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Preface

Systems thinking and modeling have been essential approaches to identifying the drivers of

health outcomes and analyzing their complex interrelationships, paving the way to interventions

that improve outcomes while minimizing unintended consequences. These methods support

interdisciplinary teams in representing and navigating complex systems, thus asking essential

‘what-if’ questions and serving numerous other goals, from guiding data collection efforts

to comparing the perspectives of stakeholders or validating theories. This volume features

methodological innovations and applications for several determinants and key global health priority

areas.

Priority determinants include, but are not limited to, social determinants (e.g., health

inequalities), climate change (through its impact on health), behavioral factors, and facets of the

healthcare system ranging from primary services to secondary prevention (i.e., screening and

case-finding) and tertiary cases (e.g., treatment optimization, resource allocation). Systems thinking

and modeling can shed light on how such determinants ultimately shape health outcomes and/or the

cost-effectiveness of an intervention. The contributions of this volume touch on several determinants,

collectively providing a comprehensive overview of the challenges and applications of systems

thinking to public health.

This volume will benefit researchers in the fields of public health, systems thinking or modeling.

The content is accessible to early-career researchers, such as graduate students, who may choose

specific chapters within their areas of interest as part of identifying open challenges to inspire their

own research.

Philippe J. Giabbanelli and Andrew Page

Editors
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Editorial

Systems Thinking and Models in Public Health
Philippe J. Giabbanelli 1,* and Andrew Page 2

1 Department of Computer Science & Software Engineering, Miami University, Oxford, OH 45056, USA
2 Translational Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
* Correspondence: giabbanelli@gmail.com

In responding to population health challenges, epidemiologists want to identify causal
associations between an exposure (e.g., tobacco smoking) and disease (e.g., lung cancer) so
we can intervene to improve human health. In epidemiology, these kinds of ‘causal’ ques-
tions are addressed by comparing exposed and unexposed groups to identify individual
component causes (or ‘risk factors’) of disease. This counterfactual approach aims to hold
everything constant except the factor of interest and, if successfully achieved, this can tell us
if ‘X causes Y’. However, a focus on single risk factors necessarily overlooks the complexity
and multifactorial nature of most health outcomes, particularly chronic disease outcomes.
The causes of disease can operate at the macro or micro level, across the life course, and
they are also inextricably intertwined with social, economic and political environments.
The single ‘risk factor’ approach to understanding disease outcomes is limited in the face
of this complexity [1–3]. Similarly, demonstrating that an intervention works in a highly
controlled study setting does not necessarily mean that it will work in the same way when
implemented in a dynamic population in the presence of these other complex determinants
of disease.

There are alternative methods that explicitly characterize and model complex systems,
and epidemiologists and public health practitioners are increasingly working in multidisci-
plinary groups to apply these methods to capture the complexity and dynamics of human
populations and systems. Computational simulation and systems thinking—approaches
used extensively in other disciplines such as ecology, engineering and computer science to
guide decision making and priorities resources—can capture the dynamics and complex
determinants of disease. These approaches use a combination of existing primary data
sources, evidence from the literature, stakeholder engagement and dynamic hypothesis
testing to better characterize how an exposure or an intervention is likely to affect disease
outcomes in populations. Several reviews have highlighted the strong interest in applying
systems thinking and modeling to public health [4–6].

Models allow the testing of ‘what if’ scenarios and can be used to determine a course
of action more efficiently than by a typical ‘trial-and-error’ approach to the implementation
and evaluation of population health interventions. Framed as ‘decision support tools’, mod-
els can help local and national decision makers determine where best to target investments
and with what intensity so that the impact of limited resources can be optimized [7–9].
The greatest value of computational simulation is achieved when it is embedded in the
program evaluation cycle and used not only as a decision support tool for policy or service
planning, but also to prospectively support implementation, monitoring and evaluation.
These tools can help identify data collection priorities, realistic targets for impact and
important indicators for evaluating progress against those targets.

We present a series of articles that demonstrate the importance of systems thinking
and the use of computational simulation models to address public health questions. The
articles in this issue address a diversity of contemporary topics in public health, and also
demonstrate how public health problems can be examined using a range of complementary
modelling approaches, including system dynamics models, agent based models, and
discrete event simulation models.
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Shojaati and Osgood [Contribution 1] and Shojaati et al. [Contribution 2] investigate
models of community-based management of opioid use and its impact on treatment re-
tention and opioid-related harm [Contribution 2], and also the impact of social influence
and social networks on illicit opioid use among young people during and after periods
of school closures using agent based models [Contribution 1]. A series of articles focus
on health services use, in particular emergency department (ED) use and hospital ad-
missions, including the modeling of patient flow and wait times [Contribution 3], the
optimisation of limited healthcare resources [Contributions 4–7], and the benefits of using
systems thinking approaches to inform the implementation of triage and referral systems
[Contribution 8]. Goldberg et al. [Contribution 9] present findings from a system dynamics
model of suicidal behaviour, and investigate the potential impacts of combinations of
population and health service interventions to prevent suicide and attempted suicide. Loo
et al. [Contribution 10] also use system dynamics modeling to historically evaluate the
prevention and management of cholera outbreaks in Yemen.

The central importance of participatory approaches involving stakeholders and model
users is also highlighted in this Special Issue, in terms of understanding the system and in
the design, parameterization and implementation of models for decision support in public
health [Contributions 3, 8, 9]. Co-design and consultation is key for tools to have policy
and planning relevance [Contribution 11]. This is explicitly demonstrated by Tian et al.
[Contribution 3] in the development and use of a multi-criteria framework to identify and
prioritize interventions to reduce ED wait times. The authors provide a rich description
of the processes related to involving stakeholders in prioritization of model scope and
refining the model thanks iterative feedback with stakeholders. Finally, we also include
a scoping review of emerging infectious disease (EID) in the wake of the COVID-19 pan-
demic [Contribution 12], which emphasises the ongoing importance of ensuring that our
analytic approaches are informed by current evidence. In this review, Mansouri et al.
[Contribution 12] describe the types of systems-oriented approaches that have been used
to investigate EIDs. The authors emphasize the importance of the quality, geographic
specificity, and timeliness of data needed.

Author Contributions: P.J.G. and A.P. worked together throughout the entire editorial process of
this Special Issue. They reviewed, edited, and finalized this manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Simulation and Goal Programming Approach to Improve
Public Hospital Emergency Department Resource Allocation
Ateekh Ur Rehman 1,* , Yusuf Siraj Usmani 1 , Syed Hammad Mian 2 , Mustufa Haider Abidi 2

and Hisham Alkhalefah 2

1 Department of Industrial Engineering, College of Engineering, King Saud University,
Riyadh 11421, Saudi Arabia; yusmani@ksu.edu.sa

2 Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia;
smien@ksu.edu.sa (S.H.M.); mabidi@ksu.edu.sa (M.H.A.); halkhalefah@ksu.edu.sa (H.A.)

* Correspondence: arehman@ksu.edu.sa

Abstract: Efficient and effective operation of an emergency department is necessary. Since patients
can visit the emergency department without making an appointment, the emergency department
always treats a lot of critical patients. Moreover, the severity of the ailment determines which patients
should be prioritized. Therefore, the patients are greatly impacted as a consequence of longer waiting
times caused primarily by incorrect resource allocation. It frequently happens that patients leave the
hospital or waiting area without treatment. Certainly, the emergency department’s operation can be
made more effective and efficient by examining its work and making modifications to the number
of resources and their allocation. This study, therefore, investigates the emergency department of
a public hospital to improve its functioning. The goal of this research is to model and simulate an
emergency department to minimize patient wait times and also minimize the number of patients
leaving the hospital without service. A comprehensive simulation model is developed using the
Arena simulation platform and goal programming is undertaken to conduct simulation optimization
and resource allocation analysis. Hospital management should realize that all resources must be
prioritized rather than just focusing on one or two of them. The case scenario (S3) in this study that
implements goal programming with variable weights yields the most favorable results. For example,
it is observed in this instance that the number of patients leaving the system without service drops by
61.7%, and there is also a substantial drop in waiting times for various types of patients.

Keywords: simulation Arena; emergency department; hospital; resource allocation; goal programming

1. Introduction

The healthcare sector has recently undergone substantial transformations. As a result,
hospitals as evolving systems must constantly adapt to meet the needs of the modern
healthcare system. Hospitals must not only innovate to deliver superior treatment at
a cheaper price, but also boost administrative reliability and effectiveness. Healthcare
modeling and simulation is one such contemporary technique which can offer a number
of benefits, such as lowering expenditures and improving patient satisfaction [1–4]. In
any hospital, an emergency department is a critical section because it cares for patients
around the clock. The patients in the emergency department have to undergo various
phases [5] such as arrival registration, data retrieving, triage assignment, nurse assignment,
doctor evaluation, imaging, and laboratory tests, planning treatment, follow-up for the
availability of inpatient beds, and physicians, and finally release or admittance. It is also
evident that any emergency department process delays at a specific phase build pressure
on the systems and their resources. Thus, simulation along with an optimization tool is an
ideal approach that can be adopted by hospital management to enhance the working of the
emergency department. Therefore, the goal of this work is to combine simulation with the
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multi-objective goal programming technique to minimize the waiting times of the patients
visiting the emergency department. A simulation model of an emergency department from
a public hospital (King Khaled University Hospital, KKUH, Riyadh) in Saudi Arabia is
developed and analyzed using the Arena® Simulation Software, version 16.2 (Rockwell
Automation). Subsequently, Arena’s OptQuest tool is deployed to run multiple simulation
scenarios created by the goal programming approach. Certainly, when simulation and goal
programming are integrated, it is possible to take advantage of the unique benefits of both
approaches and exploit their full potential. For example, in this work, the simulation model
records and replicates patient movement, while goal programming accomplishes several
objectives across a spectrum of opposing requirements. The objective of this research is
also to assist hospital administration in better understanding patient movement so that
they can make informed and better decisions in an emergency department. The seriousness
of the case determines which patients should be prioritized while treating both critical
and non-critical patients. A department’s ability to function properly depends on the
assigned number of doctors, nurses, beds, etc. The financial burden on a hospital cannot be
unfairly increased by increasing the amount of resources, and, on the other hand, patients
would suffer if there were to be fewer resources available. It is thus emphasized that
there is a necessity of identifying an adequate number of resources and their allocation.
Additionally, it has been noted that patients frequently leave hospitals or waiting rooms
unsupervised and do not return to the same facility when waiting periods are great. Hence,
the appropriate assignment of resources would also minimize the waiting times and thus
the number of patients leaving the queue untreated. The details of resources, distinct
entities, and their interactions and flow within the model; relevant data collection; model
initialization; and goal programming model, the various performance measures and an
approach to find an optimal solution that satisfies those targets are presented here, in the
following sections and sub-sections.

2. Background

The application of simulation to research various elements of hospital operations
has a long history in the scientific community. Indeed, academics and researchers have
effectively used simulation and other mathematical-based approaches to address an array
of hospital-related issues [6–13]. For instance, Chouba et al. [14] built a simulation model of
the emergency department and minimized patient average waiting time. They stated that
the quality of treatment could be improved by making optimal use of the resources, which,
according to the authors, are a key component. Similarly, Feng et al. [15] observed that
due to the hindered access to medical supplies, optimizing resource allocation to reduce
patient lengths of stay and unnecessary expenses is imperative. The research findings
of Storrow et al. [16] proposed and demonstrated the value of an efficient healthcare
simulation model. They suggested reducing the time for implementing emergency services
and the response time using the established modeling approaches. Indeed, multiple health
and medical domains utilized simulations, and in the past decade, numerous simulation
approaches have caught the interest of many healthcare academicians [17]. As reported by
Bahari and Asadi [18], the optimal combination of resources must be determined to solve
real case studies by applying the simulation and decision-making models with more than
one objective. Furthermore, Yeh and Lin [19] used a simulation for minimizing patient
queue time in an emergency department as well as provided the use of multi-criteria
decision-making for enhancing patient care and staffing in the hospital administration of
the Show-Chwan Memorial Hospital in central Taiwan. Subsequently, Oddoye et al. [20]
estimated the ideal staffing needs for the medical assessment units and reduced system
inefficiencies to optimize the flow of patients.

Recent developments have seen the use of hybrid modeling, operations research,
integrated methodologies, and participatory approaches in addition to more conventional
techniques. This is due to the fact that using sophisticated modeling techniques or a reliable
forecasting system are essential for implementing superior management strategies that
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maximize resource utilization, cut costs, and boost consumer trust [21]. For example,
by taking into account actual emergency department data, Tabar and Zeil [22] created a
forecasting model to effectively simulate the consequences of special events on emergency
department visits. A simulation approach based on agent-based modeling and exhaustive
search was reported by Cabrera et al. [23] to formulate a decision support system for
hospital emergency department. They aimed to assist the authorities in establishing
guidelines that could enhance emergency department operations. Similarly, as a nurse
scheduling strategy, Rerkjirattikal et al. [24] proposed scheduling optimization tools to
make an effective nurse shift rotation schedule considering both personal choices for
working shifts and day-off assignments and the equitable distribution of the workload.
Castanheira-Pinto et al. [25] also emphasized the relevance of simulation and optimization
tools for comprehending and efficiently enhancing the operations of any complicated
system. They established a simulation methodology to accomplish the desired benchmarks
for emergency departments in public hospitals. They devised a number of alternative
scenarios using the data collected from the hospital’s database in order to maximize the
intricate operations of the emergency department.

Numerous research works also combined optimization models with discrete-event
simulation to streamline staffing levels and shorten the average length of stay for pa-
tients [26–30]. Hybrid simulation is certainly becoming more popular as healthcare systems
have grown more sophisticated and multifaceted [31,32]. Due to complicated systems and
large amounts of data, it is difficult for an isolated simulation model to effectively make ap-
propriate decisions. Moreover, studies reveal that the most popular method of developing
hybrid simulation models in healthcare is the combination of discrete event simulation with
system dynamics [33]. A hybrid modeling approach based on forecasting and real-time
simulation introduced by Harper and Mustafee [34] was useful to reduce emergency de-
partment overcrowding. The approach used seasonal ARIMA time-series forecasting and
could be useful for policymakers, clinicians, and managers at the regional level who are
responsible for managing emergency department operational performance. The research
study of Tang et al. [35] also described a simulation model to capture a large emergency de-
partment’s operation and assess the impact of a COVID-19-like disease on the throughput
of an emergency department. In another similar study [36], an optimization model was
implemented to identify optimal physician staffing levels for minimizing the combined
cost of patient wait times, handoffs, and physician shifts in a hospital emergency depart-
ment. Likewise, Doudareva and Carter [37] and Mustafee et al. [38] developed discrete
event simulation models of emergency departments to diagnose bottlenecks and evaluate
performance improvement approaches. A research study by Harper and Mustafee [39]
proposed the use of participatory design research methodology for the development of
real-time simulation models in healthcare. The methodology emphasized model usefulness
and usability using iterative cycles of development and evaluation. Prabhu et al. [40] also
explored the impact of delays resulting from the imaging process and bundling the imaging
orders on patient flow in the emergency department using discrete event simulation. The
results showed that bundling imaging orders can also reduce patient time in the emergency
department. Apart from reducing patient waiting time, evaluating staff strength and over-
crowding, etc., simulation models have also been utilized by researchers for emergency
department evacuation, logistics optimization, layout design, etc. [41–43].

It has been repeatedly demonstrated in the literature that simulation modeling is
the most effective method for enhancing the performance of any complicated system.
Researchers in the healthcare industry have frequently utilized it to increase the effective-
ness and efficiency of their particular departments. These improvements have mostly
been focused on decreasing patient wait times and raising patient satisfaction by properly
scheduling and distributing resources. The need for combining a simulation model with
an optimization tool has also been underlined by the researchers as a way to improve the
efficacy of the simulations. However, it seems that there are fewer works than anticipated
that integrate simulation with optimization. This work is intended to move in that direction
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by combining goal programming with a simulation model to increase patient satisfaction
in an emergency department of a public hospital. Thus, the following sections describe
patient flow in the hospital under consideration, its simulation model, and the application
goal programming.

3. Simulation Model

The Arena simulation software is employed to build the desired model. The patient
flow in the KKUH’s emergency department as seen in Figure 1 is studied by this simulation
model. Furthermore, the input analyzer in Arena is used to create distributions by fitting
probability distribution functions to the data. The developed simulation model and the
optimization OptQuest model are available at the online repository Zenodo at https://
doi.org/10.5281/zenodo.8209820 (accessed on 10 August 2023). The details of resources,
process flow, data related to arrival and service rates, model initialization, performance
measures adopted are discussed here, below.
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3.1. Process Flow

The model operation starts with the arrival of the patient at the triage and registration
desk. The triage nurse assesses the severity of the case, assigns the triage level to the patient,
and performs registration. The process of sorting patients at a medical facility to receive
medical care based on severity of injury or illness after their arrival and assigning priorities
is called the triage process. The triage system at KKUH has five levels, as described below.
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• Level 1—Resuscitation: life-threatening.
• Level 2—Emergent: could become life-threatening.
• Level 3—Urgent: not life-threatening.
• Level 4—Less urgent: not life-threatening.
• Level 5—Non-urgent: needs treatment when time permits.

The patient has to wait for the availability of bed and nurse. Once they are assigned,
each patient is called for a primary checkup. After that, the patient as an entity moves
to the doctor for discussion and consultation. Based on the triage level and discussion,
the patient is assigned a treatment strategy and laboratory tests if desired. Following the
doctor’s diagnosis, the patient has two options: either they undergo the test or receive
immediate treatment. If the patient receives the test recommendation, there are, again, two
possibilities: either they have a single test or multiple tests. If the patient has to take the
tests, the treatment begins only after the results are known. The patient is either admitted
to the inpatient department or discharged from the emergency department following their
treatment. For further treatment, the patients which need to be admitted are required to
wait till the availability of bed in an inpatient department. The bed remains occupied in the
emergency department till the patient is moved upwards. The process flow established in
the Arena for KKUH’s emergency department is presented in Figure 2.

In Figure 2, patients quit the system after waiting for a certain period of time. With an
increase in waiting times, the number of patients leaving the system keeps rising. Therefore,
it is crucial to reduce waiting times through efficient scheduling and resource allocation in
order to reduce the number of patients leaving the system and serve the greatest possible
number of patients.

3.2. Resources

Considering the various phases that the patients have to undergo in the emergency
department, doctors and nurses are regarded as resources. The distinct entities are defined
for the doctor and nurse to perform interactions within the model. Each entity takes a set of
resource states as it flows in the model; these states are waiting, assessment, evaluation, and
treatment. After the nurse evaluates the patient, the doctor must be consulted to discuss the
treatment strategy. In the developed model, each shift has consulting doctors. The doctor’s
job is to either treat patients or issue orders (such as for laboratory or radiology testing).
This, in turn, determines the patient’s course of action, including the decision of whether
to pursue direct medical treatment, laboratory testing, radiography, or a combination of
both tests before treatment. The doctor attends to patients who have the highest triage
score on a high-priority basis and vice versa. Similarly, the model has two types of nurses,
including triage and bedside nurses. Triage nurses perform initial assessment to determine
a patient’s urgency and establish a priority ranking based on that urgency or criticality. On
the contrary, prior to the patient being seen by a doctor, bedside nurses perform a secondary
evaluation of the patient. Additionally, bedside nurses participate in radiology tests and
laboratory blood testing for high-priority patients. Also, they collaborate with doctors to
determine the future course of action of a treatment plan. The emergency department is set
to operate in three shifts. The following Table 1 lists the various resources that are currently
allocated during each shift.
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Table 1. Current resource allocation in emergency departments.

First Shift Second Shift Third Shift Total

Doctors 1 4 1 6
Triage nurses 1 3 1 5

Bedside nurses 2 8 2 12
Radiologists 1 1 1 3

Beds 16

3.3. Data Collection

The first step is the collection of data that is used as input to the model. The data
described in Figure 3 are collected from hospital administration as well as through time
study. The data are collected between 1 June 2022 to 29 July 2022. The arrival time of
about 7000 patients is gathered from hospital administration. Similarly, a member of the
research team conducted a time study in the emergency department to determine the
service time of about 100 patients. Time spent on triage and nurse assessments, doctor
diagnoses, discharge procedures, registration, blood tests, radiology, etc., are all estimated
using the time study.
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3.4. Arrival Data

The hospital administrative database containing details related to visiting patients is
utilized to generate the patients’ arrival times and probabilities employed in the emergency
department simulation model. The arrival of patients is based on a schedule, is updated
hourly and daily considering peak and off-peak hours. Data are used from approximately
7000 patients, collected over a period of two months. The arrivals are spread out over each
hour using a variety of distributions, as illustrated in Table 2.

Table 2. Hourly distribution of patient arrival.

Period Distribution Patient Arrival
Expression Squared Error

00:00–1:00 Exponential EXPO (0.952) 0.015192
1:00–2:00 Exponential EXPO (1.05) 0.003993
2:00–3:00 Exponential EXPO (0.976) 0.001173
3:00–4:00 Exponential EXPO (0.952) 0.000472
4:00–5:00 Lognormal LOGN (0.66, 0.313) 0.000874
5:00–6:00 Exponential EXPO (0.833) 0.009568
6:00–7:00 Lognormal LOGN (0.742, 0.467) 0.025989
7:00–8:00 Lognormal LOGN (0.557, 0.167) 0.001615
8:00–9:00 Exponential EXPO (1.26) 0.006111

9:00–10:00 Normal NORM (11.3, 5.77) 0.016496
10:00–11:00 Normal NORM (20.6, 5.81) 0.023891
11:00–12:00 Normal NORM (21.2, 5.89) 0.014977
12:00–13:00 Normal NORM (22.6, 7.11) 0.020261
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Table 2. Cont.

Period Distribution Patient Arrival
Expression Squared Error

13:00–14:00 Normal NORM (18.1, 5.74) 0.026783
14:00–15:00 Normal NORM (14.8, 4.87) 0.008851
15:00–16:00 Normal NORM (18.8, 5.74) 0.018294
16:00–17:00 Uniform UNIF (3.5, 26.5) 0.017746
17:00–18:00 Normal NORM (6.57, 4.8) 0.023369
18:00–19:00 Exponential EXPO (1.62) 0.003426
19:00–20:00 Exponential EXPO (1.26) 0.01278
20:00–21:00 Exponential EXPO (1.02) 0.001825
21:00–22:00 Exponential EXPO (1.26) 0.013155
22:00–23:00 Exponential EXPO (1.1) 0.002558
23:00–24:00 Exponential EXPO (1.33) 0.006698

3.5. Triage Level and Percent Distribution

The nurse triages the patients as they enter the model. Patients are assigned a triaged
score based on the nurse’s initial evaluation. On a scale from 1 to 5, where 1 denotes the
highest priority or most urgency and 5 denotes the lowest priority or least importance, the
triaged score is established. Table 3 summarizes the percentage of arriving patients in each
triage level and the Weibull expression for the triage time. This percentage is calculated
using real data from the hospital.

Table 3. Number of patients for each triage level.

Triage Level Number of Patients (%) Cumulative (%)

1 1 1
2 15 16
3 56 72
4 25 97
5 3 100

Triage time distribution follows Weibull Expression as 1.5 + WEIB (4, 1.63), where error is 0.0024.

The same nurse performs patient registration once the patients are divided into cate-
gories according to their triage level. The triage and registration times are collected from
a time and motion study (n = 100) undertaken in the emergency department for 24 h.
The triage time and patient registration time, which are calculated for 100 patients, are
distributed using the Weibull distribution. The distribution is satisfactory with a fitting
error of 0.0024. This distribution os used as input data to the model in order to simulate the
operation of the emergency department.

3.6. Probability of Patients Leaving Systems

The patient either waits in the queue or is examined by the nurse depending on
the triage level. Patients with less urgent needs enter the queue. However, the number
of patients leaving the system rises as waiting times increase. Table 4 summarizes the
information about the number of patients leaving the system based on data gathered from
the hospital. It is observed that during the first half hour, some patients are seen leaving the
system after observing lengthy queues. Moreover, it is noticed that after 7 h, the number of
patients leaving the system reaches saturation, with the cumulative percentage remaining
at 33% through hours 8, 9, 10, and so on (refer to the following Table 4).
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Table 4. Probability data of patients leaving the system.

Time (h) Number of Patients
Leaving per Hour Percentage Cumulative

Percentage

0.5 Based on queue length
1 2 2% 2%
2 2 2% 4%
3 4 4% 8%
4 2 3% 11%
5 6 6% 17%
6 9 9% 26%
7 7 7% 33%
8

33% onwards9
10

3.7. Probability of Laboratory Test Depend on the Triage Level

Following the doctor’s diagnosis, the patient either undergoes the test or receives
immediate treatment. If the patient has to take the test, the treatment begins only after the
results are known. It is also observed that the number of patients undergoing tests or direct
treatment depends on the triage level (refer to Table 5). In addition to the doctors, nurses,
and test times, the model also incorporates the discharge procedure time as well as the
admission time for in-patient treatment (in case the patient is asked to be admitted). The
triage level has an impact on admission probability as well. For example, Triage level 1
patient would have an admission probability of 1, while the Triage level 5 would have an
admission probability of 0 (refer to Table 5).

Table 5. The probabilities of the test and admission.

Triage Level
Probabilities

Blood Test Radiology Admission

1 0.85 0.80 1
2 0.75 0.10 0.54
3 0.50 0.50 0.20
4 0.20 0.30 0.15
5 0.01 0.20 0

3.8. Service Time Data

The patient is either admitted to or discharged from the hospital following their
treatment. The patient’s probability of being admitted to the hospital as estimated from
administrative data is 0.27. The following Table 6 presents the distributions of various
service time data used in the model.

Table 6. Characteristics of Inputs used in the model.

Input (Time in Minutes) Distribution Expression Error

Assessment by the nurse Triangular TRIA (7.5, 9.73, 15.5) 0.001621
Diagnosis by the doctor Normal NORM (6.28, 0.873) 0.001433

Treatment
Triage levels 1 and 2 Triangular TRIA (6.5, 8, 11.5) 0.006077

Triage levels 3, 4, and 5 Normal NORM (4.18, 1.13) 0.004335
Blood test Normal NORM (3.58, 0.681) 0.001122
Radiology Triangular TRIA (4.5, 9, 10.5) 0.013475

Discharge procedure Normal NORM (9.56, 1.26) 0.007743
Admission time to Inpatient Exponential 5 + EXPO (102) 0.003841
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3.9. Performance Measures

The model is established in order to reduce the waiting time, service time, and number
of patients leaving the system. It also aims to optimize the number of doctors and nurses in
the system with their maximum limit defined. The simulation run is conducted for a week
in order to attain the desired results. Moreover, several scenarios are explored using the
developed model, for example, a case of resource allocation being raised or optimized.

3.10. Model Initialization

A warm-up period of 24 h is used in the model to eliminate initialization bias. The
warm-up period is acquired using Welch’s approach [44] in this research. The number of
runs is determined using the statistical method developed by Kelton [45]. After the model
is run a predetermined number of times, the output data such as average, half width and
standard deviation for all performance measures are collected in this step. Finally, the
estimation of the number of simulation runs needed to achieve the 95% confidence level of
accuracy is calculated using the statistical t-distribution approach. The estimated number
of simulation runs for various performance measures are presented in the following Table 7.
The results of statistical analysis indicate that a minimum number of 45 simulation runs for
this model is required for meaningful results.

Table 7. Estimation for the number of runs in the model.

Item Average Half Width STD
Required Half

Width (Relative
Error = 0.15)

No. of Runs Required

First
Approximation (t)

Second
Approximation (z)

95% Confidence Level

Patient triage 1
(wait time, h) 0.23 0.03 0.09 0.03 8.76 28.85

Patient triage 2
(wait time, h) 0.21 0.01 0.03 0.03 1.07 3.52

Patient triage 3
(wait time, h) 0.76 0.04 0.13 0.11 1.52 5.00

Patient triage 4
(wait time, h) 2.83 0.19 0.56 0.42 2.00 6.60

Patient triage 5
(wait time, h) 3.47 0.60 1.76 0.52 13.42 44.18

Patients leave
without service 425.89 43.09 126.13 63.88 4.55 14.98

3.11. Model Validation and Verification

To validate and verify the number of hospital visits per week produced from the
simulation model with those estimated using hospital data, the results were compared to
ensure that the simulation model is accurate and validated. The outcome of the simulation
model indicated that there are 1001.4 patients on average every week, with a half width
of 34.52 and an SD of 114.93. Simulation results showed a 95% confidence interval that
covers the calculated database average of 1016.2 patients each week. The overall flow, the
analytical characterization of the arrival pattern, and the other processes in the model were
all therefore confirmed by this experiment. Due to a lack of information in the hospital
database, the simulation model’s results for various performance measures were presented
to professionals on the medical staff. Documentation of the model’s structure, assumptions,
and limitations were clearly explained to management and staff. The hospital management
deemed all of the results to be reliable.
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4. Goal Programming (GP) Model

The quality of care provided to patients can be ensured by having enough resources
available in the department and ensuring that they are efficiently utilized. Goal program-
ming is a linear programming technique that can be utilized to resolve multiple objectives
by treating them as goals with target values and weight. It has, in fact, been widely utilized
to simulate and solve scheduling-related issues in the healthcare system. For instance,
Mohammadian et al. [46] used goal programming to address the issue of nurse scheduling
in a large medical facility in Tehran. Similarly, Anna et al. [47] used the goal programming
technique to establish the monthly work shift schedules of nurses, leading to more evenly
distributed workloads. Additionally, Jerbi and Kamoun [48] implemented simulation and
goal programming to reschedule the shifts of emergency department doctors in a Tunisian
hospital. The goal programming model was designed to optimize and choose the most
appropriate measures.

In this study, the objectives are to optimize the department resources levels in order to
improve the overall efficiency and effectiveness. Therefore, goal programming is used to
minimize the number of patients leaving the system without service, patient waiting time,
as well as positive deviations from the number of doctors, number of nurses, and number
of beds. This, in turn, minimizes the cost of operations in the emergency department of the
hospital under consideration. Accordingly, an objective function is set (refer to Equation (1)),
and corresponding constraints are defined (refer to Equations (2)–(7)). Weights w1, w2, w3,
w4, w5, and w6 are varied to analyze their impact on the objective function. Percentage
normalization of the weights is applied to normalize the OptQuest model.

Minimize Z = w1
TL

TTL
+ w2

∑5
j=1

TWj
TTWj

5
+ w3

d+
3

b3
+ w4

d+
4

b4
+ w5

d+
5

b5
+ w6

d+
6

b6
, (1)

subject to
3

∑
k=1

Dk − d+
3 + d−

3 = b3, (2)

3

∑
k=1

Nk − d+
4 + d−

4 = b4, (3)

3

∑
k=1

TNk − d+
5 + d−

5 = b5, (4)

B − d+
6 + d−

6 = b6, (5)

Dk, Nk, TNk, B ≥ 1, (6)

d+
3 , d−

3 , d+
4 , d−

4 , d+
5 , d+

6 , d−
6 ≥ 0. (7)

In the above Equations (1)–(7),

wi = weight or importance of goal i (i є 1, 2 . . . 6);
TL = total number of patients that leave the hospital without service;
TTL = target total number of patients that leave the hospital without service;
TWj = total waiting time in queue for Triage level j patients (j є 1, 2 . . . 5);
TTWj = target total waiting time in queue for Triage level j patients (j є 1, 2 . . . 5);
bi = target values for goal i (i є 3, 4, . . . 6);
d+

i = positive deviation of goal i (i є 3, 4, . . . 6);
d−

i = negative deviation of goal i (i є 3, 4, . . . 6);
k = number of shifts in the hospital emergency department (k є 1, 2, 3);
Dk = number of doctors assigned in shift k (k є 1, 2, 3);
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Nk = number of bedside nurses assigned in shift k (k є 1, 2, 3);
TNk = number of triage assesment nurses assigned in shift k (k є 1, 2, 3);
B = number of beds in hospital emergency department.

5. Results and Discussion

The simulation runs are performed for seven days and each run is replicated 45 times
to eliminate any biases. The existing setting is treated as a base scenario (S0) to depict the
current situation in the emergency department of KKUH. Subsequently, the base scenario
simulation outcomes are assessed and reported to the hospital’s emergency management.
After a discussion with the management, as is customary, the hospital stuff suggested only
increasing the amount of human resources, i.e., doctors and nurses to improve the set
objectives. This option is treated as Scenario 1 (S1). It is evident that simply increasing the
selective resources does not accomplish the set objectives. Thus, the only option ahead is
to find the optimum level of all resources. The above-stated goal programming model is
developed, and the OptQuest tool is used in combination with the simulation model. In
Scenario 2 (S2), experiments utilizing OptQuest are conducted by assigning equal weights
to all the set goals. Scenario 2 is implemented to ascertain how well the available resources
or workforce level are being utilized. Scenario 2 also explores the trade-offs occurring
between available resources, queues, waiting times, and the number of beds based on
preferences. The most important management goals in the emergency department are
reductions in waiting time and the number of patients leaving service. These goals are not
completely met due to an equal weight strategy for all goals. Hence, after analyzing the
outcome of Scenario 2 OptQuest simulation results, higher weights are applied to the most
important objectives. This option of applying variable weights to a set of goals is treated as
Scenario 3 (S3).

The simulation model is utilized to understand both the current scenario (or base
scenario) and a number of potential improvements or scenarios. For the current scenario,
as shown in Table 1, resources are assigned as follows. One doctor is allocated to the first
shift, two doctors are assigned to the second shift, and three doctors are dedicated to the
third shift. Similarly, there are two bedside nurses on duty on the first shift, eight on the
second shift, and one on the third shift. Additionally, there is one triage nurse on the first
shift, three on the second shift, and one on the third shift. The emergency department has a
total of 16 beds. For the current scenario, an average performance evaluation of various
measures across all replications is presented in the following Table 8.

Table 8. Performance evaluation of the current situation using the simulation model.

Performance Measure Average Value Half Width Overall SD Across
Replications

Patient waiting time to receive a bed 1.28 h 0.06 h 0.20 h
Total time spent in ED (in case patient is admitted) 4.07 h 0.07 h 0.22 h

Total time spent in ED (in case patient is discharged) 2.51 h 0.05 h 0.15 h
Patient waiting in queue:

Total waiting time in queue based on triage level
Triage level 1 0.23 h 0.03 h 0.10 h
Triage level 2 0.21 h 0.01 h 0.03 h
Triage level 3 0.75 h 0.04 h 0.12 h
Triage level 4 2.82 h 0.16 h 0.53 h
Triage level 5 3.36 h 0.53 h 1.76 h

Patient leaving queue:
Total time spent in system before leave 2.02 h 0.08 h 0.28 h

Number of patients leaving 423 35 118

It is evident that for the base scenario, S0 (refer to Table 7), there is a significant scope
for improvement if the resources can be allocated appropriately in different shifts. It can
be seen that every performance metric exceeds the targets established in collaboration
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with hospital management. For example, the target number of patients leaving the system
should be 200, but in the current situation, as indicated in the above Table 7, there are
currently 423 patients departing the system without treatment. In a similar fashion, the
target waiting time for all triage types of patients is set to less than 2 h, but in the current
scenario, it is not satisfactory. Thus, improvements are recommended to address the current
problem and each improvement is treated as a new scenario one by one. The outcomes of
simulated scenarios are presented here, below.

The first improvement, as in Scenario 1, is the employment of additional doctors
and nurses to the second shift when a greater number of patients are observed to be
waiting in queue. In Figure 4, the number of patients waiting in queue at any given time
can be observed. This is the recommendation given by the hospital administration, who
believe that resolving the existing situation would require more resources, particularly more
doctors and bedside nurses, during the second shift. Hospital management consistently
believes that doctors and nurses are the most important people and focuses solely on
the increase in the number of doctors and nurses, without considering all options and
thoroughly assessing the system, which is never the right approach.
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The hospital management recommends increasing the number of doctors and nurses
working in the second shift by two and four, respectively. As indicated in the following
Figure 5, the results are attained after the simulation model is run using the resource
allocation plan suggested by hospital management. Figure 5 compares the base scenario,
Scenario 0 and Scenario 1 for the two most important performance measures, i.e., the
number of patients leaving the system and the total waiting time of the patients in the
triages. Despite the fact that the number of patients leaving the queue drops from 423 to
380, it is still much more than the target value of 200. Similarly, no improvement is observed
in patient waiting time in all triages. This shows that the amount of resources is increased,
and, as a result, healthcare costs are also increased, yet no improvement is observed. This
necessitates the deployment of an appropriate approach that can objectively produce the
best results at a minimum cost. Thus, the only option ahead is to find the optimum level of
all resources. As in Scenario 2, experiments utilizing OptQuest are conducted by assigning
equal weights to all sets of goals.
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In Scenario 2, OptQuest finds the best solution after nearly 700 different runs with
various combinations of resource assignment, using equal weights for each goal. Table 9
below presents the OptQuest resource assignment for Scenario 2. It is observed that it
recommends removing a doctor from the second shift and adding them to the third shift. It
also suggests removing a bedside nurse from the first shift while proposing to add three
bedside nurses and a triage nurse for total of four nurses to the third shift. It is evident from
Figure 4 that a greater number of waiting patients becomes carried over to the third shift
from the second shift, even though the arrival rate of patients in the third shift is very low
compared to that of the patients in the second shift. Subsequently, comparative assessment
of the base scenario and Scenario 2 is performed, and the obtained results are presented in
Figure 5.

Table 9. Number of resources assigned for various scenarios.

Type of
Resource

Shift
Number

Assigned Number of Resources

Base
Scenario, S0 Scenario 1 Scenario 2 Scenario 3

Doctors
1 1 1 1 1
2 4 6 3 5
3 1 1 2 4

Bedside
nurses

1 2 2 1 1
2 8 12 8 9
3 2 2 5 4

Triage nurses
1 1 1 1 2
2 3 3 3 3
3 1 1 2 2

Beds 16 16 16 19

In Figure 5, it can also be noticed that the emergency department’s performance in
Scenario 2 is much better than it is in the base scenario. It is observed that both the number
of patients leaving the queue and the average waiting time in triages for the patients are
lowered by approximately 38% and 15%, respectively. In spite of this, Figure 5 also shows
that the target for the number of patients leaving the system, which is set at 200, is not met.
However, the target for waiting times in triages is met successfully in Scenario 2.

As these goals are not completely met due to an equal weight strategy for all goals, Sce-
nario 3 is established in order to further enhance the emergency department’s performance
in order to meet the target for the number of patients leaving the queue. In Scenario 3, the
total number of patients leaving the queue and the waiting times of the patients are given
greater weight than other objectives. Table 9 displays the results and recommendations
from Scenario 3. For instance, it is established that the emergency department needs to add
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three doctors for the third shift and one doctor for the second shift. Similarly, modifications
in other resources from Scenario 2 to Scenario 3 can also be observed; refer to Table 9. It
must be realized that Scenario 3 changes most of the resources instead of focusing on one or
two resources, thereby allowing for effective and efficient resource allocation. The results
shown in Table 10 re related to Scenario 3. It can be recognized that all of the performance
indicators reduce noticeably. For instance, in comparison to the base scenario (refer to
Table 8), the number of patients leaving the system falls by 61.70%, and the patient waiting
time in the case of Triage 1 decreases significantly, by 86.95%. In addition, the desired
targets of 200 patients leaving the queue and the patient waiting times in different triages
are met. As a result, the need to consider all possible aspects is highlighted rather than
presuming that a small number of them are accountable for inefficient operations.

Table 10. Scenario 3 simulation outcome with unequal weights.

Performance Measure Average Value

Patient waiting time to receive a bed 0.48 h
Total time spent in ED (in case patient is admitted) 3.32 h

Total time spent in ED (in case patient is discharged) 1.83 h
Patient waiting in queue:

Total waiting time in queue based on triage level:
Triage level 1 0.03 h
Triage level 2 0.11 h
Triage level 3 0.28 h
Triage level 4 1.19 h
Triage level 5 2.12 h

Patient leaving queue
Total time spent in system before leave 0.85 h

Number of patients leaving 162

Assessment of All Scenarios Using Process Analyzer

The objective is to perform comparative assessment of all of the four scenarios above.
This process is conducted using the Arena process analyzer tool. For this, initially, the
created model must be uploaded, inputs and outputs need to be added for examination,
and the model needs to be rub in the process analyzer. In parallel, the experiment needs to
be configured by defining the input parameter ranges, the number of simulation iterations,
and other parameters. Thus, the process analyzer automatically runs numerous distinct
scenarios and graphically compares the outcomes of various scenarios. It also helps to
perform the assessment of the model modifications and their effects on system goals. The
graph displayed in Figure 6 represents the outcome of the process analyzer in the form
of box and whisker plots for each scenario, along with the minimum, maximum and
median values.

From Figure 6, it is evident that for the performance measure of the ‘number of patients
leaving the emergency department without having service’ reaches an average minimum
level for Scenario 3 from that of the current scenario (or base scenario, S0). Similarly, the
waiting time in hours for patients of all triage levels is gradually minimized from the
current or base scenario to Scenario 3. Thus, it is proposed that there is a need to improve
the current scenario to Scenario 3.
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6. Conclusions

The emergency department in any hospital has a vital role since it interacts with a
number of patients every day. It performs numerous interactions between patients, employ-
ees, and other resources. Greater patient contentment and favorable hospital credibility
depend on the emergency department operating responsibly and efficiently. Furthermore,
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its operational efficiency and performance depend on the number and allocation of the
hospital’s doctors, nurses, beds, and other resources. For example, any change in personnel
(e.g., number of nurses or doctors, specific shift assignments) should be carefully consid-
ered based on system performance. As a result, it is crucial to provide or assign the proper
number of resources to every shift. Prolonged waiting times driven by improper resource
allocation have a significant negative impact on patient experience. Therefore, in this study,
we explored the emergency department of a hospital in Saudi Arabia and offered recom-
mendations in order to reduce patient wait times and the number of patients that leave the
queue untreated. We built a detailed model in Arena and carried out goal programming.
For this case, we observed that, if three additional doctors are assigned to the third shift
and one to the second shift, the number of patients leaving the system without service
decreases from 423 to 162. In a similar manner, for the current scenario, if two additional
bedside nurses are added to the third shift and one additional bedside nurse is assigned to
the second shift, as well as when an extra triage nurse is added to the first and third shifts
each and the number of beds is increased from the 16 beds employed currently to 19 beds, a
61.7% drop in the number of patients leaving without service and a substantial drop in the
waiting time for patients with all types of triage are observed. This highlights the fact that
hospital management should focus on all available resources instead of emphasizing just
one or two of them, because the developed model successfully portrayed the appropriate
resource allocation required to improve customer/patient satisfaction levels.

Finally, it can be concluded that simulation and optimization could benefit the hospital
by performing reallocation of the existing resources. The proposed model uses the simula-
tion outcome as input to OptQuest and the goal programming model. The few research
directions that the researchers can take into consideration for further advancement are as
follows: incorporation of resource scheduling using genetic algorithms and/or simulated
annealing and development of an artificial intelligence machine learning model to evaluate
the performance of emergency departments at different dynamic staffing levels using the
multiple simulation output from OptQuest. The authors aim to propose a more gener-
alized model for emergency departments in future publications by incorporating more
possibilities and specifics in the current model.
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Abstract: Modified opioid agonist therapy (OAT) guidelines that were initially introduced during
the COVID-19 pandemic allow prescribers to increase the number of take-home doses to fulfill their
need for physical distancing and prevent treatment discontinuation. It is crucial to evaluate the
consequence of administering higher take-home doses of OAT on treatment retention and opioid-
related harms among OAT recipients to decide whether the new recommendations should be retained
post-pandemic. This study used an agent-based model to simulate individuals dispensed daily or
weekly OAT (methadone or buprenorphine/naloxone) with a prescription over a six-month treatment
period. Within the model simulation, a subset of OAT recipients was deemed eligible for receiving
increased take-home doses of OAT at varying points during their treatment time course. Model
results demonstrated that the earlier dispensing of increased take-home doses of OAT were effective
in achieving a slightly higher treatment retention among OAT recipients. Extended take-home doses
also increased opioid-related harms among buprenorphine/naloxone-treated individuals. The model
results also illustrated that expanding naloxone availability within OAT patients’ networks could
prevent these possible side effects. Therefore, policymakers may need to strike a balance between
expanding access to OAT through longer-duration take-home doses and managing the potential risks
associated with increased opioid-related harms.

Keywords: agent-based modelling; opioid agonist therapy; COVID-19-related public health order;
methadone; buprenorphine/naloxone; retention in opioid agonist therapy; opioid-related harms

1. Introduction

Opioid agonist therapy (OAT) utilizes methadone or buprenorphine/naloxone to
prevent withdrawal in individuals exhibiting opioid use disorder (OUD) [1–3] and elevate
treatment retention, as achieving this goal is linked with a decreased risk of suffering
from an overdose [3,4]. However, due to its low treatment retention rate, OAT is often
underutilized [5–9]. OAT recipients are required to frequently visit their prescribing doctors
until they qualify for an increased dispensing of opioid agonist therapy take-home doses.
Under these circumstances, many patients either decline treatment or are not retained in
the treatment for sufficiently long enough to secure approval for graduated numbers of
their take-home doses [9,10].

In the context of COVID-19-related healthcare delivery modifications [11], in some ju-
risdictions, regular access to OAT and retention in treatment were further disrupted [12,13],
raising the risk of overdose and death for individuals who discontinue OAT [3,13]. This
pandemic experience calls for procedures and policies that guarantee constant access to
OAT. New guidance for expanded access to OAT during the COVID-19 pandemic was
approved across several countries, including in the US and Canada [14,15]. In Ontario,
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this guidance supported an increase in the number of take-home doses for individuals
who may have been eligible under the existing treatment guidelines [15]. Expanded access
to OAT during the COVID-19 pandemic may lead to a high treatment adherence [16,17].
However, it is not clear whether this new guideline for administering higher take-home
doses of OAT will still be beneficial as the world moves beyond the unique circumstances
of the COVID-19 pandemic.

Methadone and buprenorphine/naloxone are both opioid agonist medications used in
the treatment of opioid addiction. Methadone, a synthetic opioid agonist medication, has
a long-lasting effect and helps alleviate withdrawal symptoms and reduce cravings [18].
Buprenorphine/naloxone is an oral medication that combines buprenorphine and naloxone,
with a higher concentration of buprenorphine compared to naloxone. Buprenorphine acts
as a partial opioid agonist, helping to reduce withdrawal symptoms and cravings, while
the naloxone in buprenorphine/naloxone serves as a deterrent against misuse. When
taken orally as prescribed, naloxone has a limited impact due to poor absorption in the
gastrointestinal tract. However, if buprenorphine/naloxone is misused via injections,
naloxone becomes active and can block the effects of other opioids as a result [19]. In
emergency situations that require the rapid reversal of an opioid overdose, naloxone,
as a potent opioid antagonist on its own, is typically administered via routes such as
intranasal, intramuscular, intravenous, or subcutaneous means. These routes facilitate
faster absorption rates and immediate effects, allowing for a more rapid response to the
medication and effectively reversing the overdose. Hence, considering the differences in the
concentrations of buprenorphine and naloxone within this combination and administration
method, the naloxone present in buprenorphine/naloxone is insufficient to effectively
reverse an overdose on its own [20].

Computational simulation models [21] are efficient tools for evaluating the possible
effects of different intervention strategies and are used for better understanding the mecha-
nisms underlying the observed trends. Agent-based modelling [22] is one of the primary
types of computational simulation methods employed in the field of public health, with
that choice being generally being dependent on the research question and the scope of the
respective study. Agent-based models can highlight heterogeneous properties with ease, re-
flect individual-level behaviours, and generate potential health consequences and histories
as a result of such behaviours. Although there are several simulation models that exist for
studying OAT [23–29], the current study is the first agent-based model simulation to assess
the impact of increased dispensing of take-home doses of OAT utilizing data sources from
Canadian OAT recipients. In the present study, an agent-based model can capture a clear
understanding of the trajectory of patients using methadone or buprenorphine/naloxone
for OAT and investigate the potential effects of administering higher take-home doses of
OAT on treatment retention and opioid-related harms among OAT recipients.

The primary objectives of this study were to evaluate the impact of increased dis-
pensing of take-home doses of methadone and buprenorphine/naloxone on treatment
retention and opioid-related harm among OAT recipients, and to examine the health con-
sequences of whether the new guidelines for administering higher take-home doses of
OAT should be continued in the future. Furthermore, this study aimed to investigate the
effect of fostering a supportive environment within OAT communities. While previous
research has documented varying effects of peers on individuals undergoing opioid agonist
treatment, such as deterring prescription refills [30,31] or, conversely, providing assistance
during overdose events to reduce opioid-related harm [32,33], the secondary objective of
this study was to explore the effects of promoting a peer support network within OAT
communities, with a specific focus on the involvement of naloxone-equipped peers during
opioid overdose emergencies [34,35]. The remainder of this paper is organized as follows:
Section 2 describes the model, including agent-based modelling, and the experimental
design. Section 3 elucidates the results. Section 4 includes the corresponding discussion
and concludes the paper.
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2. Materials and Methods

The impact of the clinical decision to increase the number of take-home doses of OAT
and patient outcomes among OAT recipients was investigated using an agent-based model.
This study presents the dynamics of individuals’ behaviors actively treated with OAT
(methadone or buprenorphine/naloxone). Data for the agent-based model presented in this
work was obtained from a detailed study from the Institute for Clinical Evaluative Sciences
(ICES) [36], which captured many relevant health variables for Ontario residents [17]. The
simulation software AnyLogic Version 8.8.0 [37] was used to create the model.

2.1. Agent-Based Modelling

The use of agent-based modelling in this study supports scenario-based assessments of
the impact of the increase in the dispensing of OAT take-home doses on treatment retention
and opioid-related harms among individuals receiving daily or weekly dispensed OAT.
The model used in this study featured a single type of agent, representing an individual
experiencing an opioid use disorder (OUD).

Within the model, individuals experiencing opioid use disorder were endowed with
sociodemographic characteristics that influence their possible peer network, including the
location of residence (urban or suburb) and neighborhood income quintile. OUD behaviour
is governed using two state charts which are depicted in Figure 1. These state charts
characterize the possible state space for individuals experiencing OUD whether they are
undergoing treatment or not.

The treatment state chart represents the dynamics of the treatment options available
for each individual experiencing an OUD. Individuals experiencing an OUD are out of
treatment if they never choose a treatment or have discontinued the previous one. An
individual who has never previously entered treatment can choose either methadone
or buprenorphine/naloxone treatment. Further, patients are dispensed OAT in a daily
or weekly manner, which is equivalent to a one-day supply or 5–6 days supply for all
prescriptions, respectively. Individuals are classified among these four groups based on
historical distributions [17]. During each visit to a physician for OAT, individuals who do
not possess naloxone have the opportunity to obtain a naloxone kit, which can be used to
assist their peers in the event of an opioid overdose.

Every patient in these four subsets of treatment have the potential to experience
treatment disruption. The model treats such disruptions as being of two types: gaps
in therapy from 5 to 14 days, respectively, are classed as interruptions, while those of
more than 14 days are termed as treatment discontinuations and lead the patient to enter
the out-of-treatment state. There are specific hazard rates governing individuals in each
treatment type and leading to occurrence of an opioid overdose, opioid-related death, and
all-cause death based on historical data [17]. Treatment retention is viewed as having been
successfully achieved when the patient enters the post-treatment state after 6 months of
therapy without any interruptions.

The illicit opioid use status state chart reflects the various illicit opioid use stages deter-
mined by treatment through which each OAT recipient progresses, including uncontrolled
illicit opioid use, restricted opioid use while under treatment, and stopping illicit opioid
use while in a post-treatment stage. While an OAT recipient is in an in-treatment restric-
tion state, they have a probability of being deemed eligible for dispensing of increased
take-home doses of OAT, based on historical distributions [17].
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Among the daily buprenorphine/naloxone recipients without any change in their
dose status, they are required to make daily visits to the clinic to receive their dispensed
take-home doses. Additionally, for those with a change in their take-home dose status, their
visits are scheduled every 14 days. Similarly, among the weekly buprenorphine/naloxone
recipients with no change in their dose status, they are required to make weekly visits to
the clinic to obtain their dispensed take-home doses. For individuals with a change in their
take-home dose status, their visits are scheduled every 14 days. In a comparable manner,
methadone daily recipients with no change in their dose status have daily visits to the clinic
to receive their dispensed take-home doses. However, for those with a change in their
take-home dose status, their visits occur every other day. Methadone weekly recipients
without any change in their dose status make weekly visits to the clinic to receive their
dispensed take-home doses. In contrast, for individuals with a change in their take-home
dose status, their visits are scheduled every 14 days.

As policymakers may consider implementing targeted interventions or additional
support measures for patients at a higher risk of opioid-related harms due to an increased
dispensing of OAT, this study simulated the creation of a supportive peer network among
patients to enhance the access to naloxone kits for overdose prevention. Therefore, consid-
ering agent heterogeneity and preferential attachment, a network was constructed with
multiple disconnected components, wherein OAT recipients, regardless of changes in their
take-home dose, have the potential to acquire a naloxone kit when attending to receive
their dispensed OAT; that kit can then be used to reverse overdoses amongst other patients
in their network.

2.2. Network

To simulate the possibility of a patient receiving naloxone administration from their
peers in the case of an opioid overdose, a network exhibiting preferential attachment
was implemented between patients. Within this network, it was assumed that an indi-
vidual (ego) is always intended to connect with alters in the same location of residence,
neighborhood income, and treatment type. In order to achieve this objective, the network
construction process underwent two steps. First, an Erdos–Renyi network [38] was es-
tablished connecting each ego with an average number of 15 candidate alters. Second,
candidate alters that did not meet the desired criteria of having the same residence loca-
tion, neighborhood income, and treatment type were then promptly removed, resulting
in the formation of a network exhibiting a preferential attachment composed of multiple
disconnected components. Figure 2 illustrates the distribution of the final network.
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2.3. Outcome Measures

Primary model outcome measures were set as cumulative opioid overdoses, cumula-
tive opioid-related deaths, and cumulative treatment retention among people treated with
methadone or buprenorphine/naloxone over six months of treatment without any interruptions.

2.4. Parameterization and Validation

The model was parameterized with assumptions characteristic of the Ontario adult
population experiencing OUDs and simulates a population of 50,000 individuals enrolled in
OAT. The main source of data for parameterization was a published original investigation [17]
which utilized the narcotics monitoring system database and the ICES repository to detect
prescription claims for OAT in Ontario between March 2020 and October 2020, respectively.

Despite the uncertainties associated with the data values presented by the authors
of [17], due to the restrictions in the study population, the potential influence of pandemic-
related factors, and the possibility of changes in take-home dose dispensing patterns [17],
these data deliver a significant level of value in informing for the current study. Table A1
presents a summary of the parameters for the patients receiving methadone or buprenor-
phine/naloxone treatment either on a daily or weekly basis and considers their eligibility
for changes in take-home doses of OAT. The parameters were reported in terms of the
rates per year and include opioid overdose, discontinuation and interruption of therapy,
all-cause mortality, and opioid-related deaths that are based on the parameterizations pos-
tulated by the authors of [17]. Table A1 shows that—with the notable exception of weekly
methadone patients eligible for increased take-home doses—methadone patients generally
have higher opioid overdose rates compared to buprenorphine/naloxone patients. This
suggests that buprenorphine/naloxone may have a lower risk of overdose compared to
methadone, potentially due to its partial agonist properties. Table A1 also indicates that
buprenorphine/naloxone patients exhibit higher rates of therapy discontinuation and inter-
ruption compared to methadone patients across different settings. This could be attributed
to buprenorphine/naloxone being less effective for certain individuals in managing their
opioid dependency along with the limited availability of buprenorphine/naloxone treat-
ment providers and clinics. Additionally, within Table A1, in cases where the number
of deaths among recipients was small (≤5), either all-cause mortality or opioid-related
mortality was treated as 0.001. However, the all-cause mortality and opioid-related death
rates generally appeared to be higher for methadone patients, particularly for those who
were not eligible for increased take-home doses. The data presented in Table A1 was then
utilized to specify the transition rates, such as the opioid overdose rate, discontinuation
rate of therapy, interruption rate in therapy, all-cause mortality rate, and opioid-related
death rate, for each of the two different methadone or buprenorphine/naloxone recipient
sub-state charts depicted in Figure 1.

Table A2 provides insights into the socio-demographic factors related to the patients of
interest, including their urban location of residence and neighborhood income quintile [17].
This table showcases the distribution of patients residing in urban areas across various
treatment groups and their eligibility for increased take-home doses. The data presented in
Table A2 reveals that the majority of patients, irrespective of the medication type, reside in
urban areas. This may suggest a higher number of opioid users living under urban settings
and potentially indicates that opioid treatment programs may be more accessible and
concentrated in these areas. Further, in most cases (except for weekly methadone patients
not eligible for increased take-home doses) methadone patients have a higher percentage
of individuals from urban areas compared to buprenorphine/naloxone patients. This may
reflect accessibility or availability advantages in securing methadone treatment across
urban settings. Table A2 also highlights the distribution of patients based on their eligibility
for increased take-home doses. In general, patients who are eligible for increased take-home
doses tend to exhibit higher levels of urban dwelling compared to those who are not eligible.
This finding suggests that increased take-home doses may be more commonly provided
to patients living in urban settings, potentially indicating a higher likelihood of meeting
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the criteria for extending take-home doses among patients in urban areas. Additionally,
Table A2 presents the distribution of patients based on neighborhood income levels. The
declining percentage of patients as one moves from the lowest to the highest income
category implies a potential lower prevalence of extensive opioid use and/or individuals
seeking opioid agonist treatment in higher-income neighborhoods. When interpreting this
result, it is important to consider the difference between the total population residing in
the urban areas and rural areas. Additionally, the distribution of individuals across the
different neighborhood income levels should also be considered. The data presented in
Table A2 was utilized to define the custom distributions for the residence location and
neighborhood income of the diverse agents in the model.

Table A3 provides an overview of the remaining parameters, which involve different
treatment types, varying disposal timings, and the potential for changes in the disposal
time [17]. The parameters listed in Table A3 were utilized as custom distributions to
initialize the model and as parameters for implementing the interventions during model
simulation. Furthermore, Table A3 includes parameters that are specifically relevant to
opioid users outside OAT settings, for which the assumptions have been grounded in
the relevant literature. These parameters, such as the opioid overdose rate per year, all-
cause mortality rate per year, and opioid-related death rate per year, have been utilized to
determine the transition rates in the illicit opioid use state chart, depicted as a sub-state
chart in Figure 1.

Finally, the model underwent a thorough verification and validation process to assess
its accuracy. Firstly, the assumptions made within the model were visually represented
using state charts and possible transitions. This visual representation allowed for a clearer
understanding of the assumptions and facilitated their evaluation for accuracy and coher-
ence. The model’s assumptions were then carefully articulated and validated against its
code logic, ensuring that there were no discrepancies or errors between the assumptions
and the code. Secondly, the model’s emergent behavior was compared to real-world data
to assess its accuracy. This step ensured that the model’s outcomes closely matched the
observed outcomes in the real world [17], increasing confidence in its validity. Thirdly,
the coefficient of variation for treatment retention was found to be less than 0.05 for both
treatment types, indicating a relatively low level of variation. Similarly, the coefficient
of variation for opioid overdose in both treatment types and opioid-related deaths in the
methadone treatment group was less than 0.20. However, due to the limited number of
opioid-related deaths amongst the buprenorphine recipients (≤5), the coefficient of varia-
tion did not provide informative insights for this outcome in the buprenorphine group. By
fulfilling these requirements, this model successfully passed our tests by demonstrating the
clarity of its assumptions provided by the state charts and its alignment with real-world
data [17].

2.5. Scenarios

Alongside the baseline scenario that examined the no extended take-home doses for
OAT recipients across the 6-month treatment horizon, three scenarios were defined to
explore the differential results of providing extended take-home doses for OAT recipients
starting at various times of treatment. The number of eligible OAT recipients for extended
take-home doses remained constant within these three scenarios, while the time of imple-
mentation of the extended take-home doses policy varied to begin with after the second,
third, and fourth month of treatment, respectively. Furthermore, these three scenarios
were combined with varying probabilities of OAT patients obtaining a naloxone kit during
a physician visit (i.e., 5%, 10%, and 15%, respectively) to assess the impact of naloxone
disposal within OAT patients’ networks. For each scenario, an ensemble of 100 realizations
was run, each with varying random seeds. Finally, percentage changes from the baseline
for all three outcomes of interest were reported over the six-month treatment horizon.
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3. Results

The baseline scenario posits approximately 10,500 individuals, which represents
20.8% of the OAT population receiving the six-month buprenorphine/naloxone treatment,
while approximately 39,700 individuals comprising 79.1% of the OAT population receive
the six-month methadone treatment, respectively.

Among the people treated with buprenorphine/naloxone, 1600 individuals representing
15.2% of this population received daily dispensed buprenorphine/naloxone while others re-
ceived weekly dispensed buprenorphine/naloxone. Among people treated with methadone,
13,900 individuals representing 35.0% of this population received daily dispensed methadone,
and the rest of the individuals received weekly dispensed methadone. With no additional
interventions applied, the baseline scenario yielded approximately 80 opioid overdoses and
10 opioid-related deaths with the six-month buprenorphine/naloxone treatment, accounting
for 0.7% and 0.09% of this population, respectively; in contrast, methadone treatment gave
rise to a higher burden, with approximately 750 opioid overdoses and 70 opioid-related
deaths having occurred during the six-month treatment period, accounting for 1.8% and
0.1% of this population, respectively. Finally, out of the population receiving the six-month
buprenorphine/naloxone treatment, 7900 individuals, representing 75.4%, continued treat-
ment without interruption and discontinuation for six months, thereby achieving a six-
month retention with buprenorphine/naloxone treatment; in contrast, 30,800 individuals,
which was equivalent to 77.5%, achieved six-month retention with methadone treatment.
These results demonstrate the baseline distribution of OAT recipients across distinct types
of treatment and disposal methods based on empirical data [17].

3.1. Individuals Receiving Methadone Treatment

Among the methadone-treated individuals receiving daily dispensed OAT, 8200 in-
dividuals, equivalent to 58.8% of this population, were eligible to transition to take-home
doses, and among the methadone-treated individuals receiving weekly dispensed OAT,
18,700 individuals, representing 72.5%, were eligible to extend to 13 take-home doses.

3.1.1. Providing Extended Take-Home Doses among the People Treated with Methadone

Table 1 shows the six-month outcomes of interest for providing extended take-home
doses among people treated with methadone within the successive time frames. Earlier
permission for the provision of extended methadone take-home doses to eligible patients
was found to exhibit a beneficial impact on all three outcomes of interest. Providing
extended take-home doses among people treated with methadone increased treatment
retention (by 2.8%, 2.0%, and 1.4% when permission for extended take-home doses was
granted within the second month of treatment, the third month of treatment, and the
fourth month of treatment, respectively). Furthermore, providing extended take-home
doses among people treated with methadone decreased both the total number of opioid
overdoses by 7.3%, 6.1%, and 3.5%, and the total number opioid-related deaths by 13.0%,
10.7%, and 6.9%, when permission for extended take-home doses was granted within
the second month of treatment, the third month of treatment, and the fourth month of
treatment, respectively. These results suggest that ensuring a guaranteed access to take-
home doses of methadone as early as the second month of treatment can lead to higher
treatment retention rates and reduce the harms related to opioids. This positive outcome
may be attributed to reducing the barriers to accessing suitable methadone doses, providing
relief from withdrawal symptoms and reducing cravings for methadone recipients.
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Table 1. Results of providing extended take-home doses among people treated with methadone:
six-month outcome percentage change from the baseline.

Policy Change in
Opioid Overdose (%)

Change in
Opioid-Related Deaths (%)

Change in
Treatment Retention (%)

Providing Extended
Take-Home Doses after the

Second month −7.3% −13.0% +2.8%
Third month −6.1% −10.7% +2.0%

Fourth month −3.5% −6.9% +1.4%

3.1.2. Providing Extended Take-Home Doses and Expanding Naloxone Availability among
People Treated with Methadone

Table 2 characterizes the six-month outcomes of interest arising from providing ex-
tended take-home doses and expanding naloxone availability among the people treated with
methadone. Across all outcomes, the greatest impact was achieved with a 15% naloxone
expansion combined with permission for the provision of extended methadone take-home
doses granted within the second month of treatment. These results highlight the significant
reduction in opioid-related harms when methadone recipients within the peer support
network were empowered with readily available naloxone. By having naloxone read-
ily available, methadone recipients can promptly intervene during an opioid overdose
emergency for their peers, potentially saving lives and reducing the severity of harm.

Table 2. Results of providing extended take-home doses and expanding naloxone availability among
the people treated with methadone: six-month outcome percentage change from the baseline.

Policy Change in
Opioid Overdose (%)

Change in
Opioid-Related Deaths (%)

Change in
Treatment Retention (%)

Providing
Extended Take-Home Doses

after the
Expanding Naloxone

Availability by

Second month 5% −46.8% −47.5% +2.8%
Second month 10% −58.5% −61.4% +2.7%
Second month 15% −65.4% −66.4% +2.8%
Third month 5% −46.8% −47.8% +2.0%
Third month 10% −58.4% −60.9% +2.0%
Third month 15% −65.3% −66.2% +2.0%

Fourth month 5% −46.2% −48.3% +1.4%
Fourth month 10% −58.3% −59.9% +1.2%
Fourth month 15% −64.9% −66.1% +1.3%

3.2. Individuals Receiving Buprenorphine/Naloxone Treatment

Among the buprenorphine/naloxone-treated individuals receiving daily dispensed
OAT, 700 individuals, representing 43.8% of this population, were eligible to transition to
take-home doses, and among the buprenorphine/naloxone-treated individuals receiving
weekly dispensed OAT, 6600 individuals, representing 74.3% of this population, were
eligible to extend to 13 take-home doses.

3.2.1. Providing Extended Take-Home Doses among the People Treated with
Buprenorphine/Naloxone

Table 3 shows the six-month outcomes of interest for providing extended take-home
doses among the people treated with buprenorphine/naloxone within the successive time
frames. Earlier granting of permission for the provision to extend buprenorphine/naloxone
take-home doses to eligible patients has a small beneficial impact on treatment retention
and a large undesirable impact on opioid overdose and opioid-related deaths. Providing
extended take-home doses among people treated with buprenorphine/naloxone increases
treatment retention (by 1.5%, 1.0%, and 0.7% when permission for extended take-home
doses was applied within the second month of treatment, the third month of treatment
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and the fourth month of treatment, respectively). However, providing extended take-home
doses among people treated with buprenorphine/naloxone also increased both the total
number of opioid overdoses by 8.9%, 7.7%, and 3.9%, and the total number of opioid-related
deaths by 3.4%, 7.2%, and 6.3%, when permission to use extended take-home doses was
granted within the second month of treatment, the third month of treatment and the fourth
month of treatment, respectively. These results suggest that ensuring a guaranteed access
to take-home doses of buprenorphine/naloxone as early as the second month of treatment
can lead to higher treatment retention rates. This finding suggests that when patients have
the opportunity to receive take-home doses, they are more likely to remain engaged in
their treatment program. However, this greater flexibility and convenience in managing
their medication comes with some drawbacks for buprenorphine/naloxone recipients.
The opioid-related harms tend to increase among this group, which may be attributed
to the lack of direct monitoring of patients receiving buprenorphine/naloxone in OAT.
Unlike methadone, buprenorphine/naloxone may be less effective in providing a long-term
stability due to its pharmacological properties [39]; while not directly represented in the
model, such factors may contribute to patterns reflected in the empirical data that are used
to parameterize the model. Furthermore, individuals receiving buprenorphine/naloxone
treatment who are experiencing a change in their take-home dose status are scheduled
for visits every 14 days. This extended interval between visits may result in a loss of
contact with healthcare providers, which could potentially contribute to an increase in
opioid-related harms.

Table 3. Results of providing extended take-home doses among people treated with buprenor-
phine/naloxone: six-month outcome percentage change from the baseline.

Policy Change in
Opioid Overdose (%)

Change in
Opioid-Related Deaths (%)

Change in
Treatment Retention (%)

Providing Extended
Take-Home Doses after

Second month +8.9% +3.4% +1.5%
Third month +7.7% +7.2% +1.0%

Fourth month +3.9% +6.3% +0.7%

3.2.2. Providing Extended Take-Home Doses and Expanding Naloxone Availability among
People Treated with Buprenorphine/Naloxone

Table 4 shows the six-month outcomes of interest for providing extended take-home
doses and expanding naloxone availability among the people treated with buprenor-
phine/naloxone. Even with a 5% naloxone expansion, a beneficial impact relative to the
baseline would be achieved over all three different time frames of providing extended
take-home doses. Achieving the best treatment retention and reducing both opioid over-
dose and opioid-related deaths has been made by a 15% naloxone expansion combined
with an early (second treatment month) grant of permission for the provision of extended
buprenorphine/naloxone take-home doses. When naloxone is easily accessible within the
peer support network, it can be promptly administered during an overdose emergency. The
timely administration of naloxone effectively counteracts the effects of opioids and restores
normal respiration, thus reducing the risk of fatal outcomes associated with overdose inci-
dents. Therefore, through empowering buprenorphine/naloxone recipients within the peer
support network with readily available naloxone, the potential for reducing opioid-related
harms is enhanced.
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Table 4. Results of providing extended take-home doses and expanding naloxone availability
among people treated with buprenorphine/naloxone: six-month outcome percentage change
from the baseline.

Policy Change in
Opioid Overdose (%)

Change in
Opioid-Related Deaths (%)

Change in
Treatment Retention (%)

Providing
Extended Take-Home Doses

after the
Expanding Naloxone

Availability by

Second month 5% −10.2% −10.2% +1.4%
Second month 10% −19.9% −21.7% +1.6%
Second month 15% −23.3% −22.6% +1.4%
Third month 5% −13.6% −15.8% +1.4%
Third month 10% −21.5% −26.5% +1.1%
Third month 15% −25.9% −32.8% +1.2%

Fourth month 5% −15.9% −17.2% +0.8%
Fourth month 10% −24.4% −21.9% +1.1%
Fourth month 15% −28.5% −20.8% +0.8%

4. Discussion

This simulation study of individuals receiving OAT in a context inspired by data
from Ontario, Canada, suggests that facilitating methadone or buprenorphine/naloxone
recipients’ transition to take-home doses or receiving extended take-home doses would
result in a higher treatment retention compared with the status quo. A crucial finding of
this study was that expanding the access to take-home doses earlier during the subsequent
six-month treatment period among OAT recipients is likely to elevate treatment retention.
Th results further suggest that the use of these extended take-home doses would decrease
the occurrence of opioid overdose and opioid-related deaths among methadone recipients.
Meanwhile, among those prescribed buprenorphine/naloxone, the results suggest that
extended take-home doses might increase the risk of opioid overdose and opioid-related
deaths. Furthermore, these results suggest that expanding naloxone availability can mit-
igate the adverse effect of increased take-home doses guidance on opioid overdose and
opioid-related deaths among buprenorphine/naloxone recipients.

The differences in the pharmacological properties of methadone and buprenorphine/naloxone
may contribute to variations in the treatment outcomes that were seen in the empirical data
used for model parameterization. Factors such as the duration of action, receptor binding
affinity, and pharmacokinetic profiles could impact the treatment response and the risk of
adverse events [39]. For example, the longer duration of action and higher receptor binding
affinity of methadone [18] may result in a greater stability and decreased risk of overdose
among those receiving extended take-home doses.

Alternatively, buprenorphine/naloxone has a shorter duration of action and a lower
receptor binding affinity compared to methadone, which could reduce its effectiveness
in providing a long-term stability. As potential contributors to relevant patterns in the
empirical data used to evidence the model, these factors may contribute to the current
observation in that an increased availability of the buprenorphine/naloxone outside of the
clinic without close supervision may lead to a higher risk of opioid misuse, overdose, and
their related deaths. Additionally, it is important to note that individual patient characteris-
tics, such as tolerance levels, treatment history, and support systems, can influence these
outcomes. The stability of patients in their treatment can also impact their response to the
take-home doses.

Moreover, it is important to emphasize that individuals undergoing buprenorphine/naloxone
treatment and undergoing a change in their take-home dose status are only required to
attend clinic visits every 14 days. This prolonged gap between visits for all individuals
undergoing buprenorphine/naloxone treatment with a change in their take-home dose
poses a concern, as it may reduce the frequency of contact with their healthcare providers.
The potential consequences of limited contact include a diminished opportunity to address
any emerging challenges or concerns promptly, such as adjusting their medication dosage
or addressing new risk factors.
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The creation of supportive peer networks and the availability of naloxone have demon-
strated promising results in preventing opioid overdose incidents due to several reasons.
Firstly, supportive peer networks provide individuals in OAT with a sense of belonging and
mutual support, which may enhance their treatment engagement and reduce the risk of
relapse. Secondly—and in an effect captured in the model presented here—the availability
of naloxone, a medication used to reverse opioid overdose, plays a critical role in harm
reduction. When naloxone is readily accessible—including through such peer networks—it
can be promptly administered during an overdose emergency, reducing the risk of fatal
outcomes. By having naloxone readily available, one can act quickly to intervene and po-
tentially save lives. The combination of supportive peer networks and naloxone availability
creates a complementary approach to preventing opioid overdose incidents.

Patient-centered care for OAT recipients involves adapting the treatment and support
services to meet the unique needs and preferences of each individual [12]. This study
examined various aspects of patient-centered care, including the implementation of flexi-
ble take-home doses and the establishment of supportive peer networks. Reflecting the
ability of patients to exercise a greater level of control over their treatment through flexible
take-home doses and reduced challenges in weaving their dose administration into daily
scheduling, this model captured a resulting increase in the treatment retention. Moreover,
the creation of supportive peer networks, coupled with the availability of naloxone, demon-
strated the potential to prevent opioid overdose incidents. In this context, concern has
been raised in that the storage of a large quantity of OAT medication at home, particularly
methadone, might place other family members or other co-domiciliaries at risk of opioid
overdoses—a consideration that suggests the importance of promoting safe storage. Fur-
thermore, there are specific criteria that must be met before providing patients with new or
higher take-home doses, which adds to the complexity of these clinical decisions.

Several limitations of this study need to be noted. First, while the implemented
agent-based model monitors the behavior of OAT recipients over a six-month treatment
period informed using reported data and investigates the patterns of changes between
the baseline and subsequent scenarios, it is essential to recognize that it does not employ
a conceptual framework with distinct evidence-based rules for the full diversity of the
causal mechanisms involved; indeed, the current state of evidence falls well short of what
would be required to support such a representation. It is therefore particularly important to
acknowledge that the main data source used in this model may still be subject to residual
confounding, which can impact the reported results. Thus, it is advisable to interpret
these findings with caution. Partly to support the incorporation of evolving evidence, the
implemented model is accessible online. Beyond incorporating the updated parameter
estimates, the availability of the model can further aid in refining the model structural
assumptions with a refined theory. Second, it is important to note that the model simplifies
the complexity of implementing and maintaining a peer support network among OAT
patients in real-world settings. Establishing and maintaining a successful peer support
network in practice requires a significant amount of effort and consideration of the diversity
within the OAT population. Third, while the literature [3,40] suggests a potential for an
elevated risk of overdose and mortality during the initial stages of methadone treatment,
it bears emphasis that this model has not been parameterized to reflect this aspect of the
context and does not report the timing of the events within the six-month treatment time
frame. This limitation is primarily attributed to the constraints imposed by the currently
utilized data sources. Finally, additional evaluations may be required to validate the
findings thoroughly. For instance, in accordance with the empirical data, opioid-related
rates, including overdose and deaths, were not excluded from the all-cause death rate for
OAT recipients. Moreover, due to the potential changes in the levels of tolerance among
OAT recipients over time, there are uncertainties regarding opioid-related harm rates
outside of OAT. However, since these rates remained constant across all scenarios and
that the amounts of opioid-related harm outside of OAT were not among the outcomes
of interest for the current study, these limitations are expected to have only a minimal
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impact on the overall results. Moreover, the model was simplified by greatly limiting its
representation of agent heterogeneity by virtue of employing overall empirical data, and
the model does not account for disparities in the access to treatment services.

The findings of this study are in accordance with that of several other previous case
studies [41–46] in suggesting that benefits can be secured if the modified guidance for
administering higher take-home doses of OAT continues beyond the COVID-19 pandemic.
Through implementing longer-duration take-home doses in methadone treatment pro-
grams, there is a potential to decrease the occurrence of opioid overdose and opioid-related
deaths. To further address overdose incidents and prevent fatalities among OAT recipi-
ents, while also enhancing treatment retention, promoting the usage of naloxone among
peers [34,35], and facilitating its accessibility without a prescription [47] may be effective.

Based on these results, policymakers may need to consider several factors when
formulating or revising policies related to OAT. Policymakers may need to strike a balance
between expanding access to OAT through longer-duration take-home doses and managing
the potential risks associated with increased opioid-related harms, suggesting the value
of conducting a thorough risk assessment and considering additional safety measures
to ensure the well-being of patients. Moreover, policymakers may acknowledge that the
benefits of longer-duration take-home doses vary among patients. They may underscore the
significance of modifying treatment plans to tailor to individual needs and consider factors
such as gender, income level, residential location, and treatment history when assessing
a patient’s stability and risk profile. This information might aid in determining the most
suitable treatment duration and level of supervision for each patient. To achieve this aim,
policymakers might place an emphasis on establishing robust monitoring and surveillance
systems to closely monitor the outcomes and safety of OAT patients receiving longer-
duration take-home doses. This could involve regular check-ins, adherence monitoring,
and systems to promptly identify and respond to any concerning trends or adverse events.
Finally, this study highlights that policymakers may benefit from collaboration among
systems scientists, healthcare providers, and data custodians to further investigate the
impact of longer-duration take-home doses on treatment outcomes and opioid-related
harms. Such collaborations facilitate research and studies that aim to identify context-
specific policy recommendations that are highly dependent on patient populations, local
regulations, and existing guidelines.
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Appendix A

Table A1. Summary of the opioid-related parameters for methadone and buprenorphine/naloxone
treatment based on the study published by the authors of [17] used in the model parametrization:
daily and weekly dispensing of OAT and eligibility for changes in take-home doses.

Parameter
Opioid

Overdose rate
(1/Year)

Discontinuation Rate of
Therapy
(1/Year)

Interruption Rate in
Therapy (1/Year)

All-Cause Mortality
Rate (1/Year)

Opioid-Related
Death Rate (1/Year)

Daily methadone patients
not eligible for increased

take-home doses
0.095 0.636 0.239 0.013 0.005

Weekly methadone patients
not eligible for increased

take home doses
0.018 0.196 0.074 0.011 0.003

Daily methadone patients
eligible for increased

take-home doses
0.069 0.510 0.190 0.015 0.006

Weekly methadone patients
eligible for increased

take-home doses
0.014 0.141 0.051 0.008 0.001 *

Daily
buprenorphine/naloxone

patients not eligible for
increased take-home

doses

0.035 0.932 0.293 0.001 * 0.001 *

Weekly
buprenorphine/naloxone

patients not eligible for
increased take-home

doses

0.014 0.308 0.129 0.008 0.001 *

Daily
buprenorphine/naloxone

patients eligible for
increased take-home

doses

0.065 0.851 0.253 0.001 * 0.001 *

Weekly
buprenorphine/naloxone

patients eligible for
increased take-home

doses

0.017 0.260 0.095 0.008 0.001 *

* To deal with the statistical variability associated with small sample counts, a value of 0.001 is used when the
reported number of deaths among recipients is less than or equal to 5.

Table A2. Summary of the socio-demographic parameters for methadone and buprenor-
phine/naloxone Treatment based on the study published by the authors of [17] used in the model
parametrization: daily and weekly dispensing of OAT and eligibility for changes in take-home doses.

Parameter

Location of
Residence Neighborhood Income

Urban One
(Lowest) Two Three Four Five

(Highest)

Daily methadone patients not eligible for increased
take-home doses 88.7% 48.2% 21.5% 13.4% 10.2% 6.8%

Weekly methadone patients not eligible for
increased take home doses 85.5% 41.3% 22.1% 16.0% 11.6% 9.1%

Daily methadone patients eligible for increased
take-home doses 89.9% 39.4% 23.8% 16.0% 13.0% 7.8%

Weekly methadone patients eligible for increased
take-home doses 88.1% 38.0% 24.4% 17.3% 12.3% 8.0%

Daily
buprenorphine/naloxone patients not eligible

for increased take-home doses
80.9% 48.8% 16.3% 15.6% 11.9% 7.4%
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Table A2. Cont.

Parameter

Location of
Residence Neighborhood Income

Urban One
(Lowest) Two Three Four Five

(Highest)

Weekly
buprenorphine/naloxone

patients not eligible for
increased take-home

doses

86.5% 34.0% 22.9% 18.6% 14.3% 10.2%

Daily
buprenorphine/naloxone

patients eligible for
increased take-home

doses

88.2% 39.5% 24.1% 14.9% 11.8% 9.6%

Weekly
buprenorphine/naloxone

patients eligible for
increased take-home

doses

86.5% 34.8% 24.4% 17.9% 12.6% 10.3%

Table A3. Summary of Remaining Parameters in the Model Parametrization.

Parameter Values Reference

OAT recipients’ population size 50,000 Assumed

The number of OAT recipients in each treatment type
(methadone and buprenorphine/naloxone) Custom distribution Parametrized [17]

The number of OAT recipients in each disposal timing
(daily or weekly) across different treatment types Custom distribution Parametrized [17]

The number of OAT recipients considering their eligibility
for changes in take-home doses across different treatment

types and disposal timings
Custom distribution Parametrized [17]

Rate of the opioid overdose per year for opioid users
outside the OAT Uniform distribution between 0.009 and 0.048, respectively Assumed [17]

Rate of opioid-related death per year for opioid users
outside the OAT Uniform distribution between 0.0179 and 0.0562, respectively Assumed [48]

Rate of non-opioid-related death per year for opioid users
outside the OAT 0.001 Assumed [49]
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Abstract: We detail a case study using a participatory modeling approach in the development and
use of discrete-event simulations to identify intervention strategies aimed at reducing emergency
department (ED) wait times in a Canadian health policy setting. A four-stage participatory modeling
approach specifically adapted to the local policy environment was developed to engage stakeholders
throughout the modeling processes. The participatory approach enabled a provincial team to engage
a broad range of stakeholders to examine and identify the causes and solutions to lengthy ED wait
times in the studied hospitals from a whole-system perspective. Each stage of the approach was
demonstrated through its application in the case study. A novel and key feature of the participatory
modeling approach was the development and use of a multi-criteria framework to identify and
prioritize interventions to reduce ED wait times. We conclude with a discussion on lessons learned,
which provide insights into future development and applications of participatory modeling methods
to facilitate policy development and build multi-stakeholder consensus.

Keywords: participatory modeling; discrete-event simulation; emergency department; patient flow

1. Introduction

Evidence-based decision making is the foundation for health policymaking and health
service planning. There remain many practical challenges to integrating the results of re-
search to identify evidence-based interventions to implement in a given context, especially
in the face of the uncertainty and complexity that characterize many healthcare delivery
systems. Although research presents a multitude of acceptable evidence-based options, it
is difficult to determine which interventions will have the greatest impact given the hetero-
geneity in the population and the health-service delivery system. Complex or uncertain
disease epidemiology, including multimorbidity, can introduce additional challenges to
decision making. In addition, a large number of stakeholders with differing perspectives
and competing priorities are typically involved in the decision-making processes. Failure
to achieve consensus among these stakeholders can hinder the effective implementation of
interventions [1–3].

As a result of these challenges and the increasing availability of advanced computer
technology, there has been a growing interest in using modeling and simulation techniques
to assist in the decision-making process in the health sector [4,5]. The design and devel-
opment of health services would benefit from using these techniques to systematically
integrate diverse evidence sources into a computer model and validate the underlying
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causal mechanisms that drive complex healthcare problems. More importantly, these
models allow assessment and comparison of the effects of proposed changes or resource
configurations in service design through “what-if” scenarios, providing insights on po-
tential impacts in a cost-effective and timely manner compared to real-world trials. A
number of simulation studies have successfully applied computer modeling methods to
inform strategic planning and health policy-making for stroke care improvement, alcohol-
related harm reduction, cardiovascular disease interventions, and managing diabetes in
pregnancy [6–9].

Despite this growing interest and an increasing number of simulation studies in
health-related fields, serious and widespread application of systems modeling and simula-
tion remains lacking in informing health-policy development [5,10–14]. Low stakeholder
engagement is a major factor that hinders the translation of model findings into evidence-
based policy and practice [13,15,16]. Recent studies in the context of healthcare found that
relatively few simulation models addressed the needs of policymakers, and models were of-
ten constructed without the involvement of health-system managers or policymakers (who
are considered the ‘end users’) in the research process [4,5,15,17]. Many factors contributed
to the “implementation gap” between model findings and serious application in the health
field; for instance, the communication gap between research and stakeholder groups [15],
the lack of involvement of researchers when important policy decisions are made [18], and
the trust issues throughout different modeling stages that involve interactions between the
model, the modeler, and the stakeholders [19]. Harper et al. proposed a trust model and
discussed different aspects of trust building in the life cycle of a simulation study [20].

Successful development of health interventions or policies depends on stakeholder
support for the proposed improvements or actions. There is a growing recognition of
the value of using a participatory modeling approach in simulation studies to bridge
the communication gap and enable collaboration between stakeholders and modelers in
building the simulation models [3,7,21]. The participatory modeling (also referred to as
collaborative modeling, participative modeling, or facilitated modeling) approaches involve
the joint creation of a computer model that reproduces a shared representation of the system
in silico with the end users, stakeholders, and experts to facilitate collaborative learning,
build consensus, and inform the group’s decision making [22]. In these approaches, expert
modelers directly collaborate with a team of end users or stakeholders throughout the
whole simulation study life cycle, as opposed to the traditional approaches where the
modelers conduct the simulation studies independently and only present the findings to
the stakeholders [4]. A participatory approach to simulation modeling helps strengthen
relationships and improve knowledge translation when designing health services and
policies for complex problems [23].

This case study describes modeling ED and acute care patient flow using a four-stage
participatory modeling approach with discrete-event simulation (DES) in a Canadian
health-policy setting. The paper complements the literature by reporting on the use of a
participatory approach in developing DES models of patient flow in the emergency depart-
ment (ED) to inform the design and planning of effective wait time reduction strategies
from a whole-system perspective. The DES models, built in collaboration with a multidisci-
plinary group of stakeholders, served as a decision-support tool that integrated existing
data, research evidence, expert knowledge, and local context to assess the potential impact
of different intervention scenarios.

The modeling findings have been utilized to inform policy development and subse-
quent actions. We detailed our DES model’s structure and major quantitative results in
previous work [24]; discussions on major simulation findings can be found therein. In the
current study, we provide methodological details of the participatory approach used in
model development and model use with stakeholders. We focus here on describing the
following key aspects of the participatory modeling process:

• building trust in the modeling approach and seeking buy-in from the project leads for
further development during the project initialization;
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• leveraging existing conceptual mapping tools used in the health system for conceptual
modeling;

• using co-production methods to build trust in the model and its outputs;
• identify and prioritize intervention scenarios using a multi-criteria framework.

We then discuss lessons learned and implications for adopting the participatory
modeling approach in the health-policy setting.

2. Brief Review of Participatory Modeling Approaches
2.1. Motivation

In the past two decades, there has been little improvement in translating simulation
findings into policy and practice [12,25–31], with communication gaps and a lack of un-
derstanding of policymakers’ needs contributing to the underutilization of model findings
in healthcare decision making [15,31]. There is a rising awareness that more needs to be
done to ensure that research results in better knowledge translation and improved health
services and patient outcomes. Engaging stakeholders in research has been highlighted as a
possible mechanism to increase the value, use, and relevance of research [32]. Scholars have
called for collaborative engagement with health professionals, managers, decision makers,
and patient representatives in simulation studies to increase the likelihood of successful
implementation of simulation outputs [3,9,12,30]. In addition, a range of programs were
established to support stakeholder engagement in health research, such as the develop-
ment of the US Patient-Centered Outcomes Research Institute and knowledge translation
activities in Canada [32].

Participatory modeling approaches have been proposed as one way for engaging
stakeholders and improving stakeholders’ knowledge and understanding of a system
and its dynamics under a variety of conditions in order to support shared learning or the
decision-making process [3,9,21,22,33,34]. It also increases trust in and use of scientific
information in decision making [35]. It is a deliberate learning process that involves a
diverse range of modeling activities that draw on stakeholders’ knowledge to develop a
shared and formalized understanding and representation of the reality or system [22,31].
In a participatory modeling process, stakeholders can be involved in one or more modeling
stages with different levels of engagement, ranging from passive participation (e.g., being
merely informed about model findings) to active participation where stakeholders might
contribute to problem identification, data collection, model design, and model use [31,34].

2.2. Applied Fields and Purpose

Participatory approaches to modeling have gained recognition in a number of sectors,
including natural resource management (e.g., water management) [31,36], environmental
planning [34,37], and health research and policy [3,33,38–40]. Voinov et al. reviewed
participatory modeling studies in resource management and environmental planning
that involved multiple sectors and stakeholders [34]. There has been an increase in the
popularity of participatory modeling in recent years, as evidenced by the rising number
of papers published on the topic [34,41]. The authors presented different components
for stakeholder participation within the development of specific environmental models
and summarized tools and methods for participatory modeling in different modeling
stages [34,41]. Participatory modeling approaches are also being used in public health and
health services research. Freebairn et al. described the novel use of participatory simulation
modeling combined with system science methodology in informing health policies through
three case studies aimed at reducing alcohol-related harms, childhood obesity, and diabetes
in pregnancy in real-world policy settings in Australia [3,42]. The authors published a
series of papers on these case studies that provided valuable lessons, detailed procedures,
and concrete guidance in using participatory dynamic simulation modeling methods in
health policy settings, such as integrating knowledge translation and mobilization into
participatory processes, converting conceptual system maps into a dynamic simulation,
and building consensus with stakeholders for policy actions [3,7,9,43]. Frerichs et al.
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and Gerritsen et al. discussed and showcased the potential of using community-based
participatory modeling approaches in public health and health equity research [44,45].

Depending on the form of participatory modeling approach used, participatory mod-
eling processes may serve somewhat different purposes. Most participatory modeling
projects focused on developing a collective understanding of the issues among the partici-
pants, and the model was viewed as a tool to support shared learning or community-based
learning; while others engaged stakeholders to inform policy-making or mobilize ac-
tions [3,31,33,40,42,44,46,47]. Using the participatory modeling approach was found to
have several benefits, including providing a better evidence base for policy decisions, im-
proving the quality of the research, and increasing the dissemination and implementation
of interventions [40,48,49]. A number of tools and methods can be employed to facilitate
stakeholder engagement in participatory modeling processes. Voinov et al. provided a sys-
tematic overview and assessment of various participatory modeling methods and discussed
their strengths and weaknesses [22]. The authors proposed a typology of methods used
in participatory modeling with illustrated workflows and provided practical guidance for
method selection. Depending on the modeling stage, either qualitative (e.g., rich pictures
or causal loop diagrams) or quantitative methods (e.g., agent-based modeling or system
dynamics) could be utilized.

2.3. Specific Participatory Modeling Approaches and Tools
2.3.1. Soft Operation Research Methodology

Soft Systems Methodology (SSM) is a broader participatory modeling methodology
that emphasizes the use of rich picture tools to learn about a problem situation and start
exploratory discussions with people [50]. It also embraces the systems perspective to
explore problematic situations with relevant stakeholders. SSM used a sequence of steps
from problem finding and rich picture building to solution identification and action mo-
bilization [22,50]. It has been used as a problem structuring approach in a number of
sectors (e.g., strategic planning and policy development concerning agriculture) [51], but
its application in the healthcare setting is limited [46]. There are other “soft” problem
structuring methods used for studying complex and unstructured problems involving
multiple stakeholders with diverse perspectives, such as strategic options development
and analysis, and hierarchical process modeling [52,53].

2.3.2. Group Model Building

Group model building (GMB) refers to a set of techniques used to engage client groups
directly in the process of problem finding, model construction, and use through facilitated
workshops or sessions [39,54,55]. Group model building has matured as a field, specifically
as a community-based participatory approach for social learning or the development of
system dynamics (SD) models [39,45,47,54–56]. Depending on the type of problem, the end
product often results in either qualitative models (causal loop diagrams) or quantitative
models (such as SD models).

2.3.3. PartiSim Framework for DES

Tako and Kotiadis developed a facilitated modeling approach named PartiSim [21,57–59].
PartiSim (short for participative simulation) is a multi-methodology framework that inte-
grates DES with SSM. The PartiSim framework integrates stakeholder input and facilitation
as part of the process of conducting DES studies. The framework is divided into six primary
stages in the simulation study life cycle, each with its own set of activities, deliverables, and
tools to help the modeling team engage stakeholder participation in the study. The authors
employed the PartiSim framework while collaborating with healthcare organizations on
a variety of operational issues in healthcare settings [60]. The authors reflected on prac-
tical challenges encountered in facilitating the conceptual modeling process, particularly
panel composition and team roles in handling conflicts and promoting involvement among
stakeholder teams and modeling teams [57]. The authors also discussed and reported on
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the post-model coding step, specifically scenario development and experiments [59]. The
authors achieved success in implementing model findings in an obesity service to improve
patient waiting times [60].

2.3.4. Other Participatory Modeling Approaches Used in Case Studies

Unlike the formal frameworks or methodologies introduced above, several studies
reported the use of participatory modeling through case studies [3,7,9,42,43]. These studies
elaborated on the rationale and procedure of the participatory modeling approach used [7],
integration of rapid review with participatory modeling processes for knowledge mobiliza-
tion [3], the conversion of conceptual mapping into a quantitative simulation model [9],
and decision makers’ experience in the participatory modeling processes [42].

2.3.5. Participatory Modeling Tools

Participatory modeling can be used in either qualitative or quantitative modeling.
For qualitative modeling, a number of tools can be used at different modeling stages
or combined with more general frameworks or methodologies such as SSM, GMB, or
PartiSim. Diagramming or graphical tools, such as rich pictures (as a part of the SSM), causal
loop diagrams, and cognitive (or conceptual) mapping, were often used in participatory
modeling to generate visual representations of the components of the problems [9,22].
These qualitative maps or diagrams are utilized for collaborative exploration and group
understanding of a complex issue by representing diverse relationships among many
interacting components, illustrating how changes in one area affect other factors, and
drawing the feedback loops that are assumed to explain the dynamic behaviors [9,22].
Unlike participatory modeling approaches for qualitative modeling, which are primarily
concerned with fostering trust and understanding among stakeholders, participatory
modeling approaches in quantitative modeling are more focused on “solving” a specific
problem and frequently produce forecasts or quantitative estimates [22]. Participatory
modeling can be embedded in the development and use of SD, DES [21], and agent-based
models (ABM) [22].

2.4. Hybrid Modeling and Simulation

With new developments in the simulation tools and the rising complexity of the
studied systems and decision-making needs, a growing number of studies in the field
of modeling and simulation (M&S) have embraced a hybrid approach [61–63]. This in-
volves combining multiple simulation techniques (e.g., in the form of mixing SD, DES, and
ABM) or integrating hard or soft operation research (OR) methods in one or more stages
of a simulation study (e.g., combining SSM with DES) [61–63]. The adoption of hybrid
approaches becomes increasingly appealing, especially from a practical standpoint, as
hybrid approaches can overcome some limitations of using any single M&S technique and
complement each other [61,62]. This approach can further facilitate the nimble evolution
of model scope and formulation in light of the growing understanding of the system and
changing policy evaluation needs and context. One of the main areas of application of
hybrid M&S was found to be healthcare [61]. A combination of multiple simulation tech-
niques (e.g., SD, ABM, DES, and social network analysis) has been employed to investigate
a range of complex health-related issues and systems, such as disease prevention and care
management [43,64–66], projection of disease burden [67], health workforce dynamics [68],
and immunoepidemiology of infectious diseases [69]. Reflecting the diversity in the mix-
ing of different methods in simulation studies, Mustafee et al. presented a conceptual
classification of hybrid M&S and discussed innovation in the M&S field by highlighting
hybrid modeling [70–72]. Unlike hybrid simulation, which combines two or more simulation
techniques (e.g., SD, DES, or ABM) primarily in the model implementation stage of a
simulation study, hybrid modeling extends hybrid simulation by emphasizing the combined
application of simulation techniques together with theories, frameworks, methods, or tools
in the broader OR domain or from other disciplines in stages of the modeling process
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of a simulation study beyond implementation [70–72]. Hybrid modeling can involve the
synthesis of a qualitative soft OR technique (such as SSM or a participatory approach) with
a simulation technique [62]. For instance, McDonald et al. used a community-engaged
collaborative modeling approach to co-create an ABM with the indigenous community to
better understand the water services [73]. Jiang et al. combined the use of causal loop dia-
grams in the conceptual modeling stage with ABM to study breastfeeding interventions [74].
Other forms of hybrid modeling include the co-application of simulation techniques with
cross-disciplinary methods from other fields or domains [70]. Tian et al. proposed a hybrid
approach by linking multiple techniques with an SD model to investigate stroke prevention
and care [75]. Kreuger et al. discussed the combined use of agile design in software engi-
neering with hybrid simulation design and use [76]. Hybrid modeling stands at the forefront
of fostering innovations in both the theoretical and practical aspects of M&S, especially in
light of new developments in conceptual modeling to better understand and depict studied
systems [62], and in stakeholder engagement to capture domain knowledge from diverse
stakeholders and build trust in simulation models [70,71].

3. Case Study Context
3.1. The Problem of Emergency Department Crowding and Wait Times

ED crowding, often reflected in lengthy wait times for emergency care, is a worldwide
healthcare delivery issue that negatively affects patient safety, experience, and clinical
outcomes, such as increased mortality rates and worse patient satisfaction [77–81]. The
causes of ED crowding and lengthy ED wait times are multi-factorial and complex [77,82].
Among 11 developed nations, Canadians reported the longest ED waits [83,84]. Lengthy
ED wait times are a major concern for Canadians [85], and several Canadian provinces
have launched initiatives to address the ED crowding and patient wait times [78]. The
government of Saskatchewan challenged the health system to tackle the waiting time
problem in EDs [86]. In response to the challenges of improving timely access to emergency
care, the Saskatchewan ED Waits and Patient Flow Initiative was launched to address ED
wait times. The provincial initiative was charged with developing and implementing ED
wait time reduction strategies provincially [86]. Given the complex nature of the issue,
limited resources for allocation, and an extensive set of evidence-based options from both
the literature and expert opinions, it is challenging to quantify the impact of each plausible
contributing factor. It is also costly to pilot each evidence-based intervention individually
or collectively for the studied EDs. Ideally, we would desire a safe and cost-effective
approach to understand the causes and examine the likely consequences of proposed
changes in advance. With the dual objectives of identifying the causes of lengthy ED
wait times and comparing potential solutions to allocate limited resources, this study
investigated the ED patient flow in six Saskatchewan hospitals. At the time of the research,
the six hospitals were located in three health regions, which collectively served 63% of the
Saskatchewan population.

3.2. Whole-System ED Patient Flow Modeling

There is a significant amount of literature on using simulation, particularly DES, to
study ED crowding, streamline ED patient flow, and reduce wait times [12,28,30,87–89].
However, most of these ED simulation studies have high unit specificity with a focus only
on care processes in a single ED [25,28,30]. Only a few studies investigated ED crowding
or wait times as part of a larger system, such as a whole hospital or complete acute care
system [90–92]. There has been limited improvement in multi-facility and whole-system
modeling in the area of ED simulation studies that utilize DES [25,28,30,89].

Despite the broad agreement that the ED problem largely requires system-wide so-
lutions and that solutions within the ED alone are insufficient, there remains a lack of
whole-system multifacility modeling, as documented in the ED literature. Empirical ev-
idence suggests that ED performance depends on adjoining systems, such as acute care,
primary care, and sub-acute care to function efficiently [28,30,56,88,93]. Jun et al. concluded

45



Systems 2023, 11, 362

that future simulation results on ED crowding or wait times need to depict the interaction
of major service departments and support services in a hospital to gain insights from ana-
lyzing the system as a whole, rather than in a unit-specific piecemeal fashion [25]. Gunal
et al. argued that unit-specific and facility-specific ED simulation studies, which ignore
the subtle linkages between the ED and other units or services within the hospital, might
oversimplify the complexity of hospital activities within a simulation model and overlook
side effects and unintended consequences [28]. Zhang echoed that healthcare management
would benefit from DES models, which capture the intricate interactions of healthcare
services rather than just limiting them to single units [89]. Salmon et al. also found high
unit specificity among ED simulation studies, thus calling for the examination of system
influences beyond the ED itself to better understand emergency department operations
from a whole-system perspective [30].

This paper complements the literature by demonstrating how multi-facility whole-
system DES models of patient flow can be used to design policies to improve ED patient
flow and reduce wait times. Notably, the study embraced the systems view and studied
ED wait times as a part of a larger integrated acute care system with multiple interacting
subsystems or units.

4. Materials and Methods
4.1. Overview

This study described a participatory modeling approach for embedding stakeholder
engagement in the development and use of DES models to support effective and coordi-
nated policy development to reduce ED wait times. The participatory modeling approach
used in this study drew on several existing frameworks for working with groups [21,56,94]
and was adapted to the local context. The approach was applied through collaboration
between the Saskatchewan ED Waits and Patient Flow Initiative, Saskatchewan Ministry
of Health, regional health authorities, Saskatchewan Health Quality Council, clinicians,
health professionals, researchers, and health policy planners. The study was exempted by
the University of Saskatchewan Research Ethics Board.

The participatory modeling approach used in this study can be broken down into
four major stages: (1) project initialization; (2) conceptual modeling; (3) model imple-
mentation; and (4) model use and policy co-development. Figure 1 illustrates the overall
participatory modeling process with a detailed visualization of the model use and policy
co-development stage.

4.2. Stage 1: Project Initialization

The initialization phase assembled the project team, defined the purpose and scope,
and assessed the feasibility of using computational modeling to understand ED patient
flow and inform the policy development process. The primary objective of this phase
was to seek initial buy-in from the project lead (GF) and physician leads (JB and JS) of the
ED Waits and Patient Flow Initiative. The goal was to help them recognize the value of
computer simulation models as decision-support tools for addressing the ED patient flow
challenges with a broader group of regional and provincial stakeholders. To achieve this,
a proof-of-concept analysis was carried out to demonstrate the ability of computational
models to simulate ED patient flow, synthesize evidence, data, and expert opinions, and
allow for the evaluation and comparison of alternative wait time reduction strategies via
virtual experiments.
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Team Composition

The modeling project team was led by a project lead (GF) who was primarily responsi-
ble for managing the project, overseeing model development, and communicating with
important stakeholders, including regional leaders and policy partners. The domain ex-
perts on the team included ED physicians, a geriatrician, family physicians, clinical experts,
patient flow managers, and quality improvement consultants. These experts provided
information about the current patient flow situation in the studied EDs and hospitals
and offered clinical guidance for model development and use. Two key physician leads
(JB and JS) shared duties with the project lead and jointly facilitated modeling meetings
and stakeholder communication. One of the domain experts (JB), who was a geriatrician,
also served as the project champion. Two technical advisors (NO) oversaw high-level
model conceptualization and development to ensure that the model was suitably scoped,
rigorously validated, and could be delivered within a policy-friendly time frame. The
lead modeler and researcher (YT) was responsible for designing the participatory mod-
eling process with the project leads and technical advisors, managing data requirements,
synthesizing evidence for model conceptualization, building and validating simulation
models, developing intervention scenarios with stakeholders, and conducting simulation
runs. Another modeler served as an intern for five months during the project’s initialization
phase to assess the feasibility of using computational modeling to inform decision making
through proof-of-concept analysis. Two quality improvement consultants (AD and PF)
helped facilitate meetings with stakeholders.
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4.3. Stage 2: Conceptual Modeling

The first step of the study was to understand the existing ED waits situation by getting
an overview of the entire ED patient flow and care processes in the studied EDs and
hospitals. Conceptual modeling refers to a series of activities for abstracting a qualitative
model from the problem situation and the real system with relevant domain experts and
stakeholders [2,95]. The conceptual modeling process in the present study was inspired
by elements from existing conceptual modeling frameworks [2,95] and comprised three
key activities for knowledge discovery and information elicitation: (1) conceptualizing
the problem, specifically the causes of ED wait times, and identifying a preliminary set
of experimental factors (model inputs that can be changed); (2) understanding the data
and care processes in the studied EDs and hospitals; and (3) defining the scope and
boundaries of the model. The sequence of these activities was not linear, and they were
pursued in a highly iterative fashion. We used tools that were borrowed or adapted
from qualitative improvement toolkits [96] and lean management techniques [97]. Prior
to the formation of the modeling team, the provincial initiative’s working groups had
conducted initial conceptual mapping of the ED wait time issue. Rather than introducing
new conceptual mapping tools, the modeling team opted to review and enhance the
previous work to generate new insights and foster a more comprehensive understanding
of the problem situation.

Problem conceptualization started with a qualitative representation of the factors
contributing to the ED wait times. A comprehensive literature review was conducted at
this stage to identify important contributing factors to ED wait times. The modeling team
also consulted with a wide range of domain experts and regional stakeholders through
informal meetings and onsite visits to acquire knowledge about the studied sites. The
perspectives of stakeholders and relevant domain experts were both crucial at this stage,
as they assisted the modeler in better understanding the contextual factors in the studied
EDs. A driver diagram was developed to depict the causes that could influence ED wait
times from multiple perspectives. A driver diagram is a quality improvement tool used
to illustrate a project team’s understanding of the factors that contribute to the project
objective [96]. It displays key areas (primary and secondary drivers) to influence in order
to achieve the aim of an improvement project when tackling a complex problem.

To understand the data and care processes in the studied EDs and hospitals, the
modeling team worked with process improvement consultants, patient flow managers,
regional stakeholders, and patients and family advisors through rapid process improvement
workshops to develop value stream maps (VSMs) of the current state of ED patient flow.
VSM is a lean management technique that uses a flowchart to draw the current (and future)
state of a specific process (or service), with the goal of identifying waste, reducing process
time, and improving the flow [98]. At the time of this research, many lean tools were
already in use as part of the lean implementation in the province’s healthcare system [99].
Rather than re-inventing the wheel, the modeling team leveraged these existing conceptual
mapping tools and instead focused on understanding and refining the VSMs. The modeling
team met with process improvement consultants and individuals who have expertise in
patient flow management in the studied hospitals and conducted onsite visits. The VSMs
of ED and acute patient flow illustrated the major steps in the patient’s journey from
registration to discharge. They also mapped the ED activities (both necessary and non-
value-added activities), current care processes, and lead times from the whole-system
perspective. Additionally, input data for the model was analyzed using administrative
databases based on the driver diagram and VSMs.

In the subsequent stage of the process, the model scope and level of detail were
discussed and defined. The primary outcome of the study was the wait time in EDs, which
made DES an appropriate choice for the modeling approach as it is well-suited for modeling
queuing systems with constraints. The modeler, technical advisors, and project champion
collaboratively defined major components (entities, attributes, activities, and resources) to
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be included in the DES models. Furthermore, assumptions and simplifications were made
with input from domain experts and technical advisors.

4.4. Stage 3: Model Implementation
4.4.1. Turning Conceptual Modeling into DES Models

To operationalize the conceptual model as a computational model, the modeler worked
with patient flow managers, clinical experts, and quality improvement consultants to
identify critical components (e.g., units), interactions, and patient cohorts to be captured
in the first iteration of the development of DES models. This was an iterative process
throughout the project cycle that involved reviewing evidence and the conceptual models,
analyzing administrative databases, and ongoing consultation with clinical experts to
determine important processes and agents to be represented in the DES models.

In the early phase of the model development, to communicate and consult with
clinical and domain experts on model logic, we added 3D visualization of the floor plan
of the studied EDs to showcase the patient movement in the simulation. We conducted
face validation and external validation to maintain the credibility of the model. Multiple
patient cohorts (e.g., ED visits for family practice sensitive conditions, hospitalization for
ambulatory care sensitive conditions, etc.) were identified in the conceptual modeling stage.
We extracted these patients cohorts from administrative databases, analyzed their use of
ED and acute care services, and characterized them in the DES models.

4.4.2. Capacity Building and Health System Modeling Workshop

Most project stakeholders knew very little about computational modeling and its
use in healthcare. Their participation and involvement in the project were largely driven
by the priority of the issue and their trusted relationship with the lead domain experts
and the provincial initiative. However, many stakeholders were curious about modeling
methods. A 4-day health system modeling workshop, led by the modeling team, was
hosted by the Saskatchewan Health Quality Council and the provincial initiative. Thirty-
five participants (including several provincial leaders) from Saskatchewan health regions,
health organizations, and the Ministry of Health participated in this modeling workshop
on computational modeling and system thinking in healthcare [100]. Several participants
were data content experts and had worked with the modeling team on parameterizing
the simulation models of patient flow for the hospitals studied. The modeling team also
presented the initial DES models of patient flow to the participants.

4.5. Stage 4: Model Use and Policy Co-Development

After completing the initial model development and validation, the project moved
to the model use and policy co-development stage. We formed an advisory group that
included stakeholders from three health regions and ministry departments within the
healthcare system. To work towards shared goals and aligned actions to reduce ED wait
times, we invited the advisory group to participate in four facilitated advisory group
meetings to co-develop intervention solutions for implementation to reduce ED wait times
in the studied EDs. We highlighted the use of simulation models for integrating data,
evidence, and stakeholder inputs to support evidence-informed policy development.

The advisory group was formed by the provincial initiative. The advisory group in-
cluded all relevant senior stakeholders from the Ministry of Health branches, executive lead-
ers from three regional health authorities, physician leads and clinical experts, researchers,
and patient advisors. Figure 1 illustrates the major activities that involve interaction and
engagement with stakeholders in the model use and policy co-development process. It also
highlights four major advisory group meetings with the engagement of the full panel of
the advisory group during this process. The first meeting introduced the use of simulation
models for policy co-development with stakeholders. The second meeting reviewed the
preliminary scenario results and discussed creating additional intervention scenarios based
on stakeholders’ assessments of their regional priorities, readiness, and drivers for lengthy
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ED wait times in the studied EDs. The last two meetings were centered around discussing
the model results and reaching an agreement on recommended interventions for further
analyses and the eventual development of a business case for implementation.

4.5.1. The First Meeting

The first advisory group meeting introduced the use of simulation models for policy
co-development. The meeting emphasized the participatory approach being undertaken to
support evidence-informed policy development with the active engagement of the advisory
group. We presented our data analyses on a number of patient groups that were identified
as potentially contributing to the problem of lengthy ED wait times. Then we summarized
our literature review and environmental scan on two topics: (1) what interventions had
been tried, what worked, and what did not work; and (2) promising practices from other
jurisdictions and lessons learned from other organizations experiencing similar ED crowd-
ing or flow issues. Finally, we proposed the use of simulation models as a decision-support
tool to synthesize data, evidence, and input from the advisor group to explore and compare
the impact of proposed interventions. The modeling team also described the collaborative
model development and model validation activities with patient flow managers, physi-
cians, and data analysts. The advisory group agreed with using the participatory modeling
approach to develop policy recommendations for the budgeting cycle.

After the first meeting, the modeling team started to conduct simulation runs of inter-
ventions that emerged from evidence and data. In addition, key contacts were identified
for the three health regions where the six studied hospitals were situated. Engagement
with regional and smaller stakeholder groups also occurred after the first meeting. We
held multiple regional advisory group meetings with leaders of specific regional health
authorities to gather information about hospitals studied in their region, their local contexts,
data sources, interventions of interest, readiness, and priorities. Specifically, a multi-criteria
prioritization framework for scenario development was designed and used with the re-
gional leads (seen in Figure 2 and Table 1). The modeling team distributed this framework
to key contacts in each health region before the second meeting. The key contact (a senior
regional leader) discussed with managers and directors in their region about what inter-
ventions they would like to explore via simulation modeling to reduce ED wait times given
their current state and local challenges. We also instructed them to review and assess each
proposed intervention using the criteria in the framework. We then gathered an initial list
of intervention scenarios that each region would like to explore using the models.

4.5.2. The Second Meeting

The second meeting began by presenting the early findings of five model intervention
scenarios for five hospitals. For each intervention scenario, we presented the reduction
in ED waits over three years and the supporting evidence for the proposed models of
care or interventions. These intervention scenarios were identified by the modeling team
through literature review, data analyses, and consultation with domain experts. These
initial scenario runs were undertaken for demonstration purposes and exploration of
“what-if” interventions, rather than for necessarily selecting the most desired scenario. The
results of the scenario exploration stimulated discussions with the stakeholders.

In the wake of the above, we focused on discussing the development of additional
modeling scenarios according to regional priorities and readiness. In the second meeting,
we reviewed the list of interventions proposed by each health region. The regional leads
explained the rationale behind each proposed scenario and reflected their regional priorities
and alignments with the initiative’s goals. Ideally, it would be desirable to include all
proposed scenarios from the regions in the simulation model; however, given the large
number of scenarios that we received, the advisory group agreed on incorporating the
top-ranked scenarios for each region based on the multi-criteria framework described in
Figure 2 and Table 1. The modeling team took on the task of finalizing the list of scenarios
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for each health region and discussing data requirements and relevant evidence after the
second meeting.
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Table 1. Scoring Matrix. Criteria used for prioritizing requested modeling scenarios.

Component Criteria Description Scoring (in the Range of 0 to 5)

Data

Regional Data Availability

Degree to which regional data is
collected or available for understanding
the current state or the targeted cohort
for the intervention scenario

0 = no data;
1 = limited data with poor quality;
2 = partial data with poor quality;
3 = partial data with good quality;
4 = almost complete data;
5 = we have everything we needAdministrative Data Availability

Degree to which data are readily
available in administrative databases for
modeling or understanding the current
state or target cohort.

Evidence Literature Support for Modeling

Degree to which evidence (e.g.,
meta-analysis and systematic reviews)
provides relevant outcome metrics for
modeling

0 = very low; 1 = low;
2 = low to moderate; 3 = moderate;
4 = moderate to high; 5 = high

Modeling Modeling Effort

The amount of effort and time it will
take for the modeler to incorporate and
simulate the scenario using the DES
model.

0 = extreme effort; 1 = significant effort;
2 = moderate effort;
3 = moderate to low effort;
4 = low effort; 5 = almost no effort at all

Stakeholders
Inputs

Organizational Readiness
Degree to which the organization is
ready and committed to implementing
the idea

0 = not ready at all; 1 = not ready;
2 = neural or uncertain; 3 = moderately ready;
4 = mostly ready; 5 = ready to go immediately

Regional Priority
Degree to which the health region
agrees that this will address their ED
wait times or patient flow issues 0 = not at all; 1 = unlikely;

2 = somewhat unlikely;
3 = neutral or uncertain;
4 = somewhat likely; 5 = very likelyProvincial Priority

Degree to which the provincial
stakeholders and ED waits initiative
agrees that this will address ED wait
times or patient flow issues

Length of Time to Impact Drivers
The length of time it would take to see
an effect on ED waits, volume, ED LOS
or acute LOS.

0 = >7 years; 1 = 5–7 years
2 = 3–5 years; 3 = 1–3 years
4 = within 1 year; 5 = immediate

Length of Time to Get Service Ready The length of time required to alter or
design service.

4.5.3. The Third and Fourth Meetings

The modeling team worked with each health region to refine and clarify the requested
intervention scenarios using the multi-criteria prioritization framework. The third and
fourth meetings consisted of an extensive review and discussion of the scenario results
requested by each region, respectively. The modeling team presented the impact of each
intervention scenario on ED wait times for the hospitals studied in the corresponding
health region. For each scenario, we reviewed data input, supporting evidence (if any),
evidence used in the model, key assumptions, and implementation ideas (e.g., how to
achieve the expected wait reductions and what needs to be done in terms of implementa-
tion). To ensure a comprehensive exploration of intervention options to reduce wait times,
additional intervention scenarios were requested during this time and incorporated into
the simulation model.

To build trust in the modeling tool and continuously validate the model given the new
changes made to incorporate different patient groups, we held a model challenge session
between the third and fourth meetings. We invited clinical and data experts as well as in-
terested parties to review the model structure, parameter values, and assumptions. Specific
questions on the components being evaluated included: (1) how well the model component
reflected the reality considered important by the clinical or domain experts; (2) whether the
model output generated outputs that matched the real data; and (3) model assumptions,
data sources, and data quality. We were able to gather feedback, suggestions, and critiques
on (1) model input and data sources; (2) methodologies used; and (3) assumptions and
ideas for future developments. This helped to further improve the DES models.
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4.6. A Multi-Criteria Framework for Identifying and Prioritizing Policy Options with Stakeholders

It was challenging to select the most effective strategies to reduce ED wait times, given
the large number of evidence-based options available that addressed different aspects of
clinical practice and processes in the patient journey through the ED. Factors contributing
to ED wait times might also differ between EDs due to variations in local context and
organizational factors. Additionally, diverse opinions existed regarding the causes and
solutions for the ED wait time issue in the studied hospitals. To address this, a multi-criteria
framework was developed for the co-development of interventions with the stakeholders
and the advisory group. The purpose of the framework is to promote transparent collab-
oration and communication with stakeholders during the policy development stage to
identify feasible solution space. It is important to note that this framework is distinct from
a multi-objective optimization framework and is not programmed into the DES models.

At the stage of co-development of intervention scenarios, we gathered and generated a
large inventory of possible intervention scenarios from various sources, including (1) those
supported by evidence; (2) those proposed by diverse stakeholder groups and domain
experts; (3) those identified as likely to be promising through data analyses; (4) those
currently considered for implementation; and (5) existing programs under consideration
for expansion. Rather than accepting all scenarios for modeling without questioning, we
screened and decided on the sets of interventions to be tested with the simulation mod-
els. The multi-criteria framework was used for identifying and prioritizing interventions
or policies for modeling. The framework was developed following several knowledge
translation principles and criteria to improve evidence-based decision making [101]. The
multi-criteria framework has two components: (1) a modeling scenario intake process (seen
in Figure 2) and (2) a scoring matrix (seen in Table 1). The framework took into account a
number of criteria for managing scope, synthesizing evidence through a literature review,
adapting knowledge to the local context, identifying gaps in practice, assessing feasibility,
time to impact, and alignment with regional or provincial priorities.

4.6.1. The Intake Process for Modeling Scenario

To prevent “scope creep” and ensure that proposed intervention scenarios from stake-
holders were appropriate and within scope [102], we created and used an intake process
to screen the proposed interventions or recommended policies. The intake process is pre-
sented in Figure 2. The screening process involved evaluating each proposed modeling
scenario against several criteria, including its suitability for modeling, availability of data,
and supporting evidence about its potential impact on ED wait times or patient flow. It was
important to note that local knowledge could not be unquestionably accepted and required
assessment together with evidence and data. In addition, for each proposed intervention
scenario, we identified a key contact (usually a stakeholder). We clarified the proposed
intervention and data requirements with key contacts as needed. We also communicated to
the stakeholders about our screening process to manage expectations.

The modeling team conducted the Initial screening and made a first decision on
whether we would accept the proposed intervention scenarios for modeling. The proposed
intervention scenarios for modeling were declined if one or more of the following conditions
were met:

1. The proposed intervention scenario is not within the scope of the project;
2. Data are not available or the proposed intervention requires primary data collection

that cannot be completed within the current timeline and budget cycle;
3. There is a lack of evidence regarding the efficacy of the proposed intervention in

reducing ED wait times or improving ED patient flow;
4. If the intervention scenario is unsuitable for modeling, as determined by the modeling

team, it will not be pursued;
5. If the intervention is not feasible for implementation in the current local context.

Although the modeling team conducted a literature review on the causes of and solu-
tions to ED wait times during the conceptual modeling phase, the proposed intervention
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scenario might not have been included in the initial review. The second phase of screening
involved a rapid review of the effectiveness of the requested intervention scenarios that
were not captured in the initial literature review. If the evidence base was found to be thin
but the intervention was of high interest to the stakeholders, the modeling team would
work with the advisory group and domain experts to determine whether assumptions
should be made about program efficacy based on expert opinions and whether sensitivity
analyses should be conducted.

4.6.2. The Scoring Matrix

To facilitate policy recommendations at the third and fourth advisor meetings, the
modeling team evaluated a list of proposed interventions aimed at reducing ED wait times
for each health region using the intake process (Figure 2). Due to the high number of
intervention scenarios received from various sources, a scoring matrix was used to further
shortlist the interventions for modeling, as shown in Table 1. The modeling team, along
with regional leaders and stakeholders in the advisory group, collaborated in filling out the
scoring matrix, which evaluated each proposed intervention scenario based on the criteria
outlined in Table 1. Each scenario—whether derived from data or evidence or requested by
stakeholders—received a score. The scenarios were then sorted accordingly. The scoring
matrices for each health region were developed and discussed during the third and fourth
advisory meetings.

5. Application of the Participatory Modeling Approach
5.1. Stage 1: Project Initialization

Planning meetings were held to define the project scope and boundaries. It was agreed
that the main goal of the project was to validate current assumptions about the causes of ED
waits and examine a portfolio of possible intervention options to improve patient flow in the
studied EDs, with a focus on ED wait times. Interventions or activities that solely focused
on improving primary care, home care, mental health, or chronic disease management, but
were unrelated to emergency care or wait times, were deemed out of scope. Two primary
outcomes of interest were identified for the project: (1) time waiting for physician initial
assessment: time between registration (or triage) and initial physician assessment; and
(2) time waiting for an inpatient bed: time between the decision to admit the patient to an
inpatient bed and the patient’s departure from the ED for the inpatient unit.

Initially, the project leads were not convinced of the value of using a simulation
approach to explore policy options related to ED patient flow due to their unfamiliarity
with the modeling methods. To address this, a proof-of-concept analysis was conducted.
The modeler consulted with several health experts, quality improvement consultants, and
the provincial initiative to gather insights on the patient flow within the ED and acute
care settings. Two preliminary ED patient flow simulation models were built under the
guidance of the project champion and technical advisors. Figure 3 provides a flow chart
of the simulated patient flow in the proof-of-concept DES model. The proof-of-concept
models demonstrated how patient flow could be represented and how qualitative insights
and high-level quantitative predictions on patient flow metrics could be generated. The
analyses showed that computational models in principle had the potential to advance the
evaluation of policy scenarios and improve the decision-making process. It is worth noting
that the project champion played the role of an advocate for the simulating modeling
approach in this stage and assisted in building trust and confidence with the project leads
by articulating the proof-of-concept models in language familiar to the project leads. As a
result, the project was sponsored, and a modeling team was formed as one of the working
groups within the provincial initiative.
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Figure 3. Flow chart showing the modeled ED and acute care patient flow in the proof-of-concept
DES Model. LOS: length of stay; FIFO: first in, first out.

5.2. Stage 2: Conceptual Modeling

The initial conceptual modeling provided a theoretical basis for communicating with
the domain experts, stakeholders, and the modeler. This was instrumental in guiding the
modeler to develop DES models that captured the system problems with ED wait times
while maintaining a reasonable scope and a moderate level of complexity.

5.2.1. Problem Conceptualization

The causes of ED crowding and lengthy ED wait times are complex [77,82]. ED
crowding and long waiting times originate mainly from three interdependent components:
the high volume of patients demanding ED care (input), the inability to assess and treat
patients in a timely manner in the ED (throughput), and the boarding of inpatients in the
ED after disposition decisions (output) [103]. Many potential contributing factors have
been identified. They are present within each component of the input–throughput–output
conceptual model of ED crowding [77,82,104–106]. Previous studies have investigated mul-
tiple input factors, such as the high volume of low-complexity patients in the ED, increased
presentation with urgent and complex needs, and access to primary care [77,82,107]. Many
throughput and output causes were also reported, such as ED staff shortages, limited
availability of timely specialty consultation, delays in disposition decisions, and access
block to inpatient units due to inadequate acute care beds or delayed discharge of inpa-
tients [85,103,108]. Many input, throughput, and output solutions to ED crowding and
wait times were trialed, modeled, and suggested with varying levels of success in different
local contexts [77,109–111].

The modeling team jointly developed the driver diagram to depict five key areas to
influence to reduce ED wait times. Figure 4 presents five primary drivers that are larger
key topic areas related to the input, throughput, and output components of ED patient flow.
Each primary driver was then linked with several secondary and tertiary drivers, which
are less important or smaller in scale. The driver diagram was developed by incorporating
diverse viewpoints from domain experts and stakeholders about the current state of the
studied hospitals as well as evidence from the literature review. Domain experts and
stakeholders were represented by physicians, nurse managers, operational leaders, and
other health professionals from different health regions.
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5.2.2. Core Patient Flow Processes Emerging from the Value Stream Mapping

To gain insights into the flow of ED patients in the studied hospitals, the modeling
team made use of VSMs that were created by healthcare professionals and improvement
consultants during rapid process improvement workshops. Figure 5 illustrates the core care
processes that emerged from the VSMs that were developed by regional teams that worked
in the studied hospitals. It is worth noting that the regional teams took a whole-hospital
perspective when mapping out the current state rather than just focusing solely on ED
activities. Community and primary care services were also mapped out and connected to
ED inputs and hospital discharges.
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5.2.3. Model Scope and Level of Details

Figure 5 further helped to determine the scope of the simulation models and identify
the boundaries of the model. The need to explore the inputs to the ED (e.g., ED volumes)
was an obvious entry point into the simulation model. The requirement to study the cause
of prolonged waits for inpatient beds suggested that the flow of acute care patients should
be included in the model in order to capture the intricate interactions between the ED and
other acute care services in the hospital. Although community and primary care services
were also mapped out in Figure 5, they were excluded from the model based on guidance
from the initiative leads and domain experts. Activities aimed solely at improving primary
care, home care, or mental health care were also deemed beyond the intended scope of
the study.

We then identified entities, activities, queues, and resources that fell within the model
boundary. We focused on identifying components that were connected with secondary and
tertiary drivers and areas requiring improvements in Figure 4. Knowledge of the domain
experts and technical advisors was vital at this stage to help decide the level of detail that
required modeling.

5.3. Stage 3: Model Implementation

During the conceptual modeling stage, the identification of key components, care
processes, and model scope facilitated the selection of appropriate data sources and model
inputs for the DES models. Patient-related model inputs were obtained from various
administrative databases, including the National Ambulatory Care Reporting System,
Discharge Abstract Database, Physician Billing Data Repository, and Person Health Regis-
tration System. These databases contain individual-level data on ED visits, hospitalizations,
physician billing, and covered population demographics. Staff-related model inputs in-
clude ED-specific physician shifts, ED physician assessment time, registration time, and
ED triage time. Resource-related model inputs include ED beds and acute care beds. The
DES models were created using AnyLogic 8.7.2 (professional version; AnyLogic North
America, Chicago, IL, USA) with the Java-based Process Modeling Library on an Intel®

Core™ i7-9700 T CPU at 2.00 GHz, operating on Windows 10 Pro. Figure 6 shows the
simulated patient flow from ED to acute care in the DES models.
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Figure 6. Flow chart showing the patient flow from ED to acute care [24]. Reg: registration; PA:
physician assessment; ALC, alternate level of care; LOS, length of stay; PSG, patient service group;
FIFO: first in, first out. Licensed material reproduced with permission from Springer Nature.

As ED patient flow was the central focus of the model, it needed to be explicitly
modeled to ensure that the core ED care processes were captured. In addition, knowing
that ED wait times could be the result of delays that occurred in other parts of the healthcare
system—in particular acute care—made it essential to capture inpatient flow in acute care
settings. The resulting model captured patients from ED presentation to discharge from
the ED or an inpatient ward (for admitted patients), as illustrated in Figure 6. The model
further incorporated the volume of patients admitted via elective admissions to an inpatient
ward. The model allowed for adjustment of the volume of the ED, the arrival rate by hour
and day of the week, the acuity, and the volume of the ED of a specific cohort (e.g., ED
visits for family practice sensitive conditions). Clinical experts also proposed reasonable
assumptions to be used in the models. For instance, high-acuity patients often receive
immediate treatment and interventions upon arrival; therefore, registration or triage might
occur concurrently with the treatment rather than before the treatment. For parameters that
were unknown due to a lack of data in the administrative database, clinical experts (e.g.,
nurse managers and ED physicians) provided estimates for the studied EDs, including the
duration of nurse initial assessment and the duration of physician assessment.

We developed 3D visualizations of the studied EDs in the early phase of model devel-
opment to aid domain experts’ understanding of the model logic and structure. Figure 7
illustrates examples of the visual representation of the studied EDs. Such visualization
proved to be an effective approach in facilitating model interpretation and enabling effective
communication with stakeholders without overwhelming them with detailed model logic
and coding. The visualization allowed domain experts to provide valuable input and help
refine model structure based on their clinical expertise and knowledge of the local contexts.
For instance, this led to the incorporation of representations of chair spaces and surge
stretchers in the EDs. Overall, incorporating visualization into the models improved model
transparency and allowed for effective face validation of the models with domain experts.
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The DES models were configured with a warm-up period of 5 months, followed by
a 2-year run. Each scenario was replicated 40 times. The details on the model structure,
inputs, assumptions, and experiment setup were reported in the previous study [24]. We
focused on studying two ED wait time outcome measures: time waiting for physician
initial assessment and time waiting for an inpatient bed. External model validation was
performed by comparing the quantitative outputs of the simulation models in the baseline
scenario (no intervention) with empirical data on the two outcome measures for the six
studied EDs located in three health regions. Table 2 displays the validation results. It is
important to highlight that we performed multiple validations at various stages of model
development, particularly when structural modifications were incorporated or new model
inputs or data were used in the DES models.
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Table 2. Model validation [24].

Mean Time Waiting for Physician Initial
Assessment, Hours Mean Time Waiting for Inpatient Bed, Hours

Site Simulated Actual ∆ Simulated Actual ∆

Site 1 1.99 2.04 −0.05 10.17 10.18 −0.01

Site 2 1.18 1.27 −0.09 7.81 7.88 −0.07

Site 3 1.26 1.26 0.00 11.13 11.01 0.12

Site 4 2.29 2.35 −0.06 4.65 4.61 0.04

Site 5 1.36 1.43 −0.07 1.38 1.29 0.09

Site 6 0.95 0.94 0.01 0.68 0.69 −0.01

∆: difference (Simulated—Actual). Sites 2, 3, and 6 are in region A; site 5 is in region B; sites 1 and 4 are in region
C. Licensed material reproduced with permission from Springer Nature.

5.4. Stage 4: Model Use and Policy Co-Development

The use of the multi-criteria framework allowed for a systematic approach to identify,
screen, and shortlist the intervention scenarios to reduce ED wait times in each health
region. This approach was critical in achieving the goal of co-developing effective interven-
tions for reducing ED wait times. The use of the scoring matrix, as illustrated in Table 1,
enabled the modeling team, regional leaders, and stakeholders in the advisory group to
collaboratively assess each proposed intervention scenario based on a set of predefined
criteria. This allowed for a transparent evaluation of the proposed interventions. The
resulting shortlist of interventions, as shown in Table 3, reflected the varying priorities and
readiness of each health region, as well as the unique contexts and varying perspectives of
the stakeholders involved. After the third advisory group meeting, we incorporated several
additional intervention scenarios for modeling based on discussions with stakeholders.
These additional scenarios included combinations of individual interventions presented in
Table 3 and expansion of existing programs in the healthcare system.

Table 3. Shortlisted intervention scenarios per health region in the third advisory group meeting.

Region Scenario Name Organizational
Readiness

Regional
Data

Availability

Administrative
Data

Availability

Literature
Support

for
Modeling

Regional
Priority

Provincial
Priority

Modeling
Effort

Length of
Time to
Impact
Drivers

Length of
Time to

Get
Service
Ready

Total
Score

A

Attachment to
primary care
provider

3 3 5 5 5 4 4 3 3 35

Reducing
admissions for
ACSCs

3 3 4 3 5 4 4 3 3 32

Reducing ED
visits for family
practice
sensitive
conditions

3 3 4 1 5 4 4 3 3 30

Alternate level
of care
reduction
strategy

3 2 1 3 5 5 2 3 3 27

High-quality
care transitions
(discharge
planning and
coordination)

3 3 4 4 4 4 1 4 3 30

Hospital at
home (early
supported
discharge) for
surgical and
neuro patients

4 4 4 5 4 4 5 3 3 36
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Table 3. Cont.

Region Scenario Name Organizational
Readiness

Regional
Data

Availability

Administrative
Data

Availability

Literature
Support

for
Modeling

Regional
Priority

Provincial
Priority

Modeling
Effort

Length of
Time to
Impact
Drivers

Length of
Time to

Get
Service
Ready

Total
Score

B

Expansion of
community
nurse
practitioner
services for
COPD patients

5 5 3 2 5 4 3 5 4 36

Hospitalist
model for
medical and
surgical units

5 3 3 3 4 4 3 3 2 30

Additional ED
physician
coverage

5 5 2 1 3 2 4 4 4 30

C

Reducing ED
visits for family
practice
sensitive
conditions

4 4 4 1 4 3 4 3 3 30

ALC reduction
strategy - 1 3 3 - 5 2 3 3 20

COPD clinical
pathway 4 2 2 3 4 3 2 3 3 26

High-quality
care transitions
(discharge
planning and
coordination)

- 3 4 4 3 4 1 3 4 26

Hospital at
home (early
supported
discharge) for
surgical and
neuro patients

4 4 4 4 4 3 5 3 5 36

ACSCs, ambulatory care sensitive conditions; COPD, chronic obstructive pulmonary disease; ALC, alternate level
of care.

Considering the diverse range of proposed interventions aimed at specific patient
groups, we systematically identified and extracted the corresponding target patient groups
for each intervention in each studied ED or hospital and represented them in the DES
models. Table 4 presents the effects of three selected scenarios on ED wait times, with one
targeting the input component of the ED patient flow, and the other two targeting the output
component. The quantitative simulation results of other proposed intervention scenarios
have been described and discussed in detail elsewhere [24,112]. The three scenarios in
Table 4 studied two patient groups: (1) patients aged under 75 who were hospitalized for
ambulatory care sensitive conditions (ACSCs), and (2) inpatients who no longer need acute
care but experienced delayed hospital discharge, also termed as alternate-level-of-care
(ALC) patients.

Hospitalizations for ACSCs are considered largely preventable through improved
primary care on an outpatient basis [113]. These conditions have been well documented
in the literature. We analyzed the hospitalizations for five ACSCs: asthma, heart failure
and pulmonary edema, chronic obstructive pulmonary disease (COPD), diabetes, and
angina. We extracted the patient group using the most responsible diagnosis codes and
cases with certain cardiac procedures were excluded for certain ACSC conditions [113,114].
Individuals aged 75 years and older were also excluded. It is worth noting that COPD is
one of the ACSCs, and many health regions were interested in COPD prevention and care.
Hospitalizations for these potentially avoidable ACSCs account for 1.9% to 4.4% of the
hospitalizations in the five studied sites in Table 4.
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Table 4. Effects of selected scenarios on ED wait times.

Scenario
Simulated Mean Time Waiting for Physician Initial

Assessment, Hours
Simulated Mean Time Waiting for Inpatient Bed,

Hours

Pre Post ∆ Pre Post ∆

Reduce ACSC-related hospitalizations by 10% (input)

Site 1 1.99 1.95 −0.04 10.17 9.38 −0.79

Site 2 1.18 1.16 −0.02 7.81 7.43 −0.38

Site 3 1.26 1.22 −0.04 11.13 10.62 −0.51

Site 4 2.29 2.28 −0.01 4.65 4.47 −0.18

Site 5 1.36 1.36 0 1.38 1.22 −0.16

Reduce LTC-related ALC hospital days by 30% (output)

Site 1 1.99 1.94 −0.05 10.17 7.83 −2.34

Site 2 1.18 1.12 −0.06 7.81 7.08 −0.73

Site 3 1.26 1.26 0 11.13 10.99 −0.14

Site 4 2.29 2.25 −0.04 4.65 3.95 −0.7

Site 5 1.36 1.36 0 1.38 1.23 −0.15

Reduce Non-LTC-related ALC hospital days by 30% (output)

Site 1 1.99 1.93 −0.06 10.17 7.66 −2.51

Site 2 1.18 1.07 −0.11 7.81 6.21 −1.6

Site 3 1.26 1.26 0 11.13 10.91 −0.22

Site 4 2.29 2.25 −0.04 4.65 4.10 −0.55

Site 5 1.36 1.36 0 1.38 1.28 −0.1

∆: simulated outcome postintervention minus that from the preintervention (baseline scenario). LTC: long-term
care; ALC: alternate level of care; ACSC: ambulatory care sensitive conditions. Per scenario, 40 replications. We
eliminated site 6 for these three selected scenarios because the ED in site 6 does not provide 24/7 service and has
low ED admission rates; thus, the presented scenarios are not expected to have an impact on its ED patient flow
and wait times. Sites 2 and 3 are in region A; site 5 is in region B; sites 1 and 4 are in region C.

We used ALC hospital days to measure the delays in hospital discharge experienced by
ALC patients. The reasons for these delays can differ. They can occur when ALC patients
are waiting for transfer to long-term care (LTC) facilities, resulting in LTC-related ALC
hospital days. Alternatively, delays can occur before patients are discharged home but are
awaiting post-acute care or home care, resulting in non-LTC-related ALC hospital days.
The effect sizes of these three scenarios, such as 10% and 30%, were obtained from the
advisory group and domain experts based on their assessments of achievable targets.

Reducing ACSC-related hospitalizations led to a slight decrease in the mean time
spent waiting for an inpatient bed across EDs. The reduction in mean time waiting for
an inpatient bed was greater in site 1 (∆ 0.79 h) owing to the higher proportion of ACSC-
related hospitalizations in this hospital (4.1%). Reducing either LTC-related ALC days
or non-LTC-related ALC days resulted in a larger reduction in mean time waiting for an
inpatient bed for sites 1 and 2. The three selected scenarios had limited impact on the mean
time waiting for physician initial assessment; therefore, they will not be able to solve the
ED waits associated with physician assessment.

6. Discussion

The study presented a case study that aimed to support the identification of inter-
ventions to address the complex problem of lengthy ED wait times from a whole-system
perspective in a Canadian policy development setting using a participatory modeling
approach. We presented and discussed the quantitative results of the model findings in
a previous contribution [24]. This paper focused on describing the formulation of the
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participatory modeling approach used and demonstrating its application in the process
of developing DES models of EDs and acute care patient flow for six studied hospitals
located in three Saskatchewan health regions. The participatory modeling approach in-
volved engaging with key stakeholders in various modeling stages and co-developing
interventions with stakeholders using a multi-criteria framework to identify, screen, and
shortlist modeling scenarios to support effective policy development. The participatory
modeling approach enabled the provincial initiative to effectively engage a broad range
of stakeholders to examine and identify the causes and solutions to the ED wait time in
the studied hospitals. Our methodology also contributed to the M&S field by introducing
an innovative multiparadigm hybrid modeling approach that integrates qualitative and
quantitative paradigms in different modeling stages [71].

To assess the impact of experts’ and stakeholders’ involvement in improving the
model, we compared the proof-of-concept DES model (Figure 3) with the DES models
developed using a participatory approach (Figure 6). While both models aimed to capture
ED and acute care patient flow, significant differences were observed in their structures
and development processes. The proof-of-concept DES model was constructed in an ad
hoc manner, with the modeler taking the lead and consulting individual experts and stake-
holders for information on the ED problem. The modeler represented the ED patient flow
based on the obtained knowledge with very limited and ad hoc involvement of domain
experts and stakeholders in the model development process. In contrast, the subsequent
DES models were developed using a multistage participatory approach through iterative
deliberation with stakeholders. Using the proposed participatory approach, domain ex-
perts and stakeholders collectively discussed evidence and shared knowledge about the
causal mechanisms of the ED wait problem, identifying key drivers and areas requiring
improvement through value stream mapping in the conceptual modeling stage. As a result
of the different model building processes, notable differences emerged in the model struc-
tures. The proof-of-concept DES model primarily focused on ED patients, considering only
ED-admitted patients for the acute care component, and featured simplified ED activities.
In contrast, the later DES models incorporated detailed ED activities, included elective
patients, stratified inpatients based on patient service groups, and accounted for separate
alternate-level-of-care lengths of stay. The active and collaborative engagement of experts
and stakeholders through the participatory approach contributed to these improvements
in model structure and enhanced the modeler’s understanding of the ED problem. The
models were also better designed to evaluate proposed interventions by stakeholders. The
use of qualitative tools and techniques in the conceptual modeling stage not only improved
our shared understanding of the ED problem situation in the studied hospitals but also
complemented the development of the DES models [62]. It is important to note that the
ways in which the stakeholders and domain experts are engaged, either collaboratively
or consultatively, also exert a significant impact on the development and quality of the
models. Furthermore, the participatory approach allowed for a comprehensive system
perspective. Given that ED and acute care systems are complex systems, individual experts
or stakeholders may possess deep knowledge of specific aspects while lacking a holistic
understanding. Engaging them collectively through the participatory approach provided a
platform for multiple perspectives to be shared and fostered a broader understanding of the
ED problem. In contrast, individual engagement could risk losing the systemic perspective
that is crucial for addressing the ED wait times in the face of the complexity associated
with the ED and acute care systems [115]. The system perspective enabled by applying a
participatory modeling approach allowed us to study ED wait times as a part of a larger
integrated acute care system. Our study contributed to the literature on whole-system DES
models of ED patient flow for policy development.

Our study contributes to the conceptual modeling literature by demonstrating the use
of the quality improvement toolkit and lean techniques as a problem structuring method to
support problem conceptualization in the health policy development context [72]. Unlike
other problem structuring methods which were rooted in the OR domain [53,116], we
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explored and used a number of existing tools that had already been used in the healthcare
system, such as lean techniques and quality improvement tools for conceptual modeling.
During the conceptual modeling stage, it is common for the modeling team to take the
lead and utilize mapping tools that are unfamiliar to the domain experts or stakeholders.
Persuading domain experts and patient flow managers to use new tools can be challenging
and may require additional training and resources. Moreover, such stakeholders may
not feel ownership of the project if they are only being consulted for information. In
this study, instead of introducing new conceptual mapping tools, the modeling team
explored and learned about existing quality improvement and mapping tools that were
already in use within the healthcare system for structuring the problem. For instance, we
used VSMs of ED patient flow that had already been developed by domain experts to
conceptualize the problem of ED wait times. The use of these existing tools also facilitated
communication with domain experts and flow managers about the ED wait time problem
in the studied hospitals, given their familiarity with the lean techniques through the
implementation of the lean methodology across the province’s healthcare system at the
time of this research. Such findings are consistent with previous research demonstrating
that combining lean techniques with discrete-event simulation is a promising approach for
studying care processes in the healthcare setting [117–119].

Two important facets of trust that influence the implementation of simulation findings
are the stakeholder–model relationship and the stakeholder–modeler relationship, as the de-
cision to implement changes based on simulation results is held by the stakeholders [19,20].
In contrast to the existing participatory modeling approaches in quantitative modeling,
which primarily focus on resolving specific problems and generating quantitative forecasts
or estimates [22], the novelty of our participatory modeling approach also lies in dedicated
processes and activities specifically aimed at building trust in the computer modeling
approach with the stakeholders and improving stakeholders’ modeling knowledge. We
conducted proof-of-concept analyses during project initialization and provided simulation
modeling workshop to help stakeholders become familiar with the computer simulation
approach. This helped foster trust at the beginning of the study and build confidence in the
modeling approach that we used. Furthermore, our approach empowered stakeholders to
develop skills to apply the modeling approach on their own. This, in turn, strengthened
the stakeholder–model relationship, as they perceived the modeling approach to be more
useful and credible. The stakeholder–modeler relationship is primarily centered around the
stakeholders’ perceived trust in the modeler’s modeling and communication competencies,
particularly whether stakeholders perceive that the modeler has a good and shared under-
standing of the problem situation in the early phases of a study [19,20]. The conceptual
modeling component in our participatory approach played a key role in building trust in
this relationship, thereby further improving trust in the stakeholder–model relationship.

Another contribution of our participatory approach lies in the development and use
of the multi-criteria framework for co-developing interventions to address ED wait times.
The use of the framework helped stakeholders reach an agreement regarding the feasible
solution space and allowed a transparent assessment of the proposed actions. We included
both the assessment of evidence and the availability of data in the framework to promote
evidence-based decision making. In previous simulation studies, modeling scenarios were
typically not fully designed to address the needs of stakeholders or policymakers. While
stakeholders may have been involved in the development of intervention scenarios, their
involvement was often limited to providing information rather than having a sense of
ownership or being held “accountable” for the proposed intervention scenarios. In our
study, we worked closely with stakeholders by involving them in the identification and
prioritization of intervention scenarios through advisory group meetings. Stakeholders
were held “accountable” for their proposed intervention scenarios, as a contact person was
identified for each proposed scenario. The stakeholders and the modeling team collaborated
to fill in a scoring matrix to prioritize intervention options based on criteria such as data
availability, local practice, regional priority, and time to impact. This approach conferred
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on stakeholders a high degree of ownership and trust in the process and allowed regional
leaders to view the scoring matrix of other regions. This process further aided in breaking
the silos between organizations and various departments.

This case study further supported some learning regarding the application of the
participatory modeling approach. We agreed with previous research findings on the impor-
tance of engaging stakeholders early on in the participatory modeling approach [42,48]. We
would also like to highlight the role of the project champion in the team composition, as the
project champion served as a key linkage between the modeling team and the stakeholder
group and played a crucial role in building trust in the modeling methodology. Previous
studies have also emphasized the importance of having a project champion in participatory
modeling projects, as they can greatly contribute to the successful completion of such
projects [10,57]. Our core engagement with stakeholders was in the co-development of
intervention solutions to reduce ED wait times. Although we have been transparent about
the model assumptions and model validations, we experienced challenges in building
trust in the model outputs when the model outputs contradicted the stakeholders’ prior
beliefs or expectations. This phenomenon was also discussed in previous research [3,15].
In such cases, we found that it was important to facilitate ongoing and open dialogue with
stakeholders through facilitated meetings.

7. Limitation and Future Work

The study has several limitations. The participatory modeling approach was applied
to the case study of modeling ED and acute care patient flow using DES in a Canadian
health policy setting. Due to the context-specific nature of the case study, the participatory
modeling approach may not be directly applicable in other health-policy settings due
to differences in organizational structures and policymaking environments. Second, the
modeling team completed the scenario runs outside of the advisory group meetings, which
might have reduced model transparency with stakeholders. An ideal solution would be to
build models with a visual interface that allows for real-time experimentation during the
advisory group meetings. However, this would require the identification of input variables
related to the scenarios prior to the meetings and it is not always feasible to explore all the
possible intervention solutions. Lastly, while the advisory group meetings were facilitated,
formal scripts (e.g., PartiSim scripts) were not utilized, leading to a less structured approach
that lacked standardization and might have resulted in missed opportunities.

The use of participatory modeling approaches with DES is still in its early stages in
healthcare [59] and future research is needed to explore and develop innovative tools and
processes that encourage stakeholder participation in the DES modeling processes and
improve the implementation of the model findings. This includes combining tools or pro-
cesses from diverse participatory modeling approaches (e.g., combining elements of GMB
with PartiSim) and drawing insights from these experiences, and enhancing model valida-
tion [120]. This study further suggests the value of investigating the adaptation of existing
tools employed in the healthcare system for use in the participatory modeling processes.

8. Conclusions

This study has successfully employed a four-stage participatory modeling approach
with discrete-event simulation to identify intervention strategies for reducing ED wait
times in a real-world health policy setting. The use of a participatory approach has enabled
a broad range of stakeholders to examine and identify the causes and solutions to ED wait
times and co-develop interventions for implementation. This approach has shown to be
an effective way of engaging stakeholders throughout the modeling process and building
consensus. Additionally, the study embraced a system view by studying ED wait times
as a part of a larger integrated acute care system with multiple interacting subsystems or
units, contributing to the literature on whole-system DES models of ED patient flow for
policy development.
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Abstract: In recent years, epidemic disasters broke through frequently around the world, posing
a huge threat to economic and social development, as well as human health. A fair and accurate
distribution of emergency supplies during an epidemic is vital for improving emergency rescue
efficiency and reducing economic losses. However, traditional emergency material allocation models
often focus on meeting the amount of materials requested, and ignore the differences in the importance
of different emergency materials and the subjective urgency demand of the disaster victims. As
a result, it is difficult for the system to fairly and reasonably match different scarce materials to
the corresponding areas of greatest need. Consequently, this paper proposes a material shortage
adjustment coefficient based on the entropy weight method, which includes indicators such as
material consumption rate, material reproduction rate, durability, degree of danger to life, and
degree of irreplaceability, to enlarge and narrow the actual shortage of material supply according
to the demand urgency. Due to the fact that emergency materials are not dispatched in one go
during epidemic periods, a multi-period integer programming model was established to minimize
the adjusted total material shortage based on the above function. Taking the cases of Wuhan and
Shanghai during the lockdown and static management period, the quantitative analysis based on
material distribution reflected that the model established in this paper was effective in different
scenarios where there were significant differences in the quantity and structure of material demand.
At the same time, the model could significantly adjust the shortage of emergency materials with
higher importance and improve the satisfaction rate.

Keywords: major epidemic; demand urgency; emergency logistics; material distribution optimization

1. Introduction

The outbreak of COVID-19 caused huge disasters and heavy losses worldwide, which
also triggered people’s reflection and attention on the prevention and control of major
epidemics and material support [1]. The issue of how to allocate scarce emergency materials
reasonably has become a key concern for ensuring patient safety and reducing losses.
Researchers [2–5] have addressed this issue from a variety of perspectives, primarily
studying how to optimize the allocation of scarce emergency materials to reduce delivery
times, reduce costs, and maximize demand satisfaction. The current research on emergency
management material allocations still has limitations, as most models only focus on single-
period allocations. However, for major public health events, as an epidemic develops, the
demand for emergency materials will accordingly change dynamically [6]. Therefore, this
study considered the demand characteristics of different periods of epidemic disasters and
established a dynamic multi-period model to optimize material allocation.

During the outbreak of major epidemics, the supply of emergency materials often can-
not meet the demand, and there is a serious of shortages of medical equipment, protective
equipment, and daily necessities. The shortage of medical materials will lead to an increase
in the spread of the epidemic. Therefore, this study took the shortage of materials as the
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optimization goal, aiming to improve the satisfaction rate of patients and further ensure
their health.

Among the many shortages of emergency materials, different categories of materials
have different demand characteristics. For example, consumables need to be delivered reg-
ularly to meet the needs of each person multiple times, but materials with high durability
usually need to be delivered only once to each person [7]. Nevertheless, a low distribution
efficiency will not only delay the delivery of emergency materials and increase the suffering
of people affected, but for patients who rely on specific emergency materials, a shortage
will directly endanger their lives, thus creating a greater social security risk [8]. However,
research on the emergency material allocation of major public health events ignores the
patients’ subjective feelings. In this case, this study considered both the objective charac-
teristics of scarce materials and the subjective urgency of patients’ demand for materials
and constructed an emergency material demand urgency index system to quantify and
distinguish the urgency of different emergency materials.

To minimize casualties and property damage in disaster areas and to distribute emer-
gency materials in the shortest time, emergency relief must simultaneously achieve the
goal of efficiently, accurately, and equitably meeting the demand for emergency materials.
Therefore, based on the proposed urgency of demand, this study designed a material
shortage adjustment coefficient to adjust the amount of material shortage, reflecting not the
traditional quantity of shortage, but taking into account the importance of materials, which
is more in line with practical needs and achieving fair distribution.

Above all, this study took dynamic changes in emergency materials demand and
differences in the urgency of emergency materials demand for various types of materials
into consideration, to construct an index system indicating the urgency of emergency mate-
rials. Furthermore, this adjusted the goal of minimizing material shortage via the material
shortage adjustment coefficient to develop a dynamic optimization model for emergency
logistics with multi-period and multi-frequency distribution. This model ensured that
high-importance emergency materials are distributed priority and that emergency materials
are distributed fairly to improve emergency rescue.

This paper makes the following contributions:

(1) This paper proposes a dynamic optimization model for emergency logistics that
takes multiple periods, frequencies, and types into account, in contrast to traditional
emergency logistics, which only consider a single type of emergency material and a
single period.

(2) Compared to the lack of research on patients’ subjective feelings in the existing
literature, this paper considers both the subjective feelings of patients towards the
shortage of emergency materials, and the differences in the importance of different
emergency materials, and establishes a demand urgency index system and numerical
calculation method.

(3) Compared to existing models that focus on delivery time and cost as optimization
objectives, the objective function of minimizing the total material shortage is improved
by the material shortage adjustment coefficient, which is more in line with the fair
distribution goal of balancing actual demand and material importance in reality.

The rest of this study is as follows. Section 2 presents the literature review. Section 3
introduces the assessment method of emergency material demand urgency. Section 4
constructs a dynamic distribution model of emergency materials that considers demand
urgency. Section 5 presents an example analysis of two cities, Wuhan and Shanghai, at
different stages of epidemic development. Section 6 presents the research conclusions and
future research directions.

2. Literature Review

Generally, most researchers have studied emergency materials distribution by devel-
oping models and algorithms to provide decision-makers with solutions. Some researchers
have focused on the improvement of emergency material distribution speed for vehi-
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cle routing problems. Xue et al. developed a multi-objective optimization model under
capacity-constrained conditions, minimizing the shortest average waiting time for rescue
at the affected point with access constraints [2]. Wang et al. proposed a scenario-specific
emergency material distribution model with time windows to minimize emergency ma-
terial loading and unloading time and distribution time [3]. Wang et al. developed a
dual-objective mixed-integer programming model based on state–space–time networks
with the minimum cost and the maximum emergency response speed to meet demands [9].
Wu et al. presented an emergency material dispatching model with a time window to satisfy
the objective of minimum vehicle cost [10]. The above research shows that vehicle routing
optimization is relatively rich for traditional emergency logistics in natural disasters.

Furthermore, to meet emergency relief needs more quickly, many researchers have
studied the location problem of pre-disaster emergency facilities and post-disaster emer-
gency facilities, as well as that of the emergency medical center. Boonmee and Kasemset
proposed a decision model for locating, stocking, and distributing pre-disaster materials,
which minimized response time as well as budget costs [4]. Ghasemi and Khalili-Damghani
proposed a robust simulation optimization method to optimize the selection of emergency
facility locations and material inventory during the planning stage [11]. Zhang et al. pro-
posed a scenario-based stochastic planning method that integrated decisions on facility
location, material inventory, and material distribution under different scenarios [12]. How-
ever, most of the models outlined above are single-period allocation models, which cannot
be applied to the multi-period problem, where the demand amount changes dynamically
over time. Only a few studies have explored multi-period models. Yang et al. proposed a
robust optimization model, with a static pre-disaster phase and a dynamic post-disaster
phase, for prepositioning the distribution of emergency supplies over multiple periods [13].
Wang et al. developed an optimization decision model for the dynamic distribution of
emergency materials under fuzzy information conditions to minimize system loss and
delay time [14]. While most of these studies focused on developing multi-period emergency
logistics optimization under natural disasters, it was difficult to find emergency logistics
studies that took into account how material demand changes with the spread of epidemics.
Therefore, this paper focuses on the multi-period and multi-frequency allocation problem
of emergency materials for major epidemics.

The main goal of the above studies was to design emergency logistics optimization
strategies to improve the speed of material distribution and the efficiency of the allocation
of relief facilities. However, it is also important to focus on the subjective perceptions of
affected people regarding the effectiveness of humanitarian emergency relief, in addition
to ensuring the efficiency of rescue [15]. Wang et al. designed a distress function to portray
affected people’s perceived distress costs using a numerical rating scale (NRS) and incor-
porated these factors into decision-making for the total costs of emergency response [16].
Zhu et al. measured psychological distress as an economic loss and developed a mathemat-
ical model to minimize total cost [17]. Sakiani et al. developed a mathematical model to
minimize deprivation costs, fleet operation costs, and decision costs, solving a two-stage
inventory routing problem [7]. Song et al. proposed an optimization model for the fair
distribution of emergency supplies, which considered differentiated disaster classification,
and aimed to minimize dispatching time and maximize fairness in emergency supplies
distribution [18]. Zhan et al. designed a loss cost function to quantify the psychological
tolerance of patients in case of a shortage of personal protective equipment; they then
developed a location–allocation optimization model for emergency material distribution
centers with the dual objective of minimizing loss cost and logistics cost [19]. According
to the above research, the subjective feelings of disaster victims are usually quantified as
costs to be modeled, but the internal connection between different materials shortages and
the feelings of disaster victims is not taken into account, nor is the degree to which the
materials affect their feelings.

Material allocation accuracy and fairness in emergency logistics optimization have
been extensively studied [20–22]. When the pandemic occurs, the COVID-19 spreads very
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quickly. Accordingly, some scholars have introduced the concept of demand urgency to
reduce the impact of different demand amounts on the fair distribution among different
demand points. Hu et al. proposed a dynamic distribution model of emergency medical
materials based on the demand urgency of materials, with the maximization of the weighted
demand satisfaction rate as the main goal [5]. Zhao et al. constructed an evaluation index
system for demand urgency and then developed a dual-objective model that minimizes
distribution costs and prioritizes the distribution of demand points with the higher demand
urgency [23]. Wang et al. developed a multi-objective optimization model that maximizes
the satisfaction of affected people, minimizes the cost, and distributes fairly based on the
demand urgency [24]. Liu et al. improved the index system for evaluating demand urgency
and constructed a multi-objective model that maximizes both demand urgency and full
load rate while minimizing the total cost of vehicle distribution [25]. Li et al. introduced the
time penalty cost function to characterize the urgency of emergency material demand and
proposed an uncertain location–allocation model for the emergency facility that minimizes
time penalty cost, distribution cost, and carbon dioxide emissions [26]. Most studies suggest
that introducing emergency material demand urgency can effectively improve material
allocation fairness and accuracy. However, the urgency considerations for emergency
material demand are not comprehensive. Therefore, this paper further improves the
demand urgency indicator system.

The existing studies have laid a solid foundation for the research on the emergency
material allocation problem. However, existing studies still have several gaps:

(1) There has been a lack of consideration for the dynamic change of emergency material
demand during major epidemics. Currently, most research focuses on single-period
material allocation models, which cannot be applied to the multi-period emergency
material allocation problem.

(2) The relationship between the shortage of different types of materials and patients’
pain perception was not fully considered in the modeling. It is not practical that
regarding different types of materials as equally important.

(3) Current research on the urgency of emergency materials demand during major epi-
demics is not sufficient. In addition, the evaluation factors of demand urgency are
not comprehensive.

The following contributions have been made to bridge the above research gap:

(1) Based on patients’ subjective feelings towards different emergency materials and the
differences in the importance of emergency materials, a more comprehensive demand
urgency evaluation system was developed and the calculation of demand urgency
was proposed accordingly.

(2) Integrating the urgency of material demand into dynamic emergency material alloca-
tion, a dynamic optimization model for emergency logistics was established, which
minimizes the total amount of emergency material shortage over multi-period and
multi-frequency distributions.

(3) Based on the demand urgency, the concept of material shortage adjustment coefficient
was proposed for major epidemic emergency logistics. The objective of minimizing the
total material shortage was adjusted by the material shortage adjustment coefficient
to enhance the fairness of material allocation.

3. Demand Urgency Assessment of Emergency Material

In the context of emergency supply, demand urgency refers to the priority of satisfac-
tion after the occurrence of demand. In the existing research, the demand urgency mainly
has two connotations. The first connotation focuses on the categorization of the affected
degree of the disaster areas, giving weights to different areas according to the severity
of the disaster, such as increasing the priority of areas with greater weight and reducing
the priority of areas with a smaller weight. The second connotation is to categorize the
importance of different emergency materials, giving weights to different materials based
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on the importance of material; for example, increasing the priority of materials with high
importance. The urgency of demand in this paper is consistent with the second connotation.

3.1. Index Selection and Description

During the outbreak of epidemics, on the demand side, the greater the rate of emer-
gency material consumption, the greater the need for such materials in the same period,
and the corresponding urgency [5,27]. On the supply side, the smaller the reproduction
rate, the easier it is to increase the shortage of materials for the same demand, and therefore,
the greater the urgency [23,27,28]. The sooner durable emergency materials arrive, the
better the chances are of reducing the risk of delays in emergency rescue and improving
emergency rescue efficiency [29]. If life-threatening or irreplaceable emergency supplies are
not provided in a timely manner, it will increase the threat to the safety of the personnel [30].
Based on the above theoretical analysis and literature review, this paper summarizes the
five main factors that affect the urgency of emergency material demand, as shown in
Table 1.

Table 1. Urgency index system of emergency materials.

Indicator Symbol Indicator Description Indicator
Type

Relationship to
Demand Urgency

Supporting
Literature

References

Material
consumption rate u1

Average consumption per patient
per unit of time

Exact real
number Positive correlation [5,27,31]

Material
reproduction rate u2 Supply volume per unit of time Exact real

number
Negative

correlation [23,25,27,28,32–34]

Durability u3 Whether it is a durable material Binary Positive correlation [5,27,31,34,35]

Degree of danger
to life u4

The degree to which the patient’s
risk of death increases in the

absence of

Fuzzy
number Positive correlation [30,35]

Degree of
irreplaceability u5

Functional uniqueness and quantity
of substitutable material

Fuzzy
number Positive correlation [30,34,35]

The two indicators of Material consumption rate and Material reproduction rate are exact
real numbers; that is, they measure the real situation of material use and supply. Durability
means that the material can be repeatedly used. This variable is a binary variable, which is
1 when the material is durable and 0 otherwise. The Degree of danger to life and Degree of
irreplaceability are fuzzy numerical variables that need to rely on subjective judgment. The
two indicators are divided into five levels, and each level is scored 1–5, from low to high.
The higher the score, the higher the importance of emergency material.

The above five indexes constitute the index system for measuring the urgency of
different emergency materials.

3.2. Measurement of Demand Urgency

In order to ensure the objectivity of the calculation results, and that the weight of each
factor is between 0 and 1 and the sum of the weights is equal to 1, this paper uses the
entropy weight method to calculate the demand urgency. The entropy weight method is
more objective than the Analytic Hierarchy Process (AHP) for the research problems in
this paper. This is because the AHP quantifies the weight of the index according to the
subjective analysis of the evaluator, but the entropy weight method determines weight
using the discrete degree of the index value, which avoids human factors interfering with
the weight calculation and is more objective. Furthermore, it is simpler and easier to
understand than the TOPSIS method. In addition, many related studies [30,34,36] have
also used the entropy weight method.
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Step 1: Build the Normalized Matrix

From the above description, there are m types of materials and scores for each indicator.
The score for a certain material on a certain indicator can be expressed as umi, wherein, i is
the index of the indicator, m is the index of materials, and a two-dimensional list is formed
by the scores for different materials on the above five indicators, which are expressed in the
form of a matrix as follows:

A =




u11 u12 · · · u15
u21 u22 · · · u25

...
...

. . .
...

um1 um2 · · · um5


 (1)

However, since the initial data for each index are inconsistent in dimension and unit,
there is no comparability among the indexes, and the data cannot be directly compared.
Therefore, the data need to be standardized. The specific formula is shown in Formula (2):

u∗mi =
umi −min{u1i, u2i, · · · , umi}

max{u1i, u2i, · · · , umi} −min{u1i, u2i, · · · , umi}
(m = 1, 2, · · · , M; i = 1, 2, · · · , 5) (2)

Thus, a normalized matrix is obtained A =




u∗11 u∗12 · · · u∗15
u∗21 u∗22 · · · u∗25

...
...

. . .
...

u∗m1 u∗m2 · · · u∗m5


. In this matrix,

for the ith indicator, the greater the difference in the value u∗mi, the greater the role of
program evaluation, and the greater the weight of the index will be.

The normalized matrix is then normalized, and the specific formula is as shown in
Formula (3):

u∗∗mi =
u∗mi

∑M
m=1 u∗mi

, m = 1, 2, · · · , M; i = 1, 2, · · · , 5 (3)

Finally, the normalized matrix is obtained A∗∗ =




u∗∗11 u∗∗12 · · · u∗∗15
u∗∗21 u∗∗22 · · · u∗∗25

...
...

. . .
...

u∗∗m1 u∗∗m2 · · · u∗∗m5


.

Step 2: Calculate the weight of each index lm.

Based on the calculation of information entropy using the formula below, the entropy
value of the ith index can be calculated:

oi =
∑M

m=1 u∗∗mi·ln
(
u∗∗mi
)

ln(M)
, i = 1, 2, · · · , 5 (4)

If u∗∗mi = 0, then define lim
u∗∗mi→0

(
u∗∗mi·lnu∗∗mi

)
= 0.

Therefore, according to the calculated entropy value of each index, the weight of each
index can be obtained by Formula (5):

li =
1− oi

5−∑5
i=1 oi

, i = 1, 2, · · · , 5 (5)

Step 3: Determine the urgency of the demand for different materials

After the weight of each index is calculated in Step 2, the general weighted summation
method is used to determine the calculation method of the comprehensive score of the
demand urgency, as shown in Formula (6):

εm = l1u∗∗m1 + l2u∗∗m2 + l3u∗∗m3 + l4u∗∗m4 + l5u∗∗m5, m = 1, 2, · · · , M (6)
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3.3. Material Gap Adjustment Function

In the process of emergency rescue, the importance of different materials is also
different. Therefore, when the infected population needs different materials at the same
time, due to the limitations of distribution time and transportation capacity, it is necessary
to give priority to the distribution of materials with higher importance. When considering
the shortage degree of different materials in demand areas, it is not enough to measure the
actual shortage of materials; the shortage of materials with different importance needs to
be enlarged and narrowed according to the demand urgency score. When two emergency
materials with different demand urgency have the same degree of shortage, due to the
different importance, the material with high demand urgency will have a more severe
impact on the epidemic.

Therefore, in order to achieve the goal of minimizing the total material shortage, it is
necessary to adjust the shortage of different materials through certain methods, so that the
higher the urgency of demand, the higher the priority of allocation. Based on the above
discussion, this paper proposes the adjustment function of material shortage.

According to the demand urgency calculated above, the material shortage adjustment
function is expressed in the following form:

πm = eεm , m = 1, 2, · · · , M (7)

where πm is the shortage coefficient of emergency material m. Since the weight of each index
is within 0–1, and the normalized value of each index is also within 0–1, the comprehensive
score of demand urgency calculated by Formula (7) is also within 0–1. The relationship
between the material shortage adjustment coefficient and the material demand urgency is
shown in Figure 1.
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Figure 1. Adjustment function of material shortage.

If the demand urgency calculated by the method in Section 3.2 is 0, it is considered that
the importance of the material is 0, so it is calculated by its actual shortage amount without
adjustment; if the demand urgency is greater than 0, it is considered that the material has
a certain importance, and its material shortage cannot be measured only by the actual
amount, but it needs to be enlarged accordingly. When the demand urgency is greater than
0, the greater the value is, the more severe the impact of materials on epidemics and the
higher the amplification ratio of the shortage, and the amplification trend becomes faster
with the increase of the urgency value.

4. Dynamic Distribution Model of Emergency Materials Considering Demand Urgency
4.1. Problem Description and Model Assumptions

At the beginning of an outbreak, the virus spreads rapidly in a certain area, the
number of infected people increases exponentially, and the emergency materials in stock
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in the area are consumed rapidly. In order to control the epidemic as soon as possible,
the government will introduce strict quarantine measures and designate some medical
institutions in the area as rescue centers. In order to meet the material needs of the rescue
centers, it is necessary to transport materials from other areas to supplement the shortage.
These transported materials are then stored in different temporary distribution centers, and
the distribution centers accurately deliver the materials to the rescue centers according to
demand. At the same time, considering the continuous development of the epidemic and
in order to make distribution more accurate, the duration of the epidemic is divided into
several equal periods, and distribution needs to be arranged according to the materials
demand in each period

Figure 2 illustrates the problem graphically. In Figure 2, the large rectangle represents
the area where the materials need to be distributed, and several irregular curves divide it
into several independent areas with different shapes and sizes. Each region has a rescue
center (represented by a small triangle), which is responsible for the treatment of infected
patients in that area. There are also several distribution centers (represented by small
squares) in the region, each with its own service area (represented by a dotted circle).
Supplies are delivered from external areas (represented by solid circles) to temporary
distribution centers, and then distributed from the temporary distribution centers to the
rescue centers within the scope, according to their demands.
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Some assumptions of this system are made as follows:

(1) Each rescue center is responsible for the treatment of infected patients in a certain
scope, and there is no overlapping of the scopes of the rescue centers. Once the
infected person is diagnosed, they will be sent to the nearest rescue center.

(2) The external supply sites are a kind of virtual node, which essentially have several
possible channels for materials to enter the area. External emergency supply sites
have no actual coordinates, but there are parameters such as supply volume, price,
and so on. Accordingly, only the distribution of materials within the affected area
is considered while the distribution of materials outside the affected area and the
distance factor are not considered.
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(3) The materials for each rescue center in one delivery can be provided by multiple
distribution centers, and one distribution center can provide materials for different
rescue centers in one delivery.

(4) Only the purchase cost of external material input (from the supply site to the dis-
tribution center) is considered, and the transportation cost of internal and external
material (from the distribution center to the rescue center) and the storage cost in the
distribution center are not considered.

(5) The volume difference is not considered, different materials can be loaded together,
and the damage to road facilities and the limitations of road conditions are ignored.

4.2. Symbol Definition

(1) Sets

M: Set of emergency materials m = 1, 2, ..., M
T: Set of rescue periods t = 1, 2, ..., T
W: Set of emergency supply sites w = 1, 2, ..., W
J: Set of temporary distribution centers j = 1, 2, ..., J
K: Set of rescue centers k = 1, 2, ..., K

(2) Parameters

Dm
jt , Dm

kt: The volume of material m demanded by the temporary distribution center j
and rescue center k in Period t, respectively.

nsm
wt: The volume of the material m supplied from emergency supply site w in Period t.

cm
wt: The price of the material m supplied from emergency supply site w in Period t.

Ω: Total budget during the epidemic.
Pm

jt : The volume of material m supplied by temporary distribution center j in Period t.
Vm

jt : The inventory of material m of temporary distribution center j in Period t.
Vm

j0 : The initial inventory of material m of temporary distribution center j.
Vm

j : The maximal inventory volume of material m of temporary distribution center j.
vm

j : The safety inventory volume of material m of temporary distribution center j.
Vj: The total inventory capacity of temporary distribution center j.
ωm

kt: The shortage volume of material m of rescue center k in Period t.
πm: The shortage adjustment coefficient of material m.

4.3. Model Construction

The decision variables of the dynamic distribution model are:
xm

wjt: The volume of material m transported from emergency supply site w to temporary
distribution center j in Period t.

xm
jkt: The volume of material m transported from temporary distribution center j to

rescue center k in Period t.
pjkt: Whether there is any material transported from temporary distribution center j

to rescue center k in Period t.
pwjt: Whether there is any material transported from emergency supply point w to

temporary distribution center j in Period t.
In which, pjkt and pwjt are 0-1 variables, and when the event occurs, the variable is 1,

otherwise 0.
Considering the importance of different materials, the total material shortage is char-

acterized as an adjusted weighted shortage based on the material shortage adjustment
coefficient. Taking the minimum total material shortage as the objective of the model, the
corresponding integer linear programming model was established as follows:

min ∑T
t=1 ∑K

k=1 ∑M
m=1 πmωm

kt (8)

s.t.
Dm

kt ≥∑J
j=1 pjktxm

jkt, t ∈ T, k ∈ K, m ∈ M (9)
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Pm
jt ≤∑K

k=1 pjktxm
jkt, t ∈ T, j ∈ J, m ∈ M (10)

Pm
jt ≤ Vm

j(t−1), t ∈ T, j ∈ J, m ∈ M (11)

Vm
jt = Vm

j(t−1) − Pm
jt + ∑W

w=1 pwjtxm
wjt, t ∈ T, j ∈ J, m ∈ M (12)

Dm
jt = Vm

j −Vm
j(t−1) + Pm

jt , t ∈ T, j ∈ J, m ∈ M (13)

Dm
jt ≥∑W

w=1 pwjtxm
wjt, t ∈ T, j ∈ J, m ∈ M (14)

∑J
j=1 pwjtxm

wjt ≤ nsm
w(t−1), t ∈ T, w ∈W, m ∈ M (15)

Vm
jt ≥ vm

j , t ∈ T, j ∈ J, m ∈ M (16)

Vm
jt ≤ Vm

j , t ∈ T, j ∈ J, m ∈ M (17)

∑M
m=1 Vm

jt ≤ Vj, t ∈ T, j ∈ J (18)

ωm
kt = Dm

kt −∑J
j=1 pjktxm

jkt, t ∈ T, k ∈ K, m ∈ M (19)

In the above Formulas (8)–(19), Formula (8) is the objective function of the model,
which minimizes the material shortage after adjustment. Formula (9) reflects that during
the rapid development of the epidemic, emergency materials are in short supply, so the total
volume of supplies received by a single rescue center from the temporary distribution center
in each period may not be able to meet all the needs, resulting in a certain material shortage.

Formulas (10) and (11) show that the goods shipped from a single distribution center
are equal to the sum of the materials distributed to all the rescue centers and are less
than the current inventory of the material. Formula (12) shows that the inventory of a
certain material at the end of the current cycle is equal to the inventory at the end of the
previous period minus the volume of materials transported in the current period plus those
transported from the emergency supply site in the current period. Formulas (13)–(15) show
that the demand of the temporary distribution center for a certain material is equal to the
difference between the maximum storage capacity of the temporary distribution center and
the current inventory, and is the same as the demand of the treatment center. The materials
volume transported from the emergency supply site may not be able to meet the needs of
the temporary distribution center, but it must not be larger than the total materials volume
supplied by the supply site. Formulas (16)–(18) show that the inventory of materials should
be less than the inventory capacity and greater than the safety inventory. Formula (19)
defines the calculation method of the material shortage quantity of a single period in a
certain rescue center.

5. Example Analysis

In order to verify the effectiveness of the model, this paper presents an example
analysis of Wuhan and Shanghai under the background of city-wide lockdown and control
at different stages of epidemic development. The computing environment was based on a
personal computer (Intel Core I5 10210U 1.6 GHz CPU, 16 GB RAM, Windows 11 operating
system), and Lingo 16 ExS was applied as the computing software. The parameters involved
in the model were then adjusted, sensitivity analysis was carried out, and the impact of
different parameter settings on the model results was compared. The details are as follows:
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5.1. Relevant Background

At the end of 2019, the COVID-19 virus began to spread in Wuhan. In order to cut off
the transmission of the virus and control the epidemic in a smaller range, Wuhan announced
the “Lockdown” on 23 January 2020. In March 2022, the mutant strain of COVID-19,
Omikron, began to break out in Shanghai, and the Shanghai Municipal Government
executed the measure of “static management” on 1 April 2022.

5.2. Data Preparation

There are 13 and 16 administrative districts respectively in Wuhan and Shanghai,
which are greatly different from each other. In order to improve the comparability of the
solution results, the two cities were divided into five regions, respectively, according to the
area and geographical location, as shown in Table 2.

Table 2. Regional division of cities.

Region

Wuhan Shanghai

Contained Administrative Districts
Population

Density
(Person/km2)

Contained Administrative Districts
Population

Density
(Person/km2)

Region 1

Jiangan District, Jianghan District,
Qiaokou District, Hanyang District,

Wuchang District, Qingshan District,
Hongshan District

7076

Huangpu District, Xuhui District,
Changning District, Jing ‘an District,

Putuo District, Hongkou District,
Yangpu District, Minhang District

14,161

Region 2 Dongxihu District, Hannan District,
Caidian District 812 Pudong New Area, Fengxian District 3598

Region 3 Jiangxia District 489 Jiading District, Baoshan District 5531

Region 4 Huangpi District 456 Jinshan District, Songjiang District,
Qingpu District 2148

Region 5 Xinzhou District 626 Chongming District 539

According to the existing literature, during the rapid development of the epidemic,
Hubei Province designated five logistics parks as temporary transit stations for emergency
materials, three of which were in Wuhan, located in Dongxihu District, Huangpi District,
and Hannan District. In addition, according to the public data on the official website of the
Hubei Provincial Health and Health Commission, during the epidemic period, all districts
in Wuhan designated one or more hospitals to treat infected people. Therefore, after the
re-division of the city, each region contained at least one designated rescue center. Shanghai
has not released the information on the designated distribution centers.

This paper assumes that there were three different distribution centers (j1, j2, j3) in the
two cities and two emergency supply sites (w1, w2), which represented various ways for
materials to enter the affected area. At the same time, each region had a corresponding
rescue center, represented by (k1, k2, k3, k4, k5).

All kinds of materials used during the epidemic can be divided into medical materials,
protective materials, and living materials, according to the use classification. In addition,
they can be divided into consumptive materials and durable materials, according to the
consumption classification. In reality, during the outbreak of the epidemic in Wuhan,
people paid more attention to the distribution of medical and protective materials, while in
Shanghai, the distribution of living materials was a more important topic. Therefore, this
study selected medicine, medical alcohol, ventilator, and pork as representative materials.
Of these, medicines, medical alcohol, and pork are consumptive materials, and ventilators
are durable materials. The time period unit in this study was days. Indeed, according to
the actual situation, the time period can be taken from any other unit.
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Based on the population density data in Table 2, according to epidemic development
law, the material demand data for the two cities in the first 10 periods were set as shown in
Tables 3 and 4 respectively.

Table 3. Demand data for emergency materials in Wuhan (unit: piece).

Period 1 2 3 4 5 6 7 8 9 10

k = 1

Medicine 1218 1416 1836 2358 2910 3450 3948 4404 4806 5160
Medical alcohol 406 472 612 786 970 1150 1316 1468 1602 1720

Ventilator 174 174 194 214 227 231 227 218 204 188
Pork 102 118 153 197 243 288 329 367 401 430

k = 2

Medicine 264 294 366 456 552 642 726 798 858 906
Medical alcohol 88 98 122 152 184 214 242 266 286 302

Ventilator 38 36 38 41 43 43 42 40 37 34
Pork 22 25 31 38 46 54 61 67 72 76

k = 3

Medicine 174 192 234 294 354 414 462 510 546 582
Medical alcohol 58 64 78 98 118 138 154 170 182 194

Ventilator 25 24 25 27 28 28 27 26 24 22
Pork 15 16 20 25 30 35 39 43 46 49

k = 4

Medicine 180 198 246 306 366 426 480 528 570 600
Medical alcohol 60 66 82 102 122 142 160 176 190 200

Ventilator 26 25 27 29 30 30 29 27 25 23
Pork 15 17 21 26 31 36 40 44 48 50

k = 5

Medicine 162 180 222 276 330 384 432 480 516 546
Medical alcohol 54 60 74 92 110 128 144 160 172 182

Ventilator 23 22 23 25 26 26 25 24 22 20
Pork 14 15 19 23 28 32 36 40 43 46

Table 4. Demand data for emergency materials in Shanghai (unit: piece).

Period 1 2 3 4 5 6 7 8 9 10

k = 1

Medicine 5785 11,230 16,472 21,582 26,625 31,660 36,744 41,929 47,267 52,805
Medical alcohol 1928 3743 5491 7194 8875 10,553 12,248 13,976 15,756 17,602

Ventilator 48 47 34 22 14 8 5 3 2 1
Pork 482 936 1373 1798 2219 2638 3062 3494 3939 4400

k = 2

Medicine 3317 6298 9022 11,520 13,826 15,966 17,967 19,850 21,635 23,339
Medical alcohol 1106 2099 3007 3840 4609 5322 5989 6617 7212 7780

Ventilator 28 27 19 12 7 4 2 1 1 1
Pork 276 525 752 960 1152 1330 1497 1654 1803 1945

k = 3

Medicine 2040 3892 5599 7183 8663 10,059 11,385 12,656 13,884 15,081
Medical alcohol 680 1297 1866 2394 2888 3353 3795 4219 4628 5027

Ventilator 17 16 12 8 5 3 2 1 1 1
Pork 170 324 467 599 722 838 949 1055 1157 1257

k = 4

Medicine 1842 3485 4973 6326 7562 8698 9748 10,727 11,645 12,512
Medical alcohol 614 1162 1658 2109 2521 2899 3249 3576 3882 4171

Ventilator 15 14 10 6 4 2 1 1 1 1
Pork 154 290 414 527 630 725 812 894 970 1043

k = 5

Medicine 283 531 752 951 1131 1294 1443 1580 1706 1823
Medical alcohol 94 177 251 317 377 431 481 527 569 608

Ventilator 2 2 1 1 1 1 1 1 1 1
Pork 24 44 63 79 94 108 120 132 142 152

The data for various urgency indexes of the given emergency materials are shown in
Table 5.
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Table 5. Score of each material in each indicator.

Name of
Material Symbol

Material
Consumption

Rate u1

Material
Reproduction

Rate u2

Whether It Is
Durable

Material u3

Degree of
Irreplaceability

u4

Insufficient Supply
Endangers Life

Level u5

Medicine m = 1 6 4 0 4 5
Medical alcohol m = 2 2 1.5 0 2 1

Ventilator m = 3 1 1 1 5 3
Pork m = 4 0.5 3 0 1 2

5.3. Calculation and Result Analysis

According to the methods of calculating demand urgency and adjusting material
shortage introduced in Section 3.3, the demand urgency and shortage adjustment coefficient
of each material was obtained as shown in Table 6.

Table 6. Material demand urgency and material shortage adjustment coefficient.

Material m Medicine m = 1 Medical Alcohol m = 2 Ventilator m = 3 Pork m = 4

Demand urgency εm 0.333 0.067 0.540 0.061
Material shortage

adjustment coefficient πm
1.395 1.069 1.716 1.062

After obtaining the shortage adjustment coefficient of each material, the solution for the
model was obtained based on Lingo 16 software. The results of the materials accumulated
in the first 10 periods from Wuhan emergency supply sites to temporary distribution centers
are shown in Table 7, and those from Wuhan temporary distribution centers to various
rescue centers are shown in Table 8. The results of the materials accumulated in the first
10 periods from Shanghai emergency supply sites to temporary distribution centers are
shown in Table 9, and those from Shanghai temporary distribution centers to various rescue
centers are shown in Table 10. Based on the model results, it was found that:

Table 7. Distribution results for emergency supply sites to temporary distribution centers in Wuhan
(unit: piece).

Temporary Distribution Center Emergency Materials
Emergency Supply Site

w = 1 w = 2

j = 1

Medicine 7410 3000
Medical alcohol 4322 1780

Ventilator 100 104
Pork 958 136

j = 2

Medicine 10,548 4400
Medical alcohol 2864 830

Ventilator 187 15
Pork 733 46

j = 3

Medicine 11,942 2300
Medical alcohol 4064 850

Ventilator 355 0
Pork 1399 56

Based on the Shanghai data, the optimal value of the model was 111,794.9, and the
transferred actual shortage was 88,636 pieces; therefore, the overall shortage rate was
10.18%. The specific shortage of different materials varies, and the specific shortage of each
type of material is shown in Figure 3.
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Table 8. Distribution results for temporary distribution centers to rescue centers in Wuhan
(unit: piece).

Rescue Center Emergency Materials
Temporary Distribution Center

j = 1 j = 2 j = 3

k = 1

Medicine 7726 9624 11,396
Medical alcohol 4700 2172 3364

Ventilator 304 300 394
Pork 769 496 1155

k = 2

Medicine 1392 2754 798
Medical alcohol 650 398 784

Ventilator 0 2 37
Pork 158 105 130

k = 3

Medicine 1482 684 696
Medical alcohol 376 402 320

Ventilator 0 0 24
Pork 114 62 29

k = 4

Medicine 426 1314 1434
Medical alcohol 162 508 426

Ventilator 0 0 0
Pork 44 88 112

k = 5

Medicine 384 1572 918
Medical alcohol 414 414 220

Ventilator 0 0 0
Pork 59 78 79

Table 9. Distribution results for emergency supply sites to temporary distribution centers in Shanghai
(unit: piece).

Temporary Distribution Center Emergency Materials
Emergency Supply Site

w = 1 w = 2

j = 1

Medicine 3953 90,000
Medical alcohol 39,000 22,600

Ventilator 0 0
Pork 6765 7300

j = 2

Medicine 54,405 13,000
Medical alcohol 17,100 8000

Ventilator 0 0
Pork 3500 2400

j = 3

Medicine 130,047 0
Medical alcohol 56,400 4000

Ventilator 0 0
Pork 19,635 0

Based on the Wuhan data, the results of the model show that the optimal value
of the objective was 10,532.15, and the transferred actual average shortage of materials
was 7805 pieces; therefore, the actual average shortage rate of materials was 10.84%. The
shortage of different types of materials is shown in Figure 4.

In Figures 3 and 4, the blue rectangles represent the ideal shortage rates, that is, the
shortage rate when all materials are used, while the orange rectangles represent the actual
shortage rates, which is the result optimized by the model. It can be seen that although
there was a significant difference in the absolute amount of material shortage between
Shanghai and Wuhan, the overall shortage level was similar, as well as the shortage of each
material, which indicates that the situation in the two cities is comparable.

84



Systems 2023, 11, 303

Table 10. Distribution results for temporary distribution centers to rescue centers in Shanghai
(unit: piece).

Rescue Center Emergency Materials
Temporary Distribution Center

j = 1 j = 2 j = 3

k = 1

Medicine 99,263 76,054 105,552
Medical alcohol 17,972 12,001 67,393

Ventilator 40 45 44
Pork 7882 1113 14,864

k = 2

Medicine 22,848 19,283 17,818
Medical alcohol 20,981 6595 3007

Ventilator 7 0 1
Pork 3499 752 3288

k = 3

Medicine 0 2068 20,680
Medical alcohol 21,651 5925 0

Ventilator 0 5 4
Pork 1257 1157 2483

k = 4

Medicine 1842 0 15,997
Medical alcohol 10,996 10,052 0

Ventilator 2 0 1
Pork 2427 3878 0

k = 5

Medicine 0 0 0
Medical alcohol 0 527 0

Ventilator 1 0 0
Pork 0 0 0

Systems 2023, 11, x FOR PEER REVIEW 16 of 21 
 

 

Based on the Shanghai data, the optimal value of the model was 111,794.9, and the 
transferred actual shortage was 88,636 pieces; therefore, the overall shortage rate was 
10.18%. The specific shortage of different materials varies, and the specific shortage of each 
type of material is shown in Figure 3. 

 
Figure 3. Material shortage of each type of material in Shanghai. 

Based on the Wuhan data, the results of the model show that the optimal value of the 
objective was 10,532.15, and the transferred actual average shortage of materials was 7805 
pieces; therefore, the actual average shortage rate of materials was 10.84%. The shortage 
of different types of materials is shown in Figure 4. 

 

Figure 3. Material shortage of each type of material in Shanghai.

According to the demand urgency score for each material listed in Table 6, it can
be seen that among the four materials, the importance of medicines and ventilators is
higher, while the importance of the other two items is relatively lower. Figures 3 and 4
show that the actual shortage rate of medicines and ventilators was closer to the ideal
shortage rate than the other two materials. These results show that the model established
in this paper obviously adjusted the material distribution with higher importance, so
the satisfaction of the more important materials reached a more ideal state. For the two
kinds of materials, medicines belong to consumptive materials, while ventilators belong to
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durable materials. For the two types of materials, there was no significant difference in the
optimization process.
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5.4. Impact of Budget Funds

Based on the effective model established above, this section examines the impact of
budget funds.

In reality, whether it is commercial logistics or emergency logistics, funds are always
limited. Even for the emergency logistics led by the government, it is necessary to consider
cutting costs and use limited funds as much as possible. The government needs to respond
to emergency material demands in case of a shortage. Some of these materials are donated
by society, while the majority come from government procurement. Government procure-
ment is not unlimited, and the cost of purchasing emergency materials needs to be within a
budget. This means that there is the following budget constraint in the model:

∑T
t=1 ∑W

ω=1 ∑J
j=1 ∑M

m=1 pwjtcm
wtx

m
wjt ≤ Ω (20)

where cm
wt is the price of the material, and Ω is the government budget.

In Formula (20), the cost of emergency logistics is defined as the cost incurred in
purchasing materials from suppliers, which must not be over budget. This paper divides
budget funds into three grades: 10 million yuan, 50 million yuan, and 100 million yuan,
which were substituted into the model, respectively, for a solution. The final results were
analyzed based on the single objective solution without budget constraints, as shown in
Table 11 and Figure 5.

As illustrated by Table 11 and Figure 5, when the budget funds were only 10 million
yuan, the actual shortage of materials was 26,466 pieces, with a shortage rate of materials of
up to 38.95%. With the increase of budget funds and the loosening of financial constraints,
the shortage rate of materials gradually decreased. When the budget funds were 50 million
yuan, the decrease in the shortage rate was the largest, with a decrease of over 14 percentage.
This fully demonstrates that funds play an important role in the entire logistics, and if
insufficient funds are invested, emergency logistics will not have a significant effect.

The shortage of three types of medical materials is shown in Figure 6. When the
budget was between 10 million yuan and 50 million yuan, the shortage of medicines
decreased the most significantly. However, when the budget was between 50 million yuan
and 100 million yuan, the shortage of ventilators saw the biggest drop, while the shortage
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of medical alcohol remained at the same level. There are several possible reasons for
this situation:

1. The demand for medicines was the highest. When the funding was only 10 million
yuan, the shortage of medicines was much larger compared to the other two types of
materials. Therefore, when the budget increased slightly, a large number of medicines
were purchased to reduce the shortage.

2. The demand for ventilators was the lowest, but ventilators were the most expensive.
When the financial constraint was tight, the limited funds were not used to purchase
ventilators but first met the other two lower-priced and greater-demand materials.
However, when the budget funds were sufficient, the importance of ventilators began
to show, and more funds were used to purchase ventilators to meet the demand and
reduce the shortage of this more important material.

Table 11. Sensitivity analysis results for budget funds.

Budget Constraints (Yuan) 10 Million 50 Million 100 Million Unlimited

Objective function value 40,025.08 24,724.95 21,270.65 20,130.66
Actual shortage amount (piece) 26,466 16,722 14,617 13,830

Shortage rate 38.95% 24.61% 21.51% 20.35%
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6. Conclusions

In the process of epidemic prevention and control, a perfect emergency logistics system
is expected to be one the critical support to quickly control the epidemic and minimize
casualties and losses. Emergency logistics not only needs to achieve the fastest distribution
of materials, but it also needs to consider the accuracy and fairness of meeting the demand
for materials in distribution. Therefore, in the context of the COVID-19 pandemic, this
paper established a distribution model of emergency materials. In this model, the concept
of demand urgency is introduced, and the importance of each material is measured through
the demand urgency index system, to calculate the shortage adjustment coefficient of each
material; furthermore, the shortage of the material is enlarged accordingly in the objective
function, so that the material with higher importance is distributed more preferentially.
Finally, the model was applied to study the cases of Wuhan and Shanghai, and it was
found that, although there were differences in material demand volume and material
demand structure between Shanghai and Wuhan, there were similar results for the two
cities, indicating that the model can be applied to the emergency material distribution of
major epidemics in a variety of situations.

Furthermore, there are some managerial implications:

(1) Medicines and ventilators were the two materials with higher demand urgency in
this example, and the actual shortage rate was closer to the ideal state, which reflects
the effectiveness of the model to some extent. Therefore, this proves that the shortage
adjustment coefficient based on the demand urgency (material classification) had a
more obvious adjustment effect on the distribution of more important materials.

(2) The effectiveness of emergency logistics increased with the increase of budget funds.
When the budget funds were very limited, it resulted in a great shortage of emergency
materials and a high shortage rate, regardless of the demand urgency. On the other
hand, with the increase in budget funds, the demand urgency was clearly reflected in
the allocation of funds. The more urgent materials received a larger share of finance,
which means that increasing funds appropriately and conducting scientific allocation
is an important strategy to improve the effectiveness of emergency rescue.

The considerations for follow-up studies are as follows:

(1) Although this paper considered multi-period emergency logistics dynamic planning,
it simply divided the time into several equal small periods and gave a reasonable
explanation for how to divide the periods. Therefore, in a follow-up study, we could
carry out corresponding research on the reasonable division of the period, such as
whether it is necessary to change the period into a random length, or the relationship
between the division of the period and the development of the epidemic.

(2) In this paper, materials are divided into durable and consumable materials, but this
division was too general to distinguish the differences between hundreds of materials
in emergency logistics. Therefore, it is necessary to continue to study the division of
emergency materials.
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Abstract: The outbreak of COVID-19 posed a significant challenge to the emergency management
system for public health emergencies, especially in China, where the epidemic began. As intelligent
technology has injected new vitality into emergency management, applying intelligent technology to
optimize emergency resource allocation (ERA) has become a focus of research in the post-epidemic
era. Based on China’s experience in preventing and controlling COVID-19, this paper first analyzes
the characteristics and process of ERA in public health emergencies, and then synthesizes the
relevant Chinese studies in recent years to identify the intelligent technologies affecting ERA in China
using word frequency analysis technology. We also construct an intelligent emergency resource
allocation mechanism in four areas: medical intelligence, management intelligence, decision-making
intelligence, and supervision intelligence. Finally, we use the entropy-TOPSIS method to evaluate the
impact of intelligent technologies on ERA, and we rank the criticality of intelligent technologies. The
experimental results show that (i.) medical intelligence and management intelligence are the keys to
developing intelligent ERA, and (ii.) among the identified essential intelligent technologies, artificial
intelligence (AI), and big data technology have a more significant and critical role in emergency
resource intelligence allocation.

Keywords: public health emergency; emergency resource allocation; intelligent technology

1. Introduction

Public health emergencies can profoundly impact public health, the environment, the
economy, and even politics, and have therefore been the focus of attention from people
and researchers in all walks of life and research. In early 2020, COVID-19 sent shockwaves
throughout the economic and social order of countries around the world, greatly influencing
emergency management systems and governance capacity worldwide [1].

When COVID-19 broke out, the best time for prevention and control was missed
because of the delayed response of the Chinese government. This resulted in an inabil-
ity to reasonably predict the extent of the damage [2], and this had at least two severe
consequences: (i.) demand-supply imbalance on medical emergency resources (such as
masks and rubbing alcohol, critical medical equipment, etc.) [3], and (ii.) the inaccurate
demand information for emergency resources leading to unfair resource allocation, causing
secondary harm to the people in the affected area. The isolation policy shortened human
resources, increasing the pressure on medical care and epidemic prevention. The above-
mentioned problems reflect the fact that the emergency resource allocation mechanism
for public health emergencies in China still needs to be improved. There are loopholes in
epidemic prediction and decision making, the supervision of information transmission,
and ERA and transportation. The traditional way of allocating emergency resources based
on human labour now faces significant challenges, and, indeed, COVID-19 has proved
a challenge to the national governance system and capacity. It is necessary to improve
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the national emergency management mechanism in response to the shortcomings and
deficiencies exposed during this epidemic.

Intelligent technology’s high-performance computing and simulation capabilities
as well as the idea of a “machine replacement” provide the direction for solving these
problems. Intelligence has become a new approach for countries to solve resource allocation
problems, which replaces traditional methods (such as manual labour). China has also
made many attempts in this direction during the epidemic, such as online medical services,
remote work policy, and infection control in public places through intelligent technologies.
However, at this stage, research on the application of intelligent technologies in ERA needs
to be improved [4]. As the normalized epidemic prevention and control significantly
increases labour costs, the need to realize intelligent ERA is urgent. Therefore, constructing
an intelligent emergency resource allocation mechanism for public health emergencies is of
great theoretical significance and application value.

The key to solving the problems in ERA for public health emergencies is to use
intelligent technology to improve ERA efficiency, which can fully leverage the role of
emergency resources in epidemic prevention and control. Therefore, this article focuses on
the intelligent technologies in ERA, and it answers the following research questions:

(i.) What are the essential intelligent technologies for intelligent ERA? We solved this prob-
lem in Section 3 by using word frequency analysis to extract essential intelligent technologies.

(ii.) How to intelligently allocate emergency resources for public health emergencies?
We solved this problem in Section 4 by establishing an intelligent emergency resource
allocation mechanism.

We constructed an evaluation index system for essential intelligent technologies
through empirical methods in Section 5. The use of this evaluation system to rank the impor-
tance of essential intelligent technologies. Finally, Section 6 provides directions for further
research on the application of intelligent technologies and suggestions for improving the
efficiency of emergency management systems.

2. Related Works

Public health emergencies spread fast and cause significant losses. Since SARS in 2003,
the construction of emergency management systems and related research in China has
gradually increased [5]. The construction of the health emergency system in China has
been significantly improved, but the efficiency in both resource dispatching and decision-
making could still be higher [6]. Li et al. [7] have pointed out that the prevention and the
control process of COVID-19 revealed many problems in China’s emergency management
system. These problems include the imperfect monitoring and early warning system, the
unbalanced layout of emergency resources, insufficient storage of emergency supplies, and
backward management.

2.1. Research on ERA

Before the COVID-19 pandemic, researchers mainly focused on optimizing the ERA
decision-making process and site-path selection by constructing ERA models. Ge et al. [8]
established a two-stage stochastic planning model for resource allocation in a complex
disaster scenario. The model was used to make decisions under different disaster scenarios,
such as the location of emergency facilities and the inventory of emergency materials. Peng
et al. [9] established a robust site-path optimization model for multiple ERA types. It
determines the optimal siting layout and distribution path for emergency resource supply
points based on the uncertainty of emergency resource costs. Researchers also realize
that emergency management of public emergencies is a complex project with multiple
subjects and levels. The disaster situation, time-space distribution, and rescue costs are
uncertain, so most studies construct scenarios with static demand for emergency resources.
However, the actual ERA process is more complex. Therefore, some researchers studied
ERA from the perspective of demand. Zhang et al. [10] established a demand-based
emergency resources supply system by analyzing the characteristics of emergency demand
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and constructing different emergency resource demand scenarios. Li et al. [11] established a
multi-objective mixed integer planning model to solve the fairness problem of ERA among
multiple subjects for the demand uncertainty situation. It uses min-max dissatisfaction
as the fairness objective and the sum of system utilities as the utility objective. Yang
et al. [12] construct an emergency resources demand strategy that can dynamically deploy
resources for the demanding state of emergency relief materials. In addition to studying
ERA, researchers realize that information resources participate in, guide, and supervise the
process. This is vital to guaranteeing efficient ERA.

Digital and intelligent technologies lead the development of the fourth industrial revo-
lution, and have revolutionized how things connect and interact with things, things with
people, and people with each other. Therefore, the allocation of resources has undergone
new changes. [13]. Researchers have begun to explore the relationship between intelligent
technologies, such as AI, big data, and intelligent design, which significantly impact ERA
strategy. On the one hand, some researchers believe that the characteristics of intelligent
technologies are beneficial to improving the ERA process. For example, Akter et al. [14]
argued that big data improves emergency management efficiency because it can visualize,
analyze, and predict disasters. Deng et al. [15] proposed that AI can effectively alleviate
the pressure of rising labour costs, compensate for the shortage of human labourers, and
significantly reduce labour density. Dui et al. [4] argued that AI significantly accelerates
epidemic data monitoring and prediction efficiency.

On the other hand, some researchers argue that environmental intelligence changes
emergency resource allocation mechanisms to accommodate it. [16]. Chen et al. [17] argue
that the big data environment brings increasing implications and challenges for effective
data processing and decision-making. Therefore, intelligent techniques are critical in the
emergency management life cycle. He et al. [18] argue that the convergence of the Internet,
big data, machine learning, and AI has led to a consequent evolution of resource allocation
mechanisms. Data intelligence has become the basis for resource allocation mechanisms
in the Internet era. Despite the different motivations, both views recognize that ERA
intelligence is the development trend of modern emergency management systems.

2.2. Research on the Intelligence of ERA

Most of the current academic research on the intelligence of ERA focuses on intelligent
information management [19,20], intelligent decision-making of resource allocation [21–23],
and intelligent medical applications [24,25]. Regarding the research on intelligent infor-
mation management, Wang et al. [26] concluded that there are more severe data silos in
Chinese public health information systems, which make it difficult to provide real-time
data for handling large-scale public health emergencies. Shen et al. [27] argued that emer-
gency response efficiency could be improved through two approaches. One is intelligent
information management, while the other is optimizing and integrating various resources
to obtain more reasonable decisions. Zeng et al. [28] constructed an intelligence mech-
anism for public health emergencies by analyzing the information needs of each wave
of the epidemic. This mechanism collects, processes, and mines information for public
health data intelligence. Liu et al. [29] constructed a mechanism for data collection and
feature extraction of public opinion on emergencies on the Internet. They established a
computer-aided warning system based on big data and distributed computing technology
for network public opinion emergencies.

Regarding the research on intelligent decision-making for resource allocation, scholars
believe that intelligent technologies can rapidly and accurately grasp and assess informa-
tion under dynamic scenarios. Zhu et al. [30] proposed a demand prediction method based
on machine learning, big data, and intelligent information processing technologies to assist
in intelligent decision-making for ERA. Abdel et al. [31] constructed a novel intelligent
healthcare decision support model based on soft computing and IoT techniques. The model
facilitates the completion of continuous resource assessment in public health emergencies.
Some researchers simulated the evolutionary patterns through intelligent algorithms for
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quantitative analysis to improve decision-making accuracy. For example, by analyzing
the uncertain factors in the evolution, Chang et al. [32] used system dynamics theory and
its related intelligent algorithms to simulate the evolutionary process of social security
emergencies. Tian et al. [33] modelled different stages of the evolution of network public
opinion emergencies as a “social burning life cycle”. They simulated the evolution pro-
cess of such emergencies using the generalized stochastic Petri net theory and its related
intelligent algorithms.

For the research on intelligent medical applications, Wang et al. [34] analyzed the
application of blockchain, the IoT, and other technologies in the supply chain management
of medical supplies. He argued that intelligent technologies could provide a rapid and
accurate supply of resources and realize the efficient operation of the emergency supply
chain. Du [35] conducted an in-depth study on the regional collaborative emergency
system based on big medical data. Chen et al. [36] established a “horizontal-vertical”
model to integrate emergency medical resources. The model meets the needs of automatic
information integration and intelligent analysis sharing, simplifying the medical process
through emergency management visualization and digitizing medical information.

By analyzing related studies, we found that most researchers focus on the ERA from the
following two aspects: (1) analyzing the impact of intelligent technologies, such as big data,
AI, and information technology on ERA; (2) building intelligent mechanisms from each
process of ERA. However, there are few works on quantitative analysis. Although China’s
public health emergency management capacity is increasing, ERA still has shortcomings.
The most concerning factors are insufficient emergency resource reserves, unbalanced and
inefficient allocation of emergency resources, and loopholes in the early warning system.
This paper aims to optimize the emergency response system for public health emergencies
in China and reduce the losses caused by public health emergencies such as COVID-
19. We achieve it by taking the development of intelligent technology as an opportunity
to build an intelligent emergency resource allocation mechanism and identify essential
intelligent technologies. Our work is of great significance in promoting the development of
intelligent ERA.

3. Allocation of Emergency Resources for Public Health Emergencies and Identification
of Essential Intelligent Technologies

The traditional emergency resources are mainly summarized as material, human, sci-
entific, and technological resources. Material resources include medical material resources
for public health prevention and control, and material resources for people’s livelihood
to ensure the safety of life. Human resources include labour costs of medical, nursing,
material production, transportation, and security costs in public health prevention and
control. Scientific and technological resources guarantee high-tech public health prevention
and treatment.

With the advent of the digital economy, information collection and delivery effi-
ciency have increased dramatically. Information resources (including big data, informa-
tion, and related facilities and equipment) have become an emerging active element in
emergency resources.

3.1. Characteristics of ERA for Public Health Emergencies

Due to the diverse, regional, and unpredictable characteristics of public health emer-
gencies, ERA is a dynamic and complex project. It has multiple supply points, demand
points, emergency supplies, and transportation modes. The active information resources
also give new characteristics to it:

(1) A multi-subject, multi-level super-network system. Firstly, multiple subjects are in-
volved in ERA for public health emergencies. It requires the support and cooperation
of multiple parties, such as the government, market and civil organizations, and the
public. Second, because public health emergencies often involve a wide geographical
area, the affected areas may be from the provinces, cities, villages, and towns. There-

94



Systems 2023, 11, 300

fore, from the government’s perspective, the resource allocation process cascades
upward from lower government levels. The ERA system shows multi-level character-
istics. At the same time, at least three levels of the deployment network exist from
the supply point to the transit point and then to the demand point. The boundaries
between supply, staging, and demand points are not apparent for significant public
health emergencies. The point of supply for one resource may also be the point of de-
mand for another. Physical networks, financial networks, and information networks
are interwoven in the supply-and-demand networks to form a hyper-network system
for ERA.

(2) The disaster situation, resource needs, and priorities are dynamic. The initial trans-
mission location of public health emergencies cannot be predicted. Different urban
areas have differences in population density, economic level, road network, infor-
mation communication, and other conditions. Therefore, there are differences in the
emergency capacity and supply of emergency resources among different regions.
The spread and destructiveness of viruses are not constant. Furthermore, medical
resources are time-sensitive and often difficult to replace. Emergency resource needs
and priorities change with the dynamics of an epidemic. It requires that each relief
department be able to develop strategies and make timely allocation decisions in
response to changes in the epidemic. Emergency resource allocation mechanisms
must be well adapted to the dynamic variability of the epidemic, and they should
also be able to make timely adjustments in response to dynamic demands in time
and space.

(3) The role of information resources. The rapid development of information technol-
ogy has led to changes in the primary way of allocating emergency resources for
public health emergencies. Mobile communications and the Internet have acceler-
ated the speed of access and dissemination of information resources. However, due
to the multiple sources of emergency information and non-uniform data formats,
most demand-related information cannot be accessed timely. It makes the emergency
information construction with information silos, information coupling, and poor in-
formation communication. Therefore, timely information response, fast transmission,
and good analysis capabilities are the key issues to improving the efficiency of ERA.
Building an emergency information management platform is a crucial way to improve
emergency information management capability.

3.2. ERA Process for Public Health Emergencies

The dynamic variability of emergency resources should change with the status of
public health emergencies. The focus of public health prevention and control differs in dif-
ferent development parses. Therefore, to build an intelligent emergency resource allocation
mechanism for public health emergencies, we need to clarify: (i.) the cyclical changes in
emergency resource demand for public health emergencies, and (ii.) the characteristics of
emergency resource types and the demand characteristics of different periods.

The development cycle of the epidemic is mainly divided into the early phase, rising
phase, outbreak phase, and stable phase. As the epidemic enters different stages of devel-
opment, the need for emergency resources changes dynamically. (i.) In the early stage of
epidemic spread, information resources still need to be provided. The trend of epidemic
changes still needs to be clarified, and the regional information interconnection network
has not yet been formed. Therefore, the responses of managers are slow, and the demand
for emergency resources is in a more subdued early warning period. (ii.) The risk level
is elevated when the epidemic moves into the rising stage. Relevant departments start
to pay attention to and adopt prevention and control strategies and mobilize emergency
resources, and the demand for emergency resources is in the start-up period. (iii.) The
epidemic’s severity climbs when the outbreak period is entered. The number of cases
increases, epidemic information resources surge, and prevention and control efforts are
in full swing. The demand for emergency resources dramatically increases and enters the
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treatment period of emergency resource supply. (iv.) As the epidemic moves from the end
of the outbreak phase to the stable phase, hospital admissions are gradually cleared. The
urgent demand for emergency resources decreases, and the demand enters the reserve
period. On the one hand, the production department adjusts the resource production plan
to the normal production and living level. On the other hand, the management keeps an
eye on the epidemic situation to prevent a second outbreak, and the priority of various
resource needs changes.

The ERA process should include resource information management, resource alloca-
tion plan design, resource distribution plan decision, and resource allocation supervision
(see Figure 1). (i.) Emergency resource information management refers to collecting infor-
mation during the emergency resource preparation phase of a public health emergency.
The information is related to the quantity and supply location of all emergency resources
(including reserve resources, resources that can be raised, and resources that can be pro-
duced). Information management facilitates understand the distribution, supply quantity,
and supply speed of various resource supplies in a short period, and target the distributed
mobilization efforts. (ii.)·The design of the resource allocation plan decides when and
where to use the type and quantity of emergency resources and makes a reasonable re-
source distribution plan. It collects information on the demand for emergency resources
and considers the distance from the supply point to the demand point, the transporta-
tion environment, and the degree of urgency. Finally, responsible decisions are made by
combining emergency resource management information during a public health event.
(iii.) The resource distribution plan decision is to consider the transportation route and
mode of transportation for emergency resource distribution and to choose the optimal plan.
(iv.) Resource allocation supervision ensures that ERA information is fair and open, and
that resources are distributed in place. It also ensures that each emergency point’s needs
meet the maximum extent in order to avoid resource misallocation and omission.
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Figure 1. ERA process for public health emergencies.

After analyzing ERA’s demand characteristics and process for public health emer-
gencies, we believe that the essential intelligent technologies for ERA should achieve the
following functions: (i) to assist public health prevention and relief work; (ii) to improve
the efficiency and effectiveness of information management and decision making; (iii.) to
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reduce human labour force participation rate and time cost; and (iv.) to achieve intelligent
supervision of the allocation process and reduce the occurrence of the unreasonable alloca-
tion of resources. Clarifying the need for intelligent technology for ERA is a guarantee for
identifying vital, intelligent technologies.

3.3. Essential Intelligent Technology Identification

Intelligence is the property of making objects with functions, such as sensing, judging,
learning, and executing, with the support of the Internet, big data, IoT, and AI. Intelligence is
the goal of digitization, informatization, and networking, while intelligent technology is the
deep integration and subsequent extension of digital, information, and Internet technology.

The development of intelligent technology has brought significant changes to people’s
lives. During the COVID-19 pandemic, intelligent technology has come to the forefront
of practical operations to control the spread of the virus. For example, intelligent robots
distribute daily medicines and supplies to isolated patients. Big medical data and informa-
tion systems are also used to trace the route of patients’ journeys. Moreover, technologies
such as AI and expert systems assist researchers in virus tracing to discover the virus’s
causes, transmission routes, and hazards. Advanced intelligent technology not only simpli-
fies the treatment process and its difficulty but also helps to improve the accessibility of
emergency resources. For example, e-commerce logistics, which has gradually emerged
due to epidemic control, provides security for transporting and supplying medical and
household materials. Features such as work-from-home, online conferences, and online
business processing ensure that people’s lives and work are orderly during an epidemic.

Word frequency analysis (WFA) is a text analysis method used to calculate the fre-
quency of each word in a text and to conduct statistics and analysis based on these frequen-
cies. WFA can quickly extract the most widely-used intelligent technology in allocating
emergency resources for public health emergencies. It provides a research foundation for
constructing an intelligent emergency resource allocation mechanism. This paper used
the China National Knowledge Infrastructure (CNKI) as the source of statistical data. We
selected years from 2012 to 2022 and searched the journal literature for “intelligent”, “in-
telligent technology”, “resource allocation”, “emergency public health event”, and other
related terms. A total of 309 results were obtained by searching the journal literature using
“public health emergencies” and other related terms as subject terms. Through further
screening and manual removal of non-academic journal literature, such as no-authors and
correspondence, we obtained 253 highly relevant works on this topic. We exported sample
data in EndNote text format and analyzed the keywords of the sample data using SATI [37],
ultimately generating a keyword matrix (see Figure 2). In the keyword matrix, we used
“intelligent” as the core related vocabulary of research hotspots in this field. We manually
merged synonyms, removed unintentional words, and then sorted the frequency of popular
keywords. Finally, we extracted ten intelligent technologies that benefit ERA in public
health emergencies. (See Table 1 below.)

Table 1. List of Intelligent Technology Applications for Emergency Resource Management.

No Name of Intelligent Technology Application Description of Intelligent Technology in Medical and
Resource Allocation

1 Artificial Intelligence
AI technologies can simulate, extend, and expand human intelligence to achieve

functions, such as medical imaging-assisted diagnosis, intelligent drug development,
intelligent health management, and assisted resource allocation decisions.

2 Internet The Internet as a carrier and technical means can inform the process of ERA, realize
instant communication, remote consultation, online consultation, etc.

3 (Medical) Information System
The Medical Information System can realize the storage, collection and query of
information related to ERA. The information system assists emergency resource

information management and conducts resource allocation planning.
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Table 1. Cont.

No Name of Intelligent Technology Application Description of Intelligent Technology in Medical and
Resource Allocation

4 Information Technology

The use of Information Technology can make the acquisition, transmission, processing,
control, display, and storage of resource allocation information intelligent, such as radio

frequency identification technology (RFID), sensing technology, network
communication technology, etc.

5 The Internet of Things (IoT)
The Internet of Things (IoT) is to connect material resources with the network, exchange
communication through information dissemination medium, and complete intelligent

identification, positioning, tracking, supervision, and other functions.

6 Big Data

Big Data application technologies include data collection, data pre-processing,
distributed storage, machine learning, etc. The deep combination of big data and cloud

computing technology can realize functions such as epidemic prediction, intelligent
medical care, resource management, and logistic network optimization.

7 Expert System
An Expert System is used to address problems in the field using the knowledge and the

problem-solving methods of human experts, and it can assist in clinical medical
diagnosis and ERA program decisions.

8 Intelligent Design
Intelligent Design is the application of modern information technology and computer
simulation of human thinking activities, combined with neural networks and machine

learning technology to assist in the automation of the design process.

9 Wearable Technology

Wearable technology is the embedding of multimedia, sensors, and wireless
communication technologies into clothing and software support for data interaction and
cloud interaction in order to help achieve real-time monitoring of the health status of

a patient.

10 Machine Replacement Technology

Machine Replacement Technology is the use of robotic hands, automated control
equipment, or assembly line automation for intelligent technology transformation of

enterprises in order to achieve the purpose of reducing staff, increasing efficiency,
improving quality, and ensuring safety.
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4. Intelligent Emergency Resource Allocation Mechanism

Different from the general resource allocation process, intelligent ERA should achieve
three targets: (i.) meet the emergency resource demand, (ii.) improve resource allocation
efficiency, and (iii.) save resource allocation costs using intelligent technology. Therefore,
this study builds an information platform for ERA based on identifying intelligent tech-
nologies that combine public health emergencies’ characteristics and the ERA process. We
also established an intelligent emergency resource allocation mechanism for public health
emergencies, including medical intelligence, management intelligence, decision-making
intelligence, and supervision intelligence (see Figure 3).
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Figure 3. Intelligent emergency resource allocation mechanism for public health emergencies. 

(1) Information platform for ERA. The information platform for ERA is a comprehen-

sive platform that realizes the functions of information collection, screening and filtering, 

identification and error correction, sorting and classification, and transmission and feed-

back in ERA. It is the central hub of ERA and can store, process, and transmit data. The 
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(1) Information platform for ERA. The information platform for ERA is a comprehen-
sive platform that realizes the functions of information collection, screening and filtering,
identification and error correction, sorting and classification, and transmission and feed-
back in ERA. It is the central hub of ERA and can store, process, and transmit data. The
information platform for ERA comprises a regional interconnection network and database.
The regional interconnection network connects the affected areas and supply points hori-
zontally while connecting the management and decision-making departments at all levels
vertically. It uses Information Technology and the Internet to form a “horizontal-vertical”
interlocking information transmission network to realize information exchange between
subjects. The information base includes medical databases, resource databases, and de-
mand databases. Among them, the medical database mainly stores information related
to IPC and assists in researching the outbreak of diseases. The resource information base
covers the status of emergency resource storage, including (i.) the type and quantity of
reserve resources, (ii.) the person-hours and expected quantity of productive resources,
and (iii.) the source and quantity of preparable resources. The demand database collects
and stores information at each demand point during an epidemic, and updates it instantly
to provide a basis for ERA management and decision-making. As the data and information
in public health emergencies are complicated, ERA needs the support of an integrated,
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networked, and intelligent information platform. Therefore, establishing an information
platform for ERA is the cornerstone of the intellectual development of ERA.

(2) Medical Intelligence. Medical intelligence is the most direct manifestation of
intelligent ERA during an epidemic. Based on the data support of the Medical Information
systems, modern digital medical treatment is realized using the IoT and Internet+. It
also creates intelligent medical treatment with online and offline interaction. Therefore,
it can improve the sharing of medical resources, simplify time-consuming and labour-
intensive manual medical processes, and reduce costs. With the development of intelligent
technology, innovative medicine is gradually being realized. It can use intelligent auxiliary
medical devices to complete medical work with a high degree of difficulty. Further, it can
also realize the interaction between patients and medical personnel, medical institutions,
and medical equipment by establishing a regional medical information cloud platform.
Medical intelligence reduces medical congestion, shortens the practice of waiting for
treatment, and expands medical coverage.

(3) Management Intelligence. Management Intelligence simplifies the management
process through intelligent technology and fully uses the information to help achieve
the integrated use of resources. Management Intelligence is not simply system software
applications for repetitive data processing and exchange. Instead, emergency resource
management is based on intelligent buildings to manage people and equipment better,
achieving human-machine coordination. It manifests using information management
systems and robots instead of traditional human work. The resource information database
can control the inventory of resources and then transmit and process resource shipment
and inventory information in real time. It uses sensors and other equipment to automate
instruction transmission. In addition, it can also intelligently perceive, recognize, and
process instruction information and respond. Meanwhile, intelligent warehousing and
logistics methods are labour-saving, thereby reducing the risk of infection. Intelligent
technology can thus help people achieve efficient resource allocation with less human
resource investment, and it is therefore a necessary means for improving the efficiency
of ERA.

(4) Decision-Making Intelligence. Decision-Making Intelligence means using the
advantages of AI and expert systems to help managers solve complex decision-making
problems in collaboration with human intelligence. Due to the dynamic complexity of
ERA information, relying on the traditional human and computer approaches for decision-
making takes both time and effort. This can easily cause huge losses due to untimely
actions during epidemic prevention and control. AI, as an intelligent auxiliary technology,
can realize functions such as analyzing the current epidemic situation, optimizing and
calculating resource allocation schemes, and predicting the epidemic’s trend. Furthermore,
the program’s feasibility is tested by simulations, which shows that decision-making
intelligence saves human resources and improves decision-making efficiency. It also reduces
the risk of decision making and reduces the waste of resources.

(5) Supervision intelligence. The timely acquisition, transmission, and management of
epidemic information is the key to reducing the harm of public health emergencies. During
COVID-19, information is often transmitted through the sequence of “front-line workers
and epidemic prevention agencies” (“lower-level managers”) and “higher-level managers
and research institutions”. Due to the vast geographical area and complex administrative
divisions involved in the epidemic, information acquisition, analysis, and feedback are
prone to delayed transmission, mismatch, and incorrect or missing communications. There-
fore, an intelligent supervision mechanism for intelligent ERA should be established to
strengthen the supervision and management guaranteeing information security. First, the
intelligence of the supervision platform should be realized. Large data centres and infor-
mation supervision platforms should be built to intelligently supervise various application
scenarios, thereby improving the allocation risk prevention and control system. Secondly,
intelligent supervision should be realized, i.e., using AI to improve management efficiency
through digital management, and achieve rapid risk warnings and alarms through the
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Internet of Things data collection and intelligent technology analysis. Finally, to achieve
an intelligent regulatory process, the Internet and Information Technology should achieve
instant information transfer and feedback, which can promote effective and intelligent data
transfer between departments, and which can also help to build a perfect closed loop of
active discovery, automatic instructions, rapid processing, real-time feedback, and risk
prevention and control.

5. Evaluation of Essential Intelligent Technologies for ERA
5.1. Indicator System Construction

The lack of a mature scale for evaluating essential technologies in ERA makes it hard to
build the indicator system. To address this problem, we borrowed indicators from existing
works to construct the evaluation index system for essential technologies in ERA. Among
them, essential technology evaluation indicators are from [38–40], while medical resource
evaluation indicators are from [41]. This evaluation index system combines the characteris-
tics of ERA and intelligent technology for public health emergencies. We integrate relevant
research results to construct the system from four aspects: medical intelligence [42,43],
management intelligence [35,44], decision-making intelligence [17,45,46], and supervision
intelligence [47,48]. The content and description of evaluation indicators are shown in
Table 2.

Table 2. Essential Intelligent Technology evaluation index system.

Primary Indicators Secondary Indicators Tertiary Indicators Indicator Description Indicator
Attribute

Medical intelligence
A1

Medical resource
savings

B1

Occupancy of medical
devices C1

The impact of intelligent technology on reducing
medical device congestion Positive

Waiting time savings
C2

The impact of intelligent technology on reducing
unnecessary waiting time for medical treatment Positive

Human resource
savings C3

The impact of intelligent technology on reducing the
demand for medical personnel Positive

Use value
B2

Reaction time C4 The reaction time consumed when intelligent
technology provides interactive functions Opposite

Consultation time C5 The time spent on diagnosis and treatment using
intelligent technology Opposite

Operational difficulty
C6

The operational difficulty of intelligent technology, i.e.,
the ability requirements for relevant operators Opposite

Cure rate C7 The impact of intelligent technology on improving the
cure rate Positive

Economic benefits
B3

Technology maturity
C8

The impact of intelligent technology on the accuracy
and risk of medical diagnosis Positive

Application breadth
C9

The application scope and popularity of intelligent
technology in medical institutions Positive

Additional services
C10

The possibility of intelligent technology providing
additional services Positive

Management
intelligence

A2

Management cost
savings

B4

Time-cost savings C11 Quantitative indicators of time-cost savings in ERA
using intelligent technology Positive

Manpower cost
savings C12

Quantitative indicators of manpower costs for ERA that
can be saved by utilizing intelligent technology Positive

Management
effectiveness

B5

Reduction of resource
mismatch C13

The impact of intelligent technology on reducing
adverse phenomena such as resource mismatch and

missed allocation
Positive

Managing information
security C14

The impact of using Intelligent Technology on resource
management information security Positive
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Table 2. Cont.

Primary Indicators Secondary Indicators Tertiary Indicators Indicator Description Indicator
Attribute

Decision-making
intelligence

A3

Decision-making
efficiency

B6

Information
transmission speed

C15

The Impact of intelligent technology on the
Transmission Speed of Decision Information and

Decision Instructions
Positive

Decision duration C16 The reduction in decision-making time caused by
intelligent technology Positive

Effects on
decision-making

B7

Fault tolerance of
decision-making C17

The impact of intelligent technology on improving
scheme fault tolerance and reducing decision risks Positive

Effectiveness of
decision-making C18

The impact of intelligent technology on improving the
effectiveness of decision-making plans Positive

Supervision
intelligence

A4

Regulatory timeliness
B8

Alert response time
C19

The impact of intelligent technology on reducing the
early warning response time of resource

allocation regulation
Opposite

Inspection time C20 The impact of intelligent technology on reducing the
inspection time of resource allocation supervision Opposite

Correction time C21 The impact of intelligent technology on reducing error
correction time for resource allocation supervision Opposite

Social benefit
B9

Social stability C22 The impact of intelligent technology on improving
social stability Positive

International image
C23

The impact of intelligent technology on improving a
country’s international image Positive

5.2. Evaluation Model of Essential Intelligent Technologies for ERA Based on Entropy
Value-TOPSIS Method

In this paper, medical practitioners, emergency resource managers, and intelligent
manufacturing-related researchers were selected to score the evaluation indexes of each
Intelligent Technology. The research subjects are from major cities in China, such as Beijing,
Harbin, and Wuhan. This selection aims to reduce individual experts’ subjectivity in
determining indicator weights and ensure the comprehensiveness and professionalism
of the evaluation results as much as possible. The scores are from 0 to 9, representing
the importance of the technology to the evaluation index from low to high. For the
reverse index, the higher the score, the lower the importance of the technology. We
distributed seven questionnaires, all of which were returned, and we obtained the original
evaluation data.

5.2.1. Entropy Power Method

The basic idea of assigning weights using the entropy method is to determine the
objective weights according to the magnitude of the variability of the indicators. If the
information entropy Ej of the indicator is small, its weight will be larger, indicating that the
indicator value plays a more significant role in the comprehensive evaluation. Experts are
susceptible to subjective factors such as experience, interest preference, and personal habits.
Combining the entropy method to assign the index weights can weaken the influence
of subjective factors to a certain extent. The evaluation data are normalized to obtain
the standardization matrix E =

{
Yij
}

, based on determining the specific indicators of
essential Intelligent Technology evaluation. Yij denotes the value of the jth index of the ith
technology after standardization. According to the information entropy to determine the
formula (Equation (1)):

Ej = − 1
ln n

n
∑

n=1
pij ln pij Ej ≥ 0

pij = Yij/
n
∑

i=1
Yij ,

(1)
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where if pij = 0, then lim
pn∼0

pij ln pij = 0 is defined. The weight of each indicator is then

calculated by the formula:

wi =
1− Ei

k−∑ Ei
(i = 1, 2, · · · , k), (2)

According to the formula, the information entropy and weight values of each essential
Intelligent Technology evaluation index are obtained (see Table 3).

Table 3. Information entropy and weight of essential Intelligent Technology evaluation index.

Index Entropy Weight (%)

C1 Occupancy of medical devices 0.903 4.16
C2 Waiting time savings 0.909 3.91
C3 Human resource savings 0.907 3.99
C4 Reaction time 0.926 3.20
C5 Consultation time 0.903 4.17
C6 Operational difficulty 0.912 3.77
C7 Cure rate 0.814 8.00
C8 Technology maturity 0.871 5.57
C9 Application breadth 0.896 4.50
C10 Additional services 0.920 3.44
C11 Time-cost savings 0.932 2.94
C12 Manpower cost savings 0.865 5.82
C13 Reduction of resource mismatch 0.853 6.32
C14 Managing information security 0.907 4.00
C15 Information transmission speed 0.914 3.69
C16 Decision duration 0.929 3.05
C17 Fault tolerance of decision-making 0.903 4.19
C18 Effectiveness of decision-making 0.869 5.62
C19 Alert response time 0.917 3.57
C20 Inspection time 0.926 3.19
C21 Correction time 0.907 4.00
C22 Social stability 0.865 5.82
C23 International image 0.929 3.07

From the calculation results, it can be concluded that the top five indicators in the
weight of the 23 indicators are: C7, C13, C12, C22, and C18. Intelligent Technology signifi-
cantly impacts the ERA for public health emergencies in these five aspects. Moreover, these
five indicators are mainly distributed in medical and decision-making intelligence, indicat-
ing that medical and management intelligence is essential for developing intelligent ERA.

5.2.2. Use TOPSIS Method to Identify Essential Intelligent Technologies

TOPSIS is an approaching ideal point ranking method that can rank a finite number of
evaluation objects according to their relative proximity to the ideal solution. The evaluation
object selected by this method should be as close as possible to the positive ideal solution
and as far as possible from the negative ideal solution. TOPSIS can fully use the original
data information to reflect each intelligent technology’s gaps accurately. It can rank the
degree of influence of Intelligent Technology on intelligent ERA. The research steps are
as follows:

(1) Create the original decision matrix A:

A =

x1
x2
...

xm

o1 o2 · · · on


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

...
xm1 xm2 · · · xmn


, (3)
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where xm is the mth intelligent technology, on is the nth evaluation index, and xmn is the
numerical result of the nth evaluation index of the mth intelligent technology.

(2) Normalize each numerical result by converting the decision matrix A into a canoni-
cal decision matrix E =

{
uij
}

, i.e.,

uij =
xij√
m
∑

i=1
x2

ij

, (4)

For the inverse indicators, the data are reversed before the normalization process in
order to ensure the consistency of the evaluation data.

(3) Construct a weighted decision matrix based on the index weights determined by
the entropy weighting method.

The weights w are assigned according to the degree of importance of each evaluation
attribute, and the formula is:

F =
(
Xij
)

m×n = w · F, (5)

The weighted decision matrix is obtained.
(4) Define the positive ideal solution as x+ and the negative ideal solution as x−, then

x+j , x−j are, respectively:

{
x+j = max

{
x1j, x2j, · · · xmj

}

x−j = min
{

x1j, x2j, · · · xmj
} (j = 1, 2, · · · n), (6)

The positive and negative ideal solutions for the 23 indicators are shown in Table 4.

Table 4. Ideal solution for evaluation indicators.

Index Positive Ideal Solution Negative Ideal Solution

C1 Occupancy of medical devices 0.016 0.008
C2 Waiting time savings 0.016 0.007
C3 Human resource savings 0.017 0.010
C4 Reaction time 0.012 0.008
C5 Consultation time 0.016 0.011
C6 Operational difficulty 0.014 0.009
C7 Cure rate 0.031 0.020
C8 Technology maturity 0.022 0.012
C9 Application breadth 0.018 0.011
C10 Additional services 0.013 0.008
C11 Time-cost savings 0.011 0.007
C12 Manpower cost savings 0.020 0.016
C13 Reduction of resource mismatch 0.027 0.013
C14 Managing information security 0.015 0.010
C15 Information transmission speed 0.014 0.010
C16 Decision duration 0.013 0.007
C17 Fault tolerance of
decision-making 0.018 0.008

C18 Effectiveness of decision-making 0.024 0.012
C19 Alert response time 0.014 0.008
C20 Inspection time 0.013 0.007
C21 Correction time 0.016 0.010
C22 Social stability 0.022 0.014
C23 International image 0.012 0.008
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(5) The Euclidean distances of each intelligent technique from the positive ideal
solution x+ and the negative ideal solution x− are defined as:

D+
i =

√√√√
n

∑
j=1

(
xij − x+j

)2
(i = 1, 2, · · · , m), (7)

D−i =

√√√√
n

∑
j=1

(
xij − x−j

)2
(i = 1, 2, · · · , m) (8)

(6) Calculate the relative closeness of each intelligent technique to the positive ideal
solution, which can be defined as:

ϕi =
D−i

D+
i + D−i

(i = 1, 2, · · · , m), (9)

ϕi ∈ [0, 1]. Moreover, the larger ϕi is, the more significant the contribution of its corre-
sponding Intelligent Technology to the intelligence of ERA in public health emergencies.

5.2.3. Experimental Results

(1) Based on the above experimental process, the evaluation results of essential in-
telligent technologies were obtained (see Table 5). The experimental results show that AI
technology significantly impacts the intelligent ERA for public health emergencies, with a
TOPSIS closeness of 0.766. They were followed by Big Data technology and expert systems,
with a TOPSIS closeness of 0.683 and 0.529, respectively. In contrast, wearable technology
has a negligible impact, with a TOPSIS closeness of 0.276.

Table 5. Evaluation Results of Essential Intelligent Technologies.

Intelligent Technology Di+ Di- TOPSIS Closeness ϕi Sort

AI 0.009 0.030 0.766 1
Internet 0.021 0.020 0.485 7
Information System 0.020 0.022 0.518 4
Information Technology 0.020 0.020 0.497 6
The Internet of Things 0.020 0.021 0.513 5
Big Data 0.013 0.027 0.683 2
Expert System 0.020 0.022 0.529 3
Intelligent Design 0.027 0.016 0.367 9
Wearable Technology 0.029 0.011 0.276 10
Machine Replacement Technology 0.026 0.017 0.405 8

The chart shows the experimental results (see Figure 4). AI and big data technology in
Intelligent Technology are the most critical. Moreover, the positive ideal solution closeness
of the expert system, Internet, information system, information technology, and IoT technol-
ogy is around 0.5, which are more critical and less different. Machines for human technology,
intelligent design, and wearable technology have a lower degree of positive ideal solution
closeness. They are less critical to intelligent ERA than other intelligent technologies.

(2) Combining the weight data in Tables 2 and 3, and further processing the experimen-
tal results resulted in Table 6. To compare the contributions of A1–A4 to the intelligence of
ERA, we obtain the weights of A1–A4 by adding the weights of the corresponding tertiary
indicators. However, the number of tertiary indicators corresponding to each primary
indicator differs. We average the weights of primary indicators to eliminate the impact
of the number of tertiary indicators on indicator weights. According to the calculation
results (see Table 6), it can be concluded that the average weight of A1 and A2 is higher. It
indicates that the relevant indicators of medical intelligence and management intelligence
significantly impact the intelligent ERA for public health emergencies.
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Table 6. Average Weight of Primary Indicators.

Primary
Indicators Medical Intelligence A1 Management Intelligence

A2
Decision-Making

Intelligence A3 Supervision Intelligence A4

Secondary
Indicators

Medical resource
savings B1 12.06 Management

cost savings B4 8.76 Decision-making
efficiency B6 6.74 Regulatory

timeliness B8 10.76

Use value B2 19.14 Management
effectiveness B5 10.32

Effects on
decision-making

B7
9.81 Social benefit

B9 8.89

Economic
benefits B3 13.51

Weight 44.71 19.08 16.55 19.65
Average
Weight 4.47 4.77 4.13 3.93

6. Conclusions

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.

6.1. Research Findings

With the development of the digital economy, intelligent technology, and the influ-
ence of the normalization of COVID-19 prevention and control, intelligence becomes the
future development direction of ERA for public health emergencies. Therefore, this pa-
per constructs an intelligent emergency resource allocation mechanism for public health
emergencies. It identifies the essential intelligent technologies affecting intellectual devel-
opment, and conducts an essential evaluation. Firstly, we determined essential intelligent
technologies’ evaluation indicators and weights through expert consultation and the en-
tropy weight method. Then, the TOPSIS method was used to evaluate the criticality of
Intelligent Technology in ERA. This method considers the distance between Intelligent
Technology and ideal points as the essential criterion. It combines objective analysis with
experts’ subjective judgments, which makes the evaluation results more scientific and
reliable. The main conclusions drawn from the study are as follows:

(1) ERA for public health emergencies is a multi-subject, multi-level super network-
system, and the demand and priority of emergency resources change with the devel-
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opment of the epidemic. This paper categorizes emergency resources into material,
human, information, and scientific and technological resources, and it focuses on the
role of information resources. Information resources meet resource needs in ERA for
public health emergencies while also playing the role of central control and auxiliary
supervision. Intelligent emergency resource allocation mechanism gives full play to
the characteristics of information resources. Based on establishing an information
platform for ERA, this paper uses Intelligent Technology to make each allocation
link intelligent, including medical intelligence, management intelligence, decision-
making intelligence, and supervision intelligence, in order to achieve efficient resource
allocation and cost savings.

(2) We conclude essential intelligent technologies through word frequency analysis of
research on ERA for public health emergencies. Intelligent technologies include AI,
the Internet, information systems, information technology, the Internet of Things,
big data technology, etc. These intelligent technologies all play an essential role in
developing intelligent ERA for public health emergencies.

(3) This study establishes an evaluation index system for the essential intelligent technolo-
gies of ERA in four aspects: medical intelligence, management intelligence, decision-
making intelligence, and supervision intelligence. We used the entropy weight and
TOPSIS methods to build the evaluation model for each intelligent technology. The
results show that the evaluation indexes with greater weights are in medical intel-
ligence and management intelligence. This indicates that medical intelligence and
management intelligence are the focus of developing ERA intelligence. Furthermore,
AI and big data technology have a significant key role in the ERA intelligence.

6.2. Key Research Insights

The development of intelligent technology has brought significant changes to ERA for
public health emergencies, providing new possibilities to improve efficiency and reduce the
cost of resource allocation. During the COVID-19 pandemic, the application of intelligent
technology has emerged, but there is still room for optimization. We focus on essential
intelligent technologies for ERA for public health emergencies. Therefore, our study
can also provide directions and suggestions for further research on the application of
intelligent technology in emergency resource management. We proposed the following
management insights:

(1) Pay attention to the role of information resources. Applying intelligent technology to
acquiring, screening, storing, processing, and transmitting information resources in
ERA is essential. This can help reduce the flow time of information resources and the
response time of management departments, speed up the interaction rate, and ensure
information security and timeliness. An information platform for ERA should be es-
tablished promptly during the prevention and treatment of public health emergencies.
All entities and levels should improve their information infrastructure and strengthen
the application of big data, information systems, and information technology, forming
a multi-level and regional information interconnection network crisscrossed verti-
cally and horizontally. The management department should fully utilize intelligent
devices for resource management and decision making. Intelligent decision making
can enable all departments to respond quickly to changes in the epidemic.

(2) Medical intelligence is the focus of ERA intelligence. Accelerating the process of
intelligence in medical institutions and building intelligent buildings can help alle-
viate the phenomenon of medical resource tension, medical equipment congestion,
and lack of medical personnel. Medical building intelligence is the introduction of
Intelligent Technology and facilities and the improvement of internal organizational
structure. The intelligence of medical buildings refers to the management style and
the intelligence of management personnel. It is necessary to popularize the concept
of competent healthcare, fully leverage the advantages of AI and logistics network
technology, and improve the efficiency of medical resource utilization.
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(3) The resource management department should strengthen the application of infor-
mation technology in intelligent resource management, and should use information
systems to simplify management processes. “Machines replace humans” can reduce
the labour-cost and block infection channels to the maximum extent. Departments
related to decision making should use AI and expert systems to make ERA deci-
sions, which can improve effectiveness and reduce the risks of decision making. The
government should establish a specialized supervisory agency and use information
technology to monitor the ERA process in real-time. This can ensure that resources
are allocated and emergency resource needs are met, it can avoid problems such as
information mismatch, allocation omission, or unfair allocation of resources.

Simultaneously conducting the intelligent allocation of emergency resources for public
health emergencies is needed as China possesses a high level of research and development
in intelligent technology. China’s vast territory and large population present both a dis-
advantage and an advantage when distributing emergency resources for public health
emergencies. The government should integrate the capabilities of scientific research institu-
tions, enterprises, the public, and other subjects, and should give full play to the advantages
of a large country. This can help to form an intelligent system of ERA that is suitable for
the conditions of China.

6.3. Boundedness and Future Works

The word frequency analysis method only considers the frequency of words appearing
in the text while ignoring the semantic and contextual information of the words. Words
with the same frequency may have different meanings in different contexts, and word
frequency analysis cannot capture this difference. Therefore, the essential intelligent
technology extracted solely through word frequency analysis technology cannot reflect the
importance of this technology, and so we further obtained the evaluation index system for
key intelligent technologies through the entropy weight TOPSIS method. We have obtained
the importance ranking of intelligent technologies through essential technology evaluation,
making the research results more comprehensive.

Based on existing research on public health emergencies, we identified essential
intelligent technologies for ERA using word frequency techniques, and we ranked their
importance. The importance ranking reflects the degree of attention paid by researchers
to each intelligent technology in ERA, which is somewhat subjective. The importance of
intelligent technologies in ERA will change as intelligent technologies are continuously
updated. Therefore, the essential intelligent technologies identified in this paper only apply
to the post-epidemic era and the development stage of the digital economy.

We propose an intelligent direction for ERA in public health emergencies. After
empirical research, we find that medical intelligence and management intelligence are the
keys to intelligence. Therefore, future works will focus on (1) the specific application of
key intelligent technologies in ERA, such as the study of medical building intelligence,
and (2) research on intelligent management processes, emergency resource allocation
mechanisms, etc.

Most of the research data in this article comes from China. The experience of ERA
adopted by China in epidemic prevention and control may have particular reference value,
but its applicability depends on the specific situation. There are several factors to consider
here. (1) Differences in countries and regions. Each country and region’s social, economic,
and healthcare systems have different characteristics. When applying China’s ERA experi-
ence to other countries and regions, it is necessary to consider particular local circumstances
and actual needs. (2) Types of public health emergencies. The research experience of this
paper focuses on the prevention and the control of COVID-19. If faced with other types of
public health emergencies, such as natural disasters, infectious diseases, etc., adjustments
and adaptations must be made according to the specific situation. (3) Policy and institu-
tional environment. China has taken strict measures and actions in epidemic prevention
and control, which involve government leadership, resource allocation, social cooperation,
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and other aspects. The policy and institutional environment of other countries and regions
may differ, so it is unsuitable to apply China’s experience directly elsewhere.

Nevertheless, China’s experience in epidemic prevention and control can provide
some helpful guidance and inspiration. Other countries and regions can learn from China’s
practices. However, they must adjust and customize according to the local environment
and needs. International cooperation and experience sharing can also promote countries
and regions to better respond to public health emergencies.
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Abstract: Background: This study describes the development of a system dynamics model to project
the potential impact of a series of proposed suicide prevention interventions in New South Wales
(NSW, Australia) over the period 2016 to 2031. Methods: A system dynamics model for the NSW
population aged ≥ 20 years which represented the current incidence of suicide and attempted suicide
in NSW was developed in partnership with a consortium of stakeholders, subject matter experts, and
consumers with lived experience. Scenarios relating to current suicide prevention initiatives were
investigated to identify the combination of interventions associated with the largest reductions in the
projected number of attempted suicide and suicide cases for a 5-year follow-up period (2019–2023).
Results: The largest proportion of cases averted for both suicide and attempted suicide over the
intervention period was associated with community-based suicide prevention outreach teams and
peer-led drop-in facilities (6.8% for attempted suicide, 6.4% for suicide). A similar proportion of
potential cases averted of both attempted suicide and suicide (6.4%) was evident for targeted inter-
ventions focusing only on those in the population with suicidal thoughts and a previous history of
attempted suicide. Conclusion: Initiatives that are characterised by the short-term stabilisation of
suicidal distress at the point of crisis, averting the need for a hospital encounter, and the referral of
individuals to non-acute community-based care were associated with the largest potential reductions
in suicidal behaviour in NSW.

Keywords: suicide prevention; suicide; self-harm; systems modelling; simulation

1. Introduction

Suicide and self-harm are major public health issues worldwide. Suicide is the leading
cause of death among Australians aged 15–44 years. In 2019, over 3318 people died by
suicide in Australia, 29% of which were from New South Wales (NSW), Australia’s most
populous state [1,2]. Despite consistent efforts to reduce suicide in Australia, the suicide
rate has remained relatively stable over the last two decades, with evidence of a recent
increase [3].

Within Australia, there has been growing attention to and investment in suicide
prevention. The Prime Minister’s National Suicide Prevention Advisor has led a new focus
on a whole-of-government approach for suicide prevention to comprehensively address
the social, economic, health, cultural, and environmental factors contributing to suicide
risk in the population [4]. Within NSW, targeted suicide prevention investments have been
made in order to reach the goal of a 20 per cent reduction in the rate of suicide [5]. As
part of this initiative, vulnerable populations including rural communities and those who

112



Systems 2023, 11, 275

have previously self-harmed and/or are in suicidal crisis have been identified as priority
populations for intervention.

Suicide prevention strategies for priority populations are typically classified as selec-
tive interventions or indicated interventions. Selective interventions are directed towards
individuals who are at greater risk for suicidal behaviour and may include training frontline
workers and gatekeepers for the early detection of suicide risk or tailored psychosocial or
peer support [6]. Indicated interventions are targeted towards individuals who are already
displaying signs of suicidal behaviour. These interventions are more timely and assertive in
managing suicide risk through active follow-up, often referred to as “aftercare” following
a suicide attempt. Aftercare typically includes case management, referral to psychiatric
treatment, psychosocial support, and skill-building exercises [6].

Evidence for selective and indicated interventions is still emerging. Existing data
suggest that psychosocial treatment and management and aftercare interventions are
effective in reducing suicidal behaviour [7–9]. There is also a growing body of evidence
showing that gatekeeper training could prevent suicides [8,10]. More recently, peer support
groups led by people with lived experience have also emerged as an alternative non-
clinical strategy for suicide prevention; however, evidence to date on their effectiveness is
limited [11]. Collectively, a “systems approach” to suicide prevention, one that delivers a
combination of evidence-based interventions simultaneously, spanning the spectrum of
prevention, is recognised internationally as having the best chance to reduce population
suicide rates [12,13]. However, measuring the impact of multiple interventions over time
and in varying contexts presents a challenge, and identifying which interventions have the
most impact is also difficult.

System dynamics modelling has recently emerged as one means of addressing the
complexities of evaluating multi-component public health interventions, particularly with
respect to suicide prevention [14,15], and it provides policymakers with decision support
tools to consider the likely impacts of interventions within complex social and health
systems. Using the best available evidence, system dynamics modelling allows for an
assessment of the potential impacts of different interventions at a population level, and
for the identification of those interventions likely to have the greatest impact in reducing
suicidal behaviour [15]. Unlike traditional analytic approaches that are typically static
and independent, systems modelling can identify drivers of population-level outcomes,
including changes in service interactions, workforce capacity, and the combined effects of
multiple interventions [14].

Accordingly, using population-based data for NSW, we developed a system dynamics
model to project the impact of a series of suicide prevention interventions on suicidal
behaviour in NSW in order to assist policy decision making. Specifically, the objectives of
this study were to: (1) identify suicide prevention activities likely to deliver the greatest
reductions in self-harm hospitalisations and suicide deaths for NSW and (2) identify system-
level factors driving population-level changes in suicide and self-harm outcomes following
the implementation of suicide prevention interventions.

2. Methods
2.1. Study Context

New South Wales is the most populous state in Australia, with a population of
8,072,163 according to the 2021 Census, and represents approximately one third of the
Australian population [16]. In 2017, the age-standardised rate of suicide in NSW was
10.6 per 100,000, and 76.8 per 100,000 for hospital-treated self-harm [17]. These rates are
below national rates, which, in 2021, were 12.0 per 100,000 for suicide and 116.3 per 100,000
for hospital-treated self-harm [17]. Targeted suicide prevention investments have been
made in NSW [5,18], and the current study focuses on a selection of these initiatives and
related investments, as outlined in detail below.
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2.2. Model Development

A participatory approach was adopted to develop the dynamic simulation model
iteratively in partnership with NSW Health and in collaboration with a consortium of
stakeholders with knowledge of or experience with suicide and/or suicide prevention in
the local context. The consortium consisted of government and non-government health
service providers, health policy agencies, academics, and consumers with lived experience.
A core team with expertise in dynamic modelling, systems thinking, and research facilitated
and provided oversight of model development. This process was informed by published re-
search, administrative data, two participatory online workshops, out-of-session stakeholder
consultations, and two demonstration forums held between October 2020 and June 2021.

Two online workshops were held via Zoom using Group Model Building
techniques [19–22] adapted for the online environment with the use of a cloud-based
visual collaboration platform (https://miro.com/ accessed on 25 September 2020). The first
workshop (held over two days in October 2020) introduced the consortium of stakeholders
to system dynamics modelling methodology and included the conceptual mapping of and
collaborative discussion on the population-level factors contributing to the increasing rate
of suicide over time. The stages of the lived experience of suicide were identified and
mapped, noting critical points of potential intervention in preventing suicidal thinking
and suicide attempt and re-attempt. Stakeholders mapped key existing suicide and mental
health services and support pathways available in NSW and factors influencing the flow of
the population along these pathways, and considered gaps and limitations in the system.

The second online workshop (held over two days in February 2021) focused on partic-
ipants’ feedback on the model structures included in a first draft of the conceptual model,
and they hypothesised effects of the selected suicide prevention initiatives in the system
(Table 1, and as described below). A conceptual diagram based on these participatory
mapping exercises and discussions undertaken by the consortium of stakeholders was sub-
sequently developed (Supplementary Figure S1), with model sub-sectors relating to “Stages
of Suicidal Behaviour” (Supplementary Figure S2a), “Non-acute Community Support”
(Supplementary Figure S2b), and “Crisis and Acute Care” (Supplementary Figure S2c).

Table 1. Suicide prevention interventions included in the system dynamics model.

Intervention Description

Early identification and intervention

Community-based suicide prevention
outreach teams

A service provided in a community-based setting using clinical and non-clinical models of
care. Mobile teams made accessible to people in suicidal crisis who would not usually
contact mental health services for help. The primary purpose is the stabilisation of
individuals experiencing suicidal crisis and provision of onward referral to
suicide-specific community-based care.

Peer-led drop-in facilities

Peer-led drop-in facilities based in the community in proximity to emergency departments
to provide a non-clinical alternative to presenting to an emergency department for people
experiencing suicidal crisis. The facilities to be staffed by peer workers with lived
experience of suicide and/or self-harm and supported by mental health clinicians. The
service to include crisis risk assessment/screening, psychosocial support, and safety
planning for suicidal behaviours to aid de-escalation and recovery.

Gatekeeper training
Provision of evidence-based suicide prevention training in the NSW community to
increase the number of key community members with the skills and confidence to safely
speak with and support individuals at increased risk of suicidal ideation and behaviour.

Post-attempt indicated intervention

Post-suicide attempt aftercare support

Immediate and assertive follow-up with individuals discharged from hospital to increase
access to and engagement with community-based treatment services to prevent repetition
of suicidal behaviour. To include the provision of safety planning, non-clinical
psychosocial support and encouragement to adhere to treatment, and problem-solving
counselling with links to practical support including housing, finances, relationships. The
average duration of support is assumed to be 3 months post-discharge.
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Table 1. Cont.

Intervention Description

Peer support groups

Provision of appropriate peer-facilitated support for people experiencing suicidal ideation
and/or for people who have attempted suicide. Encourages empathetic talking about
suicide combined with exploring alternative coping strategies, facilitated by people with
lived experience of suicide.

Selective mental health intervention

Expansion of clinical counselling
workforce in rural communities

Expansion of clinical counselling workforce in rural and remote NSW that would provide
wider access to appropriate psychological and emotional support for people at high risk
of suicidality (suicidal thoughts and behaviours) in regional areas.

2.3. Model Structure

The construction, quantification, calibration, and validation of the computational
model (main structure in Figure 1; see Supplementary Materials for further detail) was
undertaken using standard approaches for system dynamics models [19,23–27], and de-
veloped using Stella Architect® software (version 2.1.1) (www.iseesystems.com/ accessed
on 27 November 2020). The system dynamics model was initialised using 2016 local
administrative data and model time units are in years, and projects to 2031.

Figure 1. Main model structure representing stages of suicidal thoughts and behaviour.

The model consists of the following interacting components: (a) population dynamics;
(b) stages of suicidal thoughts and behaviour (including incidence of suicidal thoughts,
suicidal crisis, suicide attempt, and suicide); (c) crisis and acute care (including occurrences
of acute formal stabilisation and/or social support); (d) non-acute community support
and service access (including occurrences of non-acute community-based care and service
access); (e) non-acute community support and service effects (relating to the probability of
transition to remission from suicidal thoughts, given service access and ability of service to
meet consumer’s perceived needs); and (f) initiatives and scenarios (further detail on each
of the core components is provided in Supplementary Materials).
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Parameter values for the model were informed by published research, local admin-
istrative data, and expert consensus (Supplementary Table S1). The model is based on
the population of NSW aged ≥ 20-years, and the model validity was tested by comparing
outputs from 2016 to 2021 with trends in routinely reported suicide deaths and hospital pre-
sentations for suicide attempt/non-fatal suicide behaviour in NSW (obtained from the NSW
Suicide Monitoring System death data, NSW Combined Admitted Patient Epidemiology
Data, and ABS population estimates).

The model also allowed for time to scale up to achieve targets for intervention up-
take and population reach. Due to the limited evidence base for some of the proposed
intervention activities, services, and programmes, the model incorporated the ability to
change intervention parameters to reflect new evidence on the effectiveness of specific
interventions in the future. Thus, the final model allows for “what-if” analyses of the
potential impact of combinations of key suicide prevention interventions to inform priority
areas for future investment and public health programmes.

2.4. Suicide Prevention Interventions Modelled

Six identified interventions were included in the model (Table 1). These interventions
were: (i) post-suicide attempt aftercare support, (ii) gatekeeper training, (iii) peer-led
drop-in facilities, (iv) expansion of clinical counselling workforce in rural communities,
(v) community-based suicide-prevention outreach teams, and (vi) broader enhancements in
peer support and peer-led initiatives. Interventions were identified on the basis of current
policy priorities identified by stakeholders during the participatory design phase of the
model, and related to suicide prevention initiatives that are currently being implemented
as part of the “Towards Zero Suicide” initiatives [18] and other population-based multi-
component interventions, such as the Lifespan initiative [28] and the National Suicide
Prevention Trial [29,30]. All interventions were simulated for the period of calendar year
2019 to 2023 (inclusive), in line with an evaluation time frame of the NSW Towards Zero
Suicides Initiative [18], and then onto 2031. Effects of interventions were assessed as
differences between outcomes from simulated scenarios (i.e., one initiative or combinations
of initiatives were run) and a “business as usual” comparator. Descriptions, default values,
and assumptions for the base-case are further detailed in the Supplementary Materials.

3. Results
3.1. Baseline Estimates of Suicide and Attempted Suicide

Between 2019 and 2023, under a “business-as-usual” baseline scenario, the model
projected that the number of people in NSW who attempted suicide was expected to
increase by 13% to approximately 32,300 over the 5-year period, and it projected the
number of people who died by suicide to increase by 11%, to approximately 930 persons
per annum. Over the same time period, the model projected an 11.8% increase in annual
suicide-related hospital encounters, and a 10.6% increase in the annual number of people
engaged in community-based care due to suicidality. The projections for suicide equate to
a projected age-standardised rate of 12.1 per 100,000 people for suicide-related deaths in
NSW at the end of 2023. At the same rate over 10 years, 2019–2030, the model projected
that the cumulative number of suicide-related deaths would be 11,520, a 29% increase in
annual suicide attempts, and 25% increase in annual suicide-related deaths.

3.2. Impact of Targeted Interventions

The potential impact of early and indicated interventions suggested that 6.3% of cases
of attempted suicide and 6.8% of cases of suicide could be averted (Table 2). The largest
potential contributions of individual interventions were for community-based suicide
prevention outreach teams and peer-leddrop-in facilities, for both attempted suicide and
suicide (Table 2). A similar number of potential cases averted for both attempted suicide
and suicide (6.4%) was evident for targeted interventions focusing on only those in the
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population with suicidal thoughts and a previous history of attempted suicide (Table 2,
Figures 2 and 3).

Table 2. Modelled cumulative cases of averted suicide and attempted suicide from 2019 to 2023.

Suicide Attempts Suicides

Cumulative
Cases

Cases
Averted % Reduction Cumulative

Cases
Cases

Averted % Reduction

Early identification and intervention
Base run 148,831 4354
Suicide prevention outreach teams 144,960 3871 2.6 4230 124 2.8
Peer-led drop-in facilities 144,344 4488 3.0 4212 142 3.3
Gatekeeper training 148,530 301 0.2 4348 6 0.1

Post-attempt indicated interventions
Expanding aftercare 148,462 370 0.2 4346 8 0.2
Expanding peer support 148,249 582 0.4 4338 16 0.4
Expanding rural counsellors 148,196 636 0.4 4337 17 0.4
Aftercare and expanding rural counsellors 148,103 729 0.5 4332 22 0.5
Early and indicated interventions combined 139,504 9327 6.3 4059 295 6.8

Targeted interventions for people with suicidal thoughts (a)
No history of suicide attempts (b) 145,539 3293 2.2 4268 86 2.0
No history of suicide attempts (c) 147,790 1041 0.7 4310 44 1.0
Previous suicide attempt (last 12 months) 141,148 7683 5.2 4096 258 5.9
Previous suicide attempt 139,273 9558 6.4 4077 277 6.4

(a) Targeting people with suicidal thoughts with suicide prevention outreach and peer-led drop-in facilities. (b) For
index year of suicidal thoughts. (c) For non-index year of suicidal thoughts.

Figure 2. Modelled impact of targeted suicide prevention interventions on NSW suicide attempts
(2019–2023) for (A) the general population, and (B) those with suicidal thoughts. See Table 1 for
description of suicide prevention interventions included in this figure.
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Figure 3. Modelled impact of targeted suicide prevention interventions on NSW suicide (2019–2023)
for (A) the general population, and (B) those with suicidal thoughts. See Table 1 for description of
suicide prevention interventions included in this figure.

If a target of a 20% reduction in suicide-related deaths is used for the NSW popu-
lation aged ≥ 20 years, then the model projects that these initiatives would contribute
48% toward this reduction (an equivalent rate per 100,000 of 12.7 by 2023). In combina-
tion, these two interventions would also divert approximately 8.7% of individuals away
from hospital encounters, and an additional 1.3% of individuals would be referred to
non-acute community-based care (compared to the business-as-usual scenario over the
five-year period).

4. Discussion

This study describes the co-design, development, and application of a system dynam-
ics model that aims to inform the optimal combination of suicide prevention activity in New
South Wales (Australia). Of the range of initiatives included in the model, the two initiatives
projected to be the most effective at preventing suicide-related deaths and suicide attempts
were community-based suicide prevention outreach teams and peer-led drop-in facilities.
Community-based outreach was estimated to avert 2.6% of attempted suicides and 2.8%
of suicides over the 5-year projection period. Peer-led drop-in facilities were estimated to
avert 3.0% of attempted suicides and 3.3% of suicides over the 5-year projection period.
Both these types of initiatives are characterised by the short-term stabilisation of suicidal
distress at the point of crisis, averting the need for a hospital encounter and the referral of
individuals to non-acute community-based care. The combined potential effect of all early
and indicated interventions was estimated to avert ~6% of attempted suicides and ~7% of
suicides over the intervention period.

Importantly, model findings also suggest that while greater short-term reductions in
suicide-related deaths were demonstrated when interventions target individuals at high
risk of experiencing a suicide re-attempt (i.e., post-suicide aftercare support), this will be
at the expense of potential longer-term reductions in suicide that could be achieved by
targeting interventions towards individuals who have yet to experience a suicide attempt,
particularly those in the index year of experiencing suicidal thoughts. The implication of
this finding is that modifying intermediary risk factors associated with subsequent suicidal
behaviour (psychological distress, mental disorder, and social and economic stressors)
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among those in the general community may be an additional strategy for early intervention
to prevent hospital-treated self-harm and suicide.

There are a number of limitations for consideration when interpreting the findings
of this paper. Firstly, the system dynamics model described in the current study models
populations in aggregate and is limited in providing insights into individual-level impacts,
or for specific population subgroups. The model captures population and behavioural
dynamics that impact mental health service capacity, and the uptake and scaling of suicide
prevention activity. However, agent-based models are better placed to capture complex
individual-level behaviours and sociodemographic characteristics [31]. A system dynamics
modelling approach is perhaps more appropriate in the current context, given the need for
policymakers to understand the likely population-level impacts of proposed interventions
to prevent suicide, and the need for timely insights for responsive decision making.

Secondly, there is potential measurement bias in the secondary data used to parame-
terise the model, and the extent to which estimates identified from the literature, or sourced
from other populations, may be generalisable to the NSW context. Population-based data
relating to mental health services (such as hospitalisations, workforce information, and
service capacity), population-level psychological distress, and suicidal behaviour (suicide
and hospital-treated intentional self-harm) were based on routinely collected datasets. It is
acknowledged that there is potential under-enumeration of suicide and attempted suicide,
due to misclassification (for events of “undetermined intent”), and attempted suicides
represent only those cases that present to services (and not the total population burden
associated with suicidal behaviour). Some estimates for parameters were not available
from secondary datasets, and in these instances, a combination of estimation and stake-
holder consensus was used to establish parameter values. Additionally, the model interface
incorporated a series of “sliders” for a selection of parameters to allow for stakeholders to
investigate the impact of alternative assumptions for parameters on the model projections
of suicide and attempted suicide.

Thirdly, the model considered a limited set of interventions and scenarios. Selected in-
terventions were based on stakeholder priorities in the context of current prominent suicide
prevention initiatives such as the NSW Health Towards Zero Suicide initiatives [18], and re-
lated initiatives relating to population-level multi-component interventions [28–30]. Other
potentially relevant interventions, for example, relating to social determinants associated
with suicidal behaviour [32] and the provision of psychosocial or economic interventions to
modify intermediary risk factors [33], may also be important for consideration. Alternative
scenarios and combinations of interventions may result in a different set of findings.

Fourthly, the model was developed for the NSW population, which may affect the
generalisability of the findings. However, while the model was developed for a specific
population, the insights are based upon generically framed suicide prevention initiatives
that are not based on a specific prescribed approach to design, implementation, and
resourcing. The findings are likely applicable to other high-income country contexts with
a similar epidemiology of suicide, and where there are coordinated aftercare strategies
that are planned for those at suicidal risk in publicly funded health systems that provide
(nominally) universal healthcare.

A key strength of the modelling approach in the current study was the quantitative
approach to capture the complexity of suicidal behaviour and the mental health system, in
combination with the participatory approach that involved stakeholders and subject matter
experts in mapping the underlying structure of the system, and in the critical appraisal of
model inputs. This is distinct from the more qualitative, non-evidence-based approaches
that can sometimes be associated with the prioritisation of suicide prevention policies
and interventions.

This study suggests that the combination of community-based suicide prevention
outreach teams and peer-led drop-in facilities was associated with the greatest potential
reductions in both suicides and attempted suicides over the selected 5-year intervention
period. However, model findings also suggest that while short-term reductions in suicide
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can be achieved by focusing on individuals at high risk of experiencing a suicide re-attempt
(that is, via aftercare support services), this will be at the expense of potential longer-term
reductions in suicide that could be achieved by targeting interventions towards individuals
who have yet to experience a suicide attempt. These findings emphasise the immediate
and longer-term benefits of targeting early intervention among individuals who may be
experiencing psychological distress in the general community, as well as those at higher
risk, in order to achieve the greatest reductions in suicides and attempted suicides and
optimise mental health services for the NSW population.
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Abstract: Substance use behavior among youth is a complex peer-group phenomenon shaped by
many factors. Peer influence, easily accessible prescription opioids, and a youth’s socio-cultural
environment play recognized roles in the initiation and persistence of youth nonmedical prescription
opioid use. By altering the physical surroundings and social environment of youth, in-person school
closures may change risk factors for youth drug use. Acknowledging past research on the importance
of the presence of peers in youth substance use risk behavior, this paper reports the findings from the
use of an agent-based simulation grounded in social impact theory to investigate possible impacts of
in-person school closures due to COVID-19 on the prevalence of nonmedical prescription opioid use
among youth. The presented model integrates data from the Ontario Student Drug Use and Health
Survey and characterizes the accessibility of within-home prescription opioids. Under the status
quo, the lifting of in-person school closures reliably entails an increase in the prevalence of youth
with nonmedical prescription opioid use, but this effect is ameliorated if the prescription opioids are
securely stored during the in-person school closures period.

Keywords: agent-based modeling; social impact theory; cellular automata; youth; nonmedical
prescription opioid use; in-person school closures; COVID-19-related public health order

1. Introduction

Youth are among the high-risk population for substance use behaviors [1,2]. Substance
use behavior among youth is a complex phenomenon and involves diverse influential
factors including the socio-cultural environment [3,4], substance-using peers, and personal
network characteristics [5–7]. Some youth initiate drug use because of friends and continue
it to fit in with their social network and environment. Such initiation is of particular signifi-
cance in that many adults have initiated substance use during their teen and young adult
years [8,9]. With growing appreciation for the impact of peers, families, and communities
on youth substance use, schools are also recognized as important social environments
affecting student knowledge, attitudes, and behavior toward substance use [10].

One of the initial actions taken during the COVID-19 pandemic to lower mortality and
avoid unsustainable acute care service utilization was the implementation of public health
orders that frequently included partial or full in-person school closures, and sometimes
encouraged families to minimize socialization and remain at home where possible [11]. In
Ontario, the first school closure was announced on 12 March 2020, in effect from 14 March
2020, and continued with several gradual and staggered reopening and closures throughout
the course of the following two years, as shown in Figure 1 [12]. Finally, Ontario schools
reopened for in-person learning on 17 January 2022 [13].

The presence of youth at home during in-person school closures may have positive
and negative implications for their mental health and propensity to use substances. While
a lack of in-person contact with classmates and instructors is likely to produce elevated
anxiety, boredom, and discontent in some young people, others may have welcomed less

123



Systems 2023, 11, 72

stressful peer interaction and a temporary decline in bullying and other forms of unpleas-
ant experiences associated with in-person learning [14]. Among youth, the adoption of
unhealthy coping mechanisms, such as substance use, as a result of pandemic-related stress,
are of particular concern, since they are less likely to consider the negative consequences of
their action [15]. The increased risk of opioid use among youth could result from elevated
accessibility of prescription opioids due to unsafe medication storage practices by family
members at home [16–18], witnessing elevated parental nonmedical prescription opioid
use [19], and increased alcohol and cannabis consumption among youth during the pan-
demic [20–22]. Such regularities and the prospects of requiring in-person school closures as
part of future public health orders suggest the importance of understanding the impact of
in-person school closures on substance use among young Canadians during and after the
COVID-19 pandemic.
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There is a body of research applying social network analysis to secure insights into
substance use behavior among youth [23–25]. Although social network analysis can offer
enormous insights into the social context of and influence on the use of drugs, reducing
an individual to a node in a network limits the integration of personal characteristics [26].
While incorporating such representation of network structures, an agent-based modeling
approach can more deeply analyze individual affiliative structures in the context of evolving
and actively interacting agents with varying characteristics [27,28].

To explore fundamental elements of substance use among youth, different agent-based
models have been built [29–36]. These models highlight the use of the computational mod-
eling method as a possible way to explore the complex concept of substance use amongst
youth. One little-explored approach to study the possible association between social in-
fluence and substance use amongst youth is through opinion dynamics computational
models. Opinion dynamics computational models can highlight mechanisms underlying
the convergence of behaviors and theoretical implications for imitator behaviors. There
is a substantial body of literature on opinion dynamics models, with model formulations
having been contributed from domains as varied as social psychology, statistical physics,
mathematics, and computer science. These varying angles of contributions have led to
a vast and diverse body of research [37–39]. Despite the breadth of past applications of
opinion dynamics models, there are few computational modelling studies that employ the
opinion dynamics model to study addictive behaviors [40,41], and none of them devote
particular attention towards how in-person school closures may affect youth nonmedical
prescription opioid use.

Broadly, opinion formation models can be categorized into discrete and continuous
models. Discrete models permit an agent to hold one of a finite set of opinions, whereas
continuous models allow for a real-valued opinion [38]. Below, we informally characterize
eight prominent subgroups in the opinion dynamics models within the literature [37],
recognizing that the taxonomy employed here is not a canonical one and that other forms
of classification of opinion dynamics models can be seen within the literature [38].

One of the earliest dichotomous discrete opinion dynamics models to simulate how
people’s attitudes evolve over time is the voter model. Each individual inside an arbitrary
network is selected randomly and adopts the state of a randomly chosen neighbor. Arrival
at a consensus is the main feature of the voter model [42]. Many variants of the voter
model have been examined, including a nonlinear formulation [43], alternative starting
network configurations [44], the impacts of “zealots” carrying invariant beliefs [45], and
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those reflecting various co-evolutionary principles [46]. A second discrete model of opinion
dynamics —the majority rule model—considers a set of agents who have discrete opinions
and selects alternatives that enjoy majority support [47,48]. Third, the Sznajd model
provides a discrete model of opinion dynamics and implements a rule in which a pair of
neighbors is randomly chosen to change their nearest neighbor’s opinion; if that pair of
close neighbors agree, their nearest neighbors will eventually agree. By contrast, if the pair
disagree, the opinion of the nearest neighbors remains unchanged, with no common opinion
developing among their nearest neighbors [49–51]. Fourth, the bounded confidence model
was developed by Deffaunt et al. and consists of a stochastic model for the evolution of
continuous-valued opinions within a finite group of peers [52]. Fifth, the relative agreement
model is a variant of the bounded confidence model that uses individual uncertainty as
the criterion for deciding whether two agents can interact; uncertainty, as well as opinion,
can be modified by interactions within this model [53]. Sixth, the continuous opinions
and discrete actions model describes a situation in which agents hold real-valued opinions
yet may only express themselves in discrete terms [54]. Seventh, the social judgment-
based opinion model shares certain features with the continuous opinions and discrete
actions model with two alternative structures: one in which agents can express their
opinion as a real number and another in which they are restricted to one of a set of discrete
possibilities [55,56]. A final class of opinion dynamics models are those employing the
social impact theory model, which offers a discrete model of opinion dynamics based on
social impact theory in psychology [57]. Social impact theory associates each agent with
three variables—a level of persuasiveness, a level of supportiveness, and a binary opinion.
The model further presents a set of formulae to characterize the total impact on each agent
based on the number, strength, and immediacy of its neighbors [58]. This work employs
this final class of opinion dynamics models as an established theory of clear relevance to
study the impact on youth drug use of direct (in-person) peer influences at school and
indirect perceived norms from the socio-cultural environment.

The COVID-19 pandemic has had a profound impact on the lives of people around
the world, including youth. In particular, the closure of in-person schools has raised
questions about the potential impact on nonmedical prescription opioid use among youth.
The current study centers on the question of how in-person school closures during and
after the COVID-19 pandemic affect nonmedical prescription opioid use among youth,
and what measures can be taken to alleviate any potential risks or improve the situation.
The findings of this research can be utilized to develop policies and interventions aimed
at decreasing the risk of nonmedical prescription opioid use among youth during and
after in-person school closures. This study is one of the first to investigate the impact of
in-person school closures on nonmedical prescription opioid use among youth during
and after the COVID-19 pandemic in Canada. To support this investigation, this work
employed an agent-based model formulated based on the social impact model of opinion
formation [59,60], and was calibrated to reflect data from the Ontario Student Drug Use
and Health Survey (OSDUHS) [61,62].

The remainder of this paper is organized as follows: Section 2 describes the model, in-
cluding the agent-based formulation and the social impact theory implementation, cellular
automata spatial structure, and the experimental design. Section 3 elucidates the results.
Section 4 includes the corresponding discussion and concludes the paper.

2. Materials and Methods

Within this work, the influences of peers, families, and socio-cultural environment on
nonmedical prescription opioid use among youth are investigated using an agent-based
model (ABM) operating within a spatial grid-based network structure in accordance with
cellular automata (CA) principles. The data on the prevalence of nonmedical prescription
opioid use among youth, as well as the frequency and sources of use reported in the Ontario
Student Drug Use and Health Survey (OSDUHS) [61,62], were used to parameterize and
calibrate the ABM. The selection of the most appropriate agent-based modeling toolkit
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for this project was based on a variety of factors, including the programming experience
and abilities of the individuals involved, the activity of the toolkit’s community and the
availability of specialized resources, the scalability and adaptability of the platform, and the
built-in visualization options. Two separate reports [63,64] evaluated various agent-based
modeling toolkits against different criteria and offered recommendations based on specific
needs. For this study, the model was created using simulation software AnyLogic Version
8.8.1 [65] and the model was run for a time horizon from 2017 to 2025.

The design of the agent-based model drew on the social impact model of opinion
formation [59,60]. The agent-based model was created, parameterized, calibrated, and
used to investigate the prevalence of nonmedical prescription opioid use among youth,
their prescription opioids resources, and the frequency of nonmedical prescription opioid
use within the past year when varying peer influence, youth exposure to prescription
opioids at home, and the influence of the socio-cultural environment. To support this
investigation, the peer network context, families, and the socio-cultural environment
shaping nonmedical prescription opioid use in youth were captured within a three-level
CA context (corresponding to peers, families, and the socio-cultural environment), where
each youth’s nonmedical prescription opioid use evolved according to the social impact
theory of opinion formation.

2.1. Agent-Based Modeling

The use of agent-based modeling in this study supports the analysis of changes in the
prevalence of nonmedical prescription opioid use among youth and the characterization
of the effects of their peers, families, and socio-cultural environment. Hence, the model
features three type of agents: youth, family, and socio-cultural environment. Youth behavior
is governed by three different state charts depicted in Figure 2. These state charts collectively
characterize the possible state-space for a single youth and the events that lead to transitions
from one state to another.

The logic for transitions between states within the Youth Drug Use Opinion Evidence
state chart was informed by social impact theory. At the topmost level, the Youth Drug Use
state chart characterizes whether the individual currently uses nonmedical prescription
opioids. Youth who are not currently using nonmedical prescription opioids are divided
into two groups: youth who have never used nonmedical prescription opioids and youth
who previously used but have since quit by electing not to use nonmedical prescription
opioids when the opportunity arose. Youth who currently use nonmedical prescription
opioids are also divided into two groups: youth who are within their initial period of
nonmedical prescription opioids use and youth who relapsed after previously quitting.

The Frequency of Drug Use in the past year state chart represents the number of times
that youth used nonmedical prescription opioids during the past year, and it is updated as
time passes and as youth use nonmedical prescription opioids.

The Drug Sources state chart depicts two important sources for the most recent pre-
scription opioids use for youth: family and friends. Youth are considered to have a possible
opportunity to obtain opioids from family when their family includes at least one person
with an opioid prescription. In the absence of a family source, youth can seek available
prescription opioids amongst their close friends (considered to be those within their range
1 Moore neighborhood; see below); based on a probability, youth can obtain prescrip-
tion opioids from friends who are themselves nonmedical prescription opioid users. The
unspecified state reflects other sources of opioids.

Each youth is associated with a family, as represented by a family agent. Each such
family agent has a family size parameter, which is drawn from a Poisson distribution to
represent the empirical data that the average family size in Canada was 2.9 in 2019 [66]. The
probability of filling an opioid prescription per week for each family member previously
without an opioid prescription and the per week probability of ending opioid prescription
treatment for each family member with prescription opioids are calibrated to represent the
12.7% of Canadians who reported having used opioids pain relief medications in 2018 [67].
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If a member of any family has been prescribed an opioid, a child in the family might be
exposed to prescription opioids, with the level of exposure differing between families. The
child exposure to opioids parameter is calibrated to represent the 49.3% of Ontario youth
who reported using nonmedical prescription opioids, obtaining them from a parent, sibling,
or someone else with whom they live [61,62].
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The socio-cultural environment for contemporary youth is made up of neighbor-
hoods, recreation areas, social events, and other forces that affect a youth’s basic values,
perceptions, and preferences. Within the model, a socio-cultural environment agent is
implemented to reflect the idea that youth prescription opioid use is particularly high in
some specific demographics [68]. Part of the socio-cultural environment within the model
is therefore assumed to have some degree of bearing on the valence of a youth’s attitude
towards drug use.

2.2. Cellular Automata for Spatially Localized Networks

This model uses a three-level spatial grid-based network structure to capture the
social context of each youth. All youth are randomly and injectively placed into individual
cells (patches) in the cellular automata located in the global environment. The three-level
grid containing the youth, family, and socio-cultural environment is a square containing
100 columns and 100 rows. Each patch corresponds to the youth at CA level one (as
depicted in Figure 3a), the youth’s family at CA level two (as depicted in Figure 3b), and
the youth’s socio-cultural environment at CA level three (as depicted in Figure 3c).
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Figure 3. Three-level cellular automata—(a) Each patch presents a youth. Colors distinguish youth
who are absent nonmedical prescription opioid use experience in the past year (yellow) and with
nonmedical prescription opioid use experience in that interval (red). (b) Each patch represents family.
Corresponding colors for a family with at least one member with current prescribed opioids and
family without any prescribed opioids are pink and ivory, respectively. (c) Socio-cultural environment,
in which the black areas represent a positive perspective toward drug use and gradations towards
white represent successively more negative attitudes towards drug use.

This implantation provides a spatially explicit, grid-based network structure for the
youth, who remain immobile throughout the simulation. The lack of spatial mobility
reflects the fact that many youths exhibited high conservation in their social networks and
interaction patterns during and immediately after the pandemic, partly because of the fact
that such networks reflect the composition of the family and socio-cultural environment
in which the youth is nested [69]. Social network density for youth and their peers at CA
level one is operationalized by considering Moore neighborhoods with different diameters
(ranges) as shown in Figure 4.

2.3. Social Impact Model of Opinion Formation

The model characterizes how youths’ nonmedical use of prescription opioids might
be governed by environmental influences, availability of prescription opioids at home, and
the actions of their peers following a discrete opinion model based on social impact theory.
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The model consists of 10,000 youths and their corresponding family and socio-cultural
environment. Each youth is considered to have one of two opposite opinions on nonmedical
prescription opioid use, according to whether they currently nonmedically use prescription
opioids. The presence or absence of nonmedical prescription drug use is assumed to be
dictated entirely by the attitude (opinion) of the youth with respect to drug use.
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In accordance with social impact theory, each youth is characterized by two indepen-
dent parameters called persuasiveness and supportiveness. The strength of persuasiveness
is the ability to persuade another youth with a discordant drug use attitude to change their
current attitude. The strength of supportiveness characterizes the ability to support another
youth with an identical drug use attitude to persist in their current attitude [58].

Following the literature [58,70], the values of the persuasiveness and supportiveness
attributes are assigned as random real-number values uniformly drawn between 0 and 100;
when youth flip to an alternative attitude and associated behavior, their parameters for
persuasiveness and supportiveness are independently drawn from the same distribution.

Youth experience a net impact from interactions with the socio-cultural environment,
family, and peers. Employing a formulation drawn from the opinion dynamics litera-
ture [58,70], the model characterizes the quantitative value of that impact Ii for an agent i
at each drug use occasion with the equation shown in Equation (1).

Ii =

([
N

∑
j=1

pj

dij
a

(
1 − oioj

)
]
−
[

N

∑
j=1

sj

dij
a

(
1 + oioj

)
])

− oiEi − oi Mi (1)

where j denotes another agent influencing agent i, and oi and oj denote the dichotomous
(±1) opinion values of agents i and j, respectively, towards opioid use, where −1 indicates
an attitude disfavoring opioid use and +1 indicates an attitude in favor of opioid use.

pj and sj denote the persuasiveness and supportiveness of agent j, respectively. In
accordance with a gravity model formulation, dij represents the Euclidean distance between
youth i and j, and a defines the speed of drop-off of influence with distance. The current
model considers peers at Moore neighborhoods with three different levels of influence on
nonmedical opioids use for youth; therefore, d is equal to the minimum Moore neighbor-
hood radius with which agents i and j are connected (max = 3). For a given agent i, an agent
j lying outside the distance of 3 Moore neighborhoods surrounding agent i is assumed
to exert zero influence on agent i (that is,

pj
dij

a and
sj

dij
a are considered to be 0). Following

the literature [58,70] and consistent with calibrated results of the model, a is considered
equal to 2.

The peer impact on youth i is calculated as the difference between the collective impact
of the interacting youth exerting influence on youth i to change opinion (characterized
by the first bracketed term of Equation (1)) and the collective impact of peers exerting
influence to maintain youth i’s current opinion (the second bracketed term of Equation (1)).

Ei is a so-called socio-cultural environment pro-drug influence parameter reflecting
the level of promotion of drug use by youth i’s neighborhoods, recreation areas, social
events, and other forces (a value greater than 0 when there is a pro-drug influence and
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equal to 0 for areas without pro-drug influence). Mi is a child’s exposure to opioids at home
parameter (family influence), reflecting the level of unsafe opioid storage practices by the
youth’s family (a value greater than 0 when there is some opioid storage by the youth’s
family and equal to 0 for youth i in a family without prescription opioids).

If the overall impact from interacting with peers, families, and the socio-cultural
environment for a youth who is absent any nonmedical prescription opioids experience as
characterized by Equation (1) is greater than 0, then the current youth will immediately
initiate nonmedical prescription opioids use. Equation (1) individually governs initiation
behavior in youth who are absent nonmedical prescription opioid use experience, as they
do not have any acute withdrawal symptoms for opioids prior to any experience.

After initial experience with nonmedical prescription opioid use, the behavior of youth
continues to be influenced by peers, families, and the socio-cultural environment; however,
another key factor also arises at this point: the severity of acute withdrawal. This factor can
serve to either reinforce or discourage youth drug use [29].

Past research has suggested that the temporal evolution of the severity of acute
withdrawal symptoms for opioid drugs can be characterized by a lognormal function
of days from the last dose [71]. We employed a lognormal function where scale parameter
µ ranged between 0 and 1 and shape parameter σ ranged between 1 × 10−3 to 1.5 × 10−3.

The attitude of youth with nonmedical prescription opioid use experience may change
in each drug use situation according to Equation (2).

oi(t + 1) =





oi(t) with probability
exp

(−Ii
Ti

)

exp
(−Ii

Ti

)
+exp

(
Ii
Ti

)

−oi(t) with probability
exp

(
Ii
Ti

)

exp
(−Ii

Ti

)
+exp

(
Ii
Ti

)
(2)

The parameter Ti represents the severity of acute withdrawal at the current time, and
may be interpreted as a personalized parameter to show randomness in the behavior of
youth, who may reject peers, families, and the socio-cultural environment’s impact about
nonmedical prescription opioid use and elect to quit or relapse. Although the impact (Ii) is
a deterministic endogenous parameter that represents a propensity to change—that is, it
causes youths who are absent nonmedical prescription opioid experience to initiate opioid
use (when the total impact is greater than 0)—any youth with experience of nonmedical
prescription opioid use may quit or relapse based on the probability calculated within
Equation (2). A higher value of Ii indicates a greater likelihood of changing behavior
within Equation (2). Equation (2) is a particular case of the system considered in the
literature [72,73].

2.4. In-Person School Closures Implementation Due to the COVID-19 Pandemic

The model characterizes in-person school closures associated with the COVID-19
pandemic as a change in the range of the Moore neighborhood mediating inter-youth
interaction starting on 14 March 2020. Specifically, mass in-person school closures are
implemented as a Moore neighborhood of range 0 (which has the effect of eliminating
the spread of direct—in person—influence between youth) and in the case of the Ontario
school closure timeline, the Moore neighborhood range differs for mass closure, partial
opening, and phased opening.

2.5. Parametrization, Calibration, and Validation

While the ABM presented in this study is a stylized one, it drew heavily on the
Ontario Student Drug Use and Health Survey (OSDUHS) [61,62] to provide data to char-
acterize dynamics of nonmedical prescription opioid use among youth in Canada. The
baseline empirically grounded model reflects nonmedical prescription opioids use among
students in Grades 7–12 from 2017 to 2021 based on OSDUHS [61,62] and projected until
the end of 2025.
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Ontario mass in-person school closures were characterized by imposing a Moore
neighborhood of range 0 in any phases of the lockdown. The first school closure period was
from 14 March 2020 to 8 September 2020, then from 20 December 2020 to 8 January 2021,
and finally from 12 April 2021 to 17 January 2022 [12,13]. The period of phased reopening
was characterized as imposing a Moore neighborhood of range 2 from 8 September 2020
to 21 September 2020, with partial reopening characterized as a Moore neighborhood of
range 1 from 8 January 2021 to 1 February 2021, and as a Moore neighborhood of range
2 from 2 February 2021 to 16 February 2021 to reflect the transition from the mass school
closure to full reopening. Finally, the full reopening of Ontario schools was characterized
as a Moore neighborhood of range 3.

The model was calibrated so as to match model output against the time-series of
the prevalence of youth with nonmedical prescription opioid use, and the time-series of
the prevalence of youth using nonmedical prescription opioids frequently (six times or
more over the past year) targets from 2017 to 2019 at 2-year intervals and data points of
the prevalence of youth using nonmedical prescription opioids obtained from different
resources (including families, friends, and unspecified resources) in 2019. During the
calibration process, we varied the following set of model parameters by hand until the
model outputs approximated empirical data.

Several model parameters were calibrated against the prevalence of youth with non-
medical prescription opioid use and the prevalence of youth using nonmedical prescription
opioids obtained from families. Youth exposure to prescription opioids at home was
calibrated against the prevalence of youth with nonmedical prescription opioid use and
the prevalence of youth using nonmedical prescription opioids obtained from families.
The severity of acute withdrawal from nonmedical opioid use was calibrated against the
prevalence of youth with nonmedical prescription opioid use. The percentage of the socio-
cultural environment with a positive drug use view and the level of drug promotion inside
the drug-positive socio-cultural environment were calibrated against the prevalence of
youth with nonmedical prescription opioid use. The probability that peers share drugs
with peers who request it was calibrated against the prevalence of youth using nonmedical
prescription opioids obtained from families. The rate of encountering drug use situations
for youth consisted of an initial amount and a coefficient to reflect the current socializa-
tion level, and both were calibrated against the prevalence of youth with nonmedical
prescription opioid use. The rate of opioid prescription for each family member without
prescription opioids and the probability that the duration of the opioid prescription ends
for each family member was calibrated to accord with the prevalence of Canadians with an
opioid prescription. See Table A1 for more details on parameter values and references.

Finally, to ensure the reliability, validity, and robustness of the current model, a com-
prehensive validation process was conducted in three phases [74,75]. The first phase,
verification, evaluates the correctness of the model by comparing the model’s assumptions
to the code logic. The second phase, validation, assesses the accuracy of the model’s
emergent behavior by comparing it to external criteria such as real-world data or expert
knowledge. The final phase, sensitivity analysis, examines how variations in model assump-
tions impact the model’s outcomes. The model demonstrates a visually good fit between
the observed and model-predicted prevalence of youth with a nonmedical prescription
opioid in 2021 during the COVID-19-related in-person school closures.

2.6. Scenarios

To investigate the impact of in-person school closures on nonmedical prescription
opioid use among youth, two sets of scenarios were examined. The first set of scenarios
examined outcomes from 6, 12, 18, and 24 months of mass in-person school closures
followed by partial opening, phased opening, or full opening (i.e., characterizing using
different Moore neighborhood ranges) after removing the mass in-person school closures
order. For the first set of scenarios, an ensemble of 30 realizations was conducted to secure
statistical confidence in results despite stochastic variability.
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The second set of scenarios sought to examine the impact of the Ontario school closure
timeline and further applied the intervention of reducing youth exposure to prescription
opioids at home by 20%, 50%, and 80% at three different time points, considered singly. For
the second set of scenarios, an ensemble of 100 realizations was conducted. Furthermore, to
generate outcomes of interest that are compatible with the empirical data for the baseline,
each simulation employed a 3-year burn-in period for the model. Following the burn-in
period, the model was run for a time horizon from 2017 to 2025. Outcomes of interest are
plotted daily to see the pattern of changes and recorded yearly to compare with the baseline.

3. Results

This section describes the results of model simulations. The Monte Carlo simulation
of the model utilized different realizations to generate a sample of potential outcomes,
given a set of inputs and assumptions. Each realization represented a single simulation
of the system, utilizing a randomly generated set of inputs. By conducting multiple
realizations and introducing randomness in the input parameters, the simulation aimed to
gain a deeper understanding of the uncertainty of the results. The results are divided into
three subsections, starting with the model-generated prevalence of youth with nonmedical
prescription opioid use in the past year for different durations of in-person school closures,
followed by a simulation of the model using the Ontario school closure timeline without
any intervention. Finally, the impact of safe storage of prescription opioids at home on the
prevalence of youth engaged in nonmedical prescription opioid use on the result of the
model using the Ontario school closure timeline is explored.

3.1. Results of the Simulation for the Prevalence of Youth with Nonmedical Prescription Opioid Use
in the Past Year for Different In-Person School Closure Durations

Figure 5 illustrates the model-generated prevalence of youth with nonmedical pre-
scription opioid use in the past year for the different durations of in-person school closures.
There is a small increase in the prevalence of drug use for the first six months of in-person
school closures. Following this initial increase in prevalence, scenarios exhibit a decline
to a steady level for the next six months of in-person school closures. Following that—for
sufficiently long durations of in-person school closures—a plateau persists until the end
of the in-person school closures. The prevalence of youth with nonmedical prescription
opioid use significantly increases after the lifting of the in-person school closures, regardless
of its duration. Nevertheless, the appearance of the increase remained consistent across
different levels of in-person socialization following the lifting of in-person school closures,
supporting the robustness of this conclusion (See Figures A1 and A2).

3.2. Simulation of the Model Using Ontario School Closure Timeline

Figure 6 represents the model-generated prevalence of youth exhibiting nonmedical
prescription opioid use in the past year based on the Ontario school closure timeline.
Figure 6 also demonstrates a visually good fit between the observed and model-generated
prevalence of youth with nonmedical prescription opioids, persisting even in the middle
of in-person school closures in 2021. After the first school closure came into effect on 14
March 2020, the model-generated prevalence of youth exhibiting nonmedical prescription
opioid use shows an increasing trend. The increase continues through the year as schooling
experiences were more differentiated across Ontario with the different possible levels of
socialization for youth. However, as the second mass in-person school closures due to the
COVID-19 pandemic lasted for more than six months, the model-generated prevalence of
drug use shows a downward shift. The model-generated prevalence of youth exhibiting
nonmedical prescription opioid use increases after the lifting of the in-person school
closures. Further, we used the model to estimate the overall impact of in-person school
closures through the COVID-19 pandemic on youth opioid use by comparing the model-
generated prevalence of drug use in 2025, with and without in-person school closures
due to the COVID-19 pandemic. The model-generated prevalence of youth exhibiting
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nonmedical prescription opioid use could show a significant increase (of +195%) in 2025 as
a consequence of in-person school closures. Furthermore, the distributions of simulation
outputs and the coefficient of variation remain relatively stable under different population
sizes (See Figure A3).
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Figure 5. Model-generated prevalence of youth with nonmedical prescription opioid use in the
past year for the different durations of in-person school closures (a–d). The model predicted the
prevalence of youth with nonmedical prescription opioid use in the past year for (a) 6-month in-person
school closures, (b) 12-month in-person school closures, (c) 18-month in-person school closures, and
(d) 24-month in-person school closures. In-person socialization following the lifting of in-person
school closures is characterized as a Moore neighborhood of range 3. The two vertical arrows
represent the start and end of the in-person school closures for each panel, respectively.
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past year based on Ontario school closure timeline. The blue dots show the empirical data and the
two vertical black arrows represent the start and end of the Ontario school closure timeline.
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3.3. Impact of Safely Storing Prescription Opioids at Home on the Result of the Model Using the
Ontario School Closure Timeline

Figure 7 illustrates the impact of safely storing prescription opioids at home on the
prevalence of youth with nonmedical prescription opioid use in the past year. Specifically,
it shows the impacts when youth exposure to prescription opioids at home is reduced
by 20%. Figure 7b illustrates a scenario in which the intervention of safely storing pre-
scription opioids with a decrease of 20% in youth exposure to prescription opioids at
home was implemented in 2017. Figure 7c depicts the effects of this intervention when it
was implemented at the start of the COVID-19-related in-person school closures, while
Figure 7d depicts the effects of the intervention of securely storing prescription opioids
when it was implemented at the start of the 2022–2023 academic year. Cases in which this
intervention was implemented before or early in the COVID-19-related in-person school
closures slightly mitigate the extent of the increase in prevalence of drug use after the lifting
of in-person school closures (Figure 7b,c). However, even a delayed implementation of
safely storing prescription opioids—where such precautions are introduced after the lifting
of the COVID-19-related in-person school closures—has also achieved a modest reduction
in the peak in the prevalence of youth with nonmedical prescription opioid use (Figure 7d).
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Figure 7. Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in the
past year for the baseline scenario (a) and after applying safe storage intervention with a decrease
of 20% in youth exposure to prescription opioids at home beginning at different time points (b–d).
The two vertical black arrows represent the start and end of the Ontario school closure timeline.
(a) Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in the past
year for the baseline scenario. (b) Model-generated prevalence of youth exhibiting nonmedical
prescription opioid use in the past year after applying safe storage in 2017. (c) Model-generated
prevalence of youth exhibiting nonmedical prescription opioid use in the past year after applying
safe storage at the beginning of the general COVID-19-related in-person school closures on 14 March
2020. (d) Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in the
past year after applying safe storage at the start of the 2022–2023 academic year.
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Decreasing youth exposure to prescription opioids by 20% would reduce the preva-
lence of youth with nonmedical prescription opioid use after the lifting of the COVID-19-
related in-person school closures by 27% and 28% in 2025 relative to the baseline, depending
on whether the intervention was implemented before or at the beginning of the COVID-
19-related in-person school closures, respectively. However, late implementation of the
intervention at the start of the 2022–2023 academic year would also reduce the prevalence
of youth with nonmedical prescription opioid use in 2025 by 9%, relative to the result of
the model using the Ontario school closure timeline without any intervention.

The results of the model also indicate that decreasing youth exposure to prescription
opioids by 50% can lead to a significant reduction in the prevalence of nonmedical prescrip-
tion opioid use among youth after the lifting of the COVID-19-related in-person school
closures. Specifically, the prevalence of youth with nonmedical prescription opioid use
in 2025 would be reduced by 58% and 56%, depending on whether the intervention was
implemented before or at the beginning of the COVID-19-related in-person school closures,
respectively. With a late implementation at the start of the 2022–2023 academic year, the
prevalence of youth with nonmedical prescription opioid use in 2025 would still be reduced
by 19% in comparison to the model using the Ontario school closure timeline without any
intervention (See Figure A4).

Finally, a significant decrease in youth exposure to prescription opioids by 80% could
greatly reduce the prevalence of nonmedical prescription opioid use among youth following
the lifting of the COVID-19-related in-person school closures. The prevalence of youth
with nonmedical prescription opioid use in 2025 could be lowered by 68% and 66% if
the intervention was implemented prior to or at the beginning of the COVID-19-related
in-person school closures, respectively. Even with a delayed implementation at the start of
the 2022–2023 academic year, the prevalence of youth with nonmedical prescription opioid
use in 2025 could still be reduced by 21% compared to the model using the Ontario school
closure timeline without any intervention (See Figure A5).

4. Discussion

This simulation demonstrates that public health orders mandating in-person school
closures may have had direct and indirect effects on youth opioid use during and after
school closure. Limited in-person social interaction changes the circumstances surrounding
youth, resulting in unintended consequences on risk factors for opioid use. The simulation
illustrates that the pervasiveness of unsafely stored opioids in homes and limited in-person
social interaction with anti-drug peers could facilitate the initiation of opioid use among
youth. However, decreasing social events for recreational drug use, the absence of peers
who might encourage taking certain risks [76], and the negative effect of withdrawal
symptoms limit the increase of opioid use further during in-person school closures. The
lifting of in-person school closures may lead to a high increase in the prevalence of youth
engaged in nonmedical prescription opioid use. The “rebound” effect on the prevalence
of nonmedical prescription opioid use after in-person school closures end could occur
for several reasons. One possible explanation is that when in-person school closures end,
youths may be more likely to come into contact with peers who use drugs. These social
networks can play an important role in shaping youth drug use behaviors. The increased
socialization that occurs when school is in person can expose young people to a higher
risk of peer pressure and influence, which could lead to an increase in drug use. The
literature also argues the plausibility that ongoing effects of the COVID-19 pandemic
in North America will place youth at a greater risk for nonmedical prescription opioid
use [15,77,78]. Factors outside the scope of the model may have influenced such effects in
either direction. For example, while family members staying home from work may have
restricted youth access to opioids in some households, in some settings, the consequences
of concurrent parental unemployment and spending more time at home and witnessing
possible elevated levels of family member substance use [19] may put youth at a higher
risk for opioid use.
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The simulation outcomes demonstrate that interventions that decrease youth exposure
to prescription opioids in the home context could constitute an effective intervention
pathway to mitigate what could be a significant increase in youth opioid use following
the lifting of in-person school closures. Interventions targeting associated risk factors for
youth exposure to prescription opioids at home can be beneficial whenever they come into
effect, whether before or during in-person school closures; while the benefits secured by
intervention at those times are particularly pronounced, later implementations will also
help mitigate what could constitute a significant increase in youth opioid use.

The findings from this study should be interpreted within the context of the following
limitations. First, the current approach focuses specifically on the in-person peer social-
ization component of the peer influence process; this work therefore does not consider
either peer selection or online peer socialization, which may influence regular substance
use among youth [79,80]. Instead, our goal was to identify the extent to which lack of in-
person peer socialization as a result of in-person school closures could plausibly influence
nonmedical opioid use among youth. Second, research indicates that youth consumption
of prescription opioids may be mediated by anxiety and hopelessness [81], as contributed
to by the adverse psychological impacts on youth from the pandemic compounded by
in-person school closures and isolation from peers. Since this study focused on the soci-
ological aspect of substance use in particular, future research could study psychological
factors which may have a reinforcing effect on youth drug use. Third, the current modeling
analysis does not explicitly track the effect of opioid tolerance and possible overdoses on
later opioid use among youth. Fourth, the current level of model abstraction filtered out
some less-essential details for youth within the model, such as youth siblings, youth year
in school, and disconnection from peers after school. Finally, exploring alternative network
structures and theories of opinion dynamics among youth in future agent-based modeling
studies may be worthwhile. Of particular note, more extensive national data on youth
opioid use would especially inform the model parameterization and assumptions, support
testing the plausibility of model baseline scenario outcomes, and support critical evaluation
of the current conclusions.

Despite these limitations, identifying a potential increase in the prevalence of youth
with nonmedical prescription opioid use after the lifting of in-person school closures
suggests the importance of effective opioid surveillance, and awareness and availability
of naloxone and treatment options to prevent serious medical outcomes and death in this
vulnerable population. Furthermore, efforts to encourage new opioid packaging, such
as personalized pill dispensers, may lower the accessibility of incompletely dispensed
prescription opioids. It should be noted that a disruption to the supply of opioids from
home should be combined with supporting and promoting awareness of the risks of opioid
abuse amongst youth.
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Figure A1. Model-generated prevalence of youth with nonmedical prescription opioid use in the 
past year for the different durations of in-person school closures (a–d). The model predicted the 
prevalence of youth with nonmedical prescription opioid use in the past year for (a) 6-month in-
person school closures, (b) 12-month in-person school closures, (c) 18-month in-person school clo-
sures, and (d) 24-month in-person school closures. In-person socialization following the lifting of 
in-person school closures is characterized as a Moore neighborhood of range 1. The two vertical 
arrows represent the start and end of the in-person school closures for each panel, respectively. 
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Figure A1. Model-generated prevalence of youth with nonmedical prescription opioid use in the
past year for the different durations of in-person school closures (a–d). The model predicted the
prevalence of youth with nonmedical prescription opioid use in the past year for (a) 6-month in-person
school closures, (b) 12-month in-person school closures, (c) 18-month in-person school closures, and
(d) 24-month in-person school closures. In-person socialization following the lifting of in-person
school closures is characterized as a Moore neighborhood of range 1. The two vertical arrows
represent the start and end of the in-person school closures for each panel, respectively.
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Figure A2. Model-generated prevalence of youth with nonmedical prescription opioid use in the
past year for the different durations of in-person school closures (a–d). The model predicted the
prevalence of youth with nonmedical prescription opioid use in the past year for (a) 6-month in-person
school closures, (b) 12-month in-person school closures, (c) 18-month in-person school closures, and
(d) 24-month in-person school closures. In-person socialization following the lifting of in-person
school closures is characterized as a Moore neighborhood of range 2. The two vertical arrows
represent the start and end of the in-person school closures for each panel, respectively.
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past year (left-hand side) and coefficient of variation for simulation means and standard deviation in
2025 (right-hand side) of the baseline scenario under different population sizes.
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Figure A4. Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in
the past year for the baseline scenario (a) and after applying safe storage intervention with a decrease
of 50% in youth exposure to prescription opioids at home beginning at different time points (b–d).
The two vertical black arrows represent the start and end of the Ontario school closure timeline.
(a) Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in the past
year for the baseline scenario. (b) Model-generated prevalence of youth exhibiting nonmedical
prescription opioid use in the past year after applying safe storage in 2017. (c) Model-generated
prevalence of youth exhibiting nonmedical prescription opioid use in the past year after applying
safe storage at the beginning of the general COVID-19-related in-person school closures on 14 March
2020. (d) Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in the
past year after applying safe storage at the start of the 2022–2023 academic year.
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Parameter Values References 
Youth population size  10,000 Assumed 
Total number of family  10,000 Assumed 

Family size Poisson probability distribution Assumed [66]  
Moore neighborhood range  0–3 Assumed 

Rate of opioid prescription for each family member without 
prescription opioids (1/week)  0.003 Calibrated [67]  

Probability that the duration of the opioid prescription ends 
for each family member (1/week) 0.02 Calibrated [67] 

Level of youth exposure to prescription opioids at home  
Uniform distribution between 450 

and 900 Calibrated [61,62] 

Percentage of the socio-cultural environment with a positive 
drug use view 14% Calibrated [61,62] 

Level of drug promotion inside the drug-positive socio-cul-
tural environment 

Uniform distribution between 1 
and 1500 Calibrated [61,62] 

Initial amount of encountering drug use situations for youth Lognormal distribution Calibrated [61,62] 

Figure A5. Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in
the past year for the baseline scenario (a) and after applying safe storage intervention with a decrease
of 80% in youth exposure to prescription opioids at home beginning at different time points (b–d).
The two vertical black arrows represent the start and end of the Ontario school closure timeline.
(a) Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in the past
year for the baseline scenario. (b) Model-generated prevalence of youth exhibiting nonmedical
prescription opioid use in the past year after applying safe storage in 2017. (c) Model-generated
prevalence of youth exhibiting nonmedical prescription opioid use in the past year after applying
safe storage at the beginning of the general COVID-19-related in-person school closures on 14 March
2020. (d) Model-generated prevalence of youth exhibiting nonmedical prescription opioid use in the
past year after applying safe storage at the start of the 2022–2023 academic year.

Table A1. Parameters, values, and references.

Parameter Values References

Youth population size 10,000 Assumed

Total number of family 10,000 Assumed

Family size Poisson probability distribution Assumed [66]

Moore neighborhood range 0–3 Assumed

Rate of opioid prescription for each family member without
prescription opioids (1/week) 0.003 Calibrated [67]

Probability that the duration of the opioid prescription ends for
each family member (1/week) 0.02 Calibrated [67]

Level of youth exposure to prescription opioids at home Uniform distribution between 450 and 900 Calibrated [61,62]

Percentage of the socio-cultural environment with a positive
drug use view 14% Calibrated [61,62]

Level of drug promotion inside the drug-positive
socio-cultural environment Uniform distribution between 1 and 1500 Calibrated [61,62]

Initial amount of encountering drug use situations for youth Lognormal distribution Calibrated [61,62]

Encountering drug use situations coefficient for different level
of socialization among youth Lognormal distribution Calibrated [61,62]
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Table A1. Cont.

Parameter Values References

Level of supportiveness for peers Uniform distribution between 0 and 100 Assumed [23,58]

Level of persuasiveness for peers Uniform distribution between 0 and 100 Assumed [23,58]

Severity of acute withdrawal from nonmedical opioid use Lognormal distribution Calibrated [71]

Probability that peers share drugs with peers who request it 0.075 Calibrated [61,62]
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Abstract: Cholera kills between 21,000 and 143,000 people globally each year. It is often fatal,
killing up to 50% of the severely symptomatic patients; but death by cholera is preventable with
timely treatment, so that the fatality rate can drop to less than 1%. Due to cholera’s multi-pathway
transmission, a multifaceted and multi-sectoral approach to combat this disease is needed. Such
complexity gives rise to uncertainty about where it is best to intervene, as stakeholders have to balance
prevention and treatment under highly constrained resources. Using Al-Hudaydah, Yemen as a case
study, this paper demonstrates how a system dynamics model can be built using a classic infection
structure with empirically grounded operational structures: health treatment, water, sanitation, and
hygiene (WASH), vaccination, and a data surveillance system. The model explores the implications
of the joint interventions with different start times. The model analysis revealed that the historical
interventions likely prevented 55% more deaths in 2017 as compared to a counterfactual business-
as-usual scenario with no interventions in the past. At the same time, some 40% of deaths could
potentially have been prevented if interventions (with the same resources as historical data) had
been initiated earlier in April 2017. Further research will explore each intervention impact for more
detailed policy analysis and simulations into the future.

Keywords: cholera response; system dynamics; computational modeling; cholera epidemics; policy
testing; humanitarian response

1. Introduction

Cholera is an acute diarrheal infection caused by consuming food or water contami-
nated with the bacterium Vibrio cholerae [1,2]. Vibrio cholerae causes profuse watery diarrhea
and vomiting that can quickly progress to dehydration and hypovolemic shock, killing up
to 50% of patients who do not receive adequate rehydration [1].Even healthy people can
die within hours if they develop severe cholera symptoms. Conversely, if symptomatic
individuals receive healthcare treatment in time, the case fatality rate can be less than 1%.

Cholera treatment, control, and prevention are the responsibility of national govern-
ment health ministries and non-governmental organizations (NGOs) [3–5]. Once cases
are identified, interventions to control and prevent cholera include surveillance and case
management (treatment), water, sanitation, and hygiene (WASH) interventions, provision
of oral cholera vaccinations, and strengthening education programs [1,6,7].

While universal access to clean water and sanitation is the long-term solution to
cholera, this is typically linked with the country’s economic and political development; and
is therefore vulnerable to environmental and humanitarian crises [5]. WHO [7] reported
2.5 million suspected cholera cases and nearly 4000 deaths in Yemen as of November
2020. Figure 1 illustrates the cholera epidemic prevalence from 2017 to 2018 and first oral
cholera vaccination campaign in Al-Hudaydah, Yemen. The literature identifies two groups
of problems that allowed an epidemic of this magnitude to occur: Yemen’s precarious
conditions and the humanitarian response.
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Yemen has been devastated by a complex civil war [5,8]. It was classified as a level
3 emergency by the United Nations (UN) in 2015, triggering the highest level of resource
mobilization across the humanitarian system [5]. By 2016, only 46% of all healthcare
facilities remained operational. In addition to severely damaged water and sewage infras-
tructure, the dire situation has been exacerbated by a lack of energy—mainly electricity
and fuel, spare parts, operating and maintenance funds, and three years of unpaid civil
servants [3,5,8,9].

Furthermore, most civilians’ movements are confined by the ongoing conflicts; and
food insecurity has put more than half of the population at risk of famine. Yemen has
the highest number of people in need of humanitarian assistance of any country. On
28 September 2016, a large-scale cholera epidemic began and the number of people in need
of humanitarian assistance and protection reached as high as 20 million in 2017 [10].
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Lessons learned from Yemen’s cholera response are well documented, reporting that
Yemen lacked an adequate cholera preparedness and response plan, despite previous
outbreaks, regional endemicity, and active conflict [3,5,9,13,14]. The key questions revolve
around: How can the recommendation be implemented? How does one actualize what
ought to be done into how and when it can be done? Previous studies concluded that the
delayed response was due to two factors.

First, multi-sector coordination structures were confused, with the roles of the clusters,
cholera task force, and incident management system either overlapping or incompletely
developed. Lack of coordination across these areas hampered management, technical
output, and agency trust [3–5,8,14].

Second, a lack of a functioning surveillance system, hence, a lack of data. Despite that,
policy decisions must be made, frequently under high uncertainty and pressure conditions,
especially when the fatality rate is high. Where a lack of data makes precise predictions
impossible, simulation models may still provide valuable insights to aid decision-making
under unknown circumstances. Such scientifically informed exploration can add clarity to
decisions, allowing for more effective policy choices.

From the simulation model literature review, Barciela et al. [15] developed a Cholera
Risk Model (CRM) for cholera control in Yemen, specifically on WASH interventions. It is a
predictive tool that integrates data on rainfall, temperature, and water security to determine
the risk of cholera trigger and transmission. Harpring et al. [4] use a causal loop diagram
to visualize the compounding factors influencing the cholera outbreak in Yemen. Along
with the susceptible, infected, and recovered (SIR) dynamics, they discovered a strong
connection between humanitarian response and the existing infrastructure development
to the cholera epidemic. Pruyt [16] developed a cholera epidemic System Dynamics (SD)
model for Zimbabwe that tested two policies: sanitary infrastructure and health services.
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The model uses percentage change on these two policy parameters instead of detailed
operational policy structures.

On the other hand, ordinary differential equation (ODE) cholera models were re-
viewed and half of them contain only SIR model structure [17]. The other half of cholera
transmission models included a maximum of three interventions focusing mainly on vacci-
nation, antibiotics, and water provision. None of the reviewed models include structures of
both asymptomatic and symptomatic individuals as well as sanitation intervention (sewage
system) and health services.

With the dynamic complexity of cholera control and death reduction, a multifaceted
approach is crucial. To address the identified research gaps above, this paper aims to
demonstrate how operational policy structures are built upon a system dynamics classic
infection model to explore the impact of the interventions. In other words, the present
model bridges the endogenous feedback mechanisms that drive both symptomatic and
asymptomatic cholera infectious dynamics, with the empirically grounded operational
structures: oral rehydration corner, diarrhea treatment center, water, sanitation and hygiene
(WASH), vaccination, and data surveillance system.

2. Materials and Methods

System Dynamics (SD) uses computer simulation for policy analysis and design. Its
origins are in servomechanisms engineering and management, and the approach uses
a perspective based on information feedback and circular causality to understand the
dynamics of complex social systems. Mathematically, SD models can be described as a
system of coupled, nonlinear, first-order differential equations [18] that are solved using
numerical methods. SD is a useful modeling approach for piloting complex systems
modeling in the humanitarian sector, because it enables humanitarian response simulation
even in contexts with limited data [19].

The data collected during the model’s development and validation can be classified
into three categories:

Structural data: variables and interrelationships in the model were extracted from
literature review, see Supplementary Materials for further information.

Epidemiological data: information on the characteristics of Vibrio cholerae infections
(e.g., duration of infection, severity proportions), as well as their prevalence in Al-Hudaydah
governorate (e.g., number of suspected and confirmed cases, deaths).

Cholera response (interventions) data: information and data on the implemented
interventions between 2017 to 2018 was collected from WASH sector [11] and health
sector [12,20] (see Supplementary Materials for further detail).

Data quality issues have been regarded as a significant obstacle to an effective hu-
manitarian response to the cholera epidemic. Inadequate access to health facilities may
have resulted in underestimating the cholera burden, most notably mortality [5]. For
example, infected individuals who choose traditional medicine or private clinics over these
specialized treatment centers are not captured by the surveillance system. Even mortality
statistics are subject to reporting errors when deaths occur beyond the treatment facilities.
On the other hand, Camacho et al. [21] stated that overreporting of other acute watery
diarrhea (AWD) cases was likely to contribute to underestimates of the epidemic’s case
fatality rate.

2.1. Cholera Susceptible-Infected-Recovered/Susceptible

Building on the Yemen cholera response—causal loop diagram of Harpring et al. [4],
and Pruyt’s model [22] that simulates the 2008 cholera outbreak in Zimbabwe, the cholera
response model is an extended SIR model that integrates the epidemic response’s opera-
tional dynamics.

Al-Hudaydah governorate had a population of 3,238,199 in 2017 [11]. In an SIR model,
the population is divided into several compartments called stocks, depending on their
status of being susceptible to the infection (S), being infected and infectious (I), and having
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recovered from the infection (R) [22]. In the case of cholera, the recovered population
becomes susceptible again after a delay, which makes the model an SIS model. Figure 2
is a high-level and simplified view of the main stocks and flows in the model. Table 1
summarizes the feedback loops in Figure 2.
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Table 1. Summary of feedback loops.

Infectious State Treatment Loop Shown

Asymptomatic
(75%) No

Asymptomatic infected loop R1

Asymptomatic recovered loop B1

Mild symptoms
(15%)

No Untreated mildly infected loop R2

No Untreated mildly recovered loop B2

Yes Treated mildly infected loop R3

Yes Treated mildly recovered loop B3

Severe symptoms
(10%)

No Untreated severely infected loop R4

No Untreated severely recovered loop B4

Yes Treated severely recovered loop B5
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2.1.1. Indirect Infection

This model only incorporates indirect infection through contaminated water by in-
fected individuals. When susceptible individuals become infected with cholera, they shift
to the recently infected population after one day. The rate of cholera infection is a product
of the indirect degree of infection and the size of the susceptible population (S). In turn,
the indirect degree of infection depends on the connectedness of aquifers and smoothed
fraction of contaminated water.

Although sporadic cholera cases may occur as a result from ingestion of insufficiently
cooked seafood contaminated with Vibrio cholerae, humans are the primary reservoir for the
pathogen during periods of active transmission (epidemic) via fecal contamination of drink-
ing water or food [1,6,23,24]. A meta-analysis of the role of water, sanitation, and hygiene
exposures in 51 case–control cholera studies found that cases were significantly more likely
than controls to report the use of untreated drinking water, open defecation, unimproved
sanitation, and poor hand hygiene [25]. Hence, the smoothed fraction of contaminated
water is water contaminated by bacteria shedding from the infected individuals [23].

The smoothed fraction of contaminated water uses the water contamination from
total bacteria shedding from the fraction of infected with a delay of two and a half days.
Vibrio cholerae survival in the aquatic environment is highly dependent on the chemical,
biological, and physical conditions of the aquatic environment: Vibrio cholerae survives in
surface water for periods ranging from one hour to thirteen days [26].

Three days is used for the time period to affect water in aquifers in this model. A third-
order delay is used to account for the fact that there are different stages in the process [23]
between bacteria shedding by the infected individuals to contaminating the water.

Connectedness of aquifers is the “contact rate” between the susceptible population
with contaminated water. More than 19 million Yemenis are believed to be without access
to safe drinking water and sanitation [8,21,27]. According to WHO-UNICEF statistics,
only 55% of the population had access to drinking water from improved water sources
in 2014 [9]. Grad et al. [28] explained that the “contact rate” is largely unknown in most
contexts, and there are no simple methods for converting experimental study results into a
“contact rate” between susceptible individuals and bacteria in water. Since various factors
determine the rate at which susceptible individuals become infected, the connectedness of
aquifers is calibrated to the historical data. 0.02 is used in this model.

2.1.2. Asymptomatic Reinforcing Feedback Loop (R)

Individuals in the recently infected population leave the stock after an average in-
cubation time of one day and flow in two directions: as asymptomatic infected to the
asymptomatic population if they show no symptoms, or as mildly infected to the mildly
infected population if they show mild symptoms. Pruyt’s model [23] makes no distinc-
tion between asymptomatic and symptomatic infections. Other works highlighted that
these are essential elements and incorporated an asymptomatic feedback loop into their
model [1,26,29–31].

First, most infected individuals (75% of infections) remain clinically unapparent, while
the remaining 25% develop mild to severe symptoms (depending on the strain involved) [1].
Only symptomatic infections from treatment centers are captured in surveillance data [1,17].
When calibrating modeling outputs to historical data, Fung [17] concluded that underre-
porting of cases, including asymptomatic cases, should be considered. Chao et al. [29]
found their model sensitive to the fraction of infected people who became symptomatic:
The higher the symptomatic proportion, the higher the incidence of reported cases.

Second, the bacterial shedding rate is lower in asymptomatic individuals than in
symptomatic individuals (60–90 percent of infected individuals are asymptomatic). Stud-
ies [1,26,30] have reported that some individuals can be infected with Vibrio cholerae and yet
show no symptoms but then tend to shed the organism into the environment, even for only
a few days. In a non-cholera epidemic area, Vibrio cholerae can be isolated from wastewater
effluents [26].
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Third, research emphasizes the distinction between immunity from asymptomatic
infection and protection from disease (symptomatic) following recovery [30,31].

2.1.3. Bacteria Shedding

The model includes bacteria shedding as part of the indirect infection pathway. Ac-
cording to Kaper, Morris, and Levine [30], doses of 10ˆ11 Colony Forming Units (CFU)
of Vibrio cholerae were needed to trigger diarrhea in healthy North American volunteers.
For example, ingestion of 10ˆ6 Vibrio cholerae with fish and rice resulted in a high attack
rate (100%). On the other hand, a symptomatic mildly infected individual can shed Vib-
rio cholerae in the stool in low but potentially infectious concentrations, up to 10ˆ8 Vibrio
cholerae organisms per g of stool [32]. An individual with acute cholera, severely diseased,
excretes 10ˆ7 to 10ˆ8 Vibrio cholerae organisms per gram of stool. For patients who have 5
to 10 L of diarrheal stool, the total output of Vibrio cholerae can be in the range of 10ˆ11 to
10ˆ13 CFU [30].

This model uses 10ˆ6 Vibrio cholerae as the amount to infect an individual.
The value of:

1. bacteria shedding from symptomatic is 10ˆ4, hence, normalized to 104/106 = 0.01
2. bacteria shedding from a mildly infected individual is 108, hence, normalized to

108/106 = 100
3. bacteria shedding from a severely infected individual is 10ˆ12, hence, normalized to

1012/106 = 1,000,000

2.1.4. Symptomatic Reinforcing Feedback Loops (R)

The mildly infected population consists of mild cases of Vibrio cholerae infection that
may be clinically indistinguishable from other causes of diarrheal illness [33]. Hence, not
all seek healthcare services [1]. Depending on access to healthcare services, this model
disaggregates mildly infected individuals into two different stocks: treated and untreated
mildly infected individuals. Mildly infected individuals leave the stock after the time
period to progress to the next stage (one day) and flow to three directions: treated mildly
infected population, untreated mildly infected population, or intone of the severe disease
population stocks.

The severely infected population consists of severe cases of Vibrio cholerae infection that
are characterized by a sudden onset of acute voluminous watery diarrhea, described as ‘rice
water stools’ and vomiting leading to rapid dehydration (fluid losses of up to one liter per
hour), and death if left untreated [1,30]. Among individuals developing symptoms, 60 to
80% of episodes are of mild or moderate severity [1,23]. In other words, only 5 to 10% of the
recently infected population in the base model becomes very ill. Mildly infected individuals
move to the severely infected population after an average time to progress to the next
stage. Severely infected individuals then move into two different stocks based on access to
healthcare services: treated and untreated. The treated severely infected population stock
does not contribute to the infectious reinforcing feedback loop as the excreted wastewater
is disinfected at the healthcare sewage treatment facilities [1].

2.1.5. Recovered Balancing Feedback Loops (B)

All individuals belonging to the asymptomatic population, treated and untreated
mildly infected population, recover after an average illness duration (asymptomatic for
five days and symptomatic for nine days) [32,33]. On the other hand, individuals in the
treated and untreated severely infected population either die (cholera deaths) or recover
and become immune (recovered from severe infection) after the same average duration of
the illness of nine days.

The proportion of the treated severely infected population that die or recover is
determined by the capacity of healthcare services, as overloading in the health services
results in lower care quality. Hence, an increase in fatality fraction. In 2017, the case fatality
rate in Al-Hudaydah governorate was 0.0019 [11]. For severely infected individuals who
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are not accessing healthcare services, the untreated fatality fraction uses 0.004, assuming
that the fatality fraction is double the case fatality rate with treated death fraction of 0.0021.

2.1.6. Immunity Waning

Studies have shown a difference between protection from asymptomatic infection and
protection from disease (symptomatic) after recovery [30,31]. Pruyt’s model [22] aggregates
both mildly and severely infected population into one stock of recovered temporarily
immune population where they flow back to the susceptible population after an average
immunity period of six years. Studies reported that clinical cholera (symptomatic) conferred
protection against subsequent cholera for at least three years [30] while a study by Leung
and Matrajt [31] identified that the asymptomatic protection period lasts between 3 to
12 months. The model uses six months for the average asymptomatic infection acquired
immunity period and three years for the average symptomatic infection acquired immunity
period [30,31].

2.2. Cholera Response-Intervention Structure

In the event of a cholera epidemic, the focus must be on limiting mortality and
stopping the disease from spreading. It should be comprehensive and multi-sectoral, en-
compassing epidemiology (surveillance), case management, water, sanitation, hygiene,
logistics, community engagement, and risk communication [34]. Figure 3 illustrates
the stock and flow diagrams of each intervention. Further description is listed in the
Supplementary Materials.
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2.2.1. Water, Sanitation and Hygiene Interventions (WASH)

Water, sanitation, and hygiene (WASH) interventions are commonly used to prevent
and control cholera by reducing exposure to risk factors for disease transmission [25]. In
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Yemen, water trucking, latrine construction, chlorine tablet distribution, filter distribution,
and hygiene kit distribution are the primary focuses of WASH [5].

Clean Water Provision

Water interventions improve the quantity of water (water trucking), the quality of
water (chlorinating water), or the management of water (safe storage). Figure 4 shows that
susceptible individuals who receive clean water shift to population with clean water stock
after one day.
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Sewage Treatment Plant

Figure 5 illustrates that the sewage treatment helps remove contaminants from sewage
to produce effluent suitable for discharge to the surrounding environment or reuse and
therefore prevent contamination of water sources [1,26,35].
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Latrine Construction

This model latrine construction intervention is based on the need for latrine capacity:
the 1% of the population openly defecating (Figure 6). While the Médecins Sans Frontières’
cholera response manual [1] recommends prioritizing public latrine placement in areas
with a high risk of transmission (markets, train stations, and bus stations).

150



Systems 2023, 11, 3
Systems 2023, 11, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 6. Latrine construction intervention stock and flow diagram. 

2.2.2. Healthcare Interventions 

Diarrhea Treatment Centre (DTC) 

A DTC is a specialized inpatient healthcare facility dedicated to managing severe 
cholera cases. A DTC is located outside the main hospital to prevent disease spread and 
is completely self-sufficient in general services (toilets, showers, kitchen, laundry, 
morgue, and waste area), stocks, and resources (medical and logistics, water, and electric-
ity). Severity affects the intensity of shedding, and so the average contribution of an infec-
tious person to transmission may change systematically with time as the distribution of 
infectious doses changes [30,32]. The “severely infected not in DTC” excludes treated se-
verely infected population because at DTC, the sewage system is in place with disinfec-
tion. Hence, Figure 7 shows that all patients at DTC do not attribute their bacteria shed-
ding back into the environment. 

Figure 6. Latrine construction intervention stock and flow diagram.

2.2.2. Healthcare Interventions
Diarrhea Treatment Centre (DTC)

A DTC is a specialized inpatient healthcare facility dedicated to managing severe
cholera cases. A DTC is located outside the main hospital to prevent disease spread
and is completely self-sufficient in general services (toilets, showers, kitchen, laundry,
morgue, and waste area), stocks, and resources (medical and logistics, water, and electricity).
Severity affects the intensity of shedding, and so the average contribution of an infectious
person to transmission may change systematically with time as the distribution of infectious
doses changes [30,32]. The “severely infected not in DTC” excludes treated severely
infected population because at DTC, the sewage system is in place with disinfection. Hence,
Figure 7 shows that all patients at DTC do not attribute their bacteria shedding back into
the environment.
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Oral Rehydration Corner (ORC)

ORCs are small, decentralized outpatient care facilities that operate only during
daylight hours (8 to 12 h per day). They are primarily used to administer oral rehydration
therapy. Figure 8 illustrates that early oral therapy can help prevent the onset or aggravation
of severe dehydration, which requires hospitalization [1,24,36].

Systems 2023, 11, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 7. Diarrhea treatment centre intervention stock and flow diagram. 

Oral Rehydration Corner (ORC) 

ORCs are small, decentralized outpatient care facilities that operate only during day-
light hours (8 to 12 h per day). They are primarily used to administer oral rehydration 
therapy. Figure 8 illustrates that early oral therapy can help prevent the onset or aggrava-
tion of severe dehydration, which requires hospitalization [1,24,36].  

 
Figure 8. Oral rehydration corner intervention stock and flow diagram. 

Vaccination 

Figure 9 shows that vaccination decreases the number of fully susceptible individu-
als, decreases infectiousness (the rate of water contamination), and decreases the likeli-
hood of becoming symptomatic when infected [21,28]. Oral cholera vaccine (OCV) has 
been shown to be safe, logistically feasible, and acceptable by recipients. OCV is also in-
expensive in a variety of settings, with total costs including procurement and delivery per 
fully vaccinated individual being less than USD 10 [3,37,38]. 

Figure 8. Oral rehydration corner intervention stock and flow diagram.

Vaccination

Figure 9 shows that vaccination decreases the number of fully susceptible individuals,
decreases infectiousness (the rate of water contamination), and decreases the likelihood of
becoming symptomatic when infected [21,28]. Oral cholera vaccine (OCV) has been shown
to be safe, logistically feasible, and acceptable by recipients. OCV is also inexpensive in a
variety of settings, with total costs including procurement and delivery per fully vaccinated
individual being less than USD 10 [3,37,38].
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2.2.3. Surveillance System

According to Camacho et al. [21], Yemen’s health authorities established a national
cholera surveillance system to collect data on suspected cholera cases presenting to health
facilities (no mass screening, the data depends on the availability of ORCs, DTCs, and
health seeking ratio). Only symptomatic infections are likely to seek treatment and be
reported. Figure 10 shows that simulated suspected and confirmed cases that replicate
the historical data are a product of individuals seeking rehydration care and emergency
treatment with suspected cholera infection.
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2.3. Other Model Settings

The model conceptual framework and structure has now been discussed and a detailed
description of key assumptions, model equations, and numeric inputs are provided in
the Supplementary Materials. The simulation of the model was conducted using Stella
Architect version 3.0. This model has a relatively short time horizon, as its purpose is
to explore the implications of cholera response interventions during the 2017 and 2018
epidemics. As such, the model commences on 1 January 2017 and continues for 730 days,
ending on 31 December 2018. A retrospective analysis and policy testing were conducted
rather than the more conventional future timeline projection for epidemic preparedness. A
DT of 1/4 with Euler’s integration method is used to run this model.

Table 2 below outlines key parameters used in the model. For more information and a
complete list of parameters, refer to the Supplementary Materials.

Table 2. Literature sources for key parameters in the model.

No Parameters Sensitivity Test
(Numerical) Values Unit Sources

1 connectedness of aquifers 0.02 1/day Calibrated; [14,38]
2 time to affect water in aquifers 3.5 day Calibrated; [14]
3 ratio of asymptomatic 0.75 dmnl [1,30]
4 average incubation time 1 day [1,30,32]
5 average duration of illness asymptomatic 5 day [1,29,30]
6 susceptible population 3,238,199 person [18]
7 recently infected population 500 person [18]
8 normal ratio of severe disease 0.3 dmnl [1,30]
9 average duration of illness symptomatic 9 day [32,39]

10 average asymptomatic infection acquired
immunity period 180 day [31]

11 average symptomatic infection acquired
immunity period 1095 day [30,31]

12 fraction mildly infected seeking care 0.3 dmnl Estimation from
Camacho et al. [21]

13 fraction severely infected seeking care 0.4 dmnl [1,21]
14 treated fatality fraction 0.0021 dmnl [18]
15 bacteria shedding from asymptomatic 0.67 dmnl [30] (normalized value)
16 bacteria shedding from mildly infected 1.33 dmnl [32] (normalized value)
17 bacteria shedding from severely infected 2 dmnl [30] (normalized value)

Indicators: Sensitive Highly sensitive.

2.4. Model Validation

A system dynamics model is generally validated in two ways. A structural validation
of the model seeks to determine whether it accurately corresponds to the real world.
Behavioral validation focuses on model behavior during simulation and evaluates the level
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of confidence that can be placed in the results [22,40,41]. Adhering to the guidelines, formal
model analysis and validation procedures were conducted to support model development
and testing throughout the research process. The procedures involved iterative cycles of
data collection, model building, simulation, analysis, validation, and documentation. They
are described in detail in the Supplementary Materials.

2.4.1. Comparison to Historical Data

Three uncertain parameter values: connectedness to aquifer, initial value of recently
infected population, and time (of bacteria shed by infected individuals) to affect water
in aquifer, were estimated through full-model calibration. Figure 11 compares simulated
behavior with historical data (from 2017 to 2018) for fitted variables, using estimated
parameter values from the full-model calibration. First, the model incorporates the dynamic
of an asymptomatic feedback loop, as the collected data are the suspected and confirmed
cases in Al-Hudaydah. In other words, infected individuals who are sick enough to seek
healthcare services (symptomatic). Second, the model takes account of the data source;
suspected and confirmed cases were collected from the DTC. Hence, the capacity structure
of the DTC is built as part of the intervention structures.
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Figure 11. Comparison between model behaviors and historical data in total suspected and confirmed
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On the other hand, the infection rate of suspected and confirmed cases graph (right)
illustrates the marginal difference in infection rates between suspected and confirmed cases
(right). The plausible explanation is that DTCs and ORCs lacked capacity at the start of the
epidemic due to a delay in capacity development (constructing new DTCs and ORCs).

Camacho et al. [21] explained that scarcity of adequate treatment is more common
during the initial phase of unexpected outbreaks and in crisis settings. The absence of
DTCs and ORCs indicates a data collection gap (according to Yemen’s surveillance system).
When infected individuals have access to a DTC and ORC, there is an over-reporting
problem because other patients with acute watery diarrhea (AWD) seek care at the ORC
and DTC [3,5]. It is reasonable for the simulated infection rate to be slightly higher than
the data at the start and slightly lower than the data following the establishment of DTCs
and ORCs.

No explanation regarding the two peaks in the data is available from the literature.
One plausible reason is that the healthcare system was over-stretched by the drastic increase
in infected patients; healthcare and the data surveillance system could not perform as usual
under such an overloaded condition. Once the system capacity increased (after a delay),
the data collection function also increased, resulting in a second peak. Another reason
could be that the rainfall intensified the infection rate [15].

2.4.2. Sensitivity Test

A multivariate Monte-Carlo sensitivity analysis was conducted on all exogenous pa-
rameters and initial values using a Sobol Sequence. A base case run was given initially, and
each sensitivity run utilized these values and changed one of the values in uniform distribu-
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tion within a preset range (see Supplementary Materials). The following Figures 12 and 13
present the sensitive parameters that indicate the potential leverage points for policy tests.
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Figure 13. The (left) over-time graph shows the results from the ‘bacteria shedding from asymp-
tomatic cases’ parameter test while the (right) over-time graph shows the result of the desired sewage
plant treatment parameter test.

Figure 12 shows the result from the parameter “vaccination start time” (left behavior-
over-time graph). The model is numerically sensitive to changes in the tested value
from day 90 to 365, with the same amount of vaccine provision in Al-Hudaydah
(260,000 vaccines—intervention historical data), as expected. An earlier vaccine cam-
paign shows a significant reduction in the infected population. With the model setting the
vaccination start time as day 120 (April 2017), the sensitivity test continued with another
parameter of “desired vaccine number”. The model shows a high numerical sensitivity to
the tested range of vaccines number, between 200,000 to 1,000,000.

The left over-time graph in Figure 13 shows that the model is strongly (numerically)
sensitive to changes in the value of “bacteria shedding from asymptomatic cases” as ex-
pected. Although the tested values are the lowest among the three infectious levels of
bacteria shedding (asymptomatic, mildly, and severely symptomatic individuals), asymp-
tomatic individuals have the highest ratio (75%) among the total infected population.
Hence, contributing to the high sensitivity of this parameter value.

The right over-time graph in Figure 13 shows that the model is strongly (numerically)
sensitive to changes in the values of “desired sewage plant treatment”, as expected. The
tested range included start time and the capacity of the sewage plant treatment intervention.
The infection reinforcing feedback loop is affected by the water source contamination by
the infected individuals. If the current sewage plant treatment is well supported, there is
less water contamination by the Vibrio cholera bacteria.
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3. Scenario Analysis and Discussion
BAU-BASE-Early Response

The model was run under the following three different conditions to understand the
interventions’ impact on the cholera epidemic dynamics. Figure 14 presents the results
from each scenario simulation.

Systems 2023, 11, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 14. Behavior over time graphs that present the results for recently infected populations (top), 
rec-orded suspected and confirmed cases (middle), and treated and untreated death rate (bottom) 
of BAU-BASE-Early response simulations. 

First, deconstructing the interventions from BASE to BAU has shown significant 
impacts from the humanitarian cholera response in 2017. The results from Table 3 show 
that there would have been 55% more deaths if nothing had been done in Al-Hudaydah. 
In the BAU scenario, the cholera infection reinforcing feedback loops (R1, 2, 3, and 4) con-
tinue to dominate the SIR/SIS dynamics without attenuation from exogenous interven-
tions; more infected individuals lead to more susceptible persons being infected, and the 
epidemic curve increases exponentially. In addition to the decline in the susceptible pop-
ulation (over time), more infected individuals recover or die; the balancing feedback loops 
(B1, 2, 3, 4, and 5) gain strength. The epidemic curve peaks and eventually falls. 

Table 3. Results of BASE, BAU, and Early Response simulations. 

Scenario 
Total Infected 

Population Total Death 

BASE 2,055,712 1,468 
BAU 2,888,484 2,268 

 +41% +55% 
Early Response 1,681,105 891 

 −18% −39% 

Figure 14. Behavior over time graphs that present the results for recently infected populations (top),
rec-orded suspected and confirmed cases (middle), and treated and untreated death rate (bottom) of
BAU-BASE-Early response simulations.

BASE. BASE is the simulation scenario that replicates the historical data. This scenario
included interventions implemented in 2017. A detailed intervention timeline simulated in
“BASE” with the capacity of treatment centers over time and vaccine distribution can be
found in Supplementary Materials (variables with “data” in their name).

Business as Usual (BAU). BAU is the scenario where all interventions
are deconstructed from BASE to explore a counterfactual worst-case scenario for the
cholera epidemic.

Early Response. An early response explores the impact of all interventions if the
starting day were in April 2017, using the same capacity from the BASE. In addition,
similar interventions were added in as responses to the second wave from June 2018.
Using capacity of interventions similar to historical data aims to avoid overly unrealistic
policy recommendations, particularly in a conflict-affected context where intervention
implementation faces immense challenges. Further policy analysis of each intervention
will be explored in future research.
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Cholera epidemic control is highly complex in a conflict-affected context such as
Yemen. While the epidemic lessons learned were widely discussed in the literature (mostly
qualitatively), it is still not fully understood what the best strategies for cholera response
are. Existing cholera related simulation models mainly study vaccination, antibiotics, and
water provision. None of the reviewed models include structures of both asymptomatic
and symptomatic individuals as well as sanitation intervention (sewage system) and health
services. In this paper, the cholera response model explores the dynamic interplay between
the classic infection SIR/SIS structure and the empirically grounded operational structures:
oral rehydration corners, diarrhea treatment centers, water, sanitation and hygiene (WASH),
vaccination, and the data surveillance system. The following insights emerge from the
sensitivity and the three scenario policy tests.

First, deconstructing the interventions from BASE to BAU has shown significant
impacts from the humanitarian cholera response in 2017. The results from Table 3 show
that there would have been 55% more deaths if nothing had been done in Al-Hudaydah. In
the BAU scenario, the cholera infection reinforcing feedback loops (R1, 2, 3, and 4) continue
to dominate the SIR/SIS dynamics without attenuation from exogenous interventions; more
infected individuals lead to more susceptible persons being infected, and the epidemic
curve increases exponentially. In addition to the decline in the susceptible population (over
time), more infected individuals recover or die; the balancing feedback loops (B1, 2, 3, 4,
and 5) gain strength. The epidemic curve peaks and eventually falls.

Table 3. Results of BASE, BAU, and Early Response simulations.

Scenario Total Infected Population Total Death

BASE 2,055,712 1,468

BAU 2,888,484 2,268

+41% +55%

Early Response 1,681,105 891

−18% −39%

This endogenous SIR/SIS dynamic of reinforcing and balancing feedback loops shed
lights on some of the questions asked in the reviewed literature. For instance, an epidemiol-
ogist who was interviewed in a study by Spiegel et al. [5] asked why the second wave was
so massive. After the mild first wave, the susceptible population is still very large. Such a
condition enables the infection reinforcing feedback loops to dominate in the second wave
if there is no exogenous intervention to counter the strength of the reinforcing feedback
loops (or to strengthen the balancing feedback loops).

Second, the simulation results also reveal that a potential 40% of deaths could have
been prevented if interventions, especially vaccination, had been initiated earlier. Stud-
ies have reported that concern was raised by the Yemeni government and some humani-
tarian actors that mass immunization would be logistically difficult with ongoing security
problems [3,9,13]. Another reason is that vaccination would have a minimal effect given
the magnitude of the outbreak: it may be too late for vaccination, and the benefits would
not outweigh the risks of initiating a campaign.

Yemen’s government, the United Nations, and the WHO stated that the decision was
made on a technical basis to ensure that efforts would be concentrated on WASH inter-
vention targeting approximately 16 million people [13]. Vaccines were finally distributed
to 540,000 people by the WHO and UNICEF in August 2018, nearly 16 months after the
outbreak began. Al-Hudaydah vaccinated 260,000 people with two-dose oral cholera
vaccines (OCVs).

Indeed, the conflict situation posed significant logistical challenges for mass vacci-
nation. Burki [8], on the other hand, reported that coverage of the pentavalent vaccine is
estimated to be around 88% in 2015—the same as in 2014. The past pentavalent vaccine
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campaign indicates that a mass vaccination campaign is feasible if well-planned and sup-
ported. Moreover, Médecins Sans Frontières’ [1] cholera response manual stated that OCVs
are administered orally (not via injection) and rarely cause serious adverse effects, and
mass cholera vaccination campaigns do not require a large number of medical personnel.
Hence, an earlier vaccination campaign would not have been impossible in Yemen.

Third, the sensitivity test findings show that the model is not sensitive to the water
provision intervention. This is an unexpected result as one might anticipate a greater
impact from water provision on cholera epidemic control, given that WASH intervention is
considered to be one of the most critical components of such an emergency response [1].

In Al-Hudaydah, clean water provision activities comprise chlorination of wells,
communal water tanks, distribution of chlorine tablets, and the daily chlorination of water
trucks at water filling stations. In this cholera response model, susceptible individuals who
receive clean water shift to the population with clean water stock after one day. Compared
to the model of Tuite et al. [42] with 100% reduction of “contact” rate if covered by clean
water provision, this model assumes only 70% of individuals who receive clean water shift
into the population with clean water stock. Having clean water does not ensure a 100%
reduction in susceptibility [25]. It is unrealistic to assume that those who receive clean
water are 100% protected from cholera infection, as cholera is transmitted via multiple
pathways (as illustrated in Figure 15). With other words, removing a single source of
infection through water provision may not effectively prevent the disease.
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from Water 1st International (cited in Wolfe et al. [25]).

Water can also still be viewed as a source of cholera outbreaks. Even when routine
water treatments are carried out, cholera can still be transmitted when: dosing errors are
made, treatment is forgotten, or the piped water supply is contaminated [25]. In fact,
John Snow made history in public health by tracing and discovering that the source of the
London cholera epidemic in 1854 was contaminated water from a water pump.

This discussion does not intend to discredit the crucial role of clean water provision.
Having access to safe drinking water is central to living a life in dignity and upholding
human rights [38]. However, it is problematic when resources are overly focused on WASH
interventions. During the major wave of the epidemic, when stakeholders chose not to
vaccinate the public but instead prioritized WASH [13]; and after the epidemic, when
humanitarian actors utilized the water-fighting system, Cholera Risk Model predictive
tool [15] without considering the endogenous feedback loops of cholera transmission. Such
policy is likely to result in the “Shifting the Burden” system archetype; relying on reactive
quick fixes that lead to unintended consequences of lower priorities and fewer resources
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for other interventions. For instance, vaccination provides three-year protection compared
to one-day protection from water provision.

One might argue that the water provision should eventually transition from emergency
water trucking or chlorine tablets to building water treatment plants. Nevertheless, such
a long-term WASH development strategy is not part of the emergency cholera response
model boundary. Additionally, such policy is not suitable in a conflict-affected context
where the infrastructures are intentionally being obliterated.

Fourth, sewage plant treatment can potentially be the leverage point for the silent
spreaders who make the cholera transmission harder to fight. The sensitivity test findings
highlight that the model is strongly (numerically) sensitive to changes in the value of
“bacteria shedding from asymptomatic cases” due to asymptomatic individuals having the
highest ratio (75%) among the total infected population. It is rather challenging to intervene
in this population at the individual level as they are asymptomatic. However, it is still
crucial to have intervention(s) targeting or controlling the impact from the silent spreaders.
One of the potential interventions is sanitation, such as sewage plant treatment.

The sensitivity test results also show that the model is strongly sensitive towards
sewage system treatment. Sewage management and food safety are two critical areas for
preparedness and response to the cholera outbreak. However, because these fields are not
mandated by the health care system or the WASH cluster, they are frequently overlooked
or dealt with ad hoc during the response [14,25]. This problem is also indicated by the lack
of cholera modeling literature on sewage treatment.

The highest numbers of cholera cases have been reported in areas with non-functional
sewage treatment plants [43]. Without functional sewage treatment plants, sewage effluents
are frequently diverted to impoverished neighborhoods and agricultural lands, contami-
nating shallow aquifers and wells used by local civilians and private tankers [1,26]. The
reuse of sewage effluents for irrigation is an essential alternative water source for Yemen.

Sewage treatment helps remove contaminants from sewage to produce effluent suit-
able for discharge to the surrounding environment or reuse [1,26,35]. For instance, farmers
in Yemen collect sewage effluent directly from stabilization ponds to irrigate various
crops [44]. A study by Al-Sharabee in 2009 (cited in Al-gheeti et al. [35]) reports that the
zone area near the Sana’a wastewater treatment plant depends upon the sewage effluents
for 95% of crop irrigation. However, Yemen’s current sewage effluent quality is generally
poor, since none of the existing sewage treatment plants produce effluents that comply
with the effluent quality regulations [44].

Although reports specifying project impact evaluation are uncommon in the published
literature [17], a well-maintained sewage treatment plant is assumed to produce effluents
that meet quality regulations, thereby improving sanitary conditions and reducing Vibrio
cholerae contamination in drinking water sources [1,26].

While this cholera response model is useful for clarifying policy problems and reshap-
ing mental models, it is just as important to be transparent regarding the model’s limitations,
assumptions, and boundary conditions. The cholera response model has several limitations,
many of which stem from data quality or availability problems when approximating or
estimating more detailed quantified representations of important dynamics. For instance,
a lack of information regarding the weight of various WASH intervention impacts on the
overall sanitary conditions in Al-Hudaydah. Sensitivity analysis has been used to provide
some insurance against such uncertainties. The model’s limitations nonetheless restrict the
quantitative precision of the model’s projections, which should be borne in mind when
interpreting its results. In other words, this cholera response model is not intended for
high-precision quantitative forecasting or prediction.

Regardless of the outlined limitations, this cholera response model has shown both
the compounding factors that exacerbate the epidemic and the operational dynamics in
controlling the epidemics. The model stresses the importance of distinct asymptomatic and
symptomatic reinforcing feedback loops, where interventions must target both. Most im-
portantly, the intervention starting time plays the essential role in controlling the epidemic.
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Lastly, the model identifies the unknown unintended consequences, such as ‘shifting the
burden’ from overly focused water provision intervention. To conclude, the model paves
the way for a more robust cholera response policy analysis in the future. The next steps
include further analysis of how each intervention impacts the epidemic control, building
a use-friendly model interface, and adapting the model to reflect cholera outbreaks in
other countries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/systems11010003/s1, Table S1 (Documentation) and Table S2
(Sensitivity Analysis). References [45–57] list in Supplementary Materials file.
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Abstract: Introduction: Worldwide health systems are being faced with unprecedented COVID-19-
related challenges, ranging from the problems of a novel condition and a shortage of personal
protective equipment to frequently changing medical guidelines. Many institutions were forced
to innovate and many hospitals, as well as telehealth providers, set up online forward triage tools
(OFTTs). Using an OFTT before visiting the emergency department or a doctor’s practice became
common practice. A policy can be defined as what an institution or government chooses to do or
not to do. An OFTT, in this case, has become both a policy and a practice. Methods: The study was
part of a broader multiphase sequential explanatory design. First, an online survey was carried out
using a questionnaire to n = 176 patients who consented during OFTT usage. Descriptive analysis
was carried out to identify who used the tool, for what purpose, and if the participant followed
the recommendations. The quantitative results shaped the interview guide’s development. Second,
in-depth interviews were held with a purposeful sample of n = 19, selected from the OFTT users
who had consented to a further qualitative study. The qualitative findings were meant to explain the
quantitative results. Third, in-depth interviews were held with healthcare providers and authorities
(n = 5) that were privy to the tool. Framework analysis was adopted using the five-factor framework
as a lens with which to analyze the qualitative data only. Results: The five-factor framework proved
useful in identifying gaps that affected the utility of the COVID-19 OFTT. The identified gaps could
fit and be represented by five factors: primary, secondary, tertiary, and extraneous factors, along with
a lack of systems thinking. Conclusion: A theory or framework provides a road map to systematically
identify those factors affecting policy implementation. Knowing how and why policy practice gaps
come about in a COVID-19 OFFT context facilitates better future OFTTs. The framework in this study,
although developed in a universal health coverage (UHC) context in South Africa, proved useful in
a telehealth context in Switzerland, in Europe. The importance of systems thinking in developing
digital tools cannot be overemphasized.

Keywords: utility; five-factor framework; policy gaps; COVID-19 OFTT; systems thinking

1. Introduction

Worldwide health systems are being faced with unprecedented COVID-19-related
challenges ranging from the problems of a novel condition and a shortage of personal
protective equipment to frequently changing medical guidelines [1]. Online forward triage
tools (OFTTs) facilitate the interaction between a user/human and a computer system and
gives a recommendation on what to do based on the input received [1–3]. Many institutions
were forced to innovate and many hospitals as well as telehealth providers set up online
forward triage tools (OFTTs) [1]. Using an OFTT before visiting the emergency department
or a doctor’s practice, therefore, became common practice.
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A policy is defined as what an institution or government chooses to do or not to
do [4]. The policy process is widely conceptualized as six stages: (1) problem emergence;
(2) agenda setting; (3) consideration of policy options; (4) decision-making; (5) implementa-
tion; (6) evaluation [5]. The policy cycle is also described as policy development, policy
communication, policy implementation, and policy evaluation [6]. In light of the above,
the COVID-19 OFTT is both a policy and a practice.

The SARS-CoV-2 pandemic accelerated the adoption of telehealth services, particularly
OFTTs [1,7,8]. OFTTs have been reported to reduce the health system burden, to inform
and direct patients toward the appropriate level of care, e.g., to test or not to test, how
to conduct self-care, as well as how to relieve anxiety [1,9]. The Inselspital, University
Hospital Bern, set up an OFTT, coronatest.ch, on 2 March 2020, to cope with the influx
of SARS-CoV-2 patients. The tool was updated regularly, based on the changing testing
criteria issued by the Swiss Federal Office of Public Health [1].

Due to the urgency of the situation, patients or potential tool users could not be
consulted during tool development but the tool was pilot-tested by ER physicians. With no
active advertisement, the tool was offered by the Inselspital hospital. It is noteworthy that
involving end users, policy implementers, and beneficiaries facilitates successful policy
implementation [10–12].

Evaluating policy implementation facilitates learning which in turn leads to success and
positive outcomes. Many OFTTs have however not been evaluated. Identifying frameworks
that work is the first step in that direction. A theory or framework provides a road map for
systematic evaluation, identifying factors that actors perceive as affecting implementation. We
utilized the five-factor framework as our analytic tool [11]. The purpose of this manuscript is
to assess the utility of the five-factor framework in identifying how and why policy–practice
gaps come about in a COVID-19 OFTT implementation context.

2. Methods
2.1. Context

The Emergency Department, Inselspital University Hospital Bern decided to set up
coronatest.ch, an OFTT, in March 2020. The assessment tool, coronatest.ch, was designed to
deal with an influx of patients during the SARS-CoV-2 pandemic.

2.2. Study Aim

The aim of the study was to assess the utility of the five-factor framework in identifying
how and why policy–practice gaps came about within the context of a COVID-19 online
forward triage tool.

2.3. Study Design

This study was part of a broader multiphase sequential explanatory study.
Participants included OFTT users aged 18 and above who used the Insel COVID-19

OFTT between 2 March and 12 May 2020. A total of 6272 users consulted the COVID-19
OFTT and quantitative data was collected from 560 participants, who consented to
a follow-up survey and provided valid email addresses. A total of n = 176 out of the
560 participants completed the online survey. First, a descriptive analysis was carried out
to identify who used the online tool and for what purpose, and if, indeed, they followed
the recommendations (see Table 1, below). The quantitative results guided the interview
guide development. Second, in-depth interviews were held with a purposeful sample,
n = 19, selected from the OFTT users who had consented to a further qualitative study.
The qualitative findings were meant to explain the quantitative results. Third, in-depth
interviews were held with healthcare providers and authorities (n = 5) who were privy to
the analytical tool due to their professional roles. Framework analysis was adopted, using
the five-factor framework as a lens, to analyze the qualitative data only.
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Table 1. The socio-demographic characteristics of the survey participants (quantitative data) [13].

Total (n = 176) Female (n = 101) Male (n = 75) p-Value *

Age [mean, SD] 50.1 [±15.4] 45.9 [±14.1] 55.7 [±15.4] <0.001
Education

Did not want to answer 6 [3.4] 3 [3.0] 3 [4.0]
University 120 [68.2] 67 [66.3] 53 [70.7]
Higher secondary school 27 [15.3] 17 [16.8] 10 [13.3]
Lower secondary school 23 [13.1] 14 [13.9] 9 [12.0] 0.871

Income per month
Did not want to answer 29 [16.5] 17 [16.8] 12 [16.0]
<4000 CHF 26 [14.8] 20 [19.8] 6 [8.0]
4000–6000 42 [23.9] 27 [26.7] 15 [20.0]
>6000 79 [44.9] 37 [36.6] 42 [56.0] 0.037

Work
Did not want to answer 33 [18.8] 14 [13.9] 19 [25.3]
Employed 106 [60.2] 64 [63.4] 42 [56.0]
Self-employed 24 [13.6] 13 [12.9] 11 [14.7]
Unemployed 3 [1.7] 3 [3.0] 0 [0.0]
Lost work (COVID-19) 1 [0.6] 1 [1.0] 0 [0.0]
Student/trainee 9 [5.1] 6 [5.9] 3 [4.0] 0.236

Insurance
Do not know 5 [2.8] 3 [3.0] 2 [2.7]
General 68 [38.6] 39 [38.6] 29 [38.7]
Telemedicine 12 [6.8] 6 [5.9] 6 [8.0]
GP 83 [47.2] 47 [46.5] 36 [48.0]
Other 8 [4.5] 6 [5.9] 2 [2.7] 0.859

Nationality
Did not want to answer 1 [0.6] 1 [1.0] 0 [0.0]
Switzerland 147 [83.5] 80 [79.2] 67 [89.3]
Germany 13 [7.4] 8 [7.9] 5 [6.7]
French 1 [0.6] 0 [0.0] 1 [1.3]
Italy 3 [1.7] 2 [2.0] 1 [1.3]
Other Europe 4 [2.3] 3 [3.0] 1 [1.3]
Other 7 [4.0] 7 [6.9] 0 [0.0] 0.202

* Chi-squared for categorical variables and Wilcoxon rank sum test for continuous variables; data are total number
and percentage if not mentioned otherwise

3. Qualitative Data Collection

The qualitative interviews were conducted with purposefully selected key informants
who gave their consent during the survey (see Table 2 below).

Table 2. Key informants (patients, healthcare providers, and authorities).

Key Informants Male Female Total

OFTT users—patients 10 9 19

Healthcare providers and authorities 1 4 5

Total 11 13 24

Video rather than face-to-face interviews were held with most participants in Septem-
ber 2020, due to social-distancing rules. A combination of video and telephonic inter-
views was conducted with three participants who encountered technical difficulties and
a telephone-only interview was held with one lady, aged over 65, who had no computer
access. Three face-to-face interviews were held with three key informants: one was
a hospital healthcare worker and two other key informants worked close to Bern Uni-
versity Hospital. A semi-structured interview guide, informed by the quantitative results,
was used (see Supplementary Materials Figures S1–S3). This guide was adapted iteratively
throughout the data collection period. Two qualitative researchers sat in each session,
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fielding questions in turn. All interviews were conducted in German by two researchers
who were fluent in both English and German. The interviews lasted between 45 min to
one and a half hours. Two audio recorders were used in each session. All participants gave
individual written consent as well as oral consent to their being recorded at the beginning
of each session (see Table 2 for a summary of the key informants).

Qualitative Data Analysis

All audio recordings were transcribed verbatim, analyzed, and triangulated with the
results from the quantitative data. Qualitative narratives were explored for their fit with
the five factors of the analytic framework [11]. Two qualitative researchers analyzed the
transcripts independently and developed and agreed on a code book. All the concepts
fitted into the five factor themes.

4. Measures to Ensure the Trustworthiness of the Data

To ensure dependability, the data collection process and analysis were performed
iteratively, continuously adjusting our interview guide to capture newly emerging themes.
Two qualitative researchers kept reflexive journals and debriefed at the end of each inter-
view throughout the data collection phase. A comprehensive description of the participants,
context, and data collection process has been outlined here to ensure transferability. Data
were managed and analyzed with the aid of MAXQDA2020.

4.1. Ethics Approval

Our study is embedded in an online forward triage tool set up by the Insel University
Hospital within a pandemic setting, primarily to prevent health-system overload. The
evaluation of the usefulness of this tool to the health stakeholders, patients, healthcare
providers, and health authorities was deemed to be a quality evaluation; hence, the ethics
committee of the province (canton) of Bern, Switzerland, waived the need for a full ethical
review (Req-2020-00289) on the 23 March 2020 and granted us permission to carry out
the study.

4.2. Central Questions

How well do the identified themes fit into the five-factor framework?
How well does the five-factor framework explain why and how the policy–practice

gaps came about?

4.3. The Five-Factor Framework [11]

A theory or framework provides a road map for systematically identifying those
factors perceived by all stakeholders as affecting implementation. With the aid of the
five-factor framework, we identified COVID-19 OFTT (coronatest.ch) policy gaps. This
framework, developed in a universal health coverage (UHC) context [11], goes beyond
identifying barriers and facilitators of policy to explain how and why these policy–practice
gaps came about.

4.4. Five Groups of Factors Identified as Bringing about Policy–Practice Gaps

(1) Primary factors stem from a direct lack of a critical component for policy imple-
mentation, whether tangible or intangible—resources, the policy itself, information,
motivation, power, and context;

(2) Secondary factors stem from a lack of efficient processes or systems, e.g., budget pro-
cesses, financial delegations, communication channels, top-down directives, supply
chains, supervision, and performance management processes;

(3) Tertiary factors stem from human factors—perception, cognition, and calculated
human responses to a lack of primary, secondary, and or extraneous factors as coping
mechanisms (ideal reporting and audit-driven compliance);
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(4) Extraneous factors stem from beyond the health system—economy, weather, climate,
and drought;

(5) An overall lack of systems thinking also brings about this type of gap. See Figure 1 below.
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5. Findings
5.1. Primary Factors Stemming from the Direct Lack of a Critical Component for Policy
Implementation, Whether Tangible or Intangible—Resources, Information, Motivation, and Power

The policy itself, regarding the use of OFTT to reduce the health-system burden, was
shown to be good in itself. Most of the participants, however, discovered the tool by chance,
as the tool itself was not advertised. There was no coordinated way of communicating the
tool’s availability to other healthcare providers either.

“The tool is meant for adults. A similar tool that is child-specific would be very helpful.”

Key informant 2 (healthcare provider)

The first OFTT, coronatest.ch, was adult-oriented and so child-specific information
was missing. The first interviews revealed this lack, which led to the birth of another
initiative, the launch of coronabambini, a child-specific OFTT [14].
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5.2. Secondary Factors Stemming from a Lack of Efficient Processes or Systems—Budget Processes,
Limited Financial Delegation, Top-Down Directives, Communication Channels, Supply-Chain
Processes, Ineffective Supervision, and Performance Management Systems

The availability of the OFTTs was not communicated widely; neither were they adver-
tised. Notwithstanding the communication challenge, many participants reported using the
tool and receiving the recommendation to be tested, only to be met with test-kit shortages.
Others reported that their GPs and pediatricians were not aware of the tool and so refused
to give them the test. Other healthcare providers reported that shortages in terms of test
availability prevented them from doing so.

“We did not have sufficient test kits at the beginning; we ran out and could not test.”

Key informant (healthcare provider)

5.3. Tertiary Factors Stemming from Human Factors—Perception and Cognition, and the
Calculated Human Responses to a Lack of Primary, Secondary, and/or Extraneous Factors as
Coping Mechanisms (Ideal Reporting and Audit-Driven Compliance with Core Standards)

The system is only as good as the people within the system. The GPs responded in
different ways when patients suspected that they had COVID-19, as revealed below:

“When I asked for a test, my GP told me that this is [a] hysterical [response], everyone
now thinks that they have COVID-19.”

Key informant (patient)

“What is interesting is that the GPs were open to testing children, while the pediatricians
refused [to test] the children.”

Key informant (patient)

5.4. Extraneous Factors Stemming from Beyond the Health System (National Vocational Training,
Leading to a National Shortage of Plumbers)

COVID-19, a novel infection, took the world by surprise. There was a lack of knowl-
edge of the disease signs and symptoms, progression, and even management. This made
the guidelines change frequently as a result, with sometimes conflicting information being
given, including those concerning mask mandates.

“The whole pandemic took us all by surprise.”

Key informant (health authority)

5.5. An Overall Lack of Systems Thinking

An OFTT is dependent upon other parts of the system, for example, the supply
chain, testing centers, and the readiness of the patients to follow recommendations. Fear,
social media, rumors, and disinformation, although not primarily health system factors,
also affected attitudes to OFTT testing recommendations. Some participants revealed
the following:

“Many people did not test for fear of a positive test result. They would rather not know.”

Key informant (patient)

6. Discussion

We assessed the utility of the five-factor framework in identifying how and why
policy–practice gaps came about within a COVID-19 online forward triage tool. The themes
that emerged from the qualitative data could fit into the five factors: primary, secondary,
tertiary, and extraneous factors, along with a lack of systems thinking, and helped explain
how and why policy–practice gaps come about in the context of a COVID-19 OFTT. See
Table 3 and Figure 1 above.
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Table 3. Summary of the emergent themes.

Theme Category Unit Meaning

1. Primary factors stemming from
a direct lack of a critical component
for policy implementation, tangible
or intangible—resources,
information, motivation, power

Policy communication
- Often, it was

not advertised

2. Secondary factors stemming from
a lack of efficient processes or
systems—budget processes, limited
financial delegations, top-down
directives, communication channels,
supply chain processes, ineffective
supervision, and performance
management systems

Supply chain challenges
Infrastructural
challenges

- Test kit shortages
- Laboratory

testing capacity

3. Tertiary factors stemming from
human factors—perception and
cognition and calculated human
responses to a lack of primary,
secondary, and or extraneous factors,
as coping mechanisms (ideal
reporting and audit-driven
compliance with core standards)

Human factors

- GPs told patients
that they are being
hysterical, they
cannot have
COVID-19

4. Extraneous factors stemming from
beyond the health system (national
vocational training, leading to
a national shortage of plumbers)

Factors beyond the
health system

- A novel condition;
therefore, no one
knew what to expect
with COVID-19

- Economic factors

5. An overall lack of systems thinking
The utility of the tool in
testing is affected by so
many factors

- Test kit shortages,
psychological
readiness to test, the
healthcare
provider’s trust
in the tool

6.1. Primary Factors Stemming from the Direct Lack of a Critical Component for Policy
Implementation, Whether Tangible or Intangible—Resources, Information, Motivation, and Power

The Inselspital Emergency Department responded to the high volumes of calls by
setting up an OFTT, so as to reduce the burden on the health system. Neither the health-
care providers nor the patients were involved in tool development. The tool itself was
not advertised and those that used the tool discovered it by chance, revealing an infor-
mation gap. This five-factor framework recommends the involvement of both policy-
makers and policy implementers and their beneficiaries, where appropriate, as a way of
achieving the buy-in and uptake of future tools. This shortcoming is also highlighted by
Greenhalgh et al. [15]. The communication of this policy, although closely related to policy
development, is, in itself, very important for successful policy implementation [15]. This
identified gap might have resulted in a low buy-in from healthcare providers and in some
patient groups who are not technology-aware being excluded.

6.2. Secondary Factors Stemming from a Lack of Efficient Processes or Systems-Budget Processes,
Limited Financial Delegations, Top-Down Directives, Communication Channels, Supply Chain
Processes, Ineffective Supervision, and Performance Management Systems

The five-factor framework revealed that healthcare providers were not involved, and
patients reported being refused a test by some doctors who were not aware of the tool
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and, hence, did not trust the recommendations affecting policy implementation (OFFT).
Shortages of test kits were reported at the beginning of the pandemic. This points toward
supply-chain issues, a secondary factor in the five-factor framework. The shortage of test
kits represents a supply-chain issue that affected the usefulness of the OFTT on testing,
since those who needed a test could not access one. In line with our findings, supply-chain
issues can impact policy implementation, either positively or negatively [16].

6.3. Tertiary Factors Stemming from Human Factors—Perception and Cognition and Calculated
Human Responses to a Lack of Primary, Secondary, and or Extraneous Factors as Coping
Mechanisms (Ideal Reporting and Audit-Driven Compliance with Core Standards)

The utility of the assessment tool in reducing the health-system burden was acknowl-
edged by patients, providers, and authorities. Some aspects, such as the utility of the tool in
relieving fear and anxiety, were acknowledged by patients but were disputed by healthcare
providers. Human factors play a role in implementation; being a patient or healthcare
provider changes how one perceives the utility of a tool [11,17]. The importance of human
factors in policy implementation cannot be overemphasized [18].

6.4. Extraneous Factors Stemming from beyond the Health System (National Vocational Training,
Leading to a National Shortage of Plumbers)

COVID-19 is a novel condition. Neither the authorities nor the clinicians had knowl-
edge of its pathology at the beginning of the outbreak, leading to ever-changing guidelines
and conflicting messages since there was no prior knowledge to fall back on. This underlies
the fact that some issues affecting implementation go far beyond the health system. In
addition, a number of OFTT users who received the recommendation to be tested for
COVID-19 did not go on to do so. Many cited the fear of losing income and possibly their
jobs, revealing how factors beyond the health system, such as economic factors, affected
OFTT implementation, concurring with the findings reported elsewhere [18]. Contrary
to our findings, OFTTs have been associated with risk aversion, resulting in increased
healthcare service use rather than the reduction of the healthcare system burden [19,20]. It
is worth highlighting that while as OFTTs can educate clients and provide information on
symptoms, they cannot talk to the patient, touch, feel, or look the patient in the eye, a vital
shortcoming that underlies the importance of the human factor in health care [20].

6.5. An Overall Lack of Systems Thinking

A proportion of people who received a recommendation to test did not do so. This
finding was associated with the psychological readiness of patients to test, which, in turn,
was influenced by the fear of receiving a positive test result. Even after resolving the
supply-chain issues, having the test kits alone did not resolve this issue, highlighting
the interconnectedness of things and the importance of systems thinking. Senge also
emphasizes the importance of systems thinking in policy implementation [21].

6.6. Strengths and Limitations

1. Our study tested the utility of a five-factor framework, thereby contributing to the
body of OFTT evaluation frameworks.

2. Knowing how and why policy practice gaps come about in a COVID-19 OFFT context
facilitates success in future and better OFTTs.

3. Our study demonstrated the importance of systems thinking in developing digital
tools and this importance cannot be overemphasized.

4. The key informants were sampled from online OFTT users. The perspectives of key
informants that do not have access to or do not use OFTTs are not represented.

Few OFTTs have been evaluated; one of the major stumbling blocks is a lack of OFTT
evaluation frameworks. Our study tested the utility of a five-factor framework, thereby
contributing to the body of OFTT evaluation frameworks. Identifying frameworks that
work is the first step. A theory or framework provides a road map for systematic evaluation,
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identifying those factors that actors perceive as affecting implementation. Knowing how
and why policy practice gaps come about in a COVID-19 OFFT context facilitates success
in future and better OFTTs. The five-factor framework, although developed in a universal
health coverage (UHC) context in South Africa, proved useful in identifying policy–practice
gaps in a COVID-19 OFTT used in Switzerland, in Europe. Our study demonstrated the
importance of systems thinking in developing digital tools and this cannot be overem-
phasized. The key informants in this study were sampled from online OFTT users. The
perspectives of key informants that do not have access to or do not use OFTTs are, thus,
not represented. To the best of our knowledge, this selection bias could not be prevented
due to data protection regulations, which impose voluntary participation and prohibit the
technically possible automatic tracking of participants.

7. Conclusions

The five-factor framework proved useful in identifying gaps that affected the util-
ity of the COVID-19 OFTT. The identified gaps could fit and be represented by the
five factors: primary, secondary, tertiary, and extraneous factors, along with a lack of
systems thinking. The framework, although developed in a universal health coverage
(UHC) context in South Africa, proved useful in a telehealth context in Switzerland, in
Europe. A theory or framework provides a road map to systematically identify those factors
affecting policy implementation [22]. Knowing how and why policy practice gaps came
about in a COVID-19 OFFT context facilitates success in future and better OFTTs. These
findings are encouraging, and we recommend that others should test this framework in
other settings and contexts to assess its utility in identifying how and why policy–practice
gaps come about. This is particularly important to address, as evidence repeatedly points
out that policies are rarely translated into practice [11,23–26].
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On the Relationships among Nurse Staffing, Inpatient Care
Quality, and Hospital Competition under the Global Budget
Payment Scheme of Taiwan’s National Health Insurance
System: Mixed Frequency VAR Analyses
Wen-Yi Chen

Department of Senior Citizen Service Management, National Taichung University of Science and Technology,
Taichung 403301, Taiwan; chenwen@nutc.edu.tw; Tel.: +886-422196932

Abstract: Background: Time series analyses on the relationship between nurse staffing and inpatient
care quality are rare due to inconsistent frequencies of data between common observations of nurse-
staffing (e.g., monthly) and inpatient care quality indicators (e.g., quarterly). Methods: In order to
deal with the issue of mixed frequency data, this research adopted the MF-VAR model to explore
causal relationships among nurse staffing, inpatient care quality, and hospital competition under
the global budget payment scheme of Taiwan’s healthcare system. Results: Our results identified
bi-directional causation between nurse staffing and patient outcomes and one-way Granger causality
running between nurse staffing and reimbursement payments for inpatient care services. Impulse-
response analyses found positive (negative) effects of the patient-to-nurse ratio on adverse patient
outcomes (reimbursement payments) in all types of hospitals and detrimental effects of adverse
patient outcomes on the patient-to-nurse ratio in medical centers and regional hospitals across a
12-month period. Conclusions: These findings suggest that nurse staffing is an essential determinant
of both patient outcomes and reimbursement payments. Strategic policies such as direct subsidy
and hospital accreditation for appropriate nurse staffing levels should be implemented for medical
centers and regional hospitals to mitigate the harmful effects of adverse patient outcomes on nurse
staffing.

Keywords: nurse staffing; inpatient care quality; hospital competition; Mixed Frequency VAR; global
budget payment scheme; National Health Insurance

1. Introduction

In their pioneering work on the relationship between hospital nurse staffing and pa-
tient outcomes and factors influencing nurse retention, Aiken and her colleagues identified
the patient-to-nurse ratio (PNR, hereafter) as an essential determinant of patient outcomes
and nurse retention [1]. A crucial conclusion of their study is that each additional patient
per nurse is associated with higher patient mortality in the US. Continuing this line of
research, one strand of studies provided evidence of the positive effect of hospital nurse
staffing levels on patient mortality worldwide, such as in Australia [2,3], Belgium [4],
Canada [5], Chile [6], England [7], Finland [8], Korea [9], Norway [10], Taiwan [11–13],
and a group of European and OECD countries [14–18]. Another strand of the literature
investigated the relationships between nurse staffing levels and various nursing-sensitive
patient outcomes such as fall, pressure ulcer, medication error, various infections, physical
restraint, missed observation, failure to respond to patients, length of stay, readmission to
hospitals, emergency department attendance, etc. [2,19–25].

It is important to address that hospital competition under a publicly financed health-
care system may create a vicious cycle. In general, the cycle starts with quantity competition
in inpatient care services leading to a high PNR and then further worsens patient outcomes
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or inpatient care quality (ICQ, hereafter). For example, Taiwan’s National Health Insurance
(NHI, hereafter) system is a publicly financed healthcare system delivering universal cov-
erage of healthcare services with moderate cost-sharing for all Taiwanese residents. The
beneficiaries of Taiwan’s NHI pay 5.17% of the payroll income for the regular insurance
premium rate and 2.11% of the non-payroll income (such as bonuses, part-time income,
professional service income, dividend income, interest income, and rental income) for a sup-
plementary premium rate [26]. Additionally, the covered benefits of Taiwan’s NHI system
include outpatient care, inpatient care, emergence department (ED, hereafter) care, dental
care, eye care, maternity delivery, physiotherapy and rehabilitation services, home health
care, chronic mental illness, prescription drugs, and traditional Chinese medicine [26].
Nevertheless, the copayment for the outpatient care (ED care) per visit varies from USD
1.67 (USD 5.00) to USD 14.00 (USD 18.33), and the co-insurance rate for inpatient care per
diem varied from 5% to 30% depending on various healthcare providers and the length of
stay, respectively [26].

As with other publicly financed healthcare systems such as the National Health
Services (NHS, hereafter) and Social Health Insurance systems (SHI, hereafter), it is ex-
pected that financial difficulty will be the most challenging issue under Taiwan’s NHI
system [26–29]. In order to constrain the upward trend in healthcare expenditure, the
Taiwan National Health Insurance Administration (NHIA, hereafter) applied the Global
Budget Payment Scheme (GBPS, hereafter) to reimburse for healthcare services in the
hospital sector since 2002 [26,30–32]. In general, the GBPS assigns a fixed total budget for
inpatient care services with hospitals being reimbursed on a fee-for-service basis, and it
follows that hospitals have strong incentives to compete with quantity rather than quality
of inpatient care services in order to obtain target revenues under a fixed total budget of
healthcare expenditure [26,30–32].

It is also important to point out that the hospital sector of Taiwan’s NHI system consists
of three different types of hospitals, these being district hospitals (delivering secondary
care), regional hospitals (providing tertiary care), and medical centers (handling the most
complicated illnesses and supporting teaching and research in clinical practices) [29,30]. In
order to prevent the negative effects of hospital (quantity) competition on patient outcomes
under the GBPS of Taiwan’s NHI system, Taiwan’s NHIA imposed a PNR mandate such
that the PNR of the day-shift should be below 7 for hospital wards in the three different
types of hospitals. Nonetheless, the mean PNR of the three shifts (i.e., day, afternoon, and
night shifts) within a daily cycle can legally vary from 9, 12, and 15 for hospital wards in
medical centers, regional hospitals, and district hospitals, respectively [33]. This mandated
PNR policy, in fact, is not restrictive, but flexible, for hospitals to adjust their nurse labor
force to cope with severe quantity competition of inpatient care services in the hospital
sector of Taiwan’s NHI system. Therefore, the most likely response of hospitals to market
(quantity) competition under the GBPS of Taiwan’s NHI system is to shift their PNRs
upward in order to maintain their own share of a fixed total budget [34]. It follows that a
heavier workload imposed on incumbent nurses would not only increase the likelihood
of nurses’ burnout but also worsen patient outcomes [1,35]. Therefore, a vicious cycle
originating from hospital (quantity) competition under the GBPS should be anticipated
which will deteriorate ICQ through inappropriate nurse staffing levels under Taiwan’s NHI
system.

From the perspective of preventing the vicious cycle triggered by hospital (quantity)
competition under the GBPS, the surveillance of PNR time series at hospital wards is an
important managerial strategy for the healthcare administration to use to maintain high
ICQ, better nursing work environments, and a reasonable inpatient care expenditure (ICE,
hereafter) to reimburse hospitals for their inpatient care services. Nevertheless, time series
analyses on the relationship between nurse staffing and patient outcomes are limited in the
literature. Some studies relating to the nurse staffing and patient outcomes nexus focused
on identifying potential structural changes in ICQ indicators due to initiating new nurse
staffing regulations [19,36], and other research applied conventional time series methodolo-
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gies (such as the trend and seasonality decomposition method and the latent growth model)
to investigate the determinant of patient outcomes and trajectory of ICQ indicators [37,38].
Although these time series studies provide some justification for nurse staffing as an im-
portant determinant of patient outcomes, these studies were not grounded in a time series
theoretical foundation with regards to three aspects: First, the causal linkage between nurse
staffing and patient outcomes cannot be established in these studies, especially for the
existence of bidirectional causality between these two variables. Second, these studies fail
to provide precautionary information in terms of the propagation mechanism of a nurse
staffing policy shock across a period of time. Third, a recent study proposed by Winter
and his colleagues cautioned against a potential data aggregation effect on estimations of
the nurse staffing and patient outcomes relationship [39]. Moreover, nurse staffing and
patient outcomes can be reported in different time frequencies. For example, variables for
nurse staffing and patient outcomes may be reported either monthly or quarterly. In order
to perform time series analyses with all variables being single frequency, these studies
aggregated high frequency data (e.g., monthly data) into low frequency data (e.g., quarterly
data). Such temporal aggregation was proven to have some adverse impacts on statistical
inferences of time series analyses [40,41].

In this study, we specifically investigate the interdependences between nurse staffing,
patient outcomes, and hospital competition under the GBPS of Taiwan’s NHI system. The
motivation of this study is three-fold: First, Taiwan has experienced a fast demographic
transition from an aging society to an aged society within 25 years (from the period of
1993~2018), and it is projected to become a hyper-aged country in 2025 [42]. The growth
of the aging population will burden Taiwan’s NHI system in terms of rising healthcare
expenditures. It can be expected that more stringent cost-containment policies will be
enforced to suppress an upward trend of healthcare expenditures, and it is predictable
that such policies would create an even more competitive market for hospitals. Second,
although Taiwan’s NHI system has been successful in providing comprehensive healthcare
services for all Taiwanese residents, the quality of healthcare services has been challenged
regarding various dimensions of the OECD Health Care Quality Indicator Project [43].
Third, the nurse labor participation rate (defined as the total number of incumbent nurses
divided by the total number of licensed nurses) has been around 60% since 2005, mean-
ing that approximately 40% of total licensed nurses are reluctant to engage in nursing
works [44]. It was reported that 89.76% of local hospitals had difficulty recruiting nurses in
Taiwan, and the shortage of nurses and the poor environment at nursing workplaces are
overwhelming problems negatively influencing the appropriate deployment of nursing
staffs in the hospital sector of Taiwan’s NHI system [34,45,46].

In order to incorporate mixed frequency data into the investigation of the causal
relationship between nurse staffing and patient outcomes under the GBPS of Taiwan’s NHI
system, we first adopted the Mixed Frequency Vector Auto-regressive (MF-VAR, hereafter)
model proposed by Ghysel and his colleagues [47,48] to test the causal linkages among
nurse staffing (measured by monthly PNR), patient outcomes (measured by two quarterly
ICQ indicators defined in the next section), and hospital (quantity) competition (measured
by quarterly real ICE per admission) based on three pairs of causal relationships: (1) PNR
leading ICQ versus ICQ leading PNR, (2) PNR leading ICE versus ICE leading PNR, and
(3) ICQ leading ICE versus ICE leading ICQ. The identification of these three pairs of causal
relationships allows us to establish potential mechanisms triggering the vicious cycle of
hospital competition under the GBPS of Taiwan’s NHI system.

In this study, the conventional VAR model based on the temporal aggregation of
mixed frequency data into single frequency data is referred to as the Low Frequency Vector
Auto-regressive (LF-VAR, hereafter) model. The MF-VAR model has several advantages
against the LF-VAR model from four aspects. First, the MF-VAR model incorporates a
high-frequency nurse staffing variable (i.e., monthly PNR used in this study) into the time
series analyses. This allows us to demonstrate heterogeneous effects on low frequency
variables reflecting patient outcomes (i.e., quarterly ICQ indicators) across the high fre-
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quency timescale (three months) within each low frequency time-span (say, one quarter
timespan) [40,47–49]. Second, the impulse-response functions (IRFs, hereafter) for the
mixed frequency data were estimated in order to capture the propagation mechanism of a
nurse-staffing policy (or patient outcomes) shock across a period of time, which can then
be used to evaluate the responses of ICQ indicators (PNR) on the change in PNR (ICQ
indicators). Third, forecast error variance decomposition analyses for the mixed frequency
data were conducted to show that an aggregation of monthly nurse staffing data into
quarterly data is likely to underestimate the influence of nurse staffing on patient outcomes.
Fourth, all statistical inferences from the MF-VAR model are based on the bootstrap method,
which is capable of accommodating the small sample size of data used in this study [40,49].
Therefore, the results obtained from the MF-VAR model provide new insights into the
linkages among nurse staffing, patient outcomes, and hospital competition under the GBPS
of Taiwan’s NHI system.

2. Materials and Methods
2.1. Data and Variables

The main purpose of this study is to explore the interdependences between nurse
staffing, patient outcomes, and hospital competition under the GBPS of Taiwan’s NHI
system. The average PNR of the three shifts (i.e., day, afternoon, and night shifts) of
the daily cycle at hospital wards was used to indicate the nurse staffing level. Taiwan’s
NHIA reports PNR monthly for the three different types of hospitals (i.e., medical centers,
regional hospitals, and district hospitals). The re-emergency-department-visit rate in the
same hospital within 3 days after discharge (hereafter, 3-day EDV rate) and the unplanned
readmission rate within 14 days after discharge (hereafter, 14-day readmission rate) were
suggested by Taiwan’s NHIA to measure ICQ under the GBPS of Taiwan’s NHI system [50].
In order to avoid inconsistencies in monetary values across different periods of time, the
real ICE per admission (adjusted by the medical price index based on the 2016 price level)
was used to measure reimbursement payments for inpatient care services provided by
the three different types of hospitals. Since the GBPS was applied to reimburse inpatient
care services, the real ICE per admission also serves as a measure of hospital (quantity)
competition in the hospital sector of Taiwan’s NHI system. Note that Taiwan’s NHIA
reported the two ICQ indicators and reimbursed healthcare services quarterly for the three
different types of hospitals. Hence, the quarterly data of ICQ indicators and the real ICE
per admission and monthly data of PNR were used for our empirical analyses.

Since all data used in this study belong to time series data, we need to deal with the
unit root property involved in time-series data in order to avoid spurious correlations
among nurse staffing, patient outcomes, and hospital (quantity) competition [27,30]. Pre-
vious studies utilized cyclical components extracted from time series data to obtain the
stationarity of time series [27]. Accordingly, we extracted the cyclic components of these
time series data through the Hodrick and Prescott filter method to assure the stationarity
of the time series [51]. Note that cyclic components of these time series data have two
important features: First, the long-run trend of times series was removed, so cyclic compo-
nents of these time series data have a zero mean without a time trend. Second, these cyclic
components are interpreted as the percentage deviating from the long-run trend of the
original time series. The aggregate cyclic component of PNR (used to estimate the LF-VAR
model) was computed as an average of the three individual cyclic components of PNR
across a 3-month cycle of a quarter timespan. All the data used in this study were obtained
from the Open Database of National Health Insurance administrated by Taiwan’s NHIA.
The data collection process was approved by the Research Ethics Committee of Taichung
Tzu Chi Hospital with the Certificate of Exempt Review ID: REC REC110-23. The quarterly
and monthly sample periods start from 2015: Q1 to 2021: Q4 and 2015: M1 to 2021: M12,
resulting in a total of 28 and 84 quarterly and monthly observations, respectively.
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2.2. VAR Models

The relationship between nurse staffing and patient outcomes can be represented by
the hospital production function below:

Qt = f (Lt, Kt, Et) (1)

where the ICQ indicator (Qt) is the output of a hospital production function. Lt and
Kt represent labor and capital inputs of a hospital production function, respectively. Et
measures the environmental factors such as hospital competition under the GBPS. The
labor (Lt) and capital (Kt) inputs of a hospital production function were measured by PNR,
and three different types of hospitals (such as district hospitals for secondary care, regional
hospitals for tertiary care, and medical centers for the most complicated sicknesses and
research and development for clinic practices) were used to control different levels of capital
inputs in a hospital production function. Hospital competition is signified by the real ICE
per admission under the GBPS of Taiwan’s NHI system. The same specification of hospital
production was used in previous studies on the association between nurse staffing and
patient outcomes [11–13]. Since the output and inputs of a hospital production function
are all endogenous in clinical practices, Equation (1) could be established as the MF-VAR
model as follows:
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where, given a fixed capital input of hospital production (e.g., medical centers, regional
hospitals, or district hospitals), Lit(i = 1,2,3) represents the PNR in the ith month of a quarter
timespan. Qt and Et signify the ICQ indicator and real ICE per admission, respectively.
t ∈ {1, 2, . . . , T} denotes each quarter during our study period. The lag length (`) was
selected based on the method proposed by Newey and West with the maximal lag set at 3
in order to capture the potential seasonal (or monthly) effect [52]. aij,k(i, j ∈ {1, 2, 3, 4, 5}
and k ∈ {1, 2, 3}) are the elements of the parameter matrix in the VAR system.εit(i = 1,2,..,5)
denote error terms. Since the cyclic components of these time series data were used for
the estimation of the MF-VAR model, the estimated parameters of constant terms in the
parameter matrix were skipped due to the zero mean property of the Hodrick and Prescott
filter method. The way we established our model specification in Equation (2) is the same as
for prior studies applying the MF-VAR model for time series analyses in the field of social
sciences [40,49]. The technical details of the notations in the parsimonious specification of
the MF-VAR model can be found in Ghysel’s study [47].

For the sake of model specification comparison between the MF-VAR and LF-VAR
models, it should be noted that the individual monthly PNRs (L1t, L2t, and L3t) are stacked
in a vector, and one of the possible relationships among PNR, ICQ, and real ICE per
admission can be expressed as the 4th low of Equation (2) as follows:

Qt =
`

∑
k=1

[
3

∑
j=1

a4j,kLj,t−k + a44,kQt−k + a45,kEt−k

]
+ ε4t (3)

As indicated in Equation (3), nurse staffing from each month (Lit, i = 1,2,3) has het-
erogeneous effects (a4j,k, j = 1,2,3) on ICQ. In contrast to the MF-VAR model, the model
specification of the LF-VAR model is given by Equation (4):
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where, Lt represents the quarterly PNR calculated as the average of monthly PNR (i.e.,
Lt = (L1t + L2t + L3t)/3). Other notations used in Equation (4) share the same definitions
as those used in Equations (2) and (3). Analogous to Equations (2) and (3), one of the
possible linkages among PNR, ICQ, and real ICE per admission can be written as the 2nd
low of Equation (4) as follows:

Qt =
3

∑
k=1

[
a21,k

(
1
3

3

∑
i=1

Li,t−k

)
+ a22,kEt−k + a23,kLt−k

]
+ ε2t (5)

The specification in Equation (5) implies that L1t, L2t, and L3t have a homogeneous
impact (a21,k/3) on ICQ (Qt), and, in turn, the possibilities of monthly effects and lagged
information transmission within each quarter are excluded from the LF-VAR model. Finally,
the MF-VAR model can be estimated in the same way as the LF-VAR model because these
two models share the same asymptotic theory. Nevertheless, the p values for testing the
causal (lead-lag) relationships among PNR, ICQ, and real ICE per admission and confidence
intervals of IRFs were generated by the bootstrap method due to a small size of samples
used in this study.

2.3. Granger Causality Tests

Since all variables establishing a hospital production function are endogenous in
clinical practices, the assumption of the interdependence of variables is fulfilled to specify
our MF-VAR model and apply the mixed frequency Granger causality tests to investigate
the lead-lag relationships among nurse staffing, patient outcomes, and hospital competition.
In order to introduce mixed frequency Granger causality tests, we rewrote Equation (2) in
the following matrix form:

Xt =
`

∑
k=1

AkXt−k + εt (6)

where, Xt = (L1t, L2t, L3t, Qt, Et)
′, εt = (ε1t, ε2t, ε3t, ε4t, ε5t)

′, and At is the parameter matrix
comprised of elements aij,k = Ak(i, j),i, j ∈ {1, 2, 3, 4, 5}, and k ∈ {1, 2, 3}. The joint zero
hypothesis specified by Ak(i, j) = 0,i 6= j postulates a non-causal linkage running from
variable j to variable i. The Wald test statistic derived from Ghysel and his colleagues [48]
was used to test for this hypothesis. Nonetheless, previous studies [48,49] indicated that the
asymptotic distribution of the Wald statistic under the null hypothesis of non-causality from
the MF-VAR model suffers from a severe size distortion with a small sample size. Therefore,
the heteroscedasticity-robust parametric bootstrap method with 10,000 repetitions proposed
by Gonçalves and Kilian [53] was used for calculating p values in order to accommodate
size distortion and potential heteroscedasticity under the MF-VAR model, as suggested
by Ghysel and his colleagues [48]. Six causal linkages among PNR, ICQ, and real ICE
per admission (these being PNR leading ICQ, ICQ leading PNR, PNR leading ICE, ICE
leading PNR, ICQ leading ICE, and ICE leading ICQ) were examined using the Granger
causality tests. The investigation of these six causal relationships allows us to understand
potential mechanisms activating the vicious cycle of hospital competition under the GBPS
of Taiwan’s NHI system.

2.4. Impulse-Response and Variance Decomposition

Once the causal relationships among nurse staffing, patient outcomes, and hospital
competition were justified using the Granger causality tests, then the impulse response
effect of a standard error shock in the jth element of Xt at time t on Xt+h could be expressed
as follows:

IRF(h) = σ−0.5
jj AhΩej for h = 1, 2, 3, . . . , 12 (7)

where Ω is the variance-covariance matrix in the MF-VAR system, and σjj is the variance
elements in the Ω matrix. ej is an indicator vector where its jth element equals one. We
plotted the impulse-response relationships among PNR, ICQ, and real ICE per admission
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based on the Granger causality tests, and the 90% confidence intervals of the IRFs were
constructed using the Monte Carlo simulation method with 10,000 repetitions in order
to investigate whether or not the estimated impulses are statistically significant at the
10% significance level. The forecast error variance decompositions for both LF-VAR and
MF-VAR models were conducted following the estimation of the IRFs in Equation (6).
Note that the estimation of Equation (7) involves a selection of the Cholesky order. The
Cholesky orders for the LF-VAR and MF-VAR models were established as Lt → Qt → Et
and L1t → L2t → L3t → Qt → Et , respectively. These settings comply with the process of
reimbursement paid for inpatient care services in the hospital sector under the GPBS of
Taiwan’s NHI system.

3. Results
3.1. Descriptive Statistics

Table 1 summarizes the descriptive statistics for the monthly PNR and quarterly real
ICE per admission, 3-day EDV rate, and 14-day readmission rate for medical centers,
regional hospitals, and district hospitals over the period of 2015:Q1–2021:Q4. As indicated
in Table 1, means of the 3-day EDV rate (14-day readmission rate) for medical centers,
regional hospitals, and district hospitals were 2.489% (6.428%), 2.814% (7.259%), and 2.599%
(7.460%), respectively. The real ICE per admission on average varied from USD 2629.971,
USD 1826.339, and USD 1679.079, corresponding to payments reimbursed for inpatient
care services per admission for medical centers, regional hospitals, and district hospitals,
respectively. In addition, the average PNR at hospital wards ranging from the lowest
to highest were 7.436 at medical centers, 7.573 at district hospitals, and 9.261 at regional
hospitals, and variations of average PNR at hospital wards were found within a quarter
timescale. The highest (lowest) average PNR at hospital wards in the three different types
of hospitals appeared in the first (second) month within a quarter timescale. In addition,
the Jarque-Bera statistics were used to test the null hypothesis of normality of time series
data, and some time series such as real ICE per admission at medical centers and district
hospitals, and PNR at acute care wards of regional and district hospitals, were identified to
be inconsistent with the normality assumption. These findings validated the application of
bootstrap methods to estimate our empirical models. The trends of all variables used in
this study can be found in Appendix A, and the median and interquartile range (IQR) are
also reported in Table 1.

Table 1. Descriptive Statistics
1
.

Panel A: Quarterly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Re-emergency-department-visit rate
in the same hospital within 3 days after

discharge at medical centers
(

EDVMC : %
) 2.489 0.139 2.483 0.149 2.807 2.208 0.077

Re-emergency-department-visit rate
in the same hospital within 3 days after

discharge at regional hospitals
(

EDVRH : %
) 2.814 0.170 2.832 0.202 3.199 2.504 0.396

Re-emergency-department-visit rate
in the same hospital within 3 days after

discharge at district hospitals
(

EDVDH : %
) 2.559 0.175 2.539 0.246 2.918 2.241 0.723
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Table 1. Cont.

Panel A: Quarterly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Unplanned re-admission rate
within 14 days after

discharge at medical centers
(

RADMC : %
) 6.428 0.241 6.467 0.411 6.871 6.103 1.860

Unplanned re-admission rate
within 14 days after

discharge at regional hospitals
(

RADRH : %
) 7.259 0.228 7.239 0.413 7.675 6.947 2.198

Unplanned re-admission rate
within 14 days after

discharge at district hospitals
(

RADDH : %
) 7.460 0.256 7.473 0.303 7.983 6.772 0.705

Inpatient care expenditure per admission

at medical centers
(

ICEMC :USD, Constant

at 2016 price level, USD 1 = TWD 30 )

2629.971 179.855 2589.845 200.537 3078.093 2401.06 6.270 *

Inpatient care expenditure per admission at

regional hospitals
(

ICERH :USD, Constant

at 2016 price level, USD 1 = TWD 30 )

1826.339 139.494 1795.955 182.638 2146.892 1649.037 4.762

Inpatient care expenditure per admission at

district hospitals
(

ICEDH :USD, Constant

at 2016 price level, USD 1 = NTD 30 )

1679.079 97.236 1645.423 99.390 1943.214 1587.140 13.179 **

Panel B: Monthly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Patient-to-nurse ratio at acute care
wards of medical centers

(
PNRMC )

7.436 0.256 7.434 0.388 7.880 6.706 0.809

Patient-to-nurse ratio at acute care wards
of medical centers in the 1st month
of the observed quarter

(
PNRMC

1 )
7.474 0.251 7.478 0.347 7.866 7.018 1.309

Patient-to-nurse ratio at acute care wards
of medical centers in the 2nd month
of observed quarter

(
PNRMC

2 )
7.394 0.242 7.375 0.329 7.798 6.788 0.245

Patient-to-nurse ratio at acute care wards
of medical centers in the 3rd month
of observed quarter

(
PNRMC

3 )
7.439 0.275 7.466 0.386 7.880 6.706 0.930

Patient-to-nurse ratio at acute care wards
of regional hospitals

(
PNRRH )

9.261 0.365 9.365 0.393 10.007 7.649 75.585 **

Patient-to-nurse ratio at acute care wards
of regional hospitals in the 1st

month of observed quarter
(

PNRRH
1 )

9.292 0.349 9.420 0.387 9.906 8.201 10.223 **

Patient-to-nurse ratio at acute care wards
of regional hospitals in the 2nd month

of observed quarter
(

PNRRH
2 )

9.205 0.325 9.202 0.507 9.928 8.568 0.288

Patient-to-nurse ratio at acute care wards
of regional hospitals in the 3rd month

of observed quarter
(

PNRRH
3 )

9.286 0.421 9.372 0.315 10.007 7.649 68.002 **
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Table 1. Cont.

Panel B: Quarterly Data
Description Mean Standard

Deviation Median IQR Max Min JB Stat

Patient-to-nurse ratio at acute care wards
of district hospitals

(
PNRDH )

7.573 0.399 7.602 0.314 8.314 5.943 51.089 **

Patient-to-nurse ratio at acute care wards
of district hospitals in the 1st month

of observed quarter
(

PNRDH
1 )

7.605 0.392 7.614 0.337 8.314 6.333 13.500 **

Patient-to-nurse ratio at acute care wards
of district hospitals in the 2nd month

of observed quarter
(

PNRDH
2 )

7.524 0.356 7.541 0.410 8.309 6.733 0.259

Patient-to-nurse ratio at acute care wards
of district hospitals in the 3rd month

of observed quarter
(

PNRDH
3 )

7.589 0.453 7.669 0.314 8.295 5.943 38.238 **

3.2. Unit Root Tests

It is worth addressing that the PNR, ICQ, and real ICE per admission are time series
data that are likely to have the unit root property. As shown in Table 2, the ADF tests with
constant and with constant plus trend specifications identified non-stationary time series
of real ICE per admission at the three different types of hospitals. In addition, the ADF
tests with constant plus trend specification suggest that the time series of the two ICQ
indicators were non-stationary except for the 14-day readmission rate at district hospitals.
The presence of the unit roots of the 3-day EDV rate (14-day readmission rate) at regional
hospitals (medical centers and regional hospitals) was found using the ADF tests with
constant specification. Contrarily, the ADF tests with constant and with constant plus
trend specifications identified stationary time series of PNR at the three different types of
hospitals. These findings suggest that the order of time series data on PNR, the two ICQ
indicators, and real ICE per admission is likely to be different at the three different types of
hospitals. Since the cyclic components of these time series removed the long-run tendency
of time series with zero means, the ADF tests without constant and trend specification were
used to test for the unit root property of cyclic components of time series. As we expected,
the stationarity of cyclic components of time series for the three different types of hospitals
was confirmed. These findings eliminate spurious correlations among all variables used in
this research from the unit root property of time series. Therefore, we were able to proceed
with the Granger Causality tests with the cyclic components of these variables.

3.3. Granger Causality Tests

Table 3 presents the results of the Granger causality tests under the MF-VAR model
for the six causal relationships among ICQ, PNR, and real ICE per admission at the three
different types of hospitals during our study period. Mixed frequency data were used for
the Granger causality tests. As such, it is vital to understand that the causality running from
the low frequency variable to the high frequency variable means causality running from a
quarterly variable to a group of three individual monthly variables [40,48,49]. In addition,
the asymptotic distribution of the Wald statistic under the null hypothesis of non-causality
in the MF-VAR model has a severe size distortion due to a small sample size [40,48,49].
Because of this, p values were generated using the heteroscedasticity-robust parametric
bootstrap method introduced by Gonçalves and Kilian [53] with 10,000 replications.
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Table 2. ADF Unit Root Tests
2
.

Panel A: Quarterly Data
Levels Cyclical Components

Mean Standard
Deviation

Constant
(C)

Constant+
Trend (T) Mean Standard

Deviation
Without

C+T

ln
(

EDVMC
)

0.911 0.056 −3.473 * −3.405 0.000 0.052 −3.952 **

ln
(

EDVRH
)

1.033 0.060 −2.329 −3.330 0.000 0.050 −3.874 **

ln
(

EDVDH
)

0.937 0.068 −3.247 * −3.341 0.000 0.060 −3.917 **

ln
(

RADMC
)

1.860 0.038 −2.518 −2.455 0.000 0.033 −2.904 **

ln
(

RADRH
)

1.982 0.031 −2.698 −3.462 0.000 0.025 −3.719 **

ln
(

RADDH
)

2.009 0.035 −3.370 * −4.306 * 0.000 0.031 −4.250 **

ln
(

ICEMC
)

7.873 0.066 0.036 −2.412 0.000 0.025 −4.347 **

ln
(

ICERH
)

7.507 0.074 1.087 −1.824 0.000 0.025 −3.164 **

ln
(

ICEDH
)

7.424 0.056 0.676 −1.303 0.000 0.024 −2.221 *

Panel B: Monthly Data
Levels Cyclical Components

Mean Standard
Deviation

Constant
(C)

Constant+
Trend (T) Mean Standard

Deviation
Without

C+T

ln
(

PNRMC
)

2.006 0.035 −4.253 ** −4.611 ** 0.000 0.027 −5.740 **

ln
(

PNRRH
)

2.225 0.041 −4.434 ** −4.596 ** 0.000 0.035 −5.397 **

ln
(

PNRDH
)

2.023 0.055 −3.434 * −5.079 ** 0.000 0.037 −5.515 **

Panel C: Aggregate Monthly Data
Levels Cyclical Components

Mean Standard
Deviation

Constant
(C)

Constant+
Trend (T) Mean Standard

Deviation
Without

C+T

∑3
t=1 C_ ln(PNR MC

t )/3 ——– ——– ——– ——– 0.000 0.057 −5.383 **
∑3

t=1 C_ ln(PNR RH
t )/3 ——– ——– ——– ——– 0.000 0.071 −6.482 **

∑3
t=1 C_ ln(PNR DH

t )/3 ——– ——– ——– ——– 0.000 0.073 −2.231 *

Table 3. Granger Causality Tests
3
.

Panel A: Re-Emergency-Department-Visit Rate in the Same Hospital within 3 Days after Discharge as the Quality of Care Indicator

Types of MF-VAR Model LF-VAR Model
Hospitals Null Hypothesis χ2 p Value Null Hypothesis χ2 p Value

EDV 6=> PNR 10.935 0.090 * EDV 6=> PNRA 1.977 0.372
ICE 6=> PNR 3.213 0.782 ICE 6=> PNRA 2.346 0.309

Medical PNR 6=> EDV 16.029 0.014 ** PNRA 6=> EDV 3.075 0.215
Centers ICE 6=> EDV 3.254 0.776 ICE 6=> EDV 2.841 0.242

PNR 6=> ICE 14.095 0.029 ** PNRA 6=> ICE 1.291 0.524
EDV 6=> ICE 14.635 0.023 ** EDV 6=> ICE 7.013 0.030 **
EDV 6=> PNR 12.035 0.061 * EDV 6=> PNRA 0.520 0.771
ICE 6=> PNR 4.706 0.582 ICE 6=> PNRA 5.716 0.057 *

Regional PNR 6=> EDV 13.365 0.038 ** PNRA 6=> EDV 3.121 0.210
Hospitals ICE 6=> EDV 6.021 0.421 ICE 6=> EDV 3.564 0.168

PNR 6=> ICE 18.311 0.005 *** PNRA 6=> ICE 1.871 0.392
EDV 6=> ICE 4.700 0.583 EDV 6=> ICE 0.366 0.833
RER 6=> PNR 8.592 0.198 EDV 6=> PNRA 0.557 0.757
ICE 6=> PNR 4.797 0.570 ICE 6=> PNRA 4.162 0.125

District PNR 6=> EDV 12.614 0.049 ** PNRA 6=> EDV 5.049 0.080 *
Hospitals ICE 6=> EDV 2.749 0.840 ICE 6=> EDV 0.540 0.763

PNR 6=> ICE 13.519 0.035 ** PNRA 6=> ICE 1.438 0.487
RER 6=> ICE 7.127 0.309 EDV 6=> ICE 5.761 0.056 *
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Table 3. Cont.

Panel B: Unplanned Re-Admission Rate within 14 Days after Discharge as the Quality of Care Indicator

Types of MF-VAR Model LF-VAR Model
Hospitals Null Hypothesis χ2 p Value Null Hypothesis χ2 p Value

RAD 6=> PNR 8.933 0.177 RAD 6=> PNRA 5.054 0.080 *
ICE 6=> PNR 6.004 0.423 ICE 6=> PNRA 4.763 0.092 *

Medical PNR 6=> RAD 7.822 0.251 PNRA 6=> RAD 6.941 0.031 **
Centers ICE 6=> RAD 8.972 0.175 ICE 6=> RAD 7.418 0.024 **

PNR 6=> ICE 13.079 0.042 ** PNRA 6=> ICE 2.848 0.241
RAD 6=> ICE 4.386 0.625 RAD 6=> ICE 1.159 0.560
RAD 6=> PNR 9.952 0.127 RER 6=> PNRA 0.281 0.869
ICE 6=> PNR 5.990 0.424 ICE 6=> PNRA 3.839 0.147

Regional PNR 6=> RAD 8.200 0.224 PNRA 6=> RAD 6.799 0.033 **
Hospitals ICE 6=> RAD 8.635 0.195 ICE 6=> RAD 4.140 0.126

PNR 6=> ICE 13.674 0.033 ** PNRA 6=> ICE 3.684 0.158
RAD 6=> ICE 3.943 0.684 RER 6=> ICE 2.161 0.339
RAD 6=> PNR 13.511 0.036 ** RER 6=> PNRA 1.753 0.416
ICE 6=> PNR 8.614 0.196 ICE 6=> PNRA 4.366 0.113

District PNR 6=> RAD 4.441 0.617 PNRA 6=> RAD 2.971 0.226
Hospitals ICE 6=> RAD 5.582 0.472 ICE 6=> RAD 1.988 0.370

PNR 6=> ICE 12.169 0.058 * PNRA 6=> ICE 1.653 0.438
RAD 6=> ICE 2.303 0.890 RER 6=> ICE 0.765 0.682

Panel A of Table 3 displays the Granger causality tests for the six causal relationships
among the 3-day EDV rate, PNR, and real ICE per admission at the three different types
of hospitals. In contrast to little significance in the causal relationships identified by the
LF-VAR model, the MF-VAR model identified bidirectional causation between PNR and the
3-day EDV rate at medical centers and regional hospitals, and one-way causality running
from PNR to the 3-day EDV rate at district hospitals at the 10% (or stricter) significance
level. In addition, a causal relationship running from PNR to real ICE per admission was
identified for the three different types of hospitals, and another unidirectional causality
running from the 3-day EDV rate to real ICE per admission was also detected for medical
centers. In addition, Panel B of Table 3 reports results of the Granger causality tests
for the six causal relationships among the 14-day readmission rate, PNR, and real ICE
per admission at the three different types of hospitals. Although the LF-VAR model
identified several causal relationships among the 14-day readmission rate, PNR, and real
ICE per admission, previous studies addressed a potential aggregation bias in the statistical
inferences of the LF-VAR model [40,47–49]. Therefore, we focused on the results of the
Granger causality tests under the MF-VAR model. As indicated in Panel B of Table 3,
the MF-VAR model identified one-way causal relationships running PNR to real ICE per
admission at the three different types of hospitals. These findings are consistent with the
causal linkage running from PNR to real ICE per admission as reported in Panel A of Table 3.
Additionally, unidirectional Granger causality running from the 14-day readmission rate to
PNR was also identified at district hospitals only.

3.4. Impulse-Response Analyses

Since the causal relationships among PNR, ICQ, and real ICE per admission were
verified by the Granger causality tests under the MF-VAR model for Taiwan’s NHI system
over the period of 2015:Q1–2021:Q4, we further plotted the mixed frequency IRFs to
illustrate the propagation mechanism of interdependences between PNR, ICQ, and real
ICE per admission across a 12-month period. As indicated in Figure 1, significantly positive
(negative) responses of the 3-day EDV rate to a positive PNR shock in the first month of
a quarter timespan were identified at the first and eighth (second) month horizons over
a 12-month period for regional hospitals (see Figure 1(b1), and a significantly positive
impulse-response relationship between the 3-day EDV rate and PNR in the first month of a
quarter timespan was found at the first month horizon over a 12-month period for district
hospitals (see Figure 1(c1)).
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The significantly positive effect of PNR in the second month of a quarter timespan
on the 3-day EDV rate was found at the first month horizon over a 12-month period for
medical centers (see Figure 1(a2)). Nonetheless, the impulse-response relationship between
the 3-day EDV rate and PNR in the second month of a quarter timespan was identified as
significantly positive at the first month horizon but negative at the sixth month horizon
over a 12-month period for regional hospitals (see Figure 1(b2)). Additionally, the responses
of the 3-day EDV rate to a positive PNR shock in the third month within a quarter timespan
were significantly negative (positive) at the first and sixth (seventh) month horizon over
a 12-month period for district hospitals (see Figure 1(b3)). Despite asymmetric impulse-
response effects of PNR on the 3-day EDV rate being found, the positive effects of PNR
on the 3-day EDV rate dominated the negative effects across a 3-month cycle of a quarter
timespan for all three types of hospitals.

As shown in Figure 1(d1,e1), the responses of PNR in the first month of a quarter
timespan to a positive shock in the 3-day EDV rate were significantly negative (positive) at
the second (eighth) month horizon over a 12-month period for medical centers (regional
hospitals). The significantly positive responses of PNR in the second month of a quarter
timespan to a positive shock in the 3-day EDV rate were found at the third and fourth
month horizons over a 12-month period for medical centers (see Figure 1(d2)). The impulse-
response relationship between the 3-day EDV rate and PNR in the third month of a quarter
timespan was negative at the second, third, and seventh month horizons, but it was
identified to be positive at the fourth and eighth month horizons over a 12-month period
for regional hospitals (see Figure 1(e3)). Although a changing impulse-response relationship
between the 3-day EDV rate and PNR was identified, as shown in Figure 1(d1,d2,e1,e3),
the negative effects of the 3-day EDV rate on PNR were dominated by the positive effect
across a 3-month cycle of a quarter timespan for medical centers and regional hospitals.
Nevertheless, the impulse-response relationship between 14-day readmission and PNR
across a 3-month cycle of a quarter timespan did not generate any significant results for
district hospitals.

The impulse-response relationships between PNR and real ICE per admission for the
three different types of hospitals are illustrated in Figure 2 in Panels A and B, which, respec-
tively, correspond to the 3-day EDV rate and 14-day readmission rate used to measure ICQ
in the estimation of the MF-VAR model. No matter which ICQ indicator was selected, the
responses of real ICE per admission to PNR in the second month of a quarter timespan were
identified as significantly negative around the third, fourth, and fifth month horizons over
a 12-month period for regional hospitals and district hospitals (see Figure 2(b2,c2,e2,f2)).
The effects of PNR in the second month of a quarter timespan on real ICE per admission
were determined to be significantly negative at the third month horizon and positive at the
sixth month horizon over a 12-month period for medical centers (see Figure 2(d2)).
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The impulse-response relationship between real ICE per admission and PNR in the
first month of a quarter timespan was found to be significantly positive around the first
and second month horizons and negative around the fourth and fifth month horizons over
a 12-month period for regional hospitals (Figure 2(b1,e1)). Figure 2(b3,e3) illustrates a
significantly negative impulse-response relationship between real ICE per admission and
PNR in the third month of a quarter timespan around the third and fourth month horizons
over a 12-month period for regional hospitals. The responses of real ICE per admission
on PNR in the first (third) month of a quarter timespan were found to be significantly
negative at the fourth (ninth) month horizon and positive at the first and seventh (sixth)
month horizons over a 12-month period for district hospitals (Figure 2(f1,f3)). Despite an
asymmetric relationship between real ICE per admission and PNR across a 3-month cycle
of a quarter timespan being found, the negative effects of PNR on real ICE per admission
across a 3-month cycle of a quarter timespan dominated the positive effects for all three
types of hospitals.

3.5. Variance Decomposition

Table 4 presents two sets of the forecast error variance decompositions based on
whether the 3-day EDV rate or 14-day readmission rate were used to serve as the ICQ
indicator in the estimation of the LF-VAR and MF-VAR models. As indicated in Table 4, the
proportions of forecast error variance of the ICQ indicator attributed to the PNR within a
3-month cycle of a quarter timespan (i.e., PNR = ΣPNRi) in the MF-VAR model for medical
centers are 1.61~4.58 (=21.70/13.46~37.20/8.13), 1.55~3.81(=45.87/29.53~44.06/11.56), and
1.62~3.77 (=46.45/27.73~46.80/12.40) times higher than those attributed to an aggregation
of PNR (i.e., PNRA) in the LF-VAR model in the short-run (h = 2), medium-run (h = 7),
and long-run (h = 12), respectively, based on whether the 3-day EDV rate or 14-day
readmission rate was chosen to measure ICQ. In addition, the proportions of forecast
error variance of the real ICE per admission attributed to the PNR within a 3-month cycle
of a quarter timespan (i.e., PNR = ΣPNRi) in the MF-VAR model for medical centers are
1.24~1.36 (=74.07/59.63~73.87/54.34), 1.50~1.65 (=70.93/47.18~71.88/43.48), and 1.60~1.69
(=73.91/46.16~74.71/44.12) times higher than those attributed to the aggregation of PNR
(i.e., PNRA) in the LF-VAR model in the short-run (h = 2), medium-run (h = 7), and long-run
(h = 12), respectively, based on whether the 3-day re-EDV rate or 14-day readmission rate
was chosen to measure ICQ. Similar results, wherein the MF-VAR model generated a higher
explanatory power than the LF-VAR model, could also be found for the relationships
among PNR, ICQ, and real ICE per admission for regional hospitals and district hospitals.
Therefore, the findings of the forecast error variance decompositions shown in Table 4
indicate that the MF-VAR model has a greater explanatory power than the LF-VAR model
in the investigation of interdependences between PNR, ICQ, and real ICE per admission
for the three different types of hospitals.
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4. Discussion

Two unidirectional causal propositions can be justified by looking at the causal rela-
tionships among PNR, the two ICQ indicators (i.e., 3-day EDV rate and 14-day readmission
rate), and real ICE per admission identified by the Granger causality tests under the MF-
VAR model. The PNR leading ICE proposition postulates that PNR leads real ICE per
admission, and the EDV leading ICE proposition claims that the 3-day EDV rate leads real
ICE per admission. The former proposition was substantiated by data from the three differ-
ent types of hospitals, and the latter proposition was only verified by data from medical
centers. In addition, the Granger causality tests also confirmed a feedback proposition
for PNR and ICQ claiming bidirectional causation between PNR and the 3-day EDV rate
in medical centers and regional hospitals. Additionally, the PNR leading 3-day EDV rate
proposition (stating that PNR leads the 3-day EDV rate) and the 14-day readmission rate
leading PNR proposition (asserting that the 14-day readmission rate leads PNR) were
corroborated for district hospitals.

In general, four mechanisms activating the vicious cycle of hospital competition are
implied by these propositions. First, the PNR origin mechanism suggests that a high PNR
(i.e., a poor nurse staffing level) not only worsens the 3-day EDV rate but also reduces real
ICE per admission (see Figure 3(a1)). Second, the EDV origin mechanism indicates that a
higher 3-day EDV rate influences both real ICE per admission and PNR (see Figure 3(a2)).
Third, the EDV rebound mechanism alludes that the 3-day EDV rate results in a higher PNR
leading to decreased real ICE per admission (see Figure 3(a3)). Fourth, the readmission
rebound mechanism points to the 14-day readmission rate causing a higher PNR which
leads to a reduction in real ICE per admission (see Figure 3(a4)). The statistical significances
of the signs and paths connecting PNR, the two ICQ indicators (i.e., 3-day EDV rate and
14-day readmission rate), and real ICE per admission (underpinning the four mechanisms
described above) were determined based on the impulse-response analyses illustrated in
Figures 1 and 2. Several policy implications emerging from this work have merit and are
worth being discussed as follows:
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First, as indicated in Figure 3(a1), the PNR origin mechanism was observed in all
three different types of hospitals, but the EDV origin mechanism is suitable for medical
centers only. The EDV (readmission) rebound mechanism was found in medical centers
and regional hospitals (district hospitals). Therefore, the PNR not only qualifies as an
important determinant of patient outcomes, but it also serves as both a key factor and
mediator influencing real ICE per admission for the three different types of hospitals. In
general, a positive impact on PNR increases the 3-day EDV rate but decreases real ICE
per admission in all types of hospitals based on the impulse-response analyses over a
12-month period (see Figure 1, Figure 2, and Figure 3(a1)). These findings were consistent
with results from previous studies on the relationship between nurse staffing and patient
outcomes [1–25,35].

Second, it is important to note that the impulse-response relationship between the
3-day EDV rate and real ICE per admission was not significant based on the impulse-
response analyses over a 12-month period. (see Figure 2(a4) and Figure 3(a2)). Therefore, we
focus on the two rebound mechanisms for our discussion. As illustrated in Figure 3(a3,a4),
we found that the rebound effects running from ICQ to PNR were essentially different
between large hospitals (such as medical centers and regional hospitals) and small hospitals
(i.e., district hospitals) in terms of the significance of the relationship between ICQ indicators
and PNR. As shown in Figure 3(a3,a4), the 3-day EDV rate was found to be a trigger
impacting PNR and then influencing real ICE per admission at medical centers and regional
hospitals, but the readmission rebound mechanism was not significant in district hospitals
based on the impulse-response analyses over a 12-month period (see Figure 1(f1,f3) and
3(a4)). These findings reflect the facts that district hospitals play a minor part in ED care
services and that nighttime ED closures (or down-grading to the so-called urgent outpatient
centers) are frequently observed in district hospitals due to a lack of sufficient nurses. Such
shortages of nurses also lead to hospital bed closures in district hospitals where inpatient
care resources are then shifted towards treating chronic rather than acute conditions. Hence,
it was reported that the average length of stay ranged from 13~16 days in district hospitals,
much higher than that for medical centers (7~9 days), but the mean PNR in district hospitals
was very close to that in medical centers (7.572 versus 7.436; see Table 1) during our study
period [54].

Third, although the EDV rebound effect was expected to be negative as hospital
ad-ministration managerial actions were taken to influence ICQ for the sake of quality-
of-care control, a positive rebound effect of the 3-day EDV rate on PNR was identified
in medical centers and regional hospitals based on the impulse-response analyses over a
12-month period (see Figures 1 and 3(a3)). According to annual statistics of the medical care
institution and hospital utilization reported by Taiwan’s Ministry of Health and Welfare,
the total number of hospitals decreased from 556 to 478 (of these, the number of medical
centers remained stable at around 21~23, while the number of regional hospitals increased
from 65 to 74, with a contrasting significant reduction in the number of district hospitals)
during our study period of 2015:Q1–2021:Q4 [55]. Moreover, Taiwan’s NHIA reported
that district hospitals represent over 80% of total hospitals, while approximately 76%~81%
of total hospital admissions were contributed by medical centers and regional hospitals
under the GBPS of Taiwan’s NHI system [55,56]. These statistics suggest that quantity
competition for medical centers and regional hospitals is much higher than that for district
hospitals, so managerial actions taken for the sake of quality-of-care control in medical
centers and regional hospitals are highly likely to be offset by severe quantity competition
in the hospital sector of Taiwan’s NHI system.

Fourth, the rebound effects of ICQ on PNR from medical centers and regional hospitals
will mostly likely counter the adverse effect of hospital competition (see Figure 3(a1,a3)).
Considering this along with substantial evidence identifying PNR as one of the crucial
determinants of ICQ and real ICE per admission, as indicated in Figure 1, Figure 2, and
Figure 3(a1), quality of care maintenance policies (such as directly subsidizing for a lower
PNR and the inclusion of a reasonable PNR as a key standard for hospital accreditation)
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should be enforced in order to reduce adverse effects of higher nurse staffing levels on
patient outcomes and quantity competition under the GBPS of Taiwan’s NHI system.
Special attention should be concentrated on reducing the rebound effects of the 3-day
EDV rate on PNR from medical centers and regional hospitals through imposing more
substantial quality-of-care control plans and more stringent regulation of seasonal inpatient
care volume for medical centers and regional hospitals.

This study makes contributions beyond those of the existing literature on the relation-
ship between nurse staffing and patient outcomes in three respects: First, although the
aggregation and omitted variable biases (due to aggregating different frequencies data into
single frequency data) have attracted lots of attention regarding the estimation of the nurse
staffing and patient outcomes relationship in the healthcare services research field [39],
this study, for the first time, adopted the MF-VAR model proposed by Ghysel and his
colleagues [47,48] to incorporate different frequencies data into the investigation of the
relationships among PNR, ICQ, and real ICE per admission under the GBPS of Taiwan’s
NHI system over the period of 2015:Q1–2021:Q4. We illustrated that the MF-VAR model
is superior to the LF-VAR (i.e., conventional VAR) model in terms of higher explanatory
power (See Table 4). Second, this study contrasts with the previous time series research
exploring the association between nurse staffing and patient outcomes, in which the causal
responses of patient outcomes (nurse staffing) to a nurse staffing (patient outcomes) shock
across a period of time were not available. In this study, we not only tested for six causal
relationships among PNR, ICQ, and real ICE per admission through the MF-VAR-Granger
Causality tests proposed by Ghysel and his colleagues [47,48], but we also estimated the
IRFs based on the MF-VAR model. In this way, we were able to capture the dynamic impact
of nurse staffing on patient outcomes and on healthcare expenditure for inpatient care
service reimbursement across a high frequency timescale (a 3-month cycle of a quarter
timespan in this study) over a 12-month period, and four mechanisms potentially trigging
the vicious cycle of hospital competition were discussed accordingly.

Third, it is essential to address that the healthcare systems worldwide have been
toward public-private mixed (or more private-like) financing systems due to an aging
population, diffusion of new technologies, and growth of income [28]. It follows that we
observed a common privatization trend in healthcare provision, and, in turn, it created
a severer market competition in many publicly financed healthcare systems such as the
NHS (e.g., Australia, Belgium, Finland, Iceland, Ireland, Norway, Spain, and United King-
dom) and SHI systems (e.g., Austria, Canada, Korea, and Japan) [26,28]. Although the
harmful effects of PNR on patient outcomes were confirmed from previous studies in the
NHS [2–4,7,8,10,14–18] and SHI systems [5,9,14–18], most of these studies belonged to the
cross-sectional or static-type studies. It follows that these studies failed to identify causality
between nurse staffing and patient outcomes, evaluate the propagation mechanism of
nurse staffing on patient outcomes, and avoid the potential aggregation biases [2–10,14–18].
Therefore, the methodologies (such as the MF-VAR model, Granger causality test, and
impulse-response analyses) used in this study not only generated results echoing the
evidence obtained from previous studies [2–10,14–18], but they also amended the disad-
vantages of the cross-sectional or static-type studies. The methodologies used in this study
could be easily performed through inputting publicly reported time series data in cases
when individual data are difficult to be collected (e.g., the COVID-19 outbreak period).
The empirical results obtained through our empirical models could serve as important
information for the surveillance of ICQ under the hospital competition in the publicly
financed healthcare system.

This study, nonetheless, has several limitations. First, the potential size distortion due
to a small sample size used in this study (i.e., a total of 28 and 84 quarterly and monthly
observations) would create invalid inferences, so all results generated from the MF-VAR
model were based on the bootstrap method in order to adjust for the size distortion. Second,
the cyclical components of time series were used for our MF-VAR model, so inferences
obtained from this study are limited regarding the short-run relationships among nurse
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staffing, patient outcomes, and hospital competition under the GBPS of Taiwan’s NHI
system. Third, this study belongs to the ecological type of time series analyses. Thus, in
order to prevent the ecological fallacy of study [57], our empirical results neither refer
to individual patients’ decisions in seeking care (such as ED care or inpatient care) after
discharge from a hospital nor the hospitals’ managerial actions (such as nurse deployment)
in response to changes in patient outcomes. We recommend that future studies collect the
individual data needed to explore the interactions among hospitals’ managerial actions
impacting quality of care, the patients’ decisions in seeking care, and patient outcomes in
response to hospital competition under the GBPS of Taiwan’s NHI system.

5. Conclusions

Hospital administrators and healthcare practitioners have long been concerned about
the adverse effect of poor nurse staffing on patient outcomes [1–25,35]. The critical force
driving inappropriate deployment of nursing staffs at hospitals is hospital (quantity)
competition under the GBPS. In this study, we applied the MF-VAR model to investigate
the interdependences between nurse staffing, patient outcomes, and hospital competition
under the GBPS of Taiwan’s NHI system for the first time. Our empirical results from
the forecast error variance decomposition yielded higher explanatory power from the
MF-VAR model in contrast to the conventional VAR model with single frequency data.
The mixed frequency Granger causality tests identified bi-directional causation between
nurse staffing and patient outcomes and one-way Granger causality running from nurse
staffing to reimbursement to inpatient care services. The impulse-response analyses found
positive (negative) effects of PNR on adverse patient outcomes (reimbursement payments
for inpatient care services) in all types of hospitals but detrimental effects of adverse
patient outcomes on PNR in medical centers (regional and district hospitals) across a
12-month period.

These findings generated from the aforementioned models suggest that nurse staffing
is an essential determinant of both patient outcomes and reimbursement payments under
the GBPS of Taiwan’s NHI system. Therefore, the vicious cycle triggered by hospital
(quantity) competition under the GBPS of Taiwan’s NHI system works differently in
different types of hospitals. Strategic policies (such as directly subsidizing for appropriate
nurse staffing levels and the inclusion of the nurse staffing level as a vital standard for
hospital accreditation) should be implemented for all hospitals in order to preserve the
quality of inpatient care services, and more comprehensive interventions aimed towards
switching hospital competition from quantity to quality competition should focus on
the harmful effect of adverse patient outcomes on nurse staffing in medical centers and
regional hospitals.
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Appendix A

In order to present these data better, we exhibit the trends of all variables used in
this study in Figure A1. Note that Taiwan’s NHIA implemented the first stage of the post-
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acute care intervention program during the period of July 1st 2017~April 10th 2020 [58].
Attributable to this intervention program, we found significant structural changes in the two
ICQ indicators and PNR at medical centers and district hospitals during the intervention
period. In addition, we also found a sudden drop in PNRs in the three different types of
hospitals during the periods of three COVID-19 strike waves (see grey shading area in
Figure A1) in Taiwan, corresponding to a sharp fall in the two ICQ indicators and rise in
real ICE per admission. These results reflect the fact that inpatient care utilization was
largely reduced due to public fear of COVID-19 infection and the promotion of policies
discouraging non-urgent healthcare services, and, in turn, a reduction in hospital (quantity)
competition and lower PNRs were found. These findings have implications regarding
the interdependences between PNR, ICQ, and real ICE per admission under the GBPS of
Taiwan’s NHI system.

In order to obtain stationary time series of these variables, the cyclic components
of these time series were extracted through the Hodrick and Prescott filter method [51].
The cyclic components of all variables with the logarithm transformation in level terms
were both de-mean and de-trend time series, which enabled us to accommodate structural
changes of those variables discussed in the aforementioned pargagaph. The plots of the
cyclic components of all variables are displayed in Figure A2.
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Figure A2. Time plots for all variables transformed by the Hodrick-Prescott filter method
9
.

Notes
1 Inpatient care expenditure per admission was calculated using total inpatient care expenditure divided by total admissions in a

specific type of hospital, and it was measured using the 2016 price level (constant 2016 USD). The patient-to-nurse ratio was
defined as the mean of number of patients divided by the nurse staffing number within three shifts per day in a specific type of
hospital. The quarterly and monthly sample periods start from 2015: Q1 to 2021: Q4 and 2015: M1 to 2021: M12, resulting in a
total of 28 and 84 quarterly and monthly observations, respectively. The IQR and JB statistics represent the interquartile range
and Jarque-Bera statistics, respectively. ”**”, ”*” denote 1% and 5% significance levels for the rejection of null hypothesis of the
normality of time series, respectively.

2 All variables are defined in the same way as for Table 1. The lag length is selected based on Bayesian Information Criterion (BIC)

with the maximal lag as eight. ”**” and “*” represent 1% and 5% significance levels, respectively.
3
∑

t=1
C_ ln

(
PNRk

i

)
, , k = MC, RH,

and DH define cyclic components of aggregate monthly PNR.
3 Quarterly data on cyclical components of quality of care indicators (such as the 3-day EDV rate and 14-day readmission rate),

inpatient care expenditure per admission, and monthly data on cyclical components of the patient-to-nurse ratio were used
to estimate the MF-VAR model. The monthly data on cyclical components of the patient-to-nurse ratio were aggregated into
quarterly data (PNRA) when the LF-VAR model was estimated. The lag length is selected based on Newey and West’s automatic
lag selection with the maximal lag as 3 [52]. “PNRA 6=> EDV”, for example, represents the null hypothesis of non-causality from
PNRA to RER. The bold font of PNR denotes the vector of cyclical components of PNR symbolized by [C_lnPNR1, C_lnPNR2,
C_lnPNR3]’. “PNR 6=> EDV”, for example, represents the null hypothesis of joint non-causality from the vector of cyclical
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components of PNR to the cyclical component of EDV. The p values were calculated using the heteroscedasticity-robust parametric
bootstrap of Gonçalves and Kilian [53] with 10,000 replications. “***”,”**”,”*” represent 1%, 5%, and 10% significance levels,
respectively.

4 Figure 1 plots the impulse response functions (IRFs) for monthly horizons h = 0, 1, 2, . . . , 12 based on the MF-VAR model
of quarterly data on cyclical components of quality of care indicators (such as the 3-day EDV rate and 14-day readmission
rate), inpatient care expenditure per admission, and three individual monthly cyclical components of the patient-to-nurse ratio
symbolized by C_lnPNR1, C_lnPNR2, and C_lnPNR3 in a quarter timespan. The Cholesky decomposition with order PNR1,
PNR2, PNR3, EDV (or RAD), and ICE is selected. The sample period covers 2015:Q1–2021:Q4. The responses of variable Y (say,
EDV) to 1σ shock in X (say, PNR1) at monthly horizon h is written as “PNR1=>RER”. MC, RH, and DH represent medical centers,
regional hospitals, and district hospitals, respectively. Blue shaded areas denote 90% confidence intervals of IRFs based on the
Monte Carlo simulation method with 10,000 replications.

5 Figure 2 plots the impulse response functions (IRFs) for monthly horizons h = 0, 1, 2, . . . , 12 based on the MF-VAR model
of quarterly data on cyclical components of quality of care indicators (such as the 3-day EDV rate and 14-day readmission
rate), inpatient care expenditure per admission, and three individual monthly cyclical components of the patient-to-nurse ratio
symbolized by C_lnPNR1, C_lnPNR2, and C_lnPNR3 in a quarter timespan. The Cholesky decomposition with order PNR1,
PNR2, PNR3, EDV (or RAD), and ICE is selected. The sample period covers 2015:Q1~2021:Q4. The responses of variable Y (say,
EDV) to 1σ shock in X (say, ICE) at monthly horizon h is written as “ICE =>EDV”. Blue shaded areas denote 90% confidence
intervals of IRFs based on the Monte Carlo simulation method with 10,000 replications. MC, RH, and DH denote medical centers,
regional hospitals, and district hospitals, respectively.

6 Notations presented in this table are the same as those used in Table 3. The sum of variance decomposition may not equal 100
due to rounding.

7 The directions of arrows were drawn based on the Granger causality tests. The arrows with bold (dot) lines represent significant
(insignificant) paths connecting two target variables based on 90% confidence intervals of the impulse-response effects accumu-
lated across a 3-month cycle of a quarter timespan over a 12-month period. MC, RH, and DH denote medical centers, regional
hospitals, and district hospitals, respectively.

8 EDV and RAD represent the 3-day EDV rate and 14-day readmission rate, respectively. ICE is real inpatient care expenditure per
admission at the 2016 price level (USD). PNR symbolizes the patient-to-nurse ratio. MC, RH, and DH represent medical centers,
regional hospitals, and district hospitals, respectively. Light blue and grey shaded areas show the post-acute care intervention
period and COVID-19 strike waves, respectively.

9 All notations used in this figure are the same as for Figure 1. ln(·) represents the natural logarithm transformation.
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Abstract: Background: Emerging infectious diseases (EIDs) arise and affect society in complex
ways. We conducted a scoping review to explore how systems-oriented methods have been used
to prevent and control EIDs. Methods: We used the Joanna Briggs Institute framework for scoping
reviews in this study. We included peer-reviewed articles about health care systems preparedness
and response, published from 1 January 2000. We considered the World Health Organisation’s
(WHO) list of prioritised diseases for research and development when choosing the pathogens and
only included studies that considered the dynamics between the system’s elements. Results: Our
initial search yielded 9985 studies. After screening, 177 studies were considered for inclusion in this
review. After assessment by two independent reviewers, seven studies were included. The studies
were published between 2009 and 2021. Most focused on sarbecoviruses and targeted healthcare
policymakers and governments. System dynamics approaches were the most used methods. Most of
the studies incorporated the classical epidemiological models alongside systems-oriented methods.
The studies were conducted in context of diseases dynamics and its burden on human health, the
economy and healthcare systems. The most reported challenge was epidemiological and geographical
data timeliness and quality. Conclusions: Systems dynamics approaches can help policy makers
understand the elements of a complex system and thus offer potential solutions for preventing and
controlling EIDs.

Keywords: emerging infectious diseases; systems thinking; systems approach; systems dynamics;
COVID-19; SARS-CoV1; MERS-CoV; healthcare policy; pandemic; outbreak

1. Introduction

Emerging infectious diseases (EIDs) are a group of diseases affecting humans for
the first time, or pre-existing diseases that are rapidly spreading in terms of the number
of new cases or in new geographical areas [1,2]. The majority of EIDs are zoonotic and
at least initially are transmitted from animal sources to humans through spillover [3].
Examples include COVID-19, Ebola virus, Lassa fever, Middle East Respiratory Syndrome
coronavirus (MERS-CoV) and monkeypox.

EIDs are complex and not caused merely by the infectious agents themselves. Multiple
factors contribute to their emergence, including increased human population size and
movement within recent years, increased travel and trade, urbanisation, wars, human
behaviour, and climate change [2]. In addition, there is a lack of prior knowledge and
limited, if any, immunity to the emerging pathogen, which contributes to additional burden
to humans’ health and lives.

Preventing and controlling EIDs are important elements of our duties and responsibili-
ties for overall public health preparedness and response. Such responsibilities play out in a
complex system with multiple interacting elements and stakeholders [4]. EID preparedness
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and response must ensure the readiness of the healthcare systems to anticipate and face
the threats of a novel pathogen on human health and lives [5]. Readiness also includes
healthcare systems resilience and ability to adequately sustain healthcare for patients in
need, avoiding delays in diagnosis or treatment during EID emergencies [5].

Systems science can help conceptualize a problem as a perturbation within complex
adaptive system [6]. It does so by identifying the components that make up the system and
how they are linked, shaping the system’s overall form and behaviour [6]. Systems scientists
aim to identify leverage points within the system to provide holistic solutions instead of a
response to a single aspect of a particular problem [7]. Although a systems science lens and
methods have been used in infectious disease research and practice for decades, there is
a gap in knowledge of how systems-oriented modelling methods in particular have been
and can be used to strengthen healthcare systems’ capacity in preventing and controlling
EIDs. This scoping review aims to explore how systems-oriented modelling methods have
been used to inform healthcare policymakers about healthcare system’s preparedness and
response to EIDs.

Research Question

The review’s main question was: how have systems-oriented modelling methods been
used to prevent and control EIDs? We were interested specifically in the preparedness and
response of healthcare systems. Further sub-questions were:

• What was the context in which the systems-oriented study was conducted?
• Who were the target population?
• What was the systems-oriented aim?
• What were the main complex-systems features considered?
• What were the system’s main elements?
• What were the systems-oriented methods used?
• What challenges related to systems modelling did the authors face?
• Who were the main stakeholder and how were they involved?
• What were the key lessons learned from using the complex systems approach?

Because we were interested in exploring the evidence and lessons to identify the key
concepts in this topic, we chose to conduct a scoping review [8].

2. Materials and Methods

A protocol for this review was published in 2021 [9]. Below we outline the relevant
steps, updated with any changes that occurred as we developed a deeper understanding of
the topic.

2.1. Preparation

We started the scoping review by establishing the research team, which consisted
of experts in public health, communicable diseases and systems science. Due to the ill-
defined characterisation of EIDs, we decided to use the list developed by the World Health
Organisation (WHO) for prioritised EIDs for research and development, which they update
according to global circumstances [10].

Before going forward, we searched to find whether any systematic or scoping reviews
were published about the same topic. We conducted a comprehensive search in Scopus,
Joanna Briggs Institute database, Cochrane database, PubMed and Epistemonikos. To
our knowledge, up to the time of starting this review, there were no systematic or scop-
ing reviews that answered our research questions. Therefore, the team agreed on the
broad research question and study protocol, including the keyword and databases in this
scoping review.

For this scoping review, we followed the Joanna Briggs Institute framework, which is
based on previous work from Lavec and colleagues and Arskey and O’Malley’s
recommendations [8]. Our scoping review consists of six steps: (1) Identify the research
questions, (2) Identify keywords and medical subject headings (MeSH) terms, (3) Identify
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relevant studies, (4) Study selection, (5) Data charting, and (6) Summarise and disseminate
the results.

2.2. Identifying Keywords and MeSH Terms

After consulting the subject librarian at the School of Medicine, Dentistry and Biomed-
ical Sciences, Queen’s University Belfast, the initial search started on 23 March 2021 in
Scopus and Google Scholar to identify keywords, MeSH terms and index terms relevant to
the review. The research team agreed on the searched terms (Table 1), which were used
across all databases. We searched two databases, PubMed, Web of Science, and Scopus
(Appendix A). These databases were selected to allow a broad search for materials in the
topic. Additionally, the research team agreed to screen the first ten pages in Google Scholar
to identify any relevant studies in grey literature.

Table 1. Keywords used in the searches.

Concept Search Terms

Systems modelling methods
Complex* systems OR system dynamic* OR agent?based OR stochastic OR
network* OR compartmental model* OR multi?agent OR
multi-compartment model*

Emerging infectious diseases

Emerging infectious diseases OR coronavirus OR MERS-CoV, COVID-19 OR
severe acute respiratory syndrome OR SARS-CoV-2 OR SARS OR Ebola OR
zika OR dengue OR Nipah OR pandemic * OR influenza OR outbreak* OR
Crimean-Congo haemorrhagic fever OR rift valley fever or “diseases X”* OR
Lassa fever

MERS-CoV: Middle East Respiratory Syndrome Coronavirus; SARS-CoV-2: Severe Acute Respiratory Syndrome
Coronavirus 2; SARS: Severe Acute Respiratory Syndrome Coronavirus.

All citations were imported into the Endnote X9 citation manager, where they were
deduplicated. Next, we imported the selected citations into the web-based systematic
review management software, Covidence, for the title and abstract relevance screening
and full article selection. During the importation process, Covidence found and removed
further duplicated citations.

2.3. Identifying Relevant Studies

Table 2 shows the inclusion and exclusion criteria. Studies were eligible if they
investigated an EID in the WHO priority list [10]. After the initial search, we decided to
narrow the scope of the review because the number of potential studies was too large.
We made the following changes to the protocol in order to achieve this reduced scope.
We decided to focus on studies conducted in the context of healthcare policy, those that
considered the dynamic relationships between elements of the system (e.g., feedback loops
and network effects), and we only included peer-reviewed publications (excluding grey,
pre-print and unpublished reports) containing simulation models published on or after
1 January 2000. There were no limits regarding article language, geographic location or
country income group of the location of study.

2.4. Study Selection

Title and abstracts were screened to exclude studies that clearly met one or more of
exclusion criteria or which did not meet any of the inclusion criteria. In the next stage, a
full-text review was conducted on the studies that passed screening to assess them against
the eligibility criteria. In both stages, each study was independently assessed by two
reviewers. In the case of disagreement, reviewers met to reach consensus.
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Table 2. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Peer-reviewed reports published since 1 January 2000 Abstract-only reports

Studies related to health systems preparedness and response Studies that do not include healthcare system element

Emerging infectious diseases included in the prioritising
diseases for research and development in emergency context list

by The World Health Organisation [10]
Studies on non-emerging infectious diseases

Studies conducted to investigate preparedness, prevention and
response to EIDs that affect human populations Studies that do not include the human population

Considered the dynamic relationships between elements of the
system (e.g., feedback loops, network effects)

Studies of mathematical models that do not account for
dynamic relationships between elements of the system outside

the epidemic model

Seasonal influenza

2.5. Data Charting

We developed a form for data extraction and characterisation that included: authors of
the article, year and location of study, context (e.g., disease dynamics, healthcare prepared-
ness and response, resources), target population, complex systems features considered,
complex systems-oriented aim, system’s elements considered, modelling and analytic
methods, reported challenges during modelling and potential solutions, main stakeholders
and their involvement in the study, and reported key lessons from the complex systems-
oriented approach. The reviewing team discussed and agreed this form. Two independent
reviewers tested the form; the reviewing team met to resolve disagreements in the data
extraction. The complex systems features considered were based on the list provided by
James Ladyman and Karoline Wiesner as follows [11]:

1. Numerosity: complex systems involve many interactions among many components.
2. Disorder and diversity: the interactions in a complex system are not coordinated or

controlled centrally, and the components may differ.
3. Feedback: the interactions in complex systems are iterated so that there is feedback

from previous interactions on a timescale relevant to the system’s emergent dynamics.
4. Non-equilibrium: complex systems are open to the environment and are often driven

by something external.
5. Spontaneous order and self-organisation: complex systems exhibit structure and order

that arises out of the interactions among their parts.
6. Nonlinearity: complex systems exhibit nonlinear dependence on parameters or exter-

nal drivers.
7. Robustness: the structure and function of complex system is stable under relevant

perturbations.
8. Nested structure and modularity: there may be multiple scales of structure, clustering

and specialisation of function in complex systems.
9. History and memory: complex systems often require a very long history to exist and

also store information about history.
10. Adaptive behaviour: complex systems are often able to modify their behaviour

depending on the state of the environment and the predisposition they make about it.

2.6. Results Summary and Dissemination

The data were aggregated in a single spreadsheet using Microsoft Excel version 16.43
(Microsoft, Redmond, USA) for validation and coding. The rows represented articles, the
columns represented the data items extracted to answer the research questions and the
cells contained information gathered from the selected articles. We synthesized the results
using text and tables and answered each research question and sub-questions set up in the
protocol for this scoping review.
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3. Results
3.1. Search and Selection of Citations

We initiated this scoping review in March 2021, finding 9985 citations. After dedu-
plication, we screened 9944 titles and abstracts and reviewed 117 full texts. After data
characterisation of full-text articles, seven studies [12–18] were included (Figure 1). Many
articles were excluded during the title and abstract screening because the keywords used
yielded many publications outside the scope of this review or had different study designs
that did not address our research question. Reasons for excluding citations at the full-text
stage were: studies of mathematical models that did not account for dynamic relationships
between elements of the system (n = 99), studies that did not include the healthcare policy
context (n = 7) and abstract only citations (n = 4).
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3.2. General Characteristics of Included Citations

The general characteristics of papers included in this scoping review are presented
in Table 3. All included studies were published between 2009 and 2021, with the majority
(5/7) published during the COVID-19 pandemic, in 2020 and 2021.

There were five main stakeholder categories in the included citations. Healthcare
policymakers were the main stakeholders, followed by government officials, healthcare
demonstrators, politicians, and academics. However, none of the studies reported involve-
ment of stakeholders in the model development or interpretation of the results.

Different systems methods were used in the studies; the most commonly used method
was system dynamics. Other methods used once in the studies were dynamic causal
modelling, agent-based modelling, total interpretive structural modelling and multilayer
complex network.
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Table 3. General characteristics of included citations.

Characteristic Number (n = 7)

Publication year
2009 1
2017 1
2020 4
2021 1

Publication type
Journal article 7

Main stakeholders
Academics Healthcare policymakers 1

Government 3
Healthcare administrators 2
Healthcare policymakers 5

Politicians 2

Systems methods used
Agent-based modelling 1

Dynamic causal modelling 1
Multilayer complex network 1
System dynamics modelling 3

Total interpretive structural modelling 1

Complex systems feature used
Adaptive behaviour 6

Disorder 7
Feedback 7

History and memory 0
Nested structure and modularity 6

Non-equilibrium 5
Non-linearity 6
Numerosity 7
Robustness 4

Spontaneous 7

Regarding complex systems features, most studies exhibited most of the features in
their modelling. Numerosity, disorder, feedback, and spontaneous order were noted in all
included studies. Non-linearity, nested structure and modularity, and adaptive behaviour
were displayed in 6/7 of the citations. Non-equilibrium featured in 5/7 of the studies.
System history and memory were not seen in any of the models in the included articles.

3.3. Methodological Characteristics of Included Studies

The methodological characteristics of the included studies are presented in Tables 4 and 5.
The methodological characteristics that address our research question and sub-questions are
as follows:

Table 4. Extracted data: Study Characteristics and Aims.

Study Publication Year Country Disease Target Population Aims

Friston [15] 2020

US, Brazil, UK,
France, Spain, Italy,
Mexico, Belgium,
Germany, Canada

COVID-19 Local population of each
country investigated

To estimate the duration of
population immunity and

the latent states and
mechanisms that affect the

rate of new cases and
deaths under the most
likely loss of immunity.
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Table 4. Cont.

Study Publication Year Country Disease Target Population Aims

Mutanga [12] 2021 South Africa COVID-19 National population

To assess the range of
systems dynamics

modelling ability in
forecasting COVID-19

dynamic and investigate
the adequacy of

government enforced
restriction measures to

control the pandemic using
different “what if”

scenarios. To predict the
next wave of

COVID-19 infection.

Scabini [16] 2020 Brazil COVID-19 National population

To analyse COVID-19
dynamics in Brazil and to

investigate the implications
of future actions by the

government on the
healthcare system

Shin [14] 2017 South Korea MERS-CoV

Healthcare staff, patients
and visitors in hospitals

during
MERS-CoV outbreak

To investigate the effect of
healthcare policy to control
MERS-CoV in South Korea
on terms of patient care and

diseases spread
in hospitals.

Silva [18] 2020 Brazil COVID-19 National population data

To simulate COVID-19
dynamics and the economic

impact during different
restriction scenarios.

Suresh [13] 2020 India COVID-19

Healthcare workers
(physicians, nurses,
health inspectors,

paramedics, hospital
operation and

administrative staff)

To analyse the key factors
contributing to the agility

of the healthcare system in
controlling COVID-19 in
the context of available

resources during the
disease dynamics.

Weixing [17] 2009 China SARS Population of
Hubei Province

To simulate SARS-CoV-1
spread and evaluate control

measures to mitigate
further spread of

the pathogen.

Table 5. Extracted data: System Features, Methods, Stakeholders and Lessons.

Study Main
Stakeholders Methods System’s Elements Challenges and Potential

Solutions Key Lessons

Friston
[15]

Policymakers
and academics

Dynamic
causal modelling

The local population is
assigned a state in four

distinct attributes (location,
infection state, symptoms,

and testing).
24 parameters specify aspects

associated with state
transition probabilities (e.g.,

the effective number of
contacts, transmission

strength, the efficacy of
tracking and tracing).

Modelling process did not
account for geospatial

aspects, waves of infection
or any interactions with
seasonal influenza (no

potential
solution discussed).

Inaccuracy of population
demography data.

Solution: building a model
that accounts to population

heterogeneity at a
coarse-grained level by

using a series of bipartitions
of the latent states.

“The rate at which
immunity is lost is

important because it
constrains the onset of any
putative second wave.” “
. . . the UK might expect a

second wave in around
January 2021. This is

important because there is a
window of opportunity in

the next few months during
which nonpharmacological
interventions—especially

tracking and tracing—will,
in principle, be in a position
to defer or delay the second

wave indefinitely.”
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Table 5. Cont.

Study Main
Stakeholders Methods System’s Elements Challenges and Potential

Solutions Key Lessons

Mutanga
[12]

National
authorities

System
dynamics

model

They divided the national
population into stocks
(susceptible, exposed,

infected, recovered and
deceased), with flows

between them representing
the time in which individuals
will move from one stock to

the other. The model also
contained multiple connected
variables (e.g., R0, restriction

measures, rate of contacts
within the community,

diseases duration and rates of
individuals moving from one

stock to another).

The modellers estimated
homogenous population
mixing, which might not

represent the actual
magnitude of COVID-19

spread in South Africa. The
authors also mentioned that
the national data might be

sub-optimal due to the
novelty of the pathogen.
Solution: to replicate the

model using current
knowledge of COVID-19

and using a different
timeline where data

aggregation, including
reporting and testing, are

more accurate.

The systems dynamics
model conducted in the

study was proven beneficial
to inform policymakers

about prediction,
prevention and control of

COVID-19 with a small yet
acceptable error. The study

supports lockdown as a
measure to prevent
healthcare systems

from collapsing.

Scabini
[16]

Healthcare
policymakers

and
government

Multilayer
complex
network

The model’s layers represent
the social

interactions/activities
between the population,
including home, work,

transport, school, religious
activities and random. The

nodes represent people, and
the edges are social contacts

between the nodes. The
epidemic dynamic was also

considered. Individuals were
categorised as susceptible,

infected-asymptomatic,
infected-mild, infected-sever,

infected-critical, recovered
and dead.

The main challenge the
authors faced was related
to Brazil’s geographic and

demographic nature. Other
challenges included

insufficient data and lack
of testing.

Solution: This study can be
repeated in other countries

to check if the results
are replicated.

The isolation measures in
the study are insufficient
and could significantly
burden the healthcare

system and mortality in
Brazil. Social distancing is
significant to reduce the

peak of the pandemic curve.
Returning to “normality”

would cause a new peak in
the pandemic’s wave and

the need for ICU beds
would surpass the
country’s capacity.

Shin [14]

Health care
policymakers

and
administrators
in government

and private
sectors

System
dynamics

model

Model A: Stocks represent the
susceptible and infected
population at emergency

rooms and the flow represent
the infectious rate. The
variables in model A
represent types and

frequencies of contact
between people in the
emergency room (ER

occupancy rate, number of
contacts made in the ER,

susceptible contacts at ER,
contact between infected and

uninfected people at ER,
probability of contact with
infected patient at ER, total
population at ER, patient
arrival at ER, number of
visitors at ER, number of
visitors per patient) and

infectivity of MERS.
Model B: Stock represents the

general ward’s susceptible
and infected population. The
variables represent infectivity

of MERS, room occupancy,
fractions of rooms with

different frequencies, type
and probability of contact

and visitors.

The author reported a
cultural challenge where
family members in South

Korea are expected to
attend to patients even

when healthcare staff are
available which might lead
to an increase in new cases.
Solution: To understand
the mental model for the
studied population and

find leverage points for a
desirable outcome.

In hospitals, the number of
MERS-CoV infections
showed no significant

difference between single
and multiple room

occupancy during the low
infectivity period. However,

it was increased between
patients during the high
infectivity period. High

emergency room occupancy
was associated with a
higher risk of infection
when compared to low
occupancy emergency
rooms. The number of

visitors was directly related
to increased infections

among inpatients.
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Table 5. Cont.

Study Main
Stakeholders Methods System’s Elements Challenges and Potential

Solutions Key Lessons

Silva [18]
Politicians,
healthcare

policymakers

Agent-based
model

Agents that make up the
society in the model are

people and their environment.
The agents were grouped into

families, business and
government. The model

contained input parameters
(e.g., epidemiology,
socioeconomic and
demographic) and
output parameters.

The scenarios of this study
were done on a simulated

society; the situation might
differ slightly if the author
considered confounding
factors from real society.
Solution: to validate the
results by simulating the

scenarios for
real-world populations.

Lockdown and partial
lockdown are best-case

scenarios to mitigate the
risk of COVID-19 in the

context of human lives and
health but have a

significant impact on the
economy. Vertical isolation

(isolating infected
individuals and high-risk
groups) and “Do nothing”
approaches had the worst
income. The best scenarios

were partial isolation
(restricting the movement

of the agents), using
facemasks and

social distancing.

Suresh [13]
Healthcare

managers and
government

Total
interpretive
structural
modelling

(TISM)

Factors that make up the
agility system in hospitals
including building a Rapid

Response Team (RRT),
leadership support for the
RRT, readiness for change,

team members’ adaptability,
strategy fit to match the
demand and capacity,

accessibility and availability
of the required resources,

training and development,
collaboration and resilience,
embracing technology and
innovations, multi-tasking

and decision making,
biomedical waste

management,
cost-effectiveness, and their

interrelationships. Those
factors are categorised into

five groups according to their
influence on the overall

hospital agility.

Presenting the interaction
of the factors within the

model is not very clear at
first sight.

Solution: feedback back
and forth between two

factors can be presented
with two arrows rather

than one.

Using a framework like
TISM can help increase

agility in the hospitals and
improve managers’

decision-making when the
most influencing factors

and their interrelations are
mapped and leverage

points are explored rather
than making decisions
based on instinct and

experience that might be
suitable to the problem at

hand. In this paper, the
authors indicated that

availability of resources,
proper training and

collaboration, and resilience
are key factors in
improving agility

in hospitals.

Weixing
[17]

Healthcare
policymakers

and
government

System
dynamics

model

They divided the local
population into a community,
quarantine areas and hospital

compartments. Each
compartment contains

individuals divided into
susceptible, latent, infected,

recovered and deceased, with
flows between them.

The results indicated that
most SARS-CoV-1 cases
were imported to Hubei

from nearby regions.
However, events from

transportation were not
considered in the model.
Solution: incorporating

modes of transportation in
and out of Hubei into

future models.

Healthcare in Hubei
province is adequate and

could control and mintages
the risk of SARS-CoV-1.

The optimal priority is to
quarantine infected patients
and reduce the time delay

between diagnosis and
hospitalisation. Most of the

new cases in Hubei were
imported from
nearby regions.

3.3.1. How Are Systems-Oriented Modelling Methods Used to Investigate How to Prevent
and Control Emerging Infectious Diseases (EIDs)?

Among the systems-oriented studies included in this review, six simulated the dynam-
ics of an EID [12,14–18]. The modellers in these studies incorporated the classic susceptible,
exposed, infected, recovered (SEIR) epidemiological model alongside systems-oriented
modelling which considered the investigated population’s environment. Another study,
by Suresh et al., did not simulate disease dynamics. Instead the authors used systems
methods to examine what factors contributed to the agility of hospitals to face challenges
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caused by COVID-19 [13]. They derived a five-level system demonstrating factors that
supported the agility of hospitals to prepare and respond to EIDs. These factors included a
trained rapid response team, effective leadership, strategies for managing resources and
cost-effectiveness, readiness to change, adaptability, collaboration and resilience. They also
demonstrated in their model how those factors make up the different levels and how the
levels are connected.

Three studies used systems methods to predict an upcoming period of growth during
an ongoing pandemic or epidemic [12,15,16]. They examined COVID-19 dynamics, pop-
ulation demography and types of public health policies to control the pandemic. Finally,
five studies used systems methods to simulate the consequences of non-pharmaceutical
public health strategies for controlling EIDs. Shin et al. used retrospective data to simulate
how hospital policies affected the dynamics of MERS-CoV in South Korea in emergency
rooms and inpatient wards. They took into account the infective status of patients, types
of contacts, number of visitors and room occupancy [14]. Silva et al. simulated the effect
of policy measures on COVID-19 burden on human health, life and the economy [18].
Magna et al. simulated multiple “what if” scenarios to investigate the “best approach” to
control and mitigate the risk of COVID-19. They argued that the best approach for public
health policy would be to find measures that would decrease the number of new cases
and would be acceptable by the public [12]. Weixing et al., and Scabini et al., used systems
methods to evaluate the types and effectiveness of local public health policy to control
SARS-CoV-1 and SARS-CoV-2, respectively [16,17].

3.3.2. In What Contexts Were the Systems-Oriented Studies Conducted?

In the included studies, systems-oriented modelling methods were used to investigate
how to prevent and control EIDs in the context of diseases dynamics, the burden on
human health and life, economic burden and readiness of healthcare systems. All seven
studies were conducted in the context of novel coronaviruses preparedness and control.
Five studies were on SARS-CoV-2 [12,13,15,16,18], one study on SARS-CoV1 [17] and
one study on MERS-CoV [19]. Friston et al., Mutanga et al., and Scabini et al. used the
methods to assess the impact of COVID-19 dynamics on the numbers of new cases and
deaths [12,15,16]. They did so by simulating scenarios for different local public health
interventions. In addition to the epidemiology of the pandemic, Silva et al. included
socioeconomic variables to assess the impact of COVID-19 on the economy [18]. Suresh
et al. focused on the healthcare setting rather than the national population. Their study
focused on the context of the healthcare system to assess its resilience and agility to face
challenges related to COVID-19 by identifying and strengthening leverage points. Weixing
et al. used compartmental models to assess local SARS-CoV-1 prevention and control
measures within a single province [17]. Finally, Shin and colleagues conducted their study
in the context of healthcare system policy in preventing and controlling MERS-CoV. They
incorporated cultural expectations for patient care into their model and how they affected
the spread of MERS-CoV in hospitals [14].

3.3.3. Who Was the Target Population?

All the articles included in this review studied the local population in countries
where the studies were conducted. The population scale, however, differed between the
studies. Friston et al., and Mutanga et al., used national populations [12,15]. However,
while Mutanga and colleagues focused on the population of South Africa [12], Friston and
colleagues’ study was multinational. involving the US, Brazil, UK, France, Spain, Italy,
Mexico, Germany and Canada [15]. Weixing and colleagues conducted their study on the
local population of Hubei province in China. They did so to assess the effectiveness of local
public health measures and to investigate if new cases were primarily local or imported
from other areas in China [17]. Due to the large size, the complex demography of Brazil and
challenges with data collection, Scabini and colleagues used the demography of the national
population to parameterize a simulated population in their agent-based model, where they
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built a multi-layered model representing the interactions between individuals and the
disease dynamics [16]. The agents represented people in their environment, with input
parameters including epidemiology, socioeconomic status, demography and produced
epidemiology and economical response variables [18]. Suresh and colleagues used the
healthcare population in their study. They included physicians, nurses, health inspectors,
paramedics, hospital operation and administrative staff [13]. Shin and colleagues also
focused on the healthcare workforce in addition to patients and visitors in South Korean
hospitals during the MERS-CoV outbreak.

3.3.4. What Were the Main Complex-Systems Features?

Given the novelty of an EID, all included articles did not exhibit the “history and
memory” feature of complex systems. The inclusion of the remaining complex system
features is presented in Table 6.

Table 6. Systems feature used in the citations.

Systems Feature

First Author Numerosity
Disorder

and
Diversity

Feedback Non-
Equilibrium

Spontaneous
Order and

Self-
Organisation

Non-
Linearity Robustness

Nested
Structure
and Mod-

ularity

History
and

Memory

Adaptive
Be-

haviour

Friston [15] X X X X X X
Mutanga [12] X X X X X X X X X
Scabini [16] X X X X X X X X X

Shin [14] X X X X X X X
Silva [18] X X X X X X X X

Suresh [13] X X X X X X X X
Weixing [17] X X X X X X X X X

3.3.5. What Was the Systems-Oriented Aim?

Overall, a systems-oriented approach was used to investigate how to prevent and
control EIDs by presenting estimates of projected consequences of different public health
policy choices. Friston and colleagues aimed to estimate the duration of effective immunity,
to predict the second wave of SARS-CoV-2 and inform policymakers about precautionary
and preventive measures [15]. Shin et al., Weixing et al. and Suresh et al., aims were to assess
the ability of healthcare systems to respond and control threats related to EIDs [13,14,17].
While Weixing et al., and Shin et al., examined the readiness of the current healthcare
system to respond to the threats of an EID, Suresh and colleagues were more focused on
what factors make up the network to strengthen the response system to the threats. Finally,
for Silva et al., Muntanga et al., and Sacabini et al., the aim was on the readiness of the
whole country to face the challenges and burdens caused by SARS-CoV-2 [12,16,18]. The
three articles examined the effect of public health measures on the duration of the pandemic
wave and provided recommendations for future policies.

3.3.6. What Were the Main Systems Elements?

Overall, the systems elements used in seven articles were attributes of the local pop-
ulation, patients and visitors to hospitals during an EID outbreak and pre-identified key
factors that influence healthcare settings’ readiness and resilience when faced with an EID.

Five of the included articles used the national population and their environments as
systems’ elements and employed a version of the classic susceptible, exposed, infected,
recovered (SEIR) epidemiological model [12,15–18]. Weixing and colleagues assigned in-
dividuals to different compartments (community, quarantine area, and hospitals). Each
compartment represented subgroups of susceptible, exposed, infected, recovered and de-
ceased individuals [17]. Mutanga et al. used a stock and flow diagram for their model. They
divided the national population into five stocks, namely susceptible, exposed, infected,
recovered and deceased (SEIRD), with other model parameters including the reproductive
number, rate or contacts within the community, disease duration and the rate at which
individuals move from one stock to the other [12]. Similarly, Sabini et al. used a variation
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of the classical SEIR model. They assigned a stock for the exposed population because
they assumed that all exposed individuals were infected. They also divided the infected
population into four groups (asymptomatic, mild, severe and critical) in addition to suscep-
tible, recovered and deceased individuals. Friston and colleagues assigned four attributes
to the local population (location, infection status, symptoms and testing). They then di-
vided each attribute into smaller compartments representing the state of individuals. They
also considered the heterogeneity of exposure, susceptibility and transmission of the local
population [15]. In addition to the SEIR model, Silva and colleagues used a compartmental
model to represent the elements (agents) activity cycle and a system map to illustrate the
economic relations between systems elements [18]. The other two included articles used
the local population to focus on healthcare setting as systems elements. Shin et al. used
patients, caregivers and visitors during the MERS-CoV outbreak in South Korea as systems
elements [14]. They also used stock and flow diagrams to assess the spread of infection
in the emergency room and hospital wards [14]. Suresh and colleagues took a different
approach. After identifying the key leadership and managerial factors that support the
agility of hospitals to combat COVID-19, they used these factors as the elements [13].

3.3.7. What Were Systems-Oriented Methods Used?

The most commonly used systems simulation method among the included articles
was systems dynamics. Other methods included causal dynamic modelling, agent-based
modelling, Total Interpretive Structural Modelling and multilayer complex network meth-
ods. In addition, all articles included a variation of a classical, SEIR epidemic model. Three
used systems dynamics methods. Weixing et al., and Shi et al., started with a simple
conceptual model for SASR-CoV1 and MERS-CoV. Later, they created systems dynamic
models accounted for disease dynamics in the context of their study populations [14,17].
In contrast, Mutanga and colleagues did not present a conceptual model. However, their
systems dynamics model is similar to that of Weixing and Shi. It included the SEIR model
and different variables representing the COVID-19 situation in South Africa [12]. Friston
and colleagues used dynamic causal modelling. Their approach focuses on probability
densities rather than disease dynamics. For example, rather than assuming an individual is
either infected or recovered, an individual can be infected and asymptomatic [15]. Silva
and colleagues employed an agent-based model, focusing on individuals (agents) in a
closed simulated society, with a variety of socioeconomic and epidemiological parameters,
in order to run different “what if” scenarios simulating different health policies [18]. Fi-
nally, Suresh and colleagues used the Total Interpretive Structural Modelling approach.
After performing a literature review to identify factors that influence hospital agility to
face COVID-19, they collected and analysed responses from healthcare workers, created a
matrix from these responses and finally created a graph presenting the disclosed factors
and how are they are connected [13]. Sabino and colleagues used the multilayer complex
network method, extending the SEIR model to include multilayers representing social
interactions in Brazil [16].

3.3.8. What Challenges Related to Systems-Modelling Did the Authors Face?

In four articles, the authors mentioned challenges, related to data collection and data
accuracy in building the models. Friston et al.’s and Mutanga et al.’s main challenge was
data collection and accuracy during an ongoing pandemic [12,15]. Friston and colleagues
also mentioned that cross-infection with other diseases like influenza contributes an extra
challenge in the modelling process [15]. In addition to inaccuracy in disease dynamic
data, Scabini and colleagues faced other challenges because of Brazil’s geography and
demography, which can compound data inaccuracies [16]. Weixing and colleagues reported
challenges related mainly to the data collection environment. They used retrospective
hospital data relating to patients and visitors during the SARS-CoV1 outbreak in Hebei
province in China and mentioned errors in time recording of visits [17]. Shin et al., Silva
et al., and Suresh et al. did not report any challenges.
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3.3.9. Who Were the Main Stakeholders? Moreover, How Were They Involved?

The main stakeholders were healthcare policymakers, governments and politicians.
All the studies were conducted to provide evidence-based recommendations to these
stakeholders to inform national public health policies aimed at reducing the burden of EIDs
by preventing, controlling, and mitigating their risk to the local population. However, none
of the stakeholders had any role in developing the models included in the articles or the
interpretation of the results.

3.3.10. What Were the Key Lessons Learned from Using the Complex Systems Approach?

Three of the included articles mentioned lessons learned during the systems model
development process. Overall, the main lesson was that there was always room for model
improvement when appropriate data are available. Additionally, there was a desire to
account for parameters that go beyond disease dynamics, like social, demographic, or
economic aspects, which would provide a more holistic perspective on what is going on
during an EID. For example, Friston et al., and Scabini et al. stated that their models could
be improved by including and/or stratifying the demographic groups by age and ethnicity.
The latter also suggested incorporating the clinical presentation of the diseases within the
model [15,16]. Silva and colleagues stressed the importance of considering the population’s
social interactions and economic status to provide a better representation of the pandemic
effects on the investigated population [18]. Weixing et al., Shin et al., Mutanga et al., and
Suresh et al. did not report or indicate any lessons learned while building their models.

4. Discussion

Our review indicates that systems-oriented modelling methods used in the context of
preparedness and response in the face of EIDs can be valuable in identifying healthcare
policy approaches and actions for preventing and controlling EIDs. Most of the included
studies focused on disease dynamics within the context of the multiple linked elements
of the complex systems generating EID threats in a particular population, providing the
basis for running simulations of different “prevention” scenarios. Other studies’ contexts
included healthcare resilience, resource allocation and the economic impact of EIDs.

A variation of the classical SEIR epidemiological model was used in most of the
studies, showing that systems methods are not meant to replace classical epidemiologi-
cal methods. Instead, they can complement evidence provided by other methodological
approaches, providing opportunities for original research and potential collaborations
between epidemiologists and systems scientists. Systems-oriented modelling differs from
classical mathematical modelling in its focus and approach to problem-solving. Instead
of analysing a particular problem, systems modellers mainly focus on systems’ elements
and their connections. By simulating real-world problems, systems modellers can make
clear to policy makers the feedback loops affecting outcomes in the system and thus
make tangible recommendations about where solutions might lie [19,20]. Another dif-
ference is that not all systems-oriented methods involve mathematical modelling, but
rather may point qualitatively, in diagrammatic form initially, to causal loops affecting the
outcomes [21–23]. In addition, systems modellers can incorporate multiple sub-systems,
which build bridges between different stakeholders, including healthcare policymakers,
governments, the private sector, healthcare workers and society. This can be useful in
examining and improving healthcare system resilience during a public health crisis posed
by EIDs threats [22]. Hence, systems methods can offer a birds-eye view of healthcare
systems and their links to connected systems within a society, eschewing a reductionist
approach policy and its implementation [24].

The main challenges reported by the authors while using a systems approach to pre-
vent and control EIDs were related to the availability and accuracy of epidemiological data.
Data availability and accuracy are constrained by EIDs’ novel nature, by environmental
factors, and by the geography or demography of the studies’ locations and populations.
These factors lead to imprecision in observed data which might hinder model calibration.
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However, Cassidy and colleagues argued that systems methods are less affected by this
issue than classical mathematical methods [25]. Moreover, methods to assess the impacts
of these uncertainties in the models’ results can explore the sensitivity to these effects and
help prioritize which aspects of the models or their inputs would benefit the most from
more accurate and timely data.

All included studies focused on sarbecoviruses, with the first study published in 2009.
However, in addition to sarbecoviruses, the WHO also prioritizes other EIDs for research
and development [10]. Our review sheds light on how systems approaches can be used
for future research and practice on these diseases. Moreover, the global community has
learned from the current COVID-19 experience that the consequences of an uncontrolled
EID are more extensive than previously imagined and can lead to a significant burden
not only on human health but also on the economy and how society functions. Thus, it is
necessary to use a holistic approach for problem-solving when it comes to EIDs, to which
systems science can contribute.

The main lesson learned from our review is that systems methods are adaptable and
informative. Besides the possibility of systems modellers to further develop existing models
when clinicians have deeper understanding of an EID and/or more data are available,
there is an added value in considering the dynamic relationship between systems elements
and/or other features of complex systems. Moreover, incorporating socioeconomic and
demographic data to diseases dynamics in systems models can provide a more holistic
presentation of the magnitude and burden of an EID, which in turn helps in producing
more specific recommendation to a particular situation or a population.

Our review noted some limitations of systems-oriented methods. The model devel-
opment process and validation were not transparent in all the included studies, making
it challenging for researchers to reproduce the results [25,26]. In addition, the models
varied in depth and detail and the reporting style was inconsistent across studies. These
limitations are expected because systems methods have only been used recently in EID
prevention and control research. With more adaptation of systems methods in EIDs and
healthcare policy research, there is a need for clear guidelines in terms of visualisation,
transparency and reporting style to enhance reproducibility [25]. Other limitations of
systems methods in healthcare policy are their inability to represent all the spill-over phe-
nomena in a healthcare system and the (deliberate and necessary) oversimplification that is
inherent to the modelling process [26].

Limitations and Strengths

The main limitation of our review is that due to the volume of COVID-19 research
reported during the current pandemic, relevant literature may have been published since
our original search. Due to the lead time between searches and reporting a review, there is
a need in a rapidly changing situation such as the COVID-19 pandemic to strike a balance
between keeping the searches up-to-date and sharing the findings at a point at which they
are useful. It is possible that some reports used systems-oriented modelling methods but
did not allude to it in their title, abstract or keywords/descriptors.

As for the strengths of this review, we performed a comprehensive search using agreed-
upon keywords (with the support of a subject librarian) linked to the WHO list of EID for
research and development and followed the Joanna Briggs Institute guidelines for scoping
reviews [8,10], guided by a protocol that was reviewed by the research team and peer
reviewed [9]. Additionally, we maintained transparency on the need to narrow the scope of
the review due to time limitations arising from university regulations governing doctoral
studies. Additionally, the reviewing process was done by two independent reviewers.

5. Conclusions

Systems methods can be used to prevent and control EIDs in many ways. The value of
systems methods in preparedness and response of healthcare systems to EIDs have been
increasingly appreciated because they account for the complexity of this group of diseases.
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A range of methods was identified, they were used either alone or in combination with
other epidemiological methods. Finally, we conclude that systems methods may help in
designing policies to improve healthcare system resilience in response to EIDs.

Recommendations for Future Research

Since systems science is multidisciplinary, we encourage collaboration between re-
searchers from different disciplines to prevent and control EIDs. Teams comprising systems
scientists, epidemiologists, systems engineers and social scientists can build systems models
to provide a deeper understanding of the EID threat to societies. COVID-19 was prominent
in the studies that were included in this review. Systems-oriented methods take account of
context, and models and interventions designed in one context might not be helpful in the
contexts of different diseases, places or times, for example. As of now there is relatively
limited evidence available from the practical application of systems-oriented methods in
EID control, and we therefore encourage systems researchers and policymakers to evaluate
and report their past and future experiences of implementing systems-oriented methods in
EIDs prevention and control.
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Appendix A. Keywords Search across Databases

Appendix A.1. PubMed 23/3/21, 1905 Results

(Emerging-infectious-disease*[Title/Abstract] OR coronavirus[Title/Abstract] OR
MERS-CoV[Title/Abstract] OR COVID-19[Title/Abstract] OR severe-acute-respiratory
syndrome[Title/Abstract] OR SARS-CoV-2[Title/Abstract] OR SARS[Title/Abstract] OR
Ebola[Title/Abstract] OR avian-influenza[Title/Abstract] OR zika*[Title/Abstract] OR
dengue[Title/Abstract] OR nipah[Title/Abstract] OR pandemic*[Title/Abstract] OR out-
break* OR Crimean-Congo-haemorrhagic-fever[Title/Abstract] OR rift-valley-fever [Ti-
tle/Abstract] OR disease-X [Title/Abstract] OR lassa-fever[Title/Abstract])

AND
(complex* near/2 system*[Title/Abstract] OR system-dynamic*[Title/Abstract] OR

agent-based[Title/Abstract] OR stochastic[Title/Abstract] OR compartmental-model*[Title/
Abstract] OR multi-agent[Title/Abstract] OR multi-compartment-model*[Title/Abstract]
OR network near/2 analys*[Title/Abstract])

Appendix A.2. Web of Science 23/3/21, 1880 Results

(
TI=(“Emerging infectious disease*” OR coronavirus OR MERS-CoV OR COVID-19

OR “severe acute respiratory syndrome” OR SARS-CoV-2 OR SARS OR Ebola OR “avian
influenza” OR zika* OR dengue OR nipah OR pandemic* OR outbreak* OR “Crimean
Congo haemorrhagic fever” OR “rift valley fever” OR “disease X” OR “lassa fever”)

OR
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AB=(“Emerging infectious disease*” OR coronavirus OR MERS-CoV OR COVID-19
OR “severe acute respiratory syndrome” OR SARS-CoV-2 OR SARS OR Ebola OR “avian
influenza” OR zika* OR dengue OR nipah OR pandemic* OR outbreak* OR “Crimean
Congo haemorrhagic fever” OR “rift valley fever” OR “disease X” OR “lassa fever”)

)
AND
(
TI=(complex* W/2 system* OR “system dynamic*” OR “agent based” OR agent-based

OR stochastic OR “compartmental model*” OR “multi agent” OR multi-agent OR “multi
compartment model*” OR “multicompartment model*” OR “multi-compartment model*”
OR network W/2 analys*)

OR
AB=(complex* W/2 system* OR “system dynamic*” OR “agent based” OR agent-

based OR stochastic OR “compartmental model*” OR “multi agent” OR multi-agent OR
“multi compartment model*” OR “multicompartment model*” OR “multi-compartment
model*” OR network W/2 analys*)

)

Appendix A.3. Scopus 23/3/21, 9230 Results

(
TITLE-ABS(Emerging infectious disease*) OR TITLE-ABS(coronavirus) OR TITLE-

ABS(MERS-CoV) OR TITLE-ABS(COVID-19) OR TITLE-ABS(severe acute respiratory syn-
drome) OR TITLE-ABS(SARS-CoV-2) OR TITLE-ABS(SARS) OR TITLE-ABS(Ebola) OR
TITLE-ABS(avian influenza) OR TITLE-ABS(zika*) OR TITLE-ABS(dengue) OR TITLE-
ABS(nipah) OR TITLE-ABS(pandemic*) OR TITLE-ABS(outbreak*) OR TITLE-ABS(Crimean
Congo haemorrhagic fever) OR TITLE-ABS(rift valley fever) OR TITLE-ABS(disease X) OR
TITLE-ABS(lassa fever)

)
AND
(
TITLE-ABS(complex* W/2 system*) OR TITLE-ABS(system dynamic*) OR TITLE-

ABS(agent?based) OR TITLE-ABS(stochastic) OR TITLE-ABS(compartmental model*) OR
TITLE-ABS(multi?agent) OR TITLE-ABS(multi?compartment model*) OR TITLE-ABS
(network W/2 analys*)

)
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