CD technique employed the Faster SqueezeNet method for
feature vector generation. Fast SqueezeNet was proposed to enrich the real-time per-
formance and accuracy of cancer classification [21]. We added BatchNorm and residual
structure to prevent overfitting. Simultaneously, like DenseNet, concat is employed to
interconnect dissimilar layers to increase the expressiveness of the first few layers in the
network. Figure 3 represents the architecture of the Faster SqueezeNet method.

 

Figure 3. Architecture of Faster SqueezeNet.

Fast SqueezeNet comprises a global average pooling layer, 1 BatchNorm layer, 3
block layers, and 4 convolutional layers. In the following ways, Fast SqueezeNet can be
improved:

(1) To further enrich the information flow among layers DenseNet is imitated, and a
distinct connection mode is devised. This covers a fire module and pooling layer, and lastly,
2 concat layers are interconnected to the following convolution layer.

The present layer receives each feature map of the previous layer, and we apply
x0, . . . , xl−1 as input; then, xl is expressed as

xl = Hl([x0, x1, . . . , xl−1]), (1)
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where [x0, x1, . . . , xl−1] represent the connection of feature graphs produced in layers
0, 1, . . . , l − 1 and Hl(·) concatenated more than one input data. Now, characterizes
the max pooling layer, x1 designates Fire layers, and xl indicates the concat layer.

Initially, the performance of the network is improved without excessively raising the
number of network variables, and simultaneously, any two-layer network could directly
transmit data.

(2) We learned from the ResNet structure and suggested constituent elements, which
comprise a fire module and pooling layer, to ensure improved network convergence. Lastly,
afterward, two layers were summed, and it was interconnected to the next convolution
layers.

In ResNet, shortcut connection employs identity mapping that implies input of a
convolutional stack will be added directly to the resultant of the convolutional stack.
Formally, the underlying mapping can be represented as H (x), considering the stacked non-
linear layer fits another mapping of F(x) := H(x)− x. The original mapping is rewritten
into F(x) + x. F(x) + x is comprehended by the structure named shortcut connection in
the encrypting process.

In this work, the hyperparameter tuning of the Faster SqueezeNet method occurs by
employing the AAO algorithm. This abovementioned algorithm is based on the distinct
hunting strategies of Aquila for different prey [22]. For faster-moving prey, the Aquila needs
to obtain the prey in a precise and faster manner, where the global exploration capability
of the model was reflected. The optimizer technique was characterized by mimicking
4 behaviors of Aquila hunting. Firstly, the population needs to arbitrarily generate in-
between the lower bound (LB) and upper bound (UB) dependent upon the problem, as
given in Equation (2). The approximate optimum solution at the time of the iteration can
be defined as the optimum solution. The present set of candidate solutions X was made at
random by using the following expression:

X =

⎡⎢⎣ χ1’1 . . . x1’D
...

. . .
...

xn’1 . . . xn’D

⎤⎥⎦ (2)

Xi,j = rand× (
UBj − LBj

)
+ LBj, i = 1, 2, . . . , Nj = 1, 2, . . . D (3)

where n signifies the overall amount of candidate solutions, D indicates the dimensionality
of problems, and xn, D represents the location of n-th solutions in d dimensional space.
Rand denotes a randomly generated value, and UBj and LBj signify the j-th dimensional
upper and lower boundary of the problem.

Initially, choose search spaces by hovering above in vertical bends. Aquila hovers
above to identify the prey area and rapidly choose the better prey region as follows:

X1(t + 1) = Xbesi(t)×
(

1− t
T

)
+ (XM(t)− Xbesi(t))× rand (4)

XM(t) =
1
N

N

∑
i=1

Xi(t), ∀j = 1, 2, . . . , D (5)

where X1(t + 1) symbolizes the location of the individual at t+ 1 time , Xbesi(t + 1) signifies
the present global optimum site at the t-th iteration, T and t symbolize the maximal
amount of iterations and the present amount of iterations, correspondingly, X(t) represents
the average location of the individual at the existing iteration, and Rand represents the
randomly generated value within [0, 1] in Gaussian distribution. The next strategy was a
short gliding attack in isometric flight. Aquila flies over the targeted prey to prepare for
assault while they find prey region from a higher altitude. This can be formulated as

X2(t + 1) = Xbest(t)× levy(D) + XR(t) + (y− x)× rand (6)
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levy (D) = s× u× σ

|v| 1
β

(7)

σ =

⎛⎝ Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2(

β−1
2 )

⎞⎠ (8)

where X2(t + 1) denotes the new solution for the following iteration of t, D means spatial
dimensions, levy (D) denotes Lévy flight distribution functions, X(t) indicates the arbitrary
location of Aquila in [1, N], s take the values of 1.5, y and χ presents the spiral situations in
search region as follows:

y = r× cos (θ) (9)

x = r× sin (θ) (10)

r = r1 + 0.00565× D1 (11)

θ = −0.005× D1 +
3× π

2
(12)

where r1 takes the fixed index between 1 and 20, D1 denotes the integers from 1 to the
length of the search region. The third strategy was a slow-descent attack and low-flying.
The Aquila locks onto a hunting target in the hunting region and, with attack ready, makes
the initial attacks in the vertical descent, thereby testing prey response. These behaviors are
given as follows:

X3(t + 1) = (Xbesi(t)− XM(t))× α− rand + ((UB− LB)× rand + LB)× δ (13)

where X3(t + 1) denotes the solution of the following iteration of t, δ, and α denotes the
mining adjustment parameter within (0, 1), LB and UB represent the lower and upper
boundaries of the issue. The fourth strategy was grabbing and walking prey. Once the
Aquila approaches the prey, it starts to attack prey based on arbitrary movements of prey.
These behaviors can be described as follows

X4(t + 1) = QF× Xbest(t)− (G1 × X(t)× rand)− G2 × levy(D) (14)

QF(t) = t
2×rand−1
(1−T)2 (15)

G1 = 2× rand− 1 (16)

G1 = 2×
(

1− t
T

)
(17)

where X4(t + 1) denotes the new solution for the following iteration of t, QF represents
the mass function leveraged for balancing the search process, and F ∈ (0, 1) G1 represents
various strategies utilized by the Aquila for prey escape; G2 signifies slope value from
the initial location to the final location at the chase time of Aquila’s prey, which takes
values from 2 to 0, · Rand denotes the random number within [0,1] in Gaussian distribution;
and T and t denotes the maximal amount of iterations and existing amount of iterations,
correspondingly. Niche thought is from biology in which microhabitats represent roles or
functions of the organization in a specific environment, and organizations with general
features are named species. In the AAO algorithm, Niche thought is used, which applies
a sharing model for comparing the distance among individuals in a habitat. A specific
threshold was set to increase the fitness of an individual with the highest fitness, ensuring
that the individual state is optimal. For an individual with the lowest fitness, a penalty was
presented to make them update and further find the optimum value in another region to
guarantee the diversity of the population at the iteration and attain the optimum solution.
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Here, the distance among individuals of the smallest habitat population was evaluated as
follows:

dij =
∣∣Xi − Xj

∣∣ (18)

The data exchange function among Xi and Xj individuals is given below

sh
(
dij
)
=

{
1− dii

ρ , dij < ρ

0, dij > ρ
(19)

where ρ denotes the radius of data sharing in microhabitats and dij < ρ guarantees that
individuals live in the microhabitat environments. After sharing the data, the optimum
adaptation can be adjusted in time, as follows.

Fi−best =
Fi
sh

, i = 1, 2, . . . , N (20)

where Fi means optimum adaptation after sharing, and Fj denotes original adaptation.
The AAO method not only derived a fitness function from attaining superior classifi-

cation performance as well describes positive values to symbolize the enhanced outcome of
the candidate solutions. The reduction of classification error rates was treated as the fitness
function.

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples × 100

(21)

2.2. Ensemble Learning-Based Classification

In this work, the DL paradigm is integrated, and the best outcome is selected by the
weighted voting method. Assumed the D base classification model and amount of classes
as n for voting, predictive class ck of weighted voting for every instance as follows

ck = arg max
j

D

∑
i=1

(
Δji × wi

)
, (22)

where Δji signifies binary parameter. As soon as ith base classification classifies the k
instances into jth classes, then Δji = 1; or else, Δji = 0. wi represents the weight of ith base
classification in the ensemble.

Acc =
∑k{1|ckis the true class of instance k}

Size of test instances
× 100%. (23)

2.2.1. RNN Model

Initially, Elman recommended the recurrent unit as its essential block (1990). If they
are used to exceedingly long sequences, the elementary RNN cell has common problems of
expanding gradient and disappearing gradient [23]. It is a fact that the elementary RNN
cell could not hold long-term dependence eventually. Hence it demonstrates that this
cell has shortcomings. The backpropagated gradient tends to reduce once the sequence is
particularly long, which prevents the effective updating of the weight. However, once the
gradient is substantial, they might explode across a longer sequence, which renders the
weight matrix unstable. The above two difficulties stem from the intractable nature of the
gradient, which has made it more difficult for RNN cells to identify and be accountable for
a long-term relationship. Equations (24) and (25) demonstrate the mathematical expression
for RNN architecture.

ht−1 = σ(Ph × ht−1 + Px × xt + Ba) (24)

yt = tan h (Po × ht + Bo) (25)

where ht denotes the hidden state, and it was the only type of memory in the RNN cell. Ph
and Px epitomize the weight matrix for the hidden state and Po bias vector for cell output
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correspondingly, xt and yt characterize the inputs and outputs of the cell at the t time step,
correspondingly, Ba and Bo represent the bias vector for the hidden state and cell outputs,
correspondingly.

The latter hidden state is conditioned on the hidden state of the previous time step and
the existing inputs. The cellular feedback loop connects the current state to the succeeding
one. This bond is crucial to consider prior data while adjusting the present cell state. In
such cases, the hyperbolic tangent function, represented by Tanh, turned on the overt state,
and the sigmoid function was applied, represented by, to turn on the latent state.

2.2.2. GRU Model

The RNN is a kind of ANN model with a cyclic structure and is appropriate for data
processing in sequence. The gradient is lost, and learning ability is greatly reduced once
the time interval is large [24]. Hochreiter and Schmidhuber resolved these problems and
developed the LSTM. The LSTM was extensively applied in time-series data, and its basic
concept is that the cell state was interconnected as a conveyor belt. In that regard, the
gradient propagates although distance among the states rises. In LSTM cells, the cell state
can be controlled by using three gating functions forget, input, and output gates. In 2014,
the GRU was developed as a network that enhanced the learning accuracy of LSTM by
adjusting the LSTM model. Different from LSTM, the GRU has a fast-learning speed and
is encompassed two gating functions. Furthermore, parameters are smaller than LSTM
since the hidden and cell states are incorporated into a single hidden state. Accordingly,
the GRU shows outstanding performance for long-term dependency in time-series data
processing and takes lesser computational time when compared to the LSTM. The GRU
equations to determine the hidden state are shown below:

rt = σ(Wrxt + Urht−1 + br) (26)

zt = σ(Wzxt + Uzht−1 + bz) (27)

ht = (1− zt)� ht−1 + zt � tan h (Whxt + Uh(rtE� ht−1) + bh) (28)

From the expression, rt denotes the reset gate and zt indicates the update gate at time t.
xt represents input value at t time, W and U indicate weights, and b refers to bias. ht denotes
the hidden state at time t. � shows the component-wise (Hadamard) multiplication.

2.2.3. BiLSTM Model

RNN has the structural feature of the node connected in a loop, making them ap-
propriate for data processing; however, it is frequently confronted with the problem of
vanishing gradient [25]. The GRU and long and short-term memory (LSTM) improved
on RNN by adding several threshold gates to mitigate gradient vanishing problems and
enhance classification accuracy. Meanwhile, the LSTM method has a memory unit that
prevents the network from facing gradient vanishing problems.

The LSTM could enhance the deficiencies of RNN; generally, the resultant of the
present time was relevant to the state information of the past time, as well as state informa-
tion of future time. The Bi-LSTM network was established concerning the problem that
was integrating historical and future data by interconnecting two LSTMs. The architecture
of the BiLSTM network comprises the back-to-forth and front-to-back LSTM layers. The
forward and backward layers calculate the input dataset, and lastly, the architecture of two
layers is integrated to obtain the output of the BiLSTM network as follows:

ot = g(ω1it + ω20t−1)o
′
t = g

(
ω3it + ω50

′
t−1

)
, yt = f (ω40t + ω60t) (29)

In Equation (29), ω denotes weighted parameters in the BiLSTM network, it shows
input at t time , 0t indicates the results of the forward hidden layer at t time, 0

′
t represents
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the output of the backward hidden layer at t time and yt represents the last resultant of the
network.

2.3. Modeling of XAI Using LIMA Approach

The AAOXAI-CD technique combines the XAI approach LIME for a better under-
standing and explainability of the black-box method for accurate cancer detection [26].
Local interpretable model-agnostic explanation (LIME) describes various ML approaches
for regression prediction, using the featured value change of the data sample to transform
the featured values into the contribution of the predictor. The explainer gives a local in-
terpretation of the data samples. For example, the interpretable model in LIME often uses
linear regression (LR) or decision trees (DTs) and are trained by the smaller perturbation
(removing specific words, hiding part of the image, and adding random noise) in the model.
The quality of these models seems to be increasing and was used to resolve the best part of
the business victimization dataset. Similarly, there were persistent tradeoffs between model
accuracy and interpretability. Generally, the performance can be improved and enhanced
by applying sophisticated techniques such as call trees, random forest, material, boosting,
and SVM, which are “blackbox” techniques. The LIME provides a clear explanation of
the problems with the blackbox classifiers. The LIME is a way of understanding an ML
BlackBox method by perturbing the input dataset and seeing how prediction changes. The
LIME is used for any ML black-box models. The fundamental steps are shown as follows:

A TabularExplainer is initialized by the data used for the data training about the
features and various class names.

In the class explain_instance, a technique called explain_instance accepts the reference
to the instance where the explanation is essential, plus the number of features to be added
in the explanation and the trained model’s prediction technique.

3. Results and Discussion

The proposed model is simulated using Python 3.6.5 tool on PC i5-8600k, GeForce
1050 Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings are given
as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and activation:
ReLU. In this section, the simulation values of the AAOXAI-CD technique can be tested
utilizing dual datasets: the colorectal cancer dataset (dataset 1) and the osteosarcoma dataset
(dataset 2). Figure 4 defines the sample images of Colorectal Cancer. For experimental
validation, 70:30 and 80:20 of the training set (TRS) and testing set (TSS) is used. Dataset
1 (Warwick-QU dataset) [27] comprises 165 images with 91 malignant tumors and 74
benign tumor images. The data were collected using the Zeiss MIRAX MIDI Scanner by
implementing an image data weight range of 1.187 kilobytes, 716 kilobytes, and an image
data resolution range of 567 × 430 pixels to 775 × 522 pixels with all pixels having a
distance of 0.6 μm from the actual distance. Next, dataset 2 [28] contains 1144 images under
3 classes. It covers 536 images under Non-Tumor (NT) class, 345 images under viable tumor
(VT), and 263 images under non-Viable Tumor (NVT). Figure 5 defines the sample images
of osteosarcoma.
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Figure 4. Sample Images of Colorectal Cancer.

 

Figure 5. Sample images of osteosarcoma.
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In Figure 6, the cancer classifier outcomes of the AAOXAI-CD method in terms of
classification performance under dataset-1. The outcomes demonstrate that the AAOXAI-
CD system has identified benign and malignant samples.

Figure 6. Confusion matrices of the AAOXAI-CD system on dataset-1 (a,b) TRS/TSS of 80:20 and
(c,d) TRS/TSS of 70:30.

In Table 1, the overall classifier results of the AAOXAI-CD method on dataset-1. The
results demonstrate that the AAOXAI-CD method has identified benign and malignant
samples. For instance, with 80% of TRS, the AAOXAI-CD technique reaches an average
accuy of 98.65%, precn of 98.33%, recal of 98.65%, specy of 98.65%, Fscore of 98.47%, and MCC
of 96.98%. Meanwhile, with 20% of TSS, the AAOXAI-CD system reaches an average accuy
of 97.06%, precn of 97.06%, recal of 97.06%, specy of 97.06%, Fscore of 96.97%, and MCC of
94.12%. Furthermore, with 70% of TRS, the AAOXAI-CD algorithm reaches an average
accuy of 99%, precn of 99.24%, recal of 99%, specy of 99%, Fscore of 99.11%, and MCC of
98.24%.
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Table 1. Classifier outcome of the AAOXAI-CD approach on dataset-1.

Classes Accuy Precn Recal Specy Fscore MCC

Training Phase (80%)

Benign 100.00 96.67 100.00 97.30 98.31 96.98

Malignant 97.30 100.00 97.30 100.00 98.63 96.98

Average 98.65 98.33 98.65 98.65 98.47 96.98

Testing Phase (20%)

Benign 100.00 94.12 100.00 94.12 96.97 94.12

Malignant 94.12 100.00 94.12 100.00 96.97 94.12

Average 97.06 97.06 97.06 97.06 96.97 94.12

Classes Accuracy Precision Recall Specificity F-Score MCC

Training Phase (70%)

Benign 98.00 100.00 98.00 100.00 98.99 98.24

Malignant 100.00 98.48 100.00 98.00 99.24 98.24

Average 99.00 99.24 99.00 99.00 99.11 98.24

Testing Phase (30%)

Benign 95.83 100.00 95.83 100.00 97.87 96.06

Malignant 100.00 96.30 100.00 95.83 98.11 96.06

Average 97.92 98.15 97.92 97.92 97.99 96.06

The TACY and VACY of the AAOXAI-CD model on dataset-1 are defined in Figure 7. The figure exhibited that
the AAOXAI-CD method has improvised performance with augmented values of TACY and VACY. Visibly, the
AAOXAI-CD model has maximum TACY outcomes.

Figure 7. TACY and VACY analysis of the AAOXAI-CD approach on dataset-1.
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The TLOS and VLOS of the AAOXAI-CD model on dataset-1 are defined in Figure 8.
The figure inferred that the AAOXAI-CD approach has superior performance with minimal
values of TLOS and VLOS. Notably, the AAOXAI-CD model has minimal VLOS outcomes.

Figure 8. TLOS and VLOS analysis of AAOXAI-CD approach on dataset-1.

In Table 2 and Figure 9, the comparative interpretation of the AAOXAI-CD system
with recent methods on dataset-1 [29–31]. The figures represented that the ResNet-18(60–
40), ResNet-50 (60–40), and CP-CNN models resulted in the least performance. Although
the AAI-CCDC technique results in moderately improved outcomes, the AAOXAI-CD
technique accomplishes maximum performance with precn of 99.24%, recal of 99%, and
accuy of 99%.

Table 2. Analysis outcome of AAOXAI-CD method with other systems on dataset-1.

Methods Precision Recall Accuracy

ResNet-18 (60–40) 82.00 63.00 72.00

ResNet-18 (80–20) 86.00 82.00 84.00

ResNet-50 (60–40) 91.00 59.00 76.00

ResNet-50 (80–20) 82.00 92.00 87.00

SC-CNN Model 80.00 82.00 81.00

CP-CNN Model 71.00 68.00 69.00

AAI-CCDC Model 96.00 98.00 97.00

AAOXAI-CD 99.24 99.00 99.00
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Figure 9. Comparative analysis of the AAOXAI-CD approach on dataset-1.

In Figure 10, the cancer classification outcomes of the AAOXAI-CD system in terms of
classification performance under dataset-2. The results demonstrate that the AAOXAI-CD
technique has identified benign and malignant samples.

Figure 10. Confusion matrices of AAOXAI-CD system on dataset-2 (a,b) TRS/TSS of 80:20 and (c,d)
TRS/TSS of 70:30.
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In Table 3, the overall classifier results of the AAOXAI-CD system on dataset-2. The
results demonstrate that the AAOXAI-CD method has identified benign and malignant
samples. For instance, with 80% of TRS, the AAOXAI-CD technique reaches an average
accuy of 98.11%, precn of 97.60%, recal of 96.77%, specy of 98.37%, Fscore of 97.16%, and MCC
of 95.66%. Meanwhile, with 20% of TSS, the AAOXAI-CD algorithm reaches an average
accuy of 99.42%, precn of 99.16%, recal of 98.61%, specy of 99.49%, Fscore of 98.87%, and
MCC of 98.44%. Furthermore, with 70% of TRS, the AAOXAI-CD technique reaches an
average accuy of 98.67%, precn of 97.70%, recal of 97.26%, specy of 99.07%, Fscore of 97.42%,
and MCC of 96.56%.

Table 3. Classifier outcome of AAOXAI-CD approach on dataset-2.

Classes Accuy Precn Recal Specy Fscore MCC

Training Phase (80%)

VT 98.69 98.94 96.88 99.52 97.89 96.95

NVT 98.47 98.55 94.88 99.57 96.68 95.72

NT 97.16 95.31 98.54 96.02 96.90 94.32

Average 98.11 97.60 96.77 98.37 97.16 95.66

Testing Phase (20%)

VT 99.56 98.28 100.00 99.42 99.13 98.85

NVT 99.13 100.00 95.83 100.00 97.87 97.36

NT 99.56 99.20 100.00 99.05 99.60 99.12

Average 99.42 99.16 98.61 99.49 98.87 98.44

Classes Accuy Precn Recal Specy Fscore MCC

Training Phase (70%)

VT 98.12 94.24 99.57 97.54 96.83 95.57

NVT 98.00 98.85 92.47 99.67 95.56 94.35

NT 99.88 100.00 99.74 100.00 99.87 99.75

Average 98.67 97.70 97.26 99.07 97.42 96.56

Testing Phase (30%)

VT 99.71 99.14 100.00 99.56 99.57 99.35

NVT 99.13 98.68 97.40 99.63 98.04 97.48

NT 99.42 99.34 99.34 99.48 99.34 98.82

Average 99.42 99.05 98.91 99.56 98.98 98.55

The TACY and VACY of the AAOXAI-CD model on dataset-2 are defined in Figure 11. The figure highlighted
that the AAOXAI-CD method has performance with increased values of TACY and VACY. Remarkably, the
AAOXAI-CD model has higher TACY outcomes.
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Figure 11. TACY and VACY analysis of AAOXAI-CD approach on dataset-2.

The TLOS and VLOS of the AAOXAI-CD model on dataset-2 are defined in Figure 12.
The figure inferred the AAOXAI-CD system has better outcomes having minimal values of
TLOS and VLOS. Visibly the AAOXAI-CD model has minimal VLOS outcomes.

Figure 12. TLOS and VLOS analysis of AAOXAI-CD method on dataset-2.

Table 4 and Figure 13 show a brief study of the AAOXAI-CD method with the re-
cent method on dataset-2 [32,33]. The experimental values represented that the CNN-
Xception, CNN-EfficientNet, CNN-ResNet-50, and CNN-MobileNet-V2 models resulted in
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the least performance. Although the WDODTL-ODC and HBODL-AOC techniques result
in moderately improved outcomes, the AAOXAI-CD technique accomplishes maximum
performance with of precn 99.05%, of recal 98.91%, and accuy of 99.42%.

Table 4. Comparative analysis of AAOXAI-CD approach with other systems on dataset-2.

Methods Precision Recall Accuracy

AAOXAI-CD 99.05 98.91 99.42

HBODL-AOC 98.94 98.12 98.43

WDODTL-ODC 98.76 97.65 98.17

CNN-EfficientNet 97.00 97.00 97.00

CNN-Xception 94.00 96.00 96.00

CNN-ResNet-50 98.00 94.00 97.00

CNN-MobileNet-V2 98.00 98.00 98.00

Figure 13. Comparative analysis of the AAOXAI-CD approach on dataset-2.

From the above-mentioned results, it is assured that the proposed model achieves
effectual classification performance over other DL models. The enhanced performance
of the proposed model is due to the inclusion of AAO-based hyperparameter tuning and
ensemble classification processes. In addition, the use of LIME helps to build an effective
predictive modeling technique in cancer diagnosis. Without transparency, it is hard to
gain the trust of healthcare professionals and employ predictive approaches in their daily
operations. XAI has received considerable interest in recent times. It enables the clients to
generate instances and comprehend how the classification model accomplishes the results.
Healthcare institutions are keenly designing predictive models for supporting operations.
The XAI can be combined to improve the transparency of healthcare predictive modeling.

109



Cancers 2023, 15, 1492

The interactions between healthcare professionals and the AI system are important for
transferring knowledge and adopting models in healthcare operations.

4. Conclusions

In this study, we have developed an automated cancer diagnosis method using the
AAOXAI-CD technique on medical images. The proposed AAOXAI-CD system attained
the effectual colorectal and osteosarcoma cancer classification process. Primarily, the
AAOXAI-CD technique utilized the Faster SqueezeNet model for feature vector generation.
Moreover, the hyperparameter tuning of the Faster SqueezeNet model takes place with the
AAO algorithm. For cancer classification, the majority-weighted voting ensemble model
with three DL classifiers, namely RNN, GRU, and BiLSTM. Furthermore, the AAOXAI-CD
technique combines the XAI approach LIME for better understanding and explainability of
the black-box method for accurate cancer detection. The experimental evaluation of the
AAOXAI-CD approach was tested on medical cancer imaging databases, and the outcomes
ensured the promising outcome of the AAOXAI-CD method over other recent methods.
In the future, a feature fusion-based classification model can be designed to boost the
performance of the AAOXAI-CD technique.

Author Contributions: Conceptualization, S.A.-K.; Methodology, S.A. and R.F.M.; Validation, F.A.
and B.M.E.E.; Formal analysis, R.F.M.; Investigation, S.S.; Resources, A.A.B. and B.M.E.E.; Data cura-
tion, F.A. and A.A.B.; Writing—original draft, S.A.-K.; Writing—review & editing, S.A.; Supervision,
S.A. and S.A.-K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This article does not contain any studies with human partic-
ipants performed by any of the authors.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated during the current study.

Acknowledgments: Researchers would like to thank the Deanship of Scientific Research, Qassim
University for funding publication of this project.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Cordova, C.; Muñoz, R.; Olivares, R.; Minonzio, J.G.; Lozano, C.; Gonzalez, P.; Marchant, I.; González-Arriagada, W.; Olivero, P.
HER2 classification in breast cancer cells: A new explainable machine learning application for immunohistochemistry. Oncol. Lett.
2023, 25, 44. [CrossRef] [PubMed]

2. Hauser, K.; Kurz, A.; Haggenmüller, S.; Maron, R.C.; von Kalle, C.; Utikal, J.S.; Meier, F.; Hobelsberger, S.; Gellrich, F.F.; Sergon, M.;
et al. Explainable artificial intelligence in skin cancer recognition: A systematic review. Eur. J. Cancer 2022, 167, 54–69. [CrossRef]
[PubMed]

3. Farmani, A.; Soroosh, M.; Mozaffari, M.H.; Daghooghi, T. Optical nanosensors for cancer and virus detections. In Nanosensors for
Smart Cities; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–432.

4. Salehnezhad, Z.; Soroosh, M.; Farmani, A. Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing
MoS2 monolayer and graphene. Diam. Relat. Mater. 2023, 131, 109594. [CrossRef]

5. Amoroso, N.; Pomarico, D.; Fanizzi, A.; Didonna, V.; Giotta, F.; La Forgia, D.; Latorre, A.; Monaco, A.; Pantaleo, E.; Petruzzellis,
N.; et al. A roadmap towards breast cancer therapies supported by explainable artificial intelligence. Appl. Sci. 2021, 11, 4881.
[CrossRef]

6. Eminaga, O.; Loening, A.; Lu, A.; Brooks, J.D.; Rubin, D. Detection of prostate cancer and determination of its significance using
explainable artificial intelligence. J. Clin. Oncol. 2020, 38, 5555. [CrossRef]

7. Sakai, A.; Komatsu, M.; Komatsu, R.; Matsuoka, R.; Yasutomi, S.; Dozen, A.; Shozu, K.; Arakaki, T.; Machino, H.; Asada, K.; et al.
Medical professional enhancement using explainable artificial intelligence in fetal cardiac ultrasound screening. Biomedicines
2022, 10, 551. [CrossRef]

8. Ragab, M.; Albukhari, A.; Alyami, J.; Mansour, R.F. Ensemble deep-learning-enabled clinical decision support system for breast
cancer diagnosis and classification on ultrasound images. Biology 2022, 11, 439. [CrossRef]

110



Cancers 2023, 15, 1492

9. Escorcia-Gutierrez, J.; Mansour, R.F.; Beleño, K.; Jiménez-Cabas, J.; Pérez, M.; Madera, N.; Velasquez, K. Automated deep learning
empowered breast cancer diagnosis using biomedical mammogram images. Comput. Mater. Contin. 2022, 71, 3–4221. [CrossRef]

10. Mansour, R.F.; Alfar, N.M.; Abdel-Khalek, S.; Abdelhaq, M.; Saeed, R.A.; Alsaqour, R. Optimal deep learning based fusion model
for biomedical image classification. Expert Syst. 2022, 39, e12764. [CrossRef]

11. Davagdorj, K.; Bae, J.W.; Pham, V.H.; Theera-Umpon, N.; Ryu, K.H. Explainable artificial intelligence based framework for
non-communicable diseases prediction. IEEE Access 2021, 9, 123672–123688. [CrossRef]

12. Severn, C.; Suresh, K.; Görg, C.; Choi, Y.S.; Jain, R.; Ghosh, D. A Pipeline for the Implementation and Visualization of Explainable
Machine Learning for Medical Imaging Using Radiomics Features. Sensors 2022, 22, 5205. [CrossRef] [PubMed]

13. Pintelas, E.; Liaskos, M.; Livieris, I.E.; Kotsiantis, S.; Pintelas, P. Explainable machine learning framework for image classification
problems: Case study on glioma cancer prediction. J. Imaging 2020, 6, 37. [CrossRef] [PubMed]

14. Van der Velden, B.H.; Kuijf, H.J.; Gilhuijs, K.G.; Viergever, M.A. Explainable artificial intelligence (XAI) in deep learning-based
medical image analysis. Med. Image Anal. 2022, 79, 102470. [CrossRef] [PubMed]

15. Esmaeili, M.; Vettukattil, R.; Banitalebi, H.; Krogh, N.R.; Geitung, J.T. Explainable artificial intelligence for human-machine
interaction in brain tumor localization. J. Pers. Med. 2021, 11, 1213. [CrossRef]

16. Hassan, M.R.; Islam, M.F.; Uddin, M.Z.; Ghoshal, G.; Hassan, M.M.; Huda, S.; Fortino, G. Prostate cancer classification from
ultrasound and MRI images using deep learning based Explainable Artificial Intelligence. Future Gener. Comput. Syst. 2022, 127,
462–472. [CrossRef]
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Simple Summary: Convolutional neural networks (CNNs) have shown promising performance in
recognizing oral cancer. However, the lack of interpretability and reliability remain major challenges
in the development of trustworthy computer-aided diagnosis systems. To address this issue, we
proposed a neural network architecture that integrates visual explanation and attention mechanisms.
It improves the recognition performance via the attention mechanism while simultaneously providing
interpretability for decision-making. Furthermore, our system incorporates Human-in-the-loop
(HITL) deep learning to enhance the reliability and accuracy of the system through the integration of
human and machine intelligence. We embedded expert knowledge into the network by manually
editing the attention map for the attention mechanism.

Abstract: Convolutional neural networks have demonstrated excellent performance in oral cancer
detection and classification. However, the end-to-end learning strategy makes CNNs hard to interpret,
and it can be challenging to fully understand the decision-making procedure. Additionally, reliability
is also a significant challenge for CNN based approaches. In this study, we proposed a neural
network called the attention branch network (ABN), which combines the visual explanation and
attention mechanisms to improve the recognition performance and interpret the decision-making
simultaneously. We also embedded expert knowledge into the network by having human experts
manually edit the attention maps for the attention mechanism. Our experiments have shown that ABN
performs better than the original baseline network. By introducing the Squeeze-and-Excitation (SE)
blocks to the network, the cross-validation accuracy increased further. Furthermore, we observed that
some previously misclassified cases were correctly recognized after updating by manually editing the
attention maps. The cross-validation accuracy increased from 0.846 to 0.875 with the ABN (Resnet18
as baseline), 0.877 with SE-ABN, and 0.903 after embedding expert knowledge. The proposed method
provides an accurate, interpretable, and reliable oral cancer computer-aided diagnosis system through
visual explanation, attention mechanisms, and expert knowledge embedding.

Keywords: visual explanation; attention mechanism; human-in-the-loop deep learning; attention
map; expert knowledge embedding; attention branch network
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1. Introduction

Convolutional neural networks have achieved outstanding performance in many
visual tasks [1–3]. However, the end-to-end learning strategy used in CNNs makes them
hard to interpret. It is difficult to fully understand the CNNs’ decision-making procedure
that is hidden inside the network. Interpreting deep learning models has been a challenge
for a long time. Many researchers have realized the significance and developed several
methods for deep learning visual explanation [4]. Visual explanation generates an attention
map that highlights discriminative regions used for CNN decision-making, which is a
common approach for interpreting deep learning models. There are two types of visual
explanations: response-based and gradient-based. Response-based approaches, such
as Class Activation Mapping (CAM) [5], use the response of the convolutional layer to
generate the attention map. Gradient-based approaches, such as gradient weighted-CAM
(Grad-CAM) [6], use gradient and feed forward response to generate the attention map.
CAM and Grad-CAM are two widely used visual explanation methods. CAM uses the
K channel feature map from the convolution layer and the weight at a fully connected
layer to calculate the attention map. However, this method requires modification of the
CNN architectures, that is, replacing the fully connected layer of the original network with
a convolutional layer and global average pooling. Grad-CAM uses the response of the
convolution layer and a positive gradient in the backpropagation process to generate the
attention map. Grad-CAM can be applied to interpret various models without changing
network architecture or re-training.

Attention mechanism is a powerful tool that efficiently allocates the available pro-
cessing resources to the most informative part of the input signal [7]. It has been applied
to many fields such as computer vision and natural language processing. The attention
mechanism is usually implemented in combination with a gating function such as softmax
or sigmoid and sequential techniques. In image recognition tasks, previous researchers
have proposed several attention-based approaches. One such approach is Squeeze-and-
Excitation network (SENet) [8], which allows the network to perform feature recalibration.
It can use the global information to emphasize the most informative features and suppress
the less informative ones. The SE block is a lightweight gating mechanism that models
channel-wise relationships in a computationally efficient manner. Another approach is
Residual Attention Network [9], which employs multiple attention modules, each with
a mask branch and a trunk branch. It also utilizes an attention residual learning mech-
anism to optimize very deep Residual Attention architecture and bottom-up top-down
feedforward attention structure.

Attention branch network (ABN) [10], inspired by visual explanation and attention
mechanisms, uses the attention map for both visual explanation and attention mechanism.
The highlighted region in the attention map is considered an informative part and obtains
more attention in image recognition. ABN has a feature extractor to extract features; the
feature extractor could be various baseline models such as Resnet or VGGNet. It also
consists of an attention branch and a perception branch. The attention branch extends the
response-based visualization method CAM to generate an attention map. The perception
branch of the ABN model utilizes the informative regions and highlighted regions in the
attention map to emphasize the relevant features and suppress others to produce the final
results. By integrating visual explanation and attention mechanism, the ABN model can
interpret the decision-making of the deep learning network and improve the recognition
performance simultaneously. Ding et al. [11] proposed a deep attention branch network
by introducing two attention branches into a baseline model composed of four dense
blocks, three transition layers, and a classification layer. Additionally, an entropy-guided
loss weighting strategy was introduced to address the class imbalance problem. The
experimental results demonstrate that the proposed method can improve the focusing
ability of networks to accurately locate the discriminative lesion regions and improve the
classification performance; the entropy-guided loss weighting strategy can further boost
the performance.
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Human-in-the-loop (HITL) deep learning [12,13] is a set of strategies that integrates
human knowledge and machine intelligence to enhance the performance of deep learning
models. HITL has attracted significant research interest in the machine learning community,
and many studies have investigated this topic by leveraging the complementary strengths
of human and machine intelligence, resulting in improved accuracy compared to machine
intelligence alone. For instance, Zhu et al. [14] proposed a tool that integrates human
physicians’ knowledge and deep learning algorithms for efficient object detection of renal
pathology. Linsley et al. [15] developed a ClickMe map that collects human feedback
to train the deep learning model via the HITL framework. The method achieved better
performance by introducing human knowledge to the weight of the attention mechanism.
Mitsuhara et al. [16] used manually editable attention maps to embed human knowledge
into deep neural networks. Human experts can intuitively understand the attention map
and edit it interactively through a visual interface. The edited attention maps can improve
recognition performance by reflecting human knowledge.

Oral cancer is one of the most common cancers worldwide and is the second most
common cancer in India [17]. Most high-risk populations living in low- and middle-
income countries do not have adequate medical resources for early diagnosis and treatment.
Therefore, researchers have developed cost-effective methods for oral cancer diagnosis
such as fluorescence imaging [18] and fluorescence lifetime imaging [19] to meet these
pressing needs, and these methods have been successfully implemented in low-resource
settings. For instance, Duran-Sierra et al. [19] developed and validated a machine-learning
assisted computer aided detection system to automatically differentiate dysplastic and
cancerous tissue from healthy oral tissue based on in vivo widefield autofluorescence
lifetime imaging endoscopy data. This study evaluated four traditional machine learning
models and did not use convolutional neural network models. Convolutional neural
networks are powerful tools in medical image analysis, and multiple deep learning-based
oral cancer recognition approaches have been introduced [20–23]. However, improving the
accuracy, reliability, and interpretability of these models is still challenging. In this work,
we use the attention branch network and Squeeze-and-Excitation blocks to apply visual
explanation and attention mechanisms into the oral cancer recognition model. The attention
map generated from the attention branch can interpret the model’s predictions and improve
the performance through the perception branch via the attention mechanism. Additionally,
human experts manually edited the automatically generated attention map and fed it back
to the network’s perception branch. The manual editing helps to accurately highlight the
oral lesion or healthy regions according to the annotation of oral oncology specialists. Our
experimental results demonstrate that incorporating ABN and SE blocks improves the
classification accuracy of convolutional networks. Furthermore, expert knowledge, in the
form of manually edited attention maps, leads to improved reliability and performance.

2. Materials and Methods

In Section 2.1, we introduce the Attention branch network (ABN) and discuss its two
main components: the attention branch and the perception branch (Sections 2.1.1 and 2.1.2).
We then outline the training process for ABN in Section 2.2. In Section 2.3, we discuss
how human expert knowledge can be integrated into the ABN network to improve its
performance.

Additionally, in Section 2.4, we present another attention method, the Squeeze-and-
Excitation, which we used to further enhance the network’s performance. Finally, we
describe the dataset used for this study in Section 2.5.

2.1. Attention Branch Network

Attention branch network (ABN) [10] extends the response-based visual explanation
model, which is able to visualize the attention map for visual explanation while improving
the CNN performance with the attention mechanism simultaneously. It consists of three
components: the feature extractor that contains convolutional layers to extract feature maps
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from the input image; the attention branch that generates an attention map based on CAM
for the attention mechanism and visual explanation; and the perception branch that outputs
the probabilities of classes using the feature map from feature extractor and attention map
from the attention branch. The block diagram of the attention branch network for our oral
cancer classification task is shown in Figure 1.

Figure 1. The block diagram of the attention branch network for our oral cancer task [10]. It has
a feature extractor, an attention branch, and a perception branch. The perception branch uses the
attention map generated from the attention branch to emphasize the most informative features.

2.1.1. Attention Branch

The ABN extends the CAM. CAM applies global average pooling (GAP) on the
convolutional feature maps to produce the desired output. It can identify the importance
of the image areas for CNN decision-making by projecting back the weights of the output
layer onto the convolutional feature maps. When CAM visualizes the attention map of each
class, the attention map is generated by multiplying the weighted sum of the feature map.
CAM removes the fully connected layers before the final output and replaces them with
convolution layers. Then, it adds a GAP and a fully connected softmax layer. This fully
connected layer replacement restriction is also introduced into the attention branch. Similar
to CAM, the attention branch uses convolution layer and GAP to generate an attention map.
However, the attention branch replaces the fully connected layer with a Kx1x1 convolution
layer (K is the number of categories) since CAM cannot generate an attention map in
the training process. The Kx1x1 convolution layer imitates the last fully connected layer
of CAM. The class probability output is generated using the response of GAP with the
softmax function after the Kx1x1 convolution layer. The attention branch also generates an
attention map for the attention mechanism. The K feature maps are convoluted by a 1x1x1
convolution layer and then normalized by the sigmoid function as the attention map.

2.1.2. Perception Branch

The perception branch outputs the classification results using the attention maps
from the attention branch and feature maps from the feature extractor with an attention
mechanism. In this study, the attention map M(Xi) is applied to the feature map gc(Xi) by
the following attention mechanism:

g′c(Xi) = gc(Xi)·M(Xi)

2.2. Training of ABN

The loss function of ABN jointly optimizes both attention and perception branches.
The combined loss function L(Xi) was constructed as:

L(Xi) = Latt(Xi) + Lper(Xi)

where Latt(Xi) is the attention branch training loss and Lper(Xi) is the perception branch
training loss. The training loss of each branch is calculated by the combination of the
softmax function and cross-entropy.
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2.3. Manual Editing of Attention Map

As mentioned before, in ABN, the attention map generated from the attention branch
is used for the attention mechanism. The classification result could be adjusted by editing
the attention map. To manually edit the attention map, one initial attention map was
obtained from the attention branch of a trained ABN. Then an attention editor [16] can
be used to manually edit the obtained attention maps interactively. The attention editor
is created using PyQt5 [24] and PyTorch, which can add and remove an attention region
easily via mouse. Since the size of the attention map generated from the attention branch is
14 × 14 pixels, the attention editor resizes it to 224 × 224 pixels and overlays it with the
input oral image. After editing, the edited attention map is resized to 14 × 14 pixels, and
the tool feeds it back for the attention mechanism of ABN to infer updated classification
results through the perception branch. By highlighting the attention location of lesion areas
and removing other regions on the attention map, the edited attention map can improve
the classification results through the attention mechanism of ABN. The block diagram of
the expert knowledge embedding is shown in Figure 2.

 

Figure 2. The block diagram shows the embedding of expert knowledge into the network [16]. The
attention maps generated from the attention branch were manually edited and sent back to emphasize
the most informative features.

2.4. SENet

In this study, Resnet18 was used as the baseline network to implement ABN. To further
improve the performance of the Resnet18-ABN network for the oral cancer classification
task, Squeeze-and-Excitation (SE) blocks were also incorporated into the network. SE block
introduces a channel attention mechanism that is composed of three components: squeeze
module, excitation module, and scale module.

The squeeze module uses global average pooling to generate channel-wise statistics,
which reduces the feature map to a single value by taking the average of all the pixels
in that feature map. If the input feature maps size is CxHxW, the output tensor will be
Cx1x1 after passing through the GAP operation. Each feature map is decomposed into a
singular value. The excitation module is to learn the adaptive scaling weights for the Cx1x1
tensor generated from the squeeze module. A gating mechanism with a sigmoid activation
is employed. The gating mechanism is parameterized by forming a bottleneck with two
fully connected layers, a dimensionality-reduction layer, a ReLU, and a dimensionality-
increasing layer. The excitation module inputs the Cx1x1 tensor and outputs a weighted
tensor of the same Cx1x1 size. After obtaining the Cx1x1 weighted tensor from the excitation
module, it is scaled to a range of 0–1 through a sigmoid activation layer. Subsequently, the
normalized weighted tensor is applied directly to the input by an element multiplication
that scales each channel/feature map in the input with the corresponding learned weights.
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The SE block could be applied to multiple existing network architectures and improves
the network performance at a minimal additional computational cost. When adding the SE
block to the residual network, it is inserted after the final convolutional layer of the residual
block and before the residual is added to the skip connection.

2.5. Dataset

The dataset used in this study was captured using our customized oral cancer screen-
ing platform [25], which was obtained from patients attending the outpatient clinics of
the Department of Oral Medicine and Radiology at the KLE Society Institute of Dental
Sciences (KLE), the Head and Neck Oncology Department of Mazumdar Shaw Medical
Center (MSMC), and the Christian Institute of Health Sciences and Research (CIHSR), India.
Institutional ethics committee approval was obtained from all participating hospitals and
written informed consents were collected from all subjects enrolled.

The data collection and study followed the International Conference of Harmonization
recommendation on Good Clinical Practice, and all methods were carried out in accordance
with relevant guidelines and regulations. The study protocol was registered in the Clinical
Trial Registry of the Indian Council of Medical Research (CTRI/2019/11/022167, Registered
on: 27 November 2019). The subjects were recruited at the study sub-centers, which were
monitored by nodal centers in a hub-and-spoke model. Institutional Ethics Committee
approvals were obtained from all nodal centers. The participants who were above 18 years
of age, with a history of tobacco smoking and/or chewing, or with any oral lesion were
included, and written informed consent was obtained from all the participants. The
individuals currently undergoing treatment for malignancy, pregnancy, tuberculosis, or
suffering from any acute illness were excluded. All the subjects included in the study were
directly telediagnosed by remote specialists [26].

We used a total of 2040 oral images to validate this method for oral cancer classification.
The images were separated into two categories: ‘normal’ (978 images), which contains
normal and benign mucosal lesion images, and ‘suspicious’ (1062 images), which contains
oral potentially malignant lesion (OPML) and malignant lesion images. The oral lesion
regions for attention map editing were based on oral oncology specialists’ annotations from
MSMC, KLE, and CIHSR. In a previous study, we showed that oral oncology specialists’
interpretation of classifying normal/benign versus OPML/malignant has high accuracy
with biopsy-confirmed cases [27]. Examples of the dataset used in this study and the
oncology specialists’ annotations is shown in Figure 3.

Figure 3. Examples of the dataset and oncology specialists’ annotations. (A,C,E) are white light
oral cavity images captured using our customized oral cancer screening platform. (B,D,F) are
corresponding pixel-level annotations labeled by oral oncology specialists. The oral potentially
malignant lesion and malignant lesion areas are shown in red, normal and benign areas are shown in
green, and other background areas are shown in grey.
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3. Results

In this study, all experiments were conducted using five-fold cross-validation. The
networks were trained using the cross-entropy loss and the Adam optimization algorithm
that were implemented on PyTorch. Data augmentation was applied to the training set
by flipping horizontally and vertically, random rotating, and shearing while training all
networks. For each training, the initial learning rate was 10−3, which decayed 10 times
by every 50 epochs, and the epoch number was 180 with a batch size of 32. We saved the
models with the best validation accuracy.

In the first set of experiments, we trained the attention branch network and ABN
with SE blocks (SE-ABN) using different baseline networks, including Resnet18, Resnet34,
Resnet50, and Resnet101, to verify whether the method could improve the oral cancer
classification performance. We also trained the original Resnet18, Resnet34, Resnetfive0,
and Resnet101 networks with the same data and parameters for comparison purposes.
Table 1 shows the five-fold cross-validation results of these experiments. Our findings
show that ABN outperforms the original baseline network, and by introducing the SE
blocks to ABN, the cross-validation accuracy is further increased. These results indicate
that ABN can help the network pay more attention on lesion regions, leading to improved
accuracy, and SE blocks can further improve the performance through its channel attention
mechanism.

Table 1. The five-fold cross-validation accuracy of ABN, SE-ABN, and the original network with
different baseline networks.

Five-Fold Cross-Validation
Accuracy

ResNet18 ResNet34 ResNet50 ResNet101

Original Network 0.846 0.851 0.850 0.844
ABN 0.875 0.879 0.880 0.872

SE-ABN 0.877 0.880 0.881 0.876

In addition, we observed that although deeper Resnet models have more layers and
require more computational time and resources, the performance difference on this oral
dataset is not significant. Therefore, for the next set of attention map experiments, we will
use ABN and SE-ABN with the Resnet18 baseline network.

3.1. Visualizing Attention Maps

To compare the attention maps generated by different models, we used three example
cases and visualized the attention maps of the original Resnet18, ABN, and SE-ABN. The
results are shown in Figure 4. While all three models highlight similar regions, the attention
maps of ABN and SE-ABN are more accurate than the original Resnet18 in identifying the
lesion areas. For the first and second images, the attention maps of the original Resnet18
focused more on teeth than the lesion area, while ABN and SE-ABN focused more accurately
on the lesion when making decisions. The results indicate that the attention mechanism of
ABN and SE block can help the network effectively focus on the lesion regions instead of
background areas such as teeth. The mismatch between the classification and the attention
region could degrade the reliability of the model performance, especially for medical image
recognition systems. Therefore, ABN and SE-ABN networks are more reliable since they
can focus more accurately on lesion areas for decision making.
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Figure 4. The attention maps of three example cases were repectively generated from the original
Resnet18, ABN, and SE-ABN. The first column shows the original oral images, the second column
shows the attention maps generated from the original Resnet18, the third column shows the attention
maps generated from ABN (Resnet18 baseline), and the fourth column shows the attention maps
generated from SE-ABN (Resnet18 baseline). Although all three models highlight similar regions, the
attention maps of SE-ABN are more accurate than those of ABN in identifying the lesion areas, and
both SE-ABN and ABN focused more accurately than the original Resnet18 network. For instance, in
the first and second images, the attention maps of the original Resnet18 focused more on teeth than
the lesion area, whereas SE-ABN clearly highlighted the lesion areas.

3.2. Incorporating Manually Edited Attention Maps

In this experiment, we employed the SE-ABN with Resnet18 backbone for attention
map editing, with the aim of improving the classification performance.

To perform attention map editing, we followed the procedure outlined in Section 2.2,
which involved inputting each validation image to the model and obtaining the attention
map from the attention branch. The generated attention map would be overlaid with the
input oral image for manual editing using the attention editor tool. Then the human experts
used the editor tool to add and remove attention regions to ensure that the edited attention
maps accurately and completely highlighted the corresponding regions. Finally, we sent
the edited attention maps back to the attention mechanism of SE-ABN to obtain updated
classification results through the perception branch.

Figure 5 presents several examples of attention map editing. In the first and third
examples, the original attention maps obtained from the attention branch were incomplete
and inaccurate in highlighting the lesion areas, resulting in a false classification of ‘normal’
for both cases. However, after manually editing the attention maps using the attention
editor tool, the lesion areas were accurately and completely highlighted. The updated
attention maps were then used for the attention mechanism of the model, resulting in a
correct classification of ‘suspicious.’ Similarly, in the second example, although the model
classifies the input image correctly as ‘suspicious’ with a probability score of 0.520, the
attention map obtained from the attention branch did not completely highlight the lesion
region. After manually editing the attention map, the probability score increased to 0.790.
These results demonstrate that the attention map editing process can recognize more lesion
features after highlighting more accurate and complete areas.

119



Cancers 2023, 15, 1421

 
Figure 5. Three examples of manually edited attention maps, and the corresponding results before and
after embedding human expert knowledge. The class label here means prediction, and the number
after means the probability score. The first and third examples show that previous misclassified cases
were correctly recognized after manually editing the attention maps by highlighting the lesion regions
accurately and completely. The network failed to give correct predictions or focus correctly on lesion
areas for the first and third cases, but after manually editing to let the network look at the accurate
areas, the correct predictions were presented. Although the network gave a correct prediction for the
second case, the probability score is low, while the probability score for the ‘suspicious’ class of the
second case increased after editing.

The five-fold cross-validation accuracy of SE-ABN before and after editing the attention
maps is shown in Table 2. The attention map editing process resulted in an increase in the
validation accuracy from 87.7% to 90.3%. These results indicate that by editing the attention
maps to highlight the accurate and complete lesion or normal areas, the network can focus
on these areas via the attention branch and recognize more accurate features, resulting in
improved classification accuracy.

Table 2. The performance comparison of the original network, ABN, SE-ABN, and manually edited
attention maps.

Original ResNet18 network

Sensitivity 0.833

Specificity 0.857

Positive predictive value 0.843

Negative predictive value 0.848

Accuracy 0.846
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Table 2. Cont.

ABN

Sensitivity 0.860

Specificity 0.887

Positive predictive value 0.876

Negative predictive value 0.873

Accuracy 0.875

SE-ABN

Sensitivity 0.868

Specificity 0.886

Positive predictive value 0.875

Negative predictive value 0.879

Accuracy 0.877

SE-ABN (incorporating
manually edited attention

maps)

Sensitivity 0.898

Specificity 0.908

Positive predictive value 0.899

Negative predictive value 0.906

Accuracy 0.903

4. Discussion

The experimental results of our proposed model have demonstrated a higher classifi-
cation accuracy compared to baseline models. Additionally, the visual explanation results
have shown that our proposed model can identify the lesion areas more accurately when
making decisions. These results provide evidence that our proposed method improves the
interpretability and reliability of the model via attention mechanism and visual explanation
and successfully embeds human knowledge for the oral cancer recognition task.

The use of visual explanation and more accurate attention maps in the proposed
AI model improves the model’s reliability. By visualizing the areas that the model is
focusing on during decision-making, we can observe whether the model is looking at
correct/accurate lesion areas in addition to the classification results. The increased sensitiv-
ity and specificity makes the model more effective in cancer screening, as false positives
can lead to unnecessary psychological stress, medical procedures, and increased clinical
workloads. Furthermore, the manually edited attention maps generated by human experts
have the potential to aid in the localization of biopsies. By highlighting the regions of
interest with high accuracy and completeness, these attention maps can be used by on-site
doctors to better locate biopsies.

Incorporating human expert knowledge into the decision-making process can enhance
the accuracy and reliability of computer aided diagnosis system. In conjunction with our
previously developed uncertainty assessment method [23], we could integrate the human
expert knowledge into cases that Bayesian deep learning model is uncertain. This approach
is not limited to oral cancer diagnosis, and we think any image-based cancer diagnosis
approach that requires identification of the lesion areas can potentially benefit from this
method.

5. Conclusions

Deep learning is a powerful tool in solving medical image analysis tasks. However,
interpretability and reliability remain as challenges. In this study, we used an attention
branch network for the oral cancer recognition task; it combines visual explanation and
attention mechanism. The network can simultaneously interpret the decision-making and
improve the recognition performance using the attention map with an attention mechanism.
The attention branch of the network extends the response-based visualization method and
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generates an attention map, and then the perception branch uses the attention map to
emphasize the most informative features extracted by the feature extractor of the network.

The attention mechanism has been widely used and has demonstrated exceptional per-
formance in various deep learning tasks [7]. In previous attention models, the weights for
the attention mechanism were obtained solely from the response value of the convolution
layers during feed forward propagation in an unsupervised learning manner. However,
ABN extracts the weight for an attention mechanism in image recognition by generating
the attention map for visual explanation on the basis of response-based visual explanation
in a supervised learning manner [10]. With ABN, the cross-validation accuracy of the oral
image dataset improved to 0.875 from 0.846. After applying another attention method, the
Squeeze-and-Excitation block, the accuracy further boosted to 0.877. It enables the network
to perform dynamic channel-wise feature recalibration. Additionally, we incorporated the
expert knowledge into the network by manually editing the attention map generated from
the attention branch. The edited attention maps were then fed back into the network’s
perception branch and which updated the result via the attention mechanism. As a result,
the cross-validation accuracy of the oral image dataset achieved 0.903.

The experiment’s results have shown that the attention branch network and Squeeze-
and-Excitation block can effectively improve the recognition performance as well as in-
terpret the decision-making. Further, embedding the expert knowledge led to a further
increase in accuracy. The proposed method provided an accurate, interpretable, and reliable
oral cancer classifier that leverages visual explanation, attention mechanisms, and human
expert knowledge embedding.
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Simple Summary: This study develops an arithmetic optimization algorithm with deep-learning-
based histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision
making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a
contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA
with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier
with an Adamax hyperparameter optimizer is applied for the breast cancer classification process.

Abstract: Histopathological images are commonly used imaging modalities for breast cancer. As
manual analysis of histopathological images is difficult, automated tools utilizing artificial intelli-
gence (AI) and deep learning (DL) methods should be modelled. The recent advancements in DL
approaches will be helpful in establishing maximal image classification performance in numerous ap-
plication zones. This study develops an arithmetic optimization algorithm with deep-learning-based
histopathological breast cancer classification (AOADL-HBCC) technique for healthcare decision
making. The AOADL-HBCC technique employs noise removal based on median filtering (MF) and a
contrast enhancement process. In addition, the presented AOADL-HBCC technique applies an AOA
with a SqueezeNet model to derive feature vectors. Finally, a deep belief network (DBN) classifier
with an Adamax hyperparameter optimizer is applied for the breast cancer classification process. In
order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC methodology,
this comparative study states that the AOADL-HBCC technique displays better performance than
other recent methodologies, with a maximum accuracy of 96.77%.

Keywords: decision making; healthcare; breast cancer classification; histopathological images;
deep learning

1. Introduction

Cancer is one of the most serious health concerns that threaten the health and lives of
individuals [1]. The mortality rate and incidence of breast cancer seem to be increasing in
recent times. Early precise diagnosis is considered to be a key to enhancing the chances
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of survival. The primary step in initial diagnosis is a mammogram, but it can be diffi-
cult to identify tumors in dense breast tissue, and X-ray radiation imposes a risk to the
radiologist’s and the patient’s health [2]. The precise diagnosis of breast cancer requires
skilled histopathologists, as well as large amounts of effort and time for task completion.
Furthermore, the diagnosis outcomes of various histopathologists are not the same, because
they mainly depend on the former knowledge of each histopathologist [3]. The average
diagnosis precision is just 75%, which leads to low consistency in diagnoses. The term
histopathology can be defined as the process of detailed evaluation and microscopic inspec-
tion of biopsy samples carried out by a pathologist or expert to learn about cancer growth
in tissues or organs [4]. Common histopathological specimens have more structures and
cells that can be dispersed and surrounded haphazardly by distinct types of tissues [5].
The physical analysis of historic pictures, along with the visual observation of such images,
consumes time. This necessitates expertise and experience. In order to raise the predictive
and analytical capabilities of histopathological images, the utility of computer-based image
analysis represents an effective method [6]. This form of analysis is even efficient for
histopathological images because it renders a dependable second opinion for consistent
study, which increases output. This could aid in curtailing the time it takes to identify an
issue. Thus, the burden on pathologists and the death rate can be minimized [7].

Today, machine learning (ML) is fruitfully enforced in text classification, image recog-
nition, and object recognition. With the progression of computer-aided diagnosis (CAD)
technology, ML is effectively implemented in breast cancer diagnosis [8]. Histopathological
image classification related to conventional ML techniques and artificial feature extraction
demands a manual model of features; however, it does not need an apparatus with more
efficiency, and it has benefits in the computing period [9]. However, histopathological im-
age classification related to deep learning (DL), particularly convolutional neural networks
(CNNs), frequently needs a large number of labelled training models, whereas the labelled
data are hard to gain [10]. The labeling of lesions is laborious and time-consuming work,
even for professional histopathologists.

This study develops an arithmetic optimization algorithm with deep-learning-based
histopathological breast cancer classification (AOADL-HBCC) technique for healthcare
decision making. The presented AOADL-HBCC technique mainly aims to recognize the
presence of breast cancer in HIs. At the primary level, the AOADL-HBCC technique
employs noise removal based on median filtering (MF) and a contrast enhancement process.
In addition, the presented AOADL-HBCC technique applies an AOA with a SqueezeNet
model to derive feature vectors. Finally, a deep belief network (DBN) classifier with an
Adamax hyperparameter optimizer is applied for the breast cancer classification process.
In order to exhibit the enhanced breast cancer classification results of the AOADL-HBCC
approach, a wide range of simulations was performed.

2. Related Works

Shankar et al. [11] established a new chaotic sparrow search algorithm including a
deep TL-assisted BC classification (CSSADTL-BCC) technique on histopathological images
(HPIs). The projected technique mostly concentrated on the classification and detection of
BC. To realize this, the CSSADTL-BCC system initially carried out a Gaussian filter (GF)
system for eradicating the presence of noise. In addition, a MixNet-oriented extracting
feature system was utilized for generating a suitable group of feature vectors. Furthermore,
a stacked GRU (SGRU) classifier system was utilized for allotting classes. In [12], TL and
deep extracting feature approaches were employed that adjusted a pretraining CNN system
to the current problem. The VGG16 and AlexNet methods were considered in the projected
work for extracting features and AlexNet was employed for additional finetuning. The
achieved features were then classified by SVM.

Khan et al. [13] examined a new DL infrastructure for the classification and recognition
of BC from breast cytology images utilizing the model of TL. Generally, DL infrastructures
demonstrated that certain problems were accomplished in isolation. In the presented
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structure, features in images were extracted employing pretrained CNN infrastructures
such as ResNet, GoogLeNet, and VGGNet that are provided as fully connected (FC) layers
to classify benign and malignant cells employing an average pooling classifier. In [14], a
DL-related TL system was presented for classifying histopathological images automatically.
Two famous and present pretrained CNN techniques, DenseNet161 and ResNet50, were
trained as well as tested via grayscale and color images.

Singh et al. [15] examined a structure dependent upon the concept of TL for addressing
this problem and concentrated their efforts on HPI and imbalanced image classifiers.
The authors utilized common VGG19 as the base method and complemented it with
different recent approaches for improving the entire efficiency of the technique. In [16], the
conventional softmax and SVM-classifier-related TL systems were estimated for classifying
histopathological cancer images in a binary BC database and a multiclass lung and colon
cancer database. For achieving optimum classifier accuracy, a procedure that assigns an
SVM technique to an FC layer of softmax-related TL techniques was presented. In [17], the
authors’ concentration on BC in HPI was attained by utilizing microscopic scans of breast
tissues. The authors proposed two integrated DCNNs for extracting well-known image
features utilizing TL. The pretrained Xception and Inception techniques were utilized in
parallel. Afterwards, feature maps were integrated and decreased by dropout before they
provided the final FC layer to classify.

3. The Proposed Model

In this work, an automated breast cancer classification method, named the AOADL-
HBCC technique, was developed using HIs. The presented AOADL-HBCC technique
mainly aims to recognize the presence of breast cancer in HIs. It encompasses a series
of processes, namely SqueezeNet feature extraction, AOA hyperparameter tuning, DBN
classification, and an Adamax optimizer. Figure 1 shows a block diagram of the AOADL-
HBCC mechanism.

 
Figure 1. Block diagram of AOADL-HBCC system.

3.1. Design of AOA with SqueezeNet Model

In this study, the presented AOADL-HBCC technique utilized an AOA with a Squeeze-
Net model to derive feature vectors. Presently, GoogLeNet, ResNet, VGG, AlexNet, etc.,
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are signature techniques of DNN [18]. However, deep networks might lead to remarkable
performance; this method is trained and recognition speed is reduced. Since the residual
architecture does not enhance the module variable, the complexity of the trained degra-
dation and gradient disappearance is effectively mitigated, and the convergence efficacy
of the module is improved. Thus, the SqueezeNet architecture was applied as a backbone
network to extract features. Figure 2 showcases the framework of the SqueezeNet method.

 

Figure 2. Architecture of SqueezeNet model.

Compared with AlexNet and VGGNet, the SqueezeNet architecture has a smaller
number of parameters. The fire module was the primary approach from SqueezeNet. This
approach was classified into expand and squeeze structures. The squeeze encompasses
1× 1 convolutional kernels. The expand layer includes 3× 3 and 1× 1 convolutional kernels.
The number of 3× 3 convolutional kernels is E3×3 and the number of 1× 1 convolutional
kernels is E1×1. The model must satisfy < (E1×1 + E3×3). Thus, 1 × 1 convolution is
added to each inception module, the number of input networks and the convolutional
kernel variable are decreased, and the computation difficulty is reduced. Lastly, a 1× 1
convolutional layer is added to enhance the number of channels and feature extraction.
SqueezeNet changes 3 × 3 convolution with a 1 × 1 convolutional layer to reduce the
variable count to one-ninth. Image feature extraction depends on a shared convolutional
layer. The lowest-level features, such as edges and angles, are detached from the basic
network. The higher-level features explain that the target form is eliminated at the highest
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level. For demonstrating the ship target on scale, the FPN was determined to extend the
backbone network; viz., it was especially efficient in the detection of smaller targets. The
topmost-level feature of FPN architecture is integrated with basic features by up-sampling
via each layer predicting the feature map.

To adjust the hyperparameters of the SqueezeNet method, an AOA was implemented
in this work. The AOA starts with a number of arbitrary populations of objects as candidates
(immersed objects) [19]. Here, the object was initialized through arbitrary location from the
fluid. The initial location of each object was accomplished as follows:

x(i) = xl(i) + rand× (xu(i)− xl(i))i = 1, 2, . . . , N (1)

In this expression, x(i) describes the ith object from a population with N objects, along
with xu(i) and xl(i), which indicate the upper and lower boundaries of the solution space,
respectively. In addition, the following indicates the location, AOA initialized density (D),
acceleration (A), and volume (V), to ith object numbers:

V(i) = rand (2)

D(i) = rand (3)

A(i) = xl(i) + rand× (xu(i)− xl(i)) (4)

Next, the cost value of the candidate is evaluated and stored as Vbest, Dbest, or Abest,
based on the population. Then, the candidate is upgraded through the parameter model
as follows:

Vt+1(i) = Vt(i) + rand×
(

Vbest −Vt(i)
)

(5)

Dt+1(i) = Dt(i) + rand×
(

Dbest − Dt(i)
)

(6)

In this case, ybest and Dbest denote the density and volume, respectively, associated with
the best object initiated before, and rand indicates the arbitrary number that is uniformly
distributed. The AOA applies a transfer operator (TF) to reach exploration–exploitation:

TF = exp
(

t− tmax

tmax

)
(7)

In Equation (7), TF slowly steps up from the period still accomplishing 1, and t and
tmax indicate the iteration value and maximal iteration count, respectively. Likewise, a
reduction factor of (d) density is used to offer a global–local search:

Dt+1 = exp
(

tmax − t
tmax

)
−
(

t
tmax

)
(8)

In Equation (8), Dt+1 is reduced with time that offers the ability to converge. This
term renders a proper trade-off between exploitation and exploration. The exploration was
stimulated on the basis of collision among objects. When TF ≤ 0.5, a random material (mr)
was preferred for upgrading acceleration of the object to t + 1 iteration:

At+1 =
Dmr + Vmr × Amr

Dt+1(i)×Vt+1(i)
(9)

Here, A(i), V(i), and D(i) denote the acceleration, volume, and density of the ith object.
The exploitation was stimulated based on no collision among objects. When TF > 0.5, the
object is then upgraded as follows:

At+1(i) =
Dbest + Vbest × Abest

Dt+1(i)×Vt+1(i)
(10)
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where Abest indicates the optimal object acceleration. The subsequent step to normalize
acceleration for assessing alteration percentage is as follows:

At+1(i
)
= u× At+1(i)−min(A)

max(A)−min(A)
+ l (11)

Here, At+1(i) refers to the percentage of steps, and l and u correspondingly imply the
normalized limit that is fixed to 0.1 and 0. 9, respectively. When TF ≤ 0.5, the location of
the ith object to the succeeding round is accomplished as follows:

xt+1(i) = xt(i) + c1 × rand× At+1(i
)× D×

(
xrand − xt(i)

)
(12)

In Equation (12), C1 denotes the constant corresponding to 2. In addition, when
TF > 0.5, the location of the object is upgraded:

xt+1(i) = xbestt
+ F× c2 × rand× At+1(i

)× D×
(

T × xbest − xt(i)
)

(13)

In this expression, c2 denotes a constant number corresponding to 6. T enhances with
time from a range [c3 × 0.3, 1] and obtains a determined percentage in the best location.
This percentage slowly enhances to diminish the variance among optimum and present
locations to offer an optimal balance between exploration and exploitation. F shows the
flag for changing the motion path as

F =

{
+1, i f P ≤ 0.5
+1, i f P > 0.5

(14)

while
P = 2× rand− c4 (15)

Finally, the value of each object was assessed through a cost function and returned the
optimal solution once the end state was satisfied.

The AOA method extracts a fitness function (FF) to receive enhanced classifier out-
comes. It sets a positive value that signifies the superior outcome of the candidate’s
solutions. In this work, the minimized classifier error rate is indicated as the FF, as provided
in Equation (16).

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(16)

3.2. Breast Cancer Classification Using Optimal DBN Model

Finally, an Adamax optimizer with the DBN method was applied for the breast cancer
classification process (Algorithm 1). A DBN is a stack of RBM, excluding the primary RBM
that has an undirected connection [20]. Significantly, this network architecture creates DL
possibilities and reduces training complexity. The simple and effective layer-wise trained
method was developed for DBN by Hinton. It consecutively trains layers and greedily
trains by tying the weight of unlearned layers, applying CD to learn the weight of a single
layer and iterating until all the layers are trained. Then, the network weight was finetuned
through a two-pass up-down model, and this illustrates that the network learned without
pretraining, since this phase implemented as regular and assisted with the supervised
optimized problem. The energy constrained from the directed approach was calculated
where the maximal energy was upper-bounded and accomplished equivalence, whether
the network weight was tied or not, as follows:

E
(

x0, h0
)
= −

(
log p

(
h0
)
+ log p

(
x0
∣∣∣h0

))
(17)
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log p
(

x0
)
≥ ∑
∀h0

Q(h0|x0)( log p
(

h0
)
+ log p(x0|h0))−∑

∀h0

Q(h0|x0) log Q(h0|x0) (18)

∂ log p
(
x0)

∂ξn,m
= ∑
∀h0

Q
(

h0
∣∣∣x0

)
log p

(
h0
)

(19)

Then, iteratively learning the weight of the network, the up-down approach was used
to finetune the network weight. The wake-sleep approach is an unsupervised algorithm
applied to train NNs from two phases: the “wake” phase was implemented on the feedfor-
ward path to compute weight and the “sleep” phase was executed on the feedback path.
The up-down approach was executed to network for decreasing underfit that could usually
be detected by a greedily trained network. Particularly in the primary phase, the weight
on the directed connection was from named parameters or generative weight that can be
adjusted by updating the weight utilizing CD, calculating the wake-phase probability, and
sampling the states. Then, the prior layer was stochastically stimulated with top-down con-
nections called inference weights or parameters. The sleep-stage probability was calculated,
the state was sampled, and the result was estimated.

For optimizing the training efficacy of the DBN, the Adamax optimizer was employed
for altering the hyperparameter values [21]:

wi
t = wi

t−1 −
η

vt + ε
· m̂t (20)

where
m̂t =

mt

1− βt
1

(21)

vt = max(β2·vt−1, |Gt|) (22)

mt = β1mt−1 + (1− β1) G (23)

G = ∇wC(wt) (24)

In this expression, η denotes the learning rate, wt represents the weight at t step, C(.)
indicates the cost function, and ∇wC(wt) specifies the gradient of the wt weight variable.
βi is exploited to select the data needed for the old upgrade, where βi ∈ [0, 1]. mt and vt
represent the first and second moments.

Algorithm 1. Pseudocode of Adamax

η: Rate of Learning
β1, β2 ∈ [0,1): Exponential decomposing value to moment candidate
C(w): The cost function with variable w
w0: Primary parameter vector
m0 ← 0
u0 ← 0
i ← 0 (Apply time step)
while w does not converge apply
i ← i + 1
mi ← β1·mi−1 + (1− β1)· ∂C

∂w (wi)

ui ← max
(

β2·ui−1,
∣∣∣ ∂C

∂w (wi)
∣∣∣)

wi+1 ← wi −
(

η/
(

1− βi
1

))
·mi/ui

end while
displaying wi (end variable)
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4. Experimental Validation

This section examines the breast cancer classification results of the AOADL-HBCC
model on a benchmark dataset [22]. The dataset holds two sub-datasets, namely the
100× dataset and the 200× dataset, as represented in Table 1. Figure 3 illustrates some
sample images.

Table 1. Dataset details.

Class
No. of Images

100××× 200×××
Benign 644 623

Malignant 1437 1390

Total No. of Images 2081 2013

 

Figure 3. Sample images.

The proposed model was simulated using Python 3.6.5 tools on PC i5-8600k, GeForce
1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD. The parameter settings were
given as follows: learning rate: 0.01, dropout: 0.5, batch size: 5, epoch count: 50, and
activation: ReLU.

The confusion matrices of the AOADL-HBCC model on the 100× dataset are reported
in Figure 4. This figure implies the AOADL-HBCC method proficiently recognized and
sorted the HIs into malignant and benign classes in all aspects.

Table 2 reports the overall breast cancer classification outcomes of the AOADL-HBCC
method on the 100× database. The outcomes indicate that the AOADL-HBCC approach
recognized both benign and malignant classes proficiently. For example, in the 80% TR
database, the AOADL-HBCC method revealed an average accuy of 94.59%, sensy of 94.36%,
specy of 94.36%, Fscore of 93.75%, and MCC of 87.55%. Simultaneously, in the 20% TS
database, the AOADL-HBCC method exhibited an average accuy of 96.40%, sensy of 95.93%,
specy of 95.93%, Fscore of 95.83%, and MCC of 91.67%. Concurrently, in the 70% TR database,
the AOADL-HBCC approach displayed an average accuy of 95.60%, sensy of 93.19%, specy
of 93.19%, Fscore of 94.62%, and MCC of 89.56%.
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Figure 4. Confusion matrices of AOADL-HBCC system under 100× dataset: (a,b) TR and TS
databases of 80:20, and (c,d) TR and TS databases of 70:30.

The TACC and VACC of the AOADL-HBCC technique under the 100× dataset are
inspected on BCC performance in Figure 5. This figure indicates that the AOADL-HBCC
method displayed enhanced performance with increased values of TACC and VACC. It is
noted that the AOADL-HBCC algorithm gained maximum TACC outcomes.

The TLS and VLS of the AOADL-HBCC approach under the 100× dataset are tested on
BCC performance in Figure 6. This figure shows that the AOADL-HBCC method exhibited
better performance with minimal values of TLS and VLS. It is noted the AOADL-HBCC
approach resulted in reduced VLS outcomes.
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Table 2. BCC outcomes of AOADL-HBCC approach with various measures under 100× dataset.

Class Accuracy Sensitivity Specificity F-Score MCC

Training/Testing (80:20)

Training Phase

Benign 94.59 93.76 94.96 91.44 87.55

Malignant 94.59 94.96 93.76 96.05 87.55

Average 94.59 94.36 94.36 93.75 87.55

Testing Phase

Benign 96.40 94.66 97.20 94.30 91.67

Malignant 96.40 97.20 94.66 97.37 91.67

Average 96.40 95.93 95.93 95.83 91.67

Training/Testing (70:30)

Training Phase

Benign 95.60 87.07 99.31 92.31 89.56

Malignant 95.60 99.31 87.07 96.92 89.56

Average 95.60 93.19 93.19 94.62 89.56

Testing Phase

Benign 96.16 90.64 98.82 93.88 91.21

Malignant 96.16 98.82 90.64 97.20 91.21

Average 96.16 94.73 94.73 95.54 91.21

Figure 5. TACC and VACC analysis of AOADL-HBCC approach under 100× dataset.
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Figure 6. TLS and VLS analysis of AOADL-HBCC approach under 100× dataset.

A clear precision–recall investigation of the AOADL-HBCC methodology under the
test database is given in Figure 7. This figure exhibits that the AOADL-HBCC system
enhanced precision–recall values in every class label.

Figure 7. Precision–recall analysis of AOADL-HBCC approach under 100× dataset.
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A brief ROC analysis of the AOADL-HBCC approach under the test database is shown
in Figure 8. The fallouts show that the AOADL-HBCC methodology exhibited its capacity
in classifying different classes in the test database.

Figure 8. ROC analysis of AOADL-HBCC approach under 100× dataset.

The confusion matrices of the AOADL-HBCC approach on the 200× database are
given in Figure 9. This figure indicates that the AOADL-HBCC approach proficiently
recognized and sorted the HIs into malignant and benign classes in every aspect.

Table 3 shows the overall breast cancer classification results of the AOADL-HBCC ap-
proach on the 200× dataset. The results indicate that the AOADL-HBCC model recognized
both benign and malignant classes proficiently. For example, in the 80% TR database, the
AOADL-HBCC technique exhibited an average accuy of 96.40%, sensy of 96.18%, specy of
96.18%, Fscore of 95.91%, and MCC of 91.83%. Concurrently, in the 20% TS database, the
AOADL-HBCC approach displayed an average accuy of 96.77%, sensy of 96.88%, specy of
96.88%, Fscore of 95.85%, and MCC of 91.80%. Simultaneously, in the 70% TR database, the
AOADL-HBCC technique displayed an average accuy of 93.04%, sensy of 90.03%, specy of
90.03%, Fscore of 91.51%, and MCC of 83.45%.

The TACC and VACC of the AOADL-HBCC method under the 200× dataset are
inspected on BCC performance in Figure 10. This figure shows that the AOADL-HBCC
methodology displayed enhanced performance with increased values of TACC and VACC.
It is noted that the AOADL-HBCC technique attained maximum TACC outcomes.
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Figure 9. Confusion matrices of AOADL-HBCC system under 200× dataset: (a,b) TR and TS
databases of 80:20, and (c,d) TR and TS databases of 70:30.

The TLS and VLS of the AOADL-HBCC approach under the 200× dataset are tested on
BCC performance in Figure 11. This figure indicates that the AOADL-HBCC methodology
revealed superior performance with minimal values of TLS and VLS. It is noted that the
AOADL-HBCC method resulted in reduced VLS outcomes.

A clear precision–recall inspection of the AOADL-HBCC methodology under the test
database is shown in Figure 12. This figure indicates that the AOADL-HBCC method
enhanced precision–recall values in every class label.
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Table 3. BCC outcomes of AOADL-HBCC approach with various measures under 200× dataset.

Class Accuracy Sensitivity Specificity F-Score MCC

Training/Testing (80:20)

Training Phase

Benign 96.40 95.58 96.79 94.49 91.83

Malignant 96.40 96.79 95.58 97.32 91.83

Average 96.40 96.18 96.18 95.91 91.83

Testing Phase

Benign 96.77 97.09 96.67 93.90 91.80

Malignant 96.77 96.67 97.09 97.81 91.80

Average 96.77 96.88 96.88 95.85 91.80

Training/Testing (70:30)

Training Phase

Benign 93.04 82.22 97.85 87.90 83.45

Malignant 93.04 97.85 82.22 95.12 83.45

Average 93.04 90.03 90.03 91.51 83.45

Testing Phase

Benign 95.03 89.47 97.58 91.89 88.38

Malignant 95.03 97.58 89.47 96.42 88.38

Average 95.03 93.53 93.53 94.16 88.38

 

Figure 10. TACC and VACC analysis of AOADL-HBCC approach under 200× dataset.
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Figure 11. TLS and VLS analysis of AOADL-HBCC approach under 200× dataset.

Figure 12. Precision–recall analysis of AOADL-HBCC approach under 200× dataset.

A brief ROC study of the AOADL-HBCC system under the test database is given
in Figure 13. The outcomes exhibited by the AOADL-HBCC method reveal its ability in
classifying different classes in the test database.
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Figure 13. ROC analysis of AOADL-HBCC approach under 200× dataset.

A detailed comparative study of the AOADL-HBCC model with recent DL models
is reported in Table 4 and Figure 14 [23]. The simulation values representing the Incep.
V3, VGG16, and ResNet-50 models reported lower accuy of 81.67%, 80.15%, and 82.18%,
respectively. Next, the Incep. V3-LSTM and Incep. V3-BiLSTM models attained reasonable
accuy of 91.46% and 92.05%, respectively.

Table 4. Comparative analysis of AOADL-HBCC system with current approaches.

Methods Accuracy

AOADL-HBCC 96.77

DTLRO-HCBC 93.52

Incep.V3 81.67

Incep.V3-LSTM 91.46

Incep.V3-BiLSTM 92.05

VGG16 Model 80.15

ResNet-50 Model 82.18

Although the DTLRO-HCBC model reached near-optimal accuy of 93.52%, the AOADL-
HBCC model gained maximum accuy of 96.77%. These results ensured the enhanced
outcomes of the AOADL-HBCC model over other models.
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Figure 14. Comparative analysis of AOADL-HBCC system with existing approaches.

5. Conclusions

In this work, an automated breast cancer classification model, named the AOADL-
HBCC technique, was developed on HIs. The presented AOADL-HBCC technique mainly
aims to recognize the presence of breast cancer in HIs. At the primary level, the AOADL-
HBCC technique exploited MF-based noise removal and a contrast enhancement process.
In addition, the presented AOADL-HBCC technique utilized an AOA with a SqueezeNet
model to derive feature vectors. Lastly, an Adamax optimizer with a DBN model was
applied for the breast cancer classification process. In order to exhibit the enhanced breast
cancer classification results of the AOADL-HBCC methodology, a wide range of simulations
were performed. A comparative study indicated the better performance of the AOADL-
HBCC technique over other recent methodologies, with a maximum accuracy of 96.77%.
Therefore, the AOADL-HBCC technique can be employed for timely and accurate BC
classification. In the future, ensemble-learning-based DL classifiers can be involved to boost
the overall performance of the AOADL-HBCC technique. In addition, the performance of
the proposed model can be tested on large-scale real-time databases.
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Simple Summary: Medical image classification is an important task in computer-aided diagnosis,
medical image acquisition, and mining. Although deep learning has been shown to outperform
traditional methods based on handcrafted features, it remains difficult due to significant intra-
class variation and inter-class similarity caused by the diversity of imaging modalities and clinical
pathologies. This study presents an innovative method that is an intersection between 3D image
analysis and series classification problems. Therefore, the self-similarity features in medical images
are captured by converting the regions of interest to series with a radial scan and these series are
classified with U-shape convolutional neural networks. The findings of this study are expected to be
used by researchers from various disciplines working on radial scanned images, as well as researchers
working on artificial intelligence in health.

Abstract: Although many studies have shown that deep learning approaches yield better results
than traditional methods based on manual features, CADs methods still have several limitations.
These are due to the diversity in imaging modalities and clinical pathologies. This diversity creates
difficulties because of variation and similarities between classes. In this context, the new approach
from our study is a hybrid method that performs classifications using both medical image analysis
and radial scanning series features. Hence, the areas of interest obtained from images are subjected to
a radial scan, with their centers as poles, in order to obtain series. A U-shape convolutional neural
network model is then used for the 4D data classification problem. We therefore present a novel
approach to the classification of 4D data obtained from lung nodule images. With radial scanning, the
eigenvalue of nodule images is captured, and a powerful classification is performed. According to
our results, an accuracy of 92.84% was obtained and much more efficient classification scores resulted
as compared to recent classifiers.

Keywords: 4D classification; deep learning; lung nodule image; radial scanning

1. Introduction

Cancer is one of today’s most serious health issues. Despite significant and promising
advances in medicine, the desired level of prevention and elimination of many cancers
has yet to be achieved [1–3]. Cancer is a common disease that is difficult, time-consuming,
and challenging to treat. It is diverse with numerous subtypes. Some types of cancer,
which are common in most people, are lethal. Cancer treatment is a difficult process, and
early detection is critical. Early cancer diagnosis can be helped by a clinical follow-up
of the patient in later stages. In this context, screening is the search for the presence of
cancer cells in humans who have no symptoms. Screening stages are the most important
steps in the fight against cancer because they are required for early diagnosis. Information
obtained by imaging methods is used to determine the cancer type and its stage, which are
extremely useful for disease treatment planning. As a result, the accuracy of information
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obtained by scanning methods can change the outcome of the disease. Patients can live
a longer and more fulfilling life due to correct screening methods and treatment plans
that are determined in conjunction with accurate analyses. The application of advanced
technology in cancer imaging, which is required for a patient’s treatment plan, as well as
correct evaluation, are highly effective for determining treatment plans. Patients who have
the opportunity to benefit from proper imaging techniques gain an advantage during the
difficult treatment process by correctly analyzing imaging data.

Due to the high cost of equipment and personnel, as well as the difficulty of the task,
it is not possible to apply known screening programs to every person. Lung nodules come
in a wide range of shapes and sizes, hence identifying and characterizing abnormalities
in these nodules is a difficult and delicate task. In this regard, computer-aided diagnosis
(CAD) systems are critical to make clinicians’ jobs easier.

Image processing and machine learning-based research on digital pathology image
classification have yielded promising results. These findings suggest that digital pathology
systems based on machine learning could be widely used in pathology clinics. Artificial
intelligence and machine learning-based solutions will be used at a much higher rate in the
coming years, particularly in pathology.

The mortality rate from lung cancer is the greatest of any kind of cancer, although
this is a disease whose prognosis may be improved with early diagnosis. In order to
establish which pulmonary nodules are benign and which nodules need biopsy to confirm
malignancy, low-dose computed tomography has become the standard procedure for
lung cancer screening. Nevertheless, lung cancer screening has a significant clinical false-
positive rate because of the necessity to identify a high proportion of malignant nodules for
biopsy [4,5]. Due to this, many unnecessary biopsies are conducted on people who turn
out not to have cancer.

In this study, we provide a CNN architecture that combines data from volumetric
radiomics series and nodule images for categorization. Qualitative and quantitative char-
acteristics may be found in lung CT images. These characteristics illustrate the nodule’s
pathogenesis. Using mathematics and data characterization methods, these quantitative
characteristics are retrieved from the picture. The term “radiomic” is used to describe the
procedure, whereas “radiomic features” refers to the numerical characteristics that are
gleaned from the data. As defined in [6], this process involves “high-throughput extraction
of quantitative information from radiological pictures to build a radiomic, high-dimensional
dataset followed by data mining for possibly better decision support.” The radiomic charac-
teristics of nodules primarily include their morphology, shape, and gray-level distribution.
This research uses a spherical radial scan of a 3D model derived from CT scans to decode
information about the nodule’s volume and shape over time. The created regions in each
level plane are scanned radially while the planes themselves are shifted from bottom to
top. Thus, the shape shift may be considered with the gray level distributions of the CT
scans collected at the various stages. Using the LIDC-IDRI dataset, we take a novel method
to predict the malignancy of lung nodules by integrating hitherto unexplored image and
volumetric radiomic combinations with volumetric radiomics-induced series.

CAD methods still have several limitations, despite numerous studies demonstrat-
ing that deep learning approaches outperform traditional methods based on manual
features [7–10]. This is due to the fact that imaging modalities and clinical pathologies
differ. Such diversity creates difficulties because of differences and similarities between
classes. In this context, the new approach in our study is a hybrid method that classifies
data using both medical image analysis and series features. Image-derived interest areas
are subjected to a radial scan, with their centers acting as poles, in order to obtain series.
A convolutional neural network (CNN) model is used to solve the series classification
problem. We advance a method for classifying series obtained from lung nodule images.
The eigenvalue of the nodule images is captured using radial scanning and a powerful
classification is performed. According to our results, we obtained an accuracy of 92.44% and
significantly higher classification scores as compared to numerous traditional classifiers.
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Related Works

Many pre-diagnosis models capitalize the advantage of CNN architectures that rev-
olutionized computer vision research by making color images usable as input data. In
this context, input data are processed by a succession of cores that slide over image color
channels to extract characteristics such as edges and color gradients, giving the appearance
of an artificial neural network’s (ANN) downstream fully linked layers. These inputs are
summed and flattened before being sent on to the fully linked layer. Several different kinds
of preconfigured CNN architectures are available. Radiology and digital pathology both
benefit greatly from the usage of CNNs.

There has been extensive research into the development of CAD systems for lung
cancer screening. Detection and segmentation of pulmonary nodules, characterization
of nodules, and classification of malignancy were among the studies that stood out. Re-
cently, very good and promising results in lung cancer screening, as well as other cancer
screenings, have been obtained, with deep learning-supported studies on nodule detection,
segmentation, and characterization [11–13].

Capabilities of CADs and radiomic tools to improve diagnostic accuracy and con-
sistency across medical images help radiologists’ decision-making [14,15]. CADs and
radiomics rely on segmentation and quantitative feature extraction from images of identi-
fied nodules as its foundation. Moreover, machine learning algorithms use this collection of
properties as a training set for classifying unseen nodule samples [16,17]. Such studies focus
on the intranodular region and employ radiomic characteristics of its shape, boundary, and
tissue for the most accurate identification [18–22].

Deep learning saves time for medical professionals by performing the complex clas-
sification task, which requires a significant amount of time and effort and consists of
the classification of large amounts of images, while avoiding possible human-induced
lines during the diagnosis phase at the same time [23–25]. Although it is well known
that accurate and early diagnosis are effective in all disease types, deep learning-based
methods have been successfully applied in early diagnosis, which is a crucial stage in
cancer disease [26–28]. Deep network architectures have evolved and their computational
power has increased as deep learning models have advanced in specific tasks. Deep neural
networks have begun to be used effectively in computer vision processes such as image
classification, object detection, and image segmentation as CNNs have made significant
progress. Deep learning and CNN advancements have been critical in the development of
medical systems for reliable scanning and image-based diagnostics. As a result, research
has progressed from image segmentation and feature extraction to deep learning-based
automatic classification [29,30].

Abdoulaye et al. [31] classified mammography images into three stages. First, they
removed noise from the image by examining its surroundings, then they discovered the
physical properties of the object and extracted patterns. In this way, they were able to
create a cancer detection system based on the artificial intelligence-enabled algorithm that
they trained using a pattern they obtained. Wang et al. [32] used an automatic image
analysis technique to classify breast cancer histopathology images. They obtained 4 shape-
based features and 138 color-space features for nodule classification. As a preprocessing
step, they used bottom-up cap transformation to highlight background objects in order
to locate growing cancer cells. Afterwards, they used wavelet transform to determine the
location of ROIs, and as a result, they classified normal and malignant cell images with a
96.19% success rate. Jiang et al. [33] developed their own method by studying lymphatic
pathologies such as chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and
mantle cell lymphoma (MCL). After preprocessing the image, they extracted a feature set
that included texture properties such as entropy, density mean, density standard deviation,
loopy back propagation, and gray level co-occurrence matrix. They used the support vector
machine (SVM) algorithm to classify pathology images based on the extracted features.
As a result, their average accuracy performance value was 97.96%. Mohammed et al. [34]
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trained ANNs to predict pancreatic cancer risk using clinical variables such as age, smoking
status, alcohol consumption, and ethnicity.

Busnatu et al. [35] and Hunter et al. [36] present a detailed account of the recent litera-
ture studies on artificial intelligence and deep learning applications classified according to
medical specialties. Readers can refer to these two studies for more comprehensive infor-
mation on deep learning applications regarding cancer diagnosis based on image analysis.

Image series can be created by taking temporary images of the same scene at different
ordered input. If each sequential input corresponds to the time tick, it is possible to say
that the obtained series are time series. Several researchers have developed effective
methods for correctly interpreting image time-series data as a result of acquiring image
data [37–47]. With early diagnosis and a correct treatment, the quality of patients’ lives can
be substantially improved due to the analysis of biomedical time series via accurate and
reliable techniques, the understanding of such data, and the rapid detection of possible
abnormalities. The use of temporal correlation in time-series analysis is critical to the
success of chosen methods. In this context, image time series are critical in biomedicine for
monitoring disease progression.

Iakovidis et al. [37] used time series obtained from chest radiographs to track the
progression of pneumonia. Contrariwise, Baur et al. [38] used canonical correlation analysis
and Dynamic Bayesian Networks (DBN) to extract validated gene regulatory networks from
time-series gene expression data. Likewise, Guo et al. [39] built gene regulatory networks
with a feature selection algorithm based on partial least squares (PLS). In their studies,
Penfold et al. [40] and Isci et al. [41] introduced Bayesian methodologies for network
analysis using biological data, especially measures of time-series gene expression. Schlitt
et al. [42] used Bayes and DBNs to explain gene expression variations over time in terms of
regulatory network topologies. According to Ni et al. [43] and Kim et al. [44], the study
of Murphy et al. [45] suggested techniques capable of expressing time-varying behavior
of the underlying biological network, hence offering a more accurate representation of
spatio-temporal input–output connections. In their work, Kourou et al. [46] used time-
series microarray gene expression data to classify differentially expressed genes (DEGs) in
cancer with great effectiveness. Imani et al. [47] expanded the analysis of radio frequency
(RF) time series to enhance tissue classification at clinical frequencies by using additional
time-series spectrum characteristics.

Various non-local deep learning architectures, which we also used in the compari-
son analysis, have been successfully used in the nodule classification task. Shen et al. [48]
proposed multi-crop convolutional neural networks and Al-Shabi et al. [49] advanced gated-
dilated networks for malignancy classification and obtained above 87% accuracy scores.
Moreover, Ren et al. [50] built a unique manifold regularized classification deep neural net-
work (MRC-DNN) to conduct classification directly based on the manifold representation of
lung nodule images, which was motivated by the observation that genuine structure among
data was typically contained on a low-dimensional manifold. Shen et al. [51] showed that
the resilience of a representative DL-based lung-nodule classification model for CT images
could be improved, highlighting the need of assessing and assuring model robustness while
creating comparable models. To increase the depth of representation, Jiang et al. [52] first
developed a contextual attention mechanism to model contextual relationships between
neighboring sites. Then, authors employed a spatial attention technique to automatically
find the zones that were crucial for nodule categorization. Finally, they used an ensemble
of models to increase the reliability of their predictions. Al-Shabi et al. [53] suggested using
residual blocks for local feature extraction and non-local blocks for global feature extraction.
Furthermore, Al-Shabi et al. [54] used 3D Axial-Attention, which only needs a little amount
of processing power as compared to a traditional non-local network.

2. Methodology

The 3D volumetric structure comprises the sections designated as nodules by radiolo-
gists from 2D CT scans, together with the series derived from the boundary curves of each
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section. The following paragraphs explain boundary curves and the process of extracting
series out of them. Moreover, details on 3D models and the underlying deep learning
framework are provided.

2.1. Series by Radial Scanning

A radial scan gathers image samples in a sparser distribution at the periphery of the
image and in a denser distribution closer to the center of the image. This is the preferred
scanning paradigm for several imaging applications, such as imaging the optic nerve head,
as each B-scan acquired includes a cross-sectional image of the optic cup [55–57]. The
volumetric, render, and morphometric analysis of the ensuing image may be used to see
and analyze the radially obtained data samples. A straightforward radial-to-Cartesian
coordinate translation may be used to resample data to a Cartesian mesh system.

Figure 1 provides a radial scan as an illustration. The region of interest of a lung
nodule imaging is shown in Figure 1a. The radial scan axis is positioned at the center of
the area of interest, and the boundary curve of the area of interest is depicted in Figure 1b.
The boundary curve points’ separation from the scanning center will vary as the scanning
angle changes, resulting in a series, as illustrated in Figure 1c.

Figure 1. Method of obtaining series by radial scanning.

ROIs are portions of a designated data collection that are used for a certain objective.
The term ROI is often used in a variety of application fields. For instance, in medical
imaging, the borders of a tumor can be specified in an image or a volume to determine its
size. For the purpose of assessing cardiac function, the endocardial boundary can be seen
on an image at various points in the cardiac cycle, such as end-systole and end-diastole.
The ROI establishes the perimeters of an item under inspection in computer vision and
optical character recognition.

The CT images used in this study first underwent pixel-by-pixel binarization. After
this morphological processing, large components in the binarized images are handled as
ROIs. The center of the ROI is used to calculate the discrete center of gravity of the ROI for
radial scanning. Due to the binary nature of the image, this center may be easily located
without any weight.

The modified Canny edge recognition approach [58] is first applied to the ROI in
each image to extract the appropriate form attributes. This extraction is made possible
via the use of the improved Canny edge detector approach (one for each ROI within each
image). The Canny operator employs a multi-step process to identify the edge pixels of an
object. The first step is to adjust the area boundaries by using a Gaussian filter. After that, a
regular 2D first derivative operator is used to compute edge strength. Pixels that are not
a component of the local maximum are zeroed out when the non-maximum suppression
method scans the region in the gradient direction. Lastly, a threshold is employed in order
to determine the correct edge pixels. Therefore, each ROI may be represented by its own
border curve.
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It is essential to streamline the edges for ROI representation while extracting image
features. The aim of the region boundary simplification stage is to create a smooth curve
while minimizing the number of line segments used to delineate the area. This method
is known as polygon approximation, and it is used to approximate a polygon curve that
has a set number of vertices. The polygon curve approach looks for a subset of the initial
vertices in order to minimize the objective function. The min-number problem is only one
way to frame the issue. The appropriate approximation of an N-corner polygon curve is
achieved by joining a certain number of straight-line M segments with another polygon
curve. A common heuristic for finding a solution to the minimum number problem is the
Douglas–Peucker (DP) method [59].

In this study, prior to using the Hough transform to extract features, the borders of
ROIs are simplified using the Douglas–Peucker (DP) technique. The closeness of a vertex to
an edge segment is a factor in the DP method. This approach operates top-down, beginning
with a rough initial estimate on a simplified polygonal curve, or more specifically, on the
single edge linking the first and end vertices of the polygonal curve. Then we determined
the closeness of the remaining vertices to that edge. The corner that is furthest from the
edge is added to the simplification if there are vertices further away from the edge than
the provided tolerance (ε > 0). As a result, the reduced polygonal curve receives a new
estimate. Recursion is used to continue this process for simplification until all vertices of
the original polygonal curve fall inside the tolerance.

If the ROI border is considered a closed curve, we must figure out the optimal distribu-
tion of all neighboring vertices, including the initial one. The simplest approach is to start
from the vertex with the fewest errors. Compared to the open-curve procedure, this simple
method for a curve with N corners is N times more complicated to implement. There are a
number of options to consider when deciding where to set off. This research makes use
of a heuristic technique inspired by Sato’s strategy [60]. The first step in this procedure is
starting at the furthest location from the ROI’s spatial center.

2.2. 3D Nodule Segmentation

In this research, computer-assisted techniques were used to identify nodules. Auto-
matic nodule recognition and segmentation is achieved using the union of the You Only
Look Once, Version 3 (YOLOv3) [61] and iW-Net [62] architectures. The short version
is that the model is fine-tuned to identify lung nodules by minimizing a loss function
that considers breadth, height, and center of gravity of the estimate in comparison to the
baseline. In order to take 3D information into account, the algorithm is trained using
3-channel images that consist of one axial slice comprising the nodule center as well as
two equally spaced neighboring slices. Candidates are joined if their bounding boxes
overlap, and estimates are calculated for each axis slice. Only the first block of iW-Net,
which makes a segmentation prediction, is utilized for actual segmentation. We employ an
image classification method to identify nodules with a bounding box in order to facilitate
the use of temporal statistical classification with the series collected from the image. This
image was achieved by manually creating these marks. Each image of interest has different
dimensions according to the series methodology used in this research. After the series has
been normalized, this variation has no bearing on the categorization.

The LIDC-IDRI database contains thoracic CT images with highly annotated lesions for
the purpose of detecting lung cancer. The series acquisition approach for the automatically
segmented nodule outlined how to find the nodule border by drawing a closed curve
around each nodule wherever it was present, beginning at the first pixel outside the lesion.
CT scan findings are recorded in an XML file connected with each participant. Nodules in
each XML file are grouped into one of three sizes based on their diameter. The locations
of the nodules and their z coordinates are included in the data. With these coordinates,
we were able to generate a box and mask in three dimensions that were centered on the
annotated lung nodule sites and were a fixed size. Our experimental boxes are 32 pixels
square and 32 slices thick. Nodule boundary curves in the sections are scanned radially in
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5625-degree increments to conform to the 3D volumetric data format. By using a thickness
of 32 for the slices, we may encode the nodule’s border geometry as a matrix of type 32× 32.

Figure 2 depicts a 3D segmented nodule and the aforementioned shape matrix. In order
to explain the methodology, we ran 2D radial scans with an angle increase of 2 degrees and
applied Laplace smoothing to the Delaunay mesh that we had derived from the boundary
points shown in Figure 2. Following the smoothing of the nodule surface, 180 z-axis steps
were chosen.

Figure 2. (a) 3D segmented and smoothed nodule and (b) a 180× 180 matrix encoding the boundary
shape of each slice.

2.3. Classification with U-Net

Two-dimensional conventional CNN designs typically layer-by-layer integrate raw
input data with learnable filters. It may be built using several layers, each of which is trained
to recognize a particular aspect of an image. Each training image is passed through a series
of filters of increasing granularity, and the resulting convolutional image serves as input for
the layer below it. An image filter may begin with basic characteristics such as brightness
and edges and progress to more complicated characteristics that better characterize the
item being filtered. This study proposes a technique that works well inside a deep learning
framework using higher-order CNNs for effective feature learning of CT image data from
unprocessed information. This is accomplished by stacking many convolutional layers in
order to collect a wide variety of representative characteristics. By using convolutions and
trainable filters with specific filter coefficients, we can link input and output neurons.

This paper provides a solution to the 4D input issue of jointly categorizing nodule
volumetric radiomic and border information. For this challenge, we use a method centered
on U-Net models that generalize 2D and 3D architectures [63,64]. As shown in Figure 3,
we need to calculate the shape matrix obtained from radial scanning with a tensor that
takes the coordinates in mm3 units of each volume segmented in the 3D volume and
the grayscale value in these coordinates in order to train our 4D U-Net model efficiently
and use it in the classification process. The model makes use of the 4D data input that it
generates collectively. Lower-order models need data reduction prior to network training.
In contrast, our suggested architecture makes extensive use of higher-dimensional data
while performing all operations on nominally sized datasets.
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Figure 3. U-Net Architecture.

The value of a convolved output neuron at coordinates (k, l) in conventional 2D CNNs
may be written as follows:

ykl = ϕ

(
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∑
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∑
i=0

W−1

∑
j=0

wijxc(k+i)(l+j) − bij

)
, (1)

where ϕ(·) is the activation function, wij is the value of the kernel connected to the current
feature map at position (i, j), xc(k+i)(l+j) is the value of the input neuron at input channel c,
bij is the bias of the computed feature map. Moreover, by following the extension method
presented in [65], we can straightforwardly extend Equation (1) to 4D with
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With our deep pixel-level categorization, each pixel can only be assigned to one of C
distinct categories. Because cross-entropy may be understood as the log-likelihood function
of the training samples, it was chosen as the loss function to transform the network’s
outputs back into probabilities. Training our models with this loss function combines
the So f tMax activation with the cross-entropy loss to provide a probability across the C
possible classes for each pixel.

3. Results

Overall, for this study, 244,559 images and 1018 CT scans from 1010 patients were
provided by the Lung Image Database Consortium (LIDC) [66]. The five categories used
to classify lesions in the LIDC image collection regarding pulmonary nodules are: highly
likely to be benign (level 1); moderate probability of being benign (level 2); uncertain prob-
ability (level 3); moderate probability of malignancy (level 4); it is likely to be malignant
(level 5). Due to the absence of a database structure, radiologists have not yet established
relationships between images, examinations, and the possibility of malignancy from nod-
ules, making the first LIDC image collection difficult to use. Thus, we choose to utilize the
not only SQL (NoSQL) document-oriented Pulmonary Nodule Database (PND) [67] for
our analysis.

The LIDC-IDRI study may be broken down into three major phases: image interpre-
tation, nodule characteristic evaluation, and data recording. A radiologist was required
to analyze each image of a CT examination using a computer interface and highlight le-
sions deemed to be nodules with in-plane dimensions between 3 and 30 mm, independent
of assumed histology. As a result, these lesions may represent a primary lung cancer, a
metastatic disease, a noncancerous condition, or of unknown etiology. Each nodule outline
was intended to be a localizing “outside boundary” such that, according to the radiologist,
the outline itself did not overlap nodule-specific pixels. According to the LIDC-IDRI litera-
ture, throughout the nodule characteristic evaluation procedure, each reader was requested
to subjectively assign an integer value to nine distinct qualities. The data is stored in an
eXtensible Markup Language (XML) file, and its classifications and Cartesian coordinates
are based on nodule classifications. The XML file and all CT scans from a single test are
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kept in a folder, and all folders from all examinations were uploaded to a web server hosted
on the website of the Cancer Imaging Archive (TCIA) [68]. In order to avoid unnecessary
scans, PND only uses the radiologist’s annotations that identify the most lesions during
each exam, which amounts to 752 scans and 1944 lung nodules. To normalize the image
contrast, a gray-scale lung windowing was applied by adjusting the window/level from
1600 to −600 Hounsfield units.

Nodules, which may be up to 30 mm in diameter, are a kind of lung opacity [69]. Ini-
tially, we computed the nodule size as a straightforward 2D measure of the biggest diameter
in a slice, which may be done in the axial plane along the axis of the longest diameter [70].
To get these rough estimates, we measured the x and y minimum and maximum coordinates
of every nodule slice. According to [71], lung nodules with a PND malignancy grade of
3 were considered too dangerous to keep. We did not include any nodules in the LIDC
collection that were annotated as non-solid because of the form complexity and low density
of these objects. Therefore, following this phase, 897 nodules ranging in size from 3 mm to
30 mm remained (616 benign and 281 malignant). We were restricted from selecting smaller
lesions due to the LIDC requirement of a 3 mm subthreshold.

A major restriction in this study was that the dataset has an uneven distribution of
classes throughout its 897 nodules. During the phase of cross-validation training, the
well-known Synthetic Minority Oversampling Approach (SMOTE) [72] method was used
to develop synthetic nodule samples. This approach is also known as the synthetic minority
oversampling approach. The method was developed with the intention of delivering a
comprehensive and well-rounded approach. At each step of the process of cross-validation,
nine folds were chosen to form the training set, whereas the remaining fold was used
to form the test set. Moreover, we made sure that the appropriate proportions were
preserved. Training sets comprised 550 benign nodules and 252 malignant nodules. Around
298 synthetic samples are produced by the SMOTE algorithm throughout each step of the
procedure. This ensures that malignant nodules are represented as precisely as possible.

To assess the performance of the developed model, we employ a number of machine
learning metrics, as the problem at hand is fundamentally a pixel-level multi-class classifi-
cation task. True positives (TP), false positives (FP), false negatives (FN), and true negatives
(TN) are the four possible outcomes when comparing a pixel’s prediction to its baseline
accuracy score. True and False represent equality between the ground truth label and the
predicted label, whereas Positive and Negative correspond to the class from which the
metric is being calculated. In this study, common ML metrics are employed for each type
of data using the above definitions. Namely, the metrics are:

Recall = TP/(TP + FN) (3)

Precision = TP/(TP + FP) (4)

Accuracy = (TP + TN)/(TP + FP + FN + TN) (5)

F1 = 2× (Precision× Recall)/(Precision + Recall) (6)

The number of filters utilized for effective feature learning and the number of stack-
layers in the proposed U-Net model are two major hyper-parameters that have a substantial
impact on the model’s performance. In order to determine which combination of hyper-
parameters produces the best results, we conducted an ablation study.

In the experiments, the effect of increasing the number of stack levels on the perfor-
mance of the U-Net is analyzed. We trained two separate 4D U-Net models, one with a
depth of 3 and the other with a depth of 4. Table 1 shows that the network’s generalization
capacity increases when more filters are applied, suggesting that the network is becoming
more robust. Naturally, the time needed to train the network grows in proportion to the
number of filters, as each filter has its own set of parameters that must be learned. We also
find that using only four filters in the U-Net, as opposed to eight, improves performance
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across the board when the depth is increased from three. Overall, the best U-Net model can
be trained in around 11 h, has a depth of 3, and has a classification accuracy of 92.84%.

Table 1. Metrics for classification and training times (in minutes) for 4D U-Net models.

Depth No. of Filters Recall Precision Accuracy Time

3
4 80.13 81.54 83.45 469.92

8 92.41 92.63 92.84 661.8

4
4 80.04 79.63 81.22 477.74

8 87.19 88.01 88.73 668.4

Table 2 summarizes and tabulates comparisons between our proposed method and
state-of-the-art lung nodule classification methods. The results of our evaluations show that
our proposed method consistently outperforms the state-of-the-art methods. Not only that,
but it outperforms other non-local-based methods such as Local-Global [52], 3D Directed
Partitioning Networks (DPNs) [53] and 3D Axial-Attention [54].

Table 2. The proposed method’s performance compared to the state-of-the-art methods.

Method AUC Recall Precision Accuracy F1

HSCNN [14] 85.6 70.5 N/A 84.2 N/A

Multi-Crop [48] 93.0 77.0 N/A 87.14 N/A

Local-Global [52] 95.62 88.66 87.38 88.46 88.01

Gated-Dilated [49] 95.14 92.21 91.85 92.57 92.03

3D DPN [53] N/A 92.04 N/A 90.24 N/A

MRC-DNN [50] N/A 81.00 N/A 90.00 N/A

Perturbated DNN [51] 91.0 90.0 N/A 83.0 N/A

3D Axial-Attention [54] 96.17 92.36 92.59 92.81 92.47

Our method 96.19 92.41 92.63 92.84 92.51

4. Discussion and Conclusions

Because lung nodules are so minuscule that they can easily blend in with the surround-
ing tissue and cling to complicated anatomical systems like the pleura, this work presents a
deep learning strategy that additionally deals with volumetric radiomic information for
classifying nodules in the lungs.

We started by obtaining 3-tensor data types representing gray levels of 3D nodule
shape modeled from cross-sectional CT scans. Grayscale values between 0 and 255 are
fed to this tensor at each node. Our study presents a deep learning classification solution
to the age-old issue of picture classification by including the series collected from nodule
segments. Our method takes into consideration the self-similarity of the boundary curves
that characterize the nodule segments in order to provide a more precise categorization
of nodules. By treating the series of the border curvatures of each section as rows in the
matrix, we are able to solve the 4D classification issue.

For this research, we accessed a dataset hosted by LIDC. Over 95% accuracy was
achieved when using the deep learning algorithms YOLOv3 and iW-Net to identify and
isolate the nodules in the annotated photos. The respective photos were manually cropped
and recorded in this LIDC dataset using tags. After that, we employed the image process-
ing techniques described in the methodology section to locate the nodule’s outside and
innermost curves. The use of 32× 32-type matrices, the scanning at 5.625 degrees and
32 section steps yielded shape matrices that were consistent with the volumetric radiomics
of the nodule.
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The research used a U-Net-type convolutional neural network, which proved to
be successful for the 4D categorization in previous studies [73–76]. Experiments were
conducted using 4 and 8-filter meshes of depths 3 and 4, respectively. When compared to
other networks, the one with three depths and eight filters performed quite well (92.84%
accuracy). This outcome informed the selection of the network design from our study.

In the context of volumetric radiomics, comparisons were made between the results of
this research and 3D CNN networks. The provided method yields superior performance
results as compared to numerous non-native solutions presently available. The method
presented in our research is most comparable to the 3D Axial Attention among the non-local
approaches. Due to the fact that it takes into consideration the nodule’s 3D shape, the
3D Axial Attention approach is far more discriminating than earlier methods. However,
the approach we present takes into account both the 3D geometry and the shape of the
nodule, allowing for a 5D convolution. Although its performance is comparable to that
of the 3D Axial-Attention approach, its outcomes are superior to those of prior methods.
Future research may try using more radiomic variables within the framework of the 3D
Axial Attention approach in order to get even more discriminating findings.

Limitations in the study design are inevitable, as is the case with every investigation.
The primary barrier is the dearth of trained radiologists and experts in computer-assisted
segmentation. The issue of class imbalance in the dataset may be addressed in a number
of ways, all of which need careful consideration. Because the series angles derived from
the radial-scanning boundary curve of the nodule follow one another in time, we may
argue that the series represents a time series. An up-and-coming area of study in the
field of forecasting is the use of time-series characteristics for model selection and model
averaging [77–79]. However, most current methods need human intervention to choose a
suitable collection of features. In modern time-series analysis, the use of machine learning
techniques for automatically extracting characteristics from time series is becoming more
important. Hybrid networks that can deal with radiomic features utilizing 3D geometry
classification and machine learning-based time-series feature extraction may be studied in
the future. Because our research demonstrates the usefulness of radial scanning, particularly
in the context of medical image processing and classification, we believe it will serve as a
benchmark for future studies examining other medical imaging methods.

In conclusion, we show that series from lung imaging may be used to effectively
characterize lung nodules, and that a shape matrix, aided by an area of interest curve, can
be used to reliably ascertain whether or not a tumor is malignant. We tested our methods
using a large dataset of lung nodule pictures that was made accessible to the public, and
we compared the outcomes to those produced by established methods for classifying both
still photos and video over time. The requirement for our study to be repeatable prompted
us to conduct these comparisons. Our research indicates that radial scanning series may be
a powerful asset in the identification and categorization of lung nodules.
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Simple Summary: The classification is performed later by an interactively learning Swin Transformer
block, the core unit for feature representation and long-range semantic information. In particular, the
proposed strategy improved significantly and was very resilient while dealing with small liver pieces,
discontinuous liver regions, and fuzzy liver boundaries. The experimental results confirm that the
proposed APESTNet is more effective in classifying liver tumours than the current state-of-the-art
models. Without compromising accuracy, the proposed method conserved resources. However, the
proposed method is prone to slight over-segmentation or under-segmentation errors when dealing
with lesions or tumours at the liver boundary. Therefore, our future work will concentrate on
completely utilizing the z-axis information in 3D to reduce errors.

Abstract: Diagnosis and treatment of hepatocellular carcinoma or metastases rely heavily on accurate
segmentation and classification of liver tumours. However, due to the liver tumor’s hazy borders and
wide range of possible shapes, sizes, and positions, accurate and automatic tumour segmentation
and classification remains a difficult challenge. With the advancement of computing, new models in
artificial intelligence have evolved. Following its success in Natural language processing (NLP), the
transformer paradigm has been adopted by the computer vision (CV) community of the NLP. While
there are already accepted approaches to classifying the liver, especially in clinical settings, there is
room for advancement in terms of their precision. This paper makes an effort to apply a novel model
for segmenting and classifying liver tumours built on deep learning. In order to accomplish this, the
created model follows a three-stage procedure consisting of (a) pre-processing, (b) liver segmentation,
and (c) classification. In the first phase, the collected Computed Tomography (CT) images undergo
three stages of pre-processing, including contrast improvement via histogram equalization and
noise reduction via the median filter. Next, an enhanced mask region-based convolutional neural
networks (Mask R-CNN) model is used to separate the liver from the CT abdominal image. To
prevent overfitting, the segmented picture is fed onto an Enhanced Swin Transformer Network with
Adversarial Propagation (APESTNet). The experimental results prove the superior performance of
the proposed perfect on a wide variety of CT images, as well as its efficiency and low sensitivity
to noise.

Keywords: adversarial propagation; liver tumor segmentation; classification; enhanced swin
transformer network; median filtering; computed tomography
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1. Introduction

The liver provides essential support for animals and vertebrates on this planet. Liver
disease is a potentially fatal condition with no warning signs in the human body. The
patient’s prognosis would greatly benefit from an early diagnosis of liver illness. The
incidence of liver tumours is high, making it one of the most lethal forms of cancer. Ra-
diologists face major challenges in the early analysis and accurate staging of liver cancer.
The United States reports that liver cancer ranks as the tenth foremost cause of cancer
overall, the fifth foremost cause of cancer death in men, and the ninth leading motive of
cancer [1,2]. When cancer is identified at an early stage, the rate of survival is significantly
higher. When looking for liver tumours, CT is one of the most important and effective
imaging methods [3,4]. Furthermore, CT provides entire liver pictures by contrast media
injection and “multi-phase sequential scans” [5]. Due to the complexity of the CT image,
manual segmentation adds significant time to the clinical workflow.

Segmentation is a crucial step in image processing and is also one of the more complex
procedures involved in this field [6,7]. Automatically separating the tumour location from
the liver is difficult due to factors including the liver’s varying size and shape among
patients. In addition, when compared to other linked organs, such as the stomach and
spleen, the liver’s intensity appears to be consistent throughout both high and low-contrast
images [8,9]. In addition, images with low contrast and an ambiguous lesion shape make
automatic segmentation of liver cancers challenging [10,11]. Issues with high susceptibility
to noisy outliers and over and under-segmentation can plague several image segmentation
methodologies such as active contrast segmentation, traditional segmentation technique,
watershed model, and region expansion, resulting in less accurate results in less time [12,13].

Because certain lesions, such as hemangioma and metastasis, look similar to the
liver, manual segmentation and organization of liver cuts from CT imageries is a lengthy
task, leading to confusion and less reliable results [14]. Consequently, there is an urgent
requirement for research into automated methods to aid radiotherapists in the diagnosis of
liver scratches from CT scans [15]. Figure 1 demonstrates how difficult it is to detect liver
regions with CT.

(a) (b) (c) 

Figure 1. Three stimulating cases, including (a) Small liver zone, (b) Break liver part, (c) Blurred
liver border.

Researchers have created a wide variety of sophisticated methods in recent decades
for autonomous liver segmentation. These methods may be loosely categorized into
three groups: intensity-based approaches, machine learning-based approaches, and deep
learning-based approaches. As a class, intensity-based tactics are known for their speedy
execution, and this is especially true of thresholding-based approaches [16,17], district
growth methods, and level-set methods. Most of these methods, however, are only semi-
automatic, leaving them vulnerable to noise and requiring human involvement with
complex stricture situations.

They allow for substantial gains in segmentation accuracy when used with ML-based
approaches [18–20]. Most machine learning (ML)-based devices, however, necessitate the
manual construction of specialized features, which significantly affects precision. CNN
and other deep learning-based methods have seen tremendous growth because of their
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sophisticated subsequent triumphs in a variety of areas, including target identification,
picture segmentation, and classification [21–23]. A Fully Convolutional Network (FCN) is
a popular deep learning-based technique that performs exceptionally well at classifying
images down to the pixel level. The accuracy of the deep learning-based methods is
significantly higher than that of existing ML-based methods [24]. There are, however,
constraints on both FCN and U-Net-based approaches. Both single network training and
cascade structure training employing the FCN-based method have a high failure rate
when it comes to producing reliable outcomes in the liver [17,25,26]. The fundamental
reason for this is that when evaluating the link among pixels, a reduction in the capacity to
notice subtle visual cues occurs [27]. While the U-Net-based method is effective, it refined
the feature map only after the U-Net convolution process was completed. Further, as the
network’s depth increases, the gradient vanishment problem becomes more easily triggered,
and the picture resolution rapidly decreases due to the network’s constant down-sampling
operation, which would negatively affect the regions [28]. Finally, the category imbalance
problem might lead to mistakes in areas and unclear liver boundaries. While a 3D network’s
learning effect would improve along with the z-axis information, in practice, this is difficult
to achieve due to memory constraints, making the choice of the slice number tricky [29].

In most cases requiring automatic liver segmentation, the aforementioned strategies
perform admirably. However, their accuracy and resilience remain insufficient when ap-
plied directly to clinical data, which severely limits their further use. The major contribution
of the research work is as mentioned below:

• Three steps are only included in this study such as pre-processing, segmentation,
and classification.

• Histogram Equalization and medium filtering are used for the improvement of the
input images.

• Enhanced Mask R-CNN is used to segment the liver tumor from the pre-processed
images. The research work introduces multistage optimization for deep learning
segmentation networks. The study used a multi-optimization training system by
utilizing stochastic gradient descent and adaptive moment estimation (Adam) with
preprocessed CT images in enhanced Mask-RCNN.

• APESTNet is introduced in this study for classification. Overfitting issues in the
Swin Transformer model are prevented by introducing Adversarial propagation in
the classifier.

The following paper is constructed as follows: Section 2 discusses the related works of
liver segmentation and classification. Section 3 presents a brief explanation of the proposed
model. The validation analysis of proposed segmentation and classification with existing
techniques are given in Section 4. Finally, the limitations and scientific contributions of the
work are described in Sections 5 and 6.

2. Related Works

Rela et al. [30] use an optimization-driven segmentation and classification perfect for
trying to apply a unique approach to analyzing and categorizing liver tumours. Five stages,
(a) pre-processing, (b) liver segmentation, (c) tumour segmentation, (d) feature extraction,
and (e) classification, are involved in the generated model’s execution of the task. The
acquired CT images are pre-processed in three steps, including contrast enhancement via
histogram equalization and noise filtering via the median filter. In the next step after image
preprocessing, CT abdominal images are segmented to isolate the liver using adaptive
thresholding to train the classifier using the tumour picture segmentation. Two deep
learning techniques, RNN and CNN, are utilized in the classification process. The CNN
receives the segmented image of the tumour, while the RNN receives the extracted features.
To further enhance the hidden neuron optimization, a hybrid classifier that has been further
refined is utilized. In addition, an enhanced meta-heuristic approach.

Liver area extraction from CT scan images was proposed by Ahmad et al. [31] using
a very lightweight CNN. In order to distinguish the liver from the background, the pro-
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posed CNN algorithm employs softmax across its three and two fully connected layers.
Using a random Gaussian distribution to seed weights, we were able to embed these
data while maintaining their semantic distances. Ga-CNN is the name of the proposed
network (Gaussian-weight initialization of CNN). The MICCAI SLiver’07, 3 Dircadb01, and
LiTS17 benchmark datasets are used in the experiments. Across all benchmark datasets,
experimental results demonstrate the superiority of the suggested technique.

Using generative adversarial networks (GANs) and Mask R-CNN, Wei et al. [32]
presented a technique for segmenting liver images. To begin, Mask R-CNN and GANs
were investigated further to improve pixel-wise classification, as most output images con-
tain noisy characteristics. To improve the segmentation performance, k-means clustering
was then utilized to lock the image aspect ratio and obtain additional crucial anchors.
Finally, we developed a GAN Mask R-CNN method, which outperformed state-of-the-art
alternatives and the Multi-Image Classification and Analysis Improvement (MICCAI) mea-
sures. The suggested approach also outperformed ten state-of-the-art algorithms on six
Boolean indications.

With its roots in the traditional U-Net, Wang et al. [33] presented a novel network
design dubbed SAR-U-Net. After each convolution in the U-Net encoder, a SE block is
presented to adaptively extract, hiding unimportant parts of the image and emphasizing
parts that are essential to the segmentation task at hand. Second, the ASPP is used to
acquire picture data at several scales and receptive fields by substituting the transition layer
and the output layer. Third, the typical convolution block is swapped out for the residual
structures to help with the gradient vanishment problem, and this causes the network to
improve accuracy from a much higher depth. Five widely-used measures, including the
Dice coefficient, VOE, RVD, ASD, and MSD, were employed in the LiTS17 database test.
The proposed technique was the most accurate when compared to other similar models.

In this study, Roy et al. [34] present a novel automatic method for segmenting and
classifying liver tumours. For classification purposes, the model employed a hybrid deep
learning-based Convolution Neural Network (HCNN) model hybrid. The classification
approach computes a multiclass categorization of the tumours discovered, while the
segmentation framework seeks to distinguish between normal and malignant liver tissue.
The focus of this study is on developing a method that eliminates the possibility of human
mistakes in the forecasting process. On the other hand, the suggested method has recall
values that are nearly as high as the best existing methods, and it delivers the highest
precision for lesion identification. On average, the suggested method properly categorizes
tumours in the liver as either hepatocellular carcinomas (HCC), malignant tumours other
than HCC, or benign tumours or cysts. This paper’s novelties lie in its implementation of
MSER to segment tumour lesions and its use of a hybrid CNN-based technique to classify
liver masses.

Hussain et al. [35] zeroes in on the Machine Learning (ML) techniques of multiclass
liver tumour classification using Random Forest (RF). There are four types of tumours
included in the dataset: hemangioma, cyst, hepatocellular carcinoma, and metastasis. The
photos were gray-scaled, and the contrast was enhanced using histogram equalization. The
Gabor filter was used to lessen the amount of background noise, and an image sharpening
technique was used to enhance what was already there. Employing texture, binary, his-
togram, and rotational, scalability, and translational (RST) methods, we were able to collect
55 features for each ROI, despite their varying pixel sizes. Twenty optimal features for
classification were extracted from the original set of 55 using the correlation-based feature
selection (CFS) method. The outcomes demonstrated that RF and RT were more accurate
(97.48% and 97.08%, respectively) than J48 and LMT. A more accurate diagnosis of liver
cancers will be possible with the aid of the revolutionary framework provided.

In order to categorize multi-organ 3D CT cancer, Kaur et al. [36] used a convolutional
neural network. The suggested method has been validated using a dataset consisting of
63503 CT scans of patients with liver cancer acquired from The Cancer Imaging Archive
(TCIA). This strategy uses a convolutional neural network (CNN) to classify CT pictures of
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liver cancer. Results for the classification have been calculated. When the data-enhanced
volume slices, the validation accuracy increases to 99.1% from the original volume slices’
accuracy of 98.7%. When compared to other volume slices, the test accuracy of the data-
augmented volume slice dataset is 93.1% higher on average. The primary benefit of this
effort will be in assisting the radiation therapist in narrowing their attention to a specific
region of the CT images.

Jeong et al. [37] offer an automated approach to segmenting the liver in CT scans and
estimating its volume using a deep learning-based segmentation system. The framework
was trained using data from 191 donors, and it showed promising results in four different
segmentation tasks: for the left lobe (0.789), the right lobe (0.869), the caudate lobe (0.955),
and the overall liver (0.899). Moreover, the R2 value for the volume estimate task was
as high as 0.980, 0.996, 0.953, and 0.996. The outcomes proved that this strategy delivers
precise and quantifiable liver segmentation outcomes, lowering the margin of error in liver
volume estimation.

Militello et al. [38] generate and validate a radiomic model with radiographic features
extracted from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
from a 1.5 T scanner. Images were acquired using an eight-channel breast coil in the axial
plane. The rationale behind this study is to demonstrate the feasibility of a radiomics-driven
model that can be integrated into clinical practice using only standard-of-care DCE-MRI
with the goal of reducing required image pre-processing.

The existing DL models didn’t focus on overfitting issues and generally used classifi-
cation techniques for classification and segmentation. This will decrease the classification
accuracy, and therefore, this research work focused on addressing the overfitting issue by
adding Adversarial Propagation to the Swin transformer model.

3. Materials and Methods

Radiologists currently perform a slice-by-slice examination of numerous CT scans to
segment liver tumours manually. Manual methods are more difficult and time-consuming.
Computer-assisted diagnosis relies on the segmented regions, and human segmentation
of images may compromise diagnostic accuracy. The main challenges of automatic liver
and liver tumour segmentation models are (a) low contrast between the liver tumour and
healthy tissue in CT images, (b) variable size, location, and shape of liver tumours, making
segmentation difficult; and (c) the liver is closely connected with the adjacent organs, and
the CT value of these organs will be similar to the livers.

“(a) Image pre-processing, (b) Liver and tumor segmentation, and (c) Classification”
are the three steps that make up the suggested liver tumour segmentation and classifica-
tion method. The CT images are first collected, then pre-processing techniques, such as
histogram equalization and median filtering are applied to them. Histogram equalization
is used to increase contrast, and median filtering is used to reduce noise in the final image.

3.1. Dataset and Implementation

The experiment makes use of the labeled training sets from the LiTS17 2 and SLiver073
datasets. There is a wide range of sampling techniques included in the 131–3 D abdominal
CT scan sets that make up the LiTS17-Training dataset. With an in-plane resolution of
0.55 mm × 1.0 mm and inter-slice spacing of 0.45 mm × 6.0 mm, CT images and labels
have a 512 × 512 pixel size. From a total of 131 datasets, 121 were chosen at random for
use in our experiment’s training phase, while the remaining 10 were employed in the
experiment’s testing phase. Additionally, all 20 datasets from the SLiver07-Training dataset
were used for evaluation. Each CT image in this dataset is 512 × 512 pixels in size.

During training, the learning rate (lr) starts at 0.001 and decreases by 0.005 per four
training iterations using the Formula (1):

lr = initial lr (epoch/step scope) (1)
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where early lr and step size are both constants. For this purpose, the tried-and-true
stochastic gradient descent (SGD) algorithm was employed.

It was empirically determined that a batch size of 4 was optimal for running the
suggested approach on our GPU with 11 GB of memory. Epoch is empirically chosen to
60 to guarantee efficient training, as this is the point around which the majority of the
training converges. All the tests are conducted on a workstation equipped with Ubuntu
(Canonical Ltd., London, UK).

3.2. Image Pre-Processing

The histogram equalization and median filtering method are used for preparing the
raw CT abdominal picture.

Histogram Equalization

It’s used as a preliminary processing step since it adjusts an image’s brightness to boost
its contrast. Let Inim be the input picture and define pixel value as the matrix of integer pixel
intensities between 0 and 1. The number of intensity values is represented by INV, with a
maximum value of 256 being the norm. Equation notation for the normalized histogram
NHS of InHE with a bin to possible intensity (2). In this case, HE = 0, 1, . . . , (INV − 1).
The equation for the histogram-normalized image is (3) [39]:

NHS =
Number o f pixels with density he

Total number o f pixels
(2)

InHE = f loor

⎛⎜⎝(INV − 1)
Inim

(i,Q)

∑
he=0

NHS

⎞⎟⎠ (3)

The term f loor() in the aforementioned equation rounds down to the next integer
value. Thus, a median filter is applied to further smooth out the histogram-equalized
image InHE. Filtering data by taking the middle value [39]: Restricting low- and high-
frequency pixels, as this filter does, removes noise from an image, making it easier to see
and appreciate its edges. If you want to eliminate the noise in your liver image, try using
a non-linear filter, such as median filtering. This filter’s primary function is to replace
noisy pixels with the image’s median pixel value, which is calculated by ranking each pixel
according to its grayscale value. When the median filter is applied to the input image, HE,
we achieved the resulting image MF, as shown in Equation (4).

InMF(x, y) = med
{

InHE(x− u, y− v)u, v ∈ H
}

(4)

The original image and the median filtered image are represented by InHE and InMF,
respectively, in Equation (4). As an added bonus, H represents a 2-dimensional mask.
Since this is the last step in the pre-processing phase, the resulting picture, InMF, is next
processed using liver segmentation.

3.3. Segmentation Using Enhanced M-RCNN

The state-of-the-art in instance picture segmentation is the mask-RCNN framework,
which the proposed method builds on. This framework has shown outstanding perfor-
mance in a number of image segmentation studies. Figure 2 depicts the major steps that
make up the proposed enhanced M-RCNN method: Backbone, Neck, DenseHead, and
ROIHead (Region of Interest Head).

(1) The Backbone converts the incoming image into a raw feature map. Here, we employ
a variant of ResNet-50-based on the design.

(2) The Neck joins the Spine to the Head. The original feature map is refined and
rearranged. It has a vertical corridor and horizontal branches. To produce a feature
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pyramid map of the same size as the raw feature map, the top-bottom route is used.
Convolutional add operations between two parallel pathways’ corresponding levels
characterize lateral linkages.

(3) Third, the Dense Head can be used to perform dense placements of feature maps. The
RPN examines each area and makes the best guess as to whether or not an object is
present. The RPN’s main benefit is that it doesn’t need to look at the real image itself.
Through the use of a fixed number of anchor boxes, the network performs a rapid
scan of the feature map.

(4) ROIHead (BBoxHead, MaskHead): Using ROIAlign, extract features that affect the
ROI from different feature maps while maintaining their precise spatial placements.
This section takes in ROI features and then predicts task-related outcomes based on
those features. At this point, you’ll be doing two things at once:

a. In the detection branch, the location of the bounding box (BBoxHead) is identified
and classified for intervertebral disc (IVD) detection.

b. In the segmentation node, the FCN created the IVD image segmentation.
b. MaskHead.

 

Figure 2. The diagrams of the Enhanced M-RCNN Framework.

Classification loss and mask loss are all summed together unweighted to form the
loss function. SGD optimization and the Adam optimization approaches are employed by
an enhanced M-RCNN. Training makes use of SGD and Adam optimization. To identify
global optimums, the SGD is effective and simple to utilize. When trying to find a local
optimum, SGD fails and becomes difficult to employ. When it comes to optimizing sparse
gradients in noisy situations, Adam optimization combines the best features of the adaptive
gradient and root mean square propagation to create an effective technique.

At its core, our feature extractor is a ResNet-50 that has been initialized using ImageNet-
trained weights. Xavier initialization is used for all other weights (such as the RPN). To ac-
complish our tasks, a system with a single graphics processing unit is employed. The initial
mask-RCNN used a batch size of 16. There are three distinct stages to the training process,
the first of which involves simply training the MaskHead and not the projected ResNet-50
backbone. Parts of the backbone [beginning at layer 4 (CN4)] and the prediction heads
(DenseHead and ROIHead) are fine-tuned in the second stage. The third and final stage
involves joint training of the model’s constituent parts (the “heads” and the “backbone”).
The study employs liver image data with SGD optimization with Adam optimization dur-
ing the third and final stage. Training is slowed to a crawl by setting alpha = 1.0 × 10 −6

(learning rate or step size), beta1 = 0.9, beta2 = 0.999, and epsilon = 1 × 10 −8.
Starting with the smallest feature map and working our way down to larger ones via

upscale operations, the study employs this top-bottom strategy to build final feature maps.
A feature map is produced in layer two of the diagram, and its use of 1 × 1 convolutions
reduces the total number of channels to 256. The up-sampled output from the previous
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cycle is then combined with these components. The outputs of this procedure are fed into a
33-convolution layer with stride 2 to generate the last four feature maps (FP2, FP3, FP4, and
FP5). Max-pooling from FP5 yields FP6, which is considered the fifth feature map. Using
these five feature maps, RPN may create candidate object bounding boxes. However, when
associating with ROIs, only four feature maps (FP2, FP3, FP4, and FP5) are used.

A series of convolutional layers, followed by batch normalization and the ReLU
activation function, are standard fare in the original ResNet-50 architecture’s convolutional
blocks and identity blocks. To better deal with training data that is jumbled together, the
study employs group normalization and dropout regularization and makes many tweaks
to these methods. The enhanced M-RCNN makes use of high-definition training data.
Due to this, the study can only process a maximum of two photos at a time in a batch.
While a small batch size can lead to an inaccurate estimation of the batch statistics, a big
batch size is necessary for effective batch normalization. The model error may increase
dramatically if the batch size is decreased. In this case, dropout regularization is applied
after group normalization. To avoid model overfitting and boost the generalization effect,
regularization is a must in deep learning. To eliminate co-adaptation issues among the
hidden nodes of deep feedforward neural networks, the dropout regularization strategy
has been effectively used in several deep learning models.

Loss Functions

In enhanced M-RCNN, the loss is computed as a total of losses at each stage of the
model. The cost represents the weights that each stage of the model should have. For
classification and bounding box regression, the ROIAlign output is fed into the BBo × Head,
while for segmentation, the output is fed into the MaskHead. The output of the FCN layer is
sent into a softmax layer, which performs the classification utilizing all of the characteristics.
The MOM-RCNN loss function demonstrates the deviation between the predicted and
observed values. As a result, the study presents a single loss function for training the
bounded RCNN’s box refinement regression, class prediction classification, and mask
prediction generation. Mask prediction generation loss (Lmask) is only obtained from mask
prediction generation stages, while class prediction classification loss Lr,class and Lm,class
and bounding box refinement regression loss are obtained from both the RPN and mask
prediction generation stages. It is only necessary to specify the L mask once per class,
which eliminates output competition amongst masks. The resulting enhanced M-RCNN
loss function is defined as (5):

Lenhacned M−RCNN = Lr,class + Lm,class + Lr,box + Lm,box + Lmask (5)

where Lr,class: This is the monetary cost associated with an RPN’s mistaken identification
of anchor boxes (the presence/absence of an object). In cases where the final output model
is not picking up on many objects, this value should be high so that RPN can record it.
Lr,box: What this means is that the RPN is quite precise in its localization. When the object
is recognized, but its bounding box needs adjusting, this is what you utilize to fine-tune the
detection. Lm,class: This is the cost associated with misidentifying an item in the designated
area. In the likely scenario where the object is recognized from the image but incorrectly
labeled, this probability is high. Lm,box: To put it another way, this is the same as the “loss”
calculated when pinpointing the precise location of the boundary of the specifically named
class. It’s high if the object is properly classified, but localization is off. Lmask: Masks were
made based on the things that were detected. Therefore, this is related.

The class prediction organization error (Lr,class and Lm,class) is calculated by (6):

Lr,class =
1

Mclass
∑i − log[pr∗i pri + (1− pr∗i )(1− pri)] (6)
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where MM class is the total number of classes and pri is the likelihood that the ith region
of interest (ROI) contains a positive sample (liver). If the ROIs are comprised of positive
samples, then =1, and else it will be 0. Lm,class follows the same formula.

Regression loss Lr,class and Lm,class are calculated by plugging these two values into
an Equation (7):

Lr,box =
1

Mregress
∑

i
pr∗i S(transi, trans∗i ) (7)

S() is a smooth function where M regress is the sum of pixels in the feature map, transi
shows Lm,box follows the same formula. The loss L mask in mask prediction generation is
calculated by (8):

Lmask = − 1
n2 ∑

1≤x,y≤n

[
lblp

xy =
(
1− lblxy

)
log

(
1− lbl2

xy

)]
(8)

where the label value at position (x, y) is denoted by lblxy in the n by n region, and the
predicted value for the p-th class is denoted by lblp

xy.

3.4. Classification

Though the transformer was first developed for processing natural language se-
quences, its application to CNN for image processing is to consider the picture as a matrix
for convolution operation. Unfortunately, CNN is not well-suited for direct usage in pic-
ture feature extraction. That’s why patching techniques, such as patch embedding, patch
merging, and masking are used.

3.4.1. Patch Embedding

Patch partition is used to divide an RGB map into individual patches that do not
overlap. Here, the size of the patch is 4 × 4, which is multiplied by the RGB channels to
yield a total size, i.e., 4 × 4 × 3 = 48. To generate a feature matrix, we simply project the
refined patchwork to the required dimensions.

3.4.2. Patch Merging

After partitioning the obtained feature matrix into four 22 windows and merging their
respective positions, the resulting four feature matrices are concatenated.

3.4.3. Mask

When the pixels are subsequently relocated, the mask will only allow the window to
focus on the continuous portion, reducing the influence of ingesting. If you shift the matrix
to the right, the original window in the bottom right corner will be found. The size of the
shift is proportional to window size and may be calculated using the following formula.

s =
[w

2

]
(9)

for each given shift s, the window width w must be specified.
Because the region visible in the window to the right and below does not border the

section in the original matrix, it must be separated from it using the mask matrix. Both the
vertical and horizontal slicing areas are [0,-window size),[-window size,-shift size),[-shift
size]. The concept behind the window partition (function window partition) for the labeled
mask matrix is to equally split the window size into blocks of [H/w] rows [H/w] columns
and combine the dimensions for the number and the batch size. The original matrix mask
will be subdivided into smaller windows so that they can be individually counted as
window units.

In Figure 3, the overall design of the proposed SwinNet is seen. Encoder, bottleneck,
decoder, and skip links make up SwinNet. Swin Transformer blocks are Swin-fundamental
Unet’s building block [40]. The medical images are divided into 4 × 4 non-overlapping

165



Cancers 2023, 15, 330

patches for the encoder to use in transforming the inputs into sequence embeddings. After
applying this partitioning strategy, the feature dimension of each patch is 4 × 4 × 3 = 48.
Furthermore, the dimensions of the projected features are embedded into an arbitrary
dimension using a linear embedding layer (represented as C). To create the hierarchical
feature representations, the modified patch tokens are fed into multiple Swin Transformer
blocks and patch merging layers. When it comes to downsampling and dimension expan-
sion, the patch merging layer is in charge, whereas the Swin Transformer block is in charge
of feature representation learning. We created a symmetric transformer-based decoder
after being inspired by U-Net [24]. The decoder uses a Swin Transformer block and a
patch-expanding layer. To compensate for the reduction in spatial detail brought on by
down-sampling, the encoder’s multiscale features are fused with the retrieved context
features via skip connections. A patch expanding layer, as opposed to a patch merging layer,
is purpose-built for up-sampling. Through an up-sampling ratio of 2, the patch expanding
layer converts 2D feature maps into 4D feature maps. The segmentation predictions at the
pixel level are generated by applying a linear projection layer to the up-sampled features,
and the input resolution of the feature maps is restored via a 4 up-sampling operation
carried out by the final patch expanding layer. Our breakdown of the blocks’ descriptions
would go as follows:

Figure 3. Encoders, bottleneck nodes, decoders, and skip links make up Swin-overall Unet’s structure.
The swin transformer block is the foundation of the encoder, bottleneck, and decoder.
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3.4.4. Swin Transformer Block

In place of the standard multi-head self-attention (MSA) module, the swin transformer
block [41] is constructed using shifted windows. Identical transformer pairs, as depicted
in Figure 4. Each swin transformer block consists of LayerNorm (LN) layers, multi-head
self-attention modules, residual connections, and two-layer MLPs with GELU non-linearity.
A shifted window-based multi-head self-attention (SW-MSA) module is used in the first
transformer block, while a window-based multi-head self-attention (W-MSA) module is
used in the second. Continuous swin transformer blocks are created using this type of
window partitioning (10)–(13):

ẑl = W −MSA
(

LN
(

zl−1
))

+ zl−1 (10)

zl = MLP
(

LN
(

ẑl
))

+ ẑl (11)

ẑl+1 = SW −MSA
(

LN
(

zl
))

+ zl (12)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (13)

where ẑl and zl stand for the results produced by the lth block’s SW-MSA module and the
lth block’s MLP module, respectively. Self-attention is calculated in the same way as in
earlier publications [42,43] (14):

Atention(Q, K, V) = So f tMax
(

QKT
√

d
+ B

)
V (14)

where Q, K, and V are the matrices in the space R(M2 d). The sum of patches in a window,
M2, and the measurement of the query, d, are both variables. Furthermore, B is populated
with numbers derived from the bias matrix B = R((2M− 1)(2M + 1)).

 

Figure 4. Swin transformer chunk.

3.4.5. Encoder

Tokenized inputs in C-dimensions at a resolution of H/4 W/4 are sent into two
successive Swin Transformer blocks in the encoder for representation learning with the
same feature dimension and resolution. At the same time, the patch merging layer will
double the feature dimension while halving the token count. In the encoder, this process
will be performed three times.

Integration layer for patches: The patch merging layer takes the input patches and
combines the four subsets into one. This type of processing will result in a 2× down
sampling of feature resolution. Moreover, a linear layer is applied to the concatenated
features in order to reduce the feature dimension by a factor of four, making it equal to the
original size of two.
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3.4.6. Bottleneck

Since Transformer cannot be converged [44], the bottleneck utilized to learn the deep
feature representation is made up of just two successive Swin Transformer blocks. Both the
feature size and resolution are maintained in the bottleneck.

3.4.7. Decoder

The symmetric decoder is constructed using the same Swin Transformer block that
was used in the encoder. Due to this, we up-sample the deep features collected by the
decoder using the patch expanding layer rather than the patch merging layer. When the
feature dimension is doubled.

Flare-up Expanding Layer: In order to raise the feature dimension from its initial value
of (W/32 H/328 C) by 2 prior to up-sampling the features. The input characteristics are
then rearrange-operated to increase their resolution by a factor of two and decrease their
dimension by a factor of four (from W/32 H/3216 C to W/16 H/164 C).

3.4.8. Skip Connection

To combine the encoder’s multi-scale characteristics with the up-sampled features, we
use skip connections, similar to how the U-Net does. As a means of mitigating the loss
of spatial information brought on by down-sampling, we join together both shallow and
deep features. After an up-sampling layer, a linear layer is applied, maintaining the same
dimensionality of the concatenated features as the up-sampled features. In this network,
overfitting is a major issue that must be resolved to attain high classification accuracy. For
this issue, adversarial propagation (AdvProp) [45] is used as an improved training scheme,
which is used as a separate auxiliary batch norm for the training samples.

4. Results and Discussion

4.1. Segmentation Results
Evaluation Metrics for Segmentation

Dice coefficient (DC), Volume overlap error (VOE), Relative volume error (RVD),
Average symmetric surface distance (ASD), and maximum surface distance (MSD) are the
five most widely used metrics for assessing liver segmentation (MSD). The meanings of the
five metrics are as follows, with A being the liver segmentation result and B representing
the ground truth:

Dice coefficient (DC): the resemblance between two sets, with a range of (0,1). Greater
values indicate more precise segmentation (15).

Dice(A, B) =
2|A ∩ B|
|A|+ |B| (15)

Volume Overlap Error (VOE): volumetric discrepancy between segmented and
raw data (16).

VOE = 1− |A ∩ B|
|A ∩ B| (16)

RVD: Whether the result is over-segmented is measured with this metric. Values closer
to 0 indicate more precise segmentation (17)–(19).

RVD(A, B) =
|B| − |A|
|A| (17)

ASD(A, B) =
1

|S(A)|+ |S(B)|

⎛⎝ ∑
pεS(A)

d(p, S(B)) + ∑
q∈S(B)

d(q, S(A))

⎞⎠ (18)

MSD(A, B) = max
{

max
p∈S(A)d(p, S(B)), max

q∈S(B)d(p, S(A))
}

(19)
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The dice measure of proposed enhanced M-RCNN achieved 0.957 on average results,
where the ASD is 1.544, 0.095 of VOE, 29.144 mm of MSD, and −0.0084 of RVD on average
results. A better Dice coefficient means better segmentation accuracy for an efficient
proposed model. Here, the proposed model achieved better Dice, which is proved in the
above Table 1. Table 2 presents the comparative analysis of the proposed segmentation
model with existing techniques on the second dataset.

Table 1. The results of proposed segmentation technique on 10 LiTS17-Training datasets.

Case Num VOE ASD (mm) MSD (mm) RVD Dice

1 0.103 1.568 28.453 −0.029 0.955
2 0.089 1.471 34.951 −0.033 0.963
3 0.100 1.382 31.259 −0.049 0.956
4 0.097 1.494 25.494 −0.048 0.968
5 0.114 1.797 28.315 −0.040 0.949
6 0.107 1.933 29.756 −0.038 0.953
7 0.094 1.229 30.657 0.034 0.960
8 0.073 0.955 39.421 0.043 0.961
9 0.086 1.673 34.598 0.036 0.954

10 0.090 1.863 28.534 0.040 0.952
Avg 0.095 1.544 29.144 −0.0084 0.957

Table 2. The results of a quantitative comparison with approaches on 20 Sliver07-Training datasets.

Methods Dice (%) VOE (%) RVD (%) ASD (mm) MSD (mm)

Adaptive Thresholding [30] 95.60 ± 3.41 8.23 ± 5.89 −2.38 ± 2.16 2.19 ± 0.38 36.69 ± 1.45
Ga-CNN [31] 96.94 ± 1.78 5.31 ± 3.48 −0.54 ± 2.24 1.95 ± 0.34 30.66 ± 2.03

GAN Mask R-CNN [32] 96.66 ± 2.19 6.38 ± 3.93 −1.29 ± 3.58 1.80 ± 0.38 28.30 ± 2.05
Proposed Enhanced

M-RCNN model 97.31 ± 1.49 5.37 ± 3.27 −1.08 ± 2.06 1.85 ± 0.30 27.45 ± 1.89

In Table 2, the experiments represent the Quantitative comparison with methods on
20 Sliver07-Training datasets. Here we have used different evaluations for the proposed
method. Based on the analysis, it is clearly proven that the proposed model achieved better
results than existing techniques. In the next section, the proposed classifier’s validation is
carried out, and the results are provided.

4.2. Classification Results
4.2.1. Performance Measure for Classification

Our ideal and comparable baseline projections are evaluated using a wide range of
indicators. An exhaustive list of evaluation criteria is provided below:

• Accuracy: On test samples, accuracy is referred to as “accuracy.”
• Precision: In the context of predictive value, precision refers to a positive value and is

the ratio of genuine positive models to the total number of false positive samples.
• Recall: Classifier performance can be evaluated using this metric. Alternatively known

as Sensitivity or True Positive Rate, which describes an organization model, Recall
discards a positive prediction if it’s not accurate.

• F1: Classification is an example of a machine learning task for which this measure is
well-known. It is the arithmetic mean of the estimates’ precision and recall.
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4.2.2. Validation Analysis Using 70% of Training Data–30% of Testing Data

In the above Table 3 represents the comparative Analysis of the Proposed Model. In
these evaluations, the proposed model achieves better performance than other models,
such as the proposed model accuracy of 95.62%, F-1 measure of 94.53%, precision of 98.32%,
and recall of 94.62%, respectively. However, the existing techniques achieved nearly 92% to
94% accuracy, 93% to 96% precision, 89% to 92% recall, and 87% to 92% F1-measure.

Table 3. Comparative Analysis of Proposed Model.

Model Accuracy Precision Recall F1

CNN-RNN [30] 80.10 87.21 80.15 80.43
Ga-CNN [31] 85.71 84.32 85.93 83.45

GAN-R-CNN [32] 92.10 92.43 92.15 91.68
SAR-U-Net [33] 92.46 93.48 92.44 91.81

HCNN [34] 89.52 90.21 89.54 89.03
RF [35] 94.53 96.61 92.52 92.24

CNN [36] 94.16 96.17 92.32 92.10
Proposed APESTNet 95.62 98.32 94.62 94.53

4.2.3. Validation Analysis Using 60% of Training Data–40% of Testing Data

In the Table 4, the results represent the Comparative Analysis of the Proposed Model.
In these evaluations, the proposed model data is split into 60–40% percentages, and the
performance achieves better performance than other models. For instance, the proposed
model has an accuracy of 94.32% and a recall of 93.24%, respectively. Here, data plays a
major role in the performance analysis, which is clearly proven in Figures 5–8.

Figure 5. Accuracy Comparison for two data splits-ups.

The Table 5 represents the Comparative Analysis of the Proposed Model. From
these validations, it proves that the performance of the proposed model achieves better
performance than other models. For instance, the proposed model training period is 390.33,
and the execution time is 0.01128 (s), respectively.
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Figure 6. Precision Comparison for two data splits-ups.

Figure 7. Recall Comparison for two data splits-ups.
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Figure 8. F1-measure Comparison for two data splits-ups.

Table 4. Comparative Analysis of Proposed Model with existing techniques.

Model Accuracy Precision Recall F1

CNN-RNN [30] 81.10 99.41 75.91 86.72

Ga-CNN [31] 87.70 99.41 85.21 91.82

GAN-R-CNN [32] 92.50 99.82 90.98 95.27

SAR-U-Net [33] 92.90 99.78 91.52 95.41

HCNN [34] 92.50 99.63 91.38 95.18

RF [35] 92.70 99.90 91.93 95.32

CNN [36] 93.27 99.91 92.47 95.63

Proposed APESTNet 94.32 99.95 93.24 96.02

Table 5. Comparison of the proposed model for different time executions.

Model Training Time (s) Testing Time (s) Execution Time (s)

CNN-RNN [30] 630.01 69.17 0.01233

Ga-CNN [31] 450.53 67.38 0.01369

GAN-R-CNN [32] 543.21 65.89 0.01369

SAR-U-Net [33] 577.66 63.71 0.01657

CNN [34] 480.23 60.41 0. 01309

RF [35] 583.42 59.78 0. 01297

CNN [36] 423.17 59.192 0. 01289

Proposed APESTNet 390.33 57.621 0.01128

5. Limitation

While the proposed methodology yielded some promising outcomes, there remains
room for improvement. The CT pictures are 3D, but the suggested method is built on a 2D
network; thus, it can easily lose crucial context information along the z-axis. In addition,
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the proposed technique may produce substantial mistakes around the boundary when the
liver margin has lesions or tumour abnormalities.

6. Conclusions

This research introduces a novel model called APESTNet to improve the classifi-
cation and categorization of liver tumours. The built-model consists of three phases:
pre-processing, segmentation, and classification. The acquired CT images were subjected
to histogram equalization and a median filtering technique before further analysis could be
performed. After the necessary steps were taken to prepare the data, a tumour was seg-
mented using an upgraded mask R-CNN model. The classification is then performed later
by an interactively learning Swin Transformer block, the core unit for feature representation
and long-range semantic information. In particular, the proposed strategy improved signif-
icantly and was very resilient while dealing with small liver pieces, discontinuous liver
regions, and fuzzy liver boundaries. The experimental results confirm that the proposed
APESTNet is more effective in classifying liver tumours than the current state-of-the-art
models. Without compromising accuracy, the proposed method conserved resources. How-
ever, the proposed method is prone to slight over-segmentation or under-segmentation
errors when dealing with lesions or tumours at the liver boundary. Therefore our future
work will concentrate on completely utilizing the z-axis information in 3D to reduce errors.
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Simple Summary: Different chest diseases badly affect the human respiration system. The chest
radiographs of the lungs are used to classify these diseases. Identifying diseases is essential, but the
most important thing is explaining the reason behind classification results. This research provides
an explanation of the classification results of different lung pulmonary diseases so that doctors can
understand the reason that causes these diseases. This work achieved 97% classification accuracy.
This research also evaluated the highlighted regions in the input image, during the explanation of
classification results with the manifest file, where the doctor highlighted the same regions with red
arrows. The automatic disease explanation and identification will help doctors to diagnose these
diseases at a very early stage.

Abstract: Explainable Artificial Intelligence is a key component of artificially intelligent systems
that aim to explain the classification results. The classification results explanation is essential for
automatic disease diagnosis in healthcare. The human respiration system is badly affected by
different chest pulmonary diseases. Automatic classification and explanation can be used to detect
these lung diseases. In this paper, we introduced a CNN-based transfer learning-based approach
for automatically explaining pulmonary diseases, i.e., edema, tuberculosis, nodules, and pneumonia
from chest radiographs. Among these pulmonary diseases, pneumonia, which COVID-19 causes, is
deadly; therefore, radiographs of COVID-19 are used for the explanation task. We used the ResNet50
neural network and trained the network on extensive training with the COVID-CT dataset and
the COVIDNet dataset. The interpretable model LIME is used for the explanation of classification
results. Lime highlights the input image’s important features for generating the classification result.
We evaluated the explanation using radiologists’ highlighted images and identified that our model
highlights and explains the same regions. We achieved improved classification results with our
fine-tuned model with an accuracy of 93% and 97%, respectively. The analysis of our results indicates
that this research not only improves the classification results but also provides an explanation of
pulmonary diseases with advanced deep-learning methods. This research would assist radiologists
with automatic disease detection and explanations, which are used to make clinical decisions and
assist in diagnosing and treating pulmonary diseases in the early stage.

Keywords: explainable AI; class activation map; Grad-CAM; LIME; coronavirus disease; reverse
transcription polymerase chain reaction; computed tomography; healthcare; health risks
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1. Introduction

The human respiratory system provides respiration using the lungs, which are funda-
mental organs of the human body. Lung pathology is observed through chest radiographs,
known as chest X-rays (CXRs) [1]. Many pulmonary diseases are diagnosed by observing
different pathological patterns through CXRs [2]. Computed tomography (CT) and CXR
are low-cost and effective techniques for detecting pulmonary diseases such as tubercu-
losis, edema, nodules, and pneumonia [3]. Among all these pathologies, pneumonia is a
fatal one that is clinically measured by observing lobar consolidation, interstitial opacities,
and airspace opacities. Edema is identified by pulmonary vessels, patchy shadowing,
increased cardiac size, and septal lines [4]. The CXRs are also used to identify tuberculosis
by observing the cavities and consolidations in the upper zone of the lungs.

On the other hand, the nodules are identified as a spot in the lung zones using
CXRs [5]. In the past years, there was an unexpected rise in COVID-19 patients who also
had deadly lung infections such as pneumonia [6]. COVID-19 is identified by observing
the airspace opacities, lobar consolidation, and patchy shadow [7,8]. This primarily affects
the pulmonary system, causing a chronic inflammation that severely lowers overall lung
capacity [9]. This is a severe and deadly disease due to its high transmission, absence of
general population immunity, and long incubation period. CT and CXR are the primary
imaging diagnostics for these pulmonary diseases [10].

This manual diagnosis process takes more time which was the main concern. Therefore,
deep learning (DL)-based approaches are being employed for automated pulmonary lung
disease identification [11] to deliver accurate results. DL produces highly detailed images
and CT scans, the standard method for lung diagnosis and treatment [12,13]. However, it is
still being determined how these DL algorithms reach the classification results and which
features are more important to produce that output [14,15]. This shows deep learning
algorithms’ inherent black-box character and other factors, such as processing costs [16]. It
originates from the inability to represent the information for a given job completed by a
deep neural network, despite understanding the basic statistical principles. Easier artificial
intelligence (AI) methods, such as decision trees and linear regression, are self-explanatory
since the classifier boundary can be depicted in a few dimensions using the model’s
parameters. However, tasks such as the classification of 3D and most 2D medical images
lack the complexity needed and lack the tools to check the behaviour of black-box models,
thus having a negative impact on the deployment of deep learning in a variety of fields,
including finance and automated vehicles and especially healthcare, where explainability
and reliability of classification of disease are critical factors for end-user trust [17].

Explainable AI (XAI) has the key to opening the deep learning “black box” nature [18].
XAI is an AI model that explains goals, logic, and decision-making to laymen [19]. End
users in this case could be AI system creators or those influenced by an AI model’s judg-
ment [3]. The findings show that quantitative and qualitative visual representations can
help clinicians understand and make better decisions by providing more detailed data from
the learned XAI algorithms’ results [20]. In healthcare-related medical imaging problems,
the accuracy of the prediction model is essential. Still, the visualization and localization
of input medical images are more significant, which helped to identify the main regions
contributing to the classification results [18]. Even though there are many reasons why XAI
is substantial, research reveals that the three most critical problems are: (1) trustworthiness,
(2) transparency, and (3) bias and fairness in algorithms [21]. With these features, XAI has
plenty of applications in different domains for explaining deep learning algorithms’ predic-
tion. In healthcare, XAI is important for explaining deep learning algorithms’ classification.

In this research, we introduced the concept of explainability for detecting the im-
portant features in medical images where the classification model gives extra attention
throughout the classification task. We present the deep-learning-based framework for
explaining pulmonary diseases using chest radiographs. All pulmonary diseases badly
affect the lungs and respiration system of humans but have different affected zones. Due
to a large number of cases of pulmonary disease COVID-19 in the past years, we took
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radiographs of COVID-19 for the classification results’ explanation task. We achieved the
goal of identifying the COVID-19 disease and provided the visualisation of input medical
images contributing to the classification results. First, we provided the CXR images as input
to our deep-learning-based system. The system processed the input image and provided
the classification result. After that, the CXR image is passed to our XAI local interpretable
model agnostic explanations (LIME) to determine which specific features helped the deep
convolution neural network distinguish between COVID-19 and non-COVID-19 patients.
LIME provided the highlighted regions of the input CXR images. That explains the classifi-
cation results’ reasons in the form of the highlighted segment of that image with different
colors. In the last step, we evaluated the doctor-highlighted region with the model, and it
provided the same highlighted components.

Further, this research has four main sections; Section 2 presents the in-depth state of
the art; Section 3 presents the proposed methodology; Section 4 exhibits results; finally,
Section 5 concludes the research.

2. Literature Survey

DL techniques enhanced the performance of medical imaging diagnostic frameworks,
especially for abnormal pathologies and pulmonary diseases of lungs from CXRs [22].
Most of these systems used transfer learning approaches for identifying different lung pul-
monary diseases using chest radiographs. These techniques are used to identify pulmonary
disorders, i.e., edema, nodules tuberculosis, pneumonia, and COVID-19 through chest
radiographs [23]. In medical imaging, disease identification is important, but explanation
and interpretability also play an important role [24]. XAI provides the reason behind the
specific classification and prediction results. XAI’s primary goal is to investigate and de-
velop methods for explaining the individual predictions of DL systems. We understand that
a clear explanation of the reached decision is critical in medical applications depending on
images. In an ideal case, the system makes a decision based on the input data and justifies
which image part led to a certain classification result [25]. XAI was recently considered
because of its potential to provide an understanding of the behavior and process of some
complex deep-learning models. Several studies [26] showed that, using a decision tree
and linear models, it is easy to explain approaches in a way that is easy to comprehend
and interpret for humans. In this paper, we took the case study of COVID-19 from all
pulmonary diseases. The literature survey of some of the existing XAI systems for the
classification of lung diseases is presented in Table 1.

Table 1. Comparative analysis of existing explainable artificial intelligence (XAI) and classification
models for lung diseases.

Methodology Dataset Explainability Models Accuracy %

ResNet 101 [18] 897 CT Scans CAM, LIME 85%
U-Net CNN [24] 1478 X-rays Grad-CAM, LIME 83%

VGG16, ResNet [27] 3975 CXRs GSInquire 83%
Xception [28] 2235 chest X-rays SHAP, Grad-CAM++ 87%

DenseNet, ResNet,
VGGNet [29] 5959 CXRs Grad-CAM++, LRP 90%

DenseNet169 [30] 787 CT Scans Not Used 85%

Proposed Mode 787 CT Scans, 10,000
CXRs Scans LIME 93%, 97%

Ye et al. [18] used ResNet 101 to identify lung pulmonary disease COVID-19 using
CT scans. They also used the Class Activation Map (CAM) for global explanation and
achieved a classification accuracy of 85%. They used the concept of explanation in the
medical image classification and tried to explain the results using the XAI approach CAM.
In another research project, Lucas O. Teixeira employed two XAI techniques to analyze
the effect of human lung segmentation, predict lung diseases, and provide the explanation
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using LIME and Gradient-weighted Class Activation Mapping (Grad-CAM). LIME works
by identifying features, such as superpixels (picture zones), that improve the likelihood
of the expected class, i.e., areas that support the present model prediction. Since this
model actively employs such regions to produce predictions, they might be considered
important. Grad CAM examines the gradients that flow into the last convolution layers of
a CNN for an input image and label. The activation mapping (AM) can then be examined
visually to ensure that the model focuses on the correct area of the input image. They used
UNET architecture to classify lung diseases, pneumonia, lung opacities, and COVID-19
and achieved an accuracy of 83% [24].

In another research project, Linda W et al. used the COVIDNet data set to train
the VGG16 network for the classification of COVID-19 tasks. They used 3975 CXRs for
training the model. GSInquire explains the classification task. They achieved an accuracy
of 83% [27]. After some time, Lin Zou et al. explained pulmonary diseases, pneumonia and
COVID-19 using chest X-rays. They used 2235 x-rays and explained using ensemble XAI
with Grad-Cam++ and SHAP. They achieved 87% classification accuracy [28]. Similarly,
Md. Rezaul Karim et al. [29] developed a system using DenseNet, ResNet, and VGGNet
models named DeepCovidExplainer that provides the explanations of classification results
of COVID-19. They used 5959 CXR from patients to classify the normal, COVID-19, and
Pneumonia classes and achieved 90% classification accuracy. Literature studies of existing
pulmonary lung disease identification using DL techniques are presented in Table 2. L. O.
Hall et al. [31] examined the lung diseases pneumonia and COVID-19 from the chest X-rays
using the latest techniques of DL. They used DL architectures (VGG-16 and Resnet-50)
to classify the diseases into two categories. They used a small dataset containing 135
chest X-rays of COVID-19 and 320 chest X-rays of pneumonia. They achieved satisfying
results of 82.2% even though the dataset used was limited. M.K. Pundit et al. used deep
neural network architecture VGG16 on 1428 chest X-rays images. They focused on the
identification of the lung disease COVID-19. They improved the accuracy by a little to
92% [32]. After the success of predicting COVID-19 from chest X-rays, M. Singh et al.
applied a machine-learning-based algorithm (Support Vector Machine) to CT scan data to
classify COVID-19. They used a transfer-learning-based support vector machine on VGG16
architecture. Their dataset consists of 718 CT Scan images; 349 of them are of COVID-19,
and 376 are of non-COVID-19. Their results were promising as they achieved a ROC Score
of 85.3 and an accuracy of 83.5% [33]. CoXNet, a multi-dilation CNN, was used for the
automatic discovery of COVID-19 by T. Mahmud et al. They also worked on X-ray pictures
but with convertible multi-accessible feature optimization. Their dataset consists of four
classes, COVID-19, Normal, Viral, and Bacterial pneumonia. Each class has 305 X-ray
images. They achieved 80.2% accuracies along with a ROC score of 82.0 [34].

Table 2. Comparative analysis of the existing classification models for pulmonary diseases using
lung scans and X-rays.

Methodology Dataset Accuracy %

VGG16 [31] 455 X-rays 82.2%
VGG-16 [32] 1428 X-ray 92%

VGG16, SVM [33] 718 CT scans 83.5%
CovXNets [34] 305 X-rays 80.2%

RCNN, ResNet, ResNet101 [35] 669 CT scans 83%
SVM [36] 1380 CT scans 63%

VGG-16 [37] 1428 CT scans 82.5%

Segmentation techniques were used by M. Aleem et al. [35] to fragment the symptoms
of COVID-19 in the CT SCANS of the chest. The latest techniques of DL such as RCNN
were used with the backbone of Resnet. The system was trained on 669 CT scans having
313 positive COVID-19 patients and 356 healthy ones. They achieved an accuracy of 83%
with ROC scores of 85. With time, researchers kept working hard and coming up with new
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techniques as some researchers did [36] using SVM-based analysis of X-ray images. They
used support vector machines to differentiate between COVID-19 and normal subjects. The
dataset that was used for training and testing their system was 1380 CT scans; however,
the results were not that promising, with an accuracy of 63% and the ROC score of 72. M.
Pandit et al. worked on chest radiographs to detect the lung disease COVID-19. They used
techniques and achieved outstanding results. VGG-16 is used for classification purposes.
The dataset used for training and testing the system contains 1428 chest radiographs with
bacterial pneumonia, healthy, and COVID-19. They attained an accuracy of 82.5% [37].

Xingyi Yang et al. [30] provided a COVID CT dataset verified by the senior radiologist
of Tongji Hospital, Wuhan, China. They collected the data on COVID-19 and normal CT
images for the diagnosis of COVID-19; they collected data from different patients and
provided the manifest file of that data as well. They also developed an automatic disease
detection technique using these CT images and achieved an accuracy of 85%. We will use
this COVIDNet and COVID CT dataset and improve the classification results. In the medical
domain, experts are required to explain the reasons for classification results manually. We
are developing a framework that visually explains the deep learning classification model
results. We provide an output image highlighting the important features that participate in
the classification results. We evaluate the proposed model explanation with the radiologist
highlighting glass ground opacities in the CXRs.

The main contributions of this research are:

• In this research, an explainable AI framework is developed for detecting pulmonary
diseases where the classification model gives extra attention throughout the classifica-
tion task using chest radiographs.

• For the classification task, transfer-learning-based Resnet50 architecture is used. This
developed system secures superior classification accuracies compared to the existing
approaches by achieving 93% and 97% of pulmonary disease COVID-19.

• Interpretable Model-agnostic Explanations (LIME) are used to explain the classification
results. This unique explanation method may explain any classifier’s predictions in
a comprehensible manner that provides the explanation in the form of highlighted
regions in the input image in which part of the image is used in the classification result.

• For the evaluation of the explanation task, two CT images from a journal [38] are used
that are diagnosed and highlighted by a verified doctor. This research paper shows
that the interpretable model explains the same region that is highlighted by a doctor.

3. Proposed Methodology

The proposed methodology has a sequence of steps that include dataset understanding,
in which we understand the chest radiographs of humans and the importance of various
regions present in the CXRs images. The second step is feature map generation which
generates the feature maps of those CXRs images. We used the concept of transfer learning
in our methodology and used pre-trained Resnet50 for the classification of COVID-/NON-
COVID. Our final step is to explain the pulmonary disease classification results visually
using the interpretable model LIME. This developed framework takes a CXR image as input.
After that, it classifies the input image as COVID and NON-COVID. Once the decision
is made, we pass that image and classification prediction to the proposed explainable
model LIME, and then LIME will highlight the region of the input image. That highlighted
region shows which part of the CXRs images took part in the classification results. LIME
highlights the important features of the image with color. We evaluate our color region
with the manifest info file of the COVID-CT dataset. We check that the doctor mentioned
the same region while examining the CT scan of the COVID-19 patient so our model is
giving the same region. The complete workflow diagram of our methodology is shown in
Figure 1.
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Figure 1. The architecture diagram of the proposed method.

3.1. Dataset

The datasets are the backbone of every proposed method and architecture in the
computer vision and deep-learning domain. Any deep-learning system’s accuracy is
directly proportional to the above-mentioned parameter. Therefore, the proposed model is
about a vision-related problem; a dataset is required due to deep learning. We used the
COVID-CT [30] dataset and COVIDNet for COVID classification, and then we explain their
classification results. The dataset’s complete CXRs images and classes are given in Table 3.
The COVID-CT dataset includes 349 COVID-19-positive CT scans from 216 individuals
and 397 COVID-19-negative CT pictures from 397 patients. The dataset is freely available
to the public in order to promote COVID-19 CT-based testing research and development.
The distribution of the dataset into training, testing, and validation is shown in Table 4.

Table 3. Total sample and classes in COVID-CT and COVID-Net datasets.

Dataset Total Classes

COVID-CT 800 2
COVID-NET 19,000 3

Table 4. Sample data distribution in test, training, and validation of both COVID and non-
COVID class.

Type Non-COVID COVID

Train 234 191
Test 58 60

Validate 105 98

This dataset has the manifest information of each image that helps the researcher
understand the data images easily. In addition, the manifest file has information about
the patients’ medical history and lung scans. Figure 2 represents the distribution of the
proportion of CT manifestations of COVID-19. We used these mentioned features in the
explainability of chest radiographs.
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Figure 2. Chart of distribution of the proportion of CT manifestations of COVID-19.

3.2. Proposed CNN Model

Convolutional neural networks (CNNs) are a type of deep neural network that is
utilized in image recognition. In order for the CNN to function, the images provided as
input must be recognized by computers and translated into a processable format. As a
result, CXR images are transformed to matrix format first. Then, based on CXR image
differences and matrices, the system identifies which image belongs to which label. During
the training phase, it learns the consequences of these changes on the label and then uses
them to create predictions for fresh CXR images. We used a transfer learning technique
to transfer already learned weights to pass into the current deep learning problem. The
parameters of our transfer learning model are learning rates of 1× 10−4, 100 epochs, a batch
size of 32, and two classes either “COVID” or “Non-COVID”. Due to the small capacity
of the dataset in the current task, deep CNN can collect general characteristics from the
source dataset using the transfer learning approach. The transfer learning algorithms have
a number of benefits, including avoiding overfitting whenever the number of training
samples is restricted, lowering computation power, and speeding up system convergence.
Figure 1a shows the complete flow of our Res-net50 model. We utilized batch normalization
for each mini-batch to standardize the inputs to a layer. It normalizes the input layer and
rescales it to speed up the training process and for improving stability. Equations (1)–(4) is
the mathematical representation of Batch Normalization:

μ =
1
n ∑

i
Z(i) (1)

σ2 =
1
n ∑

i
(Z(i) − μ)

2
(2)

Z(i)
norm =

Z(i) − μ√
σ2− ∈ (3)

Z = γ ∗ Z(i)
norm + β (4)

Here, the mean is μ and the variance is σ; ε is a constant used for numerical stability;
the activation vector is Z(i); γ allows for adjusting the standard deviation; β allows for
adjusting the bias. Batch normalization made the training of the network faster. There
are two main ways of using learning algorithms from pre-trained networks in the context
of deep learning, extraction and fine-tuning of features. In our case, we used the second
approach to modify and fine-tune the traditional ResNe50 architecture. That helps to
outperform feature extraction and achieves better performance. The modified Resnet50
architecture generates the transfer feature map. The training of the Resnet50 model is
conducted by using available CXRs data and the transfer learning pre-trained weight.
For normalizing a neural network’s output to a probability distribution over expected
output classes, the SoftMax function was employed as the final activation function. It
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converts real values into probabilities by dividing the exponential of a particular class
by the sum of the exponential of all classes. In class, higher probability is considered the
output prediction. Totals of 349 COVID-19-positive CT scans and 397 COVID-19-negative
CT were used for training the proposed model for COVID-CT data, and 19,000 CXRs were
used for the COVID-NET dataset. After the training, we then saved the trained model that
will be further used in the classification task. The pseudocode for modified ResNet50 is
given below.

Pseudocode ResNet50

Input: Chest Radiographs
Output: classification results: Covid Or Normal
Start

lr← 1 × 10−4 lr is Initial_Learning_rate
Batch_Size← 32
Number_of_Epochs← 28
Base_Model← ResNet50(weights← “imagenet”, include_top← False,
input_tensor← Input (shape← (224, 224, 3))) ResNet50 is the base Model

headModel← baseModel.output
headModel← AveragePooling2D(pool_size← (7, 7))(headModel)
headModel← Flatten(name← “flatten”)(headModel)
headModel← Dense(256, activation← “relu”)(headModel)
headModel← Dropout(0.5)(headModel)
headModel← Dense(len(CLASSES), activation← “softmax”)(headModel)
model←Model(inputs← baseModel.input, outputs← headModel)
for layer in baseModel.layers:

layer.trainable← True
end for

opt← optimizers.Adam (lr← INIT_LR, decay← INIT_LR/Number_of_Epochs)
model.compile (loss← “binary_crossentropy”, optimizer← opt, metrics← [“Accuracy”])
H←model.fit_generator (trainGen, steps_per_epoch← totalTrain, validation_data←

valGen, validation_steps← totalVal, epochs← Number_of_Epochs)
End

3.3. Classification and Explanation

Instead of presenting our own architecture, available deep CNN architectures demon-
strated greater performance across a wide range of classification problems. ResNet50 has
a 50-layer variation of the residual neural network. Residual networks offer excellent
performance and feature count balance and a high training speed. Another advantage
of the residual network architecture is that it used different sizes of images for training.
ResNet50′s weights are pre-trained on the ImageNet dataset. This pre-trained model can
be used to classify pulmonary diseases COVID and NON-COVID. Figure 3 shows that our
system took the input CXR and provided the classification. The final step of the proposed
system was to explain the DL model and the reason behind the classification results.

The LIME interpretable model is used to explain and highlight the important features
that contributed to the classification result of pulmonary lung diseases. The sequence of
steps of the LIME Algorithm that we used to explain our classification results is given
below in Algorithm 1.

183



Cancers 2023, 15, 314

 

Figure 3. COVID-CT dataset training loss and accuracy.

Algorithm 1. LIME

Require: Classifier f, Number of samples N
Require: Instance x, and its interpretable version x′
Require: Similarity kernel πx, Length of explanation K
Z ← {}
for i ∈ {1, 2, 3,..., N} do

z′i ← Sample around (x′)
Z ← Z ∪ (z′i , f(zi), πx (zi))

end for

w← K-Lasso(Z, K) with z′i as features, f(z) as target
return w

Figure 1b shows the steps involved in the explainability using LIME. First, LIME
used CXR images as input and generated the sequence present in the image. After that, it
generated the interpretable representations and generated N samples. Then, it matched
each sample with the featured map of the input CXR images and calculated the predicted
label and distance from the predicted output. Following, these labels and distance values
were passed to a linear model that provided the explanations, and a specific result was
produced. LIME also highlighted the region in the CXRs image, which showed which
part of the image took part of the output. The system used a CXR image as an input
and classified the image as COVID and NON-COVID, and then LIME highlighted the
important regions in the image, which can clearly represent and explain the reasons for
classification results.

ξ(x) = argmin
gεG

L (f, g,π x) + Ω(g) (5)

The Equation (5) is used for the LIME explainability calculation. In this equation, f
is the model classifier, and G is a class of interpretable models. gG shows the learning
of a local explainable model, and is x the proximity measure. (g) is used to measure the
model complexity. The loss or distance function is denoted as L (f,g). After computing the
explainability, evaluation is carried out using some images from verified doctors.

4. Results and Discussion

This section presents the complete experiment setup, performance metrics, and results
of our classification deep learning models. We also discuss the results of the explain-
ability model that we used and show the highlighted regions. Finally, we evaluate the
explainability using our deep learning model highlighted region and compare it with the
doctor-identified region.
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4.1. Experimental Setup

In this research, we used suggested deep transfer learning models that were trained
using the Python language. All experiments were run on a Google Colaboratory (COLAB)
and the online cloud services with a free Central Processing Unit (CPU), NVIDIA K80
Graphics Processing Unit (GPU), and Tensor Processing Unit (TPU) hardware. By opti-
mizing the cross-entropy value with CNN models, ResNet50 was pre-trained with some
random initial weights. For overall experiments, the batch size, learning rate, and the
number of epochs were set at 3, 1 × 105, and 30, respectively. All samples were randomly
divided into two distinct datasets, with 80 percent used for training and 20 percent used for
testing. The k-fold approach was chosen as the cross-validation method, and results were
obtained using five distinct k values (k = 1–5). We first performed experiments using differ-
ent CNN architectures such as DenseNet169, MobileNet, COVID LargeNet, and Resnet50.
We trained these models using the COVID-CT dataset and calculated the training, testing,
and validation accuracies. We found that the ResNet50 performs best of all of them. We
used the transfer learning concept, fine-tuned the Resnet50, and found the best possible
results. The results of different CNN models are shown in Table 5.

Table 5. Results on different CNN models.

CNN Model Accuracy %

DenseNet169 85
MobileNet 83

COVID LargeNet 88
Our Model 93

We selected the Resnet50 model for our COVID-19 disease detection from the CXR
images after performing the experiments on different CNN models as we finalized the
Resnet50 model. We improved the base results; the next step was to explain the classifi-
cation results. However, before moving toward the final step, we performed some more
experiments and for that purpose, we trained the Resnet50 model on another dataset. The
second dataset was the COVIDNet dataset which has more classes. We used that dataset
for our problem and trained the Resnet50 on COVID-CT and COVIDNet datasets. We
calculated the results on both datasets, shown in Table 6. For the calculation of the final
results, we used some performance matrices that are discussed below.

Table 6. Classification results with ResNet50.

Measures COVID-CT Dataset COVID Net Dataset

COVID or NON-COVID COVID or NON-COVID
Precision 87-93 98-93

Recall 92-88 92-98
F1 Measure 90-90 95-95
Accuracy 93 97

4.2. Performance Matrices

In this paper, five parameters were used for measuring the performance of deep
transfer learning models, having their advantages and disadvantages. We describe them
one by one in the following Equations (6)–(10).

Accuracy: The correct predicted cases divided by a total number of cases gives us the
accuracy [19]. High accuracy means the model is predicting accurately. It is actually a sum
of true positives and negatives which is TP + TN divided by the sum of TP (True positives),
TN (True Negatives), FP (False positives), and FN (False negatives).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)
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Precision: Precision is called a number of the correct results out of the predicted results.
It is calculated by dividing true positives by the sum of true positives and false positives.

Precision =
TP

TP + FP
(7)

Specificity: A number of valid negative predictions divided by a total number of
negatives is known as specificity.

Specificity =
TN

TN + FP
(8)

Recall: The recall is defined as a number of the positive predicted results out of the
total positive cases, also known as Sensitivity and termed as the true positivity rate. It is
measured by true positives which are divided by the sum of true predictions.

Recall =
TP

TP + FN
(9)

F1. Measure: The harmonic average of precision and recall is used to get the F1 score.
To refresh your memory, the harmonic mean is indeed an alternative to the more commonly
used arithmetic mean. When calculating an overall average, it is very useful.

F1 Measure = 2 × Precision × Recall Precision + Recall (10)

By using these performance measures, the loss and accuracy of the Resnet50 model
calculated and accuracy on COVID-CT testing data are shown in Figure 3. This achieved
accuracy is 93% on 100 sets of epochs and for this dataset. The COVIDNet dataset has 97
accuracies on the Resnet50 model which is shown in Figure 4.

 
Figure 4. COVIDNet dataset training loss and accuracy.

The LIME interpretable model was used for the explainability of lung pulmonary
disease COVID-19. After understanding the manifest info file of the COVID-CT dataset,
we found some recurrence of the positive COVID CT images that is published in the 2020
International Journal. Figure 5 shows the region highlighted by the arrow by one of the
verified doctors, and he describes the reasons that caused the COVID-19. This red arrow
shows the multiple patchy ground-glass opacities in bilateral subpleural areas. These are
the main features of the CT images that took part in the COVID-19 classification result.
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Figure 5. Multiple patchy glass ground opacities in bilateral subpleural areas (red arrow).

The main goal of this paper is to explain the same regions that are highlighted by the
doctor after we classify the CT image as COVID. LIME took the same sample instance of
the COVID-CT image and step-by-step process of the image as shown in Figure 6. First,
it generates boundaries in the input image, finds the distance between the actual and
predicted feature map, and generates the label. Then, it shows the distance using a heat
map and highlights the region with color patches. These regions are the important feature
that took part in the classification results.

 

Figure 6. Explainability using LIME on CT-Image.

This research achieves the main goal using the LIME interpretable model. Further, re-
sults are evaluated using a recurrence image to verify model authenticity by cross validation
of experts as shown in Figure 7.

4.3. Comparative Analysis

The qualitative and quantitative comparative analysis is conducted with the state-of-
the-art methods. For quantitative analysis, we chose various state-of-the-art approaches
for comparison that performed well on COVID-19 classification. Instead of analyzing
each CXR image, we used the transfer learning approach to train the Resnet50 network
on the entire CXR images. Meanwhile, COVID-CT and COVID-Net were used for the
classification of COVID and NON-COVID. The results are shown in Table 6. We can view
that our developed framework achieved the highest accuracy.
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Figure 7. Before: Ground glass opacities highlighted by doctor, after: Same area highlighted by
our model.

Along with its quantitative solid performance, the proposed model’s explainability
is also promising. To enhance the prediction to be more explainable, the activation maps
are extracted by the developed method’s explainable module, which we visualized in
Figure 7. It can be seen that the proposed method would make a positive prediction by
focusing on the most important section of the CXR image, which can be designated as the
bilateral subpleural areas that show the ground glass opacities of the lungs. Furthermore,
rather than focusing solely on the image’s most important regions, we also consider the
local regional contribution to the forecast. As previously stated, the input images were
separated into many super-pixels, each of which had a similar visual pattern. This method
highlighted those super-pixels in each image that greatly contributed to the prediction, and
we can see that the regions with glass opacities are clearly highlighted for such a prediction.
The comparative analysis of different XAI systems’ clinical features is available in Table 7.
This research selects more clinical features to be explained in the developed framework
and provides greater explainability than the other available methods. In this research, the
developed explainable AI framework provides an explanation of local and global features.
As a result, it reveals that diseased areas can be easily identified using this system. The
proposed method explains pulmonary disease identification that can be used as a valuable
diagnostic tool for doctors.

Table 7. Clinical features analysis with XAI System.

XAI Methods XAI Clinical Features Agnostic or Specific Global/Local

GSInquire [24] Absorption Area Specific Local
SHAP, Grad-CAM++ [25] Glass Opacities Specific Local

Grad-CAM, LIME [21] Glass Opacities Specific Global
DeepCOVIDExplainer [29] Lesion Dissipation Agnostic Local

Proposed XAI Model
(LIME)

Lesion, Dissipation,
Consolidation area,

Absorption area, patchy Glass
Shadow, Glass Opacities

Agnostic Both

5. Conclusions

An explainable AI-based framework was proposed in this research to address the
challenge of classification result explainability in the healthcare domain using medical
images CXRs. This research presented a framework that provides the explainability of
lung pulmonary diseases, i.e., edema, tuberculosis, nodules, pneumonia, and COVID-19
using chest radiographs. This research used CXRs data from the two datasets COVID-CT
and COVIDNet to train the transfer-learning-based Resnet50 CNN model. This developed
system achieved improved classification accuracies of 93% and 97% on both datasets. After
classifying the pulmonary disease, this research further explains the classification results by
using the interpretable LIME model. Our developed framework explains the classification
results of the input CXRs image and highlights the region of the image that participates
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in the classification results. These highlighted regions are the important features that are
used in the classification of diseases. After that, we evaluated our explanation results by a
doctor-highlighted region image from the manifest file of the COVID-CT dataset and found
that our model highlights the same ground glass opacities regions as those highlighted by
the doctor. Evaluation and testing show that our approach can explain the classification
results using chest radiographs. This automatic classification and explanation of lung
pulmonary diseases can assist radiologists to detect and diagnose deadly lung diseases at
an early stage.
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Simple Summary: According to skin disease reports by healthcare organizations, the number of cases
of skin disease is growing gradually over the years globally. In skin disease diagnosis, dermatologists
examine skin cells by using a dermatoscope. Due to the global shortage of expert dermatologists,
mainly in developing countries, an accurate early skin disease diagnosis is not possible. To automate
the examination of skin disease images, computer-aided diagnosis-based tools are used in healthcare
and medical environments. Computer-aided diagnosis employs machine learning including deep
learning models on skin disease images to detect and classify skin diseases. The present work
proposes a deep learning-based model to accurately detect skin diseases and classify them into a
family of skin diseases using skin disease images. The proposed system demonstrated a performance
improvement of 4% accuracy for skin disease detection and 9% accuracy for skin disease classification
compared to the existing deep learning-based models. The proposed computer-aided tool can be
used as an early skin diagnosis tool to assist dermatologists in healthcare and medical environments.

Abstract: Deep learning-based models have been employed for the detection and classification of
skin diseases through medical imaging. However, deep learning-based models are not effective for
rare skin disease detection and classification. This is mainly due to the reason that rare skin disease
has very a smaller number of data samples. Thus, the dataset will be highly imbalanced, and due to
the bias in learning, most of the models give better performances. The deep learning models are not
effective in detecting the affected tiny portions of skin disease in the overall regions of the image. This
paper presents an attention-cost-sensitive deep learning-based feature fusion ensemble meta-classifier
approach for skin cancer detection and classification. Cost weights are included in the deep learning
models to handle the data imbalance during training. To effectively learn the optimal features from the
affected tiny portions of skin image samples, attention is integrated into the deep learning models.The
features from the finetuned models are extracted and the dimensionality of the features was further
reduced by using a kernel-based principal component (KPCA) analysis. The reduced features of
the deep learning-based finetuned models are fused and passed into ensemble meta-classifiers for
skin disease detection and classification. The ensemble meta-classifier is a two-stage model. The
first stage performs the prediction of skin disease and the second stage performs the classification by
considering the prediction of the first stage as features. Detailed analysis of the proposed approach is
demonstrated for both skin disease detection and skin disease classification. The proposed approach
demonstrated an accuracy of 99% on skin disease detection and 99% on skin disease classification.
In all the experimental settings, the proposed approach outperformed the existing methods and
demonstrated a performance improvement of 4% accuracy for skin disease detection and 9% accuracy
for skin disease classification. The proposed approach can be used as a computer-aided diagnosis
(CAD) tool for the early diagnosis of skin cancer detection and classification in healthcare and medical
environments. The tool can accurately detect skin diseases and classify the skin disease into their
skin disease family.

Keywords: skin disease; deep learning; transfer learning; attention; cost-sensitive; meta-classifier
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1. Introduction

In the present era, skin diseases are one of the leading infectious diseases among
people globally. Skin diseases are common in fair-skinned populations. Skin diseases
can be permanent or temporary and these are painless or painful. The number of cases
of skin cancer has been high in the recent year in the United States and Australia [1]. In
addition, the total cost involved in the treatment of skin diagnosis has been high compared
to other cancers and this was reported by the government of Australia and the United
States. A report by the Skin Cancer Foundation shows that the number of skin disease
cases continues to increase worldwide in the future [2,3]. Dermoscopy is a non-invasive
imaging technology that can examine skin lesions with a dermatoscope. This technology
removes the surface reflection of the skin and obtains more informative visual information
by going into deeper levels of the skin. This type of technology has enhanced the diagnosis
of skin cancer detection and classification. In developing countries and in the world,
the number of dermatologists is not sufficient, as skin diseases become high every year.
Moreover, dermatologists need to be experts with good experience in achieving good
accuracy otherwise the performance of dermatologists in accurately detecting skin disease
will not be high [2]. There may be a possibility that the appearance of multiple skin diseases
is similar and expert dermatologists’ accuracy on similar multiple skin disease diagnoses
will not be high.

To automate the diagnosis of skin lesion data samples, CAD tools were introduced [4].
CAD tools can be used for an early skin disease diagnosis. In the development of CAD-
based tools, to automate the process of skin disease detection and classification, researchers
employed various data mining and machine learning algorithms on the images of skin
diseases [5]. Various feature engineering and feature selection approaches were investigated
to accurately detect skin cancers by passing the features into various machine learning
and data mining algorithms. The survey of skin disease detection and classification shows
that there are various studies based on supervised, semi-supervised, and unsupervised
approaches [3]. The performance of supervised-based methods is high compared to the
semi-supervised and unsupervised approaches [6]. Thus, the current study considered
the supervised-based approach to accurately detect skin diseases and classify them into
their skin disease family. The major issue that exists in data mining and machine learning-
based skin disease detection and classification is that the model’s performance relies on
optimal features [7]. These features are extracted manually and require a domain-level
knowledge of image processing and skin diseases. This type of feature engineering and
feature selection process is not easy. This may require more cost, and time complexity
will be high.Most importantly, the attacker can compromise the CAD-based system if the
features are known using the concepts available in the domain of adversarial machine
learning. So, the machine learning-based CAD approach for skin disease detection and
classification may not be completely considered robust in an adversarial environment, since
the current healthcare system is connected to the internet and the healthcare networks and
their connected devices are open to attacks. In addition to the performance of the model,
the security of the model for skin disease detection and classification is important in the
healthcare environment. In addition to the robustness of the model, the generalization of
the model is important, i.e., there may be a possibility that the machine learning-based
model may not work well for new skin diseases or the variants of the existing skin disease
detection and classification.

A recent literature survey demonstrates that deep learning-based approaches were
employed for skin disease detection and classification [8]. The deep learning-based
approaches outperformed machine learning and data mining-based approaches in skin
disease detection and classification, using samples of skin images. Various studies reported
that the performance of deep learning is higher compared to the data mining and machine
learning-based studies on benchmark data sets, i.e., the International Skin Imaging
Collaboration (ISIC) archive. The studies have finetuned ImageNet-based pretrained
models for skin disease detection and classification and reported that the finetuned model
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performances are higher compared to the non-finetuned models. In addition to that,
the pretrained models require less time compared to the non-pretrained models. This
is mainly due to the reason that the ImageNet-based pretrained models were trained
with very big databases of natural images with several different classes. Though the
medical images are different compared to natural images, the weights learned on natural
images are finetuned with the medical images. This type of finetuned model shows
better performances in various medical image classification tasks including skin disease
detection and classification. The existing studies for skin disease classification using deep
learning-based pretrained models used SoftMax at the last layer with a fully connected
network for classification [3]. However, instead of using SoftMax, the features of the
finetuned models can be further passed into other classical machine learning classifiers
and this type of approach can be called a large-scale machine learning classifier. This
type of classifier has the capability to show better performances compared to the SoftMax
with a fully connected network. In addition to using one pretrained model for skin
disease detection and classification, an ensemble of pretrained models can be employed.
Since each pretrained model has the capability to extract its own features, there may be
a possibility that ensemble-based models can enhance the performance of individual
models. The survey shows that this type of ensemble approach demonstrates a better
performance compared to the individual classifiers [5]. The classes in the benchmark
datasets of skin diseases are highly imbalanced and most of the existing models for skin
disease classification are not effective in handling rare skin diseases. In order to handle
the data imbalance, authors have used data augmentation and Generative Adversarial
Network (GAN)-based approaches. However, these are not effective in handling the data
imbalance of skin diseases and though the studies reported good performances, there may
be a possibility that the models may not perform well on the datasets that are from different
modalities or patients from different regions. The proposed work’s major contributions are
given below

• The current work proposed an attention-cost-sensitive deep learning-based feature
fusion ensemble meta-classifier approach for skin cancer detection and classification.

• Detailed investigation and analysis of convolutional neural network (CNN)-based
pretrained model for skin disease detection and classification.

• Fusion of features from CNN-based pretrained models is proposed to enhance the
performance for skin disease detection and skin disease classification.

• Attention is integrated into the CNN-based pretrained model to extract the optimal
features to accurately detect skin diseases.

• Cost-weights are introduced during the training of a model to handle data imbalance
in the skin disease dataset.

• To improve the performance of the SoftMax-based fully connected network classifiers,
a two-stage classification model is proposed.

• Comparison of the proposed model with other CNN-based pretrained models and
other existing studies.

The remaining parts of the paper are organized as follows. The literature survey of
skin disease detection and classification is included in Section 2. Detailed information on
the proposed method is discussed in Section 3. The description of datasets is included in
Section 4 and statistical metrics are included in Section 5. Results and discussion of the
proposed approach for skin disease detection and classification are included in Section 6.
Finally, the conclusion and feature works are included in Section 7.

2. Literature Survey

Skin disease detection and its classification is a long-standing problem in the field
of artificial intelligence. Prior to deep learning, various feature engineering methods
were employed on the skin disease image database and further various classical machine
learning algorithms were employed for skin disease detection and its skin disease family
classification. However, with the recent surge of deep learning methods in performance
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improvement in various applications in medical imaging, the literature survey shows that
methods of deep learning have been employed for skin disease identification and skin
disease classification. The detailed literature survey summary of the existing methods for
skin disease detection, skin disease classification, and available datasets for skin disease
is discussed in detail by authors [2,3,5,8]. The literature survey shows that deep learning
and artificial intelligence-based approaches outperform dermatologists’ performance in
accurately detecting skin diseases and classifying them into their skin disease family.
However, there are various scenarios in which the best-performed model in the existing
survey may not perform well. One such case study is rare skin diseases or skin diseases
that have a smaller number of data samples. In addition to this, the performance of the
models can be enhanced by adding clinical features. In this literature survey section, the
existing works summary and its main limitations are discussed by comparing it with the
proposed work.

The GoogleNet Inception v3 CNN architecture was employed for skin disease
classification and its performances were evaluated against dermatologists against different
test cases [9]. However, the model performances were not evaluated in detail and the
models are not robust and generalizable. The ResNet50-based model was proposed for
skin disease classification [10]. The model performances were assessed in different test
cases with the involvement of healthcare and dermatologists. Though the proposed model
achieved better performances compared to the existing methods, the models cannot be
employed in a real-time environment, and in addition, this study cannot be considered for
benchmarking the machine learning and deep learning models. The reason is the dataset
was collected from different publically available sources and there may be overlapping
of samples in training, validation, and testing datasets. This is one of the reasons the
study reported good performances in all the test cases. Multichannel CNN with Gabor
wavelet-based approach is proposed for skin disease classification [11]. The authors
reported the performance of the proposed model by using ISIC 2017 datasets. Since the
dataset is highly imbalanced, the proposed method’s detailed study of handling rare skin
diseases is required. Without this, the proposed method may not be considered robust for
skin disease classification. In addition to that, the authors have considered only a smaller
number of classes from the dataset, mainly the performance of the study demonstrated for
melanoma skin disease. A hybrid of classical image processing feature engineering, clinical
features, and automated feature engineering using ResNet-50 models is proposed for skin
disease classification [12]. The performances of the proposed study were demonstrated on
the datasets NIH SBIR dermoscopy studies and ISIC 2018. Though the model reported
better performances on both datasets, the authors did not show the performance of the
proposed model in handling rare skin diseases.

To develop a generalized skin disease classification model, the authors adopted the
domain adaptation deep learning approach using CycleGAN and its performance shown
on the HAM10000 dataset [13]. The proposed model is generalized, and its experiments and
results reported by the authors show that the model was able to classify the skin disease
samples by handling different cohorts with different shifts. The patch-based attention
approach is proposed for skin disease classification [14]. To handle the data imbalance
after patching the skin disease samples, the proposed approach uses various cost-sensitive
approaches. The authors report that the proposed approach performs better than the
existing methods and handles data imbalances during training. The performance of the
methods was shown on more than one skin disease dataset, including the HAM10000
dataset. CNN-based approach with a novel optimizer-based approach is proposed for skin
disease classification using the ISIC skin disease dataset [15]. However, the authors did
not demonstrate a detailed analysis of the proposed model to identify the robustness and
generalization to accurately detect skin diseases. In [16], the authors used the support of
binary classification and enhanced the performance of the GoogLeNet and Inception-v3
model by 7% in skin disease classification with seven classes. The proposed model is not
effective in an imbalanced skin disease database, and in addition, the model is not effective
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in extracting the tiny portions of the infected region from the overall skin image. To increase
the number of data samples for rare skin diseases, StyleGANs approach is employed. Later,
the authors developed a method for skin disease classification by fusing the CNN-based
pretrained models. Though the proposed method alleviates the data samples for rare skin
diseases, the proposed StyleGANs may not generate samples that are similar to the samples
collected from the patients in real time. This type of GAN-based approach may not be
considered accurate to handle rare skin diseases.

A fusion of handcrafted features and automated features from a CNN-based deep
learning model was used in accurately detecting skin diseases [17]. Since the proposed
model depends on hand-crafted feature engineering, the model time complexity is high
and this type of approach may not be appropriate in a real-time skin-disease classification
system in the healthcare environment. This is because deep learning itself can identify
the optimal features and in addition to this, segmentation using deep learning can be
incorporated. A two-stage approach was proposed for skin disease classification [18]. The
first stage does the segmentation and classification of the segmented data classified in
the classification stage. The authors employed fully resolution CNN in the first stage
for segmentation and Inception-v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201
for classification. The authors have conducted a detailed study using ISIC 2016, 2017,
and 2018 datasets. The rare disease in ISIC datasets is handled using augmentation.
However, the data augmentation approach may not be the right approach to handle
the data imbalance and the literature survey on data augmentation shows that it cannot
improve the performance of rare skin diseases. To handle various image sizes of skin
disease, the authors have proposed a multiscale model with an ensemble of more than one
CNN-based pretrained model for skin disease classification [19]. The proposed approach
performances are demonstrated on the ISIC 2017 and 2018 datasets. Since the proposed
approach is cost-insensitive, the model performance may not be considered good in the
rare skin disease classification. With the aim to handle rare skin diseases in the ISIC 2018
dataset, the authors proposed a GAN-based approach for data augmentation and CNN for
classification [20]. The authors reported that the GAN-based data augmentation approach
with CNN performed better than the CNN. Data augmentation is not the right approach to
handle the imbalance in the skin disease data sets. It may be possible that the GAN-based
generated images are not entirely new samples and there will be a bias in learning.

The authors reported 7% improvement in accuracy by using clinical information along
with a skin disease image database [21]. This database is a privately collected dataset using
a phone camera. The dataset is balanced and moreover, there may be bias in training and
testing datasets. Since the authors have not demonstrated the datasets of training and
testing collected in different healthcare environments with different patients, the proposed
approach may not be considered robust for skin disease classification. An ensemble of
various pretrained model performances was shown for skin disease classification using
the ISIC 2018 dataset [22]. The proposed model may not be effective in achieving good
performance in classifying the rare disease as the proposed method is not giving any kind
of importance to the minor classes of skin disease during the training of an ensemble model.
To detect skin disease accurately, segmentation was employed before the classification [23].
The authors compared the proposed segmentation approach performance with U-Net,
and in all the test cases, the proposed approach demonstrated better performances. The
performance of CNN and other classical machine learning models’ performances were
demonstrated for classification. With several test cases, authors have demonstrated that the
proposed model shows better performances compared to the existing approaches using the
ISIC 2018 skin disease dataset. Though the proposed model is robust in accurately detecting
skin diseases, the authors did not show the proposed method’s performance in handling
rare skin diseases. A fusion of CNN-based pretrained models was proposed for skin disease
classification [24]. The performance of the proposed models was evaluated on the ISIC
2016 dataset. The authors report that the fused model demonstrates better performances
in detecting skin disease compared to the non-fused and existing studies. However, the
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detailed performance of the proposed study is not evaluated on ISIC 2016. Since the dataset
is highly imbalanced, it may be possible that the bias existed during learning a skin disease
model in training. The ResNeXt101-based model is evaluated for multi-class skin disease
classification using the HAM10000 dataset [25]. The authors reported that the proposed
model performed better than the non-pretrained and pretrained models. However, the
detailed performance of the proposed model is not shown for handling rare skin diseases.

A 34-layer residual network-based approach is proposed for skin disease classification
using the HAM10000 dataset [26]. The performance of the proposed approach is evaluated
in various clinical settings and the authors reported that the proposed approach performs
better than the existing methods, and in some test cases outperforms the dermatologists.
However, the robustness and generalizability of the proposed approach are not shown
in detail for skin disease classification. A decision fusion of GoogleNet, ResNet-101, and
NasNet-Large is proposed and its performances are shown on the skin disease classification
using the ISIC 2019 dataset [27]. The proposed method demonstrated better performances
compared to the related existing methods. However, the detailed evaluation and analysis
of the proposed method are not evaluated on rare skin disease classification. The inception-
v4-based model was proposed for skin disease classification [28]. The model uses a hybrid
of clinical features and images of skin disease and classifies the patient skin samples into
27 classes. The model performance on rare skin diseases is required to understand the
robustness of the proposed method in handling the imbalanced data set of skin diseases.
ResNet152 and InceptionResNet-V2 with a triplet loss-based approach were proposed for
identifying the skin disease and their performance was shown on a publically available
dataset [29]. The authors demonstrate that the method performed well compared to the
other methods, however, the detailed performance of the method is not demonstrated for
rare skin diseases or the minority classes of skin diseases. CNN-based model is proposed
for skin disease classification. The proposed model supports the multi-class skin disease
classification [30]. The performance of the proposed model is shown on the datasets of
ISIC-17, ISIC-18, and ISIC-19. These three datasets are well-known datasets and are used
for benchmarking the models of machine learning and deep learning in detecting skin
disease and classifying the detected skin disease to its skin disease family. All of these
three datasets are highly imbalanced, such as, some skin disease are rare, and contain
a smaller number of data samples. This may be one of the reasons that the proposed
method reports good performances even by using a non-pretrained CNN model. To handle
rare skin diseases, an attention-based GAN deep learning approach is proposed [31]. The
authors demonstrate that the proposed method generates skin disease samples that are
from different distributions and it is considered to be more effective than data augmentation.
However, even though the attention-based GAN has the capability to generate skin disease
samples from different distributions, the generated sample may not be the same as the data
samples collected from patients in real time.

The authors propose a three-stage approach for skin disease classification [32]. The first
stage employs MaskRCNN for segmentation and feature extraction using DenseNet in the
second stage and classification using a support vector machine (SVM). The proposed model
performances are demonstrated on the datasets of ISBI2016, ISBI2017, and HAM10000. The
experiments reported in the paper demonstrate that the proposed model achieves better
performances compared to the existing models. The proposed model is computationally
expensive and in addition, the proposed model performances are not shown in detail for
rare skin diseases. DenseNet201 network-based approach is proposed for skin disease
classification using HAM10000 dataset [33]. The proposed method demonstrated better
performances compared to the existing non-pretrained models. The authors did not show
detailed experiments on the generalization and robustness of the proposed method in
skin disease classification. A hybrid of MobileNet V2 and the long short-term memory
(LSTM)-based approach is proposed for skin disease classification [34]. This method has
outperformed the existing methods by showing more than 85% accuracy on the HAM10000
dataset. The robustness and generalizability of the proposed method for skin disease
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classification are not discussed in detail. The authors have demonstrated that the CNN-
based model performance is similar to the performance obtained from clinical experts [35].
However, the authors did not show a detailed analysis of the proposed approach in
different experimental settings. Thus, the proposed method cannot be considered robust
and accurate. The summary of the existing works on skin disease detection and skin disease
classification is summarized in Table 1.

Table 1. Summary of existing methods for skin disease classification.

Reference Methodology Dataset
Pretrained

Model

Effective
for
Class
Imbalance

Accuracy Attention
Large-
Scale
Learning

Feature
Fusion

[9] GoogleNet Inception v3 ISIC Archive Yes No 93.3% No No No

[10] ResNet50 ISIC Archive Yes No 82% No No No

[11] CNN ISIC 2017 Yes No 83% No No No

[12] ResNet-50 ISIC 2018 Yes No 94% No No Yes

[13] ResNet-152 HAM10000 Yes No 92% No No No

[14] SE-Resnext50 HAM10000 Yes Yes - Yes No Yes

[15] CNN ISIC Archive No No 97.49 No No No

[16] GoogLeNet Inception-v3 ISIC 2018 Yes No 67–73% No No No

[36] VGG, ResNet, AlexNet ISIC 2019 Yes No 95% No No No

[17]

VGG, ResNET-50,
Inception,
MobileNet, DenseNet,
Xception

ISIC 2018 Yes No 92.4 No Yes Yes

[18] Inception, ResNet
ISIC 2016,
2017, and
2018

Yes No 81.79 No No No

[19] EfficientNet ISIC 2016,
ISIC 2017 Yes No 86.2% No No Yes

[20] ResNet ISIC 2018 Yes No 95.2 Yes No No

[21] ResNet Private
dataset Yes No 79% No No No

[22] EfficientNet, ResNet ISIC 2019 Yes No - No No No

[23] CNN and Naïve Bayes ISIC Archive No No 93.6% No Yes No

[24]

VGG

ResNet

DenseNet

ISIC 2018 Yes Yes 87.06% No Yes Yes

[25] ResNeXt101 HAM 10000 Yes No 92.83% No No No

[26] ResNet HAM 10000 Yes No 80–90% No No No

[27] GoogleNet, ResNet-101, &
NasNet-Large ISIC 2019 Yes No 89% No No Yes

[28] Inception Private
dataset Yes No 70–75% No No No

[35] CNN Private
dataset No No - No No No

[29] ResNet152 and
InceptionResNet-V2

Private
dataset Yes No 87.42 No No No

[30] CNN

ISIC 2017

ISIC 2018

ISIC 2019

No No 85–90% No No No

[31] ResNet ISIC 2018 Yes Yes 70.1% Yes No No

[32] DenseNet

ISBI 2016

ISBI 2017

HAM10000

Yes No 93.6% No Yes No

[33] DenseNet HAM10000 Yes No 96.18 No No No

[34] MobileNet HAM10000 Yes No 85% No Yes No

Proposed
EfficientNetV2B0,
EfficientNetV2B1, &
EfficientNetV2B2

HAM10000,
ISIC Archive Yes Yes 99% Yes Yes Yes
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The detailed literature survey of the aforementioned works shows that ImageNet-
based pretrained models are employed for skin disease detection and its family
classification with the aim to enhance the performance of non-pretrained models.
However, the existing studies on skin disease databases demonstrate that the available
standard database in the literature is highly imbalanced, and also, some skin diseases are
rare. As a result, rare skin diseases contain very a much smaller number of data samples.
Thus, the existing models are not accurate in predicting this rare skin disease and the
existing models are highly dominant to the skin disease that are common and have a
very high number of data samples. In a skin image database, the disease is a tiny portion
of the overall skin image and it may be possible that the existing study might miss this
type of important tiny region in accurately identifying the skin disease. Even though the
CNN-based models have the capability to extract the important regions from the skin
disease image, extraction of important and optimal features from the infected region
in the overall image is limited by the CNN-based pretrained models. In addition, each
CNN-based pretrained models have the capability to extract its own features to accurately
identify the skin disease and classify the skin disease to its family. The features are unique
and disjoint from each other. In the proposed work, cost-sensitive learning is introduced
to the CNN-based pretrained model to avoid bias in learning during training, and equal
importance is given to all the classes of skin disease. The various EfficientNetV2-based
pretrained models were extracted and further, the dimension of the feature was reduced
using the dimensionality reduction approach, i.e., PCA. Further, the features are combined
and passed into the meta-classifier for skin disease detection and skin disease classification.
The stacked classifier is a two-level approach; the first level includes the random forest
(RFTree) and SVM for the prediction of skin disease, and later these predictions were
classified accurately using the logistic regression in the second level.

3. Proposed Methodology for Skin Cancer Detection and Classification

The proposed methodology for skin disease detection and skin disease classification is
shown in Figure 1. The details of the proposed architecture are given below.

The skin images of patients are preprocessed in the input layer. The preprocessing
includes transforming the dimension of the image into input dimensions of the CNN-based
pretrained model. After reading the image data, the data are transformed into the [0–1]
range by applying normalization.

The existing literature survey shows that the CNN-based pretrained models have
been employed for skin disease detection and classification. The pretrained models of the
ImageNet database are finetuned on the skin image database. This type of finetuned model
has demonstrated better performances compared to the non-finetuned models. This work
employs various CNN-based pretrained models for skin disease detection and classification.
The pretrained models considered in this work are Xception, VGG16, MobileNet, ResNet50,
InceptionV3, DenseNet121, EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, and
EfficientNetV2B2. All these models have an input layer, more than one hidden layer, and
a classification layer. In the hidden layer, the pretrained models contain more than one
convolution layer, pooling layer, and fully connected layers. Between the convolution and
fully connected layers, the model contains batch normalization and dropout layers.

The current work employs EfficientNetV2 model for skin disease detection and
classification. EfficientNetV2 model is a pretrained model on the ImageNet database.
This database contains 1000 classes of natural images and the models have learned a
rich feature representation by training a model using a very big image database. In this
work, the EfficientNetV2 pretrained model is finetuned on skin disease detection with
two classes by replacing the last layer of the EfficientNetV2 pretrained model and skin
disease classification with seven classes by replacing the last layer of the EfficientNetV2
pretrained model.
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Figure 1. Proposed methodology for skin disease detection and skin disease classification.

Recent years’ work demonstrates that many experiments carried out by researchers
find out the efficient CNN architecture in deep learning. The architecture maintains a
balance among accuracy, speed, FLOPs, etc. For example, to improve the performance of the
model with better accuracy, DenseNet and EfficientNet model were introduced. The same
authors of EfficienNet architecture studied the limitations of the EfficienetNet architecture
and developed a new architecture called EfficientNetV2. EfficientNetV2 is a family of
models such as EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2, EfficientNetV2B3,
EfficientNetV2S, EfficientNetV2M, and EfficientNetV2L. In EfficientNetV2 architecture, the
authors developed techniques to improve the model performances with a smaller number
of parameters and improve the model inference time. The authors included the following
techniques in EfficientNetV2:

• Neural architecture search (NAS): To find optimal parameters and model design, the
authors employ random search and reinforcement learning techniques.

• Scaling: Authors have employed the compound scaling rule of the EfficientNet model.
However, the modification was conducted to the compound scaling scheme to avoid
memory issues due to the increase in the size of the image.

• Training: Authors employ new regularization methods, and training model guidelines
to improve the efficiency during training of an EfficeienNetV2 model.

• Progressive learning: The training of the model is accelerated by progressively
increasing the size of the image.

• Convolutions and their building blocks: The EfficientNetV2 models use various types
of convolutions, mainly Fused-MB Conv instead of MB Conv. The detailed architecture
information of Fused-MB Conv and MB Conv is shown in Figure 2.
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Figure 2. Architecture of MBConv and Fused-MBConv.

The above-modified methods make the EfficientNetV2 model achieve better
performance by increasing the speed during training a model compared to EfficientNet
models ranging from B0 to B7.

Since the CNN-based pretrained models are ineffective in handling the imbalanced
datasets, the current work integrates a cost-sensitive learning approach for CNN-based
pretrained models. During backpropogation, the current work follows an algorithmic
approach to include the misclassification costs to handle the bias in the training of a model.
The skin disease sample of patient S is connected with a cost item [C[class(S), t], where
class(S) and t are the actual and predicted class, respectively. The current work assigns less
cost to the classes that contain more data samples and high cost to the classes that contain a
lesser number of skin disease data samples. Since the values of the cost matrix are empty
at the beginning, the current work follows the Gaussian distribution to assign the values
for the cost matrix. These values in the cost matrix are finetuned across epochs. The loss
function for cost-insensitive CNN-based pretrained models is defined as

J = − ∑
s∈samples

∑
n

tn log predn (1)

The loss function for the cost-sensitive model is given below:

J = − ∑
s∈samples

∑
n

tn log prednC[class(s), n] (2)

where S is a loss function, predn denotes the predicted output of the nth output neuron,
tn is the target value, C[class(s), n] denotes the cost with class(s) and is the exact value of
sample s, and n is the predicted class of sample s.
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The EfficientNetV2 models such as EfficientNetV2B0, EfficientNetV2B1, and
EfficientNetV2B2 networks contain more than one convolutional layer and pooling layers
followed by a series of fully connected layers. There may be a possibility that passing
the high-dimensional feature representation learned from the series of a convolutional
and pooling layer to a fully connected layer results in overfitting and hinders the model’s
generalization ability. Since more than one fully connected layer is involved at the end
of the networks before classification, dropout and regularization layers are required.
There may be a possibility that the dropout and regularization layers result in the loss of
important features. To overcome the series of fully connected layers with dropout and
regularization layers, in this work, instead of passing the extracted features from finetuned
model to global average pooling, the current work sends the extracted features to an
attention layer. Global average pooling is a simple approach that estimates the average
output of each feature map in the previous layer. Since some of the features are more
important than others in each feature map of the previous layer, an attention mechanism is
introduced that turns pixels in the GAP on or off. Next, rescale results on the number of
pixels. The attention approach employed in this work is similar to global weighted average
pooling. Since the dimensionality of the features of the finetuned model is high, KPCA is
used. This helps to reduce the dimension of the features. KPCA is an improved version
of PCA. It employs a kernel that allows projecting the data onto a higher dimensional
space where the data points become linearly separable. Though there are many types
of kernels available, this work employs the Radial basis function (rbf). This is mainly
due to the reason that the data samples of skin disease are highly non-linearly separable.
This is mainly due to the reason that the skin disease is very similar to each other. There
may be a possibility that other kernels might perform better than the rbf kernel. Thus, a
detailed analysis of the importance of kernel and other hyperparameters of KPCA will
be considered as future work. The reduced feature representation of EfficientNetV0,
EfficientNetV1, and EfficientNetV2 are fused. Since there are many advanced feature
fusion methods available in the literature, employing them in the current work to learn
better feature representation to accurately detect skin disease and classify them into their
skin disease family will be considered as one of the significant directions toward future
work. Further, the reduced features were passed into the ensemble meta-classifier.

The meta-classifier is a two-stage classifier, the first stage contains SVM and RFTree for
prediction and the second stage contains the logistic regression for classification. SVM is a
kernel-based machine learning algorithm used for solving problems related to classification
and regression. SVM considers each data point in skin disease data samples in an n-
dimensional plane and partitions them into two classes. The hyperplane line is selected
based on the maximum margin among the two classes’ data points to distinguish the two
classes. The selection of the kernel plays an important role in achieving good performance.
The most commonly used kernels are rbf, linear, and poly. RFTree randomly constructs
multiple decision trees and applies the input datasets. The output classification of each
decision tree is considered to perform the ensemble learning to determine the final output.
One of the well-known ensemble methods used in classification is the maximum number
of RFTree trees voted for any particular class, considered as the outcome of the given
input. Logistic regression is the probability modeling of the outcome given an input
variable. Logical regression can be used for solving binary or multi-class problems. The
logistic function will be a Sigmoid function taking any input value and classifying it as 0
or 1 for the binary classification of skin diseases. These machine learning classifiers are
used in our framework to perform the ensemble meta-classifier-based feature fusion skin
disease detection and classification. The SVM, RFTree, and logistic regression classifiers
have parameters. The optimal performance depends on the parameters. This work has
run several trials of experiments to identify the best parameters for SVM, RFTree, and
logistic regression. The best parameters for SVM are tolerance = 0.0001, max iter = 5000,
kernel = linear, and regularization parameter C = 1.0. The important parameters and the
values of RFTree are n_estimators = 100 and max depth = 200. For both SVM and RFTree,
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random_state is set to 50. In logistic regression, tolerance, max_iter, and c is set to 0.0001,
100, and 1.0, respectively.

The steps involved in skin disease detection and skin disease classification using the
proposed model are shown in Algorithm 1. Skin disease and Healthy samples are inputs to
the proposed model and after that, the images are passed through several hidden layers
to extract the features to recognize skin diseases. Finally, the proposed model outputs the
label for the skin samples as either Healthy or Malignant in skin disease detection, and in
the case of skin disease classification, the skin samples are classified into corresponding
skin disease families.

Algorithm 1: Skin disease detection and classification.
Input: A set of Healthy and skin disease color images img1, img2,..., imgn.
Output: Labels y1, y2,..., yn.
for each color image imgi do

// EfficientNetV2B0 architecture
feature maps Fm0 = ConvolutionalLayers(imgi);
gwap features G0 = GlobalWeightedAveragePooling(Fm0);

// EfficientNetV2B1 architecture
feature maps Fm1 = ConvolutionalLayers(imgi);
gwap features G1 = GlobalWeightedAveragePooling(Fm1);

// EfficientNetV2B2 architecture
feature maps Fm2 = ConvolutionalLayers(imgi);
gwap features G2 = GlobalWeightedAveragePooling(Fm2);

// Dimensionality reduction
reduced features RFB0 = KPCA(G0);
reduced features RFB1 = KPCA(G1);
reduced features RFB2 = KPCA(G2);

// Feature Fusion
fused features FF = RFB0 + RFB1 + RFB2;

// Ensemble meta-level classifier
// Stage 1: Base-level classifiers
prediction P1 = SVM(FF);
prediction P2 = RandomForestClassifier(FF);

// Stage 2: Meta-level classifier
Compute yi = LogisticRegression(P1, P2);
// Skin disease detection
yi: 0 (Healthy) and yi: 1 (Skin disease);
// Skin disease classification
yi: 0 (Melanocytic nevi), yi: 1 (Melanoma), yi: 2 (Benign keratosis-like lesions),

yi: 3 (Basal cell carcinoma), yi: 4 (Actinic keratoses), yi: 5 (Vascular lesions), yi:
6 (Dermatofibroma);

end

The proposed model takes skin disease image samples as input and outputs a value as
either skin disease or healthy. Further, the model classifies the detected skin disease into its
skin disease family.

203



Cancers 2022, 14, 5872

4. Description of Datasets

The detailed statistics of skin diseases databases used in skin disease detection and
skin disease classification are provided in Tables 2 and 3, respectively. The data statistics
show that the datasets are highly imbalanced. Without the proper handling of this type
of dataset during training a model, there may be a possibility that due to bias, the models
demonstrate better accuracy. The models might not learn better feature representation of
the minority classes of skin diseases. To avoid this, the current work assigns the higher
cost weights for the minority classes and lower-cost weights for the majority classes of skin
disease during training a model. This type of assignment of cost-weights during training a
model helps to avoid bias and gives importance to all skin diseases.

Skin disease samples of Healthy and Malignant are shown in Figure 3. These images
are randomly chosen from the skin disease detection dataset. The images for skin disease
detection are taken from the publicly available data repository, the ISIC archive. The images
shown in Figure 3 demonstrate that the skin samples, both healthy and malignant, have
higher intra-class and inter-class similarity. Since most of the samples of healthy and
malignant look similar, there may be a chance that misclassification can be performed by
the dermatologists. The chances of misclassification rate are very high. To avoid this, this
work proposed a CAD-based tool by using an advanced deep learning approach with
meta-classifier learning that extract the optimal features to accurately discriminate between
the healthy and malignant.

Figure 3. Skin image samples of healthy and malignant from skin disease dataset.

A benchmark dataset for the development of CAD-based tools provided by the ISIC.
The HAM10000 (“Human Against Machine with 10000 training images”) skin disease
dataset is publicly available in the ISIC archive. The HAM10000 dataset is considered to be
one of the well-known datasets and it is used in many studies to benchmark the machine
learning and deep learning models for skin disease detection and skin disease classification.
This dataset was collected from different populations with different modalities. Patients are
from both male and female groups and most patients’ ages are in the range of 30 to 44. The
data of skin disease classification shows that the skin disease increases with the increase
in the age. Skin diseases are less for children aged less than 10. Skin diseases are most
prominent if males are compared to females according to the skin disease classification
dataset i.e., HAM10000. The most found skin disease among people is melanocytic nevi
and the least found is dermatofibroma. Skin diseases are taken from the different regions
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of the body. The regions are the back, lower extremity, trunk, upper extremity, abdomen,
face, chest, foot, neck, scalp, hand, ear, genital, and sacral. Most patients are affected by
skin disease in the back region and it is most prominent in men. Benign keratosis-like
lesions are affected in the region face and Melanocytic nevi are affected in body parts of
the patients except for the face. Melanocytic nevi diseases are the most prominent skin
disease in the age group between 0–75. People aged 80–90 are affected more by Benign
keratosis lesions. Skin disease in HAM10000 datasets is discovered by using histopathology
(53.3%), follow-up examination (37.0%), expert consensus (9.0%), and confirmation by
in-vivo confocal microscopy (0.7%). The samples were taken from different places in the
patient’s body. This dataset is composed of 10,015 dermatoscopic images. The ground truth
of the images is conducted by expert pathologists and medical experts. The images in the
HAM10000 dataset were collected from the Department of Dermatology at the Medical
University of Vienna, Austria, and Cliff Rosendahl in Queensland, Australia for a time
period of around 20 years. Thus, the database is good and contains skin patient samples for
various skin diseases. The images in HAM10000 are from seven different skin diseases. The
detailed information on skin diseases and the technology involved in the database creation
is discussed in detail by the authors [37].

Table 2. Statistics of skin disease detection dataset.

Class Training Testing Total

Healthy 1440 360 1800

Malignant or Skin Cancer 1197 360 1557

Total 2637 720 3357

Table 3. Statistics of skin disease classification dataset.

Class Training Testing Total

Melanocytic nevi (nv) 6034 671 6705

Melanoma (mel) 1005 108 1113

Benign keratosis-like lesions (bkl) 989 110 1099

Basal cell carcinoma (bcc) 463 51 514

Actinic keratoses (akiec) 290 37 327

Vascular lesions (vasc) 130 12 142

Dermatofibroma (df) 102 13 115

Total 9013 1002 10,015

The samples of healthy and skin disease samples are shown in Figure 3. Skin disease
samples of seven classes are shown in Figure 4. As shown in Figures 3 and 4, the
samples belonging to various classes in both datasets of skin disease detection, skin disease
classification are similar and they have high intra-class and inter-class variance. In addition
to that, the tiny affected region is important in accurately detecting and classifying the
skin disease to its family of skin diseases. There may be a possibility that the CNN-based
models might not give importance to these tiny regions. To avoid this, the current work
integrates attention to the CNN architecture that can focus on the infected regions in the
skin disease image.
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Figure 4. Skin disease samples of 7 classes in skin disease classification.

5. Statistical Metrics

The proposed model for skin disease detection and skin disease classification is
evaluated using the following statistical measures

Accuracy: The accuracy measure is estimated by dividing the total of correctly
classified skin data samples by the total number of skin disease data samples. The accuracy
metric gives equal importance to all the classes in the skin disease dataset. This may not be
considered to be a good metric to evaluate the proposed model because the dataset used in
skin disease classification is highly imbalanced.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)
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Precision: It is also called positive predictive value. It is the correct classification of the
skin disease samples to the sum of the correct classification of the skin disease and incorrect
classification of the skin disease in the given model. False positives should be less to get
high precision.

Precision =
TP

TP + FP
(4)

Recall: It is also called sensitivity. It is the correct classification of the skin disease to
the sum of the correct classification of the skin disease and the missed classification of the
skin disease in the given model. False negative should be less to obtain high recall.

Recall =
TP

TP + FN
(5)

F1-score: It is the harmonic mean of precision and recall

F1 score = 2× Precision× Recall
Precision + Recall

(6)

For a good skin disease detection and classification model, the precision, recall, and
f1-score is close to 1.

TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative,
respectively, in accuracy, precision, recall, and f1-score. These are defined in the skin disease
dataset, as given below

• TP: The number of skin disease data samples correctly predicted as skin disease.
• FN: The number of skin disease data samples wrongly predicted as normal.
• TN: The number of healthy patient data samples predicted as healthy.
• FP: The number of healthy patient data samples predicted as skin disease.

Using a confusion matrix, the TP, TN, FP, and FN are obtained. The confusion matrix
counts the distribution of predictions across the actual labels of the skin disease dataset.
The dimension of the confusion matrix is nXn, and n denotes the number of classes in
the skin disease dataset. To estimate the performances of the proposed model at the class
level in both skin disease detection and skin disease classification, precision, recall, and
f1-score statistical metrics were considered in this work. The performances are reported for
both the macro and weighted metrics of precision, recall, and f1-score. Macro measures
are considered to be better for imbalanced datasets because the classes in the skin disease
datasets are considered equally while computing the arithmetic mean of precision, recall,
and f1-score of all the skin diseases. In the weighted metric, a support score is assigned
while computing the arithmetic mean of precision, recall, and f1-score of all the skin
diseases. The models are considered to be good if it shows high precision and high recall
for rare skin diseases.

6. Results and Discussions

The experiments were conducted on the Kaggle GPU platform with hardware
configurations: GPU P100 with 16 GB GPU memory, 13 GB CPU RAM, and 73.1 GB hard
disk and libraries such as Keras, TensorFlow, scikit-learn with Python 3.5 for machine
learning and deep learning model development.

CNN-based pretrained models were trained on skin disease detection and skin
disease classification. The CNN-based pretrained models considered in this work are
Xception, VGG16, MobileNet, ResNet50, InceptionV3, DenseNet121, EfficientNetB0,
EfficientNetV2B0, EfficientNetV2B1, and EfficientNetV2B2. These models contain several
network parameters and network structures. The optimal performance depends on these
network parameters and network structures. To find the best parameters for the network,
various trials of experiments were run for the parameters’ optimizer, learning rate, epochs,
and batch size. During training, the data samples in training and validation sets are
shuffled to avoid bias in the training of a model. The optimal parameters for learning

207



Cancers 2022, 14, 5872

rate, epochs, batch size, and optimizer were 0.001, 50, 64, and adam, respectively. Various
trials of experiments were run for optimizers such as adam, sgd, Adagrad, Adamax, and
Nadam. The experiments with adam demonstrated successive improvement in training
accuracy and validation accuracy and successive decrement in training loss and validation
loss across epochs. Based on this, the optimizer parameter value is set to adam for the rest
of the experiments. Next, to identify the optimal learning rate, the experiments were run
for the learning rate in the range of 0.0001–0.5. The experiment with 0.001 demonstrated
better training accuracy, validation accuracy, training loss, and validation loss during
training. Thus, the learning rate is set to 0.001. To find the optimal parameters for batch
size, the experiments were run for batches 32, 64, and 128. Due to limited access to
memory, the batch size was not increased after 128. The experiments with 64 and 128 were
almost similar in training accuracy and validation accuracy across epochs. Thus, the batch
size is set to 64. Though batch size 128 slightly shows better performances for training
accuracy and training loss, the batch size is set to 64. Because some of the CNN-based
pretrained models result in memory issues, to find out the best parameter for epochs, the
experiments were run for 70 epochs. However, all the models have not demonstrated
any successive improvement in training accuracy and successive decrease in training
loss after 50 epochs. Thus, we decided to set 50 epochs as optimal for the training of a
model to detect skin diseases and classify them into the skin disease family. The training
accuracy and training loss for the CNN-based pretrained models across 50 epochs for
skin disease detection is shown in Figure 5. Figure 6 shows the training accuracy and
training loss for the CNN-based pretrained models for skin disease classification. The
models belonging to the EfficientNetV2 family demonstrated better accuracy by showing
successive improvement in training accuracy and successive decrement in training loss
compared to other CNN-based pretrained models in both skin disease detection and skin
disease classification. Though the other models attained closer performance of training
accuracy and training loss as EfficientNetV2, most of the models other than EfficientNetV2
did not show the same performance during testing. This is mainly due to the reason
that most of the models other than EfficientNetV2 have reached the phase of overfitting
and the models were not able to discriminate well among classes during testing for
the new variants of skin disease images. VGG16 and MobileNet models demonstrated
less performance in training accuracy and training loss compared to other CNN-based
pretrained models in both skin disease detection and skin disease classification. Xception,
DensNet121, ResNet50, and InceptionV3 models’ performance in terms of training accuracy
and training loss were almost similar across epochs 50 but less compared to the models
of a family of EfficientNet in both skin disease detection and skin disease classification.
For skin disease detection, most of the models have demonstrated above 96% training
accuracy and less than 0.1 training loss. EfficientNet models have reached above 99%
training accuracy and less than 0.001 training loss for skin disease detection at the end of
epochs 50. Most of the models have reached an accuracy of 95% and loss of less than 1
by epochs in the range of 15–20 for skin disease detection. The experiments were run to
50 epochs because the models have demonstrated successive improvement in training
accuracy and training loss after 20 epochs. Similar performances were demonstrated by the
CNN-based pretrained models for skin disease classification. In particular, the family of
EfficientNet models has achieved 99% training accuracy with less than 0.01 training loss
for skin disease classification. Most of the CNN-based models have demonstrated above
95% training accuracy and less than 0.1 training loss at epochs in the range 20–25. The
experiments were continued until epoch 50 because the model has demonstrated a little
successive improvement after epoch 25.
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Figure 5. Training accuracy and training loss of CNN-based finetuned models for skin disease
detection (left to right).

Figure 6. Training accuracy and training loss of CNN-based finetuned models for skin disease
classification (left to right).

The total parameters for Xception, VGG16, MobileNet, ResNet50, InceptionV3,
DenseNet121, EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, EfficientNetV2B2 are
23025711, 15306055, 4344519, 25751943, 23967015, 8153159, 5427363, 5427363, 7953031,
and 9277433, respectively. The train parameters for Xception, VGG16, MobileNet,
ResNet50, InceptionV3, DenseNet121, EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1,
fficientNetV2B2 are 22971183, 15306055, 4322631, 25698823, 23932583, 8069511, 5385347,
5385347, 7890983, and 9209865, respectively. The non-train parameters for Xception, VGG16,
MobileNet, ResNet50, InceptionV3, DenseNet121, EfficientNetB0, EfficientNetV2B0,
EfficientNetV2B1, fficientNetV2B2 are 54528, 0, 21888, 53120, 34432, 84648, 42016, 42016,
62048, and 67568, respectively. The trained models’ performances of CNN finetuned
models for skin disease detection are reported in Table 4. Table 4 shows that the proposed
model outperformed all the CNN-based pretrained models for skin disease detection
with an accuracy of 99%. Results of the CNN-based models are reported in terms of
Accuracy, weighted and macro precision, weighted and macro recall, and weighted and
macro f1-score. The proposed model has improved the accuracy by 2% of the family
of EfficientNetV2 models and 3% of the family of EfficientNet models. This shows
that each CNN-based pretrained models learn its own feature representation and these
features are unique. The proposed model takes advantage of the fusion of features of
the family EfficientNetV2 models to accurately detect skin disease. Models such as
ResNet50, InceptionV3, DenseNet121, and Xception demonstrated an accuracy of 92%,
93%, 93%, and 93%, respectively. These models performed lesser than the proposed model
by accuracy in the range of 6–7%. In addition, the performances shown by ResNet50,
InceptionV3, DenseNet121, and Xception on the test dataset for skin disease classification
are lesser compared to the family of models of EfficientNet. Both the MobileNet and
VGG16 demonstrated performances in terms of accuracy in the range of 88–89% for skin
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disease detection which is lesser than 10% accuracy compared to the proposed model.
Overall, both MobileNet and VGG16 performed lesser than the proposed model, a family
of EfficientNet models, and models such as ResNet50, InceptionV3, DenseNet121, and
Xception. Along with accuracy, the performances for skin disease detection are reported in
terms of macro and weighted precision, recall, and f1-score. The proposed model macro
precision, macro recall, and macro f1-score is 99%, 99%, and 99%, respectively. Similar to
the macro score, the proposed model showed 99% for weighted precision, weighted recall,
and weighted f1-score. This indicates that the proposed model is effective in handling
the imbalanced dataset. Macro and weighted performances of the proposed model are
2–3% higher compared to the family of EfficientNet models, 6–7% higher compared to the
models such as ResNet50, InceptionV3, DenseNet121, and Xception, and 10–12% higher
compared to the models such as VGG16 and MobileNet. Overall, the proposed method
outperformed the existing CNN-based models and a family of EfficientNet models with
better accuracy, precision, recall, and f1-score metrics for skin disease detection. The less
performance in terms of accuracy, precision, recall, and f1-score are shown by the models
such as MobileNet and VGG16.

Table 4. Detailed results for skin disease detection.

Model Accuracy Type Precision Recall F1-Score
Confusion
Matrix

Xception 0.93
Macro 0.93 0.93 0.93 [342 18]

[34 326]Weighted 0.93 0.93 0.93

VGG16 0.89
Macro 0.89 0.89 0.89 [333 27]

[50 310]Weighted 0.89 0.89 0.89

MobileNet 0.88
Macro 0.89 0.88 0.88 [330 30]

[53 307]Weighted 0.89 0.88 0.88

ResNet50 0.92
Macro 0.92 0.92 0.92 [336 24]

[36 324]Weighted 0.92 0.92 0.92

InceptionV3 0.93
Macro 0.93 0.93 0.93 [338 22]

[31 329]Weighted 0.93 0.93 0.93

DenseNet121 0.93
Macro 0.93 0.93 0.93 [340 20]

[32 328]Weighted 0.93 0.93 0.93

EfficientNetB0 0.96
Macro 0.96 0.96 0.96 [350 10]

[19 341]Weighted 0.96 0.96 0.96

EfficientNetV2B0 0.97
Macro 0.97 0.97 0.97 [352 8]

[16 344]Weighted 0.97 0.97 0.97

EfficientNetV2B1 0.97
Macro 0.97 0.97 0.97 [355 5]

[16 344]Weighted 0.97 0.97 0.97

EfficientNetV2B2 0.97
Macro 0.97 0.97 0.97 [355 5]

[16 344]Weighted 0.97 0.97 0.97

Proposed 0.99
Macro 0.99 0.99 0.99 [357 3]

[5 355]Weighted 0.99 0.99 0.99
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For skin disease classification, the current work employed CNN-based pretrained
models, and its results are reported in Table 5. The proposed approach outperformed
all the other methods for skin disease classification in all the settings of test experiments.
The table contains the results of the CNN-based pretrained models in terms of Accuracy,
weighted and macro precision, weighted and macro recall, and weighted and macro
F1-score. Since the dataset of skin disease classification is highly imbalanced, the work
considers macro precision, macro recall, and macro f1-score. To demonstrate the differences
between macro and weighted, this work reports the performances of all the models in
both macro and weighted. As can be observed from the Table 5, the models show high
precision, high recall, and high f1-score even though the misclassification rate is high in
some rare skin diseases such as Dermatofibroma and Vascular lesions. The proposed
model showed macro precision, macro recall, and macro f1-score of 97%, 100%, and 99%,
respectively, and weighted precision, weighted recall, and weighted f1-score of 99%,
99%, and 99%, respectively. Though there is misclassification in the skin disease classes,
the weighted measure shows 99% for precision, recall, and F1-score. However, macro
precision, macro recall, and macro f1-score are considered to be best compared to weighted
metrics because these metrics facilitate showing the individual class’s score with support
instead of taking the average of all the classes. The family of EfficientNetV2 models
showed better macro precision, macro recall, and macro f1-score over EfficientNetB0.
The EfficientNetV2 models improved the macro precision, macro recall, and macro
weighted metric of EfficientNetB0 model by 18%, 8%, and 13%, respectively. In a
family of EfficientNetV2 models, EfficientNetV2B2 models outperformed the models
EfficientNetV2B0 and EfficientNetV2B1 in all the settings of the experiments during testing
a model for skin disease classification. The experiments are stopped at EfficientNetV2B2
models because there was no performance improvement by using other EfficientNetV2
models. Macro and weighted metrics of ResNet50, InceptionV3, and DenseNet121 models
are in the range of 50–65%, 50–65% and 80–90%, respectively. These models’ performances
are 30% lesser than the proposed model and a family of EfficientNet model compared to
macro metrics and 20% lesser compared to weighted metrics of the proposed model and a
family of EfficientNet models. Xception, VGG16, and MobileNet models showed macro
precision, macro recall, and macro f1-score in the range of 40–60% and weighted precision,
weighted recall, and weighted f1-score in the range of 80–90%. These model performances
are almost 30% less compared to the macro metric of the proposed model and 10% less
compared to the weighted metric of the proposed model. The proposed models showed an
accuracy of 99% for skin disease classification by improving the accuracy in the range of
8–9% for the family of EfficientNet models. Models such as DenseNet121, InceptionV3, and
ResNet50 showed an accuracy of 93%, 93%, and 92%, respectively, and their performances
are lesser compared to the proposed model and the family of EfficientNet models. Similar
to skin disease classification, models such as Xception, VGG16, and MobileNet showed
an accuracy of 83%, 79%, and 76%, respectively. The model performances of Xception,
VGG16, and MobileNet are lesser compared to the proposed model and other CNN-based
pretrained models such as a family of EfficientNet models, DenseNet121, InceptionV3,
and ResNet50. Overall, the proposed model showed better performances in accuracy and
both macro and weighted metrics compared to the other CNN-based pretrained models.
Since the proposed model has shown better performances in macro metrics compared
to the existing CNN-based models on skin disease classification, the proposed model
is considered to be effective in handling imbalanced skin disease datasets. Moreover,
the proposed model is able to detect and classify rare skin diseases such as Vascular
lesions and Dermatofibroma more accurately compared to other existing CNN-based
pretrained models.
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Table 5. Detailed results for skin disease classification.

Model Accuracy Type Precision Recall F1-Score

Xception 0.83
Macro 0.57 0.59 0.58

Weighted 0.84 0.83 0.84

VGG16 0.79
Macro 0.50 0.51 0.50

Weighted 0.80 0.79 0.80

MobileNet 0.76
Macro 0.46 0.44 0.44

Weighted 0.78 0.76 0.77

ResNet50 0.85
Macro 0.56 0.55 0.54

Weighted 0.86 0.85 0.85

InceptionV3 0.89
Macro 0.59 0.60 0.59

Weighted 0.88 0.89 0.88

DenseNet121 0.90
Macro 0.61 0.63 0.61

Weighted 0.89 0.90 0.89

EfficientNetB0 0.91
Macro 0.78 0.76 0.75

Weighted 0.91 0.91 0.91

EfficientNetV2B0 0.93
Macro 0.82 0.83 0.82

Weighted 0.93 0.93 0.93

EfficientNetV2B1 0.94
Macro 0.91 0.84 0.86

Weighted 0.95 0.94 0.94

EfficientNetV2B2 0.96
Macro 0.96 0.84 0.88

Weighted 0.96 0.96 0.96

Proposed 0.99
Macro 0.97 1.00 0.99

Weighted 0.99 0.99 0.99

The detailed results of each class in skin disease detection and skin disease
classification is reported in Tables 6 and 7, respectively. In skin disease detection, the
proposed approach demonstrated 99% accuracy, 99% precision, 99% recall, and 99%
f1-score for both Healthy and Malignant classes. For skin disease classification, the
proposed model showed 100% precision, 100% recall, and 100% f1-score for the skin
diseases Actinic keratoses, Dermatofibroma, and Vascular lesions. For Melanoma and
Melanocytic nevi, the proposed model demonstrated 96% precision, 100% recall, 98%
f1-score, and 100% precision, 98% recall, and 99% f1-score, respectively. The proposed
model for skin diseases such as Basal cell carcinoma and Benign keratosis-like showed
89% precision, 100% recall, 94% f1-score and 97% precision, 100% recall, and 99% f1-score,
respectively. Overall, the proposed approach demonstrated better performance in all the
classes in both skin disease detection and skin disease classification compared to other
existing CNN-based pretrained models.
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Table 6. Detailed results of Healthy and Malignant classes in skin disease detection.

Class Precision Recall F1-Score

Healthy 0.99 0.99 0.99

Malignant 0.99 0.99 0.99

accuracy 0.99

macro avg 0.99 0.99 0.99

weighted avg 0.99 0.99 0.99

Table 7. Detailed results of each classes in skin disease classification.

Class Precision Recall F1-Score

Actinic keratoses (akiec) 1.00 1.00 1.00

Basal cell carcinoma (bcc) 0.89 1.00 0.94

Benign keratosis-like lesions (bkl) 0.97 1.00 0.99

Dermatofibroma (df) 1.00 1.00 1.00

Melanoma (mel) 0.96 1.00 0.98

Melanocytic nevi (nv) 1.00 0.98 0.99

Vascular lesions (vasc) 1.00 1.00 1.00

accuracy 0.99

macro avg 0.97 1.00 0.99

weighted avg 0.99 0.99 0.99

The confusion matrix for the CNN-based pretrained models for skin disease detection
is included in Table 2. The proposed approach misclassification rate is 0.0111, which is
lesser compared to all the other CNN-based pretrained models. The model misclassifies
the three samples of Healthy as Malignant and five samples of Malignant as Healthy.
The misclassification rate of EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, and
EfficientNetV2B2 are 0.0401, 0.0333, 0.0292, and 0.0292, respectively. Models such as
ResNet50, InceptionV3, Xception, and DenseNet121 showed misclassification rates of
0.0811, 0.0736, 0.0722, and 0.0722, respectively. The high misclassification rate is shown
by models such as VGG16 and MobileNet. The misclassification rate of VGG16 and
MobileNet are 0.1021 and 0.1153, respectively. All the models including the proposed
approach demonstrated a high misclassification rate for the Malignant. This indicates
that the model’s enhancement is required to avoid these misclassifications. There may
be a possibility to avoid misclassification in the Malignant class by providing more
data samples from different patients across different ages from different modalities. In
addition to that, a detailed investigation and analysis of the proposed method needs to
be analyzed to understand the misclassification. The optimal features that are used to
accurately detect the Malignant data samples need to be analyzed in detail to understand
the misclassification. This type of study of the proposed model can be considered as one of
the significant directions toward future work.

The confusion matrix for the CNN-based pretrained model for skin disease
classification is shown in Figure 7. The proposed model showed a 0.0138 misclassification
rate, which is less compared to all the CNN-based pretrained models. The misclassification
rate of EfficientNetB0, EfficientNetV2B0, EfficientNetV2B1, and EfficientNetV2B2 are
0.09, 0.07, 0.06, and 0.04, respectively. Models such as ResNet50, InceptionV3, and
DenseNet121 showed a high misclassification rate compared to the models of a family
of EfficientNet. The high misclassification shown by the models Xception, VGG16, and
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MobileNet is compared to all the other CNN-based pretrained models in skin disease
classification. The proposed approach classified all the samples of Actinic keratoses,
Basal cell carcinoma, Benign keratosis-like lesions, Dermatofibroma, Melanoma, and
Vascular lesions. For Melanocytic nevi, the proposed model misclassified six samples as
Basal cell carcinoma, three samples as Benign keratosis-like lesions, and five samples as
Melanoma. Most importantly, except the proposed models, the other existing models
have shown a high misclassification rate for rare skin diseases such as Vascular lesions
and Dermatofibroma. The models such as ResNet50, InceptionV3, VGG16, MobileNet,
Xception, and DenseNet121 have failed to classify a single sample correctly for Vascular
lesions and Dermatofibroma. This indicates that these models are not effective in highly
imbalanced skin disease datasets. Though these models are effective in other classes and
demonstrated accuracy above 85%, the existing models are not effective for rare skin
diseases in both skin disease detection and skin disease classification. In addition to rare
skin diseases, the models other than the proposed approach and a family of EfficientNet
showed a high misclassification rate. Since the proposed approach is a fused model of a
family of EfficientNetV2, it outperformed a single-finetuned EfficientNetV2 model and
EfficientNet model in both skin disease detection and skin disease classification. Overall,
the proposed model has demonstrated less misclassification rate for all the classes in skin
disease classification compared to other CNN-based pretrained models.

The proposed model has outperformed the CNN-based pretrained models in all the
test settings in both skin disease detection and skin disease classification. Most importantly,
the proposed model integrates the cost weight to the deep learning model, which helped to
demonstrate a better classification rate compared to the existing approaches. In addition
to that, the proposal of a meta-classifier in the final classification helped to achieve
generalization and to make the model to be more robust in detecting the skin disease and
classifying the skin disease to its family. Since the proposed model is an ensemble of various
EfficientNetV2 models, the model has learned better feature representation to accurately
detect and classify skin diseases. The result of the ensemble feature representation of
pretrained model has performed better than the single CNN-based pretrained model.
In the proposed work, the CNN-based pretrained model and the classification model
are not integrated together during training in skin disease detection and the skin disease
classification model. Thus, proposing a loss function to integrate the CNN-based pretrained
model and classification model will be considered one of the significant directions toward
future work. The proposed model employs a KPCA-based dimensionality reduction to
reduce the features of CNN-based pretrained models. There may be a possibility that
the loss of features can happen in this stage. Detailed analysis and experiments can be
demonstrated using the different dimensions of features for skin disease detection and
classification. This type of experimental work can be considered future work. The proposed
model is a hybrid of CNN-based pretrained models and meta-classifiers. The detailed
model parameters of the CNN-based pretrained models for skin disease detection and
classification are reported. However, discussion of algorithm complexity analysis to the
experimental part in skin disease detection and classification is important and this will be
another direction towards future works.
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7. Conclusions and Future Works

This paper proposed an attention-cost-sensitive deep learning-based feature fusion
ensemble meta-classifier approach for skin cancer detection and classification. The
proposed model integrates attention to the deep learning model to detect the infected tiny
regions of the overall skin image. To give importance to the minority classes during the
training, cost-weights were introduced. The proposed work assigns higher class weights
to the classes that have fewer skin disease data samples and lower-class weights to the
classes that have a high number of skin disease data samples. The proposed model fuses
the features of EfficientNetV2 pretrained models, and the dimensionality reduction of the
features is conducted using KPCA. Further, the reduced features are passed into ensemble
meta-classifiers. In the first stage of the ensemble meta-classifiers, the prediction of the
skin disease is conducted using RFTree and SVM, and the logistic regression performs
the classification by considering the probability of the first-stage classifiers as features. In
all the experimental settings of the proposed model, the proposed model outperformed
the existing methods for both skin cancer detection and skin cancer classification. The
proposed model improves the accuracy by 4% compared to the existing approaches for
skin disease detection and 9% for skin disease classification. Since clinical features play an
important role in enhancing the detection rate of skin diseases, the clinical features of skin
diseases can be included along with skin images. This type of fused features of clinical and
non-clinical can improve the performance of the model in accurately detecting the skin
disease and classifying them into their disease family. The deep learning models are not
robust in an adversarial environment and there may be a possibility that the deep learning
models can be bypassed by following the techniques available in the field of adversarial
machine learning. Thus, the detailed evaluation of the proposed model to detect and
classify skin diseases in an adversarial environment will be considered as future work.
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Simple Summary: The reported global incidences of skin cancer led to the development of automated
clinical aids for making proper clinical decision models. Correctly classifying the skin lesions during
the early stage may increase the chances of being cured before cancer. However, the skin lesion dataset
images pose many critical challenges related to available features to develop classification models
with cross-domain adaptability and robustness. This paper made an attempt to select important
features from skin lesion datasets for proper skin cancer classification by proposing some feature
fusion strategies. Three pre-trained models were utilized to select the important features and then
an adaptive weighted mechanism of choosing important features was explored to propose model-
based and feature-based optimized feature fusion strategies by optimally and adaptively choosing
the weights using a meta-heuristic artificial jellyfish algorithm. The empirical evidence shows that
choosing the weights of the pre-trained networks adaptively in an optimized way gives a good
starting point for initialization to mitigate the chances of exploding or vanishing gradients.

Abstract: This study mainly focuses on pre-processing the HAM10000 and BCN20000 skin lesion
datasets to select important features that will drive for proper skin cancer classification. In this
work, three feature fusion strategies have been proposed by utilizing three pre-trained Convolutional
Neural Network (CNN) models, namely VGG16, EfficientNet B0, and ResNet50 to select the important
features based on the weights of the features and are coined as Adaptive Weighted Feature Set (AWFS).
Then, two other strategies, Model-based Optimized Weighted Feature Set (MOWFS) and Feature-
based Optimized Weighted Feature Set (FOWFS), are proposed by optimally and adaptively choosing
the weights using a meta-heuristic artificial jellyfish (AJS) algorithm. The MOWFS-AJS is a model-
specific approach whereas the FOWFS-AJS is a feature-specific approach for optimizing the weights
chosen for obtaining optimal feature sets. The performances of those three proposed feature selection
strategies are evaluated using Decision Tree (DT), Naïve Bayesian (NB), Multi-Layer Perceptron
(MLP), and Support Vector Machine (SVM) classifiers and the performance are measured through
accuracy, precision, sensitivity, and F1-score. Additionally, the area under the receiver operating
characteristics curves (AUC-ROC) is plotted and it is observed that FOWFS-AJS shows the best
accuracy performance based on the SVM with 94.05% and 94.90%, respectively, for HAM 10000
and BCN 20000 datasets. Finally, the experimental results are also analyzed using a non-parametric
Friedman statistical test and the computational times are recorded; the results show that, out of those
three proposed feature selection strategies, the FOWFS-AJS performs very well because its quick
converging nature is inculcated with the help of AJS.

Keywords: skin lesion classification; feature selection; VGG16; EfficientNet B0; ResNet50; HAM
10000 dataset; BCN 20000 dataset
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1. Introduction

Skin lesion mainly refers to a skin area with distinctive characteristics, such as color,
shape, size, and texture, from the other surrounding areas of skin. The leading cause of
this may be sunburn or contact dermatitis, which causes localized damage to the skin [1–3].
The American Society for Dermatologic Surgery describes a skin lesion as an abnormal
lump, bump, ulcer, sore, or colored skin area. Other causes of skin lesions or skin patches
include any underlying disorder, infections, diabetes, or genetic disorders. It has been seen
that this type of skin type may be benign non-harmless or malignant, or premalignant,
leading to skin cancer. Freckles or small patches of light brown skin color can be the reason
for exposure to the sun. Flat moles are the best examples of skin lesions, and a growing
mole with color variation, itching, and bleeding may lead to melanoma lesions, as shown
in Figure 1 for regular lesions (Figure 1a) and melanoma lesions (Figure 1b) [4].

Figure 1. Examples of normal lesions and melanoma in skin lesion images [4]. (a) Normal lesion, (b)
Melanoma lesion, (c) Basal cell carcinoma, (d) Squamous cell carcinoma, (e) Merkel cell carcinoma, (f)
Keratoacathoma, (g) Actinic Keratoses, (h) Atypical moles, (i) Bowen’s Disease.

The study reveals that this skin cancer is the 17th most common cancer worldwide
and is a warning phase for researchers and academicians to develop an early detection
system for this skin cancer in the form of a computer-based system for effective treatment
and better outcomes treatment. The computer-assisted dermoscopic image classification
has attracted significant research for its potential to timely and accurately diagnose skin
lesions [4–7]. Scientists, clinicians, analyzers, and experimenters are trying to delve into
this area of research to develop models and strategies by exploring artificial intelligence
(AI)-, machine learning (ML)-, and deep learning (DL)-based approaches [8–11].
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It is evident that DL strategies are being widely used for structure detection by re-
searchers for localization and interpolation of anatomical structures in medical images
and to accomplish this task of distinguishing the image features [10,11]. Additionally, the
DL methods are highly effective in handling large samples during the training stage, and
this network learns valuable representations of the features directly. For example, the
convolutional neural network’s (CNN’s) pre-trained architectures can effectively identify
and remove the artifacts from the images such as noise. In medial image processing, espe-
cially in skin lesion recognition, it is essential to pre-process the image concerning feature
selection and feature extraction leading to feature engineering to design an effective and
correctly working algorithm [12–15]. The evolution of transfer learning and its advantages
of saving resources with improved efficiency concerning cost and time-consuming issues
have widely used CNN’s pre-trained networks in the image analysis research domain [2,11].
In other words, this transfer learning is an ML-based approach where a pre-trained model
is reused and customized to develop a new model for a new dataset. For image recognition
tasks, the pre-trained models are great because they are easier to use and typically perform
better with less training time. It also enables the models to train fast and accurately by ex-
tracting the relatively useful features or features of importance at the beginning of training
learned from the large datasets [16,17]. The feature level fusion in the classification task
has shown improved recognition performance by combining the results of multiple feature
selection strategies, thereby identifying a compact set of salient features without losing
any data that can improve the recognition accuracy compared to the single base models.
Feature fusion, or in other words, the combination of features from different networks,
is an omnipresent part of the model learning mechanisms, which is achieved in many
ways. The simplest form is the concatenation of outputs of participating networks or using
some means or methods of optimizing the weights of the opinions of the participating
networks to obtain a good fusion of features having relative discriminative power to design
a classification model [18–20]. The importance of using optimization in feature fusion is
not only to just rank the ranking of features to obtain an optimized version of features,
but also the optimized weights help to decide the impact of each feature even if a feature
of first rank will have some weighted importance. Being motivated by the advantages of
DL-based recognition systems, the use of transfer learning mechanism through CNN’s
pre-trained networks, and the feature fusion approach, in this study, we attempted to
design a few feature fusion methodologies which call for active fusion approaches resulting
to an effective and robust skin lesion classification model. Our prime contributions in
this research are: the transfer learning strategy was exploited with the help of CNN’s
pre-trained networks for feature selection and feature fusion [2,16–18]; the advantages of
visual geometry group network (VGG16), EfficientNet B0, and residual neural network
(ResNet50) such as low number of parameters and small size filters, multi objective neural
architecture optimizing the accuracy and floating point operations with a balanced depth,
width, and resolution producing a scalable, accurate and easily deployable model; and
the ability to solve the problem of vanishing gradients of those three pre-trained networks
have been explored deeply while designing this deep feature fusion model [12–15]. The key
advantages of the ensemble learning mechanism to design a robust feature selection model
by proposing combined feature fusion strategies [19–21], such as combined feature set
(CFS), adaptive weighted feature set (AWFS), model-based optimized weighted feature set
(MOWFS), and feature-based optimized weighted feature set (FOWFS), are experimented
and validated. In order to reduce the losses and selection of optimized weights of those
three pre-trained networks, the advantages of a new meta-heuristic optimizer artificial jelly-
fish optimizer (AJS) [22–29] was used and finally, the performance of the proposed feature
fusion strategies are likened to other combinations of the models with genetic algorithm
(GA) [30] and particle swarm optimization (PSO) [31] such as MOWFA-GA, MOWFS-PSO,
FOWFS-GA, and FOWPS-PSO, and it was observed that the proposed combination of
FOWFS-AJS outperforms the other models used for classification of skin lesion diagnosis.
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The rest of the article is organized as follows: the literature on CNN’s pre-trained
networks and feature fusion approaches are discussed in Section 2. The pre-trained CNN
feature extraction models are discussed in Section 3, the experimentations, results, and
discussions are detailed in Section 4. Finally, the conclusion and future scope are given in
Section 5.

2. Literature Survey

The key challenge associated with the available skin lesion datasets includes the
selection of features of importance giving rise to feature selection and/or feature extraction
as one the pre-processing task to improve the classification accuracy of the classifiers. This
section mainly reviews some related feature selection and feature extraction approaches
for image datasets including feature fusion or ensemble techniques. In early studies, the
researchers usually used few traditional feature selection methods such as correlation-based
feature selection, consistency-based filter, information gain, ReliefF etc., then they shifted
their attention to using CNN to extract features. For instance, dense convolutional network
(DenseNet), VGG16, Inceptionv3 (GoogLeNet), ResNet, EfficientNet, etc. are the most
commonly used pre-trained models for fine-tuning the datasets to improve classification
accuracy [2,12–15].

Lingzhi Kong and Jinyong Cheng [32] proposed classification of COVID-19 X-ray
images using DenseNet and VGG models and fine-tuned feature fusion model. First,
they applied pre-processing of images and then segmented those images for classification.
In addition to this, authors also attempted to resolve the data imbalance problem by
introducing fine-tuned global attention block and category attention block to obtain more
detailed information of small lesions. Manjary P et al. [33] proposed a classification model
to distinguish between natural and computer-generated images by designing a multi-
color-space fused EfficientNet using transfer learning methodology which operates in three
different color spaces. Ying Guo et al. [34] proposed an EfficientNet based multi view feature
fusion model for cervical cancer screening. This proposed model takes the colposcopy
images as inputs and tries to extract the features which lead to cervical intraepithelial
neoplasia lesions by avoiding the negative effects caused by individual differences and
non-cervical intraepithelial neoplasia lesions. An interesting study was carried out by
David McNeely-White et al. [35] for comparing the utility of inception and ResNet for as a
feature extractor. Authors observed that the features extracted by Inception are very similar
to features extracted using ResNet, i.e., the feature set can be very well approximated by an
affine transformation of the other. In other words, this literature suggests that for the CNNs,
the selection of training set is more important than the selection of pre-trained models.

Yan Wang et al. [36] focused on accurate skin lesion classification by adversarial mul-
timodal fusion with attention mechanism for classification, but before this process, they
adopted a discriminator based on adversarial learning to extract the correlated features.
This proposed multimodal feature extraction strategy tries to extract the features of the
lesion area to enhance the feature vector to obtain more discriminative features. Moreover,
the main focus was to consider both correlated and complementary information to design
a multimodal fusion strategy. Lina Liu et al. [37] created an automated skin lesion classifi-
cation model by extracting the region of interest from skin lesson images using ResNet and
DenseNet. The authors tried to obtain the mid-level features by studying the relationships
among different images based on distance metric learning and gave as an input to the
classifiers instead of using the extracted features directly. A study on understanding the
efficiency of 17 commonly pre-trained CNN models used for feature extraction was carried
out by Samia Benyahia et al. [38]. It has been observed that DenseNet201 along with
k-nearest neighbor and support sector machine (SVM) outperformed with respect to classi-
fication accuracy for the ISIC 2019 dataset. Di Zhuang et al. [39] proposed a cost-sensitive
multi-classifier fusion approach for skin lesion image classification by taking the advantage
of subjective weights assigned to datasets. That study utilized a concept of cost-sensitive
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feature by adapting to the different customized cost matrices and twelve different CNN
architectures to evaluate the fusion approaches performance.

As per the study, it was seen that the ensemble learning or fusion approach made better
predictions and achieved better performance than the single contributing feature or model.
The higher predictive accuracy compared to individual models of this ensemble strategy
gained wide use in the case of classification. Considering this advantage, many researchers
are trying to use this either in the feature level or classifier level. In this section, some works
done on this approach are described. Amirreza Mahbod et al. [40] proposed an automatic
skin lesion ensemble-based classification model for ISIC 2017 skin lesion classification
challenge dataset by combining intra and inter architecture network fusion with multiple
sets of CNNs and in that model, the CNNs are pre-trained architectures. Those pre-
trained CNNs are able to identify fine-tuned dermoscopic lesion images for the different
settings of those models. Similarly, Nils Gessert et al. [41] also proposed an ensemble-based
classification model for ISIC 2017 skin lesion classification challenge using EfficientNets,
SENet, and ResNeXt WSL. Mohamed A. Elashiri et al. [19] proposed an ensemble-based
classification model with the weighted deep concatenated features with long short-term
memory. These ensembles of weighted features are basically concatenated features from
three CNNs pre-trained models, namely DeepLabv3, ResNet50, and VGG16 integrating
the optimal weights of each feature using their proposed hybrid squirrel butterfly search
algorithm. Amira S. Ashour et al. [42] also proposed an ensemble-based bag of features
strategy for classification of COVID-19 X-ray images.

Redha Ali et al. [43,44] proposed DL-based skin lesion analysis models in 2019 and
2022. In [43], the authors proposed a CNN-based ensemble method by utilizing VGG19-
UNet, DeeplabV3+, and a few other pre-processing methodologies using the ISIC 2018
challenge dataset. Similarly, a DL-based incremental modular network named IMNets was
proposed in [44] for medical imaging by using small network modules called as SubNets
capable of generating salient features for a particular problem, then larger and more
powerful networks were designed by combining these SubNets in different configurations.
At each stage, only one new SubNet module underwent learning updates, thereby reducing
the computational resource requirements for training in network optimization. Xinzi
He et al. [45] proposed a segmentation and classification model by improving the CNNs
through a fully transformer network to learn long-range contextual information for skin
lesion analysis.

3. Methodologies

The preliminary details of VGG16, EfficientNet B0, and ResNet 50 along with their
architectures are discussed in this section along with the theory and working process of
AJS optimization algorithm. The broad scope of this study along with the proposed deep
feature fusion strategies are also detailed along with their workflow diagrams.

3.1. CNNs’ Pre-Trained Models for Feature Selection

CNNs’ pre-trained models are saved networks that were previously trained on a large
dataset for large-scale image classification and can be used as is or may be customized as
per the requirements. This type of architecture of applying the gained knowledge from
one source to a different but similar task is widely known as transfer learning. There
are many pre-trained models of CNN available and they are being widely used in the
field of image processing, such as LeNet, AlexNet, ResNet, GoogleNet or InceptionNet,
VGG, DenseNet, EfficientNet, PolyNet, and many more. CNN is basically originated from
neural network with convolution layers, pooling layers, activation layers, etc., and those
mentioned pre-trained networks are specific CNNs designed for various applications, such
as classification and localization [2,12–17,31–34,37].

In this work of designing feature fusion strategy for feature selection, three pre-trained
CNNs, namely VGG16, EfficientNet B0, and ResNet50 were utilized. The VGG stands
for Visual Geometry Group, consisting of blocks composed of 2D convolution and max
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pooling layers. This has two variants, VGG16 and VGG19, representing 16 and 19 layers in
each of them and it has been seen that the performance of VGG16 is equivalent to VGG19;
therefore, VGG16 is widely used rather than VGG19. VGG16 was proposed in [46] at the
Visual Geometry Lab in Oxford University, United Kingdom in 2014; it is denser with small
3 × 3 filters which provides the effect of a big size filters such as 5 × 5 and 7 × 7, as shown
in Figure 2a. The lowering of number of parameters and use of small size filters in the
VGG16 network shows the benefit of low computational complexity which gave a new
research trend to work with low filters.

Figure 2. VGG16, EfficientNet B0, and ResNet 50 pre-trained networks architecture. (a) VGG16
network architecture [46], (b) EfficientNet B0 network architecture [47], (c) ResNet50 network archi-
tecture [48].

EfficientNet uses the neural architecture search to design a new network and it has
been scaled up to obtain a family of deep learning models. The EfficientNet B0 was
developed using a multi-objective neural architecture optimizing the accuracy and floating
point operations. It has been found that this network achieves better accuracy and efficiency
in comparison to standard CNN models and taking this EfficientNet B0 as a baseline model,
a full family of EfficientNets from EfficientNet B1 to EfficientNet B7 are being developed,
and they have shown their accuracy and efficiency on ImageNet. The total number of
layers in EfficientNet Bo is 237 and 11 M trainable parameters and the detailed architecture
in shown in Figure 2b [47]. This model exacts features throughout the layers by using
multiple convolution layers using 3 × 3 receptive field and mobile inverted bottleneck
convolution layer. This network employs a balanced depth, width, and resolution which
produce a scalable, accurate, and easily deployable model. This EfficientNet was proposed
by Mingxing Tan and Quoc V. Le of Google Research in 2019.

Residual network or ResNet is a classic neural network used for many computer vision
and image processing tasks and allowed to train more than 150 layers, being the extremely
deep neural networks, leading to solving the problem of vanishing gradients introduced
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun in 2015. ResNet50 is a deep
network with 5 stages that contains 3 convolutional layers and 1 identity block, which is
trained over 23 million parameters and can work very well with 50 neural network layers
as shown in Figure 2c [48]. A skip connection is used in the ResNet50 to fetch the earlier
parameters to the layers close to the output. It overcomes the vanishing gradient problem.

The concept of wider, deeper, and higher resolution properties of those pre-trained
networks giving the network with more filters, more convolution layers and the ability to
process the images with larger depth has gained popularity in the field of image processing.
Considering those general advantages as well as a few other advantages, such as VGG16 is
good at image classification, the effectiveness of model scaling, the proper use of baseline
network in EfficientNet B0, and the principle of ResNet50 to build deeper networks and
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efficiency to obtain number of optimized layers to overcome the vanishing gradient prob-
lem, has been the motivation behind this work to design a deep feature fusion strategy for
feature selection leading to an effective skin lesion image classification [2,8–15,17–20].

3.2. Artificial Jellyfish Search Algorithm (AJS)

This AJS is one of the newly proposed meta-heuristic swarm-based optimization
algorithms derived by simulating the locomotion and dietary patterns [22–29] of jellyfish.
Jellyfish are the most efficient swimmers of all aquatic animals widely seen in the oceans
having umbrella-shaped bells and trailing tentacles. Their bodies are made up of 98% water
which helps them to survive by blending themselves with the direction of current of ocean.
The jellyfish swims in the water in such a way that creates two vortex rings, which in turn
allows the jellyfish to travel 30% farther on each swimming cycle. From a study, it was
observed that jellyfish are excellent swimmers and they utilizes less energy and less oxygen
to travel within the water. They have a very simple nervous system which acts as a good
receptor to detect light, vibration, and chemicals in the water. They also have a great ability
to sense the gravity which allows the jellyfish to traverse in the ocean. The gelatinous skin
of this jellyfish helps them to absorb oxygen and their thin hairs help them to bite the food.
Jellyfish have stinging cells called nematocysts with tiny needle-like stingers known as
tentacles to paralyze the prey before eating. The rising sea temperatures and the dead zones
created for other fish or aquatic animals have given a better opportunity to the jellyfish
to bloom.

The jellyfish bloom or flock is being affected by the ecosystem significantly, i.e., the
amount of food varies from place to place the jellyfish moves or visits to determine the best
place which contains more food. Considering this movement of jellyfish to search for more
food in an ocean motivated the design of an AJS based on three idealistic rules:

(a) The movement of the jellyfish is either drawn by the current of the ocean or looking
at the swarm and controlling the switching between the mentioned two movements
by a time controlled approach;

(b) Being efficient swimmers, jellyfish swim to search for food and try to obtain the
locations where a large amount of food is available.

The location simply depends on the quantity of food found and the corresponding
objective function of it (i.e., location of jellyfish);

The AJS algorithm basically depends on four ingredients considering the above three
rules, namely ocean current; bloom of jellyfish; the time controlled mechanism; and bound-
ary conditions in search spaces and are mathematically formulated and detailed as follows.

(a) Ocean current: The jellyfish is attracted to the large amount of food based on the
direction (→) of the current of the ocean and the new location of the jellyfish can be
formulated using Equations (1) and (2), respectively.

→
OceanCurrent = JF# − ϕ× rand(0, 1)×MeanLocationJF (1)

JFi(t + 1) = JFi(t) + rand(0, 1)×
→

OceanCurrent (2)

where, JF# represents the jellyfish currently at the best location in a swarm or bloom; ϕ is

the distribution coefficient and is >0 related to the direction of
→

OceanCurrent, JFi represents
the jelly f ish i, and MeanLocationJF represents the new location of each jellyfish.

(b) Jellyfish bloom or swarm: The mobility of the jellyfish is of two types, i.e., passive and
active motion, and most jellyfish initially show passive motion during the formation
of bloom and they progressively show active motion. Basically, the passive motion of
the jellyfish is around their own locations and the corresponding updated location of
each jellyfish can be obtained using Equation (3). The Upperbound and Lowerbound are
the upper and lower bounds of the search space and ω is the length of the movement
around the jellyfish’s locations and is called as motion coefficient.
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JFi(t + 1) = JFi(t) + ω× rand(0, 1)× (Upperbound − Lowerbound) (3)

The active motion can be simulated as

(a) either JFi moves towards JFj or moves away;
(b) JFj other than a JFi is randomly chosen and a vector from JFi to the chosen JFj is used

to determine the direction of the movement of jellyfish or motion;
(c) when the food quantity exceeds at the chosen location of JFj that the location of JFi, a

JFi moves towards a JFj;
(d) and if the quantity of the food available to the chosen JFj is lower than that available

to a JFi, it moves away from it;

This leads every jellyfish to move in a better direction to find food in a bloom and
the direction of motion is simulated and the location of the jellyfish is updated using
Equations (4) and (5), respectively, where f is an objective function of location of jellyfish.

→
Motion Direction =

{
JFj(t)− JFi(t) i f f (JFi) ≥ f

(
JFj

)
JFi(t)− JFj(t) i f f (JFi) < f

(
JFj

) (4)

JFi(t + 1) = JFi(t) + rand(0, 1)×
→

Motion Direction (5)

(c) Time Controlled Mechanism: The passive or active motions of jellyfish in a bloom
over a time need to be determined to control the motions of jellyfish towards the
ocean current. This time controlled mechanism can be formulated using a time control
function f (TC) which is a random value that changes between (0, 1) over time and a
constant c as shown in Equation (6), where maximum number of iterations is given as
Iterationsmax and t is the time specified with respect to the iteration number.

f (TC) =

∣∣∣∣(1− t
Iterationsmax

)
× (2× rand(0, 1)− 1)

∣∣∣∣ (6)

Equation (6) computes the f (TC) and when this function increases the value of constant

c, it signifies that, the jellyfish follow the
→

OceanCurrent and when f (TC) < c, the jellyfish
move inside the bloom. In this case, f (TC) = c is not known as the time control changes.

(d) Boundary Conditions: The boundary conditions represent the maximum search space
defined for the jellyfish. With respect to these boundary conditions (as represented
in Equation (7)), when a jellyfish progresses outside the bounds of search area, it
will return to the opposite bound. In this equation, JFi,d, JF

′
i,d, Upperbound,d , and

Lowerbound,d represent the location of the ith jellyfish in dth dimension, upper, and
lower bounds of the search spaces, respectively.{

JF
′
i,d = (JFi,d −Upperbound,d) + Lowerbound(d) i f JFi,d > Upperbound,d

JF
′
i,d = (JFi,d − Lowerbound,d) + Upperbound(d) i f JFi,d > Lowerbound,d

(7)

3.3. Proposed Deep Feature Fusion Approach for Feature Selection

The broad scope of the proposed deep feature fusion strategy for feature selection of
skin lesion classification is outlined in Figure 3. The original feature sets are given as input
to the three variants of pre-trained CNN models as an initial phase of experimentation.
Considering the contributing factors of ensemble techniques such as (a) the final predic-
tion obtained by combining the results from several base models have achieved better
performance and (b) the spread or dispersion of the predictions and model performance
are more robust, this study mainly focused on design of ensemble-based feature fusion
strategy exploring the deep learning architecture. In this work, four ensemble feature
fusion strategies, namely CFS, AWFS, MOWFS, and FOWFS, are proposed, experimented,
and validated.
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Figure 3. Layout of proposed feature fusion approach for skin lesion data classification.

The predicted features by VGG16, EfficientNet B0, and ResNet50 are 512, 1024, and
1024, respectively, while the input to those three models are images from HAM 10000 [49]
and BCN 20000 [50] datasets represented as {I1 · · · Im · · · Ik}. The CFS is one of simplest
form of ensemble techniques which simply concatenates the outputs of the three pre-trained
models to form a batch of feature set as illustrated in Figure 4a. In the AWFS approach, the
weights of those three pre-trained models are initialized to (0, 1) and then the combined
feature set is formed by adaptively selecting weights concatenated by the extracted features
from the respective pre-trained models, namely [w1 × FVGG16],

[
w2 × FE f f icientNet B0

]
, and

[w3 × FResNet50] as shown in Figure 4b.
The workflow of the proposed MOWFS is illustrated in Figure 4c, in which initially,

the combined feature set is formed same as the AWFS strategy and then, the technique
of identifying optimum point considering two special cases (active and passive) motion
of AJS optimization algorithm helps to find best cost. In this model-based approach,
any one of the classifiers (in our experimentation DT, NB, MLP and SVM) is considered
as cost f unction, where the measured MSE of the opted classification model is taken as
the cost and the weights (w1, w2 and w3) are taken as decision variables. This total pro-
cess is continued for 50 iterations to obtain optimized weights from all three pre-trained
models. Then the final ensemble of features is formed for test set as

(
[w1]1×1 × FVGG16

)
,(

[w2]1×1 × FE f f icientNet B0

)
,
(
[w3]1×1 × FResNet50

)
. The process of FOWFS strategy focuses

on feature-based optimization of adaptively chosen weights for formation of combined
weighted feature set, such as [w1]1×512× FVGG16, [w2]1×1024× FE f f icientNet B0, and [w3]1×1024
×FResNet50 with total weights (512+1024+1024). Then, the process of obtaining optimized
weights is performed the same as the MOWFS strategy and finally it returns 512 + 1024 + 1024
number of optimized weights based on each feature and the combined feature set is formed
as [w1]1×512 × FVGG16, [w2]1×1024 × FE f f icientNet B0, [w3]1×1024 × FResNet50. The total process
of this strategy is detailed in Figure 4d. Then, features having weights more than 0.5 are con-
sidered as best performing features and are considered for final classification. Finally, the
performance of the proposed deep feature fusion strategies such as CFS, AWFS, MOWFS,
and FOWFS are evaluated based on each classification model and the proposed optimized
strategies are compared with GA and PSO two widely used meta-heuristic optimization
techniques though accuracy, precision, sensitivity, and F1-score.
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Figure 4. The steps of (a) Combined Feature Set (CFS) generation process; (b) Adaptive Weighted
Feature Set (AWFS) generation process; (c) Model-based Optimized Weighted Feature Set (MOWFS)
generation process; and (d) Feature-based Optimized Weighted Feature Set (FOWFS) generation process.

4. Experiments, Results, and Discussion

This segment focuses on the experimental stages in order to effectively illustrate the
study’s findings. Broadly, the section discusses the datasets and parameter descriptions,
the algorithm of the proposed FOWFS feature fusion approach. The experimentation was
performed using Intel(R) Core(TM) i5-7200U CPU @ 2.50G Hz with 2.71 GHz processor,
4.00 GB (3.88 GB usable) RAM, 64-bit operating system, x64-based processor operating
system, and executed on the platform Google Colab.

4.1. Datasets Description

This study of feature selection and classification was performed on two skin lesion
datasets, HAM 10000 and BCN 20000, collected from [49,50]. The HAM 10000 dataset is
the abbreviated form of Human Against Machine and it has 10,000 training images for
detection of pigmented skin lesions with seven classes. The BCN 20000 dataset is composed
of 19,424 demoscopic images of skin lesion collected from a hospital clinic in Barcelona

227



Cancers 2022, 14, 5716

during the period 2010 to 2016 and this dataset has eight classes as detailed in Table 1 and
Figure 5a,b.

Table 1. Datasets and description of skin lesion classes.

Dataset Classes

HAM 10000

Actinic keratoses and intraepithelial carcinoma/Bowen’s disease
(AKIEC), basal cell carcinoma (BCC), benign keratosis-like lesions
(BKL), dermatofibroma (DF), melanoma (MEL), melanocytic nevi

(NV) and vascular lesions (VASC).

BCN 20000
Nevus, melanoma (MEL), basal cell carcinoma (BCC), seborrheic

keratosis (SK), actinic keratosis (AK), squamos cell carcinoma
(SCC), dermatofibroma (DF), and vascular lesions (VASC).

Figure 5. The skin lesions of (a) HAM 10000 and (b) BCN 20000 datasets.

4.2. Parameters Discussion

The various parameters of the network models and optimization techniques used for
experimentation of this study and their chosen values are discussed in Table 2.

Table 2. Parameters and their chosen values.

Network Models and
Optimization Techniques

Parameters and Their Associated Values

VGG16 16 weight layers

EfficientNet B0 237 weight layers

ResNet50 50 weight layers

AWFS Total weights:3; w1 dimension = 1 × 1; w2 dimension = 1 × 1; w2 dimension = 1 × 1

MOWFS Total weights:3; w1 dimension = 1 × 1; w2 dimension = 1 × 1; w2 dimension = 1 × 1

FOWFS Total weights:3; w1 dimension = 1 × 504; w2 dimension = 1 × 1024; w2 dimension = 1 × 1024

GA Number of decision variables = 3; Maximum number of iterations = 50; Population size = 10;
Selection method-Roulette wheel

PSO
Number of decision variables = 3; Maximum number of iterations = 50; Number of particles = 10;
Inertia weight = 1; Inertia weight damping ratio = 0.99; Personal learning coefficient = 1.5; Global

learning coefficient = 2.0

AJS Number of decision variables = 3; Maximum number of iterations = 50; Population size = 10
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4.3. Algorithm of Proposed FOWFS Feature Fusion Strategy

The working principle of the four feature fusion strategies, CFS, AWFS, MOWFS,
and FOWFS, are depicted in Figure 4a–d. The MOWFS and FOWFS strategies are based
on optimizing the chosen weights using AJS algorithm. The optimization steps of both
are the same, the only difference lies in the formation of combined feature weights as
detailed in Section 3.3. The hybridization of AJS for formation of combined feature sets
exploring the model-based optimization and each feature-based optimization is depicted
in an algorithmic form as given in Algorithm 1.

Algorithm 1 MOWFS and FOWFS: Optimized deep feature fusion strategies

For 100 population
(
Totalpop

)
initialize (w1, w2 and w3);

For i = 1 : Totalpop
Calculate MSE using extracted features and cost f unction of SVM/DT/NB/MLP classifier;

For i = 1 : Totalpop;
Calculate time control function f (TC) for t;

If f (TC)(t) ≥ 0.5
Update w1, w2 and w3 using Equation (2);

Else
If rand(0, 1) > (1− f (TC)(t)
Update w1, w2 and w3 using Equation (3);
Else

Update w1, w2 and w3 using Equation (5);
End if

End for
End for

Check the boundary conditions such as Upperbound and Lowerbound, whether w1, w2 and w3 range
between 0~1;
Choose w1, w2 and w3 with minimum MSE;
End for: Iterate over 50 iterations;

4.4. Result Analysis and Validation

This section discusses the experimental results of all the proposed deep feature fusion
approach for skin lesion classification of HAM 10000 and BCN 20000 datasets along with
the evaluation and validation of the feature selection strategies. In the first phase of
experimentation, the benefit of transfer learning mechanism was achieved for obtaining the
better performance with less computational effort. Here, three CNNs’ pre-trained learning
models, VGG16, EfficientNet B0, and ResNet50, were used to extract the meaningful
features from the new images.

Table 3 shows the experimental results of those three pre-trained models for both the
skin lesion image datasets, which demonstrates the feature acquisition time (in minutes)
with respect to the original features. A straightforward comparison was carried out for the
accuracy validation with respect to fused feature sets and the highest ranked feature sets
(features whose weight > 0.5) obtained from three pre-trained models using Decision Tree
(DT), Naïve Bayesian (NB), Multi-Layer Perceptron (MLP), and Support Vector Machine
(SVM) classifiers as discussed in Table 4, Table 5, Table 6, Table 7, respectively. From
those three tables, it can be seen that for both the datasets, initially, the number of features
selected from three pre-trained models is 2560 features, which form a fused feature set
and the CFS selects 2560 features and as all the features are selected for the classification
process, the ranking of features has not been done, therefore there is no improvement in
validation accuracy.
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Table 3. Feature acquiring time.

CNN Pre-Trained
Models

Datasets
Original No. of

Features
Feature Acquisition

Time

VGG16
HAM 10000

512 10.11
EfficientNet B0 1024 8.24

ResNet50 1024 5.42

VGG16
BCN 20000

512 17.21
EfficientNet B0 1024 15.11

ResNet50 1024 10.29

Table 4. Validation accuracy of fused feature sets vs. ranked feature sets based on DT.

Fused Feature
Configurations

Datasets
Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9110 2560 0.9110
AWFS 2560 0.9124 512+1024 0.9410

MOWFS-GA 2560 0.9116 512 0.9411
MOWFS-PSO 2560 0.9215 512 0.9412
MOWFS-AJS 2560 0.9219 1024 0.9401
FOWFS-GA 2560 0.9310 1015 0.9312
FOWFS-PSO 2560 0.9322 954 0.9412
FOWFS-AJS 2560 0.9322 914 0.9422

CFS

BCN 20000

2560 0.8847 2560 0.8847
AWFS 2560 0.8925 512 0.9610

MOWFS-GA 2560 0.8948 512 + 1024 0.9611
MOWFS-PSO 2560 0.9012 512 + 1024 + 1024 0.9612
MOWFS-AJS 2560 0.8999 1121 0.9602
FOWFS-GA 2560 0.9015 998 0.9512
FOWFS-PSO 2560 0.9128 1019 0.9611
FOWFS-AJS 2560 0.9198 925 0.9622

Table 5. Validation accuracy of fused feature sets vs. ranked feature sets based on NB.

Fused Feature
Configurations

Datasets
Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9118 2560 0.9118

AWFS 2560 0.9211 512 0.9411

MOWFS-GA 2560 0.9124 512 0.9421

MOWFS-PSO 2560 0.9158 1024 0.9422

MOWFS-AJS 2560 0.9199 1024 + 1024 0.9428

FOWFS-GA 2560 0.9210 995 0.9391

FOWFS-PSO 2560 0.9214 961 0.9438

FOWFS-AJS 2560 0.9218 1015 0.9448

CFS

BCN 20000

2560 0.9001 2560 0.9001

AWFS 2560 0.9191 512 + 1024 0.9611

MOWFS-GA 2560 0.9125 1024 0.9621

MOWFS-PSO 2560 0.9215 512 + 1024 0.9622

MOWFS-AJS 2560 0.9244 512 + 1024 + 1024 0.9628

FOWFS-GA 2560 0.9248 1115 0.9594

FOWFS-PSO 2560 0.9314 1245 0.9632

FOWFS-AJS 2560 0.9325 998 0.9648
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Table 6. Validation accuracy of fused feature sets vs. ranked feature sets based on MLP.

Fused Feature
Configurations

Datasets
Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9211 2560 0.9211

AWFS 2560 0.9214 1024 0.9550

MOWFS-GA 2560 0.9244 512 + 1024 0.9552

MOWFS-PSO 2560 0.9214 512 + 1024 0.9558

MOWFS-AJS 2560 0.9254 512 0.9561

FOWFS-GA 2560 0.9311 915 0.9342

FOWFS-PSO 2560 0.9324 898 0.9537

FOWFS-AJS 2560 0.9345 975 0.9562

CFS

BCN 20000

2560 0.9112 2560 0.9112

AWFS 2560 0.9119 512+1024 0.9650

MOWFS-GA 2560 0.9132 1024+1024 0.9652

MOWFS-PSO 2560 0.9124 512 0.9658

MOWFS-AJS 2560 0.9312 512+1024 0.9661

FOWFS-GA 2560 0.9365 1124 0.9549

FOWFS-PSO 2560 0.9378 954 0.9649

FOWFS-AJS 2560 0.9411 929 0.9669

Table 7. Validation accuracy of fused feature sets vs. ranked feature sets based on SVM.

Fused Feature
Configurations

Datasets
Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9225 2560 0.9225

AWFS 2560 0.9315 1024 + 1024 0.9599

MOWFS-GA 2560 0.9311 512 0.9611

MOWFS-PSO 2560 0.9347 512 + 1024 0.9712

MOWFS-AJS 2560 0.9348 512 + 1024 0.9612

FOWFS-GA 2560 0.9378 1125 0.9479

FOWFS-PSO 2560 0.9399 897 0.9679

FOWFS-AJS 2560 0.9425 867 0.9779

CFS

BCN 20000

2560 0.9147 2560 0.9147

AWFS 2560 0.9110 1024 0.9599

MOWFS-GA 2560 0.9118 1024 + 512 0.9611

MOWFS-PSO 2560 0.9210 1024 + 1024 0.9712

MOWFS-AJS 2560 0.9211 512 0.9612

FOWFS-GA 2560 0.9212 1005 0.9579

FOWFS-PSO 2560 0.9245 905 0.9688

FOWFS-AJS 2560 0.9311 899 0.9779

From Table 4, it can be seen that, for the HAM 10000 dataset, the AWFS selects highest
ranked feature set with weights of VGG16 (with 512 features) and any one of the other two
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pre-trained models (with 1024 features) based on DT classifier with an improved accuracy
of 94.10%. It can also be inferred that the MOWFS-AJS and FOWFS-AJS have validation
accuracy of 94.24% and 94.22%, respectively, with the highest ranked feature set of 1024
and 914 number of features. Considering the improvement in accuracy with respect to CFS,
MOWFS-AJS, and FOWFS-AJS, it is clearly evident that with a lower number of feature
sets, MOWFS-AJS and FOWFS-AJS achieve 3.14% and 3.12% improved accuracy for HAM
10000 dataset based on DT classifier. Similarly, for the BCN 20000 dataset, the improvement
of MOWFS-AJS and FOWFS-AJS over CFS was found to be 7.77% and 7.75%, respectively,
with a lower number of features selected as ranked fused feature set based on DT classifier.

The performance based on NB classifier from Table 5 can be detailed as follows. The
observed improvements for HAM 10000 dataset of MOWFS-AJS and FOWFS-AJS over CFS
were found to be 3.1% and 3.3%, respectively with 1024 + 1024 and 1015 ranked feature
sets. Similarly, for the BCN 20000 dataset, the recorded improvements of MOWFS-AJS and
FOWFS-AJS over CFS were 6.27% and 6.47%. Additionally, it was seen that the number of
features selected for classification by FOWFS-AJS is only 998 features, which is much less
in comparison to both strategies.

Table 6 depicts the performance of all proposed feature fusion strategies based on the
MLP classifier. From this table, it can be seen that the FOWFS-AJS is outperformed over
the rest of the compared methods for both the datasets. The observed improvements for
HAM 10000 dataset of MOWFS-AJS and FOWFS-AJS over CFS were found to be 3.3% and
3.58%, respectively, with 512 and 975 features in ranked feature set. Similarly, for the BCN
20000 dataset, the recorded improvements of MOWFS-AJS and FOWFS-AJS over CFS are
5.49% and 5.57% with 512 + 1024 and 929 selected features from the ranked feature set.

Similarly, the performance based on the SVM classifier for both the datasets are
recorded in Table 7. From this table, we can see that the improvements for the HAM
10000 dataset of MOWFS-AJS and FOWFS-AJS over CFS was found to be 3.87% and 5.54%,
respectively with 512+1024 and 876 features in the ranked feature set. For the BCN 20000
dataset, the recorded improvements of MOWFS-AJS and FOWFS-AJS over CFS were 4.65%
and 6.32% with 512 and 899 selected features from the ranked feature set. From Table 5 to
Table 7, the FOWFS-AJS outperformed rest of the proposed feature fusion strategies with
respect to validation accuracy measured using NB, MLP, and SVM for both the skin lesion
datasets except the performance recorded using DT shows MOWFS-AJS better results in
comparison to other strategies (Table 4), but when compared with FOWFS-AJS, it has only
0.02% improved result for both the datasets.

The recognition performance of the three CNNs’ pre-trained models and the proposed
strategies, namely CFS, AWFS, MOWFS-GA, MOWFS-PSO, MOWFS-AJS, FOWFS-GA,
FOWFS-PSO, and FOWFS-AJS, are recorded in Tables 8 and 9 for HAM 10000 and BCN
20000 datasets, respectively, by measuring the accuracy, precision, sensitivity, and F1-score
based on all four classification algorithms. From both tables, it is observed that the SVM
shows better recognition performance and FOWFS-AJS is showing improved recognition
rate with respect to all the models considered for comparison.
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Further, a straightforward comparison was made considering the observed validation
accuracy of all the proposed feature fusion strategies for the combined or fused feature
sets and the feature sets obtained after ranking based on all four classifiers for both of the
datasets as given in Figure 6, Figure 7, Figure 8, Figure 9. The differences in validation
accuracy based on DT classifier for HAM 10000 and BCN 20000 datasets are represented
in Figure 6a,b respectively and from this figure, we can see the significant improvement
of MOWFS-AJS and FOWFS-AJS over the remaining six strategies and the MOWFS-AJS
performed better in this case of classification with 1.09% (fused feature set) and 2.91%
(ranked feature set) for HAM 10000 and 3.51% and 7.75% for BCN 20000 datasets. The
FOWFS-AJS showed better validation accuracy with respect to the rest of the proposed
strategies based on NB, MLP, and SVM classifiers. From Figure 7a,b, it can be seen that
FOWFS-AJS over CFS showed improvement of 1% (fused feature set) and 2% (ranked
feature set) and 3.24% (fused feature set) and 6.47% (ranked feature set) for HAM 10000 and
BCN 20000 datasets, respectively. Similarly, the accuracy recorded based on MLP and SVM
classifiers can be summarized as 1.34% (fused feature set),3.51% (ranked feature set), 2%
(fused feature set), 5.54% (ranked feature set) for HAM 10000 dataset (Figures 8a and 9a)
and 2.99% (fused feature set), 5.57% (ranked feature set) and 1.64% (fused feature set) and
6.35% (ranked feature set) for BNC dataset respectively (Figures 8b and 9b).

Figure 6. Comparison of validation accuracy for fused feature set and highest ranked feature set
using DT classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 7. Comparison of validation accuracy for fused feature set and highest ranked feature set
using NB classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.
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Figure 8. Comparison of validation accuracy for fused feature set and highest ranked feature set
using MLP classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 9. Comparison of validation accuracy for fused feature set and highest ranked feature set
using SVM classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Additionally, the area under the receiver operating characteristics curves (AUC-ROC)
were plotted to measure the performance and degree of separability amongst the proposed
three strategies AWFS, MOWFS-AJS, and FOWFS-AJS to describe how well the models are
capable of distinguishing between the classes which are represented in Figure 10, Figure 11,
Figure 12, Figure 13 for both datasets based on DT, NB, MLP, and SVM classifiers. From
Figure 10a,b, it is observed that FOWFS-AJS showed best accuracy performance with 90.9%
and 91.06% for HAM 10000 and BCN 20000 datasets, respectively. Similarly, the recorded
performance of the three remaining classifiers can be summarized as: based on NB classifier,
the best recorded performance of FOWFS-AJS was 92.84% and 93.21% for HAM 10000
and BCN 20000 datasets, respectively (Figure 11a,b); based on MLP, FOWFS-AJS showed
93.24% and 93.81% for HAM 10000 and BCN 20000 datasets, respectively (Figure 12a,b);

236



Cancers 2022, 14, 5716

and similarly, the SVM recorded a performance of FOWFS-AJS as 94.05% and 94.90%,
respectively, for HAM 10000 and BCN 20000 datasets (Figure 13a,b).

Figure 10. ROC using DT classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 11. ROC using NB classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 12. ROC using MLP classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.
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Figure 13. ROC using SVM classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Finally, a computational comparison (in minutes) was made between the feature
acquisition time by the proposed deep feature fusion strategies and the mean of time taken
for classification algorithms to classify the skin lesson datasets with the updated feature
sets and is shown in Figure 14a,b for HAM 10000 and BCN 20000 datasets, respectively.
From those two figures, it is also evident that the proposed FOWFS-AJS comparatively
showed better performance with respect to both feature acquisition and classification time
for both the datasets.

Figure 14. Comparison of mean feature acquisition time vs. classification time of DT, NB, MLP, and
SVM classifiers for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

4.5. Validation through Statistical Test

The experimental results were further analyzed using a non-parametric Friedman
statistical test [51,52] to determine whether or not there is a statistical difference observed
between the models or strategies experimented and compared. Here, this statistical test
was utilized to deal with the issue of comparison between all three pre-trained CNNs’
models and the proposed fusion strategies on both HAM 10000 and BCN 20000 datasets. To
analyze the performance of VGG16, EfficientNet B0, ResNet50, CFS, AWFS, MOWFS-GA,
MOWFS-PSO, MOWFS-AJS, FOWFS-GA, FOWFS-PSO, and FOWFS-AJS, the test was
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performed from the perspective of average ranking. This Friedman test, which is under the
null hypothesis, was computed as follows using Equation (8):

FMStat =
[

12
(N×k×(k+1)

]
×∑ R2 − [3× N × (k + 1)]

FMStat =
[

12
(N×k×(3+1)

]
×∑ 322 + 272 + 132 − [3× 12× (3 + 1)]

FMStat =
[

12
144

]
×∑×[1024 + 729 + 169]− 144

FMStat = [0.083× 1922]− 144 = 15.526

(8)

where FMStat, N, k, and R represent the statistical value, number of datasets, the number of
strategies used, and average ranking respectively. The statistical value FMStat is distributed
in line with the Fisherman distribution with (k− 1) and ((k− 1)()(T − 1)) degrees of
freedom. The result of this test is R = [21 21 18 16 12 10 4 8 14 6 2] and the calculated
FMStat = 19.7988. The critical value is 2.9782 under the significance level α = 0.05 for
N = 2 and k = 11; it is evident that the critical value is smaller than the observed values of
all FMStat on all evaluation metrics. This means that the null hypothesis on all evaluations
metrics is rejected under this test and the proposed FOWFS-AJS deep feature fusion strategy
achieves satisfactory performance on two datasets and eleven compared models.

4.6. Discussions on Key Findings

The key findings of this research are as follows. The performance of the transfer learn-
ing at the feature level based on the CNNs’ three pre-trained networks achieved optimal per-
formance faster than any other traditional feature selection models and the ensemble learn-
ing of features used to design the feature fusion models (for example, CFS) from the output
of those three pre-trained networks showed their good performance to design a robust
classifier for skin lesion datasets. From the experimentation, it was seen that only designing
a CFS model based on basic fusion strategy does not achieve better leverage, therefore the
weighted approach of selecting features and forming features sets through AWFS was ex-
perimented and shown to have better performance over CFS. Rather than only using feature
fusion, it was seen that the strategy for decision on feature fusion approach by utilizing the
AJS optimizer to identify the optimum point considering two special cases (active and pas-
sive) motions of this algorithm helped to find the best cost. In this study, two decision-based
feature fusion models, namely model-based and feature based strategies formed by adap-
tively choosing the optimal weights such as MOWFS-AJS and FOWFS-AJS have showed
their relatively good performance. The MSE of both model-based and feature-based strate-
gies are measured as cost f unction, where the measured MSE of the opted classification
model is taken as the cost and the weights (w1, w2 and w3) are taken as decision variables.
This total process was continued for 50 iterations to obtain optimized weights from all
three pre-trained models. Thus, the final ensemble of features was formed for test set
as

(
[w1]1×1 × FVGG16

)
,
(
[w2]1×1 × FE f f icientNet B0

)
,
(
[w3]1×1 × FResNet50

)
for model-based

strategy. The feature-based strategy focused on feature-based optimization of adaptively
chosen weights for formation of combined weighted feature set such as [w1]1×512 × FVGG16,
[w2]1×1024× FE f f icientNet B0 and [w3]1×1024× FResNet50 with total weights (512 + 1024 + 1024).
Then, the process of obtaining optimized weights is performed and finally it returns
512 + 1024 + 1024 optimized weights based on each feature and the combined feature set
is formed as [w1]1×512 × FVGG16, [w2]1×1024 × FE f f icientNet B0, [w3]1×1024 × FResNet50. Then,
features having weights > 0.5 were considered as best performing features and were
considered for final classification. The performance of the proposed deep feature fusion
strategies was evaluated based on each classification model and the proposed optimized
strategies were compared with GA and PSO, two widely used meta-heuristic optimization
techniques, through accuracy, precision, sensitivity, and F1-score. Finally, the Friedman
statistical test was performed to statistically validate the proposed strategies.
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The empirical evidence showed that choosing the weights of the pre-trained networks
adaptively in an optimized way gave a good starting point for initialization to mitigating
the chances of exploding or vanishing gradients, thus the performance of FOWFS-AJS
with SVM learning leveraged the existing network for both the skin lesion datasets and
the advantage of properly selecting rich and informative beneficial feature through this
feature-based optimized approach received better attention during the experimentation
and validation processes.

5. Conclusions

Visual inspection and manual examination of skin lesion images has been a burden to
the physicians and clinicians to detect melanoma. With the advancements of technology
and computational resources, academicians and researchers are trying to develop computa-
tional models and AI, ML, and DL have given a new direction to this area of research. In this
work, we tried to propose feature level fusion strategies by exploring the DL approaches
which in turn help for proper classification. An empirical study was attempted for design of
combined, weighted, and optimized strategies of feature selection by exploring the feature
fusion approach for classification of skin lesion image classification. The key advantages
of transfer learning through the CNNs’ pre-trained networks, fusion approach, selection
of features sets by adaptively choosing the weights (model based and feature based) with
a new meta-heuristic optimizer AJS was experimented for two skin lesion datasets and
then validated through four state-of-the art classifiers, namely DT, NB, MLP, and SVM. The
validations of the proposed strategies were performed based on classification accuracies,
precision, sensitivity, and F1-score, the difference between the validation accuracies and the
AUC-ROC curves were plotted. Extensive comparative studies and the computational time
taken for acquisition of features to form features along with statistical validations were
performed and the outcome of this empirical research led to conclude that in this exper-
imental setting, the feature sets generated through the proposed FOWFS-AJS leveraged
the SVM classifier to classify the HAM 10000 and BCN 20000 skin lesion datasets. This
work only explored three pre-trained networks and can be further experimented for few
more pre-trained networks to establish the capability of transfer learning. Further, this
research can be implemented for other domains of research and specifically, the decision
fusion approach can be further explored by utilizing many other upcoming meta-heuristic
optimization techniques and a few other skin lesion datasets can also be experimented.
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Simple Summary: In recent years metabolic tumor volume (MTV) has been shown to predict
outcomes in lymphoma. However, the current methods used to measure MTV are time-consuming
and require manual input from the nuclear medicine reader. Therefore, we aimed to develop a
deep-learning-aided automated method to calculate MTV. We tested this approach in 100 patients
with diffuse large B-cell lymphoma enrolled in a clinical trial cohort. We observed a high correlation
between nuclear medicine readers and the automated method, underscoring the potential of this
approach to integrate PET-based biomarkers in clinical research.

Abstract: Metabolic tumor volume (MTV) is a robust prognostic biomarker in diffuse large B-cell
lymphoma (DLBCL). The available semiautomatic software for calculating MTV requires manual
input limiting its routine application in clinical research. Our objective was to develop a fully au-
tomated method (AM) for calculating MTV and to validate the method by comparing its results
with those from two nuclear medicine (NM) readers. The automated method designed for this
study employed a deep convolutional neural network to segment normal physiologic structures
from the computed tomography (CT) scans that demonstrate intense avidity on positron emission
tomography (PET) scans. The study cohort consisted of 100 patients with newly diagnosed DLBCL
who were randomly selected from the Alliance/CALGB 50,303 (NCT00118209) trial. We observed
high concordance in MTV calculations between the AM and readers with Pearson’s correlation coeffi-
cients and interclass correlations comparing reader 1 to AM of 0.9814 (p < 0.0001) and 0.98 (p < 0.001;
95%CI = 0.96 to 0.99), respectively; and comparing reader 2 to AM of 0.9818 (p < 0.0001) and 0.98
(p < 0.0001; 95%CI = 0.96 to 0.99), respectively. The Bland–Altman plots showed only relatively small
systematic errors between the proposed method and readers for both MTV and maximum stan-
dardized uptake value (SUVmax). This approach may possess the potential to integrate PET-based
biomarkers in clinical trials.

Keywords: artificial intelligence; deep learning; U-Net; PET/CT; diffuse large B-cell lymphoma;
metabolic tumor volume

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype of
non-Hodgkin lymphomas, with an estimated incidence of 150,000 new cases annually
worldwide [1–3]. DLBCL is a curable disease in nearly 60% of patients treated with
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anthracycline-containing immunochemotherapy such as rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone (R-CHOP) and dose-adjusted etoposide, pred-
nisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (EPOCH-R) [4,5]. Pa-
tients with refractory DLBCL, however, demonstrate poor outcomes, with a median overall
survival of only 6.3 months [6]. Therefore, the early identification of patients at risk for treat-
ment failure remains a critical need in an effort to consider alternative treatment strategies
in this population.

Prognosis in patients with DLBCL is commonly determined by the International Prog-
nosis Index (IPI) score comprised of clinical and laboratory variables [7]. The IPI score was
developed in the early 1990s, undergoing subsequent validations and revisions associated
with better risk assessment [8,9]. However, significant advances in the understanding of
disease biology that occurred over the last two decades uncovered substantial molecular
heterogeneity and associated divergent survival, which was not fully captured in the IPI
score [10,11]. Furthermore, this index is not included in the treatment selection of front-
line or subsequent lines of therapy, underscoring the need to develop biomarker-driven
therapies in patients with DLBCL.

18F-fluorodeoxyglucose (FDG) positron-emission tomography with computed tomog-
raphy (PET/CT) is routinely incorporated in clinical practice for the staging and assessment
of treatment response in DLBCL [1,12–14]. The Lugano classification criteria is the most
commonly used staging system for the evaluation of treatment efficacy for established and
experimental therapies [15]. Metabolic tumor volume (MTV) calculated from FDG-PET/CT
has been shown to be a robust prognostic biomarker across different lymphomas [16–18].
In patients with DLBCL, MTV demonstrated prognostication in the frontline and relapsed
settings [19–21]. Investigators from the SAKK38/07 trial developed a prognostic model,
including mutation profiling and baseline FDG-PET/CT metrics, in patients enrolled in the
study. Patients with high MTV and metabolic heterogeneity demonstrated the highest risk
of relapse [22]. Furthermore, Mikhaeel et al. recently developed the International Metabolic
Prognostic index integrating MTV with individual components of the IPI score, such as
age and stage, enabling individualized estimates of patient outcome [23]. Therefore, the
implementation of MTV in clinical practice is expected to be imminent.

Despite encouraging prognostication defined by MTV, several challenges remain for
its broad implementation. Calculating MTV can be tedious and time-consuming when
using currently available semiautomatic software [24]. There can also be inherent variability
in calculating MTV that requires manual input from the readers [25–29]. The goal of the
present study was to develop a fully automated method for calculating MTV. We first
explored the feasibility of a fully automated method (AM) to calculate MTV in a clinical
trial dataset and, subsequently, we compared the results obtained by the AM with the
results obtained by two blinded readers. The contributions of our study include:

• Developing a novel fully automated machine learning approach for MTV calculation
in DLBCL.

• Validating the developed approach against experienced nuclear medicine readers in
determining MTV and maximum standardized uptake value (SUVmax).

• Enabling the integration of a machine learning approach in DLBCL clinical research.

2. Materials and Methods

2.1. Study Cohort

The clinical trial cohort consisted of 491 eligible patients with newly diagnosed DL-
BCL who were enrolled in the Alliance/CALGB 50,303 (NCT00118209) trial, an intergroup,
randomized phase III study aimed to compare six cycles of dose-adjusted EPOCH-R with
standard R-CHOP as a frontline therapy for DLBCL [30]. Eligible patients included un-
treated DLBCL confirmed by central pathology review. Before enrollment, limited field
radiation or fewer than 10 days of glucocorticoid treatment for urgent disease complica-
tions were allowed. Additional eligibility included age ≥ 18 years, stage II to IV DLBCL
(stage I primary mediastinal B-cell lymphoma was allowed), Eastern Cooperative Oncol-
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ogy Group performance status 0 to 2, and acceptable cardiac, renal, hematological, and
liver function. The presence of central nervous system involvement and human immunode-
ficiency virus infection represented exclusion criteria. In the Alliance/CALGB 50,303 study
dose-adjusted EPOCH-R was more toxic and did not improve progression-free survival
or overall survival compared with standard R-CHOP [30,31]. Among those 491 patients,
155 whole-body FDG-PET/CT scans at study enrollment were publicly available at The
Cancer Imaging Archive (TCIA) [32]. We randomly selected 100 patients to analyze for the
present study.

2.2. Imaging Data

Imaging examinations of the selected patients were acquired from three different types
of PET/CT scanners including Siemens Biograph (Siemens Medical System, Erlangen,
Germany), Philips GEMINI (Philips Healthcare, Best, The Netherlands), and GE Discovery
(General Electric Co., Milwaukee, WI, USA). As per the trial protocol, after confirming
plasma glucose level <200 mg/dL and at least a 4-h fasting period, patients were intra-
venously injected with 8–20 mCi of FDG and PET/CT scans were obtained approximately
60 to 80 min afterward. Concomitant low-dose CTs, extending mainly from the skull
base to thighs for anatomic localization and attenuation correction, were performed at
110–140 kVp with a reference dose of 200 mAs and iteratively reconstructed with a slice
thickness ranging from 2 mm to 4 mm. PET scans were reconstructed using algorithms
ranging from ordered-subset expectation maximization (OSEM) to blob-based iterative
time-of-flight (BLOB-OS-TF) to point spread function (PSF) modeling with and without
time-of-flight (PSF-TF). PET scan slice thickness ranged from 2 mm to 4.25 mm, with the
most typical being 3.25 mm or 4.25 mm (83%). In addition, 50 whole-body CT scans from
the TCIA collection of the whole-body FDG-PET/CT dataset [33] were used to fine-tune the
employed deep-learning-based segmentation model. Imaging parameters of these CT scans
were as follows: tube voltage of 120 kV, reference dose of 200 mAs, and slice thickness of
2–3 mm. Contours of the brain, heart, kidneys, and bladder were provided by a consensus
exercise of two expert radiologists. The local institutional review board (IRB) waived the
study from review as only publicly available aggregated patient datasets were utilized.

2.3. Segmentation of Anatomic Structures with Physiologic FDG Avidity

Anatomic structures with avid physiologic FDG uptake, such as the brain, heart,
kidneys, and bladder, complicate the interpretation of PET imaging data for MTV deter-
mination. To alleviate this, a deep convolutional neural network model was deployed to
segment these structures on the CTs. The segmentation model was built off the pre-trained
2D dilated residual U-net architecture by Manteia Medical Technologies (Milwaukee, WI,
USA) [34]. Residual U-net was adopted due to its ability to alleviate the vanishing gra-
dient problem as the depth of the network increases. Figure 1 illustrates the network
architecture of the deployed model. Both the encoder and decoder were composed of five
cascades of residual blocks. In addition, a shortcut connection was implemented between
the corresponding feature maps between the encoder and decoder. Each residual block
was composed of two convolution layers, and the size of the convolution kernel was 3 × 3.
Each residual block was cascaded with the down-sampling layer or the upper-sampling
layer. The down-sampling method used was maximum pooling and the upper-sampling
method was the bilinear interpolation. Furthermore, batch normalization was also applied
to reduce the internal covariate shift [35].
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Figure 1. A schematic overview of the employed 2D dilated residual U-net-based segmentation
model. The encoder and decoder were composed of 5 cascades of residual blocks. Each residual block
was composed of two convolution layers and was cascaded with the downsampling layer (maximum
pooling; down arrow) or the upper sampling layer (bilinear interpolation; upper arrow). A shortcut
connection (horizontal arrow) was implemented between the corresponding feature maps between
the encoder and decoder.

To fine-tune the pre-trained model towards the purpose of this work, the weights
of the final output layer of the original model were reset to random values, resulting
in a total of 165 trainable parameters. The dataset used for fine-tuning the pretrained
model comprised the aforementioned 50 whole-body CTs annotated for the brain, heart,
kidneys, and bladder, which were divided at the ratio of 5:1:4 for training, validation,
and testing sets, respectively. Data preprocessing included clipping image intensity to
1–99% of the maximum and Z-Score standardization. The modified model was trained
with a maximum number of training epochs of 100. The learning rate was initialized as
3 × 10−4 and decreased to 3 × 10−6 after about 60 epochs. Regarding data augmentation
for training, techniques based on affine transforms such as rotation, translation, scaling,
and flipping were employed. The objective function was a combination of cross-entropy
and Dice loss, and adaptive moment estimation (ADAM) was utilized to update the
parameters with a weight decay of 1 × 10−4. Training loss went from 1.3317 to 0.0190,
from 1.4233 to 0.0551, from 1.2526 to 0.0774, and from 1.6453 to 0.0576 for the brain, heart,
kidneys, and bladder, respectively. Training accuracy by the Dice coefficient for the brain,
heart, kidneys, and bladder were 0.9885, 0.9441, 0.9145, and 0.9045, respectively. Testing
accuracy by the Dice coefficient for the four target organs was 0.9524, 0.9023, 0.9107, and
0.8809, respectively. Regarding the implementation environment for the described fine-
tuning process, PyTorch (v1.10) [36] was employed.

Upon being obtained on the CTs, contours of the above-mentioned FDG avid structures
were transferred to the PET scans with automatic adjustment for their respective PET
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presentations by the aid of an array of ad hoc image-processing algorithms including
region-growing, active contours, and fast matching [37–39] (Figure 2).

Figure 2. Step-by-step demonstration of deep-learning-aided metabolic tumor volume calculations.

2.4. Automated Determination of MTV on FDG-PET

Prior to MTV calculation, a narrow trapezoid-shaped zone was established based
on PET-adapted kidney and bladder contours. The zone extended in the cranial–caudal
direction from the superior poles of the kidneys to the central cross-sectional plane of the
bladder, in the anterior–posterior direction from the anterior to the posterior surfaces of the
kidneys on the top base while on the bottom base from the anterior to the posterior borders
of the bladder, as shown in the central cross-sectional plane, and in the left-right direction
between the midlines of the two kidneys on the top base while, on the bottom base, between
the lateral borders of the bladder, a central cross-sectional plane is shown. The rationale for
creating such a zone was to aid in the identification of focal uptake by the ureters, which,
incidentally, posed a challenge to the employed deep learning-based segmentation model
given both the paucity of accurate training data and the wide anatomical variation of the
ureters. In addition, establishing such a zone was also of help in the detection of isolated
and scattered areas of focal uptake resulting from the kidneys and bladder.

The MTV determination was conducted within the volume defined by the PET-imaged
whole-body volume excluding the aforementioned anatomical structures being transferred
and adapted to PET scans, including the brain, heart, kidneys, and bladder. This volume
was determined by a threshold with respect to 41% of the SUVmax, [40] followed by clus-
tering of the contiguous supra-threshold voxels into isolated regions under an additional
constraint of retaining only the ones with size greater than 1 cm3. This resulted in the
formation of a set of candidate lesion regions of interest (ROI), which was then further
screened for exclusion of the ones with size less than 2 cm3 as well as those falling in the
defined trapezoid-shaped zone. In scenarios where the candidate lesion ROI with the
SUVmax was screened out, its volume was removed from the defined MTV analyzing
space, and the process was repeated, until all the criteria laid out above were met. Of note,
the whole described process was automatic, without requiring any manual intervention.
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2.5. Semiautomatic Method for MTV Measurement

All FDG-PET/CT images were independently reviewed using the Hermes Affinity
Viewer by two experienced nuclear medicine readers. ROIs selected by the software were
manually adjusted in three planes to exclude adjacent physiologic FDG avid structures.
SUVmax was defined as the maximum voxel intensity within the volumetric region of
interest. Bone marrow involvement was only included in volume measurement if there was
focal uptake. The spleen was considered as involved if there was focal uptake or diffuse
uptake higher than 150% of the liver background. MTV was obtained by summing the
metabolic volumes of all individual lesions using the previously reported 41% of SUVmax
threshold and volume ≥1 cm3. Nuclear medicine readers were blinded for the automated
results and vice versa.

2.6. Statistical Analysis

MTV and SUVmax were compared to the fully automated results from the developed
algorithm. To examine agreement, we estimated Pearson’s correlation coefficients and inter-
class correlation coefficients (ICCs), along with corresponding 95% confidence intervals
and p-values. For visualization, we displayed scatter plots along with regression lines and
Bland–Altman plots between readers and the automated method. All tests were two-sided
and statistical significance was considered when p < 0.05. Statistical software R was used
for all statistical analyses.

3. Results

We sought to investigate the performance of a three-dimensional deep learning-aided
AM for MTV calculation in 100 patients with DLBCL enrolled in the Alliance/CALGB
50,303 clinical trial. There were 17 centers participating in this trial and the PET/CT
systems employed included: Siemens (n = 53), GE (n = 30), and Philips (n = 17). Among the
randomly selected patients, the mean MTV calculated by reader 1 was 226.470 mL (standard
deviation (SD) 260.066 and coefficient of variation (CV) 114.834), for reader 2 was 226.799 mL
(SD 261.965 and CV 115.505) and for AM was 205.704 mL (SD 245.825 and CV 119.504).

Comparing reader 1 to reader 2, the Pearson’s correlation coefficients and ICCs were
0.9997, p < 0.0001 and 1, p < 0.0001 (95%CI = 1 to 1) for MTV and 1, p < 0.0001 and 1,
p < 0.0001 (95%CI = 1 to 1) for SUVmax, respectively (Figure 3A,B). Comparing reader
1 to AM, the Pearson’s correlation coefficients and ICCs were 0.9814, p < 0.0001 and
0.98, p < 0.0001 (95%CI = 0.96 to 0.99) for MTV and 0.9868, p < 0.0001 and 1, p < 0.0001
(95%CI = 0.99 to 1) for SUVmax, respectively (Figure 3C,D). Comparing reader 2 to AM,
the Pearson’s correlation coefficients and ICCs were 0.9818, p < 0.0001 and 0.98, p < 0.0001
(95%CI = 0.96 to 0.99) for MTV and 0.9868, p < 0.0001 and 1, p < 0.0001 (95%CI = 0.99 to 1)
for SUVmax, respectively (Figure 3E,F).

When we assessed the data sorted by the type of PET/CT system, we observed
small differences in SUVmax between the readers and AM only on images obtained by
Philips scanners (readers and AM: ICC 0.81, p < 0.0001 (95%CI = 0.57 to 0.93)) (Supple-
mental Table S1). We did not observe differences by the type of scanner in MTV volumes.
(Supplemental Table S2).

The Bland–Altman plots showed only relatively small systematic errors between the
proposed method and the manual readings across the entire data range being examined for
both MTV (Figure 4) and SUVmax (Figure 5).

Subsequently, we calculated the Root-Mean-Squared Error (RMSE) between readers
(average) and the proposed AM as a measure of accuracy and positive difference and
negative difference between the two measurements as a bias. For MTV calculations, the
RMSE was 54.7, with a positive bias of 28.4 and a negative bias of 0.27 (Supplemental
Figure S1A). The mean difference between readers was 20.92 (95% limits of agreement of
−49.77 and 91.63). AM demonstrated smaller MTV values compared to those of the nuclear
medicine readers. For SUVmax calculations, we found an RMSE of 1.93 with a positive bias
of 15.4 and a negative bias of 1.26 (Supplemental Figure S1B). The mean difference between
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readers was −0.03 (95% limits of agreement of −3.34 and 3.26). Again, AM demonstrated
smaller values of SUVmax compared to the nuclear medicine readers.

 

Figure 3. Pearson’s correlation coefficients calculating metabolic tumor volumes (MTV) with a
threshold of 41% and SUVmax between Reader 1 and Reader 2 (A,B), Automated Method (AM)
approach and Reader 1 (C,D), and AM and Reader 2 (E,F).

 

Figure 4. Bland–Altman plot. Graphical display for bias between two readers and automated method
(AM) in metabolic tumor volume calculation (A–C).
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Figure 5. Bland–Altman plot. Graphical display for bias between two readers and automated method
(AM) in SUVmax calculation (A–C).

4. Discussion

In this study, we showed that a deep-learning-aided method can accurately segment
lymphoma lesions, allowing for a fully automated assessment of MTV in a homogeneously
treated patient population. SUVmax and tumor volumes measured by our proposed
method were highly correlated with those determined by independent readers using a
semiautomatic software, validating these results. No subjects were excluded due to failure
of the automated method. Furthermore, the algorithm was highly accurate in classifying
FDG-avidity in patients from a multicenter clinical trial involving 17 centers that obtained
images on different scanner models with variable reconstruction settings.

Deep learning is a subtype of representation learning aimed to describe complex
data representations using simpler hierarchized structures defined from a set of specific
features [41]. Convolutional neural networks represent the core of deep learning methods
for imaging and are multilayered artificial neural networks with weighted connections
between neurons that are iteratively adjusted through repeated exposure to training data.
These networks may be used for the automation of various time-consuming tasks includ-
ing image detection, segmentation, and classification [42]. This method possesses the
potential to decrease reading time and increase the reproducibility of measurements and
has been associated with similar accuracy to semiautomatic methods that require reader
input [43–45].

The availability of predictive factors of response to standard and experimental regi-
mens remains an unmet need in DLBCL. More recently, several automated segmentation
methods have been proposed in DLBCL [45–49]. Capobianco et al. examined a machine
learning approach to generate MTV in DLBCL [47]. The authors tested an investigational
software prototype (PET-Assisted Reporting System (PARS); Siemens Medical Solutions
USA, Inc., Malvern, PA, USA) to estimate MTV in 301 patients enrolled in the REMARC
clinical trial [47,50]. The automated whole-body high-uptake segmentation algorithm iden-
tified all three-dimensional regions of interest with increased tracer uptake. The resulting
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ROIs were processed using a convolutional neural network trained on an independent
cohort. They observed a similar correlation between PARS-based MTV with reference MTV
calculated by two experienced readers (ρ = 0.76; p < 0.001). Subsequently, Jiang et al. trained
a 3-D U-Net architecture on patches randomly sampled within PET images in 414 patients
with DLBCL [48]. Authors found a strong positive correlation (linear regression analysis;
R2 linear = 0.882, p < 0.001) between ground-truth MTV and predictive MTV in training and
validation (R2 linear = 0.939, p < 0.001) cohorts. Most recently, Revailler et al. completed a
training dataset of 407 patients in 93 h underscoring the speed of current deep-learning
models to compute MTV [45].

The automated method proposed here brings a new solution to the problem of MTV
calculation in DLBCL and has several advantages compared to the previous methods. First,
when compared to the previous methods, which are more or less “black box” models that
are difficult to interpret and often provide little insight into how decisions are made, the
proposed method is more explicit and more direct in emulating how nuclear medicine
physicians reason through DLBCL PET/CT imaging data. Moreover, the inherent human
bias induced by inter- and intra-observer perception errors in reading PET/CT scans for
MTV calculation is eliminated by the proposed method since it does not need the massive
quantities of annotated training data on which others rely. In addition, the proposed
method with the use of segmentation of physiologic FDG avid structures on CTs may
be advantageous for patient cases featuring a low tumor burden, for which the previous
methods are particularly problematic.

Limitations of the present study include the applicability of our results to other
lymphoma subtypes and cancer groups and the need to further validate and refine our
automated method. Although our sample size is relatively small, patients were randomly
selected from a homogeneous dataset, and we observed similar results across our cohort.
Furthermore, the presented performance of the developed method should be interpreted
with caution, given that the method was validated against readings collected from only one,
although generally accepted and widely used, dedicated semiautomatic MTV calculation
software. In addition, the manual readings for this study were performed by readers
from the same institution, which may lend itself to potential reader bias. We did not
seek to develop a predictive or prognostic model due to the incomplete availability of
PET/CT scans from TCIA. Our goal was limited to validating our automated method
approach. Finally, the performance of the proposed automated MTV calculation method
may deteriorate in some rare but complicated clinical scenarios, such as tumor activity
being located in close proximity to normal physiologic structures such as the bladder or
kidneys, or when normal anatomy is distorted either due to the disease process or image
artifacts, including misregistration or patient motion amongst others.

Nonetheless, the proposed automated method is strengthened by its ability to calculate
MTV with a high correlation to analysis by expert readers in the company of automation
and high throughput (median process time: 5 min for the proposed method vs. 20 min
for expert analysis). Developing a fully automated method, such as ours, for calculating
MTV that is accurate and reproducible may facilitate the application of MTV in clinical
research, providing real-time risk stratification. Future studies should prospectively explore
treatment decisions based on MTV data.

5. Conclusions

We demonstrated that a deep-learning-aided, fully automated method is capable of
calculating MTV in patients with DLBCL. The resulting MTV values were highly concordant
with the results obtained by two blinded nuclear medicine readers. Employing deep
learning for the calculation of MTV offers many advantages over semiautomated methods,
including time efficiency and the reproducibility of results across different PET/CT systems.
The proposed automated method is unique in that it emulates how nuclear medicine readers
analyze PET/CT images and does not require massive quantities of annotated training data.
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We believe that an accurate and highly reproducible automated method for calculating
MTV has great potential for incorporation into clinical research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14215221/s1, Figure S1: (A) Bland-Altman plot. Graphi-
cal display for bias and Root-Mean-Squared Error (RMSE) between average of reader 1 and reader 2
versus automated method in metabolic tumor volume calculations, (B) Bland-Altman plot. Graphical
display for bias and Root-Mean-Squared Error (RMSE) between average of reader 1 and reader 2 ver-
sus automated method in SUVmax calculations; Table S1: Concordance between readers in SUVmax
values by scanner type; Table S2: Concordance between readers in MTV values by scanner type.
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Simple Summary: Cancer is basically a tough condition on a patient’s body where cell grows
uncontrollably. Normal cells are affected, which destroys the health of the patient. The main problem
in cancer is spreading from one part to another. Therefore, the mathematical modeling of cancerous
tumors integrates to check overall stability. A novel approach is introduced such as Bernstein
polynomial with combination of genetic algorithm, sliding mode controller, and synergetic control.
The proposed solution has easily eliminated cancerous cells within five days using synergetic control.
In addition, five cases are incorporated to evaluate error function. In addition, a brief comparative
study is added to contrast the simulation results with theoretical modeling.

Abstract: Cancerous tumor cells divide uncontrollably, which results in either tumor or harm to
the immune system of the body. Due to the destructive effects of chemotherapy, optimal medi-
cations are needed. Therefore, possible treatment methods should be controlled to maintain the
constant/continuous dose for affecting the spreading of cancerous tumor cells. Rapid growth of cells
is classified into primary and secondary types. In giving a proper response, the immune system plays
an important role. This is considered a natural process while fighting against tumors. In recent days,
achieving a better method to treat tumors is the prime focus of researchers. Mathematical modeling
of tumors uses combined immune, vaccine, and chemotherapies to check performance stability. In
this research paper, mathematical modeling is utilized with reference to cancerous tumor growth, the
immune system, and normal cells, which are directly affected by the process of chemotherapy. This
paper presents novel techniques, which include Bernstein polynomial (BSP) with genetic algorithm
(GA), sliding mode controller (SMC), and synergetic control (SC), for giving a possible solution to the
cancerous tumor cells (CCs) model. Through GA, random population is generated to evaluate fitness.
SMC is used for the continuous exponential dose of chemotherapy to reduce CCs in about forty-five
days. In addition, error function consists of five cases that include normal cells (NCs), immune cells
(ICs), CCs, and chemotherapy. Furthermore, the drug control process is explained in all the cases. In
simulation results, utilizing SC has completely eliminated CCs in nearly five days. The proposed
approach reduces CCs as early as possible.

Keywords: nonlinear ordinary coupled differential equation (ncode); Bernstein polynomial (bsp);
genetic algorithm (ga); sliding mode controller (smc); synergetic controller (sc); chemotherapy;
immunotherapy and optimization
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1. Introduction

Initially, cancer was considered an untreatable disease. Division and uncontrolled cell
growth usually occur because of cancer [1]. Unexpected magnification of cells crosses the
limit of a normal level, and cells even migrate to neighbor tissues. However, for cancer
cells, mathematical models can be applied for treatment or analysis. Tumor development
involves a complicated process. During this approach, when the tumor becomes malignant,
the tumor can then spread to the overall body to form secondary tumors [2–4]. Globally,
cancer is primary cause of death. According to reports from WHO, cancer is the second most
dangerous disease in about 112 countries [5]. On the other hand, in 2020, COVID-19 has
increased the death rates in comparison to other diseases. Due to current population-based
data, the cancer death rate has been reduced since 1990 [6].

The immune system has a direct association in all phases of the tumor lifecycle.
Therefore, fast therapy augments the function of a patient’s immune system. This whole
process is called cancer immunotherapy, which necessitates work on basic and mathematical
computational models to formulate an edge-based silico approach. Apart from clinical
methods, immunotherapy and computational models help to innovate this field of study [7].
Immunotherapy is typically used to support the human body’s natural immune system
in the battle against cancerous tumors. Initially, CCs dimensions are usually large in size
and can be identified with clinical methods. Chemotherapy investigates tumor stability
to maintain tumor-free equilibrium by injecting the chemotherapy dose where the drug is
and allowing it to mix with the blood. Therefore, the medication is administered into the
circulatory system [8]. Achieving optimal procedure of medicines can be utilized to treat
cancerous tumors. The main issue is determining the exact dosing plan as well as a proper
medication delivery strategy [7].

Many researchers have provided solutions in the field of cancer to facilitate recovery.
Computational techniques are considered a possible solution in designing a novel concept
in boosting traditional models. The overall paper is based on a new approach to reduce
cancerous cells within the body. Sometimes, reduction of cells affects the body in a negative
bad way. Therefore, the concept of controllers in the area of cancer is introduced where
other techniques such as SMC and SC are also utilized. This paper presents a theoretical
comparison with existing techniques and simulation-based approach as well. Many re-
searchers have utilized the basic model of Depillis et al. [9], which is based on traditional
therapies. Initially, there was no concept of controllers in reducing the drug rate or eliminat-
ing CCs. The theoretical reasoning lies in having information to reduce CCs with respect to
a lesser number of days. Controllers such as steepest descent are utilized but can hardly
eliminate CCs in eight days [10]. Online recursive calculation [11] has also given the similar
results. Therefore, there is a need for more work regarding mathematical models in CCs
elimination.

A solution to the cancer-related problems can likely be determined by establishing
mathematical models and understanding their dynamic behaviors. Furthermore, Figure 1
shows the idea of three modes related to cancer, which include immunotherapy, chemother-
apy, and SMC and SC as mathematical modeling. Healthy tissue cells consists of immune
and host cells that are used in the growth of tumors, which is described in De Pillis [12]. The
role of chemotherapy drugs is to have a harmful effect on tumor cells. Thus, a prey–predator
model can be used to monitor the growth of tumors within a limited time in immune net-
work [13,14]. Evolutionary computing algorithms are considered the optimal method
to address multi-objective engineering problems using spotted hyena optimizer [15]. In
addition, for differential evolution, a genetic algorithm can be used to solve the control
strategy for cancer treatment drugs [13–23,26]. The main contribution of this research study
is as follows:

• This paper introduces a novel drug that eliminates CCs;
• Elimination of CCs but also reduction of the effect of chemotherapy on NCs and ICs

was also used to bring NCs up to threshold level.
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• A new controller was designed to obtain optimal results where SMC and SC are
utilized as drugs;

• The proposed solution eliminates CCs within five days;
• Various methods were incorporated to check the performance of the proposed solution

with traditional approaches. Further, two basic approaches such as theoretical and
simulation were performed to evaluate the results.

 
Figure 1. Three different modes for cancer-related problems.

The paper’s organization includes Section 2, literature study; Section 3, cancer model
with proposed methodology; Section 4, the proposed solution; Section 5, simulation results;
Section 6 is comparative discussion, and Section 7 gives the conclusion and future scope.

2. Literature Study

This section is about the literature study performed to extract limitation related to
cancer using different techniques, which are as follows:

Sima Sarv et al. described the concept of a mathematical model for cancer immunother-
apy. A particle swarm optimization (PSO)-based protocol was designed to deal with cellular
immunotherapy. However, tumor interaction needs to be better evaluated by using math-
ematical modeling. A forward-backward approach is considered contemporary but has
problems related with time, which led to convergence issues as well [16]. The immune
system responds to cancerous tumors. Therefore, to reduce the tumor’s effect on the body
overall, immunotherapy is utilized. Due to the human immune system, the fight against
cancerous cells is quite easy. In addition, a fixed dose level needs to be deployed to help
to reduce CCs. Immunotherapy has attracted researchers with the momentum to utilize
antigen T cells, which helps to detect cancerous cells. A special model was designed to
reduce cancerous cell growth using chimeric antigen receptor thymus cells (CAR-T cells).
Experimentation was performed with in silico tests to select various scenarios. The CAR-T-
cell procedure response eliminates cancerous cells and reduces the formation of long-term
immuno-memory [17] to maintain the equilibrium that includes cancer cell growth and
the immune editing method. Mathematical modeling is quite helpful when it is based on
cell population sub-sections. Type 1 interferon receptor (1. IFN) signaling predicts the
dominant cancerous cells. For the entire experimentation, triple-negative breast cancer
was used [18]. Castrate-resistant prostate cancer (CRPC) with anti-cytotoxic T-lymphocyte-
associated protein 4 (anti-CTLA4) was used as a single treatment to estimate results from
experimental data. Various constrains were applied to check the performance of CCs,
where different drug doses were given to patients to reduce CCs. For better control of CCs,
synergy between ipilimumab and sipuleucel-T was utilized [19], giving a possible solution
to cancer by using a fractional mathematical model that is based on synergy in between
angiogenic and various therapies [20]. Furthermore, a delayed mathematical model of
cancerous cells’ immune system is needed to effect drug therapies. There is a relevant,
pressing need for a drug-free mechanism that can be understood by the dynamics of a
multi-therapeutic approach [21].
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Kaouthar Moussa et al. introduced injection scheduling to model cancer treatment,
which was used to achieve an optimal level under multiplex tasks. However, interaction
can be made possible between CCs and ICs. Many applications normally restructure to
schedule injection dose. However, uncertainties need to be further investigated on the
initial stage of ICs [22].

Virotherapy improves chemotherapy since the ordinary differential equation (ODE)-
based mathematical model balances the interaction among ICs, treatment, and oncolytic
cells. This method is useful for completely clearing CCs. Sensitivity examination uses
forward techniques to access the effect of virotherapy and chemotherapy. Virus reproduc-
tion can be balanced to maintain the tumor equilibrium. Pontryagin’s maximum approach
rectifies prediction modeling during continuous treatment of cost and side effects. Further-
more, stability must be investigated to give proper solutions [23]. Table 1 depicts various
treatment methods with limitations.

Table 1. Different treatment methods with limitations.

Treatment and Controller Behavior Limitations

Pulsed chemotherapy protocol [9] Oscillatory behavior of CCs and ICs CCs not removed completely

Direct collocation as an optimal control
with continuous chemotherapy [19] Oscillation in ICs, slow reduction of CCs CCs eliminated within 70 days, NCs

reduced to dangerous level

Traditional pulse chemotherapy [20] Reduction of CCs and NCs CCs still remaining, NCs die down to
minimum threshold

Optimal control with chemotherapy [20] CCs slowly removed Elimination of CCs within 70 days

Chemo-immunotherapy with optimal
control [20] Oscillatory behavior of NCs and ICs Treatment destroys the CCs, NCs, and ICs

Multi-objective swarm as an optimal
control with chemotherapy [14]

Nonlinear behavior of treatment, NCs
and CCs.

NCs reduced to minimum edge, so for
the time being, treatment is stopped to

recover NCs to a safe level.

Chemo-immunotherapy of
triple-negative breast cancer [29] ICs remain at very low level CCs eliminated after 60 days

Optimal administration protocols for
immunotherapies [22] Nonlinear behavior of CCs elimination CCs eliminated after 40 days

Chemo-immunotherapy with SMC [15] CCs eliminated from the patient’s body
within 45 days.

The CCs elimination is good but can
be enhanced.

The formation of mathematical model is determined to level up the basic reproduction
and stability, which is used to conduct numerical demonstration. An epidemic model of
cancer with chemotherapy is a non-linear concept using differential equations. Cancer
growth cells with parameters must be constant; therefore, increasing drug dose limits the
CCs [24]. Giving a solution for overall orbits and bounded coverage utilizes a phase-space
mathematical strategy to limit the CCs growth. Control therapy drives a desirable basin
where traditional chemotherapy is not well-applicable [25]. In addition, more constraints
regarding the mentioned issue are described in Table 1.

Machine learning and other techniques take too much time in comparison to con-
trollers. High-level data sets are involved to give accurate decisions, whereas training and
testing is commonly used and do not give quick solution. The rate of error detection and
removal is very tough in machine learning. Due to the mentioned problems, controllers
will reduce CCs more easily and effectively. When solving higher-order equations using
SMC, order rate reduction occurs. The entire system is highly coupled and non-separable,
which is quite hard to solve. SMC and SC swap from easily coupled into de-coupled to
reduce disturbance. Overall, a synergetic controller is more reliable than SMC. SMC has a
chattering phenomenon, which further leads to low accuracy.
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The paper is structured as follows: Section 2 is confined to the tumor model based
on a system of coupled differential equations, followed by brief introduction of BSP, GA,
and SMC. Section 3 presents the proposed methodology and the design of SMC. Section 4
presents the simulation results and discussion. The conclusion is presented in Section 5.

3. Cancer Model with Proposed Methodology

Mathematical models are methods for analyzing the system’s behavior, which gives
possible solutions to simulate complex systems [13,18,19,23]. A system of nonlinear coupled
ordinary differential equations is discussed in this research study. The proposed solution is
based on the below-listed assumptions, which include:

1. CCs and NCs follow logistic growth.
2. ICs and drugs must have natural death rates.
3. NCs have controlled growth, but CCs possess uncontrolled behavior; therefore, popu-

lation growth will be variable.
4. Drug sources can be either constant or exponential.

3.1. Cancer Tumor Model

The cancerous tumor model consists of NCs, CCs, and ICs, where population can be
presented by coupled differential equations. Moreover, drug concentration in chemotherapy
needs to be monitored using Equation (4). The following Equations (1)–(5) represent NCs,
CCs, and ICs with respect to time.

.
x1 = a2x1(1− d2x1)− e4x2x1 − r3C (1)

.
x2 = a1x2(1− d1x2)− e2x2x3 − e3x2x1 − r2C (2)

.
x3 = α +

px3x2

s + x2
− e1x3x2 − f1x3 − r1C (3)

.
C = vc(t)− f2C (4)

The initial conditions are
x1(0) = 0.9

x2(0) = 0.25
x3(0) = 0.25

(5)

The mentioned model describes the metrics of cancer with NCs and ICs. How-
ever, x1, x2, and x3 are denoted as NCs, CCs„ and ICs respectively. Furthermore, in
Equation (4), C is used for chemotherapy treatment, while the remaining model parameters
include r1, r2, and r3 coefficients of cell death rate. In addition, d1 and d2 drugs carry
capacities such as e1 to e4 . Moreover, f1 and f2 are considered natural death rates, and
a1 and a2 are the growth rates for ICs and drugs, respectively. p is the response rate, and
the threshold rate can be symbolized as s [6]. The simulation results utilize chemotherapy
drugs, and the maximum effect on body cells are observed within 100 days. The obtained
results will not reduce the level of NCs, which is x1 ≥ 0.75.

3.2. Bernstein Polynomial (BSP)

Approximation functions can be used in BSP to give an optimal solution. Integral and
differential equations are used to solve many complex problems. BSP was introduced by
Sergi Natanovich in 1912 [15]. However, polynomials with the order n and with interval
[0, τ] are given in Equations (6)–(12).

Bi,n(t) =
(

n
i

)
ti(τ − t)n−i

τn (6)
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0 ≤ t ≤ 1, and τ is considering 1.

Bi,n(t) =
(

n
i

)
ti(1− t)n−i (7)

Bi,n(t) =
{

0∀i �= 0
1∀i = 0

(8)

Bi−1,n−1(1) =
{

0∀i �= n
1∀i = n

(9)

Bi,n−1(1) =
{

0∀i �= n
1∀i = n− 1

(10)

Lower-ordered polynomials are represented in Equations (11) and (12), which are
considered the properties of BSP:

Bi,n(t) = (1− t)Bi,n(t) + tBi,n(t) (11)

Bi,n(t) = n(Bi−1,n−1(t)− Bi,n−1(t)) (12)

3.3. Heuristic Algorithm

GA is the class of nature-inspired heuristic algorithms. The evolutionary computation
technique is based on random population of a candidate solution. This is considered
the classical method to optimize complex problems by utilizing pairs of chromosomes’
crossover reproduction, mutation, and selection [31]. The genetic algorithm follows the
steps below:

i. Random population having unknown length of chromosomes;
ii. Candidate solution and mutation are used in genetic algorithm, which is considered

the classical method for optimization;
iii. Fitness function is utilized to check the desired solution;
iv. Crossover, mutation, and selection are found for fitness criteria.

Otherwise, repeat step ii.

3.4. Controllers

Controllers are used to give a solution to complex problems, which can be either linear
or nonlinear. Usually, the control system regulates undesired responses with uncertainties
to the desired reaction. In nonlinear models, integration of linear control systems can be
applied. The proposed model is highly nonlinear, which gives the best possible approach
for CCs.

3.5. Sliding Mode Controllers (SMC)

SMC are used to apply a discontinuous control signal, which works on a state feed-
back control mechanism. SMC is a non-linear system, which is used to give stability in two
phases. However, defining sliding surface is the first phase, while managing initial states
of the system is the second stage. Moreover, when the system reaches the desire state, it is
called sliding mode. Complex systems must control finite time while removing parameter
variations, order reduction, and decoupling [25,33].

3.6. Synergetic Controllers (SC)

SC are used to keep correspondence with nonlinearity and open systems. SC subsys-
tems have dynamic interaction during exchange of information. Nonlinear mathematical
models have multi-dimensional properties. However, designing a synergetic model utilizes
nonlinear control applications. Presently, SC is a type of dynamic nonlinear system [27,34].

260



Cancers 2022, 14, 4191

4. Proposed Methodology

Cancerous tumor model Equations (1)–(3) are utilized to mimic the error function.
For approximation, BSP is demonstrated by using GA, SMC, and SC to the minimize
error function of the solution. Linear combination Equations (13)–(16) are evaluated using
boundary approaches with different cases.

The below algorithm is considered the proposed solution [24–27], which consists of
BSP, genetic computation, SMC, and SC.

Algorithm 1 [24–27]: Model approximation using GA-tuned BSP along with a controller as the
proposed drug

1. Model approximation using BSP
2. Coefficients’ tuning using GA

a. Initialization phase
b. Set parameters for each stage

i. Approximation
ii. Assign number of generation
iii. Generate initial population

1. While
a. Calculate fitness
b. Selection

2. Do
a. Crossover
b. Mutate P(t)

3. End while
4. P(t+1) = New Population

3. Applying SMC
a. Set parameters
b. Define sliding surface
c. Design controller to drive initial states to the sliding surface
d. Applying on model
e. Repeat step 1 and 2

4. Applying SC
a. Assume macro-variable
b. Design sliding manifold
c. Force the initial states to sliding manifold
d. Repeat step 1 and 2

5. Compare SMC and SC
Stop

x1(t) =
n
∑

i=0
fiBi,n(t)

.
x1(t) = n

(
n
∑

i=1
fiBi−1,n−1(t)−

n−1
∑

i=0
fiBi,n−1(t)

) (13)

x2(t) =
n
∑

i=0
giBi,n(t)

.
x2(t) = n

(
n
∑

i=1
giBi−1,n−1(t)−

n−1
∑

i=0
giBi,n−1(t)

) (14)

x2(t) =
n
∑

n=0
hiBi,n(t)

.
x2(t) = n

(
n
∑

i=1
hiBi−1,n−1(t)−

n−1
∑

i=0
hiBi,n−1(t)

) (15)
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x1(0) =
n
∑

i=0
fiBi,n(0) = f0 = 0.9

x2(0) =
n
∑

i=0
giBi,n(0) = g0 = 0.25

x3(0) =
n
∑

i=0
hiBi,n(0) = h0 = 0.25

(16)

However, Equation (16) uses fi, gi, and hi, where (i = 1, 2, 3, . . . . n) need to be evalu-
ated through the best possible solution using GA. In addition, x1, x2, and x3 are initiated
in Equations (13)–(16). The unknown constants such as fi, gi, and hi easily minimize the
objective/error function.

4.1. The Error Function

The error function consists of five cases. In them, case-1 contains only NCs and CCs;
ICs are involved in case-2, and in case-3, chemotherapy is added. Meanwhile, the rest of
the two cases use the concept of elimination of CCs through chemotherapy using SMC and
SC. In addition, a drug control process is involved. Different cases are discussed as follows:

4.1.1. Case-1

The first case describes the growth rate of NCs and CCs. Therefore, Equations (17) and
(18) explain the mentioned concept. There is no practice involved, such as immunotherapy,
chemotherapy, and controllers.

Ex1 =
1
11

10

∑
i=0

( .
x1(ti)− a2x1(ti)(1− d2x1(ti)) + e4x2(ti)x1(ti)

)2 (17)

Ex2 =
1
11

10

∑
i=0

( .
x2(ti)− a1x2(ti)(1− d1x2(ti)) + e3x2(ti)x1(ti)

)2 (18)

4.1.2. Case-2

Here, immunotherapy is demonstrated where the body’s immune system affects the
CCs. However, immunotherapy helps the body defend against CCs. In addition, no
concept of chemotherapy and controllers is utilized. Equations (19)–(21) gives the idea of
immunotherapy and how it aids in opposing CCs.

Ex1 =
1
11

10

∑
i=0

( .
x1(ti)− a2x1(ti)(1− d2x1(ti)) + e4x2(ti)x1(ti)

)2 (19)

Ex2 =
1
11

10

∑
i=0

( .
x2(ti)− a1x2(ti)(1− d1x2(ti)) + e2x3(ti)x2(ti) + e3x2(ti)x1(ti)

)2 (20)

Ex3 =
1

11

10

∑
i=0

(
.
x3(ti)− α− px3(ti)x2(ti)

s + x2(ti)
+ e1x3(ti)x2(ti) + f1x3(ti)

)2

(21)

4.1.3. Case-3

As we know, CCs directly affect the process of immunotherapy. However, we added
chemotherapy, which tries to reduce CCs. There is no such controller utilized in Equations
(22)–(24). However, the main problem is that using only immunotherapy and chemotherapy
does not reduce CCs individually. When chemotherapy and immunotherapy are used
together, the CCs are reduced. Moreover, chemotherapy disturbs NCs with cancer and also
has an effect on ICs.

Ex1 =
1
11

10

∑
i=0

( .
x1(ti)− a2x1(ti)(1− d2x1(ti)) + e4x2(ti)x1(ti) + r3C(ti)

)2 (22)
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Ex2 =
1
11

10

∑
i=0

( .
x2(ti)− a1x2(ti)(1− d1x2(ti)) + e2x3(ti)x2(ti) + e3x2(ti)x1(ti)

+r2C(ti)

)2

(23)

Ex3 =
1
11

10

∑
i=0

(
.
x3(ti)− α− px3(ti)x2(ti)

s + x2(ti)
+ e1x3(ti)x2(ti) + f1x3(ti) + r1C(ti)

)2

(24)

4.1.4. Case-4

In case-4, immunotherapy, chemotherapy, and SMC are used in the investigation.
Here, SMC are used to reduce and attempt to quickly eliminate the CCs. Furthermore,
a novel error function is designed to speed up the process. The detailed explanation is
discussed in Equations (25)–(36).

μx2(t) = −ρx2 sgn(σx2)− ∂x2 a1x2(1− d1x2) (25)

We added this controller to Equation (2), and after the controller addition (μx2(t)), the
Equation (2) will be

.
x2 = (1− ∂x2)a1x2(1− d1x2)− ρx2 sgn(σx2)− e2x3x2 − e3x2x1 − r2C (26)

0 ≤ ∂x2 ≤ 1 is a positive constant and is used for sliding surface. Thus, we define a
sliding surface as

σx2 = m1x2 + x3 (27)

m1 is positive. Next, we differentiate Equation (27)

.
σx2 = m1

.
x2 +

.
x3 (28)

We substitute Equations (26) and (3) in Equation (28), multiplying σx2 on both sides
of Equation (28) and following the property σx2 sgn(σx2) = |σx2 |; thus, the Equation (29)
is formed. Describing a term ηx2 as in Equation (31) and simplifying Equation (30), the
Equation (32) will be

σx2

.
σx2 = −m1ρx2 |σx2 |+ σx2

(
m1((1− ∂x2)a1x2(1− d1x2)− e2x3x2 − e3x2x1 − r2C)

+α + px3x2
s+x2

− e1x3x2 − f1x3 − r1C

)
(29)

σx2

.
σx2 ≤ −|σx2 |

(
m1ρx2 −

∣∣∣∣∣ m1((1− ∂x2)a1x2(1− d1x2)− e2x3x2 − e3x2x1 − r2C)

+α + px3x2
s+x2

− e1x3x2 − f1x3 − r1C

∣∣∣∣∣
)

(30)

ηx2 = m1ρx2 −
∣∣∣∣∣ m1((1− ∂x2)a1x2(1− d1x2)− e2x3x2 − e3x2x1 − r2C) + α + px3x2

s+x2

−e1x3x2 − f1x3 − r1C

∣∣∣∣∣ (31)

σx2

.
σx2 ≤ −|σx2 |ηx2 (32)

ηx2 ≥ 0

According to the stability of the SMC. Estimated ρx2 from Equation (31) is given in
(33) as

ρx2 =

∣∣∣∣∣ m1((1− ∂x2)a1x2(1− d1x2)− e2x3x2 − e3x2x1 − r2C) + α + px3x2
s+x2

−e1x3x2 − f1x3 − r1C

∣∣∣∣∣
m1

+
ηx2

m1
(33)
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Since −|σx2 | ηx2 ≤ 0 by default, the system is therefore asymptotically stable; i.e.,
σx2

.
σx2 ≤ 0. In this case, the use of Equations (1), (3), and (31) results in an error function

given by Equations (39)–(42).

Ex1 =
1
11

10

∑
i=0

( .
x1(ti)− a2x1(ti)(1− d2x1(ti)) + e4x2(ti)x1(ti) + r3C(ti)

)2 (34)

Ex2 =
1
11

10

∑
j=0

( .
x2
(
tj
)− (1− ∂x2)a1x2

(
tj
)(

1− d1x2
(
tj
))

+ρx2 sgn(σx2) + e2x3
(
tj
)
x2
(
tj
)
+ e3x2

(
tj
)

x1
(
tj
)
+ r2C

(
tj
) )2

(35)

Ex3 =
1
11

10

∑
i=0

(
.
x3(ti)− α− px3(ti)x2(ti)

s + x2(ti)
+ e1x3(ti)x2(ti) + f1x3(ti) + r1C(ti)

)2

(36)

4.1.5. Case-5

Case-5 is just like the previous experiment but with immunotherapy and chemother-
apy, and an updated SC is utilized. Due to this method, CCs are reduced very quickly.
From Equations (37)–(53), the mentioned detailed experimentation was performed.

In the case of the controller, the Equation (2) will be

.
x2 = a1x2(1− d1x2)− e2x2x3 − e3x2x1 − r2C + μx2 (37)

Here, μx2 is a controller
ψ = f (x2) (38)

ψ = m2(x2 − x2r) (39)

ψ is a macro variable, and m2 is a positive constant, while the x2r = 0 is the reference
of CCs

ψ = m2x2 (40)

We differentiate with respect to time, t

.
ψ = m2

.
x2 (41)

and we define a manifold
.
ψ +

ψ

τ
= 0 (42)

Next, we substitute Equations (39) and (40) in Equation (41)

m2(
.
x2 +

x2

τ
) = 0 (43)

We substitute Equation (37) in Equation (43), and with some manipulation, we obtain

μx2 = −a1x2(1− d1x2) + e2x2x3 + e3x2x1 + r2C − x2

τ
(44)

Now, we substitute controller Equation (44) in Equation (37), and after simplification,
we obtain

.
x2 = −

(
1
τ

)
x2 (45)

The solution of Equation (45) is

x2 = x2(0)e−
t
τ x2(t)t→∞ = 0 (46)
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We use the Lyapunov function to check the stability of the controller

L =
1
2

ψ2 (47)

.
L =

.
ψψ (48)

We transfer the value of
.
ψ from Equation (42) in Equation (48); we arrive at

.
L =

−ψ2

τ
(49)

L = L(0)e
−2t

τ (50)

t → ∞ ; the system approaches zero, so the model is asymptotically stable.

Ex1 =
1
11

10

∑
i=0

( .
x1(ti)− a2x1(ti)(1− d2x1(ti)) + e4x2(ti)x1(ti) + r3C(ti)

)2 (51)

x2 = x2(0)e−
t
τ (52)

Ex3 =
1

11

10

∑
i=0

(
.
x3(ti)− α− px3(ti)x2(ti)

s + x2(ti)
+ r1C(ti) + e1x3(ti)x2(ti) + f1x3(ti)

)2

(53)

In all the above cases, the error function to be minimized is as follows:

Eoptimal = minimum(EN + ET + EI) (54)

In this section, Table 2 represents different controllers using metric values that vary
from either 0 to 1. Therefore, the estimated values and reduction of CCs are incorporated
with SMC and SC.

Table 2. Different controllers using parameters with values.

Parameters Values Estimated Description

∂x2 1 0 to 1 Reduction coefficient of growth rate of CCs
ηx2 0 0 to 0.8 Positive constant
ρx2 0 0 to 1 Coefficient of controller nonlinear term
τa 0.01 0.01 to 0.2 Convergence time of SC
m1 1 1 Coefficient of SMC
m2 1 0 to 1 Coefficient of SMC

5. Numerical Results and Discussion

Previously, two methods were utilized in the literature, which are constant, continuous
and pulsed chemotherapy. While trying to reduce cancerous cell using therapies, logic is
crucial. To eliminate cancerous cells completely from body, a better approach than using
medicines is required. The above figure presents the level of chemotherapy with constant
and continuous dose methods. Initially, chemotherapy starts from zero, and then after
some time reaches the maximum. On the other hand, the constant approach uses fixed
doses throughout the chemotherapy.

Figure 2 depicts the behavior of constant and continuous chemotherapy drugs that
are given to a patient with the passage of time. An exponential dose becomes reduced and
might be eliminated, while a constant dose is applied regularly. The average value of a
constant dose is calculated to be about 0.9942. However, a continuous dose is approximately
equal to 0.7499.
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Figure 2. Behavior of constant and continuous chemotherapy.

Figure 3 shows the NCs were reduced and died down, while CCs increased, which
is not an optimal case for the body. This figure depicts that no controller or treatment
was used; there was only the interaction between normal and cancerous cells, in which
NCs were reduced in levels due to cancer. However, CCs increased from their level in
comparison with normal cells. During experimentation, the initial value of CCs was 0.25.
Therefore, 0.25 is considered the threshold for cancer patients. If the value of CCs is
increased from 0.25, then the patient will die on the spot.
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Figure 3. Without ICs, chemotherapy, and controller.

Figure 4 illustrates the concept of case-2, where immunotherapy was added, which
reduced the NCs and CCs. Moreover, ICs were in the rising phase, which is shown in
case-2. Separately, immunotherapy is not a very appropriate method. In Figure 4, there is
clear indication that CCs’ growth slowed down but still increased with the passage of time.
More interestingly, the result shows that there is a need for other treatments as well with
immunotherapy or controllers.
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Figure 4. Without chemotherapy and controllers.

In Figure 5, case-3a represents that chemotherapy completely eliminated CCs after one
hundred days; there was no such controller utilized, but the dose was constant. In Figure 6,
case-3b describes the continuous dose with chemotherapy, where CCs were eliminated
within eighty days. However, NCs and ICs became disturbed, which is not good for the
body. In Figure 7, case-4a is illustrated, in which SMC were applied, causing CCs to reach
the minimum level. Apart from that, ICs and NCs were not disturbed.
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Figure 5. With chemotherapy at a constant dose and without controller.
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Figure 6. With chemotherapy at a continuous dose and without controller.
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Figure 7. With chemotherapy constant dose and SMC for CCs Killer.

Moreover, in Figure 8, case-4b represents that CCs reduced in about sixty days. Due to
the speedy behavior of chemotherapy, CCs and NCs reached the very minimum threshold,
which is quite dangerous for the body. In case-5a, whose results are shown in Figure 9, the
contemporary SC was applied with chemotherapy at a constant dose. Optimal results were
obtained in which NCs and ICs were at maximum level. However, CCs were reduced to
level zero within five days. Figure 10 is the result of case-5b, which depicts that using SC,
CCs were removed during five days with continuous chemotherapy.
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Figure 8. With chemotherapy at a continuous dose and SMC to kill CCs.
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Figure 9. With chemotherapy at a constant dose and SC to kill CCs.
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Figure 10. With chemotherapy at a continuous dose and SC to kill CCs.

In Figures 5 and 6, the treatment utilized was the same and was based on chemotherapy.
However, Figure 5 shows a fixed-dose treatment. In Figure 6, on the other hand, exponential-
dose chemotherapy was used. Further, normal cells were not disturbed too much in Figure 5.
Immune cells were at the maximum level, but CCs took a long time to be eliminated from
the patient’s body.

Figure 6 shows completely different results in comparison with Figure 5. Normal
and immune cells showed negative variation. CCs were reduced quickly, in contract with
Figure 5.

However, Figure 7 shows results using the SMC controller, whereas in Figures 5
and 6, no such controller was used. A fixed dose of chemotherapy was utilized, which is
commonly called constant as well. Comparing Figures 7 and 8, the controller utilized is the
same, but Figure 7 shows the optimal results. In addition, normal and immune cells were
not disturbed in Figure 7, which is a positive sign for the patient.

It is quite clear in Figure 7 that normal and immune cells show better results. Mean-
while, Figure 8 also utilizes an SMC controller, but CCs were reduced more quickly than in
Figure 7. Therefore, Figure 8 shows the main objective was achieved: CCs were eliminated
in 50 to 60 days.

However, Figures 9 and 10 both show use of the synergetic controller, which is a
completely different approach than SMC, while, Figure 9 presents constant or fixed-dose
chemotherapy. Working with the SC approach, ICs and NCs were not affected. In addition,
as mentioned, CCs were removed within 5 days. Thus, SC is the only approach that gives
better results.

Figure 10 illustrates the same results of CCs reduction in five days, similar to Figure 9.
However, in Figure 10, there is a clear negative variation in NCs and ICs using the synergetic
controller. In addition, more interestingly, in Figure 10, continuous-dose chemotherapy
was utilized.

Figure 11 shows a detailed comparison of CCs with SMC, CCs with SC, and NCs
and ICs. The overall results of Figure 11 are based on fixed-dose chemotherapy, while
results are quite preferable where CCs are completely eliminated within five days using
a synergetic controller. Coupled differential equations are used, and therefore, CCs are
shown to have an effect on ICs and NCs using a synergetic controller.

Overall, discussion of Figure 12 is presented in the earlier figures, where chemotherapy
with continuous doses of SMC and SC were used. Therefore, in Figure 12, CCs were reduced
earlier, but was negative variation normal and immune cells.
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Figure 11. With chemotherapy at a constant dose, SMC on CCs (‘+’ line) with effect on all equations,
and SC on CCs (‘−’ line).

Figure 12. With chemotherapy at a continuous dose and SMC on CCs (‘+’ line) with effect on all
equations and SC on CCs (‘−’ line).

In Figure 11, case-6a shows the comparison of SMC and SC, in which we utilized
constant-dose chemotherapy, and ICs and NCs are at normal level. However, CCs were
eliminated in five days with the help of SC. However, using SMC, CCs were minimized in
about eighty days. Moreover, in Figure 12, case-6b illustrates an exponential continuous
dose with chemotherapy, where using SMC, CCs are reduced nearly in sixty days. However,
NCs and ICs are disturbed, which affects the body. In contract with SMC, SC completely
removed CCs within five consecutive days. In Figure 13, case-6c shows the idea that SC
especially is designed for CCs; later, we utilize the same concept in all other equations. In
the above graph, ICs and NCs are at a normal level, while, SMC for CCs showed worse
results because CCs survived for about eighty days. The chemotherapy dose is constant in
Figure 13. In addition, ICs are at maximum level, which is about 0.25. Furthermore, NCs
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are near to 0.9, which means NCs are not reduced. This case is basically considered optimal
for patients. In Figure 14, case-6d shows similar results as with SC but with SMC, as CCs
are reduced in about sixty days using chemotherapy at a continuous dose.

Figure 13. With chemotherapy at a constant dose, SMC on CCs (‘+’ line), and SC on CCs (‘−’ line)
with effect on all equations.

Figure 14. With chemotherapy at a continuous dose, SMC on CCs (‘+’ line), and SC to kill CCs (‘−’
line) with effect on all equations.

In Figure 15, Ta is shown where different values are used for SC to remove CCs.
Therefore, when Ta = 0.01, CCs are eliminated within five days although if Ta = 0.04, CCs
are reduced in about twenty days. In addition, for various values like 0.07, 0.1, and 0.2, SC
was evaluated to reduce CCs, which is presented in Figure 14.
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Figure 15. Convergence time of SC.

To reduce the effect of cancerous tumors, chemotherapy and immunotherapy can be
utilized. Additionally, hybrid therapies use various types of controllers such as synergetic
and sliding mode controllers. Therefore, these controllers can be used as drug treatments
to optimize cells of the body. Synergetic controllers are more efficient in comparison with
other techniques.

6. Comparative Discussion

Table 3 depicts the comparison of various treatments and controllers used in the study.
The proposed approach shows better results in comparison with traditional techniques.
Moreover, Depillis et al. [20] demonstrated improved NC levels in contrast with CCs and
ICs. However, due to this method, CCs are not eliminated properly. On the other hand,
Omar et al. [14] implemented a multi-objective swarm model where NCs cannot exceed
the minimum threshold. Apart from that, chemo-immunotherapy with SMC was utilized,
which destroyed the CCs in about forty-five days [15], while, in the proposed solution, SC
reduced CCs within five days.

However, mathematical modeling for chemotherapy and immunotherapy is rarely
used. Normally, immunotherapy is utilized to boost the immune system of the body.
The main aim of therapies is to reduce the effect of cancer cells; to target cancerous cells,
immunotherapy is quite effective. In comparison with other therapies, mathematical
models of cytotoxic chemotherapy were utilized by depillis et al. [9] to eliminate CCs.
Formulating a novel chemotherapeutic protocol that improves defense strategies against
cancer cells requires a brief understanding of immune system. Therefore, mathematical
models of immunotherapies utilize a complex network of cells. Traditional chemotherapies
have been studied but without the role of controller. Without the use of a controller, CCs
are hardly reduced in about seventy days.

In reference [10], a controller-based model was designed to find the optimal rate of
cancer drugs. During therapies, the drug rate is a major factor that can reduce cancer cells.
However, due to excess use of the drug, sometimes healthy cells within the body can also
experience reduced levels of growth. Therefore, steepest descent technique is utilized to
give logical reasoning to improve adaptive controllers. The online recursive calculation
approach is used to check the performance of metrics. In the results, NCs improves in
a slow way, but CCs are still reduced in about eighty days, which is, again, an alarming
condition.

Samira et al. [11] tried to resolve issues related with drug rate and the time needed
for giving drugs during immunotherapy. The similar depillis model was implemented
by applying the theory of optimal impulsive method, where five differential equations
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are elaborated with cancer and immune cells. In this study also, CCs were eliminated
in about one hundred days, which are not presently better results in comparison with
reference [20,28].

Table 3. Comparative study.

Treatment and Controller Cells Description

Traditional pulsed chemotherapy without
controller [9]

NCs NCs reduced to minimum level.
CCs CCs held at maximum level.
ICs Little increase in ICs was observed.

Chemotherapy with optimal control [9]
NCs NCs hit minimum level and when treatment halted

rose to maximum level.
CCs Approximately, in 70 days, CCs fell to zero.
ICs ICs also increased to a good level.

Chemotherapy and angiotherapy along with adaptive
controller [10]

NCs NCs very slowly increased to a healthy state.

CCs More than 80 days needed to decrease to
minimum level.

ECs During treatment, ECs increased and after
that decreased

.Multi immunotherapy [11] CCs CCs reduced to minimum level within 100 days but
were not completely removed.

ICs Also decreased.

Multi objective swarm with optimal control [27]
NCs When NCs reached minimum threshold, treatment

was stopped for a short time for the recovery of NCs.
CCs Approximately, in 50 days, CCs fell to zero.
ICs ICs increased to a good level.

Chemo-immunotherapy along with SMC
controller [15]

NCs NCs held at maximum level.
CCs CCs eliminated within 45 days.
ICs ICs achieved a good level.

Multi Chemo-immunotherapy along with Quadratic
control [35]

NCs NCs increased after CCs elimination.
CCs CCs eliminated approximately in 40 days.
ICs ICs also increased slightly after CCs elimination.

Chemo-immunotherapy along with Quadratic
control [28]

CCs CCs exterminated approximately in 20 days.
ICs ICs rose to maximum level after 100 days.

Optimal administration protocols for cancer
immunotherapies [36]

CCs CCs eliminated approximately at 35 to 40 days.
ICs ICs also rose after CCs elimination.

Mathematical modelling of CAR-T
immunotherapy [32]

CCs CCs eliminated approximately within 50 days.
ICs ICs increased after CCs elimination.

Mathematical modelling of Chemo-immunotherapy in
Triple-Negative Breast cancer [21]

CCs CCs completely removed within 60 days.
ICs ICs achieved maximum level after CCs elimination.

Chemo-immunotherapy along with conjoined SMC
and SC controller (proposed)

NCs NCs held to maximum level.
CCs CCs eliminated within 5 days.
ICs ICs also held to maximum level

Omar et al. [27] presented the concept of combining an optimal control theory with
swarm intelligence techniques. Here, in this study, the main focus was drug concentration,
where the hybrid approach was far better than other algorithms. To verify the performance,
second-order coefficient was used with a multi-objective approach. According to this
technique, CCs were easily reduced within fifty days, which presents better results than
the above-mentioned study. However, in [35], a new approach of mathematical modeling
of CAR-T immunotherapy eliminated cancer cells similarly within fifty days.

Minimizing CCs while injecting drug formulations of Pontryagin’s maximum principle
established a better balance with cost effectiveness of the control variables. Das et al. [30]
eliminated CCs using a quadratic control mechanism in about forty days. However, using
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an SMC controller, CCs died in forty-five days [28]. Therefore, both cases’ results were not
optimal and can be further formulated in the near future.

Dehingia et al. [36] recently introduced a technique used to understand the optimality
of immune chemotherapy. Feasible domains of various mathematical models are validated
using the condition of equilibrium points. This process is used to solve drug toxicity during
immune chemotherapy. Further, through this quadratic methodology, CCs were easily
reduced in twenty days.

For dealing with cancerous cells, a novel concept of SC was designed in this study. GA,
SMC, and SC mathematical models were utilized as a hybrid combination that completely
eliminates CCs within five days. This study is compared with existing techniques in the
simulation results, where the proposed approach presents superiority. In addition, the
theoretical analysis gives a brief overview to compare the proposed solution with previous
studies. Therefore, due to both methods, namely simulation and theoretical approach, this
study depicts the optimal results of the proposed approach.

This study is limited to the analysis of cancerous tumors and their controlled treatment
in the domain of mathematical models at present. Clinical validation of the proposed
treatment protocol can be investigated as a prospect study subject to the realization of
drugs imitating the effects of SC and SMC utilized in this study.

7. Conclusions

Mathematical models are utilized to evaluate the complex behavior of CCs and NCs,
where immune cells are reduced in number due to the fast growth of CCs. Overall, drug
dosages need to be exponential with the passage of time. Cancer is considered one of
the leading diseases, which arise from uncontrolled division of NCs into CCs. Cancer
can be directly reduced or eliminated if CCs can be detected early. For improving the
life of cancer patients, various treatment methods such as chemotherapy, immunotherapy,
or mathematical modeling need to be utilized for early detection of CCs. This research
study consists of using GA, SMC, and SC to reduce the effect and eliminate CCs as soon as
possible. However, the proposed work is compared with the existing models to evaluate
its performance. The SC easily reduces the CCs in nearly five days and maintains the
patient’s health state as well. NCs and ICs are improved by using SMC and SC, which is
considered an optimal approach for elimination of CCs. SC was determined as the best
possible approach as an anti-tumor drug. Figure 13 shows he best optimal result for CCs
elimination and also in keeping NCs and ICs at their maximum levels using constant-dose
chemotherapy along with SC. In the previous three to four decades, cancer prevention has
moved from medicinal studies such as immunotherapy and chemotherapy to mathematical
modeling. However, in the future, various evolutionary computational techniques such
as ant colony optimization [38], particle swarm optimization [39], differential evolution,
and artificial bee colony along with different controllers can be investigated. Additionally
machine learning, deep learning, and stochastic Markov chain distribution [40] will envision
mathematical modeling not only for CCs but also for different diseases. Further, image
classification, data-driven classification models, disease detection, feature classification,
and blood vessel segmentation for CCs can be utilized to give possible solutions in the near
future [37–43].
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Abbreviations

Notation Description

NCs Normal cells
CCs Cancerous tumor cells
ICs Immune cells
GA Genetic algorithm
BP Bernstein polynomial
SMC Sliding mode controller
SC Synergetic controller
MOS Multi-objective swarms
ODE Ordinary differential equation
NCODE Nonlinear ordinary coupled differential equation
PSO Particle swarm optimization
WHO World health organization
COVID-19 Coronavirus disease of 2019
T-cells Thymus cells
CAR-T-cells Chimeric antigen receptor T-cells
1. IFN Type-1 Interferon receptor
CRPC Castrate-resistant prostate cancer
Anti-CTLA4 Anti-cytotoxic T-lymphocytes associated protein 4
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Simple Summary: Cancer is considered the most significant public health issue which severely
threatens people’s health. The occurrence and mortality rate of breast cancer have been growing
consistently. Initial precise diagnostics act as primary factors in improving the endurance rate of
patients. Even though there are several means to identify breast cancer, histopathological diagnosis is
now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopatho-
logical image and the rapid rise in workload render this process time-consuming, and the outcomes
might be subjected to pathologists’ subjectivity. Hence, the development of a precise and automatic
histopathological image analysis method is essential for the field. Recently, the deep learning method
for breast cancer pathological image classification has made significant progress, which has become
mainstream in this field. Therefore, in this work, we focused on the design of metaheuristics with
deep learning based breast cancer classification process. The proposed model is found to be an
effective tool to assist physicians in the decision making process.

Abstract: Breast cancer is the major cause behind the death of women worldwide and is respon-
sible for several deaths each year. Even though there are several means to identify breast cancer,
histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. How-
ever, the difficulty of histopathological image and the rapid rise in workload render this process
time-consuming, and the outcomes might be subjected to pathologists’ subjectivity. Hence, the
development of a precise and automatic histopathological image analysis method is essential for
the field. Recently, the deep learning method for breast cancer pathological image classification has
made significant progress, which has become mainstream in this field. This study introduces a novel
chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification
(CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly
focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-
BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence
of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful
set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is
exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparam-
eters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-
tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal
hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The perfor-
mance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results
reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.
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1. Introduction

Cancer is considered the most significant public health issue which severely threatens
people’s health. The occurrence and mortality rate of breast cancer (BC) have been growing
consistently. Initial precise diagnostics act as primary factors in improving the endurance
rate of patients [1]. A mammogram is the starting stage of initial prognosis; hence, it
becomes hard to detect cancer in the denser breasts of teenage women. X-ray radiation
warns radiologists of the patient’s health [2]. The golden standard for BC prognosis is only
pathological examination. Pathological examinations generally attain tumor samples via
excision, puncture, etc. [3]. Hematoxylin combines deoxyribonucleic acid (DNA), and eosin
combines proteins. The precise prognosis of BC demands proficient histopathologists, and
it needs more time and endeavor to finish this work. Moreover, the prognosis outcomes
of distinct histopathologists are dissimilar and heavily based on histopathologists’ earlier
experience [4].

Recently, BC prognosis is dependent on the histopathological image, and this is con-
fronted by three major difficulties. At first, there is a shortcoming of proficient histopathol-
ogists across the globe, particularly in quite a few undeveloped regions and small hos-
pitals [5]. Next, the prognosis of histopathologists is subjective, and evaluation is not
performed on an objective basis. Whether prognosis is right or not is wholly based on
the histopathologists’ earlier knowledge [6]. Lastly, the prognosis of BC depends on the
histopathological image, which is time consuming, highly complex, and labor-intensive,
and it is considered ineffective during the era of big data. Despite such issues, an objective
and effective BC prognosis technique is essential for mitigating the pressure of the workload
of histopathologists [7]. The speedy advancement of computer-aided diagnosis (CAD) was
slowly employed in the clinical domain. The CAD system will not act as a substitute for
the physician; however, it can be utilized as a “second reader” in assisting the physician
in recognizing diseases [8]. However, there are false-positive areas identified by the com-
puter that will consume time for the physician in evaluating the outcomes induced by the
computer, again leading to a decline in effectiveness and preciseness. Thus, methods for
improving the sensitiveness of computer-aided tumor identification methodologies while
greatly minimizing the incorrect positive identification rate and enhancing the efficiency of
the identification technique constitute a potential research area [9].

Currently, deep learning (DL) methods have become popular in computer vision
(CV), particularly in biomedical image processing. These methods were able to investigate
complex and enhanced characteristics from images automatically. At the same time, these
methods greatly require the attention of several authors in using such techniques to cate-
gorize BC histopathology images [10]. In particular terms, convolutional neural networks
(CNNs) are broadly utilized in image-based works because of their capabilities to efficiently
distribute variables over several layers inside a DL method.

This study introduces a novel chaotic sparrow search algorithm with a deep transfer
learning-enabled breast cancer classification (CSSADTL-BCC) model applied on histopatho-
logical images. The presented CSSADTL-BCC model applies the Gaussian filtering (GF)
approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extrac-
tion model was employed to generate a useful set of feature vectors. Furthermore, a CSSA
with a stacked gated recurrent unit (SGRU) classification approach was exploited to allot
class labels. The CSSADTL-BCC model does not exist in the literature to the best of our
knowledge. The design of the CSSA for optimal hyperparameter tuning of the SGRU model
demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC
model was verified using benchmark data collection, and the outcomes were inspected
under different evaluation measures.
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The remaining sections of the paper are planned as follows. Section 2 indicates the
existing works related to BC classification. Next, Section 3 elaborates the proposed model,
and Section 4 offers the performance validation. At last, Section 5 draws the conclusions.

2. Literature Review

In [11], the authors proposed a real time data augmentation-related transfer learning
method to resolve existing limitations. Two popular and well-established image classi-
fication methods, such as Xception and InceptionV3 frameworks, have been trained on
a freely accessible BC histopathological image data named BreakHis. Alom et al. [12]
presented a technique for classifying BC using the Inception Recurrent Residual Convolu-
tion Neural Network (IRRCNN) framework. The proposed method is an effective DCNN
system that integrates the strength of the Recurrent Convolution Neural Network (RCNN),
Inception Network (Inception-v4), and the Residual Network (ResNet). The experiment
result illustrates better performance against RCNN, Inception Network, and ResNet for
object-detection tasks.

Vo et al. [13] presented a technique that employs the DL method with a convolution
layer for extracting the visual feature for BC classification. It has been found that the DL
model extracts the most useful feature when compared to the handcrafted feature extraction
approach. In [14], the authors proposed a BC histopathological image categorization related
to deep feature fusion and enhanced routing (FE-BkCapsNet) to exploit CapsNet and CNN
models. Firstly, a new architecture with two channels could simultaneously extract capsule
and convolutional features and incorporate spatial and sematic features into the new
capsule to obtain a discriminative dataset.

The researchers in [15] proposed a patch-based DL method named Pa-DBN-BC for
classifying and detecting BC on histopathology images with the Deep Belief Network
(DBN). The feature is extracted by supervised finetuning and unsupervised pre-training
phases. The network extracts feature automatically from image patches. Logistic re-
gression is utilized for classifying the patches from histopathology images. In [16], the
authors proposed a robust and novel technique based convolution-LSTM (CLSTM) learning
method, the pre-processing method with the optimized SVM classifier, and the marker-
controlled watershed segmentation algorithm (MWSA) for automatically identifying BC.
Saxena et al. [17] presented a hybrid ML method for solving class imbalance problems. The
presented method uses the kernelized weighted ELM and pre-trained ResNet50 for CAD
of BC using histopathology.

Several automated breast cancer classification models are available in the literature.
However, the models still contains a challenging problem. Because of the continual deep-
ening of models, the number of parameters of DL models also increases quickly, which
results in model overfitting. At the same time, different hyperparameters have a significant
impact on the efficiency of the CNN model, particularly in terms of the learning rate.
Modifying the learning rate parameter for obtaining better performance is also required.
Therefore, in this study, we employ the CSSA technique for the hyperparameter tuning of
the SGRU model.

3. The Proposed Model

In this study, a new CSSADTL-BCC model was developed to classify BC on histopatho-
logical images. The presented CSSADTL-BCC model mainly focused on the recognition
and classification of BC. At the primary stage, the CSSADTL-BCC model employed the GF
technique to eradicate the occurrence of noise. It was then followed by using a MixNet-
based feature extraction model employed to produce a useful set of feature vectors. Then,
the CSSA-SGRU classifier was exploited to allot class labels. Figure 1 illustrates the overall
process of the CSSADTL-BCC technique.
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Figure 1. The overall process of the CSSADTL-BCC technique.

3.1. Image Pre-Processing

At the primary stage, the CSSADTL-BCC model employed the GF technique to eradi-
cate the occurrence of noise. GF is a bandpass filter, viz., efficiently implemented in machine
vision and image processing applications [18]. A two-dimensional Gabor purpose was
oriented by sinusoidal grates controlled by two dimensional Gaussian envelopes. In the
two-dimensional coordinate (a, b) model, the GF comprising an imaginary and real one is
illustrated by the following:

Gδ,θ,ψ,σ,γ(a, b) = exp

(
− a′2 + γ2b′2

2σ2

)
× exp

(
j
(

2π
a′

δ
+ ψ

))
(1)

where they are described as follows.

a′ = a cos θ + b sin θ (2)

b′ = −a sin θ + b cos θ (3)

Now θ implies the orientation separation angle of the Gabor kernel, and δ signifies
the wavelength of sinusoidal features. Notably, it is essential to consider θ from the range
[0o, 180o] as symmetry generates another redundant direction. ψ denotes the stage offset, σ
indicates the standard derivation of the Gaussian envelope, and γ represents the ratio of
spatial features for identifying the ellipticity of the Gabor role. ψ = 0 and ψ = π/2 return
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the real and imaginary parts of GF. Variable 0 can be determined as 6 and spatial frequency
bandwidth bw is given by the following.

σ =
δ

pi

√
ln2
2

2bw + 1
2bw − 1

(4)

3.2. MixNet-Based Feature Extractor

Next, for image pre-processing, a MixNet-based feature extraction model is employed
to generate a useful set of feature vectors. A CNN algorithm created by the traditional
convolutional operation is difficult to use for mobile terminals due to its complicated
calculations and excessive parameters. In order to improve its effectiveness on mobile
terminals and to guarantee the accuracy of the model, a sequence of lightweight convolu-
tional operators has been presented. Amongst them, one of the most commonly utilized
is a depthwise separable convolution layer. A depthwise separable convolutional layer
splits the convolution into pointwise and depthwise convolution. In the initial phase,
it convolves a single channel at a time using convolutional kernels at size = 3. In the
second phase, it uses a feature map with the 1 × 1 convolutional kernel. Assume that N
Dk × Dk feature view and 1 convolutional sliding step are utilized to convolve a feature
map with DF × DF ×M dimensions, including the output feature map with dimensions of
DF × DF × N. The parameter amount of traditional convolutional operations is provided
as follows.

Dk × Dk ×M× N (5)

The parameters involved in the depthwise separable convolutional operation is pro-
vided below.

Dk × Dk ×M + 1× 1×M× N (6)

The computation involved in traditional convolutional operation is provided as follows.

Dk × Dk ×M× N × DF × DF (7)

The computation involved in depthwise separable convolutional operation is defined
in Equation (8).

Dk × Dk ×M× DF × DF ×M× N × DF × DF (8)

The ratio of the two operations is provided as follows.

Dk × Dk ×M× DF × DF ×M× N × DF × DF
Dk × Dk ×M× N × DF × DF

(9)

A depthwise separable convolutional layer uses a similar size 3 × 3 convolutional
kernel in the computation method; however, a network with larger convolutional kernels
of 5 × 5 or 7 × 7 confirms that a larger convolutional kernel improves the efficiency
and accuracy of the model. However, the experiment shows that the case where a larger
convolutional kernel is better is rare; simultaneously, a large convolutional kernel minimizes
the model’s accuracy. Here, MDConv splits the input channel with M size into C groups,
later convolving all the groups with distinct kernel sizes. The standard depthwise separable
convolution splits the input channel with M size into M groups and later implements
convolutional calculations for all groups with a similar kernel size.

3.3. Image Classification Using SGRU Model

At this stage, the generated feature vectors are passed into the SGRU classifier to allot
class labels. SGRU is made up of various GRU units. For time series t, the input series
{e1, e2, . . . , et} first enters into hidden layer

{
h1

1, h1
2, . . . , h1

t
}

to attain all data from the
previous time step. Next, the upper hidden layer takes the output from the lower hidden
layers at a similar time step as the input for extracting features [19]. In particular, the
upper layer of the hidden layer is

{
h2

1, h2
2, . . . , h2

t
}

. For all layers, a hidden layer hi
t, as
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provided in Equation (13), is shown by Equations (10)–(12) to attain the candidate value,
update, and reset gates. It should be noted that in Equations (10)–(12), we have included
embedding vector et in the initial layer. Starting from the next layer upward, we employ
the hidden state from the current time step in the previous layer, hi−1

t , rather than et in
(10)–(12). Figure 2 depicts the framework of SGRU.

ui
t = σ

(
Wi

uhi
t−1 + Ui

uet + bi
u

)
(10)

ri
t = σ

(
Wi

rhi
t−1 + Ui

ret + bi
r

)
(11)

C̃ = tanh
(

Wi
c.
[
ri

t × hi
t−1

]
+ Ui

cet + bi
c

)
(12)

hi
t = ui

t × C̃i
t +

(
1− ui

t

)
× hi

t−1 (13)

Figure 2. Framework of SGRU model.

3.4. Hyperparameter Optimization

Finally, CSSA is implied to optimally modify the hyperparameters included in the
MixNet model. SSA attains the best possible solution by mimicking certain behaviors of
sparrows [20]. Firstly, the discoverer–joiner sparrow population models are established,
and then the sparrow is arbitrarily chosen as a guard. The joiner snatches food from the
discoverer, observes the discoverer, and follows the discoverer for food. The discoverer
takes the responsibility to provide foraging direction and areas for the sparrow population.
Once the vigilante realizes the threat, the population implements anti-predation behavior
immediately. Lastly, with various iterations of the location of the discoverer and joiner,
the adoptive position for the entire population can be found. The sparrow population
is within the space of N × D, where N indicates the overall amount of sparrows, D rep-
resents the spatial dimension. Next, the location of the i-th sparrow in space represents
Xi = (xi1, xi2, · · · , xid), i ∈ [1, N], d ∈ [1, D], and xid characterizes the location of i-th
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sparrow in d-dimension. The position update equation of the discoverer can be shown in
the following Equation (14).

xt+1
id =

{
xt

id · exp.
(
−i
α·T

)
R2 < ST

xt
id + Q·L, R2 ≥ ST

(14)

In the equation, t signifies the existing amount of iterations; T indicates the maximal
amount of iterations; α represents an arbitrary value within [0, 1]; Q implies an arbitrary
value with standard distribution; L indicates a matrix in that element is 1, and its size
is 1× d; R2 ∈ [0, 1] signifies the warning values; ST ∈ [0.5, 1] denotes the safety values.
If R2 < ST, this implies that the population is not at risk and the discoverer continues
searching. If R2 ≥ ST, this implies that the vigilante discovered the predator and instantly
delivered an alarm to the others. The sparrow population implements anti-predation
behavior immediately any fly to a safer region for food. The position update equation of
the joiner can be shown in the following Equation (15).

xt+1
id =

⎧⎪⎪⎨⎪⎪⎩
Q · exp

(
xt

worstd−xt
id

i2

)
i > N

2

xt+1
best d +

1
D

D
∑

d=1
(rand(−1, 1)·

∣∣∣∣xt
id − xt+1

best d i ≤ N
2

(15)

Here, xt
worstd signifies the global worst place in tth iteration; xt+1

bestd signifies the global
optimal location at the tth iteration. If i > N

2 , it implies that the i-th joiner has not attained
food and that it needs to fly toward another location in order to search for food. If i ≤ N

2 ,
this implies that the i-th joiner is closer to the world’s best location and is arbitrarily foraging
around. The vigilant location upgrade equation is provided as follows:

xr+1
id =

⎧⎨⎩xt
worst d + β

(
xt

id − xt
worst d

)
, fi �= fg

xt
id + K

(
xt

id−xt
worst d

| fi− fw |+e

)
fi = fg

(16)

where β signifies the step length control variable that is an arbitrary value subjected to a
regular distribution with a variance of 1 and means value of 0; K denotes the movement
direction of sparrow, and arbitrary values lie within [1, 1]; e indicates a constant with
smaller value; fi characterizes the fitness of i-th sparrow; fg signifies the optimum fitness
of the existing population; fw denotes the worst fitness of existing population. If fi �= fg,
this implies that the i-th sparrow is at the edge of the population and can be attacked easily
by the predator. If fi = fg, this implies that i-th sparrow is within center of the population,
and it is aware of danger; it relocates closer to other sparrows in order to reduce the threat
of becoming caught.

With the addition of a global optimum sparrow neighborhood in all iterations, the
searching ability of SSA can be enhanced. Additionally, this could assist the sparrow
group in attaining the best location through the search process. The chaotic local searching
technique can be employed in the iteration process of SSA for improving the capability of
exploitation and maintaining a better harmony among the core search processes. Moreover,
the logical chaotic function is employed to calculate chaotic SSA. This can be obtained
as follows.

ρk+1 = μρk(1− ρk), k = 1, 2, . . . , N − 1 (17)

On the other hand, ρ1 ∈ (0, 1) and ρ1 �= 0.25, 0.5, 0.75, and 1 once the control
parameter μ is set to 4, and the logistic function is converted to a chaotic state. Therefore,
the chaotic local searching function is shown below.

Pi = b + ρi × (b− a), i = 1, 2, . . . , N (18)
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Here, [a, b] indicates the searching space, and the chaotic function was produced by
mapping chaotic parameters ρi into the chaotic vector Pi. Furthermore, chaotic vector Pi
was linearly integrated with targeted position TP for generating candidate location CL,
which is expressed as follows.

CL = (1− SC)× TP + SC× Pi (19)

SC = (T − t + 1)/T (20)

The CSSA approach resolves an FF for obtaining higher classification performances.
It defines a positive integer for demonstrating the optimal performance of candidate
solutions. During this case, the minimized classifier error rate was regarded as FF, as
offered in Equation (21).

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples × 100

(21)

4. Performance Validation

In this section, the experimental validation of the CSSADTL-BCC model is tested using
a benchmark dataset [21], and the details are provided in Table 1. The CSSADTL-BCC
model is simulated using the Python 3.6.5 tool. The parameter settings are provided as
follows: learning rate—0.01; dropout—0.5; batch size—5; epoch count—50; activation—
ReLU. A few sample images are demonstrated in Figure 3.

Table 1. Dataset details.

Category Class Names Labels No. of Images Total

Benign

Adenosis A 106

588
Fibroadenoma F 237

Phyllodes Tumor PT 115

Tubular
Adenoma TA 130

Malignant

Carcinoma DC 788

1232

Lobular
Carcinoma LC 137

Mucinous
Carcinoma MC 169

Papillary
Carcinoma PC 138

Total Number of Images 1820

Figure 4 illustrates the confusion matrices produced by the CSSADTL-BCC model un-
der distinct epochs. With 500 epochs, the CSSADTL-BCC model has identified 65 samples in
class A, 205 samples in class F, 81 samples in class PT, 84 samples in class TA, 760 samples in
class DC, 93 samples in class LC, 117 samples in class MC, and 96 samples in class PC. Along
with that, with 2000 epochs, the CSSADTL-BCC approach has identified 89 samples in class
A, 228 samples in class F, 109 samples in class PT, 112 samples in class TA, 779 samples in
class DC, 116 samples in class LC, 160 samples in class MC, and 121 samples in class PC.
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Figure 3. Sample images: (a) benign (b) malignant.

Table 2 and Figure 5 highlight the overall classification outcomes of the CSSADTL-
BCC model under distinct epochs and class labels. The experimental outcomes implied
that the CSSADTL-BCC model has resulted in ineffectual outcomes over other models
in terms of different measures such as accuracy (accuy), precision (precn), recall (recal),
specificity (specy), F-score (Fscore), MCC, and G-mean (Gmean). For instance, with 500 epochs,
the CSSADTL-BCC model provided the averages of accuy, precn, recal , specy, Fscore, MCC,
and Gmean at 95.62%, 78.78%, 73.25%, 97.09%, 75.71%, 73.18%, and 84.01%, respectively.
Moreover, with 1000 epochs, the CSSADTL-BCC method obtained the averages of accuy,
precn, recal , specy, Fscore, MCC, and Gmean at 97.10%, 85.21%, 82.09%, 98.16%, 83.52%, 81.84%,
and 89.62%, respectively. In addition, with 1500 epochs, the CSSADTL-BCC methodology
provided averages of accuy, precn, recal , specy, Fscore, MCC, and Gmean at 98.61%, 92.80%,
91.48%, 99.14%, 92.10%, 91.29%, and 95.19%, respectively. At last, with 2000 epochs, the
CSSADTL-BCC technique obtained the averages of accuy, precn, recal , specy, Fscore, MCC,
and Gmean at 98.54%, 92.58%, 90.87%, 99.08%, 91.66%, 90.82%, and 94.84%, respectively.
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Figure 4. Confusion matrix of CSSADTL-BCC technique under various epochs: (a) 500 epochs,
(b) 1000 epochs, (c) 1500 epochs, and (d) 2000 epochs.

Table 2. Result analysis of CSSADTL-BCC technique with various measures and epochs.

Class Labels Accuracy Precision Recall Specificity F-Score MCC G-Mean

Epoch-500

A 96.43 73.03 61.32 98.60 66.67 65.07 77.76

F 95.77 82.00 86.50 97.16 84.19 81.79 91.67

PT 97.25 83.51 70.43 99.06 76.42 75.27 83.53

TA 95.55 70.59 64.62 97.93 67.47 65.16 79.55

DC 92.42 87.36 96.45 89.34 91.68 85.10 92.83

LC 96.21 78.81 67.88 98.51 72.94 71.14 81.78

MC 94.84 73.58 69.23 97.46 71.34 68.54 82.14

PC 96.48 81.36 69.57 98.69 75.00 73.38 82.86

Average 95.62 78.78 73.25 97.09 75.71 73.18 84.01
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Table 2. Cont.

Class Labels Accuracy Precision Recall Specificity F-Score MCC G-Mean

Epoch-1000

A 97.25 80.43 69.81 98.95 74.75 73.51 83.11

F 97.20 87.50 91.56 98.04 89.48 87.90 94.75

PT 98.13 89.32 80.00 99.35 84.40 83.56 89.15

TA 96.76 77.52 76.92 98.28 77.22 75.48 86.95

DC 95.82 93.20 97.46 94.57 95.29 91.61 96.01

LC 97.14 84.55 75.91 98.87 80.00 78.60 86.63

MC 96.98 83.14 84.62 98.24 83.87 82.21 91.18

PC 97.53 86.05 80.43 98.93 83.15 81.87 89.20

Average 97.10 85.21 82.09 98.16 83.52 81.84 89.62

Epoch-1500

A 98.46 89.80 83.02 99.42 86.27 85.53 90.85

F 98.68 94.19 95.78 99.12 94.98 94.22 97.43

PT 99.23 93.91 93.91 99.59 93.91 93.50 96.71

TA 98.41 90.40 86.92 99.29 88.63 87.79 92.90

DC 98.13 97.12 98.60 97.77 97.86 96.21 98.19

LC 98.68 93.80 88.32 99.52 90.98 90.31 93.76

MC 98.52 89.89 94.67 98.91 92.22 91.44 96.77

PC 98.79 93.28 90.58 99.46 91.91 91.27 94.92

Average 98.61 92.80 91.48 99.14 92.10 91.29 95.19

Epoch-2000

A 98.57 90.82 83.96 99.47 87.25 86.57 91.39

F 98.68 93.83 96.20 99.05 95.00 94.25 97.62

PT 99.18 92.37 94.78 99.47 93.56 93.13 97.10

TA 98.30 89.60 86.15 99.23 87.84 86.95 92.46

DC 98.02 96.65 98.86 97.38 97.74 96.00 98.12

LC 98.46 94.31 84.67 99.58 89.23 88.55 91.83

MC 98.68 91.43 94.67 99.09 93.02 92.31 96.86

PC 98.46 91.67 87.68 99.35 89.63 88.82 93.33

Average 98.54 92.58 90.87 99.08 91.66 90.82 94.84

The training accuracy (TA) and validation accuracy (VA) attained by the CSSADTL-
BCC model on test dataset are demonstrated in Figure 6. The experimental outcomes
implied that the CSSADTL-BCC model has gained maximum values of TA and VA. In
particular, VA appeared to be higher than TA.
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Figure 5. Result analysis of CSSADTL-BCC technique with distinct epochs.

Figure 6. TA and VA analysis of CSSADTL-BCC technique.

The training loss (TL) and validation loss (VL) achieved by the CSSADTL-BCC method
on test dataset are established in Figure 7. The experimental outcome inferred that the
CSSADTL-BCC model obtained the lowest values of TL and VL. In particular, VL seemed
to be lower than TL. Next, a brief precision–recall examination performed on the CSSADTL-
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BCC method on the test dataset is displayed in Figure 8. By observing the figure, it can
be observed that the CSSADTL-BCC approach has established maximal precision–recall
performance under all classes.

Figure 7. TL and VL analysis of CSSADTL-BCC technique.

Figure 8. Precision–recall curve analysis of CSSADTL-BCC technique.
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Figure 9 portrays a clear ROC investigation of the CSSADTL-BCC model on the test
dataset. The figure portrayed that the CSSADTL-BCC model has resulted in proficient
results with maximum ROC values under distinct class labels.

Figure 9. ROC curve analysis of the CSSADTL-BCC technique.

Figure 10 reports detailed classification accuracy outcomes of the CSSADTL-BCC
model under distinct iterations and runs. The figures highlighted that CSSADTL-BCC has
showcased effectual classifier results under every epoch.

To highlight the enhanced outcomes of the CSSADTL-BCC model, a brief comparison
study with recent models is shown in Table 3 [22]. Figure 11 investigates a detailed accuy
and Fscore analysis of the CSSADTL-BCC with existing models. The results indicated that
GLCM-KNN and GLCM-NB models obtained lower values of accuy and Fscore. At the same
time, the GLCM-discrete transform, GLCM-SVM, and Deep learning-IRV2 models have
attained moderately closer values of accuy and Fscore. Next to that, the GLCM-DL and Deep
learning INV3 models have resulted in reasonable accuy and Fscore values. However, the
CSSADTL-BCC model has gained an effectual outcome with maximum accuy and Fscore at
98.61% and 92.80%, respectively.

Figure 12 examines a detailed precn and recal examination of CSSADTL-BCC with
existing techniques. The outcomes represented that the GLCM-KNN and GLCM-NB
approaches have gained lesser values of precn and recal . Moreover, the GLCM-discrete
transform, GLCM-SVM, and Deep learning-IRV2 algorithms have attained moderately
closer values of precn and recal . Along with that, the GLCM-DL and Deep learning INV3
approaches have resulted in reasonable precn and recal values. However, the CSSADTL-
BCC technique has gained effectual outcomes with maximum values of precn and recal at
92.80% and 91.48%, respectively. After observing the results and discussion, it is apparent
that the CSSADTL-BCC model has showcased enhanced outcomes over other methods. The
enhanced performance of the CSSADTL-BCC model is due to the effectual hyperparameter
tuning process of the SGRU classifier. Thus, the proposed model can be applied to assist
physicians in the disease diagnosis process.
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Figure 10. Classification accuracy of CSSADTL-BCC technique under distinct iterations:
(a) 500 epochs, (b) 1000 epochs, (c) 1500 epochs, and (d) 2000 epochs.

Table 3. Comparative analysis of the CSSADTL-BCC technique with existing algorithms.

Methods Accuracy Precision Recall F-Score

GLCM-KNN Model 76.17 62.40 83.60 82.22

GLCM-NB Model 78.45 82.16 83.45 86.97

GLCM-Discrete transform 85.00 83.56 81.66 84.69

GLCM-SVM Model 85.00 87.32 87.61 81.62

GLCM-DL Model 92.44 86.89 80.24 87.92

Deep Learning-INV3 94.71 87.57 87.07 81.86

Deep Learning-IRV2 88.12 81.70 81.44 86.42

CSSADTL-BCC 98.61 92.80 91.48 92.10
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Figure 11. Accuy and Fscore analysis of CSSADTL-BCC technique with existing algorithms.

Figure 12. Recal and Precn analysis of the CSSADTL-BCC technique with existing algorithms.

5. Conclusions

In this study, a new CSSADTL-BCC method was advanced for classifying BC on
histopathological images. The presented CSSADTL-BCC model mainly focused on the
recognition and classification of BC. At the primary stage, the CSSADTL-BCC model em-
ployed the GF technique to eradicate the occurrence of noise. Moreover, a MixNet-based
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feature extraction model was employed for producing a useful collection of feature vectors.
Then, the SGRU classifier was exploited to allot class labels. Furthermore, CSSA is applied
to optimally modify the hyperparameters involved in the MixNet model. The performance
validation of the CSSADTL-BCC model can be tested by using a benchmark dataset, and
the results reported the superior efficiency of the CSSADTL-BCC method over the current
existing approaches with a maximum accuracy of 98.61%. In the future, deep instance seg-
mentation approaches can be included to enhance classification performance. In addition,
the classifier’s results can be boosted by designing deep fusion-based ensemble models.
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Simple Summary: A total laryngectomy involves the full and permanent separation of the upper and
lower airways, resulting in the loss of voice and inability to interact vocally. To identify, extract, and
evaluate replacement voicing following laryngeal oncosurgery, we propose employing convolutional
neural networks for categorization of speech representations (spectrograms). With an overall accuracy
of 89.47 percent, our technique has the greatest true-positive rate of any of the tested state-of-the-
art methodologies.

Abstract: Laryngeal carcinoma is the most common malignant tumor of the upper respiratory
tract. Total laryngectomy provides complete and permanent detachment of the upper and lower
airways that causes the loss of voice, leading to a patient’s inability to verbally communicate in the
postoperative period. This paper aims to exploit modern areas of deep learning research to objectively
classify, extract and measure the substitution voicing after laryngeal oncosurgery from the audio
signal. We propose using well-known convolutional neural networks (CNNs) applied for image
classification for the analysis of voice audio signal. Our approach takes an input of Mel-frequency
spectrogram (MFCC) as an input of deep neural network architecture. A database of digital speech
recordings of 367 male subjects (279 normal speech samples and 88 pathological speech samples) was
used. Our approach has shown the best true-positive rate of any of the compared state-of-the-art
approaches, achieving an overall accuracy of 89.47%.

Keywords: laryngeal carcinoma; substitution voicing; voice analysis; convolutional neural networks;
deep learning

1. Introduction

Laryngeal carcinoma remains the most common malignant tumor of the upper res-
piratory tract worldwide as reported by Steuer et al. [1]. Literature reports an incidence
of around 5 cases per 100,000 inhabitants but National Cancer Institute’s Cancer registry
reported 18.3 cases per 100,000 Lithuanian citizens [2]. The most current American Can-
cer Society estimates for laryngeal cancer in the United States for 2022 are: estimated
12,470 new cases of laryngeal cancer, and predicted 3820 deaths from laryngeal cancer [3].
Although the overall incidence is declining, laryngeal cancer is one of the few oncological
diseases in which the 5-year survival rate has decreased over the past 40 years, from 66% to
63%. This may be attributed to more conservative treatment protocols, as well as factors that
might delay the patient’s follow-up, mainly—the lack of medical care availability near the
patient’s place of residence as described by the report in Journal of Clinical Oncology [4].
Programs that require less specialized medical care and provide patients with reliable
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follow-up means might help to improve the 5-year survival rate, as well as, increase patient
safety during the pandemics [5]. Software that reduces the need for specialized medical
care might free up medical facilities for COVID-19 patients. Additionally, this software
might reduce the workload of specialized medical personnel and make them available for
COVID-19 related tasks. Fewer nonessential trips to outpatient facilities lead to a lower
risk of infection during pandemics [6]. This can potentially be achieved without incurring
additional costs to the healthcare system.

Chemoradiotherapy and surgery are usually feasible treatment choices for patients
with early (stage I-II) laryngeal cancer. The extent of surgery is primarily determined by the
tumor’s spread. Depending on the tumor stage, surgical treatment results in locoregional
cancer control comparable to that provided by laryngeal radiation or chemoradiation
therapy or even higher survival rates, cancer can be achieved for patients who undergo
surgical treatment for advanced-stage laryngeal [1].

After laryngeal oncosurgery that may include extended cordectomy (removal of the
vocal fold), partial or total laryngectomy patients lose one or even both vocal folds. As a
consequence, the voice is generated by a single vocal fold oscillating with the remaining
laryngeal and pharyngeal structures or alaryngeal (oesophageal or tracheoesophageal)
speech is used. These conditions can be considered as substitution voicing (SV), which
is defined as the voicing without two true vocal folds [7]. In SV, involuntary aphonic
(unvoiced) segments of speech coexist with rough-voiced ones. Various degrees of speech
impairment or even a complete inability to speak after laryngeal oncosurgery are the most
important complaints expressed by patients and may lead to their social isolation [8].

During the current pandemic, a lot of specialized medical care facilities and personnel
have been dedicated to fighting COVID-19 [9]. This in turn led to delayed diagnostics for
primary laryngeal cancer patients and follow-up for patients after treatment [10]. This
resulted in the need of more radical cancer treatments and increased patient mortality
which otherwise could have been avoided. More than half of laryngeal cancer patients
present with stage III or higher at the first appointment. For patients with those stages, total
laryngectomy is usually advised for favorable locoregional cancer control and an optimal
5-year survival rate [11]. Total laryngectomy is also performed when the patient is not
eligible for conservative techniques like chemotherapy and radiotherapy or in case of their
failure. Total laryngectomy provides complete and permanent detachment of the upper
and lower airways. This separation causes the loss of voice, smell, xerostomia, and altered
taste. Total laryngectomy leads to a patient’s inability to verbally communicate in the
postoperative period. Patients after laryngectomy often have to rely on pen and paper or
other forms of written text to communicate anywhere from 2 weeks to 6 months after the
initial surgery. This is especially troubling during the COVID -19 pandemic when patients
have to rely on text messaging to contact their families and have trouble receiving basic
social or telemedicine care simply because they can not use the phone by themselves [12].

According to Pereira da Silva et al., loss of voice has a significant influence on the qual-
ity of life of laryngeal cancer patients [13]. It has an impact on their communication, social
life, and even their ability to keep a job. Furthermore, failure to communicate effectively
generates worry, and 40–57% of these people develop a serious depressive condition [14].
As a result, it is critical to give trustworthy voice and speech rehabilitation choices to
laryngectomized patients. Because of its ease of use, high success rate in generating speech,
and quick training period, vocal prosthesis has become a popular way of rehabilitation [15].
Although effective, all established speech restoration techniques provide patients with
distinctly distorted speech patterns, which are perceived as unhealthy by both the patient
and society. This is due to the fact that substitution voicing generated speech features high
irregularity, frequency shifts, and aperiodicity, together with frequent speech phonatory
breaks [16]. This problem often becomes more apparent when the patient has to speak in
a loud environment or over the phone [17]. Practitioners often rely on expert opinion on
the perceived voice quality measurements, classification, and diagnosis of voice pathology.
The problem is that often the procedure is time consuming and can be subject to parameter
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sensitivity [18]. Latest digitization trends have pushed towards a major improvement in
computer-assisted medical techniques. Thus, following established practice, the acoustic
prosodic properties of the speech signal have to be modulated by a variety of health-related
effects [19], leading to changes in a human voice and the automated detection of pathologies
using machine learning has attracted significant medical attention [20].

Many approaches for detecting voice pathology have been proposed in recent research
in the above-mentioned literature [21]. However, these systems only attempted to dis-
tinguish normal voices from diseased sounds, indicating that there is a research gap in
terms of voice illness detection in relation to laryngeal cancer. There are circumstances in
machine learning algorithms when speech signals cannot ensure high accuracy and cause
time consumption in pathology monitoring systems. As a result, there is an urgent need
for a research that highlights the most essential concerns and challenges confronting vocal
pathology systems, as well as the importance of illness identification in voice pathology. To
our knowledge, not much data on the application of artificial intelligence (AI) technolo-
gies for SV assessment exists in the literature (see Section 2). As a result, implementing
AI-based models for objective assessment and classification of SV could potentially open
up new avenues in research and clinical practice, paving the way for the development of a
useful and reliable tool for evaluating SV following laryngeal oncosurgery. Existing deep
learning voice analysis approaches generally tend to apply some form of recurrent gates
for temporal voice signal analysis, these methods tend to suffer from poor performance
and are notoriously difficult to train. It is noticeable, that there is no working AI prototype
for SV assessment. As a result, using an AI-based models to objectively assess and classify
SV could possibly open up new avenues for study and clinical use. To begin with, a well-
designed algorithm might standardize SV evaluation across numerous oncology canters,
allowing data sets in different patient groups to be simply compared. The same data sets
could be used to improve the algorithm in the future. Instead of the existing methods,
but not very efficient already applied methods, requiring prior medical knowledge for sig-
nal analysis, we aim to exploit modern areas of machine learning (deep learning) research
to extract, measure and objectively classify substitution voicing and speech after laryngeal
oncosurgery from the audio signal. The objective estimates obtained can be simplified
and used by general practitioners and patients. This would be especially valuable when
movement is limited or specialized medical centers are difficult to find, as it was during the
peak of the COVID-19 pandemic. Last but not least, AI saves time and does not retire—the
knowledge gained via its use is always available and does not expire.

In this paper, we propose using convolutional neural networks (CNNs), generally
applied for image classification for the analysis of audio signals by transforming the
audio signals waveform into Mels spectrogram and using it as an input in a re-purposed
lightweight image classification network. This approach allowed us to achieve the overall
accuracy of 89.47% with a simpler network architecture, allowing the approach to be used
on computing devices having only Central Processing Unit (CPU) but without a dedicated
Graphical Processing Unit (GPU) for the classification of subjects voice pathology.

The paper is structured as follows: Section 2 discusses the state-of-the-art works.
The dataset used in this study and the deep neural architecture are described in Section 3.
The experimental results are presented and analyzed in Section 4. Finally, the results of this
study are discussed in Section 5. The paper concludes with Section 6.

2. State of the Art Analysis

A chaotic nature of the substitution voicing signal makes evaluation of substitution
voicing improper or even impossible with standard methods of acoustic voice analysis
used in clinical settings. Multiparametric models for evaluating voice quality and dys-
phonia severity are sufficiently reliable and valid because of their correlations to auditory-
perceptual evaluation and high reliability and validity in voice pathology detection [22].
Currently, two multiparametric acoustic indices based on sustained vowels and on continu-
ous speech analysis have gained popularity in research and clinical settings to objectively
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estimate dysphonia: i.e., the Cepstral Spectral Index of Dysphonia (CSID) and the Acoustic
Voice Quality Index (AVQI) [23,24]. Both indices may provide reasonable estimates of
dysphonia severity and represent valid acoustic metrics for objectifying abnormal overall
voice quality [25,26]. However, the use of these indices for assessing SV could be unreliable
or technically impossible due to irregular and rather chaotic origin of SV signal. There is
no data in the literature about the use of CSID for SV assessment. Only the recent study
by van Sluis et al. [27] employed the AVQI to evaluate acoustic voice quality in patients
who had undergone total laryngectomy. However, the authors noted that a specific AVQI
cut-off value and the discriminative power of this index for SV (tracheoesophageal speech)
after laryngeal oncosurgery have to be determined in future research studies. The AMPEX
algorithm developed by Van Immerseel and Martens allows automatic reliable analysis of
running speech, recognizing regularity patterns for pitch values <100 Hz and differentiating
between noise and voicing at low frequencies [28]. Despite the feasibility of AMPEX as
a tool for evaluating highly irregular speech has been supported by several studies, this
algorithm has not yet gained wider clinical recognition [7,29].

Consequently, to perform automatic voice pathology classification and diagnosis, it is
important to obtain reliable signal properties, which is essential for the reliability of the
result. The clinical interpretation of vocal features is often conducted before the process of
pathology detection [30]. Judging from the analysis of other studies, it is clear that from
a technological point of view, many researchers distinguish signal processing functions
such as Mel Frequency Coefficients, waveform packet transformations, others use multiple
voice analysis tools for a variety of physiological and etiological reasons [31–33]. Multiple
parameters are used to determine speech roughness, including height, vibration, and flicker,
and other methods are often used, such as Harmonic to Noise Ratio, Normalized Noise
Energy, and Smooth-to-Noise Ratio [34].

There are two types of possible features to analyze disease impact on voice/speech
signal: temporal and spectral [35]. The temporal features (time-domain features) are
used to extract and have an easy physical interpretation of a signal (energy, zero-crossing
rate, maximum amplitude, minimum energy, time of the ending transient or Log-Attack-
Time Descriptor) and are sensitive to articulation. The spectral features (frequency-based
features) are obtained by converting the time-based signal into the frequency domain using
the Fourier Transform. They might be more efficient for automatic classification because
they are not dependent on articulation [36]. The most popular frequency descriptors are
fundamental frequency, frequency components, spectral centroid, spectral flux, spectral
density, irregularity of spectrum, brightness, etc. [37]. These features can be used to identify
changing features in human speech, where the Mel Frequency Cepstral Coefficients are
often used in human voice analysis [38]. Methodology from standard speech analysis
could be adapted, i.e., using OpenSMILE features [39,40], Essential descriptors, MPEG7
descriptors, jAudio, YAAFE, Tsanas features [41], Wavelet Time Scattering features [42] and
Random Forest supervised learning algorithms to detect the symptoms [43] and also to
fuse information in the form of soft decisions, obtained using various audio feature sets
from separate modalities [44]. In addition, Cepstral Separation Difference could be applied
for quantification of speech impairment [45]. Feature extraction using signal-to-noise ratio,
harmonic-to-noise ratio, glottal to noise excitation, vocal fold excitation ratio, and empirical
mode decomposition excitation ratio methods with Random Forests and support vector
machines for classification algorithms can also be used [46].

Alternative approaches could be adopted through Syllable-level Features, Low-Level
Descriptor Features, Formant Features, Phonotactic Features with SVM classifier, features
extracted using Principal Component Analysis and Linear Discriminant Analysis), SVM,
Adaptive Boosting (AdaBoost), K-Nearest Neighbor (KNN) and Adaptive Resonance
Theory-Kohonen Neural Network classifiers and the likes. In addition, dimensional reduc-
tion techniques such as linear discriminant analysis, principal component analysis, kernel
PCA, feeder discriminant ratio, singular value decomposition, and so on are used to find
suitable latent variables for classification [47]. Other researchers have taken into account the
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characteristics of human voice and hearing systems. Aicha et al. [48] used glottal waveform
with feature selection using PCA and classification using SVM. Fontes et al. proposed a
low-complexity approach using correntropy spectral density [49]. MPEG-7 features are
most commonly used for indexing video and audio media and were investigated for this
purpose [50]. Hossain et al. have demonstrated that the low-level functions of MPEG-7
sound are effective in diagnosing pathological voice using support vector machines [51].
Vaziri et al. distinguished between a healthy voice and a pathological voice using nonlinear
dynamics performance and voice acoustic disturbances [52].

A wide variety of statistical, machine learning based, and other types of algorithms are
now widely used for the detection of pathological voice based on the computed acoustic
features of the input signal [53]. Pathology classification methods can be sorted into
two categories [54]. The first category is “classical” methods, often based on k-nearest
neighbor methods and Hilbert-Huang Transforms [55], random forests [56], support vector
machines [57], Gaussian mixture models [58], latent Markov models [59], Dynamic time
warping [60], discriminative paraconsistent machines [61] and so on. Often these methods
are used in combination with traditional features, as illustrated by Ghulam et al., who
singled out MFCC from long-term voice voice samples as characteristics and found a
significant increase in accuracy in diagnosing pathological voices using the Gaussian
mixture model [62]. Other researchers treated voice signals as normal vibration signals
when classifying, e.g., Cordeiro et al. calculated the spectral envelope peaks of the voice
signal as a function of the classification of pathological voices [63]. Alternatively, Saeedi et al.
proposed a pathological voice recognition method based on wave transformation, which
calculated the parameters of a wave filter bank using a genetic algorithm [64].

“Modern” side of pathology detection is often related to traditional dense neural net-
works [65], the more advanced CNNs [66] and very popular recurrent neural networks [67].
Deep learning, which transforms intelligent signal analysis so that algorithms can under
certain conditions, theoretically might reach near-medical (expert) capabilities in a variety of
voice pathology classification tasks. Chen et al. used 12 Mel frequency cepstral coefficients of
each voice sample as row features for their deep learning implementation [68]. Miliaresi et al.
suggest to analyze various properties of the voice signal window as low-level descriptors
(LLDs) by extracting and analyzing variable-length fragments from the speech signal using
the prisms of the main tone, energy, and spectrum [69] and using this data to train the deep
learning models. Furthermore, a number of functional elements, such as moments, extremes,
percentiles, and regression parameters, will then be applied to each LLD [70], to form a set
of aggregate features for a healthy and unhealthy human voice. These statistical summaries
can also be combined to form tensors for the training of AI (deep learning) algorithms, where
multipath learning and learning transfer could be applied according to the multifunctional
LSTM-RNN paradigm [71]. Kim et al. [72] collected features from voice samples of a vowel
sound of /a:/ and computed the Mel-frequency cepstral coefficients (MFCCs) using the soft-
ware package for speech analysis in phonetics (PRAAT), which were used identify between
patients with laryngeal cancer and healthy controls. Depending on the features extracted,
some authors suggest to an investigation of [53]. Alternatively, it is possible to try to introduce
kernel-based extreme learning machines [73] and data preprocessing [74]. Or involves a com-
bination of the k-means clustering-based feature weighting method and a complex-valued
artificial neural network [75].

3. Materials and Methods

3.1. Clinical Evaluation and Equipment

All participants of the study were evaluated by clinical voice specialists perform-
ing video laryngostroboscopy (VLS) at the Department of Otorhinolaryngology of the
Lithuanian University of Health Sciences (LUHS), Kaunas, Lithuania. VLS was performed
using the XION EndoSTROB DX device (XION GmbH, Berlin, Germany) with a 70° rigid
endoscope. VLS is routine in clinical practice and did not cause any additional discomfort
or delays for the participants.
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Speech recordings of the phonetically balanced Lithuanian sentence ‘Turėjo senelė žilą
oželį’ (‘The grandmother had a little grey goat’) were obtained using a T-series silent room
for hearing testing (T-room, CA Tegner AB, Bromma, Sweden) via a D60S Dynamic Vocal
(AKG Acoustics, Vienna, Austria) microphone placed 10.0 cm from the mouth with an about
90◦ microphone-to-mouth angle. Speech recordings were made at a rate of 44,100 samples
per second and exported as uncompressed 16-bit deep WAV audio files.

3.2. Dataset

A database of digital speech recordings of 367 male subjects (279 normal speech sam-
ples and 88 pathological speech samples) was used. Subjects’ age ranged from 18 to 80 years.
The control group comprised 279 healthy male volunteers (mean age 38.1 ± 12.7 years)
with the voices evaluated as healthy by the clinical voice specialists. The control group
(class 0) subjects had no present or preexisting speech, neurological, hearing, or laryngeal
disorders and were free of common cold or upper respiratory infection at the time of speech
recording. Furthermore, no pathological alterations in the larynx of the subjects of the
normal voice subgroup group were found during VLS. The pathological speech subgroup
consisted of 88 (64.1 ± 6.9 years) male patients who used substitution voicing (SV) after
oncosurgery. This subgroup included 43 patients after extended cordectomy (class 1),
17 patients after partial vertical laryngectomy (class 2), and 28 patients after total laryn-
gectomy who used tracheoesophageal prosthesis (TEP) (class 3). The pathological speech
subgroup patients were recruited from consecutive patients who were diagnosed with the
before-mentioned conditions. Speech recordings were obtained at least 6 months after the
surgery to ensure a reasonable amount of time for the laryngeal tissue to heal and speech
rehabilitation programs to end. A comparison cochleagrams of each class are illustrated in
Figure 1. We use the cochleagrams of sound signals for time-frequency analysis and feature
extraction instead of the more traditional spectrograms. The signal is initially passed via
a gammatone filter, which is designed to mimic the auditory filters found in the human
cochlea. The filtered signal is then divided into small windows, with the energy in each
window summed and normalized to produce the cochleagram image’s intensity values.

Figure 1. Cochleagrams of each class.
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3.3. Data Analysis

Table 1 summarizes the voice features captured in the dataset.

Table 1. Summary of voice features.

Feature Description

PVF Percentage of voiced frames
PVS Percentage of voiced speech frames
AVE Mean voicing evidence of voiced frames
PVFU Percentage of unreliable voiced frames
MD Average F0 modulation
MDc MD only in frames with a “reliable” F0 estimate. Vocal frequency estimate

F0 is considered reliable if it deviates less than 25% from the average over
all voiced frames.

Jitter F0-jitter in all voiced frame pairs (=2 consecutive frames)

Figure 2 shows the histograms of database feature value distributions among classes.
The analysis was supported by one-way ANOVA statistical test, which revealed statistically
significant differences between classes in PVF (p < 0.001), PVS (p < 0.001), AVE (p < 0.001),
PVFU (p < 0.001), MD (p < 0.001), MDc (p < 0.01), and Jitter (p < 0.001) values. There
was no statistically significant difference in Tmax values.

Figure 2. Histogram of feature value distribution among classes with p-value from ANOVA test.
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Figure 3 shows the correlation between feature values among classes in database.
The strong correlation was found between PVS and PVF (R = 0.963, p < 0.001), PVS and
AVE (R = 0.942, p < 0.001), and MD and PVFU (R = 0.898, p < 0.001). This shows a strong
co-linearity property in the database, which makes it difficult to use for training classical
machine learning models [76].

Figure 3. Correlation between feature values among classes. Correlation value (R) and its significance
(p) are given. The plots are arranged by decreasing statistical significance of the determination
coefficient (R2). Only plots with significant correlations are shown.
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3.4. Architecture

Figure 4 shows our approach deep neural network architecture. Our approach takes
an input of Mel-frequency spectrogram (MFCC) as an input with a total of 80 coefficients.
Therefore, given a waveform, the converted MFCC spectroctrogram gives an input of
N × 80× 1 where N is the sequence length. Each of the layer blocks starts with a convo-
lutional network with stride 2, this reduces the input dimensionality by half. Layers 2, 3
and 4 internally contain skip connections (dashed lines), these allow for a better gradient
flow. The fourth and final layer is then connected to fully-connected that has 4 neuron
output, each of the neurons is belongs to one of four voice classes. The network is trained
using initial learning rate of lr = 10−4 with the batch size of n = 16, to reduce memory
requirements training was performed on half-precision floating points. Because the se-
quence length between the audio files was not equal the each of the batch audio files have
been padded with zeroes to equalize the sequence length. The network was trained for
3000 epochs using Adam optimizer [77] and cosine annealing with warm restarts every
500 epochs, which would adjust the learning rate in the range of lr = [10−7; 10−4], cosine
annealing was chosen for it has demonstrated the ability to achieve better recall rates due to
potentially jumping out of local minimums [78]. The hyper-parameter values were chosen
during empirical experiments. Over-fitting was avoided by employing an early stopping
process and batch normalization.

Figure 4. Our approach, here N is the sequence length, dashed lines are skip connections.

3.5. Implementation

In Figures 5–7 we can see how our approach works for evaluating subject’s voice class.
In order for the subject to evaluate their voice, firstly they need to make a voice recording
using their microphone, the audio waveform is sampled using mono-channel 8000 Hz
sampling rate (as 8 kHz still retains voice information (as stipulated by most standards,
including telephony), a down-sampling (from 44 kHz to 8 kHz) was performed to optimize
the required quantity of data and reduce network overhead while taking VRAM limits into
account.). After the voice waveform is recorded, it is then converted into Mels-frequency
diagram using 80 coefficients. Normally, this would be around 40 MFCC samples, however
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the system kept too little information in our situation (as substitution voicing loses a lot
of information in relation to “healthy” speech), therefore 80 MFCC samples was the best
determined option. The MFCC spectrogram is then used as an input in our neural network,
where one of four classes are predicted: healthy, one-voice fold pathology, two-voice fold
pathology, and finally nonspecific voice pathology.

Figure 5. Architecture of the system.

Figure 6. Voice evaluation sequence diagram.
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Figure 7. Composition of the voice evaluation sequence processes.

4. Experimental Evaluation and Results

4.1. Setup

To test our minimalistic CPU optimized approach, we have used augmented the
dataset and used 147 recordings containing no voice pathology (normal voice), 111 voice
recordings of mass lesions of one single vocal fold, 57 recordings of mass lesions in both
vocal folds, and finally 67 recordings containing nonspecific voice pathology from the
dataset collected in Lithuanian University of Health Sciences (see Section 3.2). The training
set is divided using 80:20 rule, where 80% of the recordings of each class separately are used
for training, and the remaining are used for validation. Additionally, because the dataset
is highly unbalanced, we have dropped the data points in classes that have an excess of
data, this allows all classes to have an identical amount of data samples, reducing the
probability that the network will overfit using any of the underlying classes. To evaluate
and compare our approach versus state of the art, we have used confusion matrices as
they best reflect the results in multiclass problems by allowing us to evaluate true-positive
versus false-positive rates.

4.2. Metrics

We used accuracy, precision, recall and F1-score as fitness measures. These are defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)
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F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

. (4)

where TP (true positives) is the number of voice pathology samples that were labeled
correctly, TN (true negatives) is the number of non-pathotology voice samples that were
labeled correctly. FP (false positives) is the number of voice pathology samples that were
labeled incorrectly as being not voice pathology samples, and FN (false negatives) is the
number of not-pathology samples that were miss classified as pathology samples.

4.3. Results

In addition to our approach, we have tested three additional approaches, ResNet-
101 [79], a state-of-the-art image classification network, Wav2Letter [80] and M5 [81] as
state-of-the-art audio classification networks using the identical training procedure and
datasets. The confusion matrices for our approach can be seen in Figure 8, for ResNet-101
can be seen in Figure 9, Wav2Letter in Figure 10, and finally M5 confusion matrix can
be seen in Figure 11. Here Class 0 represents normal voice; Class 1 represents SV after
cordectomy; Class 2 represents SV after partial laryngectomy; Class 3 represents SV using
TEP. As we can see, our approach has shown the best true positive rate of any of the
compared state-of-the-art approaches. Giving an overall accuracy of 89.47%.

Figure 8. Confusion Matrix for our approach.

Figure 9. Confusion Matrix for ResNet-101 model.

Figure 10. Confusion Matrix for Wav2Letter model.

Figure 11. Confusion Matrix for M5 model.

In Figure 12 we can see the model accuracy comparison side-by-side for each of the
approaches broken down by class, additionally we can see our approach result breakdown
in Table 2, as we can see, the accuracy for all of each of the individual classes is above 90%.
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Figure 12. Comparison of performance between different models: ResNet-101, Word2Letter, M5 and
our model.

Table 2. Our result approach breakdown by class.

Class
n n

Accuracy Precision Recall
F1

(Truth) (Classified) Score

0—normal voice 30 29 93.42% 0.93 0.9 0.92
1—SV after cordectom 21 23 92.11% 0.83 0.9 0.86
2—SV after partial
laryngectomy

12 11 96.05% 0.91 0.83 0.87

3—SV using TEP 13 13 97.37% 0.92 0.92 0.92

To analyze the predictions of models more precisely, we used t-distributed stochastic
neighbor embedding (t-SNE), a statistical method for visualizing high-dimensional data
by mapping it to a two-dimensional embedding. The results are presented in Figure 13.
It shows that the classes are well separated while the miss-classifications using the best
model (resnet18) are few.

Figure 13. Comparison between t-SNE embeddings of different model predictions.
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5. Discussion

This work provides a technique for automatically assessing if a voice is healthy or
whether its quality has changed owing to a pathological condition. Because these spread
swiftly, automatic detection is necessary, yet it is frequently underestimated. Machine
learning is making a significant contribution to illness diagnosis and early detection in
cardiology, pulmonology, liver tumor segmentation, and other fields of healthcare. As a
consequence, machine learning might be employed effectively in a computer or mobile
healthcare system to automatically identify and detect irregularities in a person’s speech
for early diagnosis.

For the study of speech audio signals, we propose employing well-known CNN
models that have been used for image classification. Our method uses a Mel-frequency
spectrogram (MFCC) as an input to a deep neural network architecture while achieving
very good classification results. Our outcomes demonstrate that a deep learning model after
training using a pathological speech database, voice alone might be utilized for common
vocal fold illness identification using a deep learning technique. This AI-based technique
might be therapeutically effective for screening general vocal fold illness using the voice.
A brief assessment and a general health examination are part of the strategy. It can be
used during telemedicine in places where primary care facilities do not have laryngoscopic
capabilities. It might aid physicians in pre-screening patients by allowing invasive exams to
be done only in situations involving issues with automatic recognition or listening, as well
as expert evaluations of other clinical examination findings that raise concerns about the
existence of diseases.

The biggest issue that each patient suffers, especially those who live in distant areas,
is the lack of physicians and care in emergency circumstances. As a result, there is a need
to provide a new framework in such remote locations by utilizing telecommunication
means and artificial intelligence methods for automated voice analysis in the context
of remotely-provided telehealth services [82]. Telehealth is a successful paradigm for
diagnosing and treating voice issues in remote locations, as an alternative to face-to-
face consultations. Telehealth consultations have been found to contribute to medical
diagnosis for a variety of vocal problems, with diagnostic decision outcomes comparable
to in-person consultations [83]. There are several instances in which patients require
long-term monitoring. In this sense, the provision of continuous monitoring is critical.
Because laryngeal cancer is a potentially fatal disease, new and effective methods for
laryngeal cancer early detection are desperately needed. The method provided in this study
enables an effective and noninvasive way for diagnosing laryngeal carcinoma.

6. Conclusions

In this paper we used cutting-edge deep learning research to objectively categorize,
extract, and assess substitution voicing after laryngeal oncosurgery from audio signals.
For the study of speech audio signals, we propose employing well-known CNNs that
have been used for image classification. Our method uses a Mel-frequency spectrogram
as an input to a deep neural network architecture. A database of 367 male participants’
digital voice recordings (279 normal speech samples and 88 abnormal speech samples)
was employed. Our method has the highest true-positive rate of any of the assessed
state-of-the-art methods, with an overall accuracy of 89.47%.
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Simple Summary: Our study provides an overview of the current state of artificial intelligence
applications in urooncology and explores potential future advancements in this field. With remarkable
progress already achieved, artificial intelligence has revolutionized urooncology by facilitating image
analysis, grading, biomarker research, and treatment planning. We also discuss types of artificial
intelligence and their possible applications in the management of cancers such as prostate, kidney,
bladder, and testicular. As artificial intelligence technology continues to evolve, it holds immense
promise for further advancing urooncology and enhancing the care of patients with cancer.

Abstract: Introduction: Artificial intelligence is transforming healthcare by driving innovation,
automation, and optimization across various fields of medicine. The aim of this study was to
determine whether artificial intelligence (AI) techniques can be used in the diagnosis, treatment
planning, and monitoring of urological cancers. Methodology: We conducted a thorough search
for original and review articles published until 31 May 2022 in the PUBMED/Scopus database.
Our search included several terms related to AI and urooncology. Articles were selected with the
consensus of all authors. Results: Several types of AI can be used in the medical field. The most
common forms of AI are machine learning (ML), deep learning (DL), neural networks (NNs), natural
language processing (NLP) systems, and computer vision. AI can improve various domains related
to the management of urologic cancers, such as imaging, grading, and nodal staging. AI can also
help identify appropriate diagnoses, treatment options, and even biomarkers. In the majority of
these instances, AI is as accurate as or sometimes even superior to medical doctors. Conclusions: AI
techniques have the potential to revolutionize the diagnosis, treatment, and monitoring of urologic
cancers. The use of AI in urooncology care is expected to increase in the future, leading to improved
patient outcomes and better overall management of these tumors.

Keywords: artificial intelligence; machine learning; urooncology; prostate cancer

1. Introduction

Medicine has changed over the decades. Due to better access to medical care, the
number of patients has increased, indicating an increase in data that must be acquired and
processed. Over the years, science has made numerous discoveries that can be applied to
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several medical issues, even in unexpected fields. It is necessary to determine how to apply
these solutions to issues that seem unsuitable and even irrelevant.

The journey of Artificial Intelligence (AI) in medicine began in the 1950s and 1960s
with early attempts at developing machines capable of making decisions and mimicking
human conversation [1]. During the 1970s to 2000s, despite periods of reduced funding
and interest, collaborations among pioneers in AI continued, leading to prototypes like the
CASNET—model for glaucoma consultation. This causal-associational network included
model-building, consultation, and a database, enabling personalized advice for physicians
on patient management. Another milestone was the “backward chaining” AI system called
MYCIN. It used patient information provided by physicians and a knowledge base of about
600 rules to suggest potential bacterial pathogens and recommend antibiotic treatments
adjusted for the patient’s body weight.

The early 2000s saw a revival of interest in Machine Learning (ML) and AI with the
development of the question-answering system Watson by IBM, an open-domain question-
answering system. Watson harnessed the power of DeepQA technology, utilizing natural
language processing and data analysis to generate probable answers from unstructured con-
tent. This breakthrough allowed for evidence-based clinical decision-making by drawing
information from patients’ electronic medical records.

With improved computer hardware and software, digitalized medicine rapidly ad-
vanced, including the use of chatbots like Siri and Alexa. Deep Learning (DL) emerged
as a game-changer, allowing AI systems to classify data autonomously and process large
datasets more efficiently.

Today, AI assists medical professionals in establishing diagnoses, making therapeutic
decisions, and predicting the outcome. It supports every procedure that involves data
processing and knowledge and is used by healthcare professionals in their everyday duties.
Currently, AI can perform all these tasks with the same efficiency as skilled physicians [2].
Sometimes, it can even outperform expert clinicians [3].

AI is capable of a broad range of tasks, including separating cancer cells from healthy
tissue, determining whether lymph node metastases have occurred, discovering biomarkers,
predicting outcomes, and making therapeutic decisions [4]. In this review, we explore AI
applications in urogenital system cancers, drawing from the latest research. Providing a
comprehensive view of urooncology while focusing on individual cancer types, this study
fosters a detailed and integrated understanding of the subject.

2. Materials and Methods

For this narrative review, we conducted comprehensive English-language litera-
ture research for original and review articles published until 31 December 2022 in the
PUBMED/Scopus database. We searched for the following terms, alone or in combination:
artificial intelligence, machine learning, deep learning, neural networks, computer-aided
diagnosis, urooncology, prostate cancer, kidney cancer, testicular cancer, bladder cancer,
and upper tract urothelial carcinoma. We found 249 related articles. The relevant studies
were identified by evaluating the abstracts, and complete articles were obtained in cases
where abstracts were unavailable. Duplicate papers were removed, and the data were
screened to exclude irrelevant works. Case reports, comments, conference papers, com-
mentaries, surveys, and animal studies were all excluded from the full-text publications.
After applying the exclusion criteria, 99 full-text manuscripts were assessed for eligibility
with the consensus of the authors.

3. Definition and Types of AI

Artificial intelligence (AI) is a broad term encompassing computer systems capable of
performing tasks that traditionally require human cognition [5]. It involves programmed
machines that can learn, identify patterns, and establish relationships between inputs
and outputs [6]. Utilizing diverse mathematical and algorithmic methods, AI sits at the
convergence of neurocomputing, statistical inference, pattern recognition, data mining,
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knowledge discovery, and machine learning (ML) [7]. In recent times, AI has emerged as a
powerful tool, making remarkable strides in addressing numerous medical challenges.

Artificial intelligence (AI) encompasses several fields with the common goal of com-
putationally simulating human intelligence:

1. Machine learning (ML) is one of the most important types of artificial intelligence.
This technology involves prediction by identifying patterns in data using mathematical
algorithms. Machine learning includes three methods: deep learning, logistic regression,
and neural network architecture. ML algorithms can help automate the process of detecting
and diagnosing cancer.

Deep learning (DL) predicts using multilayer neural network algorithms inspired by
the neurological architecture of the brain. Deep learning (DL) can automatically extract fea-
tures and assimilate and evaluate large amounts of complex data. Using large amounts of
medical data and state-of-the-art computing technologies, DL can improve cancer diagnosis
and treatment. DL has found widespread application in oncology research, encompassing
early cancer detection, diagnosis, classification, and grading. Additionally, it has been in-
strumental in molecular tumor characterization, predicting patient outcomes and treatment
response, facilitating personalized treatment approaches, automating radiation therapy
workflows, and even aiding in the discovery of new anticancer drugs. Furthermore, DL
plays a crucial role in streamlining clinical trials, revolutionizing how oncology research
and patient care are conducted [8,9].

2. Neural networks (NNs) are increasingly being applied to complex ML data and
include artificial neural networks (ANNs), multilayer perceptrons (MLPs), recurrent neural
networks (RNNs), and convolutional neural networks (CNNs).

Artificial Neural Networks (ANNs) are computational tools inspired by the structure of
the human nervous system. These networks comprise interconnected computer processors,
often referred to as “neurons”, which can process data and represent knowledge through
parallel computations. ANNs consist of multiple layers of neurons, including an input
layer, one or more hidden layers, and an output layer. Each neuron is connected to
others in the network through links, and each link possesses a numerical weight. One
notable aspect of ANNs is their capacity to learn from their experiences in a training
environment, making them adaptive and capable of improving their performance over
time. Thanks to their analytical abilities, ANNs can compare various interactions among
clinical, biological, and pathological variables and identify relationships between these
variables. Researchers actively use ANNs to diagnose, treat, and predict outcomes in
challenging clinical situations [9,10].

Convolutional neural networks (CNNs) are widely regarded as the most popular and
effective deep learning architectures. They are particularly adept at handling large and
intricate image data and extracting essential features through convolutional filters. By
adjusting these filters based on learned parameters, CNNs can identify the most relevant
features for specific tasks. The use of CNNs is not limited to image data; they have also
been adapted to analyze non-image data, like genomic data represented in vector, matrix,
or tensor formats [6,9,11]. MLPs, on the other hand, are simpler neural networks that
process input data sequentially through layers, making general predictions but being
susceptible to overfitting [12,13]. RNNs are designed to handle sequential data, capturing
past elements in hidden “state vectors” and making predictions based on current and
previous elements [12]. While some neural network models have already been approved
and accepted in clinical settings, the routine clinical application of neural networks is still
somewhat limited. Nevertheless, their potential for revolutionizing healthcare continues to
grow, especially in fields such as cancer diagnosis and prediction [14,15].

3. NLP systems address a wide range of important clinical and research tasks. NLP is
capable of processing free clinical text and generating structured output. There has been
extensive focus on applying NLP techniques to identify and extract key data (information)
from unstructured text so that it can be transformed into structured data that can later be
analyzed and stored in a database. The steps for extracting information are as follows:
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named entity recognition, relationship extraction, event and temporal expression extraction,
and entity merging and normalization [16].

4. Computer vision, a vital branch of artificial intelligence (AI), empowers computers
and systems to derive valuable insights from digital images, videos, and visual data. By
understanding and interpreting visual input, computers gain the ability to take action
and provide informed recommendations. This field employs advanced deep learning
technologies, particularly convolutional neural networks (CNNs), to process and analyze
visual information. The primary goal of computer vision is to develop algorithms, data
representations, and computer architectures that emulate human-like visual capabilities.
Through computer vision, machines can “see”, observe, and comprehend the world around
them, opening up new possibilities for numerous applications [16].

The discussed subfields of artificial intelligence are presented in Figure 1.

 

Figure 1. Subfields of Artificial Intelligence.

4. Application of AI in Urological Oncology

4.1. Prostate Cancer

Prostate cancer (PCa) is one of the main causes of cancer-related morbidity and mortal-
ity across the world. It is a complex and diverse disease with various diagnostic methods,
including biopsy, PSA testing, and MRI. The majority of prostate cancer cases are adeno-
carcinomas, originating from luminal or basal epithelial cells in the peripheral regions of
the prostate. Risk factors like family history, ethnicity, age, and obesity contribute to its
variation across populations. Treatment options such as active surveillance, chemotherapy,
radiation therapy, and surgery are tailored to individual tumor characteristics. Under-
standing these factors is crucial for the effective management and treatment of prostate
cancer [17,18].

Given the large increase in life expectancy over the past few decades, it is reasonable
to assume that the number of patients with prostate cancer will grow. Unfortunately, there
are still many uncertainties surrounding the diagnosis and treatment of PCa. Consequently,
it is necessary to develop new methods for managing this condition [19,20].
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4.1.1. Imaging and Diagnosis

AI systems can automate the detection of cases in which prostate cancer is highly
suspected. In a study by Cao et al. [21], the deep learning algorithm FocalNet was trained
using 3T T2-weighted imaging and diffusion-weighted imaging of 553 patients who later
underwent radical prostatectomy. Lesion detection sensitivity vs. the number of false-
positive detections at various thresholds on suspicion scores was used to compare the PCa
recognition rates of FocalNet and radiologists. For clinically important and index lesions,
respectively, FocalNet performed 5.1% and 4.7% worse than radiologists. However, the
differences were not statistically significant (p = 0.413 and p = 0.282, respectively) [21].

Giannini et al. proposed a computer-aided diagnosis (CAD) tool that can help manage
patients suspected of having PCa and determine the target for an MRI-guided biopsy. CAD
is a two-stage system. First, a map of the probability that prostate voxels will develop cancer
is made. Next, to evaluate the sensitivity of the system and the quantity of false-positive
(FP) regions recognized by the system, a candidate segmentation phase is carried out to
highlight questionable areas. In a study by Giannini et al. [22], the area under the curve
(AUC) for a cohort of 56 patients (i.e., 65 lesions) acquired during the voxel-wise phase
was 0.91, and the second stage resulted in a per-patient sensitivity of 97%, with a median
number of FP equal to 3, in the entire prostate sample [22].

CAD’s ability to detect more challenging cancers in the gland’s center may increase
specificity and the radiologists’ level of experience. The objective of Gaur’s study was to
compare the effectiveness of CAD to that of traditional multiparametric MRI (mpMRI)
interpretation in prostate cancer identification. Index lesion sensitivities of CAD were 76%
(p = 0.39) for the whole prostate, 77% (p = 0.07) for the peripheral zone, and 79% (p = 0.15)
for the transition zone compared to those of mpMRI at 79%, 84%, and 76%, respectively [23].

In a study by Pantanowitz et al., an AI-based algorithm was created using samples
of prostate core needle biopsies stained with hematoxylin and eosin. It was trained with
1,357,450 visual patches from 549 slides and tested with 2501 samples internally and with
1627 samples externally. The AUC of the algorithm was 0.997 in the internal test set and
0.991 in the external test set. The AUC for identifying Gleason pattern 5 was 0.971, and
the AUC for differentiating between low-grade (Gleason score 6 or ASAP) cancer and
high-grade (Gleason score 7–10) cancer was 0.941, along with 0.957 for perineural invasion.
This study also provided the first instance of undetected cancer that the algorithm managed
to identify [3].

Wang’s [24] prospective multi-center randomized comparative trial aimed to compare
the prostate cancer (PCa) detection rate using different biopsy methods. Four hundred
patients were divided into three groups: TRUS-guided 12-core standard systematic biopsy
(TRUS-SB), cognitive fused mpMRI-guided 12-core biopsy (mpMRI), and artificial intelli-
gence ultrasound of the prostate (AIUSP)-targeted biopsy. The AIUSP group showed the
highest PCa detection rate (49.6%) compared to TRUS-SB (34.6%) and mpMRI (35.8%). The
detection rate of clinically significant PCa (csPCa) was also highest in the AIUSP group
(32.3%). The overall biopsy core positive rate was significantly lower in the TRUS-SB and
mpMRI groups than in the AIUSP group. These findings suggest that AIUSP may serve as
a promising alternative to systematic biopsy for PCa diagnosis in the future.

Furthermore, Stojadinović et al. demonstrated that AI can predict the risk of PCa and
minimize overdiagnosis and overtreatment. They created a classification and regression
tree (CART) model that, regardless of the prostate specific antigen (PSA) level, could be
applied to patients referred for an abnormal PSA level, a digital rectal examination (DRE),
or both in order to recognize patients with severe prostate cancer (PCa) on prostate biopsy.
The CART analysis was performed using each predictor identified by the univariate logistic
regression analysis. A variety of clinical utility and predictive performance aspects of risk
projections were investigated. The model identified PCa in 92 (41.6%; AUC = 0.833) of
221 patients. To conclude, CART analysis prevents any major PCa from being missed while
reducing unnecessary biopsies [25].
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There have also been attempts to use machine learning for prostate cancer localization
using transrectal ultrasound [26] and classifier ensembles using T2-weighted MRI alone [27].

4.1.2. Gleason Grading

The ability of AI to localize, detect, and grade prostate cancer in biopsy samples can
be comparable to that of prominent prostate pathology experts. Marginean et al. [28] used
698 prostate biopsy samples from 174 patients to train an AI algorithm and then tested it on
37 biopsy sections from 21 patients. AI achieved high accuracy in detecting the cancer areas,
with a sensitivity of 100% and a specificity of 68%. The Gleason patterns were assigned
correctly, with an intraclass correlation coefficient (ICC) of 0.96 for Gleason patterns 3 and 4,
and with an ICC of 0.82 for Gleason pattern 5. Furthermore, the algorithm was comparable
with pathologists in detecting cancer areas (ICC = 0.99). This discovery can undoubtedly
simplify the diagnosis of prostate cancer [28].

Ström et al. conducted a study in which deep neural networks were trained with
6682 biopsy slides from 976 patients and tested with 1631 samples from 246 men. The
assignment was to determine the occurrence, extent, and Gleason grade of malignant
tissue with the help of AI. The AUC for the AI was 0.997 for differentiating benign and
malignant biopsy slides. Moreover, the cancer length assigned by the reporting pathologist
and predicted by the AI had a 0.96 correlation [29].

Here, the PANDA challenge ought to be mentioned. In this largest histopathology trial,
1290 developers competed to create repeatable AI algorithms for Gleason grading using
10,616 digitalized prostate samples. On external validation sets from the United States
and Europe, the algorithms met expert uropathologists’ agreement levels of 0.862 (95%
confidence interval (CI), 0.840–0.884) and 0.868 (95% CI, 0.835–0.900), respectively. This
indicates that AI tools were capable of identifying and grading cancers with pathologist-
level accuracy, achieving professional reference criteria. Furthermore, it was discovered
that the algorithms missed fewer tumors than the pathologists in the US external validation
set [30].

4.1.3. Nodal Staging

In a study by Hartenstein et al. [31], convolutional neural networks (CNNs) were
trained to establish lymph node status in patients with PCa using only computer tomogra-
phy images. Three CNNs were trained with 68Ga-PSMA-PET/CT imaging of 549 patients,
with 2616 lymph nodes segmented. The CNNs were conducted with an AUC of 0.86. The
expert clinician’s AUC was 0.81, which confirms that CNNs can adequately determine
the lymphatic spread. Moreover, CNNs demonstrated the ability to “learn” since they
predicted the chances of infiltration based on the anatomical regions, which positively
affected their performance [31].

4.1.4. Biomarkers

AI may be valuable in analyzing and verifying potential PCa biomarkers. Green
et al. attempted to determine whether the potential biomarkers Ki67 and DLX2 could be
reliable indicators of PCa progression. First, they investigated the connection between
tumor protein levels of Ki67 and DLX2 in transurethral resected prostatectomy samples and
time to death and metastasis. Artificial neural network (ANN) analysis showed that Ki67,
which was found only in 6.8% of the patients, can be predictive of reduced survival and
increased probability of metastasis (p = 0.025), independent of the PSA level and Gleason
score. Moreover, DLX2 was detected in 73% of the patients, and DLX2 was co-expressed
with high Ki67 levels in 8.2% of the patients. According to ANN, DLX2 is a potential
marker of increased metastasis risk. In conclusion, Ki67 and DLX2 can assist physicians in
identifying patients who need to be actively monitored [32].

As a predictor of the presence of biomarkers, AI is faster and more objective than
manual quantification. Calle et al. [33] tested the AI algorithm to identify anti-Ki67 and
ERG antibodies in 648 samples. Results differed from those of manual detection by only
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5% and were 100% accurate in identifying the positive tumors. Interestingly, the algorithm
was also able to increase its accuracy following each round of adjustments and input from
the training set [33].

AI may also identify promising prostate cancer biomarkers. The genetic algorithm-
optimized artificial neural network (GA-ANN) was developed in order to create a diag-
nostic prediction model and filter potential genes obtained by meta-analysis of the openly
accessible microarray data by RankProd. The expression of three genes was considered.
C1QTNF3 was proven to be significantly correlated with PCa patient recurrence-free sur-
vival (RFS; p < 0.001, AUC = 0.57). This procedure can be used to identify other oncogenes
or biomarkers in various urooncology diseases [34].

Proteomic analysis can also be used to discover possible biomarkers. To explore new
potential proteomic signatures for prostate cancer, Kim et al. [35] created a unique method
that combines targeted proteomics with computational biology. First, they identified
133 different expressed proteins in patients with PCa. Next, using synthetic peptides, they
assessed these proteins in a group of 74 patients. Next, machine learning methods were
used to create clinical predictive models of the diagnosis and prognosis of prostate cancer.
The findings suggest that precise, noninvasive biomarkers can be found via computationally
guided proteomics [35]. Furthermore, AI can predict different indicators, e.g., the 10-year
cancer-specific survival (CSS) and overall survival (OS) of patients with PCa. Two gradient-
boosting models using the data of patients diagnosed with PCa were trained on 7021 cases
and tested on 1755 cases. The accuracy was 0.87 for the CSS and 0.98 for the OS. The ability
of AI to interpret data offers clinicians and patients a new approach for predicting prostate
cancer and its outcome [36].

4.1.5. Treatment

AI can determine the most appropriate treatment plan for patients. Auffenberg et al. [37]
showed AI as a tool that can assist patients with PCa who have just received a diagnosis
by predicting therapy choices on the basis of information from a registry of patients with
comparable conditions. A prospective database of patients with PCa was built using
information from 45 units of the Michigan Urological Surgery Improvement Collaborative
(MUSIC). Then, a random forest machine learning model was applied, which was trained
with a sample containing two-thirds of the patients and evaluated with the remaining
one-third of the patients. The individualized prediction was exact (AUC = 0.81). Patients
can use this online tool to obtain a better understanding of the various treatment options
offered by their physicians, as well as physicians advice to seek a different therapy approach
from their first choice. Indubitably, both sides can benefit from this instrument [37].

To predict and understand late genitourinary (GU) toxicity after radiation therapy in
patients with prostate cancer, Lee et al. [38] used bioinformatics tools and machine learning
techniques on genome-wide data. First, the patterns in genome-wide single-nucleotide
polymorphisms (SNPs) were recognized and gathered. Next, a preconditioned random
forest regression method was used to speculate on the risk on the basis of that data. The
system was tested on 234 patients who had undergone radiation treatment two years
earlier. The patients performed a self-assessment for four urinary symptoms using the
International Prostate Symptom Score. Across the symptoms, the prediction accuracy of
the method varied. It only managed to achieve a significant AUC of 0.70 for the weak
stream endpoint. Nevertheless, as a result of their research, a more accurate predictive
model could be created, and probable biomarkers and biological processes connected to
GU toxicity could be identified [38].

Using megavoltage (MV) pictures for image-guided radiation therapy (IGRT) in
prostate cancer patients would undoubtedly be advantageous. It eliminates the need
for additional equipment and imaging doses. It additionally provides motion data with
treatment beam alignment. For this purpose, Chrystall et al. [39] developed a novel real-
time marker tracking system using a convolutional neural network (CNN) classifier. The
CNN demonstrated high accuracy in identifying implanted prostate markers with an AUC
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of 0.99, a sensitivity of 98.31%, and a specificity of 99.87%. The marker tracking system
achieved sub-millimeter accuracy, making it suitable for real-time applications in IGRT and
providing a promising approach for accurate and efficient treatment.

AI-based treatment planning systems are efficient and save time. In a study by Nico-
lae et al. [40], 41 patients who had received 125I low-dose-rate brachytherapy were divided
into two groups randomly. The treatment of 21 patients was planned using a machine-
learning-based prostate implant planning algorithm (PIPA) system, while the treatment of
the remaining patients was planned using the conventional method. After the radiation
oncologist modified the plan, the first evaluation was carried out by determining the dice
coefficient of the prostate V150% isodose volume between PIPA and the standard method.
Additional comparisons between groups focused on dosimetric results at preimplant and
Day 30, as well as the amount of planning time. Results indicated that the plans of more
patients’ in the PIPA group did not require modification, and compared to the conven-
tional technique (43.13 ± 58.70 min), the planning time for PIPA was significantly shorter
(2.38 ± 0.96 min). In addition, no discernible differences between these two groups were
discovered [40].

Deng et al. showed a similar strategy. Docetaxel, the medication used to treat
metastatic castration-resistant prostate cancer, is only effective in 20% of patients. Al
can accurately divide patients into docetaxel-tolerant and docetaxel-intolerant groups,
which can help select adequate treatment and avoid early therapeutic failure [41].

Table 1 summarizes the most important studies examining AI applications in prostate cancer.

Table 1. Studies looking at applications of AI in prostate cancer.

Study Objective Algorithm/Method Study Design Results

Cao et al. [21]

Detection of prostate
cancer using 3 T

multiparametric magnetic
resonance imaging

Deep learning algorithm

• development cohort:
427 patients

• evaluation cohort:
126 patients

Detection sensitivity: 5.1% and
4.7% below the radiologists for
clinically significant and index

lesions, respectively

Giannini et al. [22] Setting of the MRI-guided
biopsy target Computer-aided diagnosis

• 56 patients
• 65 lesions Accuracy—97%

Gaur et al. [23] Detection of prostate
cancer using mpMRI Computer-aided diagnosis

• 144 case patients
• 72 control patients

Improved patient-level
specificity (72%) compared to

mpMRI-alone (45%)

Wildeboer et al. [42]

Detection of prostate
cancer using B-mode,

shear-wave elastography,
and contrast-enhanced
ultrasound radiomics

Machine learning • 48 patients
AUC-ROC of 0.75 for detecting

PCa and 0.9 for detecting
Gleason score greater than 3 + 4

Viswanath et al. [27]
Detection of peripheral
zone prostate tumors

using T2-weighted MRI
Computer-aided diagnosis

• 85 prostate cancer
datasets acquired
from across 3
different institutions
(1 for discovery, 2 for
independent
validation)

AUC of 0.744 for detecting PCa

Marginean et al. [28]
Standardization of
Gleason grading in
prostate biopsies

Machine learning and
convolutional neural

networks

• 698 prostate biopsy
sections from 174
patients for training

• 37 biopsy sections
from 21 patients
for test

Sensitivity in detecting cancer
(100%) and identifying the

correct Gleason pattern
(80–91%) depending on the

Gleason pattern, and specificity
(68–98%) depending on the

Gleason pattern.
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Table 1. Cont.

Study Objective Algorithm/Method Study Design Results

Ström et al. [29]
Detection and grading of

prostate cancers in
prostate biopsies

Deep neural networks

• 6953 prostate biopsy
samples from 1063
patients for training

• 1943 biopsy samples
from 391 patients for
evaluations

AUC-ROC of 0.997 in
distinguishing the malignancy,

comparable performance to
expert pathologists in assigning

Gleason grades.

Bulten et al. [30]
Detection and grading of

prostate cancers in
prostate biopsies

Multiparametric
algorithms

• 10,616 digitized
prostate biopsies

Agreements of 0.862 and 0.868
with expert uropathologists

Hartenstein et al. [31] Prostate cancer nodal
staging using CT imaging

Convolutional neural
networks (CNNs)

• 2616 lymph node
samples from 546
patients were
segmented

AUC of 0.95 and 0.86 compared
to an AUC of 0.81 for

experienced radiologists

Green et al. [32] Identification and
validation new biomarkers

Artificial neural network
(ANN)

• 192 tissue
microarrays (TMA)
constructed from
transurethral
resected
prostatectomy
histology samples

High Ki67 is predictive of
reduced survival and increased
risk of metastasis, independent

of PSA and Gleason score.
DLX2 shows increased

metastasis risk and
co-expression with a high

Ki67 score

Calle et al. [33] Automation analysis of
biomarkers Deep learning algorithm

• 648 samples of tissue
microarrays (TMA)

5% variance compared to
manually generated results;

100% accuracy in identifying
positive tumors

Hou et al. [34]
Identification and
validation of new

biomarkers

Genetic
algorithm-optimized

artificial neural network
(GA-ANN)

• Meta-analysis using
RankProd from
microarray data

AUC of 0.953 for diagnostic
accuracy and AUC of 0.808 for

prognostic capability

Auffenberg et al. [37]

Development of a
web-based system to

provide newly diagnosed
men with predicted
treatment decisions

Random forest ML model

• Registry data from
45 MUSIC urology
practices from 2015
to 2017

AUC of 0.81 for personalized
prediction

Lee et al. [38]
Prediction of late GU
toxicity after prostate

radiation therapy

Preconditioned random
forest regression method

• 324 patients at 2
years post-radiation
therapy

Accuracy—70%

4.2. Kidney Cancer

Renal cell carcinoma is a diverse group of cancers with various genetic and molecular
alterations, including clear-cell, papillary, and chromophobe subtypes. Established risk
factors include tobacco smoking, hypertension, and obesity. Renal carcinoma can often
remain clinically silent until reaching an advanced stage. Classic symptoms, such as pain,
haematuria, and flank mass, occur in only a small percentage of cases. Routine imaging
has become instrumental in identifying renal cell carcinoma incidentally. The most crucial
staging technique is computed tomography (CT) of the abdomen. Survival rates are more
favorable when tumors are confined to the kidney. However, renal carcinoma is notoriously
resistant to chemotherapy, making radical nephrectomy the standard treatment [43,44].

Machine learning models and deep learning algorithms are used to diagnose renal
tumors, differentiate benign and malignant renal tumors, and differentiate renal cell car-
cinoma (RCC) types. Table 2 summarizes the research looking at applications of AI in
kidney cancer.
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Table 2. Studies looking at applications of AI in kidney cancer.

Study Objective Algorithm/Method Study Design Results

Santoni et al. [45] Prediction of new cases
of RCC ANN

• Statistics on US
population numbers

24.7% increase in new RCC
cases, rising from 44,400 in 2020

to 55,400 in 2050

Houshyar et al. [46] Development of a surgical
planning aid CNN

• CT images of 319
patients

Median Dice coefficients for
kidney and tumor

segmentation were 0.970 and
0.816, respectively.

Erdim et al. [47]
Distinguishing between
benign and malignant

solid renal masses
ML

• 21 patients with
benign renal masses

• 63 patients with
malignant
renal masses

• 271 texture features
extracted from
CT images

Best predictive performance
with an accuracy of 90.5% and

an AUC of 0.915

Uhlig et al. [48]
Distinguishing between
benign and malignant

clinical T1 renal masses
Random forest algorithm • 48 patients

AUC of 0.83 compared to
radiologists’ 0.68, sensitivity

0.88 vs. 0.80, p = 0.045,
specificity 0.67 vs. 0.50,

p = 0.083

Uhm et al. [49] Differentiation of
RCC types DL

• Dataset of 1035 CT
images from 308
patients containing
five major types of
renal tumors

AUC of 0.855, comparable
diagnostic performance to that

of radiologists

Nikpanah et al. [50]
Distinguishing clear cell

renal cell carcinoma from
renal oncocytoma

Deep neural network
(AlexNet)

• 74 patients with 243
renal masses

Overall accuracy of 91% and an
AUC of 0.9

Tabibu et al. [51] Differentiation of
RCC types CNN

• Histopathological
images from patients
with RCC subtypes

Accuracy of 93.39% for
distinguishing clear cell and

chromophobe RCC from
normal tissue; accuracy of

94.07% for distinguishing clear
cell, chromophobe, and
papillary RCC subtypes

Ding et al. [52] Differentiation grade
of ccRCC CT-based radiomic models

• 14 patients with
ccRCC who
underwent partial or
radical nephrectomy

AUC of 0.826, 0.878, and 0.843
for models 1, 2, and

3, respectively

Kocak et al. [53]
Detection PBRM1

mutations through CT
texture analysis

ANN and RF

• 45 patients with
clear-cell RCC,
among whom 16 had
the PBRM1 mutation

ANN algorithm’s AUC of 0.925,
RF algorithm’s AUC of 0.987

Tian et al. [54]
Screening for kidney

cancer prognosis
biomarkers

RF

• Kidney cancer RNA
sequencing data
from the Gene
Expression Omnibus
(GEO) database

In tumor tissue, RNASET2 and
FXYD5 were found to be highly

expressed, while NAT8 was
observed to be lowly expressed

at both the protein and
transcription levels

Buchner et al. [55] Prediction of the
metastatic RCC outcome ANN

• 175 patient records
with available
follow-up data for a
median of 36 months

95% overall accuracy,
outperforming logistic

regression models
(78% accuracy)
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Table 2. Cont.

Study Objective Algorithm/Method Study Design Results

Barkan et al. [56] Predicting OS for
mRCC patients ML • 322 patients AUC of 0.786 for three-year OS

and 0.771 for five-year OS

4.2.1. Prediction and Detection of Kidney Cancer

The incidence of kidney cancer is increasing every year. In 2020, the number of cases
of RCC registered in the United States was 44,400. Researchers predict that, by 2050, the
number of RCC cases will rise to 55,400. Consequently, several studies are attempting to
counter this trend with new ways to predict and detect kidney cancer. Santoni et al. [45]
attempted to implement an artificial neural network to predict new cases in the population.
They used data such as population index, obesity, smoking prevalence, uncontrolled
hypertension, and life expectancy data in the United States. The study involved collecting
statistics on the US population and assessing how various factors affect the incidence
of kidney cancer. MATLAB R2018 (MathWorks) software was used to implement an
artificial neural network. As per the results, hypertension prevention has the greatest
impact on reducing the incidence of kidney cancer. The study estimated that, by preventing
hypertension, it will be possible to reduce the incidence of kidney cancer by 575 cases per
year by 2030. Other factors had a more limited impact [45]. A group of researchers led
by Houshyar [46] retrospectively analyzed CT images of 319 patients. They created two
separate CNNs. The first CNN focused on localizing the bounding cube of the right and left
kidney hemispheres, while the second CNN focused on segmenting the renal parenchyma
and tumors within each cube. The performance of the CNNs was evaluated in a cohort of
269 patients. The median Sorensen-Dice coefficients for kidney and tumor segmentation
were 0.970 and 0.816, respectively, indicating accurate delineation. Moreover, the Pearson
correlation coefficients between the CNN-generated and human-annotated estimates of
kidney and tumor volumes were 0.998 and 0.993, respectively (p < 0.001), confirming the
reliability of the CNN approach.

These preliminary findings demonstrate the potential of automated deep learning
AI techniques for rapid and precise segmentation of kidneys and renal tumors on single-
phase contrast-enhanced CT scans. Additionally, CNNs can accurately calculate tumor and
kidney volumes, offering valuable assistance in clinical practice [46].

4.2.2. Differentiation of Benign and Malignant Renal Tumors

Distinguishing between benign and malignant tumors is crucial, as benign tumors,
like adiposarcoma (AML) and oncocytoma, are sometimes misclassified as RCC. This
differentiation is essential to avoiding unnecessary medical procedures. Recent advance-
ments in machine learning and deep learning using radiomics have shown promise in
accurately differentiating these tumors [57]. Erdim et al. [47] conducted a study where they
analyzed CT images of benign and malignant tumors, extracting texture features to create a
predictive model with machine learning algorithms. The random forest algorithm, utiliz-
ing five selected contrast-enhanced CT texture features, demonstrated the best predictive
performance with an accuracy of 90.5% and an area under the curve (AUC) of 0.915.

Another study by Uhlig et al. [48] compared the diagnostic accuracy of two expe-
rienced radiologists with the random forest algorithm in evaluating renal masses from
CT imaging. The results showed that the random forest algorithm outperformed the
radiologists in correctly identifying and classifying renal masses.

These findings highlight the potential of machine learning algorithms in accurately
differentiating between benign and malignant renal tumors, providing valuable assistance
in clinical decision-making, and optimizing patient care.
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4.2.3. Differentiation of RCC Types

Radiomics analysis has led to the development of machine learning and deep learning
models to distinguish between the five types of RCC, including oncocytoma, AML, clear
cell RCC, papillary RCC, and chromophobe RCC. CT texture analysis is utilized by ML and
DL algorithms to differentiate various renal masses [43–45]. ML and DL algorithms can
predict nuclear class and identify specific genetic mutations, which affect the prediction of
prognosis, recurrence, and survival outcomes [58].

In their study, Kocak et al. [59] used 275 textural features from CT images to predict
and identify the nuclear class of ccRCC. The machine learning models performed well in
differentiating different forms of renal cell carcinoma (RCC), but their identification of the
three basic types was poor. SVM showed the highest predictive value for nuclear grades
in ccRCC cases (85.1%). Cortico-subcortical CT images provided more texture parameters
than nonenhanced images.

Uhm et al. [49] Uhm et al. developed a dataset of 1035 CT images from 308 patients
containing five major types of renal tumors. They compared the diagnostic performance of
their deep learning model with that of six radiologists. The AI outperformed radiologists
in diagnosing most types of RCC and benign tumors, showing significantly better results in
diagnosing oncocytoma and liposarcoma AML tumors. However, the results were similar
for the diagnosis of clear-cell RCC.

Nikpanah et al. [50] conducted a retrospective study involving 74 patients with 243 re-
nal masses to assess a deep convolutional neural network’s diagnostic efficacy in distin-
guishing clear-cell renal cell carcinoma from renal oncocytoma. MR imaging was performed
before pathologic confirmation, and a deep neural network (AlexNet) was fine-tuned for
this task. The AI system achieved an overall accuracy of 91% and an area under the curve
of 0.9 in distinguishing ccRCC from oncocytoma using fivefold cross-validation. Utilizing
features extracted from 20,000 CT images, Pedersen et al. [60] created convolutional neural
networks that exhibited a remarkable 93.3% accuracy and a specificity of 93.5% in effectively
differentiating oncocytoma from RCC.

A group of researchers led by Tabibu et al. [51] conducted a study that explored
the application of a deep learning method to identify and classify different RCC types,
achieving an impressive classification accuracy of 94.07%. They introduced a novel support
vector machine-based approach to enhance model performance in multiclass classification
(pan-RCC), resulting in a remarkable 93% accuracy in cancer detection. Furthermore, the
researchers utilized morphological features extracted from tumor regions identified by
CNNs to predict survival outcomes for patients with the prevalent clear-cell RCC.

4.2.4. Differentiation Grade of Clear Renal Cell Carcinoma (Fuhrman Grade)

The Fuhrman grading system [61] evaluates nuclear size, shape, and nucleolar promi-
nence, categorizing tumors into four nuclear grades (1–4) based on increasing testicular
size, irregularity, and prominence. This grading system is a robust predictor of distant
metastasis after nephrectomy. Metastasis rates correlate with nuclear grade, with grade
1 tumors exhibiting significantly lower rates compared to grades 2 to 4. Survival outcomes
are also stratified into three categories: grade 1, grade 4, and grades 2 and 3.

Ding et al. [52] illustrated enhanced precision in staging the classification of clear
cell renal cell carcinoma by preoperatively distinguishing between high-grade (Fuhrman
III–IV) and low-grade (Fuhrman I–II) tumors. Their algorithm integration encompassed
six key non-textural features: pseudocapsule, round mass, maximum tumor diameter
(Diametermax), intracellular artery (Arteritumor), tumor enhancement value (TEV), and
relative TEV (rTEV), alongside texture features. Extracted from CT images of the segment
with the largest renal mass area in the corticospinal and nephrographic phases, these
texture features underwent selection through the least absolute shrinkage and selection
operator (LASSO) to calculate a texture score for each patient. In their approach, a lo-
gistic regression model utilizing three iterations—model 1 with all non-texture features,
model 2 with all non-texture features and texture score, and model 3 with only texture
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score—distinguished high-grade ccRCC from low-grade ccRCC during nephrectomy. These
models exhibited strong discrimination in the training cohort, yielding area under the re-
ceiver operating characteristic curve (AUC) values of 0.826, 0.878, and 0.843 for models 1, 2,
and 3, respectively. Notably, a significant difference in AUC was observed between model
1 and model 2.

Tian et al. [62] developed a CAD system for Fuhrman classification in ccRCC using
395 whole-mount images. Their model, incorporating 26 features, predicted tumor grade
with 84.6% sensitivity and 81.3% specificity. Their results were significantly related to
overall survival. Holdbrook et al. [63] concentrated on nuclear pleomorphic patterns,
creating a binary CAD system for renal cell carcinoma grading. This system demonstrated
high accuracy (F-score = 0.78–0.83) and predicted survival with similar precision as an
established scoring system based on multigene testing.

A different approach was shown by Wen-Zi [64]. The study utilized deep learning
algorithms to predict the pathological staging and grading of tumors in 878 patients based
on preoperative clinical variables. The proposed models, including BiLSTM, CNN-BiLSTM,
and CNN-BiGRU, achieved impressive accuracy in predicting tumor pathological staging,
with AUC values of 0.933, 0.947, and 0.948, respectively. For tumor pathological grading,
the models yielded AUC values of 0.754, 0.720, and 0.770, respectively.

4.2.5. Genetic Mutation

Li et al. [65] harnessed gene expression, machine learning (utilizing random forest
variable hunting), and Cox regression analysis to construct a risk score model based on
15 genes. This model aimed to predict the survival of ccRCC patients in the Cancer Genome
Atlas dataset (N = 533). Remarkably, the higher-risk group demonstrated significantly
worse prognosis and survival compared to the lower-risk group. A similar pattern was
observed in recurrence-free survival. Interestingly, the risk scores were not correlated with
patient characteristics such as gender or age but were linked to hemoglobin levels and
tumor characteristics like size and grade. Notably, radiation therapy had no influence on the
predictive value of the risk score. Multivariate Cox regression underlined the importance
of the risk score as an indicator of prognosis in ccRCC. Ultimately, this risk score model,
driven by the expression of 15 selected genes, exhibited the ability to predict the survival of
ccRCC patients.

In their research, Kocak et al. [53] employed both an artificial neural network (ANN)
algorithm and a random forest (RF) algorithm to detect PBRM1 mutations through CT
texture analysis. The ANN demonstrated accurate identification of 88% of ccRCCs with a
PBRM1 mutation status, while the RF algorithm showed even higher performance, correctly
classifying 95.0% of ccRCCs with a PBRM1 mutation status.

Machine learning has demonstrated high accuracy in distinguishing CD117 (c-KIT)
oncocytomas from the chromophobe subtype of renal cell carcinoma using the peak early
enhancement rate (PEER), with a 95% accuracy for tumor type classification (100% sensitiv-
ity and 89% specificity) [66].

In their study, Tian et al. [54] investigated mRNA expression profiles in the GSE53757
dataset and their relation to the clinical prognosis of renal cell carcinoma. They developed
a seven-gene independent prognostic model that showed significant correlations with
the prognosis of renal cell carcinoma. The researchers carefully selected renal cancer
differentiation genes from the dataset and performed functional enrichment analysis,
revealing enriched biological functions related to catabolic processes of small molecules,
T-cell activation, and other aspects.

Tian et al. [54] employed RF and SVM models to refine their prognostic model, iden-
tifying seven hub mRNAs through Cox LASSO analysis as robust predictors of kidney
cancer prognosis. Subsequent measurement of these seven genes in kidney cancer and
normal tissue pairs revealed higher expression of RNASET2 and FXYD5 in cancer tissue,
while NAT8 exhibited relatively lower expression. However, no significant differences
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were observed in the expression of EZH2, KLF18A, CDCA7, or WNT7B between tumor
tissue and adjacent tissue.

Tian et al. [54] utilized bioinformatics technology to integrate genomic data and iden-
tify differentially expressed genes (DEGs) associated with renal cell carcinoma prognosis.
Their developed prognostic mRNA model outperformed single mRNA models, effectively
distinguishing patients at high risk of recurrence from those at low risk. The model’s
prognostic performance remained independent of age and stage. The study suggests that
a nomogram combining seven gene signatures can accurately depict the risk level and
overall survival based on the patient’s clinical stage, age, and other factors.

4.2.6. Treatment of Kidney Cancer

In 2003, Kattan et al. [67] published experiments with AI. The authors compared AI
and Cox regression to predict disease recurrence after surgery. In their experiments, Cox
regression models showed better performance. For kidney cancer, they used ANN and Cox
regression to predict behavior (median accuracy of 71% for ANN and 75% for Cox). Khene
and a group of collaborating researchers studied the response of patients to nivolumab
therapy. Nivolumab serves as an effective immunotherapy with checkpoint inhibition in
mRCC [68]. They showed that pretreatment imaging radiomics could accurately identify
those responding to nivolumab. The model could achieve an accuracy of more than 90%
in predicting treatment response [69]. Buchner et al. [55] examined the potential of AI in
predicting the outcome of patients with metastatic renal cell carcinoma who were about
to start systemic therapy. The AI model was trained using data from 175 patients who
had undergone radical or partial nephrectomy of the primary tumor prior to commencing
systemic therapy. The main objective was to predict overall survival at the 3-year mark
based on parameters available at the initiation of first-line therapy. AI was able to achieve
an accuracy of 95%.

The Barkan et al. [56] study aimed to assess the capabilities of emerging AI technolo-
gies in predicting three- and five-year overall survival (OS) for patients with advanced
metastatic renal cell carcinoma (mRCC) undergoing their first-line systemic treatment. The
retrospective analysis included 322 Italian patients treated between 2004 and 2019. An
ensemble of three AI predictive models was developed, outperforming existing prognostic
systems and providing better clinical support for decision-making. The model achieved
high accuracy and specificity, with AUC values of 0.786 and 0.771 for 3-year OS and
5-year OS, respectively. The AI models demonstrate promising potential for enhancing
patient management in mRCC treatment, but larger studies are needed to validate their
effectiveness further.

The objective of Le et al.’s [70] study was to develop and validate predictive models
using machine learning algorithms for patients with bone metastases (BM) from clear
cell renal cell carcinoma (ccRCC) and to identify suitable models for clinical decision-
making. The researchers obtained data from the Surveillance, Epidemiology, and End
Results (SEER) database for 1490 ccRCC-BM patients and collected clinicopathological
information for 42 patients at their hospital. Four ML algorithms (extreme gradient boosting,
logistic regression, random forest, and Naive Bayes model) were employed to predict
overall survival (OS) in ccRCC-BM patients. The patients were divided into training
and validation cohorts for evaluation. The models performed well in predicting 1-year
and 3-year OS, suggesting that ML can be a valuable tool in clinical decision-making for
ccRCC-BM patients.

AI can also be used to assess recurrence risk following surgical resection of RCC.
Khene et al.’s [71] study explored the effectiveness of machine learning models, including
Random Survival Forests, Survival Support Vector Machines, and Extreme Gradient Boost-
ing, in predicting recurrence after surgical resection of nonmetastatic renal cell carcinoma.
Conducted across 21 French medical centers with over 4000 patients, the ML models out-
performed traditional prognostic models in predicting disease-free survival. ML models
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demonstrated higher concordance index values, good calibration, and superior net benefit
in decision curve analysis.

From this research, it can be concluded that artificial intelligence methods are future-
proof. Tests using new technologies can, taking into account predisposing behavioral
factors, not only detect the disease at an early stage but also help actively control predis-
posed individuals. Deep learning methods reduce the waiting time for histopathology
results and can help differentiate types of kidney cancer. With the help of AI, it is possible to
assess the response to gene therapy and, taking into account genetic mutations, to evaluate
prognosis and survival time.

4.3. Bladder Cancer

Bladder cancer is a prevalent malignancy affecting both men and women, with the
most common type being transitional cell carcinoma arising from urothelial cells in the
bladder. Its primary symptoms include hematuria and lower urinary tract issues. Thanks
to advanced imaging and diagnostic tools, bladder cancers are now more likely to be
detected in their early stages. About 75% of cases are non-muscle-invasive and treated with
transurethral resection of the tumor, while the remaining have invaded deeper layers or
formed metastases, necessitating radical cystectomy [72–74].

4.3.1. Diagnosis

Cystoscopy is considered the gold standard for diagnosing and monitoring non-
muscle-invasive bladder cancer (NMIBC). However, this procedure is not a perfect test. In
addition to being user-dependent, white-light cystoscopy can also have various limitations;
small tumors, carcinoma in situ, and other nonobvious lesions in certain anatomic locations
can be easily missed. Due to the increasing number of different upgrades, such as blue-light
cystoscopy (BLC) and artificial intelligence, the procedure is becoming more accurate [75].

Various researchers of AI methods have evaluated the effectiveness of machine learn-
ing in overcoming human mistakes and ensuring that diseases are not missed. Some of
the main algorithms used to improve cystoscopic diagnosis in addition to survival and
prognosis prediction in bladder cancer are convolutional neural networks (CNNs), multi-
layer perceptrons (MLPs), support vector machines (SVMs), and genetic algorithms (GAs).
Ikeda et al. [76] aimed to support the cystoscopic diagnosis of bladder cancer using a
convolutional neural network. They created a CNN-based tumor classification. The trained
classifier dataset consisted of 2102 cystoscopic images (1671 images of normal tissue and
431 images of tumor lesions). Its effectiveness was evaluated using test data (87 tumor
images and 335 normal images). In the result, 78 images were true positives, 315 were true
negatives, 20 were false positives, and nine were false negatives (i.e., sensitivity was 89.7%
and specificity was 94.0%). Eminaga et al. [77] applied the same kind of AI technology,
creating various deep CNN models and assessing them using the F1-score. The greatest
F1-score, 99.52%, was obtained for the XCeption-based model. Other models that could
identify all cystoscopic images with bladder were based on ResNet50 and the harmonic
series concept, which achieved F1-scores of 99.48% and 99.45%, respectively.

The multilayer perceptron (MLP)-based method, presented by Lorencin et al. [78],
uses image resizing and a Laplacian edge detector for the preprocessing of input images.
The method provides an alternative strategy for diagnosing bladder cancer. AI was trained
with the data of 1997 and 986 images with and without bladder cancer, respectively. Results
were encouraging, with an AUC value of up to 0.99. Hashemi et al. [79] applied the local
binary pattern (LBP) method to extract the features in bladder cystoscopy images. Then,
they used the MLP neural network to train and evaluate the classifier for images from a
bladder cystoscopy. In order to enhance the performance of this method, the researchers
applied an adaptive learning rate and a genetic algorithm. The simulated results revealed
a significant 7% reduction in error and improved convergence speed compared to other
competing methods. The findings underscore the immense potential of deep learning for
accurately diagnosing cystoscopic images.
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4.3.2. Metastasis Detection

A particularly important thing in determining the patient’s condition is to confirm
the presence of metastases in the lymph nodes. In Gresser et al.’s [80] study, a radiomics
signature was developed using machine learning to detect lymph node metastases in blad-
der cancer patients who underwent radical cystectomy with lymphadenectomy. Out of
1354 patients screened, 391 with pathological nodal staging were included and divided
into training and test cohorts. Radiomics features were extracted from each lymph node,
and an ML model was trained using histopathology labels. Manual and automated lymph
node segmentations were compared to radiologist assessments for detecting metastases.
The results showed that the radiomics-based analysis using manual lymph node segmenta-
tion achieved an AUC of 0.80, while the fully automated approach achieved an AUC of
0.70. Combining the manually segmented radiomic signature with radiologist assessment
improved the AUC to 0.81.

In Wu et al.’s [81] study, researchers developed a lymph node metastases diagnostic
model (LNMDM) using whole slide images and assessed the clinical impact of an artifi-
cial intelligence-assisted (AI) workflow. The LNMDM was developed using data from
998 bladder cancer patients who underwent radical cystectomy and pelvic lymph node
dissection. The model demonstrated high diagnostic sensitivity, with an area under the
curve (AUC) ranging from 0.978 to 0.998 in five internal validation sets. Comparisons
between the LNMDM and pathologists showed that the model outperformed both junior
and senior pathologists in detecting lymph node metastases. AI assistance improved sensi-
tivity for pathologists, enhancing diagnostic accuracy. Notably, the model identified tumor
micrometastases that had been missed by pathologists in some cases.

Another study [82] aimed to develop and validate a machine-learning-based approach
using [18F]FDG PET/CT criteria to accurately identify pelvic lymph node involvement in
patients with muscle-invasive bladder cancer (MIBC). The study consisted of 173 patients.
The developed machine-learning-based combination of criteria, which included features
from pelvic lymph nodes and the primary bladder tumor, showed comparable diagnostic
performance (AUC = 0.59) to the consensus of experts (AUC = 0.64) in the validation set.
The interrater agreement was also good (K = 0.66) for both the machine-learning approach
and the experts.

4.3.3. Prediction and Prognosis

Machine learning algorithms can be used to improve more than just cystoscopy. The
other aspects of bladder urooncology where artificial intelligence may be employed are the
prediction and prognosis of mortality, postcystectomy recurrence and survival, and therapy
response. Deep learning systems (DLSs) are also being developed for clinical cytology in
order to detect the malignant potential of urothelial carcinoma cells.

Wang et al. [83] employed a least squares support vector machine (SVM) to predict
the 5-year overall and cancer-specific mortality of patients who underwent radical cys-
tectomy. The model achieved an accuracy of over 75% in this prognostic prediction. [4].
To predict the prognosis over the next 5 years using various combinations of image, clini-
cal, and spatial features, Gavriel et al. [84] proposed an ensemble system that consists of
ML-based algorithms. The method demonstrated a 71.4% accuracy in correctly identify-
ing patients who experienced unfavorable outcomes and succumbed to muscle-invasive
bladder cancer (MIBC) within a 5-year timeframe. This value is impressive considering
that it is significantly higher than the 28.6% of the TNM staging system, the current clinical
gold standard.

4.3.4. Disease Progression and Chemotherapy Efficacy

ML-based algorithms and models have been used in several articles to identify genes
that can potentially foretell the recurrence or future progression of disease. Slides from
patients with MIBC were marked with immunofluorescence (IF) and then applied to
measure the tumor buds. In this way, the efficacy of neoadjuvant chemotherapy was
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evaluated, and the patients who did not respond to the therapy were identified, with the
aim being to stop the treatment midway in such patients to avoid the harmful effects of
chemotherapy [4,85–87]. Nojima et al. [88] developed a DLS to detect high-grade urothelial
carcinoma (HGUC) cells in urine cytology specimens using a pretrained VGG16 model.
The DLS demonstrated exceptional performance when trained on high-power field images
of both malignant and benign cases. It accurately diagnosed invasive UC lesions with an
AUC of 0.8628 and an F1-score of 0.8239. Moreover, it successfully identified high-grade
UC lesions with an AUC of 0.8661 and an F1-score of 0.8218.

The results indicated that the DLS exhibited the potential to more accurately deter-
mine the malignant potential of tumors compared to classical cytology. Considering this
possibility, along with improvements in prognosis and prediction, urologists may be better
able to develop therapeutic strategies that will ultimately benefit patients.

Table 3 summarizes the studies examining the use of AI in bladder cancer.

Table 3. Studies looking at applications of AI in bladder cancer.

Study Objective Algorithm/Method Study Design Results

Ikeda et al. [76]

Improvement of the
quality of bladder cancer
diagnosis by supporting

cystoscopic diagnosis
using AI

Convolutional neural
network (CNN)

• 1671 cystoscopic
images of
normal tissue

• 431 cystoscopic
images of
tumor lesions

AUC-ROC of 0.98 in
distinguishing normal and

tumor tissue

Eminaga et al. [77]

Exploration of the
potential of AI for the

diagnostic classification of
cystoscopic images

Convolutional neural
network (CNN)

• 18,681 cystoscopic
images from
479 patients

CNN achieved F1 scores of
99.52%, 99.48%, and 99.45%

Lorencin et al. [78]

Investigation of the MLP
implementation possibility

for the detection of
urinary bladder cancer

Multi-Layer Perceptron
(MLP)

• 1997 images of
bladder cancer

• 986 images of
noncancer tissue

AUC of up to 0.99

Wu et al. [81] Development of LNMDM (AI-assisted workflow • 998 patients AUC from 0.978 to 0.998

Girard et al. [82]

Developing criteria to
identify pelvic lymph
node involvement in

MIBC patients

ML-based combination
of criteria

• 129 MIBC patients
for training

• 44 patients for test

AUC of 0.59 in diagnostic
performance compared to the

experts (AUC = 0.64)

Gavriel et al. [84]

Development of an AI tool
for predicting the 5-year

prognosis of
MIBC patients

ML-based algorithms • 78 patients
71.4% accuracy in classification

of patients who succumbed
to MIBC

Nojima et al. [88]

Developing DLS as a
diagnosis support tool for

clinical cytology in
urinary cytology

Deep Learning System
(DLS)

• Cytology images
from Papanicolaou-
stained urinary
cytology glass slides
obtained from
232 patients.

AUC of 0.9890 and an F1 score
of 0.9002

4.4. Upper Tract Urothelial Carcinoma (UTUC)

Upper tract urothelial cancer (UTUC), a specific type of urothelial cancer, occurs in the
ureter and renal pelvis. It is a relatively rare cancer, accounting for 5–10% of all urothelial
carcinomas. A significant number of UTUC tumors are invasive at the time of diagnosis,
and the 5-year cancer-specific survival rates for advanced stages are low. The standard
treatment for high-risk UTUC is radical nephroureterectomy (RNU) with bladder-cuff
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removal. However, kidney-sparing surgery (KSS) is gaining popularity to preserve renal
function, akin to managing parenchymal renal cancer. Neoadjuvant chemotherapy shows
potential benefits for high-risk UTUC patients [89].

Currently, the gold standard for UTUC diagnosis and conservative treatment is flexible
ureteroscopy (URS). URS allows for a thorough examination of the urinary system tissue,
identification of tumors, assessment of their size, and biopsy of suspicious lesions [90].
The procedure is performed with the assistance of an endoscopic camera to provide visual
guidance [91].

Similar to other endoscopic procedures, in this procedure, too, artificial intelligence
can be used to enhance the outcomes.

Primary research on this subject, presented by Lazo et al. [92], provided an automated
method based on convolutional neural networks to produce an accurate segmentation of
the hollow lumen. The described method included an ensemble of four parallel CNNs
(U-Net-based, Mask-RCNN, and two modifications of the former ones) to process both
single-frame and multi-frame data simultaneously. Using a unique dataset of 11 recordings
(2673 frames) that were gathered from six patients and manually annotated, they evaluated
the proposed method, which outperformed earlier state-of-the-art techniques with an F1-
score of 80%. Although the results demonstrated that the ensemble model may successfully
enhance hollow lumen segmentation in ureteroscopic images, the development of the
submitted method might further the UTUC finding, particularly if it works effectively even
when there is limited visibility, occasional bleeding, or specular reflections.

4.5. Testicular Tumors

Testicular cancer is a prevalent solid malignancy affecting young adult men, and its
occurrence has been on the rise globally. Testicular cancer accounts for about 1% of newly
diagnosed cancers in men globally and is most common in men aged 14 to 44 in Western
countries. Cryptorchidism, a birth defect where one or both testicles are not in the scrotum,
is a significant risk factor for testicular cancer, increasing the risk nearly fivefold. Other
potential risk factors include hypospadias and a low sperm count. The precursor lesion
to malignant testicular germ cell tumors is germ cell neoplasia in situ (GCNIS). Germ cell
tumors (GCT) constitute the majority of testicular cancers and are divided into seminoma
and nonseminoma subtypes. Seminomas are homogeneous tumors of embryonic germ
cells, while nonseminomas comprise various histologic subtypes. Advances in testicular
cancer management have led to remarkable success, with a cure rate exceeding 70% for the
first metastatic solid tumor [93,94].

Lymphovascular invasion (LVI) holds significant prognostic value, particularly in
stage 1 non-seminomatous tumors and germ cell tumors of the testis. LVI refers to tumors
found within endothelium-lined lymphatic or vascular channels. To automate the identi-
fication of suspected LVI areas in digital whole-slide images of testicular tumors, Ghosh
et al. [95] developed an artificial intelligence algorithm using deep learning. They trained
the algorithm with 184 histology slides stained with hematoxylin and eosin (H&E) from 19
patients with testicular germ cell tumors. The algorithm successfully identified areas of
potential LVI in a validation set of 118 whole-slide images from 10 patients, with a preci-
sion of 0.68 for suitable areas and 0.56 for definite LVI areas. This proof-of-concept study
demonstrates the feasibility of an artificial intelligence tool that aids reporting pathologists
in highlighting areas for potential LVI assessment [95].

Distant metastasis in testicular cancer patients, beyond non-regional lymph nodes
and lungs, presents a significant concern. Ding et al. addressed this issue by developing a
machine learning (ML) algorithm to predict the risk of patients with germ cell testicular
cancer (GCTC) progressing to the M1b stage, enabling early intervention. The predictive
model was constructed using data from 4323 GCTC patients obtained from the Surveillance,
Epidemiology, and End Results (SEER) database. Six ML algorithms were utilized to build
the model, demonstrating high accuracy, stability, and computational efficiency. These
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promising results have valuable implications for clinical decision-making and provide a
potential tool for timely interventions in GCTC patients [96].

Linder et al. [97] developed a deep learning approach to identify and count tumor-
infiltrating lymphocytes (TILs) in primary testicular cancer patients. They analyzed H&E-
stained whole slides from 113 patients and found a significant association between low TIL
numbers and disease recurrence. A higher TIL density was correlated with a lower clinical
tumor stage, seminoma histology, and absence of lymphovascular invasion at presentation.

Baessler et al. [98] used ML-based CT radiomics to distinguish between malignant
and benign lymph nodes in patients with retroperitoneal LN metastases from NSTGCT,
aiming to reduce overtreatment in young patients. The model achieved an accuracy of 81%,
a sensitivity of 88%, and a specificity of 72%.

Another study [99] compared custom-designed and commercial ANNs for staging
testicular cancer using pathological parameters. The custom ANN outperformed the com-
mercial ANN (92% vs. 80% accuracy), highlighting the importance of individual network
refinement by investigators, which currently limits widespread commercial adoption of
these methods.

5. Conclusions

Less than 20 years after the dawn of computing, AI has been applied to clinical
decision-making. However, only recently, with the development of machine learning, has
it been integrated into clinical practice. AI methods for analyzing big data cohorts seem
more precise and exploratory than conventional regression statistics. Additionally, they
provide specific health behavior predictions. Each artificial intelligence method has features
that make it effective for various tasks. Understanding the basics of AI approaches and
their potential, especially the flexibility of certain systems, will enable these innovative
methods to be developed further and play a significant role in urologists’ work with patients
with cancer.
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Simple Summary: The proposed research aims to provide a deep insight into the deep learning and
machine learning techniques used for diagnosing skin cancer. While maintaining a healthy balance
between both Machine Learning as well as Deep Learning, the study also discusses open challenges
and future directions in this field. The research includes a comparison on widely used datasets and
prevalent review papers discussing skin cancer diagnosis using Artificial Intelligence. The authors
of this study aim to set this review as a benchmark for further studies in the field of skin cancer
diagnosis by also including limitations and benefits of historical approaches.

Abstract: Skin cancer continues to remain one of the major healthcare issues across the globe. If
diagnosed early, skin cancer can be treated successfully. While early diagnosis is paramount for an
effective cure for cancer, the current process requires the involvement of skin cancer specialists, which
makes it an expensive procedure and not easily available and affordable in developing countries. This
dearth of skin cancer specialists has given rise to the need to develop automated diagnosis systems.
In this context, Artificial Intelligence (AI)-based methods have been proposed. These systems can
assist in the early detection of skin cancer and can consequently lower its morbidity, and, in turn,
alleviate the mortality rate associated with it. Machine learning and deep learning are branches of
AI that deal with statistical modeling and inference, which progressively learn from data fed into
them to predict desired objectives and characteristics. This survey focuses on Machine Learning
and Deep Learning techniques deployed in the field of skin cancer diagnosis, while maintaining
a balance between both techniques. A comparison is made to widely used datasets and prevalent
review papers, discussing automated skin cancer diagnosis. The study also discusses the insights and
lessons yielded by the prior works. The survey culminates with future direction and scope, which
will subsequently help in addressing the challenges faced within automated skin cancer diagnosis.

Keywords: artificial intelligence; computer-aided diagnostics; deep learning; dermatologists;
dermatology; digital dermatology; machine learning; man-machine systems; skin cancer;
skin neoplasms

1. Introduction

Skin cancer is the abnormal growth of skin cells. The cancerous growth may affect
both the layers—dermis and epidermis, but this review is concerned primarily with epi-
dermal skin cancer; the two types of skin cancers that can arise from the epidermis are
carcinomas and melanomas, depending on their cell type—keratinocytes or melanocytes,
respectively [1–75]. It is a challenge to estimate the incidence of skin cancer due to various
reasons, such as the multiple sub-types of skin cancer [76–99]. This poses as a problem
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while collating data, as non-melanoma is often not tracked by registries or are left incom-
plete because most cases are treated via surgery. As of 2020, the World Cancer Research
Fund International reported a total of 300,000 cases of melanoma in skin, and a total of
1,198,073 cases of non-melanoma skin cancer [100–131]. The reasons for the occurrence
of skin cancer cannot be singled out, but they include and are not limited to exposure to
ultraviolet rays, family history, or a poor immune system [126]. The affected spot on the
skin is called a lesion, which can be further segregated into multiple categories depending
on its origin [1]. A comparison between different lesion types is usually accompanied by
the presence or the absence of certain dermoscopic features.

There are three stages associated with an automated dermoscopy image analysis
system, namely pre-processing, image segmentation, and feature extraction [2,4]. Seg-
mentation plays a vital role, as the succeeding steps are dependent on this stage’s output.
Segmentation can be carried out in a supervised manner by considering parameters such as
shapes, sizes, and colors, coupled with skin texture and type. Melanoma development that
takes place horizontally or radially along the epidermis is called “single cancer melanoma”,
which carries critical importance in the early diagnosis of skin cancer [3]. Dermoscopy is a
non-invasive diagnostic method which allows for a closer examination of the pigmented
skin lesion. It is performed with the help of an instrument called a dermatoscope. The
procedure of dermoscopy allows for a visualization of the skin structure in the epidermis
that would not otherwise be possible to the naked eye. Studies [127] suggest that a growing
number of practitioners are incorporating dermoscopy into their daily practices. Der-
moscopy can be categorized into three modes—polarized contact, polarized non-contact,
and nonpolarized contact (unpolarized dermoscopy). Polarized and nonpolarized der-
moscopy are complementary, and utilizing both to acquire clinical images increases the
diagnostic accuracy [128]. These images can then be processed with the help of AI methods
to assist in the diagnosis of skin cancer [132–134].

Even though the mortality rate of skin cancer is significantly high, early detection
helps to bolster the survival rate to over 95% [5]. Deep learning models are generalizations
of multi-layer perceptron models and are widely used due to their high accuracy in visual
imaging tasks. There are two major promising paths for skin cancer detection in this
research. The first is employing machine learning techniques and strategies to assist in
the detection of skin lesions, and classifying them accordingly. The second, as this article
discusses, is deep learning frameworks and model-based approaches being implemented
in the recent advancements concerning skin cancer diagnosis. Table A1 in Appendix A
contains a list of abbreviations used in this review, as well as their definitions.

1.1. Contribution of this Survey

We provide a comprehensive study of the various machine learning and deep learning
models used for skin cancer diagnosis. Brief explanations of several machine learning and
deep learning methodologies are included.

• This survey comprehensively discusses the application of various machine learning
and deep learning methods in the implementation of skin cancer diagnosis.

• There is a discussion of new techniques in skin lesion detection such as deep belief
networks and extreme learning machines, along with the traditional Computational
Intelligence techniques such as random forests, recurrent neural networks, and k-
nearest neighbors, etc.

• There is a designated tabular summary of works on the deep learning and machine
learning techniques used for skin cancer diagnosis and detection. The tabulated
summary also includes key contributions and limitations for the same.

• There is a classification of various types of skin cancer based on tumor characteristics
that have been elucidated for a deeper understanding of the problem statement.

• The study also describes various open challenges present and future research directions
for further improvements in the field of skin cancer diagnosis.
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Table 1 presents a comparison between the current review and the previous review
articles of machine-learning-based and deep-learning-based techniques in skin cancer
diagnosis. The depth of the discussion in Table 1 has been used as a criterion for comparing
different review articles. A high or H depth of the discussion indicates that the article
contains a dedicated session for the said topic. A moderate or M depth of the discussion
denotes that the review article has a subsection or a paragraph corresponding to the topic.
A low or L depth of the discussion implies that the article has mentioned the topic, but not
explained it comprehensively. A not discussed or N depth of the discussion indicates that
the topic has not been covered in the article.

Table 1. Comparison of the current review with the previous reviews in AI-powered skin
cancer diagnosis.

Reference Year One-Phrase Summary

Machine
Learning

Models in
Skin Cancer
Diagnosis

Deep Learning
in Skin Cancer

Diagnosis

Open
Challenges

in Skin
Cancer

Diagnosis

Future
Directions

for Skin
Cancer

Diagnosis

Our
review -

A comprehensive survey on
machine learning and deep learning

techniques used to diagnose skin
cancer

H H H H

[11] 2022 A review on cancer diagnosis using
Artificial Intelligence H H M N

[12] 2022

A research article on the recent
advancements in cancer diagnosis
using machine learning and deep

learning techniques

H H L M

[6] 2021
A review of machine learning and
its applications in the field of skin

cancer
H L M H

[7] 2021
A minireview on deep learning and

its use in cancer diagnosis and
prognosis prediction

N H M H

[10] 2021 A review on skin disease diagnosis
with deep learning N H N H

[14] 2021
A review on skin cancer

classification via convolution neural
networks

N M M N

[15] 2021
A survey on deep learning

techniques for skin lesion analysis
and melanoma cancer detection

N H M N

[9] 2020
A review article on

Artificial-Intelligence-based
methods for diagnosis of skin cancer

M M H N

[13] 2020 A review on malignant melanoma
classification using deep learning N H M H

[16] 2020 A survey in cancer detection using
machine learning H N H H

[8] 2019 A bibliographic review on cancer
diagnosis using deep learning N H M N

Depth of discussion: L—low, M—moderate, H—high, N—not discussed.
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1.2. Survey Methodology
1.2.1. Search Strategy and Literature Sources

Repositories and databases such as IEEE, ScienceDirect, and PubMed, etc., were used
to find relevant research studies and articles. The relevancy was determined based on the
paper’s context (the central theme of the paper being the diagnosis of skin cancer based on
AI/ML/DL models), the research paper’s title, abstract screening, keyword matching, and
the conclusion of the study. The keywords employed were cancer diagnosis, skin cancer,
deep learning, machine learning, skin lesion, melanoma cancer, and cancer detection, etc.
A total of 1057 non-duplicate articles were found initially. Table 2 includes the search terms
and the corresponding set of keywords associated with these terms.

Table 2. Search terms.

Search Term Set of Keywords

Skin skin cancer, skin disease, skin cancer diagnosis, skin cancer detection, skin lesion

Cancer cancer type, cancer diagnosis

Deep deep learning, deep neural networks

Melanoma melanoma skin cancer, melanoma cancer

Machine machine learning

Machine learning techniques artificial neural network, naïve Bayes, decision tree, k-nearest neighbors, k-means
clustering, random forest, support vector machines, ensemble learning

Deep learning techniques
recurrent neural networks, deep autoencoders, long short-term memory, deep neural
network, deep belief network, deep convolutional neural network, deep Boltzmann

machine, deep reinforcement learning, extreme learning machine

1.2.2. Inclusion Criteria

The articles included were primarily filtered based on their relevance. Apart from rele-
vancy, only articles written in English were selected. Furthermore, only articles published
after 2014 were considered for inclusion.

1.2.3. Elimination Criteria

The elimination of articles was based on abstract and introduction screening. Articles
were then eliminated based on the quality of their research and the lack of references.
The parameters used to judge the research quality were the reputation of the journal the
article was published in, using metrics such as the h-index and impact factor, the date of
publication (the older the date, the less relevant the article may be in present day), and the
number of citations the research study had. In addition, any missing relevancy and the
redundancy of the research were also considered in the elimination process.

1.2.4. Results

Out of the 1057 non-duplicate articles filtered out from the various research reposito-
ries, 826 articles were excluded during the abstract and title screening. From the remaining
231 articles, 62 articles were excluded during the redundancy check and 48 articles were
excluded during the full text screening. Finally, 121 articles were obtained after applying
the inclusion/exclusion criteria. Figure 1 shows the PRISMA method implementation
for the same. Figure 2 indicates the number of reference papers published in each year.
Figure 3 demonstrates the various methods that this study encapsulates, and the number
of papers cited corresponding to each methodology.
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Figure 1. Flow diagram for the selection process of research articles using PRISMA method.

Figure 2. Number of papers per year, used in the review.
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Figure 3. ML and DL methods versus frequency of papers used in this work.

1.3. Structure of this Review

This paper is organized as follows. A comparison with previous reviews on skin cancer
diagnosis and survey methodology for the same is covered in Section 1. Section 2 provides
an overview of skin cancer, as well as the datasets commonly used in various studies in
the field of skin cancer diagnosis. Section 3 is divided into two major subsections. The
subsections describe the techniques used to diagnose skin cancer using machine learning
and deep learning frameworks and algorithms, respectively. Section 4 talks about the open
challenges faced in the field of skin cancer diagnosis, while Section 5 gives an insight into
future research directions. The conclusion is given in Section 6, followed by the references
used for this research. Figure 4 visualizes the structure of this study.
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Figure 4. Structure of this review.

2. Skin Cancer

Skin cancer is associated with the abnormal growth of skin cells that are found either
in the epidermis or the dermis. The skin cells are usually those that are exposed to sunlight,
but skin cancer can also occur in those cells that are not ordinarily exposed [129]. This
research focuses on the skin cancer that occurs in the epidermal cells, namely keratinocytes
and melanocytes. Skin cancer can be largely divided into three subcategories.

1. Basal cell carcinoma: this type of cancer affects and originates from the basal cells.
Basal cell carcinoma comes from keratinocytes, which are found in the epidermis.
These may invade the entire epidermal thickness.

2. Squamous cell carcinoma: this subdivision deals with the uncontrollable growth of
the abnormal squamous cells present in the root. Squamous cells are flat cells that
are found in the tissue that constitutes the surface of the skin, and the lining of vital
organs such as the respiratory organs, digestive tracts, and hollow organs of the body.

3. Melanoma: this form of cancer develops when melanocytes start to grow abnormally.
Melanocytes are the cells that can become melanoma. Melanoma can develop any-
where in the skin, while it can also form in other parts of the body such as the eyes,
mouth, and genitals, etc.

Figures 5 and 6 include images from the International Skin Imaging Collaboration
(ISIC) dataset to demonstrate the different types of skin cancer images that are available for
training and testing. Figure 5 shows dermoscopic images, while Figure 6 displays clinical
images from the skin cancer dataset.
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(a) (b) (c) 

(d) (e) (f) 

Figure 5. Dermoscopic sample images of skin cancer: (a) squamous cell carcinoma, (b) basal cell
carcinoma, (c) benign dermatofibroma, (d) benign seborrheic keratosis, (e) benign actinic keratosis,
and (f) malignant melanoma.

(a) (b) (c) 

Figure 6. Clinical sample images of skin cancer: (a) malignant melanoma, (b) squamous cell carci-
noma, and (c) basal cell carcinoma.

Branching out of skin cancer are skin tumors, which are chiefly responsible for the
mortality rate once diagnosed with the same [17]. Skin tumors can be categorized into two
types, namely melanoma and non-melanoma. Irrespective of the technological advance-
ments made in the field of curing cancer, to date, the early detection and diagnosis of any
tumor combined with enough therapy leads the way to a successful treatment [18]. There
are multiple ways to classify and categorize skin cancer. Most of them employ the use of
deep learning techniques such as convolution neural networks in [19], while the others use
specialized tools such as non-invasive imaging tools [20].

2.1. Skin Cancer Classification

When cells become cancerous, they start to grow uncontrollably due to various reasons,
one such reason being a damaged cell DNA. This random behavior of the cell may lead
to uneven accumulation and form a solid mass or lump, called a tumor. Tumors are often
associated with uncontrollable growth in solid tissues such as muscles and bones. Tumors
are further subdivided into two major categories, as described in the following section.
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2.1.1. Benign Tumor

Benign tumors are a collection of these cells that grow abnormally but are non-
cancerous. According to [21], these tumors are generally classified according to their
level of origin within the skin. The skin has three levels of subclassification in this regard,
the epidermal layer, the dermal layer, and the subcutaneous layer. Another common taxon-
omy followed for benign tumors is based on the cell of their origin. Certain well-known
examples are the melanocyte or the keratinocyte [22].

2.1.2. Malignant Tumor

Malignant tumors are tumors that are cancerous. The affected cells metastasize
through the bloodstream and the lymph nodes. In the context of skin cancer, malignant
tumors emerging from the surface epithelium of the skin and the epidermis include cuta-
neous melanoma and non-melanoma cancers such as basal cell carcinoma [23]. Cutaneous
melanomas constitute only 4% of all skin cancers, but they are by far the most significant
ones, due to their lethality [24]. Ref. [25] conducted a study on developing deep learning
techniques to help classify tumors as benign or malignant. False positives and negatives
lead to a substandard prognosis of skin cancer. Article [26] discusses the challenges of
detecting malignant tumors, which include, but are not limited to, noisy images, irregular
tumor boundaries, and uneven image sizes. Hence, the need for deep learning and machine
learning methods to detect malignant tumors is paramount.

2.1.3. Other Tumors

The last subclassification of tumors is loosely classified as pre-malignant tumors.
These cells are not cancerous at that moment of time, but they have the potential to become
malignant. The major problem faced by the authors of [27] while detecting pre-malignant
tumors was the scarcity of images. This led to them use the same dataset for training and
validation. This does not come a surprise, as the study conducted in [28] also faced difficulty
in recording pre-malignant lesion data. Pre-malignant tumors are often clubbed with certain
malignant subtypes such as actinic keratosis, which is a squamous cell carcinoma despite
being premalignant as well [25]. This makes it difficult to distinguish between the different
classes of tumors.

2.2. Skin Cancer Datasets

Table 3 describes the various datasets used in previous studies and analyzes the
constituents of each dataset. Furthermore, the table also identifies the skin cancer image
categories available in the respective datasets.

Table 3. List of various skin cancer datasets employed by previous studies.

Reference
Creator and Year

of Dataset
Skin Cancer Categories Dataset Used Dataset Size Type of Data

Details About the
Dataset

[132]

International Skin
Imaging

Collaboration,
2020

Actinic keratosis, basal
cell carcinoma,

dermatofibroma,
melanoma, nevus,

seborrheic keratosis,
squamous cell carcinoma,

vascular lesion

ISIC 2357 images Dermoscopic
images

Contains images of
malignant and benign
oncological diseases.
Melanoma and mole
images are slightly

dominant in the dataset

[133]
Nilsel Ilter, H.
Altay Guvenir,

1998
Melanoma and
non-melanoma

DermIS,
DermQuest

72 images in
DermIS and

274 images in
DermQuest

Not reported

Contains lesion images.
They are subject to

various artifacts such as
drastic shadow effect and

differing illumination.
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Table 3. Cont.

Reference
Creator and Year

of Dataset
Skin Cancer Categories Dataset Used Dataset Size Type of Data

Details About the
Dataset

[134] Tschandl, P., 2018

Actinic keratoses and
intraepithelial carcinoma,

basal cell carcinoma,
benign keratosis-like

lesions, dermatofibroma,
melanoma, melanocytic

nevi, and vascular lesions

HAM10000 10015 images Dermoscopic
images

More than half of lesion
images are validated

through histopathology.
Remaining images are

confirmed through
expert consensus or

in-vivo confocal
microscopy.

[35]

Dongtan Sacred
Heart Hospital,

Hallym
University, and
Sanggye Paik
Hospital, Inje

University, 2016

Basal cell carcinoma Hallym 152 images Dermoscopic
images

Country of origin is
South Korea and a total

of 106 members
participated in the

creation of this dataset

[35]

Department of
Dermatology at
Asan Medical
Center, 2017

Basal cell carcinoma,
squamous cell carcinoma,
intraepithelial carcinoma,

and melanoma

Asan Dataset
17125 images
and 1276 test

images
Clinical images

While the thumbnails
were available for free

downloading, the
full-size images required
external permission and

it came at a cost of
US $200 or £145.

[34] Mitko Veta et al.,
2016 Not reported TUPAC 2016

Dataset

500 training
and 321 test

images

Whole slide
images

Images to predict tumor
proliferation scores from

whole slide images.

3. Machine Learning and Deep Learning Models for Skin Cancer Diagnosis

3.1. Need for Machine Learning and Deep Learning Models for Skin Cancer Diagnosis

Artificial Intelligence has laid the foundation for integrating computers into the med-
ical field seamlessly [30]. It provides an added dimension to diagnosis, prognosis, and
therapy [36]. Recent studies have indicated that machine learning and deep learning mod-
els for skin cancer screening have been on the rise. This is primarily because these models,
as well as other variants of Artificial Intelligence, use a concoction of algorithms, and when
provided with data, accomplish tasks. In the current scenario, the tasks include, but are
not limited to, the diagnosis of the patient, the prognosis of the patient, or predicting the
status governing the ongoing treatment [37]. Diagnosis is the process of understanding the
prevailing state of the patient, while prognosis refers to the process of predicting the future
condition of the patient by extrapolating all the current parameters and their corresponding
outputs. AI has now progressed to the point where it can be successfully used to detect
cancer earlier than the traditional methods [6]. As early detection is key for a fruitful
treatment and better outcome of skin cancer, the need for machine learning and deep
learning models in the field of skin cancer is paramount.

3.2. Machine Learning Techniques
3.2.1. Artificial Neural Networks

Artificial neural networks (ANNs) are systems that draw inspiration from the animal
brain. ANNs have been used to predict non-melanoma skin cancer by inputting a certain
set of tried and tested parameters fit for training, such as gender, vigorous exercise habits,
hypertension, asthma, age, and heart disease etc. [38] The ANN takes the entire dataset
as the input. To improve the accuracy of the model, the network inputs are normalized to
values between 0 and 1. The outputs are treated as typical classification outputs, which
return fractional values between 0 and 1. ANNs can also be used to detect skin cancer
by taking an image input and subjecting it through hidden layers [39]. This process is
carried out in four sequential steps, the first of which is to initialize random weights
in the ANN system. Next, each of the activation values are calculated. Consequently,
the magnitude of the error is also known as the loss change. The weights are updated
proportionately, with respect to the loss. Until the loss reaches a certain lower bound
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or a floor value, the three steps are repeated. In this field that pertains to skin cancer
detection, visual inspection is the introductory stage. This is due to the similarities shared
between various subcategories of tumors, such as color, area, and distribution. Owing to
this reason, the use of ANNs is encouraged to enhance multi-class skin lesion detection [40].
The trained network models are used with a logistic regression model to successfully
detect skin lesions while reducing the false positives and negatives in the process. The
choice of activation function for the ANN is completely dependent on the user, and it is
to be noted that each function carries its own sets of advantages and disadvantages with
respect to the convergence of the model and the computational load [40]. ANNs have been
used to simultaneously predict various symptoms that generally occur in cancer-affected
patients, as seen in [41]. The risk of symptoms predicted were that of pain, depression,
and poor well-being. The input to the ANN was a list of 39 distinct covariates. The
input features can be classified into five subcategories, such as demographic characteristics
such as age and sex, clinical characteristics such as the cancer type and stage, treatment
characteristics such as the radiation treatment and cancer surgery, baseline patient reported
measures such as the performance status and symptom burden status, and finally, health
care utilization measures such as whether the patient has been hospitalized or if they have
a live-in caregiver. ANNs play an important role in predicting skin cancer and the presence
of a tumor, due to their flexible structure and data-driven nature, owing to which they are
considered as a potential modeling approach [42].

The model proposed by [38] reports a sensitivity of 88.5% and a specificity of 62.2% on
the training set, while the validation set showed a comparable sensitivity of 86.2% and a
specificity of 62.7%. Similarly, the ANN model in [39] was tested over multiple sets, each
using an increasing number of training and testing image ratios. The accuracy returned by
the model falls between 80% and 88.88%.

In [38–40], emphasis is put on the need for optimizing predictors, increased model
parameters, and the conduction of more clinical testing to improve the sensitivity and
specificity of the model. Despite being easy to implement and cost effective, ANN models
require further development in future studies for skin cancer diagnosis.

3.2.2. Naïve Bayes

Naïve Bayes classifiers are probabilistic classifiers that work by employing the use
of Bayes’ theorem. Naïve Bayes classifiers have been used in the field of skin cancer to
classify clinical and dermatological images with high precision [43]. The model has reached
an accuracy of 70.15%, as it makes use of important pieces of data to develop a strong
judgement and assists physicians in the diagnosis and precise detection of the disease.
Naïve Bayes classifiers extend their applications by providing a means to detect and
segment skin diseases [44]. For each output class of the classifier, a posterior probability
distribution is obtained. This process is performed iteratively, which implies that the
method requires lesser computational resources, as it avoids the need for multiple training
sessions. The Bayesian approach has also been used to probabilistically predict the nature
of a data point to a high degree of accuracy, as seen in [45]. The final classification made in
this case combines the existing knowledge of data points to use in the Bayesian analysis.
The Bayesian sequential framework has also been put into use to aid models that help to
detect a melanoma invasion into human skin. A total of three model parameters were
estimated with the help of the model, namely, the melanoma cell proliferation rate, the
melanoma cell diffusivity, and ultimately, a constant that determines the degradation rate
of melanoma cells in the skin tissue. The algorithm learns data through the following, in a
sequential manner: a spatially uniform cell assay, a 2D circular barrier assay, and finally, a
3D invasion assay. This Bayesian framework can be extracted and used in other biological
contexts due to its versatile nature. This is chiefly possible in situations where detailed
quantitative biological measurements, such as skin lesion extraction from scientific images,
is not easy; hence, the extraction method must incorporate simple measurements from the
images provided, like the Bayesian framework does [46].
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Naïve Bayes classifiers, as discussed in [43], achieve an accuracy of 70.15% and a speci-
ficity of 73.33%. At the same time, the classifiers do not breach the 70% mark in sensitivity
and precision. The accuracy appears to follow a similar pattern in naïve Bayes classifiers
from other studies such as [44], where the diagnostic accuracies reported are 72.7%.

The recurring scope of improvement in [43–45] revolves around experimenting with
different color models, as well as using different types of dermal cancer datasets in the
training. In [44,46], they elucidate the pressing need for further pre-processing before
training naïve Bayes classifiers for skin cancer diagnosis.

3.2.3. Decision Tree

Decision trees are a supervised learning method which are primarily used for classi-
fication problems and are occasionally extended to fit regression problem statements as
well. Decision trees have been used to provide an intuitive algorithm that helps quantify
the long-term risk of non-melanoma skin cancer after a liver transplant. This is done by
utilizing the variables closely associated with the peri-transplant period [47]. The classifier
is used as a view for the patients which provides personalized solutions such as chemo-
prophylaxis. A slight variation of decision trees can also be employed, as seen in [48].
The article proposes a random decision tree algorithm to detect breast surgery infection.
The risk factors that came along with the algorithm in this case were obesity, diabetes,
and kidney failure, etc. While the study investigates breast cancer, skin cancer is most
closely associated with breast cancer due to the presence of the dangerous melanoma type.
Decision trees showcase its versatility in the way it is used. In [49], decision trees are used as
a mode for the visual representation of problem by dividing each branch into the different
outcomes possible during a clinical procedure. The decision tree model was used to gauge
the cost effectiveness of the sentinel lymph node biopsy, a new standard technique used in
the treatment of melanoma and breast cancer. The cost effectiveness was measured with
respect to head and neck cutaneous squamous cell carcinoma, a subsection of skin cancer.
The decision tree presented outputs to determine whether the treatment was cost effective
for a particular set of tumors, or if it could be used generally. Decision trees can also be
used as an intermediate layer instead of keeping them as a standalone classifier. In [50],
they demonstrate the effectiveness of this architecture in extracting regions and classifying
skin cancer, using deep convolution neural networks. Most of the features are classified
using decision trees and other counterpart algorithms such as support vector machines
and k-nearest neighbors. Decision trees are also used to attain clarity in the classification of
breast cancer, as can be seen from [51]. The error analysis of the proposed model reveals
that the foundational decision tree models provide users with easy-to-use outcomes and
a very high degree of clinical detection and diagnostic performance, as compared to its
predecessors.

The decision tree model from [47] reports a specificity of 42% and a sensitivity of
91%. Similarly, the models presented in [48] return a sensitivity, specificity, and accuracy
greater than 90%. This trend follows suit in the model proposed by [50], where all the three
parameters cross 94%. On the contrary, models like those in [49] return a slightly lower
sensitivity of 77% but report a 100% specificity.

Decision trees’ model predictions are heavily dependent on the quality of the datasets.
The common pitfalls encountered by [47,50] are that the model testing and training datasets
had an identical distribution of variables; hence, this eliminates the prospect of training the
model on entirely independent cohorts.

3.2.4. K-Nearest Neighbors

The k-nearest neighbors algorithm, also referred to as the KNN, is a parametric
supervised classification algorithm that uses distance and proximity as metrics to classify
the data points. KNNs were used as an evaluation algorithm to detect skin cancer and
melanomas. The KNN model was then used to produce a confusion matrix which helps
with visualizing the accuracy of the entire model [52]. Apart from this case of use, KNNs
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have also been used extensively by extending the model as per requirement. In [53], they
extend KNN to use the Radius Nearest Neighbors classifier to classify breast cancer and
calculate the evaluation metrics such as accuracy and specificity. The reason for augmenting
the KNN solely lay in the limitations posed by an extreme value of k. For a small k, the
KNN classifier is highly sensitive to outliers, and for a large value of k, the classifier
underfits on the training data points. This problem is overcome by normalizing the radius
value of each point to recognize outliers effectively. The applications of KNNs have been
expanded by using them for detecting the anomalous growth of skin lesions [54]. KNNs
are hybridized with Firefly to provide quantitative information about a skin lesion without
having to perform any unnecessary skin biopsies. The hybrid classifier built upon KNN is
used to predict and classify using two primary methods: threshold-based segmentation and
ABCD feature extraction. The Firefly optimization coupled with KNN helps to recognize
skin cancer much more effectively than its predecessors, while keeping computational
and temporal complexity to a minimum. To classify and discriminate between melanoma
and benign skin lesion in clinical images, ref. [55] made use of multiple classifiers, out of
which the KNN classifier returned competent results. The article also makes use of different
color spaces and tests the classifiers on each of them to demonstrate the feasibility of the
algorithms to detect melanomas in various color spaces.

The KNN classifiers of [52], with the number of neighbors set to 15, returned an
accuracy of 66.8%, with a precision and recall for positive predictions of 71% and 46%,
respectively. The recall value increases almost twofold for negative predictions, while the
precision score for the same lingers around 65%. The values in [53] provide a different
perspective to the modified KNN classifiers, as they report an accuracy of over 96%. Fuzzy
KNN classifiers, as shown in [54], have an accuracy of 93.33%, with a sensitivity of 88.89%
and a specificity of 100%.

Despite being a viable approach to diagnosing skin cancer, KNN classifiers require
the provision to be trained continually, as suggested by [52]. Furthermore, with the dearth
of feasible datasets, the size of suitable training data proves to be a limitation for [52,53].
To mitigate the adverse effects of minimal training data, the KNN classifier can fit into an
online learning method that builds over time and keeps learning as and when the classifier
acquires more data.

3.2.5. K-Means Clustering

K-means clustering is a clustering method that is grouped under unsupervised learn-
ing. By employing a fuzzy logic with the existing k-means clustering algorithm, studies
have been conducted on segmenting the skin melanoma at its earliest stage [56]. Fuzzy
k-means clustering is applied to the pre-processed clinical images to delineate the affected
regions. This aids the process to subsequently be used in melanoma disease recognition.
K-means clustering has widespread cases of use and can be used to segment skin lesions,
as seen in [57]. The algorithm groups objects, thereby ensuring that the variance within
each group is at minimum. This enables the classifier to return high-feature segmented
images. Each image pixel is assigned a randomly initialized class center. The centers are
recalculated based on every data point added. The process is repeated until all the data
points have been assigned clusters. Unlike a binary classifier like k-means, where each data
point can belong to only one cluster, fuzzy c-means clustering enables the data points to
be a part of any number of clusters, with a likelihood attached to hit. The fuzzy c-means
algorithm outputs comparatively better results in comparison with the legacy k-means
clustering algorithm. Fuzzy c-means provide a probability for data points that depends on
the distance between the cluster center and the point itself. In [58], fuzzy c-means were
used in place of the k-means algorithm to detect skin cancer, inspired by a differential
evolution artificial neural network. The simulated results indicated that the proposed
method outperformed traditional approaches in this regard. The k-means algorithm can
also be used as an intermediate layer to produce outputs, as trained on by deep learning
methods. In [59], they demonstrated an algorithm where k-means were used to segment
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the input images based on the variation of intensities. The clusters thus formed were then
subjected to further processing to aid in the detection of melanoma cancer. The traditional
k-means algorithm can also be used to detect skin lesions. To augment the quality of the
results, it can be used with a gray level co-event matrix, a local binary pattern, and red,
green, and blue color modes [60]. K-means clustering is heavily dependent on external
factors being extracted successfully, such as color features, lesion orientation, and image
contrast [56,58,59]. This engenders the need for coherency in the diagnosis pipeline that
utilizes the k-means clustering. The pipeline must accurately extract external features
before the clustering algorithms take them as input.

K-means clustering models tend to return a high detection accuracy. For instance, the
model that extends fuzzy logic, like in [56], returns an accuracy of over 95%. Other k-means
clustering models, like those in [58] and [59], also report a detection accuracy of 90%.

3.2.6. Random Forest

Random forests are an extension of decision trees. They are an ensemble learning
method commonly used for classification problems. Random forests extend their appli-
cations to detect skin cancer and classify skin lesions, as done in [61]. Random forests
permit the evaluation of sampling allocation. The steps followed in the proposed method
are to initialize a training set. The training set is then bootstrapped to generate multiple
sub-training sets. By calculating the Gini index for each of the sub-training sets, the model
is then populated with decision values. The individual decision values are then combined
to generate a model that classifies by voting on the test samples. Skin cancer can also be
classified by characterizing the Mueller matrix elements using the random forest algo-
rithm [62]. The random forest algorithm builds various sub-decision trees as the foundation
for classification and categorization tasks. Every individual decision tree is provided with
a unique logic that constitutes the binary question framework used in the entirety of the
system. In comparison with the original decision tree, the random forest provides enhanced
results while reducing the variance bias. This helps to prevent the overfitting of the data,
which was otherwise seen in decision trees. Other studies in the classification of skin
cancer involve classifying the dermoscopic images into seven sub-types. This has been
implemented with the help of random forests [63]. The procedure to create a random forest
is slightly unconventional in this study. After preparing a dataset to train on, the random
forest is then amassed by arranging a relapse tree. The ballot casting is conducted after
the forest architecture is built. The different types of sub-classifications that the random
forest was trained on were basal cell carcinoma, benign keratosis lesion, dermatofibroma,
melanocytic nevi, melanoma, and vascular types. Similarly, skin lesion classification has
also been performed with the help of random forests and decision trees in [64]. Using
random forests are key since predecessor algorithms lack the reliability aspect of skin image
segmentation and classification. The random forest is generated by selecting a subset of
random samples in the skin lesion dataset. For each feature in the subsets, a decision tree
is created to get a prediction. A voting process is then established for each of the prior
outputs, and a forecast result with the most votes is selected as the final step.

Random forest classifiers, as seen in [61], report an accuracy, sensitivity, and specificity
of around 70%, regardless of the features incorporated to segment the required area, such
as ABCD rule or GLCM features. Depending on the dataset used, random forest classifiers
can also have a high accuracy while detecting skin cancer. The models in [62] achieved an
average accuracy of 93%.

The features of a random forest classification algorithm are invariant to image transla-
tion and rotation [61,64]. This allows future research to be more liberal with its datasets
and extend them to a variety of geographies to discern the consistency in results returned
by skin cancer classification.
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3.2.7. Support Vector Machine

Support vector machines (SVMs) are supervised learning models that help classify,
predict, and extrapolate data by analyzing them. SVMs can be used to classify different
types of skin lesions. In [65], ABCD features are used for extracting the characteristic
features like shape, color, and size from the clinical images provided. After selecting the
features, the skin lesion is classified with the help of SVMs into melanoma, seborrheic
keratosis, and lupus erythematosus. This method of using ABCD along with SVM generates
great results while delivering significant information. For a narrower classification, SVMs
have also been used to classify skin lesions as melanoma or non-melanoma [66]. The process
was divided into six phases: acquiring the image, pre-processing the image, segmentation,
extracting the features, classifying the image, and viewing the result. From the experiment,
the features extracted were texture, color, and shape. To extend the nature of the above
model, SVMs have also been employed to identify and detect carcinoma or infection
in the early stages before it aggravates [67]. The chief difference in the extension and
itself lies in the feature extraction procedure. In [67], they pre-process the input image
by employing grey scale conversion and then chaining the resultant image with noise
removal and binarization subprocesses. The region of interest is removed in segmentation
to help with accurate classification. Similarly, for the early detection and diagnosis of skin
cancer, a bag-of-features method was used, which included spatial information. The SVM
was developed with the help of a histogram of an oriented gradient optimized set. This
resulted in encouraging results when compared to state-of-the-art algorithms [68]. By using
Bendlet Transform (BT) as features of the SVM classifier, unwanted features such as hair
and noise are discarded. These are removed using the preliminary step of median filtering.
BT outperforms representation systems such as wavelets, curvelets, and contourlets, as it
can classify singularities in images much more precisely [69].

The average accuracy of the SVM classifier models presented in [65] was about 98%,
while the sensitivity and specificity averaged to 95%. The SVM model in [66] also had all
three parameters greater than 90%.

3.2.8. Ensemble Learning

Ensemble learning is a machine learning model that combines the predictions of two
or more models. The constituent models are also called ensemble members. These models
can be trained on the same dataset or can be suited to something completely different. The
ensemble members are grouped together to output a prediction for the problem statement.
Ensemble classifiers have been used for diagnosing melanoma as malignant or benign [70].
The ensemble members for the same are trained individually on balanced subspaces,
thereby reducing the redundant predictors. The remaining classifiers are grouped using a
neural network fuser. The presented ensemble classifier model returns statistically better
results than other individual dedicated classifier models. Furthermore, ensemble learning
has also been used in the multi-class classification of skin lesions to assist clinicians in
early detection [71]. The ensemble model made use of five deep neural network models:
ResNeXt, SeResNeXt, ResNet, Xception, and DenseNet. Collectively, the ensemble model
performed better than all of them individually.

3.2.9. Summary of Machine Learning Techniques

Analyzing the various implementations of machine learning models in the field of
skin cancer diagnosis indicates that simple vector machines are undoubtedly the most
precise and accurate models. The main caveat of using SVMs is the need for the meticulous
pre-processing of input data. In terms of user flexibility, k-means clustering and k-nearest
neighbors lead the way, without compromising much on accuracy and performance. KNNs,
however, require to be trained continuously as more data points are added. This might
prove to be quite tedious as the volume of input data is highly irregular and cannot be
predicted. Naïve Bayes models have the lowest accuracy of all the machine learning
techniques studied in this paper, and understandably so, as various techniques make use
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of the fundamentals of the naïve Bayes theorem and develop it further, such as decision
trees and random forests. Decision trees perform decently but are highly dependent on the
quality of the dataset, which is an uncontrollable variable in the system. Random forests
do not have the provision to learn image rotation and translation on the fly, reflecting the
same in their classification accuracy. Depending on the dataset used, random forests can
either perform really well, or get only around 50% of classifications correct. ANNs, being
the steppingstone for various techniques to develop, suggest that while the results may be
good, they cannot be increased further. ANNs have reached a saturation point in terms
of the modifications made, and other techniques must be employed if any improvement
is expected. Ensemble models, although complicated and tough to implement, return
accuracies higher than the models taken individually for the multi-class classification.

Table 4 provides an executive summary of the machine learning techniques used in
the diagnosis of skin cancer. Figure 7 conceptualizes the machine learning models in skin
cancer diagnosis discussed in this study.

 
Figure 7. Current machine learning models in skin cancer diagnosis: tree illustration.

351



Cancers 2023, 15, 1183

Table 4. Summary of works on machine learning techniques in skin cancer diagnosis.

Reference
Skin

Cancer
Category

Machine
Learning

Model

Description of
Approach Used

Dataset Key Contribution Limitations

Performance
Evaluation
Metrics and

Results

[38]
Non-

melanoma
skin cancer

Artificial
neural

network

12 neurons in each
layer, inputs

normalized to fall
between 0 and 1,

sigmoid activation
function

National
Health

Interview
Survey Dataset

(NHIS 2016)

Multi-
parametrized

artificial neural
network

Model does not
include

ultraviolet
radiation

exposure and
family history

data while
making

predictions

AUC is area
under ROC

curve.
Training

AUC—0.8058,
validation

AUC—0.8099

[44]

Skin
disease

detection
and seg-

mentation

Naïve
Bayes

classifier

Skin lesion
segmentation using a

dynamic graph cut
algorithm followed

by a naïve bayes
classifier for skin

disease classification

ISIC 2017

Flexible group
minimizing for
alike functions,
making them

decipherable in
polynomial time

Cannot
differentiate

between certain
colors

Diagnostic
accuracy–72.7%,

sensitivity–
91.7%,

specificity-70.1%

[47]
Non-

melanoma
skin cancer

Decision
tree

Cox regression
analysis to identify
variables that enter

the decision tree
analysis

Oregon
Procurement
Transplant

Network STAR
2016

Confirms
importance of

known risk factors
and also identifies

new variables
establishing risk of

getting non
melanoma skin

cancer

Model building
and validation
sets were not

from
independent

cohorts

Cumulative
incidence rate

highest risk
group: 7.4%,

intermediate risk
group: 3.1–5.5%,

lowest risk
group: 0.8%

[54] Skin lesion
K-nearest
neighbor
classifier

Firefly with k-nearest
neighbor algorithm

to predict and
classify skin cancer

using
threshold-based

segmentation

-

Recognize skin
cancer without

performing
unnecessary skin

biopsies

Image
pre-processing

and
segmentation is

heavily
dependent on

threshold values

False predictive
value: 0.0, false
negative rate:

11.11%,
sensitivity:

88.89%,
specificity: 100%

[56] Melanoma
skin cancer

K-means
clustering

Region-based
convolutional neural
networks along with

fuzzy k-means
clustering.

ISIC 2016, ISIC
2017, PH2

Fully automated
skin lesion

segmentation at its
earliest stage

Model is heavily
reliant on
successful

segmentation
from the R-CNN

stage

Sensitivity: 90%,
specificity: 97.1%,
accuracy: 95.4%

[61]
Melanoma

skin
Cancer

Random
forest

Watershed
segmentation used

for feature extraction
and then classified
with random forest

ISIC
Section lesions on

skin with increased
precision

Same
classification can

be carried out
with higher

accuracy using a
simple vector

machine

Accuracy:
74.32%,

sensitivity:
76.85%,

specificity:
71.79%

[66] Melanoma
skin cancer

Simple
vector

machine

Extracted features
such as texture, color,
shape are inputs to

the SVM classifier for
skin lesion

classification

University
Medical Center

Groningen
(UMCG)
database

Computer Aided
Diagnosis support
system for image

acquisition,
pre-processing,
segmentation,

extraction,
classification, and

result viewing

No support for
hair removal and
image cropping

techniques,
classification
model can be

improved further

Confusion
matrix:

[3,7,62,64], where
[true positive,
true negative,
false positive,
false negative]

sensitivity: 90%,
specificity: 96%

[71] Multi-class
skin cancer

Ensemble
learning

Weighted average
ensemble learning

based model using 5
deep learning models

Human
Against
Machine

(HAM10000),
ISIC 2019

Significantly
improved result as

compared to
models

individually and
existing systems

Trained over a
highly

imbalanced
dataset leading
to compromised

results while
testing and
validation

Confusion
matrix,

ROC-AUC score

3.3. Deep Learning Techniques
3.3.1. Recurrent Neural Network

A recurrent neural network (RNN) is categorized as a subdivision of artificial neural
networks. RNNs have been used in the detection of melanoma skin cancer [72]. The
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classification phase of the proposed model employs deep learning techniques by combining
the optimization notion into an RNN. The existing region growing algorithm and RNN
have been improved by using them alongside the modified deer hunting optimization
algorithm (DHOA). Apart from standalone models, RNNs have also been used in ensemble
models alongside convolution neural networks, as seen in [73], to classify skin diseases.
Predecessor models were unable to use the long-term dependence connection between key
image features and image classes. This served as the motivation for the proposed model.
Deep features are extracted from the clinical images, after which the features are fed into
the dual bidirectional long short-term memory network to learn the features. Ultimately, a
SoftMax activation function is used to classify the images. Similarly, ensemble models can
also be used to automate the detection of mammogram breast cancer [74]. Just like in [73],
the first step involves feature extraction through the grey level co-occurrence matrix and
the grey level run-length matrix. These two are then given to the RNN layer as inputs, and
the tumor segmented binary image is provided as input to the convolution neural network
layer. The two independent classifiers’ results show an improved diagnostic accuracy.
RNNs have also been used in the segmentation of various dermoscopic images [75]. The
reason for incorporating a recurrent model is primarily due to its ability to train deeper
and bigger models. Furthermore, recurrent models ensure better feature representation
and ultimately, better performance for the same number of parameters.

Modified RNNs, as proposed in [72], have an average accuracy of slightly over 90%,
with an F1-score of 0.865. By varying the variable value in the equation used, the accuracy
follows a linear trend by increasing as the value increases. Like the previous result, the
RNNs in [74] have an accuracy of 98% but an F1-score of 0.745. The model in [75] reports a
testing accuracy of 87.09% and an average F1-score of 0.86.

3.3.2. Deep Autoencoder

Deep autoencoders are neural networks that are trained to emulate the input as the out-
put. They consist of two symmetrical deep belief networks. In the field of skin cancer, deep
autoencoders have been used for reconstructing the dataset, which is then used to detect
melanocytes by employing spiked neural networks [76]. The structure of the autoencoder
model consists of three main layers: the input layer, hidden layers, and the output layer.
The model is run on the foundational principle that every feature is not independent of each
other, otherwise it would compromise the efficiency of the model. Autoencoders have also
been used to recognize and detect melanoma skin disease [77]. The various autoencoders
used were Deeplabv3+, Inception-ResNet-v2-unet, mobilenetv2_unet, Resnet50_unet, and
vgg19_unet. Quantitative evaluation metrics showed that the Deeplabv3+ was a significant
upgrade from the other architectures used in the study to detect melanoma skin. Skin
cancer detection has also been carried out with the help of custom algorithms involving
autoencoders, such as the social bat optimization algorithm [78]. The detection process
takes place in three steps. Firstly, the clinical images are pre-processed to remove the noise
and artefacts present. The pre-processed images are then fed to the feature extraction
stage through a convolution neural network and a local pixel pattern-based texture feature.
Right after this stage, the classification is completed using a deep stacked autoencoder,
much like the evaluation in [77,79] of different autoencoders for skin lesion detection. The
five architectures evaluated in this study are u-net, resu-net, vgg16unet, desnenet121, and
efficientnetb0. Among the evaluated architectures, the densenet121 architecture showed
the highest accuracy.

The autoencoder-based dataset used in [76] returned an average accuracy of 87.32%,
with the sensitivity and specificity within one point of accuracy as well. The study in [77]
concluded that using autoencoders consistently increased the accuracy and F1-score in
various datasets, as opposed to the models that did not employ deep autoencoders. The
average accuracy of the models in [77] after using autoencoders is around 94%. In a similar
fashion, the deep stacked autoencoder presented in [78] returned an average accuracy of
93%, sensitivity of 84%, and specificity of 96%.
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3.3.3. Long Short-Term Memory

Long short-term memory, or LSTM, is an artificial neural network that uses feedback
connections to enable the processing of not only single data points, but also sequential data.
LSTM has helped in classifying skin diseases by efficiently maintaining stateful information
for accurate predictions [80]. The robustness of the proposed algorithm helps to recognize
target regions faster, while using almost half the number of computations compared to
predecessor algorithms. The use of LSTM further bolsters the accuracy of prediction due to
its previous timestamp retention properties. Other than plain recognition, LSTMs can also
be used to predict cancer and tumors in irregular medical data [81]. This is made possible
by the enhanced overall performance of LSTMs in screening time series data. The risk
groups being dealt with in the proposed study correlated well to the temporal cancer data
(time to cancer diagnosis). Skin disease classification models have been designed using
deep learning approaches like LSTM with the assistance of hybrid optimization algorithms
such as the Hybrid Squirrel Butterfly Search Optimization algorithm (HSBSO) [82]. The
modified LSTM is developed by implementing the HSBSO and the optimized parameters
of an LSTM model to maximize the classification accuracy. LSTMs help in improving the
overall efficiency of the proposed skin disease classification model. Deep learning models
are not only limited to the clinical images of tumors. Certain studies demonstrate the usage
of convolutional LSTMs to detect aneurysms on angiography images [83]. The angiography
images are obtained from the 2D digital subtraction angiography, thereby making it hard
to distinguish cerebral aneurysms from the overlapping vessels. The convolutional LSTM
(C-LSTM) is a variant of the LSTM. Each LSTM cell has a convolutional operation associated
with it. C-LSTM inherits the advantages of LSTM while being very suitable for the analysis
of spatiotemporal data due to its internal convolution architecture. In real-life diagnoses,
physicians combine lateral and frontal sequences to aid the decision-making process.
Employing a similar concept, the C-LSTM is fed with two inputs: frontal and lateral
images to increase the spatial information, consequently improving the performance of the
entire system.

The incorporation of LSTM components to pretrained models such as the MobileNet
V2, as seen in [81], outperforms some state-of-the-art models, with a training accuracy of
93.89% and validation accuracy of 90.72%. The study conducted in [82] demonstrated that
LSTM performs better than most machine learning models, with an average sensitivity of
53% and specificity of 80%.

3.3.4. Deep Neural Network

Deep neural networks are those neural networks that expand to a certain level of
complexity and depth. Vaguely, the certain level is decided to be two or more layers.
Deep nets have been used to estimate the uncertainty lying in skin cancer detection [84].
The motivation behind the model lies in the ineptness of publicly available skin cancer
detection software for providing confident estimates of the predictions. The study proposes
the Deep Uncertainty Estimation for Skin Cancer (DUNEScan) that provides an in-depth
and intuitive analysis of the uncertainty involved in each prediction. Deep nets have also
been used to classify skin cancer at a dermatological level [85]. The classification of skin
lesions, with the help of images alone, is an arduous task due to the minute variations in
the visual appearance of lesions. Deep nets show immense potential for varied tasks that
constitute multiple fine subcategories. The performance of the model is evaluated using
biopsy-proven clinical images that were classified into two binary classification problems:
keratinocyte carcinomas and benign seborrheic keratoses, and malignant melanomas and
benign nevi. The deep net model achieves a performance that matches and, in some cases,
outperforms all the experts associated with the evaluation program. For instance, the
confusion matrix comparison between deep nets and dermatologists (experts) exhibits
similarities in the misclassification of tumors [85]. The distribution demonstrates the
difficulty in classifying malignant dermal tumors for both experts as well as deep nets,
but also shows that experts noticeably confuse benign and malignant melanocytic lesions
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with each other, while the deep net classifies it with a higher degree of accuracy. Deep nets
are usually implemented as a single-stream network. Two-stream deep nets, on the other
hand, combine two recognition streams to handle the separate features associated with the
input data. Two-stream deep nets have been used to design intelligent systems that classify
skin cancer [86]. The two streams in the proposed method are a fusion-based contrast
enhancement technique coupled with a pretrained DenseNet201 architecture, and down
sample the extracted features using the proposed selection framework. The evaluation
parameters suggest that the proposed method returns an improved performance upgrade
over the predecessor models. Deep net models have also been deployed in real world
applications, empowering medical professionals by assisting the process of diagnosing
skin cancer and employing a prediction model for over 100 skin disorders [87]. The
deep learning algorithms have proven to be a successful method with which to diagnose
malignant tumors, as well as suggest treatment if trained with a dataset consisting of
substantial numbers of Asian and Caucasian populations. Using a convolution neural
network as the ancillary tool, the performance is elevated and can be used to diagnose
cutaneous skin diseases.

3.3.5. Deep Belief Network

Deep belief networks (DBN) are generative graphical models that are composed of
multiple layers of latent variables. DBNs have been used for cancer prediction, as can
be seen in [88]. They perform the model training in two steps. Firstly, each layer is
separately trained in an unsupervised manner. This is done to retain the maximum feature
information. Subsequently, the output features are taken and used to train the entity
relationship classifier in a supervised manner. DBNs have been designed to automatically
detect regions of breast mass and diagnose them as benign, malignant, or neither [89].
The proposed DBN performs comparatively better than its conventional counterparts.
This is because the conventional approaches depend on the output of selection feature
algorithms. On the contrary, all the features were directly used without any reduction in
their dimensions for the DBN model. To improve the diagnosis of skin melanoma by using
DBNs in place of the traditional approach, dermoscopy has been studied [90]. The deep
belief learning network architecture disperses the weights and hyperparameters to every
position in the clinical image. By doing so, this makes it possible to scale the algorithm
to varying sizes. The images are first use a Gaussian filter to remove the high and low
intensities from the images. Subsequently, the pre-processed images are segmented using
the k-means algorithm. The resultant images are then classified as per the output format of
the proposed DBN.

The DBN presented in [88] reports a diagnostic accuracy of 81.48%. According to
the study, for the evaluation criteria tested, the DBN outperformed the RNNs and CNNs,
which had an accuracy of 73% and 68%, respectively. DBNs that are used to complement
computer-aided diagnosis, as seen in [89], report an average accuracy of around 91%. For
unsegmented images, the DBN model in [90] achieves an accuracy of 73% while the same
model, when subjected to segmented images, achieves an accuracy of 90%. This suggests
that DBNs might accurately predict if the input is segmented and pre-processed correctly.

3.3.6. Deep Convolutional Neural Network

Convolutional neural networks (CNNs) are artificial neural networks that are primar-
ily used in image processing and recognition. Deep convolutional neural networks have
been implemented to classify skin cancer into four different categories: basal cell carci-
noma, squamous cell carcinoma, actinic keratosis, and melanoma [91]. The methodology
involves two methods, an error-correcting output codes simple vector machine (ECOC
SVM) classifier, and a deep CNN. The authors use accuracy, sensitivity, and specificity as
evaluation parameters. A slight variation from the previous method introduces a LeNet-5
architecture along with a deep CNN to classify the image data [92]. The model aids the
diagnosis of melanoma cancer. The experiment results indicate that training data and
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number of epochs for training are integral to the process of the detection and diagnosis of
melanoma cancer. Results suggest that training the model for over 100 epochs may lead to
overfitting while training it for below 100 epochs leads to underfitting. In addition, there
are several parameters which account for the accuracy of the results, such as the learning
rate, number of layers, and dimensions of the input image. Since dermatologists use patient
data along with deep CNNs for an increased diagnostic accuracy, recent studies have
investigated the influence of integrating image feature data into the deep CNN model [93].
The commonly used patient data were sex, age, and lesion location. To accommodate the
patient data, one-hot encoding was performed. The key differentiator between fusing the
image features was the complexity associated with each classification, respectively. The
studies indicate the potential benefits and advantages of amalgamating patient data into a
deep CNN algorithm. Region-based CNNs have been employed to detect keratinocytic
skin cancer on the face [94]. The algorithm aims to automatically locate the affected and
suspected areas by returning a probabilistic value of a malignant lesion. The deep CNN
was trained on over one million image crops to help locate and diagnose cancer. While the
algorithm demonstrated great potential, certain pitfalls were highlighted: skin markings
were mistaken as lesions by the deep CNN model. Secondly, the testing data usually
made use of the physician’s evaluation data, rather than the clinical photographs alone,
which ultimately led to the need for a multimodal approach. The developments of recent
studies have enabled newly designed models to outperform expert dermatologists and
contemporary deep learning methods in the field of multi-class skin cancer classification,
using deep CNNs [95]. The model was fine-tuned over seven classes in the HAM10000
dataset. While ensemble models increase the accuracy for classification problems, they do
not have a major role in refining the performance of the finely-tuned hyperparameter setup
for deep CNNs.

The deep CNNs, as seen in [91], could classify skin cancer with an accuracy of 94.2%.
Furthermore, the sensitivity and specificity of the model were also above 90%. Region-
based CNN that is used to classify skin cancer on the face [94] returns an average accuracy
of 91.5%. The study further emphasized the benefits of using a CNN-based model as a
screening tool to improve public health, as the sensitivity of the general public was merely
50%. The model, on the other hand, averaged a sensitivity of 85%.

3.3.7. Deep Boltzmann Machine

Deep Boltzmann machines (DBM) are probabilistic, unsupervised, and generative
models that possess undirected connections between multiple layers within the model.
Multi-modal DBMs have been proposed to monitor and diagnose cancer before the mor-
tality rate rises [96]. The multi-modal DBM learns the correlation between an instance’s
genetic structure. The testing and evaluation phase use the same to predict the genes that
are cancer-causing mutations specific to the specimen. By combining restricted Boltzmann
machines (RBM) and a skin lesion classification model through optimal segmentation,
the OS-RBM model helps to detect and classify the presence of skin lesions in clinical
images [97]. The OS-RBM model carries out certain steps sequentially: image acquisition,
pre-processing using Gaussian filters, segmenting the pre-processed images, extracting the
features, and classifying the images. Segmenting images is executed through the Artificial
Bee Colony algorithm.

3.3.8. Deep Reinforcement Learning

Reinforcement learning (RL) is a training method often associated with rewarding
and punishing the desired and undesired behaviors, respectively. Reinforcement learning
algorithms have been incorporated into the medical scene to automatically detect skin
lesions [98]. This is done by initially proceeding from coarse segmentation to sharp and
fine results. The model is trained on the popular ISIC 2017 dataset and HAM10000 dataset.
The regions are initially delineated. By tuning the hyperparameters appropriately, the
segmentation accuracy is also boosted. As deep RL methods have the capability to detect
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and segment small irregular shapes, the potential for deep RLs in the medical background
is immense.

3.3.9. Extreme Learning Machine

Extreme learning machines (ELM) are essentially feedforward neural networks. While
they provide a good generalization performance, the major difference arises in the learning
speed. ELM models have been proposed to tackle the existing problem of skin cancer
detection [99]. This detection takes place by differentiating between benign and malignant
lesions. Upon pre-processing the clinical images, the regions are segmented using the Otsu
method. The model optimizes and learns with the help of a deep belief network which
introduces a Thermal Exchange Optimization algorithm. Using hybrid pretrained models
along with ELMs for diagnosing skin cancer has also been researched [100]. The proposed
diagnostic model makes use of the SqueezeNet model for the batch normalization layers.
The layers towards the end of the model are replaced by ELMs. The ELMs are usually
linked with a metaheuristic, for instance, the Bald Eagle Search Optimization metaheuristic,
that enable the model to converge much faster than its contemporary counterparts. Instead
of pretrained models, hybrid deep learning models have also been combined with extreme
learning machines to classify skin lesions into multiple classes [101]. While majority of the
steps remain the same, the major differences lie in the deep feature extraction that uses
transfer learning and feature selection, which makes use of hybrid whale optimization
and entropy-mutual information algorithms. Extreme learning machines can also be
modified and used as an extreme gradient boosting method for the remote diagnosis of
skin cancer [102]. Apart from diagnosis, the model also helps in the process of health triage.
The major problem faced by the authors were the unbalanced categories in the dataset. To
overcome this imbalance, data augmentation was incorporated. Integrating the skin lesions
with the clinical data reinforced the accuracy and efficacy of the model.

ELM models that are used for multi-class skin lesion classification [101] produce
high-quality predictions with an accuracy of over 94%. ELM models have been shown
to consistently outperform respective benchmark studies, as seen in [102]. Even though
the accuracy of the model in [102] hovers around 77%, it is significantly higher than the
benchmark studies for the same set of data and conditions. When coupled with data
augmentation, ELMs can avoid the risk of overfitting.

3.3.10. Summary of Deep Learning Models

Deep learning models provide robust solutions for skin cancer detection. Recurrent
neural networks can accurately predict the incidence of skin cancer to a fairly high degree,
but they come with the limitation of being efficient only when using large datasets. For
smaller data points, RNNs will not have enough data to learn the features and predict
as accurately. Autoencoders serve as a recourse for insufficient data. Deep autoencoder-
based datasets, used with pretrained models, return highly accurate results. The major
drawback involved in deep autoencoders is the parameter value initialization. Most of
the studies employ a preliminary trial method to settle for the initial parameter values,
which may prove to be infeasible for large models. Long short-term memory models
outperform other deep learning techniques in terms of classification and tumor growth
progress analysis, but the accuracy of the model sharply drops to below 80% when the
quality of the images is substandard, such as poor illumination or conditions different
from those in the testing dataset. Deep neural networks produce good results but cannot
match the versatility of other deep learning techniques such as RNNs or LSTMs. DNN
models find it tough to distinguish between blurry shadows or irregular borders unless
they have been trained on such data. To be widely adopted, DNNs require training images
with adequate quality, making it a cause of concern, as clinical data may not emulate the
training dataset conditions. Deep belief network models return highly accurate results, but
in similar conditions, are often outperformed by convolutional neural networks. CNNs
provide users with the flexibility to extend the model with different learning techniques,
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as well as accurately predict different types of skin cancer. Most of the studies involving
CNNs reported an average accuracy of over 90%. New techniques in the deep learning
space make use of extreme learning machines. These models outperform state-of-the-art
techniques, with reported accuracies of over 93%. While they return accurate results, they
are susceptible to poorly augmented datasets, which can sharply decrease the accuracy of
the model.

Table 5 summarizes the works discussed on deep learning models used for skin cancer
diagnosis. Figure 8 shows the deep learning models in skin cancer diagnosis, as elucidated
in this study.

 

Figure 8. Current deep learning models for skin cancer diagnosis: tree illustration.
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4. Open Challenges in Skin Cancer Diagnosis

4.1. Communication Barrier between AI and Dermatologists

Giant strides in the field of Artificial Intelligence for skin cancer diagnosis mean it
may have established its place in the scene for years to come, but it has still not been
able to breach the communication barrier that exists between dermatologists and AI.
In [103], it is suggested that dermatologists must embrace the potential shown by AI
applications in various fields, such as clinical and research situations. The preconceived
notion surrounding the use of AI in the cancer diagnosis domain that the introduction of
technology may eventually downsize the workforce, has set the wrong precedent, and has
brought about apprehensions about adopting AI for the same. It must be understood that,
while AI has been ever improving and returns a higher accuracy with respect to diagnoses,
clinicians are undoubtedly more skillful in identifying mimetics, as well as patterns that
have not been made available to the models through the training datasets [103]. The
authors of [103] reiterate that the role of dermatologists is not limited to detecting and
identifying skin lesions, but also to extract valuable information and inferences from their
observations. At present, the latter is not quite fine-tuned and is still in the rudimentary
stages in machines. In a survey conducted on Chinese dermatologists [104], the majority of
the participants believed that AI in the workplace assisted with daily activities involving
diagnosis and treatment. In accordance with the claims made by the authors of [103],
the survey results indicated that only 3% of the dermatologist participants believed that
AI could and would replace their day-to-day work. Another survey in [105] indicated
positive diagnosis results and a higher accuracy, as compared to traditional approaches,
after dermatologists used the help of AI in making their decisions. The need to bridge the
communication gap between AI and dermatologists is paramount, and efforts must be
taken to involve the various functionalities offered by AIs in the workplace.

4.2. Dataset Availability and Features

Incorporating deep learning into cancer diagnosis in the real world comes with one
major roadblock—the lack of availability of datasets. Machine learning and deep learning
algorithms require huge amounts of datasets to be trained upon, without which the models
will ultimately return subpar results. Some databases do not include benign lesions such
as blisters and warts; these lesions are managed by dermatologists daily, making it a very
common occurrence in day-to-day diagnoses. This poses the threat of missing skin cancer
among benign lesions, as they are not included in the datasets. According to [7], most of
the online publicly available datasets consist of only raw images. This essentially means
that most of the headway must be generated by the researchers themselves. To tackle the
prevalent issue of an imbalance in the datasets, researchers have started employing data
augmentation techniques such as cropping, rotation, and filtering, which, in turn, increases
the number of training images the models can use [8]. While the datasets provide a rich
source of information for the researchers, the absence of clarity in the metadata for various
characteristics, such as ethnicity and skin types, inhibits the utility of clinical images [33].
The future of datasets and the furthering of improvement in AI-based diagnostic methods
have already been set in motion in the form of open science, such as providing clinical
decision support for diagnoses and screening. To overcome the problems faced in obtaining
datasets to a greater extent, the adoption of open science must gain traction.

4.3. Patient Perspectives on Artificial Intelligence

Artificial Intelligence is assured to change the way patients interact with healthcare-
associated processes, but it has remained elusive in terms of patients’ outlook and perspec-
tives on AI in healthcare. The survey conducted in [106] aims to decipher the reception of
Artificial Intelligence in healthcare by the patients. The central theme of most responses
revolved around the diagnosis of the illness. This establishes a symbiotic relation between
patients and the use of AI. While around 75% of the patients were keen to recommend AI in
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healthcare to family members, the apprehension of the remaining 25% is concerning. One
way to tackle this is by ensuring that the response to conflict can be resolved by seeking
a biopsy to complement the Artificial Intelligence decision-making. Apart from incorrect
diagnoses, patients also are wary about their medical and clinical history being made
available if used for datasets. Without properly labeled images, AI will be unable to train
properly, leading to incorrect diagnosis results. Data analytics involving AI models for skin
cancer diagnoses heavily use these labels to infer observations for future research [35]. By
concealing the data, or submitting falsified information, this destroys the purpose of train-
ing an AI. This can be mitigated by ensuring that data collection organizations maintain
non-disclosure policies.

4.4. Variation in Lesion Images

Skin cancer diagnosis using machine learning and deep learning involves multiple
steps, out of which the primary step is skin lesion segmentation. As straightforward
as it may seem, this task is commonly associated with setbacks that inhibit its smooth
completion, namely the variations in lesion sizes, imprecise and indistinct boundaries,
and different skin colors. The variation in different images, such as illumination differ-
ence, leads to uneven shadows and bright areas, making it tougher to segment the skin
lesions [107]. Conventional algorithms such as CNNs and CNN-based approaches may
perform superiorly in terms of labeling, but they still return a poor contrast between lesion
and regular skin images. This is due to the deviations in the dataset, such as skin tone and
aberrations, etc. The immense variation in datasets leads to the lack of inference drawn from
the results, as suggested in [108]. A varying methodological quality shows higher amounts
of specificity and sensitivity when compared to an expert’s diagnosis, thus rendering the
use of AI in healthcare less useful. The corresponding diagnostic score and criteria for
qualifying as an expert have been covered in a review that studies optical coherence while
diagnosing adult skin cancer [108]. To tackle the problem of the varying characteristics of
skin lesions, AI models must look to maximize their diversification and intensification [109].
By employing such mechanisms, the models can overcome the stagnation faced due to
the increasing variation. In addition, the diagnosis of skin cancer in people of color is put
off until advanced stages, due to the variations in lesion images that engender from the
difference in skin tones [122]. Furthermore, due to socio-economic factors such as care
barriers, models are not trained on different skin tones [122]. They develop an inherent
bias towards the dominant skin tone and lesion color that the model has been trained on,
which ultimately compromises the quality of the skin cancer diagnosis.

4.5. Dermatological Image Acquisition

Image acquisition in dermatology generally deals with close-up images of lesions or
dermatosis. In most cases, the anatomical context of such images is lost due to the exclusion
of surrounding structures, while the primary focus of the image is the lesion. Furthermore,
with the rapid adoption of digital skin imaging applications, the utilization of smartphone-
acquired images in dermatology have also increased proportionally [123]. While many
studies have proposed methods to detect melanomas from inconsistent dermoscopy images,
most of them produce localized results that cannot be used universally due to the acquisitive
conditions they are trained on, such as isolated datasets and specific illumination conditions,
etc. [124]. In addition to these problems, the quality of the acquired images is significantly
compromised due to the varying illumination conditions during the acquisition phase,
such as specular reflection. In [125], a generative adversarial neural network is proposed
to deal with the persisting present problem of color inconsistency. The wider adoption of
such methods, and an increase in the novelty of ideas that overcome erratic dermoscopy
images, are required for overcoming the challenges faced by image acquisition.
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4.6. Ethical and Legal Perspectives

While the use of AI in the clinical practice and healthcare domains has lots of upsides,
it raises many ethical challenges. The use of health AI, albeit for transforming the patient–
clinician relationship, carries ambiguity around the use of informed consent. The clinicians
are unaware about the circumstances under which they should or should not inform the
patient about AI being a part of the relationship [110]. AI decisions carry lots of weight,
and they come with the challenges of safety and transparency. While it is understood that
no AI model can be correct all the time, incorrect decisions can prove to be fatal, as well as
mold correct decisions as unsafe. This gives rise to the concern around model algorithms’
fairness and bias. Models are trained on a particular set of data, making them biased to
the characters they inferred from the dataset. It is virtually impossible for any dataset
to exactly sample the world’s population and thus raises a flag for a cause for concern.
AI technology has been identified to have a tremendous capability to threaten patient
preference [111]. Parallelly, the use of health-related AI inevitably intersects with the law
in more than one way. The question of how liability should be attributed in the case of
harmful treatment is still unanswered. Similarly, AI bias against historically disadvantaged
groups can attract anti-discrimination and human rights laws [112]. It is yet unknown
whether the existing privacy laws can protect patients undergoing AI-based healthcare. It
is necessary to understand that, while the potential benefits of AI in healthcare are plenty, it
cannot be adopted for commercial use unless the ethical and legal challenges are responded
to, as they serve as the bedrock of the entire system.

Figure 9 visualizes the open problems in skin cancer diagnosis using machine-learning-
and deep-learning-based techniques.

Figure 9. Open challenges in skin cancer diagnosis.
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5. Future Research Directions

5.1. Combining AI with Next-Generation Sequencing for Refining Skin Cancer Diagnosis

Next-generation sequencing (NGS) technologies have progressed to facilitate the
increase in data output and the efficiencies associated with it. NGS is categorized based
on its respective read lengths [113]. NGS is used to determine the order of nucleotides in
entire genomes or targeted regions in RNA and DNA. High-throughput DNA sequencing
technology and methods have paved the way for commercializing new techniques [114].
The goal of DNA sequencing methods is to support speed while staying accurate, coupled
with lower input rates of DNA and RNA input data. Squamous cell carcinoma (SCC) carries
one of the highest tumor mutation burdens amongst all cancers. By employing the targeted
next-generation sequencing of localized and metastatic high-risk SCCs, gene mutations
can be compared with the intention of identifying key differences and improving targeted
treatment alternatives [115]. Since the introduction of molecular tools, the discovery of
new viruses, such as the papillomavirus, has been accelerated. NGS can be combined with
improved protocols to help detect known and unknown human papillomaviruses [116].

5.2. AI-powered Automated Decision Support Systems for Skin Cancer Diagnosis

Decision support systems are computerized programs used to assist with decision-
making and choosing the right course of action; Artificial-Intelligence-powered decision
support systems can be used in the diagnosis of skin cancer. They provide options of
flexibility in designing deep learning classification models by hinting at the common proce-
dures and looping patterns [117]. Support systems can be initialized with pretrained deep
neural network models combined with transfer learning to classify skin lesion localization
and classification [118]. Present day decision support systems are fused with automated
deep learning methods. These methods are fine-tuned and trained with the help of transfer
learning using imbalanced data [119]. The model extracts the features using an average
pooling layer, although the extracted features are not sufficient. By employing a modified
genetic algorithm based on metaheuristics, relevant and significant features are extracted
which can further be sent to a classifier that acts as a decision support system. As men-
tioned in [120], using AI-powered decision support systems can help clinicians diagnose
and potentially replace invasive diagnostic techniques.

5.3. Smart Robotics for Skin Cancer Diagnosis

Robots can be used to improve the detection of skin cancer. Existing robots like
Vectra WB360 combine 3D images with the corresponding sequential digital dermoscopic
images, owing to the non-invasive tracking of melanoma and non-melanoma skin cancer.
The photographic analysis of the WB360 allows for a global view of the skin surface and
generates a body map to record the evolution of the lesions. This feature is very useful in
detecting any suspicious developments promptly.

5.4. Wearable Computing for Skin Cancer Diagnosis

Wearable computing is a paradigm that involves the computation of accessories that
can be worn by humans. Any small device capable of computing and processing data that
can be worn on the body is categorized as a wearable computer. Wearable computers have
been used in the field of cancer detection [121]. A few challenges that have not allowed
for widespread clinical adoption yet are the high fragility, bendability, non-cooperative
form factor of the sensors used, inappropriate connectivity, clinical inertia, and ultimately
the awareness, as well as the cost, associated with wearable devices. Future research and
corporations should aim to reduce the cost policy while tackling the challenges of using
wearable computing as a vital alternative for cancer detection.

These event-driven tools are beneficial when concerning computational effectiveness,
higher efficiency, power consumption, flexibility, and improved real-time performance. The
possibility of incorporating these tools into wearable devices could be beneficial in terms of
performance enhancement.
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5.5. Teledermatology

Teledermatology is described as technology that supports healthcare from a dis-
tance [130]. Teledermatology aims to provide clinical services to patients, monitor their
health, and provide resources through remote locations. This technology can be used for
diagnosing, screening, and even managing skin cancer effectively. In total, three prospec-
tive solutions for implementing these are the store and forward method, real-time video
conferencing, and a hybrid solution that includes both. At present, the store and forward
method is widely in use with patients taking pictures and videos, which are then forwarded
to the dermatologist. The ease of the convenience and the inexpensiveness make it a very
popular choice. Real-time video conferencing uses the interaction between patient and
physician through a video calling software to provide immediate advice. This simulates an
in-person clinic experience, where the physician can verify medical data and history before
prescribing anything. This method requires a stable internet connection and a high-quality
video camera if it must be used for skin cancer. A low-quality camera may not fully capture
the border and may eventually lead to erroneous diagnoses. The hybrid method mixes the
advantages of both the methods: real-time video conferencing coupled with high-quality
images sent to the dermatologist. Together, these serve as a beneficial way to consult and
diagnose skin cancer. Teledermatology can be used with many machine learning and deep
learning techniques to make the entire process much smoother. For instance, there are
various CNN architectures which can be employed using transfer learning [131]. Doing so
can help the dermatologist make decisions with a higher degree of confidence. Ensemble
models can be incorporated into the pipeline for the store and forward method, enabling
the system to be more accurate after the patient sends adequate-quality photos or videos.

Figure 10 illustrates the future directions for machine-learning- and deep-learning-
enabled skin cancer diagnosis.

Figure 10. Future research directions of skin cancer diagnosis.
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The internet of medical things (IoMT) and cloud computing will be the essential
elements in upcoming mobile AI-powered healthcare-related decision support systems. In
this framework, the event-driven tools can be beneficial when concerning computational
effectiveness, real-time compression, data transmission efficiency, power consumption, and
flexibility [135–137]. The possibility of incorporating these tools into contemporary mobile
healthcare solutions can be investigated in the future.

6. Conclusions

A comprehensive survey is presented on machine learning and deep learning tech-
niques, deployed for an automated skin cancer diagnosis. A comparison is made to the
widely used skin cancer datasets and dominant studies. An insight discussion is had while
exploring the lessons from prior works. Its aim is to set this survey as a benchmark for
further studies in the field of skin cancer diagnosis by also including the limitations and
benefits of the previous works. It is concluded that the Artificial Intelligence (AI)-based
healthcare solutions come with many pre-requisites, dependencies and issues that must
first be resolved before they can scale up. The AI research carries ethical and legal ambigui-
ties, along with a lack of clinical data on all skin types, thereby inducing unintended bias
in the model’s prediction. Moreover, although AI is gaining traction in the dermatology
discipline, it still has lots of room to grow and enhance further in terms of the sensitivity,
specificity, and accuracy of detecting the skin lesions. Additionally, dermatologists must
take the first step in accepting and embracing AI, not as a threat to their professions, but as
an ancillary tool to complement their diagnoses. While considering the challenges for im-
planting end-to-end AI-based solutions in healthcare, there are lots of prospects, promises,
and challenges. Wearable computing and robotics are evolving, and AI healthcare can
be incorporated into these recent innovations to ease the apprehensive market. While
the limited available data suggest a parity between those who are keen on adopting AI
healthcare, and those aversive towards it, the room to improve automated skin cancer
detection has been established.
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Appendix A

Table A1. List of abbreviations used in this manuscript along with their full form.

Acronym Definition

AI Artificial Intelligence

ANN Artificial neural network

KNN K-nearest neighbors

ABCD Asymmetry, border, color, diameter

SVM Support vector machine
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Table A1. Cont.

Acronym Definition

ROC Receiver Operating Characteristic

AUC Area under curve

RNN Recurrent neural network

DHOA Deer hunting optimization algorithm

LSTM Long short-term memory

DBN Deep belief network

CNN Convolutional neural network

DBM Deep Boltzmann machine

RL Reinforcement learning

ELM Extreme learning machine

NGS Next generation sequencing

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

SCC Squamous cell carcinoma
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Simple Summary: Breast cancer is the most common cancer, which resulted in the death of 700,000
people around the world in 2020. Various imaging modalities have been utilized to detect and analyze
breast cancer. However, the manual detection of cancer from large-size images produced by these
imaging modalities is usually time-consuming and can be inaccurate. Early and accurate detection
of breast cancer plays a critical role in improving the prognosis bringing the patient survival rate
to 50%. Recently, some artificial-intelligence-based approaches such as deep learning algorithms
have shown remarkable advancements in early breast cancer diagnosis. This review focuses first
on the introduction of various breast cancer imaging modalities and their available public datasets,
then on proposing the most recent studies considering deep-learning-based models for breast cancer
analysis. This study systemically summarizes various imaging modalities, relevant public datasets,
deep learning architectures used for different imaging modalities, model performances for different
tasks such as classification and segmentation, and research directions.

Abstract: Breast cancer is among the most common and fatal diseases for women, and no permanent
treatment has been discovered. Thus, early detection is a crucial step to control and cure breast
cancer that can save the lives of millions of women. For example, in 2020, more than 65% of breast
cancer patients were diagnosed in an early stage of cancer, from which all survived. Although early
detection is the most effective approach for cancer treatment, breast cancer screening conducted by
radiologists is very expensive and time-consuming. More importantly, conventional methods of
analyzing breast cancer images suffer from high false-detection rates. Different breast cancer imaging
modalities are used to extract and analyze the key features affecting the diagnosis and treatment
of breast cancer. These imaging modalities can be divided into subgroups such as mammograms,
ultrasound, magnetic resonance imaging, histopathological images, or any combination of them.
Radiologists or pathologists analyze images produced by these methods manually, which leads to an
increase in the risk of wrong decisions for cancer detection. Thus, the utilization of new automatic
methods to analyze all kinds of breast screening images to assist radiologists to interpret images is
required. Recently, artificial intelligence (AI) has been widely utilized to automatically improve the
early detection and treatment of different types of cancer, specifically breast cancer, thereby enhancing
the survival chance of patients. Advances in AI algorithms, such as deep learning, and the availability
of datasets obtained from various imaging modalities have opened an opportunity to surpass the
limitations of current breast cancer analysis methods. In this article, we first review breast cancer
imaging modalities, and their strengths and limitations. Then, we explore and summarize the most
recent studies that employed AI in breast cancer detection using various breast imaging modalities. In
addition, we report available datasets on the breast-cancer imaging modalities which are important in
developing AI-based algorithms and training deep learning models. In conclusion, this review paper
tries to provide a comprehensive resource to help researchers working in breast cancer imaging analysis.

Keywords: artificial intelligence; breast cancer; deep learning; histopathology; imaging modality;
mammography
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1. Introduction

Breast cancer is the second most fatal disease in women and is a leading cause of death
for millions of women around the world [1]. According to the American Cancer Society,
approximately 20% of women who have been diagnosed with breast cancer die [2,3]. Gen-
erally, breast tumors are divided into four groups: normal, benign, in situ carcinoma, and
invasive carcinoma [1]. A benign tumor is an abnormal but noncancerous collection of cells
in which minor changes in the structure of cells happen, and they cannot be considered
cancerous cells [1]. However, in situ carcinoma and invasive carcinoma are classified as
cancer [4]. In situ carcinoma remains in its organ and does not affect other organs. On
the other hand, invasive carcinoma spreads to surrounding organs and causes the devel-
opment of many cancerous cells in the organs [5,6]. Early detection of breast cancer is a
determinative step for treatment and is critical to avoiding further advancement of cancer
and its complications [7]. There are several well-known imaging modalities to detect and
treat breast cancer at an early stage including mammograms (MM) [8], breast thermog-
raphy (BTD) [9], magnetic resonance imaging (MRI) [10], positron emission tomography
(PET) [11], computed tomography (CT) [11], ultrasound (US) [12], and histopathology
(HP) [13]. Among these modalities, mammograms (MMs) and histopathology (HP), which
involve image analysis of the removed tissue stained with hematoxylin and eosin to increase
visibility, are widely used [14,15]. Mammography tries to filter a large-scale population
for initial breast cancer symptoms, while histopathology tries to capture microscopic im-
ages with the highest possible resolution to find exact cancerous tissues at the molecular
level [16,17]. In practice for breast cancer screening, radiologists or pathologists observe
and examine breast images manually for diagnosis, prognosis, and treatment decisions [7].
Such screening usually leads to over- or under-treatment because of inaccurate detection,
resulting in a prolonged diagnosis process [18]. It is worth noting that only 0.6% to 0.7%
of cancer detections in women during the screening are validated and 15–35% of cancer
screening fails due to errors related to the imaging process, quality of images, and human
fatigue [19–21]. Several decades ago, computer-aided detection (CAD) systems were first
employed to assist radiologists in their decision-making. CAD systems generally analyze
imaging data and other cancer-related data alone or in combination with other clinical
information [22]. Additionally, based on the statistical models, CADs can provide results
about the probability of diseases such as breast cancer [23]. CAD systems have been widely
used to help radiologists in patient care processes such as cancer staging [23]. However,
conventional CAD systems, which are based on traditional image processing techniques,
have been limited in their utility and capability.

To tackle these problems and enhance efficiency as well as decrease false cancer
detection rates, precise automated methods are needed to complement the work of humans
or replace them. AI is one of the most effective approaches capturing much attention in
analyzing medical imaging, especially for the automated analysis and extraction of relevant
information from imaging modalities such as MMs and HPs [24,25]. Many available AI-
based tools for image recognition to detect breast cancer have exhibited better performance
than traditional CAD systems and manually examining images by expert radiologists or
pathologists due to the limitations of current manual approaches [26]. In other words,
AI-based methods avoid expensive and time-consuming manual inspection and effectively
extract key and determinative information from high-resolution image data [26,27]. For
example, a spectrum of diseases is associated with specific features, such as mammographic
features. Thus, AI can learn these types of features from the structure of image data and
then detect the spectrum of the disease assisting the radiologist or histopathologist. It is
worth noting that in contrast to human inspection, algorithms are mainly similar to the
black box and cannot understand the context, mode of collection, or meaning of viewed
images, resulting in the problem of “shortcut” learning [28,29]. Thus, building interpretable
AI-based models is necessary. AI models can generally be categorized into two groups
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to interpret and extract information from image data: (1) Traditional machine learning
algorithms which need to receive handcrafted features derived from raw image data as
preprocessing steps. (2) Deep learning algorithms that process raw images and try to extract
features by mathematical optimization and multiple-level abstractions [30]. Although
both approaches have shown promising results in breast cancer detection, recently, the
latter approach has attracted more interest mainly because of its capability to learn the
most salient representations of the data without human intervention to produce superior
performance [31,32]. This review assesses and compresses recent datasets and AI-based
models, specifically created by deep learning algorithms, used on TBD, PET, MRI, US, HP,
and MM in breast cancer screening and detection. We also highlight the future direction
in breast cancer detection via deep learning. This study can be summarized as follows:
(1) Review of different imaging modalities for breast cancer screening. (2) Comparison
of different deep learning models proposed in the most recent studies and their achieved
performances on breast cancer classification, segmentation, detection, and other analysis.
(3) Lastly, the conclusion of the paper and suggestions for future research directions. The
main contributions of this paper can be listed as follows:

1. We reviewed different imaging tasks such as classification, segmentation, and detec-
tion through deep learning algorithms, while most of the existing review papers focus
on a specific task.

2. We covered all available imaging modalities for breast cancer analysis in contrast to
most of the existing studies that focus on single or two imaging modalities.

3. For each imaging modality, we summarized all available datasets.
4. We considered the most recent studies (2019–2022) on breast cancer imaging diagnosis

employing deep learning models.

2. Imaging Modalities and Available Datasets for Breast Cancer

In this study, we summarize well-known imaging modalities for breast cancer di-
agnosis and analysis. As many existing studies have shown, there are several imaging
modalities, including mammography, histopathology, ultrasound, magnetic resonance
imaging, positron emission tomography, digital breast tomosynthesis, and a combina-
tion of these modalities (multimodalities) [10,32,33]. There are various public or private
datasets for these modalities. Approximately 70% of available public datasets are related to
mammography and ultrasound modalities demonstrating the prevalence of these meth-
ods, especially mammography, for breast cancer screening [31,32]. On the other hand,
the researcher also widely utilized other modalities such as histopathology and MRI to
confirm cancer and deal with difficulties related to mammography and ultrasound imaging
modalities such as large variations in the image’s shape, morphological structure, and the
density of breast tissues, etc. Here, we outline the aforementioned imaging modalities and
available datasets for breast cancer detection.

2.1. Mammograms (MMs)

The advantages of mammograms, such as being cost-effective to detect tumors in
the initial stage before development, mean that MMs are the most promising imaging
screening technique in clinical practice. MMs are generally images of breasts produced
by low-intensity X-rays (Figure 1) [33]. In this imaging modality, cancerous regions are
brighter and more clear than other parts of breast tissue, helping to detect small variations
in the composition of the tissues; therefore, it is used for the diagnosis and analysis of
breast cancer [34,35] (Figure 1). Although MMs are the standard approach for breast cancer
analysis, it is an inappropriate imaging modality for women with dense breasts [36], since
the performance of MMs highly depends on specific tumor morphological characteris-
tics [36,37]. To deal with this problem, using automated whole breast ultrasound (AWBU)
or other methods are suggested with MMs to produce a more detailed image of breast
tissues [38].
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For various tasks in breast cancer analysis, such as breast lesion detection and classifi-
cation, MMs are generally divided into two forms: screen film mammograms (SFM) and
digital mammograms (DMM). DMM is widely categorized into three categories consisting
of full-field digital mammograms (FFDM), digital breast tomosynthesis (DBT), and contrast-
enhanced digital mammograms (CEDM) [39–44]. SFM was the standard imaging method in
MMs because of its high sensitivity (100%) in the analysis and detection of lesions in breasts
composed primarily of fatty tissue [45]. However, it has many drawbacks, including the
following: (1) SFM imaging needs to be repeated with a higher radiation dose because some
parts of the image in SFM have lesser contrast and cannot be further improved, and (2) var-
ious regions of the breast image are represented according to the characteristic response of
the SFM [19,45]. Since 2010, DMM has replaced film as the primary screening modality. The
main advantages of digital imaging over file systems are the higher contrast resolution and
the ability to enlarge the image or change the contrast and brightness. These advantages
help radiologists to detect subtle abnormalities, particularly in a background of dense breast
tissue, more easily. Most studies comparing digital and film mammography performance
have found little difference in cancer detection rates [46]. Digital mammography increases
the chance of detecting invasive cancer in premenopausal and perimenopausal women
and women with dense breasts. However, it increases false-positive findings as well [46].
Randomized mammographic trials/randomized controlled trials (RMT/RCT) represent
the most important usage of MMs, through which large-scale screening for breast cancer
analysis is performed. Despite the great capability of MMs for early-stage cancer detection,
it is difficult to use MMs alone for detection. Because it requires additional screening
tests along with mammographic trials/RMT such as breast self-examination (BSE) and
clinical breast examination (CBE), which are more feasible methods to detect breast cancer
at early stages to improve breast cancer survival [38,47,48]. Additionally, BSE and CBE
avoid tremendous harm due to MMs screening, such as repeating the imaging process.
More details about the advantages and disadvantages of MMs are provided in Table 1.
Table 1. Advantages and limitations of various imaging modalities.

Imaging
Modalities

Advantages Limitations

MM

• More than 70% of studies (computational and
experimental) for breast cancer analysis.

• Time- and cost-effective approach for image capturing
and processing compared to other modalities

• No need for highly professional radiologists for diagnosis
and cancer detection compared to other methods

• Cannot capture micro-calcification because MMs are
created via low-dose X-ray

• Limited capability for diagnosis of cancer in dense breasts
• Needs more testing for accurate diagnosis
• Needs various pre-processing for classification because of

considering many factors and structures such as the
border of the breast, fibrous strands, hypertrophied
lobules, etc. which may cause misunderstanding
Problems in the visualization of cancer in high
breast density

US

• A very efficient approach in reducing false negative rates
for diagnosis because of its capability in capturing images
from different views and angles.

• A highly safe and most efficient approach for a routine
checkup because the US is a non-invasive method

• Ability to detect invasive cancer areas

Highly recommended for the identification of breast lesion ROI
because of its additional features such as color-coded
SWE images

• Capturing low-quality images for examination of the
larger amount of tissues

• Difficult to understand SWE images
• Single Nakagami parametric image cannot detect

cancerous tissues

Proper ROI estimation is very difficult because of the
shadowing effect making the tumor contour unclear

MRI

• Safe method due to no exposure to harmful ionizing
radiation

• Captures images with more detail
• Captures more suspicious areas for further analysis

compared to other modalities

Can be improved by adding contrast agents to represent
images with more details

• Misses some tumors but can be used as a complement of
MMs

• Increases body temperature
• May lead to some allergies

Invasive method and dangerous
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Table 1. Cont.

Imaging
Modalities

Advantages Limitations

HP

• Produces color-coded images that help to detect cancer
subtypes and early detection of cancer

• Widely used in cancer diagnosis similar to MMs
• Shows tissues in two forms including WSI and ROI

extracted from WSI
• Provides more reliable results for diagnosis than any

other imaging modalities
• ROI increases accuracy of cancer diagnosis and analysis
• Can be stored for future analysis

• Expensive and time-consuming method to analyze
and need

• Highly expert pathologist
• It is tedious to extract ROI and analysis, so it may lead to

a decrease in the accuracy of analysis because of fatigue
• Analysis of HPs highly depends on many factors such as

fixation, lab protocols, sample orientations, human
expertise in tissue preparation, color variation

• The hardest imaging modality for applying a DL
approach for the classification of cancers, and it needs
high computational resources for analysis

DBT

• Increases cancer detection rate
• Can find cancers that were entirely missed on MMs
• Presents a unique opportunity for AI systems to help

develop DBT-based practices from the ground up.
• Captures a more detailed view of tissues by rotating the

X-ray emitter to receive multiple images
• Has great capability to distinguish small lesions which

may obscure the projections obtained using MMs

• Time consuming and expensive because of making
3D images

• Lack of proper data curation and labeling
• Decreasing accuracy of analysis when using 2D slices

instead of 3D images
• Looking only at 2D slices, it is still unclear whether

AIModels operate better using abnormalities labeled
• Using bounding boxes or tightly-drawn margins

of lesions
• DBT studies easily require more storage than MMs by

order of

magnitude or more.

PET

• An efficient method in the analysis of small lesions
• Great capability to detect metastasis at different sites

and organs.
• Checks up the entire patient for local recurrence, lymph

node metastases, and distant metastases using a single
injection of activity

• Highly recommended for patients with dense breasts
or implants

• Poor detection rates for small or non-invasive
breast cancers

• Missed osteoblastic metastases showed lower
metabolic activity

Figure 1. Example of breast cancer images using traditional film MMs. Reprinted/adapted with
permission from [49]. 2021, Elsevier.
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2.2. Digital Breast Tomosynthesis (DBT)

DBT is a novel imaging modality making 3D images of breasts by the utilization
of X-rays captured from different angles [50]. This method is similar to what is per-
formed in mammograms, except the tube with the X-ray moves in a circular arc around
the breast [51–53] (Figure 2). Repeated exposures to the breast tissue at different angles
produce DBT images in half-millimeter slices. In this method, computational methods
are utilized to collect information received from X-ray images to produce z-stack breast
images and 2D reconstruction images [53,54]. In contrast to the conventional FSM method,
DBT can easily cover the imaging of tumors from small to large size, especially in the case
of small lesions and dense breasts [55]. However, the main challenging issue regarding
the DBT is the long reading time because of the number of mammograms, the z-stack of
images, and the number of recall rates for architectural distortion type of breast cancer
abnormality [56]. After FFDM, DBT is the commonly used method for imaging modalities.
Many studies recently used this imaging modality for breast cancer detection due to its
favorable sensitivity and accuracy in screening and producing better details of tissue in
breast cancer [57–60]. Table 1 provides details of the pros and cons of DBT for breast
cancer analysis.

Figure 2. Images of cancerous breast tissue by DBT imaging modality [61]. Reprinted/adapted with
permission from [61]. 2021, Elsevier.

2.3. Ultrasound (US)

All of the aforementioned modalities can endanger patients and radiologists because
of possible overdosage of ionizing radiation, making these approaches slightly risky and
unhealthy for certain sensitive patients [62]. Additionally, these methods show low speci-
ficity, meaning the low ability to correctly determine a tissue without disease as a negative
case. Therefore, although the aforementioned imaging modalities are highly used for early
breast cancer detection, the US as a safe imaging modality has been used [62–67] (Figure 3).
Compared to MMs, the US is a more convenient method for women with dense breasts. It
is also useful to characterize abnormal regions and negative tumors detected by MMs [68].
Some studies showed the high accuracy of the US in detecting and discriminating benign
and malignant masses [69]. US images are used in three broad combinations, i.e., (i) simple
two-dimensional grayscale US images, (ii) color US images with shear wave elastography
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(SWE) added features, and (iii) Nakagami colored US images without any need for ionizing
radiation [70,71]. It is worth noting that Nakagami-colored US images are responsible for
the region of interest extraction by better detection of irregular masses in the breast. More-
over, US can be used as a complement to MMs owing to its availability, inexpensiveness
compared to other modalities, and it being well tolerated by patients [70,72,73]. In a recent
retrospective study, US breast imaging has shown high predictive value when combined
with MMs images [74]. US images, along with MMs, improved the overall detection by
about 20% and decreased unnecessary biopsy tasks by 40% in total [67]. Moreover, US is a
reliable and valuable tool for metastatic lymph node screening in breast cancer patients. It
is a cheap, noninvasive, easy-to-handle and cost-effective diagnostic method [75]. However,
the US represents some limitations. For instance, the interpretation of US images is highly
difficult and needs an expert radiologist to comprehensively understand these images. This
is because of the complex nature of US images and the presence of speckle noise [76,77]. To
deal with this issue, new technologies have been introduced in breast US imaging, such
as automated breast ultrasound (ABUS). ABUS produces 3D images using wider probes.
Shin et al. [78] improved how ABUS allows more appropriate image evaluation for large
breast masses compared to conventional breast US. On the other hand, ABUS showed the
lowest reliability in the prediction of residual tumor size and pCR (pathological complete
response) [79]. Table 1 highlights more details about the weaknesses and strengths of the
US imaging modality.

Figure 3. Ultrasound images from breast tissue for normal, benign, and malignant [80].

2.4. Magnetic Resonance Imaging (MRI)

MRI creates images of the whole breast and presents it as thin slices that cover the
entire breast volume. It works based on radio frequency absorption of nuclei in the
existence of potent magnetic fields. MRI uses a magnetic field along with radio waves to
capture multiple breast images at different angles from a tissue [81–83] (Figure 4). By the
combination of these images together, clear and detailed images of tissues are produced.
Hence, MRI creates much clearer images for breast cancer analysis than other imaging
modalities [84]. For instance, the MRI image shows many details clearly, leading to easy
detection of lesions that are considered benign in other imaging modalities. Additionally,
MRI is the most favorable method for breast cancer screening in women with dense breasts
without any ionizing and other health risks, which we have seen in other modalities
such as MMs [85,86]. Another interesting issue about MRI is its capability for producing
high-quality images with a clearer view via the utilization of a contrast agent before
taking MRI images [87,88]. Furthermore, MRI is more accurate than MM, DBT, and the
US in evaluating residual tumors and predicting pCR [79,89], which helps clinicians to
select appropriate patients for avoiding surgery after neoadjuvant chemotherapy (first-
line treatment of breast cancer) when pCR is obtained [90,91]. Even though MRI exhibits
promising advantages, such as high sensitivity, it shows low specificity, and it is time
consuming and expensive, especially since its reading time is long [92,93]. It is worth
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noting that some new MRI-based methods, such as ultrafast breast MRI (UF-MRI), create
much more efficient images with high screening specificity with short reading time [94,95].
Additionally, diffusion-weighted MR imaging (DWI-MRI) and dynamic contrast-enhanced
MRI (DCE-MRI) provide higher volumetric resolution for better lesion visualization and
lesion temporal pattern enhancement to use in breast cancer diagnosis and prognosis and
correlation with genomics [53,81,96–98]. Details about various MRI-based methods and
their pros and cons are available in Table 1.

Figure 4. Dense cancerous breast tissue images conducted by MRI method from different angles.
(A) Normal; (B) malignant [82]. Reprinted/adapted with permission from [82]. 2011, Elsevier.

2.5. Histopathology

Recently, various studies have confirmed that the gold standard for confirmation
of breast cancer diagnosis, treatment, and management is given by the histopathological
analysis of a section of the suspected area by a pathologist [99–101]. Histopathology consists
of examining tissue lesion samples stained, for example, with hematoxylin and eosin
(H&E) to produce colored histopathologic (HP) images for better visualization and detailed
analysis of tissues [102–104] (Figure 5). Generally, HP images are obtained from a piece of
suspicious human tissue to be tested and analyzed by a pathologist [105]. HP images are
defined as gigapixel whole-slide images (WSI) from which some small patches are extracted
to enhance the analysis of these WSI (Figure 5). In other words, pathologists try to extract
small patches related to ROI from WSI to diagnose breast cancer subtypes, which is a great
advantage of HPs, enabling them to classify multiple classes of breast cancer [106,107] for
prognosis and treatment. Additionally, much more meaningful ROI can be derived from
HPs, in contrast to other imaging modalities confirming outstanding authenticity for breast
cancer classification, especially breast cancer subtype classification. Furthermore, one of the
most important advantages of HPs is their capability to integrate multi-omics features to
analyze and diagnose breast cancer with high confidence [108]. TCGA is the most favorable
resource for breast histopathological images. The TCGA database is widely employed in
multi-level omics integration investigations. In other words, within TCGA, HPs provide
contextual features to extract morphological properties, while molecular information from
omics data at different levels, including microRNA, CNV, and DNA methylation [108],
are also available for each patient. Integrating morphology and multiomics information
provides an opportunity to more accurately detect and classify breast cancer. Despite these
advantages, HPs have some limitations. For example, analyzing multiple biopsy sections,
such as converting an invasive biopsy to digital images, is a lengthy process requiring a
high concentration level due to the cell structures’ microscopic size [109]. More drawbacks
and advantages of the HP imagining modality are summarized in Table 1.
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Figure 5. Images of the breast from H&E (haemotoxylin and eosin) stained image of a benign case
provided by histopathology imaging modality [105]. Reprinted/adapted with permission from [105].
2017, Elsevier.

2.6. Positron Emission Tomography (PET)

PET uses radiotracers for visualizing and measuring the changes in metabolic pro-
cesses and other physiological activities, such as blood flow, regional chemical composition,
and absorption. PET is a recent effective imaging method showing the promising capability
to measure tissues’ in vivo cellular, molecular, and biochemical properties (Figure 6). One
of the key applications of PET is the analysis of breast cancer [110]. Studies highlighted that
PET is a handy tool in staging advanced and inflammatory breast cancer and evaluating the
response to treatment of the recurrent disease [34,35]. In contrast to the anatomic imaging
method, PET highlights a more specific targeting of breast cancer with a larger margin be-
tween tumor and normal tissue, representing one step forward in cancer detection besides
anatomic modalities [111–113]. Thus, the PET approach is used in hybrid modalities with
CT for specific organ imaging to encourage the advantages of PET and improve spatial
resolution, which is one of this modality’s strengths. Additionally, PET uses the integration
of radionuclides with some elements or pharmaceutical compounds to form radiotracers,
improving the performance of PET [114]. Fluorodeoxyglucose (FDG), a glucose analog, is
most commonly used for most breast cancer imaging studies as an effective radiotracer
developed for PET imaging [115]. Recent studies clarified a specific correlation between
the degree of FDG uptake and several phenotypic features containing a tumor histologic
type and grade, cell receptor expression, and cellular proliferation [116,117]. These corre-
lations lead to making the FDG-PET system for breast cancer analysis such as diagnosis,
staging, re-staging, and treatment response evaluation [111,118,119]. Another PET system
is a breast-dedicated high-resolution PET system designed in a hanging breast imaging
modality. Some studies demonstrate that these PET-based modalities can detect almost all
breast lesions and cancerous regions [120]. Table 1 summarizes some of PET-based imaging
modalities’ limitations and advantages. Also, in Table 2, we provided most commonly used
public datasets for different imaging modalities in breast cancer detection.

Table 2. Public datasets for different imaging modalities for breast cancer analysis.

Imaging Modality Public Dataset Link of Dataset Information about Dataset

MM

BCDR https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 426 benign and 310 malignant

IRMA https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 1865 typical cases and 932 abnormal

MIAS https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 133 abnormal and 189 of normal class

DDSM https://www.medicmind.tech/cancer-imaging-data
accessed date: 25 September 2022 912 benign and 784 malignant

INBreast http://marathon.csee.usf.edu/Mammography/Database.html
accessed date: 25 September 2022 410 malignant
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Table 2. Cont.

Imaging Modality Public Dataset Link of Dataset Information about Dataset

US

MBUD
https://www.kaggle.com/datasets/aryashah2k/breast-
ultrasound-images-dataset
accessed date: 25 September 2022

472 normal 278 abnormal

OASBUD http://bluebox.ippt.gov.pl/~hpiotrzk/
accessed date: 25 September 2022 48 benign 52 malignant

BUSI https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
accessed date: 25 September 2022 620 benign 210 malignant

MT-small
https://www.kaggle.com/datasets/mohammedtgadallah/mt-
small-dataset
accessed date: 25 September 2022

200 benign 200 malignant

UDIAT https://datasets.bifrost.ai/info/1320
accessed date: 25 September 2022 110 benign 53 malignant

STUHospital https://github.com/xbhlk/STU-Hospital
accessed date: 25 September 2022 42 malignant

MRI

DCE-MRI https://mridiscover.com/dce-mri/
accessed date: 25 September 2022 559 malignant

DWI
https://radiopaedia.org/articles/diffusion-weighted-imaging-
2?lang=us
accessed date: 25 September 2022

328 malignant

RIDER
https://wiki.cancerimagingarchive.net/display/Public/
RIDER+Collections
accessed date: 25 September 2022

500 malignant

DMR-IR http://visual.ic.uff.br/dmi/
accessed date: 25 September 2022 267 normal 44 abnormal

TCIA https://www.cancerimagingarchive.net/
accessed date: 25 September 2022 91 malignant

HP

BreakHis https://www.kaggle.com/datasets/ambarish/breakhis
accessed date: 25 September 2022 2480 benign and 5429 malignant

Camelyon https://camelyon16.grand-challenge.org/Data/
accessed date: 25 September 2022 240 benign 160 malignant

TUPAC
https:
//github.com/DeepPathology/TUPAC16_AlternativeLabels
accessed date: 25 September 2022

50 benign 23 malignant

BACH https://zenodo.org/record/3632035#.Yxl8gnbMK3A
accessed date: 25 September 2022 37 benign 38 malignant

ICPR 2012 http://icpr2012.org/
accessed date: 25 September 2022 50 malignant

IDC https://imaging.datacommons.cancer.gov/
accessed date: 25 September 2022 162 malignant

Wisconsin
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+%28Diagnostic%29
accessed date: 25 September 2022

357 benign and 212 malignant

DRYAD
https://datadryad.org/stash/dataset/doi:
10.5061/dryad.05qfttf4t
accessed date: 25 September 2022

173 malignant

CRC https://paperswithcode.com/dataset/crc
accessed date: 25 September 2022 2031 normal 1974 malignant

AMIDA https://www.amida.com/index.html
accessed date: 25 September 2022 23 malignant

TCGA https://portal.gdc.cancer.gov/
accessed date: 25 September 2022 1097 malignant

DBT BCS-DBT
https://sites.duke.edu/mazurowski/resources/digital-breast-
tomosynthesis-database/
accessed date: 25 September 2022

22,032 DBT volume from 5610
subjects (89 malignant, 112 benign,
5129 normal)
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Figure 6. Example of PET images for breast cancer analysis [118]. Reprinted/adapted with permission
from [118]. 2021, Elsevier.

3. Artificial Intelligence in Medical Image Analysis

Artificial intelligence (AI) has become very popular in the past few years because
it adds human capabilities, e.g., learning, reasoning, and perception, to the software
accurately and efficiently, and as a result, computers gain the ability to perform tasks
that are usually carried out by humans. The recent advances in computing resources
and availability of large datasets, as well as the development of new AI algorithms, have
opened the path to the use of AI in many different areas, including but not limited to image
synthesis [121], speech recognition [122,123] and engineering [124–126]. AI has been also
employed in healthcare industries for applications such as protein engineering [127–130],
cancer detection [131], and drug discovery [132,133]. More specifically, AI algorithms have
shown an outstanding capability to discover complex patterns and extract discriminative
features from medical images, providing higher-quality analysis and better quantitative
results efficiently and automatically. AI has been a great help for physicians in imaging-
related tasks, i.e., disease detection and diagnosis, to accomplish more accurate results [134].
Deep learning (DL) [30] is part of a broader family of AI which imitates the way humans
learn. DL uses multiple layers to gain knowledge, and the complexity of the learned
features increases hierarchically. DL algorithms have been applied in many applications,
and in some of them, they could outperform humans. DL algorithms have also been used
in various categories in the realm of cancer diagnosis using cancer images from different
modalities, including detecting cancer cells, cancer type classification, lesion segmentation,
etc. To learn more about DL, we refer interested readers to [135].

3.1. Benefits of Using DL for Medical Image Analysis

Comparing the healthcare area with others, it is safe to say that the decision-making
process is much more crucial in healthcare systems than in other areas since it directly
affects people’s lives. For example, a wrong decision by a physician in diagnosing a disease
can lead to the death of a patient. Complex and constrained clinical environments and
workflows make the physician’s decision-making very challenging, especially for image-
related tasks since they require high visual perception and cognitive ability [136]. In these
situations, AI can be a great tool to decrease the false-diagnosis rates by extracting specific
and known features from the images or even helping the physician by giving an initial
guess for the solution. Nowadays, more and more healthcare providers are encouraged to

382



Cancers 2022, 14, 5334

use AI algorithms due to the availability of computing resources, advancement in image
analysis tools, and the great performance shown by AI methods.

3.2. Deep Learning Models for Breast Cancer Detection

This section briefly discusses the deep learning algorithms applied to images from
each breast cancer modality.

3.2.1. Digital Mammography and Digital Breast Tomosynthesis (MM-DBT)

With the recent technology developments, MM images follow the same trend and take
more advanced forms, e.g., digital breast tomosynthesis (DBT). Each MM form has been
widely used for breast cancer detection and classification. One of the first attempts to use
deep learning for MMs was carried out by [137]. The authors in [137] used a convolutional
neural network (CNN)-based model to learn features from mammography images before
feeding them to a support vector machine (SVM) classifier. Their algorithm could achieve
86% AUC in lesion classification, which had about 6% improvement compared to the best
conventional approach before this paper. Following [137], more studies [138–140] have also
used CNN-based algorithms for lesion classification. However, in these papers, the region
of interest was extracted without the help of a deep learning algorithm, i.e., by employing
traditional image processing methods [139] or by an expert [140]. More specifically, the
authors in [138] first divided MM images into patches and extracted the features from the
patches using a conventional image-processing algorithm, and then used the random forest
classifier to choose good candidate patches for their CNN algorithm. Their approach could
achieve an AUC of 92.9%, which is slightly better than the baseline method based on a
conventional method with an AUC of 91%. With the advancement in DL algorithms and
the availability of complex and powerful DL architectures, DL methods have been used to
extract ROIs from full MM images. As a result, the input to the algorithm is no longer the
small patches, and the full MM image could be used as input. For example, the proposed
method in [131] uses YOLO [141], a well-known algorithm for detection and classification,
to simultaneously extract and classify ROIs in the whole image. Their results show that
their algorithm performs similarly to a CNN model trained on small patches with an AUC
of 97%. Figure 7 shows the overall structure of the proposed model in [131].

Figure 7. Schematic diagram of the proposed YOLO-based CAD system in [131]. Reprinted/adapted
with permission from [131]. 2021, Elsevier.
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To increase the accuracy of cancer detection, DBT has emerged as a predominant
breast-imaging modality. It has been shown that DBT increases the cancer detection rate
(CDR) while decreasing recall rates (RR) when compared to FFDM [142–144]. Following
the same logic, some DL algorithms have been proposed to apply to DBT images for cancer
detection [145–149]. For instance, the authors in [150] proposed a deep learning model
based on ResNet architecture to classify the input images into normal, benign, high-risk,
or malignant. They trained the model on an FFDM dataset, then fine-tuned the model
using 2D reconstruction of DBT images obtained by applying the 2D maximum intensity
projection (MIP) method. Their method achieved an AUC of 84.7% on the DBT dataset. A
deep CNN has been developed in [145] that uses DBT volumes to classify the masses. Their
proposed approach obtained an AUC of 84.7%, which is about 2% higher than the current
CAD method with hand-crafted features.

Although deep learning models perform very well in medical image analysis, their
major bottleneck is the thirst for training datasets. In the medical field, collecting and
labeling data is very expensive. Some studies used transfer learning to overcome this
problem. In the study by [151], the authors developed a two-stage transfer learning
approach to classify DBT images as mass or normal. In the first stage, the authors fine-
tuned a pretrained AlexNet [152] using FFDM images, and then the fine-tuned model
was used to train a model using DBT images. The CNN model in the second stage was
used as the feature extractor for DBT images, and the random forest classifier was used to
classify the extracted features as mass or normal. They obtained an AUC of 90% on their
test dataset. In another work in [153], the authors used a VGG19 [154] network trained
on the ImageNet dataset as a feature extractor for FFDM and DBT images for malignant
and benign classification. The extracted features were fed to an SVM classifier to estimate
the probability of malignancy. Their method obtained an AUC of 98% and 97% on the
DBT images in CC and MLO view, respectively. These methods show that by using a
relatively small training dataset and employing transfer learning techniques, deep learning
models can perform well. Most of the aforementioned studies compare their DL algorithms
with traditional CAD methods. However, the best way to evaluate the performance of a
DL method is to compare that with a radiologist directly. For example, the performance
of DL systems on FFDM and DBT has been investigated in [155]. The study shows that
a DL system can achieve comparable sensitivity as radiologists in FFDM images while
decreasing the recall rate. Additionally, on DBT images, an AI system can have the same
performance as radiologists, although the recall rate has increased.

Table 3 shows the list of recent DL-based models used for MM and DBT with their
performances. The application of DL in breast cancer detection is not limited to mammog-
raphy images. In the following section, we discuss the DL application in other breast cancer
imaging modalities.

Table 3. The summary of the studies that used MM and DBT datasets.

Paper Year Task Model Type Dataset Evaluation

Agnes et al. [146] 2020 Classification Multiscale All CNN MM MIAS Acc = 96.47%

Shu et al. [156] 2020 Classification CNN MM INbreast
CBIS-DDSM

INbreast: Acc = 92.2%
CBIS: Acc = 76.7%

Singh et al. [150] 2020 Classification CNN FFDM and
DBT Private FFDM: AUC = 0.9

DBT: AUC = 0.85

Boumaraf et al. [157] 2020 Classification DBN (Deep Belief Network) MM DDSM Acc = 84.5%

Matthews et al. [158] 2021 Classification Transfer learning based on
ResNet DBT Private AUC = 0.9

Zhang et al. [159] 2021 Classification GNN (Graph Neural
Network) + CNN MM MIAS Acc = 96.1%

Li et al. [160] 2021 Classification SVM (Support Vector
Machine) MM INbreast Acc = 84.6%

Saber et al. [161] 2021 Classification CNN/Transfer learning MM MIAS Acc = 98.87%
F-score = 99.3%
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Table 3. Cont.

Paper Year Task Model Type Dataset Evaluation

Malebary et al. [162] 2021 Classification CNN MM DDSM
MIAS

DDSM: Acc = 97%
MIAS: Acc = 97%

Li et al. [163] 2021 Classification CNN-RNN (Recurrent
Neural Network) MM DDSM ACC = 94.7%, Recall = 94.1%

AUC = 0.968

Ueda et al. [164] 2022 Classification CNN MM Private
DDSM AUC = 0.93

Mota et al. [165] 2022 Classification CNN DBT VICTRE AUC = 0.941

Bai et al. [166] 2022 Classification GCN (Graph Convolutional
Network) DBT BCS-DBT

Private
Acc = 84%

AUC = 0.87

Zhu et al. [167] 2018 Mass
Segmentation

FCN (Fully Convolutional
Network) + CRF

(Conditional Random Field)
MM INbreast

DDSM-BCRP
INbreast: Dice = 90.97%

DDSM-BCRP: Dice = 91.3%

Wang et al. [168] 2019 Mass
Segmentation

MNPNet (Multi-Level
Nested Pyramid Network) MM INbreast

DDSM-BCRP
INbreast: Dice = 91.1%

DDSM-BCRP: Dice = 91.69%

Saffari et al. [169] 2020
Dense tissue

Segmenta-
tion/Classification

cGAN and CNN MM INbreast S: Acc = 98%
C: Acc = 97.85%

Ahmed et al. [170] 2020 Tumor Segmenta-
tion/Classification DeepLab/mask RCNN MM MIAS

CBIS-DDSM

DeepLab: C: Acc = 95%
S: MAP = 72%

Mask RCNN: C: Acc = 98%
S: MAP = 80%

Buda et al. [171] 2020 Lesion detection CNN DBT Private Sensitivity = 65%

Cheng et al. [172] 2020 Mass
Segmentation

Spatial Enhanced Rotation
Aware Net MM DDSM Dice = 84.3%

IOU = 73.95%

Chen et al. [173] 2020 Mass
Segmentation Modified U-Net MM INbreast

CBIS-DDSM
INbreast: Dice = 81.64%

CBIS: Dice = 82.16%

Soleimani et al. [174] 2020 Breast-Pectoral
Segmentation CNN MM

MIAS
CBIS-DDSM

INbreast

MIAS: Dice = 97.59%
CBIS: Dice = 97.69%

INbreast: Dice = 96.39%

Al-antari et al. [175] 2020
Breast lesions

Segmenta-
tion/Classification

YOLO MM DDSM
INbreast

S:
DDSM: F1-score = 99.28%

INbreast: F1-score = 98.02%
C:

DDSM: Acc = 97.5%
INbreast: Acc = 95.32%

Li et al. [176] 2020 Mass
Segmentation Siamese-Faster-RCNN MM

INbreast
BCPKUPH(private)
TXMD(private)

INbreast: TP = 0.88,
BCPKUPH:
TP = 0.85
TXMD:

TP = 0.85

Peng et al. [177] 2020 Mass
Segmentation Faster RCNN MM CBIS-DDSM

INbreast

CBIS:
TP = 0.93
INbreast:
TP = 0.95

Kavitha et al. [178] 2021 Mass Segmenta-
tion/Classification CapsNet MM MIAS

DDSM

MIAS: Acc = 98.5%
DDSM:

Acc = 97.55%

Shoshan et al. [179] 2021 Lesion detection CNN DBT DBTex
challenge Avg. sensitivity = 0.91

Hossain et al. [180] 2022 Lesion detection CNN DBT DBTex
challenge Avg. sensitivity = 0.815

Hossain et al. [181] 2022 Lesion detection CNN DBT DBTex
challenge Avg. sensitivity = 0.84

Atrey et al. [182] 2022 Breast lesion
Segmentation CNN MM DDSM Dice = 65%

3.2.2. Ultrasound (US)

As has been explained in Section 2, ultrasound performs much better in detecting can-
cers and reduces unnecessary biopsy operations [183]. Therefore, it is not surprising to see
that the researchers use this type of image in their DL models for cancer detection [184–186].
For instance, a GoogleNet [187]-based CNN has been trained on the suspicious ROIs of
US images in [184]. The proposed method in [184] achieved an AUC of 96%, which is 6%
higher than the CAD-based method with hand-crafted features. The authors in [188–190]
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trained CNN models directly with whole US images without extracting the ROIs. For
example, the authors in [190] combined VGG19 and ResNet152 and trained the ensemble
network on US images. Their proposed method achieved an AUC of 95% on a balanced,
independent test dataset. Figure 8 represents an example of CNN models for breast cancer
subtype classification.

In comparison with datasets for mammography images, there are fewer datasets for
US images, and they usually contain much fewer images. Therefore, most of the proposed
DL models use some kind of data augmentation method, such as rotation, to increase
the size of training data and improve the model performance. However, one should be
careful about how to augment US images since some augmentation may decrease the model
performance. For example, it has been shown in [186] that performing the image rotation
or shift in the longitudinal direction can affect the model performance negatively. The
generative adversarial networks (GANs) can also be used to generate synthetic US images
with or without tumors [191]. These images can be added to the original training images to
improve the model’s accuracy.

The US images have also been used in lesion detection in which, when given an image,
the CAD system decides whether the lesion is present. One of the challenges that the
researcher faces in this type of problem with normal US images is that there is a need for a
US doctor to manually select the images that have lesions for the models. This depends on
the doctors’ availability and is usually expensive and time-consuming. It also adds human
errors to the system [192]. To solve this problem, a method has been developed in [193] to
detect the lesions in real time during US scanning. Another type of US imaging is called
the 3D automated breast US scan, which captures the entire breast [194,195]. The authors
in [195] developed a CNN model based on VGGNet, ResNet [196], and DenseNet [197]
networks. Their approach obtained an AUC of 97% on their private dataset and an AUC of
97.11% on the breast ultrasound image (BUSI) dataset [80].

Some methods combined the detection and classification of lesions in US images in one
step [198]. An extensive study in [199] compares different DL architectures for US image
detection and classification. Their results show that the DenseNet is a good candidate for
classification analysis of US images, which provides accuracies of 85% and 87.5% for full
image classification and pre-defined ROIs, respectively. The authors in [200] developed
a weakly supervised DL algorithm based on VGG16, ResNet34, and GoogleNet trained
using 1000 unannotated US images. They have reported an average AUC of 88%.

Some studies validate the performance of DL algorithms [201–203] using expert in-
ference, showing that DL algorithms can greatly help radiologists. This is mostly in cases
where the lesion was already detected by an expert, and the DL model is used to classify
them. However, unlike the mammography studies, most of the studies are not validated
by multiple physicians and do not show the generalizability of their method on multiple
datasets which should be addressed in future validations. Table 4 shows the list of recent
algorithms used for US images and their performances.

Table 4. The summary of the studies that used ultrasound dataset.

Paper Year Task Model Dataset Evaluation

Byra et al.
[204] 2019 Classification Transfer learning based on VGG-19

and InceptionV3 OASBUD VGG19: AUC = 0.822
InceptionV3: AUC = 0.857

Byra et al.
[186] 2019 Classification Transfer learning based on VGG 19 Private AUC = 0.936

Hijab et al.
[205] 2019 Classification Transfer learning based on VGG16 Private Acc = 97.4%

AUC = 0.98

Zhang et al.
[206] 2019 Classification Deep Polynomial Network (DPN) Private Acc = 95.6%

AUC = 0.961

Fujioka et al.
[207] 2020 Classification CNN Private AUC = 0.87
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Table 4. Cont.

Paper Year Task Model Dataset Evaluation

Wu et al.
[208] 2020 Classification Random Forest (RF) Private Acc = 86.97%

Wu et al.
[209] 2020 Classification Generalized Regression Neural

Network (GRNN) Private Acc = 87.78%
F1 score = 86.15%

Gong et al.
[210] 2020 Classification Multi-view Deep Neural Network

Support Vector Machine (MDNNSVM) Private Acc = 86.36%
AUC = 0.908

Moon et al.
[195] 2020 Classification VGGNet + ResNet + DenseNet

(Ensemble loss)
SNUH
BUSI

SNUH:
Acc = 91.1%

AUC = 0.9697
BUSI:

Acc = 94.62%
AUC = 0.9711

Zhang et al.
[211] 2020 Classification CNN Private AUC = 1

Yousef Kalaf
et al.
[212]

2021 Classification Modified VGG16 Private Acc = 93%
F1 score = 94%

Misra et al.
[213] 2022 Classification Transfer learning based on AlexNet

and ResNet Private Acc = 90%

Vakanski et al.
[214] 2020 Tumor

Segmentation CNN BUSI Acc = 98%
Dice score = 90.5%

Byra et al.
[215] 2020 Mass

Segmentation CNN Private Acc = 97%
Dice score = 82.6%

Singh et al.
[216] 2020 Tumor

Segmentation CNN Mendeley
UDIAT

Mendeley: Dice = 0.9376
UDIAT: Dice = 86.82%

Han et al.
[217] 2020 Lesion

Segmentation GAN Private Dice = 87.12%

Wang et al.
[218] 2021 Lesion

Segmentation Residual Feedback Network

1-Ultrasound-
cases.info and

BUSI
2- UDIAT

3- Radiopaedia

1-Dice = 86.91%
2-Dice = 81.79%

3-Dice = 87%

Wang et al.
[219] 2021 Segmentation CNN

Ultrasoundcases.info
BUSI

STUHospital

Ultrasoundcases:
Dice = 84.71%

BUSI: Dice = 83.76%
STUHospital: Dice = 86.52%

Li et al.
[220] 2022

Tumor
Segmentation +
Classification

DeepLab3 Private S: Dice = 77.3%
C: Acc = 94.8%

Byra et al.
[221] 2022

Mass
Segmentation +
Classification

Y-Net Private S: Dice = 64.0%
C: AUC = 0.87
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Figure 8. Example of a model architecture for breast cancer subtypes classification from US images
via CNN models [222].

3.2.3. Magnetic Resonance Imaging (MRI)

As explained in Section 2, MRI has higher sensitivity for breast cancer detection in
dense breasts [223] than MM and US images. However, the big difference between MRI
and MM or US images is that the MRI is a 3D scan, but MM and US are 2D images.
Moreover, MRI sequences are captured over time, increasing the MRI dimensionality to 4D
(dynamic contrast-enhanced (DCE)-MRI). This makes MRI images more challenging for DL
algorithms compared to MM and US images, as most of the current DL algorithms are built
for 2D images. One way to address this challenge is to convert the 3D image to 2D by either
dividing 3D MRIs into 2D slices [224,225] or using MIP to build a 2D representation [226].
Moreover, most DL algorithms have been developed for colored images, which are 3D
images whose third dimension represents the color channels. However, the MRIs are
grayscale images. Therefore, some developed MRI models put three consecutive slices of
grayscale MRI together and build a 3D image [227,228]. Some other approaches modify the
current 2D DL architecture to make them appropriate for MRI 3D scans [229].

All the above approaches have been used in lesion classification DL algorithms. For
example, [230] uses 2D slices of the ROIs as input to their CNN model. They obtained an
accuracy of 85% on their test dataset. The MIP technique is used in [231] which obtained an
AUC of 89.5%. In the study carried out by Zhou et al. [229], the authors put the grayscale
MRIs together and built 3D images for their DL methods. Their algorithm obtained an
AUC of 92%. In another study presented in [193], the proposed algorithm uses the actual
3D MRI scans obtaining an AUC of 85.9% by the 3D version of DenseNet [197]. It is worth
mentioning that the performance of 2D and 3D approaches cannot be compared since
they used different datasets. However, some studies compared their proposed methods
with radiologists’ interpretations [228,229]. Figure 9 shows a schematic of a framework for
cancer subtype classification with MRI.

Like in MM and US images, the DL methods have been widely used in lesion detection
and segmentation problems in MRI images. A CNN algorithm based on RetinaNet [232] has
been developed in [233] for detecting lesions from the 4D MR scans. Their method obtained
a sensitivity of 95%. One study [234] used a mask-guided hierarchical learning (MHL)
framework for breast tumor segmentation based on U-net architecture. Their method
achieved the Dice similarity coefficient (DSC) of 0.72 for lesion segmentation. In another
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work [235], the authors proposed a U-net-based CNN model called 3TP U-net for the
lesion segmentation task. Their algorithm obtained a Dice similarity coefficient of 61.24%.
Alternatively, the authors in [236] developed a CNN-based segmentation model by refining
the U-net architecture to segment the lesions in MRIs. Their proposed method achieved
a Dice similarity coefficient of 86.5%. It has to be noted that in most lesion segmentation
algorithms, there is a need for a mask that shows the pixels that belong to the breast as
ground truth for training. These masks can help the models to focus on the right place
and ignore the areas that do not have any information. Table 5 shows the list of recent
algorithms used for MRI images and their performances.

Figure 9. A model architecture for cancer subtypes prediction via ResNet 50 and CNN models from
MRI images [237]. Reprinted/adapted with permission from [237]. 2019, Elsevier.

Table 5. Summary of the studies that used MRI datasets.

Paper Year Task Model Dataset Evaluation

Ha et al. [238] 2019 Classification CNN Private Acc = 70%

Ha et al. [239] 2019 Classification CNN Private Acc = 88%

Fang et al. [240] 2019 Classification CNN Private Acc = 70.5%

Zheng et al. [241] 2020 Classification CNN TCIA Acc = 97.2%

Holste et al. [242] 2021 Classification Fusion Deep learning Private AUC = 0.9

Winkler et al. [243] 2021 Classification CNN Private ACC = 92.8%

Fujioka et al. [244] 2021 Classification CNN Private AUC = 0.89

Liu et al. [245] 2022 Classification Weakly ResNet-101 Private AUC = 0.92
ACC = 94%

Bie et al. [246] 2022 Classification CNN Private ACC = 92%
Specificity = 94%

Jing et al. [247] 2022 Classification U-NET and ResNet 34 Private AUC = 0.81

Wu et al. [248] 2022 Classification CNN Private Acc = 87.7%
AUC = 91.2%

Verburg et al. [249] 2022 Classification CNN Private AUC = 0.83

Dutta et al. [250] 2021 Tumor
Segmentation

Multi-contrast
D-R2UNet Private F1 score = 95%
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Table 5. Cont.

Paper Year Task Model Dataset Evaluation

Carvalho et al. [251] 2021 Tumor
Segmentation SegNet and UNet QIN Breast

DCE-MRI
Dice = 97.6%
IOU = 95.3%

Wang et al. [252] 2021 Lesion
Segmentation CNN Private Dice = 76.4%

Nowakowska et al. [253] 2022

Segmentation of
BPE area and

non-enhancing
tissue

CNN Private Dice = 76%

Khaled et al. [254] 2022 Lesion
segmentation 3D U-Net TCGA-BRCA Dice = 68%

Yue et al. [255] 2022 Segmentation Res_U-Net Private Dice = 89%

Rahimpour et al. [256] 2022 Tumor
Segmentation 3D U-Net Private Dice = 78%

Zhu et al. [257] 2022 Lesion Segmenta-
tion/Classification V-Net Private

S:
Dice = 86%

C:
Avg. AUC = 0.84

3.2.4. Histopathology

In contrast to other modalities, histopathology images are colored images that are
provided either as the whole-slide images (WSI) or the extracted image patches from the
WSI, i.e., ROIs that are extracted by pathologists. The histopathology images are a great
means of diagnosing breast cancer types that are impossible to find with radiology images,
i.e., MRIs. Moreover, these images have been used to detect cancer subtypes because of the
details they have about the tissue. Therefore, they are widely used with DL algorithms for
cancer detection. For example, Ref. [258] employed a CNN-based DL algorithm to classify
the histopathology images into four classes: normal tissue, benign lesion, in situ carcinoma,
and invasive carcinoma. They combined the classification results of all the image patches to
obtain the final image-wise classification. They also used their model to classify the images
into two classes, carcinoma, and non-carcinoma. An SVM has been trained on the features
extracted by a CNN to classify the images. Their method obtained an accuracy of 77.8%
on four-class classification and an accuracy of 83.3% on binary classification. In another
work proposed in [259], two CNN models were developed, one for predicting malignancy
and the other for predicting malignancy and image magnification levels simultaneously.
They used images of size 700 × 460 with different magnification levels. Their average
binary classification for benign/malignant is 83.25%. A novel framework was proposed
in [260] that uses a hybrid attention-based mechanism to classify histopathology images.
The attention mechanism helps to find the useful regions from raw images automatically.

The transfer learning approach has also been employed in analyzing histopathology
images since the histopathology image datasets suffer from the lack of a large amount
of data required for deep learning models. For example, the method developed in [261]
uses pretrained Inception-V3 [187] and Inception-ResNet-V2 [262] and fine-tunes them for
both binary and multiclass classification on histology images. Their approach obtained
an accuracy of 97.9% in binary classification and an accuracy of 92.07% in the multi-
classification task. In another work [263], the authors developed a framework for classifying
malignant and benign cells that extracted the features from images using GoogleNet,
VGGNet, and ResNet and then combined those features to use them in the classifier. Their
framework obtained an average accuracy of 97%. The authors in [264] used a fine-tuned
GoogleNet to extract features from the small patches of pathological images. The extracted
features were fed to a bidirectional long short-term memory (LSTM) layer for classification.
Their approach obtained an accuracy of 91.3%. Figure 10 shows the overview of the method
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proposed in [264]. GANs have also been combined with transfer learning to further increase
classification accuracy. In work carried out in [265], StyleGAN [266] and Pix2Pix [267]
were used to generate fake images. Then, VGG-16 and VGG-19 were fine-tuned to classify
images. Their proposed method achieved an accuracy of 98.1% in binary classification.

Figure 10. Prediction of breast cancer grades from extracted patches from histopathology images via
patch-wise LSTM architecture [264]. Reprinted/adapted with permission from [264]. 2019, Elsevier.

Histopathology images have been widely used for nuclei detection and segmentation.
For instance, in the work presented in [268], a novel framework called HASHI was devel-
oped that automatically detects invasive breast cancer in the whole slide images. Their
framework obtained a Dice coefficient of 76% on their independent test dataset. In the other
work performed in [269] for nuclei detection, a series of handcrafted features and features
extracted from CNN were combined for better detection. The method used three different
datasets and obtained an F-score of 90%. The authors in [270] presented a fully automated
workflow for nuclei segmentation in histopathology images based on deep learning and the
morphological properties extracted from the images. Their workflow achieved an accuracy
and F1-score of 95.4% and 80.5%, respectively. In another work by [271], the authors first
extracted the small patches from the high-resolution whole slides, then each small patch
was segmented using a CNN along with an encoder-decoder; finally, to combine the local
segmentation result, they used an improved merging strategy based on a fully connected
conditional random field. Their algorithm obtained a segmentation accuracy of 95.6%.
Table 6 shows the performance of recently developed DL methods in histology images.

3.2.5. Positron Emission Tomography (PET)/Computed Tomography (CT)

PET/CT is a nuclear medicine imaging technique that helps increase the effectiveness
of detecting and classifying axillary lymph nodes and distant staging [272]. However, they
have trouble detecting early-stage breast cancer. Therefore, it is not surprising that PET/CT
is barely used with DL algorithms. However, PET/CT has some important applications that
DL algorithms can be applied. For example, as discussed in [273], breast cancer is one of the
reasons for most cases of bone metastasis. A CNN-based algorithm was developed in [274]
to detect breast cancer metastasis on whole-body scintigraphy scans. Their algorithm
obtained 92.5% accuracy in the binary classification of whole-body scans.

In the other application, PET/CT can be used to quantify the whole-body metabolic
tumor volume (MTV) to reduce the labor and cost of obtaining MTV. For example, in
the work presented in [275], a model trained on the MTV of lymphoma and lung cancer
patients is used to detect the lesions in PET/CT scans of breast cancer patients. Their
algorithm could detect 92% of the measurable lesions.
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Table 6. The summary of the studies that used histopathology datasets.

Paper Year Task Model Dataset Evaluation

Zainudin et al. [276] 2019 Breast Cancer Cell
Detection/Classification CNN MITOS

Acc = 84.5%
TP = 80.55%
FP = 11.6%

Li et al. [277] 2019 Breast Cancer Cell
Detection/Classification Deep cascade CNN

MITOSIS
AMIDA13
TUPAC16

MITOSIS:
F-score = 56.2%

AMIDA13:
F-score = 67.3%

TUPAC16:
F-score = 66.9%

Das et al. [278] 2019 Breast Cancer Cell
Detection/Classification CNN MITOS

ATYPIA14

MITOS:
F1-score = 84.05%

ATYPIA14:
F1-score = 59.76%

Gour et al. [279] 2020 Classification CNN BreakHis Acc = 92.52%
F1 score = 93.45%

Saxena et al. [280] 2020 Classification CNN BreakHis Avg. Acc = 88%

Hirra et al. [281] 2021 Classification DBN DRYAD Acc = 86%

Senan et al. [282] 2021 Classification CNN BreakHis Acc = 95%
AUC = 99.36%

Zewdie et al. [283] 2021 Classification CNN
Private

BreakHis
Zendo

Binary Acc = 96.75%
Grade classification Acc =

93.86%

Kushwaha et al. [284] 2021 Classification CNN BreakHis Acc = 97%

Gheshlaghi et al. [285] 2021 Classification Auxiliary Classifier
GAN BreakHis

Binary Acc = 90.15%
Sub-type classification Acc

= 86.33%

Reshma et al. [286] 2022 Classification Genetic Algorithm with
CNN BreakHis Acc = 89.13%

Joseph et al. [287] 2022 Classification CNN BreakHis Avg. Multiclass Acc = 97%

Ahmad et al. [288] 2022 Classification CNN BreakHis Avg. Binary Acc = 99%
Avg. Multiclass Acc = 95%

Mathew et al. [289] 2022 Breast Cancer Cell
Detection/Classification CNN ATYPIA

MITOS F1 score = 61.91%

Singh and Kumar [290] 2022 Classification Inception ResNet BHI
BreakHis

BHI:
Acc = 85.21%

BreakHis:
Avg. Acc = 84%

Mejbri et al. [291] 2019 Tissue-level
Segmentation DNNs Private

U-Net: Dice = 86%,
SegNet: Dice = 87%,

FCN: Dice = 86%,
DeepLab: Dice = 86%

Guo et al. [292] 2019 Cancer Regions
Segmentation

Transfer learning based
on Inception-V3 and

ResNet-101
Camelyon16 IOU = 80.4%

AUC = 96.2%

Priego-Torres et al. [271] 2020 Tumor Segmentation CNN Private Acc = 95.62%
IOU = 92.52%

Budginaitė et al. [293] 2021 Cell Nuclei Segmentation Micro-Net Private Dice = 81%

Pedersen et al. [294] 2022 Tumor Segmentation CNN Norwegian cohort [295] Dice = 93.3%

Khalil et al. [296] 2022 Lymph node
Segmentation CNN Private F1 score = 84.4%

IOU = 74.9%

4. Discussion

Breast cancer plays a crucial role in the mortality of women in the world. Cancer
detection in its early stage is an essential task to reduce mortality. Recently, many imaging
modalities have been used to give more detailed insights into breast cancer. However,
manual analysis of these imaging modalities with a huge number of images is a difficult
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and time-consuming task leading to inaccurate diagnoses and an increased false-detection
rate. Thus, to tackle these problems, an automated approach is needed. The most effective
and reliable approach for medical image analysis is CAD. CAD systems have been designed
to help physicians to reduce their errors in analyzing medical images. A CAD system
highlights the suspicious features in images (e.g., masses) and helps radiologists to reduce
false-negative readings. Moreover, CAD systems usually detect more false features than
true marks, and it is the radiologist’s responsibility to evaluate the results. This charac-
teristic of CAD systems increases the reading time and limits the number of cases that
radiologists can evaluate. Recently, the advancement of AI, especially DL-based methods,
could effectively speed up the image analysis process and help radiologists in early breast
cancer diagnosis.

Considering the importance of DL-based CAD systems for breast cancer detection
and diagnosis, in this paper, we have discussed the applications of different DL algorithms
in breast cancer detection. We first reviewed the imaging modalities used for breast
cancer screening and diagnosis. Besides a comprehensive discussion, we discussed the
advantage and limitations of each imaging modality and summarize the public datasets
available for each modality with the links to the datasets. We then reviewed the recent
DL algorithms used for breast imaging analysis along with the detail of their datasets and
results. The studies presented promising results from DL-based CAD systems. However,
the DL-based CAD tools still face many challenges that prohibit them from clinical usage.
Here, we discussed some of these challenges as well as the future direction for cancer
detection studies.

One of the main obstacles to having a robust DL-based CAD tool is the cost of collecting
medical images. The medical images used for DL algorithms should contain reliable
annotated images from different patients. Data collection would be very costly for sufficient
abnormal data compared to normal cases since the number of abnormal cases is much
lower than the normal cases (e.g., several abnormal cases per thousand patients in the
breast cancer screening population). The data collection also depends on the number of
patients that takes a specific examination and the availability of equipment and protocols
in different clinical settings. For example, MM datasets are usually very large datasets,
including thousands of patients. However, the MRI or PET/CT datasets contain much fewer
patients. Due to the existence of a large public dataset for MM, much more DL algorithms
have been developed and validated for the MM modality than other datasets. One way to
create a big dataset for different image modalities is multi-institutional collaboration. The
dataset obtained from these collaborations covers a large group of patients with different
characteristics, different imaging equipment, and clinical settings and protocols. These
datasets make the DL algorithms more robust and reliable.

Currently available medical image datasets usually contain a small amount of data. On
the other hand, employing DL and exploiting its capabilities on a small amount of training
data is challenging. Because the DL algorithms should be trained on a large dataset to have
a good performance. Some possible solutions can help to overcome the problems related to
small datasets. For example, the datasets from different medical centers can be combined
to create a bigger one. However, there are usually some patient privacy policies that should
be addressed. Another solution to this problem is using federated learning [297] in which
the algorithm is trained on datasets locally, but it should travel between the centers and be
trained on the datasets in each center. The federated learning algorithms are not popular
yet, and they are not widely implemented. In most cases, the training data cannot be
publicly shared; therefore, there is no way to evaluate the DL methods and regenerate
the results in the studies. Many studies used transfer learning to overcome the problem
of small datasets. Some of the studies used a pre-trained model to extract features from
the medical images and then, they used the extracted features to train a DL model for
target tasks. However, other studies initialized their model with pre-trained model weights
and then fine-tuned their models with the medical image datasets. Although transfer
learning shows some improvement for the small datasets, the performance of the target
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model highly depends on the difference between the characteristics of source datasets and
target datasets. In these cases, a negative transfer [298] may occur in which the source
domain reduces the learning performance in the target domain. Some studies used data
augmentation rather than transfer learning to increase the size of the dataset artificially and
improve the model performance. However, one should note that augmenting data does
not introduce the independent features to the model; therefore, it does not provide much
new knowledge for the DL model compared to new independent images.

The shortage of datasets with comprehensive and fully labeled/annotated data is also
another challenge that DL-based CAD systems face. Most of the DL methods are supervised
algorithms, and they need fully labeled/annotated datasets. However, creating a large
fully annotated dataset is a very challenging task since annotating medical images is time-
consuming and may have human errors. To avoid the need for annotated datasets, some
papers used unsupervised algorithms, but they obtained less accurate results compared to
supervised algorithms.

Another important challenge is the generalizability of the DL algorithms. Most of the
proposed approaches work on the datasets obtained with specific imaging characteristics
and cannot be used for the datasets obtained from different populations, different clinical
settings, or different imaging equipment and protocols. This is an obstacle to the wide use
of AI methods in cancer detection in medical centers. Each health clinic should design and
conduct a testing protocol for DL-based CAD systems using the data obtained from the local
patient population before any clinical usage of these systems. During the testing period,
the user should find the weaknesses and strengths of the system based on the output of
the system for different input cases. The user should know that what is the characteristics
of the failed and correct output and recognize when the system makes mistake and when
it works fine. This testing procedure not only evaluates DL-based CAD models but also
teaches the user the best way to use DL-based CAD systems.

Another limitation can be the interpretability of DL algorithms. Most DL algorithms
are like a black box, and there are no suitable explanations for the decision, and feature
selection happens during the training and learning processes. Radiologists usually do
not prefer these uninterpretable DL algorithms because they need to understand the
physical meaning of the decisions taken by the algorithms and which parts of images are
highly discriminative. Recently, some DL-based algorithms such as DeepSHAP [299] were
introduced to define an interpretable model to give more insight into the decision-making
of DL algorithms in medical image analysis. Therefore, to increase physicians’ confidence
and reliability of the decision made by DL tools, the utilization of interpretable approaches
and proper explanation of DL algorithms is required for breast cancer analysis, helping
widely used DL technology in clinical care applications such as breast cancer analysis.

DL algorithms show outstanding performance in analyzing imaging data. However,
as discussed, there are still many challenges that they face. Besides DL algorithms, some
studies show that using omics data instead of imaging data may lead to higher classification
accuracy [108,300]. The omics data contain fewer but more effective features than imaging
data. Moreover, the DL methods may extract the features from the images that are not
relevant to the final label and those features may decrease the model performance. On the
other hand, processing omics data is more expensive than image processing. Moreover,
there are much more algorithms available for image processing than omics processing.
Additionally, there are much more imaging data available than omics data.

5. Conclusions

Cancer detection in its early stage can improve the survival rate and reduce mortality.
The rapid developments in deep learning-based techniques in medical image analysis algo-
rithms along with the availability of large datasets and computational resources made it
possible to improve breast cancer detection, diagnosis, prognosis, and treatment. Moreover,
due to the capability of deep learning algorithms particularly CNNs, they have been very
popular among the research community. In this research, comprehensive detail of the most
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recently employed deep learning methods is provided for different image modalities in
different applications (e.g., classification, and segmentation). Despite outstanding perfor-
mance by deep learning methods, they still face many challenges that should be addressed
before deep learning can eventually influence clinical practices. Besides the challenges,
ethical issues related to the explainability and interpretability of these systems need to be
considered before deep learning can be expanded to its full potential in the clinical breast
cancer imaging practice. Therefore, it is the responsibility of the research community to
make the deep learning algorithms fully explainable before considering these systems as
decision-making candidates in clinical practice.
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244. Işın, A.; Direkoğlu, C.; Şah, M. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia
Comput. Sci. 2016, 102, 317–324. [CrossRef]

245. Liu, M.Z.; Swintelski, C.; Sun, S.; Siddique, M.; Desperito, E.; Jambawalikar, S.; Ha, R. Weakly Supervised Deep Learning
Approach to Breast MRI Assessment. Acad. Radiol. 2021, 29, S166–S172. [CrossRef] [PubMed]

246. Bie, C.; Li, Y.; Zhou, Y.; Bhujwalla, Z.M.; Song, X.; Liu, G.; van Zijl, P.C.; Yadav, N.N. Deep learning-based classification of
preclinical breast cancer tumor models using chemical exchange saturation transfer magnetic resonance imaging. NMR Biomed.
2022, 35, e4626. [CrossRef]

247. Jing, X.; Wielema, M.; Cornelissen, L.J.; van Gent, M.; Iwema, W.M.; Zheng, S.; Sijens, P.E.; Oudkerk, M.; Dorrius, M.D.; van
Ooijen, P. Using deep learning to safely exclude lesions with only ultrafast breast MRI to shorten acquisition and reading time.
Eur. Radiol. 2022. [CrossRef] [PubMed]

248. Wu, Y.; Wu, J.; Dou, Y.; Rubert, N.; Wang, Y.; Deng, J. A deep learning fusion model with evidence-based confidence level analysis
for differentiation of malignant and benign breast tumors using dynamic contrast enhanced MRI. Biomed. Signal Process. Control
2021, 72, 103319. [CrossRef]

249. Verburg, E.; van Gils, C.H.; van der Velden, B.H.M.; Bakker, M.F.; Pijnappel, R.M.; Veldhuis, W.B.; Gilhuijs, K.G.A. Deep Learning
for Automated Triaging of 4581 Breast MRI Examinations from the DENSE Trial. Radiology 2022, 302, 29–36. [CrossRef] [PubMed]

250. Dutta, K.; Roy, S.; Whitehead, T.; Luo, J.; Jha, A.; Li, S.; Quirk, J.; Shoghi, K. Deep Learning Segmentation of Triple-Negative Breast
Cancer (TNBC) Patient Derived Tumor Xenograft (PDX) and Sensitivity of Radiomic Pipeline to Tumor Probability Boundary.
Cancers 2021, 13, 3795. [CrossRef]

251. Carvalho, E.D.; Silva, R.R.V.; Mathew, M.J.; Araujo, F.H.D.; de Carvalho Filho, A.O. Tumor Segmentation in Breast DCE- MRI
Slice Using Deep Learning Methods. In Proceedings of the 2021 IEEE Symposium on Computers and Communications (ISCC),
Athens, Greece, 5–8 September 2021; pp. 1–6. [CrossRef]

252. Wang, H.; Cao, J.; Feng, J.; Xie, Y.; Yang, D.; Chen, B. Mixed 2D and 3D convolutional network with multi-scale context for lesion
segmentation in breast DCE-MRI. Biomed. Signal Process. Control 2021, 68, 102607. [CrossRef]

253. Nowakowska, S.; Borkowski, K.; Ruppert, C.; Hejduk, P.; Ciritsis, A.; Landsmann, A.; Macron, M.; Berger, N.; Boss, A.; Rossi, C.
Deep Learning for Automatic Segmentation of Background Parenchymal Enhancement in Breast MRI. In Proceedings of the
Medical Imaging with Deep Learning (MIDL), Zürich, Switzerland, 6–8 July 2022.

254. Khaled, R.; Vidal, J.; Vilanova, J.C.; Martí, R. A U-Net Ensemble for breast lesion segmentation in DCE MRI. Comput. Biol. Med.
2021, 140, 105093. [CrossRef]

255. Yue, W.; Zhang, H.; Zhou, J.; Li, G.; Tang, Z.; Sun, Z.; Cai, J.; Tian, N.; Gao, S.; Dong, J.; et al. Deep learning-based automatic
segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging. Front. Oncol. 2022, 12, 984626.
[CrossRef]

256. Rahimpour, M.; Martin, M.-J.S.; Frouin, F.; Akl, P.; Orlhac, F.; Koole, M.; Malhaire, C. Visual ensemble selection of deep
convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI. Eur. Radiol. 2022.
[CrossRef]

257. Zhu, J.; Geng, J.; Shan, W.; Zhang, B.; Shen, H.; Dong, X.; Liu, M.; Li, X.; Cheng, L. Development and validation of a deep learning
model for breast lesion segmentation and characterization in multiparametric MRI. Front. Oncol. 2022, 12, 946580. [CrossRef]
[PubMed]

258. Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Beck, A.H. Deep learning for identifying metastatic breast cancer. arXiv 2016,
arXiv:1606.05718.

259. Bayramoglu, N.; Kannala, J.; Heikkilä, J. Deep learning for magnification independent breast cancer histopathology image
classification. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancún, Mexico, 4–8
December 2016. [CrossRef]

260. Xu, B.; Liu, J.; Hou, X.; Liu, B.; Garibaldi, J.; Ellis, I.O.; Green, A.; Shen, L.; Qiu, G. Look, investigate, and classify: A deep hybrid
attention method for breast cancer classification. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019);
IEEE: Piscataway, NJ, USA, 2019; pp. 914–918.

261. Xie, J.; Liu, R.; Luttrell, J.I.; Zhang, C. Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Front. Genet.
2019, 10, 80. Available online: https://www.frontiersin.org/articles/10.3389/fgene.2019.00080 (accessed on 7 August 2022).
[CrossRef] [PubMed]

262. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on
Learning. arXiv 2016, arXiv:1602.07261. [CrossRef]

405



Cancers 2022, 14, 5334

263. Khan, S.; Islam, N.; Jan, Z.; Din, I.U.; Rodrigues, J.J.P.C. A novel deep learning based framework for the detection and classification
of breast cancer using transfer learning. Pattern Recognit. Lett. 2019, 125, 1–6. [CrossRef]

264. Yan, R.; Ren, F.; Wang, Z.; Wang, L.; Zhang, T.; Liu, Y.; Rao, X.; Zheng, C.; Zhang, F. Breast cancer histopathological image
classification using a hybrid deep neural network. Methods 2019, 173, 52–60. [CrossRef]

265. Thuy, M.B.H.; Hoang, V.T. Fusing of deep learning, transfer learning and gan for breast cancer histopathological image classifi-
cation. In Proceedings of the International Conference on Computer Science, Applied Mathematics and Applications, Hanoi,
Vietnam, 19–20 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 255–266.

266. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. arXiv 2019. [CrossRef]
267. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976.
[CrossRef]

268. Cruz-Roa, A.; Gilmore, H.; Basavanhally, A.; Feldman, M.; Ganesan, S.; Shih, N.; Tomaszewski, J.; Madabhushi, A.; González, F.
High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks:
Application to invasive breast cancer detection. PLoS ONE 2018, 13, e0196828. [CrossRef]

269. Albarqouni, S.; Christoph, B.; Felix, A.; Vasileios, B.; Stefanie, D.; Nassir, N. Aggnet: Deep learning from crowds for mitosis
detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321. [CrossRef]

270. Naylor, P.; Laé, M.; Reyal, F.; Walter, T. Nuclei segmentation in histopathology images using deep neural networks. In Proceedings
of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017;
pp. 933–936. [CrossRef]

271. Priego-Torres, B.M.; Sanchez-Morillo, D.; Fernandez-Granero, M.A.; Garcia-Rojo, M. Automatic segmentation of whole-slide
H&E stained breast histopathology images using a deep convolutional neural network architecture. Expert Syst. Appl. 2020,
151, 113387. [CrossRef]

272. Ming, Y.; Wu, N.; Qian, T.; Li, X.; Wan, D.Q.; Li, C.; Li, Y.; Wu, Z.; Wang, X.; Liu, J.; et al. Progress and Future Trends in PET/CT
and PET/MRI Molecular Imaging Approaches for Breast Cancer. Front. Oncol. 2020, 10, 1301. [CrossRef] [PubMed]

273. Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Gonçalves, F. Bone metastases: An overview. Oncol. Rev. 2017,
11, 321. [PubMed]

274. Papandrianos, N.; Papageorgiou, E.; Anagnostis, A.; Feleki, A. A Deep-Learning Approach for Diagnosis of Metastatic Breast
Cancer in Bones from Whole-Body Scans. Appl. Sci. 2020, 10, 997. [CrossRef]

275. Weber, M.; Kersting, D.; Umutlu, L.; Schäfers, M.; Rischpler, C.; Fendler, W.P.; Buvat, I.; Herrmann, K.; Seifert, R. Just another
“Clever Hans”? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer. Eur. J. Pediatr. 2021, 48,
3141–3150. [CrossRef] [PubMed]

276. Zainudin, Z.; Shamsuddin, S.M.; Hasan, S. Deep Layer CNN Architecture for Breast Cancer Histopathology Image Detection.
In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2019),
Cairo, Egypt, 28–30 March 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 43–51. [CrossRef]

277. Li, C.; Wang, X.; Liu, W.; Latecki, L.J.; Wang, B.; Huang, J. Weakly supervised mitosis detection in breast histopathology images
using concentric loss. Med. Image Anal. 2019, 53, 165–178. [CrossRef] [PubMed]

278. Das, D.K.; Dutta, P.K. Efficient automated detection of mitotic cells from breast histological images using deep convolution
neutral network with wavelet decomposed patches. Comput. Biol. Med. 2018, 104, 29–42. [CrossRef]

279. Gour, M.; Jain, S.; Kumar, T.S. Residual learning based CNN for breast cancer histopathological image classification. Int. J. Imaging
Syst. Technol. 2020, 30, 621–635. [CrossRef]

280. Saxena, S.; Shukla, S.; Gyanchandani, M. Pre-trained convolutional neural networks as feature extractors for diagnosis of breast
cancer using histopathology. Int. J. Imaging Syst. Technol. 2020, 30, 577–591. [CrossRef]

281. Hirra, I.; Ahmad, M.; Hussain, A.; Ashraf, M.U.; Saeed, I.A.; Qadri, S.F.; Alghamdi, A.M.; Alfakeeh, A.S. Breast Cancer
Classification from Histopathological Images Using Patch-Based Deep Learning Modeling. IEEE Access 2021, 9, 24273–24287.
[CrossRef]

282. Senan, E.M.; Alsaade, F.W.; Al-mashhadani, M.I.A.; Aldhyani, T.H.H.; Al-Adhaileh, M.H. Classification of Histopathological
Images for Early Detection of Breast Cancer Using Deep Learning. J. Appl. Sci. Eng. 2021, 24, 323–329. [CrossRef]

283. Zewdie, E.T.; Tessema, A.W.; Simegn, G.L. Classification of breast cancer types, sub-types and grade from histopathological
images using deep learning technique. Heal. Technol. 2021, 11, 1277–1290. [CrossRef]

284. Kushwaha, S.; Adil, M.; Abuzar, M.; Nazeer, A.; Singh, S.K. Deep learning-based model for breast cancer histopathology image
classification. In Proceedings of the 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM),
London, UK, 28–30 April 2021; pp. 539–543. [CrossRef]

285. Gheshlaghi, S.H.; Kan, C.N.E.; Ye, D.H. Breast Cancer Histopathological Image Classification with Adversarial Image Synthesis.
In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
Virtual Conference, 1–5 November 2021; pp. 3387–3390. [CrossRef]

286. Reshma, V.K.; Arya, N.; Ahmad, S.S.; Wattar, I.; Mekala, S.; Joshi, S.; Krah, D. Detection of Breast Cancer Using Histopathological
Image Classification Dataset with Deep Learning Techniques. BioMed Res. Int. 2022, 2022, e8363850. [CrossRef] [PubMed]

287. Joseph, A.A.; Abdullahi, M.; Junaidu, S.B.; Ibrahim, H.H.; Chiroma, H. Improved multi-classification of breast cancer histopatho-
logical images using handcrafted features and deep neural network (dense layer). Intell. Syst. Appl. 2022, 14, 200066. [CrossRef]

406



Cancers 2022, 14, 5334

288. Ahmad, N.; Asghar, S.; Gillani, S.A. Transfer learning-assisted multi-resolution breast cancer histopathological images classifica-
tion. Vis. Comput. 2021, 38, 2751–2770. [CrossRef]

289. Mathew, T.; Ajith, B.; Kini, J.R.; Rajan, J. Deep learning-based automated mitosis detection in histopathology images for breast
cancer grading. Int. J. Imaging Syst. Technol. 2022, 32, 1192–1208. [CrossRef]

290. Singh, S.; Kumar, R. Breast cancer detection from histopathology images with deep inception and residual blocks. Multimed. Tools
Appl. 2021, 81, 5849–5865. [CrossRef]

291. Mejbri, S.; Franchet, C.; Reshma, I.A.; Mothe, J.; Brousset, P.; Faure, E. Deep Analysis of CNN Settings for New Cancer whole-slide
Histological Images Segmentation: The Case of Small Training Sets. In Proceedings of the 6th International conference on
BioImaging (BIOIMAGING 2019), Prague, Czech Republic, 22–24 February 2019; pp. 120–128. [CrossRef]

292. Guo, Z.; Liu, H.; Ni, H.; Wang, X.; Su, M.; Guo, W.; Wang, K.; Jiang, T.; Qian, Y. A Fast and Refined Cancer Regions Segmentation
Framework in Whole-slide Breast Pathological Images. Sci. Rep. 2019, 9, 882. [CrossRef]
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