
mdpi.com/journal/algorithms

Special Issue Reprint

2022 and 2023 Selected
Papers from Algorithms
Editorial Board Members

Edited by

Frank Werner

2022 and 2023 Selected Papers from
Algorithms Editorial Board Members

2022 and 2023 Selected Papers from
Algorithms Editorial Board Members

Editor

Frank Werner

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Editor

Frank Werner

Otto-von-Guericke-University

Magdeburg

Germany

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special

issues/2022 EBM).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-0641-6 (Hbk)

ISBN 978-3-7258-0642-3 (PDF)

doi.org/10.3390/books978-3-7258-0642-3

© 2024 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.

Contents

About the Editor . vii

Preface . ix

Frank Werner

Special Issue: “2022 and 2023 Selected Papers from Algorithms’ Editorial Board Members”
Reprinted from: Algorithms 2024, 17, 65, doi:10.3390/a17020065 1

Pierre Leone and Nathan Cohen

Rendezvous on the Line with Different Speeds and Markers That Can Be Dropped at Chosen
Time
Reprinted from: Algorithms 2022, 15, 41, doi:10.3390/a15020041 5

Arun Kumar Sangaiah, Samira Rezaei, Amir Javadpour, Farimasadat Miri, Weizhe Zhang

and Desheng Wang

Automatic Fault Detection and Diagnosis in Cellular Networks and Beyond 5G: Intelligent
Network Management
Reprinted from: Algorithms 2022, 15, 432, doi:10.3390/a15110432 21

Alicia Cordero, Javier G. Maimó, Antmel Rodrı́guez-Cabral and Juan R. Torregrosa

Convergence and Stability of a New Parametric Class of Iterative Processes for Nonlinear
Systems
Reprinted from: Algorithms 2023, 16, 163, doi:10.3390/a16030163 61

Vittorio Maniezzo and Tingting Zhou

Learning Individualized Hyperparameter Settings
Reprinted from: Algorithms 2023, 16, 267, doi:10.3390/a16060267 82

Andrei A. Efremov, Yuri N. Sotskov and Yulia S. Belotzkaya

Optimization of Selection and Use of a Machine and Tractor Fleet in Agricultural Enterprises:
A Case Study
Reprinted from: Algorithms 2023, 16, 311, doi:10.3390/a16070311 97

Artemiy Belousov, Ivan Kisel, Robin Lakos and Akhil Mithran

Neural-Network-Based Quark–Gluon Plasma Trigger for the CBM Experiment at FAIR
Reprinted from: Algorithms 2023, 16, 344, doi:10.3390/a16070344 119

Mustafa Can Gursesli, Mehmet Emin Selek, Mustafa Oktay Samur, Mirko Duradoni,

Kyoungju Park, Andrea Guazzini and Antonio Lanatà

Design of Cloud-Based Real-Time Eye-Tracking Monitoring and Storage System
Reprinted from: Algorithms 2023, 16, 355, doi:10.3390/a16070355 131

Michael Tetteh, Allan de Lima, Jack McEllin, Aidan Murphy, Douglas Mota Dias and Conor

Ryan

Evolving Multi-Output Digital Circuits Using Multi-Genome Grammatical Evolution
Reprinted from: Algorithms 2023, 16, 365, doi:10.3390/a16080365 145

Artemiy Belousov, Ivan Kisel and Robin Lakos

A Neural-Network-Based Competition between Short-Lived Particle Candidates in the CBM
Experiment at FAIR
Reprinted from: Algorithms 2023, 16, 383, doi:10.3390/a16080383 167

v

Jonas F. Leon, Yuda Li, Xabier A. Martin, Laura Calvet, Javier Panadero and Angel A. Juan

A Hybrid Simulation and Reinforcement Learning Algorithm for Enhancing Efficiency in
Warehouse Operations
Reprinted from: Algorithms 2023, 16, 408, doi:10.3390/a16090408 178

Ola N. Halawi, Faisal N. Abu-Khzam and Sergio Thoumi

A Multi-Objective Degree-Based Network Anonymization Method
Reprinted from: Algorithms 2023, 16, 436, doi:10.3390/a16090436 200

Alexandru-Razvan Manescu and Bogdan Dumitrescu

HyperDE: An Adaptive Hyper-Heuristic for Global Optimization
Reprinted from: Algorithms 2023, 16, 451, doi:10.3390/a16090451 210

Loris Belcastro, Domenico Carbone, Cristian Cosentino, Fabrizio Marozzo and Paolo Trunfio

Enhancing Cryptocurrency Price Forecasting by Integrating Machine Learning with Social
Media and Market Data
Reprinted from: Algorithms 2023, 16, 542, doi:10.3390/a16120542 228

Mauro Dell’Amico, Jafar Jamal and Roberto Montemanni

Compact Models to Solve the Precedence-Constrained Minimum-Cost Arborescence Problem
with Waiting Times
Reprinted from: Algorithms 2024, 17, 12, doi:10.3390/a17010012 243

Mohammad Shokouhifar, Mohamad Hasanvand, Elaheh Moharamkhani and Frank Werner

Ensemble Heuristic–Metaheuristic Feature Fusion Learning for Heart Disease Diagnosis Using
Tabular Data
Reprinted from: Algorithms 2024, 17, 34, doi:10.3390/a17010034 259

Dimitris Fotakis, Panagiotis Patsilinakos, Eleni Psaroudaki and Michalis Xefteris

Efficient Time-Series Clustering through Sparse Gaussian Modeling
Reprinted from: Algorithms 2024, 17, 61, doi:10.3390/a17020061 283

vi

About the Editor

Frank Werner

Frank Werner studied mathematics from 1975 to 1980 and graduated from the Technical

University Magdeburg (Germany) with distinction. He received a Ph.D. degree (with summa cum

laude) in Mathematics in 1984 and defended his habilitation thesis in 1989. From this time on, he

worked at the Faculty of Mathematics of the Otto-von-Guericke University Magdeburg in Germany,

and since 1998 as an extraordinary professor. In 1992, he received a grant from the Alexander

von Humboldt Foundation. He was a manager of several research projects supported by the

German Research Society (DFG) and the European Union (INTAS). Since 2019, he has been the

Editor-in-Chief of the journal Algorithms. He is also an Associate Editor of the International Journal

of Production Research since 2012 and of the Journal of Scheduling since 2014 as well a member of the

editorial/advisory boards of 18 further international journals. He has been a guest editor of Special

Issues in ten international journals, and has served as a member of the program committee of more

than 140 international conferences. Frank Werner is an author/editor of 14 books, among them the

textbooks ‘Mathematics of Economics and Business’ and ‘A Refresher Course in Mathematics’. In

addition, he has co-edited three proceedings volumes of the SIMULTECH conferences and published

more than 300 journal and conference papers, e.g., in the International Journal of Production Research,

Computers & Operations Research, Journal of Scheduling, Applied Mathematical Modelling, or the

European Journal of Operational Research. He received Best Paper Awards from the International

Journal of Production Research (2016) and IISE Transactions (2021). His main research subjects are

scheduling, discrete optimization, graph theory, and mathematical problems in operations research.

vii

Preface

This is the printed edition of a Special Issue published in the journal Algorithms. After the

great success of two previous Special Issues published in the same journal, where Editorial Board

members of the journal present their latest research, the third edition covers submissions from the

two years 2022 and 2023. This book contains the Editorial and 16 research papers. Among the subjects

addressed in this book, I can mention neural networks, machine and deep learning approaches,

optimization of agricultural processes, cloud-based eye-monitoring, algorithms for heart disease

diagnosis or time-series clustering, to name a few.

Finally, thanks are given to all who contributed to the success of this issue: authors from 19

countries, many referees from all over the world, and the journal’s staff. I hope that the readers of

this book will find many stimulating ideas for their own future research and that we obtain many

interesting submissions also for the next edition of this special issue type covering the years 2024 and

2025.

Frank Werner

Editor

ix

Citation: Werner, F. Special Issue:

“2022 and 2023 Selected Papers from

Algorithms’ Editorial Board

Members”. Algorithms 2024, 17, 65.

https://

doi.org/10.3390/a17020065

Received: 1 February 2024

Accepted: 1 February 2024

Published: 3 February 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Editorial

Special Issue: “2022 and 2023 Selected Papers from Algorithms’
Editorial Board Members”

Frank Werner

Faculty of Mathematics, Otto-von-Guericke University Magdeburg, P.O. Box 4120, D-39016 Magdeburg, Germany;
frank.werner@ovgu.de; Tel.: +49-391-675-2025

This is the third edition of a Special Issue of Algorithms; it is of a rather different nature
compared to other Special Issues in the journal, which are usually dedicated to a particular
subject in the area of algorithms. In particular, the first edition of such an issue from 2020 [1]
contained 8 papers, and the second edition from 2021 [2] contained 12 papers. Over the last
few years, the Editorial Board of the journal has been considerably extended. Currently, my
work as Editor-in-Chief is supported by 2 Associate Editors, 5 Section Editors-in-Chief, and
135 further members of the Editorial Board. Since these scientists cover a huge spectrum
of research fields related to the development of algorithms, the journal decided to set up
Special Issues of this type, in which our Editorial Board Members can present their latest
work to the readers of Algorithms so that they can have an overview of our Editorial Board
Members’ current research. The current issue considers submissions from the past two
years, 2022 and 2023.

After a careful review process, 16 papers were selected for this issue. As a rule, all sub-
missions have been reviewed by two (and often even more) experts from the corresponding
area. Subsequently, for this special issue, the published research papers were surveyed in
the order of their publication dates.

The first accepted research paper by Leone and Cohen considers a rendezvous game,
where players move at different speeds and markers can be left by one of the players on the
infinite line. For its solution, an LP-based formulation is suggested. The authors showed
how the search space can be reduced to a space of significantly smaller dimensions by
making the enumeration of all elements realistic.

The next paper by Sangaiah et al. presents a method for tackling fault detection and
diagnosis in a cellular network. The authors use two datasets made up of performance
support system data and drive test data. They also present a framework for identifying
the need for handovers. By applying the dynamic neural network method, great accuracy
was achieved.

Then, Cordero et al. present a study on the generalization of a known family of
multi-point scalar iterative processes for approximating solutions of non-linear systems.
A convergence analysis under different smooth conditions is given. They also investigate
stability, analyze the fixed and critical points of the resulting rational operator, and present
graphical analyses of dynamical planes, parameter lines, and bifurcation planes. Finally,
numerical tests are produced for various non-linear systems in order to check the obtained
theoretical results and to compare the proposed schemes with existing ones.

In the next paper, Maniezzo and Zhou deal with the setting of hyperparameters in
optimization algorithms and propose a novel learning scheme. Their approach differs
from existing ones and exploits the learning and generalization capabilities of artificial
neural networks, with the goal of adapting a general setting using automatic configurators.
The suggested approach is tested on two algorithms: one algorithm that is very sensitive
to parameter settings applied to instances of the generalized assignment problem, and a
robust tabu search algorithm applied to instances of the quadratic assignment problem. In
both cases, the approach turned out to be effective.

Algorithms 2024, 17, 65. https://doi.org/10.3390/a17020065 https://www.mdpi.com/journal/algorithms1

Algorithms 2024, 17, 65

The paper by Efrimov et al. deals with the optimization of the formation and use
of a machine and tractor fleet within a crop farming enterprise. The authors discuss the
concepts and indicators that characterize the process of agricultural operations related
to said machine fleet. In particular, after presenting the problem and context in detail,
an optimization model for executing a complex of mechanized works in agricultural
production is presented. Then the authors present a general scheme consisting of five
stages. It includes a heuristic algorithm for performing a set of agricultural works, the
results of which are compared with those obtained by the GAMS solver. In particular, the
authors present results for real data in an agricultural enterprise alongside interpretations
of the obtained results.

Then, in contribution 6, Belousov et al. present a neural network package which
has been optimized for the use on a high-performance computing cluster for a future
compressed baryonic matter (CBM) experiment at a research facility in Germany. The
package has been developed in C++. To identify events containing quark–gluon plasma,
fully connected and convolutional neural networks have been created. The tests show the
superiority of convolutional neural networks over fully connected networks, and achieved
high accuracy with the considered dataset.

In the next paper, Gursesli et al. introduce a system which makes the collection, pro-
cessing, real-time streaming, and storage of eye tracking data possible. For the development
of this system, the Java programming language, WebSocket protocol, and Representational
State Transfer were used. The results were obtained under two sets of test conditions,
namely local and online scenarios. The results show that this system can significantly
support the research community by providing real-time data transfer and storage.

Then, Tetteh et al. present a Multi-Genome Grammatical Evolution which is better
suited to treating multi-output problems, in particular for digital circuits. They adapt
genetic operators, mappers, and initialisation routines to work with the new genome repre-
sentation. The authors also develop custom grammar syntex rules and a new wrapping
operator. The approach is tested on combinatorial circuit benchmark problems. It turns out
that the developed approach outperforms standard Grammatical Evolution.

In contribution 9, Belousow et al. present a second paper within this issue; they
discuss a neural network-based competition between short-lived particle candidates in the
CBM experiment at the same research facility mentioned in contribution 7. The authors
replace the existing particle competition between Ks-mesons and Λ-hyperons of the Kalman
Filter Particle Finder with a neural network approach, which provides a raw classification
performance with an error of less than 2 %. They also demonstrate that their approach
improves the quality of the physics analysis.

Leon et al. deal with improving the efficiency of warehouse operations and explore
the possibilities of combining simulation with reinforcement learning, with the goal of
developing effective mechanisms for the quick acquisition of information in complex
environments (occurring, for instance, in manufacturing and logistic systems). In particular,
the paper showcases the integration of the FlexSim commercial simulator and the RL
OpenAI Gym library in Python. The effectiveness of the suggested method is evaluated by
several experiments.

In the paper by Halawi et al., a new multi-objective anonymization approach is
suggested. It generalizes the known-degree anonymization problem and intends to model
data security and privacy more realistically. Their model guarantees a convenient privacy
level. The resulting multi-objective graph realization approach is derived and solved by
means of Integer Linear Programming

In the paper by Manescu and Dumitrescu, a novel global optimization approach is
developed, which is based on differential evolution combined with two other approaches
based on the Sparrow Search Algorithm and Bald Eagle Search, respectively. As a high-level
online learning mechanism, a genetic algorithm is adopted. The proposed methods are
compared with 10 state-of-the-art heuristics and well-established algorithms based on a

2

Algorithms 2024, 17, 65

set of 12 difficult problems. It turns out that the performance of the main algorithm, called
HyperDE, is superior to that of the existing heuristics.

The paper by Belcastro et al. deals with a cryptocurrency problem and suggests a
strategy for maximizing profits through identifying when it is advantageous to buy or
sell cryptocurrencies. The authors combine various statistical, text analytical, and deep
learning techniques to produce recommendations for a trading algorithm. The resulting
trading algorithm is tested on historical data and turns out to be very successful.

Dell’Amico et al. deal with a minimum-cost arborescence problem with precedence
constraints and waiting times. For this NP-hard problem, compact models of polynomial
size are discussed, which turned out to be essentially smaller than earlier ones. These
models are experimentally evaluated. As a result, the authors were able to close 7 previously
open instances; they were also able to derive better lower bounds on the optimum cost for
71 instances and improved upper bounds for 80 instances among 88 open instances.

Shokouhifar et al. present an ensemble heuristic–metaheuristic feature fusion learning
algorithm for the prediction of heart disease. The construction of the ensemble learning
model comprises seven base learners. The objectives are to identify the most pertinent
features for each base learner and to aggregate the decision outcomes of the particular
base learners through ensemble learning. The performance of the developed EHMFFL
algorithm is evaluated using different measures for the Cleveland and Statlog datasets, and
the new algorithm turns out to be superior to existing state-of-the-art algorithms.

In the last paper, Fotakis et al. deal with sharp-based time-series clustering using
Dynamic Time Warping distance. A two-stage framework is presentedm which is based
on Sparse Gaussian Modeling. An extensive computational evaluation is carried out
using datasets from the UCR Time Series Classification Archive. The proposed framework
generates results that can compete with those of a standard k-means algorithm but also has
considerable advantages in clustering quality, CPU utilization, and memory requirements.

As the current Editor-in-Chief, it is my pleasure to thank all the Editorial Board
Members for their support for Algorithms over the last few years. I hope that the Editorial
Board Members of the journal will also submit their most recent high-quality works to
Special Issues of this type in the future.

Conflicts of Interest: The author declares no conflict of interest.

List of Contributors

1. Leone, P.; Cohen, N. Rendezvous on the Line with Different Speeds and Markers That
Can Be Dropped at Chosen Time. Algorithms 2022, 15, 41.

2. Sangaiah, A.K.; Rezaei, S.; Javadpour, A.; Miri, F.; Zhang, W.; Wang, D. Automatic
Fault Detection and Diagnosis in Cellular Networks and Beyond 5G: Intelligent
Network Management. Algorithms 2022, 15, 432.

3. Cordero, A.; Maimo, J.G.; Rodriguez-Cabral, A.; Torregrosa, J.R. Convergence and
Stability of a New Parametric Class of Iterative Processes for Nonlinear Systems.
Algorithms 2023, 16, 163.

4. Maniezzo, V.; Zhou, T. Learning Individualized Hyperparameter Settings. Algorithms
2023, 16, 267.

5. Efremov, A.A.; Sotskov, Y.N.; Belotzkaya, Y.S. Optimization of Selection and Use of a
Machine and Tractor Fleet in Agricultural Enterprises: A Case Study. Algorithms 2023,
16, 311.

6. Belousov, A.; Kisel, I.; Lakos, R.; Mithran, A. Neural-Network-Based Quark-Gluon
Plasma Trigger for the CBM Experiment at FAIR. Algorithms 2023, 16, 344.

7. Gursesli, M.C.; Selek, M.E.; Samur, M.E.; Duradoni, M.; Park, K.; Guazzini, A.; Lanata,
A. Design of Cloud-Based Real-Time Eye-Tracking Monitoring and Storage System.
Algorithms 2023, 16, 355.

3

Algorithms 2024, 17, 65

8. Tetteh, M.; de Lima, A.; McEllin, J.; Murphy, A.; Dias, D.M.; Ryan C. Evolving Multi-
Output Digital Circuits Using Multi-Genome Grammatical Evolution. Algorithms
2023, 16, 365.

9. Belousov, A.; Kisel, I.; Lakos, R. A Neural-Netwok Based Competition between Short-
Lived Particle Candidates in the CBM Experiment at FAIR. Algorithms 2023, 16, 383.

10. Leon, J.F., Li, Y.; Martin, X.A.; Calvet, L.; Panadero, J.; Juan, A.A. A Hybrid Simula-
tion and Reinforcement Learning Algorithm for Enhancing Efficiency in Warehouse
Operations. Algorithms 2023, 16, 408.

11. Halawi, O.N.; Abu-Khzam, F.N.; Thoumi, S. A Multi-Objective Degree-Based Network
Anonymization Method. Algorithms 2023, 16, 436.

12. Manescu, A.-R.; Dumitrescu, B. HyperDE: An Adaptive Hyper-Heuristic for Global
Optimization. Algorithms 2023, 16, 451.

13. Belcastro, L.; Carbone, D.; Cosentino, C.; Marozzo, F.; Trunfio, P. Enhancing Cryp-
tocurrency Price Forecasting by Integrating Machine Learning with Social Media and
Market Data. Algorithms 2023, 16, 542.

14. Dell’Amico, M.; Jamal, J.; Montemanni, R. Compact Models to Solve the Precedence-
Constrained Minimum-Cost Arborescence Problem with Waiting Times. Algorithms
2024, 17, 12.

15. Shokouhifar, M.; Hasanvand, M.; Moharamkhani, E.; Werner, F. Ensemble Heuristic-
Metaheuristic Feature Fusion Learning for Heart Disease Diagnosis Using Tabular
Data. Algorithms 2024, 17, 34.

16. Fotakis, D.; Patsilinakos, P.; Psaroudaki, E.; Xefteris, M. Efficient Timne-Series Cluster-
ing through Sparse Gaussian Modeling. Algorithms 2024, 17, 61.

References

1. Werner, F. 2020 Selected Papers from Algorithms’ Editorial Board Members. Algorithms 2021, 14, 32. [CrossRef]
2. Werner, F. 2021 Selected Papers from Algorithms’ Editorial Board Members. Algorithms 2021, 14, 357. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

4

Citation: Leone, P.; Cohen, N.

Rendezvous on the Line with

Different Speeds and Markers That

Can Be Dropped at Chosen Time.

Algorithms 2022, 15, 41. https://

doi.org/10.3390/a15020041

Academic Editor: Frank Werner

Received: 15 December 2021

Accepted: 26 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Rendezvous on the Line with Different Speeds and Markers
That Can Be Dropped at Chosen Time

Pierre Leone * and Nathan Cohen

TCS-Sensor Lab, Centre Universitaire d’Informatique, Battelle Batiment A, Route de Drize 7,
CH-1227 Carouge, Switzerland; nathan.cohen@etu.unige.ch
* Correspondence: pierre.leone@unige.ch

Abstract: In this paper, we introduce a linear program (LP)-based formulation of a rendezvous game
with markers on the infinite line and solve it. In this game one player moves at unit speed while the
second player moves at a speed bounded by vmax ≤ 1. We observe that in this setting, a slow-moving
player may have interest to remain still instead of moving. This shows that in some conditions the
wait-for-mummy strategy is optimal. We observe as well that the strategies are completely different
if the player that holds the marker is the fast or slow one. Interestingly, the marker is not useful when
the player without marker moves slowly, i.e., the fast-moving player holds the marker.

Keywords: asymmetric rendezvous on the line; markers; asymmetric speeds

1. Introduction

The problem that we discuss in this article revolves around the problem faced by
two parachutists dropped from an airplane on an island and who need to rendezvous. In
order to reduce the dimension of the search space, the two can move to the coastline and
restrict their search by moving along the coastline. The two parachutists facing the sea can
move to right or to the left. However, going to the right or the left is not a common sense of
direction. In an island, depending on where the parachutists are located (north or south)
a motion to the right can lead to go eastward or westward, and the two cannot agree on
a common direction, for instance, by observing where the sea is flowing (as it would be
possible if they were moving along a river). The distance separating them initially may
not be known. To formalize the problem, the distance may be assumed a random variable
or, this is the approach taken here, the distance is assumed to be bounded and an upper
bound on the rendezvous time are searched for. Two novel parameters are considered for
this problem. We assume that the two parachutists may move at different speeds and we
assume that the parachutists can drop off a marker at the position they are and it may be
subsequently found by the other as they pass by the same position. Finding the marker is
very useful since it indicates in which direction to go to rendezvous with the other.

More formally, we introduce a variation of the asymmetric rendezvous problem on
the line that was introduced by Alpern and Gal [1]. In the original setup, two players are
placed on a line at a known distance D and move on the line to rendezvous. The player’s
strategies may be different and start at the same time, and both players move at the same
speed v = 1. At the start and while moving, the players look in a fixed direction, say,
right or left. The directions are chosen randomly each with probability 1/2. It results that
players move either in the direction they look to or the other one, i.e., forward or backward.
A strategy is a succession of forward and backward moves. The optimal solution of this
problem is shown to be 13D/8. Many variations have been proposed showing that even
a simple topology such as the infinite line leads to interesting problems. Among the hardest
seems to be the symmetric rendezvous on the line where the two players have to play
the same strategy. Partial solutions of this problem were obtained. In [2], a strategy was
proposed that ensured the rendezvous time satisfied R ≤ 5D. Subsequent strategies were
proposed in [3,4] that used the same technique as in [2] and reduced the rendezvous time

Algorithms 2022, 15, 41. https://doi.org/10.3390/a15020041 https://www.mdpi.com/journal/algorithms5

Algorithms 2022, 15, 41

to R ≤ 2.28338D and R ≤ 2.2091D, respectively. Ref. [5] generalized the technique and
improved the bound to R ≤ 2.19653D. The best known bound R ≤ 2.1287D is given in [6].

Some papers deal with the problem where the initial distance between the players is
unknown, see for instance [7–10]. Usually, the distance is characterized by a probability
function. Note that if the players use strategies tailored for a known distance D with
rendezvous time R to a problem where it is only known that the distance is bounded by D,
then the rendezvous time for this problem is bounded by R.

The way time enters the game leads to relevant variations as well. The constraint
that the players start at the same time may be relaxed and this leads to asynchronous
rendezvous problems [11,12]. Asynchronous rendezvous problems may assume that an
adversary chooses the starting delay or the clocks are assumed to drift with different speeds.
There are relations between problems where clocks drift at different speeds and ones where
players move at different speed [12].

A problem where players move on the line and share similarities with the rendezvous
problem is the group search problem on the line [13]. This problem is motivated by the
evacuation problem where players must simultaneously gather at some point. One may
imagine that people need to leave a building and are helped with a line drawn on the floor
but do not know the right direction to follow. When players move at different speeds,
interesting strategies can be found where a fast player move to help slower players.

Problems where players move on a circle share similarities with problems on the
line [14–18]. Compared to the infinite line, the ring is a compact topology, but symmetry
breaking has to be solved as well to ensure rendezvous. Tokens may be left by play-
ers [19–21]. For rendezvous problems on the line, Refs. [22,23] present results where
markers are used by players. With a more robotic and computer science flavor some
problems encompass faulty agents [24,25].

Rendezvous problems are far from being limited to the infinite line or a ring. Problems
may be stated for agents moving on a plane, on graphs, on a torus, on networks and so
on, see for instance [26–28]. These problems are different from the ones considered in
this paper.

Markers can have different effects. For instance, the game may end at the time the
marker is found, i.e., rendezvous occurs or the marker is found. This would be the case if
a phone number is written on the marker. With such a marker, the game would be close
to a version of a search-and-rescue game [29]. This may be seen as a mix of rendezvous
and search games, see for instance [30–32] for search games on graphs and [26,33,34] for
general references.

2. Our Contributions

In this paper, we consider the (synchronous) rendezvous problem on the line with
known initial distance D where players move at different speeds and where a marker can
be left by one of the players. Without loss of generality, we assume that one player moves
at speed 1 while the second player moves at speed v ≤ 1. We show that investigations can
be conducted with linear programming techniques to identify optimal strategies. This is
not the conventional approach in the literature where the results are usually guessed and
optimality is subsequently proved. The reduction of rendezvous search game to another
formalism to be solved appears in the literature, see for instance [35]. Here, the reduction
to parametric linear programming has the further advantage that the same method can
be applied to compute different measures of optimality. For instance, the optimization of
the last rendezvous time. Actually, any linear combination of the rendezvous times can
be optimized.

In [23,36], a similar problem with markers is considered. The parametric linear pro-
gramming approach of this article leads to more precise results than the ad hoc approach
of [23]. Moreover, here we accommodate to players with different speeds, extending the
results of [23,36].

6

Algorithms 2022, 15, 41

3. Problem Formulation

We begin by presenting the formalization of the problem as given in [1]. Two players,
I and II, are placed at distance D = 1 (although the results depend linearly on the initial
distance and are stated for a general D). apart on the real line, and faced in random
directions which they call “forward”. Their common aim is to minimize the expected
amount of time required to meet. They each know the distance 1 but not the direction the
other player is facing. It is not a restriction to assume that player I’s starting point is located
at position 0 of the line and their speed is bounded by v ≤ 1. Their position is given by
a function f (t) ∈ F (α), where

F (α) =
{

f : [0, T]→ R, f (0) = 0,
∣∣ f (t)− f

(
t′
)∣∣ ≤ α

∣∣t− t′
∣∣}, (1)

for some T sufficiently large so that the rendezvous will have taken place.
What are unknown are the initial position of player II that may be ±1 and the forward

direction of player II that may point to the positive or negative side of the infinite line.
Again, without restriction of generality, we assume that the speed of player II is bounded
by 1. Hence, depending on the initial conditions of player II their position at time t is given
by ±1± g(t) with g ∈ F (1) = F .

The rendezvous times are defined by:

t1 = min{t : f (t) = 1 + g(t)}, (2)

when player II is originally located at +1 and their forward direction points to the positive
side of the line.

t2 = min{t : f (t) = 1− g(t)}, (3)

when player II is originally located at +1 and their forward direction points to the negative
side of the line.

t3 = min{t : f (t) = −1 + g(t)}, (4)

when player II is originally located at −1 and their forward direction points to the positive
side of the line.

t4 = min{t : f (t) = −1− g(t)}, (5)

when player II is originally located at −1 and their forward direction points to the negative
side of the line.

It is common in the literature to speak of four agents (of player II) located at positions
±1 and with forward direction ±1 and moving concurrently. Player I needs to rendezvous
with the four agents to end the game [26]. Concretely,

• Agent 1 is located at +1 with forward direction +1 and its rendezvous time is t1,
• Agent 2 is located at +1 with forward direction −1 and its rendezvous time is t2,
• Agent 3 is located at −1 with forward direction +1 and its rendezvous time is t3,
• Agent 4 is located at −1 with forward direction −1 and its rendezvous time is t4.

We show in Figure 1 the configurations of the four agents and the optimal solution
of the problem without marker. We observe on this figure that the speeds of both players
are always maximal (equal to 1). Then, a complete description of the optimal strategy is
provided by the order with which player I rendezvous with the agents, i.e., agent 2, 3, 1 and
finally 4.

7

Algorithms 2022, 15, 41

timepo
sit

io
n

agent 1 of Player II

agent 2 of Player II

agent 3 of Player II

agent 4 of Player II

+1

-1

agent 3

agent 4

agent 2

agent 1

time

1

-1

position of players on the line

Figure 1. (On the left):the four agents of player II. Each one corresponds to a particular initial
position and direction of the forward move. (On the right): the optimal solution of the game without
marker. Player I goes forward for time 1

2 , then backward for time 1
2 , then forward for time 1 and

backward for time 1. Player II goes forward for time 1, then backward for time 3. The rendezvous
occur successively with agents 2, 3, 1 and 4 at times t2 = 1

2 , t3 = 1, t1 = 2 and t4 = 3.

Definition 1. We introduce the notation t1 ≤ t2 ≤ t3 ≤ t4 to denote the rendezvous times in the
order they occur, (oi, bi) denotes the agent with origin oi = ±1 and forward direction bi = ±1. The
order of the rendezvous times is given by the index i, t1 is the rendezvous with agent (o1, b1), t2 is
the rendezvous with agent (o2, b2), t3 is the rendezvous with agent (o3, b3) and t4 is the rendezvous
with agent (o4, b4). When necessary, we use the convention t0 = 0

For instance, for the solution in Figure 1 it holds that t1 = t2, t2 = t3, t3 = t1, t4 = t4,
and (o1, d1) = (1,−1), (o2, d2) = (−1, 1), (o3, d3) = (1, 1), (o4, d4) = (−1,−1),.

We do not make any assumptions on how the functions f (t) and g(t) are computed.
A different formalism than what we are proposing here may be possible. For instance,
as in differential games [37–39], f (t) and g(t) may be bound to be solutions of ordinary
differential equation. Our approach here is different. We first show that the functions f (t)
and g(t) that may be optimal have the restricting feature of being of constant derivative
between two rendezvous. Then, we enumerate all possible solutions. Notice that pursuit–
evasion games are usually modeled as differential games. Compared to pursuit–evasion,
our rendezvous game is cooperative and this makes possible the enumeration of all efficient
strategies (player I rendezvous with the four agents and what is to be discovered is the
order leading to the shorter average of the rendezvous times).

The rendezvous value R(f , g) is defined to be the average value

R(f , g) =
1
4

(
t1 + t2 + t3 + t4

)
.

Finally, the rendezvous value of the game is defined by

R = min
{

R(f , g) : f ∈ F (v), g ∈ F
}

. (6)

A first remark that simplifies the problem is that the functional spaces F (v) and F
may be reduced to consider only functions f ∈ F (v) and g ∈ F lwhose speed is constant
between the rendezvous times. Indeed, if the speed is not constant, moving at the average
speed between rendezvous times leads to the same rendezvous value. Moreover, similarly
to Lemma 5.1 of [1], Theorem 16.10 of [26] or Proposition 3 of [23], we have the following
result for g ∈ F .

Proposition 1. If v ≤ 1, then, for the optimal strategies, the function g ∈ F is of constant slope
equal to ±1 between the rendezvous, i.e., the speed of the fast player is always maximal.

8

Algorithms 2022, 15, 41

Proof. Let us assume that player II, whose position is given by function g ∈ F and initial
position is known, does not move at maximal speed between rendezvous times ti−1 < ti.
This means that player II can reach the rendezvous position at a time ti − ε with ε > 0.
By moving faster, it may happen that player II rendezvous with player I before time
ti, reducing the rendezvous time ti. If not, we modify the trajectory of player II in the
following way. After reaching the rendezvous point at time ti − ε, player II continues in
the same direction for a period ε/2 and then goes the other way for a period ε/2, back
to the rendezvous position at time ti. At time t− ε/2, player I must be at a distance less
than vε/2 from the rendezvous position and because player II is at a distance ε/2 and
ε/2 ≥ vε/2, the rendezvous must occur before time ti. To summarize, by moving at full
speed, player II always reduces the rendezvous time ti. After time ti player II follows
the original strategy and the remaining rendezvous times are not changed. In total, the
modified strategy reduces the rendezvous value showing that the original strategy is not
optimal. We emphasize that the fast-moving player moves at maximal speed while the
slow-moving player can move at any speed in [0, v].

Corollary 1. We assume here that the speed of player I is bounded by v ≤ 1 and the speed of
player II by 1, i.e., f ∈ F (v) and g ∈ F . The sets of optimal strategies (f , g) for players I and II,
respectively, are given by

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1 · t, t ∈ [0, t1]

v1 · t1 + v2 · (t− t1), t ∈ [t1, t2]

v1 · t1 + v2 · (t2 − t1) + v3 · (t− t2), t ∈ [t2, t3]

v1 · t1 + v2 · (t2 − t1) + v3 · (t3 − t2) + v4 · (t− t3), t ∈ [t3, t4]

(7)

g(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d1 · t, t ∈ [0, t1]

d1 · t1 + d2 · (t− t1), t ∈ [t1, t2]

d1 · t1 + d2 · (t2 − t1) + d3 · (t− t2), t ∈ [t2, t3]

d1 · t1 + d2 · (t2 − t1) + d3 · (t3 − t2) + d4 · (t− t3), t ∈ [t3, t4]

(8)

where vi ∈ [−v, v], di = ±1 and t1 ≤ t2 ≤ t3 ≤ t4 are the rendezvous times.

Proposition 1 and Corollary 1 are not new and are constantly used in the literature, see
for instance Chapter 17.1 of [26]. We stress that player I having the smallest speed bound
may move at a slower speed than the maximal one. Indeed, we will observe that for v
small, the optimal strategy for player I is to not move before t2. The “wait for mummy”
strategy is then optimal for starting the game.

We consider that player I has at their disposal a marker that may be left at a chosen
time. The marker helps player II, who stops following the strategy after finding the marker
and continues in the same direction at maximal speed until rendezvousing with player I.
The same arguments as the ones in Proposition 1 and Corollary 1 or Proposition 3 of [23],
which show that player I move at a constant velocity before and after dropping the marker.
There are four different cases to consider for the formulation of the problem depending on
which interval, [0, t1], [t1, t2], [t2, t3], [t3, t4] player I drops off the marker at. This leads to
the following proposition that characterizes the optimal strategies.

Corollary 2. When player I has a marker that can be dropped off at chosen time z, the set of optimal
strategies f for player I are given by

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v0 · t, t ∈ [0, z]
v0 · z + v1 · (t− z), t ∈ [z, t1]

v0 · z + v1 · (t1 − z) + v2 · (t− t1), t ∈ [t1, t2]

v0 · z + v1 · (t1 − z) + v2 · (t2 − t1) + v3 · (t− t2), t ∈ [t2, t3]

v0 · z + v1 · (t1 − z) + v2 · (t2 − t1) + v3 · (t3 − t2) + v4 · (t− t3), t ∈ [t3, t4]

(9)

9

Algorithms 2022, 15, 41

if z ∈ [0, t1].

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v1 · t, t ∈ [0, t1]

v1 · t1 + v0 · (t− t1), t ∈ [t1, z]
v1 · t1 + v0 · (z− t1) + v2 · (t− z), t ∈ [z, t2]

v1 · t1 + v0 · (z− t1) + v2 · (t2 − z) + v3 · (t− t2), t ∈ [t2, t3]

v1 · t1 + v0 · (z− t1) + v2 · (t2 − z) + v3 · (t3 − t2) + v4 · (t− t3), t ∈ [t3, t4]

(10)

if z ∈ [t1, t2].

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v1 · t, t ∈ [0, t1]

v1 · t1 + v2 · (t− t1), t ∈ [t1, t2]

v1 · t1 + v2 · (t2 − t1) + v0 · (t− t2), t ∈ [t2, z]
v1 · t1 + v2 · (t2 − t1) + v0 · (z− t2) + v3 · (t− z), t ∈ [z, t3]

v1 · t1 + v2 · (t2 − t1) + v0 · (z− t2) + v3 · (t3 − z) + v4 · (t− t3), t ∈ [t3, t4]

(11)

if z ∈ [t2, t3].

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v1 · t, t ∈ [0, t1]

v1 · t1 + v2 · (t− t1), t ∈ [t1, t2]

v1 · t1 + v2 · (t2 − t1) + v3 · (t− t2), t ∈ [t2, t3]

v1 · t1 + v2 · (t2 − t1) + v3 · (t3 − t2) + v0 · (t− t3), t ∈ [t3, z]
v1 · t1 + v2 · (t2 − t1) + v3 · (t3 − t2) + v0 · (z− t3) + v4 · (t− z), t ∈ [z, t4]

(12)

if z ∈ [t3, t4]. The optimal strategies for player II are still of the form of Equation (8). In any cases,
the parameters are constrained to vi ∈ [−v, v] (v ≤ 1) and di = ±1, and t1 ≤ t2 ≤ t3 ≤ t4 are the
rendezvous times.

Corollaries 1 and 2 are very useful in making the rendezvous value of the game given
by Equation (6) computable. Indeed, the set of functions (f , g) to be considered is finite.
Notice that for the problem with marker, the set is finite provided that v is fixed.

It is crucial to point out that in Corollary 2, the optimal strategy of player II is of the
form of Equation (8), but if the marker is found at some time, player II no longer follows
the strategy but continues in the same direction thereafter. For instance, if the marker is
found in the interval [0, t1] at time tz we must have z ≤ tz and the condition

o + d1btz = voz,

must be satisfied, where o is the original starting point of player II (o = ±1) and b is the
forward direction of player II (b = ±1). Indeed, the condition states that player II starting
at position o at time 0 is at the marker’s position at time tz, i.e., the marker is found. The
coefficient d1 is given by the strategy followed by player II and d1 · b is the effective motion
depending on the forward direction b. Thereafter, player II does not follow the strategy but
continues in the same direction, i.e., we substitute d1 for di in Equation (8). Hence, if the
rendezvous does not occur in [0, t1], player II’s motion is given by

o + d1btz + d1b(t1 − tz) = o + d1bt1.

If no rendezvous occurs in the next time interval [t1, t2], the motion of player II is given by

o + d1bt1 + d1b(t2 − t1),

(compare with the second line of Equation (8)). The same reasoning applies for the next
time intervals, [t2, t3] and [t3, t4].

10

Algorithms 2022, 15, 41

4. Solution of the Problem without Marker

The optimal strategies of the problem without marker are given in Corollary 1. There
are eight unknowns vi and di, the rendezvous time being a consequence of these variables.
To reduce the problem to a family of linear programs we rewrite the strategies to remove
the products vi · t by introducing new variables vti with the bounds 0 ≤ vti ≤ v · (ti − ti−1),
where v is the maximal speed of player I. To take into account that the speed of player I
may be negative (when player I is going backward), we introduce new variables ai = ±1
and the motion is computed relatively to ai · vti. Notice that ai is a parameter that is fixed
before calling the LP-solver (hence, the problem is still linear).

To define the meeting times ti, we need to specify in which order they occur. Ordering
the meeting times amounts to choosing a permutation σ of {1, 2, 3, 4} such that ti = tσ(i)

where ti are defined by Equations (2)–(5). For this, we introduce new variables (oi, bi) with
oi = ±1 and b1 = ±1 to refer to specific agents of player II. Concretely,

• Agent 1 is referred by (oi = +1, bi = +1) and the rendezvous time t1 is defined by (2),
• Agent 2 is referred by (oi = +1, bi = −1) and the rendezvous time t2 is defined by (3),
• Agent 3 is referred by (oi = −1, bi = +1) and the rendezvous time t3 is defined by (4),
• Agent 4 is referred by (oi = −1, bi = −1) and the rendezvous time t4 is defined by (5).

The rendezvous always occur in the order (o1, b1), (o2, b2), (o3, b3), (o4, b4). The values
of oi and bi are given by:

min
Δi

t1 + t2 + t3 + t4

o1 + d1b1t1 = a1vt1

o2 + d1b2t1 + d2b2(t2 − t1) = a1vt1 + a2vt2

o3 + d1b3t1 + d2b3(t2 − t1) + d3b3(t3 − t2) = a1vt1 + a2vt2 + a3vt3

o4 + d1b4t1 + d2b4(t2 − t1) + d3b4(t3 − t2) + d4b4(t4 − t3) = a1vt1+

a2vt2 + a3vt3 + a4vt4

0 ≤ vt1 ≤ v · t1

0 ≤ vt2 ≤ v · (t2 − t1)

0 ≤ vt3 ≤ v · (t3 − t2)

0 ≤ vt4 ≤ v · (t4 − t3)

ai, bi, oi, di ∈ {0, 1}∑ oi = 0, ∑ di = 0, oi = oj ⇒ di �= dj.

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, t4 ≥ 0

For the computation of the solution, we use the variables oi, bi, di, ai as parameters.
For each set of values, we solve the corresponding linear program. The number of linear
programs solved was 1536, which was solved in a few seconds using the Python Gurobi
library [40]. Notice that by symmetry, we fixed a1 = 1 and d1 = 1.

The plot of the results are shown in Figure 2, where the optimal rendezvous value is
plotted versus the maximal speed of player I for discrete values n/1000, n = 0, 1, . . . , 1000.

Besides the computation of the optimal rendezvous values, we recorded the corre-
sponding optimal strategy. We observe that for v ≤ 0.618 the optimal strategy is (a1 = 0,
a2 = 0, a3 = 1 and a4 = −1) for player I and (d1 = 1, d2 = 1, d3 = −1, d4 = −1) for
player II as illustrated in Figure 3. In terms of the optimal strategy of Corollary 1, the
speeds of player I are v1 = 0, v2 = 0, v3 = −v and v4 = v. Notice that player I can play the
symmetric strategy (a1 = 0, a2 = 0, a3 = 1, a4 = −1) as well, which is not illustrated.

11

Algorithms 2022, 15, 41

Figure 2. Plot of the solution of the rendezvous problem vs. the maximum speed of player I. The
computed solution is a plot a 1001 points evaluated at n/1000, n ∈ [0, 1000]. The exact solution has
two algebraic forms for v < (

√
5− 1)/2 (exactl<, (13)) or v > (

√
5− 1)/2 (exact >, (14)).

time

D

-D

Figure 3. Optimal strategy for v ∈ [0.001, 0.618].

It is relevant to observe that until t2 = t3 the wait-for-mummy strategy is the optimal
strategy for player I, as motion starts only after. For this strategy the expressions for the
rendezvous times and the rendezvous value of the game are given by:

t1 = 1, t2 = 1, t3 =
3 + v
1 + v

, t4 =
v2 + 8v + 3
(1 + v)2 ,

R =
4v2 + 16v + 8

(1 + v)2 . (13)

Since v = 0.619 the optimal strategy is a switch to a1 = 1, a2 = −1, a3 = 1 and a4 = −1
for player I and d1 = 1, d2 = 1, d3 = −1 and d4 = −1. In terms of the optimal strategy of
Corollary 1 the speeds of player I are v1 = −v, v2 = v, v3 = −v and v4 = v. The speed of
player I is large enough to allow the improvement of the rendezvous value by moving from

12

Algorithms 2022, 15, 41

the start. The expressions for the rendezvous times and rendezvous value of the game are
given by:

t1 =
1

v + 1
, t2 =

3v + 1
(v + 1)2 , t3 =

5v + 3
(v + 1)2 ,

t4 =
7v2 + 14v + 3

(1 + v)3 , R =
16v2 + 28v + 8

(1 + v)3 . (14)

With direct computations, we see that (13) is better that (14) for v ≤ (
√

5− 1)/2, see
Figure 2.

It is stated in [26], Chapter 17.1, that the optimal solution is given by (13) for
v ≤ (

√
5 − 1)/2 and by (14) for v ≥ (

√
5 − 1)/2. With our linear programming ap-

proach we first conclude that (13) is optimal for v = n/1000 ≤ (
√

5− 1)/2 and by (14) for
v = n/1000 ≥ (

√
5− 1)/2, n = 0, 1, 2, . . . (discrete values).

However, we can say more. Let us denote opt(v) the function that returns the optimal
value of the game when the speed of player I is bounded by v and nextToopt(v) the function
that returns the next-to-optimal value of the game when the speed of player I is bounded
by v. These two functions are decreasing since a strategy for v is always a strategy for
v′ ≥ v. Hence, if we have that opt(v) < nextToopt(v + dv) and the strategy at opt(v) is the
same as that at opt(v + dv), it must be that this strategy is optimal in the interval [v, v + dv].
By computing opt(n/1000) and nextToopt(n/1000), n = 0, . . . , 1000, we detect that the
condition stated above is satisfied for v ∈ [1/1000, 0.618] and for v ∈ [0.619, 0.990]. To
summarize, we have proved the following theorem.

Theorem 1 ([26], Chapter 17.1). For v ∈ [1/1000, 0.618], the rendezvous value of the game
is given by (13) and the optimal strategy is plotted in Figure 3 and for v ∈ [0.619, 0.990] the
rendezvous value of the game is given by (14) and the optimal strategy is plotted in Figure 4.

time

D

-D

Figure 4. Optimal strategy for v ∈]0.619, 0.990].

The interval in which Theorem 1 is stated to be true may be enlarged by computing
the numerical solutions on a finer mesh, i.e., increasing the number values of n for which
we solve the LP.

5. Solution of the Problem with a Marker Held by the Slow Player

The marker is held by one of the players and may be dropped off at any given time.
Once dropped off, the marker is to be found by the other player when is passes at the
location. Once found, the player stops following the original strategy and continues in

13

Algorithms 2022, 15, 41

the same direction until rendezvous occurs. We first assume that the marker is held by
player I, who moves with the lowest speed bounded by v ≤ 1, and denote z as the dropping
time. There are four possibilities, z ∈ [0, t1], z ∈ [t1, t2], z ∈ [t2, t3] and z ∈ [t3, t4], each one
leading to a family of linear programs to solve. It happens that only the first case z ∈ [0, t1]
is relevant. For all other cases the optimal solutions do not make use of the marker and are
given in Section 4.

The strategy of player I is now given by (a0, a1, a2, a3, a4) where ai indicates whether
vi is positive or negative, i.e., the speed vi are always assumed positive and the motions
are depending on the product ai · vi. With respect to Section 4, the only novelty is the
introduction of a0, see Equation (9) (compare with (7) with no marker).

Agents of player II can find the marker or not. Hence, for each agent we must generate
two linear programs each one assuming the agent finds the marker or not. Actually, for
the first agent rendezvousing (agent (o1, d1)), we do not need to differentiate whether
the marker is found or not, as the equations are the same. We use the new variable k1 to
indicate that agent (o2, d2) finds the marker k1 = 1 or not (k1 = 0), in the interval [0, t1].
Again if the marker is found by (o2, d2) in the interval [t1, t2], the equations do not change.
The variable k21, k22 indicate that agent (o3, d3) finds the marker in the interval [0, t1] or
[t1, t2], respectively. Finally, the variables k31, k32 and k33 indicate that agent (o4, d4) finds
the marker in the interval [0, t1], [t1, t2] or [t2, t3], respectively.

This leads to the family of linear programs shown in Equations (15)–(17) (we denote
Δti = (ti − ti−1) and tiz the time at which the marker is found by (oi, bi)).

min
Δi

t1 + t2 + t3 + t4

o1 + d1b1t1 = a0vz + a1vt1 (*)

k1(o2 + d1b2t1 + d2b2Δt2)+

(1− k1)(o2 + d1b2t1z + d1b2(t1 + Δt2 − t1z)) = a0vz + a1vt1 + a2vt2

(1− k1)(o2 + d1b2t1z) = (1− k1)a0vz (**)

k21k22(o3 + d1b3t1 + d2b3Δt2 + d3b3Δt3)+

(1− k21)(o3 + d1b3t2z + d1b3(t1 + Δt2 + Δt3 − t2z))+ (15)

(1− k22)(o3 + d1b3t1 + d2b3t2z + d2b3(Δt2 + Δt3 − t2z)) =

a0vz + a1vt1 + a2vt2 + a3vt3

(1− k21)(o3 + d1b3t2z) + (1− k22)(o3 + d1b3t1 + d2b3t2z) = (***)

(1− k21)(1− k22)a0vz

(1− k31)(1− k32)(1− k33)(o4 + d1b4t1 + d2b4Δt2 + d3b4Δt3 + d4b4Δt4)+

(1− k31)(o4 + d1b4t3z + d1b4(t1 + Δt2 + Δt3 + Δt4 − t3z))+

(1− k32)(o4 + d1b4t1 + d2b4t3z + d2b4(Δt2 + Δt3 + Δt4 − t3z))+ (16)

(1− k33)(o4 + d1b4t1 + d2b4Δt2 + d3b4t3z + d3b4(Δt3 + Δt4 − t3z)) =

aovz + a1vt1 + a2vt2 + a3vt3 + a4vt4

(1− k31)(o4 + d1b4t3z) + (1− k32)(o4 + d1b4t1 + d2b4t3z)+

(1− k33)(o4 + d1b4t1 + d2b4Δt2 + d3b4t3z) = (****)

a0vz(1− k31)(1− k32)(1− k33)

In this set of equations, the first one is the minimization problem to be solved. Notice
that we minimize the sum of the rendezvous time while the number given in the Introduc-
tion and Results sections are the average of the rendezvous times. There are four sets of
equations, (*), (**), (***) and (****). Equation (*) is the constraint that player I rendezvous

14

Algorithms 2022, 15, 41

with agent (o1, b1) at time t1. Agent (o1, b1) may find the marker before time t1. However,
in this case, the optimal solution is to continue in the same direction, i.e., the equation
would be

k(o1 + d1b1t1) + (1− k)(o1 + d1 ∗ t0zd1b1(t1 − t0z) = a0vz + a1vt1,

where k = 1 if player II does not find the marker and k = 0 else, and toz is the time at which
player II finds the marker. This equation reduces to (*). In (*), if a player finds the marker in
the interval [t1, t2] the optimal strategy is to continue in the same direction and the marker
is useless, and so on for (***) and (****) if the marker is found in the interval [t2, t3] and
[t3, t4], respectively.

The three remaining sets of equations (**), (***) and (****) are composed of two equa-
tions. The first one accounts for the rendezvous of agent (oi, bi) with player I and the
second one is valid only if the marker is used (k1, k21, k22, k31, k32, k33 equal 1) and we
define the times when the marker is found as t1z, t2z, t3z.

The next set of equations is composed of the speed constraints. The variable vz is the
product of the speed of player I and the time z at which the marker is dropped; this product
is bounded by v · z since the speed of player I is bounded by v. In the results, we observed
that the speed of player I is v (maximal) or 0 but we obtaind no solution with v in between.

0 ≤ vz ≤ v · z
0 ≤ vt1 ≤ v · (t1 − z)

0 ≤ vt2 ≤ v · Δt2

0 ≤ vt3 ≤ v · Δt3

0 ≤ vt4 ≤ v · Δt4

(17)

The family of linear programs was generated by assigning values to the parameters of
Equations (15)–(17). These values must satisfy the constraints (the constraints ti ≥ 0 were
included in all linear programs)

ai, bi, oi, di ∈ {0, 1}∑ oi = 0, ∑ di = 0, oi = oj ⇒ di �= dj,

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, t4 ≥ 0.

The families of linear programs were solved for a maximal speed of player I ranging
from 0 to 1 with a step size of 1/1000, i.e., the optimal solutions opt(v) were computed
for v = n/1000, n = 0, 1, . . . , 1000. The result was that the same strategy was used, see
Figure 5. The speed of player I was maximal along the trajectory and the best solution was
obtained for z ∈ [0, t1]. With respect to the notation of Corollary 2 the speeds of player I
were (v0 = −v, v1 = v, v2 = −v, v3 = v). The marker reduced the rendezvous value
even when the speed of player I was very slow.

The rendezvous times are given by:

z =
1

v + 3
, t1 =

3
v + 3

, t2 =
5v + 3

(v + 1)(v + 3)
,

t3 =
7v2 + 12v + 9
(v + 1)2(v + 3)

, t4 =
9v3 + 27v2 + 35v + 9

(v + 1)3(v + 3)
,

R =
24v3 + 68v2 + 76v + 24

(v + 1)3(v + 3)
.

(18)

15

Algorithms 2022, 15, 41

time

D

-D

Figure 5. Optimal strategy when player I holds the marker and is the slower player.

The optimal solution function opt(v) is decreasing because a strategy for v is a strategy
for v′ ≥ v as well. Hence, if the value of the next-to-optimal strategy nextToopt(v + dv)
for a speed v + dv is larger than opt(v), the strategy that leads to opt(v) is optimal for
speeds in [v, v + dv]. With our mesh size of 1/1000, we numerically observed that this
occurred since v ≥ 17/1000. Hence, we have a computer-assisted proof summarized in the
following Theorem.

Theorem 2. For v ∈ [17/1000, 1], the rendezvous value of the game is given by (18). The optimal
strategy is plotted in Figure 5 and the optimal rendezvous values in Figure 6.

Figure 6. Optimal solutions with (18) and without marker. The slow player holds the marker.

The interval in which the Theorem is stated to be true may be enlarged by com-
puting the numerical solutions on a finer mesh. It is relevant to point out that for the
optimal strategy, the time at which the marker is found is t1, i.e., the same time as the first
rendezvous occurs.

6. Solution of the Problem with Marker Held by the Fast Player

The family of linear programs to be solved when the marker is held by the fast
player (I) is very similar to the one defined by Equations (15)–(17). The changes are that the

16

Algorithms 2022, 15, 41

coefficients ai are no longer multiplied by the maximal speed v, as are now the coefficients
di. The system of equations is not reproduced here to save some space.

The results are plotted in Figure 7. We observe that for speeds slower than v ≈ 0.805
the marker is not useful and the optimal solution is given by the optimal solutions without
marker stated in Theorem 1. For speeds faster than v ≈ 0.805, the marker starts to be useful
and the strategy is similar to the optimal one when the marker is held by the slow player,
see Figure 5. When the fast player holds the marker, we obtain that the rendezvous times
are given by:

z =
1

3v + 1
, t1 =

3
3v + 1

, t2 =
3v + 5

(v + 1)(3v + 1)
,

t3 =
9v + 5

(v + 1)(3v + 1)
, t4 =

3v + 7
(v + 1)2 ,

R =
24v2 + 52v + 20
(v + 1)2(3v + 1)

.

(19)

Figure 7. Optimal solutions with marker, i.e., (13) for v ≤ (
√

5− 1)/2, (14) for v ≥ (
√

5− 1)/2,
(19) for v > 0.805, and without marker. The fast player holds the marker.

The optimal rendezvous value is decreasing with the maximal speed v because a strat-
egy for maximal speed v is a strategy for maximal speed v′ ≥ v. Moreover, if we denote
opt(v) the optimal rendezvous value for maximal speed v, and nextToopt(v) the next-to-
optimal rendezvous value, it follows that if nextToopt(v + dv) ≥ opt(v) and the strategy
leading to opt(v) and opt(v + dv) is the same, then the strategy is optimal on the entire
interval [v, v + dv]. By numerical computation and using the two stated observations we
obtain the following Theorem.

Theorem 3. For v ∈ [1/1000, 0.618] the rendezvous value of the game is given by (13) and the
optimal strategy is plotted in Figure 3; for v ∈ [0.619, 0.805], the rendezvous value of the game is
given by (14) and the optimal strategy is plotted in Figure 4; for v ∈ [0.807, 0.966], the rendezvous
value of the game is given by (19), the rendezvous values are plotted in Figure 7 and the optimal
strategy is plotted in Figure 8.

17

Algorithms 2022, 15, 41

time

D

-D

Figure 8. Optimal solutions with marker, i.e., (19) for v > 0.805; for lower speeds the optimal
solutions are the ones without marker (Theorem 1). The fast player holds the marker.

It is relevant to point out the difference between the optimal strategies when the
marker is held by the slow (Figure 5) or fast player (Figure 8). After the rendezvous time t2
in Figure 5 the slow player (who holds the marker) turns, while in Figure 8, the fast player
(who holds the marker) continues on their way. The transition from the two strategies is
“continuous” in the sense that when the speeds are equal at time t2, the two remaining
agents to be found are at equal distance from player I. Hence, both strategies are optimal
(turning or continuing).

7. Conclusions

In this paper, we presented variations and solutions of the classical rendezvous prob-
lem on the line. In particular, we considered that players moved at different speeds and
made use of markers as communication channels. We showed, for instance, that in some
conditions the slow player had better waiting still for the fast one.

We showed how the search space F given by (1) can be reduced to a space of much
smaller dimension making the enumeration of all elements realistic, in order to find the ones
leading to the optimal solution of our problem. The reduction follows from Proposition 1.
This new formulation is compatible with mixed-integer linear programming and is shown
to lead to a solution efficiently using the Gurobi solver [40].

Author Contributions: Writing—original draft preparation, P.L. and N.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated or analyzed during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alpern, S.; Gal, S. Rendezvous search on the line with distinguishable players. SIAM J. Control Optim. 1995, 33, 1270–1276.
[CrossRef]

2. Alpern, S. The Rendezvous Search Problem. SIAM J. Control Optim. 1995, 33, 673–683. [CrossRef]
3. Anderson, E.J.; Essegaier, S. Rendezvous Search on the Line with Indistinguishable Players. SIAM J. Control Optim. 1995,

33, 1637–1642. [CrossRef]
4. Baston, V. Note: Two rendezvous search problems on the line. Nav. Res. Logist. 1999, 46, 335–340. [CrossRef]

18

Algorithms 2022, 15, 41

5. Uthaisombut, P. Symmetric Rendezvous Search on the Line Using Move Patterns with Different Lengths. Citeseer. 2006. Available
online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6033 (accessed on 15 December 2021).

6. Han, Q.; Du, D.; Vera, J.; Zuluaga, L.F. Improved Bounds for the Symmetric Rendezvous Value on the Line. Oper. Res. 2008,
56, 772–782. [CrossRef]

7. Baston, V.; Gal, S. Rendezvous on the Line when the Players’ Initial Distance is Given by an Unknown Probability Distribution.
SIAM J. Control Optim. 1998, 36, 1880–1889. [CrossRef]

8. Alpern, S.; Beck, A. Rendezvous Search on the Line with Limited Resources: Maximizing the Probability of Meeting. Oper. Res.
1999, 47, 849–861. [CrossRef]

9. Alpern, S.; Beck, A. Pure Strategy Asymmetric Rendezvous on the Line with an Unknown Initial Distance. Oper. Res. 2000,
48, 498–501. [CrossRef]

10. Ozsoyeller, D.; Beveridge, A.; Isler, V. Symmetric Rendezvous Search on the Line With an Unknown Initial Distance. IEEE Trans.
Robot. 2013, 29, 1366–1379. [CrossRef]

11. Stachowiak, G. Asynchronous deterministic rendezvous on the line. In Proceedings of the International Conference on Current
Trends in Theory and Practice of Computer Science, Špindleruv Mlýn, Czech Republic, 24–30 January 2009; pp. 497–508.

12. Czyzowicz, J.; Killick, R.; Kranakis, E. Linear rendezvous with asymmetric clocks. In Proceedings of the 22nd International
Conference on Principles of Distributed Systems (OPODIS 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Hong Kong,
China, 17–19 December 2018,

13. Chrobak, M.; Gąsieniec, L.; Gorry, T.; Martin, R. Group search on the line. In Proceedings of the International Conference on
Current Trends in Theory and Practice of Informatics, Pecpod Snežkou, Czech Republic, 24–29 January 2015; pp. 164–176.

14. Howard, J.V. Rendezvous Search on the Interval and the Circle. Oper. Res. 1999, 47, 550–558. [CrossRef]
15. Kranakis, E.; Santoro, N.; Sawchuk, C.; Krizanc, D. Mobile agent rendezvous in a ring. In Proceedings of the 23rd International

Conference on Distributed Computing Systems, Providence, RI, USA, 19–22 May 2003; pp. 592–599.
16. Flocchini, P.; Kranakis, E.; Krizanc, D.; Santoro, N.; Sawchuk, C. Multiple mobile agent rendezvous in a ring. In Latin American

Symposium on Theoretical Informatics; Springer: Berlin/Heidelberg, Germany, 2004; pp. 599–608.
17. Kranakis, E.; Krizanc, D.; Markou, E. The mobile agent rendezvous problem in the ring. Synth. Lect. Distrib. Comput. Theory 2010,

1, 1–122. [CrossRef]
18. Di Stefano, G.; Navarra, A. Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings.

Distrib. Comput. 2017, 30, 75–86. [CrossRef]
19. Czyzowicz, J.; Dobrev, S.; Kranakis, E.; Krizanc, D. The power of tokens: Rendezvous and symmetry detection for two mobile

agents in a ring. In Proceedings of the International Conference on Current Trends in Theory and Practice of Computer Science,
Nový Smokovec, Slovakia, 19–25 January 2008; pp. 234–246.

20. Flocchini, P.; Kranakis, E.; Krizanc, D.; Luccio, F.L.; Santoro, N.; Sawchuk, C. Mobile agents rendezvous when tokens fail.
In International Colloquium on Structural Information and Communication Complexity; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 161–172.

21. Das, S.; Mihalák, M.; Šrámek, R.; Vicari, E.; Widmayer, P. Rendezvous of mobile agents when tokens fail anytime. In Proceedings
of the International Conference on Principles of Distributed Systems, Luxor, Egypt, 15–18 December 2008; pp. 463–480.

22. Baston, V.; Gal, S. Rendezvous search when marks are left at the starting points. Nav. Res. Logist. 2001, 48, 722–731. [CrossRef]
23. Leone, P.; Alpern, S. Rendezvous Search With Markers That Can Be Dropped at Chosen Times. Nav. Res. Logist. 2018, 65, 6–7.

[CrossRef]
24. Das, S.; Luccio, F.L.; Markou, E. Mobile agents rendezvous in spite of a malicious agent. In Proceedings of the International

Symposium on Algorithms and Experiments for Wireless Sensor Networks, Patras, Greece, 17–18 September 2015; pp. 211–224.
25. Das, S.; Focardi, R.; Luccio, F.L.; Markou, E.; Squarcina, M. Gathering of robots in a ring with mobile faults. Theor. Comput. Sci.

2019, 764, 42–60. [CrossRef]
26. Alpern, S.; Gal, S. The Theory of Search Games and Rendezvous; Springer: Berlin/Heidelberg, Germany, 2006; Volume 55.
27. Alpern, S. Ten open problems in rendezvous search. In Search Theory; Springer: Berlin/Heidelberg, Germany, 2013; pp. 223–230.
28. Pelc, A. Deterministic Rendezvous Algorithms. In Distributed Computing by Mobile Entities; Springer: Berlin/Heidelberg, Germany,

2019; pp. 423–454.
29. Lidbetter, T. Search and rescue in the face of uncertain threats. Eur. J. Oper. Res. 2020, 285, 1153–1160. [CrossRef]
30. Baston, V.; Kikuta, K. Search games on a network with travelling and search costs. Int. J. Game Theory 2015, 44, 347–365. [CrossRef]
31. Baston, V.; Kikuta, K. A search problem on a bipartite network. Eur. J. Oper. Res. 2019, 277, 227–237. [CrossRef]
32. Baston, V.; Kikuta, K. Search games on networks with travelling and search costs and with arbitrary searcher starting points.

Networks 2013, 62, 72–79. [CrossRef]
33. Hohzaki, R. Search games: Literature and survey. J. Oper. Res. Soc. Jpn. 2016, 59, 1–34. [CrossRef]
34. Alpern, S.; Fokkink, R.; Gasieniec, L.; Lindelauf, R.; Subrahmanian, V. Search Theory; Springer: Berlin/Heidelberg, Germany, 2013.
35. Alpern, S.; Beck, A. Asymmetric rendezvous on the line is a double linear search problem. Math. Oper. Res. 1999, 24, 604–618.

[CrossRef]
36. Leone, P.; Buwaya, J.; Alpern, S. Search-and-Rescue Rendezvous. Eur. J. Oper. Res. 2021, 297, 579–591. [CrossRef]
37. Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization; Courier

Corporation: Chelmsford, MA, USA, 1999.

19

Algorithms 2022, 15, 41

38. Mehlmann, A. Applied Differential Games; Springer: Berlin/Heidelberg, Germany, 2013.
39. Friedman, A. Differential Games; Courier Corporation: Chelmsford, MA, USA, 2013.
40. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Houston, TX, USA, 2021.

20

Citation: Sangaiah, A.K.; Rezaei, S.;

Javadpour, A.; Miri, F.; Zhang, W.;

Wang, D. Automatic Fault Detection

and Diagnosis in Cellular Networks

and Beyond 5G: Intelligent Network

Management. Algorithms 2022, 15,

432. https://doi.org/10.3390/

a15110432

Academic Editor: Frank Werner

Received: 26 September 2022

Accepted: 15 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Automatic Fault Detection and Diagnosis in Cellular Networks
and Beyond 5G: Intelligent Network Management

Arun Kumar Sangaiah 1, Samira Rezaei 2, Amir Javadpour 3,*, Farimasadat Miri 4, Weizhe Zhang 3

and Desheng Wang 3

1 International Graduate Institute of AI, National Yunlin University of Science and Technology,
Douliu 64002, Taiwan

2 Leiden Institute of Advanced Computer Science, University of Leiden, 2311 EZ Leiden, The Netherlands
3 Department of Computer Science and Technology (Cyberspace Security), Harbin Institute of Technology,

Shenzhen 150001, China
4 Computer Science Department, Ontario Tech University (UOIT), 2000 Simcoe St N,

Oshawa, ON L1G 0C5, Canada
* Correspondence: a.javadpour87@gmail.com

Abstract: Handling faults in a running cellular network can impair the performance and dissatisfy
the end users. It is important to design an automatic self-healing procedure to not only detect the
active faults, but also to diagnosis them automatically. Although fault detection has been well studied
in the literature, fewer studies have targeted the more complicated task of diagnosing. Our presented
method aims to tackle fault detection and diagnosis using two sets of data collected by the network:
performance support system data and drive test data. Although performance support system data
is collected automatically by the network, drive test data are collected manually in three mode call
scenarios: short, long and idle. The short call can identify faults in a call setup, the long call is
designed to identify handover failures and call interruption, and, finally, the idle mode is designed to
understand the characteristics of the standard signal in the network. We have applied unsupervised
learning, along with various classified algorithms, on performance support system data. Congestion
and failures in TCH assignments are a few examples of the detected and diagnosed faults with our
method. In addition, we present a framework to identify the need for handovers. The Silhouette
coefficient is used to evaluate the quality of the unsupervised learning approach. We achieved an
accuracy of 96.86% with the dynamic neural network method.

Keywords: cellular network management; network optimization; cellular network troubleshooting;
data mining; unsupervised learning; supervised learning; self-healing networks

1. Introduction

Cellular networks’ future is in heterogeneous networks. These networks consist of
different radio and architecture technologies. On the other hand, the growing services and
technologies increase the complexity of these networks and the internet of things (IoT)
daily. For operators’ survival in today’s competitive world, it is necessary to use a new
strategy to manage these networks. Using self-organizing networks (SONs) is the most
common solution to achieve this goal. The architecture of SONs consists of three general
parts: self-configuration, self-healing, and self-optimization [1,2].

Self-regulating networks include different phases, including designing, updating, or
developing the network. Transmitter stations, base receivers, nodes, and other network
terminals need to set related parameters, especially with the emergence of LTE networks
based on IP and with flat architecture [3,4].

With the increase in the complexity of cellular networks, self-healing networks have
become more popular. However, the rate of published studies and articles in this field is
much more limited than in other areas. These networks can manage faults and system

Algorithms 2022, 15, 432. https://doi.org/10.3390/a15110432 https://www.mdpi.com/journal/algorithms21

Algorithms 2022, 15, 432

failures by automated detection and identify their causes. Finally, the self-optimizing
network calculates and values the network parameters that need to be reset, according to
the network status, traffic, and services used by the users [5].

Therefore, actions related to self-regulating networks are in the development phase,
or any activities related to resetting the network are in the operational stage. The self-
optimization starts working in cases where there is no apparent problem in the network,
but the cell performance is average. Finally, the measures related to the network’s self-
healing capability are used when the quality and efficiency of the network severely decline.
Our focus in this paper is on self-healing networks. This research seeks to find some
solutions to improve the process that is currently used in the industry to detect faults and
identify the cause of faults. Therefore, all assumptions and modeling have been made
according to the needs of the sector and consultation with experts in this field. In addition,
according to experts in this field, it improved the quality of operational work.

1.1. Innovation, Importance, and the Value of Research

Considering the importance of cellular networks in everyday life and the fact that
they are becoming an inseparable part of modern lives, paying attention to the faults of
the network, trying to reduce the time a fault affects the network through early detection
of the fault, and, also, the correct identification of the fault caused in the network so as to
expedite a return to the network’s normal mode are of particular importance.

The difference between this work and other similar works in this field includes the
use of accurate data for modeling the behavior of the network in the face of various
types of faults, and examination of all the characteristics and critical statistical indicators
that optimization engineers use in the operators to analyze the faults that occur in the
network. All features are reviewed simultaneously. Therefore, the effect these indicators
have on each other, and the impact of combining the values of different indicators on
the network’s performance, are studied in this research. In addition, unlike most of the
proposed methods, the construction of the proposed model in this field was achieved
without the intervention of human resources and experts. Since there is a possibility of
human fault in setting model parameters and the assigned values are highly dependent on
the expert’s experience, the fact that different experts may value the parameters in different
ways, under the same circumstances, is pertinent. For this reason, the use of a method that
rejects human intervention is significant. Finally, this research used three available sources
of information in troubleshooting and optimizing the networks, which, according to our
study, is the first case of research considering all sources. In other words, all related work
in this field composed our first source of information, namely, the performance support
system data. In the second section, these data are introduced in detail.

1.2. Global System for Mobile Communications (GSM) Architecture

The GSM network is a digital cellular communication system that operates by the
cellular making of a geographic area and reusing frequencies for non-contiguous cells. This
network consists of some components, such as the network and switching subsystem (NSS),
base station subsystem (BSS), and operation support system (OSS). Figure 1 shows the
GSM network architecture [6].

As seen above, the base station subsystem includes all the related radio capabilities of
the GSM network and is responsible for establishing communication between the network
subsystem and network users. Therefore, the BSS is composed of several base station
controllers that manage the operations at base transceiver stations (BTSs) through the Abis
interface. Each transmitter and receiver of the base station is responsible for serving the
users of its coverage area through the A (air) interface [7,8].

22

Algorithms 2022, 15, 432

Figure 1. The architecture of the GSM network.

There are three types of data sources to analyze and check the quality of these networks
and identify and troubleshoot the faults that occur in the networks. The most critical data
used in the fault management of these networks is the statistical data reported from the BTS
side, which indicates the status of various statistical indicators from different traffic and
signaling perspectives. The second category of used data results from an experiment in the
areas covered by the networks through human power. This test is a method to measure and
check the coverage status, capability, and quality of the networks. This test is conducted
by making a call with a mobile phone that can record the reported measurements and
parameters from the BTS side. The name of this test in the industry is the driving test.
In the third section, some detailed information about this category is given. Finally, the
last category of used data in improving the network performance is the use of collected
information from subscriber complaints. Section four reviews the registered reports of the
Mobile Telecommunication Company of Iran (Hamrahe Avval).

In general, our main goals in this research are as follows:

• To use accurate data to identify the cause of a fault that occurred in the network
(the required data was obtained in cooperation with the mobile telecommunication
company, Hamrahe Avval.)

• To appropriately use available data sources to improve the accuracy of fault diagno-
sis systems

• To analyze different indicators’ values and how they affect the occurrence of faults
• To model events and unpleasant events (faults) in the network
• To have a comprehensive view of the network and the fault types that occur in

the network
• To provide a model that has a minor dependency on expert opinion.

1.3. An Introduction to Decision Support Systems

Decision support systems, as is evident from their name, are decision support method-
ologies. A DSS requires a knowledge base, a user interface, and a mechanism for processing
the data in the database. A DSS is an information system that facilitates the decision-
making process for managers using an interactive user interface. DSS uses online analytical
processing (OLAP). Therefore, it requires analyzing a large amount of data related to the
organization’s past [9].

This project deals with the organization of different components of a DSS system that
can correctly detect a fault and identify the cause of the obtained fault. Therefore, one of
this project’s goals is to provide a knowledge base and a mechanism for processing faults
in the system.

1.4. Problem Definition

There are some significant problems with the existing methods for self-healing net-
works. First, most of the studies have used a simulator to model the system, and the

23

Algorithms 2022, 15, 432

dynamics characteristic of radio networks are the most apparent features of this type of
network. Therefore, if a simulator is used, the events that happen for these networks may
be ignored in reality. On the other hand, as mentioned before, the number of published
articles in the field of self-healing networks is less than in other areas. Thus, the researchers
have not paid enough attention to one of the most critical issues in the field of cellular
networks, due to the competitive ethos among operators and the need to keep customers
satisfied in this industry. On the other hand, according to our studies, all conducted studies
in this field are limited to using performance support system data that include key perfor-
mance indicators. In this research, we tried to use other available resources to improve the
accuracy of the presented model for fault detection and to identify the cause of the faults in
the system [10].

1.5. Self-Healing Networks

As mentioned, the number of published articles in self-healing networks is less than
in other fields. There are several main reasons for this. First, it is difficult to specify
the common faults and the corresponding causes in these networks, due to the network
dynamics and their dependence on the behavior and services used by the users. When
different experts face a specific fault, they may have different opinions. On the other hand,
there is no valid document in the literature in this field to correlate the fault and the cause
of the fault in the network. The second reason is the complexity and difficulty of simulating
faults and modeling the network mode in simulators. In addition, it is almost impossible to
have an acceptable quantity of faults during the lifetime of a network. Due to the reasons
mentioned, less investigative research has been conducted in this area than in other areas.

As was mentioned before, this research aimed to solve various challenges in the field
of cellular networks’ fault detection, to categorize different types of faults according to
varying values of performance evaluation indicators, and to investigate the impact of each
fault on these indicators. In other words, our research was conducted in the framework
of self-healing networks. In general, the nature of a cellular network’s components and
systems is not immune to faults and failures. In the old methods, faults were detected
by activating alarms. When remote methods could not solve the faults, radio network
engineers were sent to the site to identify the fault. As expected, this process is very time
consuming, and sometimes it takes more than a week for the system to return to its normal
status [10].

On the other hand, some problems cannot be traced through alarms and are only
identified if a complaint is reported to the operator by the customer. The future of these
systems is improving with the use of self-healing methods. In general, self-healing methods
address the process of remote fault detection, identify the cause of the fault, and, finally,
set up the fault compensation system, or repair activities, to minimize the effects of the
fault on the equipment and network components. For this purpose, in this section, we first
present the available views and methods in the fault detection field and in the diagnosis
of causes of faults in cellular networks. The logical flow of self-healing systems is given
in [10]. This flow consists of three logical parts: identifying the fault, analyzing the cause
of the fault, and, finally, setting up the fault compensation system. In the following, we
briefly review the studies conducted, according to the categories presented in this study.

1.5.1. Fault Detection

This section is responsible for identifying faulty cells. Self-healing mechanisms con-
tinue to function only on these cells. Identifying defective cells is the most superficial aspect
of the work, which may be assessed using alarms and indicator values. If the efficiency
graph of a cell has a steep decreasing slope, that cell is considered disabled. Establishing a
threshold for index values is a straightforward, but typical, method in this area [11]. For
instance, a cell is recognized as faulty if the value of an index is less than (or greater than)
the predetermined threshold. Other approaches, such as in [12], consider a profile for each
index, which depicts the indicator’s normal state. The issues with employing a thresh-

24

Algorithms 2022, 15, 432

old are avoided since the fault detection stage continuously measures each indicator’s
divergence from its profile. A solution is offered in [13] to issues like personnel needing to
correctly configure the parameters for profile building and deviation detection [14]. The
Kolmogorov–Smirnov test compares the index’s distribution with its ideal state as the
functional approach. Each index’s profile contains a record of the statistical distribution of
the index in normal mode [14].

One of the current issues is that alarms may not detect all network faults. As a result,
the network problem might not be discovered for several hours or days. Finding cells that
are referred to as sleeping cells, and which are unable to send an alert to the center, is the
key issue in this subject. On the other hand, it is impossible to guarantee the presence or
absence of faults in the system by looking at the value of just one index. So, it is essential to
assess multiple indicators’ values [13], simultaneously.

It is possible to implement an intelligent and dynamic fault detection mechanism.
According to the study in [15], defective cells can be divided into three categories: deterio-
rated cells that are still functional while having subpar quality, paralyzed cells, in which a
severe fault occurred, but the fault has little to no negative impact on the user experience,
and does not result in disgruntled customers, and network cells that eventually shut down
and cannot carry traffic.

In [16], the process of detecting disabled cells is carried out by creating observation
graphs, binary classification, and a list of nearby cells. Along with classifier quality, accuracy
in recognizing the frequency pattern of network issues should also be considered. It was
demonstrated that, despite the classifiers’ high sensitivity in diagnosis, they produce many
false alarms, making them unsuitable for industrial use.

Network faults have been found in [7] utilizing the Self-Organization Map (SOM) and
K-means clustering methods. SOM is not only used in the scenario mentioned above. By
creating the techniques for cell categorization, the researcher in [17] improved the control
of the state of the cells in the cell network. An anomaly is defined as a significant data
disagreement with SOM nodes. The use of a local threshold to identify abnormalities
distinguishes this study from similar ones, because local approaches improve diagnosis
accuracy and decrease the production of false alarms. The distribution of deviations in the
network can be used with the adaptive threshold in this investigation [18].

Garc sets, categorization, and SOM are three data mining techniques that have been
used to measure the performance of mobile networks [19]. These techniques are used to
discretize the value of the indicators and to categorize the status of a network into good,
normal, bad, and unacceptable network states.

In [20], data vectors representing the system’s normal state were employed to perform
the learning step of a neural network used to construct the normal state profile. The
confidence interval for the normal/non-normal state was established through experimental
analysis. To determine the reason for the fault, inference rules were produced using the
trained network.

One of the tasks that may be mentioned in the context of fault detection is using the
alarm correlation technique and delivering fewer alarms to operators. These algorithms are
sensitive to minimum support and confidence levels for pattern identification methods. The
method finds a high number of patterns when these parameters are set to small values and
a low number of patterns when these parameters are set to large values. Since this research
did not investigate the correlation of alarms, other pertinent details were avoided [7].

It should be emphasized that after recognizing the fault, factors, including its duration
and the effect it has on the operation of the system, should be examined. If the observed
fault fits the prerequisites, the process of determining its source and compensating for
it begins.

1.5.2. Identifying the Cause of Fault

− This section suggests remedies for a cell’s aberrant and dysfunctional condition. As a
result, it is crucial to start by limiting the fault within a cell. The nearby cells should

25

Algorithms 2022, 15, 432

work together to reduce the fault’s detrimental impact if it cannot be swiftly fixed.
Corrective actions must be conducted to eliminate the fault when the fault’s root cause
is identified. The following section goes into more depth about this phase.

− Hardware and software issues may be causes of cell faults, and other potential causes
include incorrect configuration, inadequate coverage, and interference. As previously
stated, alarms alone cannot identify the source of an issue and additional data, such
as the values of the indicators, must also be examined.

− The following categories serve as a general summary of the current methods used in
this field. Here, the primary focus is on techniques based on data mining and finding
significant patterns in the data to identify the cause of the fault.

− Methods based on data mining
− Statistical methods

Data mining techniques are among the approaches adopted in the automation of
network fault detection, due to the enormous and growing volume of data accessible for
the evaluation of the quality of cellular networks. The absence of a database of classified
instances, highlighted in the introduction section, is one of the most significant issues in
this sector. Moreover, this area is separated from other areas related to identifying the cause
of faults, due to the continuous nature of the performance evaluation indicators and the
existence of logical faults that are not dependent on the physical parts of the equipment
and are probably related to the wrong settings of the equipment. For instance, Rule-Based
Systems (RBSs), which are a subset of Expert Systems employing a set of “if–then” rules [10],
did not gain enough success in cellular communication networks because they did not
perform successfully in cases with both large and unpredictable ranges. Making rules in
dynamic and unpredictable contexts has its own set of issues.

The two main divisions of data mining methods are unsupervised and supervised
methods. The following sections review the methods used in these two types.

1.5.3. Methods Based on Data Mining

• Supervised Methods

Due to the issues that exist in this domain, and have already been referred to, the
present methods in the area of supervised methods primarily investigate in a restricted
way. The techniques employed are often limited to Bayesian networks. The most effective
techniques in this area are discussed in the following sections.

There has been much interest in using Bayesian networks to represent network events
and communicate between faults and their causes [21]. The primary distinction between
these approaches depends on the structure used for identifying the cause of the fault
and the various fault indicators and reasons that the suggested solution can look into.
A model for locating defects in cellular networks using the Naive Bayesian classification
method was introduced in [21]. The fault causes are treated as classes, and the values of
various indicators are treated as features. The introduced model, providing the knowledge
base used for classification, is divided into two primary categories: quantitative and
qualitative. The quantitative section comprises the links between these components, and
the qualitative part includes the model’s components. This article demonstrated how
the average beta density function parameters could be used to thoroughly specify the
relationships between the model’s parts. By discretizing the index values and using the
Spartan Bayesian classification approach, [22] was able to identify the fault source. The
entropy minimization discretization (EMD) method was applied to boost the effectiveness
of the proposed model. Utilizing this technique resulted in the best possible selection of
useful indications from the input parameters.

The study in [23] aimed to improve a network’s accuracy by considering the continu-
ous nature of the index values. Giving them discrete values decreased the precision of the
results produced. As a result, the Smooth Bayesian network was employed with varying
state uncertainty. On the other hand, as these parameter values were considered, more
data was required to calculate the parameter values. The findings of the applied method,

26

Algorithms 2022, 15, 432

which used Bayesian law, are displayed in [24], utilizing a dynamic simulator system on the
UMTS network. The architecture for employing these networks’ troubleshooting tools was
provided. It is always necessary to strike a balance between the precision and complexity
of a model. The DCR index calculated the number of disconnected calls, which was the
fault detection criterion in [20] (thoroughly explained in the second section). The system
experienced a fault if the value of this index exceeded the threshold, and the causes of
the fault were determined by looking at the simplified Bayesian network and utilizing
the Independence of causal impact (ICI) approach between the indicators and the faults’
causes. The simplified Bayesian technique was dealt with using the ICI method, and
each fault source was employed as an independent node with two true or false states in
the modeling. The outcomes of the simulations demonstrated that the effectiveness of
these two approaches was equivalent but that the ICI approach was more complex. As a
result, the simplified Bayesian model was given precedence. These techniques employed
reverse engineering to create faults under particular circumstances. In other words, the
methodologies utilized in the paper attempted to model the fault using the value of the key
performance indicators when the fault occurred, even though the source of the issue was
previously known.

The absence of a database of classified instances that can be utilized to estimate the
parameters of the suggested model is one of the issues in this subject. A technique for
developing a statistical model using expert knowledge was provided in [25]. In this method,
knowledge acquisition was accomplished in two stages: first, with the assistance of experts,
knowledge was gathered, and then models were built. Information about the various types
of faults, variables that influence the various types of faults, the relationship between the
types of faults and the influencing variables, the threshold for each variable, the likelihood
that each variable influences faults, and, finally, comparison of the information obtained
were all related to the data collection stage. Finally, this method constructed the model via
the Bayesian network approach. It was proved that when parameter values were calculated
using statistical features, rather than expert judgment, systems to detect the causes of faults
performed more accurately.

In [26] a strategy for locating the fault’s root cause, that combined neural network and
law-based techniques, was offered. The rules matrix and a hierarchical and distributed
multi-dimensional structure were employed to gain the capacity for parallel reasoning.
However, the author concentrated on the Internet network and did not estimate the accuracy
of this method on cellular networks. Due to the neural network’s high power in detecting
data behavior, it was also employed in research in [27] in such a way that the criteria
for determining the cause of a fault were applied to each type of fault that the neural
network specified. These rules could use other available data to check network efficiency
and deviation of neighboring cells to ensure that one did not affect the other.

• Unsupervised Methods

Among the unsupervised techniques, the Self-Organization Map (SOM) is the most
popular one. This neural network-based technique is usually utilized for data presen-
tation. This process transforms high-dimensional data into two- or three-dimensional
data, preparing it for presentation [28]. According to [29], the SOM algorithm was given
a predetermined set of features, and after clustering the data, each cluster was utilized
to identify the various fault types, their sources, and the times when they occurred. This
technique was only used in regard to the difficulties of signaling channel capacity and
traffic flow analysis. The study’s researcher in [29] began by using SOM to decrease the
dimensions of the data to two or three dimensions. After applying clustering techniques,
such as hierarchical approaches, and division methods, such as k-means, to the data, the
clusters were then assessed using the Davies–Bouldin index.

1.5.4. Statistical Methods

Identifying the cause of faults in [30] was done by comparing the values of numerous
indicators and taking appropriate corrective action, based on expert judgment. The opera-

27

Algorithms 2022, 15, 432

tional approach involved ranking the causes of the set of indicators that strayed from their
profile in decreasing relevancy. The scoring system employed in this approach determined
the likelihood of a specific cause for an occurred fault, using the set of indicators that
deviated from the baseline.

In [31], the network status was examined using the characteristic vector of the network
status, which was as long as the number of the analyzed indicators. This characteristic
vector considered the threshold limit for the six most significant indications. The Hamming
distance was used to determine how various records differed. As a result, the fault cause
was the same for records that belonged to the same category. The expert specified the
number of categories.

A multilayer hierarchical structure was used in [32,33] for fault-cause couples. The col-
lection of current criteria was classified according to the knowledge of industry profession-
als. Counters were utilized in this study as an alternative for key performance indicators.

1.6. Compensating the Occurred Fault

The purpose of this section is to suggest relevant action to solve problems. In [10],
these measures were divided into simple and parametric. Simple activities are those that
can be executed without additional arguments. In other words, there is a direct relationship
between the cause of the fault and the necessary measures to fix it. For example, if the
cause of the fault is, in part, a hardware problem, the corresponding action is to send a
technician to the site and replace that part. On the other hand, parametric measures are not
easily determined and require the implementation of different algorithms. For example, if
it is necessary to change the parameter value, its new value should be calculated. Since the
number of parametric measures is large, it would be valuable to introduce an algorithm
to identify the standards. To compensate for the fault in the study in [34], changing and
resetting the parameters of neighboring cells, and optimizing the covered area by them, was
utilized. Things such as filling the space of the disabled cell, resetting the antennas’ power
consumption, and choosing the correct value of the parameters through fuzzy logic and
reinforcement learning were performed in this study. In general, the necessary measures
in correcting the occurred fault depend entirely on the detected fault in the first step and
the cause of the detected fault in the second step. Among the measures to fix the fault are
resetting the parameters, reducing the angle of the antenna, or increasing the strength of
the received signal by the user.

The distinctive feature of all past works is the limited view of the faults in the network,
because, by considering this field’s data complexity and the uncertainty in the number of
parameters assigned by experts for a model’s relationships, it was difficult to consider a
large number of network events. On the other hand, the accuracy of the obtained model
from this method strongly depends on the expert’s knowledge and the assigned value
to each parameter. Thus, this article focuses on designing a model that can perform the
initial stages of model construction with minimal dependence on expert opinion and only
using available statistical information. In addition to reducing the model’s dependency
on humans, the accuracy of the produced model is increased by removing the effects of
human error. The general framework of the conducted work of this article is illustrated in
the following figure. As seen in Figure 2, this paper uses three types of data: performance
support system data, drive test data, and customer contact center data. This paper’s second
and third sections discuss the first two sources of information. These three sources of
information on the network mode can determine the existence of a problem in an area. In
addition, using the information fusion methods, this system can automatically identify the
fault causes in cellular networks with the help of three different data types.

The structure of this article is as follows. In the second section, after getting familiar
with the indicators used in the qualitative assessment of the network condition and the
types of faults affecting the value of each indicator, the essential source of available data,
called the performance support system, is examined in detail. The results are evaluated
to analyze the cause of a fault. The third section introduces another source of available

28

Algorithms 2022, 15, 432

fault diagnosis: drive test data. In the fourth section, after submitting the third source
of data, subscriber complaints, the results of the previous two sections are reviewed and
examined. Finally, in the fifth section, we summarize, conclude and provide a perspective
for future work.

Figure 2. An overall framework of the conducted works in this paper.

2. Performance Support System

As mentioned in the previous section, one of the used data sources in troubleshooting
cellular networks is the available data in the performance support system. This system
collects statistical data reported from transmitter and receiver base stations. This data
examines the network mode from various aspects. Key indicators are calculated using
counters that record all the events that have occurred in the network. These key indicators,
comprehensively explained below, are evaluated to troubleshoot in the performance man-
agement part of cellular networks. The values of these indicators determine the cause of
the fault in the system, and help industry experts improve the system’s performance. The
data we used was supported by the Mobile Telecommunications Center (Hamrahe-Avval).
These data were related to Tehran’s eighth district and included 50 primary transmitter and
receiver stations.

In the following, we first make a preliminary statement about the channels used in
the cellular network and the process of making calls in these networks. We examine the
measured indicators in the performance support system in detail, and, finally, we describe
the applied method in regard to these data.

2.1. Definitions, Principles, and Theoretical Foundations

The first step in troubleshooting cellular networks is to identify faulty cells. A problem
in the network refers to a situation that hurts the quality of network service. Different
operators use different methods to identify issues in the network. It is first necessary to
know the cellular network and the key performance indicators in troubleshooting in the
network to identify its network faults.

2.1.1. Standalone Dedicated Control Channel (SDCCH) Signaling Channel

This channel is dedicated to subscriber signaling activities. Among these activities, we
can mention the basic steps to making a call, updating the physical location of subscribers,
and sending and receiving short messages. Each subscriber occupies a capacity of the
signaling channel before making a call in the network.

29

Algorithms 2022, 15, 432

2.1.2. Traffic Channel (TCH)

This channel, accounting for about 75% of the radio resource range, is used to transmit
sound in the network. The network signaling channel provides about 25% of the network
resource capacity.

2.1.3. Key Performance Indicator (KPI)

The key performance indicators in the cellular network management literature are
measures that can be used to measure the quality of a network at different levels. Some of
these indicators depend on time or user behavior, such as the number of downlinks to the
user. Other indicators, such as the channel quality indicator (CQI), random channel access
attempts (RCATs), or the percentage of dropped calls, due to lack of dependency on the
user program used on the user side, are less related to the user’s behavior, so the indicators
of this category are more suitable for evaluating the network condition. Telecommunication
networks are changeable, and there are several key performance indicators to assess
network condition. Using manual methods to solve network problems does not meet the
management needs of these networks.

Many indicators are used to evaluate the quality of radio networks, and by saving the
fault-free behavior of each KPI, its deviation from its normal behavior can be identified.
The high number of these indicators, and the related counters to each one, have made
it impossible to check all the indicators and the impact of each one on the quality of the
network. In the following, we examine the steps of establishing a call in a cell network.
Then we introduce the most important indicators affecting the network mode, submitted
by experts in this field.

2.1.4. Procedures for Making a Call

From the moment the subscriber initiates a call to when the traffic channel is suc-
cessfully assigned to him or her, various steps are performed in the network. In Figure 3,
the different stages are illustrated, along with the indicators used to measure the statis-
tical status of the network. These indicators are fully explained in the following part of
this section.

Figure 3. The steps of making a call in the GSM network with the network performance measure-
ment indicators.

2.1.5. Introducing the Most Important Key Performance Indicators

As seen in the above figure, several indicators measure the network quality from
different aspects. For this purpose, before identifying faults in a network, it is first necessary
to thoroughly examine these indicators and the factors that affect them.

1. SDCCH Congestion

Traffic channels in radio networks carry the main network load, while control and
signaling channels are used to achieve this goal. These channels are used to control the
behavior of mobile phones, to communicate, to control established calls, to facilitate call
handover, etc. If subscribers’ demands exceed the available resources, congestion occurs in
this channel. One solution to this problem is adding more resources and physical capacity
to the network resources.

30

Algorithms 2022, 15, 432

2. SDCCH establishes success rate

This indicator shows the percentage of successful requests to take over SDCCH. One
of the reasons for a negative value for this index is downlink interference, which occurs
when there are too many subscribers’ location updates, due to network design issues, and
hardware issues.

3. SDCCH drop

When a network user makes a request to communicate with another subscriber, or
when a network user is called by another network subscriber (through an incoming call),
there is a need to take over the SDCCH. Some reasons, such as the timing advanced (TA)
timer, low strength of the downlink or uplink signal or both, or low quality of the downlink
or uplink signal, affect the SDCCH drop. In addition, if the traffic channel is congested, the
requested call is returned on the SDCCH.

4. SDCCH means holding time

This index indicates the required capability of the SDCCH for high-speed access. That
is, it measures the mean time the channel is held due to switching between services. The
longer this time, the worse the service provided.

5. TCH Congestion

Congestion in the network means insufficient resources are available to make calls
on the network. Congestion in the traffic channel is one of the most critical problems of
the radio network, and it strongly affects the quality of the network. Congestion leads to
higher subscriber dwell time in the SDCCH. One of the ways to reduce congestion in the
network is to use more radio resources. Unfortunately, there are many limitations in terms
of economy, lack of space for installing resources, etc. Therefore, it is recommended to
use other methods, such as using the “half rate” technique. In this method, each period is
assigned to two subscribers instead of serving one subscriber. Although the use of half-rate
improves the network congestion situation, it reduces the quality of the received signal
by the user. Another way to deal with congestion is to share the traffic load of the cell
and transfer calls to neighboring cells. Like the half-rate technique, this method has the
problem of reducing service quality.

6. TCH Assignment Success Rate

This indicator directly affects the user experience and shows the TCH assignment
success rate percentage. If there is congestion in the traffic channel, the value of this index
decreases. Other factors, such as the amount of coverage, interference, and hardware
problems, also reduce the percentage of this index.

7. Call Setup Success Rate

This indicator, one of the most important key performance indicators used by all
mobile phone operators, indicates the successfully launched call rate. There is no single
standard method for measuring this index; therefore, every operator can calculate it dif-
ferently. High values of this attribute indicate good network performance because a high
percentage of calls are successfully established. Many reasons can be listed for inappro-
priate values of this index, including weakness in signal strength, congestion in the traffic
and signaling channels, disconnection in the SDCCH, and failure in the appointment of
the TCH.

8. Call drop Rate

Once the user has successfully taken over the traffic channel, due to various reasons, he
or she may lose connection with the network during the call. The most important reasons
that lead to the interruption of a call within a network are weak power and poor signal
quality. Improper coverage of the radio path, hardware faults, and non-optimal setting of
parameters affect the signal strength. Interference, issues related to coverage and handover

31

Algorithms 2022, 15, 432

(neighbor loss, incorrect settings in positioning algorithms), and, finally, the wrong set of
parameters, can also cause deterioration of the quality of the signal received by the user.

9. Handover

The handover process is conducted by controlling positioning algorithms. Each BSC
measures some information, such as the downlink signal strength and quality of the
mobile user and the downlink signal strength and quality of the user’s six best neighbors,
when making a handover decision. The “Handover failure Rate” index provides valuable
information, such as the efficiency between two neighbors, the strength or weakness
of the typical radio path between two neighbors, issues related to interference at the
border between two neighbors, etc. In addition, to identifying weak neighbors in the
radio path, handover optimization is used to improve the call failure percentage due to
handover failure. Therefore, the incorrect design of neighborhoods, traffic congestion
at the destination, and the fault of swapped sectors in implementing antennas lead to
handover failure.

10. UL/DL (UpLink/DownLink) Signal Quality

This indicator, which has been introduced in the previous sections as one of the reasons
for success or failure in the most important network quality assurance indicators, calculates
the quality of the sent signal through the base transmitter and receiver station to the user
(the downlink signal), as well as the sent signal from the user to the station (the uplink
signal). If the received signal strength by the user is less than the amount specified in
the existing settings of each operator, the user’s call is disconnected. In addition to signal
quality affecting the increase or decrease of the call disconnection rate, other factors. such
as access to the traffic channel and signaling interrupted in the signaling channel, etc. can
also play a part.

11. The amount of half-rate capacity usage

There is no such measurement indicator in the base transmitter and receiver station.
Still, in the transmitter and receiver station, the network’s transmission traffic is measured
at the total and half rate. The half-rate capacity is the high number of call requests in an
area, which cannot increase the power in that area. Therefore, they reduce the call quality in
such areas by converting the full-rate channel to half-rate to cover more calls and support
more calls. This article uses this feature to identify the amount of network load.

For each KPI, it should be determined whether it functions similarly to its profile or
whether it has a specific statistical change compared to it. One of the available ways to
check this situation is to define a threshold on the KPI values and divide the range of their
values into two categories: above the threshold and below the threshold. More advanced
techniques for fault detection involve checking whether each KPI passes the threshold
value continuously for a specific time or passes the threshold value a certain number of
times. All threshold-based methods face the problem of quantizing the range of KPI values
into a binary space below the threshold and above the threshold. However, this means
other helpful information is lost, and it is impossible to reliably detect faults from these
data. In the following, the architecture of the proposed method, in regard to these data,
is explained.

2.2. Architecture of the Proposed Method

To achieve the goal of this research, which was to detect a fault and identify its cause,
we used the following framework. In the next part, we explain this architecture’s different
aspects in detail (Figure 4). The work process entailed preparing the available data, which
was the raw data received from a BSC in Tehran, for the next operation. To ensure data
validity, it was necessary to consider only the high traffic hours of the day. Since the data
were, in fact, statistical characteristics of the network condition, they were reliable and
valid only if the frequency of the used network was acceptable [10].

32

Algorithms 2022, 15, 432

Figure 4. Architecture of the proposed method with performance support system data.

Among dozens of measured characteristics in network equipment, only some indica-
tors, having the most significant impact on achieving the goal, were considered. Then, data
preprocessing and cleaning operations were performed. After that, for fault detection in the
system, a criterion for evaluating the quality of the network was introduced to detect the
unfavorable network mode by examination of this value. Identified faults were entered into
the next stage of the model to identify the cause of a fault. We tried to determine the cause
of a fault that occurred in the network by using clustering algorithms. Finally, the obtained
results were shared with an expert for evaluation. According to the expert’s opinion, any
necessary changes were applied to the model, and the process was repeated [35].

2.3. Feature Selection

After selecting the valid data, the first step to working with the data was to choose the
effective indicators and features to achieve the goals. There are two ways to do this. One
makes use of feature selection algorithms, and the other uses expert knowledge to select
the most practical features. Since our available data was not marked to identify the cause
of faults in the network, the only known solution was to use unsupervised algorithms and
methods. Due to the problems in the field of feature selection in unsupervised methods,
expert knowledge was used to select compelling features. In addition, since the foundation
of this research was based on the industry and experts’ opinions, trusting the experts’
views, and following the industry’s applied policies, could help us achieve the goals of this
research. Therefore, the selection of features in this research was based on expert opinion.

2.4. Data Preprocessing

Since our method was based on data and all the results of our work were the result
of working on the data, it was necessary to prepare the data for operations to increase
the method’s accuracy. The management of the missing values and the identification and
removal of outliers were among the actions taken to clean the data before performing
other operations on the data. Thus, all records containing missing values and outliers were
removed from the data to simplify the work.

In addition, because the value of the analyzed indicator occurred in different intervals,
it was necessary to replicate the index interval before applying any operation to the data.
For this purpose, we used the minimum–maximum normalization method. Thus, the set
of values of each index would be in the range of zero and one. To normalize each index
with the minimum–maximum plan, after obtaining the minimum and maximum values of
each index, the value of the index in each record was subtracted from the minimum value,
and the result divided by the effect of removing the maximum values from the minimum,
which indicated the data range. The following relationship shows this method [4,36,37].

Equation (1): normalizing data by the minimum–maximum method:

Normalized Value =
the value−min(values)

data range
(1)

33

Algorithms 2022, 15, 432

2.5. Fault Detection

Cellular networks are not immune to faults due to equipment, weather conditions, and
user behavior. Various faults reduce the quality of network service. An alarm is generated in
the system for any abnormal situation in the network. The high volume of generated alerts
in network management systems has dramatically reduced the possibility of using these
alerts in a targeted and effective way. They are used only in unique and rare cases. The key
performance indicators discussed in detail in the previous section were the basis of our work
and, in fact, the origin of the work of the operators’ performance management department.
Since our method was completely designed based on the industry and operators and
related industries’ needs, and was completely practical, it was used to detect faults in terms
of the standard used by Iranian operators.

2.5.1. Defining the Network Quality Assessment Criteria

Fault detection is the most straightforward step in self-healing systems and networks.
The complete, correct call rate (CCC) was the method used in the first mobile operator
for fault detection and was the basis of our work. Therefore, only one criterion was
used to check the network status. As mentioned in the previous section, there are many
indicators to measure the quality of the network in different sectors and parts, each of
which examines the network from only one perspective and the statistical information
provided by each index is based on one of the aspects of the network. The research team
of Sofrehcom Company provided a measure using indicators and criteria to evaluate the
network condition. This criterion was obtained as the product of the following indicators:

1. Congestion percentage in the signaling channel (SD-Cong)
2. Success in signaling channel adjustment (SDestab)
3. Certain percentage in the signaling channel (SDdrop)
4. Traffic channel congestion percentage (TCHcong)
5. Traffic channel assigning failure rate (TCHAssignFR)
6. Mean uplink and downlink signal quality (RxQual)
7. Disconnection in traffic channel (DCR)

Equation (2): Calculating the qualitative measure of network performance:

CCC = (1− SDcong)∗ SDestab ∗ (1− SDdrop)∗ (1− TCHcong)
∗ (1− TCHAssignFR) ∗ RxQuality ∗ (1− DCR)

(2)

As can be seen, the CCC index consisted of the product of the seven most important
indices. Therefore, if only one index had an unfavorable situation, its value would affect
the result and the value of the CCC index. Therefore, by examining the importance of only
one index, the status of the most important indicators of the network could be acquired.
The fault detection process was performed by checking the value and behavior of this
index during one month of available data. In this process, a histogram diagram of the
index’s monthly behavior was drawn in the investigated area, and the knees of the graph
were evaluated as characteristic points in the behavior of the index. This method was
used to discretize the performance of an index in a period into general categories, such as
good, normal, bad, and unacceptable in [38]. Our priority was to work on a set of records
that were in worse condition. This meant that network performance management and
optimization departments had to first check the network parts in a worse situation. After
troubleshooting these parts, other parts of the network could be inspected and evaluated.
Therefore, we focused on the worst aspects and cells of the network. Other analyses and
reviews were conducted on this part, and we reviewed different parts of the network.

2.5.2. Indicators’ Analysis

As discussed in the previous section, we considered parts of the network as having
faults and unacceptable status using the CCC index. We investigated the parts of the
network that needed quick reaction and action to improve the conditions. Therefore, our

34

Algorithms 2022, 15, 432

data was divided into fault and non-fault categories. As a result, we could use classification
algorithms, including a decision tree, to analyze the network status and check indicators.
The questions we sought to answer in this section included the following [10]:

1. Which indicators play a more effective role in fault detection?
2. Which combination of values of indicators leads to faults in the system?
3. The value of which indicators have a higher impact on creating faults in the network?
4. In general, what are the indicators of network faults caused by violations?

2.6. Identifying the Fault Cause

Identifying the cause of the fault was the most crucial goal of this research. It was
necessary to perform several actions on the data to achieve this goal. Therefore, at first,
the list of effective indicators was selected, according to expert opinion, from dozens of
measured indicators in operators. In the next step, the non-deterministic relationship
between the causes of fault and the values of the considered indicators was checked. The
non-deterministic relationship meant that, for a specific cause of fault, the value of an index
might be different at different times and in other cells.

On the other hand, the variance of the values of an index for a specific fault caused at
different times and in different cells might be significant. Therefore, it would be challenging
to find an index that had an unusual behavior for a particular cause of fault [39]. The figure
below shows the probability distribution of different index values in the face of other faults
in the network. As can be seen in Figure 5, it was impossible to deduce the fault caused by
only considering the index value.

Figure 5. The possible distribution of different indicator values facing different faults.

In addition to identifying the necessary action to fix the fault, sometimes it is essential
to consider the cost of doing so. Sometimes it is possible to do a replacement at a lower
price. For example, if there is a hardware problem and the solution is to replace that part, it
is better to restart it due to its low cost. Cost can include the cost of implemented time, the
cost of executed action, its price on the network, etc. In the following, we review the steps
to identify the fault caused.

2.6.1. Examining the Data Tendency to Clustering

The most important and main step in self-healing networks is identifying the cause of
the fault. Since the available data were raw data, not labeled for the reason faults occurred,

35

Algorithms 2022, 15, 432

it could be said that the information was unsuitable for classification methods. It was
necessary to prepare the data for clustering methods.

Since the data of cellular networks have not been used in clustering methods in these
dimensions, it was necessary to ensure the clustering capability of the data. For this purpose,
the Hopkins coefficient was used. The Hopkins coefficient quantitatively indicates the
data’s tendency to cluster [40]. In this process, some random points are generated among
other issues in the data and the distance between the random points and the fundamental
points of the data is compared with the distance between two actual points in the data. In
this way, it tries to ensure the non-randomness of the data pattern and the possibility of
finding clusters that show the behavior of the data. The following relationship shows how
to calculate this coefficient.

Equation (3): Hopkins’ coefficient:

H =
∑n

i=1 qi

∑n
i=1 qi + ∑n

i=1 wi
(3)

where qi represents the distance between the generated random points and the nearest real
data records, and wi represents the distance between the real records and the closest real
neighbor in the data. In this way, the closer the value of the Hopkins coefficient to one, the
more the data tends to be clustered.

2.6.2. Classification of Indicators

As mentioned before, it was necessary to select several indicators to perform oper-
ations on the data from dozens of indicators measured in managing cellular networks.
Considering the characteristics of the cellular network, such as the dynamism and high
variability of these networks, the simultaneous use of all these features would not lead to
proper clustering of the data. On the other hand, since the steps of making a call and using
the cellular network are two separate parts of receiving the signaling channel and receiving
the traffic channel, these indicators have good separation capability. Therefore, the seg-
mentation of the feature space was achieved according to expert opinion to increase the
accuracy of the clustering algorithms and to obtain more favorable results from a practical
point of view. Table 1 represents the list of indicators used according to the division.

Table 1. The list of indicators used in the traffic channel.

Signaling Part

The indicator’s name the Persian equivalent

SD-Congestion SD channel congestion percentage

SD-Drop Communication percentage on SD channel

SD-Estab SD channel selection success rate

CDR Communication percentage on TCH channel

TCH-Congestion The percentage of congestion on the TCH channel

TCH-Assign-FR TCH channel adoption failure percentage

RxQuality Average uplink and downlink signal quality

2.6.3. Data Clustering

The purpose of this step was to find meaningful clusters in the data. This meant trying
to estimate the cause of faults in the system by finding meaningful patterns of network
behavior in the data. Since any fault occurring in the network affects the value of one
or more features simultaneously, the fault’s cause could be estimated by considering the
distribution of indicators in each cluster. The results obtained at this stage were provided
to the expert to evaluate and interpret the distribution of data in each cluster, as well as to
take a comprehensive look at the values of all indicators related to each category. In the

36

Algorithms 2022, 15, 432

next section, we discuss the obtained results from experts in detail. So, our goal at this
stage was to find clusters that could model the behavior of the data well.

Among the clustering methods, various methods were applied to the data. Among
these methods, the Expectation-Maximization process provided a more suitable answer to
our data. The details of the results obtained in evaluating different clustering methods are
described in the next section. In the following, we explain the mechanism and working
method of the EM algorithm.

The Expectation-Maximization algorithm, or EM method, is an iterative algorithm
that estimates maximum likelihood. This algorithm starts with an initial estimate of θ and
iteratively improves this initial estimate toward the observed data. This algorithm should
be continued until the difference between the two estimates, 1 + t, and the estimate number,
t, is less than the threshold limit (Algorithm 1). Otherwise, the convergence condition is
satisfied, and the algorithm ends. In the following, we review the steps of this algorithm,
where i represents the ring index, θ represents the estimate, and T represents the threshold
limit for the algorithm to end [41].

Algorithm 1 Expectation-Maximization method 1 begin initialize θ0, T, i = 0

Architecture of the proposed method with performance support system data:

Start
Raw data from a BSC

Selecting effective indicators
Data Pre-Processing
Selecting data related to traffic hours
Identified Fault
Identify data pattern and cause of occurred fault

begin initialize θ0, T, i = 0
do i→ i + 1
E step: compute Q (θ ; θi)
M step: θi+1 → argmax Q (θ ; θi)
until Q (θi+1 ; θi)–Q (θI ; θi−1) ≤ T

return θ̂ θi+1

end

By experimenting with the data set, the detailed results of which are given in the
next section, the EM method was selected from other clustering methods to categorize
the available data. Due to the complexity and dispersion of data in this field, to achieve
quality clusters, parts of the data that were not well clustered were re-clustered with the
EM algorithm, and the results obtained were provided to the expert for final evaluation.

2.6.4. Evaluation of Produced Clusters

In this step, we evaluated the obtained clusters. Due to the lack of access to the gold
data, we used intrinsic measures to evaluate the clustering results with the correct mode.
Intrinsic measures assess the quality of obtained clusters without the need for external
information. For example, the criteria that check the degree of adhesion or separability of
the data in a cluster are among the internal criteria for evaluating clusters. On the other side
are external measures. These criteria, which are supervised methods, are used when gold
data are available, and the quality of clustering algorithms can be evaluated by comparing
them with the target data [42]. In the following, we consider the internal methods that were
compatible with the limitations of the work in this project and were used to evaluate the
produced clusters. It should be noted that the same coefficients were used to obtain the
optimal number of clusters, and the value of these coefficients was calculated for different
numbers of clusters. The optimal value of these coefficients indicated the optimal number
of clusters.

37

Algorithms 2022, 15, 432

The Davies–Bouldin method is one of the most common ways of internally evaluating
clusters obtained in clustering algorithms. The problem with this algorithm is that its
excellent evaluation value does not use all the hidden information in the data and does
not recover all the information [43]. The Silhouette coefficient, another internal evaluation
measure of clustering methods [44], was used in this research. Both of these methods are
based on the stickiness of the data in one cluster and the separability of the data with
respect to other clusters. In the following, we review the details of these two methods.

� Silhouette Coefficient Method

The Silhouette coefficient is one of the most common ways of internally evaluating
clusters obtained in clustering algorithms, and is based on calculating data adhesion and
separability. Unlike the Davies–Bouldin method, which considers only the centers of the
clusters, this method performs its calculations on all the points of the clusters. The general
relationship below shows how to calculate the Silhouette coefficient.

Equation (4): The general formula for calculating the Silhouette coefficient:

S(o) =
b(o)− a(o)

max{a(o), b(o)} (4)

where a(o) indicates the cluster stickiness containing record o and is calculated through the
following relationship.

Equation (5):

a(o) =
∑o′∈Ci ,o′ �=o dist(o, o′)

|Ci | − 1
(5)

And
Equation (6):

b(o) = min
Cj :1≤j≤N

{
∑o′∈Ci

dis(o, o′)∣∣Cj
∣∣ (6)

where dis(o, o′) calculates the Euclidean distance between two points of o and o′. Therefore,
a(o) calculates the average distance of point o with all the points that are in the same cluster
with o. The value b(o) also calculates the average distance for all clusters from point o with
all points that are not in the same cluster with o. Finally, for each cluster, the Silhouette
coefficient value is obtained by averaging the values of Si in each cluster. The following
figure shows an interpretation of Silhouette coefficient values for two clusters. In fact, the
value of this coefficient is between −1 and 1. If bi which indicates the distance of each point
from other points that are not in the same cluster, is smaller than ai, which indicates the
distance of points within a cluster, the result of the Silhouette coefficient is smaller than
zero and has negative values. The closer the value of this coefficient to 1, the more correct
is the assignment of each point to the cluster similar to itself. If the value of this coefficient
is zero, it means that the point is located on the border between two clusters (Figure 6).

Figure 6. The Silhouette coefficient values’ interpretation.

38

Algorithms 2022, 15, 432

3. Results

In this part, we examine the obtained results from the data analysis of the performance
support system. For this purpose, we first introduce the used data in this research and then
report the obtained results.

3.1. Introduction of the Data Set

This data set, which included the most essential and central part of our work, contained
statistical indicators of the quality mode of the network, which were collected by the
transmitter and receiver base stations in real time. These data were averaged every hour
and sent to the operators. The available data for conducting this research was the result of
an hourly average of the events and the statistical status of the network, which was made
available to the researcher in cooperation with the mobile telecommunication company
(Hamrahe Avval).

These data contained statistical information on network quality measurement indica-
tors at the covered points. Since the cellular network was very dynamic and complex and
the volume of generated data was very high, we started the work by choosing one of the
worst base station controllers in Tehran. This controller is located in District 8 of Tehran
and covers a considerable part of this area. The data contained 64,114 records. Among the
70 indicators and features of this data, 14 indicators were selected by experts to achieve the
goal of this research. The characteristics and impact of each on the network’s quality and
the cause of the occurred fault in the network were investigated.

Table 2 provides the evaluated the statistical characteristics of these indicators. Since
the values of different indices have different distributions, the minimum–maximum nor-
malization method was used to normalize the data.

Table 2. Statistical status of the used indicators.

The Indicator’s Name Mean Standard Deviation

CSSR 0.950793 0.106

CDR 0.0412 0.068

HSR 0.832 0.2735

HTr-Rate * 0.3408 0.4048

SDCCH-Congestion-Rate 0.0555 0.18109

TCH-Congestion-Rate 0.0401 0.11137

SDCCH_DR 0.0448 0.1404

SDCCH-MHT 0.0707 0.076

SDCCH-Assign-Success-Rate 0.4676 0.4249

TCH-ASSIGN-FAIL-RATE 0.0478 0.0672

RX-QUAL-DL 0.8485 0.1394

RX-QUAL-UL 0.4080 0.4847

Random-Access-Success-Rate 0.6765 0.4295

TCH-Availability 0.9366 0.1233
* The HTr_Rate feature is the ratio of the traffic carried on the half-rate channel to the total traffic of that station.

The histogram of the CDR call drop rate indicator, which shows the drop rate in calls,
is shown in Figure 7. As is clear in the figure, for some samples, the value of this index was
higher than the threshold and, therefore, it indicated a problem in the records.

39

Algorithms 2022, 15, 432

Figure 7. The histogram of the dropped calls in the data.

3.2. The Definition of Quality Criteria and Indicators Analysis

After selecting the features and pre-processing the data, the criterion for checking the
quality status of the network was introduced. The evaluation criterion was the CCC index,
which is obtained from the multiplication of a number of the most important indices. The
histogram of this index was derived from 64,115 records and is illustrated in Figure 8.

Figure 8. The histogram of CCC index value in one month of the examined data.

As expected, and as can be seen in the above diagram, the range of numerical values
of CCC was between 0 and 100. Values close to 100 indicated higher quality. In Figure 8,
there are two knees. Therefore, we divided the network status into three discrete categories.
The first category had a CCC value higher than 94 and represented excellent quality. The
second category had a CCC between 94 and 85 and represented acceptable quality. Several
records fell into the third category, having a CCC less than 85. This category represented
unacceptable quality of the network, and, therefore, our work priority was to focus on the
data of the third category, the unacceptable category. From now on, we considered the
records with CCC less than 85 as faults and identified the cause of the fault in these records.

Before addressing the issue of identifying the cause of the fault, an analysis of the
values of these indicators was conducted. To do this, we used classification algorithms
and, especially, a decision tree. The reason for using the decision tree algorithm is this
method’s display ability and its good interpretation ability. In decision tree algorithms,
the Quest method is used. This method had high accuracy for our provided data and
this accuracy was obtained at a lower tree depth. Therefore, it avoided the problem of
overfitting the model on the training data. The following tree separated the test data with
93.66% accuracy. The results were obtained with the help of Clementine software. It can be
seen that among the 14 features used by experts in these networks to analyze the quality

40

Algorithms 2022, 15, 432

status, and among the seven indicators used in defining the quality criteria of the network,
only three indicators, those of call interruption, interruption in the signaling channel, and
the success rate in achieving the signaling channel, could estimate the network status
(Figure 9).

Figure 9. A schematic of the data production tree with two fault and non-fault categories by the use
of Quest algorithm.

3.3. Clustering Analysis and Fault Cause Identification

In this section, we examine the results obtained from the clustering performed on the
performance support system data. In clustering, the data is generally divided into traffic
and signaling data categories. The results of each type and their analysis are given in the
following. First, the traffic clusters were checked, and then the signaling clusters were
studied. As mentioned before, the characteristics used in the traffic section included:

• The percentage of communication failure in the TCH channel.
• The percentage of congestion in the TCH channel.
• The percentage of loss in adopting the TCH channel.
• The average quality of the uplink and downlink signals.

The clustering results of different methods are shown in Figure 10.
As illustrated in the above figure, the Expectation-Maximization clustering method

provided a better response to the data than other methods. In addition, the optimal number
of clusters was 5. Therefore, the EM method was applied to the data with several 5 clusters.
The information related to this clustering was provided to the expert, and the expert
comments, confirming the correctness of the obtained clusters, are given below, along with
a view of the data distribution in each cluster. The data detected as faults were divided
into traffic and signaling categories, and, as mentioned, the optimal number of clusters
for the traffic data under consideration was 5. Therefore, one of these clusters indicated
a favorable situation in the traffic cluster, which meant that the problem was only in the
signaling data, and the system had no problem in terms of traffic.

41

Algorithms 2022, 15, 432

Figure 10. Silhouette coefficient according to the number of clusters for different clustering methods–
traffic section.

A similar situation existed for signaling data. The problem was that some records only
had traffic issues (Figure 11). The allocated records in (c) suffered from high outliers in
the SD channel and the capacity problem. SD channel congestion and outages are of great
importance, due to their direct impact on the shared network experience. Some influential
factors in increasing the absolute value of this channel are the coverage level, interference,
low quality, and instability of communication links in the Abis interface. Since there was
a congestion problem in this cluster, the probability of a coverage problem in this area
was less than the probability of other reasons. On the other hand, the cut-off value in this
cluster was much higher than the threshold. Therefore, the cause of the problem might be
hardware problems. The congestion problem was very critical in (d). The behavior of the
channel access success indicator was also unacceptable. Therefore, this cluster’s record had
the problem of inadequate coverage, as well as low signal strength. Furthermore, these
sites should be checked for interference. Cluster (e) had the same problems as (d), in terms
of high cut-off value and failure to access the channel, but the difference was that there was
no congestion problem in this cluster. Finally, cluster (f) had a hardware problem, due to
the wildly inappropriate success rate of reaching the signaling channel.

Figure 11. Indicators of statistical distribution of the signaling sector. Each cluster represents a mode
of the network.

42

Algorithms 2022, 15, 432

3.4. Evaluation of the Results

The expert was asked to label the new data records according to the obtained clusters
to evaluate the results from the records clustering. For this purpose, traffic and signaling
data documents were provided to the expert separately. Having the labels for the obtained
clusters in the previous step, it was now possible to test the accuracy of the clustering
results by running different classification algorithms and using the test data labeled by
the expert.

Therefore, different classification algorithms were applied to the data in both traffic
and signaling data parts. The evaluation results of the other models on the test data are
given in Table 3. It should be noted that, due to the lack of balance in the training data in
the records related to each class, Clementine software was used to balance the records of
each type. This software was also used to apply different classification methods to the data.
The number of training set records was 8006, and the number of traffic and signaling data
test set records was 53.

Table 3. Evaluation of obtained clusters for traffic data.

Band Category Type The Accuracy on Data Test

Neural Network–Rapid 86,54

Neural Network–RBFN 78,85

Neural Network–Dynamic 80,77

Quest decision tree 59,62

Support vector machine 82,69

Regression- band category tree 57,69

By obtaining the different classification methods’ results, accuracies of 90.38%, 86.54%,
and 78.85% for traffic data were obtained from some forms of summarizing opinions,
such as voting, weighted voting concerning model confidence, and the highest confidence
method. The standard voting method worked better on our data. The results of the used
methods for the data of the signaling section are shown in the following table. The voting
method is the best way to collect opinions, with an accuracy of 92.31. Other practices, in-
cluding weighted voting, had an accuracy of 88.46 and 80.77 in relation to model confidence
and the highest confidence (Table 4).

Table 4. Evaluation of obtained clusters for signaling data.

Band Category Type The Accuracy on Data Test

Neural Network–Rapid 80,77

Neural Network–RBFN 88.46

Neural Network–Dynamic 78,85

Neural Network–General prune 80,77

Quest decision tree 59,62

Support vector machine 90,38

Decision tree categorizer–regression 71,15

3.5. A Comprehensive List of Identified Fault Causes of the Performance Support System Data

In the following part, a summary of the causes of faults in the cellular network is
provided. The results obtained from numerous conversations with industry experts in
the mobile network optimization department of the Mobile Communications Company
(Hamrahe Avval) were collected.

43

Algorithms 2022, 15, 432

Reason number 1: hardware problems, including transmitter failure, antenna feeder
failure, and combiner failure: the impact of these types of fault can be seen in call and
indicator interruption in the signaling channel, failure rate in traffic channel assignment,
and in the signal quality.

Reason number 2: hardware problems related to the link, containing several modes.
The first case is when the connection is completely disconnected, and the site is turned off.
The second mode refers to the time when the link is momentarily down and, therefore, has
a negative impact on the traffic channel availability index. The third case is related to a
type of problem in the system that cannot be traced by the value of the indicators and can
be identified according to the drive test (which is examined in detail in the next section).
In this case, the channel availability indicator does not indicate a problem, but the signal
quality suffers due to the high Bit fault rate (BER). In some cases, this problem may also be
reported by subscribers.

Reason number 3: Hardware problems caused by Abis interface failure. This happens
when the number of signaling channels is insufficient compared to the region’s demand
and subscribers’ demand. Therefore, the impact of this problem can be seen in the SDCCH-
Assign index.

Reason number 4: problems caused by overshooting. Overshooting is caused by
improper design of sites and inappropriate coverage of a place in remote areas, and can be
found by checking the value of the advanced timer. To solve this problem, it is necessary to
change the physical characteristics of the antenna, such as its angle, height, and direction.

Reason number 5: frequency interference, including interference in the BCCH channel
and traffic channel. If the interference is in the BCCH channel, the traffic parameters are
also affected in addition to the signaling parameters. If the interference is in the traffic
channel, only the traffic parameters are damaged.

Reason number 6: lack of capacity problems in the traffic and signaling channel. The
solution is to increase the capacity and define relevant features in the settings of cellular
networks to allocate dynamic capacity to the required channels according to the network
traffic situation.

In this section, the method used to detect the fault and identify the cause of the fault
in the network is examined in detail. The difference between this work and other similar
works in this field can be divided into the following. First, unlike the vast majority of
similar works, our method used actual data to identify the cause of the fault in the network.
Other similar works cannot model the mode of the network. Our proposed model considers
all the essential statistical characteristics and indicators of the network at the same time.
This means that, unlike all the mentioned methods in the literature review section, it has a
comprehensive view of the network and the fault types that occur in the network. Finally,
the proposed model has the most negligible dependence on expert opinion. This is even
though most of the proposed methods depend on the expert to build the model and adjust
the parameters. The expert’s opinion in setting the parameters of the model may have
a significant impact on the results obtained. Due to its negligible dependence on expert
opinion, our model has the advantage of avoiding such significant impacts.

3.6. Drive Test

As mentioned in the first section, the second category of the used data in this research
is the data related to drive test measurements. The drive test is a real test of the network to
obtain detailed information about the location of the fault, how the antennas around the
location signal, and to check the redistribution status in the routes. To perform this test,
the operators send a group of human resources to the site. The responsibility of human
resources is to check the network quality from different perspectives. Various scenarios,
such as short calls, long calls, and non-calling mode or idle mode, are proposed by human
power. The non-calling mode analyzes the mobile device’s signal exchanges with the
receiving station. The test is a method to measure and check the coverage status, network
capability, and quality from a common point of view. The test is conducted by making

44

Algorithms 2022, 15, 432

a call through several mobile phones with software to control and record the reported
measurements and parameters from the BTS side and the Global Positioning System
(GPS). The measurements are transferred from the mobile phone to the computer. The
measurements only report network mode from different perspectives and cannot identify
the fault type and cause. In general, the drive test process consists of the following steps:

1. Setting the devices for the required measurements
2. Defining routes
3. Determining the testing time and type
4. Performing the test
5. Collecting data and related reports

Figure 12 shows the scope of conducting a drive test according to the division of urban
areas and the boundaries between the central controller stations.

Figure 12. Drive test route map according to the division of urban areas and the border between base
controller stations. The blue lines illustrate the 8 urban areas, the yellow lines illustrate the border
between the base control stations, and the red lines illustrate the drive test route.

By analyzing the conducted measurements in the drive test, some results, such as
determining blind spots and non-coverage, determining the displacement of the sector
or the feeder, determining an area with interference, interruption of conversation, and
failure in the transfer, are determined. In general, the identified faults list in the drive test
is as follows:

1. Problems related to sector and feeder changing
2. Call interruption problems caused by interference and sector signal overshooting.
3. Interference problems that require checking assigned frequencies to nearby cells.
4. Problems related to outsourcing, which can be traced by adequately setting the

neighborhoods, coverage area, and related parameters to outsourcing.
5. Problems related to the coverage area, which, by adjusting the height, power, and

angle of the antenna, lead to a change in the design and, finally, the installation of a
new site.

3.7. Definition of Different Scenarios in the Drive Test

In general, three different scenarios test the network condition in a drive test. Each
of these three scenarios examines the network status from particular aspects, and var-
ious faults are identified in these scenarios. In the following, we describe each of the
three scenarios.

Scenario number 1: Idle mode: In this situation, the responsible person for the test
puts the mobile phone in idle mode. This means that phone calls cannot be made. This is to
test the network in serving cell reselection when moving the mobile phone. In addition, the

45

Algorithms 2022, 15, 432

received signal level is measured at different points of the network, and the locations with
suitable signal levels are provided to the optimizer for further investigations.

Scenario number 2: Short calls: The short call scenario means evaluating the network
in terms of call establishment parameters. That means assessing whether the mobile phone
subscriber can easily make a call, and what the problems in the process of making a call
are, including access to the signaling and traffic channels. Call blocking parameters and
thriving network access rate are investigated in this scenario.

Scenario number 3: Long calls: The long call, unlike the short call, may be maintained
continuously during the drive test. This scenario aims to test the network in terms of call
interruption rate, conversation quality, received signal quality, and check reassignments.

This article examines the problems affecting network service quality by reviewing all
three scenarios. In the following, we first introduce the measured parameters in the drive
test and then describe the process of identifying network problems in these three scenarios.

3.8. Introducing the Measured Parameters

This section introduces the essential measured parameters in the drive test that form
our feature vector. This information is used to design the network; for example, to achieve
the correct redistribution and to control the radio signal’s power.

1. Signal quality:

In some systems, such as UMTS, the signal quality parameter is directly dependent on
the signal-to-noise ratio [45]. In other methods, such as GSM/GPRS, the signal quality is a
Bit or symbol fault rate function.

2. Signal level:

The received signal level is a measure to control the power of the received signal
and the transmission at the place of receiving the signal. The accepted signal range by
the mobile user is between −110 dbm and −48 dbm. The low level of the received signal
can have several reasons. For example, consider a rural area where the distance to the
base transmitter and receiver station is not suitable. This area receives a weak signal, due
to the long distance to the BTS, and installing a new station is impossible due to high
cost. Another reason for the decrease in the signal level can be the presence of harmful
interference with other received signals in the area. In addition, some tall buildings cause a
rapid attenuation of the signal strength and, therefore, the signal inside the building is not
strong enough. An unacceptable signal level can lead to call termination [46].

3. Speech quality:

The literature on cellular networks measures speech quality with the SQI-MOS pa-
rameter. In its calculation, an algorithm is used to consider the network mode, such as
frame fault rate (FER), and bit fault rate. The algorithm can also calculate the coding type
used in speech transmission, which affects the speech quality level and the highest possible
quality, by calculating the difference between the analyzed sound quality on the side of the
transmitter and the receiver. The result is shown as a number between 1 and 5.

4. Carrier-to-Interference (C/I) Ratio:

One of the most effective and accurate methods for analyzing interference in commu-
nication channels is measuring the Carrier-to-Interference (C/I) Ratio. Route design and
equipment design are two critical factors affecting the interference level. The neighborhood
of nearby systems that use the same frequency band is one of the apparent reasons for
interference, due to the wrong design of routes.

5. Advanced Timing:

In the literature in this field, advanced timing refers to the time it takes for the mobile
phone signal to reach the base station. Since GSM uses multiple access technology, based
on time division, to share a frequency band between different users and considering that
the users are located at an extra distance from the base station, this criterion can be used to
estimate the distance of the user to the base station used.

46

Algorithms 2022, 15, 432

3.9. The Architecture of Working with Drive Test Data

As mentioned in the previous section, to review the architecture of working with
performance support system data and use the received data through field testing, it was
necessary to take measures to identify the meaningful patterns from the data, according
to the illustrated architecture in the following figure. Therefore, after collecting the raw
data of the drive test, through the TEMS Investigation software, which was used to analyze
these data, a report of the network mode was prepared, based on the scenario type and the
characteristics and effective indicators by the use of expert opinion. These features were
fully introduced in the previous section. To use the extracted data from this software, it
was necessary to convert the data format into a usable format for the next steps. At this
stage, we used MapInfo software to transform data into a.csv format for data mining and
meaning recognition algorithms. The obtained data needed to be pre-processed. Therefore,
it was necessary to clear this data before performing any operations. Then, appropriate
algorithms were applied to the data to identify the meaningful patterns in the data, and,
finally, the results were validated according to expert opinion. If there was a need to make
changes in the model, the changes were applied, and again we used the expert to evaluate
the results (Figure 13).

Figure 13. Architecture of working with drive test data.

3.10. Data Preprocessing

As mentioned in the previous section, there was a need for data pre-processing to
obtain results with higher accuracy. Missing values and records containing outliers were
removed from the data. Outliers were removed from the data by identifying the allowed
values for each attribute. The used data in this section were ordinal data types. Ordinal
discrete numbers are the same as categorical data, with the difference that the states in
ordinal variable values have a meaningful order. To manage ordinal data, it is necessary
first to establish correspondence between each data value and its corresponding rank so
that the data falls in the interval of [1, Mf], where Mf is the number of different modes
in the ordinal data for feature f. Since there are many other states for ordinal data, it is
necessary to normalize the data to the interval [0,1] to prevent all features from having the
same effect. So, if the i-th data rank in attribute f is rif, we have:

Equation (7): Normalization of ordinal data

zi f =
ri f − 1
Mf − 1

(7)

To calculate the degree of similarity between two data records, it is possible to do the
same for continuous data [10].

It should be noted that the available data that indicate the overall situation in a network
are usually unbalanced because the network works well in most areas. There is a smaller
percentage of points that have problems. Since the optimal range of all the used features
in this research was included in the standard, we could separate the records in which the
optimal degree of all variables were observed from the other data and label them as fault-

47

Algorithms 2022, 15, 432

free to investigate the problem of data imbalance. Therefore, by doing this, a significant
amount of data was reduced, and would be more suitable for analyzing the cause of a fault
in the network.

3.11. Identifying the Data Pattern and Identifying the Fault Cause

To divide the data into meaningful categories, it was necessary to apply different
clustering algorithms to the data, according to the examined scenarios and the results
obtained from the evaluation of the clusters. The best separating algorithm should be
identified from the drive test data. Since the data of this part was similar to the data of the
last section, it was raw data, and it was impossible to use external criteria to evaluate the
correctness of the obtained results. It was necessary to use internal performance evaluation
criteria to assess the obtained clusters. The standard for evaluating the clustering of the
drive test data was also similar to the performance support system data, namely, the
Silhouette coefficient. It should be noted that to ensure the ability to cluster the data, the
Hopkins coefficient was applied to the data of each scenario. The obtained result for the
scenario of the idle mode was 0.88%, and for the long call it was 0.94%. Therefore, the
data had good capability for clustering. The analysis of the obtained results, according
to different scenarios, is given in the following part. Table 5 summarizes the related
information to the features examined in this test.

Table 5. A summary of the statistical information of the used features.

Feature’s Name Minimum Maximum Optimal Interval (Standard)

Carrier-to-interference ratio 5 25 ≥25, <35

Signal level −101 −31 More than −65

Signal quality 0 7 Less than 3

Call quality 0 4.1 Equal to 3.9

Advanced timing 0 3 Less than 1

Scenario number 1, Idle mode: This tests the received signal level at different points
of the network. Locations with inadequate signal levels are reported to the optimizer for
further investigation. According to the characteristics that were considered in this scenario,
including the signal level, the ratio of the carrier power to the interference and the advanced
scheduler, and the number of optimal clusters, which were of three numbers, according to
the expert’s opinion, after data pre-processing, we had the results indicated in Figure 14.

Figure 14. Silhouette coefficient on the idle mode scenario with the number of 3 clusters.

48

Algorithms 2022, 15, 432

Therefore, on the drive test data in the idle state scenario, the estimation maximization
(EM) method provided a more suitable answer than other methods. A more complete
description of the obtained clusters’ characteristics is given in Table 6.

Table 6. The details of Clusters and Feature’s name.

Feature’s Name Cluster 1 Cluster 2 Cluster 3

Signal level

Carrier-to-
interference ratio

Advanced timing

Each of the obtained clusters indicated good, average and unfavorable network condi-
tions in terms of the received signal characteristics of the mobile phone in the idle mode.
In cluster number 1, according to the statistical information table of the used features, all
records were in a suitable and optimal condition. In cluster number 2, although the inter-

49

Algorithms 2022, 15, 432

ference in the environment was negligible, the signal level was weaker than the optimal
mode. The low signal level in the records included in this category was due to the relatively
large distance between the base transmitter and receiver station. Since there was very little
interference in this category, these areas did not have the problem of improper frequency
design of adjacent cells or the problem of interfering signals from neighbors. Therefore, the
records of this cluster did not report a specific problem in the network. If a new antenna
was installed to improve the signal level in this area, it would interfere with the received
signal in the neighboring points. The third cluster contained records that were not far from
the service station and had an unacceptable level of interference and signal. This meant
that the path obstacles might reduce the signal strength. The interference caused by the
signals of the neighboring cells should be corrected by resetting the site parameters, such
as the height and angle of the antenna in the adjacent cell.

Scenario number 2, short call: The purpose of this scenario was to check the network in
terms of its access success rate. Many calls were attempted in this scenario. In the available
data of this research, there were 8 blocked calls out of 349 calls in the short call scenario.
These results showed high interference in these areas, and the signal level was insignificant.
Further investigation of the reasons for blocked calls was available in performance support
system indicators and is covered in Section 4.

Scenario number 3: Long-term call: This scenario, which was the most critical scenario
in the field test, measured signal quality, conversation quality, carrier power to interference
power ratio, and advanced timing. The purpose of this scenario was to identify the state of
the system on call interruptions and handovers.

As seen in the following figure, among the different clustering methods applied to
this data, the k-means method achieved a higher Silhouette coefficient than other methods.
Therefore, we first briefly overview the k-means clustering method. The details of the
results are given later in this section.

The k-means method is among the best cluster partitioning methods. This means
that, according to the number of clusters, there is an attempt to optimize the data division
according to the similarity or distance criterion (Figure 15). Several algorithms with a
different number of clusters were tried on this data. For the k-means method, the number
of 4 clusters had the best answer. The Silhouette coefficient value for this cluster was 0.6269.

Figure 15. Silhouette coefficient value of different clustering methods–long call scenario.

Table 7 illustrates the obtained histogram of the features in 4 categories.
The signal quality in cluster number 1 was inadequate. Low signal quality was due

to low power and signal level. Paying attention to the characteristic value signal power–
interference power ratio showed significant interference in the system due to the signal
level. On the other hand, since the value of the advanced timer parameter was low, the
decreased signal level was not the long distance from the transmitter station. Therefore, this

50

Algorithms 2022, 15, 432

problem could be seen in the voltage standing wave ratio (VSWR). The problem, expressed
as a loss in signal strength, was due to hardware problems in the antenna or its incorrect
installation. Another reason for the problem was the wrong tilt of the antenna angle. It
could be seen that in this situation the quality of the signal was not good, and the received
sound in the receiver had good quality. This problem could be seen in the audio coding
type used in this network.

Table 7. The histogram of different features in the obtained clusters–long call.

First category

Second category

51

Algorithms 2022, 15, 432

Table 7. Cont.

Third category

Forth category

In cluster number 2, the signal level was low. A high value of the advanced timer
confirmed the presence of a problem in the standard received signal. This meant that this
signal reached the subscriber from a long distance, and, therefore, the service site’s signal

52

Algorithms 2022, 15, 432

was out of range. Thus, site design parameters, such as antenna height and angle, should
be considered to reduce the coverage area or the antenna power.

In cluster number 3, all features were in good condition. This cluster showed the
proper state of the network.

In cluster number 4, the bad quality of the signal was not caused by the power
reduction and signal level or interference. On the other hand, the value of the advanced
timer also showed the system’s status. Therefore, according to the expert, the reason for
this was hardware problems in one of the sources of sending and receiving information in
antennas called TRX.

Cluster number 5 showed high interference in the system. On the other hand, the
signal level in this cluster was suitable. Therefore, the interference strength could be seen
in the low power of the carrier signal. In this cluster, the advanced scheduler also had an
acceptable value. Therefore, the reason for the existence of this problem could be attributed
to the presence of interference from external sources, such as signals from other operators,
or incorrect installation of sectors and the need to swap them.

3.12. Review the Handover

As mentioned before, one of the issues addressed in the long call scenario is the
handover issue. Our model investigated this issue separately. By reducing the quality
of the signal received by the user, which is a function of the bit fault rate, the network is
obliged to transfer the user’s call to a better cell. Sometimes, outsourcing may happen later
than the appropriate time, and this phenomenon leads to common dissatisfaction with
the network.

To solve this problem, the proposed solution is to use a time window to detect the
quality and level of the signal received by the user in a long call. The time window length
and the threshold value were considered on the quality and level of the signal according
to the expert’s opinion. If the subscriber received signal quality worse than, or equal to,
5 and the signal level was less than −75 within six times of receiving information from the
central transmitter station, our system requested retransmission in the network because
otherwise the user’s call would be disconnected, which would lead to user dissatisfaction.
Figure 16 shows the signal quality and level at different network points.

Figure 16. Silhouette coefficient value of different clustering methods–long call scenario.

This section introduces the drive test, one of the scientific and engineering methods
for identifying the location of the fault and the cause of its occurrence. Different scenarios
performed in a drive test by a team of experts were investigated separately in this research.
For the scenario of idle mode, three separate signal strength categories were considered
for the subscriber, which divided the network mode into three categories: good, average,
and bad. In the short call scenario, where the network mode was examined in terms of
the call establishment parameters, after identifying the exact location of the blocked calls
and the state of the received signal, the characteristics of the indicators of the performance
monitoring system were used to analyze the cause of the problem. Finally, the long call

53

Algorithms 2022, 15, 432

contact of four categories was obtained for the most critical scenario. Their interpretation
is available in detail in Section 3.7 To evaluate the clustering method, in addition to the
Silhouette coefficient, data classification using the cluster number label was used, the
accuracy results of which are given in the training and test data at the end of Section 3.7
Relocation, one of the most important goals of long call scenarios, was also examined
separately in this section. The results of the handover evaluation are given.

3.13. Combining Data Sources

The purpose of this section is to combine the results of the second and third sections.
In other words, in this section, we wanted to complete the architecture of automatic fault
detection and detection in cellular networks by examining the results of these two sections.
As mentioned in previous sections, two critical data sources for fault detection in cellular
networks are performance support system data and field test data. Each of these two data
sources examines the network status from different aspects. Therefore, the qualitative
issues of the network were discussed from two different perspectives related to these two
data sources. To identify faults and problems in the network, it was necessary to examine
these data sources separately.

Another data source that we used in this section to more precisely identify the fault
cause was data related to subscriber complaints. These data, which were collected from
the communication center with the subscribers of the mobile telecommunication company
(Hamrahe Avval), indicated the problems reported to the operator by the subscribers of this
network. In the following, we briefly explain customer complaints’ data and then introduce
the data combination methods. The results of combining these three data sources are given
at the end.

3.14. Subscriber Complaints Dataset

Investigating customer complaints is one of the essential activities of customer-oriented
organizations. Considering the competitive world among operators, it is necessary to
manage customer complaints and adequately satisfy customers. The block diagram of
the communication of subscribers’ complaints with different departments of the mobile
telecommunication company (first companion) is shown in Figure 17.

Figure 17. Silhouette coefficient on idle mode scenario with 3 clusters.

After the customer communicates with the call center, the user report is separated
from other calls based on the communication with the technical department. At this
stage, complaints related to a similar incident are consolidated before being sent to the
technical department and, finally, sent to the customer relations department of the technical
department. The received reports in the technical department are re-checked and divided
into categories, such as Voice, SMS, etc. Problems related to the optimization of regional

54

Algorithms 2022, 15, 432

sites and the maintenance of BTS sites are sent to the Central General Administration of
Tehran Province. After investigating the problem, the expert’s report is transferred to
the call center and the call center contacts the subscriber if necessary. The available data
collection we used of to complaints from mobile telecommunication center subscribers
related to technical problems, and was reported in October and November of 2020. The
number of records of this data was 3200 in total. Table 8 below shows the features in
this data.

Table 8. The data characteristics of subscribers’ complaints.

Feature Name Feature Type

Registration time Time

Request type Text

Request description Text

Site ID Text

BCS ID Text

Explanation Text

Among the reported problems by subscribers, temporary network disruption, echoing,
receiving false messages during calls, coverage problems, disconnection, and antenna
weakness were mentioned. The total number of these problems was divided into 6 gen-
eral categories; about 80% of the reported issues was related to antenna and network
coverage problems.

This category’s data was used to help better identify network faults, especially those
not specified in the other two data categories. Therefore, by adding this information to
the previous data, this information could be used to increase the accuracy of the proposed
model. Our observations showed that about 1% of all calls raised as technical complaints
to the mobile telecommunication company were unrelated to the technical department.
The problem was related to the subscriber himself or herself, for reasons such as problem
registration by non-technical personnel in the operator, as well as issues associated with
the user, such as problems related to some types of mobile phones (for example, some
mobile phones cannot support the AMR feature), wrong settings on the shared telephone
(for example, call transferring to the wrong number), the existence of a hardware problem
in the phone that led to poor quality audio, etc.

Among the remaining 99% of complaints, about 35% of these calls stated problems
were not worth taking any appropriate action, for technical and economic reasons. Calls
were mostly related to the lack of antenna in remote areas or certain parts of a private
house; for example, a user in a village with a relatively small population may contact
the customer complaint center for lack of coverage in the network. Since there would be
economic problems in installing a new site in that area, the mobile telecommunications
company cannot take action to satisfy the customer. According to discussions with the
experts, no specific action is taken to improve the network situation for this category of
reports. Finally, 65% of the subscribers’ complaints reflected a real problem in the network.

It is important to note that all customer complaints should be investigated. After
investigating a common complaint, according to the amount of other data available, such as
performance support system data and field test data, appropriate actions are taken for that
data if necessary. In other words, if both other data sources are available, if the other two
data sources confirm the absence of a problem in the area, that problem is not transferred to
the next step. In the case of a severe problem in the network, one of these two data sources
could transmit this problem.

Our reviews of the data confirmed the validity of customer complaint data. For
example, on the 15th and 16th of October, several subscribers’ complaints were recorded in
the system for a specific cell in the network. The received information from the performance

55

Algorithms 2022, 15, 432

support system for this particular cell confirmed the occurrence of a problem in the area,
because the average CCC of this cell was below 85 during high traffic hours, and our model
detected the problem. Therefore, paying attention to subscribers’ complaints is one of the
critical issues in identifying causes offaults.

3.15. Fault Detection

According to the conducted studies and the results presented in the second and third
sections, which specifically focus on the performance support system and drive test data,
we offer a mechanism to combine this information to complete the architecture of automatic
detection of recorded fault.

All three of our data sets were unavailable at all times, and, due to drive testing
limitations and subscriber complaints, the methods used to combine information differed,
according to the types of available data for each region.

There are different ways to combine information from these three categories of data.
The simplest of these methods is the use of majority opinion voting. If all three data sources
are available, this method identifies a record as a fault when at least two of the three
information sources confirm the occurrence of a fault in a specific cell and at a particular
time. Another method is to use weighted voting. The basis of this method is the unequal
accuracy of different data sources in fault detection. Therefore, assigning more weight to
methods with higher precision is necessary. In this way, decisions are made about new data
based on each method’s ability to correctly identify faults in the network and consider the
system’s threshold.

As we mentioned earlier, all data sources may not exist simultaneously in this frame-
work. In addition, according to conversations with field experts, who emphasize the
necessity of checking all the reported faults from the performance support system and
drive test sources, all the reported faults from these two sources should be checked. If
both of these sources report the absence of a problem for a region and at a particular time,
and there is a subscriber complaint for this region, this complaint is ignored. Otherwise,
the common complaint is used to improve the accuracy of diagnosis of the fault’s cause
(Table 9).

Table 9. Checking different situations in combining information according to available data sources.

The Number of Available Data Sources Used Method

Only source number 1 reports an fault.
Source number 1 and 2 report an fault Check the problem

Source number 1 and 3 are not available Trust first source

Source number 1, 2 and 3 are available Trust first and second sources

3.16. Fault Identification

Since the first and second data sources have two different views of the network and
the events within the network, the type of detected fault from these two sources differ.
Drive testing accurately identifies fault location and cause when a data source (performance
support system) cannot respond appropriately. These two data sources are complementary
to each other. When there are complaints from subscribers in an area, an expert is used to
improve the accuracy of the solution provided.

As mentioned in the third section, it is necessary to examine the key performance
indicators discussed in the second section for the short call scenario. Identifying the reason
for blocking a call request using measurable parameters and features is not achieved in
the drive test. Therefore, according to the findings of the second section, it is necessary
to comment on the problems of the traffic sector and signaling sector for the desired area.
Related indicators to request blocking in the signaling sector include congestion in the traffic
and signaling channels, the success rate in accessing the traffic and signaling channels, and
interruption in the signaling channel.

56

Algorithms 2022, 15, 432

Among the drive test data, there were eight blocked call requests. The results of
comparing these requests with the indicators of the busiest hours of the same day are
shown in the Table 10.

Table 10. Comparison of drive test information and performance support system for blocked calls.

ID C/I RxLe RxQual TA SDCong SDDrop SDestab TCHCong TCHAssign

1 11.4 −91 7 2 0.42 0.79 96.71 2.2 2.77

2 17.9 −79 0 1 6.61 0.53 97.56 0 0.49

3 13.2 −76 4 2 1.41 0.38 98.11 0 1.09

4 8.7 −79 7 3 0 0.27 88.11 0 0.34

5 11.7 −77 4 3 0 3.71 88.20 0 1.39

6 12.5 −82 5 1 0.43 0.46 96.17 1.81 14.54

7 13.1 −83 6 1 0 1.27 89.18 0.24 22.16

8 15.4 −91 7 2 0 1.31 96.86 0 5.11

It is evident that records 1, 6, and 8 did not have signaling problems, and the reason
for the call blocking problem was related to the indicators of the traffic department. Thus,
records 2, 3, 4, and 5 were almost healthy in establishing traffic department calls, and there
was no need to perform traffic checks on the blocked calls. It was possible to identify
the fault by the method of determining the cause and using the performance support
system data.

In this section, after introducing the third category of information, called subscriber
complaints, we discussed the issue of combining different available information sources
to identify the fault and also to analyze its cause. In this process, the main focus is on
two sources of information, performance support systems and drive testing to identify the
fault. A significant percentage of the complaints raised by subscribers is not a priority in
solving network problems, and, from an economic pint of view, and even a technical point
of view, are not cheap to resolve. Complaints from subscribers are only used to help the
expert in identifying the cause of a fault that occurred in the system. Further investigations
and analysis of subscribers’ complaints to determine their importance in expressing the
problem and helping to solve it are proposed as one suggestion for future work in this
research. As mentioned before, the two information sources of drive test and performance
support system data complement each other in fault detection and identify its cause. The
combination of these two sources of information to identify the reason for the blocking of a
call request in the drive test was investigated in this section, and how to find the cause of
the fault in the field test, by using the method of identifying the fault caused in the data of
the performance support system, was discussed.

4. Discussion and Conclusions

Troubleshooting in cellular networks is essential due to the nature of the networks’
components, hardware, and software problems. Considering the competitive world among
cellular network operators, the need for automatic fault detection and identification of the
causes of faults, so as to restore the network to its normal mode, have become increasingly
apparent. This article aimed to provide a framework for automatic fault detection and
investigation of the cause of a fault to help the human resources in this field. This article
was based on scientific principles and sought to solve problems in the industry, and its
modeling was performed in consultation with experts in the field. Unlike other research
conducted in this field, this research had different data sources, and by using the ability of
the data to check the network mode from different perspectives, it identified faults with
higher accuracy and exhibited greater ability to analyze the cause of fault. In addition, the
proposed model had the most negligible dependence on experts in building the model
and its initial assumptions. Therefore, it was immune to human faults and experts’ taste.

57

Algorithms 2022, 15, 432

Finally, in responding to the needs of experts, this model had a minor dependency on
human resources and could continue to work without human resources’ intervention. In
this paper, the general framework of the activities was shown in “Fault! Reference source
not found”. The considered input sources were performance support system data, drive
test data, and data related to customer complaints. Fault detection in the case of the first
two categories of data, performance support system data and drive testing, was performed
by methods fully explored in the second and third sections. Faults identified from the data
sources were entered into the “combining data” section, along with potential subscriber
complaints. In this part, faults were collected together with the knowledge extracted from
the previous steps, and a decision was made for an area. Therefore, the input of the three
parts, “performance support system,” “drive test,” and “subscriber complaints”, was the
available data from the three types of sources, and in the output port, the detected fault
characteristics were entered into the information combination part. Finally, the detected
fault was sent to the output and cause.

The performance support system is one of the most important sources of information
in identifying network problems. The data of this system were examined in detail in
the second section. The CCC quality criterion was used for fault detection. The records
identified as faults by this criterion were entered into the next step of the algorithm to
determine the cause of the fault. These data were divided into traffic and signaling data
categories, and the related problems to each section were identified separately. Since the
available data were only unlabeled raw data, the clustering algorithm method was used.
By implementing different algorithms with different numbers of clusters, 5 clusters with a
Silhouette coefficient of 0.4509 for traffic data and 6 clusters with a Silhouette coefficient of
0.503 were obtained for signaling data. Each of these clusters represented a specific cause
for a fault in the network. Finally, different classification algorithms were applied to the
labeled data through clustering to better evaluate the results. For traffic and signaling data,
combining the effects of different classifiers through opinion voting had the best accuracy
in test data. In fact, 90.38% accuracy was obtained for traffic data and 92.31% for signaling
data, which was a significant improvement compared to the accuracy of other similar
tasks. Drive test data were collected in three short, long and idle mode call scenarios. The
short call identifies network problems in call setup, the long call identifies issues related
to handover and call interruption, and, finally, the idle mode ascertains characteristics
of the standard signal in the network. This research used performance support system
data to solve the problems of blocked calls in short calls, long calls, and idle mode and
used clustering algorithms to identify the cause of existing problems. For the accuracy of
this method, in addition to the Silhouette coefficient, various classified algorithms were
performed on the training and test data in the case of long call scenarios. In the best case,
an accuracy of 96.86% was obtained with the dynamic neural network method. In addition,
the time window was used to provide a framework for identifying points that needed
handover, and its results were presented in the third section of the outsourcing review
section. As mentioned in the first section, the number of studies conducted in this field
has been minimal, and this study can be expanded to various areas. Examining subscriber
complaint data in more detail, including identifying the importance of the reported problem
for operators, is one of the essential activities to reduce the time spent by experts in this
industry. In addition, according to the record that the subscriber registers in the system
and the explanations that they provide to the subscriber complaints center, it is possible to
identify the fault type and analyze its cause.

Author Contributions: Conceptualization, A.K.S.; Software, A.K.S., S.R. and A.J.; Formal analysis,
S.R., A.J., F.M., W.Z. and D.W.; Investigation, F.M. and W.Z.; Resources, A.K.S., F.M. and D.W.; Data
curation, A.K.S., S.R. and A.J.; Writing—original draft, A.K.S., S.R. and A.J.; Writing—review &
editing, A.J.; Visualization, A.J.; Supervision, A.J. and W.Z.; Project administration, A.J. All authors
have read and agreed to the published version of the manuscript.

58

Algorithms 2022, 15, 432

Funding: This work was supported in part by the Fundamental Research Funds for the Central
Universities under Grant No. HIT.OCEF.2021007, the Shenzhen Science and Technology Research and
Development Foundation under Grant No.JCYJ20190806143418198, the National Key Research and
Development Program of China under Grant No. 2020YFB1406902, the Key-Area Research and Devel-
opment Program of Guangdong Province under Grant No. 2020B0101360001, the Guangdong Provin-
cial Key Laboratory of Novel Security Intelligence Technologies under Grant No. 2022B1212010005.
Professor Weizhe Zhang is the corresponding author.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Papidas, A.G.; Polyzos, G.C. Self-Organizing Networks for 5G and Beyond: A View from the Top. Future Internet 2022, 14, 95.
[CrossRef]

2. Sumathi, A.C.; Javadpour, A.; Pinto, P.; Sangaiah, A.K.; Zhang, W.; Mahmoodi Khaniabadi, S. NEWTR: A multipath routing for
next hop destination in internet of things with artificial recurrent neural network (RNN). Int. J. Mach. Learn. Cybern. 2022, 13,
2869–2889. [CrossRef]

3. Loskot, P. Mobile Networks. In Emerging Computing Paradigms: Principles, Advances and Applications; John Wiley & Sons Ltd.:
Hoboken, NJ, USA, 2022.

4. Sangaiah, A.K.; Javadpour, A.; Pinto, P.; Ja’fari, F.; Zhang, W. Improving Quality of Service in 5G Resilient Communication with
THE Cellular Structure of Smartphones. ACM Trans. Sens. Netw. 2022, 18, 43. [CrossRef]

5. Parameswaran, S.; Bag, T.; Garg, S.; Mitschele-Thiel, A. Cognitive Network Function for Mobility Robustness Optimization in
Cellular Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX,
USA, 10–13 April 2022; pp. 2035–2040.

6. Borwankar, S.; Pandya, R.; Sharma, R. Unacknowledged Mode LAPDm Protocol Development at MS Side of GSM Network. In
Proceedings of the Fifth International Conference on Microelectronics, Computing and Communication Systems, Ranchi, India,
7 November 2020; pp. 413–421.

7. Bratman, J.; Fabbri, D.; Zimmerman, A. Reinforcement Learning Approach to Managing Distributed Data Processing Tasks in
Wireless Sensing Networks. Eecs. Umich. Edu. 2009, 1–10.

8. Nisar, F.; Baseer, S. A Comprehensive Survey on Mobile Communication Generation. In Proceedings of the 2021 International
Conference on Innovative Computing (ICIC), Lahore, Pakistan, 9–10 November 2021; pp. 1–6.

9. Peng, Y.; Yang, X.; Xu, W. Optimization research of decision support system based on data mining algorithm. Wirel. Pers. Commun.
2018, 102, 2913–2925. [CrossRef]

10. Rezaei, S.; Radmanesh, H.; Alavizadeh, P.; Nikoofar, H.; Lahouti, F. Automatic fault detection and diagnosis in cellular networks
using operations support systems data. In Proceedings of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management
Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 468–473.

11. Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J. Survey on UAV cellular communica-
tions: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 2019, 21,
3417–3442. [CrossRef]

12. Hasanshahi, Z.; Azmi, P.; Gholizadeh, M.H.; Khajezadeh, M. The Flexibility of the Generalized Gamma Distribution in Modeling
the Fading Based on Kullback-Leibler and Kolmogorov-Smirnov Criteria. IEEE Access 2020, 8, 8393–8404. [CrossRef]

13. Alekseeva, D.; Stepanov, N.; Veprev, A.; Sharapova, A.; Lohan, E.S.; Ometov, A. Comparison of Machine Learning Techniques
Applied to Traffic Prediction of Real Wireless Network. IEEE Access 2021, 9, 159495–159514. [CrossRef]

14. Guo, P.; Fu, J.; Yang, X. Condition monitoring and fault diagnosis of wind turbines gearbox bearing temperature based on
kolmogorov-smirnov test and convolutional neural network model. Energies 2018, 11, 2248. [CrossRef]

15. Yang, H.; Wang, B.; Yao, Q.; Yu, A.; Zhang, J. Efficient hybrid multi-faults location based on hopfield neural network in 5G
coexisting radio and optical wireless networks. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1218–1228. [CrossRef]

16. Mishra, D.; Natalizio, E. A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimen-
tal advancements. Comput. Netw. 2020, 182, 107451. [CrossRef]

17. Fourati, H.; Maaloul, R.; Chaari, L.; Jmaiel, M. Comprehensive survey on self-organizing cellular network approaches applied to
5G networks. Comput. Netw. 2021, 199, 108435. [CrossRef]

18. Wang, S.; Ferrús, R. Extracting cell patterns from high-dimensional radio network performance datasets using self-organizing
maps and K-means clustering. IEEE Access 2021, 9, 42045–42058. [CrossRef]

19. García, A.J.; Toril, M.; Oliver, P.; Luna-Ramírez, S.; Ortiz, M. Automatic alarm prioritization by data mining for fault management
in cellular networks. Expert Syst. Appl. 2020, 158, 113526. [CrossRef]

20. Asghar, A.; Farooq, H.; Imran, A. Self-healing in emerging cellular networks: Review, challenges, and research directions.
IEEE Commun. Surv. Tutor. 2018, 20, 1682–1709. [CrossRef]

59

Algorithms 2022, 15, 432

21. Barco, R.; Lázaro, P.; Wille, V.; Díez, L.; Patel, S. Knowledge acquisition for diagnosis model in wireless networks. Expert Syst.
Appl. 2009, 36, 4745–4752. [CrossRef]

22. Khanafer, R.M.; Solana, B.; Triola, J.; Barco, R.; Moltsen, L.; Altman, Z.; Lazaro, P. Automated Diagnosis for UMTS Networks
Using Bayesian Network Approach. IEEE Trans. Veh. Technol. 2008, 57, 2451–2461. [CrossRef]

23. Barco, R.; Díez, L.; Wille, V.; Lázaro, P. Automatic diagnosis of mobile communication networks under imprecise parameters.
Expert Syst. Appl. 2009, 36, 489–500. [CrossRef]

24. Sathya, V.; Kala, S.M.; Bhupeshraj, S.; Tamma, B.R. RAPTAP: A socio-inspired approach to resource allocation and interference
management in dense small cells. Wirel. Netw. 2021, 27, 441–464. [CrossRef]

25. Song, K.; Zeng, X.; Zhang, Y.; De Jonckheere, J.; Yuan, X.; Koehl, L. An interpretable knowledge-based decision support system
and its applications in pregnancy diagnosis. Knowl.-Based Syst. 2021, 221, 106835. [CrossRef]

26. Saeed, U.; Jan, S.U.; Lee, Y.-D.; Koo, I. Fault diagnosis based on extremely randomized trees in wireless sensor networks. Reliab.
Eng. Syst. Saf. 2021, 205, 107284. [CrossRef]

27. Tan, M.; Lafond, C.V. PERFEX: A cellular performance support expert. Expert Syst. Appl. 1996, 11, 449–454. [CrossRef]
28. Wang, Y.; Ruan, Y.; Tang, Y. Intelligent Fault Diagnosis Method for Mobile Cellular Networks. In Proceedings of the 2021 IEEE

Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; pp. 1–6.
29. Nouioua, M.; Fournier-Viger, P.; He, G.; Nouioua, F.; Min, Z. A survey of machine learning for network fault management. In

Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics; Springer: Cham, Switzerland, 2021; pp. 1–27.
30. Szilágyi, P.; Nováczki, S. An Automatic Detection and Diagnosis Framework for Mobile Communication Systems. IEEE Trans.

Netw. Serv. Manag. 2012, 9, 184–197. [CrossRef]
31. Riaz, M.S.; Qureshi, H.N.; Masood, U.; Rizwan, A.; Abu-Dayya, A.; Imran, A. Deep Learning-based Framework for Multi-Fault

Diagnosis in Self-Healing Cellular Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking
Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 746–751.

32. Moulay, M.; Leiva, R.G.; Maroni, P.J.R.; Diez, F.; Mancuso, V.; Anta, A.F. Automated identification of network anomalies and their
causes with interpretable machine learning: The CIAN methodology and TTrees implementation. Comput. Commun. 2022, 191,
327–348. [CrossRef]

33. Eli-Chukwu, N.C.; Aloh, J.M.; Ezeagwu, C.O. A systematic review of artificial intelligence applications in cellular networks.
Eng. Technol. Appl. Sci. Res. 2019, 9, 4504–4510. [CrossRef]

34. Saeed, A.; Aliu, O.G.; Imran, M.A. Controlling self healing cellular networks using fuzzy logic. In Proceedings of the 2012 IEEE
Wireless Communications and Networking Conference (WCNC), Paris, France, 1–4 April 2012; pp. 3080–3084. [CrossRef]

35. Javadpour, A.; Wang, G.; Rezaei, S.; Li, K.-C. Detecting straggler MapReduce tasks in big data processing infrastructure by neural
network. J. Supercomput. 2020, 76, 6969–6993. [CrossRef]

36. Han, J.; Pei, J.; Tong, H. Data Mining: Concepts and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2022.
37. Javadpour, A.; Rezaei, S.; Li, K.-C.; Wang, G. A Scalable Feature Selection and Opinion Miner Using Whale Optimization

Algorithm. In Advances in Signal Processing and Intelligent Recognition Systems; Springer: Singapore, 2020; pp. 237–247.
38. Aymen, A. New traffic modeling for IoV/V2X in 5G network based on Data Mining. In Proceedings of the 2021 IEEE 93rd

Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–7.
39. Riaz, M.S.; Qureshi, H.N.; Masood, U.; Rizwan, A.; Abu-Dayya, A.; Imran, A. A Hybrid Deep Learning-based (HYDRA)

Framework for Multi-Fault Diagnosis using Sparse MDT Reports. IEEE Access 2022, 10, 67140–67151. [CrossRef]
40. Yuan, K.-H.; Guarnaccia, C.A.; Hayslip Jr, B. A study of the distribution of sample coefficient alpha with the Hopkins symptom

checklist: Bootstrap versus asymptotics. Educ. Psychol. Meas. 2003, 63, 5–23. [CrossRef]
41. Elbatal, I.; Alotaibi, N.; Alyami, S.A.; Elgarhy, M.; El-Saeed, A.R. Bayesian and non-Bayesian estimation of the Nadaraj ah–

Haghighi distribution: Using progressive Type-1 censoring scheme. Mathematics 2022, 10, 760. [CrossRef]
42. Chakraborty, S.; Islam, S.K.H.; Samanta, D. Data Classification and Incremental Clustering in Data Mining and Machine Learning;

Springer: Berlin/Heidelberg, Germany, 2022.
43. Zafarani, R.; Abbasi, M.A.; Liu, H. Social Media Mining an Introduction; Cambridge University Press: Cambridge, UK, 2014; p. 382.

[CrossRef]
44. Javadpour, A.; Saedifar, K.; Wang, G.; Li, K.-C.; Saghafi, F. Improving the Efficiency of Customer’s Credit Rating with Machine

Learning in Big Data Cloud Computing. Wirel. Pers. Commun. 2021, 121, 2699–2718. [CrossRef]
45. Barik, D.K.; Mali, S.; Ali, F.A.; Agarwal, A. Design and Analysis of RF Optimization in 2G GSM and 4G LTE Network. In

Innovation in Electrical Power Engineering, Communication, and Computing Technology; Springer: Singapore, 2022; pp. 11–18.
46. Abdelazez, M.; Rajan, S.; Chan, A.D.C. Signal Quality Assessment of Compressively Sensed Electrocardiogram. IEEE Trans.

Biomed. Eng. 2022, 69, 3397–3406. [CrossRef] [PubMed]

60

Citation: Cordero, A.; G. Maimó, J.;

Rodríguez-Cabral, A.; Torregrosa, J.R.

Convergence and Stability of a New

Parametric Class of Iterative

Processes for Nonlinear Systems.

Algorithms 2023, 16, 163. https://

doi.org/10.3390/a16030163

Academic Editor: Frank Werner

Received: 8 February 2023

Revised: 10 March 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Convergence and Stability of a New Parametric Class of
Iterative Processes for Nonlinear Systems

Alicia Cordero 1,*, Javier G. Maimó 2, Antmel Rodríguez-Cabral 2,3 and Juan R. Torregrosa 1

1 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera, s/n,
46022 Valencia, Spain

2 Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres 49, Santo Domingo 10602,
Dominican Republic

3 Escuela de Matemáticas, Universidad Autónoma de Santo Domingo (UASD), Ciudad Universitaria, Av. Alma
Mater, Santo Domingo 10105, Dominican Republic

* Correspondence: acordero@mat.upv.es

Abstract: In this manuscript, we carry out a study on the generalization of a known family of
multipoint scalar iterative processes for approximating the solutions of nonlinear systems. The
convergence analysis of the proposed class under various smooth conditions is provided. We also
study the stability of this family, analyzing the fixed and critical points of the rational operator
resulting from applying the family on low-degree polynomials, as well as the basins of attraction
and the orbits (periodic or not) that these points produce. This dynamical study also allows us to
observe which members of the family are more stable and which have chaotic behavior. Graphical
analyses of dynamical planes, parameter line and bifurcation planes are also studied. Numerical tests
are performed on different nonlinear systems for checking the theoretical results and to compare the
proposed schemes with other known ones.

Keywords: nonlinear systems; convergence order; iterative processes; stability analysis

1. Introduction

Many papers deal with methods and families of iterative schemes to approximate the
solution of nonlinear equations f (x) = 0, with f : I ⊆ R→ R as a function defined in an
open interval I. Each of them has a different behavior due to their order of convergence,
stability and efficiency. Of the existing methods in the literature, in the present manuscript,
we focus on the family of iterative processes (ACTV) for approximating the solutions of
nonlinear equations, proposed by Artidiello et al. in [1]. This family was constructed
adding a Newton step to Ostrowski’s scheme, and using a divided difference operator.
Then, the family has a three-step iterative expression with an arbitrary complex parameter
α. Moreover, its order of convergence is at least six. Its iterative expression is

yk = xk − f (xk)

f ′(xk)
,

zk = yk − f (yk)

2 f [xk, yk]− f ′(xk)
,

xk+1 = zk − [α + (1 + α)uk + (1− α)vk]
f (zk)

f ′(xk)
, k = 0, 1, . . .

(1)

where

uk = 1− f [xk, yk]

f ′(xk)
and vk =

f ′(xk)

f [xk, yk]
, k = 0, 1, 2, . . .

Algorithms 2023, 16, 163. https://doi.org/10.3390/a16030163 https://www.mdpi.com/journal/algorithms61

Algorithms 2023, 16, 163

The divided difference operator is defined as

f [x, y] =
f (x)− f (y)
(x− y)

, ∀x, y ∈ I.

By using tools of complex dynamics, the stability of this family was studied by
Moscoso [2], where it was observed that there is good dynamic behavior in the case of
α = 1. In Section 2, we present the multidimensional extension of family (1) and prove its
convergence order.

In the stability analysis (Section 3), we determine whether the fixed points of the
associated rational operator are of an attracting, repulsing or saddle point nature; on the
other hand, we search for which values of the parameter-free critical points may appear. In
the bifurcation analysis of free critical points (Section 4), we calculate the parameter lines,
which we generate from the mentioned free critical points, then we generate the bifurcation
planes for specific intervals of parameter α, and as a consequence of these studies, we
generate the dynamical planes for members of the family with stable and unstable behavior.
In Section 5, some numerical problems are considered to confirm the theoretical results.
The proposed schemes for different values of parameter are considered and compared with
Newton’s method and some known sixth-order techniques, namely C61, C62, B6, PSH61,
PSH62, XH6, introduced by Cordero et al. in [3], Cordero et al. in [4], Behl et al. in [5],
Capdevila et al. in [6], and Xiao and Yin et al. in [7].

The iterative expressions of these methods for solving a nonlinear systems F(x) = 0, F :
Ω ⊆ R

n → R
n are shown below. Newton’s scheme is the most known iterative algorithm

x(k+1) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

, k = 0, 1, . . . , (2)

where F′(x) denotes the Jacobian matrix associated to F.
The following sixth-order iterative scheme (see [3]) is named C61. It uses three evalua-

tions of F and two of F′, per iteration:

y(k) = x(k) − F′
(

x(k)
)−1

F
(

x(k)
)

,

z(k) = y(k) − F′
(

x(k)
)−1

[
2I − F′

(
y(k)

)
F′
(

x(k)
)−1

]
F
(

y(k)
)

,

x(k+1) = z(k) − F′
(

y(k)
)−1

F
(

z(k)
)

, k = 0, 1, . . .

(3)

The following scheme, introduced in [4], is a modified Newton–Jarratt composition
with sixth-order convergence and evaluates twice F and F′, per iteration. It is denoted
by C62:

z(k) = x(k) − 2
3

F′
(

x(k)
)−1

F
(

x(k)
)

,

y(k) = x(k) − 1
2

[
3F′

(
z(k)

)
− F′

(
x(k)

)]−1[
3F′

(
z(k)

)
+ F′

(
x(k)

)]
F′
(

x(k)
)−1

F
(

x(k)
)

,

x(k+1) = y(k) −
[
−1

2
F′
(

x(k)
)
+

3
2

F′
(

z(k)
)]−1

F
(

y(k)
)

, k = 0, 1, . . .

(4)

Algorithm (5) was constructed by Behl et al. in [5] and it is denoted by B6.

62

Algorithms 2023, 16, 163

y(k) = x(k) − 2
3

F′
(

x(k)
)−1

F
(

x(k)
)

,

z(k) = x(k) −
[

a1 I + a2

(
F′
(

y(k)
)−1

F′
(

x(k)
))2

]
F′
(

x(k)
)−1

F
(

x(k)
)

,

x(k+1) = z(k) −
[
b2F′

(
x(k)

)
+ b3F′

(
y(k)

)]−1[
F′
(

x(k)
)
+ b1F′

(
y(k)

)]
F′
(

x(k)
)−1

F
(

z(k)
)

,

(5)

where k ≥ 0, a1 = −a2 + 1 = 5/8, a2 = 3/8, b2 = 1 − b3 + b1 = (−1/2)(1 + 3b1),
b3 = (1/2)(3+ 5b1) and b1 is a parameter. This is a class of iterative processes that achieves
convergence order six with twice F evaluations and F′, per iteration. For our comparison,
we will use two versions of method B6, one of them with a2 = 3

8 , a1 = 5
8 , b1 = − 3

5 ,
b3 = 0, b2 = 2

5 and the other one with a2 = 3
8 , a1 = 5

8 , b1 = 1, b3 = 4, b2 = −2.
Capdevila et al. in [6] introduced the following class of iterative methods that we call

PSH61. The elements of this family have an order of convergence of six and they need
three evaluations of function F, one of the the Jacobian matrix F′ and a divided difference
[x, y; F] per iteration:

y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

,

z(k) = y(k) −
[

I + 2t(k) +
1
2

αt(k)
2
][

F′
(

x(k)
)]−1

F
(

y(k)
)

,

x(k+1) = z(k) −
[

I + 2t(k) +
1
2

αt(k)
2
][

F′
(

x(k)
)]−1

F
(

z(k)
)

, k = 0, 1, . . . ,

(6)

where α is free and t(k) = I −
[

F′
(

x(k)
)]−1[

x(k), y(k); F
]
. For the numerical results, we will

take α = 0 and α = 10.
Introduced also by Capdevila et al. in [6], we work with the following scheme, denoted

PHS62, with the same order of convergence and the same number of functional evaluations
per iteration as PSH61:

y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

,

z(k) = y(k) −
[

I + 2
(

I + αt(k)
)−1

t(k)
][

F′
(

x(k)
)]−1

F
(

y(k)
)

,

x(k+1) = z(k) −
[

I + 2
(

I + αt(k)
)−1

t(k)
][

F′
(

x(k)
)]−1

F
(

z(k)
)

, k = 0, 1, . . .

(7)

In this case, we take α = 10.
Finally, we use the method called XH6 introduced by Xiao and Yin in [7]. In this case,

we need twice F evaluations and F′ on x(k), z(k) and x(k), y(k), respectively, per iteration.

y(k) = x(k) − 2
3

F′
(

x(k)
)−1

F
(

x(k)
)

,

z(k) = x(k) − 1
2

[
−I +

9
4

F′
(

y(k)
)−1

F′
(

x(k)
)
+

3
4

F′
(

x(k)
)−1

F′
(

y(k)
)]

F′
(

x(k)
)−1

F
(

x(k)
)

,

x(k+1) = z(k) − 1
2

[
3F′

(
y(k)

)−1 − F′
(

x(k)
)−1

]
F
(

z(k)
)

, k = 0, 1, . . .

(8)

63

Algorithms 2023, 16, 163

Multidimensional Real Dynamics Concepts

Discrete dynamics is a very useful tool to study the stability of iterative schemes
for solving nonlinear systems. An exhaustive description of this tool can be found in the
book [8]. A resource used for the stability analysis of iterative schemes for solving nonlinear
systems is to analyze the dynamical behavior of the vectorial rational operator obtained to
apply the iterative expression on low degree polynomial systems. This technique generally
uses quadratic or cubic polynomials [9].

When we have scalar iterative processes, the tools to be used are of real or complex
discrete dynamics. However, here, we handle a family of vectorial iterative methods, so
real multidimensional dynamics must be used to analyze its stability, see [6]. We proceed
by taking a system of quadratic polynomials on which we will apply our method in order
to obtain the associated multidimensional rational operator and perform the analysis of the
fixed and critical points in order to select members of the family with good stability.

Some concepts used in this study are presented, see for instance [10].
Let G : Rn → R

n be the operator obtained from the iterative scheme on a polynomial sys-
tem p(x). The set of successive images of x(0) through G(x),

{
x(0), G

(
x(0)

)
, . . . , Gm

(
x(0)

)
, . . .

}
is called the orbit of x(0) ∈ R

n. x∗ ∈ R
n is a fixed point of G if G(x∗) = x∗. Of course, the

roots of p(x) are a fixed point of G, but there may be fixed points of G that are not solutions
of system p(x). We refer them as strange fixed points. A point x that satisfies Gk(x) = x
and Gk−p(x) �= x, for p < k and k ≥ 1 is called a periodic point, of period k. For classifying
the stability of fixed or periodic points, we use the following result.

Theorem 1 ([8], pg. 558). Let G : Rn → R
n be of type C2. Assuming that x∗ is a periodic k-point,

k ≥ 1. If λ1, λ2, . . . , λn are the eigenvalues of G′(x∗), we have the following:

(a) If all eigenvalues λk verify that |λk| < 1, then x∗ is an attracting point.
(b) If an eigenvalue λk0 is such that

∣∣λk0

∣∣ > 1, then x∗ is unstable, that is, repulsor or saddle.
(c) If all eigenvalues λk verify that |λk| > 1, then x∗ is a repulsive point.

The set of preimages of any order of an attracting fixed point of the multidimensional
rational function G, x∗,

A(x∗) =
{

x(0) ∈ R
n : Gm

(
x(0)

)
→ x∗, m → ∞

}
,

is the basin of attraction of x∗, A(x∗).
The solutions of G′(x) = 0 are called the critical point of operator G . The critical

points different of the roots of p(x) are called a free critical point. The critical points are
important for our analysis because of the following result from Julia and Fatou (see [11–13]).

Theorem 2 (Julia and Fatou). Let G be a rational function. The immediate basin of attraction of a
periodic (or fixed) attractor point contains at least one critical point.

2. Family ACTV for Nonlinear Systems

Taking into account the iterative expression of family (1), we can extend, in a natural
way, this expression for solving nonlinear systems F(x) = 0. We change scalar f ′ by vecto-
rial F′ and f [x, y] by the divided difference operator [x, y; F]. The resulting expression is

64

Algorithms 2023, 16, 163

y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

,

z(k) = y(k) −
(

2
[

x(k), y(k); F
]
− F′

(
x(k)

))−1
F
(

y(k)
)

,

x(k+1) = z(k) −
[

αF′
(

x(k)
)−1

+ (1− α)
[

x(k), y(k); F
]−1

]
F
(

z(k)
)

− (1 + α)

[
In − F′

(
x(k)

)−1[
x(k), y(k); F

]]
· F′

(
x(k)

)−1
F
(

z(k)
)

,

(9)

where In is the n× n identity matrix.
Mapping [·, ·; F] : Ω×Ω ⊂ R

n ×R
n −→ L(Rn) such that

[x, y; F](x− y) = F(x)− F(y), for any x, y ∈ Ω,

is the divided difference operator of F on R
n (see [14]).

The proof of the main result is based on the Genochi–Hermite formula (see [14]),

[x, y; F] =
∫ 1

0
F′(x + t(x− y))dt, for all (x, y) ∈ Ω×Ω.

By developing F′(x + th) in Taylor series around x, we obtain

∫ 1

0
F′(x + th)dt = F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 +O
(

h3
)

. (10)

Denoting by e = x− ξ, where ξ is a zero of F(x), and assuming that F′(ξ) is invertible,
we obtain

F(x) = F′(ξ)
(

e + C2e2 + C3e3 + C4e4 + C5e5
)
+ O

(
e6
)

,

F′(x) = F′(ξ)
(

I + 2C2e + 3C3e2 + 4C4e3 + 5C5e4
)
+ O

(
e5
)

,

F′′(x) = F′(ξ)
(

2C2 + 6C3e + 12C4e2 + 20C5e3
)
+ O

(
e4
)

,

F′′′(x) = F′(ξ)
(

6C3 + 24C4e + 60C5e2
)
+ O

(
e3
)

,

where Cq = 1
q! [F

′(ξ)]−1F(q)(ξ), q ≥ 2. Replacing these expressions in the Genocchi–
Hermite formula and denoting the second point of the divided difference by y = x + h and
the error of y by ey = y− ξ, we obtain

[x, y; F] = F′(ξ)
[

I + C2
(
ey + e

)
+ C3e2

]
+ O

(
e3
)

.

Particularly, if y is the Newton approximation, i.e., h = x− y = [F′(x)]−1F(x), we obtain

[x, y; F] = F′(ξ)
[

I + C2e +
(

C2
2 + C3

)
e2
]
+ O

(
e3
)

.

Convergence Analysis

Theorem 3. Being F : Ω ⊆ R
n → R

n differentiable enough in an open convex neighborhood Ω of
ξ, root of F(x). Consider a seed x(0) close enough to the solution ξ and that F′(x) is continuous and
invertible in ξ. Then, (9) has a local convergence of order six, for all α ∈ R, with the error equation

e(k+1) =
[
(5 + α)

(
C5

2 − C2
2C3C2

)
− C3C3

2 + C2
3C2

]
e(k)

6
+ O

(
e(k)

7
)

,

being Ck =
1
k! [F

′(ξ)]−1F(k)(ξ), k = 2, 3, . . . , e(k) = x(k) − ξ.

65

Algorithms 2023, 16, 163

Proof. From

y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

, (11)

We perform the Taylor series of F
(

x(k)
)

and F′
(

x(k)
)

around ξ,

F
(

x(k)
)
= F′(ξ)

[
e(k) + C2e(k)

2
+ C3e(k)

3
+ C4e(k)

4
+ C5e(k)

5
+ C6e(k)

6
+ C7e(k)

7
]

+ O
(

e(k)
8
)

,
(12)

F′
(

x(k)
)
= F′(ξ)

[
I + 2C2e(k) + 3C3e(k)

2
+ 4C4e(k)

3
+ 5C5e(k)

4
+ 6C6e(k)

5
+ 7C7e(k)

6
]

+ O
(

e(k)
7
)

.
(13)

We suppose that the Jacobian matrix F′(ξ) is nonsingular and calculate the Taylor

expansion of
[

F′
(

x(k)
)]−1

as follows:

[
F′
(

x(k)
)]−1

=
[

I + X2e(k) + X3e(k)
2
+ X4e(k)

3
+ X5e(k)

4
+ X6e(k)

5
+ X7e(k)

6
][

F′(ξ)
]−1

+ O
((

ek
)7
)

,
(14)

where X2, X3, X4, X5, X6, X7 are unknowns such that[
F′
(

x(k)
)]−1

F′
(

x(k)
)
= I.

Then, it can be proven that

[
F′
(

x(k)
)]−1

=
[

I − 2C2e(k) +
(

4C2
2 − 3C3

)
e(k)

2
+
(

6C3C2 + 6C2C3 − 4C4 − 8C3
2

)
e(k)

3
+(

16C4
2 + 9C2

3 − 12C3C2
2 − 12C2C3C2 − 12C2

2C3 + 8C4C2 + 8C2C4 − 5C5

)
e(k)

4
+(

−32C5
2 − 18C2

3C2 + 24C3C3
2 + 24C2C3C2

2 + 24C2
2C3C2 − 16C4C2

2 − 16C2C4C2 + 10C5C2

−18C3C2C3 − 18C2C2
3 + 12C4C3 + 24C3

2C3 − 16C2
2C4 + 12C3C4 + 10C2C5 − 6C6

)
e(k)

5

+
(

64C6
2 + 36C2

3C2
2 − 48C3C4

2 − 48C2C3C3
2 − 48C2

2C3C2
2 + 32C4C3

2 + 32C2C4C2
2 − 20C5C2

2

+36C3C2C3C2 + 36C2C2
3C2 − 24C4C3C2 − 48C3

2C3C2 + 32C2
2C4C2 − 24C3C4C2 − 20C2C5C2

+12C6C2 − 48C4
2C3 − 27C3

3 + 36C3C2
2C3 + 36C2C3C2C3 + 36C2

2C2
3 − 24C4C2C3 − 24C2C4C3

+15C5C3 − 24C3C2C4 − 24C2C3C4 + 16C2
4 + 32C3

2C4 − 20C2
2C5 + 15C3C5 + 12C2C6 − 7C7

)
e(k)

6
][

F′(ξ)
]−1

+ O
(

e(k)
7
)

,

(15)

and multiplying expressions (12) and (15), we obtain

[
F′
(

x(k)
)]−1

F
(

x(k)
)
= e(k) − C2e(k)

2
+ 2

(
C2

2 − C3

)
e(k)

3
+
(

3C3C2 + 4C2C3 − 3C4 − 4C3
2

)
e(k)

4
+
(
−6C3C2

2 − 8C2
2C3 + 6C2

3 − 6C2C3C2 + 6C2C4 + 4C4C2 + 8C4
2 − 4C5

)
e(k)

5
+(

−16C5
2 − 9C2

3C2 + 12C3C3
2 + 12C2C3C2

2 + 12C2
2C3C2 − 8C4C2

2 − 8C2C4C2 + 5C5C2

−12C3C2C3 − 12C2C2
3 + 8C4C3 + 16C3

2C3 − 12C2
2C4 + 9C3C4 + 8C2C5 − 5C6

)
e(k)

6
.

66

Algorithms 2023, 16, 163

Taking into account e(k) = x(k) − ξ, the expansion of the error at the first step of family
(1) is

y(k) − ξ = C2e(k)
2 − 2

(
C2

2 − C3

)
e(k)

3 −
(

3C3C2 + 4C2C3 − 3C4 − 4C3
2

)
e(k)

4

−
(
−6C3C2

2 − 8C2
2C3 + 6C2

3 − 6C2C3C2 + 6C2C4 + 4C4C2 + 8C4
2 − 4C5

)
e(k)

5

−
(
−16C5

2 − 9C2
3C2 + 12C3C3

2 + 12C2C3C2
2 + 12C2

2C3C2 − 8C4C2
2 − 8C2C4C2 + 5C5C2

−12C3C2C3 − 12C2C2
3 + 8C4C3 + 16C3

2C3 − 12C2
2C4 + 9C3C4 + 8C2C5 − 5C6

)
e(k)

6
.

For z(k), we calculate
[

x(k), y(k); F
]

up to order six using the Genochi–Hermite formula
seen in (10), obtaining

=F′(x)
[

I + C2e(k) +
(

C2
2 + C3

)
e(k)

2
+
(

C4 + C3C2 + 2C2C3 − 2C3
2

)
e(k)

3

+
(

C5 + C4C2 + 3C2C4 + 2C2
3 − 3C2C3C2 − 4C2

2C3 − C3C2
2 + 4C4

2

)
e(k)

4

+
(

C6 − 8C5
2 + 6C2C3C2

2 + 8C3
2C3 + 6C2

2C3C2 − C4C2
2 − 6C2

2C4 − 4C2C4

C2 − 6C2C2
3 − C2

3C2 − 2C3C2C3 + 2C4C3 + 3C3C4 + C5C2 + 4C2C5

)
e(k)

5

+
(

C7 + 16C6
2 + 9C2C2

3C2 + 12C2C3C2C3 + 12C2
2C2

3 − C3C2C3C2 − C2
3C2

2

− 12C2C3C3
2 − 12C2

2C3C2
2 − 12C3

2C3C2 − 16C4
2C3 + 4C3C4

2 + 8C2C4C2
2

+ 8C2
2C4C2 + 12C3

2C4 + C4C3
2 − 8C2C4C3 − 9C2C3C4 − 3C3C2C4 − C3C4C2

− C4C3C2 − 2C4C2C3 + 5C2C6 + C6C2 − 2C3
3 + 4C3C5 + 2C5C3 + 3C2

4

−5C2C5C2 − 8C2
2C5 − C5C2

2

)
e(k)

6
]
+ O

(
e(k)

7
)

.

(16)

Following a similar procedure to the one used in (14) and (15), we have

(
2
[

x(k), y(k); F
]
− F′

(
x(k)

))−1
=
[

I +
(

C3 − 2C2
2

)
e(k)

2
+
(

2C4 − 2C3C2 − 4C2C3 + 4C3
2

)
e(k)

3

+
(
−4C4

2 + 6C2
2C3 + 6C2C3C2 − 6C2C4 − 2C4C2 + 3C5 − 3C2

3

)
e(k)

4
+
(
−2C4C2

2 + 8C2
2C4

+ 8C2C4C2 − 2C4C3 − 4C3C4 + 8C3C3
2 − 4C2C3C2

2 − 8C2
2C3C2 − 4C3

2C3 − 2C5C2 − 8C2C5

−2C3C2C3 + 8C2C2
3 + 4C6

)
e(k)

5
+
(

8C6
2 − 4C4

2C3 + 8C2
2C3C2

2 − 4C2C3C3
2 − 24C3C4

2 + 4C3
2C3C2

− 10C2
2C2

3 − 2C2C3C2C3 + 10C2
3C2

2 + 12C3C2C3C2 + 16C3C2
2C3 − 10C2C2

3C2 + 10C2C4C3 − 6C4

C2C3 − 2C4C3C2 − 4C3C2C4 + 10C2C3C4 − 4C2C4C2
2 + 10C4C3

2 − 4C3
2C4 − 12C2

2C4C2 − C5C3

−5C3C5 − 10C2C6 − 2C6C2 − 3C3
3 + 10C2C5C2 + 10C2

2C5 − 4C5C2
2 − 2C2

4

)
e(k)

6
]
+ O

(
e(k)

7
)

.

(17)

Now, we obtain the expansion of F
(

y(k)
)

,

(
y(k) − ξ

)2
=C2

2e(k)
4
+
(
−4C3

2 + 2C2C3 + 2C3C2

)
e(k)

5
+
(

12C4
2 − 11C2

2C3 + 4C2
3 + 3C2C4

−4C2C3C2 + 3C4C2 − 7C3C2
2

)
e(k)

6
+ O

(
e(k)

7
)

,(
y(k) − ξ

)3
=C3

2e(k)
6
+ O

(
e(k)

7
)

,

67

Algorithms 2023, 16, 163

F
(

y(k)
)
=F′(ξ)

[(
y(k) − ξ

)
+ C2

(
y(k) − ξ

)2
]
+ O

((
y(k) − ξ

)3
)

=F′(ξ)
[
C2e(k)

2
+ 2

(
C3 − C2

2

)
e(k)

3
+
(

3C4 + 5C3
2 − 3C3C2 − 4C2C3

)
e(k)

4

+
(

4C5 − 6C2C4 + 10C2
2C3 − 6C2

3 − 4C4C2 + 8C2C3C2 − 12C4
2 + 6C3C2

2

)
e(k)

5

+
(

28C5
2 − 27C3

2C3 + 16C2C2
3 + 15C2

2C4 − 9C3C4 − 8C2C5 + 5C6 − 16C2
2C3C2

+ 9C2
3C2 + 11C2C4C2 − 5C5C2 − 18C2C3C2

2 + 8C4C2
2 − 12C3C3

2 − 8C4C3

+12C3C2C3)e(k)
6
]
+ O

(
e(k)

7
)

.

(18)

Considering the results obtained in (16)–(18), the second step has as the error equation

z(k) − ξ =
(

C3
2 − C3C2

)
e(k)

4
+
(
−2C4C2 + 2C2

2C3 + 2C2C3C2 + 4C3C2
2 − 2C2

3 − 4C4
2

)
e(k)

5

+
(

10C5
2 − 5C3

2C3 − 8C2
2C3C2 − 8C2C3C2

2 − 9C3C3
2 + 4C2C2

3 + 6C2
3C2 + 8C3C2C3 + 3C2

2C4

+ 3C2C4C2 + 6C4C2
2 − 3C3C4 − 4C4C3 − 3C5C2

)
e(k)

6
.

To obtain the error equation of the third step, we need the calculation of [xk, yk; F]−1

and F
(

z(k)
)

since the other elements were previously obtained. Following a process similar
to that seen in (17) and developing only to order two, we have that

[xk, yk; F]−1 = I − C2e(k) − C3e(k)
2
+ O

(
e(k)

3
)

.

For the calculation of F
(

z(k)
)

, we are only interested in the terms up to order six, so
applying what we see in formula (18), we obtain

F
(

z(k)
)
= F′(ξ)

[(
z(k) − x∗

)]
+ O

((
z(k) − ξ

)2
)

.

The resulting error equation for the family of methods (9) is

e(k+1) =
[
(5 + α)

(
C5

2 − C2
2C3C2

)
− C3C3

2 + C2
3C2

]
e(k)

6
+ O

(
e(k)

7
)

.

Once the convergence order of the proposed class of the iterative method is proven, we
undertake a complexity analysis, taking into account the cost of solving the linear systems
and the rest of the computational effort, not only of the proposed class but also of Newton’s
and those schemes presented in the Introduction, with the same order six. In order to
calculate it, let us remark that the computational cost (in terms of products/quotients) of
solving a linear system of size n× n is

1
3

n3 + n2 − 1
3

n,

but if another linear system is solved with the same coefficient matrix, then the cost increases
only in n2 operations. Moreover, a matrix–vector product corresponds to n2 operations.
From these bases, the computational effort of each scheme is presented in Table 1. As the
ACTV class depends on parameter α, we consider α = 1, as this value eliminates one of the
terms in the iterative expression, reducing the complexity.

68

Algorithms 2023, 16, 163

Table 1. Computational cost (products/quotients) of proposed and comparison methods.

Method Complexity C

Newton 1
3 n3 + n2 − 1

3 n
C61

2
3 n3 + 5n2 − 2

3 n
C62 n3 + 4n2 − n
B6 n3 + 8n2 − n

PSH61
1
3 n3 + 11n2 − 1

3 n
PSH62

5
3 n3 + 9n2 − 2

3 n
XH6 2

3 n3 + 7n2 − 2
3 n

ACTVα = 1 2
3 n3 + 5n2 − 2

3 n

Observing the data in Table 1, there seems to be a great difference among Newton’s
and sixth-order methods, with PSH62, B6 and C62 being the most costly, in this order. Our
proposed scheme ACTV for α = 1, stays in the middle values of the table. However, this
must be seen in contrast with the order of convergence p of each scheme. With this point of
view, the comparison among the methods is more clear.

With the information provided by Table 1, we represent in Figures 1 and 2 the per-
formance of the efficiency index IO = p

1
C of each method, where p is the order of the

corresponding scheme. This index was introduced by Traub in [15], in order to classify the
procedures by their computational complexity.

Figure 1. Efficiency index IO for systems of size n = 2 to n = 10.

In Figure 1, we observe that the best scheme is that of Newton, being that our proposed
procedure (dashed line in the figure) is third in efficiency. This situation changes for bigger
sizes of the system (see Figure 2), as ACTV for α = 1 achieves the second best place, very
close to Newton’s, improving the rest of schemes of the same order of convergence. Our
concern now is the following: is it possible to find some values of the parameter α such
that this performance is held or even improved? The improvement can be in terms of the
wideness of the set of converging initial estimations. This is the reason why we analyze the
stability of the class of iterative methods.

69

Algorithms 2023, 16, 163

Figure 2. Efficiency index IO for systems of size n = 10 to n = 50.

3. Stability Analysis

Let us consider a polynomial system of n variables q(x) = 0, q : Rn → R
n where

qi(x) = x2
i − 1, i = 1, 2, ..., n and we denote by K(x) the associated rational function.

From now on, we denote by ACTV6(x, α) =
(
actv6

1(x, α), actv6
2(x, α), . . . , actv6

n(x, α)
)

the
vectorial function obtained when class (9) is applied on q(x). As q(x) = 0 is uncoupled,
all functions actv6

j (x, α) are analogous, with the difference of the index j = 1, 2, ..., n. Their
expressions are

actv6
j (x, α) =

p(x, α)

128x5
j

(
1 + x2

j

)2(
1 + 3x2

j

) , j = 1, 2, ..., n, (19)

where,

p(x, α) = 1 + x6
j (404− 20α) + x10

j (782− 6α) + α + x12
j (77 + α)− 2x2

j (1 + 3α)

+5x8
j (155 + 3α) + x4

j (11 + 15α).

There are values of α for which the operator coordinates are simplified; we show the
particular case when α = 1.

actv6
j (x, 1) =

1− 7x2
j + 34x4

j + 90x6
j + 125x8

j + 13x10
j

64x5
j

(
1 + x2

j

)2 , j = 1, 2, ..., n. (20)

By determining and analyzing the corresponding fixed points of the operator, we
present a synthesis of the most relevant results.

Theorem 4. Roots of q(x) are the components of 2n superattracting fixed points of ACTV6(x, α)
associated to the class of iterative methods (9). The same happens with the roots of l(t) = −1− α +
(1 + 5α)t2 − (10 + 10α)t4 + (10α− 286)t6 − (421 + 5α)t8 + (α− 307)t10 depending on α:

(a) If α < −1 or α > 307, there are two real roots of l(t), denoted by li(α), i = 1, 2. Fixed
points (lσ1(α), lσ2(α), . . . , lσn(α)) where σi ∈ {1, 2}, are repulsive points. However, if any of
lσj(α) = ±1, j ∈ {1, 2, . . . , n}, then they are saddle points.

(b) ACTV6(x, α) has no strange fixed points for −1 ≤ α ≤ 307.

70

Algorithms 2023, 16, 163

Proof. To calculate the fixed points of ACTV6(x, α), we solve actv6
j (x, α) = xj,

−
(

x2
j − 1

)
l(t) = −1− α + (1 + 5α)t2 − (10 + 10α)t4 + (10α− 286)t6 − (421 + 5α)t8

+ (α− 307)t10,
(21)

for j = 1, 2, . . . , n, that is, xj = ±1 and roots of l(t), provided that t �= 0.
At most, two of the roots of l(t) are not complex, depending on α. The qualitative

performance of ACTV6(x, α) is deduced from the eigenvalues of ACTV6′(x, α) evaluated
at the fixed points. Due to the nature of the polynomial system, these eigenvalues coincide
with the coordinate function of the rational operator:

Eigj
(
lj(α), . . . , lj(α)

)
=(−1 + lj(α)

2)5(5(1 + α) + 3lj(α)
6(77 + α) + 3lj(α)

4(65 + 17α) + lj(α)
2(49 + 37α)

)
128lj(α)6

(
1 + lj(α)2

)3(1 + 3lj(α)2
)2

(22)

We calculate the absolute values of these eigenvalues only where fixed points are real;
it is clear that those fixed points lj(α) = ±1 are super attracting.

We proceed to plot some of the eigenvalues; if α < −1, the eigenvalues of
(

ACTV6)′(x, α)
at any strange fixed point are named saddle points when their combinations have some
component +1,-1 and the combinations of real roots coming from l(t) are named repulsors
because all eigenvalues are greater than 1 (see Figure 3a); if α > 307, a similar behavior is
observed (see Figure 3b).

(a) (b)

Figure 3. Eigenvalues associated to the fixed points. (a) Eigj(l1(α), . . . , l1(α), α) for α < −1.
(b) Eigj(l1(α), . . . , l1(α), α) for α > 307.

Once the existence and stability of strange fixed points of ACTV6(x, α) is studied, our
aim is to show if there exist any other attracting behavior different from the fixed points.

4. Bifurcation Analysis of Free Critical Points

In the following result, we summarize the most relevant results about critical points.

Theorem 5. ACTV6(x, α) has as free critical points

(crσ1(α), crσ2(α), . . . , crσn(α)), σi ∈ {1, 2, . . . , m}, m ≤ 6,

make null the entries of the Jacobian matrix, for j = 1, 2, . . . , n, being crj(α) �= ±1, ∀j, that is,

(a) If α ∈ (−∞,−77] ∪ {−5} ∪ [−1, ∞), there not exist free critical points.
(b) If α ∈ (−77,−5) ∪ (−5,−1), then two real roots of polynomial k(x) = 5 + 5α + (49 +

37α)x2 + (195 + 51α)x4 + (231 + 3α)x6 are components of the free critical point.

71

Algorithms 2023, 16, 163

Proof. The not null components of ACTV6′(x, α) are

∂a ctv6
j (x, α)

∂xj
=

(
−1 + x2

j

)5(
5(1 + α) + 3x6

j (77 + α) + 3x4
j (65 + 17α) + x2

j (49 + 37α)
)

128x6
j

(
1 + x2

j

)3(
1 + 3x2

j

)2 , j = 1, 2.

(23)

Then, the real roots of 5(1 + α) + x2
j (49 + 37)α + 3x4

j (65 + 17α) + 3x6
j (77 + α) are free

critical points, provided that they are not null.

4.1. Parameter Line and Bifurcation Plane

Now, we use a graphical tool that helps us to identify for which values of parameters
there might be convergence to roots, divergence or any other performance. Real parametric
lines, for n = 2, are presented in Figures 4 and 5 (see Theorem 5). In these figures, a different
free critical point is employed as a seed of each member of the class, using −77 < α < −5
and −5 < α < −1 to ensure the existence of real critical points.

To generate them, a mesh of 1000× 1000 points is made in [0, 1]×]− 77,−5 [for the
first figure and [0, 1]×]− 5,−1 [for the next. We use [0, 15] in Figure 4a to increase the
interval where α is defined and [0, 1] in Figures 4a and 5, allowing a better visualization.
So, the color corresponding to each value of α is red if the corresponding critical point
converges to one of the roots of the polynomial system, blue in the case of divergence,
and black in other cases (chaos or periodic orbits). In addition, we use 500 as the limit of
iterations and tolerance 10−3.

(a) (b)

Figure 4. Parameter line of ACTV6(x, α) in α ∈ (−77,−5). (a) α ∈ (−77,−5). (b) α ∈ (−77,−72).

The global performance of each pair of free critical points is similar, so only (cri1(α), cri1(α))
is shown in Figure 4. In Figure 4a, only a small black region shows non-convergence to the
roots (red color) . Now we show the parameter line for α ∈ (−5,−1).

Figure 5. Parameter line of ACTV6(x, α) in α ∈ (−5,−1).

In the line shown in Figure 5 it is observed that the zone shows global convergence to
the roots. Therefore, it is a good area for choosing α.

The concept of bifurcation is important in nonlinear systems since it allows us to study
the behavior of the solutions of a family of iterative methods. In reference to dynamical
systems, a bifurcation occurs when a small variation in the values of the system parameters
(bifurcation parameters) causes a qualitative or topological change in the behavior of the
system. Feigenbaum or bifurcation diagrams appear to analyze the changes of each class
of methods on q(x) by using each critical point of the function as a seed and observing its
performance for different ranges of α. By using a mesh with 4000 subintervals in each axis
and after 1000 iterations, different behaviors can be observed.

72

Algorithms 2023, 16, 163

Figure 6 shows the bifurcation diagrams in the black area of the parameter line
Figure 4b, specifically when α ∈ (−73.5,−72.5). In Figure 6a, a general convergence to one
of the roots appears. However, a quadruple-period orbit can be found in a small interval
around α = −73. It includes not only periodic but also chaotic behavior (strange attractors,
blue regions).

To obtain the strange attractors, we plot in Figures 7 and 8 the orbit of 1000 initial
guesses close to point x = (0.36, 0.36) in the (x1, x2)-space by iterating ACTV6((x1, x2), α).
The value of the parameter used is α = −73.25 , laying in the blue region. For each seed,
the first 500 iterations are ignored; meanwhile, the following 400 appear in blue and the
last 100 in magenta color. We see in Figures 7 and 8 that a parabolic fixed point bifurcates
in periodic orbits with increasing periods, and therefore falls in a dense orbit (chaotic
behavior) in a small area of (x1, x2) space.

(a)

(b) (c)

Figure 6. Feigenbaum diagrams of ACTV6(x, α), for −73.5 < α < −72.5, from different critical points.
(a) (cri1(α), cri1(α)) and (cri2(α), cri2(α)). (b) (cri1(α), cri1(α)) a detail. (c) (cri2(α), cri2(α)) a detail.

For values of α ∈ (−76.9,−76.5), the bifurcation diagrams can be observed in Figure 9.
It is related to the black region of Figure 4b. In addition, it can be observed a general
convergence to one of the roots, but a sixth-order periodic orbit appears in a small interval
around α = −76.8. It includes chaotic behavior (blue regions) beside periodic performance.
Strange attractors can be found in them. To represent it, we plot in Figure 10 the (x1, x2)-
space the orbit of x(0) = (0.0001, 0.0001) by ACTV6((x1, x2), α), for α = −76.9, laying in
the blue region.

73

Algorithms 2023, 16, 163

(a) (b)

Figure 7. Strange attractors of ACTV6(x, α) for α in blue quadruple-period cascade. (a) α = −73.25.
(b) α = −73.25.

(a) (b)

Figure 8. Details Strange attractors of ACTV6(x, α). (a) α = −73.25, a detail. (b) α = −73.25, a detail.

(a)

(b) (c)

Figure 9. Feigenbaum diagrams of ACTV6(x, α), for −76.9 < α < −76.6, from different critical points.
(a) (cri1(α), cri1(α)) and (cri2(α), cri2(α)). (b) (cri1(α), cri1(α)) a detail. (c) (cri2(α), cri2(α)) a detail.

74

Algorithms 2023, 16, 163

(a)

(b) (c)

Figure 10. Strange attractors of ACTV6(x, α) for α in blue quadruple-period cascade. (a) α = −76.89.
(b) α = −76.89 a detail. (c) α = −76.89 into the detail.

4.2. Dynamical Planes

The tool with which we can graphically visualize most of the information obtained is
the dynamical planes; in these, we represent the basins of attraction of the attracting fixed
points for several values of parameter α. The above mentioned can only be done when the
nonlinear system has a dimension of 2, although the results of the dynamical analysis are
valid for any dimension.

To calculate the dynamical planes for the systems, a grid of points is defined in the
real plane, and each point is used as an initial estimate of the iterative method for a fixed
α. If the iterative method converges to some zero of the polynomial from a particular
point of the grid, then it is assigned a certain color; in particular, if it only converges to
the roots of q(x), the predominant colors are orange if it converges to x = (1, 1), blue if it
converges to x = (−1, 1), green if it converges to x = (−1,−1) and brown if it converges
to x = (1,−1). If, as an initial estimate, a point has not converged to any root of the
polynomial in 100 iterations at most, it is assigned as black. The colors in certain basins
are darker or not, indicating that the orbit in certain initial estimate will converge to the
fixed point of the basin with greater or fewer iterations, with the lighter colors causing
fewer iterations.

For α with stable behavior, we elaborate our graph that has a grid with 500 × 500
points, with 100 as the maximum number of iterations and limit of [−5, 5] for both axes
(see Figure 11), for values of α in unstable regions the interval is [−40, 40] in both axes in
Figure 12 and [−30, 30] in Figure 13. Periodic orbits are also observed in Figure 13.

75

Algorithms 2023, 16, 163

(a) (b)

(c) (d)

Figure 11. Dynamical planes for some stable values of parameter α. (a) α = 1. (b) α = −5. (c) α = −40.
(d) α = −72.

In Figure 11a, we see four basins of attraction that correspond to the roots of poly-
nomial system, with a very stable behavior. However, each basin of attraction has more
than one connected component for α = −5 and α = −40, as can be seen in Figures 11b,c,
respectively. This performance increases for lower values of α close to the instability zones
seen in the parameter lines Figure 4b, as seen in Figure 11d.

(a) (b)

Figure 12. Unstable dynamical planes of ACTV6(x, α) on q(x) . (a) α = −73.25. (b) α = −73.25.

76

Algorithms 2023, 16, 163

(a)

(b) (c)

Figure 13. Periodic orbits for parameter α = −73 for different initial values. (a) x(0) = (0.361236, 1).
(b) x(0) = (1, 0.361236). (c) x(0) = (−21.0469,−21.0469).

In Figure 12, we can see a chaotic behavior (chaos) when we take initial estimations in
the black zones, producing orbits with random behavior that do not lead to the expected
solution. Finally, in Figure 13, the phase space for α = −73 is plotted. In them, the following
3-period orbits are painted in yellow:

• {(−21.0469, 1), (−0.368161, 1), (0.361236, 1), (17.9769, 1)},
• {(1, 17.9769), (1,−0.368161), (1, 0.361236), (1,−21.049)},
• {(−21.0469,−21.0469), (−0.368161,−0.368161), (0.361236, 0.361236),

(17.9769, 17.9769)},

We can observe three attracting orbits, whose coordinates are symmetric.

5. Numerical Results

We are going to work with the following test functions and the known zero:

(1) F1(x1, x2) = (ex1 ex2 + x1 cos(x2), x1 + x2 − 1), ξ̄1 ≈ (3.46750, −2.46750).
(2) F2(x1, x2, x3) = (sin(x1) + x2

2 + log(x3) − 7, 3x1 + 2x2 − x−3
3 + 1, x1 + x2 + x3 − 5),

ξ̄1 ≈ (−2.21537, 2.49969, 4.71567).
(3) F3(x1, x2) = (x1 + ex2 − cos(x2), 3x1 − x2 − sin(x2)), ξ̄1 ≈ (0, 0).
(4) F4(x1, x2, x3, x4) = (x2x3 + x4(x2 + x3), x1x3 + x4(x1 + x3), x1x2 + x4(x1 + x2),

ξ̄1 ≈ (0.57735, 0.57735, 0.57735, −0.28868).

77

Algorithms 2023, 16, 163

(5) F5(ξi) = arctan(xi) + 1− 2
[
∑20

k=1 x2
k − x2

i

]
= 0, i = 1, 2, . . . , 20, ξ̄1 ≈ (0.1757, 0.1757,,

0.1757), ξ̄2 ≈ (−0.1496,−0.1496,,−0.1496).

The obtained numerical results were performed with the Matlab2022b version, with
2000 digits in variable precision arithmetic, where the most relevant results are shown in
different tables. In them appear the following data:

• k is the number of iterations performed (“-” appears if there is no convergence or it
exceeds the maximum number of iterations allowed).

• x̄ is the obtained solution.
• ρ is the approximated computational order of convergence, ACOC, defined in [16]

ρ =
ln ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖

ln ‖x(k)−x(k−1)‖
‖x(k−1)−x(k−2)‖

, k = 2, 3, . . . ,

(if the value of ρ for the last iterations is not stable, then “-” appears in the table).
• εaprox is the norm of the difference between the two last iterations,

∥∥∥x(k+1) − x(k)
∥∥∥.

• ε f is the norm of function F evaluated in the last iteration,
∥∥∥F
(

x(k+1)
)∥∥∥. (If the error

estimates are very far from zero or we get NAN, infinity, then we will place “-”).

The iterative process stops when one of the following three items is satisfied:

(i)
∥∥∥x(k+1) − x(k)

∥∥∥ < 10−100;

(ii)
∥∥∥F
(

x(k+1)
)∥∥∥ < 10−100;

(iii) 100 iterations.

The results obtained in the tables show that, for the stable values α = 1 and α = −5,
the expected results were obtained. For the parameter values that present instability in
their dynamical planes (α = −73.25 and α = −76.89), in some examples, the convergence is
a little lower than expected; Tables 2–5 have a higher number of iterations than methods of
the same order shown in Table 6. There is behavior that is not out of the normal for Table 3.

If the initial point is selected in the black area, these unstable family members do not
converge to the solution, Table 4. In this last table, we observe that Newton’s method does
not converge to the desired solution with the initial estimate x = (−17.76,−17.78) contrary
to the stable members of the ACTV family.

Table 2. Results for function F1, using as seed x(0) = (2.5, −1.5).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 4 6.0038 8.580× 10−76 0 ξ̄1 3.5022
ACTV6, α = −5 4 6.0001 8.576× 10e−110 0 ξ̄1 3.5053

ACTV6, α = −73.25 4 5.883 1.015× 10e−38 1.299× 10e−229 ξ̄1 3.8991
ACTV6, α = −76.89 4 5.874 6.0584× 10−38 6.1856× 10−225 ξ̄1 3.4959

Newton 9 2.0000 7.299× 10−146 1.964× 10−291 ξ̄1 1.2855
C61 4 6.0011 3.393× 10−101 0 ξ̄1 1.6573
C62 4 6.0011 1.044× 10−88 0 ξ̄1 1.5505

B6, b1 = −3/5 4 6.004 2.675× 10−75 0 ξ̄1 1.7605
B6, b1 = 1 4 6.0008 6.720× 10−92 0 ξ̄1 1.5495

PSH61, α = 0 4 6.0101 3.503× 10−65 0 ξ̄1 3.6422
PSH61, α = 10 4 6.0000 1.013× 10−125 0 ξ̄1 3.5589
PSH62, α = 10 4 6.159 2.556× 10−34 8.874× 10−203 ξ̄1 3.9764

XH6 4 6.0026 1.161× 10−80 0 ξ̄1 1.6411

78

Algorithms 2023, 16, 163

Table 3. Results for function F2, with initial estimation x(0) = (−2, 2, 4).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 4 6.0096 7.045× 10−158 0 ξ̄1 6.4105
ACTV6, α = −5 4 6.0214 5.875× 10−179 0 ξ̄1 6.1329

ACTV6, α = −73.25 4 6.0161 1.622× 10−106 0 ξ̄1 6.2416
ACTV6, α = −76.89 4 6.0162 1.447× 10−105 0 ξ̄1 6.0655

Newton 8 2.0004 9.136× 10−113 3.933× 10−225 ξ̄1 1.4579
C61 4 5.995 7.360× 10−143 0 ξ̄1 2.4032
C62 4 6.0076 3.126× 10−188 0 ξ̄1 2.1022

B6, b1 = −3/5 4 6.007 2.544× 10−149 0 ξ̄1 2.3387
B6, b1 = 1 4 5.9824 4.643× 10−201 0 ξ̄1 2.2433

PSH61, α = 0 4 6.0048 5.895× 10−119 0 ξ̄1 5.7749
PSH61, α = 10 4 5.9613 2.647× 10−165 0 ξ̄1 6.0901

PSH62, (α = 10) 4 5.9973 5.492× 10−46 2.478× 10−273 ξ̄1 7.0308
XH6 4 6.0019 9.690× 10−153 0 ξ̄1 2.5955

Table 4. Results for function F3 and initial guess x(0) = (−17.76, −17.78).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 10 5.9096 1.148× 10−35 4.953× 10−211 ξ̄1 8.2697
ACTV6, α = −5 79 6.0503 1.697× 10−177 0 ξ̄1 65.9107

ACTV6, α = −73.25 - - - - - -
ACTV6, α = −76.89 - - - - - -

Newton - - - - - -
C61 - - - - - -
C62 - - - - - -

B6, b1 = −3/5 6 5.9119 1.353× 10−35 2.050× 10−210 ξ̄1 2.4022
B6, b1 = 1 - - - - - -

PSH61, α = 0 - - - - - -
PSH61, α = 10 - - - - - -
PSH62, α = 10 26 5.994 7.5229× 10−84 0 ξ̄1 26.0787

XH6 - - - - - -

Table 5. Results for function F4 and initial approximation x(0) = (1, 1, 1, 1).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 4 6.0917 6.448× 10−61 0 ξ̄1 9.0684
ACTV6, α = −5 4 7.0212 5.485× 10−75 0 ξ̄1 9.1124

ACTV6, α = −73.25 4 4.7204 2.972× 10−41 3.558× 10−239 ξ̄1 8.6135
ACTV6, α = −76.89 4 4.3741 3.677× 10−41 6.341× 10−236 ξ̄1 8.8727

Newton 9 2.0083 2.927× 10−144 4.469× 10−290 ξ̄1 2.0165
C61 4 6.3232 1.707× 10−91 0 ξ̄1 2.5118
C62 4 6.2666 4.519× 10−110 0 ξ̄1 2.4156

B6, b1 = −3/5 4 6.3173 4.001× 10−93 0 ξ̄1 2.4766
B6, b1 = 1 4 6.2481 5.909× 10−118 0 ξ̄1 2.3827

PSH61, α = 0 4 5.7907 5.398× 10−50 2.505× 10−292 ξ̄1 8.5868
PSH61, α = 10 4 7.0301 1.819× 10−70 0 ξ̄1 8.7981
PSH62, α = 10 4 4.726 3.477× 10−37 7.995× 10−207 ξ̄1 8.9312

XH6 4 6.3144 5.747× 10−94 0 ξ̄1 2.5340

79

Algorithms 2023, 16, 163

Table 6. Results for function F5 using as initial estimation x(0) = (1, 1, . . . , 1).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 5 6.000 3.605× 10−128 0 ξ̄1 427.4885
ACTV6, α = −5 5 5.9965 1.036× 10−181 0 ξ̄1 411.3637

ACTV6, α = −73.25 7 6.0011 4.997× 10−81 0 ξ̄1 625.0273
ACTV6, α = −76.89 16 6.000 8.800× 10−139 0 ξ̄2 1367.1656

Newton 11 2.000 5.758× 10−148 2.829× 10−294 ξ̄1 24.0160
C61 5 5.9999 2.773× 10−113 0 ξ̄1 42.2095
C62 5 6.000 9.4818× 10−155 0 ξ̄1 35.5499

B6, b1 = −3/5 5 5.9999 1.685× 10−116 0 ξ̄1 45.1993
B6, b1 = 1 5 6.000 1.018× 10−173 0 ξ̄1 40.3692

PSH61, α = 0 5 5.9991 2.420× 10−87 0 ξ̄1 482.4615
PSH61, α = 10 5 5.9627 2.360× 10−162 0 ξ̄1 598.1063
PSH62, α = 10 5 5.9723 1.127× 10−48 2.564× 10−285 ξ̄1 593.7798

XH6 5 5.9999 6.072× 10−118 0 ξ̄1 59.5617

Although Newton’s method (except in case of F3) is faster than sixth-order methods,
its error estimation is improved by the stable members of our proposed family. Moreover,
there exist cases where Newton fails because the initial estimation is far for the searched
roots. In this cases, the stable proposed methods are able to converge.

6. Conclusions

In this manuscript, we extend a family of iterative methods, initially designed to solve
nonlinear equations, to the field of nonlinear systems, maintaining the order of convergence.
We establish, by means of multidimensional real dynamics techniques, which members of
the family are stable and which have a chaotic behavior, taking some of these cases for the
numerical results.

On the other hand, the dynamical study reveals that there are no strange fixed points
of an attracting nature; however, in a very small interval of values of parameter α we find
some periodic orbits and chaos. By performing the numerical tests, we compare the method
with some existing ones in the literature with equal and lower order, verifying that the
proposed schemes comply with the theoretical results. In short, the proposed family is
very stable.

Therefore, we conclude that our aim is achieved: we selected members of our proposed
class of iterative methods that improve Newton and other known sixth-order schemes in
terms of the wideness of the basins of attraction.

Author Contributions: Conceptualization, A.C. and J.R.T.; methodology, J.G.M.; software, A.R.-C.;
validation, A.C., J.G.M. and J.R.T.; formal analysis, J.R.T.; investigation, A.C.; resources, A.R.-C.;
writing—original draft preparation, A.R.-C.; writing—review and editing, A.C. and J.R.T.; visualiza-
tion, J.G.M.; supervision, A.C. and J.R.T. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the reviewers for their corrections and comments that have
helped to improve this document.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Artidiello, S. Design, Implementation and Convergence of Iterative Methods for Solving Nonlinear Equations and Systems Using
Weight Functions. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain , 2014.

2. Cordero, A.; Moscoso, M.E.; Torregrosa, J.R. Chaos and Stability of in a New Iterative Family far Solving Nonlinear Equations.
Algorithms 2021, 14, 101. [CrossRef]

80

Algorithms 2023, 16, 163

3. Cordero, A.; Hueso, J.L.; Torregosa, J.R. Increasing the convergence order of an iterative method for nonlinear systems. Appl.
Math. Lett. 2012, 25, 2369–2374. [CrossRef]

4. Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarrat composition. Numer. Algorithms 2010, 55, 87–99.
[CrossRef]

5. Behl, R.; Sarría, Í.; González, R.; Magreñán, Á.A. Highly efficient family of iterative methods for solving nonlinear models.
J. Comput. Appl. Math. 2019, 346, 110–132. [CrossRef]

6. Capdevila, R.; Cordero, A.; Torregrosa, J. A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems. Mathematics
2019, 7, 121. [CrossRef]

7. Xiao, X.Y.; Yin, H.W. Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo 2016, 53,
285–300. [CrossRef]

8. Clark, R.R. An Introduction to Dynamical Systems, Continous and Discrete; Americal Mathematical Society: Providence, RI, USA, 2012.
9. Geum, Y.H.; Kim, Y.I.; Neta, B. A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics

behind their extraneous fixed points. Appl. Math. Comput. 2016, 283, 120–140. [CrossRef]
10. Devaney, R.L. An Introduction to Chaotic Dynamical Systems Advances in Mathematics and Engineering; CRC Press: Boca Raton, FL,

USA, 2003.
11. Gaston, J. Mémoire sur l’iteration des fonctions rationnelles. J. Mat. Pur. Appl. 1918, 8, 47–245.
12. Fatou, P.J.L. Sur les équations fonctionelles. Bull. Soc. Mat. Fr. 1919, 47, 161–271. [CrossRef]
13. Fatou, P.J.L. Sur les équations fonctionelles. Bull. Soc. Mat. Fr. 1920, 48, 208–314. [CrossRef]
14. Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: Cambridge, MA,

USA, 1970.
15. Traub, I.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.
16. Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190,

686–698. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

81

Citation: Maniezzo, V.; Zhou, T.

Learning Individualized

Hyperparameter Settings. Algorithms

2023, 16, 267. https://doi.org/

10.3390/a16060267

Academic Editor: Frank Werner

Received: 5 May 2023

Revised: 24 May 2023

Accepted: 24 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Learning Individualized Hyperparameter Settings

Vittorio Maniezzo 1,*,† and Tingting Zhou 2,†

1 Department of Computer Science, University of Bologna, 47521 Cesena, Italy
2 Department of Economics and Management, University of Science and Technology Beijing,

Beijing 100083, China; b20190402@xs.ustb.edu.cn
* Correspondence: vittorio.maniezzo@unibo.it
† These authors contributed equally to this work.

Abstract: The performance of optimization algorithms, and consequently of AI/machine learning
solutions, is strongly influenced by the setting of their hyperparameters. Over the last decades, a rich
literature has developed proposing methods to automatically determine the parameter setting for a
problem of interest, aiming at either robust or instance-specific settings. Robust setting optimization is
already a mature area of research, while instance-level setting is still in its infancy, with contributions
mainly dealing with algorithm selection. The work reported in this paper belongs to the latter
category, exploiting the learning and generalization capabilities of artificial neural networks to
adapt a general setting generated by state-of-the-art automatic configurators. Our approach differs
significantly from analogous ones in the literature, both because we rely on neural systems to suggest
the settings, and because we propose a novel learning scheme in which different outputs are proposed
for each input, in order to support generalization from examples. The approach was validated on
two different algorithms that optimized instances of two different problems. We used an algorithm
that is very sensitive to parameter settings, applied to generalized assignment problem instances,
and a robust tabu search that is purportedly little sensitive to its settings, applied to quadratic
assignment problem instances. The computational results in both cases attest to the effectiveness of
the approach, especially when applied to instances that are structurally very different from those
previously encountered.

Keywords: optimization algorithms; inductive learning; parameter setting; neural network
generalization; data abstraction; combinatorial optimization

1. Introduction

Most optimization algorithms, and consequently most AI/machine learning (ML)
solutions, have an effectiveness that depends heavily on the values imposed on high-level
guiding parameters, usually called hyperparameters. Choosing a bad setting can result in
anything from needing more time to reach the solution to being denied any success in the
search. Therefore, the identification of an effective hyperparameter setting is configured as
a higher-level optimization task, instrumental in obtaining a successful application of the
search algorithm of interest.

Over the last few decades, a rich literature has developed proposing methods for auto-
matically estimating parameter settings, using approaches ranging from purely statistical
to tailored heuristics. Two main lines of research have emerged, one aiming at identifying a
robust setting that makes an algorithm of interest effective on all (most) instances of the
problem to be optimized, and one tailoring the setting to each specific instance. In fact, it
is a common practical awareness that different instances of the same problem can require
very different computational efforts to solve, even if their dimensions are the same. The
computational complexity theory justifies such diversity among problems, but it cannot be
declined at the instance level, while the “no free lunch” theorem is valid even among in-
stances [1]. More efficient solution processes could therefore benefit from different settings

Algorithms 2023, 16, 267. https://doi.org/10.3390/a16060267 https://www.mdpi.com/journal/algorithms82

Algorithms 2023, 16, 267

tailored at the individual instance level, but the marginal benefits must be weighed against
the costs of achieving them.

This work considers both objectives, building upon automatic configurators but taking
into account the large diversity among instances of the same problem. The approach we
follow differs from that usually proposed in the literature of individual settings in that we
adapt prelearned settings to each specific instance, relying on neural networks, specifically
multilayer perceptrons (MLPs), to obtain the adapted settings in real time. Specifically, the
methodology we present makes use of state-of-the-art automatic algorithm configurators
to generate datasets of instance/setting pairs to be processed by the neural module. The
generalization and abstraction capabilities of the neural component are used to obtain
instance-specific hyperparameter settings for out-of-sample instances.

We assume that the different computational requests coming from different instances
are due to different structures in the data distribution at the instance level and use this
assumption to derive a pipeline that allows us to tailor the parameter setting of a given
search algorithm to single, previously unforeseen instances.

It is clearly ineffective to propose raw instances as learning bases, so we rely on sets of
descriptive statistics computed on both in-sample and out-of-sample (i.e., train and test)
instances and pass them as input to the neural module. The pipeline starts by computing a
set of descriptive statistics on the available instances, possibly filtering them, and applying
a state-of-the-art configurator to different subsets of structurally similar instances. This
produces a dataset of instance/setting pairs that can be used to instantiate learning. The
learning module consists of a multilayer perceptron, whose abstraction and generalization
capabilities are well known, and which is used in this case to abstract the mapping between
instance statistics and setting, so that when a new instance is proposed, its statistics are
computed and fed as input to the MLP, which in turn outputs the individualized setting.

We applied this pipeline to two different well-known combinatorial optimization
heuristic algorithms whose code was made available by the authors and used it to solve
two different problems. First, we considered a Lagrangian matheuristic [2,3], an algorithm
that is very sensitive to its settings, and applied it to generalized assignment problem (GAP)
instances. Second, we tested a robust tabu search [4], an algorithm that is considered robust
precisely because of its relative insensitivity to hyperparameter settings, and applied it to
quadratic assignment problem (QAP) instances.

The paper is structured as follows. Section 2 provides an overview of the state of the art
in robust and instance-level parameter setting optimization. Section 3 details the problems
we considered in this study and the algorithms we used to solve them and introduces
the parameters of these algorithms that need to be set. Section 4 describes the pipeline
we propose, including the stages of feature selection, possibly data augmentation, MLP
learning, and parameter setting generation. Finally, Section 5 contains the computational
results obtained in our study, and Section 6 draws some conclusions from the results
obtained.

2. Related Literature

State-of-the-art optimization algorithms typically have a large number of parameters
that need to be modified to ensure their performance. Traditionally, the identification of
an effective setting has been achieved through a manual, experimental approach, mostly
guided by the experience of the algorithm designers. However, manual exploration of the
combinatorial space of parameter settings is tedious and tends to produce unsatisfactory
results. Expectedly, the manual search can be less efficient than automatic procedures,
so automatic configurators have been proposed for use when very high performance is
required. Automatic or at least computer-assisted configuration has evolved along a line
that tries to identify robust settings to be used on all problem instances, and along a second
line that tries to propose individualized settings. There are several surveys that cover these
topics [3,5–7].

83

Algorithms 2023, 16, 267

Configurators of the first type [8–12] typically assume that an instance set of diverse
representative instances is available, and specific methods are applied to the set to derive
a robust setting that is effective on all of them, and thus hopefully on other instances
of the same problem. Widely used systems in this group include ParamILS and irace,
besides generic nonlinear optimization algorithms such as the Nelder–Mead simplex,
swarm optimization [13], Bayesian optimization [14], or a random search [15] applied to
this specific task.

ParamILS [11] is an iterated local search (ILS) algorithm that works in the search
space of the parameters. It works on categorical parameters; therefore, real and integer
parameters must first be converted to discrete values. After a possibly random initialization,
a local search is started. The local search in ParamILS is a first-improvement local search,
based on a one-exchange neighborhood, which can only change one parameter at a time.
Each time a move finds a new improvement, it takes it and continues the search until all
neighborhoods are examined or the budget is exhausted. At that point, the better of the
current or previous local minima is kept, and the last solution is perturbed to reinitialize
the search. ParamILS can be used for run-time configurations because it implements a
procedure called adaptive capping, which prunes the search early to evaluate potentially
poor-performing configurations, greatly reducing computation time.

The irace package [12] implements the so-called iterated race method, which is a
generalization of the iterated F-race method for the automatic configuration of optimization
algorithms [16]. irace is based on three successive phases. In the first phase, it generates
candidate configurations using an appropriate statistical model. In the second phase, it
selects the best candidate configurations using a race method based on either F-race or a
paired Student’s t-test. Third, it updates the system’s probability model to give the most
promising configurations a higher probability of being used. The general process starts by
generating configurations within the user-specified value intervals for each parameter and
subjecting them all to a race. In the race, configurations are evaluated on a first instance
of the provided instance set, then on the second, and so on. As soon as a configuration is
judged to be bad, it is eliminated, and the search continues until a small subset, by default
four, of configurations survive, which are proposed in the output.

These algorithms represent the state of the art for robust setting optimization. The
literature on individualized configuration uses them as a module of a more complex process,
as our approach suggests as well.

Individualized tuning itself has different goals and follows different approaches.
One approach is adaptive configuration, where parameter values are adjusted during the
optimization process based on the performance of the algorithm [5]. This was pioneered
by evolution strategies [17,18] and has received considerable attention since then but falls
outside the scope of our research.

Even if we narrow the focus to static settings that do not change values during the
search, there is a second subdivision to be made, namely between configurators that select
the most promising solution algorithm, or part thereof, from a portfolio of candidate
algorithms [19], and those that work on a single algorithm and optimize its parameters.

Individualized algorithm selection has been more extensively studied and has proven
to be able to significantly improve the state of the art in some notable combinatorial
problems, including propositional satisfiability [20] and the traveling salesman problem [21].
Prominent systems in this area are hydra [22] or llama [23], which are primarily algorithm
portfolio selection systems, where the included automatic parameter configurator passes
the task to optimizers such as ParamILS. Another interesting effort in the area of algorithm
selection is the instance space analysis for algorithm testing [24], a proposal to structure the
analysis of instance complexity and the degree of coverage of the universe of instances of a
given problem guaranteed by the available test sets.

Research on optimizing parameters of a single algorithms, which has been named per-
instance algorithm configuration (PIAC) [6], has seen less contributions. It typically involves
two phases: an offline phase, during which the configurator is trained, and an online phase,

84

Algorithms 2023, 16, 267

in which the configurator is run on given problem instances. The result of the second
phase is a parameter configuration determined on the features of the specific instance to be
solved. We remark the difference from a standard algorithm configuration, which typically
produces a single configuration that is then used on all presented instances.

The state of the art in PIAC is currently represented by ISAC (instance-specific al-
gorithm configuration) [25]. Its general approach is the same as that described above or
in instance space analysis, and as the one we adopted in our proposal as well. First, the
available benchmark instances are clustered into distinct sets based on the similarity of
their feature vectors as computed by a geometric norm. Then, assuming that instances with
similar features behave similarly under the same algorithm, some kind of search is used to
find good parameters for each cluster of instances. Finally, new instances are presented,
and the optimized settings are used to determine the one to use for that instance. The way
this is done may vary across systems. ISAC uses a g-means algorithm to cluster the training
instances, and when a new instance is shown, it checks if there is a cluster whose center
is close enough to the feature vector of the input. If so, the parameters for that cluster are
used, otherwise a robust setting optimized for each problem instance is used. Our proposal
differs in that it relies on the generalization ability of neural networks, which allows the
adaptation of the learned settings to any new instance.

A final note is in order here. We found a contribution that seems to overlap with
ours [26], but unfortunately it was presented only as an abstract with no details nor reported
results, so it was hard to understand the extent of the overlap, let alone compare the results.

3. Algorithms and Problems

Two algorithms from the literature with the authors’ code available from the Inter-
net [27,28] were tested for individualized parameter setting: a Lagrangian heuristic applied
to the GAP and a robust tabu search applied to the QAP. In the following, we present some
details on them.

3.1. Lagrangian Heuristic and the GAP

Lagrangian heuristics, as the name suggests, are rooted in Lagrangian relaxation, a
largely used decomposition technique providing bounds to the optimal solution values of
combinatorial optimization problems (COP) but also usable as a basis for effective heuristic
approaches [3].

The general structure of a Lagrangian code, whose pseudocode is provided in
Algorithm 1, is aimed at finding the optimal, or at least a good feasible solution xUB of
a problem that can be modeled as min{cTx : Ax ≥ b, Cx ≥ d, x ∈ Z

n
+}, where the

constraints Ax ≥ b are “hard” and the constraints Cx ≥ d are “easy”. The method requires
to remove the hard constraints and penalize them in the objective function by means of a
penalty vector λ of Lagrangian multipliers, then to decompose the problem into a master prob-
lem and a subproblem. The subproblem LR(λ), min{cTx + λT(b− Ax

)
: Cx ≥ d, x ∈ Z

n
+},

provides a (lower, in case of minimization) bound as a function of λ. The solution of the
subproblem can be infeasible for the whole problem, but a fixing heuristic (which is a driven
heuristic, hence the denotation of metaheuristic for the whole procedure) can turn it into
a feasible solution xh. The last element to mention is the penalty update procedure that
hopefully drives the process toward better and better lower and upper bounds; this can be
done in different ways, the most common being a subgradient optimization [29].

In the pseudocode of Algorithm 1, step 4 solves the subproblem, obtaining a solution
xλ which is possibly infeasible for the whole problem but whose cost zlambda is a lower
bound to the problem’s optimal cost. Step 6 checks its feasibility and returns a vector s

of subgradients, which is null in the case of a feasible solution. Step 7 is the optimality
check and step 8 is the call to the fixing heuristic. Finally steps 10–11 implement the penalty
update heuristic and step 12 implements Polyak’s rule [30] that ensures the convergence of
the series of penalty vectors.

85

Algorithms 2023, 16, 267

Algorithm 1: Lagrangian heuristic

1 procedure LagrHeuristic;
Input : Control parameters (see below)
Output : A feasible solution xUB of value zUB

2 Initialize α, zUB, zLB and the penalty vector λ;
3 repeat

4 xλ = solve subproblem LR(λ) ;
5 zLB = max(zLB, zλ) ; // Lower-bound update

6 check for unsatisfied constraints, return subgradient vector s ;
7 if (s = 01,m and λ(Ax− b) = 0) then solution is optimal; stop;
8 construct heuristic solution xh using xλ and λ ;
9 zUB = min(zUB, zh) ; // Upper-bound update

10 compute steps as θ = α(zUB−zLB
∑i s2

i
);

11 update the penalty as λi = max(0, λi + θsi) ;
12 if (step reduction condition) then decrease α; // α decrease

13 until end_condition;

The specific problem we applied the Lagrangian heuristic to is the GAP. This problem
asks to uniquely assign n clients, index set J = {1, . . . , n}, to m servers, index set I =
{1, . . . , m}, so that a cost function gets minimized while satisfying capacity constraints.
Assignment costs are specified by a cost matrix C = [cij]

n
m, server capacities by a vector

Q = [Qi]m and client requests to servers by a request matrix q = [qij]
n
m. Partial assignments

are not allowed, thus the mathematical formulation of the GAP is as follows.

zGAP = min ∑
i∈I

∑
j∈J

cijxij (1)

subject to ∑
j∈J

qijxij ≤ Qi i ∈ I (2)

∑
i∈I

xij = 1 j ∈ J (3)

xij ∈ {0, 1} i ∈ I, j ∈ J (4)

It is possible to relax in a Lagrangian fashion either constraints (2) or constraints (3)
(or both), thus obtaining two (three) different subproblems to solve at step 4.

Algorithm 1 when applied to the GAP has six parameters to set, which are:

• alphainit: initial α value for penalty updates;
• alphastep: step reduction (step 12);
• minalpha: minimum step length value (step 12);
• inneriter: internal iteration number before changing alpha (step 12);
• maxiter: maximum number of iterations (terminating condition, step 13);
• algotype: which subproblem is used (step 4) (see [2] for details).

The GAP is a very well known and studied problem, and several benchmark instance
sets exist. The online collection from which we downloaded our test set was the GAPLIB
instance library [31], which contains most instances from the literature.

3.2. Robust Tabu Search and the QAP

Tabu search is a very well-known metaheuristic, originally proposed in [32,33], that
basically extends a local search by forcing a move to the best neighbor solution at each
iteration, even if it is worse than the incumbent one. To avoid cycling, a memory structure
is used that keeps track of the last explored solutions, or abstractions thereof, and forbids
going back to them by declaring them “tabu”. The number of iterations when an element
is considered tabu, corresponding to the length of the tabu list, is also called the “tenure”

86

Algorithms 2023, 16, 267

of the tabu elements. Several details in the algorithm can be varied, giving rise to a rich
specific literature [34]. We used a specific variant called robust tabu search [4] which,
despite its simplicity, proved to be effective on the QAP. The pseudocode is presented as
Algorithm 2. The label robust was given because it “requires less complexity and fewer
parameters than earlier adaptations”, further specifying that it “has a minimum number of
parameters and is (. . .) capable of obtaining solutions comparable to the best previously
found without requiring (. . .) altered parameter values” [4]. This focus on parameter
independence makes this algorithm particularly well suited for validating our approach to
individualized settings.

Two specific elements make this version of tabu search robust. The first is that the
tenure of the tabu items is a random variable instead of a static value. A maximum and
minimum tenure is given, and a value is generated iteratively within that interval.

The second feature is a long-term diversification method that favors moves that have
not been performed for a long time. If a move has not been tested for a long number of
iterations, the move is executed regardless of its quality. This is included in an “aspiration”
test, which otherwise dictates that if a move generates a solution better than any previous
one, it will be executed even if it is tabu.

Algorithm 2: Robust Tabu Search

1 function TabuSearch();
Input : Control parameters (see below)
Output : A feasible solution xUB of value zUB

2 for nrep times do
3 Generate a feasible solution x;
4 Set xUB = x and TL = ∅;
5 Generate a feasible solution x′ ∈ N (x) such that

z(x′) = min{z(x̂), x̂ ∈ N (x), x̂ /∈ TL or z(x̂) < z(x∗) or test diversification} ;
// aspiration condition

6 Set x = x′, TL = TL ∪ {x};
7 if (|TL| > TT) then remove from TL the oldest element;
8 if (z(xUB) > z(x)) then set xUB = x;
9 if (tabu tenure update condition) then update TT; // Tabu tenure update

10 if not(terminating condition) then go to 5;
11 end
12 return xUB;

The heuristic was applied to the QAP, whose formulation can be described as follows.
We are given an index set F of n facilities to be assigned to an index set L of n locations.
Let D = [dih]

n
n be the distance matrix from each location i ∈ L to each location h ∈ L, and

let F = [f jk]
n
n be the expected flow from facility j ∈ F to facility k ∈ F. Finally, let cik be a

fixed cost for assigning facility k to location i, for each i ∈ L and k ∈ F. By using binary
variables xik = 1 iff facility k is assigned to location i, the QAP can be stated as the following
quadratic 0-1 problem:

zQAP = min ∑
i∈L

∑
j∈F

∑
h∈L

∑
k∈F

dih fjkxijxhk + ∑
i∈L

∑
k∈F

cikxik (5)

subject to ∑
i∈L

xik = 1 k ∈ F (6)

∑
k∈F

xik = 1 i ∈ L (7)

xik ∈ {0, 1} i ∈ L, k ∈ F (8)

Considering all possible hyperparameter choices actually embedded in the down-
loaded code, the robust tabu search was run with 7 parameters to set, which were:

87

Algorithms 2023, 16, 267

• maxcpu, maximum total CPU allowed time (terminating condition, step 10);
• maxiter, maximum number of iterations (terminating condition, step 10);
• iter2resize, number of iterations before resizing the tabu list (step 9);
• minTLlength, minimum tabu list length (step 9);
• maxTLlength, maximum tabu list length (step 9);
• iter2aspiration, number of iterations before unconditional acceptance (test diversifica-

tion, step 5);
• nrep, number of search restarts (step 2).

The QAP is a well-known and studied problem; there is an online repository, the
QAPLIB library [35], which has collected most of the instances from the literature over the
years. We downloaded our test set from that site.

4. Learning Configurations

Both formulations, GAP and QAP, assume that the instances are described by matrices
of coefficients, two 2D matrices and a 1D vector in the case of GAP and three 2D matrices
in the case of QAP. The use of a single data repository for the GAP and a single one for
the QAP allowed us to take advantage of a common format for each of the two problems
and, more importantly, to know exactly how each subset of instances contained in the
repositories was generated. We had access to the underlying structural characteristics
that led to the input data, and we were able both to generate new instances structured
according to the repository instances and to design generative procedures that produced
structures very different from those that appear in the literature instances. In the following
subsections, we first describe how we obtained the learning examples to present to the
neural network from the matrices and then, for each algorithm, how we constructed the
corresponding training/validation/test sets.

4.1. Feature Selection

To abstract the details of each instance and to make instances with different dimensions
compatible with a same learner, we used sets of descriptive statistics computed on each
matrix, the same statistics for all matrices. We also computed sets of correlation statistics
between matrices. The descriptive statistics included basic ones such as mean, standard de-
viation, IQR, etc., but also distribution fits for uniform (chi-square, Kolmogorov–Smirnov),
for normal (chi-square, Shapiro–Wilk, Kolmogorov–Smirnov, Anderson–Darling), and
for gamma (chi-square, Kolmogorov–Smirnov) distributions. Correlations quantified the
average request vs. average capacity, cost/request correlation, etc. We are aware of con-
tributions that have identified particularly significant complexity predictors for specific
problems, such as ruggedness and flow dominance for the QAP [36], but we wanted to
present here a general methodology that can be applied to any combinatorial optimization
problem of interest, so we computed the same statistics on all matrices, regardless of the
problem they referred to.

This resulted in about 100 different statistics for each instance in the case of the QAP
and about 70 in the case of the GAP, which were preprocessed for relevance and only the
surviving ones were to be used as input for the learning module. Data filtering was done
first by removing all statistics that varied too little over the training set (low variance filter),
then we ran a PCA which suggested that 7 variables could account for more than 97% of
the variance, both in the case of the GAP and QAP, but we could not use the principal
components as we wanted to keep the original statistics. However, following the decreasing
relevance order and the analysis of the heat map of the correlations between the variables,
we were able to shortlist the set and reduce it to 11 variables in the case of the GAP and 14
in the case of the QAP. Figure 1 shows the heat map of surviving descriptive statistics for
the case of the Lagrangian heuristic; blue balloons outline the subsets of highly correlated
variables that were eventually represented by a single variable of each subset.

88

Algorithms 2023, 16, 267

Figure 1. Descriptive statistics correlation, heat map.

4.2. Learning Lagrangian Heuristic Setting

All instances from the GAPLIB repository were generated under controlled settings
and already separated into subsets of structurally similar instances. The main benchmarks
from the literature, both included in the GAPLIB, are Yagiura’s [37] and Beasley’s OR-
library [38]. Both authors generated instances that were supposed to range from easy
to difficult. We independently optimized the parameter setting on 4 different subsets,
2 derived from the biggest OR-library instances (sets 11 and 12) and 2 consisting of the
hardest Yagiura instances (sets D and E) by means of the automatic configurator irace [12].
The other sets from these literature benchmarks were composed of instances too easy to
solve and would have biased the parameter choice toward values of little interest for more
complex tasks.

Beasley’s OR-library instances were generated with costs cij as integers from the uni-
form distribution U(15, 25), requests qij from uniform distribution U(5, 25), and capacities
were computed as bi = 0.8 ∑j∈J qij/m. Set 11 had m = 10 and n = 50 (r = n/m = 5) while
set 12 had m = 10 and n = 60 (r = n/m = 6).

Yagiura’s instances of type D had requests qij from uniform distribution U[1, 100],
costs computed as cij = 111− qij + e1, where e1 is from uniform distribution U[−10, 10] and
bi = 0.8 ∑j∈J qij/m. Type E instances had requests qij = 1− 10ln e2, with e2 from uniform
distribution U(0, 1], costs cij = 1000/aij − 10e3, with e3 from uniform distribution U[0, 1]
and capacities bi = 0.8 ∑j∈J qij/m.

This detailed knowledge of the generation procedure allowed us to generate additional
instances that were structurally similar to the benchmark ones.

4.2.1. Data Augmentation

The chosen benchmark sets consisted of a total of 31 instances, which were too few
for effective generalization. However, we were able to extend the training dataset without
losing the knowledge of the instance structures. The data augmentation resulted from two
contributions.

89

Algorithms 2023, 16, 267

The first augmentation stemmed from the observation that learning in our system
used a feature that distinguished it from standard supervised learning. Typically, learning
is implemented by defining a training set, possibly a validation set, and then a test set.
It is assumed that the input–output pairs presented with the training set are learned as
shown, and that the network works as much as possible as an associative memory on
them, reproducing the output when the training input is re-presented. In our case, we were
much more interested in supporting abstraction and generalization, and we did this also
by means of a feature offered by irace. This configurator proposes, for each set of instances
on which parameters are optimized, up to 4 best settings it can find. We used them all in
the training set, which was therefore composed of records that associated the same input to
different outputs, making it impossible for the network to reproduce exactly the training
set after learning. We experimentally noticed that including all suggested settings in the
training set permitted a more effective generalization than generating only a record from
the best one. This resulted in 77 records derived from the automatic configurator.

However, that set was still a small one, so we artificially enlarged it. This was possible
because the authors described the generators used for producing the instances of the
subsets, along with the parameter values they used. We reimplemented the generators and
obtained 28 further instances similar to the examples used by the configurators, and we
associated each of them with the best parameter configurations obtained for the published
instances. The final complete training composed by literature-related instances set consisted
of 105 records.

4.2.2. Neural Learning

Finally, the subset of relevant statistics was separately related to each parameter to
be set, in order to determine which of the statistics were relevant to each parameter. This
allowed us to reduce the search space because we could compute further correlations with
respect to each specific output.

The final parameter settings were generated by neural networks, specifically feed-
forward MLPs. The network input consisted of arrays containing the selected statistical
values computed on each instance, and the output was the corresponding parameter value.
The networks, all composed of 3 dense layers, had the structure reported below, where for
each parameter, we detail the number of input neurons, the number of hidden neurons, and
the number of output neurons (always one, since each network is tailored to one parameter)
of the corresponding network. The activation function was a sigmoid for the hidden layer
and a ReLU for the output layer. The number of hidden neurons was determined by
checking the effectiveness of all values in the interval [n/2, 2n], where n is the number of
input neurons, and keeping the best one, the smallest in case of ties. Comparable results
were also obtained with n-4-4-1 architectures, which were discarded because they required
more connections.

• alphainit: 5-10-1 network (71 weights);
• alphastep: 7-7-1 network (64 weights);
• minalpha: 8-5-1 network (51 weights);
• inneriter: 5-10-1 network (71 weights);
• maxiter: 6-4-1 network (33 weights);
• algotype: 8-7-1 network (71 weights).

In the case of the GAP, network learning could also have been modeled as a multival-
ued, multioutput regression with 11 inputs and 6 outputs. However, given the limited size
of the training set and the limited correlation among parameter values, the resulted search
was more effective when optimizing a specific network for each parameter as described.

4.3. Learning Tabu Search’s Heuristic Setting

The structure of the experiment for the QAP was the same as for the GAP. The QAP has
more diverse instance sets, often derived from real-world applications, and QAP instances
can be very challenging, even at relatively small dimensions. Therefore, for our tests, we

90

Algorithms 2023, 16, 267

removed the instances that were too small, which would be too easy to solve anyway, and
those that were too large, which would require a long CPU time to optimize. Furthermore,
we also removed the instances from the sets that, after the above selection, were left with
too few items and those for which we were uncertain about the generation procedure. The
available QAPLIB benchmark sets that met these requirements consisted all of midsized
instances (n between 12 and 50) of the sets BUR, CHR, ESC, HAD, LIPA, NUG, and TAI.
Collectively, they amounted to 85 instances that, after the inclusion of the best configuration
for each group proposes by irace (up to 4), generated a training set of 305 records.

In that case, there was no need for data augmentation because we considered the
dataset to be of sufficient size. However, even in that case, we independently optimized
an MLP network for each of the control parameters, according to what we did in the GAP
case. We separately optimized the tabu search control parameters on each of these sets
using irace. The number of hidden neurons was determined as for GAP, resulting in the
following architectures.

• maxiter: 5-4-1 network (29 weights);
• minTLlength: 6-8-1 network (65 weights);
• maxTLlength: 6-7-1 network (57 weights);
• iter2aspiration: 5-9-1 network (64 weights);
• iter2resize: 7-5-1 network (46 weights);
• maxcpu: 6-7-1 network (57 weights);
• nrep: 7-8-1 network (73 weights).

5. Computational Results

All computational tests were conducted on a Windows 10 machine with 16 GB of RAM,
and all computations were performed on a single CPU, in a single thread. Notwithstanding
that MLP backpropagation-based learning is a standard procedure, network training
was tested on four different frameworks based on four different languages to verify this
assumption. The frameworks were: accord.net (C#) [39], ANNT (C++) [40], tensorflow
(python) [41], and nnet (caret) (R) [42]. The efficiency and effectiveness were indeed
comparable between all frameworks, possibly because the learning task was very simple,
so a few seconds of CPU time were sufficient to achieve the final good performance in all
cases. In the following, results were produced by the python/tensorflow implementation.
We remark that the training time was incurred only once per algorithm per problem, so
each new instance did not incur any additional training time for its solution.

5.1. In-Sample Validation

A first set of tests verified whether individualized settings improved over problem-
wide ones on the training set. To this end, a base setting S0 was obtained by running
irace on a subset of 20 instances, uniformly chosen among all instance subsets, first for
the GAP, then for the QAP. Each instance of the test set was optimized either by LagrHeu
or by a tabu search, both with the S0 setting and with the Sn setting suggested by the
network. Finally, for each problem, we computed how many times S0 or Sn was better. A
configuration was considered better than another on a given instance if it produced a better
solution, or if it produced a solution of the same quality as its counterpart but in less CPU
time. When solution quality was equal and cpu times differed by less than 10%, S0 was
considered better, breaking ties in favor of the null hypothesis. While a simple numerical
comparison could determine relative performance, a statistical significance test based on the
binomial distribution was used to assess the significance of the difference, with hypothesis
H0 assuming that all differences were due to chance alone (p = 0.5). Note that the results
reported in the S0 column correspond to the results obtained by irace alone; therefore, the
table shows a comparison of the results obtained by the individualized settings against
those obtained with a state-of-the-art automatic configurator.

91

Algorithms 2023, 16, 267

We did not report the CPU times needed for obtaining the individualized settings
because they corresponded to the time needed to propagate the input in a small three-level
MLP, therefore less than 1 ms.

In the case of the GAP, the in-sample validation produced the results shown in Table 1.
The individualized setting produced more dominating results on all instance subsets,
although statistical significance (α = 0.05) was never reached, albeit close for the Yagiura E
subset, possibly because it counted a larger number of instances.

Table 1. GAP, in-sample validation.

Type n S0 Sn p (Binomial)

Beasley 11 5 1 4 0.188
Beasley 12 5 2 3 0.500
Yagiura D 6 2 4 0.344
Yagiura E 13 4 11 0.059

In the case of the QAP, the in-sample validation reported in Table 2 was, as expected,
less conclusive, as can be seen from the higher values of the binomial probabilities. Al-
though the individualized setting produced dominating results in almost all rows, statistical
significance was again never reached. This is not surprising, since the robust tabu search
was explicitly designed to be insensitive to the parameter setting, so tuning it should not
have much effect. Another possible reason for the failure to reach significance is the low
numerosity of the instance sets. Given these obstacles, the consistently higher number of
better results obtained with individualized settings is noteworthy. Note that the Lagrangian
heuristic is deterministic, while the robust tabu search has a random component, so the
results in Table 2 are six-run averages. However, it is worth noting that the robust tabu
search proved to be very stable in its results, in most cases producing identical results in all
repetitions.

Table 2. QAP, in-sample validation.

Type n S0 Sn p (Binomial)

BUR 8 3 5 0.363
CHR 14 4 10 0.090
ESC 18 8 10 0.407
HAD 5 3 2 0.813
LIPA 6 2 4 0.344
NUG 13 4 9 0.133
TAI 17 5 12 0.072

5.2. Out-of-Sample Validation

In out-of-sample tests, the optimized problemwide setting and the neural-suggested
setting were applied to instances not used by irace in the optimization phase. This was
done in two steps, first using the full datasets from the literature and then augmenting
them with newly generated benchmarks.

5.2.1. Full Datasets

In the first step, a test set was used for the GAP that included all literature instances
of the chosen subsets, not just a sample of them, although the simplest sets were quickly
solved to optimality in all cases. Each instance was solved with both the global setting and
the individualized setting. The results are given in Table 3 and are consistent with those of
Table 1. We can see that the significance was slightly improved, mainly due to the increased
cardinalities, but the relative performance was basically the same. The comparatively
higher number of instances better solved by the global setting was mainly due to the fact
that the tie-breaking policy acted on instances that were quickly solved to optimality.

92

Algorithms 2023, 16, 267

Table 3. GAP, full literature test sets.

Type n S0 Sn p (Binomial)

Beasley 60 23 37 0.046
Yagiura 39 14 25 0.054

Similarly, we constructed a test set including all QAPLIB instances with n between 12
and 50. This resulted in the inclusion of the sets ELS (one instance), KRA (three instances),
ROU (three instances), SCR (three instances), SKO (two instances), STE (three instances),
THO (two instances), and WIL (one instance). This brought the total number of instances
to 103 but the added sets being so small, we present in Table 4 the results grouped by size
rather than by name.

Table 4. QAP, full literature test sets.

Size n S0 Sn p (Binomial)

12–15 19 11 8 0.820
16–20 31 14 17 0.360
21–30 27 9 18 0.061
31–40 19 7 12 0.180
41–50 7 2 5 0.227

The results of Table 4 were consistent with those of Table 2 in that individualized
settings outperformed global settings in all but one row, without reaching statistical signifi-
cance. The only subset where global settings performed better, modulo the tie-breaking
policy, was that of the simplest instances, where both codes could quickly solve all instances.

5.2.2. New Instances

In order to better evaluate the abstraction power of the neural adaptation, we gen-
erated some new instances either according to the literature generators or based on data
distributions that were clearly different from the literature ones. In particular, since we had
to generate data matrices for both problems, we generated them according to a gamma
distribution, which is both very flexible and possibly very different from the uniform
distribution that is usually at the core of the generation of the literature benchmarks.

In the case of the GAP, we generated 15 instances structurally similar to Beasley’s
OR-library ones, 18 similar to Yagiura’s E ones, and 30 instances based on the gamma
distribution. The literature-like instances were generated in order to achieve a clearer
significance, while the gamma ones were to assess the abstraction power of the trained
networks. All instances are available from [31] and validation results are reported in
Table 5.

The table shows that the number of instances better solved with the individualized set-
tings was higher than with the global setting in all rows. In this case, statistical significance
at α = 0.05 was reached for two subsets, the Yagiura-like and the newly generated gamma.
The results for the Yagiura were consistent with those of Table 5, which already bordered
significance, but in that case, from the nonsignificance side. The results on the gamma
instances confirmed that a setting optimized for a subset of the instance space can be
suboptimal when applied to instances from a different subset, and that neural abstraction
can help to constrain the problem. Indeed, we see that the significance of the difference was
greatly increased on these instances, and we interpreted this result as consistent with the
assumption that motivated the generation of these instances, i.e., that a setting optimized
for a given instance set can be suboptimal when applied to instances that are structurally
very different from those on which it was optimized.

93

Algorithms 2023, 16, 267

Table 5. GAP, generated instances.

Type n S0 Sn p (Binomial)

Beasley-like 15 4 11 0.059
Yagiura-like 18 5 13 0.048
gamma 30 7 23 0.003

Finally, we also generated instances for the QAP, both replicating the generation
procedure for the subsets where it was reproducible (i.e., the CHR, NUG, and TAI subsets)
and using the gamma generator to generate the QAP matrices. The results are shown
in Table 6. Again, compared to the results of their GAP counterpart in Table 5, these
results outlined a smaller impact of the individualized approach, and this testified to the
robustness of the robust tabu search, i.e., the low sensitivity to parameters as indicated
by the name of the method. However, even in that case, the highest significance was
achieved on the new gamma instances. This was consistent with the results presented in
Table 5, where the gamma instances also had a greater significance. We thus have further
confirmation that unexplored instance subspaces can limit the effectiveness of settings
optimized elsewhere in the instance space, and that the MLP abstraction can help mitigate
this problem, possibly biasing the setting in a direction related to the properties of the
vector of statistics of structural properties.

Table 6. QAP, generated instances.

Type n S0 Sn p (Binomial)

CHR-like 15 5 10 0.151
NUG-like 15 6 9 0.304
TAI-like 15 5 10 0.151
gamma 30 11 19 0.100

6. Conclusions

This work reported on results obtained by exploiting the abstraction capabilities
of neural networks, in particular multilayer perceptrons, when attempting to identify
optimized instance-level parameter settings for an algorithm of interest applied to a given
problem. Our proposal did not cover adaptive parameter optimization or algorithm
portfolio selection, but it is a contribution to the relatively unexplored area of instance-level
continuous parameter optimization.

We proposed a generic pipeline from feature identification through feature selection,
possibly data augmentation, and neural learning, where standard supervised learning was
adapted to favor abstraction over precision. Computational results on different algorithms
and different problems confirmed the effectiveness of the method.

Future work includes a quantitative analysis of the improvement in solution quality
that can be achieved by individualized settings. In this paper, we committed to using codes
from the literature, codes that were unaware of our target use. This entailed the problems
to which they were applied and resulted in differences in solution quality between global
and individualized settings usually well below 5%, a position that did not change much
using larger instances. An analysis of codes and problems that allows for larger differences
in solution quality due to different settings can take this research beyond the analysis of
rankings presented in this work.

Author Contributions: Conceptualization, V.M.; Methodology, V.M. and T.Z.; Writing—original
draft, V.M. and T.Z. All authors contributed equally to this work. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

94

Algorithms 2023, 16, 267

Data Availability Statement: The data presented in this study are openly available in the repositories
cited in the text.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wolpert, D.; Macready, W. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
2. Boschetti, M.A.; Maniezzo, V. Benders decomposition, Lagrangean relaxation and metaheuristic design. J. Heuristics 2009,

15, 283–312. [CrossRef]
3. Maniezzo, V.; Boschetti, M.; Stützle, T. Matheuristics; EURO Advanced Tutorials on Operational Research; Springer International

Publishing: New York, NY, USA, 2021.
4. Taillard, E. Robust taboo search for the quadratic assignment problem. Parallel Comput. 1991, 17, 443–455. [CrossRef]
5. Aleti, A.; Moser, I. A Systematic Literature Review of Adaptive Parameter Control Methods for Evolutionary Algorithms. ACM

Comput. Surv. 2016, 49, 1–35. [CrossRef]
6. Kerschke, P.; Hoos, H.; Neumann, F.; Trautmann, H. Automated Algorithm Selection: Survey and Perspectives. Evol. Comput.

2018, 27, 1–47. [CrossRef] [PubMed]
7. Talbi, E.G. Machine Learning into Metaheuristics: A Survey and Taxonomy. ACM Comput. Surv. 2021, 54, 1–32. [CrossRef]
8. Bartz-Beielstein; Flasch, O.; Koch, P.; Konen, W. SPOT: A Toolbox for Interactive and Automatic Tuning in the proglangR

Environment. In Proceedings 20. Workshop Computational Intelligence; KIT Scientific Publishing: Karlsruhe, Germany, 2010.
9. Birattari, M.; Stützle, T.; Paquete, L.; Varrentrapp, K. A Racing Algorithm for Configuring Metaheuristics. In Proceedings of

the GECCO 2002, New York, NY, USA, 9–13 July 2002; Langdon, W., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R.,
Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., et al., Eds.; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2002;
pp. 11–18.

10. Hutter, F.; Hoos, H.; Leyton-Brown, K. Automated Configuration of Mixed Integer Programming Solvers. In Proceedings of the
CPAIOR 2010, Bologna, Italy, 14–18 June 2010; Lodi, A., Milano, M., Toth, P., Eds.; Lecture Notes in Computer Science; Springer:
New York, NY, USA, 2012; Volume 6140, pp. 186–202.

11. Hutter, F.; Hoos, H.H.; Leyton-Brown, K.; Stützle, T. ParamILS: An Automatic Algorithm Configuration Framework. J. Artif.
Intell. Res. 2009, 36, 267–306. [CrossRef]

12. López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Birattari, M.; Stützle, T. The irace package: Iterated racing for automatic
algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

13. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Optimizing Convolutional Neural Network Hyperparameters by
Enhanced Swarm Intelligence Metaheuristics. Algorithms 2020, 13, 67. [CrossRef]

14. Filippou, K.; Aifantis, G.; Papakostas, G.; Tsekouras, G. Structure Learning and Hyperparameter Optimization Using an
Automated Machine Learning (AutoML) Pipeline. Information 2023, 14, 232. [CrossRef]

15. Esmaeili, Z.A.; Ghorrati, E.T.M. Agent-Based Collaborative Random Search for Hyperparameter Tuning and Global Function
Optimization. Systems 2023, 11, 228. [CrossRef]

16. Birattari, M.; Yuan, Z.; Balaprakash, P.; Stützle, T. F-Race and Iterated F-Race: An Overview. In Experimental Methods for the
Analysis of Optimization Algorithms; Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 311–336.

17. Rechenberg, I. Evolutionsstrategie—Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution; Frommann-Holzboog-
Verlag: Stuttgart, Germany, 1973.

18. Beyer, H.G.; Schwefel, H.P. Evolution Strategies—A Comprehensive Introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
19. Rice, J.R. The Algorithm Selection Problem. Adv. Comput. 1976, 15, 65–118.
20. Xu, L.; Hutter, F.; Hoos, H.; Leyton-Brown, K. SATzilla2009: An Automatic Algorithm Portfolio for SAT. 2009. Available online:

https://www.cs.ubc.ca/~hutter/papers/09-SATzilla-solver-description.pdf (accessed on 4 May 2023).
21. Kerschke, P.; Kotthoff, L.; Bossek, J.; Hoos, H.H.; Trautmann, H. Leveraging TSP Solver Complementarity through Machine

Learning. Evol. Comput. 2017, 26, 597–620. [CrossRef] [PubMed]
22. Xu, L.; Hoos, H.; Leyton-Brown, K. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. Proc. AAAI

Conf. Artif. Intell. 2010, 24, 210–216. [CrossRef]
23. Kotthoff, L. LLAMA: Leveraging Learning to Automatically Manage Algorithms. arXiv 2013. [CrossRef]
24. Smith-Miles, K.; Muñoz, M.A. Instance Space Analysis for Algorithm Testing: Methodology and Software Tools. ACM Comput.

Surv. 2023, 55, 1–31. [CrossRef]
25. Kadioglu, S.; Malitsky, Y.; Sellmann, M.; Tierney, K. ISAC—Instance-Specific Algorithm Configuration. Front. Artif. Intell. Appl.

2010, 215, 751–756.
26. Dobslaw, F. A Parameter Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks; World

Academy of Science, Engineering and Technology: Istanbul, Turkey, 2010; Volume 64.
27. Maniezzo, V. LagrHeu Public Code. Web Page. 2018. Available online: https://github.com/maniezzo/LagrHeu (accessed on 9

February 2023).

95

Algorithms 2023, 16, 267

28. Taillard, E. Éric Taillard Public Codes. Web Page. 1991. Available online: http://mistic.heig-vd.ch/taillard/ (accessed on 9
February 2023).

29. Shor, N.Z. Minimization Methods for Non-Differentiable Functions; Springer: Berlin/Heidelberg, Germany, 1985.
30. Polyak, B.T. Minimization of Unsmooth functionals. USSR Comput. Math. Math. Phys. 1969, 9, 14–29. [CrossRef]
31. Maniezzo, V. GAPlib: Bridging the GAP. Some Generalized Assignment Problem Instances. Web Page. 2019. Available online:

http://astarte.csr.unibo.it/gapdata/GAPinstances.html (accessed on 9 February 2023).
32. Glover, F. Tabu Search—Part I. ORSA J. Comput. 1989, 1, 190–206. [CrossRef]
33. Glover, F. Tabu Search—Part II. ORSA J. Comput. 1990, 2, 14–32. [CrossRef]
34. Glover, F.; Laguna, M. Tabu Search; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.
35. Burkard, R.; Çela, E.; Karisch, S.E.; Rendl, F.; Anjos, M.; Hahn, P. QAPLIB—A Quadratic Assignment Problem Library—Problem

Instances and Solutions. Web Page. 2022. Available online: https://datashare.ed.ac.uk/handle/10283/4390 (accessed on 9
February 2023).

36. Angel, E.; Zissimopoulos, V. On the Hardness of the Quadratic Assignment Problem with Metaheuristics. J. Heuristics 2002,
8, 399–414. [CrossRef]

37. Yagiura, M. GAP (Generalized Assignment Problem) Instances. Web Page. 2006. Available online: https://www-or.amp.i.kyoto-
u.ac.jp/members/yagiura/gap/ (accessed on 9 February 2023).

38. Cattrysse, D.; Salomon, M.; Van Wassenhove, L.N. A set partitioning heuristic for the generalized assignment problem. Eur. J.
Oper. Res. 1994, 72, 167–174. [CrossRef]

39. Accord.net. Web Page. Available online: http://accord-framework.net/ (accessed on 9 February 2023).
40. ANNT. Web Page. Available online: https://github.com/cvsandbox/ANNT (accessed on 9 February 2023).
41. Tensorflow. Web Page. Available online: https://www.tensorflow.org/ (accessed on 9 February 2023).
42. Nnet (caret). Web Page. Available online: https://cran.r-project.org/web/packages/nnet (accessed on 9 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

96

Citation: Efremov, A.A.; Sotskov,

Y.N.; Belotzkaya, Y.S. Optimization of

Selection and Use of a Machine and

Tractor Fleet in Agricultural

Enterprises: A Case Study. Algorithms

2023, 16, 311. https://doi.org/

10.3390/a16070311

Academic Editor: Jean-charles Billaut

Received: 4 May 2023

Revised: 14 June 2023

Accepted: 19 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Optimization of Selection and Use of a Machine and Tractor
Fleet in Agricultural Enterprises: A Case Study

Andrei A. Efremov 1, Yuri N. Sotskov 2,* and Yulia S. Belotzkaya 1

1 Department of Economic Informatics, Belarusian State University of Informatics and Radioelectronics, 6
Brovki Street, 220013 Minsk, Belarus; efremov@bsuir.by (A.A.E.); grigoreva@bsuir.by (Y.S.B.)

2 United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 6 Surganov Street,
220012 Minsk, Belarus

* Correspondence: sotskov48@mail.ru; Tel.: +375-17-249-61-20

Abstract: This article presents a realized application of a model and algorithm to optimize the
formation and use of a machine and tractor fleet of an agricultural enterprise in crop farming.
The concepts and indicators characterizing the processes of agricultural operations of the machine
fleet in the agrarian business are considered. A classification of approaches for optimizing the
implementation of a complex of mechanized agro-technical operations is given. We systemize
different views on the problems under study and possible solutions. The advantages of the proposed
model and algorithm, as well as the problematic aspects of their information and instrumental
support are discussed. The problem of choosing the optimality criterion when setting the formal
problem of optimizing agricultural operations by a fleet of machines in the agricultural field is
considered. A modification of the economic and mathematical model for optimizing the structure
and production schedules of the machine and tractor fleet is developed. The model is applied
in a numerical experiment using real data of a specific agricultural enterprise, and the economic
interpretation of the results is discussed. We apply an approach for determining the economic effect
of the use of the developed model and algorithm. The possibilities for practical application of the
obtained results of the study are substantiated.

Keywords: scheduling; agricultural machinery; management; nonlinear model

1. Introduction

To increase the efficiency of agricultural production, it is important to optimally
distribute agricultural machines and tractors between agricultural operations when per-
forming the spring sowing campaign and harvest drive. The machine and tractor fleet
(MTF for short) performs one of the main tasks in agricultural enterprises, specifically, the
implementation of mechanized work according to certain, clearly established agro-technical
criteria, while complying with optimal quality parameters and minimum cost requirements.
The technical and economic efficiency of mechanized agricultural production largely de-
pends on the capacity and structure of the machine and tractor fleet which is available to
the agro-industrial enterprise. As a result, it becomes necessary to design scientifically
based integrated algorithms for determining the optimal quantitative composition of the
machine and tractor fleet of agricultural enterprises. The most important stage in solving
agricultural problems of optimal organization of production is achieved with the help of
computers and is described in modern scientific, practical and operational research litera-
ture. It is the development of economic and mathematical models that take into account the
specifics of the agricultural production process, as well as the most important interrelations
between technical and economic factors [1].

The machine and tractor fleet is designed to ensure the execution of agricultural
works with the most acceptable agro-technical terms. Due to the universal nature of most
agricultural machines, determining the optimal replacement schedule for the MTF and

Algorithms 2023, 16, 311. https://doi.org/10.3390/a16070311 https://www.mdpi.com/journal/algorithms97

Algorithms 2023, 16, 311

assessing the economic effectiveness of the operations of machine-tractor aggregates of
different brands and formations should be carried out not for only individual crops, but
also comprehensively for the whole complex of crops that are cultivated on a farm. It is
necessary to consider the calendar dynamics and coincidence (parallelization) of different
technological and auxiliary processes in the agricultural production [1,2].

We must consider the key concepts needed to develop algorithms for optimizing
the formation and use of the MTF of an agricultural enterprise. Field cultivation, being
one of the main branches of crop production, involves production directly in the field,
mainly of annual spring and winter crops, such as grains, potatoes, industrial crops, etc.
Agro-technology is a set of technological operations that are performed in the cultivation of
a certain crop. Machine-tractor works are operations that are performed on a certain field
at specific time intervals in the implementation of a specific agricultural technology (e.g.,
harrowing a field) using specialized machines and tools. There are specific interrelations
and interdependencies between machine-tractor works which determine the clearly defined
chronology of their implementation and the intervals between them. An agro-technical
period of work (agro-term) is the normative period of work for the agricultural operations
(e.g., the agronomic period of chiseling from 5 April to 10 May).

A machine-tractor (MT for short) unit is a set of a certain number of units of agricultural
machinery, which are combined into one whole to perform an agricultural operation
that has a mechanized character. The following combinations can act as a MT unit: a
tractor equipped with an agricultural machine; and a combine mounted with specialized
equipment (e.g., when pressing hay, one requires a tractor MTZ-82 equipped with a baler
PRF-750). For the uniformity and formalization of the problem, it can be assumed that
the equipment that performs some agricultural operation by itself, without combining
with other equipment (device), is still an aggregate of the type “self-propelled equipment
equipped by fictitious trailer equipment”. Based on this assumption, in the process of
a numerical experiment, the initial value of the number of such fictitious units is set to
some sufficiently large number (e.g., 10,000). The same unit can perform agricultural
operations in different parts of the field, but at the same time have different operational
characteristics (e.g., fuel consumption and production rates). The latter indeterminacy
can be determined by introducing digital twins of the agricultural machinery taking into
account the individual characteristics of specific pieces of equipment.

Natural and production conditions are a set of factors that determine the operating
conditions and efficiency of the MT unit operations. These factors include the space con-
figuration of the field, the conditions for the movement of the aggregates, the type of soil
in the field, the conditions of remuneration, etc. It should be noted that such conditions
can also be emulated using digital twins, including modules of neural network analysis,
econometric and simulation modeling, etc. The planned task is the mandatory minimum
volumes of gross harvest of agricultural crops established by the person making manage-
ment decisions at the enterprise or by a higher management body. The MT unit schedule is
a formalized plan for the implementation of a complex of mechanized agricultural works
and provides the most rational distribution of the MT unit in time, ensuring the fulfillment
of the planned tasks.

The rest of this article is organized as follows. The related literature is surveyed in
Section 2. The problem setting is presented in Section 3. A mathematical model is described
in Section 4. A general schema for choosing the machine and tractor fleet and algorithm
is presented in Section 5. The numerical experiments are described in Section 6. The
computational results are discussed in Section 7. Future research directions are outlined
in Section 8, and concluding remarks are given in Section 9. The computational results
obtained for the agricultural complex “Novy Dvor-Agro” are presented in Appendix A.

2. Related Literature

The article [3] deals with production planning in agricultural systems with scarce
water resources in arid regions. The farmers’ profits were increased by reducing machinery

98

Algorithms 2023, 16, 311

transportation costs based on optimal schedules. Farm production planning and machinery
scheduling for perennial crops were introduced to maximize the net value. The optimiza-
tion method allowed for production planning, machinery scheduling and crop rotation.
The optimal machinery transportation routes were determined and the irrigation water
requirements were analyzed. The model yielded a mixed-integer linear optimization that
was assessed on two case studies.

The paper [4] presents an optimization method for farm management during a plan-
ning horizon. The model features were the incorporation of crop rotations and the consid-
eration of crop impacts on the environment by environmental constraints. The decision
tool produces a crop rotation plan which maximizes profits while satisfying the specified
constraints and requirements. The proposed method was formulated as a mixed-integer
linear programming optimization. The authors of [4] investigated the impact of various
environmental constraints, aiming to limit the environmental impacts of farm activities
to below given levels. Some constraints were derived by adopting life cycle assessment
algorithms, which were illustrated using the agriculture system data available from Lux-
embourg. The impacts of a variety of environmental constraints, including greenhouse gas
emissions, were investigated.

Agricultural works can be performed by different sets of machines belonging to
different brands characterized by different sizes, prices and interchangeability. Machines
with different productivity result in uneven time and costs of performing work. Since
mechanized works and their implementation conditions differ, each set of machines will
be effective when performing one agricultural operation and less effective or completely
unprofitable when performing another. When first scheduling the implementation of
a complex of works, sets of machines can be assigned to specific operations in certain
agro-technical periods with a given composition of MT units that are available to the
enterprise. The initial plan for solving an optimization problem, especially a nonlinear one,
largely determines the final result of the model calculations [5]. In this regard, the task is to
determine the distribution of mechanized works according to the methods of execution (sets
of machines) within a given fleet (possibly with the option of its replenishment), in which
all works are performed during the planned period in the best possible way in accordance
with the established optimization criteria. A technically and economically feasible way of
performing a specific list of works should be determined. In order to increase the efficiency
of the use of an MTF in an agricultural business, it is required to determine its rational
composition with the help of economic and mathematical modeling [6].

Field operation planning is critical for the efficiency of agricultural activities. This
planning problem was addressed in [7], where particular algorithms were developed based
on discrete event simulation and computer programming. The developed model captured
the equipment and tracks for the evolution of its movement across the field via so-called
state transition tables. The validity of the model was tested by comparing its performance
with empirical data collected from harvesting equipment.

In the paper [8], an asymmetric multi-depot vehicle routing problem for the main-
tenance of a farm machinery was studied. To provide a door-to-door service for farm
machinery maintenance, a node service and arc service were used. Multiple constraints
included the customer’s time window, maximum repair work duration, fleet size and
vehicle capacity. A mathematical programming problem was formulated with the criterion
to minimize total costs. A discrete firefly algorithm with compound neighborhoods and
presenting neighborhood procedures was developed to solve the problem heuristically.
Procedures with reduced computational complexity to evaluate the duration infeasibility
were suggested. The computational results demonstrated that the proposed algorithm
performed better than CPLEX solver for most large instances. The algorithm was superior
to others for solving benchmark instances of multi-depot vehicle routing problems with
specified time windows.

Olives are one of the most important agricultural products. However, the traditional
harvesting methods fail to fulfill the current need for olive harvesting mechanization. To

99

Algorithms 2023, 16, 311

expedite the olive harvesting mechanization process, engineers have designed various
machines and types of equipment. The considered challenge is to select the best olive
harvesting machine to improve the economic conditions in agricultural production and
thereby maintain the product’s demand. The authors of [9] describe a decision support
system to aid decision making about olive harvesting machines. They evaluated six
agricultural machines according to nine criteria to classify them into three groups: beneficial,
non-beneficial and target-based criteria. For these weighted criteria, the best-worst method
was applied. Due to having a target criterion in the selection problem, the decision matrix
was normalized by the target technique. Using the proposed algorithms, the best harvesting
machine was selected. A dominance algorithm was developed to integrate the resultant
rankings of harvesting machines.

The authors of [10] describe a computer program developed for selecting agricultural
machinery for a group of farms. The computer program was based on mixed-integer
linear programming linked to several databases contained in spreadsheets. The program
selects the machinery set for an individual farm, which corresponds to the low annual
mechanization cost of the multiform through the specified time. The input data include the
variable and fixed costs for twelve years, the schedule of agricultural operations, various
combinations of equipment and the farm area. The program is capable of calculating the
number of working days required for each tractor and is implemented at a farm level in
the different periods. The program allows studying the effect of changing values on fixed
and variable costs through time. A case in Guanajuato for farms cultivating wheat and
sorghum was used to demonstrate the model and program application. The mechanization
costs were reduced during the passage of time. The optimal solution of the machinery park
selected for the first year was not the same as that selected through other years. For the
machinery, the solution was below the quantity of tractors available on the tested farms.

The introduction of intelligent machines with autonomous vehicles to agriculture
enables increases in efficiency and reduced environmental impacts. Innovative sensing and
actuating technologies with improved communication technologies provide potential ad-
vancements. A full exploitation of engineering advances requires the agricultural machinery
management process to be revisited. Traditional agricultural operations planning algo-
rithms for job-shop scheduling may be supplemented with better features. The objectives
of the review paper [11] were to outline the required advances in agricultural machinery
management to achieve sustainable operations in agriculture. Five key management tasks
in agricultural machinery management were selected that span the various management
phases. These tasks include capacity planning, task planning, job-shop scheduling, route
planning and evaluation. For each of these tasks, a definition was provided and the related
literature was discussed in [11].

Different precision agricultural technologies revolutionized the way farmers grow
crops. The paper [12] presented a wide overview of the modern management practices
including a soil preparation, crop fertilization, proper irrigation, pest management, disease
management and storage of potato crop using these technologies. The authors of [12]
reviewed the environmental and economic aspects of the technology using major research
engines including Science Direct, Scopus and Web of Sciences. They discuss the challenges
faced by potato farmers in increasing yields, improving quality and reducing production
costs. The use of yield monitoring systems, precision planting, variable rate application of
inputs and remote sensing was discussed. They summarize the state of the art in precision
agricultural technologies. The review [12] highlighted the benefits of using precision
agricultural technologies in potato crop management.

The paper [13] addresses the problem of assigning agricultural machines in multi-
machine navigation. Agricultural machines need to complete multiple agricultural jobs
together. To realize the management of agricultural machinery cooperation, studies on job
assignment based on the ant colony algorithm were conducted in [13]. A job assignment
model of agricultural machinery cooperation was established by combining dynamic job
assignments. A job assignment process based on the ant colony algorithm was established

100

Algorithms 2023, 16, 311

by considering the match between real supply and a real demand, the job capacity of the
agricultural machinery, and the job cycle and cost. The dynamic and static job assignments
of agricultural machinery cooperation based on the ant colony algorithm were realized on
MATLAB. Based on the static job assignment, the dynamic job assignment was realized
with different possible scenarios, including new jobs and malfunctioning harvesters, thus
laying a foundation for solving the scheduling problem under a farmland job environment.

In farmland operations, multiple agricultural machines complete multiple jobs to-
gether. In the paper [14], studies on path conflict detection based on topographic maps
and time windows were conducted to solve the conflict-free path problem for agricultural
machinery in a farmland environment. The path preplanning was performed based on a
topographic map and the algorithm proposed by Dijkstra. The global path conflict was
detected based on the given time windows. The global path conflict detection algorithm
was simulated on MATLAB with the topographic map of Zhuozhou Farm (Chine). The
computational results showed that the path optimization and path conflict detection of
agricultural machinery can be realized based on the topographic map and time windows.
A conflict resolution strategy requiring the least time was obtained to achieve a conflict-free
path when using multiple agricultural machines.

Farmers are faced with the problem of increasing yields with limited resources. The
extensive use of agricultural machinery is one of the most efficient methods to achieve this.
Since agricultural machinery is expensive, it is economically impractical for small-scale
farmers. Instead, farmers can submit a usage request to an agricultural machinery company,
and the company will dispatch their machines to farmers to provide an operational service.
This business model has shown promising benefits. The authors of [15] developed a two-
step dispatching algorithm for shared agricultural machinery for specified time windows.
At the first step, a spatiotemporal clustering algorithm was used to cluster farmlands
according to their location, time windows and crop strain. The shortest route within
each given cluster of farmlands was also determined. At the second step, the shared
agricultural machines were routed across the clusters to minimize the dispatching costs.
Both these steps were formulated as a mixed-integer linear programming problem. The
two-step heuristics based on CPLEX were proposed to solve the problem. Computational
experiments were conducted with large data from a real-world agricultural machinery
company. The computational results demonstrated the efficiency and abilities of the
developed algorithms.

The socio-economic situation stimulates the need for accelerated development of
agricultural production in the Russian Federation. Therefore, it is necessary to use more
new technologies to ensure uninterrupted high-quality operation of the machine and tractor
fleet. The paper [16] analyzes the dynamics of Russian Federation imports and exports
of agricultural machinery based on data from the Federal State Statistics Service and the
Ministry of Agriculture of the Russian Federation. The geographical structure of exports
and imports of the different types of a machinery and tractor fleet were examined. Against
the background of the revealed trends in Russian exports and imports, it was noted that
the export of agricultural machinery should increase by 1.8 times by 2025. It was predicted
that the share of the Russian equipment of all major types (i.e., tractors, combines, tillage
equipment, and sowing equipment) would reach 80% by 2025. Other types of equipment
would exceed 50%.

It is important to design a service system with optimal locations of maintenance
facilities to guarantee a rapid response to failures of busy agricultural machinery during
harvest time. The paper [17] aims to optimize the location and relocation of hierarchical
levels of facilities consisting of maintenance stations and mobile service fleets over multiple
periods of a harvest season to support the operation of agricultural machinery. The authors
of the paper [17] formulated a multi-objective covering location problem for the hierarchical
facilities that maximizes the total demand covered within response radii while minimizing
the modification to facility locations between different time periods. The ε-constraint
algorithm uses lexicographic optimization to obtain a set of non-inferior solutions that

101

Algorithms 2023, 16, 311

allow a decision maker to evaluate the trade-off between multiple decision objectives. The
algorithm was applied to a real-life problem to illustrate the effectiveness of the decision
model and algorithms. Based on the obtained computational results, the optimal facility
locations for a practical implementation were recommended. A sensitivity analysis of the
selected parameters was applied. It compared the solution obtained from the model with
period-specific solutions that took no account of the changing locations of facilities between
the time periods.

Optimal capacity planning is very important for improving the efficiency of agricul-
tural operations and reducing the operating cost for maintenance service providers during
the harvesting season. Many published studies present scheduling approaches that do
not account for downtime. However, the published methods are not applicable in some
fields of agricultural operations because of the high failure rate during a harvesting season.
Only a few studies include allocation methods and related models between planning levels,
especially for the uncertain demand in agricultural machinery maintenance. The paper [18]
includes a two-stage analytical algorithm that connects the data between planning levels
and aims to develop a dynamic capacity scheduling algorithm of maintenance service
for agricultural machinery fleets. The authors of the paper [18] developed a scheduling
model and algorithm for agricultural machinery fleets based on the time window of har-
vesting. A service mode and a dynamic covering model based on the scheduling results
were proposed, in which queuing theory was used to find the service parameters. This
research satisfies the needs of service providers to find an optimal balance between service
quality and service costs. A real-life agricultural problem was described to illustrate the
applicability of the model and the effectiveness of the designed algorithms.

The paper [19] is devoted to the dynamic facility location problem with respect to the
agricultural machinery maintenance network that is designed to ensure prompt and reliable
responses to agricultural machinery during a harvest period. A busy farming season was
divided into several time periods in which the problem was to determine where to locate
temporary maintenance stations. This problem was formulated as a mixed-integer linear
program to minimize the total service mileage between maintenance stations and demand
points. To solve the mixed-integer program, an algorithm based on Benders decomposition
was developed. The model and algorithms were illustrated by application to of a real-world
problem in China. The computation determined an optimized facility location-allocation
plan and demonstrated the advantage of implementing contiguity constraints.

The paper [20] presents the potential for using software for optimization of machinery
park equipment in sustainable agriculture. The developed algorithms enable selection of
agricultural equipment to perform planned agricultural works. Using this software, the
desired economic effects and advantages can be achieved, and the possible risk related to
the purchase of agriculture equipment can be minimized. Agricultural producers more
frequently rely on computer programmers to support their activity. The frequently used
software consists of different applications assisting current activity by producing finan-
cial and reporting documents. The software enables producers to record the operations
performed, the inputs purchased, and the levels of agricultural production. Computer
programs for scheduling, planning and designing production are less used. This is be-
cause there are more programs available for reporting and balancing than for planning
and scheduling. The use of applications belonging to the latter group may give farmers
competitive advantages and help them to avoid mistakes in their decision making. The
increased availability of agricultural technology programs, whose basic function is to select
machinery park agricultural equipment, would allow producers to carry out simulations
and check the results of the planned decisions.

Summarizing the above survey, one can conclude that planning of the machine fleet
is important for sustainable agriculture. Its basic objectives are as follows: ensuring
the suitable selection of crops and crop rotations, planning fertilization, and controlling
fertilization and livestock density. The realization of these objectives and maintaining
appropriate production profitability is possible with suitably selected agricultural machines.

102

Algorithms 2023, 16, 311

One can assume that in the future, the significance of algorithms and programs for the
management and scheduling of agricultural machinery will increase.

3. A Statement of the Problem

In Belarus, an agro-industrial enterprise usually has its own machine and tractor
fleet, i.e., a fixed set of tractors, combines and agricultural machines of certain brands. In
accordance with the plans of the spring sowing campaign, the enterprise must perform a set
of interrelated mechanized operations of a given size and within the specified agro-technical
terms. The main tasks of the decision maker are formulated as follows:

• Determine whether the available production capacity is sufficient to implement the
crop production plan.

• In the case of lack of production capacity, draw up a scientifically based plan for
expanding the MTF through the lease or purchase of new equipment.

• Draw up an optimal schedule for the implementation of a complex of field works,
in which the value of the total costs quoted will be minimal, taking into account the
fact that the depreciation depends on the planned operating time of each specific type
of equipment.

It is clear that the quality of the initial data plays an important role in the reliable im-
plementation of the optimization algorithms in practice. Today, in the context of the digital
transformation and intellectualization of agricultural production, it is possible to automate
the collection, storage and processing of primary data. A digital twin technology can be
used for this purpose. A digital twin of the machine and tractor fleet of an agricultural
enterprise is a virtual copy of physical tractors, combines and agricultural machines with
all their technical characteristics.

A digital twin of the field contains information on the condition of the soil and crops,
updated in real time using a system of sensors and analysis of images obtained using
drones and other devices. A digital twin of the staff contains accurate information about
the number and qualifications of free and employed machine operators. A digital twin of
weather conditions provides data on temperature and its dynamics during the planning
period, as well as on the nature and intensity of precipitation. All these digital twins are
components of a single information system (a digital platform), which must necessarily
include a module for managing the operation of the machine and tractor fleet, a part of
which will be described in this article.

An important aspect in the modeling process is the fact that machine and tractor units
tend to fail from time to time. To take this factor into account in the developed model, one
can enter the so-called technical readiness factor. It can be enlarged, i.e., it can relate not
to a specific unit of technology, but to a group. For example, for tractors, this is equal to
0.9, for combines, 0.85. The latter coefficient may be interpreted as follows: the average
harvester has a probability of 0.85 of being serviceable at some point in time. However, in
order to simplify this study, the coefficient of technical readiness for all types of equipment
is assumed to be equal to 1 in the developed and tested model.

To reduce the size of the mathematical model, we divided the planning period into
a number of time intervals, which are called periods of constant conditions in the sense
that during each such time period, the set of mechanized operations performed by the
machine and tractor fleet remains fixed. Note that one could assume that each working day
is a separate period of unchanged conditions, but in this case, the size of the model would
increase significantly and the calculations would become quite cumbersome.

The source for compiling a price matrix of one hour of operation of machine and
tractor units is the calculations made by the economists of the enterprise, which take into
account the entire list of resource costs, including the salary of the machine operator (as
well as the assistant machine operator, if any), deductions from wages, and the cost of
fuels and lubricants (but not including the depreciation of equipment, which is accounted
for separately in our model). The matrix of hourly productivity of agricultural machinery

103

Algorithms 2023, 16, 311

can be obtained either on the basis of regulatory and reference documentation or from
aggregated data on the work of the MT unit in past periods.

4. A Mathematical Model

We next describe a mathematical model of the problem of optimizing the formation
and use of the MTF of an agricultural enterprise when performing a complex of mechanized
works in agricultural production.

4.1. Model Variables

We use the following variables in the mathematical model:
X =

[
xijkt

]
denotes the number of MT units in the combination of a tractor (or com-

bine) of grade j and an agricultural machine (implement) of grade k on the performance of
mechanized work i in the t-th period of constant conditions(

i =
−

1, I, j =
−

1, J, k =
−

1, K, t =
−

1, T
)

;

Y =
[
yijkt

]
denotes the operating time of an MT unit consisting of a tractor j (or

combine) and an agricultural machine (implement) of grade k on the performance of work
i during the working day (in hours) in the t-th period of unchanged conditions;

L =
[
lj
]

denotes the number of purchased tractors (or combines) of grade j;
R = [rk] denotes the number of purchased agricultural machines (implements) of

grade k;
L0 =

[
lj0
]

denotes the number of j-grade tractors (or combines) received by the
enterprise under leasing agreements;

R0 =
[
r0

k
]

denotes the number of agricultural machines (implements) of grade k,
received by the enterprise under leasing agreements.

4.2. Model Parameters

The following parameters are used in the mathematical model:
Dt denotes the duration of the t-th period of unchanged conditions, during which,

according to the plan, it is necessary to perform the agro-technical work in question (in
working days);

Tmax denotes the maximum duration of the working shift, i.e., the longest possible
time that can be used for performing agricultural operations during the day by one tractor
or combine (in hours);

Vi denotes the total volume of mechanized work of type i (in the relevant units of
measurement: tonnes, hectares, etc.);

l+j denotes the number of available tractors (or combines) of grade j;
r+k denotes the number of available agricultural machines (implements) of grade k;
aj denotes the average annual costs for the purchase of a tractor (or combine) of

grade j;
bk denotes the average annual costs for the purchase of agricultural machinery (tools)

of grade k;
a0

j denotes the leasing payments for a tractor (or combine) of grade j (for one year);

b0
k denotes the leasing payments on agricultural machinery (gun) of k grade

(for one year);
f j is the annual normative fund of a tractor (or combine) of grade j (in hours);

P =
[

pijk

]
denotes the performance matrix of the MT unit as a part of a j-grade

tractor (or combine) and an agricultural machine (implement) of grade k when performing
mechanized work i;

U =
[
uijk

]
denotes a price matrix of one hour of MT unit operation consisting of a

tractor (or combine) of grade j and an agricultural machine (implement) of grade k when
performing mechanized work i;

104

Algorithms 2023, 16, 311

C =
[
cijk

]
denotes a matrix of the cost of work i by the equipment of grade j with an

agricultural machine of grade k, taking depreciation into account.
The objective Function (1) with Equality (2) determine the total average annual cost of

performing the entire complex of mechanized works calculated in monetary units:

F
(
X, Y, L, T, L0, R0) =

=
I

∑
i=1

J
∑

j=1

K
∑

k=1

T
∑

t=1
xijkt·yijkt·cijk(X, Y)·Dt +

J
∑

j=1
lj·aj +

K
∑

k=1
rk·bk +

J
∑

j=1
l0
j ·a0

j +
K
∑

k=1
r0

k ·b0
k → min (1)

where cijk(X, Y) = uijk + aj·gj(X, Y) and the following equality hold

gj(X, Y) =

⎧⎪⎪⎨
⎪⎪⎩

1, i f
I

∑
i=1

K
∑

k=1

T
∑

t=1
yijkt·xijkt·Dt ≤ f j·lj,

τ, i f
I

∑
i=1

K
∑

k=1

T
∑

t=1
yijkt·xijkt·Dt > f j·lj,

(
j =

−
1, J

)
(2)

where τ denotes a coefficient that takes into account the intensity of an operation of the
equipment (τ > 1 when agricultural machines (tools) are utilized in an intensive regime).
The economic meaning of the coefficient τ is as follows. If the total actual output of tractors
(or combines) of this brand exceeds the normative time fund, then depreciation deductions
should be adjusted upwards.

4.3. Four Conditions Restricted the Mathematical Model

The following conditions were used in the model.

Condition 1. For the available number of tractors (or combines):

∑I
i=1 ∑K

k=1 xijkt ≤ l+j + lj + l0
j , j =

−
1, J, t =

−
1, T.

At any time, the total number of j-grade tractors (combines) operating simultaneously
on all agro-technical operations should not exceed their available number (including those
purchased in the current year).

Condition 2. For the acquisition of tractors (combines) with agricultural machines (implements):

∑I
i=1 ∑J

j=1 xijkt ≤ r+k + rk + r0
k , k =

−
1, K, t =

−
1, T.

At any time, the total number of agricultural machines (implements) of grade k
operating simultaneously on all agro-technical operations should not exceed their avail-
able quantity.

Condition 3. For the output during the shift: yijkt ≤ Tmax, i =
−

1, I, j =
−

1, J, k =
−

1, K, t =
−

1, T.

The number of hours worked by one tractor (or combine) should not exceed the
maximum allowable duration of the working shift. The total amount of work performed
by the MT unit assigned to a specific mechanized work should not be less than the volume
according to the plan. It is assumed that exceeding the plan is also possible.

Condition 4. For the economic content of variables: xijkt ∈ Z+, yijkt ∈ R+, lj ∈ Z+, rk ∈ Z+,
l0
j ∈ Z+, r0

k ∈ Z+.

The number of tractors (combines), agricultural machines (implements) and lorries
should be expressed in an integer non-negative number (zero is also allowed). The number
of hours of operation during the shift of each tractor (combine) shall be expressed as a real
non-negative number.

105

Algorithms 2023, 16, 311

4.4. Remarks for Restricting a Possible Application of the Mathematical Model

We next provide the following remarks on the model.

Remark 1. The annual costs for the purchase of a tractor (or combine) of grade j are calculated
according to the following formula:

aj =
Aj

Tj
, (3)

where Aj determines the initial cost of purchasing a tractor (or combine) of grade j; and Tj determines
the standard useful life of a tractor (or combine) of grade j.

Remark 2. The annual costs for the purchase of agricultural machinery (tools) of grade k are
calculated according to the following formula:

bk =
Bk
tk

, (4)

where Bk determines the initial cost of acquiring an agricultural machine (tool) of grade k; and tk
determines the normative useful life of an agricultural machine (tool) of grade k.

The Formulas (3) and (4) are based on the linear method of calculating depreciation. One
should take into account that there are more approaches which may be more precise and can be used
if required.

Remark 3. If for some reasons the purchase of certain brands of tractors or other agricultural
machines is not possible or their parameters (price and service life) are not known, then the value
of the ai (bk) for these brands is taken to be equal to some large number (for example, 1010). Then,
due to the fact that the target function tends to a minimum, these brands will not be among those
recommended for purchase.

Remark 4. If the agricultural enterprise does not have the opportunity to conclude a leasing
contract for the supply of a specific brand of a tractor or other agricultural machinery, then the value
of a0

i (b0
k) for these brands is taken to be equal to some large number (for example, 1010). Then, due

to the fact that the target function tends to a minimum, these brands are guaranteed not to fall into
the optimal plan.

Remark 5. The question of choosing a monetary unit in which all the cost parameters of the model
will be expressed is quite important. Given that the planning period in this task is one year, it is
possible either to make calculations in Belarusian rubles (BYR) and take into account the inflation
factor by multiplying all cost parameters by the projected price index, or to use in the calculations a
nominally more stable monetary unit, for example, USD or EUR. Note that this issue is important
only for determining the costs associated with the formation and use of the MT unit, but does not
affect the structure of the fleet and the schedule of mechanized work.

Remark 6. An important role is played by the correct determination of the values of costs ai, bk, a0
i

and b0
k . To select their correct values, the marketing service (a specialist or a subdivision replacing

it) must conduct a study of the market for agricultural machinery. For this purpose, specialized
catalogs, websites of manufacturers and distributors of tractors and agricultural machines, as well
as information from exhibitions, forums, etc. can be used.

It should be noted that at the current stage of development of economic science, most
seriously applied tasks in the field of economics are characterized by a large quantity of
input data and numerical parameters. Dealing with thousands of variables and hundreds
of constraints manually is extremely difficult. In this regard, there is a need to employ
specialized software products to solve optimization problems. However, even this does
not guarantee the desired results, since the vast majority of optimization packages are
based on the use of the method of generalized reduced gradient or its analogues. To apply

106

Algorithms 2023, 16, 311

this approach correctly, both the objective function and the functions involved in writing
constraints must be smooth. At the same time, in certain cases, in the process of optimizing
the use of the MTF of an agricultural enterprise in agricultural production, there may be
objects and processes in the description of which specialists have to use discontinuous
functions, i.e., functions that have breaks (of the first or second type).

The economic meaning of the gaps in the objective function can be interpreted as
follows. If the total actual output of tractors (combines) of this type exceeds the normative
output, then depreciation deduction should be adjusted upwards (by multiplying by the
corrective coefficient g0). For example, if the regulatory annual fund of the combined
operating time, according to technical requirements, is 900 h, and it has worked 1000 h,
then depreciation should be written off from the cost of finished products at an increased
rate, for example, 8% more than in a normal operation. It is especially important to use this
approach in intense agro-technical periods. The considered problem belongs to the class of
non-smooth optimization problems, since there are gaps of the first type in the objective
function. In this regard, it is required to select such tools that are able to successfully
solve problems of this type. At the present stage of development of specialized software
designed to solve optimization problems, there are a number of problems associated with
the processing of non-smooth functions. Algorithms and computer programs that are
capable of solving this kind of problem are usually distributed on a commercial basis.
Thus, not every agricultural enterprise can afford to purchase such a software product
and periodically allocate considerable funds for its renewal. Moreover, modern software
products, even the most powerful, have limitations on the dimensionality of the problem
being exactly solved.

To apply the above mathematical model to the optimization of the MTF of real organi-
zations of the agro-industrial complex, the problem must be brought into a form that can
be solved by standard means, in particular, by the Solver package included in the MS Excel
environment or by a free version of software products such as GAMS (e.g., version 24.5).
There are several ways to solve such problems. It is possible to divide a problem with gaps
into a finite number of sub-problems, each of which is considered at a continuous scope of
definition in the absence of gaps. Having solved each of the sub-problems, it is possible
to choose the best solutions obtained and it may be practically sufficient for the original
problem with gaps.

In the Equation (1), τ denotes a given constant whose value is greater than 1. Note that
according to Equation (1), the coefficient of gj is a discontinuous function that depends on

the variables xijkt and yijkt. It is required to select a continuously differentiated function
∼
gj

of variables xijkt and yijkt that would accurately approximate the change in the coefficient
of gj. To do this, we transform the objective function so that it becomes smooth, i.e., we

eliminate the gaps of the first type. To construct such a function
∼
gj we propose to use the

following logistic function:

ϕ(z) =
1

1 + exp(−z)
(5)

The graph of the Function (5) is shown in Figure 1.
Let f (X) denote a function that depends on the multidimensional array X. The value

of this function is denoted as y. Let h(y) denote a function dependent on the scalar y (which
describes the values of the function f (X)) given by the formula:

h(y) =
{

c, i f y ≤ a,
d, i f y > a.

(6)

107

Algorithms 2023, 16, 311

Figure 1. The graph of the logistic function.

Ultimately, it is necessary to obtain a functional dependence of the form h[f (x)]. By
means of elementary transformations (compression, stretching and parallel transfer), it

is possible to select a function
∼
h(y) such that it can be used for the approximation of the

function gj. In the considered case, when the function gj is determined by Formula (4), one
can assume that

f j(X) =
I

∑
i=1

K

∑
k=1

T

∑
t=1

yijkt·xijkt·Dt − f j·lj, j =
−

1, J, (7)

where the parameters a, c and d are equal to 0, 1 and g0, respectively:

a = 0, c = 1, d = g0 (8)

In this case, array X consists of variables xijkt and yijkt. According to
Equations (7) and (8), the Formula (4) can be written as follows:

gj = h
[

f j(X)
]

(9)

In the next step, the task is, in some way, to approximate the discontinuous function

h(y) with the continuous function
∼
h(y) in order to be able to approximate the discontinuous

Function (4) by the following smooth function:

∼
gj =

∼
h
[

f j(X)
]

(10)

As a basis for the approximation of the function h(y), one can take the logistic Function
(5). Note that ϕ(−∞) = 0 and ϕ(∞) = 1. Moreover, with a sufficiently large value of s, it
can be assumed that ϕ(−s) ≈ 0 and ϕ(s) ≈ 1. For example, for s = 6, the values of ϕ(−s)
and ϕ(s) are already close enough to 0 and 1, respectively, as can be seen from Figure 1,
namely, ϕ(−6) = 0.0025 and ϕ(6) = 0.9975.

We take the value b > a. Then, based on the Function (5), we define the function ψ(y)
such that ψ(a) = ϕ(−s) and ψ(b) = ϕ(s). Therefore, ψ(a) ≈ 0 and ψ(b) ≈ 1. As a result,
we build a linear function that corresponds to the values a and b of the values of −s and s,
respectively. Such a linear function is given by the following formula:

z =
2y− a− b

b− a
s (11)

In Function (11), the variable y acts as an argument. Substituting the Formula (11) into
the Equality (5), we obtain the desired function ψ(y) as follows:

ψ(y) =
1

1 + exp
(
− 2y−a−b

b−a s
) (12)

108

Algorithms 2023, 16, 311

Based on Function (8) (such that ψ(a) ≈ 0 and ψ(b) ≈ 1), we construct the function

h(y) such that
∼
h(a) ≈ c and

∼
h(b) ≈ d. To do this, one can build a linear function that

corresponds to the values 0 and 1 of the variables c and d, respectively. Such a function is
determined by the following equality:

χ = (d− c)ψ + c (13)

In Function (13), the variable ψ acts as an argument. Substituting the Formula (12)

into the Equality (13), we obtain the desired function
∼
h(y) as follows:

∼
h(y) = (d− c)ψ(y) + c =

d− c

1 + exp
(
− 2y−a−b

b−a s
) + c =

d + c·exp
(
− 2y−a−b

b−a s
)

1 + exp
(
− 2y−a−b

b−a s
)

Thus, we obtain the following equality:

∼
h(y) =

d + c·exp
(
− 2y−a−b

b−a s
)

1 + exp
(
− 2y−a−b

b−a s
) (14)

Note that in accordance with the above smoothing procedure used, Function (14) is
increasing, and the following conditions hold:

lim
y→−∞

∼
h(y) = c, lim

y→∞

∼
h(y) = d,

∼
h(a) ≈ c,

∼
h(b) ≈ d (15)

Therefore, Function (14) approximates Function (6). In such a case, the accuracy of the
approximation increases when the value of the parameter b decreases (recall that a value of
the parameter b must be greater than a value of the parameter a). In the case of interest (i.e.,
when performing Equalities (7) and (8)), by virtue of the Formula (14), Equality (10) takes
the following form:

∼
gj =

g0 + exp
[
− 2(∑I

i=1 ∑K
k=1 ∑T

t=1 yijkt ·xijkt ·Dt− f j ·lj)−b
b s

]
1 + exp

[
− 2(∑I

i=1 ∑K
k=1 ∑T

t=1 yijkt ·xijkt ·Dt− f j ·lj)−b
b s

] , j =
−

1, J (16)

In Equality (16), b denotes the step of the smoothing procedure and s is a scale factor.
It should be noted that in accordance with the above arguments, the accuracy of the
approximation increases with an increase in the value of the parameter s and a decrease in
the value of the parameter b, where s > 0 and b > 1.

5. A Schema and Algorithm for Selection and Use of a Machine and Tractor Fleet

In this section, we present a general schema for choosing a machine and tractor fleet
and a heuristic algorithm for optimizing the set of agricultural works.

5.1. A Schema for Choosing a Machine and Tractor Fleet

Figure 2 presents a general scheme for constructing a set of models for the formation
and use of a MTF at the meso-level and micro-level of agricultural production. At the heart
of the work of the model complex at the meso-level, which covers a group of enterprises
that are united by their geographical location and the dominant line of activity, is the
following provision. If one enterprise with a given set of resources is able to provide a
certain economic result and maintain it at a constant level, then another enterprise with the
same set of resources and other characteristics being equal, has the potential to achieve no
less economic result than the first enterprise.

109

Algorithms 2023, 16, 311

Figure 2. A general schema for choosing machine and tractor fleets.

The formalization of the process of MTF functioning at the meso-level presupposes
an assessment of the comparative effectiveness of its use by a group of enterprises. To do
this, one should refer to the procedure for constructing and analyzing the Data Envelope
Analysis (DEA), which is based on fractional linear programming and duality theory.

The optimization model developed in Section 4 is connected with stage 4 of the
scheme presented in Figure 2, which is a core of the whole optimization process for the
MTF operations at the meso-level and micro-levels in the agro-industrial complex. Note
that there is an opportunity to improve this approach by adding into the model uncertainty
factors presented in most agricultural frameworks.

Ensuring the competitiveness of agricultural production in modern conditions is
impossible without an accurate and scientifically sound system of production organization,
an integral element of which is the planning of mechanized agro-technical work. The
existing models for optimizing the use of a company’s machine and tractor fleet in field
production are based on the mathematical apparatus of linear programming and greatly

110

Algorithms 2023, 16, 311

simplify reality. Sections 3 and 4 examine the possibility of applying nonlinear models to
solving the problem of optimal planning of spring field operations.

In Section 5.2, special attention is paid to the heuristic algorithm for obtaining an initial
reference plan close to the optimal one and the algorithm for obtaining an integer solution.
The described heuristic algorithm can be successfully applied in practice in the operational
and production planning concerning the use of the available machine and tractor fleet in
the field. An example of calculations according to the proposed methodology for a specific
agro-industrial enterprise is given Sections 6 and 7.

5.2. A Heuristic Algorithm for Optimizing the Execution of the Set of Agricultural Works

Note that the task of drawing up an optimal schedule of a complex of machine and
tractor works is not trivial. It requires a deep understanding of the essence of the simulated
process (object) and should take into account its individual features. Therefore, to search
for the initial plan, it is impractical to use a greedy algorithm [21] as this involves making
locally optimal decisions at each stage, assuming that the final solution will be optimal.
Although today there is no universal criterion for assessing the applicability of a greedy
algorithm for solving a specific problem, scientists have proved that it cannot contribute to
finding a global extreme value in a set of optimization problems, e.g., in most scheduling
problems. The desired algorithm may be iterative.

At the first step of the algorithm, it is rather logical to use a tractor (combine harvester)
that can perform the considered mechanized work at the least cost. However, as mentioned
above, one cannot consider agricultural operations one by one and optimize for each of
them separately since operations constitute an interconnected set of works. In addition,
when attaching tractors to operations, it is impossible to take into account their hourly
productivity. This indirectly affects not only the fulfillment of constraints, but also the value
of the objective function. For example, an expensive (in the sense of the price of one hour
of work) combine harvester can perform a specific agricultural operation, albeit at great
cost, but faster than a cheap but low-productivity machine. As a result, the operations may
require fewer units of this brand, which may reduce the total costs.

Therefore, at the first step of the algorithm, for each tractor (j) and each mechanized
work (i), it is necessary to determine the value (called the preference coefficient) for fixing
a tractor brand for mechanized work. We denote the preference coefficient as kij. Since
when choosing the most suitable fixing option, we strive to minimize costs, it is clear that it
should be directly proportional to the hourly productivity and inversely proportional to
the price of one hour of a tractor (combine) operation: kij ∼ pij/cij.

We next pay attention to the fact that for the convenience of presenting information,
one can choose any unit of measurement in order to achieve the necessary scale. It should be
emphasized that in the calculation process, it is impossible to take into account the units of
measurement of quantities. They can be different for each operation (t/h, pcs/h, ha/h, etc.),
and this is of fundamental importance for the correct application of the developed algorithm.
In order to ensure the compatibility of indicators in mathematical modeling, a normalization
procedure is often used. In this case, the following equality may be used to determine the
coefficients of respectability:

kij =
pij

pi
:

cij

ci

To solve this problem heuristically, we propose the following iterative algorithm.
Step 1. Based on the given initial data, a matrix

∥∥kij
∥∥ of the preference coefficients

is constructed.
Step 2. Determine the maximum element of the constructed matrix

∥∥kij
∥∥.

111

Algorithms 2023, 16, 311

Step 3. For the selected tractor brand and the selected operation, we set the maximum
possible duration of the working shift. After that, we calculate the preliminary required
number of units of equipment. To do this, we use the following formula:

xi0j0 = min

{[
V(0)

i
Dt · pi0j0 · Tmax

]
+ 1, L(0)

j

}
(17)

where the upper index corresponds to the number r of iterations (beginning from r = 0).
The meaning of the Formula (17) is to round the estimated number of tractors (com-

bines) substantially. At the same time, the estimated number of fixed units of tractors of the
brand cannot exceed the total number of such tractors at the disposal of the enterprise.

Then, it is possible to reduce the duration of the work shift to such a value that the
entire amount of work on this agricultural operation is completed as follows:

yi0j0 = min

{
V(0)

i
D · xi0j0 · pi0j0

, Tmax

}
(18)

Equation (18) takes into account the production limit during the shift.
Step 4. There are two possible cases for this step.

• If xi0j0 · yi0j0 · pi0j0 · D = Vi, then it is required to complete an analysis of the mech-
anized work and go back to step 2. It is only necessary to remove from the matrix
of preference coefficients both the coefficient that was previously recognized as the
maximum and those coefficients that were in the same row. It is also necessary to
replace the value of the volume of mechanized work from Vi to V(1)

i = 0.
• If xi0j0 · yi0j0 · pi0j0 · D < Vi, then one should go back to step 2 of the algorithm, first

removing the coefficient that was previously recognized as the maximum and replacing
the value of the volume of the mechanized work by V(1)

i = Vi − xi0j0 · yi0j0 · pi0j0 · D .

The above steps of the developed algorithm must be repeated until the equalities
V(m)

1 = V(m)
2 = . . . = V(m)

N are achieved at the last step m.
We have compared the result of the above heuristic algorithm with the result that

can be obtained using the GAMS solver, which is one of the most advanced automated
optimization tools. The relative deviation of the cost of the complex of agro-technical
works from the optimal value found by the generalized reduced gradient method, for a
conditional example, was less than 1%. Such a low error indicates that the proposed general
schema and heuristic algorithm are of sufficiently high quality and suggests their possible
application in solving a class of similar optimization problems.

6. Numerical Experiments and the Interpretation of the Obtained Results

We next apply the algorithm described in Section 5 for solving the problem of optimiz-
ing the composition and number of MTF used in a complex of mechanized operations in
agricultural production to the agricultural enterprise “Novy Dvor-Agro”, which is under
the jurisdiction of “Grodno Azot” (Belarus).

To carry out the calculations, we considered the following characteristics of the MTF
of the enterprise: the current composition of the MTF; the number of pieces of equipment
involved in animal husbandry; the number of pieces of equipment requiring major repairs;
the amount of mechanized work required for the production of crop products; the optimal
agro-technical terms of the mechanized works; the production standards for a mechanized
work; the storage locations of equipment; and the average travelling distance from the
equipment storage location to the places of work.

For the calculations, we used one of the powerful multidimensional optimization tools
known today, i.e., GAMS package (version 24.7). The MTF of the agricultural enterprise
“Novy Dvor-Agro” is represented by a wide range of agricultural machines and equipment.
Firstly, we identified the MT units which are used, in accordance with the technological

112

Algorithms 2023, 16, 311

needs, on livestock complexes and farms. The number of these machines is objective in
nature and can change as the technology of keeping animals changes. Therefore, in the
conducted experiment, it was set as a permanently fixed number throughout the planning
period in such a way that the set of equipment is involved in both the crop and livestock
production periods.

The composition of the MTF was optimized in the direction of crop production, while
tractors and agricultural machines that were constantly involved in animal husbandry
were not taken into account. Brief results of calculations performed using the computer
models developed by the authors in the GAMS environment are presented in Table A1 (see
Appendix A). As a result of the calculations, some agro-technical operations could not be
performed under 100% optimal agro-terms with the specified cash composition of the MTF,
and shortages of specific machines were identified. At the same time, the calculation was
carried out for shift work conditions with shift durations of up to 9 h in busy periods. In
addition, the coefficient of technical readiness of the equipment was taken into account:
0.85 for combine harvesters and 0.95 for the rest of the MTF equipment.

A failure to perform agricultural work according to the optimal agro-technical terms
leads to significant decreases in the yield and quality of crops (up to 50% in the worst
case), which leads to significant increases in costs per unit of production and, as a result,
decreases in revenue and profit. Therefore, in the process of modeling, the initial and final
timings of mechanized work were considered as deterministic values. Considering the
specified cash composition of the MTF of the agricultural complex “Novy Dvor-Agro”
and the requirement to optimize the agro-technical terms, the percentage completion of
the required volume of mechanized works and the missing equipment are presented in
Table A1 (see Appendix A).

7. Computational Results

In Table 1, it is shown that the farm lacks machines for certain operations as follows:

• Cultivators and plugging during the spring field work;
• Applications of mineral fertilizers and chemical weeding (throughout the year).

Table 1. Agricultural machines recommended to be purchased in addition to those available in the
MTF to perform operations according to optimal agro-technical terms.

Type of Equipment Equipment Brand

Deficit in Vehicles (Units)

For Single-Shift Work (With a
Shift Duration of Up to 9 h

during a Busy Period)

For Two-Shift Work
(With a Shift Duration of 7 h Per Shift

during a Busy Period)

Tractor MTP-3522/3022 3 1

Cultivator KΠCM-14 2 1

Sprayer OШ-2300 2 1

Baler ΠPΦ-1.8 1 0

Fertilizer application machine PMУ-800 1 0

Rake MagnyumMk18 1 0

Table 1 also shows a selection of machines that are recommended to be purchased
by the farm. At the same time, an additional calculation was carried out for the two-shift
organization of the work of machine operators in intense periods.

The obtained results indicate that in addition to the equipment set that should be pur-
chased, there is a surplus of machines on the farm, which may not be used if there is rational
organization of labor and timely repair and maintenance of all equipment (see Table 2).
If the coefficient of technical readiness of machines were lower than the calculated value,
then all equipment would be fully utilized for the production of agricultural products.

113

Algorithms 2023, 16, 311

Table 2. The equipment that remains unused under rational organization of the MT works.

Type of Equipment Equipment Brand Unit

Combine harvester K3C-10K 1

Loader Amkodor 1

In general, the agricultural enterprise “Novy Dvor-Agro” has a fairly balanced MTF,
which allows it to perform more than 80% of mechanized agricultural work at the optimal
agro-technical conditions. Nevertheless, as evidenced by the calculations, the farm needs
to purchase an additional number of energy-saturated MTZ-3022 tractors and MTZ-3522
tractors (from one to three units). These tractors are needed, in particular, to ensure
the preparation of the soil for sowing spring crops. In addition, the enterprise needs to
purchase one (or even two) cultivators and sprayers. It is also advisable to purchase one
unit each of the following: a baler, a machine for mineral fertilizer application; and a rake.
When purchasing additional units of the equipment, one can buy either specific brands of
machines specified in Table 2, or their analogues (either domestic or foreign).

8. Discussions and Future Research

As a part of the further development of the proposed model and algorithm for opti-
mizing the formation and use of the machine and tractor fleet of an agricultural enterprise,
it is possible to employ the mathematical method of mixed-integer linear programming. It
seems useful to develop an exact (or heuristic) algorithm that allows, on the basis of the
optimal plan of a nonlinear problem, to build a valid integer plan that is as close as possible
to the optimal one.

Of particular interest is the study of multi-criteria models for optimizing the machine
and tractor fleet in agricultural production. As an alternative to the algorithm proposed
in Section 5, it is possible to develop algorithms based on new approaches and models of
schedule theory; see [22,23]. One of the most modern approaches for solving the problem
of scheduling operations for a system of machines in field farming are algorithms based
on neural networks. In particular, frameworks such as Opta-Planner (based on Java
syntax) and Pyomo (Python syntax) have proven themselves well in agricultural practice.
However, in such cases, much depends on the initial data, and the obtained solution quality,
from the mathematical point of view, is not optimal in the strict sense. Nevertheless, for
practical purposes, this is often sufficient, and the lower accuracy of the used algorithm is
compensated by its simplicity and implementation speed.

Of considerable interest is an approach based on simulation modeling. Such models
include a number of parameters (e.g., the productivity of machine and tractor units, the
price of 1 h of work, the available amount of workable equipment, etc.) in the mathematical
model in the form of random variables with a known probability distribution. A suitable
probability distribution can be selected on the basis of the criteria of agreement known from
mathematical statistics based on the analysis of retrospective data (if any). Alternatively,
the probability distribution may be proposed by experts on the basis of their knowledge
and ideas about the subject area.

Using the Monte Carlo method, it is possible to estimate the expected value and range
of fluctuations in the key endogenous variables of the mathematical model, as well as the
objective function, which allows using a more balanced approach to the justification of
management decisions related to the management of a complex of mechanized works in
field farming.

Interesting for further study is also the case of non-determinate deadlines for mech-
anized agricultural work. The delay of a certain operation may lead to crop losses and
potential profits from the relevant agricultural products. However, at the same time, this
may lead to resource savings. For example, it may not be necessary to purchase additional
equipment for such operations as they are performed by the existing MT aggregates, albeit

114

Algorithms 2023, 16, 311

in violation of the deadlines. Which of these scenarios is preferred is the question that the
modified optimization model must answer.

9. Conclusions

In the course of this study, we developed the following method for optimizing the
formation of the MTF of an agricultural enterprise for its subsequent use in field farming.

• At the first stage of this method, primary data on the functioning of the MTF of the
agricultural enterprise are collected and processed. For example, calculations of the
planned production rates and the cost of implementation of the MTF must be carried
out. In addition, the permissible values of exogenous variables must be determined.
In particular, the agro-terms of mechanized field work, and the available number of
tractors and combines in the MTF are determined. It should be emphasized that with
the exception of one loader and one combine harvester in the agricultural enterprise
“Novy Dvor-Agro”, all the machinery and equipment on both farms are fully involved
in the production process. Therefore, it is necessary to update the existing equipment
in time when 100% wear is reached.

• At the second stage, in order to develop reserves for improving efficiency on the basis
of the economic and mathematical models presented above, the composition and
structure of the MTF, as well as the schedule of its work during the planning period,
are optimized. In the absence of an initial plan in the form of a current schedule for
the work of the MTF, a heuristic algorithm for building an initial plan suitable for
launching a model complex can be applied at this stage.

• At the third stage, a numerical solution obtained in the GAMS system is brought into
the line with the integer requirement and checked for compliance with the constraints
of the mathematical model. If necessary, the optimal plan is adjusted.

• At the fourth stage, on the basis of the modified optimal plan, a schedule for the
implementation of the MT works for the planning period is constructed.

• The fifth stage consists of a comparison of the total costs for the agricultural operations
of the MTF of the enterprise before and after optimization, with a breakdown into
separate cost elements. The economic effect of the introduction of the proposed
algorithm is estimated.

The developed method for optimizing the formation and use of the MTF of an agricul-
tural enterprise in field cultivation that is proposed within the framework of this study can
be successfully applied in managing the agro-industrial complex at the micro-level and
meso-level. The process enables decision makers to optimize the schedule of the MTF for a
given period, to draw up an optimal plan for the purchase of new equipment in terms of
their total costs, and to identify unused equipment. The proposed model and algorithm
can improve the comparative efficiency in the use of an enterprise’s MTF. Optimization
ensures a reduction in the cost of material resources, resulting in increased profitability of
agricultural production.

Author Contributions: A.A.E.—formal analysis, methodology development, validation of the mathe-
matical models, initial draft preparation; Y.N.S.—conceptualization, project administration, oversight
and leadership responsibility for the research activity, planning and execution, substantive translation
and editing, critical review; Y.S.B.—data collection, software application, implementation of the
computer code and supporting algorithms, performing numerical experiments. All authors have
read and agreed to the published version of the manuscript.

Funding: The research was funded by the Belarusian Republican Foundation for Fundamental
Research, grant number Φ23PHΦ-017.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

115

Algorithms 2023, 16, 311

Appendix A. Computational Results Obtained for the Agricultural Enterprise “Novy

Dvor-Agro”

Table A1. The percentage completion of the required mechanized work utilizing the specified cash
composition of the MTF of the agricultural enterprise “Novy Dvor-Agro”, optimal agro-technical
terms, and missing equipment.

Mechanized
Works

Unit of
Measure-

ment

Required
Volumes of

Works

Agricultural Terms

Percentage
Execution

with
Available

MTF

Composition
of Unit

Number of
Units That

can Be Used
(Actual)

Required
Units

Unit Deficit

Begining Ending

Application of
mineral fertilizers ha 8150

15
February 31 March

81.0

MTZ-1221+ 3 3

A busy period of 20 days PMY-8000,
PMY-1,8 2 3 1

Loading of
organic fertilizers t 19,250 20 March 100.0

Application of
organic fertilizers t 18,800 20 March 100.0

Soil cultivation ha 4200

20 March 30 April

63.1

MTP-3022+ 2 3 1

KΠCM-14 1 3 2

MTP-3022+ 3 3

KOH-2,8;
AK-2,8 3 3

A busy period of 15 days

MTP 1523+
harrow 2 2

KPC-
6+harrow 2 2

MTZ-1221+ 2 2

KΠC-
4+бopoнa 1 1

Tillage ha 2450 20 March 30 April 82.4

MTP-3522+ 2 4 2
PPO-8-40;

PH-8 4 4

MTZ-82+ 1 1
PLH-3-35 1 1

Sowing of grain
rapeseed ha 2650 25 March 100.0

Chemical
protection works ha 5400

25 April 30 June
57.0

POCA 2 2

A busy period of 20 days MTZ-82+ 3 3
OH-2300 1 3 2

Mowing ha 2600 15 March 25 June 100.0

Turning ha 3000 15 March 25 June 100.0

Selection of green
mass with
grinding

t 31,900 18 May 100.0

Hay pressing ha 230 24 May 100.0

Application of
mineral fertilizers ha 5800 25 August 1 October 100.0

Loading of
organic fertilizers t 20,000 100.0

Application of
organic fertilizers t 18,000 25 August 100.0

Soil cultivation ha 3800 25 August 1 October 70.3

MTP-3022+ 2 2
KΠCM-14 1 2 1

MTP-3022+ 3 3
KOH-2,8;
AK-2,8 3 3

MTP 1523+ 2 2
KPC-

6+harrow 2 2

MTP-1221+ 2 2
KPC-4+
harrow 1 1

116

Algorithms 2023, 16, 311

Table A1. Cont.

Mechanized
Works

Unit of
Measure-

ment

Required
Volumes of

Works

Agricultural Terms

Percentage
Execution

with
Available

MTF

Composition
of Unit

Number of
Units That

can Be Used
(Actual)

Required
Units

Unit Deficit

Begining Ending

Tillage ha 1750 25 August 1 October 100.0

Sowing of grain
rapeseed ha 2420 1

September 100.0

Chemical
protection works ha 4400

12
September 27 October 63.2

POCA 1 1

MTZ-82+ 2 2

OШ-2300 1 2 1

Mowing ha 2550 1
September

25
September 100.0

Turning ha 3000
1

September
25

September 93.7

MTP-82+ 8 8

GVB-6.2;
Evrotop-881;

Volto-770;
BBP-7.5;

MagnyumMk18

7 8 1

Selection of green
mass with
grinding

t 30,000 10
September 100.0

Hay pressing ha 300 5
September 100.0

Straw pressing ha 1250 1 August
8

September 88.7

MTF-3022+ 2 2

KUNH-870;
GALLAZ651 2 2

MTF-82+ 7 7

PRF-1.8 6 7 1

Grain harvesting ha 2500 20 July 100.0

Rapeseed
harvesting ha 200 27 June 100.0

Rapeseed
harvesting ha 200 27 June 100.0

Seed cleaning of
various herbs ha 150 15 July 100.0

References

1. Durczak, K.; Ekielski, A.; Kozłowski, R.; Zelazinski, T.; Pilarski, K. A computer system supporting agricultural machinery and
farm tractor purchase decisions. Heliyon 2020, 6, e05039. [CrossRef] [PubMed]

2. Gorodov, A.A.; Gorodova, L.V.; Fedorova, M.A. Optimizing the use of the machine and tractor fleet of an agricultural enterprise.
J. Krasn. State Agric. Univ. 2014, 9, 3–11. (In Russian)

3. Vazquez, D.A.Z.; Fan, N.; Teegerstrom, T.; Seavert, C.; Summers, H.M.; Sproul, E.; Quinn, J.C. Optimal production planning and
machinery scheduling for semi-arid farms. Comput. Electron. Agric. 2021, 187, 106288. [CrossRef]

4. Capitanescu, F.; Marvuglia, A.; Gutierrez, T.N.; Benetto, E. Multi-stage farm management optimization under environmental and
crop rotation constraints. J. Clean. Prod. 2017, 147, 197–205. [CrossRef]

5. Pazova, T.H.; Shekihachev, Y.A.; Sohrokov, A.H. Optimization of the set of machine and tractors fleet. Polythematic Online Electron.
Sci. J. Kuban State Agrar. Univ. 2012, 75, 113–116. (In Russian)

6. Kusnharev, L.I.; Dzuganov, V.B.; Dzuganov, A.V. Results of optimization of the machine-tractor park of farms and machine-
technological stations. Int. Sci. J. 2013, 4, 13–18. (In Russian)

7. Toba, A.-L.; Griffel, L.M.; Hartley, D.S. Devs based modeling and simulation of agricultural machinery movement. Comput.
Electron. Agric. 2020, 177, 105669. [CrossRef]

8. Li, J.; Li, T.; Yu, Y.; Zhang, Z.; Pardalos, P.M.; Zhang, Y.; Ma, Y. Discrete firefly algorithm with compound neighborhoods for
asymmetric multi-depot vehicle routing problem in the maintenance of farm machinery. Appl. Soft Comput. J. 2019, 81, 105460.
[CrossRef]

9. Hafezalkotob, A.; Hami-Dindar, A.; Rabie, N.; Hafezalkotob, A. A decision support system for agricultural machines and
equipment selection: A case study on olive harvester machines. Comput. Electron. Agric. 2018, 148, 207–216. [CrossRef]

10. Camarena, E.A.; Gracia, C.; Sixto, J.M.; Cabrera, A. Mixed integer linear programming machinery selection model for multifarm
systems. Biosyst. Eng. 2004, 87, 145–154. [CrossRef]

117

Algorithms 2023, 16, 311

11. Bochtis, D.D.; Sorensen, C.G.C.; Busato, P. Advances in agricultural machinery management: A review. Biosyst. Eng. 2014, 126,
69–81. [CrossRef]

12. Ahma, U.; Sharm, L. A review of best management practices for potato crop using precision agricultural technologies. Smart
Agric. Technol. 2023, 4, 100220. [CrossRef]

13. Cao, R.; Li, S.; Ji, Y.; Zhang, Z.; Xu, H.; Zhang, M.; Li, M.; Li, H.; Zhou, J. Task assignment of multiple agricultural machinery
cooperation based on improved ant colony algorithm. Comput. Electron. Agric. 2021, 182, 105993. [CrossRef]

14. Cao, R.; Guo, Y.; Zhang, Z.; Li, S.; Zhang, M.; Li, H.; Li, M. Global path conflict detection algorithm of multiple agricultural
machinery cooperation based on topographic map and time window. Comput. Electron. Agric. 2023, 208, 107773. [CrossRef]

15. Wang, Y.-J.; Huang, G.Q. A two-step framework for dispatching shared agricultural machinery with time windows. Comput.
Electron. Agric. 2022, 192, 106607. [CrossRef]

16. Volkova, E.; Smolyaninova, N. Trends in Russian exports and imports of agricultural machinery. Transp. Res. Procedia 2022, 63,
1131–1138. [CrossRef]

17. Han, J.; Xiang, Q.; Zeng, B.; Lei, Y.; Luo, L. A multi-objective dynamic covering location problem for hierarchical agricultural
machinery maintenance facilities. Knowl.-Based Syst. 2022, 252, 109462. [CrossRef]

18. Hu, Y.; Liu, Y.; Wang, Z.; Wen, J.; Li, J.; Lu, J. A two-stage dynamic capacity planning approach for agricultural machinery
maintenance service with demand uncertainty. Biosyst. Eng. 2020, 190, 201–217. [CrossRef]

19. Han, J.; Zhang, J.; Zeng, B.; Mao, M. Optimizing dynamic facility location-allocation for agricultural machinery maintenance
using Benders decomposition. Omega 2021, 105, 102498. [CrossRef]

20. Cupial, M.; Szeląg-Sikora, A.; Niemiec, M. Optimisation of the machinery park with the use of OTR-7 software in context of
sustainable agriculture. Agric. Agric. Sci. Procedia 2015, 7, 64–69. [CrossRef]

21. Bang-Jensen, J.; Gutin, G.; Yeo, A. When the greedy algorithm fails. Discret. Optim. 2004, 1, 121–127. [CrossRef]
22. Werner, F.; Burtseva, L.; Sotskov, Y.N. Special issue on algorithms for scheduling problems. Algorithms 2018, 11, 87. [CrossRef]
23. Werner, F.; Burtseva, L.; Sotskov, Y.N. Special issue on exact and heuristic scheduling algorithms. Algorithms 2020, 13, 9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

118

Citation: Belousov, A.; Kisel, I.;

Robin, L.; Mithran, A. Neural-

Network-Based Quark–Gluon

Plasma Trigger for the CBM

Experiment at FAIR. Algorithms 2023,

16, 344. https://doi.org/10.3390/

a16070344

Academic Editor: Frank Werner

Received: 14 June 2023

Revised: 11 July 2023

Accepted: 12 July 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Neural-Network-Based Quark–Gluon Plasma Trigger for the
CBM Experiment at FAIR

Artemiy Belousov 1,2,*,†, Ivan Kisel 1,2,3,4,*, Robin Lakos 1,2 and Akhil Mithran 1,2,†

1 Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
2 Institute of Computer Science, J. W. Goethe University, 60325 Frankfurt am Main, Germany
3 GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
4 Helmholtz Forschungsakademie Hessen für FAIR, 64289 Darmstadt, Germany
* Correspondence: belousov@fias.uni-frankfurt.de (A.B.); i.kisel@compeng.uni-frankfurt.de (I.K.)
† These authors contributed equally to this work.

Abstract: Algorithms optimized for high-performance computing, which ensure both speed and
accuracy, are crucial for real-time data analysis in heavy-ion physics experiments. The application of
neural networks and other machine learning methodologies, which are fast and have high accuracy,
in physics experiments has become increasingly popular over recent years. This paper introduces
a fast neural network package named ANN4FLES developed in C++, which has been optimized for
use on a high-performance computing cluster for the future Compressed Baryonic Matter (CBM)
experiment at the Facility for Antiproton and Ion Research (FAIR, Darmstadt, Germany). The use
of neural networks for classifying events during heavy-ion collisions in the CBM experiment is
under investigation. This paper provides a detailed description of the application of ANN4FLES in
identifying collisions where a quark–gluon plasma (QGP) was produced. The methodology detailed
here will be used in the development of a QGP trigger for event selection within the First Level
Event Selection (FLES) package for the CBM experiment. Fully-connected and convolutional neural
networks have been created for the identification of events containing QGP, which are simulated with
the Parton–Hadron–String Dynamics (PHSD) microscopic off-shell transport approach, for central Au
+ Au collisions at an energy of 31.2 A GeV. The results show that the convolutional neural network
outperforms the fully-connected networks and achieves over 95% accuracy on the testing dataset.

Keywords: artificial neural network; multi-layer perceptron; convolutional neural network; heavy-ion
experiment; compressed baryonic matter experiment; quark–gluon plasma

1. Introduction

The upcoming heavy-ion physics experiment on compressed baryonic matter (CBM) at
the Facility for Antiproton and Ion Research (FAIR) [1] is a fixed-target experiment designed
to operate at extraordinarily high interaction rates. The combination of high-intensity beams
with a high-rate detector system and a long beam time creates unparalleled conditions for
the study of quantum chromodynamics (QCD) matter at the highest net-baryon densities
achievable in a laboratory setting [2].

One of the main objectives of the CBM experiment is to explore the quark–gluon
plasma (QGP) and its thermodynamic properties. The thermodynamic properties of a QCD
system are expressed in terms of a (T, μB) phase diagram, where T is the temperature and
μB is the baryonic chemical potential. The exploration of this complex phase diagram is
still in its early stages. In particular, the high baryon-chemical potential region, marked by
(μB > 500 MeV), is of significant interest.

Engineered as a multipurpose tool, the CBM experiment will have the ability to detect
hadrons, electrons, and muons in both elementary nucleon and heavy-ion collisions in the
entire FAIR beam energy range. To execute high-precision, multi-differential measurements
of rare processes, the experiment is designed to run at event rates from 100 kHz up to

Algorithms 2023, 16, 344. https://doi.org/10.3390/a16070344 https://www.mdpi.com/journal/algorithms119

Algorithms 2023, 16, 344

10 MHz for several months annually [3]. Since it is challenging to generate a simple
trigger signal for weakly decaying particles like hyperons and D-mesons, each event must
be fully reconstructed. Furthermore, the decay topology needs to be identified online
through fast algorithms. These algorithms will operate on a high-performance computing
farm located at the GSI Green Cube [4]. At the planned CBM interaction rate of 10 MHz,
one expects a data output rate of up to 1 TB/s from the detector’s front-end electronics [5].
In order to optimize the storage cost, CBM requires a maximum archival rate of 3 GB/s.
Therefore, there is a need to reduce the data output rate by a factor of at least 300 [6]. Thus,
the experimental challenge is to identify and select (1/300 = 0.3%) rare events including
complex decays in real time and discard the rest. Early classification, i.e., before data
storage, will help with the efficient collection of important information from the collisions
and storage of only the essential information. For this task, the CBM experiment has
developed the First Level Event Selection (FLES) [7] package.

The FLES package of the CBM experiment can reconstruct the full event topology,
including the tracks of charged and short-lived particles. The FLES package consists of
several modules (Figure 1): a track finder, a track fitter, a particle finder, and a physics
analysis module. As input, the FLES package takes a simplified geometry of the tracking
detectors and the hits created by charged particles crossing the detectors. The tracks of
charged particles are reconstructed by the Cellular Automaton (CA) Track Finder. The
Kalman Filter (KF)-based track fitter is used for a precise estimation of the track parameters.
Short-lived particles, which decay before reaching the tracking detectors, can only be recon-
structed via their decay products. The KF Particle Finder, based on the KFParticle package,
is used to find and reconstruct the parameters of short-lived particles by combining tracks
of long-lived charged particles that have already been found. Finally, a quality assurance
module allows for the control of the reconstruction quality at every stage. The FLES pack-
age is platform- and operating-system-independent. It will be used in the CBM experiment
for online selection and offline analysis on a dedicated multi-core CPU/GPU farm.

Figure 1. Block diagram of the FLES package with the tentative components of ANN4FLES, which
will be used in the trigger for event selection.

A neural network for classification based on the ANN4FLES package, which receives
information about reconstructed particles from the KF Particle Finder package, will be
integrated into the physics analysis module of the FLES package (shown in red in Figure 1)
and will then be used as a QGP trigger for event selection. Using the output from this
neural network, in combination with the results from the FLES physics analysis module,
the final event selection will be carried out within the FLES package.

120

Algorithms 2023, 16, 344

In this paper, the possibility of using neural networks for the identification of collisions,
more specifically collisions in which QGP was created, is investigated. Various models can
generally be used to simulate the QCD phase transition in heavy ions. In this work, the
simulation model used is a microscopic transport approach grounded in Parton–Hadron
String Dynamics (PHSD) [8]. The simulation process accounting for QGP proceeds as
follows: the collision volume is partitioned into grid cells. Inside each cell, collisions and
hadronization occur in a manner that depends on the local energy density. This density
is compared to a critical energy density threshold, which is equal to εc = 0.5 GeV/fm3 [9].
Thus, in events where QGP is produced, it does not form throughout the entire collision
volume. Instead, QGP arises only within specific cells where the local energy density
surpasses the critical threshold. Therefore, as the collision energy increases, the number of
these specific cells also grows, leading to an expansion in the volume of the QGP. Using
this model, a dataset of QGP-aware and QGP-unaware simulations was created for training
the neural networks.

2. Materials and Methods

2.1. Input Data

The dataset created with the PHSD model consists of 10,000 events, half of which
contain quark–gluon plasma information, referred to as (QGPon) and the other half without
quark–gluon plasma information, referred to as (QGPoff). The data were simulated for
central Au + Au collisions at a constant energy of 31.2 A GeV. This dataset is divided into
2 sets of 8000 and 2000 randomly selected events. The first set is used to train the neural
network, and the second set is used for testing.

On average, each simulated collision produces around 1600 particles, most of which
are quite rare. From all the particles recorded in the simulation, only 28 types of particles
appear at least once in every 1000 events and were chosen as input features for the neural-
network-based approaches. That way, it is possible to reduce the total size of the model
as well as discard particles that are relatively less common and are assumed to have less
impact on training. The remaining particles are produced too rarely to affect the trigger
performance and might even be a hindrance in the training of the models. From the raw
data for these 28 types of particles, the observables measured are the absolute value of
momentum |p|, inclination angle or angle made by the momentum of the particle with
respect to the positive direction of the beam axis θ, and azimuthal angle ϕ. This information
is then entered into an array in such a way that the information for a single particle
is split into 20 intervals for each of the observable, with the angle information divided
into equal intervals and the absolute momentum value divided into 20 logarithmically
spaced intervals. As most particles possess relatively small momentum, this enables the
array to be more densely populated. So, the total length of the array comes out to be
28× 20× 20× 20 for the complete 28 particles. Consequently, each event corresponds
to a total of 22,400 input values or features which are the 28 different particles with each
particle having a total of 8000 features from the 20 intervals for each of the |p|, θ, and φ bins.
This flattened structure will be used as an input for the fully-connected networks. This
can also be arranged as a 4D array, with dimensions 28× 20× 20× 20, and serves as the
input for the convolutional neural networks. The distribution of input information for the
average over simulated events is shown in Figure 2.

On average, for the simulated dataset, nQGP collisions produce slightly more particles
than QGP collisions. This can be seen clearly in the ϕ distribution (top right) in Figure 2.
It should also be noted, from the top left panel of Figure 2, that more heavy strange
baryons are created in QGP collisions. This strange enhancement is a signature of QGP
formation [10].

121

Algorithms 2023, 16, 344

Figure 2. Average input distribution from simulated collisions. The panels in anti-clockwise order
from the top left show the distribution by particle type, by the absolute value of momentum |p|, by
inclination angle θ and by azimuthal angle ϕ.

2.2. Neural Networks

Feedforward Neural Networks or MultiLayer Perceptrons (MLPs) [11] are among
the architectures used for classification in this study. Using MLP enables the construc-
tion of models that are easy to implement as well as to train. MLPs are very popular
models for supervised learning and are commonly used for classification and regression
tasks [12]. A supervised learning procedure means that the network builds a model based
on labeled data.

A MLP comprises three types of layers (input, hidden, and output) each with several
nonlinear computational units (also called neurons). The information flows from the input
layer to the output layer through the hidden layer(s) [13]. Typically neurons from one layer
are all connected to neurons in the adjacent fully-connected layers as shown in Figure 3.
The connection strengths are represented by weights in the computational process. The
weights can be thought of as the parameters of the function the neural network is trying
to approximate. The number of neurons in the input layer depends on the number of
predictor variables in the examples of the dataset, whereas the number of neurons in the
output layer is the same as the number of target or true value variables in the examples
of the dataset. It can also be the number of variables required to produce the output for
the required task. These multi-layer connections along with the activation function enable
such networks to approximate a large class of functions with a high degree based on the
number of hidden units [14].

The primary operation in MLPs can be represented as:

an = Wn · hn−1 + bn

122

Algorithms 2023, 16, 344

hn = FA(an)

where neurons in the n-th hidden layer are constructed from the neurons in the (n − 1)-th,
with 0-th layer being the input layer and the final layer being the output layer. Since every
neuron in one layer is used to create a single neuron of the next layer, the corresponding
weight matrix Wn would be nl−1 × nl where nl−1 and nl are the number of neurons
in the (n − 1)-th layer and n-th layer, respectively, see Figure 4. Here, bn is the bias
parameter for the n-th layer, which helps in learning an overall shift for the output and
would have the same size as the number of neurons in that layer. FA is the activation
function that usually serves the purpose of introducing non-linearity to the network and
increasing its representative capacity. hn and hn−1 are neurons in the n-th and (n − 1)-th
layers, respectively.

Uniform Initialize
the weights w

Predict output y
using w, x

Calculate Cost J

Update w
using dw

Find dJ/dw

Forward Pass

Backward Pass

Figure 3. Structure of the fully-connected neural network used for QGP detection. The blue color is
the forward propagation of information, and the red color is the backpropagation of information.

(l-1)-th layer l-th layer

Figure 4. Each neuron in a fully-connected layer in a MLP is constructed from all the neurons of the
previous layer. Each of the neurons in l-th layer, shown in purple, has connections or has input from
every neuron in the (l −1)-th layer, shown in green.

The number of fully-connected hidden layers or network depth can be increased in
an attempt to capture the optimal representational capacity of the network for this specific
type of input and task that should be performed. A comparison of the performance of MLP
models with different network depths for their architectures has been carried out by [15].

123

Algorithms 2023, 16, 344

The other type of network used is the Convolutional Neural Network (CNN) [16].
As compared to the MLPs explained above, these types of networks are more capable of
capturing position-dependent features of the data. CNNs are commonly used for grid-like
data in multi-dimensional space. One of the popularly used examples of this is the object
detection or image recognition models, which utilize the grid-like arrangement of pixels in
2D space with usually color information as the third dimension. A similar correspondence
can be drawn to such image data with the input data used in this analysis. The dataset
used in this study can be viewed as a grid-like arrangement of three observables, namely
(|p|), (θ), and (φ), of the most common particles in QGP and non-QGP events. The structure
of the convolutional neural network used for QGP detection is shown in Figure 5.

CNNs are primarily based on the mathematical operation of the convolution [17],
denoted by the operator ∗ and are generally defined as follows:

(f ∗ g)(x) =
∫ ∞

−∞
f (y)g(x− y)dy

where f (x) and g(x) are signals on the real line R for a 1D dataset. In general, as input data
are usually discrete signals/data in real-world applications, it is more suitable to use the
discrete version of the above equation:

(f ∗ g)[n] =
∞

∑
m=−∞

f [m]g[n−m]

It is important to note that in CNNs, although the operation is termed as convolution,
it is actually cross-correlation. Basically, in a CNN or for the cross-correlation operation,
there will not be a flip of the filter as is required in typical convolutions. However, except
for this flip, both operations are identical.

CNNs have a local connection between specific regions in the input data and the
corresponding units in the subsequent layer. In general, multiple filters can be applied to
create a set of feature maps. Through the learning process, the filters are trained to capture
abstract structural features of the data that help to match the desired output and reduce the
corresponding cost function [18]. This makes them very suitable for classification tasks, as
is the case for this analysis, but their applications extend to regression tasks as well.

With regards to practical implementation, there are also the benefits of parameter shar-
ing, which increase its efficiency, reduce the overall complexity of the network, and help
with overfitting issues. Some examples of possible applications of CNN in the field of parti-
cle physics include regression tasks such as Pileup Mitigation in Emiss

T reconstruction [19]
and classification tasks include quark–gluon jet discrimination [20].

In general, there can be three different types of convolution such as valid, same, and
full convolutions. It depends on the size of the output feature map compared to the input
feature map, such as if the output map is smaller (valid), same (same), or bigger (full) than
the input map.

An example of forward pass in convolutional layers is shown below, which shows the
application of valid convolution with 2× 2 kernel and 3× 3 input map.⎡

⎣a b c
d e f
g h i

⎤
⎦ ∗ [p q

r s

]
=

[
(a · p) + (b · q) + (d · r) + (e · s) (b · p) + (c · q) + (e · r) + (f · s)
(d · p) + (e · q) + (g · r) + (h · s) (e · p) + (f · q) + (h · r) + (i · s)

]

It is very common to see a max-pooling layer either right after a convolution layer
or after multiple ones. The main objective here is to extract the sharpest features of the
input data. It also helps with reducing the dimension of the output feature map and
computations. In the max-pooling layer, instead of matrix calculations in the convolution
operation above, the maximum element from the group of elements coinciding with the
elements of the filter size is selected.

124

Algorithms 2023, 16, 344

L0: 28 x
20x20x20

x
28

 c
h

an
n

el
s

x 32 channels

 F0: 28 x
3x3x3
x 32

L1: 32 x 20x20x20 L2: 32 x
10x10x10

x 64 channels

 F1: 32 x
3x3x3
x 64

L3: 64 x
10x10x10

L4: 64 x
5x5x5

L0→L1: 3D Convolution L1→L2: 3D Pooling L2→L3: 3D Convolution L3→L4: 3D Pooling

x 64 ch
an

n
els

Forward Pass Forward Pass

Backward Pass

Backward Pass

F
la

tt
en

FC ANN
input: 8000

F
C

 (6
4,

 L
R

eL
U

) +
 F

C
 (2

, S
o

ft
m

ax
)

Figure 5. Structure of the convolutional neural network used for QGP detection. The blue color is the
forward propagation of information, and the red color is the backpropagation of information. Each of
the cubes can be represented as L×M× N matrix and follow the forward pass operation.

In the case of 3D convolution, there will also be analogous calculations in the third
dimension for both the kernel and input feature map such as shown in Figure 6a. This
also applies to max-pooling in 3D as shown in Figure 6b. In the case of same convolution,
as applied in this study, the input feature map will be padded with zeroes, called zero-
padding, before applying the convolution in order to obtain an output feature map of the
same dimension as the input feature map. Taking the above 2D convolution as an example
again, the corresponding convolution operation in matrix multiplication can be expressed
as follows:

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 a b c 0
0 d e f 0
0 g h i 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ∗

[
p q
r s

]
=

⎡
⎢⎢⎣

a · s a · r + b · s b · r + c · s c · r
a · q + d · s a · p + b · q + d · r + e · s b · p + c · q + e · r + f · s c · p + f · r
d · q + g · s d · p + e · q + g · r + h · s e · p + f · q + h · r + i · s f · p + i · r

g · q g · p + h · q h · p + i · q i · p

⎤
⎥⎥⎦

In the above convolution, a zero-padding of width 1 is used to achieve a same con-
volution output. The backpropagation for such a convolution operation can be found
using a similar convolution operation but changing the kernel and input depending on
whether the gradient with respect to the weight matrix or the input gradient is required.
The gradient with respect to the weight parameters is given as

∂L

∂W
= X ∗ ∂L

∂Y

which can be translated to the matrix form, when taking the 2D convolution without
padding for the sake of matrix size, as (here it is a valid convolution because the output
feature map is smaller than the input one):

125

Algorithms 2023, 16, 344

∂L

∂W
=

[
∂L
∂p

∂L
∂q

∂L
∂r

∂L
∂s

]

=

⎡
⎣a b c

d e f
g h i

⎤
⎦ ∗

[
∂L
∂y1

∂L
∂y2

∂L
∂y3

∂L
∂y4

]

and that for the input gradient the convolution in matrix form can be represented if the
kernel is rotated and zero-padding is added to the output so that there is proper matching
of the kernel elements and output elements in the order where it appeared in the forward
pass convolution.

∂L

∂I
=

⎡
⎢⎣

∂L
∂a

∂L
∂b

∂L
∂c

∂L
∂d

∂L
∂e

∂L
∂ f

∂L
∂g

∂L
∂h

∂L
∂ci

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 0 0
0 ∂L

∂y1
∂L
∂y2

0
0 ∂L

∂y3
∂L
∂y4

0
0 0 0 0

⎤
⎥⎥⎥⎦ ∗

[
s r
q p

]

These equations involve computations of the gradients of the loss function L with
respect to the output feature map Y, the kernel W, and the input feature map X in the
backward pass of 2D convolution using explicit matrix multiplication. See Figure 5 for 3D
cube-like representation of the Y, W, and X matrices and the corresponding convolution
operations for the model used in this analysis.

2.3. Neural Network Models

For MLP networks (shown in Figure 7), a hidden layer with 64 fully-connected neu-
rons complemented by Leaky Rectified Linear Unit (LReLU) [21] activation function is
implemented. The number of neurons is determined empirically and remains constant
to allow comparison of FC neural networks with varying numbers of layers. LReLU is
chosen for its performance, which is akin to the widely used Rectified Linear Unit (ReLU)
activation function, but it circumvents issues related to dead neurons [22]. For the learning
process, the adaptive moment estimation (ADAM) [23] algorithm is used to optimize the
network parameters after each step. The ADAM algorithm updates exponential moving
averages of the gradient (mt) and the squared gradient (vt), which themselves are estimates
of the 1st moment (the mean) and the 2nd raw moment (the uncentered variance) of the
gradient with the hyper-parameters β1, β2, which control the exponential decay rates of
these moving averages with respective values 0.9 and 0.999. The values for α and ε are
0.001 and 10−8, respectively [23].

The architecture of the CNN (shown in Figure 8) is composed of two three-dimensional
convolutional layers, each succeeded by a max-pooling layer, and two sequentially arranged
fully-connected layers. The initial convolutional layer contains 32 filters of size 3× 3× 3,
with a zero-padding of 1× 1× 1 and a stride of 1× 1× 1, thus preserving the spatial
dimensions of the input. The convolution is then followed by a max-pooling operation with
a filter size of 2× 2× 2 and stride of 2× 2× 2, leading to a halving of the spatial dimensions.
The second convolutional layer consists of 64 filters of identical size and employs the same
padding and stride length as the preceding convolutional layer. It is subsequently followed
by a max-pooling layer with an identical filter size and stride length to the previous pooling
layer. The resulting 64× 5× 5× 5 matrix is then flattened and fed into the fully-connected
layers with parameters mirroring those utilized in the MLP architectures.

126

Algorithms 2023, 16, 344

x
28

 c
ha

nn
el

s

Input

28 x 22x22x22
(Zero-border)

Filter Partial sums Output

28 x 20x20x2028 x 3x3x3
(Kernel)

20x20x20

x 1 channel

*

*

*

+

(a)

x
32

 c
ha

nn
el

s

Input Output

32 x 20x20x20 32 x 10x10x10

x 32 channels

(b)
Figure 6. (a): 3D Convolution. An illustration of the three-dimensional convolution operation
applied to the input layer using a single filter, composed of 28 kernels. This process transforms
the 28 input channels into a singular output channel. The quantity of output channels directly
corresponds to the number of filters used during the convolution. (b): 3D Pooling. An illustration of
the three-dimensional pooling operation. Despite retaining the original number of channels, the data
dimensions are halved. For instance, a 20× 20× 20 cube is reduced to a 10× 10× 10 cube through
this process.

Input: 28 x 20x20x20Input: 28 x 20x20x20

Flatten — 224000

FC (2, Softmax)

QGP on QGP off

FC (64, LReLU)

FC (64, LReLU)

Input: 28 x 20x20x20

Flatten — 224000

FC (2, Softmax)

QGP on QGP off

Flatten — 224000

FC (2, Softmax)

QGP on QGP off

FC (64, LReLU)

Figure 7. From left to right: structure of one-, two- and three-layer fully-connected neural networks
used for QGP detection.

127

Algorithms 2023, 16, 344

Flatten — 8000

FC (2, Softmax)

QGP on QGP off

FC (64, LReLU)

MaxPool3D (2x2x2)

Conv3D (64, 3x3x3, LReLU)

MaxPool3D (2x2x2)

Conv3D (32, 3x3x3, LReLU)

Input: 28 x 20x20x20

Figure 8. Structure of the convolutional neural network used for QGP detection. The network consists
of two sets of convolution and max-pooling layers, followed by two fully-connected layers. After
processing through the CNN, the final output matrix is fed into the fully-connected layers for further
analysis and classification.

3. Results

Figure 9 compares the results for the same models implemented in ANN4FLES (shown
in red) and PyTorch (shown in blue) for both training (represented by a dashed line) and
testing (represented by a solid line) datasets.

The fully-connected networks show a maximum accuracy of around 80% for testing
data for each of the three different depth configurations, namely 0, 1, and 2 hidden layers,
respectively. CNN, on the other hand, shows around 95% accuracy for its testing dataset.
Another observation is the accuracy of CNN for the testing dataset is greater as compared
to that of MLP by around 15%. This can be attributed to the grid-like ordering present
in the input data and as mentioned earlier CNNs are more specialized in learning such
grid-like data.

The comparative graphs also indicate that the mathematics used in the ANN4FLES
package implementation agrees correctly with PyTorch. The small discrepancies in accuracy
may be due to the use of different random seeds when initializing the weights in the
two implementations. Since these weights are randomized, reproducing identical results
is challenging.

128

Algorithms 2023, 16, 344

Thus, although small deviations in accuracy are present due to the inherent random-
ness, the overall correlation between ANN4FLES and PyTorch implementation results
reinforces the validity of ANN4FLES’ mathematical foundations. This comparison shows
that both ANN4FLES and PyTorch have an almost identical model for the classification task.

(a) (b)

(c) (d)

Figure 9. Results for same models implemented in ANN4FLES (red) and PyTorch (blue) for both
training (dashed line) and testing (solid line) datasets. The accuracy for MLP models with 0 hidden
layer ((a), Training and testing accuracy for MLP without hidden layers), 1 hidden layer ((b), Training
and testing accuracy for MLP with 1 hidden layer) and 2 hidden layer ((c), Training and testing accu-
racy for MLP with 2 hidden layers) fits the training dataset well as the training accuracy reaches 100%
as compared to the testing dataset where the accuracy saturates around 80%. For CNN ((d), Training
and testing accuracy for CNN network) the generalization error is reduced compared to that of the
MLP models and shows it is more capable of learning the right features for classification.

4. Conclusions

The results of this study indicate that the neural network classifiers manage to identify
patterns in the raw data simulated using the transport model with and without a quark–
gluon plasma (QGP) formation model. Among the four architectures tested, the CNN
achieves the highest accuracy of approximately 95%. The potential of using neural network
classifiers to identify QGP formation in heavy-ion collisions was shown. Moving forward,
the ANN4FLES package will be integrated into the physics analysis module of the FLES
package and will be used as a QGP trigger for event selection for the CBM experiment.
Future work will continue to explore the performance of various neural network architec-
tures within the ANN4FLES package across different types of input data. Another objective
will be understanding the patterns these neural network classifiers learn and whether they
match with our physics models.

129

Algorithms 2023, 16, 344

Author Contributions: Conceptualization, A.B., I.K. and R.L.; Methodology, A.B. and I.K.; Software,
A.B., R.L. and A.M.; Validation, A.B. and I.K.; Formal analysis, A.B. and A.M.; Investigation, A.B. and
R.L.; Resources, I.K.; Data curation, I.K.; Writing—original draft, A.B., R.L. and A.M.; Writing—review
& editing, A.M.; Supervision, I.K.; Project administration, I.K.; Funding acquisition, I.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by grants from Bundesministerium für Bildung und
Forschung grant number 01IS21092 and Helmholtz Forschungsakademie Hessen für FAIR, Darmstadt,
Germany (HFHF Project ID: 2.1.4.2.5).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sturm, C.; Stöcker, H. The Facility for Antiproton and Ion Research FAIR. Phys. Part. Nucl. Lett. 2011, 8, 865–868. [CrossRef]
2. Friman, B.; Höhne, C.; Knoll, J.; Leupold, S.; Randrup, J.; Rapp, R.; Senger, P. (Eds.) The CBM Physics Book, 1st ed.; Lecture Notes

in Physics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 211–213.
3. Friese, V. Simulation and reconstruction of free-streaming data in CBM. In Journal of Physics: Conference Series; IOP Publishing:

Bristol, UK, 2011; Volume 331, p. 032008.
4. Schwarz, K.; Uhlig, F.; Karabowicz, R.; Montiel-Gonzalez, A.; Zynovyev, M.; Preuss, C. Grid Computing at GSI for ALICE and

FAIR-present and future. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2012; Volume 396, p. 032097.
5. Friese, V.; CBM Collaboration. The high-rate data challenge: Computing for the CBM experiment. In Journal of Physics: Conference

Series; IOP Publishing: Bristol, UK, 2017; Volume 898, p. 112003.
6. Kisel, P. KF Particle Finder Package: Missing Mass Method for Reconstruction of Strange Particles in CBM (FAIR) and STAR

(BNL) Experiments. Ph.D. Thesis, Goethe University, Frankfurt am Main, Germany, 2023.
7. Kisel, I.; Kulakov, I.; Zyzak, M. Standalone first level event selection package for the CBM experiment. IEEE Trans. Nucl. Sci.

2013, 60, 3703–3708. [CrossRef]
8. Cassing, W.; Bratkovskaya, E. Parton transport and hadronization from the dynamical quasiparticle point of view. Phys. Rev.

2008, 78, 034919. [CrossRef]
9. Cassing, W.; Bratkovskaya, E. Parton–hadron–string dynamics: An off-shell transport approach for relativistic energies. Nucl.

Phys. 2009, 831, 215–242. [CrossRef]
10. Koch, P.; Müller, B.; Rafelski, J. From Strangeness Enhancement to Quark–Gluon Plasma Discovery. Int. J. Mod. Phys. 2017,

32, 1730024. [CrossRef]
11. Taud, H.; Mas, J.; Multilayer Perceptron (MLP). Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T.,

Paegelow, M., Mas, J.F., Escobar, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 451–455.
12. Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 1991, 2, 183–197. [CrossRef]
13. Ramchoun, H.; Amine, M.; Idrissi, J.; Ghanou, Y.; Ettaouil, M. Multilayer Perceptron: Architecture Optimization and Training.

Int. J. Interact. Multimed. Artif. Intel. 2016, 4, 26–30. [CrossRef]
14. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
15. Sergeev, F.; Bratkovskaya, E.; Kisel, I.; Vassiliev, I. Deep learning for Quark–Gluon Plasma detection in the CBM experiment. Int.

J. Mod. Phys. 2020, 35, 2043002. [CrossRef]
16. O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458
17. Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285.
18. Taye, M.M. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future

Directions. Computation 2023, 11, 52. [CrossRef]
19. Convolutional Neural Networks with Event Images for Pileup Mitigation with the ATLAS Detector. 2019. Available online:

https://inspirehep.net/literature/1795222 (accessed on 13 June 2023)
20. Lee, J.S.H.; Park, I.; Watson, I.J.; Yang, S. Quark-Gluon Jet Discrimination Using Convolutional Neural Networks. J. Korean Phys.

Soc. 2019, 74, 219–223. [CrossRef]
21. Jiang, T.; Cheng, J. Target Recognition Based on CNN with LeakyReLU and PReLU Activation Functions. In Proceedings of

the 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Beijing, China, 15–17 August 2019;
pp. 718–722.

22. Dubey, A.K.; Jain, V. Comparative Study of Convolution Neural Network’s ReLU and Leaky-ReLU Activation Functions. In
Applications of Computing, Automation and Wireless Systems in Electrical Engineering; Mishra, S., Sood, Y.R., Tomar, A., Eds.; Springer:
Singapore, 2019; pp. 873–880.

23. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

130

Citation: Gursesli, M.C.; Selek, M.E.;

Samur, M.O.; Duradoni, M.; Park, K.;

Guazzini, A.; Lanatà, A. Design of

Cloud-Based Real-Time Eye-Tracking

Monitoring and Storage System.

Algorithms 2023, 16, 355. https://

doi.org/10.3390/a16070355

Academic Editor: Frank Werner

Received: 19 June 2023

Revised: 13 July 2023

Accepted: 23 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Design of Cloud-Based Real-Time Eye-Tracking Monitoring
and Storage System

Mustafa Can Gursesli 1,2, Mehmet Emin Selek 3, Mustafa Oktay Samur 4, Mirko Duradoni 2, Kyoungju Park 5,

Andrea Guazzini 2,6 and Antonio Lanatà 1,*

1 Department of Information Engineering, University of Florence, 50139 Florence, Italy;
mustafacan.gursesli@unifi.it

2 Department of Education, Literatures, Intercultural Studies, Languages and Psychology,
University of Florence, 50135 Florence, Italy; mirko.duradoni@unifi.it (M.D.); andrea.guazzini@unifi.it (A.G.)

3 Department of Mining Engineering, Istanbul Technical University, Istanbul 34467, Turkey;
mehmeteminselek@gmail.com

4 Department of Electrical and Electronics Engineering, Bilgi University, Istanbul 34060, Turkey;
oktaysamr@gmail.com

5 Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
kjpark@cau.ac.kr

6 Centre for the Study of Complex Dynamics, University of Florence, 50019 Sesto Fiorentino, Italy
* Correspondence: antonio.lanata@unifi.it

Abstract: The rapid development of technology has led to the implementation of data-driven systems
whose performance heavily relies on the amount and type of data. In the latest decades, in the field
of bioengineering data management, among others, eye-tracking data have become one of the most
interesting and essential components for many medical, psychological, and engineering research
applications. However, despite the large usage of eye-tracking data in many studies and applications,
a strong gap is still present in the literature regarding real-time data collection and management,
which leads to strong constraints for the reliability and accuracy of on-time results. To address
this gap, this study aims to introduce a system that enables the collection, processing, real-time
streaming, and storage of eye-tracking data. The system was developed using the Java programming
language, WebSocket protocol, and Representational State Transfer (REST), improving the efficiency
in transferring and managing eye-tracking data. The results were computed in two test conditions,
i.e., local and online scenarios, within a time window of 100 seconds. The experiments conducted
for this study were carried out by comparing the time delay between two different scenarios, even
if preliminary results showed a significantly improved performance of data management systems
in managing real-time data transfer. Overall, this system can significantly benefit the research
community by providing real-time data transfer and storing the data, enabling more extensive studies
using eye-tracking data.

Keywords: data management; cloud computing; RESTful API; eye tracking; web portal

1. Introduction

In recent decades, technology has become a crucial element of human life, leading
to various innovative and convenient advancements across numerous fields, including
health [1,2], entertainment [3,4], social media [5,6], physics [7,8], and chemistry [9,10]. While
these innovations have positively impacted human life, they also demanded several tech-
nological requirements. These requirements, including computational power [11], Internet
access [12], electricity [13], data [14], and other factors [15,16], have become increasingly
crucial in both academia and industry sectors. Data and data management, in particular, be-
came the center node for solving these technological challenges, and their relevance has been
further increased by the growth of machine learning methods and AI applications [14,17,18].

Algorithms 2023, 16, 355. https://doi.org/10.3390/a16070355 https://www.mdpi.com/journal/algorithms131

Algorithms 2023, 16, 355

However, despite the need for huge data, research applications still lack suitable and ef-
fective data collection systems. Moreover, since many studies, especially those regarding
a large part of the population, moved to mobile applications, real-time data became the
strongest constraint to solve [19,20]. These conditions have led researchers to focus on
improving and creating novel data collection systems to facilitate the technological advances
in the research activity. These data collection systems are widely used in many studies on
topics as different as brain signals [21], earthquakes [22], weather conditions [23], etc.

In this context, Representational State Transfer (REST), the most widely used web-
based architecture in both the academic literature and industry, was introduced in 2000 as a
Ph.D. thesis by Roy Fielding [24] for leading the design and development of the architecture
of an Internet-scale distributed hypermedia system. It facilitates the caching of components
to reduce user-perceived latency, enforce security, and encapsulate legacy systems [24].
REST employs the Hyper Text Transfer Protocol (HTTP) to enable communication between
clients and servers. Its structure provides several advantages, including modifiability and
statelessness, which enhance interoperability [25]. These advantages bring substantial
benefits to the management of real-time data.

In addition to the solutions and limitations associated with real-time data management,
it is widely recognized that the real-time management of diverse data types presents
unique challenges due to their high density and rapid flow rates [26]. Eye-tracking data
in particular present this complexity due to their highly dynamic and rapidly changing
nature [27–29]. Furthermore, an eye-tracking pattern is an indirect measure of the complex
biological system behind it, which requires high-cost computational methods for analysis
with models, creating a major problem for the smooth real-time streaming of data.

In this regard, eye tracking is a powerful research tool for studying various topics,
such as marketing [30], attention [31], perception [32], psychopathology [33], computer
vision [34], and decision making [35,36]. Eye tracking provides insight into the neural
mechanisms at the base of exploring strategies of visual stimuli [37]. The eye-tracking
technology greatly advanced in recent years, achieving greater precision and accuracy, even
in real-world environments [34,38,39]. The history of eye tracking can be traced back to
the late 1800s, with improvements in terms of comfort, wearability, and performance for
a long-time measure of eye movements [36,40,41]. Since then, there have been important
advancements that have led to the development of increasingly sophisticated eye-tracking
systems [42–44].

Although physical eye-tracking devices have improved and become easier to use,
the real-world employment of these devices is still not widespread due to their high
cost [42–44]. This practical issue has prompted researchers to find different solutions,
and many eye-tracking models using webcams have been developed [34,39,45]. Many of
these models can be implemented locally on the user’s devices and streamed to different
platforms via Internet and web servers. Researchers integrate their models into web
platforms to reach larger audiences and collect more data. Unfortunately, there is a gap in
the literature regarding web-based streaming and storage systems that can be integrated
with real-time eye-tracking models.

This study aims to introduce a system that allows the collection, processing, real-
time streaming, and storage of eye-tracking data with REST architecture implementation.
The manuscript is structured as follows: In Section 1, data necessity, REST, real-time data,
and eye tracking are explained. Section 2 presents the materials and methods, the system
design, the Representational State Transfer, the application programming interface, Web-
Socket, the database server, Docker, WebGazer.js, the hardware implementation, and the
experiment. In Section 3, the experimental results are detailed. Section 4 discusses the
achieved experimental results compared with those presented in the literature. Lastly,
Section 5 provides a conclusion of the entire study and possible future research directions.

132

Algorithms 2023, 16, 355

2. Materials and Methods

The system’s architecture consists of two software modules, i.e., the front-end and the
back-end. The former is responsible for interfacing with the user, acquiring information,
preprocessing, streaming live data, and transferring to the back-end. The latter is the
invisible part and includes applications, servers, and databases. This section will display
how our architecture articulates between these two modules. In our structure, three
different interconnected platforms are designed to collect, process, stream, and store eye
movements during an experimental session. These platforms are the experiment platform,
the real-time results platform, and the database management platform (see Figure 1). The
experiment and real-time results platforms are located in the front-end while the database
management platform is located in the back-end. The front-end and back-end communicate
through HTTP. Lastly, data gathered from this study were analyzed using Python Version
3.10.0 with Matplotlib library version 3.5.3. All details of the system and data flow are
reported in the following sections.

Figure 1. System design components: experiment platform (A), real-time results platform (B), and server (C).

2.1. System Design

The system is designed with three components under two main modules (see Figure 1).
The experimental platform (A) and the real-time results platform (B) are in the front-
end module. In the back-end module, there is a server (C) component. The front-end
development uses JavaScript, HyperText Markup Language (HTML), and Cascading Style
Sheets (CSS), which allows the creation of a user-friendly interface. This interface displays
the live data stream and the evaluation report of the eye-tracking system. HTML5 video
tags are used to display participant’s live video stream.

The front-end is specifically designed to integrate the eye-tracking model and provide
a clear presentation of its live results. Moreover, data transfer between the experiment
platform (A) and real-time results platform (B) is carried out via WebSocket. Subsequently,
these data are transmitted to the back-end server via an HTTP request and stored in the
database. The front-end is the preferred implementation location for eye-tracking mod-
els to ensure a more robust privacy strategy. Since sensitive data, such as eye-tracking
information, is processed in this system, the aim is to perform all computations exclu-
sively on the computer being used, without involving external servers or sources. This
strategic approach is motivated by the fact that various models, including eye-tracking
models found in the literature, perform computations on snapshots captured by the user’s
webcam [46,47]. Processing these images on an external server is considered to introduce
potential security vulnerabilities. Therefore, all computations are configured to take place
only on the computer running the experiment, and only the results are transferred to other
platforms and servers.

133

Algorithms 2023, 16, 355

The back-end structure was built using Spring Boot, which is a framework of the
Java language, providing a robust and scalable data processing and management platform.
At the end of data collection on the front-end side, the collected data are sent to the back-
end service by HTTP requests. The back-end service aims to process and manage data
for database storage. In addition, the back-end provides a data management API that
facilitates read and write operations to the SQL database.

Database management involves the use of an SQL database for the efficient storage
and management of data. The database provides scalability and ease of retrieval and
analysis of stored data. The back-end communicates with the database using Java Database
Connectivity (JDBC), a Java API designed to access and manage databases. This seamless
integration enables effective data handling within the system. Dockerization plays a
major role in encapsulating the various components of the system. It involves separating
the front-end, back-end, and database into separate Docker containers. Each container
can be deployed independently, allowing for easy scalability based on the application’s
needs. Dockerization also provides a secure and isolated environment for each component,
ensuring the stability and security of the overall system.

The system flow can be briefly described as follows: The experiment platform (A)
captures the eye movements and positions of the subject through an embedded model,
converts them into coordinates, and sends them to the real-time results platform (B). These
two platforms communicate with each other via WebSockets and provide a data flow by
constantly listening to exchanged messages from A to B and vice versa. The eye-tracking
model placed on the experimental platform initiates data collection and its results are
then transmitted to a real-time results platform and streamed to the back-end via HTTP
requests. Following the end of the data collection session, the eye-tracking data, streamed
instantaneously on the real-time results platform (B), are sent via HTTP request to the
Server (C), which constitutes the last stage of the data flow in the back-end (See Figure 2).

Figure 2. System flowchart.

2.2. Representational State Transfer (REST) and Application Programming Interface (API)

Representational State Transfer (REST) is designed to develop web services based
on precise standards and limitations to grant an expandable and adaptable cross-data
transaction over the Internet [24]. RESTful API (application programming interface) is an
interpretation of the REST architecture that provides access to and actions on resources
using HTTP. In a RESTful API, the server does not store data about the user between
requests; instead, each request has all the data the server needs to process it. RESTful
APIs follow a set of constraints, such as client-server architecture and a consistent interface,
among others, to ensure that they are reliable, scalable, and easy to maintain [48,49]. REST
has become popular among developers due to its simplicity and flexibility. In addition,

134

Algorithms 2023, 16, 355

RESTful APIs have evolved into a standard for web services development and are actively
used by many large companies such as Google, Twitter, etc.

2.3. WebSocket

WebSocket is a communication protocol pertaining to the application layer in the
Transmission Control Protocol/Internet Protocol model (TCP/IP) [50]. Due to the popu-
larity and prevalence of HTTP, WebSocket uses HTTP constructs for the initial connection
between a client and a server [51] and provides persistent communication so that both
the client and the server can send messages at any time. Compared to traditional real-
time web communication, the WebSocket protocol saves a lot of network bandwidth and
server resources, and the real-time performance is significantly improved [52]. It is helpful
for real-time applications such as online games, financial trading platforms, eye tracking,
and Internet of Things (IoT)-based applications that support server push technology [53,54].

2.4. Database Server (SQL)

The SQL (structured query language) is a fourth-generation declarative programming
language for relational DBMSs (database management systems) and it is used to communi-
cate with and manipulate databases [55]. The MySQL database stores and retrieves data
via the REST API. The stored procedures and functions are designed as a security layer
to perform operations that would receive queries from the API for SQL processing in the
database [56].

There are many parameters to consider when evaluating database performance. In the
next section, we will highlight the qualities that made SQL databases more suitable for this
system over NoSQL databases. In particular, NoSQL databases outperform SQL databases
regarding writing speed and scalability. NoSQL databases perform better when dealing
with large scalability requirements and facilitating rapid data updates [57]. However,
SQL databases better manage complex relationships and multiple client scenarios [57].
The characteristics of the SQL, structure, and capability to maintain data integrity make
them suitable for scenarios involving relational data tables (such as the study carried out).
Due to the anticipated availability of multiple user results and relational data in this system,
the SQL database was chosen over NoSQL.

2.5. Docker

Docker is a technology that enables container virtualization, which can be compared to
a highly efficient virtual machine due to its lightweight nature [58,59]. It is characterized by
a modular architecture comprising multiple integral components that interact harmoniously
to facilitate the process of “Containerization”. These components are articulated as follows:
At the core of Docker is the Docker Engine, which provides the runtime environment
for containers [59]. Docker Images, read-only templates that serve as container building
blocks, utilize a layered file system and copy-on-write mechanism for efficient image
management [59]. When a Docker Image is instantiated, it becomes a Docker Container,
which offers a lightweight and secure execution environment [59]. Docker Containers can be
easily created, started, stopped, and deleted, providing flexibility in managing application
instances [60]. To facilitate image sharing and distribution, Docker Registries, such as
Docker Hub, host a vast collection of prebuilt images [61]. Additionally, organizations can
establish private registries tailored to their specific image requirements [61]. The modular
architecture of Docker, along with its components, enables scalable and flexible application
deployment across various environments.

2.6. WebGazer.js

WebGazer.js is a JavaScript-based eye-tracking algorithm. This algorithm allows the
real-time display of eye-gaze locations on the web using webcams on notebooks and mobile
phones [39,62]. This tool aims to utilize eye-tracking systems, which are currently only used
in controlled environments and experiments, to enable people to use them in their daily

135

Algorithms 2023, 16, 355

lives [39,62]. WebGazer.js consists of two core elements. These are a pupil detector and a
gaze estimator. The pupil detector detects the position of the eye and pupil through the
webcam. At the same time, the gaze estimator uses regression analysis to estimate where
the individual is looking on the screen [39,62]. The gaze estimator applies a regression
analysis through a calibration based on mouse clicks and mouse movements. Moreover,
the pseudocode of WebGazer.js shows the algorithm details (See in Appendix A.1).

2.7. Hardware Implementation

In the system, three Docker virtual environments were used to perform experiments,
stream real-time eye movements, and store data. In order to carry out online experiments,
two separate physical AMD Central Processing Units (CPUs), 1 GB of Random Access
Memory (RAM), and 25 GB of Solid State Disk (SSD) hardware were used for the front-end
where the eye-tracking model runs and for live feed eye-tracking data. Furthermore, to store
the data and manage the back-end, 2 physical Intel CPUs, 2 GB of RAM, and 25 GB of SSD
hardware were used. The locations of the servers where the Dockers are used are located
in Frankfurt, Germany for online experiments. The local experiments were conducted
with Intel i5 8600k CPUs and 16 GB of RAM. Lastly, in both systems, eye-tracking data
are collected in X and Y coordinates, while the data for time in seconds are stored in
Year:Month:Day:Hour:Minute:Second:Millisecond.

2.8. Memory Management

Low-level programming languages, such as C, incorporate manual memory man-
agement features like malloc() and free() [63]. Conversely, JavaScript handles memory
allocation automatically during object creation and frees it when those objects are no longer
in use, through a process known as garbage collection. “Garbage Collection” in JavaScript
plays a crucial role in determining which objects are necessary and which ones can be
discarded [64]. It follows a cycle of memory release, where JavaScript identifies and marks
objects that are no longer needed [65]. Specifically, within the predictWebcam function and
the objects created within it, memory is allocated as required during each function call.
Once the function produces an output, JavaScript performs the important task of marking
and sweeping all the memory that will no longer be utilized, ensuring efficient memory
management. In this system, we follow the garbage collection strategy.

2.9. Experiments

Experimental sessions were carried out to assess the reliability of the proposed system
architecture, comparing two different scenarios: local implementation (LI) and online
implementation (OI). The local scenario involved configuring the system on the local
computer, while the online scenario consisted of configuring the system on the online server.

In order to measure the time delay of both scenarios (LI and OI), the timestamps
of each platform were collected during a 100 s time window. The delay was calculated
by subtracting the timestamp value of the experiment platform (A) from the timestamp
received on the real-time results platform (B) (B-A), (i.e., arrival time–starting time). It is of
note that platform (A) sends data to platform (B) at the frequency of 1 HZ (see Figure 1). The
Console.log() function was used to visualize data in the experiment. Specifically, Console.log()
is a function that allows the data given into the function to be seen outside the code
environment. This function allowed us to capture the precise timestamps indicating the
arrival and starting time of data effectively.

Moreover, for the second experiment, 15 min of data were collected from the system
at one-second intervals to understand how the system affects memory usage and how it
changes over time while the eye-tracking model is performing real-life computations in the
experiment platform. A logMemoryUsage() function was used to record the memory usage
measurements in real-time. Specifically, the logMemoryUsage() function can be used for
several purposes, such as analyzing the change in memory usage over time and detecting
memory leaks or performance problems.

136

Algorithms 2023, 16, 355

3. Results

In this study, a series of statistical analyses have been performed to evaluate the
difference between the delays of LI and OI. In order to perform the analyses correctly,
firstly, the Shapiro–Wilk test was applied to determine whether the delay data were
normally distributed. According to the results of the Shapiro–Wilk test, both the LI delay
data (Shapiro–Wilk test statistic = 0.370, p < 0.05) and the OI delay data (Shapiro–Wilk test
statistic = 0.322, p < 0.05) did not fit a normal distribution. Time difference distributions are
shown in Figure 3.

Figure 3. Comparison of time differences between the online and local systems.

Based on these results, it was concluded that parametric statistical tests could not be
used and the Mann–Whitney U test, a non-parametric test, was preferred. The results of
the Mann–Whitney U test showed a statistically significant difference between local and
online latency (U = 794.0, p < 0.05). Table 1 shows the Mann–Whitney U test results.

Table 1. Mann-Whitney U test results regarding the local and online conditions.

Condition U-Statistic p-Value

Local vs. online 794.0 3.317643× 10−25

According to descriptive statistics, the MAD value for the LI delay was 0.004, the me-
dian value was 0.064, the minimum value was 0.020, and the maximum value was 0.660.
Similarly, the MAD value for the OI delay was 0.006, the median value was 0.244, the mini-
mum value was 0.101, and the maximum value was 1.123. All the results of the descriptive
statistics are shown in Table 2.

Table 2. Descriptive statistics.

Condition MAD Median Min Max

Local 0.004 0.064 0.020 0.660
Online 0.006 0.244 0.101 1.123

These findings indicate that there is a statistically significant difference between LI
and OI delays and that there is a significant difference in their performance.

In addition, analysis of the memory usage data revealed interesting results (see Table 3).
The average increase between seconds was measured as 0.0037 MB. The average memory
usage during the session was measured as 72.62 MB with a minimum of 63.74 MB, and
the maximum memory usage was 83.62. The standard deviation of memory usage was
calculated at 3.48 MB.

137

Algorithms 2023, 16, 355

Table 3. Memory usage statistics.

Conditions Memory (Megabyte (MB))

Average increase between seconds 0.0037
Average memory usage 72.62

Minimum memory usage 63.74
Maximum memory usage 83.62

Standard deviation 3.48

Figure 4 shows an initial low level of memory usage that increases over time, with a
steady increase over a period of time. Although there are occasional fluctuations, the av-
erage memory usage (red dashed line) is generally above the curve and shows a steadily
increasing trend. These results show that the memory usage of the system varies over time
and reaches a stable level over a period of time.

Figure 4. Diagram of memory usage: blue line, memory usage dynamic; red dotted line, memory
usage average. Time axis is expressed in minutes.

4. Discussion

The demand for data has seen a substantial increase in recent years due to factors
such as rapid technological advancements, growing interest in AI from both the private
sector and researchers, and the proliferation of diverse research in the literature [66–69].
However, it is widely acknowledged that data collection systems, expected to keep up with
these demands, are facing limitations. This study aims to develop a system that facilitates
the data collection process for various studies, particularly in the academic domain, while
simultaneously enabling the real-time observation and streaming of the collected data.

Presently, REST is extensively employed in academic research across various fields, in-
cluding case generation [70], methodologies [71], biological data [72], machine learning [73],
etc. Furthermore, prominent companies, like Google, Amazon, Twitter, and Reddit, also
utilize this architecture. As part of this study, REST enables the instantaneous streaming
of the collected data. However, to avoid restricting researchers solely to Internet-based
usage, the system incorporates the Dockerization technique, allowing for local implementa-
tion. Consequently, tests were conducted in local and online (server-based) configurations.
A significant difference was found between the time it took for the eye-tracking model
data to reach the results page in the locally configured system compared to the same sys-
tem configured online. Numerous performance bottlenecks, such as Internet latency [74],
computer configuration [75], and server location [76], present considerable challenges that
are difficult to mitigate. Although the latency experienced online is significantly higher
than that of the local configuration, it is believed that the experimental online latency is not
substantial enough for users to discern [77] (the delay values are shown in Figure 3).

138

Algorithms 2023, 16, 355

The system presented in this study, which is based on several different techniques,
serves the purpose of the real-time streaming and storage of eye-tracking data. However,
it is crucial to highlight the flexibility of the proposed system, which can be adapted for
collecting and analyzing other data types in different experimental settings. Several studies
in the literature use Docker technology to build cloud platforms and integrate them into
a variety of experiments, similar to the approach used in this current study. The use
of Docker technology allows for the integratation of AI and various models in studies.
The system demonstrates a well-suited structure for numerous AI models in the literature.
In particular, Shanti et al. (2022) successfully implemented facial emotion recognition using
Convolutional Neural Networks [78]. In addition, Barillaro et al. (2022) presented a Deep
Learning-based ECG signal classification model [79]. Similarly, Vryzas et al. (2020) focused
on the task of speech emotion recognition, employing neural networks [80]. All these
studies use models that are implemented using Docker technology and have substructures
that can work in compatibility with the introduced system. Simultaneously, the system
allows the real-time tracking of users’ eye movements, enabling streaming over the Internet
without being limited to a single task.

The memory consumption of the experimental system should also be highlighted.
During the experiment, the memory consumption of the system slowly increased, putting a
certain load on the computer used for the experiment. However, it is important to stress that
this load is approximately 0.0037 MB per second and therefore does not have a noticeable
impact on the overall performance. Nevertheless, in a scenario where the duration of the
experiment is significantly longer, the potential load on the system should be carefully
considered and the experiment should be structured to take this into account.

Furthermore, future studies need to examine a larger pool of participants and adopt
more efficient memory management techniques. These improvements will contribute to a
more thorough analysis of the system’s capabilities and limitations, helping researchers
to gain deeper findings and more reliable systems. Lastly, researchers should test the
compatibility of the presented system with other structures and models, not only AI models
(e.g., physiological data [81,82], and psychological tests [83,84]). In addition, the proposed
architecture fosters strong collaboration between researchers adopting similar platforms,
enabling an incredibly flexible data exchange and sharing. Data storage via the Internet is
also expected to increase accessibility, thereby encouraging further research and discovery
in various fields. However, it is important to recognize that for future implementations
of this system, additional actions can be taken to increase the security of data storage.
Examples of such actions include the integration of multi-factor authentication, one-time
passwords, and other relevant security protocols [85,86].

5. Conclusions

This study reported on an approach to data collection and experimentation that demon-
strates the intricacies of a multi-purpose system for both online and local applications. This
study highlights the fundamental importance of data in scientific endeavors and calls for
further exploration of alternative data collection techniques.

Author Contributions: Conceptualization, M.E.S., M.O.S., A.L., A.G., M.C.G., K.P. and M.D.; method-
ology, A.L. and M.C.G.; investigation, M.E.S., M.O.S., A.L. and M.C.G.; data curation, M.E.S., M.O.S.
and M.C.G.; writing—original draft preparation, M.C.G., M.O.S., M.E.S. and M.D.; writing—review
and editing, A.G., M.C.G., M.O.S., K.P. and A.L.; supervision, A.G., A.L., M.D., K.P., A.G. and A.L.
are equally responsible for this study. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [A.L.], upon reasonable request.

Acknowledgments: Thanks to DigitalOcean (https://www.digitalocean.com/, accessed on 19 June 2023)
and Oliver Mensah for providing us with servers for tests and various other experiments.

139

Algorithms 2023, 16, 355

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Pseudocode of WebGazer.js

Algorithm A1: Starting WebGazer

1 Function startWebGazer:

2 Load WebGazer library;
3 Set up video and canvas elements on the webpage;

Algorithm A2: Starting Calibration

1 Function startCalibration:

2 Call initializeCalibration(), captureCalibrationData(), saveCalibrationData();
3 Display calibration instructions to the user;
4 Wait for the user to initiate the calibration process;
5 Call saveCalibrationData() # Set and save calibration process;

Algorithm A3: Capturing Calibration Data

1 Function captureCalibrationData:

2 Loop for a specified number of calibration points:;
3 Display a calibration point on the screen;
4 Wait for the user to focus their gaze on the calibration point;
5 Store the recorded gaze data for the calibration point;

Algorithm A4: Saving Calibration Data

1 Function saveCalibrationData:

2 Save the captured calibration data for future use;
3 Call setCalibrationData();

Algorithm A5: Setting Calibration Data

1 Function setCalibrationData:

2 Set previously saved calibration data;

Algorithm A6: Starting Gaze Tracking

1 Function startGazeTracking:

2 Call initializeWebGazer();
3 Call getGazeData();
4 Begin real-time tracking of the user’s gaze;
5 Display the gaze position on the screen;

Algorithm A7: Stopping Gaze Tracking

1 Function stopGazeTracking:

2 Stop tracking the user’s gaze;
3 Clear the displayed gaze position on the screen;

140

Algorithms 2023, 16, 355

Algorithm A8: Getting Gaze Data

1 Function getGazeData:

2 Retrieve the current gaze position data from the WebGazer library;
3 Return the gaze data;

Algorithm A9: Example Usage

1 Function ExampleUsage:

2 initializeWebGazer();
3 startCalibration();
4 captureCalibrationData();
5 saveCalibrationData();
6 // Later...;
7 initializeWebGazer();
8 loadCalibrationData();
9 startGazeTracking();

10 // During gaze tracking...;
11 gazeData = getGazeData();
12 // Utilize the gazeData for further processing or interaction;

References

1. Chaudhry, B.; Wang, J.; Wu, S.; Maglione, M.; Mojica, W.; Roth, E.; Morton, S.C.; Shekelle, P.G. Systematic review: Impact of
health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 2006, 144, 742–752. [CrossRef]
[PubMed]

2. Buntin, M.B.; Burke, M.F.; Hoaglin, M.C.; Blumenthal, D. The benefits of health information technology: A review of the recent
literature shows predominantly positive results. Health Aff. 2011, 30, 464–471. [CrossRef] [PubMed]

3. Martucci, A.; Gursesli, M.C.; Duradoni, M.; Guazzini, A. Overviewing Gaming Motivation and Its Associated Psychological and
Sociodemographic Variables: A PRISMA Systematic Review. Hum. Behav. Emerg. Technol. 2023, 2023, e5640258. . [CrossRef]

4. Rauterberg, M. Positive Effects of Entertainment Technology on Human Behaviour. In Building the Information Society, Proceedings
of the International Federation for Information Processing (IFIP) 18th World Computer Congress Topical Sessions, Toulouse, France, 22–27
August 2004 ; Jacquart, R., Ed.; Springer: Boston, MA, USA, 2004; pp. 51–58. [CrossRef]

5. Duradoni, M.; Spadoni, V.; Gursesli, M.C.; Guazzini, A. Development and Validation of the Need for Online Social Feedback
(NfOSF) Scale. Hum. Behav. Emerg. Technol. 2023, 2023, e5581492.

6. Carr, C.T.; Hayes, R.A. Social media: Defining, developing, and divining. Atl. J. Commun. 2015, 23, 46–65. [CrossRef]
7. Kadish, K.M.; Ruoff, R.S. Fullerenes: Chemistry, Physics, and Technology; John Wiley & Sons: New York, NY, USA, 2000.
8. Nicollian, E.H.; Brews, J.R. MOS (Metal Oxide Semiconductor) Physics and Technology; John Wiley & Sons: New York, NY, USA, 2002.
9. Noll, W. Chemistry and Technology of Silicones; Elsevier: Amsterdam, The Netherlands, 2012.
10. Whistler, R.L.; BeMiller, J.N.; Paschall, E.F. Starch: Chemistry and Technology; Academic Press: New York, NY, USA, 2012;

Google-Books-ID: pvAzqk2pAIsC.
11. Hwang, T. Computational power and the social impact of artificial intelligence. arXiv 2018, arXiv:1803.08971.
12. Yaqoob, I.; Ahmed, E.; Hashem, I.A.T.; Ahmed, A.I.A.; Gani, A.; Imran, M.; Guizani, M. Internet of things architecture: Recent

advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 2017, 24, 10–16. [CrossRef]
13. SG Andrae, A. New perspectives on internet electricity use in 2030. Eng. Appl. Sci. Lett. 2020, 3, 19–31.
14. Williams, P.H.; Margules, C.R.; Hilbert, D.W. Data requirements and data sources for biodiversity priority area selection. J. Biosci.

2020, 27, 327–338. [CrossRef]
15. Navajas, J.; Barsakcioglu, D.Y.; Eftekhar, A.; Jackson, A.; Constandinou, T.G.; Quiroga, R.Q. Minimum requirements for accurate

and efficient real-time on-chip spike sorting. J. Neurosci. Methods 2014, 230, 51–64. [CrossRef]
16. Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical

translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [CrossRef]
17. Vidgen, B.; Derczynski, L. Directions in abusive language training data, a systematic review: Garbage in, garbage out. PLoS ONE

2020, 15, e0243300.
18. Raupach, M.R.; Rayner, P.J.; Barrett, D.J.; DeFries, R.S.; Heimann, M.; Ojima, D.S.; Quegan, S.; Schmullius, C.C. Model–data

synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Glob. Chang. Biol.
2005, 11, 378–397. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2486.2005.00917.x (accessed on
19 June 2023). [CrossRef]

141

Algorithms 2023, 16, 355

19. Farmer, A.; Gibson, O.; Hayton, P.; Bryden, K.; Dudley, C.; Neil, A.; Tarassenko, L. A real-time, mobile phone-based telemedicine
system to support young adults with type 1 diabetes. Inform. Prim. Care 2005, 13, 171–177. [CrossRef]

20. Gradl, S.; Kugler, P.; Lohmüller, C.; Eskofier, B. Real-time ECG monitoring and arrhythmia detection using Android-based mobile
devices. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2452–2455.

21. Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11.
22. Boore, D.M.; Smith, C.E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS)

instruments deployed off the coast of southern California. Bull. Seismol. Soc. Am. 1999, 89, 260–274. [CrossRef]
23. Xue, M.; Wang, D.; Gao, J.; Brewster, K.; Droegemeier, K.K. The Advanced Regional Prediction System (ARPS), storm-scale

numerical weather prediction and data assimilation. Meteorol. Atmos. Phys. 2003, 82, 139–170. [CrossRef]
24. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures; University of California: Irvine, CA, USA, 2000.
25. Costa, B.; Pires, P.F.; Delicato, F.C.; Merson, P. Evaluating a Representational State Transfer (REST) architecture: What is the

impact of REST in my architecture? In Proceedings of the 2014 IEEE/IFIP Conference on Software Architecture, Sydney, Australia,
7–11 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 105–114.

26. Cho, G.Y.; Lee, S.J.; Lee, T.R. An optimized compression algorithm for real-time ECG data transmission in wireless network of
medical information systems. J. Med. Syst. 2015, 39, 1–8. [CrossRef]

27. Kroner, A.; Senden, M.; Driessens, K.; Goebel, R. Contextual encoder–decoder network for visual saliency prediction. Neural
Netw. 2020, 129, 261–270. [CrossRef]

28. Skaramagkas, V.; Giannakakis, G.; Ktistakis, E.; Manousos, D.; Karatzanis, I.; Tachos, N.S.; Tripoliti, E.; Marias, K.; Fotiadis,
D.I.; Tsiknakis, M. Review of eye tracking metrics involved in emotional and cognitive processes. IEEE Rev. Biomed. Eng. 2021,
16, 260–277. [CrossRef]

29. Black, M.H.; Chen, N.T.; Iyer, K.K.; Lipp, O.V.; Bölte, S.; Falkmer, M.; Tan, T.; Girdler, S. Mechanisms of facial emotion recognition
in autism spectrum disorders: Insights from eye tracking and electroencephalography. Neurosci. Biobehav. Rev. 2017, 80, 488–515.
[CrossRef] [PubMed]

30. Wedel, M.; Pieters, R. A review of eye-tracking research in marketing. In Review of Marketing Research; Emerald Group Publishing
Limited: Bingley, UK, 2017; pp. 123–147.

31. Srivastava, N.; Nawaz, S.; Newn, J.; Lodge, J.; Velloso, E.; Erfani, S.M.; Gasevic, D.; Bailey, J. Are you with me? Measurement of
Learners’ Video-Watching Attention with Eye Tracking. In Proceedings of the LAK21: 11th International Learning Analytics and
Knowledge Conference, Irvine, CA, USA, 12–16 April 2021; Association for Computing Machinery: New York, NY, USA, 2021;
pp. 88–98. [CrossRef]

32. Borys, M.; Plechawska-Wójcik, M. Eye-tracking metrics in perception and visual attention research. Eur. J. Med. Technol. EJMT
2017, 3, 11–23.

33. Iacono, W.G.; Lykken, D.T. Eye Tracking and Psychopathology: New Procedures Applied to a Sample of Normal Monozygotic
Twins. Arch. Gen. Psychiatry 1979, 36, 1361–1369. [CrossRef]

34. Krafka, K.; Khosla, A.; Kellnhofer, P.; Kannan, H.; Bhandarkar, S.; Matusik, W.; Torralba, A. Eye Tracking for Everyone. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2176–2184.

35. Fiedler, S.; Glöckner, A. The Dynamics of Decision Making in Risky Choice: An Eye-Tracking Analysis. Front. Psychol. 2012, 3, 335.
[CrossRef] [PubMed]

36. Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to
Methods and Measures; OUP: Oxford, UK, 2011.

37. Pfeiffer, U.J.; Vogeley, K.; Schilbach, L. From gaze cueing to dual eye-tracking: Novel approaches to investigate the neural
correlates of gaze in social interaction. Neurosci. Biobehav. Rev. 2013, 37, 2516–2528. [CrossRef]

38. Duchowski, A.T. Eye Tracking Methodology: Theory and Practice; Springer: London, UK, 2017.
39. Papoutsaki, A.; Laskey, J.; Huang, J. SearchGazer: Webcam Eye Tracking for Remote Studies of Web Search. In Proceedings of the

2017 Conference on Conference Human Information Interaction and Retrieval, Oslo, Norway, 7–11 March 2017; p. 26. [CrossRef]
40. Aslin, R.N.; McMurray, B. Automated Corneal-Reflection Eye Tracking in Infancy: Methodological Developments and Applica-

tions to Cognition. Infancy 2004, 6, 155–163. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15327078in060
2_1 (accessed on 19 June 2023). [CrossRef]

41. Marino, J. Reading Screens: What Eye Tracking Tells Us about the Writing in Digital Longform Journalism. Lit. J. Stud. 2016, 8 , 138–149.
42. Niehorster, D.C.; Hessels, R.S.; Benjamins, J.S. GlassesViewer: Open-source software for viewing and analyzing data from the

Tobii Pro Glasses 2 eye tracker. Behav. Res. Methods 2020, 52, 1244–1253. [CrossRef]
43. Kortman, B.; Nicholls, K. Assessing for Unilateral Spatial Neglect Using Eye-Tracking Glasses: A Feasibility Study. Occup. Ther.

Health Care 2016, 30, 344–355.
44. Mele, M.L.; Federici, S. Gaze and eye-tracking solutions for psychological research. Cogn. Process. 2012, 13, 261–265. [CrossRef]
45. Lu, F.; Sugano, Y.; Okabe, T.; Sato, Y. Head pose-free appearance-based gaze sensing via eye image synthesis. In Proceedings of

the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 1008–1011.
46. Xu, P.; Ehinger, K.A.; Zhang, Y.; Finkelstein, A.; Kulkarni, S.R.; Xiao, J. Turkergaze: Crowdsourcing saliency with webcam based

eye tracking. arXiv 2015, arXiv:1504.06755.

142

Algorithms 2023, 16, 355

47. Papoutsaki, A.; Sangkloy, P.; Laskey, J.; Daskalova, N.; Huang, J.; Hays, J. WebGazer: Scalable Webcam Eye Tracking Using
User Interactions. In Proceedings of the Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI’16), New York, NY, USA, 9–15 July 2016.

48. Wang, S.; Keivanloo, I.; Zou, Y. How do developers react to restful api evolution? In Service-Oriented Computing: Proceedings
of the 12th International Conference (ICSOC 2014), Paris, France, 3–6 November 2014; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 245–259.

49. Richardson, L.; Ruby, S. RESTful Web Services; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008.
50. Berners-Lee, T.J. Information Management: A Proposal; Technical Report; CERN: Geneva, Switzerland, 1989.
51. Cassetti, O. Websockets and their integration in enterprise networks. CiteSeerX 2011 .
52. Hu, Y.; Cheng, W. Research and implementation of campus information push system based on WebSocket. In Proceedings of the

2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26 November
2017; pp. 1–6. [CrossRef]

53. Soewito, B.; Christian; Gunawan, F.E.; Diana; Kusuma, I.G.P. Websocket to Support Real Time Smart Home Applications. Procedia
Comput. Sci. 2019, 157, 560–566. [CrossRef]

54. Hale, M. Eyestream: An Open WebSocket-based Middleware for Serializing and Streaming Eye Tracker Event Data from
Gazepoint GP3 HD Research Hardware. J. Open Source Softw. 2019, 4, 1620. [CrossRef]

55. Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 1970, 13, 377–387. [CrossRef]
56. Kern, C.; Kesavan, A.; Daswani, N. Foundations of Security: What Every Programmer Needs to Know; Apress: Berkeley, CA, USA, 2007.
57. Khan, W.; Kumar, T.; Zhang, C.; Raj, K.; Roy, A.M.; Luo, B. SQL and NoSQL Database Software Architecture Performance

Analysis and Assessments—A Systematic Literature Review. Big Data Cogn. Comput. 2023, 7, 97. [CrossRef]
58. Anderson, C. Docker [Software engineering]. IEEE Softw. 2015, 32, 102-c3. [CrossRef]
59. Martin, J.P.; Kandasamy, A.; Chandrasekaran, K. Exploring the support for high performance applications in the container

runtime environment. Hum.-Centric Comput. Inf. Sci. 2018, 8, 1–15. [CrossRef]
60. De Benedictis, M.; Lioy, A. Integrity verification of Docker containers for a lightweight cloud environment. Future Gener. Comput.

Syst. 2019, 97, 236–246. [CrossRef]
61. Chamoli, S. Docker Security: Architecture, Threat Model, and Best Practices. In Soft Computing: Theories and Applications:

Proceedings of SoCTA 2020 ; Springer: Singapore, 2021; Volume 2, pp. 253–263.
62. Slim, M.S.; Hartsuiker, R.J. Moving visual world experiments online? A web-based replication of Dijkgraaf, Hartsuiker, and

Duyck (2017) using PCIbex and WebGazer.js. Behav. Res. Methods 2022, 1–19. [CrossRef]
63. Chen, X.; Slowinska, A.; Bos, H. Who allocated my memory? Detecting custom memory allocators in C binaries. In Proceedings

of the 2013 20th Working Conference on Reverse Engineering (WCRE), Koblenz, Germany, 14–17 October 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 22–31.

64. Pienaar, J.A.; Hundt, R. JSWhiz: Static analysis for JavaScript memory leaks. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Montreal, QC, Canada, 25 February–1 March 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 1–11.

65. Degenbaev, U.; Eisinger, J.; Hara, K.; Hlopko, M.; Lippautz, M.; Payer, H. Cross-component garbage collection. Proc. ACM
Program. Lang. 2018, 2, 1–24. [CrossRef]

66. Das, S.; Nayak, G.K.; Saba, L.; Kalra, M.; Suri, J.S.; Saxena, S. An artificial intelligence framework and its bias for brain tumor
segmentation: A narrative review. Comput. Biol. Med. 2022, 143, 105273. [CrossRef] [PubMed]

67. Wilson, C. Public engagement and AI: A values analysis of national strategies. Gov. Inf. Q. 2022, 39, 101652. [CrossRef]
68. Lee, J.C.; Chen, X. Exploring users’ adoption intentions in the evolution of artificial intelligence mobile banking applications: The

intelligent and anthropomorphic perspectives. Int. J. Bank Mark. 2022, 40, 631–658. [CrossRef]
69. Dogan, M.E.; Goru Dogan, T.; Bozkurt, A. The use of artificial intelligence (AI) in online learning and distance education processes:

A systematic review of empirical studies. Appl. Sci. 2023, 13, 3056. [CrossRef]
70. Arcuri, A. RESTful API automated test case generation. In Proceedings of the 2017 IEEE International Conference on Software

Quality, Reliability and Security (QRS), Prague, Czech Republic, 25–29 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 9–20.
71. Ehsan, A.; Abuhaliqa, M.A.M.; Catal, C.; Mishra, D. RESTful API testing methodologies: Rationale, challenges, and solution

directions. Appl. Sci. 2022, 12, 4369. [CrossRef]
72. Miller, M.A.; Schwartz, T.; Pickett, B.E.; He, S.; Klem, E.B.; Scheuermann, R.H.; Passarotti, M.; Kaufman, S.; O’Leary, M.A. A

RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinform. 2015, 11, 43–48. [CrossRef]
73. Gossett, E.; Toher, C.; Oses, C.; Isayev, O.; Legrain, F.; Rose, F.; Zurek, E.; Carrete, J.; Mingo, N.; Tropsha, A.; et al. AFLOW-ML: A

RESTful API for machine-learning predictions of materials properties. Comput. Mater. Sci. 2018, 152, 134–145. [CrossRef]
74. Briscoe, B.; Brunstrom, A.; Petlund, A.; Hayes, D.; Ros, D.; Tsang, J.; Gjessing, S.; Fairhurst, G.; Griwodz, C.; Welzl, M. Reducing

internet latency: A survey of techniques and their merits. IEEE Commun. Surv. Tutor. 2014, 18, 2149–2196. [CrossRef]
75. Henning, J.L. SPEC CPU2000: Measuring CPU performance in the new millennium. Computer 2000, 33, 28–35. [CrossRef]
76. Charyyev, B.; Arslan, E.; Gunes, M.H. Latency comparison of cloud datacenters and edge servers. In Proceedings of the

GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 1–6.

143

Algorithms 2023, 16, 355

77. Stetson, C.; Cui, X.; Montague, P.R.; Eagleman, D.M. Motor-sensory recalibration leads to an illusory reversal of action and
sensation. Neuron 2006, 51, 651–659. [CrossRef]

78. Shanthi, N.; Stonier, A.A.; Sherine, A.; Devaraju, T.; Abinash, S.; Ajay, R.; Arul Prasath, V.; Ganji, V. An integrated approach for
mental health assessment using emotion analysis and scales. Healthc. Technol. Lett. 2022 , 1–11. [CrossRef]

79. Barillaro, L.; Agapito, G.; Cannataro, M. Edge-based Deep Learning in Medicine: Classification of ECG signals. In Proceedings of
the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 2169–2174.

80. Vryzas, N.; Vrysis, L.; Matsiola, M.; Kotsakis, R.; Dimoulas, C.; Kalliris, G. Continuous speech emotion recognition with
convolutional neural networks. J. Audio Eng. Soc. 2020, 68, 14–24. [CrossRef]

81. Shu, Y.S.; Chen, Z.X.; Lin, Y.H.; Wu, S.H.; Huang, W.H.; Chiou, A.Y.C.; Huang, C.Y.; Hsieh, H.Y.; Liao, F.W.; Zou, T.F.; et al. 26.1 A
4.5 mm2 Multimodal Biosensing SoC for PPG, ECG, BIOZ and GSR Acquisition in Consumer Wearable Devices. In Proceedings
of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 400–402.

82. Soufineyestani, M.; Dowling, D.; Khan, A. Electroencephalography (EEG) technology applications and available devices. Appl.
Sci. 2020, 10, 7453. [CrossRef]

83. Li, X.; Liu, Y.; Mao, J.; He, Z.; Zhang, M.; Ma, S. Understanding reading attention distribution during relevance judgement. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–24 October
2018; pp. 733–742.

84. Cox, W.M.; Fadardi, J.S.; Pothos, E.M. The addiction-stroop test: Theoretical considerations and procedural recommendations.
Psychol. Bull. 2006, 132, 443. [CrossRef]

85. Karie, N.M.; Kebande, V.R.; Ikuesan, R.A.; Sookhak, M.; Venter, H.S. Hardening SAML by Integrating SSO and Multi-Factor
Authentication (MFA) in the Cloud. In Proceedings of the 3rd International Conference on Networking, Information Systems &
Security, Marrakech, Morocco, 31 March–2 April 2020; pp. 1–6.

86. Bruzgiene, R.; Jurgilas, K. Securing remote access to information systems of critical infrastructure using two-factor authentication.
Electronics 2021, 10, 1819. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

144

Citation: Tetteh, M.; de Lima, A.;

McEllin, J.; Murphy A.; Dias, D.M.;

Ryan, C. Evolving Multi-Output

Digital Circuits Using Multi-Genome

Grammatical Evolution. Algorithms

2023, 16, 365. https://doi.org/

10.3390/a16080365

Academic Editor: Frank Werner

Received: 14 June 2023

Revised: 25 July 2023

Accepted: 27 July 2023

Published: 28 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Evolving Multi-Output Digital Circuits Using Multi-Genome
Grammatical Evolution

Michael Tetteh 1,*, Allan de Lima 1, Jack McEllin 1, Aidan Murphy 2, Douglas Mota Dias 1

and Conor Ryan 1,*

1 Biocomputing and Developmental Systems Research Group, University of Limerick,
V94 T9PX Limerick, Ireland; allan.delima@ul.ie (A.d.L.); jack.mcellin@ul.ie (J.M.);
douglas.motadias@ul.ie (D.M.D.)

2 School of Computer Science and Statistics, Trinity College Dublin, D02 PN40 Dublin, Ireland;
amurph74@tcd.ie

* Correspondence: michael.tetteh@ul.ie (M.T.); conor.ryan@ul.ie (C.R.)

Abstract: Grammatical Evolution is a Genetic Programming variant which evolves problems in
any arbitrary language that is BNF compliant. Since its inception, Grammatical Evolution has been
used to solve real-world problems in different domains such as bio-informatics, architecture design,
financial modelling, music, software testing, game artificial intelligence and parallel programming.
Multi-output problems deal with predicting numerous output variables simultaneously, a notoriously
difficult problem. We present a Multi-Genome Grammatical Evolution better suited for tackling multi-
output problems, specifically digital circuits. The Multi-Genome consists of multiple genomes, each
evolving a solution to a single unique output variable. Each genome is mapped to create its executable
object. The mapping mechanism, genetic, selection, and replacement operators have been adapted
to make them well-suited for the Multi-Genome representation and the implementation of a new
wrapping operator. Additionally, custom grammar syntax rules and a cyclic dependency-checking
algorithm have been presented to facilitate the evolution of inter-output dependencies which may
exist in multi-output problems. Multi-Genome Grammatical Evolution is tested on combinational
digital circuit benchmark problems. Results show Multi-Genome Grammatical Evolution performs
significantly better than standard Grammatical Evolution on these benchmark problems.

Keywords: Grammatical Evolution; Multi-Genome; Evolvable Hardware; digital circuit design;
Hardware Description Languages; SystemVerilog; combinational circuits

1. Introduction

Evolvable Hardware (EWH) encompasses the application of evolutionary algorithms
(EAs) to the design of re-configurable hardware and conventional circuits. Since its incep-
tion, circuits such as adders and multipliers have been evolved. Some EAs used in EHW
include Genetic Algorithms, Genetic Programming (GP), Cartesian Genetic Programming,
and Grammatical Evolution (GE). Confronting the field are two significant challenges:
scalability of fitness evaluation and representation. The former deals with the required
testing as circuit inputs increase (complex circuits). The latter, which is also a consequence
of increasing inputs, requires longer chromosomes to represent individuals. Hence, due to
the destructive nature of search operators (crossover and mutation), evolving circuits of
such complexity is non-trivial.

Some existing approaches proposed to address the issue of representation scalability
are decomposition [1,2] and more efficient genetic operators [3]. Existing decomposition
approaches break complex circuits down into evolvable sub-circuits either via inputs [2]
or outputs [1] and merge them into a complete circuit using varying strategies. Other
research efforts have also been directed toward efficiently reducing the computational
cost of circuit evaluation. Some of these include parallel implementations of EAs, using

Algorithms 2023, 16, 365. https://doi.org/10.3390/a16080365 https://www.mdpi.com/journal/algorithms145

Algorithms 2023, 16, 365

different representations for evaluation and, more recently, corner case testing, a well-
known technique used in industry to reduce the amount of testing, combined with a
uniform sampling of training/testing cases [4].

A major benefit of GE’s mapping process is the separation of the genotypic space from
the phenotypic space, which facilitates an unconstrained evolutionary search [5]. While
there has been some suggestion that the low locality, i.e., the measure of the correlation
between neighbouring genotypes and their corresponding neighbouring phenotypes brings
about an issue [6], other works [7–9] suggest genetic operations at the beginning regions of
GE’s genome are destructive but may serve as a good region for genetic operations.

Generally, a multi-output problem requires modeling complex input-output rela-
tionships and/or inter-output dependencies. Multi-output problems requiring the simul-
taneous modeling of these relationships are very challenging to deal with [10]. Hence,
decomposing such problems into single-output problems and solving each using a single-
output algorithm of choice may prove very challenging as such approaches do not consider
inter-output correlations [10]. This paper proposes a Multi-Genome GE (MG-GE) for
solving multi-output or multi-target problems, such as circuit problems, efficiently. Each
genome encodes a solution to a single and unique output. Second, custom grammar syntax
rules are introduced to facilitate the evolution of inter-output correlations by evolution.
Third, we speculate that using Multi-Genome (MG) reduces the destructive effect of genetic
operators by using a genome per output variable while benefiting from their ability to
escape local optima. Fourth, MG-GE keeps track and stops the search for a solved output
variable which is made available to all individuals in the population, thereby reducing
the overall computational cost as evolution progresses. Finally, MG-GE is better suited
for multi-output circuit problems than approaches that decompose such problems into
single-output circuit problems using various decomposition techniques before merging the
evolved sub-circuits into a complete circuit.

The contributions of this work are summarised as follows:

• We present a multi-genome implementation of GE better suited for tackling multi-
output problems;

• We adapt genetic operators, initialisation routine, and mapping mechanism and
implement a wrapping operator well-suited for MG-GE;

• We introduce custom grammar syntax rules and a cyclic dependency-checking algo-
rithm that facilitates the evolution of inter-output dependencies;

• We investigate the performance of MG-GE with and without using our custom gram-
mar syntax rules on multi-output combinational circuit problems.

2. Background

2.1. Grammatical Evolution

GE is a GP variant that evolves programs in any arbitrary Backus–Naur form (BNF)
compliant language. GE has been used in different application domains such as game
content design [11], architecture design [12], financial modelling [13], music [14] and
software testing [15].Standard GE uses a single linear genome. The genome is a sequence
of codons (usually 8-bit unsigned numbers) that encode the genetic information of an
individual. The corresponding phenotype is derived from a genome using a mapper. The
mapper requires a grammar, usually a subset of the target language, sufficient to evolve
an optimal solution to a problem potentially. A valid phenotype is derived only when all
non-terminal symbols have been re-written regarding terminal symbols (any term without
angle brackets). To expand a non-terminal into a string of terminals only, a derivation
formula (codon%num of productions) is applied. Each phenotype is evaluated using the
defined fitness function. The fitness score returned by the fitness function is assigned as the
individual’s fitness.

BNF is a meta-syntax notation used for expressing grammars of formal languages,
such as Context-Free Grammars (CFG). Grammars most commonly used within GE are
CFGs. A CFG denoted by G is defined by a quadrupled tuple {N, T, P, S}. N represents the

146

Algorithms 2023, 16, 365

set of non-terminal symbols which are enclosed within <>. For example, 〈expr〉 is a non-
terminal symbol. Non-terminal symbols are placeholders and replaced by another symbol
according to production rules. Production rules appear after the replacement symbol ::= on
the right-hand side. All non-terminal symbols are replaced, or expanded, until they become
terminal symbols. T represents the set of terminal symbols which are not enclosed within
<>. For example, variable names and operators (e.g., +, −) of a programming language
are considered terminals. P represents production rules which are alternatives or choices
to replace a non-terminal and are separated by | symbol. S represents the start symbol
which is part of N and serves as the initial symbol from which a legal sentence in the target
language can be derived.

2.2. Multi-Output Problems

Multiple output or target variables characterise multi-output (also known as multi-
target or multi-variate) problems. Multi-variate regression and multi-label classification are
categories of multi-output problems. Multi-variate regression deals with the estimation of a
single regression model which models how multiple independent and dependent variables
are linearly related. Multi-variate regression is used in different domains such as economics
and finance, health care, social sciences, environmental studies and market research. For
example, in economics and finance multi-variate regression is used to investigate the factors
that affect inflation rates, stock prices, housing prices and GDP growth rate. In multi-
label classification, zero or multiple labels are required as output per input sample [16].
Gene classification in bio-informatics, text categorisation and image classification are real-
world applications of Multi-label classification. These problems are challenging to deal
with, mainly due to their multi-variate nature and possible dependencies between target
variables [17].

Methodologies designed for tackling multi-output regression problems are categorised
into two groups: problem transformation and algorithm adaptation methods [17]. Problem
transformation methods transform multi-output problems into single-output problems,
each uniquely solving one of the target variables using any single regression algorithm
of choice [17]. Algorithm adaptation methods adapt existing single-target algorithms to
handle multi-target problems [17]. Some advantages of the latter approach are better
performance, better representation & interpretability, and computationally more efficiency
compared to single-target methods [17].

2.3. Hardware Description Languages

Hardware Description Languages (HDLs) such as Verilog and VHDL are the de facto
standard for circuit design in the industry due to several benefits [18]. Notable among these
are the design of circuits at higher abstraction—Register Transfer Level (RTL), other than
gate level [19]. Additionally, RTL designs are more interpretable, require less time to modify
and easier to verify [20]. RTL designs employ programming constructs such as conditional
statements, synthesisable for-loops, proceedural blocks, case statements, asynchronous and
synchronous constructs to provide a human readable description of a circuit’s behaviour.
As a result, RTL designs must undergo logic synthesis where these high level descriptions
of circuits are converted to basic building blocks such as logic gates (AND, NOT, NAND,
NOR and XOR)and flip-flops (or storage elements). GE has successfully evolved complex
and accurate multiplier, adder, and parity using SystemVerilog [4].

2.4. Related Work

Digital circuit designs like adders and multipliers require multiple output signals to be
correct for their output to be accurate. Some of these output signals can be independent of
one another, meaning that only a sub-section of an individual needs to be modified. These
sub-modifications can be difficult for a classical GA with a single chromosome to perform as
the genetic operators do not know how the modifications will affect the candidate design.

147

Algorithms 2023, 16, 365

Multiple chromosomes have been used in various evolutionary hardware problems to
tackle this problem. Cartesian Genetic Programming (CGP) is often used with gate-level
evolutionary hardware problems as its column and row structure is ideal for connecting
Boolean logic gates. Multiple codons in the chromosome are consumed when choosing a
gate and its connections, which can lead to issues when performing crossover, as different
gates can have a different number of connections. Slowik and Bialko [21] address this by
using a multi-chromosome genome that groups the logic gates with their input connections.
This allows for the crossover method only select crossover points that would not produce
an unconnected input and thus produce only valid individuals.

Walker et al. [22] introduced a method called Multi-Chromosome CGP (MC-CGP) for
Evolutionary Hardware. This approach uses a multi-chromosome where each chromosome
is used in a separate CGP evolution to evolve a partial solution for a single output. When
a solution is found for each output, they are then combined to produce the final solution.
This approach allows the evolution to be performed in parallel but can produce redundant
circuitry. To address this problem, Coimbra and Lamar [23] used a hybrid approach of
running an MC-CGP followed by a standard CGP where the multi-chromosome is treated
as a single chromosome. This approach allowed them to reduce the gate count of the
evolved individuals significantly.

CGP is generally only employed at the gate-level and thus cannot enjoy the benefit of
HDLs. Work that has looked at higher-level problems includes a multi-objective approach
that was taken to evolve a Proportional-Plus-Derivative fuzzy logic controller. In this
work, Baine [24] used four separate chromosomes to describe the input and output fuzzy
sets for both the proportional and derivative parts of the controller. He found that the
multi-chromosome approach converged around 20% faster than a single-chromosome
approach.

In [25], standard Gene Expression Programming (GEP) is adapted to directly handle
multi-target regression problems without resorting to any transformation or decomposition
approaches. A multi-gene chromosome representation is adopted. An N-target regression
problem requires a chromosome with N genes. Each gene codes a solution to a single
and unique target variable. Hence, the number of genes contained in a chromosome is
problem-dependent. Individual initialisation remains the same as in standard GEP but
is subject to a metric that ensures an individual is only added to the initial population if
its similarity compared to other individuals in the population is below a threshold. Three
different transposition operators are used to transpose gene fragments within the same gene,
between two genes (of the same chromosome), and move a gene to the beginning of the
chromosome. Also, three recombination operators are used to create offspring. Tested on
eight multi-target regression datasets in comparison to two other methods, Gene Expression
Programming for Multi-target Regression (GEPMTR) significantly outperformed the two
state-of-the-art methods in seven of the eight multi-target datasets employed.

These works show that using a multi-chromosome approach for multi-target problems
can significantly help find solutions. In addition, it helps address the issue of locality that
Grammatical Evolution can experience.

3. Proposed Approach: Multi-Genome GE

3.1. Problem Description

GE mapping process starts from a start symbol. Usually, the first rule’s non-terminal
is designated as the start symbol. For example in Figure 1, 〈expr〉 is the start symbol.
GE iteratively expands or rewrites all non-terminals by using a modulus rule to select a
production each time a choice needs to be made. This process continues until the sentence
consists solely of terminals. In Figure 1, using the sample genome provided, the sentence
x + 5 is obtained.

Assuming a mutation event affects the first codon, changing its value from 151 to 150,
this means the first production 〈var〉 gets chosen after applying the mod rule (150%3 = 0).
As a result, the resultant sentence is now x after the mutation event. As described, a totally

148

Algorithms 2023, 16, 365

different phenotype is obtained after a simple codon alteration in GE’s genome, with all
potentially evolved building blocks lost after genetic operations. This phenomenon is
referred to as ripple effect.

As mentioned earlier, multi-output problems require all outputs to be simultaneously
evolved. Assuming a standard GE individual (single genome representation) solves two
of the three output variables due to the ripple effect caused by genetic operators, solving
the remaining output variable may be challenging. It is also computationally expensive as
there is no mechanism in place to stop searching for output variables that other individuals
in the population have successfully evolved. Furthermore, standard GE does not have the
necessary functionality to evolve inter-target dependencies properly.

〈expr〉 ::= 〈var〉 (0) | 〈var〉〈op〉〈var〉 (1) | 〈var〉〈op〉〈expr〉 (2)

〈var〉 ::= x (0) | y (1) | constant (2)

〈op〉 ::= + (0) | - (1) | × (2) | / (3)

〈constant〉 ::= 0 (0) | 1 (1) | 2 (2) | 3 (3) | 4 (4) | 5 (5) | 6 (6) | 7 (7)

| 8 (8) | 9 (9)

151 9 88 68 205 37 〈expr〉
〈var〉 〈op〉 〈var〉
x 〈op〉 〈var〉
x + 〈var〉
x + 〈constant〉
x + 5

151%3 = 1

9%3 = 0

88%4 = 0

68%3 = 2

205%10 = 5

Figure 1. Grammatical Evolution Mapping Mechanism. The numbers enclosed in parenthesis after
each production do not form part of the grammar but instead are shown for ease of interpretation
and represent the production choice value.

3.2. Problem Formulation

Assuming a combinational circuit denoted as C has multiple inputs and outputs, the
training/testing vectors for C can be denoted as {X1 · · ·Xm} and {Y1 · · ·Yn} representing
inputs and expected outputs respectively. Each circuit output in {Y1 · · ·Yn} can depend
on one to m input variables ({X1 · · ·Xm}) as well as from zero to n − 1 circuit outputs
{Y1 · · ·Yn}; as far as no cyclic dependencies are formed between output variables in the
case of combinational circuits. In certain instances, a circuit output may depend on one or
more outputs as inputs.

Given that multi-output circuit problems (and multi-output problems in general)
generally exhibit a more complex behaviour compared to a single-output circuit problem,
evolving such circuits, especially at a low level of design—gate-level, using standard GE is
intractable. To help cope with the challenges associated with evolving multi-output circuit
problems using standard GE, a novel Multi-Genome GE is proposed.

3.3. Multi-Genome GE

MG-GE uses a multiple genome representation consisting of n genomes, where n
represents the number of outputs or targets. Each genome evolves a circuit functionality
that satisfies a single and unique circuit output. An example of a multi-genome for a
multi-output problem with three output variables or target variables is shown in Figure 2.
An output or target variable is a variable to be predicted by other variables.

A new genome representation requires suitable initialisation routines, mapping mech-
anisms, selection, replacement, wrapping mechanisms, and genetic operators. Furthermore,
we introduce grammar design specifications which must be adhered to for proper parsing

149

Algorithms 2023, 16, 365

of the grammar to ensure the adapted initialisation routine and mapper algorithms work
properly. These adapted, and new operators are described in detail in subsequent sections.

234 32 112

37 65 43 189 222

17 105 243 149

Figure 2. A Multi-genome representation for an multi-output problem with three output variables.

3.4. Grammar Design

In MG-GE, each genome is mapped to its output expression or subprogram to model
and predict its corresponding output variable. MG-GE requires a single grammar, just like
standard GE. However, custom grammar rules have been introduced and must be adhered
to. There are two main custom rules: output rule and output variable rule. These rules are
illustrated by a sample grammar in Figure 3. These custom rules allow for grammar rules
to be annotated with required details which are parsed and used by the mapper, wrapper,
selection, initialisation and genetic operators.

<stmts> ::= <tr1-output-1> <tr1-output-2> <tr1-output-3> <tr1-output-4>
<tr1-output-1> ::= output_1 "=" <expr>;
<tr1-output-2> ::= output_2 "=" <expr>;
<tr2-output-3> ::= output_3 "=" <expr>;
<tr2-output-4> ::= output_4 "=" <expr>;
<tv1-outputs> ::= output_1 | output_2
<tv2-outputs> ::= output_3 | output_4

<expr> ::= <terminal> | <terminal> <op> <expr>
<terminal> ::= a | b | <tv1-ouputs> | <tv2-outputs>

<op> ::= & | ^ | ~^

Figure 3. MG-GE Sample Grammar.

An output rule (or target rule) is a rule that codes a solution to one of the output variables
in a multi-output problem. To define an output rule, the rule’s name must be preceded by
tr followed by an output group number. During the mapping process, whenever such a
rule is encountered, a sub-mapping process is spawned. For example, in Figure 3, there are
four output rules: 〈tr1-output-1〉, 〈tr1-output-2〉, 〈tr1-output-3〉 and 〈tr1-output-4〉. Also,
in Figure 3, there are two groups of output variables: 1 and 2. In other words, there should
be an output variable rule for each output group number as illustrated in Figure 3.

The purpose of the group numbers is to facilitate modelling dependencies between
output variables while avoiding cyclic dependencies, which is very key for the evolution
of combinational circuit designs. Recall in Section 3.2, we stated there might exist de-
pendencies between outputs in some multi-output problems; hence, the group number
allows outputs (represented by the output variable names as productions of output variable
rules) to be grouped to allow evolution to evolve the potential dependencies which may
exist between outputs belonging to the same group. For example, in combinational circuit
problems, there may exist dependencies between outputs, but we need to ensure there
exist no cyclic dependencies between these outputs. Failing to do so will result in circuit
synthesis tools synthesising memory elements to store past/present output values, which
render such a sequential circuit.

Illustrated in Listing 1 is an example of a program with an existing cyclic dependency.
Assuming the program in Listing 1 is a combinational circuit design in SystemVerilog, both
outputs depend on each other, which will cause memory elements to be synthesised by
circuit synthesis tools rendering the circuit a sequential circuit instead of a combinational
circuit. The cyclic dependency checker in Algorithm 3 is used to ensure that during the
initialisation and mapping processes, such cyclic dependencies do not occur.

An output variable rule is defined by preceding the outputs group name by tv followed
by the output group number (e.g., 〈tv1-outputs〉 and 〈tv2-outputs〉). Essentially, an output

150

Algorithms 2023, 16, 365

variable rule’s productions are output variables (e.g., output_1 and output_2) as shown
in Figure 3. Also, note that the exact order in which output rules are defined for each
corresponding output variable must be followed when defining an output variable rule as
observed in Figure 3. For implementation purposes, extra attributes (corresponding output
rule) are used to differentiate these outputs (e.g., output_1 and output_2), which are
terminals from other terminals in the grammar during initialisation and mapping processes.
An output variable rule is how evolution evolves dependencies that may potentially exist
between outputs. During the initialisation and mapping process of each output rule (in
other words, when an output variable is being modelled), the cyclic dependency checker
algorithm ensures only choices of output variables that do not cause cyclic dependency
can be chosen whenever an output variable rule non-terminal is encountered. The cyclic
dependency checker algorithm is described in Section 3.7.

Listing 1. A sample program with cyclic dependency.

. . .
output_1 = a + output_2;
output_2 = output_1 + b

. . .

3.5. Initialisation

The initialisation of the multi-genome representation is dependent on the type of ini-
tialisation scheme required. In the case of random initialisation, each genome is randomly
initialised. In other words, n number (n equals the number of outputs) of random initial-
isation events. However, sensible initialisation (SI) is preferred, as it creates diverse and
valid individuals. SI is an adaptation of the ramped half-and-half GP initialisation scheme
introduced by Koza [26]. To benefit from SI’s desirable properties, we adapt sensible initial-
isation for use with the multi-genome representation. First, SI requires the grammar to be
labelled. Each production of a rule is required to be labelled with the minimum depth to
expand all non-terminals to terminals fully and whether or not the production is recursive
or not. Each rule is then labelled recursive if any of its productions is recursive and the
rule’s minimum depth equals the minimum of the minimum depth of its productions.
During initialisation, SI applies grow and full methods when constructing the derivation
tree. When applying the Grow method, any production with a minimum depth less than
the remaining depth is eligible for selection. The remaining depth is obtained by subtracting
the current depth from the specified maximum depth. The full method behaves similarly,
except recursive productions are preferable if the remaining depth can accommodate it.

During MG-GE SI, n genomes in the multi-genome will require n SI events. The start
symbol for each SI event is an output rule. The order of definition of the output rules
in the grammar determine which genome to use during initialisation. The first genome
is initialised by fully mapping the first output rule encountered, including any other
rules occurring before the first output rule. The (n− 1)th genome is initialised when the
(n− 1)th rule is encountered. The nth genome is initialised with codons used to completely
map the nth output rule encountered and any remaining rules appearing after the nth
output rule. However, during the initialisation of an output rule, if an output variable
rule is encountered, its corresponding dependency graph must be checked using the cyclic
dependency checking algorithm to ensure only production choices not resulting in cyclic
dependency are valid for selection. Recall from Section 3.4 productions of output variable
rules are essentially output variable names.

3.6. Multi-Genome Mapping

MG consists of n genomes, where n equals the number of output variables that must be
simultaneously predicted. Given that there are n genomes, the mapping process involves n
sub-mapping processes. Each genome encodes a solution to a single and unique output or
output variable. As mentioned in Section 3.4, the MG mapper requires a rule to be defined
for each output variable termed output rule. Output rule non-terminals serve as the start

151

Algorithms 2023, 16, 365

symbols for the sub-mapping processes. The order of output rule definitions dictates which
genome to use during the sub-mapping process. The MG-GE mapping algorithm is shown
in Algorithm 1.

The algorithm uses the first genome in MG to map the first output rule encountered
during the mapping process. In other words, the order of definition of the output rules
dictates which genome in MG to use. In addition, if non-terminals exist before the first and
last output rules during the mapping process, codons are consumed from the first genome.
Also, ideally, an output rule non-terminal must be used only once in the grammar.

MG-GE mapping process starts off by using the first genome, as can be seen on Line 6
in Algorithm 1. Lines 7–10 check if the genome contains any codons and terminates
the mapping process if empty, as this indicates an invalid individual. Otherwise, if the
genome contains codons, the mapping process continues as normal. The sub-mapping
process is spawned as shown on line 16 in Algorithm 1, which maps the first output rule
encountered, including all prior non-terminals, as stated in the previous paragraph. The
sub-mapping process algorithm is shown in Algorithm 2. The sub-mapping algorithm
is the same as the standard GE mapping process, with additional logic to accommodate
the MG representation. The algorithm is recursive as it spawns a sub-mapping process
whenever it encounters an unmapped output rule non-terminal by checking the set of
mapped_output_rules. Otherwise, it continues the mapping process consuming codons
from the first genome (lines 13–18 in Algorithm 2). Lines 21–55 remain the same as standard
GE mapping where symbols belonging to selected rule production are placed on a stack for
subsequent derivation steps. Wrapping events are checked and applied accordingly.

Algorithm 1: Multi-Genome GE Mapper
1 Require genome, grammar, wrap_operator, max_wraps;
2 Ensure multi_genome.size() > 1;
3 Function Map (multi_genome, grammar, wrap_operator, max_wraps)
4 genome.phenotype_valid← true ;
5 genome_index← 0;
6 genome ← multi_genome.genomeAt(index) ;
7 if genome is empty then

8 genome.phenotype ← empty string;
9 genome.phenotype_valid ← false;

10 genome.effective_size ← 0;

11 mapped_output_rules ← declare set;
12 //stores target rules that have been mapped;
13 phenotype← empty string;
14 start_symbol← grammar.getStartSymbol();
15 dependency_manager← instantiate dependency_manager object ;
16 SubMap(start_symbol, mapped_output_rules, multi_genome, genome_index, phenotype,

dependency_manager) ;
17 multi_genome.phenotype ← phenotype;

3.7. Cyclic Dependency Checking Algorithm

Algorithm 3 shows the pseudo-code for the cyclic dependency checking. A 2D matrix
is used as a graph to model the dependencies between each group of output variables. For
each position i, j of matrix A, if A[i, j] = 1, it means that the output variable represented at
position i depends on the output variable at position j. The function UpdateGraphMatrix is
a recursive function, which has the inputs M, a square matrix with shape n× n, and pos, the
respective position to be updated. This function assigns 0 to the position pos in the matrix
M, but this assignment triggers subsequent updates in its consequence. Subsequent calls of
this function are recursive to ensure the necessary updates are made to prevent cyclic de-
pendencies between output variables. For example, if output variable a depends on output
variable b, then output variable b cannot depend on output variable a. Subsequently, any
output variable which depends on output variable b cannot depend on output variable a.

152

Algorithms 2023, 16, 365

Algorithm 2: Output Rule Sub-Mapping
1 Function SubMap (start_symbol, mapped_outputs_rules, multi_genome, genome_index, phenotype,

dependency_manager)
2 genome←multi_genome[index];
3 {derivation_stack, is_wrapping }← {stack, false} ;
4 {codon_index, effective_size}← {0, 0} ;
5 if genome is empty then

6 return

7 derivation_stack ← push start_symbol ;
8 while derivation_stack not empty do

9 current_symbol← derivation_stack.top();
10 derivation_stack.pop();
11 if current_symbol is TERMINAL then

12 phenotype← append symbol ;

13 else if rule is OUTPUT_RULE and rule �∈ mapped_output_rules then

14 mapped_output_rules← insert output_rule;
15 if mapped_output_rules.size() > 1 then

16 SubMap(current_symbol, mapped_output_rules, genome, mapped_outputs.size()-1,
phenotype, dependency_manager) ;

17 else

18 goto Continue_Mapping_Process from line 20;

19 else

20 Continue_Mapping_Process:
21 rule← grammar.GetRule(current_symbol);
22 production_choice← 0;
23 if rule.productions.size() > 1 then

24 if codon_index == genome.length()-1 then

25 codon_index← 0;
26 is_wrapping← true

27 eligible_prods← create vector to hold eligible productions
28 if not is_wrapping then

29 if current_rule == OUTPUT_RULE_VAR then

30 check if a dependency graph exists for this rule group else create one
31 eligible_prods← retrieve valid output vars from dm
32 prod_choice← genome[codon_index] % current_rule.prods.size();
33 if prod_choice not in eligible_prods then

34 randomly choose a prod from eligible_prods && modify codon value accordingly

35

p g [] p ()
if prod_choice not in eligible_prods then

randomly choose a prod from eligible_prods && modify codon value accordingly

update the dependency graph to reflect chosen output variable
36 else

37 for prod ∈ rule.prods do

38 if prod contains an output_var then

39 if output_var has prods valid for selection then

40 eligible_prods← prod

41 else

42 eligible_prods← prod

43

for prod ∈ rule.prods do

if prod contains an output_var then

if output_var has prods valid for selection then

eligible_prods← prod

else

eligible_prods← prod

prod_choice← codon % rule.prods.size() ;
44 logic here same as from lines line 33 to line 34 highlighted in red

45 else

46 if current_rule == OUTPUT_RULE_VAR then

47 eligible_prods← valid OUTPUT_RULE_VAR.prods
48 else

49 logic is the same as from line 37 to line 42 highlighted in blue

50 prod_choice← invoke perfect wrapping operator;

51 if current_rule == OUTPUT_RULE_VAR then

52 update the dependency graph with chosen prod

53 selected_prod← rule.prods[prod_choice];
54 for sym ∈ reverse(selected_prod.symbols) do

55 push prod_symbol onto derivation_stack;

56 {genome.phenotype, genome.effective_size}← {phenotype,effective_size}
genome.phenotype_validity ← true;

153

Algorithms 2023, 16, 365

Algorithm 3: Cyclic Dependency Checking

1 Function UpdateGraphMatrix (M, posx,y)
2 M[posx, posy]← 0;
3 while i < n do

4 if M[i, posy] = 1 then

5 M← UpdateGraphMatrix(M, [posx, i]);

6 i++;

7 return M;

8 Function FillMatrix (n, dependencies)
9 M← Initialise matrix;

10 M[i,j]← 0, where i = j;
11 M[i,j]← �, where i �= j;
12 for pos in dependencies do

13 if M[posx, posy] = 0 then

14 raise error;
15 else

16 M[posx, posy] = 1;
17 M = UpdateGraphMatrix(M, [posy, posx]);
18 while i < n do

19 if M[i, posy] = 0 then

20 M = UpdateGraphMatrix(M, [i, posx]);

21 i++;

22 return M;

The main function FillMatrix initialises an empty matrix M with shape n× n. Since
the variables cannot depend on themselves, the positions i, j, where i = j, are initialised
with 0. The input dependencies is a list with the respective dependencies to be filled
in the matrix. In the next step, the positions regarding each dependency are filled with
1 (if possible), and the updates in consequence of that are made by calling the function
UpdateGraphMatrix.

3.8. Perfect Wrapping

Given that multiple output variables are evolving simultaneously, a partially mapped
output rule will render the entire individual invalid, negatively impacting the evolutionary
performance. This means performing genetic operations in MG-GE will record higher
invalid individuals than standard GE. In other words, the higher the number of output
variables in a multi-output problem, the higher the number of invalid individuals created
by genetic operations.

To mitigate this effect, we implement a new wrapping operator called perfect wrapping.
Perfect wrapping requires the grammar rules and productions to be labelled with the
minimal number of codons required to map fully. The perfect wrapping operator requires
a list of eligible productions as input. If the derived rule is an output variable rule, its
corresponding dependency graph must be checked to determine its eligible productions.
First, the list is populated with eligible productions which are non-recursive and require the
minimum number of codons to expand fully. If the list is empty, then recursive productions
requiring the minimum number of codons to expand are considered. Second, the mod rule
is applied to determine if the chosen production is part of the list of eligible productions. If
not, one of the productions in the list is uniformly selected at random, and Equation (1)
is used to generate a new codon to replace the current codon, which, when used with the

154

Algorithms 2023, 16, 365

mod rule, dictates the same choice. This process continues while codons are reused from
the genome until a valid sentence is attained.

new_codon = random_number %
(

max_codon_value + 1
choices

)
× choices + chosen_prod (1)

3.9. Selection

The selection operator implemented for MG-GE does not rely on the total aggregated
fitness of all genomes in MG. This is because it is possible the worst-performing parent
might have completely solved one of the output variables but will rarely or never be
selected as a parent. Instead, a pseudo-parent is created by performing n number of selection
events, where the best-performing genome per output variable is selected from the pool of
potential parents. Any selection operator, such as tournament, lexicase, and roulette-wheel
selections, can be used to select each genome.

For example, in a standard crossover event, two pseudo-parents are created and used
to create two offspring. The selection process is illustrated in Figure 4.

234 32

Genome1

112

37 65 43 189 222

17 105 243 149

. . . 234 32 112

37

GenomeN

65 43 189 222

17 105 243 139

24
20

0
23

2
19

37
65

53
97

11
7

10
5

83

Selected Parent (a.k.a Pseudo-parent)

Figure 4. Multi-Genome Selection.

3.10. Well-formed Crossover and Mutation

Each genome in MG evolves a solution to a single and unique target variable. As a
result, crossover operations occur between genomes that evolve the same output variable.
Mutation operations are applied per genome in MG.

These genetic operations can be performed in several ways. Three types of events
are currently implemented for genetic operation purposes. These include: random single-
event, binary mask-event and all-event. In a random single event, only a single genome is
randomly chosen for crossover and mutation. For a random single event, a binary mask
of bit size equal to the number of genomes is randomly generated. All genomes in MG
with bit positions in the binary mask whose bit values are one are chosen for mutation and

155

Algorithms 2023, 16, 365

crossover. In all-event, all genomes undergo genetic operations subject to the specified
probability of these events occurring by the user.

3.11. Substitution Operator

In solving multi-output problems, there may exist inter-output dependencies as noted
in Section 1. To facilitate the evolution of these dependencies, we introduced custom
grammar rules as described in Section 3.4. Also, recall each genome in MG is meant to
evolve a solution to a single unique output. Evolution is creative and can potentially
exploit the inter-output dependency feature by using other sub-optimal output variable
expressions as building blocks to solve another output perfectly. However, before extracting
the solved output from an individual, if there exists a dependency on sub-optimal or
optimal output variables, it is necessary to rewrite/substitute such output variables with
their corresponding expression to obtain the final perfect expression for the solved output.

From Listing 2, assuming output variable output_1 has completely been solved.
Recall the best-evolved solution is a combination of the best-performing genome per
output variable. Given that output_1 is dependent on output_2 and output_2 is, in turn,
dependent on output_3, if we extract output_1 without recursively substituting output
variables with their corresponding expressions to obtain an expression devoid of output
variables, output_1 will no longer be regarded as solved, as output_2 and output_3

are very likely to be different in the created best individual. Applying the substitution
operator, we will obtain the solved expression devoid of any output variables as shown
in Listing 3. Hence, the importance of the cyclic dependency checking algorithm is to
ensure the substitution operator does not get stuck in a non-terminating loop as a result of
cyclic dependency existing between output variables.

Listing 2. An individual that completely evolves the solution to output_ 1 (50 out of 50 total cases).

. . .
output_1 = cos(x) + output_2 + output_2; (50/50)
output_2 = output_3 + sin(y); (5/50)
output_3 = 2^3 + 3; (1/50)

. . .

Listing 3. Final perfect output_ 1 statement after applying the substitution operator.

. . .
1. output_1 = cos(x) + output_2 + output_2;
2. output_1 = cos(x) + (output_3 + sin(y)) + (output_3 + sin(y));
3. output_1 = cos(x) + ((23 + 3) + sin(y)) + ((23 + 3) + sin(y));

. . .

In Listing 3, a typical iteration of the substitution operator to rewrite the solved
output_1 variable before it is extracted. As can be observed from Listing 3, output variable
output_1 used output variable output_2 twice which were replaced by the same expression
at the end of the substitution operation. That is, in cases where an output variable uses
another output variable multiple times will result in an increase in the size of the phenotype.
In the case of digital circuits, such a scenario will increase the total number of gates required
to realise the gate-level design of the circuit. However, this is a post-processing issue and is
not addressed in this work.

3.12. Evolutionary Cycle

A steady-state EA is used to run the benchmark problems in this work. Unlike
standard GE, where the best-performing individual is returned as the best-evolved solution,
MG-GE creates its best individual by combining the best-performing genome for each
output variable. However, when an output variable solution has been evolved, we perform

156

Algorithms 2023, 16, 365

substitution operations at the phenotype level described in Section 3.11. The function of
the substitution operator is to rewrite an expression in terms of variables other than the
output variables.

Once an output variable has been solved, its solution is made available to all individu-
als in the population, and evolution no longer searches for it. However, this functionality
can be modified if required for evolution to continue the search but for solutions with
additional desirable properties, such as shorter expressions.

4. Experiments

Two combinational benchmark problems are used in this work: ripple carry adder and
hamming code encoder. Two instances of each problem are considered based on the number
of inputs and outputs, Hamming Code (7,4) and (15,11) Encoders, and 5-bit + 5-bit and
10-bit + 10-bit Adders.

Experiments are conducted to investigate the performance of standard GE versus
MG-GE on these benchmark problems. For each experiment, we design two grammars.
The first grammar variant, which we refer to as Grammar with Output Variable Sharing,
allows output variables to use other output variables as building blocks as long as no cyclic
dependency between output variables is formed. This is achieved by the definition of
Output Variable Rules as described in Section 3.4. In other words, Output Variable Rules,
together with the cyclic dependency algorithm, are how MG-GE evolves inter-output
dependencies that may exist. This feature is modelled in the grammar by adding the
Output Variable Rule non-terminal to the 〈expr-i〉 rules as the last production (highlighted
in both grammars). The second version of the grammar, which we refer to as Grammar
with No-Output Variable Sharing, follows the same structure as the previous grammar
but simply omits the Output Variable Rule. Hence, with this grammar variant, if inter-
output dependency exists between two output variables, evolution will have to evolve the
expression/functionality of the independent output variable.

We speculate that for problems with inter-output dependencies, the Grammar with
Output Variable Sharing will perform better than the Grammar with No-Output Variable
Sharing and vice versa.

4.1. Ripple Carry Adder

Adder circuits perform addition in digital electronic devices. There are several types
of digital adders, such as ripple-carry, carry-save and carry-lookahead adders. In this work,
we use the ripple-carry adder, as its operation follows elementary addition, which is ideal
for exploiting the concept of output variable sharing.

Illustrated in Figure 5 is the elementary addition of two numbers. The addition
operation starts from the last column (or the least significant numbers) and propagates
any carry to the next least significant numbers up until the most significant numbers (first
column). As can be observed, the (n)th column addition depends/requires the carry from
the (n− 1)th column addition. This problem can be modelled as an 8-output problem: four
carry and four sum digits. Each sum digit (in other words, output) will require/depend on
the carry from the previous addition stage as input. Without the inter-output dependency
feature, each column addition to obtaining a sum digit will additionally require evolving the
expression to generate the appropriate carry, taking into account all the carries propagated
starting from the addition of the least significant digits of the addends.

+

1 1 1

8 2 3
9 8 9

1 8 1 2

Figure 5. Example of elementary addition.

157

Algorithms 2023, 16, 365

4.2. Hamming Code Encoder

Hamming codes belong to the family of Linear Block Codes [27]. They are linear
error-correcting codes capable of detecting a single error and, at most, two errors but can
only correct one. For example, Hamming Code (7,4) Encoder encodes a 4-bit data word
into a 7-bit code word before transmission. It does so by generating and adding three
parity bits to the data word. Hamming Codes can be grouped into two categories based
on the structure of the code words. These are systematic and non-systematic encodings. In
systematic encoding, the data word and code word are separated while in non-systematic
encoding, the data word and parity bits are interspersed. We adopt systematic encoding, as
its structure is easier—data-word followed by the parity bits to obtain the code-word.

For example, the Hamming Code (7,4) Encoder can be modelled as a 3-output problem;
each output represents the redundant bit generated and added to the data word to obtain
the code word. Each redundant bit is generated by applying bit operations to a unique set
of specific bits in the data word. Therefore, no dependency exists between the outputs of
the hamming code encoder. Hence, it is an ideal problem to explain the no-output variable
sharing concept as well as the performance of MG-GE on such problems.

4.3. Grammars

The grammars for the adder and hamming code encoder problems are shown in
Listings 4 and 5, respectively. Both grammars are shown in a compressed form to save
space, with certain repetitive rules, production choices and symbols compressed. By
repetitive, we mean rules with very similar, but not identical, definitions.

A repetitive rule with a similar definition has been compressed using the syntax
〈tr1-sum-i〉i=[1..n] as shown in Listing 4. The same compression syntax has been applied to
repetitive production choices and symbols and enclosed with curly braces where appropri-
ate.

Both grammars have been designed to use bitwise operators (i.e., gate-level design),
which makes the circuit problems more challenging to evolve from scratch. Each grammar
is divided into two: upper and lower sections, separated by dashed lines. The upper section
of the grammar contains the rules that need to be expanded. The lower section contains
rules that define the fixed part of the circuit problem, such as the circuit interface. An
expanded form of the grammar for the 5-bit + 5-bit Adder with Output and No-Output
sharing are shown in Listings A1 and A2 respectively in the Appendix A.

Listing 4. N-bit + N-bit Adder Grammar.

<stmts> ::= {<tr1-sum-i><tr1-cout-i>}n=5
{<tr1-sum-i+1><tr1-cout-i+1>}
· · ·
{<tr1-sum-i=n><tr1-cout-i=n>}

<tr1-sum-i>i=[1..n] ::= sum[i] "=" <expr-i>; <nextline>
<tr1-cout-i>i=[1..n] ::= in_cout[i] "=" <expr-i>; <nextline>

<expr-i>i=[1..n] ::= a[i] | b[i] | c_in
| (<expr-i><bitwise-op><expr-i>)
| <expr-i> <bitwise-op> <expr-i>
| <tv1-input>

<bitwise-op> ::= "&" | "|" | "^" | "~^"
<tv1-input> ::= {sum[i = 1] | in_cout[i = 1]}

| {sum[i = i + 1] | in_cout[i = i + 1]} | · · ·
| {sum[i = n] | in_cout[i = n]}n=5

<output-stmt> ::= codeword " = {dataword,parity_bit};"<nextline>
<nextline> ::= "\n"

158

Algorithms 2023, 16, 365

Listing 5. Hamming Code (N,M) Encoder.

<stmts> ::= <tr1-syndbit-i><tr1-syndbit-{i + 1}> · · ·
<tr1-syndbit-i = m>

<tr1-syndbit-i>i=[1..m] ::= parity_bit[i] " = " <expr>";" <nextline>
<tv1-input> ::= parity_bit[1] | parity_bit[2] | parity_bit[3]

| parity_bit[4]
<expr> ::= <input> | <input><bitwise-op><expr>

| <bitwise-neg>(<expr>)
<input> ::= dataword[<index>] | <tv1-input>

<index> ::= i | i + 1 | · · · | k− 1 | k = 2m −m− 1
<bitwise-op> ::= & | "|" | ^
<bitwise-neg> ::= ~

<output-stmt> ::= codeword " = {dataword,parity_bit};"<nextline>
<nextline> ::= "\n"

4.4. Experimental Parameters

The experimental parameters for conducting the experiment are shown in Table 1.
Preliminary experiments were conducted to tune these parameters. A population size of
1000 is used for all other experiments except the 10-bit + 10-bit Adder, which is a more
challenging circuit to evolve. Down-sampled lexicase selection is used for each selection
event. Down-sampled lexicase sub-samples training cases during the selection event,
thereby reducing the total number of evaluations [28].

Table 1. Evolutionary Run Parameters. In bold are the default population sizes used for the actual
experiments.

Parameter Value

Initialization Sensible Initialization
Selection Down-sampled Lexicase Selection
Crossover Rate 0.8
Mutation Rate 0.01
Replacement Rate 0.05
Number of Runs 30
Generations 100
Mutation All-events Well-formed Crossover
Crossover All-events Well-formed Crossover
Wrapping Operator Perfect Wrapping

Population Size 1000 All other problems
2000 10-bit + 10-bit Adder

Termination Condition
When mean, minimum and maximum fitness equals
the maximum fitness or generation number equal
specified generation number

5. Results and Discussions

Figures 6, 7, 8 and 9 show the evolutionary performance for Hamming Code (7,4)
Encoder, Hamming Code (15,11) Encoder, 5-bit and 10-bit adders using both grammar
versions, respectively. The solid red line, dashed red line, solid black line, and dashed black
line, are the mean best fitness across 30 independent runs for MG-GE using the Grammar
with Output Variable Sharing, MG-GE using grammar with No-Output Variable Sharing,
GE using Grammar with Output Variable Sharing, GE using grammar with No-Output
Variable Sharing respectively. In Table 2, we summarise the number of independent runs
for each experimental setup.

159

Algorithms 2023, 16, 365

Figure 6. Mean average best across 30 independent runs for Hamming Code (7,4) using MG-GE and
standard GE.

Figure 7. Mean average best across 30 independent runs for Hamming Code (15,11) using MG-GE
and standard GE.

160

Algorithms 2023, 16, 365

Figure 8. Mean average best across 30 independent runs for 5-bit + 5-bit Adder using MG-GE and
standard GE.

Figure 9. Mean average best across 30 independent runs for 10-bit + 10-bit Adder using MG-GE and
standard GE.

161

Algorithms 2023, 16, 365

Table 2. Success Rate On Benchmark Problems Out of 30 Independent Runs.

Problem

Standard GE MG-GE
Output
Variable
Sharing

No-Output
Variable
Sharing

Output
Variable
Sharing

No-Output
Variable
Sharing

5-bit + 5-bit Adder 0 0 16 0
10-bit + 10-bit Adder 0 0 21 0
Hamming Code (7,4)
Encoder

18 24 30 30

Hamming Code (15,11)
Encoder

0 0 0 27

The benefits of the new genome representation can be observed from Figures 6–9.
The experimental setups using MG-GE outperform GE when the same grammar variants
are used except for the 5-bit + 5-bit adder in Figure 8, where both MG-GE and GE using
Grammar with No-Output Variable Sharing converge to similar final mean best fitness.
However, MG-GE Grammar with No-Output Variable Sharing attains the final mean best
fitness after a few generations. We also observe both MG-GE setups for the Hamming
Code (7,4) Encoder in Figure 6 attain their final mean best fitness after a few generations.
This suggests evolution can perform quite well on relatively easier problems with no inter-
output dependencies when the least appropriate grammar is used (Grammar with Output
Variable Sharing). Furthermore, MG-GE outperforms GE on all problems using the most
appropriate grammar variant.

We observe the experimental setup for MG-GE using the Grammar with Output-
Variable Sharing for the 5-bit + 5-bit and 10-bit + 10-bit adders recorded a success rate of
16/30 and 21/30, respectively, while all other setups recorded zero successful runs. This is
because the ripple-carry adder, which operates like elementary addition, propagates the
carry bits from the previous bit addition stages to the last stage of bit addition. Hence,
designing the grammar to allow output variable sharing while ensuring no cyclic depen-
dency between output variables is formed ensures correct carry outputs are available for
the summation stages to use. As a result, the Grammars without Output Variable Sharing
will require evolution to evolve the carry-out bit from the previous summation stage for
the current summation stage, rendering the problem more challenging to deal with.

On the Hamming Code (7,4) and Hamming Code (15,11) Encoder problems, MG-GE
with the Grammar with No-Output Variable Sharing obtained a success rate of 30/30 and
27/30, respectively. Using the Grammar with Output Variable Sharing, MG-GE obtained
zero successful runs. This is due to the fact that for the hamming code encoders, there exist
no dependencies between the output variables. Therefore, using the grammar with Output
Variable Sharing for a problem with non-existing inter-output dependencies impedes
evolutionary performance.

5.1. Limitations and Drawbacks of The Proposed Approach

Though MG-GE outperforms GE on multi-output problems, it is not without some
limitations and drawbacks. Firstly, the Substitution Operator described in Section 3.11 may
not be universally applicable. Therefore, depending on the problem at hand, a new or a
modification of the substitution operator may be required. Secondly, the current output
variable dependency feature (also known as output variable sharing) is very strict. The
output variables are only useful as dependencies to other output variables only when they
completely solve their respective objective. In other words, an output variable is not used
as input by another output variable if it has not attained the maximum fitness value. This
may not be so beneficial for certain problems such as symbolic regression problems. Lastly,
the custom grammar syntax rules introduced require strict adherence and consequently
some minor errors may result in semantic errors which may be challenging to deal with.

162

Algorithms 2023, 16, 365

6. Conclusions and Future Work

In this work, we presented a Multi-Genome Grammatical Evolution implementation
and demonstrated that it is better suited for solving multi-output (or multi-target) problems
than standard Grammatical Evolution. Genetic operators, mappers and initialisation
routines have been adapted to work with the new genome representation. Custom grammar
syntax rules, together with a cyclic dependency-checking algorithm, have been developed
to facilitate the evolution of inter-output dependencies. A new wrapping operator called
Perfect Wrapping has been developed to ensure every single Multi-Genome Grammatical
Evolution mapping event creates a valid executable object.

Despite the success of Multi-Genome Grammatical Evolution on the benchmark circuit
problems used, there are several open questions and further experiments that need to be
conducted. For example, the best mutation and crossover events for the genetic operators
adapted for Multi-Genome Grammatical Evolution need to be investigated. We need
to develop more intelligent algorithms to help Multi-Genome Grammatical Evolution
evolve very complex-output dependencies that may exist in other multi-output benchmark
problems.

Furthermore, the limitations of output variable dependency feature mentioned in
Section 5.1 needs to be improved to allow output variables that, when used by other output
variables, contribute to increasing their fitness value.

Finally, Multi-Genome Grammatical Evolution has the potential to be applied to appli-
cation domains other than the digital circuit domain. First, Multi-Genome Grammatical
Evolution can be used to evolve the single dependent variable and several independent
variables before performing multiple regression analysis to combine these variables to
predict the target variable. Second, Multi-Genome Grammatical Evolution can be applied
to multi-output classification problems. Finally, Multi-Genome Grammatical Evolution
was applied to single-output problems that can be decomposed, however, Multi-Genome
Grammatical Evolution should be applicable to multi-output problems. However, certain
application domains may require several features of Multi-Genome Grammatical Evolution
to be customised, such as the substitution operator and mapping mechanism.

Author Contributions: Conceptualization, M.T.; methodology, M.T. and C.R.; software, M.T. and
A.d.L.; validation, M.T., C.R., A.M. and D.M.D.; formal analysis, M.T. and A.M.; investigation, M.T.
and C.R.; resources, C.R.; data curation, M.T.; writing—original draft preparation, M.T., A.d.L. and
J.M. writing—review and editing, C.R., D.M.D. and A.M.; visualization, M.T.; supervision, C.R.;
project administration, M.T. and C.R.; funding acquisition, C.R. All authors have read and agreed to
the published version of the manuscript.

Funding: The authors are supported by Research Grant 16/IA/4605 from the Science Foundation
Ireland and by Lero, the Irish Software Engineering Research Centre. The fourth author is supported,
in part, by Science Foundation Ireland grant 20/FFP-P/8818.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

163

Algorithms 2023, 16, 365

Appendix A

Listing A1. 5-bit + 5-bit Adder Grammar with Output Variable Sharing. Output variable sharing is
enabled by making an output variable rule non-terminal a production of 〈expr-*〉 rules as highlighted
in the grammar.

<stmts> ::= <tr1-sum-1> <tr1-cout-1> <tr1-sum-2> <tr1-cout-2>
<tr1-sum-3><tr1-cout-3> <tr1-sum-4> <tr1-cout-4>
<tr1-sum-5> <tr1-cout-5>

<tr1-sum-1> ::= sum[0] "=" <expr-1>";" <nextline>
<tr1-cout-1> ::= in_cout[0] "=" <expr-1>";" <nextline>
<tr1-sum-2> ::= sum[1] "=" <expr-2>";" <nextline>
<tr1-cout-2> ::= in_cout[1] "=" <expr-2>";" <nextline>
<tr1-sum-3> ::= sum[2] "=" <expr-3>";" <nextline>
<tr1-cout-3> ::= in_cout[2] "=" <expr-3>";" <nextline>
<tr1-sum-4> ::= sum[3] "=" <expr-4>";" <nextline>
<tr1-cout-4> ::= in_cout[3] "=" <expr-4>";" <nextline>
<tr1-sum-5> ::= sum[4] "=" <expr-5>";" <nextline>
<tr1-cout-5> ::= in_cout[4] "=" <expr-5>";" <nextline>

<expr-1> ::= a[0] | b[0] | c_in | <expr-1><bitwise-op><expr-1>

| <expr-1><bitwise-op>(<expr-1>) | <tv1-input>
<expr-2> ::= a[1] | b[1] | c_in | <expr-2><bitwise-op><expr-2>

| <expr-2><bitwise-op>(<expr-2>) | <tv1-input>
<expr-3> ::= a[2] | b[2] | c_in | <expr-3><bitwise-op><expr-3>

| <expr-3><bitwise-op>(<expr-3>) | <tv1-input>
<expr-4> ::= a[3] | b[3] | c_in | <expr-4><bitwise-op><expr-4>

| <expr-4><bitwise-op>(<expr-4>) | <tv1-input>
<expr-5> ::= a[4] | b[4] | c_in | <expr-5><bitwise-op><expr-5>

| <expr-5><bitwise-op> (<expr-5>) | <tv1-input>
<bitwise-op> ::= & | "|" | ^ | ~^
<addend-idx> ::= 0 | 1 | 2 | 3 | 4
<tv1-input> ::= sum[0] | in_cout[0] | sum[1] | in_cout[1] | sum[2]

| in_cout[2] | sum[3] | in_cout[3] | sum[4]
| in_cout[4]

<begin-module> ::= "module adder(input logic [4:0] a, b, input
logic c_in, output logic [4:0] in_cout, output
logic [4:0] sum);" <nextline>
always @(*) begin <nextline><stmts><nextline>
end <nextline> <endmodule>

<endmodule> ::= endmodule
<nextline> ::= "\n"

164

Algorithms 2023, 16, 365

Listing A2. 5-bit + 5-bit Adder Grammar without Output Variable Sharing.

<stmts> ::= <tr1-sum-1> <tr1-cout-1> <tr1-sum-2> <tr1-cout-2>
<tr1-sum-3><tr1-cout-3> <tr1-sum-4> <tr1-cout-4>
<tr1-sum-5> <tr1-cout-5>

<tr1-sum-1> ::= sum[0] "=" <expr-1>";" <nextline>
<tr1-cout-1> ::= in_cout[0] "=" <expr-1>";" <nextline>
<tr1-sum-2> ::= sum[1] "=" <expr-2>";" <nextline>
<tr1-cout-2> ::= in_cout[1] "=" <expr-2>";" <nextline>
<tr1-sum-3> ::= sum[2] "=" <expr-3>";" <nextline>
<tr1-cout-3> ::= in_cout[2] "=" <expr-3>";" <nextline>
<tr1-sum-4> ::= sum[3] "=" <expr-4>";" <nextline>
<tr1-cout-4> ::= in_cout[3] "=" <expr-4>";" <nextline>
<tr1-sum-5> ::= sum[4] "=" <expr-5>";" <nextline>
<tr1-cout-5> ::= in_cout[4] "=" <expr-5>";" <nextline>

<expr-1> ::= a[0] | b[0] | c_in | <expr-1><bitwise-op><expr-1>
| <expr-1><bitwise-op>(<expr-1>)

<expr-2> ::= a[1] | b[1] | c_in | <expr-2><bitwise-op><expr-2>
| <expr-2><bitwise-op>(<expr-2>)

<expr-3> ::= a[2] | b[2] | c_in | <expr-3><bitwise-op><expr-3>
| <expr-3><bitwise-op>(<expr-3>)

<expr-4> ::= a[3] | b[3] | c_in | <expr-4><bitwise-op><expr-4>
| <expr-4><bitwise-op>(<expr-4>)

<expr-5> ::= a[4] | b[4] | c_in | <expr-5><bitwise-op><expr-5>
| <expr-5><bitwise-op> (<expr-5>)

<bitwise-op> ::= & | "|" | ^ | ~^
<addend-idx> ::= 0 | 1 | 2 | 3 | 4
<tv1-input> ::= sum[0] | in_cout[0] | sum[1] | in_cout[1] | sum[2]

| in_cout[2] | sum[3] | in_cout[3] | sum[4]
| in_cout[4]

<begin-module> ::= "module adder(input logic [4:0] a, b, input
logic c_in, output logic [4:0] in_cout, output
logic [4:0] sum);" <nextline>
always @(*) begin <nextline><stmts><nextline>
end <nextline> <endmodule>

<endmodule> ::= endmodule
<nextline> ::= "\n"

References

1. Kalganova, T. Bidirectional incremental evolution in extrinsic evolvable hardware. In Proceedings of the Second NASA/DoD
Workshop on Evolvable Hardware, Palo Alto, CA, USA, 15 July 2000; pp. 65–74. [CrossRef]

2. Stomeo, E.; Kalganova, T.; Lambert, C. Generalized Disjunction Decomposition for the Evolution of Programmable Logic Array
Structures. In Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06), Istanbul, Turkey,
15–18 June 2006; pp. 179–185. [CrossRef]

3. Hodan, D.; Mrazek, V.; Vasicek, Z. Semantically-Oriented Mutation Operator in Cartesian Genetic Programming for Evolutionary
Circuit Design. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO ’20, Cancún, Mexico,
8–12 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 940–948. [CrossRef]

4. Tetteh, M.K.; Mota Dias, D.; Ryan, C. Evolution of Complex Combinational Logic Circuits Using Grammatical Evolution with
SystemVerilog. In Proceedings of the Genetic Programming, Lille, France, 10–14 July 2021; Hu, T., Lourenço, N., Medvet, E., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 146–161.

5. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
6. Rothlauf, F.; Oetzel, M. On the Locality of Grammatical Evolution. In Proceedings of the EuroGP, Budapest, Hungary, 10–12

April 2006.
7. Castle, T.; Johnson, C.G. Positional Effect of Crossover and Mutation in Grammatical Evolution. In Proceedings of the Genetic

Programming, Istanbul, Turkey, 7–9 April 2010; Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 26–37.

8. Nicolau, M.; Agapitos, A. Understanding Grammatical Evolution: Grammar Design. In Handbook of Grammatical Evolution;
Springer International Publishing: Cham, Switzerland, 2018; pp. 23–53. [CrossRef]

9. O’Neill, M.; Ryan, C.; Keijzer, M.; Cattolico, M. Crossover in Grammatical Evolution. Genet. Program. Evolvable Mach. 2003,
4, 67–93. [CrossRef]

165

Algorithms 2023, 16, 365

10. Zhen, X.; Yu, M.; He, X.; Li, S. Multi-Target Regression via Robust Low-Rank Learning. IEEE Trans. Pattern Anal. Mach. Intell.
2018, 40, 497–504. [CrossRef] [PubMed]

11. Shaker, N.; Nicolau, M.; Yannakakis, G.N.; Togelius, J.; O’Neill, M. Evolving levels for Super Mario Bros using grammatical
evolution. In Proceedings of the 2012 IEEE Conference on Computational Intelligence and Games (CIG), Granada, Spain, 11–14
September 2012; pp. 304–311. [CrossRef]

12. O’Neill, M.; McDermott, J.; Swafford, J.M.; Byrne, J.; Hemberg, E.; Brabazon, A.; Shotton, E.; McNally, C.; Hemberg, M.
Evolutionary design using grammatical evolution and shape grammars: Designing a shelter. Int. J. Des. Eng. 2010, 3, 4–24.
[CrossRef]

13. Grammatical Evolution. In Biologically Inspired Algorithms for Financial Modelling; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 73–88. [CrossRef]

14. de la Puente, A.O.; Alfonso, R.S.; Moreno, M.A. Automatic Composition of Music by Means of Grammatical Evolution. SIGAPL
APL Quote Quad 2002, 32, 148–155. [CrossRef]

15. Mariani, T.; Guizzo, G.; Vergilio, S.R.; Pozo, A.T. Grammatical Evolution for the Multi-Objective Integration and Test Order
Problem. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO ’16, Denver, CO, USA, 20–24
July 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1069–1076. [CrossRef]

16. Osojnik, A.; Panov, P.; Džeroski, S. Multi-label classification via multi-target regression on data streams. Mach. Learn. 2017,
106, 745–770. [CrossRef]

17. Borchani, H.; Varando, G.; Bielza, C.; Larrañaga, P. A survey on multi-output regression. WIREs Data Min. Knowl. Discov. 2015,
5, 216–233. [CrossRef]

18. Harris, S.; Harris, D. Digital Design and Computer Architecture: ARM Edition, 1st ed.; Morgan Kaufmann Publishers Inc.: San
Francisco, CA, USA, 2015.

19. LaMeres, B.J. Introduction to Logic Circuits & Logic Design with Verilog; Chapter Verilog (Part 1); Springer International Publishing:
Berlin/Heidelberg, Germany, 2019; p. 157. [CrossRef]

20. RTL Modeling with SystemVerilog For Simulation and Synthesis: Using SystemVerilog for ASIC and FPGA Design; Sutherland HDL,
Inc.: Tualatin, OR, USA, 2017.

21. Slowik, A.; Białko, M. Evolutionary Design and Optimization of Combinational Digital Circuits with Respect to Transistor Count.
Bull. Pol. Acad. Sci. Tech. Sci. 2006, 54, 4.

22. Walker, J.A.; Völk, K.; Smith, S.L.; Miller, J.F. Parallel Evolution Using Multi-Chromosome Cartesian Genetic Programming. Genet.
Program. Evolvable Mach. 2009, 10, 417–445. [CrossRef]

23. Coimbra, V.; Lamar, M.V. Design and Optimization of Digital Circuits by Artificial Evolution Using Hybrid Multi Chromosome
Cartesian Genetic Programming. In Proceedings of the Applied Reconfigurable Computing, Mangaratiba, Brazil, 22–24
March 2016; Lecture Notes in Computer Science; Bonato, V., Bouganis, C., Gorgon, M., Eds.; Springer International Publishing:
Berlin/Heidelberg, Germany, 2016; pp. 195–206. [CrossRef]

24. Baine, N. A Simple Multi-Chromosome Genetic Algorithm Optimization of a Proportional-plus-Derivative Fuzzy Logic Controller.
In Proceedings of the NAFIPS 2008—2008 Annual Meeting of the North American Fuzzy Information Processing Society, New
York, NY, USA, 19–22 May 2008; pp. 1–5. [CrossRef]

25. Reyes, O.; Moyano, J.; Luna, J.; Ventura, S. A gene expression programming method for multi-target regression. In Proceedings
of the International Conference on learning and optimization algorithms: Theory and applications, LOPAL ’18, Rabat, Morocco,
2–5 May 2018; ACM: New York, NY, USA, 2018; pp. 1–6.

26. Ryan, C.; Azad, R.M.A. Sensible Initialisation in Grammatical Evolution. In Proceedings of the GECCO 2003: Bird of a Feather
Workshops, Genetic and Evolutionary Computation Conference, Chicago, IL, USA, 12–16 July 2003; Barry, A.M., Ed.; AAAI:
Chigaco, IL, USA, 2003; pp. 142–145.

27. Miller, F.P.; Vandome, A.F.; McBrewster, J. Hamming Code: Parity Bit, Two- out- of- Five Code, Hamming(7,4), Reed-Muller Code,
Reed-Solomon Error Correction, Turbo Code, Low- Density Parity-Check Code, Telecommunication, Linear Code; Alpha Press: Lagos,
Nigeria, 2009.

28. Hernandez, J.G.; Lalejini, A.; Dolson, E.; Ofria, C. Random Subsampling Improves Performance in Lexicase Selection. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’19, Prague, Czech Republic, 13–17
July 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2028–2031. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

166

Citation: Belousov, A.; Kisel, I.;

Lakos, R. A Neural-Network-Based

Competition between Short-Lived

Particle Candidates in the CBM

Experiment at FAIR. Algorithms 2023,

16, 383. https://doi.org/10.3390/

a16080383

Academic Editor: Frank Werner

Received: 31 May 2023

Revised: 28 July 2023

Accepted: 8 August 2023

Published: 9 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Neural-Network-Based Competition between Short-Lived
Particle Candidates in the CBM Experiment at FAIR

Artemiy Belousov 1,2,†, Ivan Kisel 1,2,3,4,*,† and Robin Lakos 1,2,*,†

1 Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany; ar.belousov@gsi.de
2 Institute of Computer Science, J. W. Goethe University, 60629 Frankfurt am Main, Germany
3 GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany
4 Helmholtz Research Academy Hesse for FAIR, 60438 Frankfurt am Main, Germany
* Correspondence: i.kisel@compeng.uni-frankfurt.de (I.K.); lakos@fias.uni-frankfurt.de (R.L.)
† These authors contributed equally to this work.

Abstract: Fast and efficient algorithms optimized for high performance computers are crucial for
the real-time analysis of data in heavy-ion physics experiments. Furthermore, the application
of neural networks and other machine learning techniques has become more popular in physics
experiments over the last years. For that reason, a fast neural network package called ANN4FLES is
developed in C++, which will be optimized to be used on a high performance computer farm for
the future Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion
Research (FAIR, Darmstadt, Germany). This paper describes the first application of ANN4FLES used
in the reconstruction chain of the CBM experiment to replace the existing particle competition between
Ks-mesons and Λ-hyperons in the KF Particle Finder by a neural network based approach. The raw
classification performance of the neural network reaches over 98% on the testing set. Furthermore,
it is shown that the background noise was reduced by the neural network-based competition and
therefore improved the quality of the physics analysis.

Keywords: artificial neural network; multi-layer perceptron; Kalman filter particle finder; heavy-ion
experiment; compressed baryonic matter experiment

1. Introduction

Over the last few years, the remarkable growth of machine learning and neural net-
works has had a profound impact across multiple scientific fields, redefining approaches to
problem-solving and pushing the boundaries of scientific exploration [1]. The versatility
and learning capacity of neural networks have positioned them as formidable tools in com-
putational sciences, capable of addressing a broad spectrum of challenges across various
domains. This includes, for instance, solving differential equations [2], and addressing
forward and inverse problems involving nonlinear partial differential equations using
physics-informed neural networks [3].

The predictive prowess of neural networks has resulted in models of outstanding
accuracy. In fields like physics and computational science, these methodologies are offering
new perspectives and solutions to longstanding challenges [4]. Particularly in particle
physics, these methodologies permit applications at different stages of experiments, en-
abling entirely new approaches or complementing existing algorithms. This includes
particle identification, trajectory reconstruction, event classification, and others [5,6].

This powerful interplay between computational science and particle physics will be
prominently featured in the future heavy-ion experiment, Compressed Baryonic Matter
(CBM), at the Facility for Antiproton and Ion Research (FAIR) [7]. This experiment will
leverage advancements in neural networks for improved data analysis and interpretation.
CBM is planned as a fixed-target experiment using the particle accelerator at FAIR. It will
provide scientists with the ability to explore states of matter in regions of high baryonic

Algorithms 2023, 16, 383. https://doi.org/10.3390/a16080383 https://www.mdpi.com/journal/algorithms167

Algorithms 2023, 16, 383

densities at moderate temperatures [8] and will allow for the search for rare short-lived
particles at unprecedented collision rates of up to 10 MHz [9].

In CBM, heavy ions (e.g., gold ions) will be accelerated to almost the speed of light
to collide with a target (e.g., a thin plate of gold), to enforce a nucleus–nucleus collision
that creates states of matter with extremely high density [10]. Under these conditions, a
state known as Quark–Gluon Plasma can be produced. In this state, quarks and gluons
are freed from their usual strong interactions within the plasma. After that phase, during
hadronization, quarks combine into new particles that burst out of the central collision
point (primary vertex) right into the detector setup.

Some of these newly formed particles decay almost immediately, either due to instabil-
ity or interaction with other particles. At the point of decay, particles are generally referred
to as mother particles, whereas the particles created during the decay are so-called daughter
particles. The specific mother particles that decay almost immediately are called short-lived
particles, and they can only be measured indirectly by the reconstruction of decays or decay
chains, since they rarely reach any detector before. Then, the daughter particles’ trajectories
(tracks) are used and extrapolated to find the point of decay (secondary vertex), whereas
their properties help to identify the decayed particle.

An efficient search for rare short-lived particles requires the already-mentioned high
interaction rates of up to 10 MHz. This creates further computational challenges. At these
interaction rates, it is not possible to store the data streams entirely, as they are produced
with approximately 1 TB of data per second [11]. To reduce the amount of data that has
to be stored, a reduction by approximately three orders of magnitude [12] is required,
and can be achieved by selecting only collisions (events) of physicists’ interest. However,
in CBM, there is no simple criteria for event selection, as the search for rare short-lived
particles requires a full event reconstruction [13], including the reconstruction of decays
and decay chains.

An algorithm package called First Level Event Selection (FLES) [14] is used to provide a
full event reconstruction in real-time that allows selection of events of interest and, therefore,
significantly reduces the amount of data that has to be stored on disk. The algorithms
used for the experiment are tested and evaluated step by step using precise Monte Carlo
simulated data. Thus, the true outcome of each event is known, and reconstructed particles
can be matched with the corresponding simulated particles to allow a performance analysis.
The reconstructed particle candidates are identified with a hypothesis, which can be tested
and evaluated using simulated data. In real experiments, however, the comparison is
not possible, which makes a detailed performance analysis a crucial step for a successful
experiment. Therefore, the presented approach will use the already-established tools of the
KF Particle Finder to measure the performance within the reconstruction chain of CBM.

The Kalman Filter (KF) Particle Finder is a package included in FLES, responsible
for particle and decay reconstruction, including the reconstruction of mother particles.
When mother particles are created, the type of particle and their properties are inferred
by the properties of the daughter particles. Due to inaccuracies in the reconstruction
of daughter particles, the reconstruction of multiple mother particle candidates is not
uncommon. For that reason, the particles pass through a particle competition to find the
best-fitting candidate. That way, the background noise produced by mistakenly created
mother particles can be reduced.

The presented neural network approach is used to replace the existing particle com-
petition of the KF Particle Finder. For each pair of mother particle candidates that would
compete against each other, the neural network classifies the best-fitting mother particles
based on their properties. The neural network solves the competition by classifying the
most probable candidate out of both competitors. Previous work [15] already investigated
a multi-layer perceptron-based approach, demonstrating that such models are generally
capable of solving the problem with comparable results. The present work shows improve-
ments in the particle competition by using a more complex model, including a different

168

Algorithms 2023, 16, 383

topology and hyper-parameters. The new model provides a raw classification performance
with an error of less than 2% on the test set.

2. Materials and Methods

2.1. Particle Competition of Ks and Λ

The neutral particles Ks-mesons and Λ-hyperons serve as important indicators for
the CBM experiment. Ks consists of a down-quark and a strange anti-quark, whereas Λ is
build with an up-quark, down-quark and a strange quark. Theoretical predictions suggest
that enhanced strangeness production (the production of strange, multi-strange or hyper-
strange particles, that consist of one, two or three strange quarks or strange anti-quarks)
is an indicator of deconfined matter [16], the Quark–Gluon Plasma. Both particles are
abundantly created in the energy ranges of the experiment [15] and are therefore a reliable
source of information. The two particles decay with the given probability BR (branching
ratio) as follows:

Ks → π+π− (BR : 69.20± 0.05 %),

Λ → pπ− (BR : 63.9± 0.5 %),

(please see [17,18], respectively), and therefore both give a rise to negatively charged pions
π−. Moreover, all daughter particles of Ks and Λ are non-neutral and, therefore, can be
measured by the detectors and reconstructed by the algorithms. The particle reconstruction
procedure combines all possible daughter particles, resulting in the simultaneous creation
of a “common” pion, which is a decay product for both, the Λ-hyperon and Ks-meson,
leading to the creation of these two possible mother particles, even though only one exist
in the Monte Carlo simulated data. As a result, Λ and Ks create background noise for
each other, which will hinder the physical analysis of the particles using real experiment
data. Performing a particle competition to decide for the best-fitting mother particles
helps to reduce this physical background noise by removing the falsely created mother
particle candidate.

The Kalman Filter (KF) Particle Finder [19] is an important package included in FLES,
responsible for online reconstruction of short-lived particles and their decay chains. The
package was updated recently by the Missing Mass method [20], and is now capable to
reconstruct more than 150 different particle decays. Furthermore, it includes tools for
performance measurements in the particle reconstruction process. The KF Particle Finder
package reconstructs all possible mother particle candidates when a decay is recognized.
Then, χ2-cuts and a particle competition are applied to select the best-fitting reconstructed
particles and to reject the others. The existing implementation of particle competition has
several stages. One of the most important steps is the evaluation of particle candidates’
reconstructed mass values. Here, the algorithm examines the reconstructed particles’
masses of each pair of candidates (competitors), and checks if one is within 3σ range of the
known mass distribution peak, the so-called Particle Data Group (PDG) (which refers to a
global collaboration of particle physicists, who define standards and publish results within
the scope of research) mass. If one of them is within the range, the mass distance to the
respective particle’s PDG mass is used to determine the best-fitting mother particle.

2.2. Data Extraction Using the KF Particle Finder Package

In CBM, the performance of algorithms within the FLES package is measured by a
comparison of Monte Carlo simulated data and reconstructed results by the algorithm
packages. Using this approach, the reconstruction efficiency and precision of each part
of the package can be evaluated. The Monte Carlo data can be considered as the true
outcomes of each event, allowing the application of supervised learning techniques. In the
stage of the KF Particle Finder, when the particles and decay chains are reconstructed, they
are matched with the corresponding Monte Carlo true particle. In this work, the Monte
Carlo information of each matched particle is utilized to check if the reconstructed particle

169

Algorithms 2023, 16, 383

is a true Ks-meson or Λ-hyperon. If this is the case, the information of the corresponding
reconstructed particle is extracted to build a dataset. In real experiments, Monte Carlo infor-
mation does not exist and, therefore, the neural network has to perform on reconstructed
information and hypothesis only.

Overall, 25,000 events generated by the UrQMD model [21] were used in this work.
A total of 12,000 events were used for training and testing, whereas 13,000 were used to
evaluate the network’s performance in comparison to the existing approach. All events are
central Au+Au collisions at 10 GeV energy, and therefore within the specifications of the
CBM experiment. In general, the created generated particles are processed by a transport
engine (e.g., GEANT4 [22]) to simulate the particles flying through the detector system,
including all relevant physics processes such as decays, scattering and interaction [23]. At
this point, the whole event outcome is simulated, including all decay chains and trajectories.
Afterward, the detector responses are generated, resulting in measurements (hits) that
would also be produced by real experiment particles when they interact with a detector. The
hits are then used to reconstruct tracks and the KF Particle Finder is applied to reconstruct
short-lived particles and decays.

The first part of the dataset (12,000 events) is used to train and test the neural network ar-
chitectures in the Artificial Neural Networks for First Level Event Selection (ANN4FLES) [24]
standalone package. Here, a measurement for raw classification performance was obtained
by the accuracy and cross entropy loss values per epoch. This dataset was divided by a
80:20 ratio for a training dataset and a testing dataset, respectively. Several fully-connected
neural network architectures and settings were tested by hand, where a multi-layer percep-
tron with three hidden layers with a peak accuracy of more than 98% on the test set was
finally chosen.

The second part of that data set, consisting of 13,000 events, is used for comparison
of the neural network based approach and the existing particle competition within the
KF Particle Finder. Hence, after training and testing, the pre-trained neural networks are
evaluated, implemented in the KF Particle Finder package as a part of the reconstruction
chain of the CBM experiment. That way, it is possible to use the tools for performance
measurement included in the KF Particle Finder, that are a well-established standard to
evaluate the algorithms’ performance in heavy-ion physics experiments.

2.3. Performance Measurements in the KF Particle Finder Package

When specific particles are investigated for physics analysis, it is important to achieve
clean probes. Due to the large amount of particles (up to 1000) in a collision [25], there
are many tracks pointing to the collision point (primary vertex) and, thus, create a large
amount of possible track combinations. Due to the limited underlying detector resolution
and calculation inaccuracies of floating point representation in a computer system, it is
only possible to reconstruct all tracks and particle decays within an acceptable range of
imperfection. In several cases, multiple tracks are within a defined error range, such that
uncertainties in the reconstruction can not be prevented. Some of the reconstructed particles’
tracks are real tracks that exist, others produce so-called combinatorial background, due
to mismatched track segments in the reconstruction process. These can be found by
comparison to the simulated data.

When using Monte Carlo simulated data, particles that were reconstructed and classi-
fied correctly are called signals, whereas particles that were mistakenly reconstructed are
called ghosts, and misclassified particles are generally referred to as physical backgrounds
for the respective other particles. The KF Particle Finder package produces histograms for
several parameters, such as particle’s mass distribution, and separate histograms for each
of these categories. This allows a detailed analysis of the reconstruction performance when
working with simulated data.

Beside the histograms, metrics can be calculated based on it. These include the
significance and the Signal/Background ratio (S/B ratio). The S/B ratio is just the amount
of signal divided by the amount of background, which allows evaluation of the approaches

170

Algorithms 2023, 16, 383

by showing if one or the other approach is rejecting more signal relative to the amount
of rejected background. The significance expresses the relation of the signal peak in
comparison to (lower) peaks produced by background. A significance of 1 indicates that
the background peaks by fluctuation are as large as the signal and, therefore, in a real
experiment, the peak would not be recognized as a different particle, as it has no difference
to background fluctuations. Contrarily, a significance of 5 is considered a threshold to see
a peak as a signal of a particle that should be investigated. However, since Λ and Ks are
already well-known and parameters are usually set to find them with a high significance, the
threshold for these particles is always achieved, even without competition. Nevertheless, a
large reduction in significance should be investigated.

2.4. Training and Testing Using ANN4FLES and PyTorch

The C++ package ANN4FLES is designed for the fast and efficient creation of various
neural network architectures and will be optimized for its usage within the full event
reconstruction chain of the CBM experiment. In its current state, ANN4FLES includes
architectures such as fully connected multi-layer peceptrons, convolutional neural networks,
recurrent neural networks, graph neural networks, and more. Furthermore, it provides a
graphical user interface for training, testing and fine-tuning of various hyperparameters
without the need for additional programming, such that pre-trained neural networks can
be easily exported to be used in CBM’s FLES package.

In the present work, a Multi-Layer Perceptron (MLP) [26,27] is used to solve a classi-
fication problem between two possible mother particles in a competition based on their
reconstructed properties. The ANN4FLES standalone package is used to create the neural
networks for training and testing. Then, the chosen pre-trained network is included into the
KF Particle Finder package and used in the particle competition to classify the competitors.

Since the previous work [15] already showed that a neural network can perform
comparably to the existing competition of the KF Particle Finder, ANN4FLES is used for
the first time within the KF Particle Finder package to implement a more complex neural
network for this classification task (see Figure 1). ANN4FLES was tested on multiple
well-known data sets and it was shown that ANN4FLES offered comparable results to
other neural network packages, which makes one confident that the implemented mathe-
matics in ANN4FLES are correct [24]. However, for comparison with a reference network
implemented in PyTorch [28], the weights are initialized by the same uniform distribution
method [29]. ADAM [30], with a learning rate of α = 0.003 and default β1, β2, was chosen
as a weight optimizer, whereas the selected activation functions are Leaky-ReLU for all
hidden neurons and Softmax for the output layer. The loss was calculated using binary
cross entropy and the training and testing phase was repeated over 100 epochs with a batch
size of 50.

To find a well performing model and settings, different learning rates in the range
of 0.001 and 0.005 were tested. The final results are accomplished by a network that was
trained with a learning rate of 0.003, whereas lower learning rates performed almost equally,
but larger learning rates tend to perform slightly worse. It is assumed that a larger learning
rate does not allow for moving as deep into a minimum as with using lower rates, since it
might overshoot the minimum slightly.

Besides the learning rates, different layer sizes and network depths were tested. Here,
the main focus was set on finding a balance between network size and results. On the one
hand, a more complex structure could lead to an even better performance. However, the raw
classification performance is already good, such that much deeper networks were not tested
yet. A deep neural network increases the amount of parameters and calculations, slowing
the classification process and, therefore, has to be balanced with the fast algorithms required
for the real-time event reconstruction in CBM. On the other hand, simpler architectures
than the chosen one seem to perform worse, which indicates a less complex model is not
capable of learning the patterns.

171

Algorithms 2023, 16, 383

m1

PDGm1

m2

PDGm2

Λ

Ks

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

Figure 1. Multi-Layer Perceptron (MLP) topology used to classify Ks and Λ, using 3 hidden layers
with 8 neurons each, hidden activation function Leaky-ReLU. Output layer consists of two neurons
with Softmax activation and cross entropy loss.

3. Results

Particle Competition Based on Mass and PDG Mass

The MLP implemented using ANN4FLES provides a raw classification accuracy of
up to 98.6% for the testing set (see Figure 2). An almost identically constructed neural
network was implemented in PyTorch to ensure valid results. The PyTorch architecture
provided equally high accuracy values and again confirmed the classification performance
of ANN4FLES.

Figure 2. ANN4FLES and PyTorch accuracy for training and testing, using reconstructed mass and
PDG mass over 100 epochs with a peak performance of 98.6% in the testing set. Both networks,
ANN4FLES and PyTorch, achieved high accuracy values on the testing set.

An error of only 1.4% on the testing set suggests that the classification performance
of the more complex ANN4FLES architecture is more suitable to solve the task, since the
error rate of the previous work is given with more than 10%. There are several possible

172

Algorithms 2023, 16, 383

reasons for the better results, such as the topology, different learning rate or the loss
minimizing algorithm, which was Broyden–Fletcher–Goldfarb–Shanno (BFGS) [15,31,32]
in the previous work. Furthermore, although the generators for simulated events should
perform equally, further investigations are suggested, as previous work used the PHSD [33]
model to generate data for the neural network training, testing and evaluation, whereas in
the present work, UrQMD is the underlying model to generate event data.

In Figure 3, the total mass spectra histograms for Ks and Λ are shown. The results
using KF Particle Finder without competition (black) and with the existing method (green)
are visualized for comparison. The ANN4FLES approach is colored red, and one can
see that it seems to reduce the number of entries over the whole range. In areas with
larger distance to the peak, this is likely to be reduced background. Nevertheless, there
is also a reduction in entries at the peak area for Ks, where a signal rejection can be the
reason. In general, it reduces the amount of particles that were finally classified as Ks or
Λ, respectively.

Figure 3. Histograms of mass spectra for Ks (left) and Λ (right). Comparison of no competition
(black), the existing mother particle competition (green) and the competition by ANN4FLES (red).

Investigating the signal mass histograms in Figure 4 shows that, in both cases, a
slight reduction in signal is indicated compared to running the KF Particle Finder without
competition. For Ks, the ANN4FLES approach rejected slightly more signal compared to
the existing method, whereas for Λ, the results are the other way around. Here, the existing
method rejects more signal particles than ANN4FLES. Thus, one can assume that the largest
part of rejected particles in Figure 3 is due to correctly rejected background.

Figure 4. Histograms of signals for Ks (left) and Λ (right) masses. Comparison of no competition
(black), the existing mother particle competition (green) and ANN4FLES (red).

In Figure 5, the background mass distribution is shown. Based on the histogram for
Λ, it is difficult to see which competition approach is better. Both competitions reduce the
background significantly but, around the peak, the existing method seems to perform better,
since there is a clearly visible peak for ANN4FLES at Λ’s PDG mass 1.116 GeV/c2, whereas
in the whole range, ANN4FLES seems to reduce the background slightly more. Moreover,
there is a large peak of the existing method at m < 1.11 GeV/c2, indicating less rejected
background by the existing method compared to the neural-network-based approach. For
Λ, this histogram indicates a tie between ANN4FLES and the existing method. However,

173

Algorithms 2023, 16, 383

evaluating Ks, there is no peak at the PDG mass of 0.493 GeV/c2 by ANN4FLES. The neural
network used seems to perform well in rejecting Ks background around the known mass
peak, which, overall, increases the physics analysis for Ks. Furthermore, a competition
based on the mass is quite difficult, if the reconstructed mass of the background producing
particle is within a range where it is expected for the respective investigated particle. These
results show that the network is not only classifying by the distance to the mass distribution
peak, as is performed in the existing method.

Figure 5. Histograms of background for Ks (left) and Λ (right) masses. Comparison of no competition
(black), the existing mother particle competition (green) and ANN4FLES (red).

In the ghost histograms (see Figure 6), ANN4FLES seems to be ahead in background
rejection in both cases Λ and Ks. Although, similar to the existing method, ANN4FLES has
a peak around the PDG mass bins, the existing method has more ghosts over the whole
range and within the peak area. Thus, the neural network rejects more ghost particles than
the default approach and, therefore, helps to reduce the mistakenly created mother particle
candidates even more.

Figure 6. Histograms of ghosts for Ks (left) and Λ (right) masses. Comparison of no competition
(black), the existing mother particle competition (green) and ANN4FLES (red).

In general, the presented plots indicate a better performance of ANN4FLES by rejecting
background particles. This can be confirmed by the S/B ratio and significance. In Figure 7,
the invariant mass spectra of Ks = π+π− and Λ = pπ− for the existing competition are
shown. With a significance of 149 and 213 for Ks and Λ, respectively, the clear signal is given
in both cases using the existing competition of the KF Particle Finder. Additionally, the S/B
ratio of 3.58 shows that the data visualized in the Ks-plot consists of almost four times more
signal than background, where it is over eight times more signal than background for Λ.

174

Algorithms 2023, 16, 383

Figure 7. Invariant mass distributions of Ks = π+π− and Λ = pπ− for the existing competition,
including signal–background ratio and significance.

The following results are achieved by the ANN4FLES approach (Figure 8). Comparing
the S/B ratio for Ks, one can see that the ANN approach improved the value by around 16%.
For Λ, however, the S/B ratio has been reduced by about 2%. Considering both particles,
ANN4FLES has reduced the background successfully even further. However, for Ks, the
significance was also decreased by about 3%, whereas the significance of Λ was increased
by 1%. That indicates that even if the background was reduced successfully on average, the
fluctuation in the background has been increased on average in comparison to the existing
method. Nevertheless, both significance values are high enough to consider these particles
as a clear signal, making the minor reduction negligible.

Figure 8. Invariant mass distributions of Ks = π+π− and Λ = pπ−, including signal–background
ratio and significance for the ANN4FLES approach.

4. Conclusions

Summarized, the ANN4FLES-based competition using reconstructed mass and PDG
mass can perform comparably to the existing method. In general, using a more complex
topology, it reduces background slightly better than the existing approach in the KF Particle
Finder, even though the significance is decreased slightly on average. Especially, the
amount of ghost particles were reduced almost over the whole range for both particles,
and the background reduction around the PDG mass of Ks was strong, even though a
similar model might show other results, depending on the learned features. The reason for
a good background reduction is most likely that the existing competition is only based on
the mass distance to the known PDG mass of a particle, whereas the neural network can
also learn patterns between reconstructed mass and PDG mass that can be used to classify
particles correctly.

The neural network approach is currently only classifying between Λ and Ks, whereas
the existing method is furthermore cleaning the background by suppressing, for example,
γ-decays and other cleanup methods. In the presented results, the network was not able
to reject a particle entirely, hence neither classifying it as Ks nor Λ. The extension of the
model by allowing either particle rejection or a classification between more particles that
interact as background for each other, might require an increase of the underlying model
complexity, but also can help to reduce the background even further.

175

Algorithms 2023, 16, 383

The ANN4FLES package itself will now be improved with respect to its runtime for the
planned applications in the real-time reconstruction chain of the future CBM experiment.
After these improvements, ANN4FLES will be integrated into the physics analysis module
of the FLES package.

Author Contributions: Conceptualization, I.K.; Methodology, A.B. and R.L.; Software, A.B. and
R.L.; Validation, A.B. and R.L.; Investigation, A.B. and R.L.; Resources, A.B.; Data curation, A.B.;
Writing original draft, A.B., I.K. and R.L.; Visualization, R.L.; Supervision, I.K.; Project administration,
I.K.; Funding acquisition, I.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was partly supported by the Federal Ministry of Education and Research
(grant number 01IS21092), Germany, and Helmholtz Research Academy Hesse for FAIR (project ID
2.1.4.2.5), Germany.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]
2. Tsoulos, I.G.; Gavrilis, D.; Glavas, E. Solving differential equations with constructed neural networks. Neurocomputing 2009,

72, 2385–2391. [CrossRef]
3. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
5. Bourilkov, D. Machine and deep learning applications in particle physics. Int. J. Mod. Phys. 2019, 34, 1930019. [CrossRef]
6. Shlomi, J.; Battaglia, P.; Vlimant, J.R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2020, 2, 021001.

[CrossRef]
7. Sturm, C.; Stöcker, H. The Facility for Antiproton and Ion Research FAIR. Phys. Part. Nucl. Lett. 2011, 8, 865–868. [CrossRef]
8. Friman, B.; Höhne, C.; Knoll, J.; Leupold, S.; Randrup, J.; Rapp, R.; Senger, P. (Eds.) The CBM Physics Book, 1st ed.; Lecture Notes

in Physics; Springer: Berlin/Heidelberg, Germany, 2011.
9. Ablyazimov, T.; Abuhoza, A.; Adak, R.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.;

Ahmad, S.; et al. Challenges in QCD matter physics –The scientific programme of the Compressed Baryonic Matter experiment at
FAIR. Eur. Phys. J. A 2017, 53, 60. [CrossRef]

10. Friese, V. The CBM experiment at GSI/FAIR. Nuclear Phys. A 2006, 774, 377–386. [CrossRef]
11. Friese, V. Simulation and reconstruction of free-streaming data in CBM. J. Phys. Conf. Ser. 2011, 331, 032008. [CrossRef]
12. Agarwal, K. The Compressed Baryonic Matter (CBM) Experiment at FAIR–Physics, Status and Prospects. Phys. Scr. 2023, 98, 3.

[CrossRef]
13. Akishina, V. Four-Dimensional Event Reconstruction in the CBM Experiment. Ph.D. Thesis, J. W. Goethe University, Frankfurt,

Germany, 2016.
14. Kisel, I.; Kulakov, I.; Zyzak, M. Standalone First Level Event Selection Package for the CBM Experiment. IEEE Trans. Nucl. Sci.

2013, 60, 3703–3708. [CrossRef]
15. Banerjee, A.; Kisel, I.; Zyzak, M. Artificial neural network for identification of short-lived particles in the CBM experiment. Int. J.

Mod. Phys. A 2020, 35, 2043003. [CrossRef]
16. Rafelski, J.; Müller, B. Strangeness Production in the Quark-Gluon Plasma. Phys. Rev. Lett. 1982, 48, 1066–1069. [CrossRef]
17. Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al.

Particle Data Group. Prog. Theor. Exp. Phys. 2020, 2020, 083C01.
18. Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.S.; Baer, H.; Band, H.R.; Barnett, R.M.; Beringer, J.; Bergren, E.; et al.

Particle Data Group. Phys. Lett. B 2008, 667, 1–6. [CrossRef]
19. Zyzak, M. Online Selection of Short-Lived Particles on Many-Core Computer Architectures in the CBM Experiment at FAIR.

Ph.D. Thesis, J. W. Goethe University, Frankfurt, Germany, 2016.
20. Kisel, P. KF Particle Finder Package: Missing Mass Method for Reconstruction of Strange Particles in CBM (FAIR) and STAR

(BNL) Experiments. Ph.D. Thesis, Goethe University, Frankfurt, Germany, 2023.
21. Bleicher, M.; Zabrodin, E.; Spieles, C.; Bass, S.A.; Ernst, C.; Soff, S.; Bravina, L.; Belkacem, M.; Weber, H.; Stöcker, H. Relativistic

hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. Nucl. Part. Phys. 1999, 25, 1859.
[CrossRef]

22. Agostinelli, S.; Allison, J.; Amako, K.A.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al.
Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2003, 506, 250–303.
[CrossRef]

23. Friese, V.; for the CBM Collaboration. The high-rate data challenge: Computing for the CBM experiment. J. Phys. Conf. Ser. 2017,
898, 112003. [CrossRef]

176

Algorithms 2023, 16, 383

24. Senger, P.; Friese, V. CBM Progress Report 2022; Number CBM PR 2022; GSI: Darmstadt, Germany, 2022; p. 161.
25. Höhne, C.; Rami, F.; Staszel, P. The Compressed Baryonic Matter Experiment at FAIR. Nucl. Phys. News 2006, 16, 19–23. [CrossRef]
26. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958,

65, 386–408. [CrossRef] [PubMed]
27. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representations by error propagation. Parallel Distrib. Process.

1986, 1, 318–363.
28. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran
Associates, Inc.: Red Hook, New York, NY, USA, 2019.

29. torch.nn.Linear—PyTorch 1.9.0 Documentation. 2023. Available online: https://pytorch.org/docs/stable/generated/torch.nn.
Linear.html (accessed on 30 March 2023).

30. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for
Learning Representations, San Diego, CA, USA, 7–9 May 2015.

31. Broyden, C. A new double-rank minimisation algorithm. Preliminary report. Am. Math. Soc. Not. 1969, 16, 670.
32. Fletcher, R. A new approach to variable metric algorithms. Comput. J. 1970, 13, 317–322. [CrossRef]
33. Cassing, W.; Bratkovskaya, E.L. Parton transport and hadronization from the dynamical quasiparticle point of view. Phys. Rev. C

2008, 78, 034919. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

177

Citation: Leon, J.F.; Li, Y.; Martin,

X.A.; Calvet, L.; Panadero, J.; Juan,

A.A. A Hybrid Simulation and

Reinforcement Learning Algorithm

for Enhancing Efficiency in

Warehouse Operations. Algorithms

2023, 16, 408. https://doi.org/

10.3390/a16090408

Academic Editor: Frank Werner

Received: 21 July 2023

Revised: 24 August 2023

Accepted: 25 August 2023

Published: 27 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Hybrid Simulation and Reinforcement Learning Algorithm
for Enhancing Efficiency in Warehouse Operations

Jonas F. Leon 1,2, Yuda Li 3, Xabier A. Martin 3, Laura Calvet 4, Javier Panadero 5 and Angel A. Juan 3,*

1 Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya,
08018 Barcelona, Spain; jofule@uoc.edu

2 Spindox España S.L., Calle Muntaner 305, 08021 Barcelona, Spain
3 Research Center on Production Management and Engineering, Universitat Politècnica de València,

Plaza Ferrandiz-Salvador, 03801 Alcoy, Spain; yudali@upv.es (Y.L.); xamarsol@upv.es (X.A.M.)
4 Department of Telecommunications & Systems Engineering, Universitat Autònoma de Barcelona,

08202 Sabadell, Spain; laura.calvet.linan@uab.cat
5 Department of Computer Architecture & Operating Systems, Universitat Autònoma de Barcelona,

08193 Bellaterra, Spain; javier.panadero@uab.cat
* Correspondence: ajuanp@upv.es

Abstract: The use of simulation and reinforcement learning can be viewed as a flexible approach to
aid managerial decision-making, particularly in the face of growing complexity in manufacturing
and logistic systems. Efficient supply chains heavily rely on steamlined warehouse operations, and
therefore, having a well-informed storage location assignment policy is crucial for their improvement.
The traditional methods found in the literature for tackling the storage location assignment problem
have certain drawbacks, including the omission of stochastic process variability or the neglect of
interaction between various warehouse workers. In this context, we explore the possibilities of
combining simulation with reinforcement learning to develop effective mechanisms that allow for the
quick acquisition of information about a complex environment, the processing of that information,
and then the decision-making about the best storage location assignment. In order to test these
concepts, we will make use of the FlexSim commercial simulator.

Keywords: warehouse operations; hybrid algorithms; simulation; reinforcement learning; optimization

1. Introduction

Manufacturing and logistic systems play a pivotal role in companies, serving as
the backbone of their operations. Effective management of manufacturing and logistic
systems is crucial for meeting customer demand, reducing costs, improving operational
efficiency, and gaining a competitive advantage in the market. In today’s ever-evolving
landscape of manufacturing and logistic systems, characterized by increasing complexity
and interdependencies, simulation has emerged as a powerful and versatile tool that can
significantly aid managerial decision-making [1]. Simulation serves as a powerful tool for
accurately modeling and analyzing intricate and dynamic systems that exhibit non-linear
interactions. Among various simulation approaches, discrete-event simulation (DES) is
widely adopted across multiple industries. A plethora of commercial simulators such as
Simio, AnyLogic, FlexSim, and others, as well as non-commercial ones like SimPy and
Salabim, provide robust capabilities for DES modeling. The potential of these simulators
can be greatly amplified by integrating them with advanced optimization or machine
learning tools. Connecting DES platforms with external programming languages such as
Python or R can enhance simulation modeling by leveraging additional mathematical and
algorithmic capabilities, thereby enabling more sophisticated analyses and insights [2].

Reinforcement learning (RL) [3] is an increasingly popular field of machine learning
in artificial intelligence, which studies how intelligent agents ought to take actions in an

Algorithms 2023, 16, 408. https://doi.org/10.3390/a16090408 https://www.mdpi.com/journal/algorithms178

Algorithms 2023, 16, 408

environment with the aim of maximizing the cumulative reward. RL has plenty of appli-
cations in a wide range of fields such as natural language processing, image processing,
recommendation systems, and marketing, among others. In the context of warehouse oper-
ations, RL can be used for various applications to optimize and automate tasks, improve
efficiency, and reduce costs [4]. Some examples of RL applications in this context include
inventory management (decisions on when to reorder, how much to reorder, and where to
store items), order picking optimization (decisions on the most efficient routes for order
picking), warehouse layout optimization (decisions on the arrangement of aisles, racks, and
storage areas), autonomous guided vehicles routing, energy management (decisions on
energy usage, such as scheduling equipment operations, adjusting temperature setpoints,
and optimizing lighting), and quality control (decisions on item inspection based on factors
such as item characteristics, inspection history, and inspection costs).

Combining advanced simulation environments and RL can be used for training an
agent to find efficient policies that take into account realistic conditions such as those present
in a warehouse. In this context, our work explores the potential of combining the well-
established commercial simulation software FlexSim [5] and various RL implementations,
programmed in Python [6]. FlexSim has several advantages that make it suitable for this
project: (i) the focus on warehouse and manufacturing applications; (ii) the visual aspect,
which facilitates the validation and also boosts managerial decision-making and insights
by graphically showing the content of the model and the progress of the simulation; and
(iii) the option to communicate with Python [7]. On the other hand, Python stands out
as an open source, platform-independent, and general-purpose programming language.
It offers plenty of comprehensive packages for data analysis, machine learning, scientific
computing, and application development, among others. We present a case study where a
dynamic version of the storage location assignment problem [8] is addressed. It illustrates
the benefits and limitations of this approach and boosts a discussion on its potential in
warehouse operations.

The work presented in this paper serves as a feasibility demonstration, in which the
integration of two elements (namely, FlexSim and Python) that have not been previously
documented as working together in scientific literature is showcased. This novel com-
bination posed non-trivial challenges to the case study analyzed, i.e., learning from the
realistic feedback of a commercial software implementation is not guaranteed. As reported
in the related work section, the use of simplified simulation environments is a common
approach, and consequently, the use of a more realistic model for the RL environment
can be considered as the main contribution of this study. The second contribution is the
resolution of a dynamic version of the storage location problem without using any prior
knowledge and with a relatively small effort, at least for the validation instance considered.
This problem, for a more realistic instance, is very difficult, or even intractable, using
traditional methods. The study also covers a performance discussion, where the validation
instance is scaled up, and the results are reassessed. The final contribution of this article
is devoted to indicating where further research effort could go. In fact, this work can be
seen as the first step in order to lay the ground for more advanced studies, in particular in
the use of commercial simulation software in the context of digital twin optimization. The
selection of a simplified case was carried out on purpose in order to be able to demonstrate
its feasibility, to validate the effectiveness of the RL approach, and to provide a benchmark
on the topic.

The rest of the paper is structured as follows. Section 2 reviews recent work on the
combination of simulation and RL applied to warehouse operations. Afterward, Section 3
describes the algorithmic implementation for combining simulation and reinforcement
learning. The case study is described in Section 4. Finally, Section 5 discusses open
research lines in this area, while Section 6 highlights the most important findings and
draws some conclusions.

179

Algorithms 2023, 16, 408

2. Related Work

As the demand for fast and efficient warehouse operations continues to grow, there is
a pressing need for advanced optimization techniques. In recent years, there has been an
increasing number of publications on the use of RL and simulation related to warehouse
operations (see Figure 1).

Figure 1. Documents by year in the Scopus database. Search query: “reinforcement learning”,
“simulation”, and “warehouse” appear in the title, abstract, or keywords; the documents are either
conference papers or articles; and the language is English. Information retrieved on 18 April 2023.

2.1. Early Work on RL with Simulation for Warehouse Operations

One of the first studies on the combination of simulation with RL was carried out by
Kinoshita et al. [9], who proposed a novel approach for automated warehouse manage-
ment using autonomous block agents with field intelligence. The field intelligence was
developed through a RL process, allowing the agents to optimize the loading and ordering
of crates. The simulation results demonstrated the adaptive process of field intelligence,
mutual agent interactions, and the optimization of the automatic warehouse. Another early
work was proposed by Rao et al. [10], which presented a simulation-based methodology
for studying decentralized supply chain decision-making problems using stochastic game
models. The authors used RL techniques to find near-optimal policies for non-zero sum
stochastic games. The methodology was shown to be effective in capturing the short-term
behavior of non-zero sum stochastic games, providing insights into the practical appli-
cations of inventory planning in warehouses. Later, focusing on large-scale data centers,
Yan et al. [11] explored the application of RL in run-time scheduling to optimize energy
consumption. By carefully optimizing RL algorithms, the authors demonstrated significant
energy savings in IT equipment while maintaining performance. The study showcased the
potential of RL in reducing operational costs and improving energy efficiency in warehouse
data centers. In warehouse management problems, Estanjini et al. [12] presented a novel
approximate dynamic programming algorithm. The algorithm utilized a least squares tem-
poral difference learning method and operated on imperfect state observations. Simulation
results confirmed the effectiveness of the algorithm in minimizing operating costs and
outperforming existing heuristics in warehouse management. Similarly, Dou et al. [13]
proposed a hybrid solution for intelligent warehouses, combining genetic algorithm-based
task scheduling with RL-based path planning for multi-robot systems. The simulation
results demonstrated the effectiveness of the proposed approach in optimizing travel time
and overall system efficiency. The combination of simulation models with RL continued
to advance with the work carried out by Rabe and Dross [14], which presented a deci-
sion support system (DSS) for logistics networks based on a data-driven discrete-event
simulation model. The authors integrated RL into the DSS using SQL queries and a data
warehouse to measure key performance indicators. The study provided a foundation for
developing RL agents that can enhance decision-making in logistics networks. In another
study, Wang et al. [15] proposed a novel incremental learning scheme for RL in dynamic

180

Algorithms 2023, 16, 408

environments where reward functions can change over time. The scheme aimed to adapt
the optimal policy to accommodate environmental changes. The authors demonstrated the
improved adaptability and applicability of RL in dynamic environments through simula-
tion experiments in maze navigation and intelligent warehouse systems. In manufacturing
scheduling, Drakaki and Tzionas [16] presented a method using Timed Colored Petri Nets
and RL. The scheduling agent employed the Q-learning algorithm to search for optimal
solutions. Through simulation experiments and performance evaluation, the proposed
method showed promise in addressing manufacturing system adaptation and evolution in
warehouse environments.

2.2. Applications of RL with Simulation in Warehouse Operations

Kono et al. [17] introduced an automatic policy selection method for transfer learning
in RL, based on spreading activation theory. The proposed method enhanced the adapt-
ability of RL algorithms in transfer learning. Simulation results validated the effectiveness
of the proposed activation function and spreading sequence in automated policy selection.
The combination also expanded to address specific tasks within warehouses with Li et al. [18],
which focused on task selection in material handling and presented a deep reinforcement
learning (DRL) methodology for autonomous vehicles in a warehouse context. The authors
conducted simulation-based experiments to train and evaluate the capabilities of the pro-
posed method. The results demonstrated the efficacy of the DRL approach for task selection
in material handling scenarios. More recently, Sartoretti et al. [19] introduced PRIMAL, a
framework that combined reinforcement and imitation learning to teach fully decentralized
policies for multi-agent path-finding (MAPF) in warehouse automation. PRIMAL utilized
demonstrations from an expert planner, reward shaping, and environment sampling during
training. The framework scaled to different team sizes and world dimensions, enabling
implicit coordination and reactive path planning. The study demonstrated the effectiveness
of PRIMAL on randomized worlds with up to 1024 agents, highlighting its advantages over
centralized planning approaches. Li et al. [20] presented a Deep Q-network (DQN)-based
model for dispatching and routing autonomous mobile robots in warehouse environments.
The DQN model outperformed traditional shortest travel distance rules by considering
traffic conflicts, task completion makespan, and system mean time. Through discrete
event simulation experiments, the study validated the effectiveness of the DQN model in
improving task selection and performance in warehouse settings. Moreover, the integration
of RL into supply chain control was explored by Barat et al. [21]. The authors proposed an
RL controller trained through closed-loop multi-agent simulation. The framework aimed to
maximize product availability while minimizing wastage under constraints. By combining
RL with an actor-based multi-agent simulation, the study demonstrated the efficacy of
the approach in controlling supply chain networks and optimizing warehouse operations.
Another method was proposed by Sun and Li [22], which introduced an end-to-end path
planning method for automated guided vehicles (AGVs) in intelligent logistics warehouses.
This method utilized a DRL approach, combining visual image and LIDAR information.
The algorithm employed a DQN with prioritized experience replay and a double DQN
with the dueling architecture. Simulation experiments demonstrated the effectiveness of
the proposed method in handling unknown and dynamic environments, improving AGV
path planning in warehouses. Moreover, the challenge of learning decentralized policies for
multi-robot tasks in warehouses was addressed by Xiao et al. [23]. The proposed approach
was a macro-action-based decentralized multi-agent double deep recurrent Q-net (MacDec-
MADDRQN). The method leveraged a centralized Q-net for action selection and allowed
for centralized or decentralized exploration. The study demonstrated the advantages of
the approach through simulation results, achieving near-centralized results and successful
deployment of real robots in a warehouse task. Similarly, Yang et al. [24] proposed a DQN
algorithm for multi-robot path planning in unmanned warehouse dispatching systems. The
algorithm combined Q-learning, an empirical playback mechanism, and productive neural
networks. The improved DQN algorithm showed faster convergence and better learning

181

Algorithms 2023, 16, 408

solutions for path-planning problems in multi-robot scenarios. Following the exploration
of reinforcement learning in warehouse management, Ushida et al. [25] presented a method
for transferring policies learned in simulation to real-world control of an Omni wheel robot
in a warehouse environment. RL was used to acquire state-action policies for obstacle
avoidance and reaching a destination. The proposed method utilized transfer learning
to refine action control on real robots, addressing uncertainties in the real environment.
Experimental results validated the effectiveness of the acquired policy in a real-world
setting. In another multi-AVG scenario, Shen et al. [26] proposed the MAA3C algorithm,
combining the A3C algorithm with an attention mechanism, for multi-AGV path planning
in warehouse environments. The algorithm incorporated advantages functions, entropy,
and both centralized and decentralized exploration. Simulation results demonstrated the
superiority of the MAA3C algorithm in terms of convergence and average reward, effec-
tively optimizing path planning and collaboration of multiple AGVs in warehouses. Newaz
and Alam [27] addressed task and motion planning (TAMP) in stochastic environments.
The proposed method utilized MDPs and a DRL algorithm to synthesize high-level tasking
policies and low-level control policies for quad rotors in a warehouse setting. The method
achieved near-centralized results and efficiently accomplished tasks through physics-based
simulations, highlighting the effectiveness of the approach. Similarly, Peyas et al. [28] pre-
sented the application of Deep Q-learning (DQL) to address navigation, obstacle avoidance,
and space utilization problems in autonomous warehouse robots. The model was tested for
single-robot and multi-robot cases, showcasing successful navigation, obstacle avoidance,
and space optimization in warehouse environments through 2D simulation experiments.
Building upon automated warehouse systems, Ha et al. [29] presented a scheduling system
that utilized an AGV. The system incorporated a genetic algorithm (GA) for task scheduling
and a Q-Learning algorithm for path planning. The introduction of a Collision Index (CI),
based on AGV locations, in the GA’s fitness function enhanced safety. The simulations
demonstrated the effectiveness of the CI in optimizing time, efficiency, and safety in
an automated warehouse system. In the context of multi-robot tasks in warehouses,
Liu et al. [30] addressed multi-agent path finding (MAPF) in formation. The authors
proposed a decentralized partially observable RL algorithm that used a hierarchical struc-
ture to decompose the task into unrelated sub-tasks. They introduced a communication
method to facilitate cooperation among agents. Simulation experiments demonstrated
the performance of their approach compared with other end-to-end RL methods, with
scalability to larger world sizes. Furthermore, Ushida et al. [31] focused on developing an
autonomous mobile robot for warehouse environments. Five learning types were applied
in a hybrid static and dynamic environment in simulations, with the aim of verifying the
effectiveness of these learning methods. The research laid the groundwork for learning in
an actual machine and demonstrated the potential of RL for path planning and obstacle
avoidance. In a similar manner, Lee and Jeong [32] explored the application of RL tech-
nology for optimizing mobile robot paths in warehouse environments with automated
logistics. The authors compared the results of experiments conducted using two basic
algorithms and utilized RL techniques for path optimization. The findings contributed to
understanding the characteristics and differences of RL algorithms, providing insights
for future developments. Addressing the dynamic scheduling problem of order pick-
ing in intelligent unmanned warehouses, Tang et al. [33] proposed a hierarchical Soft
Actor–Critic algorithm. The algorithm incorporated sub-goals and two learning levels,
with the actor maximizing expected intrinsic reward and entropy. Experimental results
demonstrated the effectiveness of the proposed algorithm in improving multi-logistics
AGV robots’ collaboration and reward in sparse environments.

2.3. Advancements in RL with Simulation for Warehouse Operations

Li et al. [34] investigated the deployment of a Virtual Warehouse using Kubernetes
and Docker. The authors employed an RL algorithm to optimize the placement of the
Virtual Warehouse, adapting to changing environmental conditions. Simulation model-

182

Algorithms 2023, 16, 408

ing was used to train the model and to obtain the optimal warehouse placement. The
research highlighted the superiority of the RL algorithm in Kubernetes warehouse place-
ment. DRL was another technique proposed by Ren and Huang [35], which presented
an optimal path-planning algorithm for mobile robots in warehouses. The algorithm
combined potential fields guidance with DRL to collect high-quality training data and
to improve data efficiency. Simulation results demonstrated the successful navigation
and obstacle avoidance capabilities of the DRL algorithm in warehouse environments.
Similarly, Balachandran et al. [36] presented an autonomous navigation system for an au-
tonomous mobile robot (AMR) in a warehouse environment. The system utilized a DQN
algorithm trained with LIDAR-based robot models in a ROS Gazebo environment. The re-
sults demonstrated the successful navigation of the mobile robot in unknown environments
through simulation and real-life experiments. Shifting the focus to transaction sequencing,
Arslan and Ekren [37] focused on transaction sequencing in a tier-to-tier Shuttle-based
Storage and Retrieval System (SBSRS). The authors proposed a DQL method to optimize
the transaction selection of shuttles. By comparing the performance of DQL with heuristic
approaches, such as first-come-first-serve (FIFO) and shortest process time (SPT) rules, the
study demonstrated the advantages of DQL in reducing process time and improving the
efficiency of the SBSRS. Continuing research in mobile robotic applications, Lewis et al. [38]
addressed the challenge of autonomous navigation in mobile robotic applications. The
authors proposed a novel approach that combined RL with object detection for collision-
free point-goal navigation. The reward function was designed to grant rewards based on
successful object detection with varying confidence levels. The results indicated significant
improvements in point-goal navigation behavior compared with simpler reward function
designs. In the context of task scheduling in automated warehouses, Ho et al. [39] focused
on heterogeneous autonomous robotic (HAR) systems. The authors proposed a DRL-based
algorithm using proximal policy optimization (PPO) to achieve optimal task scheduling.
Additionally, a federated learning algorithm was introduced to enhance the performance of
the PPO agents. Simulation results demonstrated the superiority of the proposed algorithm
in terms of average queue length compared with existing methods. Later, Zhou et al. [40]
addressed the order batching and sequencing problem in warehouses, a known NP-hard
problem. The authors proposed an improved iterated local search algorithm based on
RL to minimize tardiness. The algorithm incorporated an operator selecting scheme and
adaptive perturbation mechanism to enhance global search ability. Extensive simulation
experiments demonstrated the effectiveness and efficiency of the proposed approach com-
pared with state-of-the-art methods. Similarly, Cestero et al. [41] presented Storehouse, a
customizable environment for warehouse simulations designed to optimize warehouse
management using RL techniques. The environment was validated against state-of-the-art
RL algorithms and compared with human and random policies. The findings demon-
strated the effectiveness of Storehouse in optimizing warehouse management processes.
Choi et al. [42] focused on the cooperative path control of multiple AGVs in warehouse
systems. The authors proposed a QMIX-based scheme that utilized cooperative multi-agent
RL algorithms. Novel techniques, including sequential action masking and additional
local loss, were introduced to eliminate collision cases and to enhance collaboration among
individual AGVs. Simulation results confirmed the superiority of the proposed scheme
in various layouts, highlighting the importance of cooperation among AGVs. Another
approach was proposed by Elkunchwar et al. [43], which addressed the autonomous source
seeking capability for small unmanned aerial vehicles (UAVs) in challenging environments.
Inspired by bacterial chemotaxis, a simple gradient-following algorithm was employed for
source seeking while avoiding obstacles. Real-time demonstrations showcased the success
rate of the algorithm in navigating towards fire or light sources while maintaining obstacle
avoidance. Moving to warehouse operations, Wang et al. [44] proposed a hybrid picking
mode for real-time order picking in warehouse centers. Multiple picking stations were
utilized to handle a large number of orders arriving at inconsistent quantities. The authors
designed a RL algorithm called PRL to address the challenges of real-time order arrivals.

183

Algorithms 2023, 16, 408

Numerical simulations demonstrated the algorithm’s ability to handle a large number of or-
ders simultaneously and to improve picking efficiency. Similarly, Y. Ekren and Arslan [45]
presented an RL approach, specifically Q-learning, for transaction scheduling in a shuttle-
based storage and retrieval system (SBS/RS). The proposed approach outperformed static
scheduling approaches, demonstrating its effectiveness in improving the performance of
SBS/RS. Furthermore, Yu [46] focused on the logistics transportation scheduling of fresh
products. A DNQ algorithm based on a pointer network was proposed to solve the efficient
logistics scheduling problem in fresh product distribution service centers. Simulation
experiments validated the algorithm’s accuracy and stability, making it suitable for ad-
dressing complex logistics and transportation scheduling problems. Shifting to energy
efficiency in mobile edge networks, Sun et al. [47] addressed this challenge by proposing
an intelligent caching strategy based on DRL. The strategy utilized a DQN framework to
design an intelligent content caching policy. By reducing duplicate content transmissions
between edge networks and a remote cloud, the proposed strategy significantly enhanced
the energy efficiency of mobile edge networks. Continuing the investigation of bridging
the gap between simulation and real environments, Ushida et al. [48] focused on proposed
a transfer learning method to improve the action control of an Omni wheel robot in real
environments. The effectiveness of the acquired policy was verified through experiments,
demonstrating the potential of sim-to-real transfer learning in supporting real-world appli-
cations of RL. Exploring the sparse reward problem in learning paths for multiple mobile
robots in automated warehouses, Lee et al. [49] employed a multi-agent RL (MARL) ap-
proach. The proposed dual reward model incorporated complex actions and various routes
to enhance learning progress and to mitigate the sparse reward problem. Experiments
conducted in a simulated automated warehouse environment validated the effectiveness
and stability of the proposed reward model method. Liang et al. [50] focused on effective
resource allocation in Industrial Internet of Things (IIoT) systems. A DQN-based scheme
was proposed to optimize bandwidth utilization and energy efficiency. The DQN model
utilized deep neural networks (DNNs) and Q-learning to select appropriate actions for im-
proving resource allocation. Simulation results demonstrated the efficacy of the proposed
scheme in enhancing both bandwidth utilization and energy efficiency compared with
other representative schemes. More recently, Guo and Li [51] presented an intelligent path-
planning model for AGV-UAV transportation in smart warehouses using DRL. The model
utilized proximal policy optimization with covariance matrix adaptation (PPO-CMA) in the
imitation learning and DRL networks. Simulation experiments conducted in warehousing
scenarios validated the performance of the proposed model in optimizing transportation
routes for AGV-UAV collaboration. Finally, Yan et al. [52] introduced a methodology for
optimizing control strategies in vehicular systems using DRL. The methodology utilized a
variable-agent, multi-task approach and was experimentally validated on mixed autonomy
traffic systems. The study demonstrated the efficacy of the proposed methodology in
improving control strategies, surpassing human driving baselines.

In Table 1, a classification of the studies presented in this section is provided. The
classification is conducted according to three different categories, namely, (i) whether the
application is related to an improvement at the supply-chain or warehouse (macro) level,
or the application is related to improvements to the navigation of robots or autonomous
vehicles; (ii) whether the RL component makes use of DNNs; and (iii) whether the sim-
ulation component used is a dedicated simulation software. By “dedicated simulation
software”, we refer herein to the use of a separate environment (third-party) in which the
programmed RL algorithm interacts and learns from. This taxonomy allows for deriving
some interesting insights about the context of the present study. There is an approximately
equal split between papers covering warehouse/supply chain and the autonomous vehicle
navigation area. Also, approximately half of the papers make use of DNN, being nonethe-
less more common in the context of autonomous vehicle navigation. Finally, the use of
dedicated simulation software is not commonly found in the literature, with only 20% of
studies making use of it. The reasons are obviously the increased complexity of handling

184

Algorithms 2023, 16, 408

the inter-software communication and the potentially richer environment from which the
agent needs to learn, as exemplified in the present work with FlexSim.

Table 1. Taxonomical classification of the papers found in the literature review.

References
Warehouse /Supply Chain

Management
AGV /Robot

Motion
Use DNN

Dedicated Simulation
Software

Kinoshita et al. [9] �

Rao et al. [10] � Arena

Yan et al. [11] �

Estanjini et al. [12] �

Dou et al. [13] �

Rabe and Dross [14] � SimChain

Wang et al. [15] �

Drakaki and Tzionas [16] � �

Kono et al. [17] �

Li et al. [18] � �

Sartoretti et al. [19] �

Li et al. [20] � �

Barat et al. [21] �

Sun and Li [22] � �

Xiao et al. [23] � �

Yang et al. [24] � �

Ushida et al. [25] �

Shen et al. [26] � �

Newaz and Alam [27] � � CoppeliaSim

Peyas et al. [28] � �

Ha et al. [29] �

Liu et al. [30] �

Ushida et al. [31] � �

Lee and Jeong [32] �

Tang et al. [33] � �

Li et al. [34] � CloudSim

Ren and Huang [35] � �

Balachandran et al. [36] � � Gazebo

Arslan and Ekren [37] � �

Lewis et al. [38] � � NVIDIA Isaac Sim

Ho et al. [39] � �

Zhou et al. [40] �

Cestero et al. [41] � �

Choi et al. [42] � �

Elkunchwar et al. [43] �

Wang et al. [44] �

Y. Ekren and Arslan [45] � Arena

Yu [46] � �

Sun et al. [47] � �

Ushida et al. [48] �

Lee et al. [49] � �

Liang et al. [50] � �

Guo and Li [51] � � Unity

Yan et al. [52] � � SUMO

185

Algorithms 2023, 16, 408

3. Reinforcement Learning in FlexSim

In complex real-life warehouse environments, there are decisions that are oftentimes
made by humans, based on their current knowledge and their intuition. Some of these
decisions could potentially be handled by so-called artificial intelligence. Let us consider
a couple of examples: a worker might need to decide where to place a product in an
intermediate storage area before the item can be processed by some equivalent working
stations or a worker needs to decide what product to pick up next from a given set of
orders. In both situations, the sheer amount of information and the interaction patterns to
be handled can easily surpass the capacity of a single human mind, resulting in inefficient
processes. Therefore, if a RL agent is trained in order to make the right decisions in
such a complex contexts, it could enhance the efficiency of the overall warehouse system.
Even though there are many applications that could benefit from this line of research,
there are not many studies integrating simulation and RL algorithms in the context of
warehouse management and, in particular, to solve a dynamic version of the storage
location assignment problem. Furthermore, to the best of the authors’ knowledge, there
are no studies in the literature that illustrate the combination of FlexSim and RL for
such purpose.

Being a simulation tool, FlexSim is not specifically designed to provide implementa-
tions of particular RL algorithms developed in the scientific literature. Nonetheless, it is
straightforward to consider the possibility of using FlexSim as the environment in which ex-
ternal RL agents train and learn. One of the main reasons to use FlexSim as an environment
for RL is that it helps to create very detailed models of logistic environments very easily.
For instance, the daily operations of a large warehouse could be modelled with relatively
small effort and to a level of detail that would be difficult if they were to be modelled from
scratch using a generic programming language or an open source alternative. In order to
combine both software, a communication protocol is required between FlexSim and the
outer world, so that an external program that executes a RL framework can incorporate
a FlexSim simulation as a training environment. For that purpose, FlexSim allows com-
munication with external processes via sockets, using its internal programming language,
FlexScript. In Figure 2, the classical state–action–reward RL scheme is adapted in order to
illustrate the methodology followed in this study. This is also shown in Algorithm 1, where
the reinforcement learning loop is repeated during t timesteps until the training finishes.
This framework is generic and will allow us, in Section 4.3, to train and compare different
RL Models using the same FlexSim environment.

In line with the growing interest in this subject, in 2022, FlexSim released a version
of its software that simplifies the work of setting up FlexSim as an environment for RL
training. The software now contains a graphical user interface in which the different
elements required for training an RL algorithm can be easily set up, namely, the observation
space, the reward function, and the actions. The interface provided can communicate with
an external program, written in any programming language, which in turn is required to
have the corresponding functions or methods for exchanging messages with FlexSim.

186

Algorithms 2023, 16, 408

Figure 2. Schematic representation of the reinforcement learning framework implemented and
simplified view of the use case.

Algorithm 1 Reinforcement learning framework.
Input: Environment, Agent
Output: Agent � The trained Agent with the learned Policy

1: initialize(Agent)
2: while t ≤ maxTimeStep do � Equivalent to running ∼ N Episodes
3: st, rt ← initialize(Environment) � Start a new Episode = instance of FlexSim
4: while isFinished(Environment) �= true do
5: Agent ← updatePolicy(st, rt) � Learning from current state and reward
6: at ← chooseAction(Agent, st) � Using the best available Policy
7: t + 1 ← step(Environment, at)
8: st+1, rt+1 ← observe(Environment)
9: st, rt ← st+1, rt+1

10: t ← t + 1
11: close(Environment)
12: return Agent
13: end

4. Case Study

This section provides a detailed description of the case study used to illustrate the
application of RL algorithms in a FlexSim simulated environment. Firstly, the warehouse
environment is explained, outlining the different elements contained in it and the configu-
ration of the main RL components, namely, actions, observations, and rewards. After that,
three different but well-known RL algorithms were trained within it, in order to observe the
difference in performance. In order to do so, the case study is divided in a small validation
instance and a larger performance instance. Finally, the outcomes of the RL training and a
brief discussion on performance are presented. All implemented algorithms are coded in

187

Algorithms 2023, 16, 408

Python and run on a Windows 10 operating system, with an i7-10750H CPU 2.60 GHz and
16 GB RAM. FlexSim version 22.1.2 was employed for the simulation model.

4.1. Use Case Description

The case study developed in this work is a simplified but dynamic version of a storage
location assignment problem (SLAP), where items arrive at an entry point and have to
be stored in different racks. In the most generic version, the goal of the SLAP is to define
the optimal allocation for items in the available locations in a given warehouse, while
considering the impact of this allocation on the handling cost or the storage space efficiency.
The use of predefined policies (e.g., random, fixed, or class-based) is one of the most
common approaches for dealing with the SLAP in a real-life warehouse context. In the
version presented herein, the location assignment needs to be made upon the arrival of
the items, as opposed to being predefined for the entire warehouse. This means that the
problem is, in that sense, dynamic because the policy can change with time depending on
the current status of the warehouse. The dynamism just described increases the difficulty
of solving the SLAP, which could be arduous to solve using classic methods for warehouse
optimization, such as metaheuristics. This type of dynamic problem, which requires
real-time decision-making, could be potentially better addressed by employing either
learnheuristics [53] or, as proposed in this paper, an RL agent that learns the policy to be
applied given the status of the warehouse and the incoming items. In order to compensate
for the additional difficulty of the use case problem definition, a minimalistic problem
set-up will be considered, as shown in Figure 3.

The available locations of the warehouse are reduced to only four locations in which
the incoming products can be placed. The rate at which the items arrive to the input
point is fixed, and the type of products that arrive belong to four different categories (A,
B, C, and D), depending on how frequently they are received in (or shipped out from)
the warehouse. The movement frequency is assigned to the items according to a certain
probability distribution, in particular, items of type A arrive and are requested with a 50%
chance, items of type B arrive and are requested with 31% probability, items type C arrive
and are requested with 13% probability, and items type D arrive and are requested with 6%
probability. Furthermore, the capacity of the racks is limited to 50 items. This implies that,
given the relative position of the rack with respect to the input and output points, there
are locations (racks) in the warehouse that are more convenient than others depending on
the product type and the space available. Hence, the goal is to let an artificial intelligence
autonomously learn what are the most convenient locations for the next arriving product
given the current status of the warehouse. In order to verify if the artificial intelligence (i.e.,
the trained RL model) is actually learning the best possible policy, a couple of benchmark
policies were defined. These are the random policy (Algorithm 2) and the greedy policy
(Algorithm 3). In Section 4.5, the results of these policies are compared against the result
from the RL framework shown in Algorithm 1.

This simplified setting has some advantages for the purposes of this work: (i) the time
for training the algorithm can be reduced, since the FlexSim simulation can run to termina-
tion very quickly, allowing for more learning episodes to be employed; (ii) the number of
factors influencing the evolution of the simulation is limited, so the decisions made by the
RL agent can still be interpreted to a great extent by researchers and practitioners; (iii) the
performance of policy obtained can be validated, given the fact that a very effective policy
for this warehouse set-up is known beforehand, namely, a greedy policy; and (iv) a simple
and well-defined warehouse scenario, for which the performance metric is easy to obtain,
could be employed as a benchmark instance for future research efforts. On the last point, a
FlexSim simulation environment could be added to a collection of environments used for
validation and benchmarking of RL algorithms, such as the one available for the Python
Gym library, which is presented below.

188

Algorithms 2023, 16, 408

Figure 3. Schematic representation of the use case (top) and screenshot of the simulation set-up
(bottom). It can be seen that the positions of the input (IN) and output (OUT) points make the first
storage location the most appropriate for reducing the traveled distance of the operators, if no other
restriction is considered.

Algorithm 2 Random policy.
Input: Item, Locations
Output: Location � Location ∈ Locations to which the Item is assigned

1: while isAssigned(Item) �= true do
2: k ← randomUniformBetween(1, count(Locations))
3: Location ← selectLocation(Locations, k)
4: if isFull(Location) = true then
5: Locations ← removeLocation(Locations, Location)
6: else
7: Location ← assignItem(Location, Item)

8: return Location
9: end

Algorithm 3 Greedy policy.
Input: Item, Locations
Output: Location

1: while isAssigned(Item) �= true do
2: k ←minDistance(Locations, Item)
3: Location ← selectLocation(Locations, k)
4: if isFull(Location) = true then
5: Locations ← removeLocation(Locations, Location)
6: else
7: Location ← assignItem(Location, Item)

8: return Location
9: end

189

Algorithms 2023, 16, 408

4.2. Simulation Environment

In Figure 2 and in Algorithm 1, how the classical RL loop (action–state–reward)
was embedded in a communication framework between the Python RL algorithm and
the FlexSim environment is shown. The simulation model contained two pickers, one
dedicated to the input activity and one dedicated to the output activity. Given that only one
product is picked during each travel, there is no requirement for a specific routing policy.
Instead, the optimal route between the input or output point and the racks is determined
using the A∗ algorithm, avoiding collision with the various obstacles present (namely, racks
and the other worker). To prevent overcomplicating the model, the rest of the parameters,
such as pickers’ average speed or processing times, were left to the FlexSim default values.
As described in Section 4.1, the action to be taken by the RL agent is the warehouse location
where to place the next item. This means that the action space is discrete and can take an
integer value between 1 and 4, representing each one of the four racks shown in Figure 3.
In order to learn from the environment, the current state of all the location are sent back as
observations to the learning agent. This means that the observation space is also discrete,
consisting in the integer amount of product of each type per rack. The incoming item is
also sent as part of the observations. The observation of the environment status is made
every time that a new item arrives (set at a fixed interval), and the information of the new
item is also included in the observation, codified as an integer (type A = 1, type B = 2, etc.).
Finally, the reward used for updating the RL policy is based on the distance workers need
to travel within the warehouse to position and retrieve the items. The objective function
or metrics used to evaluate and optimize SLAP can vary depending on the specific goals
and requirements of the problem. Some common objective metrics include travel distance,
retrieval time, space utilization, and handling costs. In many studies reviewed by [8],
the total travel distance is commonly employed as the objective metric. Hence, in this
case study, we adopt the travel distance as the reward function for our RL algorithms.
In particular, the main driver for the reward is the inverse of the difference between the
travelled distance in the current time step and the previous time step, so that a higher
reward is obtained when the difference is smaller. Following the classical RL notation, the
formula for the selected reward can be expressed as follows:

rt = R(st, st−1, at−1) =
C

d(at−1, st)− d(at−1, st−1)
, (1)

where rt is the actual reward obtained at time-step t, which is a function R that depends
on the current state st, the previous action at−1, and previous state st−1. The function is
calculated based on a constant C, which can be tuned to aid the learning, and the difference
in total traveled distance d between current and previous state. We decided to refer the
reward to the previous state and previous action in order to maintain the Markov property
and to ensure that the agent is learning within a Markov Decision Process where the current
state is dependent only upon the previous state and action.

4.3. Reinforcement Learning Implementations

Following the example provided by FlexSim on their web page (https://docs.flexsim.
com/en/22.1/ModelLogic/ReinforcementLearning/KeyConcepts/KeyConcepts.html, ac-
cessed on 26 August 2023), the case study presented herein used the Python OpenAI Gym
library [54] and the Stable-Baselines3 implementations of RL algorithms [55]. Gym is an
open source Python library that provides a standard API to communicate between RL algo-
rithms and a collection of environments which simulate various real-world situations, in
this case with FlexSim. Similarly, Stable-Baselines3 is a popular open source Python library
built on top of PyTorch, providing a collection of state-of-the-art RL algorithms. It is part of
the Stable-Baselines project, which aims to offer reliable and well-tested implementations
of various RL algorithms, making it easy for researchers and practitioners to experiment
with and apply these algorithms to their specific problems. Three different RL algorithms

190

Algorithms 2023, 16, 408

from Stable-Baselines3 were employed in this paper: (i) Advantage Actor Critic (A2C),
(ii) Proximal Policy Optimization (PPO), and (iii) Deep Q-Network (DQN) algorithms.

A2C is an on-policy reinforcement learning algorithm that combines elements of both
policy gradient methods and value function approximation [56]. It involves training an
actor (policy) network and a critic (value) network simultaneously. The actor is respon-
sible for selecting actions, while the critic evaluates the value of state–action pairs. The
advantage function, which represents how much better or worse an action is compared
with the average action in a given state, plays a crucial role in A2C. During training, the
actor network is updated using the policy gradient technique to maximize the expected
cumulative reward. The critic network is updated to minimize the difference between
the estimated value function and the actual cumulative reward. A2C often exhibits good
sample efficiency and is relatively easy to implement compared with other algorithms.
PPO is an on-policy RL algorithm that addresses some of the limitations of traditional
policy gradient methods [57]. PPO optimizes the policy by iteratively updating it in a way
that avoids large policy updates, which could lead to instability during training. The key
idea behind PPO is to clip the objective function during optimization to prevent drastic
changes in the policy. This clipping, referred to as the “surrogate objective”, ensures that
the updated policy remains close to the previous one. PPO also uses multiple epochs of
mini-batch updates to improve data efficiency. DQN is an off-policy Q-learning algorithm
that leverages deep neural networks to approximate the Q-function, which estimates the
expected cumulative reward for each state–action pair [58]. DQN introduced the idea of
using deep learning to represent the Q-function, allowing it to handle high-dimensional
state spaces like images. The algorithm employs an experience replay buffer to store and
sample transitions from past interactions with the environment. It uses a target network
with delayed updates to stabilize the training process. During training, DQN minimizes
the mean squared error between the Q-value predictions and the target Q-values, which
are calculated using the Bellman equation.

4.4. Training Results

In the current study, the total number of time steps used for training the models was
fixed to 200,000, and the simulation time of FlexSim model was fixed to 5000 s. In addition,
all three different RL algorithm hyperparameters were set to the default values provided
via Stable-Baselines3. In fact, the hyperparameters were left unmodified since a good
performance was expected with the default hyperparameter values.

Figure 4 shows the average reward obtained during the training process for three
different RL algorithms, where the horizontal and vertical axes represent the timesteps
of the training process and the obtained average reward, respectively. Notice that for
every RL algorithm, as the training time advances, the average reward tends to increase,
finally reaching an average reward of around 85. This trend indicates that the agent has
learned how to place items based on the received reward, until the reward cannot be
further increased. The differences in learning behavior observed among the three RL
algorithms can be attributed to the underlying design and optimization strategies of the
algorithms. The A2C algorithm’s behavior seems the most efficient, as in the initial phase
of the training process, there is a very short descending trend in the average reward,
corresponding to the exploration phase. Subsequently, as the training time advances, the
average reward increases steadily, quickly reaching a plateau for the rest of the training
process. Similarly, the PPO algorithm exhibits a short exploration phase in the initial
training process, and as the training time advances, the average reward increases steadily.
However, the average reward oscillates in the later stages of training, indicating that the
PPO algorithm incorporates some exploration during the exploitation phase. In contrast,
the DQN algorithm behaves somewhat differently from the other RL algorithms. The
ample descending trend in the mean reward in the initial phase of the training process
can be attributed to a long exploration phase, where the agent explores suboptimal actions
and learns from its mistakes. Once it has collected sufficient data, the algorithm starts

191

Algorithms 2023, 16, 408

exploiting the learned Q-values and improves its performance. This is not surprising, as
DQN is a value-based algorithm that learns to approximate the optimal Q-value function
using a deep neural network. This approach generally requires more training time than
A2C and PPO due to the algorithm’s need to explore the state–action space to learn the
optimal Q-values.

Figure 4. Comparison of the mean reward evolution during training for three different RL algorithms
using the use case simulation as environment.

4.5. Validation Results

Table 2 show the main results obtained for the use case when applying the different
trained policies. The first metric evaluated is simply the distance traveled by the operators,
which is used as a reward for the learning, as explained above. The second one is the
number of processed items during the time defined for each simulation episode. In order
to evaluate the productivity and efficiency of a warehouse (or any production system in
general), a very common metric is the throughput, which evaluates the number of items
processed per unit time. This is provided as the last metric in the table, which is equivalent
to the number of items since the simulation time for each episode is fixed.

Table 2. Main results of the validation use case, comparing the different benchmark policies (random
and greedy) against the RL agent learned policy (PPO, DQN, and A2C).

Policy Distance Traveled (m) Items Processed Throughput (Items/min)

Random 7763 172 2.06
Greedy 6680 241 2.89
PPO 6801 241 2.89
DQN 6894 241 2.89
A2C 6676 241 2.89

The random policy (see Algorithm 2) can be considered the lower bound for evaluating
the learning performance of the RL algorithm. On the other hand, the greedy policy (see
Algorithm 3) can be used as a reference for the performance of the RL policies. This is
because, if the available space within each rack is not limited, the greedy strategy is in
fact the best possible strategy: the items would be placed and retrieved from the first rack,
minimizing the traveled distance. However, due to the fact that a restriction in the number
of items per rack was introduced, the greedy strategy is not the best possible strategy. The
reason is that placing all items in the first rack regardless of their movement class (A, B,
C, and D) or the state of the racks could result in filling up the first rack and being forced
to place less frequent incoming items further away, which then are to be retrieved from

192

Algorithms 2023, 16, 408

those far away positions. On the contrary, if some space is saved in the first rack for the
less frequent items, they can be input and output directly from the first rack, reducing the
overall travel distance. It can be seen that the results for the different RL policies match
and, in the case of the A2C algorithm, even slightly improving those of the greedy policy.
This means that the RL agents are indeed learning from the underlying structure of the
problem and proposing a very competitive policy. For illustrative purposes, Figure 5 shows
the graphical outputs of the simulation for the untrained (random) and the trained RL
policy (PPO), so they can be compared visually. With this simple but effective use case,
it is demonstrated that the use of standard RL libraries in combination with advanced
simulation environments can be used for training an artificial intelligence to find efficient
policies that take into account realistic conditions such as those present in a warehouse.

Figure 5. Screenshot of the result (a) when the random policy is used and (b) when the trained
RL policy (PPO) is used. It can be seen that in (a) that products are stored without following an
assignment logic (at random) in all four racks. In (b), most items are placed in the first two racks,
resulting in a reduced overall travel distance for the operators.

4.6. Performance Discussion

In order to understand the implications of scaling up the validation use case in the
algorithm’s performance, an extended simulation instance was developed as shown in
Figure 6. The RL training procedure described in Algorithm 1 was undertaken using
the new instance and the RL implementations already presented in Section 4.3. It can be
observed that the number of racks was doubled, from four to eight racks, which could
represent a more realistic warehouse instance. The rest of the elements present in the
simulation were kept the same (workers, input and output points, etc.) so that the impact
of the increase in warehouse size can be fairly assessed. Also, the reward function defined
in Equation (1) and the RL hyperparameters (learning rates, discount factors, etc.) were
kept unmodified. It is important to note that the main aim of this section is not to compare
the different RL implementation to find the “best” one but, rather, to showcase what there
are the differences between them and how the algorithm performance was affected by the
increase in size of the validation instance.

Figure 6. Screenshot of the simulation environment considered for evaluating the performance of the
RL algorithm in bigger instances. The eight racks were distributed in two rows and four columns.

193

Algorithms 2023, 16, 408

The three RL implementations presented in Section 4.3 were able to learn and provide
very similar result in the extended instance. This meant that the different RL algorithms
“understood” the simulation environment context and maximized their expected reward in
the successive training episodes until the learning rate stabilized. Nonetheless, significant
differences could be observed between the three different RL implementations in terms
of their learning profile, as it is shown in Figure 7, where the curves were normalized, i.e.,
scaled so that the values fall between 0 and 1. This adjustment was performed because the
absolute value of the reward is not important (it depends on a constant and the distance
covered according to Equation (1)); the critical aspect is to understand if the RL agent
is learning a policy that can provide good actions that can lead to increase in reward in
the following environment states. The normalization allows for comparing the learning
behavior across different instances, with potentially different distances between racks. It is
important to note that the computational effort is equivalent in both the validation use case
(four racks) and the performance use case (eight racks) simply because the length of the
training is a parameter that can be adjusted. As in the validation case (see Section 4.4), the
number of timesteps for training was set to 200,000.

One interesting result is the fact that both the DQN and the A2C algorithms displayed
a very similar training behavior in both instances, suggesting that their learning profile
was not significantly affected by the increased size of the warehouse. This is very likely
linked to the use of the default hyperparameters, which controls how the algorithm train
and learn from the simulation environment. A noticeable difference between both instances
for those RL algorithms are the “ripples” that can be observed in the eight-rack instance
curves. These undulations on the curves could be interpreted as the increased difficulty
that the RL agent finds to the learning in the bigger instance, i.e., finding the best rack for a
given item given that the current status is not as simple due to the larger observational and
action spaces and, hence, the learning progress is not as stable. On the other hand, the PPO
algorithm displayed a difference in behavior between both instances. In spite of the overall
shape being very similar, the PPO algorithm in the eight-rack instance presents a delay of
about 50,000 timesteps, making the slope of learning progress much less steep. Also, the
decrease in mean reward after reaching the plateau (signifying an exploratory phase of the
training) is much deeper in the eight-rack instance for the same reasons provided for the
uneven curves in the DQN and A2C algorithms. However, even if the learning curves are
similar (or almost equivalent in the DQN and A2C implementations), this does not mean
that the quality of the learning is the same as in the validation use case, as can be seen in
Table 3.

Figure 7. Comparison of the normalized mean reward evolution during training for the three
RL algorithms in both the validation environment (four racks) and the performance environment
(eight racks).

194

Algorithms 2023, 16, 408

Table 3. Main results of the extended use case, comparing the different benchmark policies (random
and greedy) against the RL agent learned policy (PPO, DQN, and A2C).

Policy Distance Traveled (m) Items Processed Throughput (Items/min)

Random 8813 172 2.06
Greedy 6663 241 2.89
PPO 8302 241 2.89
DQN 7084 241 2.89
A2C 8704 241 2.89

As in the validation use case (four racks), the RL agents managed to correctly allocate
the incoming items, keeping the warehouse throughput at its optimal value, which is the
same as the greedy heuristic (see Algorithm 3). Nonetheless, the final travelled distance is
greater than that of the greedy heuristic in all cases (and, as expected, always smaller than
the random heuristic), with the DQN implementation being the one that provided the best
results in terms of distance. For the four-rack validation instance, the A2C implementation
managed to find a policy that, while keeping the optimal throughput, also reduced the
travelled distance with respect to the greedy heuristic (see Section 4.5). In the extended
instance (eight racks), due to the increased observation and action space, finding such a
favorable policy was much more complicated. In any case, this study demonstrates that
the learning capacity is maintained for the proposed RL algorithm, even under significant
modifications to the environment (i.e., doubling the number of racks). The impact in
performance due to a change in the environment is not straightforward to quantify due to
the number of factors involved, and the difference between different RL implementations.
Furthermore, it is common practice in the RL community to treat each problem instance
as a problem on its own, with the necessary parameter tuning and reward calibration to
achieve a satisfactory learning. In our case, a careful comparison has been carried out by
keeping all factors equal except the number of racks available (which was doubled), finding
that the performance is maintained in terms of throughput, but that the travelled distance
performance, measured as the difference between the algorithm result and the greedy
algorithm result), dropped for all RL implementations. The greatest loss in performance
was for the A2C algorithm, with a 31% reduction, followed by the PPO algorithm, with a
23% reduction. Finally, the DQN algorithm, with the use of deep neural networks and a
longer exploratory phase, maintained performance, with only a 3% drop in performance.

5. Key Applications and Open Research Lines

Simulation has been increasingly used in warehouse operations. Some of the key
applications include the following:

• Process Optimization: analyze and optimize various processes, such as receiving,
put-away, picking, packing, and shipping. Managers can identify bottlenecks, test
process changes, etc.;

• Layout and Design: design and optimize the layout, including the placement of racks,
shelves, etc.;

• Resource Allocation: optimize the allocation of resources, such as labor, equipment,
and space;

• Inventory Management: analyze and optimize inventory management strategies, such
as reorder points, safety stock levels, and order quantities;

• Demand Forecasting: simulate demand patterns and forecast inventory requirements;
• Labor Planning and Scheduling: optimize labor planning and scheduling;
• Equipment and Automation: evaluate the impact of equipment and automation

technologies, such as conveyor systems, automated guided vehicles, and robots.

195

Algorithms 2023, 16, 408

The main applications of RL in warehouse operations include the following:

• Warehouse Management: optimize tasks such as inventory management, order pick-
ing, and routing;

• Autonomous Robots: train autonomous robots for tasks such as automated material
handling, order fulfillment, and package sorting. Robots can learn how to navigate in
complex warehouse environments, handle different types of items, and interact with
other equipment and personnel;

• Resource Allocation: optimize the allocation of resources such as labor, equipment,
and space;

• Energy Management: optimize energy consumption, which can have a significant
impact on operational costs. For example, an agent can learn to control the usage
of lighting, heating, and ventilation, based on occupancy, time of day, and other
environmental factors;

• Safety and Security: for example, an agent can learn to detect and respond to safety
hazards, such as obstacles in pathways, spills, or damaged equipment.

The combination of advanced simulation environments and RL represents a new field
that remains to be completely explored. Here are a few promising research directions:

• Wider range of applications in warehouse operations. As manufacturing and logistics
systems grow more complex and businesses seek to remain both competitive and
sustainable, the increasing availability of data as well as new technologies through
Industry 4.0 is expected to open up a wider range of applications in warehouse
operations. This will give rise to a greater number of decision variables, objective
functions, and restrictions.

• Emergence of DRL. DRL holds significant potential over traditional RL due to its
ability to handle high-dimensional and complex state spaces through deep neural
networks. DRL allows for more efficient and automated feature extraction, enabling
the model to learn directly from raw data.

• Distributed and parallel techniques. Distributed and parallel RL can accelerate the
learning process by allowing multiple agents to learn concurrently. Moreover, this
approach can improve scalability, as it enables RL algorithms to handle larger and more
complex state spaces. Finally, distributed and parallel RL can provide robustness and
fault tolerance, as multiple agents can work in parallel, and failures or perturbations
in one agent do not necessarily disrupt the entire learning process.

• Explicability. Explicability is important for building trust and acceptance of RL sys-
tems, as users may be hesitant to adopt decision-making systems that lack transparency
and understanding. In addition, it can aid in understanding and diagnosing model
behaviour, facilitating debugging, troubleshooting, and identifying potential biases or
ethical concerns. Lastly, explicability can be crucial for compliance with regulatory
requirements in domains where transparency and accountability are essential.

• Metaheuristics. Metaheuristics hold potential for various applications in RL. Firstly,
they can be used for hyperparameter tuning in RL algorithms to optimize the perfor-
mance of agents. Secondly, metaheuristics can be employed for policy search, where
they can explore the policy space to find promising policies for RL agents. Lastly, they
can aid in solving complex problems in RL with high-dimensional state and action
spaces, where traditional RL algorithms may struggle, by providing effective search
strategies for discovering good policies. The combination of RL with metaheuristics
and simheuristics [59] is also an open challenge.

6. Conclusions

Simulation has emerged as a powerful tool for optimizing decision-making in ware-
houses, for instance, by analyzing and optimizing various processes, including receiving,
put-away, picking, packing, and shipping. By creating virtual models of warehouses and
simulating different scenarios, managers can identify bottlenecks and test process changes,

196

Algorithms 2023, 16, 408

among others. In particular, the combination of simulation and RL offers a flexible approach
for training intelligent agents in complex and dynamic environments, while mitigating
challenges associated with replicating difficult or expensive scenarios in the real world.
This paper showcases the integration of the FlexSim commercial simulator and the RL
OpenAI Gym library in Python. Thus, we deliberately focus on a simplified version of the
SLAP to highlight the connection between both components to demonstrate its feasibility.
The effectiveness of the approach is validated through a set of experiments. However,
enhancing the case study to reflect more complex and realistic scenarios is crucial for its
broader applicability and relevance to practical settings.

Several avenues for future research can be identified, which could be categorized into
three key domains: (i) enriching the SLAP modelization to describe more realistic and
large-scale problems, showing that the combination of FlexSim with RL can handle these
problems efficiently to deliver good performance in real-world contexts; (ii) conducting a
more extensive series of experiments to compare various scenarios; and (iii) examining the
performance of different RL algorithms and conducting sensitivity analyses to explore the
impact of different algorithmic parameters.

Author Contributions: Conceptualization, J.F.L. and A.A.J.; methodology, J.F.L., Y.L. and X.A.M.;
validation, L.C. and J.P.; writing—original draft preparation, J.F.L., Y.L., X.A.M., L.C. and J.P.; writing—
review and editing, A.A.J.; supervision, A.A.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been supported by the European Commission (SUN HORIZON-CL4-2022-
HUMAN-01-14-101092612 and AIDEAS HORIZON-CL4-2021-TWIN-TRANSITION-01-07-101057294),
FlexSim, Spindox, the Industrial Doctorate Program of the Catalan Government (2020-DI-116), and
the Investigo Program of the Generalitat Valenciana (INVEST/2022/342).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhang, L.; Zhou, L.; Ren, L.; Laili, Y. Modeling and Simulation in Intelligent Manufacturing. Comput. Ind. 2019, 112, 103123.
[CrossRef]

2. Leon, J.F.; Li, Y.; Peyman, M.; Calvet, L.; Juan, A.A. A Discrete-Event Simheuristic for Solving a Realistic Storage Location
Assignment Problem. Mathematics 2023, 11, 1577. [CrossRef]

3. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
4. Yan, Y.; Chow, A.H.; Ho, C.P.; Kuo, Y.H.; Wu, Q.; Ying, C. Reinforcement Learning for Logistics and Supply Chain Management:

Methodologies, State of the Art, and Future Opportunities. Transp. Res. Part E Logist. Transp. Rev. 2022, 162, 102712. [CrossRef]
5. Nordgren, W.B. FlexSim Simulation Environment. In Proceedings of the Winter Simulation Conference, San Diego, CA, USA,

8–11 December 2002; Chick, S., Sánchez, P.J., Ferrin, D., Morrice, D.J., Eds.; Institute of Electrical and Electronics Engineers, Inc.:
Orem, UT, USA, 2002; pp. 250–252.

6. Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009.
7. Leon, J.F.; Marone, P.; Peyman, M.; Li, Y.; Calvet, L.; Dehghanimohammadabadi, M.; Juan, A.A. A Tutorial on Combining Flexsim

With Python for Developing Discrete-Event Simheuristics. In Proceedings of the 2022 Winter Simulation Conference (WSC),
Singapore, 11–14 December 2022; Institute of Electrical and Electronics Engineers, Inc.: Singapore, 2022; pp. 1386–1400.

8. Reyes, J.; Solano-Charris, E.; Montoya-Torres, J. The Storage Location Assignment Problem: A Literature Review. Int. J. Ind. Eng.
Comput. 2019, 10, 199–224. [CrossRef]

9. Kinoshita, M.; Watanabe, M.; Kawakami, T.; Kakazu, Y. Emergence of field intelligence for autonomous block agents in the
automatic warehouse. Intell. Eng. Syst. Through Artif. Neural Netw. 1999, 9, 1129–1134.

10. Rao, J.J.; Ravulapati, K.K.; Das, T.K. A simulation-based approach to study stochastic inventory-planning games. Int. J. Syst. Sci.
2003, 34, 717–730. [CrossRef]

11. Yan, W.; Lin, C.; Pang, S. The Optimized Reinforcement Learning Approach to Run-Time Scheduling in Data Center. In
Proceedings of the 2010 Ninth International Conference on Grid and Cloud Computing, Nanjing, China, 1–5 November 2010;
pp. 46–51.

197

Algorithms 2023, 16, 408

12. Estanjini, R.M.; Li, K.; Paschalidis, I.C. A least squares temporal difference actor-critic algorithm with applications to warehouse
management. Nav. Res. Logist. 2012, 59, 197–211. [CrossRef]

13. Dou, J.; Chen, C.; Yang, P. Genetic Scheduling and Reinforcement Learning in Multirobot Systems for Intelligent Warehouses.
Math. Probl. Eng. 2015, 2015. [CrossRef]

14. Rabe, M.; Dross, F. A reinforcement learning approach for a decision support system for logistics networks. In Proceedings of the
2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 2020–2032.

15. Wang, Z.; Chen, C.; Li, H.X.; Dong, D.; Tarn, T.J. A novel incremental learning scheme for reinforcement learning in dynamic
environments. In Proceedings of the 2016 12th World Congress on Intelligent Control and Automation (WCICA), Guilin, China,
12–15 June 2016; pp. 2426–2431.

16. Drakaki, M.; Tzionas, P. Manufacturing scheduling using Colored Petri Nets and reinforcement learning. Appl. Sci. 2017, 7, 136.
[CrossRef]

17. Kono, H.; Katayama, R.; Takakuwa, Y.; Wen, W.; Suzuki, T. Activation and spreading sequence for spreading activation policy
selection method in transfer reinforcement learning. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 7–16. [CrossRef]

18. Li, M.P.; Sankaran, P.; Kuhl, M.E.; Ganguly, A.; Kwasinski, A.; Ptucha, R. Simulation analysis of a deep reinforcement learning
approach for task selection by autonomous material handling vehicles. In Proceedings of the 2018 Winter Simulation Conference
(WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 1073–1083.

19. Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Satish Kumar, T.; Koenig, S.; Choset, H. PRIMAL: Pathfinding via Reinforcement and
Imitation Multi-Agent Learning. IEEE Robot. Autom. Lett. 2019, 4, 2378–2385. [CrossRef]

20. Li, M.P.; Sankaran, P.; Kuhl, M.E.; Ptucha, R.; Ganguly, A.; Kwasinski, A. Task Selection by Autonomous Mobile Robots in a
Warehouse Using Deep Reinforcement Learning. In Proceedings of the 2019 Winter Simulation Conference, National Harbor, MD,
USA, 8–11 December 2019; Institute of Electrical and Electronics Engineers, Inc.: National Harbor, MD, USA, 2019; pp. 680–689.

21. Barat, S.; Kumar, P.; Gajrani, M.; Khadilkar, H.; Meisheri, H.; Baniwal, V.; Kulkarni, V. Reinforcement Learning of Supply Chain
Control Policy Using Closed Loop Multi-agent Simulation. In International Workshop on Multi-Agent Systems and Agent-Based
Simulation; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer International Publishing: Cham, Switzerland, 2020; Volume 12025 LNAI, pp. 26–38.

22. Sun, Y.; Li, H. An end-to-end reinforcement learning method for automated guided vehicle path planning. In Proceedings of
the International Symposium on Artificial Intelligence and Robotics 2020, Kitakyushu, Japan, 1–10 August 2020; Volume 11574,
pp. 296–310.

23. Xiao, Y.; Hoffman, J.; Xia, T.; Amato, C. Learning multi-robot decentralized macro-action-based policies via a centralized q-net. In
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 10695–10701.

24. Yang, Y.; Juntao, L.; Lingling, P. Multi-robot path planning based on a deep reinforcement learning DQN algorithm. CAAI Trans.
Intell. Technol. 2020, 5, 177–183. [CrossRef]

25. Ushida, Y.; Razan, H.; Sakuma, T.; Kato, S. Policy Transfer from Simulation to Real World for Autonomous Control of an Omni
Wheel Robot. In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe, Japan, 13–16
October 2020; pp. 952–953.

26. Shen, G.; Ma, R.; Tang, Z.; Chang, L. A deep reinforcement learning algorithm for warehousing multi-agv path planning. In
Proceedings of the 2021 International Conference on Networking, Communications and Information Technology (NetCIT),
Manchester, UK, 26–27 December 2021; pp. 421–429.

27. Newaz, A.A.R.; Alam, T. Hierarchical Task and Motion Planning through Deep Reinforcement Learning. In Proceedings of the
2021 Fifth IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 5–17 November 2021; pp. 100–105.

28. Peyas, I.S.; Hasan, Z.; Tushar, M.R.R.; Musabbir, A.; Azni, R.M.; Siddique, S. Autonomous Warehouse Robot using Deep
Q-Learning. In Proceedings of the TENCON 2021–2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 7–10
December 2021; pp. 857–862.

29. Ha, W.Y.; Cui, L.; Jiang, Z.P. A Warehouse Scheduling Using Genetic Algorithm and Collision Index. In Proceedings of the 2021
20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; pp. 318–323.

30. Liu, S.; Wen, L.; Cui, J.; Yang, X.; Cao, J.; Liu, Y. Moving Forward in Formation: A Decentralized Hierarchical Learning Approach
to Multi-Agent Moving Together. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4777–4784.

31. Ushida, Y.; Razan, H.; Sakuma, T.; Kato, S. Omnidirectional Mobile Robot Path Finding Using Deep Deterministic Policy Gradient
for Real Robot Control. In Proceedings of the 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), Kyoto, Japan,
12–15 October 2021; pp. 555–556.

32. Lee, H.; Jeong, J. Mobile Robot Path Optimization Technique Based on Reinforcement Learning Algorithm in Warehouse
Environment. Appl. Sci. 2021, 11, 1209. [CrossRef]

33. Tang, H.; Wang, A.; Xue, F.; Yang, J.; Cao, Y. A Novel Hierarchical Soft Actor-Critic Algorithm for Multi-Logistics Robots Task
Allocation. IEEE Access 2021, 9, 42568–42582. [CrossRef]

34. Li, H.; Li, D.; Wong, W.E.; Zeng, D.; Zhao, M. Kubernetes virtual warehouse placement based on reinforcement learning. Int. J.
Perform. Eng. 2021, 17, 579–588.

198

Algorithms 2023, 16, 408

35. Ren, J.; Huang, X. Potential Fields Guided Deep Reinforcement Learning for Optimal Path Planning in a Warehouse. In
Proceedings of the 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE), Qingdao,
China, 30 July–1 August 2021; pp. 257–261.

36. Balachandran, A.; Lal, A.; Sreedharan, P. Autonomous Navigation of an AMR using Deep Reinforcement Learning in a Warehouse
Environment. In Proceedings of the 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon), Mysuru, India,
16–17 October 2022; pp. 1–5.

37. Arslan, B.; Ekren, B.Y. Transaction selection policy in tier-to-tier SBSRS by using Deep Q-Learning. Int. J. Prod. Res. 2022. [CrossRef]
38. Lewis, T.; Ibarra, A.; Jamshidi, M. Object Detection-Based Reinforcement Learning for Autonomous Point-to-Point Navigation.

In Proceedings of the 2022 World Automation Congress (WAC), San Antonio, TX, USA, 11–15 October 2022; pp. 394–399.
39. Ho, T.M.; Nguyen, K.K.; Cheriet, M. Federated Deep Reinforcement Learning for Task Scheduling in Heterogeneous Autonomous

Robotic System. IEEE Trans. Autom. Sci. Eng. 2022, 1–13. [CrossRef]
40. Zhou, L.; Lin, C.; Ma, Q.; Cao, Z. A Learning-based Iterated Local Search Algorithm for Order Batching and Sequencing Problems.

In Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City,
Mexico, 20–24 August 2022; pp. 1741–1746.

41. Cestero, J.; Quartulli, M.; Metelli, A.M.; Restelli, M. Storehouse: A reinforcement learning environment for optimizing warehouse
management. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July
2022; pp. 1–9.

42. Choi, H.B.; Kim, J.B.; Han, Y.H.; Oh, S.W.; Kim, K. MARL-Based Cooperative Multi-AGV Control in Warehouse Systems. IEEE
Access 2022, 10, 100478–100488. [CrossRef]

43. Elkunchwar, N.; Iyer, V.; Anderson, M.; Balasubramanian, K.; Noe, J.; Talwekar, Y.; Fuller, S. Bio-inspired source seeking and
obstacle avoidance on a palm-sized drone. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems
(ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 282–289.

44. Wang, D.; Jiang, J.; Ma, R.; Shen, G. Research on Hybrid Real-Time Picking Routing Optimization Based on Multiple Picking
Stations. Math. Probl. Eng. 2022, 2022, 5510749. [CrossRef]

45. Ekren, B.Y.; Arslan, B. A reinforcement learning approach for transaction scheduling in a shuttle-based storage and retrieval
system. Int. Trans. Oper. Res. 2022. [CrossRef]

46. Yu, H. Research on Fresh Product Logistics Transportation Scheduling Based on Deep Reinforcement Learning. Sci. Program.
2022, 2022, 8750580. [CrossRef]

47. Sun, S.; Zhou, J.; Wen, J.; Wei, Y.; Wang, X. A DQN-based cache strategy for mobile edge networks. Comput. Mater. Contin. 2022,
71, 3277–3291. [CrossRef]

48. Ushida, Y.; Razan, H.; Ishizuya, S.; Sakuma, T.; Kato, S. Using sim-to-real transfer learning to close gaps between simulation and
real environments through reinforcement learning. Artif. Life Robot. 2022, 27, 130–136. [CrossRef]

49. Lee, H.; Hong, J.; Jeong, J. MARL-Based Dual Reward Model on Segmented Actions for Multiple Mobile Robots in Automated
Warehouse Environment. Appl. Sci. 2022, 12, 4703. [CrossRef]

50. Liang, F.; Yu, W.; Liu, X.; Griffith, D.; Golmie, N. Toward Deep Q-Network-Based Resource Allocation in Industrial Internet of
Things. IEEE Internet Things J. 2022, 9, 9138–9150. [CrossRef]

51. Guo, W.; Li, S. Intelligent Path Planning for AGV-UAV Transportation in 6G Smart Warehouse. Mob. Inf. Syst. 2023, 2023, 4916127.
[CrossRef]

52. Yan, Z.; Kreidieh, A.R.; Vinitsky, E.; Bayen, A.M.; Wu, C. Unified Automatic Control of Vehicular Systems with Reinforcement
Learning. IEEE Trans. Autom. Sci. Eng. 2023, 20, 789–804. [CrossRef]

53. Bayliss, C.; Juan, A.A.; Currie, C.S.; Panadero, J. A Learnheuristic Approach for the Team Orienteering Problem with Aerial
Drone Motion Constraints. Appl. Soft Comput. 2020, 92, 106280. [CrossRef]

54. Beysolow T., II. Applied Reinforcement Learning with Python: With OpenAI Gym, Tensorflow, and Keras; Apress: New York, NY,
USA, 2019.

55. Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus, M.; Dormann, N. Stable-Baselines3: Reliable Reinforcement Learning
Implementations. J. Mach. Learn. Res. 2021, 22, 1–8.

56. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep
Reinforcement Learning. In Proceedings of the International Conference on Machine Learning. PMLR, New York, NY, USA,
19–24 June 2016; pp. 1928–1937.

57. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

58. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari With Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

59. Rabe, M.; Deininger, M.; Juan, A.A. Speeding Up Computational Times in Simheuristics Combining Genetic Algorithms with
Discrete-Event Simulation. Simul. Model. Pract. Theory 2020, 103, 102089. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

199

Citation: Halawi, O.N.; Abu-Khzam,

F.N.; Thoumi, S. A Multi-Objective

Degree-Based Network

Anonymization Method. Algorithms

2023, 16, 436. https://doi.org/

10.3390/a16090436

Academic Editor: Frank Werner

Received: 8 August 2023

Revised: 25 August 2023

Accepted: 27 August 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Multi-Objective Degree-Based Network
Anonymization Method

Ola N. Halawi, Faisal N. Abu-Khzam * and Sergio Thoumi

Department of Computer Science and Mathematics, Lebanese American University, Beirut 1102 2801, Lebanon;
ola.halawi@lau.edu (O.N.H.); sergio.thoumi@lau.edu (S.T.)
* Correspondence: faisal.abukhzam@lau.edu.lb

Abstract: Enormous amounts of data collected from social networks or other online platforms are
being published for the sake of statistics, marketing, and research, among other objectives. The
consequent privacy and data security concerns have motivated the work on degree-based data
anonymization. In this paper, we propose and study a new multi-objective anonymization approach
that generalizes the known degree anonymization problem and attempts at improving it as a more
realistic model for data security/privacy. Our suggested model guarantees a convenient privacy level,
based on modifying the degrees in a way that respects some given local restrictions, per node, such
that the total modifications at the global level (in the whole graph/network) are bounded by some
given value. The corresponding multi-objective graph realization approach is formulated and solved
using Integer Linear Programming to obtain an optimum solution. Our thorough experimental
studies provide empirical evidence of the effectiveness of the new approach, by specifically showing
that the introduced anonymization algorithm has a negligible effect on the way nodes are clustered,
thereby preserving valuable network information while significantly improving data privacy.

Keywords: data privacy; network data security; anonymization; degree-based anonymization

1. Introduction

Among the available privacy-preserving techniques for network-based data, degree
anonymization proves to be a practical tool in terms of conserving data utility and resisting
re-identification attacks. It works by altering the set of edges of a graph so that nodes are
indistinguishable in terms of their degrees. Formally, a graph G is k-degree anonymous
if, for every vertex v, there are at least k− 1 other vertices with the same degree as v [1].
This particular type of “hiding in the crowd” guarantees privacy, because an attacker can
identify an individual with a probability of at most 1

k , where k is the anonymity/security
level desired by the data publisher.

Unfortunately, the above classical definition of degree anonymity is too restrictive.
Requiring at least k vertices to have the same degree, for each possible vertex degree,
could have a very high edge-modification cost in large networks. An alternative multi-
objective optimization approach is proposed in this paper. Our model sets restrictions on
the number of added and deleted edges per vertex and relaxes the same-degree restriction
by setting a range parameter on the resulting degrees, so they would be required to be
close enough, while not affecting the privacy level. Thus, it extends the real applicability of
this type of network data anonymization. We formally define degree anonymization as a
multi-objective optimization (or multi-parameterized) problem, as follows.

Multi-Parameterized Degree Anonymization

Given: An undirected graph G = (V, E), positive constraint parameters a, d, a range
parameter t, and an anonymization parameter k.

Algorithms 2023, 16, 436. https://doi.org/10.3390/a16090436 https://www.mdpi.com/journal/algorithms200

Algorithms 2023, 16, 436

Question: Can we obtain an anonymous graph G′ = (V, E′) by adding at most a and
deleting at most d edges per single vertex, so that, for each vertex v, we have at least k− 1
other vertices whose degrees fall into the interval [degree(v)− t, degree(v) + t]?

The anonymization parameter k is assumed to be pre-defined by the user based on the
desired anonymization level and the type of the given data.

The parameters a, d, and t are computed by the algorithm, as we propose in this paper,
to deliver the least cost target solution. It is worth noting that adding local parameters or
constraints, typically in graph modification problems, is known to have a notable positive
effect on the problem’s complexity, while improving the practicality of the model. This was
noted in [2] in the context of (multi-parameterized) Cluster Editing, which inspired the
above formulation and the work we present in this paper.

The above-proposed model is a generalization of the k-degree anonymization problem,
which corresponds to the case where t = 0 and a = d = |V| − 1. We formulate the resulting
graph realization problem as an Integer Linear Programming (ILP) problem. We test the
utility of our approach by applying clustering on the initial graph and the modified one
after performing our anonymization procedure. The comparison is based on measuring
the symmetric difference between clusters. In addition, we compare some graph metrics
before and after perturbation.

2. Preliminaries

We assume familiarity with basic graph theory terminology such as adjacency, vertex
degree, and neighborhood, among others. Networks, or graphs, are often subject to attacks
that are based upon some prior or presumed knowledge about the degrees of some targeted
nodes. This is assumed to be one of the most significant types of attacks [3], since it
could threaten individuals’ privacy by inferring knowledge about the links to a node and
the topology of the graph. Other types of attacks that rely on a priori knowledge of the
neighborhood of a targeted node, or the corresponding induced subgraph, can be reduced
down to knowledge about the degree of that targeted node.

To cope with the above threats, several methods for network data anonymization have
been introduced based on the “hiding in the crowd“ approach. Popular methods include
clustering-based anonymization (see [4–6]) and degree-based anonymization, which we
address in this paper. In general, the k-anonymity model aims at altering the structure of a
given graph by adding and/or deleting edges or nodes such that each node in the resulting
graph is similar to at least k − 1 other nodes, in terms of a specific property [7,8]. The
k-degree-anonymity approach specifies that nodes are indistinguishable by their degrees.

Each graph G can be represented by a sorted (often decreasing) sequence of the degrees
of its vertices. We refer to this sequence by D(G), being unique for G. The notion of the
k-degree anonymity of a graph can, thus, be reduced to a transformation of its degree
sequence into an anonymized one. We seek a minimal number of edge-editing operations.

Definition 1. Generally, a degree sequence D(G) is k-anonymous if every value in D(G) is
repeated at least k − 1 times. Then, a graph G is k-degree anonymous if its degree sequence is
k-anonymous.

Our approach is divided into two parts. In the first, the descending degree sequence
D(G) is computed and anonymized to produce a degree sequence D′. In the second part,
G′ is constructed so that D′ = D(G′). This latter procedure is known as graph realization,
which we formulate as an ILP problem.

Previous Edge-Editing Methods

The first degree-based anonymization approach seems to be due to Liu and Terzi [9],
who proposed a technique that modifies a given graph/network by adding/deleting a
certain number of edges to generate a k-degree anonymous graph. While the work of Liu

201

Algorithms 2023, 16, 436

and Terzi is motivated by logical intuitions, they admit that additional work needs to be
carried out to develop theoretically and practically sound privacy models for graphs.

In some other attempts, the set of vertices is changed instead of the set of edges. For
example, Chester et al. proposed an approach that generates new edges between auxiliary
and real nodes or between auxiliary nodes [10]. For unlabeled graphs, experimental
results demonstrated that perturbing the set of vertices changes some important properties
of a graph (such as how the nodes cluster) and weakens the “data accuracy” because
of the information loss. In [11], Casas-Roma et al. presented an algorithm for graph
anonymization based on the univariate micro-aggregation. It works by modifying the set
of edges, based on the univariate micro-aggregation method for data protection.

Another approach by Alavi et al., named the “GAGA Graph Anonymizer”, was
published in 2019 [12]. Their “Genetic Algorithm for Graph Anonymization” is claimed
to be the best solution for networks’ protection because it overcomes all of the limitations
of other available solutions. Another genetic algorithm was presented in [13]. Genetic
algorithms, however, are known for their limitation in guaranteeing an optimal (or near-
optimal) solution. Moreover, with the increase in problem size, especially with real large
networks, a genetic algorithm tends to slowly converge to a local minimum. In our work,
we can achieve optimum solutions, modulo the various parameters, by employing an ILP
formulation of the problem.

Finally, Bazgan et al. [14] proved that the problem of degree anonymization via edge
rotation is NP-Hard. In this problem, instead of deleting or adding edges and vertices, the
objective is to find a minimum amount of “edge rotations” that make the graph k-degree
anonymous.

3. Generating k-Anonymous Degree Sequences

We present an algorithm (namely Algorithm 1, below) that takes an original graph
G and a privacy level k as input and starts by generating the descending ordered degree
sequence D(G) and copying it into the target degree sequence D′, where the degree-
modifications are performed. We assume that the privacy level k is given. Otherwise, we
compute a privacy level that is most suitable for G, based on the deviation of the degrees
in D. We leave a detailed description of this latter approach for future work. We apply a
vector-based approach that divides D′ into chunks, or segments, of at least k nodes each.
For every segment, we define the constraint parameters a and d, which correspond to the
maximum number of edge additions and deletions per single vertex, respectively.

We set a as the absolute value of the difference between the first degree in each segment
and the last one minus 2 ∗ t, and we set d = a as a default value. The average degree in
each part is calculated, and the node’s degree that is the closest to the average will be set as
the degree of the first node in that chunk in D′.

If the degree of the next node does not fall into the interval [degree(v1)− t, degree(v1)+ t],
then we add, for that node, the required number of edges for its degree to belong to the above
interval. If the number of edges that have to be added exceeds the limit a, then we delete
edges from the previous node and add edges to the second node within the allowed range.
The algorithm will repeat the same process until D′ is all covered.

3.1. Choosing k

As mentioned before, the anonymity value k is chosen based on the purpose of
publishing the data and the desired privacy level. The larger the value of k, the more
resistant to attacks the data will be, but the more perturbation to the data set which will be
performed. Hence, the challenge in deciding on the value of k is to keep the balance between
maintaining privacy and utility simultaneously. The literature does not suggest any formula
to set the value of k, other than by experimenting. In this paper, we suggest and apply a
statistical formula to decide on the privacy level that is the most convenient for each data
set, based on the distribution of the degrees of nodes. The formula is centered around the
standard deviation of degrees of nodes. The standard deviation tells how the values in the

202

Algorithms 2023, 16, 436

degree sequence vector are spread out from the average. k is proportional to the standard
deviation of degrees, which will have a good impact on data utility preservation. Formally:

k =
⌈ σ√

n− 1

⌉
where σ is the standard deviation of the values in D. To assure that the final value is a
natural whole number, we take the ceiling of the calculated number. If the degrees are
relatively close to each other, i.e., the difference between them is small, then our formula
would suggest a small value for k, because the standard deviation is insignificant in this
case. Working with a small k can guarantee the best solution in terms of utility because
the data set does not need major alterations to be anonymized. However, if there is a vast
difference between the degrees, i.e., their standard deviation is remarkable, then k would
be too large to guarantee a good privacy level.

Algorithm 1: Multi-parameterized k-degree anonymization

Input: G = (V, E), k, t ;
Generate D(G); D′ ←− D(G);
n ←− |V|; add ←− 1; delete ←− 1;
for i = 1; i < n; i = i + k do

a ←− |D′[i]− D′[i + k− 1]− 2 ∗ t|;
d ←− a;
avg ←− Average of degrees;
j ←− Index of the closest node to avg;
D′[i]←− D′[j];
lowerbd ←− D′[i]− t;
upperbd ←− D′[i] + t;
foreach z ∈ [i + 1, i + k] do

if D′[z] /∈ [lowbd, upperbd] then
changes ←− |lowerbd− D′[z + 1]|
if changes ≤ a then

while add ≤ changes do
D′[z + 1]←− D′[z + 1] + add;
add ++;

end

end

if changes > a then

while delete ≤ d; add ≤ a AND D′[z] ≥ D′[z + 1] do
D′[z]←− D′[z]− delete;
D′[z + 1]←− D′[z + 1] + add;
add ++; delete ++;

end

end

end

D′[z + 1]←− D′[z];
end

end

return D′

3.2. Time Complexity

From a time-complexity standpoint, the worst-case scenario happens when there is a
high standard deviation between the degrees of nodes, or when all nodes have different
degrees. In this case, many edges will be affected to reach the anonymity level of k. For each
node, we may have at most k− t operations of edge addition and/or deletion. Therefore,
the time complexity is O(k ∗ n). In the best case, on the other hand, there would be no

203

Algorithms 2023, 16, 436

significant divergence between the degrees of nodes, or the graph is nearly regular (all
nodes have almost the same degree), and then the time complexity would be O(n).

4. A Graph Realization Approach

In the second phase of the anonymization procedure, the output graph G′ is con-
structed based on the target degree sequence D′. Recall that we aim to produce a graph
that is k-anonymous by performing the least amount of perturbation to the topology and
structure of G. The common practice is to remove edges incident on vertices that have to
decrease their degrees, and add new edges to vertices that have to increase their degrees,
without taking into consideration the major effect of graph re-construction on the topology
of the network. With this limitation in mind, we formally define “the realization” [15] as an
optimization problem as follows:

Weighted Graph Realization

Given: A graph G and a function r : V(G)→ Z.
Question: Is there a sequence of edge-editing operations that results in G′ = (V, E′), such
that ∀v ∈ V(G′), degreeG′(v) = degreeG(v) + r(v)?

The realization procedure we propose begins by copying G into G′, on which edge
edits are performed. Then, it computes the vector of changes θ between D′ and D, i.e.,
θ = D′ −D. This vector is used to detect which nodes have to introduce or remove incident
edges. It can also be used to compute the anonymization cost. To further explicate, if θ[v] is
negative, then |θ[v]| incident edges on v should be removed. However, if θ[v] is positive,
then θ[v] edges should be added to v. Each vertex will be labeled by its corresponding
weight in θ.

ILP Formulation

We formulate this particular graph realization problem as an Integer Linear Program-
ming problem (ILP). For this purpose we use a binary variable xi,j for every pair of vertices
i and j. The interpretation is that xi,j = 1 if {i, j} was added or deleted, otherwise xi,j = 0.
This gives the following ILP formulation:

Minimize ∑
u∈V,v∈V

xuv

Subject to:

∑
ij/∈E

xij − ∑
ij∈E

xij ≥ w(i)− t

∑
ij/∈E

xij − ∑
ij∈E

xij ≤ w(i) + t

In other words, if the ILP solution assigns a value of 1 to xij and {i, j} is not an edge
(initially), then we add the edge {i, j}. On the other hand, if {i, j} was an edge and xij = 1,
then we remove the edge. Here, w is the weight of the vertex representing the number of
edges that should be added or deleted.

5. Experimental Analysis

We implemented our multi-objective degree anonymization algorithm and ran multi-
ple tests using different graphs to assess its efficiency and, most importantly, its ability in
preserving data utility. It was implemented in Java, and we used CPLEX for the realization
algorithm. The tests were performed on an Intel(R) Core(TM) i7-7600U CPU @ 2.80 GHz
machine. Various values of k were tested while t was set to 2.

We compared our results with the ones presented in [16] for the algorithm of Liu and
Terzi (k-Degree Anonymization: k-DA). We also compared our algorithm to the vertex
addition approach by Chester et al. [10], in which the anonymization process takes place
by adding fake vertices to the network and fake edges between these vertices, and between
fake vertices and real ones, to attain the required k-anonymity level. Finally, we compared

204

Algorithms 2023, 16, 436

our results with Jordi-Casas et al.’s results in [11]. Their algorithm is based on the univariate
micro-aggregation. It is available in two versions. The first, dubbed “NC”, is based on the
notion of neighborhood centrality, to decide which edges to delete. It tries to preserve the
edges that are more relevant to the connectivity of the whole network than others. The
second approach (“Rand”) randomly selects edges to be removed. We used the authors’
published results for comparison.

Real data sets were used for testing. The selected networks were obtained from the
KONECT Project [17]. They are different in terms of topological, structural, and attribute
properties. However, all of the graphs used are simple, unweighted, and undirected. The
following were chosen:

• US politics book data (Polbooks-2004) [18] is a network of US politics’ books where
vertices represent books and an edge between two vertices implies that they are
co-purchased frequently by the same buyers.

• Polblogs [19], which stands for political blog-sphere data, is a network that compiles
data about links between US political blogs.

• GrQc [20] is a collaboration network that displays collaborations between authors and
scientific papers in the field of General Relativity and Quantum Cosmology.

• American college football [21] is a network of American football games during Fall
2000. A vertex represents a playing team, and an edge between two teams means that
they have played together.

• Erdos [17] network is a graph that shows a list of mathematician Paul Erdos’ co-authors
along with their respective co-authors.

• The Enron [22] email network covers all email communications within a dataset of
around half a million emails.

The notion of data utility is not well-defined yet, so different authors have different
approaches in quantifying data loss in a graph. In our work, we use the following graph
structural measures to quantify and analyze information loss induced by the anonymization
process:

• The largest eigenvalue of the adjacency matrix implies information about the diameter
of a network and its cycles.

• The second smallest eigenvalue of the Laplacian matrix implies information about the
tree structure of the graph. It shows if the communities separate efficiently or not.

• The average distance is the average of the shortest paths between all nodes in a network.
• The harmonic mean of the shortest distance is similar to the average distance; it is

used to evaluate the connectivity of a network.
• Modularity measures the strength of the division of a network into clusters. High

modularity values imply dense connections between the nodes of a graph.
• Transitivity is similar to the clustering coefficient; it detects the presence of loops near

a vertex.
• Subgraph centrality measures the number of subgraphs a vertex takes part in, weight-

ing them according to their size.

5.1. Empirical Results

We tested each dataset using the above-described algorithms in addition to our multi-
parameterized model. We used the “Polbooks” network; it was not used to test the vertex
addition algorithm, so we compared our multi-objective approach with Rand, NC, and
kDA. We recorded the error induced by each algorithm on different utility measures. As
shown in Figure 1, the Rand and NC algorithms surpass kDA, which induces a marginally
less average error on the value of the transitivity measure. In general, NC outperforms
Rand because it keeps essential edges in the network, which preserves the values of the
measures to some extent. By comparing the average error produced by each algorithm, it is
noticeable that our algorithm induces less noise and keeps the measures very close to their
original values. Our results are shown for k = 6.

205

Algorithms 2023, 16, 436

Figure 1. Polbooks experimental results.

We tested a larger network which is “Polblogs”. According to Figure 2, Rand and NC
produced an average error that is less than that produced by vertex addition or kDA on all
measures. kDA produced a remarkable deviation from the originally measured values. The
average error is 0.286 for NC and 0.291 for Rand, while it is 1.953 for kDA on the largest
eigenvalue of the adjacency matrix. Keeping eigenvalues close to their original values
implies preserving cycles and the diameter of the network. Our approach outperformed
Rand and NC by producing a smaller average error of around 0.213. Likewise, the vertex
addition algorithm produces a 0.043 average error on the harmonic mean of the shortest
distance, while it is 0.0037 using our algorithm. Preserving the value of the harmonic
mean of the shortest distance implies preserving connectivity and path lengths. The same
analysis applies to other measures. Our results are shown for k = 7.y pp

Figure 2. Polblogs experimental results.

For the GrQc graph, we show results for the same values of k as in [11], but better
results could be obtained when k = 5.

5.2. Clustering Analysis

To test the impact of the anonymization process on the topology of graphs and knowl-
edge extraction, we measure its effect on how data elements cluster. If the anonymization
algorithm keeps almost the same clustered communities, then the topology of the original
graph is not affected much and the released graph would be useful for data mining applica-
tions. To compare the clusters of the original graph G and those of the anonymized graph G′,
we need a certain measure of divergence. We used a precision index defined in [23], which
has a value between 0 and 1. A higher value implies that the clusters of G and G′ are closer. A
value of 1 is obtained when the clusters of G and G′ overlap completely. The corresponding

206

Algorithms 2023, 16, 436

experiments were implemented using R [24] and the results can be found in Table 1. The best
algorithm is the one that has the highest precision index or the least precision error.

Table 1. The precision error produced by our approach versus that of NC on different data sets.

Network Algorithm Precision Error

American college football
NC 0.053
Parameterized kDA 0.003

Erdos
NC 0.187
Parameterized kDA 0.114

Enron
NC 0.121
Parameterized kDA 0.081

According to [11], NC produces less precision error than Rand on most data sets.
However, our multi-parameterized degree anonymization algorithm surpasses NC by
notably minimizing the precision error. For the American college football network, our
precision error is 43.39% less than that produced by NC. This is because, during the graph
construction phase, we perform the minimum number of edge edits. As for Erdos, which is
larger than the football network, our error is about 39% less than that of NC. Finally, we
used the large network Enron to test the scalability of our algorithm. The corresponding
average error produced is 33.05% less than that of NC.

6. Security Analysis

The essential features of our generalized multi-objective approach are the flexibility
and practicality while applying the least modifications needed for a graph to be anonymous.
Depending on the sensitivity of the data to be anonymized, the value of the parameter t
differs, as it can be set to balance between privacy and utility. If we want to anonymize very
sensitive data, then setting t to zero and applying our anonymization approach gives better
results in terms of preserving data utility, compared to using traditional approaches. For
each vertex, we are applying the minimum number of edge-editing operations. However,
if the data are not critical enough, but the statistical information (for data mining purposes)
is essential, we can assign a value for t that keeps the data utility as we can see in Table 2,
where we present experimental results on the “GrQc” network when t = 0, versus those
that are found in [11]. We measured the average error induced by each algorithm on the
data utility measures for different k values. When, t = 0, parameterized kDA produced
an average error that is 47% less than that produced by NC on the harmonic mean of the
shortest path. For transitivity, our average error is 10% less than that of NC. Having this
flexibility makes our approach a general umbrella for the existing algorithms, because we
can preserve data utility and fine tune by setting the parameter t. Of course, our approach
focused on enhancing the preservation of data utility without affecting privacy.

Table 2. Experimental results on the GrQc dataset using NC and our algorithm when t = 0.

Measure Algorithm Error

The largest eigenvalue of the adjacency matrix
NC 0.134

Parameterized kDA 0.127

The second smallest eigenvalue of the Laplacian matrix
NC 0.242

Parameterized kDA 0.223

Average path length
NC 0.097

Parameterized kDA 0.09

Harmonic mean of the shortest distance
NC 0.15

Parameterized kDA 0.08

Transitivity
NC 0.03

Parameterized kDA 0.027

Sub-graph centrality
NC 0.757

Parameterized kDA 0.754

207

Algorithms 2023, 16, 436

To evaluate the robustness of our model in preserving privacy and security, we analyze
and contradict the behavior of an intruder. If we consider the example of a medical data set
where an intruder may have some information about a targeted individual like age, gender,
or address, among other things collected from external resources, then the (potential)
intruder tries to match this information with nodes in the released network. Using our
constrained anonymization model to mask the data before releasing it has a better chance
of hindering the intruder from identifying his/her target, because the given information
will be matched with many more individuals. To illustrate, if an individual in a network
has 500 links, and t = 3, then our approach can yield more vertices whose degrees fall in
the interval [497, 503]. In practice, distinguishing between an individual with 500 links and
another with 503 links is challenging. Furthermore, an intruder may try to link his/her a
priori information with released nodes and estimate the probability of correct matching.
In this context, a node is at risk if its identification probability exceeds a certain value.
This probabilistic technique is particularly not helpful for identifying individuals in our
case, since we guarantee that many nodes have the same identification probability, which
obviously increases the intruder’s uncertainty.

7. Conclusions and Future Work

We presented a generalized degree anonymization problem by adding constraints
and bounds on the number of edge modifications, thereby relaxing the problem definition,
which can extend its practicality and use in real applications. When applying degree-based
anonymization, we have to use graph realization to obtain the resulting graph. An ILP
formulation has enabled us to compute the best possible solution by minimizing data loss
caused by edge modification operations. The main objective was to show the utility of the
proposed k-anonymization model.

We considered simple unweighted undirected graphs, but this work can be extended
to other types of graphs. Future work includes testing our approach on dynamic graphs,
like online social networks where degrees vary with time, which requires adjusting the
degree-anonymization solution. A possible approach would be to use a parameterized dy-
namic variant of the problem (see [25–27] for examples of studied parameterized dynamic
problems). It would also be interesting to modify our notion of degree-based anonymity to
apply to distributed networks like intranets or communication networks.

Author Contributions: Conceptualization, O.N.H. and F.N.A.-K.; methodology, O.N.H. and
F.N.A.-K.; validation, F.N.A.-K., O.N.H. and S.T.; formal analysis, F.N.A.-K. and O.N.H.; resources,
S.T.; data curation, O.N.H. and S.T.; writing—original draft preparation, O.N.H.; writing—review
and editing, F.N.A.-K., O.N.H. and S.T.; supervision, F.N.A.-K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available in a publicly accessible repository that does not is-
sue DOIs. Publicly available datasets were analyzed in this study. This data can be found here:
www.konect.cc (accessed on 26 August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Feder, T.; Nabar, S.; Terzi, E. Anonymizing Graphs. CoRR 2008, arXiv:0810.5578.
2. Abu-Khzam, F.N. On the complexity of multi-parameterized cluster editing. J. Discrete Algorithms 2017, 45, 26–34. [CrossRef]
3. Arvind, N.; Vitaly, S. De-anonymizing Social Networks. In Proceedings of the 30th IEEE Symposium on Security and Privacy,

Oakland, CA, USA, 17–20 May 2009.
4. Aggarwal, G.; Panigrahy, R.; Feder, T.; Thomas, D.; Kenthapadi, K.; Khuller, S.; Zhu, A. Achieving Anonymity via Clustering.

ACM Trans. Algorithms 2010, 6, 1–19. [CrossRef]
5. Byun, J.W.; Kamra, A.; Bertino, E.; Li, N. Efficient k-Anonymization Using Clustering Techniques. In Proceedings of the Advances

in Databases: Concepts, Systems and Applications, Bangkok, Thailand, 9–12 April 2007; Kotagiri, R., Krishna, P.R., Mohania, M.,
Nantajeewarawat, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 188–200.

208

Algorithms 2023, 16, 436

6. Abu-Khzam, F.N.; Bazgan, C.; Casel, K.; Fernau, H. Clustering with Lower-Bounded Sizes—A General Graph-Theoretic
Framework. Algorithmica 2018, 80, 2517–2550. [CrossRef]

7. Samarati, P. Protecting Respondents’ Identities in Micro data Release. IEEE Trans. Knowl. Data Eng. 2001, 13, 1010–1027.
[CrossRef]

8. Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness-Knowl.-Based Syst. 2002, 10, 557–570.
[CrossRef]

9. Liu, K.; Terzi, E. Towards identity anonymization on graphs. In Proceedings of the ACM SIGMOD Conferencem, Vancouver, BC,
Canada, 10–12 June 2008; ACM: Vancouver, BC, Canada, 2008.

10. Chester, S.; Kapron, B.M.; Ramesh, G.; Srivastava, G.; Thomo, A.; Venkatesh, S. Why Waldo befriended the dummy?
k-Anonymization of social networks with pseudo-nodes. In Proceedings of the Social Network Analysis and Mining,
Niagara Falls, ON, Canada, 25–28 August 2013; pp. 381–399.

11. Casas-Roma, J.; Herrera-Joancomarti, J.; Torra, V. An Algorithm For k-Degree Anonymity On Large Networks. In Proceedings of
the 2013 IEEE/ACM International Conference on Advances on Social Networks Analysis and Mining, Niagara Falls, ON, Canada,
25–28 August 2013; pp. 671–675. [CrossRef]

12. Alavi, A.; Gupta, R.; Qian, Z. When the Attacker Knows a Lot: The GAGA Graph Anonymizer. In Proceedings of the ISC, New
York, NY, USA, 16–18 September 2019.

13. Casas-Roma, J.; Herrera-Joancomartí, J.; Torra, V. Evolutionary Algorithm for Graph Anonymization. arXiv 2013,
arXiv:1310.0229v2.

14. Bazgan, C.; Cazals, P.; Chlebíková, J. Degree-anonymization using edge rotations. Theor. Comput. Sci. 2021, 873, 1–15. [CrossRef]
15. Hakimi, S. On the realizability of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math. 1962, 10,

496–506. [CrossRef]
16. Ying, X.; Pan, K.; Wu, X.; Guo, L. Comparisons of randomization and k-degree anonymization schemes for privacy preserving

social network publishing. In Workshop on Social Network Mining and Analysis; ACM: New York, NY, USA, 2009; pp. 10:1–10:10.
17. Rossi, R.A.; Ahmed, N.K. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.
18. Krebs, V. Social Network Analysis: An Introduction. 2013. Available online: http://www.orgnet.com/sna.html (accessed on

26 August 2023).
19. Adamic, L.A.; Glance, N. The political blogosphere and the 2004 US election: Divided they blog. In Proceedings of the 3rd

International Workshop on Link Discovery, Chicago, IL, USA, 21–24 August 2004; pp. 36–43.
20. Leskovec, J.; Kleinberg, J.; Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data

(TKDD) 2007, 1, 2es. [CrossRef]
21. Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826.

[CrossRef] [PubMed]
22. Leskovec, J.; Lang, K.J.; Dasgupta, A.; Mahoney, M.W. Community structure in large networks: Natural cluster sizes and the

absence of large well-defined clusters. Internet Math. 2009, 6, 29–123. [CrossRef]
23. Cai, B.; Wang, H.; Zheng, H.; Wang, H. Evaluation repeated random walks in community detection of social networks. Int. Conf.

Mach. Learn. Cybern. 2010, 4, 1849–1854.
24. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2010. Available online: https://www.r-project.org/ (accessed on 26 August 2023).
25. Krithika, R.; Sahu, A.; Tale, P. Dynamic Parameterized Problems. Algorithmica 2018, 80, 2637–2655. [CrossRef]
26. Abu-Khzam, F.N.; Egan, J.; Fellows, M.R.; Rosamond, F.A.; Shaw, P. On the parameterized complexity of dynamic problems.

Theor. Comput. Sci. 2015, 607, 426–434. [CrossRef]
27. Luo, J.; Molter, H.; Nichterlein, A.; Niedermeier, R. Parameterized Dynamic Cluster Editing. Algorithmica 2021, 83, 1–44.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

209

Citation: Manescu, A.-R.;

Dumitrescu, B. HyperDE: An

Adaptive Hyper-Heuristic for Global

Optimization. Algorithms 2023, 16,

451. https://doi.org/10.3390/

a16090451

Academic Editor: Frank Werner

Received: 14 August 2023

Revised: 14 September 2023

Accepted: 19 September 2023

Published: 20 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

HyperDE: An Adaptive Hyper-Heuristic for
Global Optimization

Alexandru-Razvan Manescu and Bogdan Dumitrescu *

Department of Automatic Control and Computers, University Politehnica of Bucharest, 313 Spl. Independenţei,
060042 Bucharest, Romania; alexandru.manescu@stud.acs.upb.ro
* Correspondence: bogdan.dumitrescu@upb.ro

Abstract: In this paper, a novel global optimization approach in the form of an adaptive hyper-
heuristic, namely HyperDE, is proposed. As the naming suggests, the method is based on the
Differential Evolution (DE) heuristic, which is a well-established optimization approach inspired by
the theory of evolution. Additionally, two other similar approaches are introduced for comparison
and validation, HyperSSA and HyperBES, based on Sparrow Search Algorithm (SSA) and Bald Eagle
Search (BES), respectively. The method consists of a genetic algorithm that is adopted as a high-level
online learning mechanism, in order to adjust the hyper-parameters and facilitate the collaboration
of a homogeneous set of low-level heuristics with the intent of maximizing the performance of the
search for global optima. Comparison with the heuristics that the proposed methodologies are based
on, along with other state-of-the-art methods, is favorable.

Keywords: global optimization; evolutionary algorithms; genetic algorithm; differential evolution;
sparrow search; bald eagle search

1. Introduction

1.1. Problem

The problem under scrutiny is to find the global minimum of a function f (x), with
x ∈ R

n. Typically, the function has many variables and multiple local minima. The shape
of the function is considered unknown, and we treat it as a black box; in particular, it is im-
possible to apply analytical methods in order to determine the minimum; also, the gradient
is not available.

1.2. State of the Art

Currently, there are a plethora of approaches, namely heuristics, that are able to search
the problem space for optimal solutions. An extensive list of heuristics can be found in [1].
We enumerate a few that are considered representative by being the most cited: Particle
Swarm Optimization (PSO) [2], Simulated Annealing (SA) [3], Ant Colony Optimization
(ACO) [4], Artificial Bee Colony (ABC) [5], Harmony Search (HS) [6], Gravitational Search
Algorithm (GSA) [7], Firefly Algorithm (FA) [8]; many others have original traits. These
methods intelligently evaluate the solution space, attempting to predict where the best
solution is located, considering the past discovered solutions. A partial exploration is
desired because the real world problems are complex; an exhaustive exploration is not
feasible due to time and computational constraints. This being said, it is not guaranteed
that the heuristic has found the global optima at the end of the search.

The stochastic methods that are considered in this paper are enumerated below.
Firstly, inspired by the theory of evolution, we have the basic Differential Evolution

(DE) [9] algorithm along with two variants: the adaptive success-history based named
SHADE [10] together with L-SHADE [11], which has additionally a linear population size
reduction strategy.

Algorithms 2023, 16, 451. https://doi.org/10.3390/a16090451 https://www.mdpi.com/journal/algorithms210

Algorithms 2023, 16, 451

Inspired by the behavior of groups of individuals found in nature, such as animals
and insects, there are various swarm optimization algorithms: Sparrow Search Algorithm
(SSA) [12], Bald Eagle Search (BES) [13], Whale Optimization Algorithm (WOA) [14],
Harris Hawks Optimization (HHO) [15], and Hunger Games Search (HGS) [16]. The
conceptual contribution and the underlying metaphor of some of these algorithms may be
questionable [17], but many of them have good practical behavior.

Inspired by concepts from mathematics, we have Chaos Game Optimization (CGO) [18],
while Slime Mold Algorithm (SMA) [19] can be considered a bio-inspired search algorithm.

Most of the techniques listed above are not far from the state-of-the-art; other methods
are not so recent but are well established. What is to be taken into consideration is that DE
together with SHADE and LSHADE are considered the key contenders in our methodology
validation, the other algorithms being less relevant.

Each enumerated method performs in a different manner, excelling at solving a par-
ticular subset of problems while not being appropriate for solving some other problems.
Many of the available heuristics have hyper-parameters whose values affect the perfor-
mance of the search, therefore being able to tailor the algorithm to the given problem. It
often happens that the methods fail to converge to the global optima, remaining stuck in
a locally optimal solution instead and struggling to find a balance between exploration
and exploitation.

Regarding the development of hyper-heuristics, the field of study is relatively new,
with an increase in publications on this subject over the last three–four years [20]. There are
several methods available, such as approaches based on genetic programming [21], graph-
based [22], VNS-based [23], ant-based [24], tabu search-based [25], greedy selection-based [26],
GA-based [27], simulated annealing-based [28], and reinforcement learning-based [29]. Those
are several relevant examples that initiated the domain in various directions.

More recent hyper-heuristics that merit attention could be a simulated-annealing-
based hyper-heuristic [30], a reinforcement learning-based hyper-heuristic [31], a ge-
netic programming hyper-heuristic approach [32], a Bayesian-based hyper-heuristic ap-
proach [33] and a very appealing, highly general approach for continuous problems [34].

None of the above resembles our proposed method; as revealed in [20], most of
the hyper-heuristics are designed to be applied in different domains, problems such as
scheduling, timetabling, constraint satisfaction, routing policies, not continuous problems
as in our study. Unlike our method, the existent high-level procedures are usually not
population-based and do not make use of parallelization.

1.3. Our Contribution

Our plan is to define an adaptive hyper-heuristic [35] for adjusting the hyper-parameters
of a set of low-level heuristics, in an online manner, such as to maximize the performance
in finding the global minimum.

A hyper-heuristic is a methodology that automates the selection, generation and
adaptation of lower level heuristics in order to solve difficult search problems. Therefore,
instead of exploring the problem space directly, it explores the space of possible heuristics.

Accordingly, our proposed method has two optimization layers:

• The high-level adaptive algorithm, which is variant of the genetic algorithm (GA),
is responsible for the process of online learning of the hyper-parameters of the basic
heuristics.

• The low-level optimization algorithm can be any optimization method characterized
by a set of hyper-parameters that are tuned by the high-level algorithm. The low-level
algorithm acts through agents that directly attempt to solve the optimization problem
by exploring the solution space.

After an analysis that consisted of the evaluation of various heuristics, DE was selected
as the main low-level agent in the context of the proposed optimization method. The
combination of our variant of GA at the high-level and DE at the low-level is called
HyperDE. Two other algorithms, SSA and BES, were also considered appropriate to serve as

211

Algorithms 2023, 16, 451

agents. The resulting methods are called HyperSSA and HyperBES, respectively. The three
methods are similar in approach, sharing the same high-level procedure, but differing by
which algorithms are adopted as agents.

Each of the above optimization algorithms that are used as agents presents a set of
hyper-parameters that influence the performance of their search. The most important in
this paper, DE, has the following hyper-parameters: F ∈ [0, 1], weighting factor; CR ∈ [0, 1],
crossover rate; S ∈ [0, 5] (integer), index of the mutation strategy (See Section 2 for details).
In the HyperDE algorithm, a population of DE instances is managed by our GA, which
tunes the triplets (F, CR, S) in the attempt to improve the search compared to the case where
a single triplet of hyper-parameters is used.

By this endeavor, it is expected to obtain a methodology that is more general in its
applicability, adapting without intervention to the given problem, resulting in a superior
average performance given a set of problems without additional effort from the human
agent. We consider it to be one possible approach to deal with the “No Free Lunch”
theorem [36] successfully.

The evaluation and analysis of the proposed hyper-heuristics in comparison with the
other enumerated algorithms was conducted on 12 benchmark functions provided by CEC
2022 competition. We show that HyperDE has indeed the best average performance and
Friedman rank, followed by L-SHADE, while HyperSSA and HyperBES demonstrate to be
significant improvements over their counterparts.

1.4. Content

In Section 2, the Differential Evolution algorithm is briefly presented, as it represents
an important part of the proposed method; also, in Section 3, we recall the principles of
the BES and SSA algorithms. In Section 4, a short description of the genetic algorithm
can be found, which is the second key component of our method. In Section 5, we give
a thorough presentation of the proposed methodology, containing also algorithms and
diagrams. Finally, in Section 6, the results of the proposed method in comparison with
some other algorithms are presented. Section 7 contains the conclusion of the paper.

2. Differential Evolution Algorithm Overview

Differential Evolution algorithm (DE) [9,37] is a population-based optimization method
inspired by the theory of evolution. The algorithm starts from a set of solutions that are
gradually improved by using operators such as selection, mutation and crossover. There
are many variants of the algorithm; we concentrate on the ones that do not have self-
adaptive capabilities or an external history, considering several mutation strategies that are
of interest.

The DE basic structure is given in Algorithm 1. The population of NP vectors is
initialized randomly and then improved in itermax iterations. In each iteration, each
individual xi can be replaced with a better one. A so-called donor vector is built with

vi ← xr1 + F · (xr2 − xr3) (1)

where xr1 , xr2 , xr3 are individuals chosen randomly; they are distinct one from each other
and from xi and F ∈ [0, 1] is a given weighting factor.

Then, a trial vector ui is produced by crossover from xi and the donor vector, with

ui,j =

{
vi,j, if ri,j ≤ CR or j = jrand

xi,j, otherwise
(2)

where i = 1:NP, j = 1:n, ri,j ∈ U(0, 1) is a uniformly distributed random number generated
for each j and jrand ∈ 1 : n is a random integer used to ensure that ui �= xi in all cases. The
crossover rate CR ∈ [0, 1] dictates the probability with which the elements of the vector xi
are changed with elements of the donor vector.

212

Algorithms 2023, 16, 451

Algorithm 1 Differential evolution algorithm

NP ← population size
F← weighting factor
CR← crossover probability
Initialize randomly all individuals xi, i = 1:NP
t← 0
while t < itermax do

for i = 1 : NP do
Randomly choose xr1 , xr2 , xr3 from current population
MUTATION: form the donor vector using the Formula (1)
CROSSOVER: form trial vector ui with (2)
EVALUATE: if f (ui) ≤ f (xi), replace xi with trial vector ui

end for
t = t + 1

end while

To the two hyper-parameters that influence the behavior of the method (F and CR), we
add a third, the integer S ∈ 0 : 5, representing the index of the mutation strategy. Among
the many mutation operators that have been conceived and that can be an alternative to (1),
in this paper we consider the following, singled out as “the six most widely used mutation
schemes” in [37]:

0: “DE/rand/1” vi ← xr1 + F · (xr2 − xr3), which is (1)
1: “DE/best/1” vi ← xbest + F · (xr1 − xr2)
2: “DE/rand/2” vi ← xr1 + F · (xr2 − xr3) + F · (xr4 − xr5)
3: “DE/best/2” vi ← xbest + F · (xr1 − xr2) + F · (xr3 − xr4)
4: “DE/current-to-best/1” vi ← xi + F · (xbest − xi) + F · (xr1 − xr2)
5: “DE/current-to-rand/1” vi ← xi + rand · (xr1 − xi) + F · (xr2 − xr3)

where the indexes r1, r2, r3, r4, r5 are random integers that are all distinct, in the range 1:NP,
and different from i; they are generated for each mutant vector. xbest represents the best
individual from the current iteration.

Given the hyper-parameter or index S, the corresponding mutation strategy as defined
above will be used by the DE agent, the algorithm remaining unchanged beyond that
aspect. All the enumerated hyper-parameters will be manipulated by the genetic algorithm
that will be presented.

3. Other Parameterized Heuristics

We briefly recall here information on two evolutionary algorithms that will be used,
similarly with DE, as basic heuristics with which our hyper-heuristic works.

The Bald Eagle Search (BES) algorithm takes inspiration from the hunting behavior of
bald eagles. The algorithm comprises three stages: selection of the search space, searching
within the chosen space, and swooping.

In the selection stage, the eagles identify the best area within the search space where
the maximum amount of food is available.

In the search stage, they scan the vicinity of the chosen space by spiraling and moving
in various directions to look for prey.

During the swooping stage, the eagles move towards their target prey by shifting
from their current best position. Overall, all points in the search space move towards the
best point.

There are five hyper-parameters that need adjustment: a ∈ [2, 20] (integer), deter-
mining the corner between point search in the central point; R ∈ [0.1, 3], determining the
number of search cycles; α ∈ [0.5, 3], controlling the changes in position; c1 ∈ [0, 4] and
c2 ∈ [0, 4], increase the movement intensity of bald eagles towards the best and center
points. Note that the above intervals are those recommended in the Python implemen-

213

Algorithms 2023, 16, 451

tation from the library MEALPY [38] and we have used them. In the original work [13],
the recommendations are a ∈ [5, 10], α ∈ [1.5, 2], R ∈ [0.5, 2], c1, c2 ∈ [1, 2].

Sparrow search algorithm (SSA) [12] is a relatively new swarm optimization method
inspired by the behavior of sparrows, specifically by the group wisdom, foraging and
anti-predatory behaviors. There are two types of sparrows, producers and scroungers.
The producers actively search for food while the scroungers exploit the producers by
obtaining food from them. The roles are not fixed; an individual can shift from one foraging
strategy to the other depending on its energy reserve. Each individual constantly tries to
avoid being located at the periphery of the group to be less exposed to danger. Additionally,
when one or more birds detect danger, they will chirp, the whole group flying away from
the predator.

The hyper-parameters of SSA are ST ∈ [0.5, 1], the alarm value; PD ∈ [0, 1], the ratio
of producers; SD ∈ [0, 1], the ratio of sparrows who perceive the danger. Note that in [12],
PD and SD are integers between 1 and n. We modify them in fractions of n in order to be
able to optimize them more easily in the genetic algorithm.

4. Genetic Algorithm Overview

Genetic algorithm (GA) is a well established population-based optimization method
inspired by the theory of evolution [39]. The approach is based on the Darwinian theory
of survival of fittest in nature, adopting various biological-inspired operators such as
crossover, mutation and fitness selection, operators that manipulate a set of chromosome
representations. Algorithm 2 shows the basic GA structure.

Algorithm 2 Genetic Algorithm

G ← the maximum number of iterations
P0 ← initial random population of individuals
t ← 0
while t < G do

Compute the fitness values of Pt
Pp ← Select the parent population from Pt
Pc ← Crossover individuals from parent population Pp
Pc ← Mutate individuals from offspring population Pc
Compute the fitness values of Pc
Pt+1 ← Obtain the next generation’s population from Pt and Pc
t ← t + 1

end while
return PG

The algorithm starts by generating a random population of solutions P0. The solutions
are evaluated via obtaining the corresponding fitnesses. Based on the fitnesses, a subset of
the current population Pt is selected as the parent population Pp. The crossover operator is
applied on the individuals from Pp, obtaining a new set of solutions Pc that may also mutate
and are evaluated. At the end of the generation, the population of the next generation is
obtained based on Pt and Pc. This process is repeated for a number of G iterations, resulting
in PG, the final set of solutions to the problem.

In the HyperDE context, the chromosome associated with a DE instance is given by
the hyper-parameters F, CR and S; for HyperSSA the genes are ST, PD and SD; while for
HyperBES we have as genes of the chromosome a, α, R, c1 and c2. We denote np as the
number of hyper-parameters. The implementations of the basic GA operators are as follows.
Single-point crossover was used, meaning that the first c values of the hyper-parameters
(in the order given above) are taken from the first parent and the remaining np − c from the
second parent, where c is a random integer between 0 and the number of hyper-parameters.
Mutation is implemented as the simple choice of a uniformly random real number (or

214

Algorithms 2023, 16, 451

integer, for S) in the interval of definition of each hyper-parameter. The fitness function
will be described in the next section.

5. HyperDe Algorithm

As stated in Section 1.1, the goal is to find the minimum value of a function f (x),
with x ∈ R

n. The proposed hyper-heuristic, HyperDE, works like many other global
optimization algorithms, by generating tentative solutions. The modality in which the
solution space is explored gives the specific of a method.

In the two-layer structure mentioned in Section 1.3, HyperDE adopts as a high-level
algorithm a form of steady-state Genetic Algorithm (GA). The (hyper-)population in this
context is composed of various instances of DE, each with different hyper-parameters.
Therefore, HyperDE orchestrates the collaboration and execution in parallel of the DE
agents, manipulating the hyper-parameters and generated solutions.

The proposed method is an adaptive hyper-heuristic, where the genetic algorithm
plays the role of an online learning mechanism, adjusting the hyper-parameters of the agent
ensemble and adapting to the state of the problem while exploring the solution space. Thus,
there is a learning process based on the performance shown in the past of each particular
DE agent, exploring also the space of heuristics by the means of the standard GA operators:
selection, crossover and mutation. Ergo, the optimization is accomplished on two levels,
simultaneously, searching primarily the space of possible DE instances, but also the actual
space of solutions to the given problem, as depicted in Figure 1.

F CR S

DE
agent

n_quota
solutions

F CR S

DE
agent

n_quota
solutions

F CR S

DE
agent

n_quota
solutions

· · ·

n_window
iterations

(hyper-iteration)

︸ ︷︷ ︸
final solutions

GA

G hyper-iterations

tournament

initial solutions

Figure 1. Structure of the proposed adaptive hyper-heuristic approach.

The algorithm manages the hyper-population of DE agents, named HP, which is
initialized with random values of the hyper-parameters F, CR, S. It also maintains a solution
population SP, also initialized at random.

In order to evaluate the hyper-population HP, the DE agents are executed in parallel
for a number of n_window iterations. Each agent is responsible for the generation of
n_quota solutions; in other words, each DE agent has n_quota individuals. Therefore,
the entire hyper-population explores the problem space in a parallel manner, obtaining at
the end a set of solutions. The history set of solutions for agent g is denoted Hg. The history
Hg consists of n_window sets of solutions, each corresponding to an iteration executed by
agent g. Hg,i represents the set of solutions obtained by agent g at the end of iteration i,
and has the size |Hg,i| = n_quota.

In order to assign a fitness HF to each agent of HP, the obtained histories of solutions
are utilized in the procedure AgentsFitness (Algorithm 3). For each window iteration

215

Algorithms 2023, 16, 451

i, we compute the union Oi of the agents solutions set Hg,i in that particular iteration.
The obtained union Oi is sorted in ascending/descending order, depending on whether the
problem to solve is one of minimization or maximization. Afterwards, a count is performed
for each agent, counting how many of its solutions are found in the first third of the sorted
union set, the count being then divided with |Oi|/3 for normalization. After the entire
process, the average is computed over the entire window of iterations, thus obtaining the
fitness value HFg for each agent g.

Algorithm 3 Computation of the fitness function for all agents

procedure AGENTSFITNESS(HP, H, n_window)
for each DE agent g in HP do

HFg ← 0
end for
for each iteration i = 1 : n_window do

Oi ← ∅
for each DE agent g in HP do

Oi ← Oi ∪ Hg,i
end for
Sort in ascending/descending order by fitness the set Oi
for each DE agent g in HP do

Cg,i ← Number of solutions from Hg,i that are in the first third of set Oi

HFg ← HFg +
Cg,i

n_window· |Oi |
3

end for
end for
return HF

end procedure

The above-described operations are used in Algorithm 4, which updates the solution
population SP and computes the fitness HF by calling Algorithm 3. For each agent,
the current set of solutions SP is reduced firstly to half by random selection, after which the
best n_quota solutions are retained. This set is the starting solution set for the agent in the
next hyper-iteration, which consists of running the DE algorithm for n_window iterations.
For the loop on the DE, agents can be executed in parallel. Finally, the procedure returns
the union of the last sets of solutions of the entire ensemble of size |HP| · n_quota, which is
the new set of solutions SP, and also the set containing the HF fitnesses associated with
the agents.

Algorithm 5 gathers the main operations. The evaluation procedure, as described
above in Algorithm 4, which also explores the problem space with DE agents, is executed
in each hyper-iteration. Based on the obtained HF fitnesses of the agents, the ensemble of
the next hyper-iteration HPt+1 is computed. This is accomplished by firstly retaining the
best half of the hyper-population of agents. Then, |HP|/2 agents are randomly selected as
parents in order to crossover and mutate (as described in Section 4), obtaining |HP|/2 new
agents; along with the elite of |HP|/2 agents, they constitute the next hyper-generation.
This process is sustained for G hyper-generations, or G·n_window DE iterations.

As explained, besides the fitnesses of the agents, the set of solutions SP is also updated,
representing the union of all sets of solutions produced by each agent in the last iteration
of the execution window; or simply, the solutions to the problem obtained at the end of
hyper-iteration t.

216

Algorithms 2023, 16, 451

Algorithm 4 Evaluate and Explore algorithm

HP: hyper-population of DE agents
SP: solutions population
Hg: history of solutions of agent g
procedure EVALUATEANDEXPLORE(HP, SP, n_quota, n_window)

for each DE agent g in HP do

S ← Select |SP|
2 random solutions from SP

S ← Retain the best n_quota solutions of set S
Hg ← solutions generated by the DE algorithm run for n_window iterations on

population S
end for
HF ← AGENTSFITNESS(HP, H, n_window)
SP ← ∅
for each DE agent g in HP do

SP ← SP ∪ Hg,n_window
end for
return SP, HF

end procedure

Algorithm 5 HyperDE algorithm

1: G ← the maximum hyper-generations
2: HP0 ← initial random hyper-population of SSA agents
3: SP0 ← initial random set of n_quota·|HP0| solutions
4: n_quota ← quota of solutions (number of sparrows) for each SSA agent
5: n_window ← number of iterations for each SSA agent’s execution
6: t ← 0
7: while t < G do
8: SPt+1, HF ← EVALUATEANDEXPLORE(HPt,SPt, n_quota, n_window)

9: HPt+1 ← Select the best |HPt |
2 agents based on HF

10: Pp ← Select |HPt |
2 agents for the parent population from HPt

11: Pc ← Crossover agents from parent population Pp
12: Pc ← Mutate agents from offspring population Pc
13: HPt+1 ← HPt+1 ∪ Pc (obtain population of next hyper-generation)
14: t ← t + 1
15: end while
16: return HPG

We note that the above algorithm has a high degree of generality. It is written for
DE agents, which are characterized by three hyper-parameters. However, the algorithm
can be adapted to any other global optimization heuristic, with any (nonzero) number
of hyper-parameters.

As examples, we implemented the HyperSSA and HyperBES algorithms. The methods
resemble the HyperDE hyper-heuristic in most regards, differing just by what type of agents
are used. We have as agents the time instances of SSA heuristics in one case and instances
of BES heuristics in the other case. Since the top-level procedure is highly decoupled from
the agent’s inner workings, the algorithmic flows of the hyper-heuristics is the same as for
HyperDE. We simply use the chromosomes presented in Section 3.

6. Results

The proposed adaptive hyper-heuristic methods are compared with 10 relatively new,
state-of-the-art heuristics and well-established algorithms (including the basic heuristics
that we employ: DE, BES, SSA), over a set of n_problems = 12 difficult problems, more
exactly on the benchmarks provided by the CEC 2022 competition: (https://github.com/P-
N-Suganthan/2022-SO-BO/blob/main/CEC2022%20TR.pdf, accessed on 18 September

217

Algorithms 2023, 16, 451

2023). We have implemented our method in Python. The algorithms used for comparison,
listed in Table 1 (to be later explained), have been taken from the MEALPY library [38]
implementation in Python. Our programs can be found at https://github.com/mening120
01/HyperHeuristica, accessed on 18 September 2023).

Our HyperDE hyper-heuristic is parameterized as follows: the number of hyper-
iterations is G = 40, the evaluation window size is n_window = 5 iterations, the hyper-
population has size |HP| = 10 (the number of DE instances, or agents), where each agent
has n_quota = 20 (the size of the solution population). In order for the comparison to be
valid, the HyperDE hyper-heuristic along with the other methods should explore the same
number of solutions. We note that HyperDE performs G · n_window = 200 DE iterations
and computes a population of |HP| · n_quota = 200 solutions per iteration, resulting in
a total of 200 · 200 = 40,000 evaluated solutions. Therefore, the other methods will have
as parameters: the number of iterations to be executed iterations = 200, and the size of
population pop_size = 200; hence, the same volume of the solution space is explored at the
end of execution. The other hyper-parameters specific to each method are set with default
values, as recommended by the literature.

Each heuristic is evaluated by computing the relative error as described in Algorithm 6.
The global minimum being known, the relative distance between the obtained result and
the optimum is calculated.

For each problem, the heuristic in this case is evaluated n_tests = 60 times as described,
averaging the relative error obtained in each evaluation. Finally, the average relative error
obtained on each problem is aggregated again, obtaining the final relative error that reflects
the overall performance of that algorithm (smaller is better).

Algorithm 6 Evaluation, relative error

overall_error_sum ← 0
for each problem in n_problems do

error_sum ← 0
for each test in n_tests do

best_solution ← heuristic(pop_size = 200, iterations = 200)
if global_best �= 0 then

relative_error ← (best_solution− global_best)/|global_best|
else

relative_error ← (best_solution− global_best)
end if
error_sum ← error_sum + relative_error

end for
overall_error_sum ← overall_error_sum + error_sum/n_tests

end for
f inal_error ← overall_error_sum/n_problems

As can be seen from Table 1, HyperDE has the minimal error on the selected suite
of problems. We note also that HyperBES and HyperSSA perform better than their basic
heuristics, BES and SSA.

Additionally, the Friedman ranking is computed, more precisely, the average rank
over all the problems. The median was determined over the n_tests = 60 tests, for each
problem and method. If, for a particular problem, the difference between the medians for
two methods does not exceed 1× 10−7 , then the two methods have the same rank, which
is the average of the corresponding ranks.

218

Algorithms 2023, 16, 451

Table 1. Errors of the evaluated methods on the CEC problems.

Heuristic Name Error

HyperDE 0.045
LSHADE 0.078
SHADE 0.085

HyperSSA 1.068
HyperBES 1.073

Chaos Game Optimization (CGO) 1.213
Whale Optimization Algorithm (WOA) 1.303

Sparrow Search Algorithm (SSA) 1.462
Slime Mold Algorithm (SMA) 1.741
Hunger Games Search (HGS) 1.795

Bald Eagle Search (BES) 2.068
Harris Hawks Optimization (HHO) 2.103

Differential Evolution (DE) 3.603

The results are given in Table 2 and show that HyperDE is the best from the entire
suite of methods, at a significant distance from SHADE. Unlike in the error evaluation,
SHADE is better then LSHADE. HyperBES preserves its fifth place, but HyperSSA falls
down the ranking to tenth place, in particular below SSA.

Table 2. Friedman ranking of the evaluated methods on the CEC problems.

Heuristic Name Rank

HyperDE 1.875
SHADE 2.680

LSHADE 3.097
Slime Mold Algorithm (SMA) 4.222

HyperBES 4.916
Sparrow Search Algorithm (SSA) 5.097

Differential Evolution (DE) 5.458
Chaos Game Optimization (CGO) 5.638

Whale Optimization Algorithm (WOA) 6.041
HyperSSA 6.208

Hunger Games Search (HGS) 6.791
Bald Eagle Search (BES) 8.166

Harris Hawks Optimization (HHO) 8.305

One aspect that is consistent in both evaluations is that HyperDE proves to behave
remarkably well relative to the other algorithms, it being conclusive that our hyper-heuristic
is the best performer in the given context.

The execution times of the top performing algorithms are given in Table 3. They were
measured on a MacBook Air computer with an M1 chip having a max CPU clock rate
of 3.2 GHz and 8 GB memory. Note that the implementation of our methods is purely
sequential and does not take advantage of the inherent parallelism of the agents; also,
the implementation is plain and does not use any speeding-up trick. So, as expected,
HyperDE is more time-consuming than the simpler methods such as SHADE and LSHADE,
due to the additional computations and manipulations. HyperDE is roughly 60–80% slower.
HyperSSA and HyperBES do not seem that efficient; this is because of the agents that are
used, which are not as fast as DE.

We reiterate that the number of function evaluations is the same for all methods; as
long as the implementations are not fully optimized, this is the most important aspect in
ensuring fairness of comparison. If the implementations would be equally well optimized
for a specified computer, which is not an easy task, the results after a given time could

219

Algorithms 2023, 16, 451

be compared; even then, it may be argued that ideal conditions, like the inexistence of
background processes, are nearly impossible to obtain. So, in these circumstances, we
consider that our comparisons are reasonably fair.

Table 3. Average times of the best methods (in minutes).

Function HyperDE HyperSSA HyperBES LSHADE SHADE

F1 4.09 6.61 10.72 2.43 2.34
F2 4.12 6.45 10.83 2.33 2.37
F3 4.29 7.16 11.39 2.36 2.37
F4 4.30 6.56 11.39 2.37 2.37
F5 4.20 6.51 11.09 2.34 2.32
F6 4.88 7.82 12.75 2.76 2.76
F7 5.41 6.71 14.22 3.17 3.22
F8 5.76 9.23 15.16 3.59 3.47
F9 4.51 7.26 11.87 2.62 2.65

F10 4.54 6.97 11.94 2.73 2.69
F11 4.76 7.42 12.48 2.80 2.82
F12 4.77 7.23 12.54 2.78 2.78

The convergence of the top five methods on the entire suite of problems is illustrated
in Figures 2 and 3. The average over n_tests = 60 tests is shown, resulting in an average
convergence curve, thus smoothing the stochastic behavior. The methods are executed
for 200 iterations each, but only each fifth iteration is plotted in order to be aligned with
the results of our hyper-heuristics, where the best result at the end of each hyper-iteration
is shown.

It is visible that HyperDE converges nearest to the global minimum on four functions:
F2, F4, F6 and F7. For functions F1 and F3, HyperDE reaches about the same value as other
methods, but it converges at the fastest rate. The convergence of HyperDE is more abrupt
also on the other functions.

LSHADE and SHADE seem to take the lead on some of the other problems, not
being drastically distant from our main method. HyperBES and HyperSSA are performing
noticeably worse then the others. HyperBES is the most unimpressive on F1, F2, F3 and F11
while surpassing HyperSSA on F5, F6, F7, F8, F9, F10 and F12.

Box plots are shown in Figure 4, illustrating in more detail the distribution of the
n_tests = 60 results of the algorithms. In most of the figures, the proposed method has a
very reduced variance around the global optima, similarly to the other two DE variants.
For F9, the variance is large while the median is aligned with the best result. In the F4 plot,
HyperDE has the lowest median, followed by the other two proposed hyper-heuristics.
However, HyperSSA and HyperBES perform worse on the other problems, with fairly large
variance and a median quite far from the best solution, not being very clear which is the
best of the two.

In Table 4, we can see a comparison of the performance of the proposed optimization
method, HyperDE, with the other three methods from the DE family. The performance
metrics include the best solution found (Best), the mean solution obtained (Mean), and the
standard deviation (Std. Dev) of the solutions.

As can be concluded, our method demonstrates an impressive performance, where it
consistently outperforms the others in terms of the best solution. Regarding the mean, this
is not always the case, as for F5, F8, F10, F11 and F12 the mean is slightly worse then for
SHADE and LSHADE, while for F6 and F9 the inferiority is quite significant. Moreover,
HyperDE achieves fairly low standard deviation values, indicating its reliability and ability
to deliver stable and high-quality solutions.

220

Algorithms 2023, 16, 451

Table 4. Method comparison for multiple problems.

Problem Method Best Mean Std. Dev

F1 HyperDE 300.0 300.0 3.11× 10−14

SHADE 300.000000106882 300.0000004073815 2.43× 10−7

LSHADE 300.0000001404671 300.00000041613555 2.21× 10−7

DE 1235.4661553234967 4130.32659367826 1205.22

F2 HyperDE 400.00006692489313 405.7762007938934 3.18
SHADE 400.3938197535978 407.5481893148344 2.13

LSHADE 400.3851128433223 408.0876491551797 1.55
DE 410.80352316352435 417.77563978207604 3.27

F3 HyperDE 600.0 600.0 2.08× 10−14

SHADE 600.0 600.0 0.0
LSHADE 600.0 600.0 0.0

DE 600.0000112734627 600.0000363216427 1.05× 10−5

F4 HyperDE 800.0971590987756 800.29929127267 0.19
SHADE 800.2721523050697 800.4602925668243 0.09

LSHADE 800.2506108454668 800.397114829017 0.08
DE 800.2004337865635 800.4850824190988 0.09

F5 HyperDE 900.0 900.0436061309064 0.11
SHADE 900.0000000000498 900.0000000002758 1.74× 10−10

LSHADE 900.0000000000752 900.0000000001007 5.35× 10−12

DE 900.0308300706507 900.2115266993348 0.04

F6 HyperDE 1800.550008569961 2349.376836704244 1611.13
SHADE 2527.2166249124543 3318.210953638849 515.35

LSHADE 2448.651779056926 3156.2346074618913 433.08
DE 18,245.220034908845 55,938.99918382257 23,898.85

F7 HyperDE 2001.494972244204 2020.428895032187 8.00
SHADE 2023.69169017458 2028.6419318989665 1.74

LSHADE 2014.5645721366564 2027.7440931323101 2.78
DE 2024.5036568238922 2028.4449058504215 1.99

F8 HyperDE 2200.226924720861 2218.3297256215615 6.73
SHADE 2209.5886930417746 2218.297973263973 4.32

LSHADE 2208.325106401539 2217.383152114902 4.02
DE 2230.0941806086953 2245.28243788769 9.28

F9 HyperDE 2300.0 2437.838567116613 174.83
SHADE 2300.0001089307398 2300.0048868578 0.03

LSHADE 2300.0001212533975 2300.0061751439484 0.03
DE 2396.4069384108525 2646.9062600644074 60.17

F10 HyperDE 2598.5455167771906 2605.156197642855 25.86
SHADE 2598.5468912550587 2598.5620204350707 0.07

LSHADE 2598.5468210921954 2598.551948117506 0.00
DE 2608.799360629708 2614.908013661977 3.19

F11 HyperDE 2600.0 2601.8934468491198 6.28
SHADE 2600.0000050187055 2600.0000090069157 2.17× 10−6

LSHADE 2600.0000049464516 2600.000009874206 2.98× 10−6

DE 2607.8865627810346 2624.76104595252 4.06

F12 HyperDE 2863.76941226926 2865.838163178578 1.26
SHADE 2821.118856642622 2864.1391105809807 5.62

LSHADE 2864.224719298684 2864.904468801826 0.50
DE 2866.84004856121 2867.9027213119152 0.50

221

Algorithms 2023, 16, 451

Table 5 gives the results of the Wilcoxon signed-rank test. They show a statistically
significant difference of HyperDE from the other methods on F1, as indicated by the ex-
tremely low p-values (approximately 1.63× 10−11). This is also the case for F2, F4, F6,
and F7, exhibiting fairly low p-values in comparison with the other three methods, whereas
on F10, F11, and F12, our methodology is surpassed by the other two self-adaptive algo-
rithms. For F3, there is no significant difference between HyperDE and SHADE/LSHADE,
the p-value being large, 0.16; however, DE is clearly worse than HyperDE. This situation
is found for the other remaining problems (F5, F8, F9), where an actual winner cannot be
proclaimed, except in comparison with the basic DE.

Table 5. Results of Wilcoxon signed-rank test.

Problem Method p-Value

F1 HyperDE vs. SHADE 1.63× 10−11

HyperDE vs. LSHADE 1.63× 10−11

HyperDE vs. DE 1.63× 10−11

F2 HyperDE vs. SHADE 1.41× 10−4

HyperDE vs. LSHADE 3.50× 10−7

HyperDE vs. DE 1.63× 10−11

F3 HyperDE vs. SHADE 0.16
HyperDE vs. LSHADE 0.16

HyperDE vs. DE 1.63× 10−11

F4 HyperDE vs. SHADE 3.78× 10−7

HyperDE vs. LSHADE 1.27× 10−5

HyperDE vs. DE 5.78× 10−8

F5 HyperDE vs. SHADE 0.44
HyperDE vs. LSHADE 0.83

HyperDE vs. DE 1.80× 10−11

F6 HyperDE vs. SHADE 5.11× 10−8

HyperDE vs. LSHADE 1.86× 10−8

HyperDE vs. DE 1.63× 10−11

F7 HyperDE vs. SHADE 1.66× 10−10

HyperDE vs. LSHADE 2.71× 10−9

HyperDE vs. DE 1.44× 10−10

F8 HyperDE vs. SHADE 0.20
HyperDE vs. LSHADE 0.04

HyperDE vs. DE 1.63× 10−11

F9 HyperDE vs. SHADE 0.12
HyperDE vs. LSHADE 0.12

HyperDE vs. DE 2.62× 10−8

F10 HyperDE vs. SHADE 7.20× 10−10

HyperDE vs. LSHADE 7.20× 10−10

HyperDE vs. DE 4.63× 10−9

F11 HyperDE vs. SHADE 4.20× 10−6

HyperDE vs. LSHADE 4.20× 10−6

HyperDE vs. DE 1.80× 10−11

F12 HyperDE vs. SHADE 1.50× 10−5

HyperDE vs. LSHADE 9.35× 10−6

HyperDE vs. DE 1.66× 10−10

222

Algorithms 2023, 16, 451

In summary, the results suggest that HyperDE consistently outperforms or shows
comparable performance to the other optimization methods on most of the problems.

Figure 2. Overall convergence of the best methods.

223

Algorithms 2023, 16, 451

Figure 3. Overall convergence of the best methods.

Figure 4. Cont.

224

Algorithms 2023, 16, 451

Figure 4. Box plots of the best methods.

7. Conclusions

In this paper, a novel search methodology for global optimization was proposed in
the form of an adaptive hyper-heuristic based on the Differential Evolution algorithm
along with two other similar approaches. These approaches are highly general in their
applicability, having a low number of hyper-parameters that need no adjustments. It was
shown that the performance of the main algorithm, HyperDE, is superior relative to the
other existent heuristics, obtaining a smaller relative error and the best Friedman rank on
a benchmark from the CEC competition. The other two methods are not to be ignored,
showing a significant improvement over their counterparts.

There are many possible directions of future work. We plan to improve the efficiency
of our implementation, possibly by trying to take advantage of its inherent parallelism.
Extension of our technique to other performant heuristic that use a small number of hyper-
parameters is envisaged. Also, we plan to compare our method with other methods that
tune the hyper-parameters.

Author Contributions: Conceptualization, A.-R.M.; methodology, A.-R.M. and B.D.; software, A.-R.M.;
validation, A.-R.M. and B.D.; writing—original draft preparation, A.-R.M.; writing—review and
editing, A.-R.M. and B.D.; visualization, A.-R.M.; supervision, B.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by a grant of the Ministry of Research, Innovation and
Digitization, CNCS-UEFISCDI, project number PN-III-P4-PCE-2021-0154, within PNCDI III.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

225

Algorithms 2023, 16, 451

References

1. Ma, Z.; Wu, G.; Suganthan, P.N.; Song, A.; Luo, Q. Performance assessment and exhaustive listing of 500+ nature-inspired
metaheuristic algorithms. Swarm Evol. Comput. 2023, 77, 101248. [CrossRef]

2. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995; Volume 4, pp. 1942–1948.

3. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
4. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
5. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
6. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
7. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
8. Yang, X.S. Firefly algorithms for multimodal optimization. In Proceedings of the International Symposium on Stochastic

Algorithms, Sapporo, Japan, 26–28 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178.
9. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341. [CrossRef]
10. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the 2013 IEEE

Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; IEEE: New York, NY, USA, 2013; pp. 71–78.
11. Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings

of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; IEEE: New York, NY, USA, 2014;
pp. 1658–1665.

12. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020,
8, 22–34. [CrossRef]

13. Alsattar, H.A.; Zaidan, A.; Zaidan, B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020,
53, 2237–2264. [CrossRef]

14. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
15. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
16. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,

perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]
17. Camacho-Villalón, C.L.; Dorigo, M.; Stützle, T. Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: Six

misleading optimization techniques inspired by bestial metaphors. Int. Trans. Oper. Res. 2023, 30, 2945–2971. [CrossRef]
18. Talatahari, S.; Azizi, M. Chaos Game Optimization: A novel metaheuristic algorithm. Artif. Intell. Rev. 2021, 54, 917–1004.

[CrossRef]
19. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
20. Gárate-Escamilla, A.K.; Amaya, I.; Cruz-Duarte, J.M.; Terashima-Marín, H.; Ortiz-Bayliss, J.C. Identifying Hyper-Heuristic Trends

through a Text Mining Approach on the Current Literature. Appl. Sci. 2022, 12, 10576. [CrossRef]
21. Burke, E.K.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Ozcan, E.; Woodward, J.R. Exploring hyper-heuristic methodologies with genetic

programming. In Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2009; pp. 177–201.
22. Burke, E.K.; McCollum, B.; Meisels, A.; Petrovic, S.; Qu, R. A graph-based hyper-heuristic for educational timetabling problems.

Eur. J. Oper. Res. 2007, 176, 177–192. [CrossRef]
23. Hsiao, P.C.; Chiang, T.C.; Fu, L.C. A vns-based hyper-heuristic with adaptive computational budget of local search. In Proceedings

of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10–15 June 2012; IEEE: New York, NY, USA, 2012;
pp. 1–8.

24. Chen, P.C.; Kendall, G.; Berghe, G.V. An ant based hyper-heuristic for the travelling tournament problem. In Proceedings of the
2007 IEEE Symposium on Computational Intelligence in Scheduling, Honolulu, Hawaii, 1–5 April 2007; IEEE: New York, NY,
USA, 2007; pp. 19–26.

25. Burke, E.K.; Kendall, G.; Soubeiga, E. A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 2003, 9, 451–470.
[CrossRef]

26. Cowling, P.I.; Chakhlevitch, K. Using a large set of low level heuristics in a hyperheuristic approach to personnel scheduling. In
Evolutionary Scheduling; Springer: Berlin/Heidelberg, Germany, 2007; pp. 543–576.

27. Han, L.; Kendall, G. Guided operators for a hyper-heuristic genetic algorithm. In Proceedings of the Australasian Joint Conference
on Artificial Intelligence, Perth, Australia, 3–5 December 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 807–820.

28. Bai, R.; Kendall, G. An investigation of automated planograms using a simulated annealing based hyper-heuristic. In Metaheuris-
tics: Progress as Real Problem Solvers; Springer: Berlin/Heidelberg, Germany, 2005; pp. 87–108.

29. Resende, M.G.; de Sousa, J.P.; Nareyek, A. Choosing search heuristics by non-stationary reinforcement learning. In Metaheuristics:
Computer Decision-Making; Springer: Berlin/Heidelberg, Germany, 2004; pp. 523–544.

226

Algorithms 2023, 16, 451

30. Lim, K.C.W.; Wong, L.P.; Chin, J.F. Simulated-annealing-based hyper-heuristic for flexible job-shop scheduling. In Engineering
Optimization; Taylor & Francis: Abingdon, UK, 2022; pp. 1–17.

31. Qin, W.; Zhuang, Z.; Huang, Z.; Huang, H. A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle
routing problem. Comput. Ind. Eng. 2021, 156, 107252. [CrossRef]

32. Lin, J.; Zhu, L.; Gao, K. A genetic programming hyper-heuristic approach for the multi-skill resource constrained project
scheduling problem. Expert Syst. Appl. 2020, 140, 112915. [CrossRef]

33. Oliva, D.; Martins, M.S. A Bayesian based Hyper-Heuristic approach for global optimization. In Proceedings of the 2019 IEEE
Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; IEEE: New York, NY, USA, 2019;
pp. 1766–1773.

34. Cruz-Duarte, J.M.; Amaya, I.; Ortiz-Bayliss, J.C.; Conant-Pablos, S.E.; Terashima-Marín, H.; Shi, Y. Hyper-heuristics to customise
metaheuristics for continuous optimisation. Swarm Evol. Comput. 2021, 66, 100935. [CrossRef]

35. Burke, E.K.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J.R. A classification of hyper-heuristic approaches:
Revisited. In Handbook of Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 453–477.

36. Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. In Approximation and
Optimization: Algorithms, Complexity and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–82.

37. Georgioudakis, M.; Plevris, V. A comparative study of differential evolution variants in constrained structural optimization.
Front. Built Environ. 2020, 6, 102. [CrossRef]

38. Thieu, N.V.; Mirjalili, S. MEALPY: A Framework of The State-of-The-Art Meta-Heuristic Algorithms in Python. 2022. Available
online: https://zenodo.org/record/6684223 (accessed on 18 September 2023).

39. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

227

Citation: Belcastro, L.; Carbone, D.;

Cosentino, C.; Marozzo, F.; Trunfio, P.

Enhancing Cryptocurrency Price

Forecasting by Integrating Machine

Learning with Social Media and

Market Data. Algorithms 2023, 16, 542.

https://doi.org/10.3390/a16120542

Academic Editor: Frank Werner

Received: 1 November 2023

Revised: 23 November 2023

Accepted: 24 November 2023

Published: 27 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Enhancing Cryptocurrency Price Forecasting by Integrating
Machine Learning with Social Media and Market Data

Loris Belcastro *, Domenico Carbone, Cristian Cosentino, Fabrizio Marozzo * and Paolo Trunfio

Department of Informatics, Modeling, Electronics and Systems Engineering, University of Calabria,
87036 Rende, Italy; dcarbone@dimes.unical.it (D.C.); ccosentino@dimes.unical.it (C.C.);
trunfio@dimes.unical.it (P.T.)
* Correspondence: lbelcastro@dimes.unical.it (L.B.); fmarozzo@dimes.unical.it (F.M.)

Abstract: Since the advent of Bitcoin, the cryptocurrency landscape has seen the emergence of several
virtual currencies that have quickly established their presence in the global market. The dynamics
of this market, influenced by a multitude of factors that are difficult to predict, pose a challenge to
fully comprehend its underlying insights. This paper proposes a methodology for suggesting when it
is appropriate to buy or sell cryptocurrencies, in order to maximize profits. Starting from large sets
of market and social media data, our methodology combines different statistical, text analytics, and
deep learning techniques to support a recommendation trading algorithm. In particular, we exploit
additional information such as correlation between social media posts and price fluctuations, causal
connection among prices, and the sentiment of social media users regarding cryptocurrencies. Several
experiments were carried out on historical data to assess the effectiveness of the trading algorithm,
achieving an overall average gain of 194% without transaction fees and 117% when considering
fees. In particular, among the different types of cryptocurrencies considered (i.e., high capitalization,
solid projects, and meme coins), the trading algorithm has proven to be very effective in predicting
the price trends of influential meme coins, yielding considerably higher profits compared to other
cryptocurrency types.

Keywords: cryptocurrency; social media data; price prediction; trading recommendation; machine
learning; deep learning

1. Introduction

Following the pioneering launch of Bitcoin by Satoshi Nakamoto, a multitude of vir-
tual currencies have seen notable increases in both their value and widespread acceptance.
For instance, Ethereum and Litecoin emerged as prominent contenders, with Ethereum’s
smart contract capabilities driving its rapid ascent, while Litecoin focused on enhancing
the transaction speed and scalability, making it a popular choice for everyday transactions.
Today, the cryptocurrency landscape boasts thousands of coins, many of which are char-
acterized by volatility and a lack of substantial projects [1]. Their value and volatility are
influenced by factors such as popularity obtained through word of mouth on social media.
For example, viral memes related to specific coins can drive a wave of interest, prompting
people to invest based on the excitement generated by these online phenomena.

In recent years, the cryptocurrency market has witnessed extraordinary success, largely
as a result of innovative marketing strategies adopted by exchange platforms [2]. These
strategies, encompassing user-friendly interfaces and educational resources, have made
cryptocurrency investments more approachable, leading to a surge in market growth. More-
over, influential people have wielded their substantial social media presence to endorse
or critique cryptocurrencies through tweets and public statements, contributing to both
market volatility and a surge in public interest [3]. Based on the dynamic context of the
cryptocurrency market, this paper delves into the analysis of factors that influence price
movements, mainly focusing on market dynamics and content published on social media.

Algorithms 2023, 16, 542. https://doi.org/10.3390/a16120542 https://www.mdpi.com/journal/algorithms228

Algorithms 2023, 16, 542

Our methodology involves predicting the cryptocurrency price movements by analyzing
two large datasets: one comprising market data like prices and trading volumes for spe-
cific cryptocurrencies, and the other containing social media posts discussing these coins.
These datasets were properly merged and analyzed using a set of statistical, text analytics,
and deep learning techniques. Several studies have demonstrated substantial economic
benefits for investors by leveraging machine learning predictions, which allow one to
predict stock [4], equity risk [5], or bond [6] premiums, compared to a risk-free investments.
In particular, in many cases, the use of machine learning techniques surpasses leading
regression-based strategies, even doubling their effectiveness in certain cases, especially
using decision trees and neural networks [7,8]. The goal of this methodology is to develop
a trading recommendation algorithm that can identify optimal moments for buying and
selling cryptocurrencies in order to maximize profits.

The proposed methodology is composed of different phases: data collection, data
preprocessing, data enrichment, training machine learning models, and trading recommen-
dation. To enhance the predictive capabilities of our methodology, we augmented these
datasets with three additional features: (i) correlation between social media activities and
cryptocurrency price fluctuations; (ii) causal connection among prices of cryptocurrencies,
so as to consider how they influence each other and the impact that the most popular
cryptocurrencies have on the broader market; and (iii) the sentiment of users about cryp-
tocurrencies, obtained through a textual analysis of posts published on social media. Such
datasets were used to train an long short-term memory (LSTM) model for predicting the
prices of cryptocurrencies, supporting a trading recommendation algorithm capable of
identifying and exploiting the direction in which the price of a cryptocurrency is moving
(e.g., upward or downward trend). Unlike other existing works, our research supports price
forecasting for different types of cryptocurrencies (i.e., high capitalization, solid projects,
and meme coins), providing excellent market coverage. Our methodology stands out for its
comprehensive analysis, encompassing a wide range of features to enhance cryptocurrency
price forecasting. This includes evaluating correlations and causal connections among
coins, as well as the detection of bot activities that can influence price predictions. Addi-
tionally, our solution extensively utilizes text analysis techniques on social media data to
extract information about the popularity, overall market perception, and users’ sentiment
regarding specific cryptocurrencies.

Several experiments were carried out on historical data to assess the effectiveness
of the trading algorithm. By investing in a selected set of cryptocurrencies, the trading
algorithm achieved an overall average profit of 194% when transaction fees were not taken
into account and 117% when transaction fees were considered. Focusing only on influential
meme coins, the algorithm resulted in a very high profit of 902% with fees and 1258%
without fees.

The structure of this paper is as follows. Section 2 discusses related work in the
cryptocurrency field and provides a comparison between our methodology and existing
research. Section 3 describes the proposed methodology. Section 4 discusses the achieved
results. Finally, Section 5 concludes the paper.

2. Related Work

The cryptocurrency market has become a sector of growing interest, characterized
by significant volatility and a wide variety of speculative activities. In this context, the
accurate prediction of cryptocurrency prices has played a crucial role for investors, traders,
and stakeholders in the financial industry. The use of machine learning and deep learning
techniques has emerged as a research avenue to support cryptocurrency price predictions.
In this section, we provide an overview of the existing related work, highlighting the most
used approaches and challenges in cryptocurrency price forecasting.

Nowadays, the use of machine learning and deep learning techniques for price predic-
tion is widespread [9–11]. Several studies have explored the application of neural networks,
support vector machines, and other supervised learning models to predict cryptocurrency

229

Algorithms 2023, 16, 542

prices over time [12–14]. In particular, the use of methods such as long-short-term memory
(LSTM) neural networks has shown particular promise in addressing time series challenges
and identifying nonlinear patterns in price fluctuations [15–20]. Some works have exploited
linear regression and random forest methods to analyze the model performance and prof-
itability of trading strategies [21,22]. Other studies have proposed novel models based on
recurrent neural network (RNN) models, such as GRU, LSTM, and bi-LSTM, to achieve
precise cryptocurrency price forecasts [23,24]. Such approaches have provided accurate
results and demonstrated their ability to detect complex dynamics, which can support
trading decisions [25–27].

Other studies have explored the potential of employing text analysis on social media
data to enhance the ability to predict cryptocurrency prices. Specifically, studies conducted
by [28,29] have demonstrated that the sentiment analysis applied to social media posts can
offer valuable insights into understanding the dynamics behind price fluctuations. The
sentiment analysis of cryptocurrency-related tweets has mostly been conducted using tools
such as VADER [30] and TextBlob [31], both of which have proven their effectiveness in
several related works [3,27,32].

Kim et al. [33] demonstrated that the utilization of on-chain data (i.e., data directly
from the blockchain) can provide valuable insights into the dynamics of cryptocurrency
prices. Similarly, the analysis of on-chain data in conjunction with change point detection
methodologies has contributed to enhancing the accuracy of cryptocurrency price forecasts
and assisting investors in making more informed decisions [34,35].

Table 1 presents a comparison among the most recent works in the field of cryptocur-
rency price forecasting, which exploit different data and features. Specifically, each proposed
algorithm or methodology has been evaluated based on the following characteristics:

• Price Trend (PT): identifying and exploiting the direction in which the price of a
cryptocurrency is moving (e.g., upward trend, downward trend).

• Instant of Trading (IT): discovering the specific moment to buy/sell a cryptocurrency.
• Publication Frequency (PF): exploiting social media data mentioning a particular cryp-

tocurrency.
• Impressions (I): evaluating the overall market sentiment or public perception about a

specific cryptocurrency.
• Sentiment Analysis (SA): analyzing users’ sentiments and opinions to gauge the mar-

ket’s mood regarding a particular cryptocurrency.
• Bot Analysis (BA): detecting the activities of bots on social media, as the posts they

publish can influence the price prediction process.
• Correlation among Coins (CC): measuring the relationship between the price movements

of different cryptocurrencies, such as correlation and causality.
• Trading Indicators (TI): exploiting market metrics and signals used by traders to make

trading decisions, such as moving averages, relative strength index (RSI), moving
average convergence divergence (MACD).

• Deep Learning: using deep learning approaches for price forecasting.
• Type of Coins: defining the type of cryptocurrencies considered for price prediction,

which can belong to the four categories discussed in Section 3.1, i.e., Solid Project (SP),
High Capitalization (HC), Influential Meme (IM), and Volatile Meme (VM) coins.

Our work stands out in the comparison due to its comprehensive analysis, encompass-
ing almost all available features. Unlike other works, our research supports price forecasting
for different types of cryptocurrencies (HC, SP, and IM), providing excellent market cov-
erage. We excluded support for Volatile Meme (VM) coins due to their unpredictable
and speculative nature, which makes them highly susceptible to market manipulation.
In addition, we also discard posts with advertising content, often generated by bots for
promoting online trading platforms, which can disturb the price prediction process.

230

Algorithms 2023, 16, 542

Table 1. Comparison among existing related works and their features.

Related Work PT TI
Social Media Data Market Data Deep

Learning
Type of
CoinsPF I SA BA CC TI

Hitam et al. [12] x - - - - - x x x HC, SP
Abraham et al. [10] x - - - x - - - - HC
Lahmiri et al. [16] x - - - - - - x x HC
Vo et al. [28] x - - - x - - - x HC
Rathan et al. [25] x - - - - - - - - HC
Valencia et al. [9] x - - - x - - x x HC
Wołk [27] x - x x x - - - x HC, SP
Patel et al. [15] x - - - - - - - x -
Ioannis et al. [24] x x - - - - x x x -
Khedr et al. [13] x - - - - - - x x HC, SP
Jay et al. [14] x - - - - - - x x HC, SP
Poongodi et al. [18] x - - - - - - x x -
Mirtaheri et al. [26] - - x x x x - - - HC
Hamayel et al. [23] x - - - - - - - x HC
Tanwar et al. [34] x - - - - - x - x HC
Shahbazi et al. [35] x - - - - - - x x HC, SP
Kim et al. [33] x - - - - - - - x HC
Van Tran et al. [21] x x - - - - x x - HC, SP, IM
Ammer et al. [17] x x - - - - x x x HC, SP, IM, VM
Fleischer et al. [20] x x - - - - x x x -
Sun et al. [22] x x - - - - - - - HC, SP, IM
Sebastião et al. [29] x x - - - - - x - HC, SP
Lamon et al. [19] x - - - x - - - - HC
Our work x x x x x x x x x HC, SP, IM

3. Proposed Methodology

Our methodology aims to predict the price movements of cryptocurrencies through
the examination of two large datasets: the first contains market data (e.g., prices and
exchanged volumes) of a set of cryptocurrencies; and the second contains posts published
on social media discussing such coins. These datasets have been combined and analyzed
using different statistical analysis, text analysis, and deep learning techniques. The goal of
the methodology is to define a trading algorithm capable of suggesting the moments in
which to carry out sell-and-buy operations to maximize profits.

As illustrated in Figure 1, the methodology is composed of different phases: data
collection, data preprocessing, data enrichment, training machine learning models, and
trading recommendation. In the following, we discuss each phase in detail, highlighting
the crucial and strategic decisions that characterize our methodology.

Data
preprocessing

Data
collection

$
Market data

Social data

Training
ML models

Trading
recommendation

Data
enrichment

Correlations between
social and market data

Causal connection
in market data

Textual analysis
of social data

Figure 1. Execution flow of the proposed methodology.

231

Algorithms 2023, 16, 542

To deal with such large and heterogeneous data, we leveraged Apache Spark to process
them efficiently. The use of such a framework for Big Data is widely adopted in the realm
of Big Data analytics, enabling faster and more scalable data processing [36].

3.1. Data Collection and Preprocessing

In the data collection phase, we gather market and social media data related to a
selected group of cryptocurrencies. Our focus is on a heterogeneous set of representative
cryptocurrencies chosen from the most popular ones. As shown in Table 2, these cryptocur-
rencies have been categorized into four distinct categories based on their characteristics:

• High Capitalization (HC): this category includes cryptocurrencies such as Bitcoin and
Ethereum, which are highly popular and have a significant impact on the world
of cryptocurrencies.

• Solid Project (SP): it includes cryptocurrencies backed by a robust project, although
they may be less popular. Examples include Solana and Conflux, which form the
foundation for various types of blockchains, as well as projects like The Sandbox,
which is associated with the metaverse and NFT-related initiatives.

• Influential Meme (IM): it includes coins that do not rely on solid projects (i.e., meme
coins). Despite their lower capitalization and the absence of substantial projects, they
have a significant influence on the world of cryptocurrencies due to their history and
popularity on social media.

• Volatile Meme (VM): this category comprises cryptocurrencies created purely for spec-
ulative purposes, characterized by high volatility and substantial price fluctuations
within short time periods.

Table 2. List of cryptocurrencies used for the analysis.

Category Acronym Cryptocurrencies

High
Capitalization

HC
Bitcoin (BTC), Ethereum (ETH), Polygon (MATIC), Polkadot (DOT),
Solana (SOL), Cosmos (ATOM), Stellar (XLM), Avalanche (AVAX),
Tron (TRX), Litecoin (LTC)

Solid
Project

SP

Conflux (CFX), Stacks (STX), Fantom (FTM), Quant (QNT) Loopring (LRC),
The sandbox (SAND), Gala (GALA), Lido Dao (LDO), Cronos (CRON),
Zilliqa (ZIL), Chiliz (CHZ), Neo (NEO), Vethor Token (VTHO), Bancor (BNT),
The Graph (GRT)

Influent
Meme

IM Dogecoin (DOGE), Shiba Inu (SHIB), Decentraland (MANA)

Volatile
Meme

VM
Babydoge Coin (BabyDoge), Floki (Floki), Catecoin (CATE),
Dogelon Mars (ELON), Volt Inu v2 (VOLT), Dejitaru Tsuka (TSUKA),
Kishu Inu (KISHU), Shiba Predator (SHIBAP), Pitbull (PIT), Akita Inu (AKITA)

For each coin considered, we collected historical data on market performance from
the CoinMarketCap website (https://coinmarketcap.com/, accessed on 1 November 2023),
which provides information about price fluctuations (hourly, daily, weekly), market capi-
talization, daily traded amounts, and volumes of coins that are circulating in the market.
Specifically, we gathered comprehensive market data for a selected group of cryptocurren-
cies spanning from January 2021 to March 2023. Cryptocurrency prices have been tracked
over time in Tether (USDT), which is a stable coin designed to maintain a fixed 1:1 ratio
with the US dollar. The analysis of market data was of great use in evaluating some key
aspects of the relationships existing among the different cryptocurrencies, as discussed in
the following.

Subsequently, the posts published by users talking about these coins were collected
on social media platforms. In particular, we collected a large set of tweets published in
the considered period, using the Twitter APIs with a set of keywords associated with the
considered coins. Each collected tweet contains specific attributes, including the timestamp
indicating when the tweet was posted, textual content, hashtags used, the author’s user-
name, the number of followers, and a flag indicating the user’s account verification status,

232

Algorithms 2023, 16, 542

enhancing the reliability of the collected information. Furthermore, we decided to discard
tweets with advertising content, for example, those generated for promotional purposes by
online trading platforms, often utilizing bots, which frequently mention multiple cryptocur-
rencies in their text. Then, each post in the dataset has been modified by applying some
common preprocessing operations, such as removing usernames and mentions, special
characters, URLs, and so on.

The final datasets include the hourly market information of the coins under analysis
and approximately 133 million tweets, which are used to extract valuable insights about
popularity trends, price fluctuations, and users’ investment behaviors.

3.2. Data Enrichment

After the preprocessing phase, our final datasets comprise detailed hourly market
data and an extensive collection of tweets related to the selected cryptocurrencies. To
enhance the predictive capabilities of our methodology, we augmented these datasets
with three additional information, as detailed in the following sections. In Section 3.2.1,
we analyzed the correlation between social media activities and cryptocurrency price
fluctuations. Section 3.2.2 investigates how cryptocurrency prices influence each other, with
a particular focus on the impact of well-known cryptocurrencies on the broader market.
Finally, in Section 3.2.3, we examined the textual content of posts published by social media
users, aggregating their expressed opinions about cryptocurrencies, so as to identify the
sentiment and utilize it to improve the prediction of cryptocurrency prices.

3.2.1. Correlation between Social Media and Market Data

At this step, we started from the intuition that the information extracted from social
media has a strong correlation with the price fluctuations of cryptocurrencies. For each con-
sidered cryptocurrency, we calculated some social engagement metrics (number of tweets,
followers, likes, and retweets) to determine their correlation with the daily closing prices.
In particular, we used both Pearson and Spearman correlation tests, which are statistical
measures used to assess the relationships between variables. The Pearson correlation eval-
uates linear relationships between normally distributed time series data, while Spearman
evaluates monotonic relationships between variables, which may not necessarily be linear.
Given the nature of cryptocurrency prices and social data, both correlation measures were
considered to provide a comprehensive understanding of the relationship among time
series. For example, Figure 2 provides a view of the social metrics and price fluctuations of
Shiba Inu, where the values have been normalized to make the chart more understandable
and comparable.

Figure 2. A five-month view of daily Twitter metrics and a closing price associated with Shiba Inu.

For all the cryptocurrencies considered, it has been verified that there is a strong
correlation between the social metrics introduced above and the daily closing price. For
example, Table 3 reports the Pearson and Spearman correlation coefficients of three meme
coins (i.e., Shiba Inu, Floki, and CateCoin). As shown, the results indicate strong positive
correlations between the tweet volume and cryptocurrency prices (ranging from 0.723
to 0.868 for Pearson and 0.841 to 0.909 for Spearman). The follower count exhibits mod-
erate correlations, while likes and retweets show variable values, with Floki showing a
strong correlation.

233

Algorithms 2023, 16, 542

Table 3. Correlation coefficients between the price and social metrics for three meme coins (Shiba
Inu, Floki, and CateCoin).

Shiba Inu Floki CateCoin

Category Pearson Spearman Pearson Spearman Pearson Spearman

Tweets 0.723 0.841 0.868 0.909 0.797 0.880
Followers 0.659 0.761 0.523 0.858 0.320 0.751
Likes 0.752 0.849 0.896 0.913 0.414 0.854
Retweets 0.796 0.850 0.889 0.913 0.674 0.831

Finally, these correlation values are added as features to the dataset in order to use
them for training a machine learning model.

3.2.2. Causal Connection in Market Data

In this phase, it was evaluated how the prices of the different cryptocurrencies consid-
ered influence each other. The underlying idea behind this analysis is that fluctuations in
the prices of popular cryptocurrencies, such as Ethereum and Bitcoin, may causally affect
the prices of other coins. Following the approaches used in [37,38], the Granger causality
test was employed to determine whether price variations in one cryptocurrency can be
considered the cause of price changes in another coin.

The Granger causality test is used to determine whether a time variable X can be
considered the cause of another time variable Y. During this test, the p-value, a widely used
statistical concept for assessing evidence in support of or against a statistical hypothesis,
is computed using the F-test. Such a test involves two main steps. In the first step,
two regression models are built: the first uses only past values of Y to predict its current
value, while the second model uses both past values of Y and X to predict the current
value of Y. In the second step, the goodness of fit of the two models is compared using a
statistical test. The test makes use of the following regression model:

yt = α0 +
m

∑
j=1

αjyt−j +
m

∑
j=1

β jxt−j + kt

where: alpha0 is the intercept term in the regression model; xt represents the variable
X at time t; yt represents the variable Y at time t; β j for j = 1, . . . , m are the regression
coefficients; and kt represents the error at time t. This test is based on the null hypothesis:

H0 : β1 = β2 = . . . = βm = 0

when X causes Y, according to the Granger causality test, the null hypothesis is rejected.
Let us suppose that the null hypothesis represents the initial assumption that the price

variations of one cryptocurrency do not influence the price variations of another currency.
The alternative hypothesis represents the hypothesis we want to support if the data provide
sufficient evidence against the null hypothesis. The p-value is compared to a predefined
level of significance, denoted by alpha, which represents the maximum probability of
making an error, incorrectly rejecting the null hypothesis when it is true. If the p-value
is less than the level of significance alpha (typically 0.05), the null hypothesis is rejected,
and it is concluded that the data provide statistical evidence in support of the alternative
hypothesis. In other words, it is believed that there is a significant effect or relationship
between the price variations of one cryptocurrency and that of another. Conversely, if the
p-value is greater than alpha, there is not enough evidence to reject the null hypothesis,
and therefore, it cannot be stated that there is a significant effect or relationship between
the price variations of the two currencies. For example, considering the cryptocurrency
Cosmos (ATOM), a cryptocurrency belonging to the solid project category, the Granger
causality test indicated that its price is mostly influenced by Litecoin (LTC), as evidenced
by a p-value of 0.0102.

234

Algorithms 2023, 16, 542

Considering a 3-day time window, p-values for each pair of cryptocurrencies have
been calculated using hourly prices. Subsequently, for each cryptocurrency, the hourly
price variations and exponential moving average of the price for the three cryptocurrencies
that most influence that coin (i.e., the ones with the lowest p-value and those below the
alpha level) were added to the final dataset.

3.2.3. Textual Analysis of Social Data

At this stage of the methodology, a textual analysis was carried out on the large dataset
collected from social media. As discussed before, the dataset is a rich repository of posts
authored by users who explicitly mention at least one of the cryptocurrencies under analysis.
In particular, we analyzed the textual content of each post for determining its sentiment,
categorizing it as either negative, positive, or neutral. In such a way, it is possible to
assess the collective sentiment of social media users at any given moment with respect to a
particular cryptocurrency. This insight is very important for predicting cryptocurrency price
movements: a positive sentiment often heralds a potential price increase, while conversely,
a negative sentiment can foreshadow a decline in value. Specifically, the sentiment analysis
of cryptocurrency-related posts has been carried out using two different tools, VADER [30]
and TextBlob [31], which have been used in many other related work [3,27,32].

VADER is a lexical-based model using an annotated lexicon of English words with
sentiment valence scores. It also considers negations, intensity modulators, and word
order for precise sentiment analysis. In contrast, TextBlob is a Python library for natural
language processing that assigns polarity scores on a scale from −1 (very negative) to 1
(very positive) and provides a subjectivity score. Following the same approach used in [39],
to improve the VADER lexicon and better adapt it to the cryptocurrency context, the scores
of some terms in VADER have been redefined. In fact, in the context of cryptocurrencies,
specific terms are commonly used to identify phenomena of considerable importance, but
VADER identifies them as common terms. For example, the terms buy, moon, and rocket
suggest that the price of a cryptocurrency is going to see a huge increase, but they have a
neutral score according to the original VADER lexicon.

The information on the collective sentiment about the different cryptocurrencies has
then been added to the final dataset, in order to provide additional training data for the
machine learning model used to predict prices.

3.3. Training Machine Learning Models

In this phase, a wide set of machine learning algorithms have been evaluated to
choose the best solution for predicting prices of cryptocurrencies, including ensemble
regressor and neural network algorithms. Concerning ensemble regressors, we used:
Random Forest [40], which exploits a forest of decision trees; XGBoost [41], which provides a
parallel tree boosting; and CatBoost [42], which utilizes a categorical feature-aware boosting
algorithm. As for neural networks, we employed the following algorithms: Conv1D [43],
which is a one-dimensional convolutional neural network (CNN) architecture suitable for
sequence data; GRU (Gated Recurrent Unit) [44], which is a specialized recurrent neural
network (RNN) designed for handling long-range dependencies in sequential data; and
LSTM [44], which is an RNN that is particularly effective in modeling complex patterns
and relationships over extended sequences. In particular, using the hyperparameter values
shown in Table 4, these algorithms have been trained using data collected during the
period from January 2021 to December 2021, related to the cryptocurrencies listed in Table 2.
Subsequently, the different models obtained were tested on data collected during the period
ranging from January 2022 to March 2023.

235

Algorithms 2023, 16, 542

Table 4. Hyperparameter values used for the algorithms under comparison.

Model Hyperparameters

Random forest max_features:
√

n; min_samples_split: 5; estimators: 300

XGBoost eta: 0.01; gamma: 150; n_estimators: 100; subsample: 1

CatBoost depth: 6; iterations: 200; learning_rate: 0.1; l2_leaf_reg: 0.2

Conv1D

conv1d_layer: [units: 256; kernel_size: 2; activation: ReLU];
flatten_layer: yes;
dense_layer_1: [units: 8; activation: ReLU];
dense_layer_2: [units: 1; activation: linear];
optimizer: Adam; learning_rate: 0.0001; epoch: 200

GRU

gru_layer_units: 256;
dense_layer_1: [units: 8; activation: ReLU];
dense_layer_2: [units: 1; activation: linear];
optimizer: Adam; learning_rate: 0.0001; epoch: 200

LSTM

lstm_layer_units: 32; lstm_layer_2_units: 64;
dense_layer_1: [units: 8; activation: ReLU];
dense_layer_2: [units: 1; activation: linear];
optimizer: Adam; learning_rate: 0.0001; epoch: 200

Table 5 shows a comparative overview of the performance obtained by the different
machine learning models that have been tested. As shown, long short-term memory (LSTM)
appears to be the best-performing model among the ones listed. It has the lowest RMSE
(0.003), MAE (0.002), and MAPE (1.2%), indicating that it predicts cryptocurrency prices
with the smallest errors compared to the other models. Additionally, it has the highest R2

value (0.97), suggesting that it explains a larger portion of the variance in the data, making
it a strong choice for predicting cryptocurrency prices in this context. The results obtained
are in line with what we expected. In fact, the benefits of LSTMs for cryptocurrency price
prediction have been confirmed in other studies [45,46], which have highlighted that LSTMs
are the best model for short-term price prediction.

Table 5. Performance comparison of the different machine learning algorithms in predicting cryp-
tocurrency prices.

Model Category RMSE MAE R2 MAPE

Random forest Tree-based 0.085 0.055 0.75 5.2%
XGBoost Tree-based 0.110 0.070 0.68 6.8%
CatBoost Tree-based 0.025 0.035 0.92 1.7%
Conv1D CNN 0.005 0.003 0.95 1.4%
GRU RNN 0.004 0.002 0.96 1.3%
LSTM RNN 0.003 0.002 0.97 1.2%

Taking into account such results, we used an architecture consisting of two LSTM
layers, followed by two densely connected layers. The first two LSTM layers capture long-
term dependencies in the time sequence, while the subsequent dense layers handle data
transformation and final prediction. Specifically, the first LSTM layer has been configured
with 32 memory units, while the second one has been configured with 64 memory units.
The next densely connected layers exploit a rectified linear unit (ReLU) activation function,
which is commonly used to introduce nonlinearity into the neural network.

3.4. Trading Recommendation

The final phase of our methodology focused on defining a trading recommendation
algorithm that exploits price predictions based on the LSTM model. The trading algorithm
aims to suggest when is most appropriate to initiate trading operations (buy or sell) for
a given cryptocurrency. To simplify the proposed heuristic, the algorithm invests the
entire capital available in the account at each operation. However, in the future, less risky
approaches could be studied, which involve better capital management in order to control
losses. The algorithm takes into account some aspects:

236

Algorithms 2023, 16, 542

• Impact of commissions: commission costs depend on the trading platform used, and
thus, the algorithm is designed to take into account a certain percentage of the invested
capital to be paid as transaction fees.

• Identification of strong trends: the algorithm implements a heuristic to limit the number
of transactions, starting a new one only in the presence of a significant event. In this
way, it is possible to avoid imprudent operations during phases of price uncertainty,
with notable benefits in terms of profits.

• Use of take-profit: it leads the algorithm to close operations when the profit percentage
exceeds a certain threshold.

• Use of stop-loss: it closes operations when the loss percentage exceeds a certain threshold.

It is worth noting that the algorithm is based on future trading, which allows traders
to buy or sell cryptocurrencies at a predetermined price at a specified future date. This
trading strategy enables traders to speculate on the price movements without owning
the cryptocurrency. Specifically, traders can do two different types of trading operations:
shorting a cryptocurrency or going long on a cryptocurrency. Shorting a cryptocurrency
means betting that its price will decrease. Traders who short-sell borrow the cryptocurrency
and sell it at the current price, hoping to buy it back later at a lower price, thus making a
profit from the difference. On the contrary, going long on a cryptocurrency means betting
that its value will rise, allowing traders to sell it later at a higher price and make a profit
from the difference.

Algorithm 1 shows the pseudo-code of the OpenTransaction procedure, implementing the
proposed trading algorithm that automates decisions on when to open and close operations
based on the analysis of real and predicted prices. The algorithm receives the following
parameters as input: a cryptocurrency C; a time E beyond which the execution of the trading
algorithm ends; the loss percentage LV beyond which to activate the stop-loss procedure; the
percentage gain PV beyond which to activate the take-profit procedure; a number D that
indicates the time window (in days) for data used by the prediction model; a time W to wait
before opening a trading operation; DB, the reference to the dataset containing aggregated
social media and market information; LSTM, the trained neural network model for predicting
prices; and a sleep time S between one completed operation and the next.

Algorithm 1 Pseudocode of the trading algorithm.
1: procedure OPENTRANSACTION(C,E, LV, PV, D, W, DB, LSTM, S)
2: op ← null
3: while now() < E do
4: if op is null then
5: previousData ← DB.getLastDaysData(C, D)
6: Pp ← LSTM.predict(C, previousData)
7: Pr ← getRealPrice(C)
8: if intersect(Pr , Pp) then
9: wait(W) � Safety waiting time

10: if Pr > Pp then
11: op ← openSellOperation(C) � Betting against (or shorting) cryptocurrency C.
12: else
13: op ← openBuyOperation(C) � Betting in favor of (or going long on) cryptocurrency C.
14: end if
15: end if
16: else
17: if op.isSell() then
18: if hoursPredictedPriceGreaterThanReal(C) > W or checkStopLossOrTakeProfit(LV, PV) then
19: op.close()
20: end if
21: else
22: if hoursRealPriceGreaterThanPredicted(C) > W or checkStopLossOrTakeProfit(LV, PV) then
23: op.close()
24: end if
25: end if
26: if p.isClosed() then
27: op.calculateProfit()
28: op ← null
29: end if
30: end if
31: end while
32: return
33: end procedure

237

Algorithms 2023, 16, 542

Given a reference cryptocurrency C, the algorithm initializes a variable op as null,
which will be used to represent the current trading operation (line 2). Then, it initiates a
while loop that continues until the current time exceeds the specified duration E for trading
(line 3). If the op variable is null, indicating no active trading operation, then the algorithm
tries to start a new one.

To this end, it calculates the predicted and real prices for the cryptocurrency. In
particular, the predicted price is given by the LSTM model based on the provided
last D-days historical data (lines 5–6), while the real price is gathered from market
coin APIs (line 7). The algorithm checks whether the predicted price and real price
intersect (line 8), indicating a potential trading opportunity. After waiting a safety
time W (line 9), aiming to avoid price retracements, the algorithm decides the type of
trading operation to perform. Price retracements represent temporary and relatively
short corrections within a growth or decline trend of a specific asset. They are common
phenomena in financial markets, including cryptocurrency markets, and can offer trading
and investment opportunities. Specifically, if the real price is greater than the predicted
price, it starts a sell operation (lines 10–11), betting that the price will decrease (shorting).
Otherwise, it starts a buy operation (lines 12–13), betting that the price will rise (going
long). If op is defined, which means a trading operation is active, the algorithm starts
monitoring the prices of the cryptocurrency to establish whether the current operation
should be closed (lines 17–25). In particular, it checks whether the hours in which the
predicted price exceeded the real price (or vice versa) have exceeded a given waiting
time of W or if the stop-loss/take-profit condition is met. To close a sell operation, the
algorithm checks whether, during the monitoring period (i.e., the period in which the
operation is active), the predicted price Pr of the cryptocurrency always remained higher
than the real one or if the stop-loss/take-profit condition is met (lines 17–20). Similarly, to
close a buy operation, the algorithm checks whether the real price has always remained
higher than the predicted one for a time greater than W or if the stop-loss/take-profit
condition is met (lines 21–25). If op has been closed, the profit (or loss) obtained from the
trading operation is calculated (line 27); afterward, the variable op is set to null (line 28)
to allow the start of a new trading operation.

Figure 3 illustrates how the trading algorithm operates, using the cryptocurrency
Shiba Inu as an example. As shown in Figure 3a, the first black vertical line (A) marks
the point where the predicted price (Pp) intersects with the real price (Pr). Following this
intersection, the real price consistently remains higher than the predicted price for the next
time W (depicted in orange). As there are no subsequent intersections during W, indicating
a stable downward trend, the algorithm suggests that a downward trend may be ongoing
and starts a new shorting operation.

pr
ic

e

time [h]

A
active operation

B

(a) Example of shorting operation.

pr
ic

e

time [h]

(b) Operation opened in a period of two months for
Shiba Inu.

Figure 3. Example of how the trading algorithm works (the red line indicates the real price while the
blue line indicates the predicted price).

238

Algorithms 2023, 16, 542

At each subsequent intersection, the algorithm assesses whether it is advantageous
to close the existing trading operation, observing a waiting period of W before making a
decision. In the example, the second vertical black line (B) represents the intersection that
leads to the closure of the operation. After B, the predicted price remains below the real
price for a period W, suggesting a possible end of the downward trend. Consequently, the
shorting operation is closed. The interval during which the algorithm kept the shorting
operation open is represented by the red area.

Figure 3b illustrates the operations that have been initiated in two months of tests,
using the cryptocurrency Shiba Inu. Specifically, the periods during which shorting opera-
tions were opened are highlighted in red, those in which long ongoing operations were
opened and marked in green, while periods with no active operations were marked in gray.

4. Experimental Results

Several experiments were conducted on historical data to assess the effectiveness of
the trading algorithm. Additionally, a phase of parameter tuning was carried out with the
goal of identifying optimal values to maximize profits. The parameters assessed during
this process included the take-profit (PV) and stop-loss (LV) percentages, as well as the
duration of the safety interval before opening a trading operation (W), and the number of
days for data used by the prediction model (D). In particular, after evaluating different
values for such parameters, we identified the following optimal configurations: PV = 12%,
LV = 8%, W = 12 h, and D = 3 days.

The training of the LSTM model has been carried out using a dataset spanning the
period January 2021–December 2021, related to the cryptocurrencies listed in Table 2.
Subsequently, we evaluated the obtained profits on data collected on a different period,
ranging from January 2022 to March 2023. For our tests, among those listed in Table 2,
we selected 28 coins in which to invest. In particular, we decided to invest exclusively
in three categories of cryptocurrencies: high capitalization (HC), solid project (SP), and
influential meme coin (IM). We decided not to invest in volatile meme coins (VM) due
to their unpredictable nature, lack of fundamental value, and susceptibility to market
manipulation, which can lead to significant financial losses. The evaluation was carried
out starting from a virtual initial capital of USD 1000 for each cryptocurrency (USD 28,000
in total). Subsequently, the profits generated by the trading algorithm were evaluated,
also taking into account the transaction fees of 1%. It is worth noting that fees are paid
on each transaction, so the greater the number of open trading operations, the greater the
amount paid.

The overall results of the algorithm are presented in Table 6, highlighting an overall
gain of 194% when transaction fees are not taken into account, and of 117% when transaction
fees are considered. Specifically, starting from an initial capital of USD 28,000, we obtained
a final capital of USD 82,359 with no transaction fees and of USD 60,871 by considering
fees. The trading algorithm proved to be extremely effective in predicting the price trend
of influential meme (IM) coins, which appear to be significantly influenced by trends and
popularity on social media. Specifically, trading on IM leads to a very high average profit
of 902.48% with fees and 1257.96% without fees. However, it is worth noting that not all
cryptocurrencies have produced profits, but some of them have experienced losses. In
particular, fees have a significant impact on profits. As an example, in the case of BTC, the
algorithm produced a loss of 14.91% with fees, while it produced a gain of 227.38% without
fees. This phenomenon is due to the fact that the algorithm, in some situations, tends to
open and close trading operations whose profit is not able to cover the cost of commissions.
This is an aspect that will need to be better evaluated in the future, introducing additional
operational constraints into the algorithm to address such situations. In some other cases
(i.e., TRX and CHZ), the algorithm produced zero profits as no trading operations were
carried out during the period considered. Finally, in some rare cases (e.g., SAND, GRT, and
FTM), losses have occurred, both with and without fees. This behavior is most likely due to

239

Algorithms 2023, 16, 542

the fact that data collected for training were limited and did not provide the LSTM model
with sufficient predictive capabilities.

Table 6. Results obtained on selected cryptocurrencies categorized as high capitalization (HC), solid
project (SP), and influential meme coin (IM).

Cryptocurrency Acronym Category Profit % with Fees Profit % without Fees

Bitcoin BTC HC −14.91 +227.38
Ethereum ETH HC +6.41 +16.35
Polygon MATIC HC +164.55 +178.43
Polkadot DOT HC −47.80 +28.13
Solana SOL HC −33.56 −10.55
Cosmos ATOM HC −42.27 +13.89
Stellar XLM HC +40.01 +48.26
Avalanche AVAX HC +23.26 +29.37
TRON TRX HC 0.00 0.00
Litecoin LTC HC +10.58 +85.98
Conflux CFX SP +112.46 +202.52
Stacks STX SP +59.89 +109.21
Fantom FTM SP −25.42 −22.88
Quant QNT SP +74.17 +83.96
Loopring LRC SP +3.73 +4.73
The Sandbox SAND SP −80.04 −30.06
Gala GALA SP +259.01 +297.28
Lido DAO LDO SP −79.72 +85.95
Cronos CRO SP −15.32 +5.68
Zilliqa ZIL SP +38.22 +58.44
Chiliz CHZ SP 0.00 0.00
Neo NEO SP +132.66 +240.80
VeThor Token VTHO SP +26.57 +32.84
Bancor BNT SP −7.44 −5.50
The Graph GRT SP −25.37 −18.11
Dogecoin DOGE MCI +27.68 +39.41
Shiba Inu SHIB MCI +432.47 +771.74
Decentraland MANA MCI +2247.29 +2962.72

Mean profit for HC coins +10.63 +61.72
Mean profit for SP coins +31.56 +69.66
Mean profit for IM coins +902.48 +1257.96
Overall mean profit +117.40 +194.14

5. Conclusions

In conclusion, the growing popularity and value of various cryptocurrencies, includ-
ing the emergence of meme coins like Dogecoin and Shiba Inu, have been driven by a
combination of technological innovation and marketing strategies. In particular, social
media platforms and influential figures like Elon Musk have played key roles in shaping
the cryptocurrency landscape. Our study has successfully identified the major factors influ-
encing cryptocurrency price fluctuations, with a primary emphasis on social media data.
By analyzing the correlation between tweet frequency, likes, retweets, and user popularity,
we revealed the significant impact of social media on cryptocurrency prices. Additionally,
we explored how high-cap cryptocurrencies can influence the broader market, especially
meme coins, which are highly susceptible to external factors. Using a combination of
different statistical analysis, text analysis, and deep learning techniques, we developed
a methodology for predicting the price fluctuations of cryptocurrencies and suggesting
the optimal moments for trading in order to maximize profits. In particular, we defined a
trading recommendation algorithm that, exploiting price predictions provided by an LSTM
model, leads to a total profit of 194% when transaction fees are not taken into account
and of 117% when transaction fees are considered. Moreover, it proved highly effective in
predicting the price trend of influential meme coins. Considering only such a category of
coins, the algorithm resulted in a substantial average profit of 902% with fees and 1258%
without fees. The proposed trading algorithm can serve as a powerful tool to optimize
the trading strategies and maximize profits. Looking ahead, there is potential to further
refine the algorithm by adopting a less risky capital management approach to better control

240

Algorithms 2023, 16, 542

losses. This involves mitigating the risks associated with using the entire capital in each
financial operation and minimizing the negative impact of trading commissions.

Author Contributions: All authors contributed to the structure of this article, providing critical
feedback and helping to shape the research, analysis, and manuscript. D.C. and F.M. conceived
the presented idea and organized the manuscript. C.C., L.B. and F.M. wrote the manuscript with
contributions from all authors. D.C. implemented the programming examples. F.M. and P.T. were
involved in planning the work and supervising and reviewing the structure and contents of the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable to this work.

Data Availability Statement: The market dataset was extracted using data from various cryptocur-
rencies, retrieved through the CoinMarketCap APIs (https://coinmarketcap.com/api/, accessed
on 1 November 2023). In contrast, the social dataset was acquired by utilizing the Twitter API
(https://developer.twitter.com/en/docs/twitter-api, accessed on 1 November 2023) to gather infor-
mation related to cryptocurrency trends on the social media platform.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Härdle, W.K.; Harvey, C.R.; Reule, R.C. Understanding cryptocurrencies. J. Financ. Econom. 2020, 18, 181–208. [CrossRef]
2. Hashemi Joo, M.; Nishikawa, Y.; Dandapani, K. Cryptocurrency, a successful application of blockchain technology. Manag.

Financ. 2020, 46, 715–733. [CrossRef]
3. Kraaijeveld, O.; De Smedt, J. The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. J. Int. Financ.

Mark. Inst. Money 2020, 65, 101188. [CrossRef]
4. Cakici, N.; Fieberg, C.; Metko, D.; Zaremba, A. Do Anomalies Really Predict Market Returns? New Data and New Evidence. Rev.

Financ. Forthcom. 2023, rfad025. [CrossRef]
5. Gu, S.; Kelly, B.; Xiu, D. Empirical asset pricing via machine learning. Rev. Financ. Stud. 2020, 33, 2223–2273. [CrossRef]
6. Bianchi, D.; Büchner, M.; Tamoni, A. Bond risk premiums with machine learning. Rev. Financ. Stud. 2021, 34, 1046–1089.

[CrossRef]
7. Bali, T.G.; Beckmeyer, H.; Moerke, M.; Weigert, F. Option return predictability with machine learning and big data. Rev. Financ.

Stud. 2023, 36, 3548–3602. [CrossRef]
8. Zhou, X.; Zhou, H.; Long, H. Forecasting the equity premium: Do deep neural network models work? Mod. Financ. 2023, 1, 1–11.

[CrossRef]
9. Valencia, F.; Gómez-Espinosa, A.; Valdés-Aguirre, B. Price movement prediction of cryptocurrencies using sentiment analysis

and machine learning. Entropy 2019, 21, 589. [CrossRef]
10. Abraham, J.; Higdon, D.; Nelson, J.; Ibarra, J. Cryptocurrency price prediction using tweet volumes and sentiment analysis. SMU

Data Sci. Rev. 2018, 1, 1.
11. Branda, F.; Marozzo, F.; Talia, D. Ticket Sales Prediction and Dynamic Pricing Strategies in Public Transport. Big Data Cogn.

Comput. 2020, 4, 36. [CrossRef]
12. Hitam, N.A.; Ismail, A.R. Comparative performance of machine learning algorithms for cryptocurrency forecasting. Ind. J. Electr.

Eng. Comput. Sci 2018, 11, 1121–1128. [CrossRef]
13. Khedr, A.M.; Arif, I.; El-Bannany, M.; Alhashmi, S.M.; Sreedharan, M. Cryptocurrency price prediction using traditional statistical

and machine-learning techniques: A survey. Intell. Syst. Account. Financ. Manag. 2021, 28, 3–34. [CrossRef]
14. Jay, P.; Kalariya, V.; Parmar, P.; Tanwar, S.; Kumar, N.; Alazab, M. Stochastic neural networks for cryptocurrency price prediction.

IEEE Access 2020, 8, 82804–82818. [CrossRef]
15. Patel, M.M.; Tanwar, S.; Gupta, R.; Kumar, N. A deep learning-based cryptocurrency price prediction scheme for financial

institutions. J. Inf. Secur. Appl. 2020, 55, 102583. [CrossRef]
16. Lahmiri, S.; Bekiros, S. Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos Solitons Fractals 2019,

118, 35–40. [CrossRef]
17. Ammer, M.A.; Aldhyani, T.H. Deep learning algorithm to predict cryptocurrency fluctuation prices: Increasing investment

awareness. Electronics 2022, 11, 2349. [CrossRef]
18. Poongodi, M.; Nguyen, T.N.; Hamdi, M.; Cengiz, K. Global cryptocurrency trend prediction using social media. Inf. Process.

Manag. 2021, 58, 102708.
19. Lamon, C.; Nielsen, E.; Redondo, E. Cryptocurrency price prediction using news and social media sentiment. SMU Data Sci. Rev.

2017, 1, 1–22.
20. Fleischer, J.P.; von Laszewski, G.; Theran, C.; Parra Bautista, Y.J. Time Series Analysis of Cryptocurrency Prices Using Long

Short-Term Memory. Algorithms 2022, 15, 230. [CrossRef]

241

Algorithms 2023, 16, 542

21. Van Tran, L.; Le, S.T.; Tran, H.M. Empirical Study of Cryptocurrency Prices Using Linear Regression Methods. In Proceedings of
the 2022 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh City, Vietnam,
20–22 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 701–706.

22. Sun, J.; Zhou, Y.; Lin, J. Using machine learning for cryptocurrency trading. In Proceedings of the 2019 IEEE International
Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 6–9 May 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 647–652.

23. Hamayel, M.J.; Owda, A.Y. A novel cryptocurrency price prediction model using GRU, LSTM and bi-LSTM machine learning
algorithms. AI 2021, 2, 477–496. [CrossRef]

24. Livieris, I.E.; Pintelas, E.; Stavroyiannis, S.; Pintelas, P. Ensemble deep learning models for forecasting cryptocurrency time-series.
Algorithms 2020, 13, 121. [CrossRef]

25. Rathan, K.; Sai, S.V.; Manikanta, T.S. Crypto-currency price prediction using decision tree and regression techniques. In
Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25
April 2019; IEEE: Piscataway, NJ, USA, 2019, pp. 190–194.

26. Mirtaheri, M.; Abu-El-Haija, S.; Morstatter, F.; Ver Steeg, G.; Galstyan, A. Identifying and analyzing cryptocurrency manipulations
in social media. IEEE Trans. Comput. Soc. Syst. 2021, 8, 607–617. [CrossRef]

27. Wołk, K. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Syst. 2020, 37, e12493.
[CrossRef]

28. Vo, A.D.; Nguyen, Q.P.; Ock, C.Y. Sentiment analysis of news for effective cryptocurrency price prediction. Int. J. Knowl. Eng.
2019, 5, 47–52. [CrossRef]

29. Sebastião, H.; Godinho, P. Forecasting and trading cryptocurrencies with machine learning under changing market conditions.
Financ. Innov. 2021, 7, 3. [CrossRef]

30. Hutto, C.; Gilbert, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the
International AAAI Conference on Web and Social Media, Ann Arbor, MI, USA, 1–4 June 2014; Volume 8, pp. 216–225.

31. Loria, S. textblob Documentation. Release 0.16 2018, 2, 269.
32. Pano, T.; Kashef, R. A complete VADER-based sentiment analysis of bitcoin (BTC) tweets during the era of COVID-19. Big Data

Cogn. Comput. 2020, 4, 33. [CrossRef]
33. Kim, G.; Shin, D.H.; Choi, J.G.; Lim, S. A deep learning-based cryptocurrency price prediction model that uses on-chain data.

IEEE Access 2022, 10, 56232–56248. [CrossRef]
34. Tanwar, S.; Patel, N.P.; Patel, S.N.; Patel, J.R.; Sharma, G.; Davidson, I.E. Deep learning-based cryptocurrency price prediction

scheme with inter-dependent relations. IEEE Access 2021, 9, 138633–138646. [CrossRef]
35. Shahbazi, Z.; Byun, Y.C. Improving the cryptocurrency price prediction performance based on reinforcement learning. IEEE

Access 2021, 9, 162651–162659. [CrossRef]
36. Belcastro, L.; Cantini, R.; Marozzo, F.; Orsino, A.; Talia, D.; Trunfio, P. Programming big data analysis: Principles and solutions. J.

Big Data 2022, 9, 1–50. [CrossRef]
37. Al Guindy, M. Cryptocurrency price volatility and investor attention. Int. Rev. Econ. Financ. 2021, 76, 556–570. [CrossRef]
38. Aslanidis, N.; Bariviera, A.F.; López, Ó.G. The link between cryptocurrencies and Google Trends attention. Financ. Res. Lett. 2022,

47, 102654. [CrossRef]
39. Mardjo, A.; Choksuchat, C. HyVADRF: Hybrid VADER–Random Forest and GWO for Bitcoin Tweet Sentiment Analysis. IEEE

Access 2022, 10, 101889–101897. [CrossRef]
40. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
41. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
42. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features. In

Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; Volume 31.
43. Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE

Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [CrossRef]
44. Hua, Y.; Zhao, Z.; Li, R.; Chen, X.; Liu, Z.; Zhang, H. Deep learning with long short-term memory for time series prediction. IEEE

Commun. Mag. 2019, 57, 114–119. [CrossRef]
45. Moustafa, H.; Malli, M.; Hazimeh, H. Real-time Bitcoin price tendency awareness via social media content tracking. In

Proceedings of the 2022 10th International Symposium on Digital Forensics and Security (ISDFS), Istanbul, Turkey, 6–7 June 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

46. Maqsood, U.; Khuhawar, F.Y.; Talpur, S.; Jaskani, F.H.; Memon, A.A. Twitter Mining based Forecasting of Cryptocurrency using
Sentimental Analysis of Tweets. In Proceedings of the 2022 Global Conference on Wireless and Optical Technologies (GCWOT),
Malaga, Spain, 14–17 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

242

Citation: Dell’Amico, M.; Jamal, J.;

Montemanni, R. Compact Models to

Solve the Precedence-Constrained

Minimum-Cost Arborescence

Problem with Waiting Times.

Algorithms 2024, 17, 12. https://

doi.org/10.3390/a17010012

Academic Editor: Frank Werner

Received: 2 December 2023

Revised: 23 December 2023

Accepted: 26 December 2023

Published: 27 December 2023

Correction Statement: This article

has been republished with a minor

change. The change does not affect

the scientific content of the article and

further details are available within

the backmatter of the website version

of this article.

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Compact Models to Solve the Precedence-Constrained
Minimum-Cost Arborescence Problem with Waiting Times

Mauro Dell’Amico 1,2, Jafar Jamal 1 and Roberto Montemanni 1,2,*

1 Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia,
Via Amendola 2, 42122 Reggio Emilia, RE, Italy; mauro.dellamico@unimore.it (M.D.)

2 Interdepartmental Center En&Tech, University of Modena and Reggio Emilia, Capannone 19 Tecnopolo,
Piazza Europa 1, 42122 Reggio Emilia, RE, Italy

* Correspondence: roberto.montemanni@unimore.it; Tel.: +39-0522-522-126

Abstract: The minimum-cost arborescence problem is a well-studied problem. Polynomial-time
algorithms for solving it exist. Recently, a new variation of the problem called the Precedence-
Constrained Minimum-Cost Arborescence Problem with Waiting Times was presented and proven
to be NP-hard. In this work, we propose new polynomial-size models for the problem that are
considerably smaller in size compared to those previously proposed. We experimentally evaluate
and compare each new model in terms of computation time and quality of the solutions. Several
improvements to the best-known upper and lower bounds of optimal solution costs emerge from
the study.

Keywords: arborescences; precedence constraints; mixed integer linear programming; constraint
programming

1. Introduction

The Minimum-Cost Arborescence (MCA) problem asks to find a directed minimum-cost
spanning tree (i.e., an arborescence) rooted at vertex r—the root of the arborescence—in
a directed graph. Chu and Liu [1] and Edmonds [2] proposed the same polynomial time
algorithm to solve the problem, independently from each other. A faster implementation
was later proposed by Gabow and Tarjan [3], and a different polynomial time algorithm [4]
that operates directly on the cost matrix was introduced by Bock [5].

Several variations of the MCA problem were introduced in the literature since its
introduction. Given a directed graph with a resource associated to each of its vertices,
the Resource-Constrained Minimum-Weight Arborescence problem aims at retrieving an arbores-
cence with minimum total cost, with the additional constraint that outgoing arcs from each
vertex have to have a cost at most equal to that of the resource of the vertex itself (Fischetti
and Vigo [6]). Given a weighted directed graph G = (V, A) with a vertex r ∈ V identified
as the root and an integer p, the p-Arborescence Star problem asks to identify a minimum-cost
arborescence rooted at r. The arborescence spans the set of vertices H ⊆ V\{r} of size
p, and there must be an assignment between each vertex v ∈ V\{H ∪ r} and one of the
vertices in H (Pereira et al. [7], Morais et al. [8], Hakimi [9]). Given a directed graph with a
number assigned to each vertex, the Restricted Fathers Tree problem seeks a minimum-cost
arborescence, with the constraint that each path between a vertex and the root has to touch
vertices with ranking not lower than the vertex (Guttmann-Beck and Hassin [10]). Given a
directed graph with a vertex r designed as the root and a set Av ⊂ V for every v ∈ V\{r}
such that r ∈ Av, the Restricted Ancestors Tree problem aims at finding a minimum-cost
arborescence rooted at r, with the additional constraint that vertex i can be an ancestor of
vertex j only when i ∈ Aj (Guttmann-Beck and Hassin [10]). The Minimum Spanning Tree
Problem with Conflict Pairs (Carrabs and Gaudioso [11]) is a variation of the classic Minimum-
Spanning Tree problem (Kruskal [12]), characterized by an undirected graph and a set S

Algorithms 2024, 17, 12. https://doi.org/10.3390/a17010012 https://www.mdpi.com/journal/algorithms243

Algorithms 2024, 17, 12

containing conflicting pairs of conflicting edges. The objective is to retrieve a minimum-
cost spanning tree with at most one edge from the pair in S. The Capacitated Minimum
Spanning Tree problem, introduced in Gouveia and Lopez [13], is another variation, charac-
terized by non-negative integer node demands qj for each node j ∈ V\{r} and a budget Q
for the sum of the weights in any root–leaf path. Further related problems can be found
in Frieze and Tkocz [14], Fertin et al. [15], Eswaran and Tarjan [16], Li et al. [17], Kawatra
and Bricker [18], Galbiati et al. [19], Bérczi et al. [20], Bang-Jensen [21], Yingshu et al. [22],
Carrabs et al. [23], Darmann et al. [24] and Viana and Campêlo [25]. The Sequential Ordering
Problem, introduced in Escudero [26], is relevant to the present study and can be described
as follows. Given a weighted graph and a set of precedence constraints between vertex
pairs and start and end vertices, the goal is to find a Minimum-Cost Hamiltonian Path that
respects the precedence constraints. Solving algorithms can be found in Moon et al. [27],
Balas et al. [28], Hernádvölgyi [29], Escudero et al. [30], Gambardella and Dorigo [31], Karan
and Skorin-Kapov [32], Ascheuer et al. [33], Ascheuer et al. [34], Montemanni et al. [35] and
Fiala Timlin and Pulleyblank [36]. The Precedence-Constrained Minimum-Cost Arborescence
is an extension of the MCA problem first introduced in Dell’Amico et al. [37]. Precedence
constraints have the following meaning. A precedence set R containing pairs of vertices is
given. For each (s, t) ∈ R, if both vertices s and t are on a same path of the arborescence,
then vertex s has to be visited before vertex t. The optimization seeks to find an arbores-
cence of minimum total cost such that all the precedence constraints are satisfied. Several
models for the problem, all based on Mixed Integer Linear Programming (MILP), were
proposed. We refer the interested reader to Chou et al. [38].

The Precedence-Constrained Minimum-Cost Arborescence problem with Waiting Times
(PCMCA-WT)—which is the object of the current paper—was first introduced in Chou et al. [38],
where the problem was shown to be NP-hard through a reduction to the Rectilinear Steiner
Arborescence problem (Shi and Su [39]), and different MILP models were proposed. The prob-
lem is about retrieving an arborescence where traveling times are present among vertices
and temporal precedences relative to the time of visit have to be fulfilled among pairs
of vertices. Waiting times at vertices are allowed to enforce such precedences, but these
waiting times are accounted for in the objective function together with travel times. The op-
timization is to minimize such an objective function.

The organization of the paper is as follows. The PCMCA-WT is formally defined in
Section 2. Section 3 describes a new family of compact models for the problem (character-
ized by a polynomial number of variables and constraints). Section 4 discusses the results
of a vast experimental campaign where the new models are compared to those previously
disclosed in the literature. Some conclusions are the content of Section 5.

The contributions of the paper can be summarized as follows:

• New models for the PCMCA-WT that are polynomial in size and are characterized
by a substantially smaller memory footprint compared to the known models are
introduced. This result is achieved by exploiting some theoretical properties emerging
from the current study and previously unobserved.

• The new models are solved both with MILP and Constraint Programming (CP) solvers.
The experimental results substantially improve the state of the art for the instances
commonly adopted in the literature. Out of the 88 open instances from the literature,
improved lower bounds are provided for 71 instances and improved upper bounds
are provided for 80 instances. Finally, seven instances are closed for the first time.

2. Problem Description

The PCMCA-WT can be described according to the following definitions. A directed
graph G = (V, A, R) is given, with V = {1, . . . , n} being a set of vertices and A ⊆ V ×V
a set of arcs, with a non-negative cost cij associated with every arc (i, j) ∈ A. It represents
the traversing time for that arc. The set R ⊂ V ×V contains precedence relationships. Let
dj be the time step at which the flow enters vertex j ∈ V, with dr = 0. For any (s, t) ∈ R,
we impose dt ≥ ds. This implies that the flow cannot enter vertex t before entering vertex s,

244

Algorithms 2024, 17, 12

but it can wait at any vertex before servicing it. We define wj as the waiting time at vertex
j ∈ V, with wr = 0. The waiting time at a vertex j that is visited after another vertex i in the
current solution is defined as wj = dj − (di + cij). Given a vertex r ∈ V being the root of
the arborescence, the target of the optimization is to retrieve an arborescence T (with root r)
that provides the lowest possible sum of the total cost plus the total waiting time.

An example of PCMCA-WT is provided in Figure 1. In the instance (top part of the
figure), the precedence relationship (1, 3) ∈ R is represented as a dashed arrow, while
in the bottom part of the figure, an optimal solution for the given instance is shown.
The corresponding values of di and wi are exposed near each vertex. The cost of the
solution is 8 (obtained by adding the cost of the traversed arcs and the waiting times payed
at vertices). In the example, observe the waiting time of 1 unit at vertex 3 (d1 = 4, d3 = 3
and (1, 3) ∈ R).

r

1 2

3

4 1

6
7

8

2

r

dr = 0
wr = 0

2
d2 = 1
w2 = 0 1

d1 = 4
w1 = 0

3
d3 = 3
w3 = 1

1 4

2

Figure 1. Instance of the PCMCA-WT problem and relative solution. The instance is depicted in
the top of the figure, with its arc costs. The precedence relationship (1, 3) ∈ R is depicted through a
dashed arrow. The bottom part of the figure depicts the optimal arborescence of cost 8.

3. New Compact Models

An MILP model for the PCMCA-WT that is polynomial in size was recently proposed
in Chou et al. [38]. The model is based on a multicommodity flow formulation [40] that
extends the flow conservation constraints in order to satisfy the precedence relationships
between vertex pairs. However, the model suffers from computational limitations caused
by the large number of variables and constraints, both in the order of O(n3). In this section,
we derive two new models for the PCMCA-WT that are also polynomial in size. Compared
to the previous models, the new ones use less variables and constraints for the description
of the precedence relationships among pairs of vertices. This solves the memory issues
that were encountered when using the multicommodity flow model originally introduced
in [38], making compact models competitive against other solutions.

245

Algorithms 2024, 17, 12

3.1. The Complete Model

We first define VR as the set of vertices of V involved in at least one precedence
relation as a head. Formally, VR = {t ∈ V | ∃s ∈ V : (s, t) ∈ R}. Let xij be a binary variable
modeling if arc (i, j) ∈ A is visited: xij = 1 if (i, j) ∈ T, and 0 otherwise. Let yi be an integer
variable used to identify the position of vertex i ∈ V along the only path of the arborescence
connecting the root r to vertex i itself. Let ut

j be a binary variable with indices representing

vertex j ∈ V and vertex t ∈ VR. This variable will be used to model precedences. Let dj be
a continuous variable containing entering time of the flow at vertex j ∈ V. Finally, let wj be
a continuous variable modeling the time waited at vertex j before letting the flow enter the
node itself.

An MILP model for the PCMCA-WT is as follows.

minimize ∑
(i,j)∈A

cijxij + ∑
i∈V

wi (1)

subject to: ∑
(i,j)∈A

xij = 1 ∀j ∈ V\{r} (2)

yi − yj + 1 ≤ n(1− xij) ∀(i, j) ∈ A : j �= r (3)

ut
s = 0 ∀(s, t) ∈ R (4)

ut
t = 1 ∀t ∈ VR (5)

ut
j − ut

i − xij ≥ −1 ∀t ∈ VR, (i, j) ∈ A (6)

dr = 0 (7)

wr = 0 (8)

dj ≥ di − M + (M + cij)xij ∀(i, j) ∈ A (9)

wj ≥ dj − di −M + (M− cij)xij ∀(i, j) ∈ A (10)

dt ≥ ds ∀(s, t) ∈ R (11)

xij ∈ {0, 1} ∀(i, j) ∈ A (12)

yi ∈ {0, 1, . . . , n− 1} ∀i ∈ V (13)

ut
j ∈ {0, 1} ∀t ∈ VR, j ∈ V (14)

di ≥ 0 ∀i ∈ V (15)

wi ≥ 0 ∀i ∈ V (16)

The objective function (1) minimizes the sum of the total travel and waiting times,
as described in Section 2. The set of constraints (2) enforces that each vertex apart from the
root needs to have one incoming arc. Constraints (3) model subtour elimination and dictate
that any feasible solution cannot contain any cycles. The set of constraints (2) and (3) work
together in order to enforce only solutions in the form of an arborescence rooted at vertex r.
Constraints (4), (5) and (6) regulate precedence constraints among the vertices visited in
a same branch of the tree. The logic behind these constraints will be explained in detail
in Section 3.1.1, entirely devoted to this purpose. Constraints (7) and (8) initialize the
distance traveled and the waiting time at the root r to 0. Constraints (9), activated once an
arc (i, j) ∈ A is selected, force the arrival time at vertex j to be not lower than the arrival
time vertex i plus the travel time cij. Note that here and in the following set of constraints,
M is an arbitrarily large constant. Constraints (10) push the waiting time at vertex j to
be no smaller than the the service time at vertex j minus the service time at vertex i plus
cij. Constraints (11) impose that the service time at vertex t cannot be smaller than the
service time at vertex s for all (s, t) ∈ R. This set of constraints, in conjunction with the
previous ones, regulates the value of the waiting times. Finally, constraints (12)–(16) define
the domain of the variables.

The value of the large constant M, appearing in constraints (9) and (10), is an approxi-
mation by excess of the optimal cost of the problem. In our case, the solution cost of solving

246

Algorithms 2024, 17, 12

the instance as a Sequential Ordering Problem [34] using a nearest neighbor algorithm [41]
is taken as the value of M. This is a valid upper bound for the optimal cost of a PCMCA-WT
instance, being a valid solution for the Sequential Ordering Problem a simple directed path
that includes all the vertices of the graph, with the constraint that t never precede s for all
(s, t) ∈ R. This implies that dt ≥ ds for all (s, t) ∈ R.

The model proposed in this section has a considerably smaller memory footprint
compared to the polynomial-size model proposed for the PCMCA-WT in [38]. In detail,
the number of variables is reduced from O(n3) to O(n2). The number of constraints
remains instead in the order of O(n3), although now the hidden multiplicative factor
depends on the number of vertices involved in at least one precedence as a head, instead
of all the vertices. This makes the number of constraints much smaller. All together,
these improvements reduce substantially the memory footprint of the model, with great
advantages for practical tractability.

3.1.1. The New Precedence Constraints

The approach proposed in this work to deal with precedences is similar to the idea
originally introduced in Dell’Amico et al. [42] for the Precedence-Constrained Minimum-Cost
Arborescence (PCMCA) problem. Constraints (4) and (5) impose the values of ut

s and ut
t to

be 0 and 1, respectively, for all (s, t) ∈ R, and t ∈ V : ∃(s, t) ∈ R. On the other hand, the set
of constraints (6) enforces that ut

j ≥ ut
i whenever arc (i, j) ∈ A is selected to be part of the

solution. These concepts together forbid any violation of precedence constraints along a
same path of the solution arborescence T.

Figure 2 shows an example of how a precedence-violating path is detected using
the set of constraints (6). In the figure, the range/value of variable ut

j is written on the
left of each vertex, and black arcs show the arcs that are part of the solution, while the
red arcs show a precedence relationship (s, t) ∈ R. In the figure, constraints (6) enforce
that ut

1 and ut
2 have to be greater than or equal to 1. However, once ut

s ≥ 1 is imposed
through this logic, the constraint (4) relative to variable ut

s is violated, rendering therefore
the solution infeasible.

tut
t = 1

1ut
1 ≥ 1

2ut
2 ≥ 1

sut
s = 0

xt1 = 1

x12 = 1

x2s = 1

R

Figure 2. Example of how a precedence-violating path is detected using constraints (4)–(6).

3.2. The Reduced Model

It can be observed that by removing the set of constraints (4)–(6) from the model
described in Section 3.1, the set of constraints (11) in general still enforces the precedence
relationships between s and t with (s, t) ∈ R, apart from the following special case. A di-
rected path that visits t before visiting s implies that dt ≤ ds, which violates the set of
constraints (11). However, the set of constraints (11) might fail to enforce a precedence
relationship between s and t if a zero-cost path in G that reaches s from t exists. Therefore,
variables ut

j and constraints (4)–(6) need to be defined only for those t for which there exist
at least an s for which (s, t) ∈ R and a zero-cost path that connects t to s is available in G.

247

Algorithms 2024, 17, 12

The identification of such pairs (s, t) ∈ R for which a zero-cost path exists has, however,
to be performed in a preprocessing phase, adding some complexity to the overall process.
The procedure we devised for the retrieval of such pairs will be detailed in Section 3.2.1.

The reduced set of constraints can be described formally as follows. Let G0 = (V0, A0, R)
be the graph obtained from G by considering only arcs with cost zero and the relevant
nodes. Therefore, A0 = {(i, j) ∈ A | cij = 0} and V0 = {i ∈ V | ∃j ∈ V : (i, j) ∈
A0 or (j, i) ∈ A0} (a node is considered relevant for the residual precedence constraints
if it has at least an outgoing or incoming zero-cost arc). Let SPij ⊆ A0 be a shortest path
that starts from i to j in G, and let c(SPij) = ∑

(k,l)∈SPij

ckl be its cost. For each t ∈ VR, let

V0(t) = {s ∈ V0 | ∃ (s, t) ∈ R with c(Pts) = 0} be the set of vertices involved in a prece-
dence constraint with t as a head, and such that a zero-cost path from t to s exists. Finally,
let VR

0 = {t ∈ VR |V0(t) �= ∅} be the set of vertices involved as a head in at least one
precedence constraint for which an inverse zero-cost path exists.

The Reduced model can be obtained from the Complete model described in Section 3.1
by substituting constraints (4)–(6) and (14) with the following specialized version of them,
characterized by a reduced domain:

ut
s = 0 ∀t ∈ VR

0 , s ∈ V0(t) (17)

ut
t = 1 ∀t ∈ VR

0 (18)

ut
j − ut

i − xij ≥ −1 ∀t ∈ VR
0 , (i, j) ∈ A0 (19)

ut
j ≥ 0 ∀t ∈ VR

0 , j ∈ V0 (20)

Notice that the domain of the u variables is reduced according to (20).
Compared to the model introduced in Section 3.1, and given that zero-cost paths

are rare, the Reduced model uses less variables and constraints (although the theoretical
complexity remains unchanged), thus further reducing the memory footprint. However, it
might be characterized by a weaker linear relaxation due to the elimination of redundancy
in the constraints, on top of having the burden of a preprocessing phase.

3.2.1. Selecting the Precedence Constraints involving a Zero-Cost Path

Zero-cost paths in G0 that start from t and end in s for some (s, t) ∈ R can be retrieved
by running the procedure described in Algorithm 1.

Algorithm 1 Retrieve the Relevant Zero-Cost Paths from an Instance
1: Compute the shortest path SPij for each pair of vertices i, j of G0

2: VR
0 = ∅

3: for all t ∈ V0 do
4: V0(t) = ∅
5: for all s ∈ V0 : (s, t) ∈ R do
6: if C(SPij) = 0 then
7: V0(t) = V0(t) ∪ {s}
8: end if
9: end for

10: if V0(t) �= ∅ then
11: VR

0 = VR
0 ∪ {t}

12: end if
13: end for

Line 1 can be implemented by running the algorithm of Floyd-Warshall [43] to retrieve
the shortest path between each pair of vertices of a graph. The algorithm has a computa-
tional complexity of O(n3). Lines 2–13 scan the results to populate the sets V0(t), containing
vertices involved in relevant zero-cost paths for each vertex t ∈ V0, and the set VR

0 , with a
total computational complexity of O(n2). Therefore, the overall computational complexity

248

Algorithms 2024, 17, 12

of the procedure remains polynomial, in the order of O(n3). This guarantees negligible
computation times for the graphs considered in the study and in real applications of the
problem, for which n does not exceed 700.

3.3. Solving the New Models via Constraint Programming

Modern Constraint Programming solvers such as Google OR-Tools CP-SAT [44]—the
one adopted for the present work—are able to solve compact MILP models efficiently [45].
In particular, these solvers are very effective in treating logical inferences that can be
expressed effectively without the use of big-M coefficients (that weaken linear relaxations
and consequently worsen solving times) in their syntax. The two MILP models discussed
in Sections 3.1 and 3.2 use such a technique to describe the nonlinear relation between
the variable xij and the set of variables {yi, ut

j, dj, wj} in order to turn the constraints off
whenever the value of xij is equal to zero. In this section, we will therefore manipulate the
models previously introduced in order to transform the constraints involving big-Ms into
logical inferences. Notice that this operation mentioned above is not strictly required, since
CP-SAT is able to deal with big-M constraints natively, but according to some preliminary
tests, using logical inferences enhances the performance of the solver. Conversely, MILP
solvers such as CPLEX [46]—the one adopted for the present work—that are also able
to treat logical inferences without big-M constraints present a strong degradation of the
performances when big-M constraints are removed. For this reason, in the experiments
reported in Section 4, we will use big-M constraints for the MILP solver and logical
inferences for the CP solver.

Finally, it can be observed that CP solvers only accept integer-valued variables, which
means that the value of the cijs should be discretized before being passed to the model
in case they are not integer. See Montemanni and Dell’Amico [45] for a deeper traction.

In detail, the Complete model can be adapted by modifying constraints (3), (6), (9)
and (10), which are substituted by the following ones:

xij =⇒ yj = yi + 1 ∀(i, j) ∈ A : j �= r (21)

xij =⇒ ut
j ≥ ut

i ∀t ∈ VR, (i, j) ∈ A (22)

xij =⇒ dj = di + wj + cij ∀(i, j) ∈ A (23)

Constraints (21) implement subtour elimination. The nonlinear relationship yj =
(yi + 1)xij is modeled by setting the value of yj to yi + 1 if xij = 1 (true). Technically,
the logical implication is implemented through the OnlyEnforceIf construct of the CP-SAT
solver [44]. Constraints (22) are the precedence-enforcing constraints that set the value of ut

j
to be greater than or equal to ut

j if xij = 1 and model the nonlinear relationship ut
j ≥ ut

i xij.
Constraints (23) set the value of dj to di + wj + cij if xij = 1. The set of constraints (23) deals
therefore with the nonlinear relationship (dj − di − wj − cij)xij = 0. Notice that the two
constraints (9) and (10) are now combined in a single set of constraints.

Analogously, it is possible to obtain a version of the Reduced model based on logical
inferences by changing constraints (3) to (21) and substituting constraints (19), (9) and (10)
with the following new ones:

xij =⇒ ut
j ≥ ut

i ∀t ∈ VR
0 , (i, j) ∈ A0 (24)

xij =⇒ dj = di + wj + cij ∀(i, j) ∈ A0 (25)

Notice that constraints (24) and (25) are the versions of (22) and (23) specialized to the
reduced graph G0 for what concerns zero-cost precedences and that constraints (25) cover
again both the sets (9) and (10).

249

Algorithms 2024, 17, 12

4. Computational Experiments

The experimental settings and conditions are described in Section 4.1 together with the
instances adopted for the tests. The detailed results are instead presented and commented
on in Section 4.2.

4.1. Experimental Settings

The computational experiments we present in order to position the proposed mod-
els within the existing literature are based on the benchmark instances of TSPLIB [47],
SOPLIB [48] and COMPILERS [49]. All these datasets had originally been proposed for
the Sequential Ordering Problem, and they are commonly adopted in the PCMCA-WT
literature so far, see [38]. In total, the benchmark sets considered contain 116 instances
with sizes ranging between 9 and 700 vertices (and an average of 248 vertices). Currently,
the benchmark set has a total of 88 open instances (i.e., without a known optimal solution).

The MILP solver adopted is CPLEX v12.8 [46] with standard settings. The CP solver
used is OR-Tools v9.5 [44] CP-SAT, also run with standard settings. The computation
time of both solvers is limited to 1 h, while the preprocessing time required for the Re-
duced methods is not accounted for, being in the order of fractions of a second for all the
instances considered.

The best-known solutions used as reference are those appearing in [38]. The value
reported is for each instance the best of the results achieved by the three models introduced
there. This biases the comparison in favor of the old methods, since—according to the No
Free Lunch Theorem [50]—taking the best of different approaches might give a substantial
advantage. Among the three ideas disclosed in [38], the one improved in the present work
had shown some potential, however, it was the weakest of the set due to severe scalability
issues (now solved, see Section 3). On the other hand, the results of [38] were obtained
on an Intel i7-8550U processor running at 1.8 GHz and with 8 GB of RAM, while the new
experiments are obtained on Intel Xeon Platinum 8375C running at 2.9 GHz and using up
to 16 GB of RAM. This gives a hardware advantage to the new models, somehow balancing
back the comparison. Notice that the newly proposed models are a direct improvement
aiming at overcoming the crucial scalability of one of the three models of [38], making
computational fairness considerations less central, in our view.

4.2. Results

An aggregated summary of the results is presented in Table 1. The average optimality
gap across all the instances for which all the models were able to find a feasible/optimal
solution is reported under Average optimality gap. The average solution time among all
the instances that were solved to optimality by all the models can be found under Average
solution time. The detailed results of each model can be found instead in Tables 2–4, where
the following data are reported for each instance. The name and size can be found in
the columns with these names. The best-known bounds found in [38] are reported in
the column Best-Known [38], where LB shows the best lower bound found, and UB the
best-known solution. For each model, the following columns are displayed. The lower and
upper bound can be found in the column with these names. The optimality gap, computed
as UB−LB

UB , is reported in the column Gap. The solution time in seconds, which is reported
only for those instances that are closed in the given time, can be found in the column Time.
Entries in bold indicate new best-known lower or upper bounds. Finally, the name of the
instances for which optimality is proven for the first time in this work is highlighted in
bold across the tables.

Comparing the average optimality gap of each model, it can be observed that the MILP
solver run on the Complete model has an optimality gap of 0.206 on average (0.418 when
all the instances solved by the model are considered) but fails to solve two instances, as it
runs out of memory. The MILP solver on the Reduced model has an optimality gap of
0.153 on average (with a 25.7% improvement over the previous model) and an optimality
gap of 0.340 on average (an 18.7% improvement) across all the instances. The MILP solver

250

Algorithms 2024, 17, 12

on the Reduced model also runs out of memory on one instance. When considering the
CP solver, the Complete model shows an optimality gap of 0.159 on average (with a 22.8%
improvement), with an optimality gap of 0.157 on average across all the instances. However,
the largest instances, with size larger than 200 or with a very dense precedence graph, are
not solved, since the model runs out of memory due to the large number of constraints (19).
When solving the Reduced model, the CP solver achieves an optimality gap of 0.122 on
average (with a 40.7% improvement), with an optimality gap of 0.286 averaged across all
the instances.

Table 1. Summary of the results achieved with each solver/model combination.

MILP Solver CP Solver

Complete Reduced Complete Reduced
Model Model Model Model

Average optimality gap 0.206 0.153 0.159 0.122
Average solution time 690.8 270.8 166.4 36.4
New best-known lower bounds 2 24 13 32
New best-known upper bounds 1 15 10 54
New optimal solutions 0 0 7 7

In terms of solution time, and comparing the instances that are optimally solved by all
models (27 instances), using the MILP solver takes the Complete model to a solution time of
690.8 s on average, while the Reduced takes 270.8 s on average (with a 60.8% improvement).
When the CP solver is used, the Complete model has a solution time of 166.4 s on average
(with a 75.9% improvement), while solving the Reduced model takes 36.4 s on average (with
a 94.7% improvement). Cross-comparing a same model when treated by the two different
solvers, it emerges that generally the CP models outperform the MILP models on instances
with medium to high density precedence graphs.

In terms of solution costs, the Reduced model solved by an MILP solver finds new best-
known lower bounds for 24 out of 88 instances (27.3%) compared to the 2 retrieved by the
Complete model solved by the same solver. Furthermore, the Reduced model finds new best-
known upper bounds for 15 (17.1%) compared to the 1 only found by the Complete model.
This indicates that the strength of the linear relaxation of the model is not drastically affected
after removing a subset of the variables and constraints from the model. Furthermore,
this shows that the Reduced model is generally easier to solve by the MILP solver adopted,
and therefore the solver is able to find new bounds more frequently compared to solving
the Complete model. When considering the CP solver, the Reduced model finds new best-
known lower bounds for 32 (36.4%), while the Complete model finds new lower bounds for
13 (14.8%). For new best-known upper bounds, solving the Reduced model leads to new
54 new bests (61.4%), while solving the Complete model leads to 10 new bests (11.4%). This
indicates that the Reduced model is generally more effective to solve by the CP solver when
compared to the Complete model. Moreover, the use of the CP solver led to seven newly
proven optimal solutions. In general, using the MILP solver seems to produce better lower
bounds, while the CP solver is better at finding lower cost solutions.

In summary, the computational results show that the Reduced model generally out-
performs the Complete model independently of the solver adopted. This is due to the fact
that the Reduced model has a substantially smaller number of variables and constraints,
giving an advantage to the solvers. Moreover, the CP solver performs better than the MILP
solver in terms of the quality of the solutions, the average solution time and the average
optimality gap. Furthermore, the CP solver finds new best-known lower/upper bounds
for some instances.

251

Algorithms 2024, 17, 12

T
a

b
le

2
.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
TS

PL
IB

in
st

an
ce

s.

M
IL

P
S

o
lv

e
r

C
P

S
o

lv
e
r

In
st

a
n

ce
C

o
m

p
le

te
M

o
d

e
l

R
e
d

u
ce

d
M

o
d

e
l

C
o

m
p

le
te

M
o

d
e
l

R
e
d

u
ce

d
M

o
d

e
l

N
a
m

e
S

iz
e

B
e
st

-K
n

o
w

n
[3

8
]

L
B

U
B

G
a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]

b
r1

7
.1

0
18

[3
5,

44
]

39
44

0.
11

4
-

40
44

0.
09

1
-

4
4

4
4

0.
00

0
46

.6
29

4
4

4
4

0.
00

0
56

.6
28

b
r1

7
.1

2
18

[3
5,

44
]

41
44

0.
06

8
-

41
44

0.
06

8
-

4
4

4
4

0.
00

0
22

.6
04

4
4

4
4

0.
00

0
44

.5
50

ES
C

07
9

19
06

19
06

19
06

0.
00

0
0.

02
8

19
06

19
06

0.
00

0
0.

07
0

19
06

19
06

0.
00

0
0.

02
3

19
06

19
06

0.
00

0
0.

02
5

ES
C

11
13

21
74

21
74

21
74

0.
00

0
0.

12
5

21
74

21
74

0.
00

0
0.

11
4

21
74

21
74

0.
00

0
0.

10
7

21
74

21
74

0.
00

0
0.

07
7

ES
C

12
14

11
38

11
38

11
38

0.
00

0
0.

03
5

11
38

11
38

0.
00

0
0.

03
0

11
38

11
38

0.
00

0
0.

03
4

11
38

11
38

0.
00

0
0.

03
7

ES
C

25
27

11
58

11
58

11
58

0.
00

0
6.

18
5

11
58

11
58

0.
00

0
1.

94
5

11
58

11
58

0.
00

0
0.

91
0

11
58

11
58

0.
00

0
0.

83
3

ES
C

47
49

74
7

74
7

74
7

0.
00

0
59

.7
60

74
7

74
7

0.
00

0
22

.1
53

74
7

74
7

0.
00

0
3.

88
6

74
7

74
7

0.
00

0
2.

70
8

ES
C

63
65

56
56

56
0.

00
0

24
.6

00
56

56
0.

00
0

57
.3

47
56

56
0.

00
0

1.
51

7
56

56
0.

00
0

2.
46

5
ES

C
78

80
11

96
11

96
11

96
0.

00
0

24
10

.4
83

11
96

11
96

0.
00

0
25

7.
60

9
11

96
11

96
0.

00
0

10
0.

51
1

11
96

11
96

0.
00

0
18

.9
71

ft
53

.1
54

40
89

40
89

40
89

0.
00

0
17

64
.2

35
40

89
40

89
0.

00
0

20
23

.5
53

40
89

40
89

0.
00

0
21

5.
48

0
40

89
40

89
0.

00
0

29
1.

09
9

ft
53

.2
54

[4
13

5,
42

84
]

41
12

43
17

0.
04

7
-

4
1
6
1

43
34

0.
04

0
-

41
02

42
84

0.
04

2
-

41
03

42
84

0.
04

2
-

ft
53

.3
54

[4
62

3,
54

57
]

47
46

54
25

0.
12

5
-

4
7
9
9

5
2
7
9

0.
09

1
-

44
93

60
0.

16
1

-
45

08
54

84
0.

17
8

-
ft

53
.4

54
[5

65
7,

64
39

]
59

22
6
4
2
0

0.
07

8
-

5
9
2
3

6
4
2
0

0.
07

7
-

53
38

65
02

0.
17

9
-

53
57

6
4
2
0

0.
16

6
-

ft
70

.1
71

[3
3,

12
8,

33
,2

98
]

32
,7

77
33

,3
08

0.
01

6
-

32
,8

27
33

,3
08

0.
01

4
-

32
,6

69
33

,4
72

0.
02

4
-

33
,1

01
33

,2
98

0.
00

6
-

ft
70

.2
71

[3
3,

35
7,

34
,4

50
]

33
,0

57
33

,9
77

0.
02

7
-

33
,0

89
33

,9
16

0.
02

4
-

32
,9

38
3
3
,6

7
0

0.
02

2
-

32
,8

97
3
3
,6

7
0

0.
02

3
-

ft
70

.3
71

[3
3,

91
4,

42
,7

32
]

34
,1

52
38

,5
46

0.
11

4
-

3
4
,4

2
3

38
,3

51
0.

10
2

-
33

,8
25

36
,9

39
0.

08
4

-
33

,8
13

3
6
,9

3
2

0.
08

4
-

ft
70

.4
71

[3
6,

51
7,

40
,4

04
]

36
,7

37
39

,1
45

0.
06

2
-

3
6
,8

5
0

38
,7

71
0.

05
0

-
33

,8
25

3
6
,9

3
9

0.
08

4
-

35
,6

64
39

,8
43

0.
10

5
-

rb
g

0
4
8
a

50
[2

61
,2

64
]

26
0

26
5

0.
01

9
-

25
9

26
4

0.
01

9
-

2
6
3

2
6
3

0.
00

0
9.

44
2

2
6
3

2
6
3

0.
00

0
25

.2
94

rb
g0

50
c

52
22

5
22

5
22

5
0.

00
0

86
3.

66
2

22
5

22
5

0.
00

0
36

.6
73

22
5

22
5

0.
00

0
2.

57
5

22
5

22
5

0.
00

0
1.

23
4

rb
g1

09
11

1
[3

54
,4

14
]

35
4

42
6

0.
16

9
-

3
6
6

40
7

0.
10

1
-

35
7

48
8

0.
26

8
-

35
9

4
0
1

0.
10

5
-

rb
g1

50
a

15
2

[4
47

,5
41

]
44

7
51

1
0.

12
5

-
46

1
5
0
9

0.
09

4
-

4
6
3

59
1

0.
21

7
-

46
1

51
7

0.
10

8
-

rb
g1

74
a

17
6

[4
46

,5
80

]
45

2
60

1
0.

24
8

-
4
6
3

5
5
3

0.
16

3
-

45
7

57
1

0.
20

0
-

46
1

57
2

0.
19

4
-

rb
g2

53
a

25
5

[4
77

,7
73

]
52

3
12

52
0.

58
2

-
5
3
2

7
1
8

0.
25

9
-

-
-

-
-

52
7

72
2

0.
27

0
-

rb
g3

23
a

32
5

[9
26

,4
03

5]
98

1
10

,1
11

0.
90

3
-

97
4

24
66

0.
60

5
-

-
-

-
-

1
0
0
9

1
8
9
1

0.
46

6
-

rb
g3

41
a

34
3

[6
81

,3
80

0]
76

4
93

13
0.

91
8

-
76

1
29

07
0.

73
8

-
-

-
-

-
7
8
0

1
4
5
7

0.
46

5
-

rb
g3

58
a

36
0

[7
06

,3
29

6]
95

0
11

,5
28

0.
91

8
-

75
5

24
53

0.
69

2
-

-
-

-
-

7
8
8

1
1
5
0

0.
31

5
-

rb
g3

78
a

38
0

[6
49

,2
75

9]
67

2
10

,2
42

0.
93

4
-

64
8

21
91

0.
70

4
-

-
-

-
-

6
7
8

1
1
2
6

0.
39

8
-

kr
o1

24
p.

1
10

1
[3

2,
85

8,
35

,2
31

]
32

,6
51

37
,1

20
0.

12
0

-
32

,6
30

36
,0

99
0.

09
6

-
32

,5
04

34
,1

00
0.

04
7

-
32

,5
61

3
3
,9

6
2

0.
04

1
-

kr
o1

24
p.

2
10

1
[3

3,
19

0,
37

,9
56

]
32

,8
86

42
,5

73
0.

22
8

-
33

,0
06

39
,9

31
0.

17
3

-
32

,7
64

37
,0

74
0.

11
6

-
32

,7
99

3
5
,8

6
0

0.
08

5
-

kr
o1

24
p.

3
10

1
[3

4,
21

7,
53

,9
88

]
33

,8
13

54
,1

83
0.

37
6

-
34

,0
05

46
,7

64
0.

27
3

-
33

,5
61

43
,9

10
0.

23
6

-
33

,4
88

4
2
,4

1
6

0.
21

0
-

kr
o1

24
p.

4
10

1
[3

9,
41

3,
55

,1
87

]
39

,9
69

58
,9

44
0.

32
2

-
39

,3
33

53
,4

56
0.

26
4

-
38

,4
33

50
,9

10
0.

24
5

-
37

,6
76

4
9
,5

9
0

0.
24

0
-

p4
3.

1
44

[2
82

7,
44

70
]

26
60

40
85

0.
34

9
-

26
56

39
55

0.
32

8
-

2
8
6
0

3
9
5
5

0.
27

7
-

28
51

39
90

0.
28

5
-

p4
3.

2
44

[2
82

6,
42

75
]

99
1

44
50

0.
77

7
-

27
05

42
10

0.
35

7
-

28
56

4
1
6
0

0.
31

3
-

2
8
7
0

41
80

0.
31

3
-

252

Algorithms 2024, 17, 12

T
a

b
le

2
.

C
on

t.

M
IL

P
S

o
lv

e
r

C
P

S
o

lv
e
r

In
st

a
n

ce
C

o
m

p
le

te
M

o
d

e
l

R
e
d

u
ce

d
M

o
d

e
l

C
o

m
p

le
te

M
o

d
e
l

R
e
d

u
ce

d
M

o
d

e
l

N
a
m

e
S

iz
e

B
e
st

-K
n

o
w

n
[3

8
]

L
B

U
B

G
a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]

p4
3.

3
44

[2
86

4,
53

75
]

10
67

50
15

0.
78

7
-

13
83

44
40

0.
68

9
-

2
9
6
6

44
50

0.
33

3
-

28
97

4
2
5
5

0.
31

9
-

p4
3.

4
44

[3
10

1,
49

00
]

29
95

50
35

0.
40

5
-

3
1
2
5

46
05

0.
32

1
-

30
90

4
4
9
5

0.
31

3
-

30
94

46
20

0.
33

0
-

pr
ob

.1
00

10
0

[6
74

,1
00

8]
66

8
21

25
0.

68
6

-
6
7
7

74
1

0.
08

6
-

66
6

78
4

0.
15

1
-

66
7

7
3
8

0.
09

6
-

pr
ob

.4
2

42
17

1
17

1
17

1
0.

00
0

39
6.

45
8

17
1

17
1

0.
00

0
23

0.
50

6
17

1
17

1
0.

00
0

79
.6

67
17

1
17

1
0.

00
0

34
.2

45
ry

48
p.

1
49

[1
3,

37
1,

13
,7

22
]

13
,1

14
14

,2
72

0.
08

1
-

13
,2

00
1
3
,6

7
0

0.
03

4
-

13
,0

36
1
3
,6

7
0

0.
04

6
-

13
,0

61
1
3
,6

7
0

0.
04

5
-

ry
48

p.
2

49
[1

3,
50

8,
14

,6
59

]
13

,2
99

14
,4

15
0.

07
7

-
13

,3
36

1
4
,3

0
5

0.
06

8
-

13
,2

16
1
4
,3

0
5

0.
07

6
-

13
,1

85
1
4
,3

0
5

0.
07

8
-

ry
48

p.
3

49
[1

4,
37

1,
16

,3
26

]
13

,8
82

16
,1

93
0.

14
3

-
13

,9
94

15
,8

40
0.

11
7

-
13

,7
64

15
,5

46
0.

11
5

-
13

,7
28

1
5
,4

7
7

0.
11

3
-

ry
48

p.
4

49
[1

7,
33

9,
19

,6
49

]
17

,1
62

19
,7

44
0.

13
1

-
17

,1
80

19
,5

83
0.

12
3

-
16

,5
50

19
,8

37
0.

16
6

-
16

,4
83

1
9
,4

9
5

0.
15

5
-

A
ve

ra
ge

0.
15

8
55

2.
55

7
0.

16
7

26
3.

00
0

0.
10

3
37

.1
84

0.
12

8
36

.7
82

T
a

b
le

3
.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
SO

PL
IB

in
st

an
ce

s.

M
IL

P
S

o
lv

e
r

C
P

S
o

lv
e
r

In
st

a
n

ce
C

o
m

p
le

te
M

o
d

e
l

R
e
d

u
ce

d
M

o
d

e
l

C
o

m
p

le
te

M
o

d
e
l

R
e
d

u
ce

d
M

o
d

e
l

N
a
m

e
S

iz
e

B
e
st

-K
n

o
w

n
[3

8
]

L
B

U
B

G
a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]

R
.2

00
.1

00
.1

20
0

29
29

29
0.

00
0

18
.3

94
29

29
0.

00
0

6.
01

7
29

29
0.

00
0

28
.2

71
29

29
0.

00
0

31
.4

03
R

.2
00

.1
00

.1
5

20
0

[5
05

,1
27

1]
49

7
14

31
0.

65
3

-
52

5
10

33
0.

49
2

-
38

1
18

64
0.

79
6

-
5
8
9

9
7
9

0.
39

8
-

R
.2

00
.1

00
.3

0
20

0
[6

69
,2

01
1]

68
6

32
52

0.
78

9
-

77
4

1
7
6
1

0.
56

0
-

45
1

30
01

0.
85

0
-

8
3
8

18
71

0.
55

2
-

R
.2

00
.1

00
.6

0
20

0
[8

07
0,

18
,7

61
]

87
60

17
,0

04
0.

48
5

-
8
8
6
1

16
,9

30
0.

47
7

-
60

18
31

,5
61

0.
80

9
-

84
40

1
6
,1

9
7

0.
47

9
R

.2
00

.1
00

0.
1

20
0

88
7

88
7

88
7

0.
00

0
12

88
.0

92
88

7
88

7
0.

00
0

15
.6

35
88

7
88

7
0.

00
0

64
9.

97
9

88
7

88
7

0.
00

0
26

.0
91

5
R

.2
00

.1
00

0.
15

20
0

[6
66

5,
16

,4
96

]
67

69
16

,3
36

0.
58

6
-

68
95

1
2
,6

0
1

0.
45

3
-

53
18

25
,1

96
0.

78
9

-
7
2
3
1

12
,8

12
0.

43
6

-
R

.2
00

.1
00

0.
30

20
0

[9
34

0,
30

,3
51

]
99

37
23

,2
26

0.
57

2
-

1
0
,5

1
2

2
2
,7

8
1

0.
53

9
-

73
81

38
,4

10
0.

80
8

-
10

,1
20

23
,2

49
0.

56
5

-
R

.2
00

.1
00

0.
60

20
0

[1
0,

50
8,

23
,7

48
]

11
,3

99
21

,7
06

0.
47

5
-

1
2
,0

4
2

21
,9

93
0.

45
2

-
66

66
28

,5
22

0.
76

6
-

10
,6

65
1
9
,9

3
4

0.
46

5
R

.3
00

.1
00

.1
30

0
13

13
13

0.
00

0
37

.3
52

13
13

0.
00

0
35

.0
12

13
13

0.
00

0
20

5.
73

1
13

13
0.

00
0

56
.4

26
3

R
.3

00
.1

00
.1

5
30

0
[6

25
,1

2,
90

3]
66

0
69

58
0.

90
5

-
66

9
22

59
0.

70
4

-
-

-
-

-
8
1
1

2
0
5
6

0.
60

6
-

R
.3

00
.1

00
.3

0
30

0
[9

48
,3

76
7]

10
08

67
90

0.
85

2
-

11
02

31
63

0.
65

2
-

-
-

-
-

1
1
5
7

2
5
9
0

0.
55

3
-

R
.3

00
.1

00
.6

0
30

0
[8

24
,3

00
5]

91
9

47
32

0.
80

6
-

94
9

19
54

0.
51

4
-

-
-

-
-

9
9
1

1
8
6
5

0.
46

9
-

R
.3

00
.1

00
0.

1
30

0
71

5
71

5
71

5
0.

00
0

31
87

.0
49

71
5

71
5

0.
00

0
64

.6
83

71
5

71
5

0.
00

0
25

7.
07

4
71

5
71

5
0.

00
0

71
.6

78
9

R
.3

00
.1

00
0.

15
30

0
[7

21
3,

11
2,

42
4]

76
07

11
0,

36
6

0.
93

1
-

78
32

2
4
,0

4
7

0.
67

4
-

-
-

-
-

8
7
6
8

29
,4

23
0.

70
2

-
R

.3
00

.1
00

0.
30

30
0

[1
0,

38
5,

40
,4

57
]

11
,1

79
53

,8
35

0.
79

2
-

12
,0

71
40

,8
63

0.
70

5
-

-
-

-
-

1
2
,2

6
9

3
1
,6

1
8

0.
61

2
-

R
.3

00
.1

00
0.

60
30

0
[9

41
3,

30
,6

55
]

10
,1

80
38

,2
12

0.
73

4
-

10
,2

75
25

,3
23

0.
59

4
-

-
-

-
-

1
0
,4

0
8

2
1
,6

2
3

0.
51

9
-

253

Algorithms 2024, 17, 12

T
a

b
le

3
.

C
on

t.

M
IL

P
S

o
lv

e
r

C
P

S
o

lv
e

r

In
st

a
n

ce
C

o
m

p
le

te
M

o
d

e
l

R
e

d
u

ce
d

M
o

d
e

l
C

o
m

p
le

te
M

o
d

e
l

R
e

d
u

ce
d

M
o

d
e

l

N
a

m
e

S
iz

e
B

e
st

-K
n

o
w

n
[3

8
]

L
B

U
B

G
a

p
T

im
e

[s
]

L
B

U
B

G
a

p
T

im
e

[s
]

L
B

U
B

G
a

p
T

im
e

[s
]

L
B

U
B

G
a

p
T

im
e

[s
]

R
.4

00
.1

00
.1

40
0

6
6

37
6

0.
98

4
-

6
6

0.
00

0
99

5.
13

7
6

6
0.

00
0

72
6.

05
7

6
6

0.
00

0
97

.3
85

1
R

.4
00

.1
00

.1
5

40
0

[7
29

,4
7,

11
7]

78
1

35
,0

44
0.

97
8

-
85

6
22

,7
67

0.
96

2
-

-
-

-
-

9
6

3
3

5
9

1
0.

73
2

-
R

.4
00

.1
00

.3
0

40
0

[7
80

,7
24

3]
91

1
39

,0
22

0.
97

7
-

10
10

26
,4

38
0.

96
2

-
-

-
-

-
1

0
8

4
3

0
6

1
0.

64
6

-
R

.4
00

.1
00

.6
0

40
0

[7
31

,5
54

5]
83

7
33

09
0.

74
7

-
86

1
26

52
0.

67
5

-
-

-
-

-
9

6
6

2
0

6
9

0.
53

3
-

R
.4

00
.1

00
0.

1
40

0
78

0
78

0
78

0
0.

00
0

16
1.

02
1

78
0

78
0

0.
00

0
12

4.
99

0
78

0
78

0
0.

00
0

20
8.

52
5

78
0

78
0

0.
00

0
90

.9
55

5
R

.4
00

.1
00

0.
15

40
0

[7
76

0,
50

1,
54

3]
83

57
85

,8
78

0.
90

3
-

90
83

85
,8

78
0.

89
4

-
-

-
-

-
9

9
7

6
3

5
,1

6
0

0.
71

6
-

R
.4

00
.1

00
0.

30
40

0
[1

0,
07

6,
95

,5
23

]
11

,0
30

12
7,

29
0

0.
91

3
-

11
,7

83
12

7,
29

0
0.

90
7

-
-

-
-

-
1

2
,3

3
7

5
7

,2
7

2
0.

78
5

-
R

.4
00

.1
00

0.
60

40
0

[8
10

3,
55

,9
50

]
93

60
65

,6
15

0.
85

7
-

98
77

36
,6

62
0.

73
1

-
-

-
-

-
9

9
5

4
2

2
,3

7
6

0.
55

5
-

R
.5

00
.1

00
.1

50
0

3
3

3
0.

00
0

21
57

.7
43

3
3

0.
00

0
18

81
.2

97
3

3
0.

00
0

23
33

.2
35

3
3

0.
00

0
11

2.
08

6
R

.5
00

.1
00

.1
5

50
0

[9
24

,1
1,

45
2]

96
4

11
,4

52
0.

91
6

-
10

18
11

,4
52

0.
91

1
-

-
-

-
-

1
2

5
0

5
5

0
8

0.
77

3
-

R
.5

00
.1

00
.3

0
50

0
[7

73
,1

2,
22

5]
84

9
16

,9
63

0.
95

0
-

97
6

14
,2

73
0.

93
2

-
-

-
-

-
1

0
9

9
4

8
4

1
0.

77
3

-
R

.5
00

.1
00

.6
0

50
0

[6
69

,8
42

7]
84

0
49

,1
05

0.
98

3
-

84
0

63
57

0.
86

8
-

-
-

-
-

9
3

1
2

7
2

3
0.

65
8

-
R

.5
00

.1
00

0.
1

50
0

29
7

29
7

29
7

0.
00

0
97

.4
73

29
7

29
7

0.
00

0
85

.4
59

29
7

29
7

0.
00

0
85

.2
81

29
7

29
7

0.
00

0
77

.4
38

2
R

.5
00

.1
00

0.
15

50
0

[8
42

0,
10

7,
77

6]
89

49
10

7,
77

6
0.

91
7

-
94

61
10

7,
77

6
0.

91
2

-
-

-
-

-
1

0
,6

2
8

4
5

,3
5

6
0.

76
6

R
.5

00
.1

00
0.

30
50

0
[1

0,
43

1,
18

1,
83

5]
11

,7
99

15
6,

35
9

0.
92

5
-

1
2

,6
9

4
15

6,
35

9
0.

91
9

-
-

-
-

-
12

,5
76

5
7

,3
3

0
0.

78
1

R
.5

00
.1

00
0.

60
50

0
[7

09
4,

33
,2

60
]

8
2

3
3

11
2,

46
6

0.
92

7
-

81
92

45
,6

96
0.

82
1

-
-

-
-

-
65

59
2

0
,4

6
5

0.
68

0
-

R
.6

0
0

.1
0

0
.1

60
0

[1
,3

79
]

1
55

0.
98

2
-

1
55

0.
98

2
-

1
1

0.
00

0
27

10
.4

70
1

1
0.

00
0

21
82

.1
8

R
.6

00
.1

00
.1

5
60

0
[6

70
,5

94
9]

71
4

59
31

0.
88

0
-

84
5

40
44

0.
79

1
-

-
-

-
-

9
3

8
2

4
4

3
0.

61
6

-
R

.6
00

.1
00

.3
0

60
0

[8
73

,1
2,

87
5]

94
5

18
,9

32
0.

95
0

-
1

0
9

9
18

,9
32

0.
94

2
-

-
-

-
-

74
0

6
4

6
7

0.
88

6
-

R
.6

00
.1

00
.6

0
60

0
[7

51
,7

89
3]

8
3

8
26

,7
32

0.
96

9
-

77
8

25
,2

14
0.

96
9

-
-

-
-

-
53

8
2

4
9

4
0.

78
4

-
R

.6
00

.1
00

0.
1

60
0

32
2

32
2

32
2

0.
00

0
35

2.
20

2
32

2
32

2
0.

00
0

14
0.

64
5

32
2

32
2

0.
00

0
12

7.
39

7
32

2
32

2
0.

00
0

10
3.

37
8

R
.6

00
.1

00
0.

15
60

0
[1

0,
18

1,
12

1,
87

7]
10

,7
53

12
1,

87
7

0.
91

2
-

1
0

,9
1

5
12

1,
87

7
0.

91
0

-
-

-
-

-
94

01
6

5
,0

3
9

0.
85

5
-

R
.6

00
.1

00
0.

30
60

0
[1

0,
15

1,
15

1,
01

0]
11

,3
52

19
0,

14
5

0.
94

0
-

1
2

,4
3

1
19

0,
14

5
0.

93
5

-
-

-
-

-
93

56
4

8
,7

7
5

0.
80

8
-

R
.6

00
.1

00
0.

60
60

0
[7

60
4,

87
,7

70
]

79
62

25
6,

46
4

0.
96

9
-

8
1

6
2

75
,2

69
0.

89
2

-
-

-
-

-
69

08
4

2
,6

5
2

0.
83

8
-

R
.7

00
.1

00
.1

70
0

2
-

-
-

-
-

-
-

-
2

2
0.

00
0

16
49

.4
86

2
2

0.
00

0
61

9.
22

R
.7

00
.1

00
.1

5
70

0
[7

99
,6

56
1]

81
5

14
,4

78
0.

94
4

-
9

7
2

57
18

0.
83

0
-

-
-

-
-

65
5

2
7

5
9

0.
76

3
-

R
.7

00
.1

00
.3

0
70

0
[7

62
,2

0,
28

1]
89

6
69

60
0.

87
1

-
9

8
3

42
18

0.
76

7
-

-
-

-
-

58
8

2
5

3
1

0.
76

8
-

R
.7

00
.1

00
.6

0
70

0
[5

16
,9

03
0]

53
8

70
33

0.
92

4
-

5
5

5
18

54
0.

70
1

-
-

-
-

-
38

3
1

5
9

8
0.

76
0

-
R

.7
0

0
.1

0
0

0
.1

70
0

[6
11

,6
21

]
61

1
61

6
0.

00
8

-
61

1
61

6
0.

00
8

-
6

1
1

6
1

1
0.

00
0

59
2.

10
7

6
1

1
6

1
1

0.
00

0
36

8.
13

9
R

.7
00

.1
00

0.
15

70
0

[4
63

6,
14

7,
32

1]
43

75
14

7,
32

1
0.

97
0

-
5

1
3

6
71

45
0.

28
1

-
-

-
-

-
27

87
6

3
1

5
0.

55
9

-
R

.7
00

.1
00

0.
30

70
0

[4
30

3,
50

,0
00

]
44

77
32

,7
42

0.
86

3
-

4
8

2
7

69
81

0.
30

9
-

-
-

-
-

26
58

6
1

1
5

0.
56

5
-

R
.7

00
.1

00
0.

60
70

0
[2

85
7,

15
,5

79
]

29
42

85
34

0.
65

5
-

2
9

9
7

58
42

0.
48

7
-

-
-

-
-

19
13

5
3

5
7

0.
64

3
-

A
ve

ra
ge

0.
68

9
91

2.
41

6
0.

57
7

37
2.

09
7

0.
26

8
79

7.
80

1
0.

49
2

31
9.

69
8

254

Algorithms 2024, 17, 12

T
a

b
le

4
.

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
C

O
M

PI
LE

R
S

in
st

an
ce

s.

M
IL

P
S

o
lv

e
r

C
P

S
o

lv
e
r

In
st

a
n

ce
C

o
m

p
le

te
M

o
d

e
l

R
e
d

u
ce

d
M

o
d

e
l

C
o

m
p

le
te

M
o

d
e
l

R
e
d

u
ce

d
M

o
d

e
l

N
a
m

e
S

iz
e

B
e
st

-K
n

o
w

n
[3

8
]

L
B

U
B

G
a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]
L

B
U

B
G

a
p

T
im

e
[s

]

gs
m

.1
53

.1
24

12
6

[2
46

,3
13

]
25

7
31

2
0.

17
6

-
26

9
3
1
1

0.
13

5
-

27
8

31
7

0.
12

3
-

2
8
0

3
1
1

0.
10

0
-

gs
m

.4
44

.3
50

35
3

[2
10

3,
28

73
]

22
94

48
78

0.
53

0
-

24
05

48
56

0.
50

5
-

-
-

-
-

2
4
5
6

43
10

0.
43

0
-

gs
m

.4
62

.7
7

79
[3

96
,4

88
]

40
2

47
8

0.
15

9
-

40
2

47
7

0.
15

7
-

4
1
9

47
4

0.
11

6
-

41
8

4
6
5

0.
10

1
-

jp
eg

.1
48

3.
25

27
87

87
87

0.
00

0
26

.0
41

87
87

0.
00

0
18

.5
56

87
87

0.
00

0
1.

19
4

87
87

0.
00

0
1.

07
1

jp
eg

.3
18

4.
10

7
10

9
[4

89
,6

84
]

50
6

65
6

0.
22

9
-

51
0

71
5

0.
28

7
-

5
1
8

71
8

0.
27

9
-

51
7

69
2

0.
25

3
-

jp
eg

.3
19

5.
85

87
[2

2,
25

]
17

25
0.

32
0

-
17

25
0.

32
0

-
2
3

25
0.

08
0

-
22

25
0.

12
0

-
jp

eg
.3

19
8.

93
95

[1
72

,2
04

]
18

0
18

8
0.

04
3

-
18

0
1
8
8

0.
04

3
-

1
8
1

1
8
8

0.
03

7
-

1
8
1

1
8
8

0.
03

7
-

jp
eg

.3
20

3.
13

5
13

7
[6

00
,7

50
]

60
2

98
0

0.
38

6
-

61
8

75
1

0.
17

7
-

6
2
9

91
3

0.
31

1
-

62
6

75
0

0.
16

5
-

jp
eg

.3
74

0.
15

17
33

33
33

0.
00

0
1.

52
3

33
33

0.
00

0
0.

83
9

33
33

0.
00

0
0.

15
7

33
33

0.
00

0
0.

09
5

jp
eg

.4
15

4.
36

38
90

90
90

0.
00

0
55

6.
79

8
90

90
0.

00
0

60
.9

24
90

90
0.

00
0

1.
27

2
90

90
0.

00
0

1.
76

4
jp

eg
.4

75
3.

54
56

16
4

16
4

16
4

0.
00

0
27

53
.7

52
16

4
16

4
0.

00
0

17
90

.2
69

16
4

16
4

0.
00

0
15

.3
42

16
4

16
4

0.
00

0
16

.8
77

su
sa

n.
24

8.
19

7
19

9
[7

36
,1

18
4]

79
2

19
78

0.
60

0
-

80
2

13
70

0.
41

5
-

8
0
5

13
61

0.
40

9
-

78
0

13
20

0.
40

9
-

su
sa

n.
26

0.
15

8
16

0
[5

64
,8

76
]

56
8

93
7

0.
39

4
-

57
3

93
8

0.
38

9
-

59
6

99
1

0.
39

9
-

5
9
8

89
7

0.
33

3
-

su
sa

n.
34

3.
18

2
18

4
[5

91
,8

62
]

61
7

79
8

0.
22

7
-

62
2

7
7
6

0.
19

8
-

6
3
6

10
43

0.
39

0
-

63
2

79
2

0.
20

2
-

ty
pe

se
t.1

01
92

.1
23

12
5

[2
80

,4
15

]
27

4
42

9
0.

36
1

-
28

2
3
7
9

0.
25

6
-

29
3

38
5

0.
23

9
-

29
2

38
7

0.
24

5
-

ty
pe

se
t.1

08
35

.2
6

28
[9

9,
11

2]
99

11
1

0.
10

8
-

10
0

11
2

0.
10

7
-

1
1
0

1
1
1

0.
00

9
-

10
9

1
1
1

0.
01

8
-

ty
p

e
se

t.
1
2
3
9
5
.4

3
45

[1
43

,1
46

]
14

0
14

6
0.

04
1

-
14

1
14

6
0.

03
4

-
1
4
6

1
4
6

0.
00

0
21

81
.9

42
1
4
6

1
4
6

0.
00

0
27

80
.1

21
ty

pe
se

t.1
50

87
.2

3
25

97
97

97
0.

00
0

60
.5

02
97

97
0.

00
0

29
.1

18
97

97
0.

00
0

0.
47

7
97

97
0.

00
0

0.
31

8
ty

pe
se

t.1
55

77
.3

6
38

12
5

12
5

12
5

0.
00

0
28

6.
21

0
12

5
12

5
0.

00
0

43
.1

64
12

5
12

5
0.

00
0

2.
11

6
12

5
12

5
0.

00
0

1.
71

3
ty

pe
se

t.1
60

00
.6

8
70

[7
7,

80
]

66
81

0.
18

5
-

66
80

0.
17

5
-

7
9

80
0.

01
3

-
71

80
0.

11
3

-
ty

pe
se

t.1
72

3.
25

27
60

60
60

0.
00

0
59

0.
57

7
60

60
0.

00
0

86
.0

68
60

60
0.

00
0

4.
01

3
60

60
0.

00
0

3.
46

9
ty

pe
se

t.1
99

72
.2

46
24

8
[1

32
5,

19
29

]
14

22
35

62
0.

60
1

-
14

52
25

09
0.

42
1

-
15

19
29

61
0.

48
7

-
1
5
2
5

28
04

0.
45

6
-

ty
pe

se
t.4

39
1.

24
0

24
2

[1
09

3,
14

12
]

11
08

25
95

0.
57

3
-

11
37

24
76

0.
54

1
-

11
49

25
11

0.
54

2
-

1
1
5
4

19
05

0.
39

4
-

ty
p

e
se

t.
4
5
9
7
.4

5
47

[1
50

,1
55

]
15

0
15

4
0.

02
6

-
15

1
15

4
0.

01
9

-
1
5
4

1
5
4

0.
00

0
20

9.
65

9
1
5
4

1
5
4

0.
00

0
12

8.
91

6
ty

pe
se

t.4
72

4.
43

3
43

5
[2

46
0,

34
33

]
-

-
-

-
26

73
61

31
0.

56
4

-
-

-
-

-
2
6
7
9

71
94

0.
62

8
-

ty
pe

se
t.5

79
7.

33
35

11
3

11
3

11
3

0.
00

0
85

1.
49

0
11

3
11

3
0.

00
0

28
.5

04
11

3
11

3
0.

00
0

0.
54

7
11

3
11

3
0.

00
0

0.
57

4
ty

pe
se

t.5
88

1.
24

6
24

8
[1

30
5,

17
00

]
13

78
22

58
0.

39
0

-
13

96
24

26
0.

42
5

-
1
4
0
6

23
85

0.
41

0
-

13
94

20
84

0.
33

1
-

A
ve

ra
ge

0.
20

6
64

0.
86

2
0.

19
1

25
7.

18
0

0.
15

4
24

1.
67

2
0.

16
1

29
3.

49
2

255

Algorithms 2024, 17, 12

5. Conclusions

This work introduced new models for the Precedence-Constrained Minimum-Cost
Arborescence Problem with Waiting-Times that are polynomial in size and are characterized
by a smaller memory footprint with respect to the polynomial-sized models previously
proposed in the literature. A first model is based on a new set of variables to model
precedences. The number of variables and constraints are further reduced, at the price
of a preprocessing phase, in a second model. The two models are solved both by Mixed
Integer Linear Programs and Constraint Programming solvers. The computational results
show that the model characterized by the need of preprocessing outperforms the other one.
Furthermore, the Constraint Programming solver achieves the best overall results in terms
of both optimality gap and solution time. However, the Mixed Integer Linear Programming
solver generally finds better lower bound estimates on the instances. Finally, the models
proposed were able to close 7 new instances that were previously open, to provide improved
lower bounds for 71 instances, and to find improved upper bounds for 80 instances, out of
a total of 88 open instances.

Future work should cover aspects such as robustness of the approaches and the
addition to the models of other realistic constraints. Given the progress on the solvers,
new instances should be also introduced in order to extend the study on scalability of the
different models. Finally, a deeper analysis of the characteristics of the instances that mainly
affect the different approaches presented should be in order.

Author Contributions: Conceptualization, J.J., R.M. and M.D.; methodology, J.J.; software, J.J.;
validation, J.J. and R.M.; formal analysis, J.J., R.M. and M.D.; investigation, J.J. and R.M.; resources,
R.M.; data curation, J.J.; writing—original draft preparation, J.J. and R.M.; writing—review and
editing, R.M. and M.D.; visualization, R.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The instances used in the paper are available from the literature.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Chu, Y.J.; Liu, T. On the shortest arborescence of a directed graph. Sci. Sin. 1965, 14, 1396–1400.
2. Edmonds, J. Optimum branchings. J. Res. Natl. Bur. Stand. 1967, 71, 233–240. [CrossRef]
3. Gabow, H.N.; Galil, Z.; Spencer, T.; Tarjan, R.E. Efficient algorithms for finding minimum spanning trees in undirected and

directed graphs. Combinatorica 1986, 6, 109–122. [CrossRef]
4. Chou, X.; Gambardella, L.M.; Montemanni, R. A tabu search algorithm for the probabilistic orienteering problem. Comput. Oper.

Res. 2021, 126, 105107. [CrossRef]
5. Bock, F. An algorithm to construct a minimum directed spanning tree in a directed network. Dev. Oper. Res. 1971, 29–44.
6. Fischetti, M.; Vigo, D. A branch-and-cut algorithm for the resource-constrained minimum-weight arborescence problem. Netw.

Int. J. 1997, 29, 55–67. [CrossRef]
7. Pereira, A.H.; Mateus, G.R.; Urrutia, S. Branch-and-cut algorithms for the p-arborescence star problem. Int. Trans. Oper. Res. 2021,

29, 2374–2400. [CrossRef]
8. Morais, V.; Gendron, B.; Mateus, G.R. The p-arborescence star problem: Formulations and exact solution approaches. Comput.

Oper. Res. 2019, 102, 91–101. [CrossRef]
9. Hakimi, S.L. Optimum distribution of switching centers in a communication network and some related graph theoretic problems.

Oper. Res. 1965, 13, 462–475. [CrossRef]
10. Guttmann-Beck, N.; Hassin, R. On two restricted ancestors tree problems. Inf. Process. Lett. 2010, 110, 570–575. [CrossRef]
11. Carrabs, F.; Gaudioso, M. A Lagrangian approach for the minimum spanning tree problem with conflicting edge pairs. Networks

2021, 78, 32–45. [CrossRef]
12. Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50.

[CrossRef]
13. Gouveia, L.; Lopes, M.J. The capacitated minimum spanning tree problem: On improved multistar constraints. Eur. J. Oper. Res.

2005, 160, 47–62. [CrossRef]
14. Frieze, A.M.; Tkocz, T. A Randomly Weighted Minimum Arborescence with a Random Cost Constraint. Math. Oper. Res. 2021,

47, 1664–1680. [CrossRef]

256

Algorithms 2024, 17, 12

15. Fertin, G.; Fradin, J.; Jean, G. Algorithmic Aspects of the Maximum Colorful Arborescence Problem. In Theory and Applications of
Models of Computation; TAMC 2017; Springer: Cham, Switzerland, 2017; pp. 216–230.

16. Eswaran, K.P.; Tarjan, R.E. Augmentation problems. SIAM J. Comput. 1976, 5, 653–665. [CrossRef]
17. Li, J.; Liu, X.; Lichen, J. The constrained arborescence augmentation problem in digraphs. In Proceedings of the 2017 3rd IEEE

International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 1204–1209.
18. Kawatra, R.; Bricker, D. Design of a degree-constrained minimal spanning tree with unreliable links and node outage costs. Eur.

J. Oper. Res. 2004, 156, 73–82. [CrossRef]
19. Galbiati, G.; Gualandi, S.; Maffioli, F. On minimum changeover cost arborescences. Lect. Notes Comput. Sci. 2011, 6630, 112–123.
20. Bérczi, K.; Fujishige, S.; Kamiyama, N. A linear-time algorithm to find a pair of arc-disjoint spanning in-arborescence and

out-arborescence in a directed acyclic graph. Inf. Process. Lett. 2009, 109, 1227–1231. [CrossRef]
21. Bang-Jensen, J. Edge-disjoint in- and out-branchings in tournaments and related path problems. J. Comb. Theory—Ser. B 1991,

51, 1–23. [CrossRef]
22. Li, Y.; Thai, M.; Wang, F.; Du, D.Z. On the construction of a strongly connected broadcast arborescence with bounded transmission

delay. IEEE Trans. Mob. Comput. 2006, 5, 1460–1470.
23. Carrabs, F.; Cerulli, R.; Pentangelo, R.; Raiconi, A. Minimum spanning tree with conflicting edge pairs: A branch-and-cut

approach. Ann. Oper. Res. 2021, 298, 65–78. [CrossRef]
24. Darmann, A.; Pferschy, U.; Schauer, J. Determining a Minimum Spanning Tree with Disjunctive Constraints. In Algorithmic

Decision Theory; Springer: Berlin/Heidelberg, Germeny, 2009; pp. 414–423.
25. Viana, L.A.d.C.; Campêlo, M. Two dependency constrained spanning tree problems. Int. Trans. Oper. Res. 2020, 27, 867–898.

[CrossRef]
26. Escudero, L. An inexact algorithm for the sequential ordering problem. Eur. J. Oper. Res. 1988, 37, 236–249. [CrossRef]
27. Moon, C.; Kim, J.; Choi, G.; Seo, Y. An efficient genetic algorithm for the traveling salesman problem with precedence constraints.

Eur. J. Oper. Res. 2002, 140, 606–617. [CrossRef]
28. Balas, E.; Fischetti, M.; Pulleyblank, W. The precedence-constrained asymmetric traveling salesman polytope. Math. Program.

1995, 68, 241–265. [CrossRef]
29. Hernádvölgyi, I. Solving the sequential ordering problem with automatically generated lower bounds. In Operations Research

Proceedings 2003; Springer: Berlin/Heidelberg, Germany, 2004; pp. 355–362.
30. Escudero, L.; Guignard, M.; Malik, K. A Lagrangian relax-and-cut approach for the sequential ordering problem with precedence

relationships. Ann. Oper. Res. 1994, 50, 219–237. [CrossRef]
31. Gambardella, L.; Dorigo, M. An ant colony system hybridized with a new local search for the sequential ordering problem.

INFORMS J. Comput. 2000, 12, 237–255. [CrossRef]
32. Karan, M.; Skorin-Kapov, N. A branch and bound algorithm for the sequential ordering problem. In Proceedings of the MIPRO,

2011 Proceedings of the 34th International Convention, Opatija, Croatia, 23–27 May 2011; pp. 452–457.
33. Ascheuer, N.; Escudero, L.; Grötschel, M.; Stoer, M. A cutting plane approach to the sequential ordering problem (with

applications to job scheduling in manufacturing). SIAM J. Optim. 1993, 3, 25–42. [CrossRef]
34. Ascheuer, N.; Jünger, M.; Reinelt, G. A branch & cut algorithm for the asymmetric traveling salesman problem with precedence

constraints. Comput. Optim. Appl. 2000, 17, 61–84.
35. Montemanni, R.; Smith, D.H.; Gambardella, L.M. Ant colony systems for large sequential ordering problems. In Proceedings of

the IEEE Swarm Intelligence Symposium (SIS), Honolulu, HI, USA, 1–5 April 2007; pp. 60–67.
36. Fiala Timlin, M.; Pulleyblank, W. Precedence constrained routing and helicopter scheduling: Heuristic design. Interfaces 1992,

22, 100–111. [CrossRef]
37. Dell’Amico, M.; Jamal, J.; Montemanni, R. A mixed integer linear program for a precedence-constrained minimum-cost

arborescence problem. In Proceedings of the 8th International Conference on Industrial Engineering and Applications (Europe),
Online, 8–11 January 2021; pp. 216–221.

38. Chou, X.; Dell’Amico, M.; Jamal, J.; Montemanni, R. Precedence-Constrained Arborescences. Eur. J. Oper. Res. 2022, 307, 575–589.
[CrossRef]

39. Shi, W.; Su, C. The rectilinear Steiner arborescence problem is NP-complete. SIAM J. Comput. 2005, 35, 729–740. [CrossRef]
40. Wang, I.L. Multicommodity network flows: A survey, Part I: Applications and Formulations. Int. J. Oper. Res. 2018, 15, 145–153.
41. Hurkensa, C.A.J.; Woeginger, G.J. On the nearest neighbor rule for the traveling salesman problem. Oper. Res. Lett. 2004, 32, 1–4.

[CrossRef]
42. Dell’Amico, M.; Jamal, J.; Montemanni, R. Compact Models for the Precedence-Constrained Minimum-Cost Arborescence

Problem. In Proceedings of the 2022 The 6th International Conference on Intelligent Traffic and Transportation (ICITT), Paris,
France, 25–27 September 2022; IOS Press: Amsterdam, The Netherlands, 2023; pp. 112–126.

43. Floyd, R. Algorithm 97: Shortest Path. Commun. ACM 1962, 5, 345. [CrossRef]
44. Google. Google OR-Tools. 2023. Available online: https://developers.google.com/optimization (accessed on 20 November 2023).
45. Montemanni, R.; Dell’Amico, M. Solving the Parallel Drone Scheduling Traveling Salesman Problem via Constraint Programming.

Algorithms 2023, 16, 40. [CrossRef]
46. IBM. IBM CPLEX Optimizer. 2023. Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-

optimizer (accessed on 20 November 2023).

257

Algorithms 2024, 17, 12

47. Reinelt, G. TSPLIB–A travelling salesman problem library. ORSA J. Comput. 1991, 3, 376–384. [CrossRef]
48. Montemanni, R.; Smith, D.H.; Rizzoli, A.E.; Gambardella, L.M. Sequential ordering problems for crane scheduling in port

terminals. Int. J. Simul. Process Model. 2009, 5, 348–361. [CrossRef]
49. Shobaki, G.; Jamal, J. An exact algorithm for the sequential ordeing problem and its application to switching energy minimization

in compilers. Comput. Optim. Appl. 2015, 61, 343–372. [CrossRef]
50. Wolpert, D.; Macready, W. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

258

Citation: Shokouhifar, M.;

Hasanvand, M.; Moharamkhani, E.;

Werner, F. Ensemble

Heuristic–Metaheuristic Feature

Fusion Learning for Heart Disease

Diagnosis Using Tabular Data.

Algorithms 2024, 17, 34. https://

doi.org/10.3390/a17010034

Academic Editors: Roberto

Montemanni and Günther Raidl

Received: 27 October 2023

Revised: 18 December 2023

Accepted: 12 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Ensemble Heuristic–Metaheuristic Feature Fusion Learning for
Heart Disease Diagnosis Using Tabular Data

Mohammad Shokouhifar 1,*, Mohamad Hasanvand 2, Elaheh Moharamkhani 3,4 and Frank Werner 5,*

1 Department of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983969411, Iran
2 Department of Computer Engineering, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;

mohamadhasanvand5691@gmail.com
3 Department of Computer Engineering, Institute of Higher Education Saeb, Abhar 3697345619, Iran;

elaheh.moharamkhani@uoh.edu.iq
4 IRO, Computer Science Department, University of Halabja, Halabja 46018, Iraq
5 Faculty of Mathematics, Otto-von-Guericke University, 39016 Magdeburg, Germany
* Correspondence: m_shokouhifar@sbu.ac.ir (M.S.); frank.werner@ovgu.de (F.W.)

Abstract: Heart disease is a global health concern of paramount importance, causing a significant
number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in
preventing adverse outcomes and improving patient well-being, thereby creating a growing demand
for intelligent approaches to predict heart disease effectively. This paper introduces an ensemble
heuristic–metaheuristic feature fusion learning (EHMFFL) algorithm for heart disease diagnosis using
tabular data. Within the EHMFFL algorithm, a diverse ensemble learning model is crafted, featuring
different feature subsets for each heterogeneous base learner, including support vector machine,
K-nearest neighbors, logistic regression, random forest, naive bayes, decision tree, and XGBoost
techniques. The primary objective is to identify the most pertinent features for each base learner,
leveraging a combined heuristic–metaheuristic approach that integrates the heuristic knowledge of
the Pearson correlation coefficient with the metaheuristic-driven grey wolf optimizer. The second
objective is to aggregate the decision outcomes of the various base learners through ensemble learning.
The performance of the EHMFFL algorithm is rigorously assessed using the Cleveland and Statlog
datasets, yielding remarkable results with an accuracy of 91.8% and 88.9%, respectively, surpassing
state-of-the-art techniques in heart disease diagnosis. These findings underscore the potential of
the EHMFFL algorithm in enhancing diagnostic accuracy for heart disease and providing valuable
support to clinicians in making more informed decisions regarding patient care.

Keywords: heart disease diagnosis; ensemble learning; feature selection; heuristics; metaheuristics;
Pearson correlation coefficient (PCC); grey wolf optimizer (GWO)

1. Introduction

Currently, a person’s workload has significantly increased as a result of more work.
There is a great likelihood that the person will get heart disease as a result of this terrible
situation, which cannot be avoided [1–3]. Heart diseases are brought on by a reduction
in the amount of blood circulating to the brain, heart, lungs, and other vital organs. The
most prevalent and least serious kind of cardiovascular illness is congestive heart failure.
Blood is transported to the heart by blood veins in the human anatomy. Defective heart
valves, which can cause heart failure, are one of the additional causes of heart disease.
Anesthesia may also be present together with upper abdominal muscle pain, which is
a characteristic indication of heart illness. It is advised to reduce blood pressure, lower
cholesterol, and exercise frequently to reduce the risk of heart disease. Angina pectoris,
dilated cardiomyopathy, stroke, and congestive heart failure are among the conditions
most closely associated with heart disease. As a result, it is important to keep an eye on
indicators of cardiovascular disease and speak with medical professionals [4–6].

Algorithms 2024, 17, 34. https://doi.org/10.3390/a17010034 https://www.mdpi.com/journal/algorithms259

Algorithms 2024, 17, 34

Cardiovascular diseases are one of the most prevalent causes of global mortality, and
their diagnosis and prediction have consistently posed substantial challenges due to their
dynamic nature. Risk factors contributing to the elevated risk of heart disease encompass
age, gender, smoking habits, family medical history, cholesterol levels, poor dietary choices,
high blood pressure, obesity, physical inactivity, and alcohol consumption. Additionally,
hereditary factors like high blood pressure and diabetes heighten susceptibility to heart
disease. Certain risk factors can be influenced by individual choices. In conjunction with
the aforementioned risk factors, lifestyle decisions, such as dietary patterns, sedentary
behavior, and obesity, are recognized as significant contributors [7–9]. Heart conditions
manifest in various forms, including myocarditis, angina pectoris, congestive heart failure,
cardiomyopathy, congenital heart disease, and coronary heart disease. Manual calculations
to assess the likelihood of heart disease based on these risk factors are intricate, necessitating
the adoption of computer-assisted techniques for efficient and accurate evaluation [10].

Machine learning is effective for a wide range of problems. Utilizing the values of
independent variables to predict the value of a dependent variable is one use for this
technique. Since the healthcare industry has huge data resources that are challenging to
manage manually, it is an application area for data mining. Even in wealthy nations, heart
disease has been found to be one of the leading causes of death. The hazards are either not
recognized or are not recognized until much later, which is one of the causes of fatalities
from heart disease. Machine learning techniques, on the other hand, can be helpful in
overcoming this issue and enabling early risk prediction [11].

In this study, we introduce an advanced method for detecting and predicting heart
disease patients using ensemble learning, feature selection, and heuristic–metaheuristic
optimization. The presented method has two stages. In the first stage, we utilize a com-
bined heuristic–metaheuristic feature selection algorithm based on the Pearson correlation
coefficient (PCC) and the grey wolf optimizer (GWO), called the PCC–GWO, to increase
the accuracy and performance of each machine learning model. In the second stage, a
heterogeneous ensemble learning model is applied to generate the final outputs based on
the aggregation of the opinion of the different base learners. As a result, the following
significantly contribute to this evolved diagnosis model of heart disease:

• The introduction of an advanced ensemble heuristic–metaheuristic feature fusion
learning (EHMFFL) algorithm as a robust model in predicting heart diseases;

• The construction of a heterogeneous ensemble learning model for heart disease di-
agnosis comprising seven base learners: support vector machine (SVM), K-nearest
neighbors (KNNs), logistic regression (LR), random forest (RF), naive bayes (NB),
decision tree (DT), and eXtreme Gradient Boosting (XGBoost) techniques;

• The presentation of a combined heuristic–metaheuristic algorithm (called PCC–GWO)
to select an optimal feature subset for each machine learning model, separately. In
the PCC–GWO model, at first, the PCC is used to calculate an importance score for
each feature. Then, these scores are used as heuristic knowledge to guide the search
process of the GWO for obtaining the best achievable feature subset;

• The analysis of the relationships between different variables within the cardiovascular
datasets using a correlation heat map (CHM), and the evaluation of the performance
of the EHMFFL algorithm using different measures: accuracy, precision, recall, F1
score, specificity, and the receiver operating characteristic (ROC);

• The successful development of the EHMFFL algorithm in MATLAB R2022b for heart
disease prediction using the Cleveland and Statlog datasets, respectively.

The rest of this paper is organized as follows: In the Section 2, we examine related
works. The Section 3 provides details on the two datasets used in this paper. The proposed
EHMFFL algorithm is introduced in the Section 4. The results are provided and assessed in
the Section 5 and, finally, concluding remarks are presented in the Section 6.

260

Algorithms 2024, 17, 34

2. Literature Review

In this section, we delve into the realm of machine learning, ensemble learning,
and deep learning techniques. Machine learning methods for classification are widely
adopted across various industries, and researchers are continually working on advancing
their categorization capabilities. One such approach is ensemble learning, which can be
either homogeneous or heterogeneous. Early techniques, such as bootstrap aggregating
(bagging) [12] and boosting [13], exemplify the power of ensemble learning, often leading
to improved classification performance when implemented. In addition to these, various
strategies have been explored by researchers, including methods like majority voting, to
effectively combine multiple classifiers or partitions for enhanced results.

2.1. Machine Learning Approaches

Miao and Miao [14] underscored the critical significance of early detection and diag-
nosis of coronary heart disease (CHD), a leading global cause of mortality. To facilitate the
training and evaluation of diverse deep neural network (DNN) architectures, including con-
volutional neural networks and recurrent neural networks, they curated a comprehensive
dataset comprising 303 patients and 14 clinical attributes, encompassing factors like age,
gender, and cholesterol levels. Their results demonstrated that the proposed DNN models
outperformed established methods like logistic regression and decision trees, showcasing
high accuracy in CHD detection. Furthermore, feature importance analysis revealed that
age, maximum heart rate, and ST segment depression, were the three most critical variables
for predicting CHD.

Vijayashree and Sultana [15] introduced a machine learning framework designed for
feature selection in heart disease classification, leveraging an enhanced particle swarm
optimization (PSO) algorithm in conjunction with an SVM classifier. The innovative
PSO algorithm, crafted with the unique blend of a hybrid mutation operator, velocity
clamping, and adaptive inertia weight, aimed to overcome the limitations of conventional
PSO methods. Evaluating the framework using the Cleveland heart disease dataset, the
results showcased its superiority over alternative feature selection techniques. Notably, the
framework exhibited a high degree of accuracy in classifying heart disease, underscoring
its potential for improving the accuracy and effectiveness of heart disease diagnosis.

Waigi et al. [16] presented a study focused on predicting the risk of heart disease
by employing advanced machine learning techniques. The research explores innovative
approaches to risk assessment in cardiovascular health, utilizing a diverse range of machine
learning algorithms. By leveraging extensive data and applying advanced analytics, the
study aims to enhance the accuracy and effectiveness of heart disease risk prediction. This
work contributes to the field of cardiovascular medicine and underscores the potential of
machine learning in improving heart disease risk assessment and patient care.

Tuli et al. [17] presented HealthFog, a smart healthcare system that used ensemble
deep learning techniques for the autonomous diagnosis of cardiac illnesses in an integrated
Internet of Things (IoT) and fog computing environment. The system was able to effectively
diagnose heart illnesses by processing real-time data from numerous sensors and devices,
including blood pressure monitors and electrocardiogram (ECG) devices. The HealthFog
system’s patient monitoring module, data preprocessing module, feature extraction and se-
lection module, and classification module, were all covered in the authors’ full architecture
presentation. The findings demonstrated that the HealthFog system performed better than
other current systems in terms of precision and timeliness.

Jindal et al. [18] focused on heart disease prediction through the application of nu-
merous algorithms, including KNNs, LR, and RF. Their research explores the utilization of
these algorithms to enhance the accuracy of heart disease risk assessment and prediction.
By leveraging advanced data analytics and machine learning techniques, the study aims to
contribute to the field of cardiovascular medicine and improve the effectiveness of heart
disease prediction, potentially leading to better patient care.

261

Algorithms 2024, 17, 34

Sarra et al. [19] reported on a study that used machine learning and statistical analysis
to increase the precision of heart disease prediction. They chose the most important
candidate features from a list of candidate features using the two statistical models. On the
basis of the chosen features, they then applied a support vector machine to create prediction
models. According to the findings, the two statistical models and the SVM combination
had the highest level of success in predicting heart disease.

Aliyar Vellameeran and Brindha [20] introduced a new type of deep belief network
(DBN) for diagnosing heart disease utilizing IoT wearable medical devices that was sup-
ported with optimal feature selection. The main objective of the study was to train the
DBN model by analyzing and selecting the most important features from a big dataset.
The proposed method was evaluated using actual data gathered from wearable medical
devices connected to the Internet of Things, and it has shown promising results in correctly
identifying heart disease.

2.2. Ensemble Learning Approaches

In the case of ensemble learning models, Latha and Jeeva [21] examined the effective-
ness of several machine learning techniques, including support vector machines, decision
trees, and random forests. They contrasted the distinct methods with an ensemble method
that brought these models together. The results showed that the ensemble method out-
performed the individual algorithms in terms of prediction accuracy, sensitivity, and
specificity. The study also emphasized the importance of feature selection in raising the
model’s accuracy.

Ali et al. [22] have innovated a smart healthcare monitoring system designed to
integrate multiple clinical data sources for accurate heart disease prediction. This system
employs a combination of deep learning models, outperforming traditional methods in
terms of accuracy. A standout feature of this system is its real-time patient data monitoring
capability, facilitating timely intervention and heart disease prevention. By incorporating
ECG readings, blood pressure, body temperature, and other pertinent clinical factors, the
system provides precise cardiac illness prognosis.

Shorewala [23] delved into the realm of coronary heart disease early detection, with
a specific focus on harnessing the potential of ensemble methods. They pinpointed the
most effective approach for early disease detection by rigorously analyzing a spectrum
of models and algorithms, including DT, RF, SVM, KNNs, and artificial neural networks
(ANNs). The results underscore the superiority of ensemble approaches, which seamlessly
integrate multiple algorithms, yielding the highest accuracy in disease prediction. This
research highlights the significance of ensemble techniques in enhancing early detection
capabilities for coronary heart disease.

Ghasemi Darehnaei et al. [24] introduced an approach known as swarm intelligence
ensemble deep transfer learning (SI-EDTL), designed for the task of multiple vehicle
detection in images captured by unmanned aerial vehicles (UAVs). This method combines
the power of swarm intelligence algorithms and deep transfer learning to enhance the
accuracy of vehicle detection in UAV imagery. The research demonstrated the effectiveness
of SI-EDTL, offering a solution for the challenging task of detecting multiple vehicles
in aerial images, which has significant applications in fields such as surveillance and
autonomous navigation.

Shokouhifar et al. [25] have presented a novel approach for accurately measuring
arm volume in patients with lymphedema. This method utilized a three-stage ensemble
deep learning framework empowered by swarm intelligence techniques. By combining
the power of deep learning and swarm intelligence, the research aimed to enhance the
precision of arm volume measurement, which is crucial in the diagnosis and management
of lymphedema. The proposed model demonstrated promising results, showcasing its
potential to improve healthcare outcomes for individuals with lymphedema by providing
more accurate and reliable measurements of arm volume.

262

Algorithms 2024, 17, 34

2.3. Feature Selection Algorithms

There are also various feature selection techniques applied for the enhancement of
prediction accuracy in heart diseases. For example, Nagarajan et al. [26] introduce a feature
selection and classification model tailored for the prediction of heart disease. The research
explores advanced techniques for selecting relevant features and enhancing the accuracy of
heart disease prediction. Their results showed that this technique can efficiently improve the
effectiveness of early detection and risk assessment for heart disease, potentially benefiting
both patients and healthcare providers.

Al-Yarimi et al. [27] presented a heart disease prediction model using supervised
learning techniques. The focus of their study was on feature optimization, where they
employ discrete weights to enhance the accuracy of heart disease prediction models. By
selecting and assigning weights to relevant features, the research aims to improve the
efficiency and precision of predictive models in diagnosing heart disease.

Ahmad et al. [28] conducted a comparative investigation on the optimal medical
diagnosis of human heart disease using machine learning techniques. They specifically
examined the impact of sequential feature selection, comparing its inclusion with conven-
tional machine learning approaches that do not employ this feature selection method. The
research aimed to enhance the efficiency and accuracy of heart disease diagnosis through
the identification of the most relevant features. They provided some insights into the utility
of sequential feature selection in improving the performance of machine learning-based
heart disease diagnostic models.

Pathan et al. [29] proposed an analysis to assess the influence of feature selection on
the accuracy of heart disease prediction. The study specifically focused on understanding
how different feature selection techniques could enhance or affect the accuracy of predictive
models for heart disease. By investigating the impact of feature selection, the research
aimed to optimize the heart disease prediction model.

Zhang et al. [30] developed a heart disease prediction model that combines feature
selection methods with deep neural networks. The research focused on optimizing the
feature selection process to enhance the accuracy of heart disease prediction. By utilizing
deep neural networks, they achieved more efficient results for diagnosing heart disease,
which resulted in the development of diagnostic tools for heart disease diagnosis.

2.4. Our Contributions Compared with the Literature

This paper addresses a significant gap in the existing literature by introducing an
innovative EHMFFL algorithm for heart disease diagnosis using tabular data. The EHMFFL
approach stands out by seamlessly integrating ensemble learning and feature fusion into
a comprehensive framework. The EHMFFL algorithm not only leverages an ensemble
of base learners, including SVM, KNNs, LR, RF, NB, DT, and XGBoost techniques, but it
also combines the advantages of heuristic–metaheuristic approaches for the selection of
a specific feature subset for each base learner within the ensemble learning model. The
hybridization of the PCC as a heuristic knowledge source with the metaheuristic-driven
GWO sets our combined PCC–GWO feature selection algorithm apart.

3. Data Gathering

In our analysis, we utilize two well-established datasets on cardiac illnesses sourced
from the University of California’s Irvine Machine Learning Repository, specifically the
Cleveland and Statlog datasets [31,32]. Table 1 details the attributes common to both
datasets, with the final attribute serving as an indicator of a person’s heart disease status.
To gain deeper insights into the feature distribution, we present Figures 1 and 2, which illus-
trate the relationship between the maximum heart rate and age, as well as the distribution
of the remaining 12 features, respectively.

263

Algorithms 2024, 17, 34

Table 1. Description of the attributes in the datasets.

Feature Description Type Values

Age Age of the patients Numeric Years
Sex Gender of the patients Categorial M, F
Ca Number of major vessels Categorial 0–4
Chol Serum cholesterol Numeric mg/dL
Exang Exercise induced angina Categorial Yes = 1, No = 0
Cp Chest pain type Categorial Male = 1, Female = 0
Oldpeak ST depression induced by exercise relative to rest Numeric 0–6.2
Fbs Fasting blood sugar Categorial mg/dL
Restecg Resting electrocardiographic Categorial 0, 1, 2
Thal Normal; Fixed defect; Reversible defect Categorial 0, 1, 2, 3
Thalach Maximum heart rate achieved Numeric 71–202
Slope Slope of the peak exercise ST segment Categorial 0, 1, 2
Trestbps Resting blood pressure Numeric 94–200
Num Heart disease status Categorial Yes/No

Figure 1. Maximum heart rate versus age.

The Cleveland dataset comprises medical records from individuals who underwent
heart disease evaluations at the Cleveland Clinic Foundation in the late 1980s, containing
303 instances, each representing a patient, and encompassing 13 features, including critical
factors like age, gender, blood pressure, cholesterol level, chest pain presence, and results
from various medical tests. This dataset has played a pivotal role in the development and
testing of machine learning algorithms aimed at predicting cardiac disease.

The Statlog dataset, part of a dataset collection, consists of 270 instances (patients) with
13 attributes, including age, gender, blood pressure, cholesterol, fasting blood sugar, and
various electrocardiography (ECG) and exercise stress test readings. Originally sourced
from the Cleveland Clinic Foundation, this dataset has been widely employed in studies
related to machine learning algorithms for medical diagnosis. The primary objective is to
enable physicians to make more informed treatment decisions by accurately identifying
patients based on their feature values.

264

Algorithms 2024, 17, 34

Figure 2. Distribution of all the features.

265

Algorithms 2024, 17, 34

4. Proposed EHMFFL Algorithm

The proposed EHMFFL algorithm represents a heterogeneous ensemble learning
framework, featuring seven base learners, namely SVM, KNNs, LR, RF, NB, DT, and
XGBoost techniques. To optimize the performance of each machine learning model, a
combined heuristic–metaheuristic algorithm known as the PCC–GWO is performed on
each base learner, separately. Initially, the PCC method is employed to calculate the feature
importance scores, serving as critical heuristic knowledge for guiding the GWO in selecting
the most effective features for the heart disease diagnosis. Subsequently, the tuned machine
learning models (SVM, KNNs, LR, RF, NB, DT, and XGBoost) are employed to create
the final ensemble learning model. The subsequent sections provide a detailed account
of the feature selection process using the PCC–GWO algorithm and the comprehensive
classification process with the tuned EHMFFL model.

4.1. Feature Selection Using PCC–GWO

Feature selection is a crucial step in machine learning, particularly when dealing with
datasets with high dimensionality. Its primary objective is to streamline the dataset by
reducing its dimensionality, thereby identifying the most relevant features that contribute
significantly to predictive accuracy, while discarding irrelevant or noisy attributes. This
process not only enhances computational efficiency, but also minimizes redundancy among
the selected features. Feature selection is essential in various domains, including text
categorization, data mining, pattern recognition, and signal processing [33], where it aids
in improving model performance by focusing on the most informative attributes and
discarding superfluous ones.

Feature selection poses a challenging problem, acknowledged as non-deterministic
polynomial hard (NP-hard) [34], making exact (exhaustive) search methods impractical
due to their computational complexity and time requirements. Therefore, heuristic and
metaheuristic algorithms and their hybridizations become essential in this context [35].
When crafting a metaheuristic algorithm for an NP-hard problem, a delicate balance
between exploration and exploitation must be carefully maintained to optimize search
algorithms [36]. The GWO is recognized in the literature for its adeptness in striking
the right equilibrium between exploration and exploitation. Simultaneously, the PCC
stands out as a swift heuristic method for identifying and eliminating highly correlated
features [37]. Hence, we have chosen to employ PCC and GWO as the heuristic and
metaheuristic components of our integrated PCC–GWO feature selection algorithm. This
strategy aims to harness the advantages of both methods concurrently, combining the speed
of heuristic-based PCC with the precision of metaheuristic-driven GWO to enhance the
feature selection process.

Algorithm 1 outlines the PCC–GWO feature selection approach, offering a hybrid
method for selecting an optimal feature subset for each base learner within the ensemble
learning model. Initially, the algorithm employs the PCC method to compute an impor-
tance score for each feature. Subsequently, these scores serve as heuristic knowledge to
guide the GWO during the search process. To achieve this, the importance scores are
normalized within the range of [0, 1], and a roulette wheel selection method is utilized to
choose features for each grey wolf within the initial population generation procedure. The
subsequent sections delve into the specifics of the PCC–GWO algorithm, encompassing
both the PCC and GWO phases, facilitating a comprehensive understanding of the feature
selection process.

266

Algorithms 2024, 17, 34

Algorithm 1. Feature selection using PCC–GWO algorithm.

Input:

Full heart disease dataset
Output:

Optimal Feature Subset for Machine Learning Model
Heuristic Feature Selection: Calculation of Importance Scores using PCC:

1. For (i = 1: Number of Features)
2. Calculation of the correlation of feature i with the class: CCi
3. Calculation of the correlation of feature i in relation to the other features: CFi
4. Calculation of the PCC importance score of feature i: ISi = CCi/CFi
5. End For

Metaheuristic Feature Selection: Final Feature Subset Selection using GWO:

1. t = 0 (Initial Population)
2. For (s = 1: PopSize)
3. for (i = 1: Number of Features)
4. Calculation of the probability of feature i in solution s using Equation (3)
5. Deciding to select or decline feature i using roulette wheel selection
6. end for

7. Calculation of the fitness of each grey wolf s using Equation (4)
8. End For

9. Considering the best solution as alpha wolf: Xα

10. Considering the second best solution as beta wolf: Xβ

11. Considering the third best solution as delta wolf: Xδ

12. For (t = 1: MaxIter)

% Population Updating

13. for each grey wolf s
14. Updating a, Ai, and Ci, rAi, and rCi.
15. Calculation of updating factor towards alpha grey wolf using Equation (13)
16. Calculation of updating factor towards beta grey wolf using Equation (14)
17. Calculation of updating factor towards delta grey wolf using Equation (15)
18. if (|Ai| ≥ 1)
19. Updating the wolf s using search for prey by Equation (16)
20. elseif (|Ai| < 1)
21. Updating the wolf s using attacking prey by Equation (16)
22. end if

23. end for

% Fitness Evaluation

24. for (s = 1: PopSize)
25. Calculation of the fitness of each grey wolf s using Equation (4)
26. End for

27. Updating the best solution as alpha wolf: Xα

28. Updating the second best solution as beta wolf: Xβ

29. Updating the third best solution as delta wolf: Xδ

30. End For

Return Xα as the optimized feature subset

4.1.1. Calculating the Importance Score of Features Using PCC

The PCC is a measure of the degree and direction of a relationship between two
variables [38]. The PCC values vary from −1 to +1. A value of zero shows that there is no
correlation between the two variables, while values near −1 or +1 suggest that there is a
strong association between the two variables. The PCC is determined by:

rx,y =
∑ (xi − x)(yi − y)√

∑ (xi − x)2∑ (yi − y)2
, (1)

267

Algorithms 2024, 17, 34

where x and y are the means of the two variables x and y, respectively. Moreover, xi denotes
the i-th value of the variable x, and yi denotes the i-th value of the variable y.

By computing the correlation coefficient between each feature and the target variable,
the method identifies the most informative features for an accurate classification. Then,
by considering the correlation of each feature with respect to all the other features in the
dataset, the method identifies redundant or highly correlated features that may not provide
much additional information. The selection status of each feature is then determined based
on a threshold value derived from its correlation coefficients. Finally, the GWO algorithm is
used to repeat the selection process multiple times, and the feature subset with the highest
fitness value is selected as the final solution. This method provides an effective way to
identify and select the most valuable features in high-dimensional datasets, leading to
improved predictive accuracy and better performance of machine learning models. The
overall operation of PCC can be summarized as follows:

(1) The correlation coefficient of each feature i with the class is computed as CCi;
(2) The correlation coefficient of each feature i in relation to the other features is calculated

as CFi;
(3) The importance score of each feature i can be calculated as ISi = CCi/CFi.

Concerning the PCC, if the value of ISi is greater than a specific threshold TH (ISi > TH),
the feature i is selected; otherwise, it is not chosen. However, in the proposed combined
PCC–GWO algorithm, the importance scores obtained by the PCC are used to guide the
search process of the GWO for achieving a better level of convergence.

4.1.2. Feature Subset Selection Using GWO

The GWO was originally introduced by Mirjalili et al. [39]. It is based on the hunting
behavior and social order of grey wolves found in nature. The social hierarchy of grey
wolves is described by four types of wolves, which are the following:

• Alpha (α): the finest solution;
• Beta (β): the second best solution;
• Delta (δ): the third best solution;
• Omega (ω): the rest of the grey wolves.

Similar to other metaheuristic algorithms, the GWO initiates its search procedure
by creating an initial population of viable solutions. Subsequently, it undergoes itera-
tive phases, comprising a fitness assessment and population adaptation, until it fulfills a
predefined stopping condition, such as reaching a specific number of iterations.

Representation of Feasible Solutions: The encoding of a feasible solution X (i.e., a grey
wolf) is depicted in Figure 3. If the quantity of the i-th variable is equal to 1, the feature i is
selected by the grey wolf; otherwise, it is not picked. Consequently, a value of 1 is used to
represent the feature subset’s scope, which is expressed as follows:

X(i) =
{

1 i f f eature i is selected
0 otherwise

. (2)

Figure 3. Representation of a feasible solution.

Initial Population Generation: As mentioned above, the original GWO algorithm starts
its search process with a random population of grey wolves. However, in the proposed
combined PCC–GWO algorithm, the importance scores of the features obtained by the PCC

268

Algorithms 2024, 17, 34

are utilized to generate a set of near-optimal initial solutions for the GWO. To achieve this
purpose, at first the normalized importance score for each feature i is calculated and, then,
the probability of feature i to be selected in each solution (grey wolf) s can be expressed
using the roulette wheel selection method, as follows:

NISi =
ISi −min(ISs)

max(ISs)−min(ISs)
. (3)

Fitness Evaluation: The original dataset is separated into train and test datasets. The
train dataset is considered for the optimization procedure via the GWO by means of K-
fold cross-validation. However, the test dataset is unseen for the final evaluation of the
generalizability of the trained model. The following is the fitness function of the GWO to
assign the quality of each solution, which aims to be maximized:

maximize Fitness =
(

μ× accuracy + (1− μ)× Number o f all f eatures
Number o f selected f eatures

)
, (4)

where accuracy is the total accuracy of the base learner using the validation dataset, and μ is
a parameter (0 < μ < 1) that determines the relative importance of accuracy and the number
of selected features on the fitness value. The higher μ, the higher impact of accuracy on the
fitness value. We consider μ = 0.99 to ensure that high-accuracy solutions are achieved,
while the number of features in the second rank is minimized.

Population Updating: At every iteration of the GWO, after the fitness evaluation of all
the wolves, the first three best wolves, α, β, and δ, are in charge of leading the optimizer’s
hunting process, while ω simply obeys and follows them. Encircling, hunting, and attacking
are the three well-organized steps that the GWO does during the optimization process. The
following equations were used to determine the encircling process:

→
D =

∣∣∣∣→C · →Xp(t)−
→
X(t)

∣∣∣∣, (5)

→
X(t + 1) =

→
Xp(t) +

→
A · →D , (6)

where t indicates the number of iterations, X represents the location vector of the wolf,
and Xp represents the location vector of the prey. Moreover, A and C represent the vector
coefficients expressed as follows:

→
A = 2

→
a · →r 1 −→

a , (7)

→
C = 2 · →r 2 , (8)

Where [0, 1] is a random range for the vectors r1 and r2, and the elements within the
vector a start at 2 and fall linearly to 0 during the execution of the algorithm, as follows:

→
a = 2− t · 2

Maxlter
, (9)

where MaxIter denotes the maximum number of iterations.
The GWO keeps the top three solutions (α, β, and δ) obtained so far and compels ω to

modify their placements in order to follow them. As a result, a series of equations that run
for each search candidate is used to simulate the GWO hunting process. To achieve this, at
first, the parameters of D for alpha, beta, and delta wolves are expressed as follows:

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣ , (10)

269

Algorithms 2024, 17, 34

→
Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣ , (11)

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣ , (12)

Then, the moving vectors of the grey wolf X towards the alpha, beta, and delta wolves
can be calculated as Equations (12)–(14), respectively. Finally, the movement of the grey
wolf X is obtained through the aggregation of the three moving vectors according to
Equation (15).

→
X1 =

→
Xα − A1 · (

→
Dα) , (13)

→
X2 =

→
Xβ − A2 · (

→
Dβ) , (14)

→
X3 =

→
Xδ − A3 · (

→
Dδ) , (15)

→
X(t + 1) =

→
X1 +

→
X2 +

→
X3

3
. (16)

4.2. Ensemble Learning Model

Ensemble learning is a technique for improving the performance of a classifier. It is
an efficient classification strategy that combines a weak classifier with a strong classifier
to improve the effectiveness of the weak learner [40]. The proposed EHMFFL algorithm
utilizes the ensemble technique to improve the accuracy of the SVM, KNNs, LR, RF,
NB, DT, and XGBoost base learners for diagnosing heart disease. When compared to a
single classification, the goal of integrating numerous learning models is to achieve better
performance with more robustness. Figure 4 illustrates how ensemble learning is used to
improve heart disease diagnosis using these seven base learners.

Figure 4. The proposed ensemble learning model.

Finally, using a weighted averaging method, we predict heart disease using each
dataset. The weights of the different base learners are adjusted so that each learner with

270

Algorithms 2024, 17, 34

a higher accuracy has a higher weight in the ensemble learning model. The algorithm
involves separately predicting each class and, then, using a weighted function to combine
the outcomes. In contrast to hard voting with an equal chance for each base learner,
each prediction receives a weight, and the final results are combined by computing the
weighted average. More specifically, the weight of base learner b is proportional to its
normalized accuracy using the validation dataset against all the base learners within the
ensemble model.

5. Evaluation and Findings

This section offers a comprehensive view of the performance metrics and results
obtained in our study. All simulations were meticulously conducted on a PC, featuring an
Intel i7 CPU with 2.6 GHz and 16 GB of RAM, and executed on MATLAB R2022b within
the Windows 10 environment. Table 2 provides a snapshot of the parameter set applied to
the GWO algorithm, facilitating a clearer understanding of the experimental setup. In the
following, we evaluate the performance of the proposed EHMFFL algorithm against the
seven base learners, as well as the state-of-the-art techniques.

Table 2. Parameter settings for the GWO.

Parameter Value

Number of grey wolves (PopSize) 30
Number of iterations (MaxIter) 100

Search domain {0, 1}
Solution dimension No. Features

5.1. Performance Metrics

In this paper, each dataset was split into 80% and 20% to train and test the datasets. The
train dataset (using K-fold cross-validation with K = 10) was applied to optimize the model,
while the test dataset was used to assess the generalizability of the tuned model on new
unseen data samples. Considering the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN), we utilized different performance measures to evaluate the
performance of the different techniques:

• True positive (TP): the number of correctly identified positive instances inside the
desired class;

• True negative (TN): the number of correctly identified negative instances outside the
desired class;

• False positive (FP): the number of incorrectly predicted positive samples when the
actual target was negative;

• False negative (FN): the number of incorrectly predicted negative samples when the
actual target was positive.

Accuracy: Occurs when the proportion of occurrences correctly classified by the
classification learner equals the proportion of correctly predicted samples to the total
number of examples, which can be calculated as follow:

Accuracy =
TP + TN

TP + FP + TN + FN
. (17)

Precision: It is one of the performance indicators that will be used to determine how
many correct positive forecasts were made. So, precision measures the minority class’s
accuracy; then, the ratio of correctly predicted positive instances divided by the total
number of positive cases predicted is utilized to compute it, using:

Precision =
TP

TP + FP
. (18)

271

Algorithms 2024, 17, 34

Recall: It is a measurement that quantifies the proportion of actual positive predictions
correctly identified out of all potential positive predictions. Unlike precision, which consid-
ers the correctly predicted positives relative to all positive predictions, recall focuses on the
positives that were overlooked. Essentially, it signifies the extent to which the positive class
is comprehensively captured, which is calculated as follows:

Recall =
TP

TP + FN
. (19)

F1 score: In an ideal classifier, we aim for both accuracy and recall to be maximized,
equating to values of one. This optimal scenario indicates that both the FP and FN are
reduced to zero, highlighting the classifier’s ability to make accurate and comprehensive
predictions; ultimately, minimizing errors in both positive and negative classifications. As
a result, we need a statistic that takes precision and recall into account. The F1 score is a
precision and recall-based measure that is defined as follows:

F1−score =
2× Precision× Recall

Precision + Recall
. (20)

Specificity: It is the proportion of true negative samples to all actual negative samples,
which indicates the ratio of the projected presence to the total samples with heart disease
presence. The specificity is expressed as follows:

Specificity =
TN

TN + FP
. (21)

5.2. Experimental Findings

As mentioned above, 80% of each dataset were used for the training of the proposed
model, while the remaining 20% of the data samples were kept unseen for the validation of
the tuned model. More specifically, 61 and 54 data samples were used to test the proposed
model and compare it with the other techniques using the Cleveland and Statlog datasets,
respectively. The obtained confusion matrix by the proposed EHMFFL algorithm using
both datasets can be seen in Figure 5.

Figure 5. Confusion matrix of the proposed EHMFFL algorithm using the Cleveland and Stat-
log datasets.

To find the effectiveness of the proposed ensemble EHMFFL algorithm against the base
learners, a comparison of various performance measures using the test data samples from
the Cleveland and Statlog datasets is provided in Tables 3 and 4, respectively. While
some algorithms may display higher performance than the EHMFFL algorithm on a
measure, the proposed method outperforms all the techniques on average for both datasets.

272

Algorithms 2024, 17, 34

Figures 5 and 6 show the accuracy of the EHMFFL algorithm using various methods. The
EHMFFL algorithm surpasses all other methods, as illustrated in Figures 6 and 7.

Table 3. Comparison of the EHMFFL algorithm with existing methods using the Cleveland dataset.

Algorithms Accuracy Precision Recall Specificity F1 Score

LR 85.2 90.3 82.4 88.9 86.2
DT 82 84.8 82.4 81.5 83.6
RF 90.2 96.7 85.3 96.3 90.6
NB 85.2 87.9 85.3 85.2 86.6
SVM 86.9 88.2 88.2 85.2 88.2
KNNs 83.6 87.5 82.4 85.2 84.8
XGBoost 88.5 96.6 82.4 96.3 88.9
EHMFFL (Proposed) 91.8 91.4 94.1 88.9 92.8

Table 4. Comparison of the EHMFFL algorithm with existing methods using the Statlog dataset.

Algorithms Accuracy Precision Recall Specificity F1 Score

LR 79.6 80 82.8 76 81.4
DT 81.5 85.2 79.3 84 82.1
RF 84.4 86.2 85.5 76 87.4
NB 77.8 79.3 79.3 76 79.3
SVM 83.3 81.3 89.7 76 85.2
KNNs 80.8 84.5 78.9 83 81.6
XGBoost 85.2 88.9 82.8 88 85.7
EHMFFL (Proposed) 88.9 92.6 86.2 92 89.3

70

75

80

85

90

95

100

LR DT RF NB SVM KNNs XGBoost EHMFFL

P
er

ce
nt

ag
e

(%
)

Precision Recall Accuracy

Figure 6. Comparison of the results of different methods using the Cleveland dataset in terms of
precision, recall, and accuracy.

According to the different performance metrics for various classification techniques
using the Cleveland dataset, the EHMFFL algorithm outperforms all the base learners with
an accuracy of 91.8%, a precision of 91.4%, a recall of 94.1%, an F1 score of 92.8%, and a
specificity of 88.9. This shows that the EHMFFL algorithm is the most effective and efficient
method for the supplied dataset. Other algorithms also perform well in some cases, with
accuracies ranging from 82% to 90.2%. When comparing the other algorithms, RF is the
best base learner with an accuracy of 90.2% and, then, XGBoost and SVM with accuracies of

273

Algorithms 2024, 17, 34

88.5% and 86.9% are in the next in order. Also, based on the results in Table 4, the EHMFFL
algorithm exceeds all other algorithms with an accuracy score of 88.9%. After the EHMFFL
algorithm, XGBoost, RF, and SVM, obtained better results than the other base learners with
accuracy scores of 85.2%, 84.4%, and 83.3%, indicating that these three methods are the
most accurate base learners, the same as observed for the Cleveland dataset. The results
show that the EHMFFL algorithm again shines out in terms of all the performance metrics,
on average.

70

75

80

85

90

95

LR DT RF NB SVM KNNs XGBoost EHMFFL

P
er

ce
nt

ag
e

(%
)

Precision Recall Accuracy

Figure 7. Comparison of the results of different methods using the Statlog dataset in terms of
precision, recall, and accuracy.

5.2.1. Running Time Analysis

To assess the trade-off between enhanced performance and time-consuming cost in
the proposed EHMFFL algorithm, we conducted a comprehensive analysis comparing
its running time with the seven base learners and an ensemble model utilizing all the
original features for each base learner, named “Ensemble” in Table 5. Our findings, detailed
in Table 5, delineate the offline training/tuning phase and the online test phase time
comparisons for both datasets. The offline time for each base learner signifies its individual
training time, while for the Ensemble model, it represents the total training duration of the
seven base learners within the model. Conversely, in our EHMFFL model, this duration
encapsulates the time for feature selection via the PCC–GWO algorithm and training the
base learners with the reduced feature subsets.

274

Algorithms 2024, 17, 34

Table 5. Comparison of the running time (in seconds) of the different techniques.

Algorithms
Offline Training/Tuning Phase Online Test Phase

Cleveland Dataset Statlog Dataset Cleveland Dataset Statlog Dataset

LR 0.01 0.01 0.02 0.02
DT 0.13 0.12 0.03 0.03
RF 0.74 0.7 0.08 0.07
NB 0.12 0.14 0.04 0.04
SVM 0.21 0.23 0.06 0.07
KNNs 0.08 0.07 0.03 0.02
XGBoost 0.86 0.83 0.1 0.09
Ensemble 2.3 2.2 0.17 0.16
EHMFFL
(Proposed) 142 137 0.13 0.13

Analysis of Running Time in Offline Training/Tuning Phase: Table 5 indicates that the
Ensemble model, leveraging all the original features for each base learner, approximately
accumulates the total time consumption of the training phase for individual base learners,
given their sequential training approach. However, the huge increase in the running time
of the EHMFFL algorithm, compared to the Ensemble model, primarily stems from the
implementation of the time-intensive PCC–GWO feature selection algorithm for selecting
an appropriate feature subset for each base learner. Notably, these processes are confined
to the offline model’s tuning and do not affect the test phase time.

Analysis of Running Time in Online Test Phase: In the online test phase, both the
Ensemble and EHMFFL models exhibit slightly higher time consumption than the single
base learners. As the test phase operations occur in parallel, the cumulative time of the
base learners is not entirely additive for these models. While the Ensemble model shows
around a 70% increase compared to the most time-consuming base learner (i.e., XGBoost),
the EHMFFL model, owing to the PCC–GWO feature selection, presents reduced response
times for the base learners compared to the Ensemble model. As a result, the online time of
the EHMFFL algorithm exhibits a 24% and 19% reduction when using the Cleveland and
Statlog datasets, respectively.

Despite the significant increase in the offline running time of the EHMFFL model
caused by the combined heuristic–metaheuristic PCC–GWO feature selection algorithm,
the implementation of PCC–GWO yields a reduction in the online processing time when
compared to the Ensemble model encompassing all the original features.

5.2.2. Analysis of the Correlation Heat Map (CHM)

This section presents the CHM, illustrating the relationships between different variables
within the cardiovascular data for both the Cleveland and Statlog datasets. Figures 8 and 9
display these CHMs, where each column signifies a specific variable, and each row visual-
izes its correlations with other variables. The numerical values within the tables convey
the strength and direction of these correlations, which can span from −1, indicating a
perfect inverse correlation, to 1, representing a perfect positive correlation. This visual
representation offers valuable insights into the interplay among the dataset variables and
their potential impacts on heart disease prediction.

In Figure 8, the CHM of the Cleveland dataset illustrates the comparisons among
various variables. These variables include age, gender, blood pressure (trestbps), cholesterol
level (chol), fasting blood sugar (fbs), electrocardiogram results (restecg), maximum heart
rate achieved (thalach), exercise-induced angina (exang), ST depression induced by exercise
relative to rest (oldpeak), the number of major vessels colored by fluoroscopy (ca), type
of chest pain (cp), and slope of the peak exercise ST segment (slope). Additionally, the
presence of two types of thalassemia, indicated as thal and thal2, are considered. The values
within the matrix fall within the −1 to 1 range, where positive values signify a positive
correlation, negative values indicate a negative correlation, and a value of 0 denotes no

275

Algorithms 2024, 17, 34

discernible correlation between the variables. Analysis of the CHM for the Cleveland
dataset reveals the following insights:

• The first section of the matrix compares age, sex, and blood pressure. The correla-
tion between age and blood pressure is weakly positive (0.28), while the correlation
between sex and blood pressure is weakly negative (−0.098);

• The second section compares cholesterol and blood sugar. Cholesterol and blood sugar
have a weakly negative correlation (−0.057);

• The third section compares restecg, thalach, exang, and oldpeak. The resting elec-
trocardiogram results (restecg) and exercise-induced angina (exang) have a weakly
positive correlation (0.14), while the maximum heart rate achieved during exercise
(thalach) has a weakly negative correlation (−0.044) with ST depression induced by
exercise relative to rest (oldpeak);

• The fourth section compares the number of major vessels colored by fluoroscopy (ca)
with the other variables. There is a weakly positive correlation between ca and age
(0.12), and a weakly positive correlation between ca and cholesterol (0.097);

• The fifth section compares the different types of chest pain (cp) and their correlations
with the other variables. Chest pain type 0 (cp_0) has a weakly positive correlation
with ca (0.14), while chest pain type 1 (cp_1) has a weakly negative correlation with
thal2 (−0.15). Chest pain type 2 (cp_2) has a weakly positive correlation with fbs
(0.084), and chest pain type 3 (cp_3) has a weakly positive correlation with age (0.048);

• The final section of the matrix compares the slope of the peak exercise ST segment
(slope) and the two types of thalassemia (thal and thal2). There is a weakly positive
correlation between slope and thal2 (0.18), and a weakly negative correlation between
slope and thal (−0.42).

Figure 8. CHM analysis for the Cleveland dataset.

Also, according to the results of the CHM analysis for the Statlog dataset in Figure 9, it
can be understood that:

• The values in the matrix represent the correlations between each pair of variables.
A positive value indicates a positive correlation (as one variable increases, so does

276

Algorithms 2024, 17, 34

the other), while a negative value indicates a negative correlation (as one variable
increases, the other decreases);

• For example, we can see that age is highly negatively correlated with itself (correlation
coefficient of−1.00), since it is impossible for someone’s age to be negatively correlated
with their own age. Sex is negatively correlated with BP and positively correlated with
cholesterol levels. We can also see that the ST depression is positively correlated with
exercise-induced angina, thallium stress test results, and chest pain types 3 and 4;

• Some notable correlations include a positive correlation between age and BP (r = 0.27),
a negative correlation between age and max HR (r = −0.4), and a positive correlation
between chest pain type 3 and ST depression (r = 0.35). There also appear to be some
negative correlations between certain variables, such as sex and chest pain type 3
(r = −0.26) and slope of ST 3 and thal2 (r = −0.24).

Figure 9. CHM analysis for the Statlog dataset.

5.2.3. Analysis of the Receiver Operating Characteristic (ROC)

In Figures 10 and 11, we present the ROC curves, which illustrate the performance of
various heart disease prediction models, encompassing the seven base learners within our
ensemble learning model, the EHMFFL algorithm as a whole, and random classification.
These curves showcase the trade-off between sensitivity and specificity at different decision
thresholds. To gauge the diagnostic value of these tests, we calculate the area under the
ROC curve (AUC), where a larger AUC signifies a more effective test. According to the
obtained results, the EHMFFL algorithm outperforms all the other compared techniques,
achieving AUC values of 0.95 for the Cleveland dataset and 0.88 for the Statlog dataset,
underscoring its superior predictive capability in heart disease diagnosis.

277

Algorithms 2024, 17, 34

Figure 10. Analyzing the ROC curves of the different techniques using the Cleveland dataset.

5.3. Comparison with Existing Techniques

In this section, we conduct a comparative analysis of the EHMFFL algorithm against
three existing heart disease diagnosis methods. Since the EHMFFL algorithm utilizes a
heuristic–metaheuristic-driven feature selection algorithm (i.e., PCC–GWO) embedded in
an ensemble learning model, we considered the machine learning approach based on LR by
Jindal et al. (2021) [18] (referred to as ML), an ensemble of different machine learning mod-
els, including DT, RF, SVM, KNNs, and ANN, developed by Shorewala (2021) [23] (referred
to as EL), and a sequential heuristic feature selection method by Ahmad et al. (2022) [28]
(referred to as FS). We assess the precision, recall, and accuracy of the different methods,
as depicted in Figures 12 and 13, for the Cleveland and Statlog datasets, respectively. The
results in Figure 12 indicate that the EL model outperforms the EHMFFL algorithm in
terms of recall when using the Cleveland dataset. A similar trend is observed in Figure 13
for the Statlog dataset, where the FS method excels in achieving the highest recall among
all the techniques. However, when considering overall performance and emphasizing
accuracy as the main metric, the proposed EHMFFL model demonstrates its superiority
over all the compared techniques for both datasets, underscoring its effectiveness in heart
disease diagnosis.

Figure 11. Analyzing the ROC curves of the different techniques using the Statlog dataset.

278

Algorithms 2024, 17, 34

ML [18] EL [23] FS [28] EHMFFL

Precision 90.3 86.5 91.2 91.4

Recall 82.4 94.1 91.2 94.1

Accuracy 85.2 88.5 90.2 91.8

75

78

81

84

87

90

93

96

P
E

R
C

E
N

T
A

G
E

 (
%

)

Figure 12. Comparison of the results of the EHMFFL algorithm with the existing techniques using
the Cleveland dataset.

ML [18] EL [23] FS [28] EHMFFL

Precision 80 88.9 81.3 92.6

Recall 82.8 82.8 89.7 86.2

Accuracy 79.6 85.2 83.3 88.9

70

73

76

79

82

85

88

91

94

P
E

R
C

E
N

T
A

G
E

 (
%

)

Figure 13. Comparison of the results of the EHMFFL algorithm with the existing techniques using
the Statlog dataset.

6. Conclusions

In this study, we have introduced an ensemble heuristic–metaheuristic feature fusion
learning (EHMFFL) algorithm, as a powerful tool for heart disease diagnosis using tabular
data. The EHMFFL algorithm’s first phase employed a hybrid feature selection approach,
combining heuristic-based PCC and metaheuristic-driven GWO techniques through the
innovative PCC–GWO method. This approach effectively selects the essential features for
each machine learning model, facilitating the construction of a robust predictive model
through ensemble learning. We evaluated the performance of the EHMFFL algorithm
using the Cleveland and Statlog datasets. With an accuracy rate of 91.8% for the Cleveland
dataset and 88.9% for the Statlog dataset, our method outperformed the base learners
and state-of-the-art approaches. These outcomes highlight the potential of our strategy to
elevate cardiac disease prediction accuracy and support healthcare professionals in making
more informed patient care decisions.

279

Algorithms 2024, 17, 34

In implementing the EHMFFL algorithm, the choice of classical machine learning
methods within the ensemble model was driven by their inherent benefits related to the
utilized datasets in this paper. Classical models offer superior interpretability crucial for
comprehending feature influences, especially conspicuous with straightforward attributes.
Their efficiency in handling smaller datasets, computational simplicity, and lower risk of
overfitting in scenarios with limited samples, outweigh the potential gains from deep learn-
ing techniques, particularly considering the simplicity of the provided features. However,
if we encounter larger datasets with intricate patterns, the utilization of deep learning
techniques becomes imperative. Looking ahead, expanding the application of the EHMFFL
algorithm to larger-scale datasets with complex features and more extensive sample sizes
stands as a key future endeavor. An appealing prospect is to use deep neural networks inte-
grated with metaheuristic-driven ensemble learning techniques, employing deep networks
as base learners within the ensemble model. This amalgamation holds the promise of creat-
ing resilient systems adept at deciphering intricate heart disease data streams. Additionally,
the integration of real-time patient data streams and the development of a user-friendly
interface remain pivotal avenues, promising transformative healthcare tools for timely
disease detection and proactive intervention. Furthermore, we plan to explore further
enhancements to the proposed algorithm by delving into more advanced feature selection
methods and metaheuristic algorithms, continually striving to optimize diagnostic accuracy
and efficiency in healthcare.

Author Contributions: Conceptualization, M.H. and E.M.; Data curation, M.H. and E.M.; Formal
analysis, M.S. and F.W.; Investigation, M.H. and E.M.; Methodology, M.H., E.M. and M.S.; Resources,
M.H. and E.M.; Software, M.H. and E.M.; Supervision, M.S. and F.W.; Validation, M.S. and F.W.;
Writing—original draft, M.H. and E.M.; Writing—review and editing, M.S. and F.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in the study are available from the authors and can be
shared upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Das, S.; Sharma, R.; Gourisaria, M.K.; Rautaray, S.S.; Pandey, M. Heart disease detection using core machine learning and deep
learning techniques: A comparative study. Int. J. Emerg. Technol. 2020, 11, 531–538.

2. Hasan, T.T.; Jasim, M.H.; Hashim, I.A. FPGA design and hardware implementation of heart disease diagnosis system based on
NVG-RAM classifier. In Proceedings of the 2018 3rd Scientific Conference of Electrical Engineering (SCEE), Baghdad, Iraq, 19–20
December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 33–38.

3. Rahman, A.U.; Saeed, M.; Mohammed, M.A.; Jaber, M.M.; Garcia-Zapirain, B. A novel fuzzy parameterized fuzzy hypersoft
set and riesz summability approach based decision support system for diagnosis of heart diseases. Diagnostics 2022, 12, 1546.
[CrossRef] [PubMed]

4. Javid, I.; Alsaedi AK, Z.; Ghazali, R. Enhanced accuracy of heart disease prediction using machine learning and recurrent neural
networks ensemble majority voting method. Int. J. Adv. Comput. Sci. Appl. 2020, 11. [CrossRef]

5. Muhsen, D.K.; Khairi TW, A.; Alhamza NI, A. Machine learning system using modified random forest algorithm. In Proceedings
of the Intelligent Systems and Networks (ICISN 2021), Hanoi, Vietnam, 19 March 2021; Springer: Singapore; pp. 508–515.

6. Mastoi QU, A.; Wah, T.Y.; Mohammed, M.A.; Iqbal, U.; Kadry, S.; Majumdar, A.; Thinnukool, O. Novel DERMA fusion technique
for ECG heartbeat classification. Life 2022, 12, 842. [CrossRef] [PubMed]

7. Nahar, J.; Imam, T.; Tickle, K.S.; Chen YP, P. Computational intelligence for heart disease diagnosis: A medical knowledge driven
approach. Expert Syst. Appl. 2013, 40, 96–104. [CrossRef]

8. Lee, H.G.; Noh, K.Y.; Ryu, K.H. Mining biosignal data: Coronary artery disease diagnosis using linear and nonlinear features
of HRV. In Proceedings of the Emerging Technologies in Knowledge Discovery and Data Mining: PAKDD 2007 International
Workshops, Nanjing, China, 22–25 May 2007; Revised Selected Papers 11. Springer: Berlin/Heidelberg, Germany, 2007;
pp. 218–228.

9. Sudhakar, K.; Manimekalai, D.M. Study of heart disease prediction using data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng.
2014, 4, 1157–1160.

10. Khazaee, A. Heart beat classification using particle swarm optimization. Int. J. Intell. Syst. Appl. 2013, 5, 25. [CrossRef]

280

Algorithms 2024, 17, 34

11. Xing, Y.; Wang, J.; Zhao, Z. Combination data mining methods with new medical data to predicting outcome of coronary heart
disease. In Proceedings of the 2007 International Conference on Convergence Information Technology (ICCIT 2007), Gwangju,
Republic of Korea, 21–23 November 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 868–872.

12. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
13. Schapire, R.E.; Singer, Y. Improved boosting algorithms using confidence-rated predictions. In Proceedings of the 11th Annual

Conference on Computational Learning Theory, Madison, WI, USA, 24–26 July 1998; pp. 80–91.
14. Miao, K.H.; Miao, J.H. Coronary heart disease diagnosis using deep neural networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 1–8.

[CrossRef]
15. Vijayashree, J.; Sultana, H.P. A machine learning framework for feature selection in heart disease classification using improved

particle swarm optimization with support vector machine classifier. Program. Comput. Softw. 2018, 44, 388–397. [CrossRef]
16. Waigi, D.; Choudhary, D.S.; Fulzele, D.P.; Mishra, D. Predicting the risk of heart disease using advanced machine learning

approach. Eur. J. Mol. Clin. Med 2020, 7, 1638–1645.
17. Tuli, S.; Basumatary, N.; Gill, S.S.; Kahani, M.; Arya, R.C.; Wander, G.S.; Buyya, R. HealthFog: An ensemble deep learning based

Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future
Gener. Comput. Syst. 2020, 104, 187–200. [CrossRef]

18. Jindal, H.; Agrawal, S.; Khera, R.; Jain, R.; Nagrath, P. Heart disease prediction using machine learning algorithms. IOP Conf. Ser.
Mater. Sci. Eng. 2021, 1022, 012072. [CrossRef]

19. Sarra, R.R.; Dinar, A.M.; Mohammed, M.A.; Abdulkareem, K.H. Enhanced heart disease prediction based on machine learning
and χ2 statistical optimal feature selection model. Designs 2022, 6, 87. [CrossRef]

20. Aliyar Vellameeran, F.; Brindha, T. A new variant of deep belief network assisted with optimal feature selection for heart disease
diagnosis using IoT wearable medical devices. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 387–411. [CrossRef] [PubMed]

21. Latha CB, C.; Jeeva, S.C. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques.
Inform. Med. Unlocked 2019, 16, 100203. [CrossRef]

22. Ali, F.; El-Sappagh, S.; Islam, S.R.; Kwak, D.; Ali, A.; Imran, M.; Kwak, K.S. A smart healthcare monitoring system for heart
disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion 2020, 63, 208–222. [CrossRef]

23. Shorewala, V. Early detection of coronary heart disease using ensemble techniques. Inform. Med. Unlocked 2021, 26, 100655.
[CrossRef]

24. Ghasemi Darehnaei, Z.; Shokouhifar, M.; Yazdanjouei, H.; Rastegar Fatemi SM, J. SI-EDTL: Swarm intelligence ensemble deep
transfer learning for multiple vehicle detection in UAV images. Concurr. Comput. Pract. Exp. 2022, 34, e6726. [CrossRef]

25. Shokouhifar, A.; Shokouhifar, M.; Sabbaghian, M.; Soltanian-Zadeh, H. Swarm intelligence empowered three-stage ensemble
deep learning for arm volume measurement in patients with lymphedema. Biomed. Signal Process. Control. 2023, 85, 105027.
[CrossRef]

26. Nagarajan, S.M.; Muthukumaran, V.; Murugesan, R.; Joseph, R.B.; Meram, M.; Prathik, A. Innovative feature selection and
classification model for heart disease prediction. J. Reliab. Intell. Environ. 2022, 8, 333–343. [CrossRef]

27. Al-Yarimi FA, M.; Munassar NM, A.; Bamashmos MH, M.; Ali MY, S. Feature optimization by discrete weights for heart disease
prediction using supervised learning. Soft Comput. 2021, 25, 1821–1831. [CrossRef]

28. Ahmad, G.N.; Ullah, S.; Algethami, A.; Fatima, H.; Akhter SM, H. Comparative study of optimum medical diagnosis of human
heart disease using machine learning technique with and without sequential feature selection. IEEE Access 2022, 10, 23808–23828.
[CrossRef]

29. Pathan, M.S.; Nag, A.; Pathan, M.M.; Dev, S. Analyzing the impact of feature selection on the accuracy of heart disease prediction.
Healthc. Anal. 2022, 2, 100060. [CrossRef]

30. Zhang, D.; Chen, Y.; Chen, Y.; Ye, S.; Cai, W.; Jiang, J.; Xu, Y.; Zheng, G.; Chen, M. Heart disease prediction based on the embedded
feature selection method and deep neural network. J. Healthc. Eng. 2021, 2021, 6260022. [CrossRef] [PubMed]

31. Heart Disease. UCI Machine Learning Repository. Available online: https://doi.org/10.24432/C52P4X (accessed on 1 Au-
gust 1989).

32. Statlog (Heart). UCI Machine Learning Repository. Available online: https://doi.org/10.24432/C57303 (accessed on 13 Febru-
ary 1993).

33. Jensen, R. Combining Rough and Fuzzy Sets for Feature Selection. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2005.
34. Seyyedabbasi, A. Binary Sand Cat Swarm Optimization Algorithm for Wrapper Feature Selection on Biological Data. Biomimetics

2023, 8, 310. [CrossRef] [PubMed]
35. Shokouhifar, M.; Sohrabi, M.; Rabbani, M.; Molana SM, H.; Werner, F. Sustainable Phosphorus Fertilizer Supply Chain Manage-

ment to Improve Crop Yield and P Use Efficiency Using an Ensemble Heuristic–Metaheuristic Optimization Algorithm. Agronomy
2023, 13, 565. [CrossRef]

36. Sohrabi, M.; Zandieh, M.; Shokouhifar, M. Sustainable inventory management in blood banks considering health equity using a
combined metaheuristic-based robust fuzzy stochastic programming. Socio-Econ. Plan. Sci. 2023, 86, 101462. [CrossRef]

37. Xie, W.; Li, W.; Zhang, S.; Wang, L.; Yang, J.; Zhao, D. A novel biomarker selection method combining graph neural network and
gene relationships applied to microarray data. BMC Bioinform. 2022, 23, 303. [CrossRef]

38. Pearson, K. Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 1894, 185, 71–110.
39. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]

281

Algorithms 2024, 17, 34

40. Grover, P.; Chaturvedi, K.; Zi, X.; Saxena, A.; Prakash, S.; Jan, T.; Prasad, M. Ensemble Transfer Learning for Distinguishing
Cognitively Normal and Mild Cognitive Impairment Patients Using MRI. Algorithms 2023, 16, 377. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

282

Citation: Fotakis, D.; Patsilinakos, P.;

Psaroudaki, E.; Xefteris, M. Efficient

Time-Series Clustering through

Sparse Gaussian Modeling.

Algorithms 2024, 17, 61.

https://doi.org/10.3390/

a17020061

Academic Editor: Frank Werner

Received: 24 December 2023

Revised: 24 January 2024

Accepted: 25 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Efficient Time-Series Clustering through Sparse Gaussian
Modeling

Dimitris Fotakis 1, Panagiotis Patsilinakos 1, Eleni Psaroudaki 1,* and Michalis Xefteris 2

1 School of Electrical and Computer Engineering, National Technical University of Athens,
15780 Zografou, Greece; fotakis@cs.ntua.gr (D.F.); patsilinak@mail.ntua.gr (P.P.)

2 LIP6, Sorbonne Université, CNRS, F-75005 Paris, France; michail.xefteris@lip6.fr
* Correspondence: epsaroudaki@mail.ntua.gr; Tel.: +30-210-772-1550

Abstract: In this work, we consider the problem of shape-based time-series clustering with the widely
used Dynamic Time Warping (DTW) distance. We present a novel two-stage framework based on
Sparse Gaussian Modeling. In the first stage, we apply Sparse Gaussian Process Regression and obtain
a sparse representation of each time series in the dataset with a logarithmic (in the original length
T) number of inducing data points. In the second stage, we apply k-means with DTW Barycentric
Averaging (DBA) to the sparsified dataset using a generalization of DTW, which accounts for the fact
that each inducing point serves as a representative of many original data points. The asymptotic
running time of our Sparse Time-Series Clustering framework is Ω(T2/ log2 T) times faster than the
running time of applying k-means to the original dataset because sparsification reduces the running
time of DTW from Θ(T2) to Θ(log2 T). Moreover, sparsification tends to smoothen outliers and
particularly noisy parts of the original time series. We conduct an extensive experimental evaluation
using datasets from the UCR Time-Series Classification Archive, showing that the quality of clustering
computed by our Sparse Time-Series Clustering framework is comparable to the clustering computed
by the standard k-means algorithm.

Keywords: time series; clustering; Dynamic Time Warping; sparse Gaussian processes

1. Introduction

A time series is a sequence of observations measured successively in time. Time series
are usually classified as dynamic data because their observed values evolve over time.
Typical examples of time series include financial and sales data, stock prices, weather data,
energy production and consumption data, biomedical measurements and biometrics data,
sensor data, and mobility data through GPS detectors. As the computational and data
storage capabilities increase, more (and much larger) time-series datasets become available,
and the demand for efficiently processing them and using them to support forecasting and
decision-making grows. Hence, in the last couple of decades, efficient processing of time
series has become one of the most important and intriguing tasks in modern algorithms
and data science (see, e.g., the long list of references in [1,2] for many diverse examples of
time-series applications and may different approaches to efficient time-series processing
and analysis).

Computational tasks of interest related to time series include regression and predic-
tion [3], forecasting [4], and clustering [2,5]. In this work, we focus on efficient clustering
of relatively long time series (with at least a few hundred data points, see also Table 1),
using the very popular (but also computationally demanding) Dynamic Time Warping
(DTW). Clustering time series is an important (and a daunting) computational task. On
the one hand, it can be easily applied to a wide range of contexts and settings (see, e.g.,
([2], Table 1)), due to its unsupervised nature. If successfully applied, it naturally leads to
the discovery of interesting patterns that evolve. However, time-series data are inherently

Algorithms 2024, 17, 61. https://doi.org/10.3390/a17020061 https://www.mdpi.com/journal/algorithms283

Algorithms 2024, 17, 61

high-dimensional and complex. Even determining the similarity of two time series admits
many different viewpoints (see, e.g., the very long list of dis(similarity) measures in ([2],
Tables 2 and 3)), with most dis(similarity) measures being computationally demanding.
For example, computing (or approximating) the DTW distance of two time series requires
quadratic time in their length, making it time-consuming for time series with more than a
few thousand observations.

1.1. Clustering Time Series: Approaches and Related Work

Due to its practical significance and its applications to many different fields, there is a
vast literature on efficient clustering of time series following several different approaches (e.g.,
hierarchical, density-based, grid-based, shape-based, feature-based, model-based) and using
various dis(similarity) measures (see, e.g., the long list of references in [2,5,6]). Moreover,
time-series clustering can be used as a subroutine in other data mining algorithms, such as
rule discovery and indexing (see, e.g., [7] and the references therein).

At the conceptual level, there are two main formulations for time-series clustering [5]:
correlation-based online clustering, where time series are clustered in real time based on
their correlation; and offline clustering, where a time-series dataset is partitioned into k
clusters based on a distance function that quantifies how much two time series agree with
each other. There are three main different approaches to time-series similarity, namely
shape-based, feature-based, or model-based [6]. In feature-based approaches, a selection
of static features is extracted from each time series, and similarity reflects the proximity
of the time series in the feature space. In model-based approaches, each time series is
approximated by an appropriate model (e.g., by selecting appropriate parameters for a
particular function form), and similarity reflects the proximity of the time series in the
space of the model parameters. In this work, we focus on shape-based clustering, where
the raw time series is considered, and similarity reflects how well the shapes of two time
series agree with each other.

In offline shape-based clustering, the choice of the distance function is of key impor-
tance (and comprises a major challenge). The majority of shape-based time-series clustering
methods are based on Dynamic Time Warping (DTW), where the distance of two time series
is computed with respect to an optimal alignment of their data points (see, e.g., [8–10] and
their references for the key properties and many applications of DTW). DTW is regarded as
one of the most robust and accurate distance functions for time series because, in a natural,
versatile, and robust way, DTW deals with differences in the time reference, the length,
the time scale and/or the observation frequency of the time series at hand. However, due
to the requirement for an optimal alignment of the data points, computing DTW of two
time series with length T requires O(T2) time (Regarding the computational complexity
of DTW, we refer an interested reader to [11], where a (large) constant factor nearly linear
time approximation algorithm for the closely related edit distance is presented. Moreover,
the related work section of [11] outlines a significant volume of work on the computational
complexity of computing the edit distance either exactly or approximately). Thus, DTW
becomes computationally expensive for time series with more than a few hundred data
points. There has been a significant volume of previous work aiming at computationally
efficient methods for shape-based time-series clustering with the DTW distance by man-
aging to put aside the quadratic computational burden of computing (or approximating)
DTW (see, e.g., the relevant references in [2,5,6]).

Moreover, there is previous work on sparse representation methods for time series
and computationally efficient time series clustering. An interesting approach relevant to
our work is that of Adaptive Piecewise Constant Approximation (APCA) [12]. APCA aims
to approximate a time series using a set of constant-value segments with varying lengths,
such that the total reconstruction error is minimal. The approach of Iorio et al. [13] is also
conceptually similar to ours. They model a time series using P-spline smoothers and then
cluster the functional objects, as summarized by the optimal spline coefficients, using the

284

Algorithms 2024, 17, 61

k-means algorithm and the DTW distance. Their experimental evaluation approach is also
based on the Adjusted Rand Index (ARI) of the resulting clusterings.

1.2. Contribution

In this work, following an approach conceptually similar to that of [12,13], we present
and evaluate experimentally a novel two-stage framework for shape-based time-series
clustering with the widely used Dynamic Time Warping (DTW) distance. However, instead
of constant-value segments of varying length [12] or P-spline smoothers [13], we resort to
the richer and better-behaved space of Sparse Gaussian Processes for time-series simplifica-
tion. More specifically, to mitigate the burden of DTW computation, we first use Sparse
Gaussian Process Regression (SGPR) to obtain a sparse representation of each time series in
the dataset, using a logarithmic (in the original length T) number of inducing data points.
We then apply the k-means algorithm to the sparsified time series with an appropriate
generalization of DTW. As with most previous work on the topic and for simplicity, we
focus on univariate time series in the presentation and the experimental evaluation of
our approach, with the understanding that extension to time series with d-dimensional
observations is straightforward.

As in [12,13], our key insight is to regard each time series as a noisy realization of a
functional form. To identify the function that best fits the time series at hand, we apply
regression to the space of Gaussian Processes. A Gaussian Process (GP) is a stochastic
process such that the joint distribution of every finite collection of its random variables
is a multivariate Gaussian distribution [14]. Gaussian Processes extend the notion of
multivariate Gaussian distributions to infinite dimensions (and thus, to distributions over
functions) and are fully characterized by a mean function and a covariance (or kernel)
function (see also Section 3). Building on this intuition, Gaussian Process Regression (GPR)
applies the standard Bayesian regression approach to the space of Gaussian Processes. GPR
aims to identify an optimal set of parameters for the mean function and the kernel function
from a relatively small set of observations and then use the resulting Gaussian Process to
predict the data point values at other points in time.

Gaussian Process Regression is conceptually simple and has many nice theoretical
properties (see also Section 3.3). In practice, however, GPR can only deal with regression
tasks of moderate size (with at most a few thousand data points) due to its cubic running
time. As a result, several sparse approximation methods have been proposed to extend the
practical applicability of GPR (see, e.g., [15] and the references therein). In this work, we
resort to Sparse Gaussian Process Regression (SGPR) [16]. SGPR uses a small number of
carefully selected inducing points to obtain a sparse approximation to the actual Gaussian
Process with a small number of inducing data points (see also Section 3.4 and [17]). (Sparse)
Gaussian Process Regression can potentially approximate any continuous target function,
with the use of appropriate kernel functions, see, e.g., in [17,18]. Hence, our approach does
not make use of any (implicit or explicit) assumptions on the nature of the time series.

In our Sparse Time-Series Clustering framework, we use SGPR and approximate a time
series of length T with a sparse time series consisting of Θ(log T) inducing points. Then,
we cluster the resulting sparse dataset using the k-means algorithm with a generalization
of DTW, which accounts for the fact that each inducing point serves as a representative of
many original data points (see also Section 2.2). In the implementation of k-means, we use
the DTW Barycentric Averaging (DBA) algorithm [19] to update the cluster representatives
in each iteration.

The running time of our Sparse Time-Series Clustering framework is O(NT log2 T +
INk log2 T), where the first term accounts for the time complexity of Sparse Gaussian
Process Regression with Θ(log T) inducing points and the second term accounts for the
running time of k-means with the DTW distance, running for a maximum of I iterations
when applied to N sparse time series with Θ(log T) inducing points each. The running
time of applying the k-means algorithm to the original dataset with N time series of length
T each is O(INkT2). Therefore, the asymptotic running time of our Sparse Time-Series

285

Algorithms 2024, 17, 61

Clustering framework is Θ(max{T2/ log2 T, IkT/ log2 T}) times faster than the asymptotic
running time of directly applying k-means to the original dataset. Intuitively, the improved
asymptotic running time of our framework is due to improved running time for computing
DTW from Θ(T2) in the original data to Θ(log2 T) in the sparsified data.

In addition to speeding up k-means, by computing a sparse representation of the
original data set, Sparse Gaussian Process Regression tends to smoothen outliers and
particularly noisy parts of the original time series, thus resulting in clusterings that are
more robust to noisy observations and of higher quality.

We conduct an extensive experimental evaluation of our Sparse Time-Series Clustering
framework on the datasets of the University of California (UCR) Time-Series Classification
Archive [20] (see Section 5). The main finding is that Sparse Time-Series Clustering, with a
logarithmic number of inducing points, computes clusterings with Adjusted Rand Index
(ARI, see Section 2.3) comparable to the ARI of a baseline clustering, computed by applying
the standard k-means algorithm to the original datasets (see Table 3). As for the running
time, k-means runs significantly faster when applied to the sparsified dataset (see Figure 6).
The most computationally demanding step of our framework is the modeling step, where
we apply Sparse Gaussian Process Regression. For large datasets, the total running time
of our framework is faster than applying k-means to the original dataset (see Table 5).
Moreover, there are datasets for which we did not manage to run the standard k-means
algorithm in our computational infrastructure, while our Sparse Time-Series Clustering
framework produces good quality clusterings in reasonable running time (see Table 4).
We should also note that the modeling step may run offline, once per time series, with its
sparse approximation stored for any future use, and is perfectly parallelizable.

1.3. Organization

In Section 2, we introduce the generalization of DTW used in our framework and
the Adjusted Rand Index (ARI), used to evaluate the quality of clusterings. Section 3
gives a brief introduction to Gaussian Processes, Gaussian Process Regression, and Sparse
Gaussian Process Regression. Our framework of Sparse Time-Series Clustering and its
main properties are presented in Section 4. The experimental setting and the key findings
of our experimental evaluation are presented in Section 2.3. We briefly summarize our
work and conclude with some directions for future work in Section 6.

2. Notation and Preliminaries

A univariate time series X of length T is a sequence X = ((x1, t1), (x2, t2), . . . , (xT , tT))
of pairs where each xi ∈ R is a data point and each ti ∈ R, with 0 ≤ t1 < t2 < · · · tT , is the
point in time when xi is observed.

2.1. Time-Series Clustering

Given a set X = {X1, . . . , XN} of N time series, a k-clustering of X is a partitioning of
X into k sets (or clusters) X1, . . . ,Xk ⊆ X such that similar time series are assigned to the
same set (see also ([2], Definition 1)).

In this work, we mostly focus on time series with the same number T of data points
and on shape-based clustering, where we aim to maximize the similarity of time series in the
same cluster (or to maximize the dissimilarity of time series in different clusters). Shape-
based clustering is defined with respect to a shape-based dissimilarity (or distance) function
d : X × X → R≥0, which is symmetric, i.e., d(X, Y) = d(Y, X) for all X, Y ∈ X , and
satisfies d(X, X) = 0 for all X ∈ X , but in the context of our work, may not satisfy the
triangle inequality. We say that a dissimilarity function d satisfies the triangle inequality if for
all X, Y, Z ∈ X , d(X, Z) ≤ d(X, Y) + d(Y, Z). If a dissimilarity function is symmetric, has
d(X, X) = 0 for all X ∈ X , and satisfies the triangle inequality, we say that d is a distance
function. For simplicity and clarity, we abuse the terminology and refer to dissimilarity
functions d that may not satisfy the triangle inequality as distance functions. We focus

286

Algorithms 2024, 17, 61

on the widely used Dynamic Time Warping (DTW) distance (cf. Section 2.2), which is
symmetric but does not satisfy the triangle inequality.

Given a distance function d : X × X → R≥0, a k-shape-based clustering (or k-
clustering, for brevity) is a partitioning X into k clusters X1, . . . ,Xk ⊆ X , where each
cluster Xj is associated with a representative time series Cj (which may or may not belong
to Xj), with the closest representative of each time series X ∈ Xj being Cj, i.e.,

Xj =

{
X ∈ X : d(X, Cj) = min

i∈[k]
{d(X, Ci)}

}
, (1)

such that the total clustering cost, defined as

Cost(X , k) =
k

∑
j=1

∑
X∈Xj

d(X, Cj) , (2)

is minimized.

2.2. Distance Functions

There is a very long list of possible distance functions among time series (see, e.g., ([2],
Table 3)). In this work, we focus on a prominent representative of shape-based distance
functions for time series, the Dynamic Time Warping (DTW) distance. For completeness,
we first introduce the simpler Euclidean distance for time and then present DTW as an
elastic generalization of it.

2.2.1. Euclidean Distance

The Euclidean distance [21] is a so-called lockstep distance, which can be applied only if
two time series have the same number of data points, i.e., the same length. The Euclidean
distance L2(X, Y) of two time series X and Y with T data points each is simply the L2 norm
of the L2 distances between the corresponding data points (see also Figure 1a). Namely,

L2(X, Y) =

√√√√ T

∑
i=1

(xi − yi)2 (3)

A generalization of the Euclidean distance, usually referred to as the Minkowski distance
for time series, can be obtained by taking the Lp norm of the Lp distances between the
corresponding data points (instead of the L2 norm of the L2 distances in (3)), for some fixed
p ≥ 1 or p = ∞. The main advantages of the Euclidean distance are that (i) it is simple and
intuitive, and (ii) it can be computed in linear time in the size of the input. However, the
Euclidean distance fails to deal with slight time shifts and/or periodical changes in the
sampling frequency of the time series.

287

Algorithms 2024, 17, 61

(a) Euclidean distance. (b) DTW distance.

Figure 1. Simple example outlining the difference between the Euclidean distance in (a) and the
Dynamic Time Warping (DTW) in (b) for time series.

2.2.2. Dynamic Time Warping Distance

The Dynamic Time Warping (DTW) distance is a so-called elastic distance, which can
deal with time series of different lengths, different sampling frequencies, and different
time alignments. DTW seeks an optimal alignment (or warping) of the data points of
two time series X and Y that minimizes the resulting pairwise Euclidean distance of the
corresponding data points. DTW is regarded as one of the most robust and accurate distance
functions for time series and has been extensively used in practice (see, e.g., [8–10,22] and
the references therein).

The optimal alignment of two time series X and Y, with X = ((x1, t1), . . . , (xT , tT))
and Y = (y1, τ1), . . . , (yV , τV)), which is used for the computation of DTW, is a sequence
W = ((T1, V1), . . . , (Tl , Vl)) with l ≤ T + V index pairs that aligns the data points of X and
Y such that (i) (T1, V1) = (1, 1) and (Tl , Vl) = (T, V), i.e., the first and the last points of X
and Y are aligned with each other; (ii) every point of X (resp. Y) is aligned with at least one
point of Y (resp. X); and (iii) for every two consecutive index pairs (T�, V�), (T�+1, V�+1),
(T� − T�+1, V� −V�+1) ∈ {(0, 1), (1, 0), (1, 1)}, i.e., the alignment sequence is increasing and
without cross-alignments (see also Figure 1b).

Then, the DTW distance of two time series X and Y is defined as:

D(X, Y) = min
X-Y warping W

√
∑

(T� ,V�)∈W
(xT� − yV�

)2 (4)

We note that DTW is symmetric and satisfies D(X, X) = 0, but it does not satisfy the
triangle inequality. The square of DTW can be computed in quadratic time Θ(TV), using
dynamic programming based on the recursion below, which is similar to the recursion used
for computing the Edit Distance of two strings:

D(X[i], Y[j]) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
j
�=1(x1 − y�)2 if i = 1

∑i
�=1(x� − y1)

2 if j = 1

(xi − yj)
2+

min{D(X[i− 1], Y[j− 1]), D(X[i− 1], Y[j]), D(X[i], Y[j− 1])} otherwise

where X[i] = ((x1, t1), . . . (xi, ti)) denotes the prefix of X consisting of X’s first i data points
and Y[j] = ((y1, τ1), . . . (yj, τj)) denotes the prefix of Y consisting of Y’ first j data points.

We should note that the definition of DTW sometimes restricts the maximum number
of data points that can be aligned with a single one, which leads to faster computation and
possibly better practical results (see also [23]).

288

Algorithms 2024, 17, 61

In this work, we focus on a generalization of DTW, referred to as β-DTW, for some
fixed parameter β ≥ 0, where the distance between two aligned data points (xi, ti) and
(yj, tj) is computed as:

δβ((xi, ti), (yj, tj)) = (xi − yj)
2 + β(ti − tj)

2 , (5)

instead of simply (xi − yj)
2. Then, β-DTW is computed by the dynamic programming

above by replacing the distance function (xi − yj)
2 with the more general δβ((xi, ti), (yj, tj)).

For β = 0, we obtain the standard DTW. As β grows larger, β-DTW penalizes the align-
ment of data points observed at quite different points in time. Using a moderate value of β
proves useful in our Sparse Time-Series Clustering framework because the inducing points
used for time-series representation can be located by Sparse Gaussian Process Regression
at very different points in time. In fact, the locations of the inducing points highly depend
on the shape and the variance of the regressed time series at different time intervals. Hence,
the second term in δβ(·) serves to penalize significant differences in how two time series
evolve. Moreover, as β increases above a certain (instance-dependent) threshold, β-DTW
becomes a lockstep distance and essentially coincides with the Euclidean distance.

2.3. Evaluation Criteria of Sparse Time-Series Clustering

We focus on shape-based clustering, where the clustering algorithm seeks to minimize
Cost(X , k), with X being a set of time series to be partitioned into a predefined number k of
clusters. Cost(X , k) is given by (2), with respect to the β-DTW distance for every instance.
To this end, we apply the k-means algorithm with the β-DTW distance for some fixed
parameter β ≥ 0, and the DTW Barycenter Averaging (DBA) algorithm [19] for updating
the cluster representatives in each iteration. For each dataset X , k-means is applied to the
original time series in X and to the time series consisting of the inducing points placed by
Sparse Gaussian Process Regression (SGPR) applied to each time series in X .

A ground truth clustering is available for all our instances (X , k). Therefore, to
evaluate the performance of our approach, we resort to the Adjusted Rand Index (ARI), an
extensively used extrinsic clustering metric quantifying how much the clustering computed
by our algorithm overlaps with the ground truth clustering. For completeness, we briefly
define the Rand Index (RI) and the Adjusted Rand Index (ARI) below.

2.3.1. Rand Index

The Rand Index (RI) [24] quantifies the similarity of two clusterings (i.e., the ground
truth clustering and the clustering computed by the algorithm) by counting the number
of “correct” pairs of data points, which are both assigned either to the same or to different
clusters in the two clusterings. More precisely, RI is defined as

RI =
2 (SS + DD)

n(n− 1)
,

where n is the number of data points (and n(n− 1)/2 is the total number of data point
pairs) and SS + DD is the number of “correct” pairs. Specifically, SS (resp. DD) is the
number of pairs of data points that belong to the same cluster (resp. to different clusters)
in both clusterings. By definition, RI ∈ [0, 1]. However, the threshold above which RI
values are considered satisfactory strongly depends on the number of clusters k, with a
completely random (and oblivious to the cluster sizes) clustering achieving an expected RI
of 1/k against any given clustering.

289

Algorithms 2024, 17, 61

2.3.2. Adjusted Rand Index

The Adjusted Rand Index (ARI) [25,26] is essentially a normalization of RI so that a
random clustering obtains an ARI equal to 0. A simple and natural way to define ARI is:

ARI =
RI−E[RI]
1−E[RI]

, (6)

where E[RI] is computed over all random clusterings with given cluster sizes compared
against the ground truth clustering. (6) defines ARI as the fraction by which the RI of
the computed clustering (against a fixed ground truth clustering) outperforms the RI of a
random clustering (with given cluster sizes, against the same ground truth clustering).

An equivalent definition of ARI is given in ([27], Section 2):

ARI =
2 (SS ·DD− SD ·DS)

(SS + SD)(SD + DD) + (SS + DS)(DS + DD)
, (7)

where SS (resp. DD) is the number of pairs of data points that belong to the same cluster
(resp. to different clusters) in both clusterings and DS (resp. SD) is the number of pairs of
data points they belong to different clusters (resp. to the same cluster) in the ground truth
clustering and to the same cluster (resp. to different clusters) in the clustering computed by
the algorithm.

A perfect agreement among two clusterings is denoted by ARI = 1.0, while an essen-
tially random clustering is denoted by ARI = 0.0. ARI can take negative values, denoting
clusterings with an unusually high number of discordant data point pairs. However, cor-
recting for E[RI] in (6) implies that ARI values do not explicitly depend on the number k
of clusters.

2.3.3. Evaluation

In this work, we resort to ARI to quantify the performance of the clusterings computed
by our framework. More precisely, for every instance (X , k), with a setX of time series to be
partitioned into a predefined number k of clusters, we calculate the ARI for the clustering
computed by k-means on the original instance (X , k) and on the instance obtained by
applying SGPR to the time series in X .

Comparing the ARI of the two clusterings indicates the performance loss (or sometimes
benefit) due to the sparsity of X ’s representation in our framework. Moreover, we use
the spread and the average difference (which can be gain or loss), computed with respect
to the ARI of the two algorithms on a family of instances, as a summary indicator of the
performance of our Sparse Time-Series Clustering framework.

2.3.4. Average and Spread Difference of Two Clustering Methods

To compare two clustering methods for multiple instances, we need to aggregate
the difference in ARI values of the two methods across all instances. To this end, we
use the average difference and the second moment of the difference of the two methods’
ARI values.

The average difference quantifies the average performance gain (or loss) of a clustering
method against another one with respect to their ARI values across multiple instances:

Diff(1,2) =
N

∑
i=1

ARI1(i)−ARI2(i)
N

(8)

We usually refer to Diff(1,2) as Gain(1,2), if Diff(1,2) > 0, as Loss(1,2), if Diff(1,2) < 0.

290

Algorithms 2024, 17, 61

The spread corresponds to the second moment of the difference between the ARI values
of two clustering methods across multiple instances:

Spread =
N

∑
i=1

(ARI1(i)−ARI2(i))2

N
(9)

where ARI1(i) (resp. ARI2(i)) denotes the ARI value of algorithm 1 (resp. 2) for instance i
and N is the total number of instances.

3. Gaussian Process Regression for Time Series

A typical approach to dealing with a sequence of individual data points, such as a
time series, boils down to inferring a continuous function that approximately describes the
entire sequence. There are a few popular approaches in this direction depending on the
prior information about the model and on the complexity of the data itself (see, e.g., [28]).

If a time series can be described (or can be approximated) by a relatively simple
function (i.e., a polynomial of degree d), we may use parametric fitting to estimate the
function’s unknown parameters from a few data points. Then, interpolation, or regression,
can be used to essentially fill in the space between data points and to create a continuous
function representation of the time series, which can be used as a way to predict new or
hidden data points, as well as to reduce the size and the complexity of the time series
representation. In the context of time series, we may regard regression as a supervised
learning problem, where we wish to learn a continuous mapping f from the time domain
to the domain of data points, given a relatively simple class of functions to select from (i.e.,
polynomials of degree d) and a relatively small set of data points.

Although regression may sound natural and practically appealing, in most practical
applications, time series cannot be reasonably approximated by a fixed class of relatively
simple functions. Hence, in this work, we resort to (sparse) Gaussian Process Regression (GPR),
a general approach relying on minimal assumptions about the nature of the time series.

GPR is a Bayesian nonparametric approach to regression, where instead of calculating
a probability distribution over the finite set of parameters of a specific functional form, we
calculate a probability distribution over all admissible functions that best approximates the
time series at hand. In the following paragraphs, we briefly present the main ingredients of
sparse Gaussian Process Regression (see also [14,29] for elaborate introductions to Gaussian
Processes and their applications).

3.1. Gaussian Processes for Time Series

At a conceptual level, a Gaussian Process extends the notion of multivariate Gaussian
distributions to infinite dimensions (and thus, to distributions over functions). Formally,
a Gaussian Process is a stochastic process (Z1, . . . , Zt, . . .) such that the joint distribution
of every finite collection (Zt1 , . . . , Ztk) of its random variables is a multivariate Gaussian
distribution ([14], Definition 2.1).

For this work, it is convenient to regard a Gaussian Process model as a probability
distribution over continuous functions (or over time series). For simplicity and since in
this work we mostly deal with real-valued time series, where the observed data points
xi ∈ R, we restrict our attention to regression over functions that map points in time
to real data points. Starting with the special case where a time series is evaluated in a
fixed number n of points in time, for any n-dimensional vectors �x = (x1, . . . , xn) and
�t = (t1, . . . , tn) ∈ R

n, a n-variate Gaussian distribution N (m(�t), k(�t,�t)) determines the
probability that the observed data points (x1, . . . , xn) at times (t1, . . . , tn) are drawn from a
n-variate Gaussian distribution with mean function m : R→ R and covariance function
(a.k.a. kernel function) k : R × R → R. In fact, given a time series X = (�x,�t), we
want to compute a m(�t) = (m(t1), . . . , m(tn)) and positive semidefinite covariance matrix
K = (k(ti, tj))i,j∈[n]) maximizing the probability that the observed data point vector �x is
drawn the n-variate Gaussian distribution N (m(�t), k(�t,�t)).

291

Algorithms 2024, 17, 61

The notion of a Gaussian Process naturally extends the idea of a n-variate Gaussian
distribution to arbitrary dimensions, which allows us to regress over continuous functions
and time series. A Gaussian process is defined by a mean function m : R→ R and a kernel
function k : R×R→ R. The mean function m(·) determines the expected value m(t) of a
data point xt ∈ R at any time t. The kernel function k(·, ·) quantifies the correlation k(t, t′)
between the observed data points xt and xt′ at any two times t and t′. We let f ∼ GP(m, k)
denote that the time series described by the function f : R→ R (i.e., the values of the data
points are f (t) at all times t) follows a Gaussian Process GP with mean function m and
kernel function k.

The mean function m determines the average value of data points over time and is
usually normalized to 0 over the entire time horizon. The kernel function k determines the
shape of the time series modeled by the Gaussian Process, in the sense that if two points in
time t and t′ are highly correlated (e.g., because t and t′ are neighboring points in time, or
because we expect that the observed data points at t and t′ should be close to each other),
the kernel function should favor time series f with similar values f (t) and f (t′).

3.2. Kernel Functions for Time Series

Kernel functions play a central role in Gaussian Process Regression because they
incorporate the information (and our assumptions) about the smoothness and the degree
of correlation between data points in the time series that we aim to approximate. The
kernel function k : R× R → R maps any two points in time t and t′ to a real number
that quantifies the expected similarity between the observed data points xt and xt′ . In any
finite dimensions n, the covariance matrix K of the corresponding n-variate Gaussian is
computed by evaluating the kernel function k(t, t′) over all n2 pairs of points t and t′ in
time. The kernel function should ensure that the resulting covariance matrix is always
positive semidefinite.

A kernel function k is stationary, if for any two points in time t and t′ and any translation
u, it holds that k(t, t′) = k(t+ u, t′+ u). Specifically, the covariance k(t, t′) of any two points
in time t and t′ only depends on t− t′ and is invariant under translation. If the covariance
k(t, t′) of any two points in time t and t′ only depends on their distance |t− t′|, we say that
the kernel function is isotropic. In the following, we discuss two widely used stationary
(and isotropic) kernel functions, the Radical Basis Function (RBF) kernel and the Matérn
kernel (see also ([14], Chapter 4)).

3.2.1. The Radial Basis Function Kernel

The Radial Basis Function (RBF) kernel (a.k.a. the Gaussian kernel or the Squared
Exponential kernel) is defined as:

kRBF(s,�)(t, t′) = s2 exp
(
− (t− t′)2

2�2

)
(10)

In (10), k has two hyperparameters: the scale factor s, which quantifies the deviation to
the mean value m of a function f drawn from the corresponding Gaussian Process; and
the length scale �, which quantifies the strength of the correlation between the data points
f (t) and f (t′) of two points in time at distance |t− t′|. Gaussian Process Regression with
the RBF kernel corresponds to Bayesian linear regression with an infinite number of basis
functions. Due to its nice properties (see, e.g., ([14], Sections 4.2 and 4.3)), RBF has become
the default kernel function in practical applications.

292

Algorithms 2024, 17, 61

3.2.2. The Matérn Kernel

The class of Matérn kernels is a generalization of RBF kernels with an additional
hyperparameter ν, which controls the smoothness of the kernel function. A Matérn kernel
is defined as:

kM(s,�,ν)(t, t′) = s22ν−1

Γ(ν)

(√
2ν|t− t′|

�

)ν

Kν

(√
2ν|t− t′|

�

)
, (11)

where Γ(·) is the gamma function and Kν(·) is the modified Bessel function of the second
kind. Larger values of ν result in smoother approximated time series, while as ν grows to
∞, the Matérn kernel becomes equivalent to the RBF kernel. We note that the cases where
ν = 3/2 and ν = 5/2 have nice closed forms ([14], (4.17)) and are of special interest to
practical applications. In this work, we use the Matérn kernel for ν = 3/2.

3.3. Gaussian Process Regression

Gaussian Process Regression (GPR) applies the standard Bayesian regression approach to
Gaussian Processes. In Bayesian regression, we first compute a posterior distribution on the
parameters of an admissible functional form (e.g., polynomials of degree d) based on some
prior information about these parameters (if available) and on the available data points.
This is extended to a predictive posterior distribution, i.e., a distribution on the values of
unseen data points, which is derived from the prior distribution on the parameters of the
admissible functional form.

In our setting, we are given a time series X = ((x1, t1), . . . , (xn, tn)) with n data points
and aim to compute a posterior Gaussian Process, which provides a probability distribution
over unseen data points x(t) at any point in time t. We assume that each data point
xi = f (ti) + εi, where f : R→ R is a latent function (for which do not make any particular
assumptions) and εi ∼ N (0, σ2) is an independent sample drawn from a white noise
process with standard deviation σ.

For the Bayesian regression process, we make the standard assumption that the data
are normalized to 0 over the entire time horizon. Hence, we consider Gaussian Processes
with a zero-mean function, i.e., with mean function m(t) = 0 for all points in time t. Then,
the prior distribution is a n-variate Gaussian distribution conditioned on the input time
series X = ((x1, t1), . . . , (xn, tn)). Specifically, the distribution of �x conditional on�t is:

�x |�t ∼ N (0, kθ + σ2) , (12)

where kθ : R × R → R is a kernel function (e.g., an RBF kernel or a Matérn kernel)
with hyperparameters θ and �x = (x1, . . . , xn) are noisy values sampled from the latent
function f : R → R at times�t = (t1, . . . , tn). Due to noise, the covariance matrix of N is
K̃θ,σ = Kθ + σ2 I, where Kθ = (kθ(ti, tj))i,j∈[n]) is the positive semidefinite covariance matrix
computed by applying the kernel function kθ to�t, σ is the standard deviation of the white
noise, and I is the identity matrix.

The hyperparameters θ of the kernel function kθ and the standard deviation of the
observation noise σ are optimized based on the input time series X = ((x1, t1), . . . , (xn, tn)).
Hyperparameter optimization in (12) corresponds to a non-convex optimization prob-
lem, which is typically solved through gradient-based optimization techniques, such as
Adam [30] and L-BFGS [31]. The running time is typically cubic, and the space requirement
is typically quadratic in the size of the input data, i.e., O(n3) and O(n2) for time and space,
respectively, with the computational complexity dominated by the time required to invert
the covariance matrix K̃θ,σ.

We use the resulting posterior Gaussian Process GP(0, kθ) in order to estimate the
values of m data points �x′ = (x′1, . . . , x′m) observed at times�t ′ = (t′1, . . . , t′m), assuming that
the values x′j are sampled from the same latent function f : R → R used for X and thus,
the joint distribution of �x and �x′ is given by GP(0, kθ).

293

Algorithms 2024, 17, 61

Therefore, the joint distribution of �x and �x′ is an (n + m)-variate Gaussian distribu-
tion obtained by applying the Gaussian Process GP(0, kθ) to time vectors�t and�t ′. The
covariance matrix Kθ(�t,�t ′) is a positive semidefinite (n + m)× (n + m) matrix with the
following form:

Kθ(�t,�t′) =
[

Kθ(�t,�t) + σ2 I Kθ(�t,�t ′)
Kθ(�t ′,�t) Kθ(�t ′,�t ′)

]
,

where the covariance (sub)matrix Kθ(�a,�b) is defined as Kθ(�a,�b) = (kθ(ai, bj))ai∈�a,bj∈�b.

Conditioning on X and its posterior distributionN (0, kθ + σ2), we obtain the Gaussian
predictive distribution of �x′. Specifically, we obtain that the values of the data points �x′
follow a m-variate Gaussian distribution with mean value vector �m′ and covariance matrix
K′ as given below:

�m′ = Kθ(�t ′,�t)(Kθ(�t,�t) + σ2 I)−1�x (13)

K′ = Kθ(�t ′,�t ′)− Kθ(�t ′,�t)(Kθ(�t,�t) + σ2 I)−1Kθ(�t,�t ′) (14)

We note that the predicted mean value of �x′ in (13) is a linear combination of the input
values �x. Equivalently, one can obtain the mean value of each x′j as a linear combination

∑n
i=1 αjkθ(ti, t′j), with coefficients�α = (Kθ(�t,�t) + σ2 I)−1�x. We also note that the covariance

matrix in (14) does not directly depend on the input values �x (but it depends on the points
in time�t when these values are observed). We refer the interested reader to ([14], Section 2.2)
for more details on Gaussian Process Regression.

3.4. Sparse Gaussian Process Regression

From a conceptual viewpoint, Gaussian Process Regression (GPR) is versatile and
elegant, with a simple conceptual structure and many desirable theoretical properties.
In practice, however, GPR can only deal with regression tasks of moderate size, with at
most a few thousand input data points, due to the cubic time complexity required for
computing the posterior and the predictive posterior distributions. As a result, several
sparse approximation methods have been proposed to make GPR practically applicable
to settings with a medium to large number of input data points (see, e.g., [15,17] and the
references therein). These sparse GPR methods aim to represent the underlying Gaussian
Process using a much smaller set of m, with m � n, inducing points, which can be learned
so that they are highly informative about the actual posterior Gaussian Process. Sparse
GPR methods achieve a time complexity of O(m2n) and a space complexity of O(m2 + n)
for approximating the posterior and the predictive posterior Gaussian Processes.

A standard approach to optimizing the sparse Gaussian Process is by minimizing its
Kullback–Leibler (KL) divergence to the actual (and possibly intractable) Gaussian Process.
In general, optimal (with respect to the KL divergence) sparse Gaussian processes do not
have a closed form (as, e.g., happens with the predictive Gaussian process in (13) and (14)).
Then, Variational Inference (VI) can be used to approximate the actual posterior with a
variational distribution.

In this work, we use the Variational Free Energy (VFE) framework (a.k.a. Sparse Gaus-
sian Process Regression (SGPR)), introduced by Titsias [16]. SGPR uses a small number of
carefully selected inducing points, along with variational inference, to obtain a low-rank
approximation (with respect to the KL divergence) to the actual Gaussian Process. In SGPR,
the total number m of inducing points is chosen in advance so that the overall time and
space complexity are acceptable. Their locations in time and their values are optimized
so that more inducing points are located at time intervals where the time series exhibits a
more complex behavior (see also Figure 2).

Other approaches to sparse GPR include treating inducing point selection as a contin-
uous optimization problem [32] and online approaches where the sparse Gaussian Process
is iteratively trained by processing each input individually [33,34]. We refer the interested
reader to [17] for an elaborate treatment of Sparse Gaussian Process Regression.

294

Algorithms 2024, 17, 61

Figure 2. Sparse Gaussian Process Regression (SGPR) uses a predetermined number of inducing
points (red dots) to compute a sparse approximate representation of a given time series (black stars).

4. The Sparse Time-Series Clustering Framework

The Sparse Time-Series Clustering (STSC) framework consists of two stages, as outlined
in Algorithm 1. The input instance consists of (X , k), where X is a set of N time series to be
partitioned into k clusters. The first stage is to approximate each time series Xj ∈ X with a
sparse time series X′j consisting of m inducing data points by applying Sparse Gaussian
Process Regression (see Section 4.1 and Algorithm 2). The second stage is to cluster the
reduced instance ({X′1, . . . , X′N}, k) using the k-means algorithm with the β-DTW distance,
for some fixed parameter β ≥ 0, and the DTW Barycenter Averaging (DBA) algorithm
(see Section 4.2 and Algorithm 3). The outcome of the second stage is a tuple with k
representative time series, which define a k-clustering of the reduced dataset {X′1, . . . , X′N}
(and the corresponding k-clustering for the original dataset X) by (1).

Algorithm 1 Sparse Time-Series Clustering Framework

1: Input : Instance X = (X1, . . . , XN) with N time series, number of clusters k
2: Output: k cluster representatives (C1, . . . , Ck) (which k-cluster X into (X1, . . . ,Xk).

3: framework(X , m, seed):
4: for j ∈ [N] do
5: X′j ← modeling(Xj, m) {� SGPR with m inducing points on each Xj �}
6: end for
7: (C1, . . . , Ck)← clustering({X′1, . . . , X′N}, k, seed)

{� k-means clustering of reduced instance �}
8: return (C1, . . . , Ck)

Algorithm 2 Modeling through Sparse Gaussian Process Regression

1: Input : time series X = ((x1, t1), . . . , (xT , tT)), number of inducing points m
2: Output: approximate time series X′ = ((x′1, τ1), . . . , (x′m, τm)) with m inducing points

3: modeling (X = ((x1, t1), . . . , (xT , tT)), m):
4: model ← train_SGPR(X, m)

{� apply SGPR for the given number m of inducing points �}
5: (x′1, τ1), . . . , (x′m, τm))← extract_induced_points(model, m)
6: return X′ = ((x′1, τ1), . . . , (x′m, τm))

295

Algorithms 2024, 17, 61

Algorithm 3 k-Means Clustering

1: Input : dataset X = (X1, . . . XN) with N time series, number k of clusters,
seed for initialization

2: Output: C = (C1, . . . , Ck) with k cluster representatives

3: clustering (X , k, seed):
4: for j ∈ [k] do
5: r ← random_generator(seed, N)

{� randomly choose initial cluster representatives �}
6: C(0)

j ← Xr

7: end for
8: for i ∈ [100] do

9: (C(i)
1 , . . . , C(i)

k)← DBA(X , k, (C(i−1)
1 , . . . , C(i−1)

k))
{� update representatives with DBA �}

10: if (C(i)
1 , . . . , C(i)

k) ≈ (C(i−1)
1 , . . . , C(i−1)

k) then
11: break {� k-means converged to a k-clustering �}
12: end if
13: end for
14: return (C1, . . . , Ck)

In the following (and unless stated otherwise), we consider a datasetX = {X1, . . . , XN}
of N univariate time series, where each time series X = ((x1, t1), . . . , (xT , tT)) ∈ X consists
of T data points. We assume that all time series in the same dataset have the same length
T (nevertheless, our framework can be applied to datasets with time series of different
lengths without any modification).

4.1. Modeling through Sparse Gaussian Process Regression

In this stage, we apply the framework of Sparse Gaussian Process Regression, as out-
lined in Section 3, in order to obtain a sparse approximation X′ = (x′1, τ1), . . . , (x′m, τm)) of
each time series X = ((x1, t1), . . . , (xT , tT)) in the original dataset X (see also Algorithm 2).

We use the Variational Free Energy (VFE) (a.k.a. Sparse Gaussian Process Regression
(SGPR)) approach, outlined in Section 3.4, using the Matérn kernel with parameter ν = 3/2.
Each time series X = ((x1, t1), . . . , (xT , tT)) is approximated by a sparse time series X′ =
((x′1, τ1), . . . , (x′m, τm)) with m � T inducing data points.

A logarithmic (in length T of the original time series) number of inducing points
suffices for a reasonably good approximation of the original time series. More specifically,
we use m = γ log2 T, for γ ∈ {1, 2, 3, 4, 5} (and with the resulting number rounded to the
closest integer), in our experimental evaluation. Thus, the time complexity of this step is
O(T log2 T), and the space required is O(T + log2 T).

4.2. Clustering Stage

The second and final stage of our framework is to partition the datasetX ′ = (X′1, . . . , X′N),
consisting of N sparse time series with m inducing points each, into k-clusters using the k-
means algorithm for time series, with the DTW Barycenter Averaging (DBA) algorithm [19]
used for updating the cluster representatives in each iteration of k-means.

We apply k-means with the β-DTW distance, defined in Section 2.2, with β = αT
m . We

use α ∈ {0, 10−4, 10−3, 10−2} in our experimental evaluation. The intuition behind setting
β to a multiple of T/m is that we expect that each inducing point serves as a representative
of approximately T/m points, with increasing density of inducing points in time intervals
where the time series exhibits more complex behavior. Hence, we want to (mildly) penalize
with a multiple of T/m cases where different time series exhibit a high density of inducing
points in distant time intervals.

The time complexity of k-means with the β-DTW distance and the DBA algorithm for
updating the cluster representatives is Θ(INkm2) = O(INk log2 T), where I is the number

296

Algorithms 2024, 17, 61

of iterations and O(m2) is the time required to compute the β-DTW distance between
a pair of sparse time series, and Θ(Nkm2T) = Θ(Nk log2 T) is the time complexity of a
single iteration of k-means. In our experimental evaluation, we run k-means and DBA for a
maximum of I = 100 iterations.

4.3. Time Complexity

The overall time complexity of our Sparse Time-Series Clustering framework is
Θ(NT log2 T + INk log2 T), where the first term corresponds to the time complexity of
the Sparse Gaussian Process Regression with m = Θ(log T) inducing points and the second
term corresponds to the running time of k-means with the β-DTW distance when applied
to N sparse time series with m = Θ(log T) inducing points each. As expected, the running
time of our framework crucially depends on the number m of inducing points.

In our experimental evaluation, we compute a baseline clustering by applying
Algorithm 3. The overall time complexity for computing a baseline clustering with k-
means on the original dataset with N time series of T data points each is Θ(INkT2).

Therefore, the asymptotic running time of our Sparse Time-Series Clustering frame-
work is about Θ(max{T2/ log2 T, IkT/ log2 T}) times faster than the asymptotic running
time of directly applying k-means to the original dataset. Intuitively, the asymptotic running
time of our framework is Ω(T2/ log2 T) times faster than the standard k-means because the
improved running time for computing DTW from Θ(T2) in the original data to Θ(log2 T)
in the sparsified data.

5. Experimental Evaluation

5.1. Datasets

The University of California (UCR) Time-Series Classification Archive [20] is one of
the most widely used and the largest labeled time-series data archives for classification,
consisting of 128 datasets. Each dataset is divided into training and test data and is
accompanied by performance indicators of several algorithms with different parameter
settings. In this work, we use the univariate datasets of the UCR archive in order to support
the claim that our Sparse Time-Series Clustering (STSC) framework leads to clusterings
with respect to the β-DTW distance of similar (or even improved) quality (compared against
applying k-means to the original datasets), but with significantly improved running time.
Baseline results are available for most of the UCR datasets in [22]. Nevertheless, we chose
to run the baseline k-means algorithm on all the datasets used for experimental evaluation.
For the scope of this work, we focused on univariate datasets and omitted datasets for
which, due to computational power considerations, we were not able to run the k-means
algorithm with DTW metric (see Section 5.6 for more details).

The datasets used in our experimental evaluation are synthetic, semi-synthetic, or real
and originate from various domains. Each dataset is univariate and contains from 40 to
5000 time series. Although the time series within each dataset have the same length, the
length varies across datasets, ranging from 60 to 1882. A concise summary of these datasets
is provided in Table 1, including information such as the number of time series, the number
of clusters, the length of each time series, and dataset type.

297

Algorithms 2024, 17, 61

Table 1. Dataset Description.

Dataset Size Length
No. of
Classes

Type

Adiac 781 176 37 IMAGE
ArrowHead 211 251 3 IMAGE
Beef 60 470 5 SPECTRO
BeetleFly 40 512 2 IMAGE
BirdChicken 40 512 2 IMAGE
Car 120 577 4 SENSOR
CBF 930 128 3 SIMULATED
Coffee 56 286 2 SPECTRO
Computers 500 720 2 DEVICE
CricketX 780 300 12 MOTION
CricketY 780 300 12 MOTION
CricketZ 780 300 12 MOTION
DiatomSizeReduction 322 345 4 IMAGE
DistalPhalanxOutlineAgeGroup 539 80 3 IMAGE
DistalPhalanxCorrect 876 80 2 IMAGE
DistalPhalanxTW 539 80 6 IMAGE
Earthquakes 461 512 2 SENSOR
ECG200 200 96 2 ECG
ECGFiveDays 884 136 2 ECG
FaceAll 2250 131 14 IMAGE
FaceFour 112 350 4 IMAGE
FacesUCR 2250 131 14 IMAGE
FiftyWords 905 270 50 IMAGE
Fish 350 463 7 IMAGE
GunPoint 200 150 2 MOTION
Ham 214 431 2 SPECTRO
Herring 128 512 2 IMAGE
InsectWingbeatSound 2200 256 11 SENSOR
ItalyPowerDenand 1096 24 2 SENSOR
LargeKitchenAppliances 750 720 3 DEVICE
Lightning2 121 637 2 SENSOR
Lightning7 143 319 7 SENSOR

298

Algorithms 2024, 17, 61

Table 1. Cont.

Dataset Size Length
No. of
Classes

Type

Meat 120 448 3 SPECTRO
MedicalImages 1141 99 10 IMAGE
MiddlePhalanxOutlineAgeGroup 554 80 3 IMAGE
MiddlePhalanxOutlineCorrect 891 80 2 IMAGE
MiddlePhalanxTW 553 80 6 IMAGE
MoteStrain 1272 84 2 SENSOR
OliveOil 60 570 4 SPECTRO
OSULeaf 442 427 6 IMAGE
PhalangesOutlinesCorrect 2658 80 2 IMAGE
Plane 210 144 7 SENSOR
ProximalPhalanxOutlineAgeGroup 605 80 3 IMAGE
ProximalPhalanxOutlineCorrect 891 80 2 IMAGE
ProximalPhalanxTW 605 80 6 IMAGE
RefrigerationDevices 750 720 3 DEVICE
ShapeletSim 200 500 2 SIMULATED
ShapesAll 1200 512 60 IMAGE
SmallKitchenAppliances 750 720 3 DEVICE
SonyAIBORobotSurface1 621 70 2 SENSOR
SonyAIBORobotSurface2 980 65 2 SENSOR
Strawberry 983 235 2 SPECTRO
SwedishLeaf 1125 128 15 IMAGE
Symbols 1020 398 6 IMAGE
SyntheticControl 600 60 6 SIMULATED
ToeSegmentation1 268 277 2 MOTION
ToeSegmentation2 166 343 2 MOTION
Trace 200 275 4 SENSOR
TwoLeadECG 1162 82 2 ECG
TwoPatterns 5000 128 4 SIMULATED
Wine 111 234 2 SPECTRO
WordSynonyms 905 270 25 IMAGE
Worms 258 900 5 MOTION

5.2. Experimental Setting

Both our Sparse Time-Series Clustering framework and the baseline, which applies
k-means to the original datasets, are implemented in Python. For the application of k-means
to the sparse (resp. the original) dataset, we use β-DTW (resp. the standard DTW) and DBA
for updating the cluster representatives in each iteration. We use the GPyTorch library [35]
for the implementation of Sparse Gaussian Process Regression and the Tslearn package [36]
for the implementation of k-means. Our experiments run on an Intel(R) Xeon(R) Silver 4210
CPU (2.20 GHz) with 16 GB of RAM.

5.3. Parameter Selection and Tuning

We run our experiments with a logarithmic (in the length T of the original time
series) number m of inducing points. More specifically, we run our experiments with
m = γ log2 T (rounded to the closest integer), for γ ∈ {1, 2, 3, 4, 5}. For the Sparse Gaussian
Process Regression, we choose a constant-mean prior for the Gaussian Process and use
the Matérn kernel with parameter ν = 1.5. We use Adam [30] to optimize the parameters
of SGPR. We use a learning rate of 1/10 for optimizing the parameters of the Gaussian
Process (i.e., the hyperparameters of the Matérn kernel and the standard deviation of the
noise) and a learning rate of 1/(10γ) for optimizing the locations of the inducing points.
For the initialization of SGPR’s inducing point location optimization, we divide the time
horizon of the dataset into m equally sized intervals. Thus, we avoid ending up with quite
different inducing point locations for different initializations, which may happen due to
the non-convexity of SGPR’s objective and its sensitivity to different initializations.

299

Algorithms 2024, 17, 61

We should highlight that SGPR’s objective function is highly sensitive to Adam’s
learning rate. If the learning rate is too large, we end up with inducing points outside the
time horizon of the original time series, while if the learning rate is too low, the learning
becomes local, and inducing points tend to reflect the behavior of the time series in a
small interval around them. Hence, we had to carefully select the learning rates for our
experiments, with the value of 1/10 proven to be a good and consistent choice. A summary
of the parameters used in the experimental evaluation, with a short description of their role
and their values, can be found in Table 2.

Table 2. Collection of parameters (with their role in our approach) and their corresponding values
used in experimental evaluation. We recall that T denotes the length of the time series, N is the
number of time series in the instance, and k is the number of clusters.

Parameter Algorithm—Role Value

learning rate Adam, parameter optimization SGPR 1/10
learning rate Adam, optimization of inducing point 1/(10γ), for γ ∈ {1, 2, 3, 4, 5}

locations in SGPR
ν Matérn kernel, SGPR 3/2
m # inducting points in SGPR γ log2 T, for γ ∈ {1, 2, 3, 4, 5}
α (αT/m)-DTW distance for clustering ∈ {0, 10−4, 10−3, 10−2}
I max # iterations of k-means and DBA 100

For the k-means algorithm, we use the β-DTW distance with β = αT/m (which
we often denote (αT/m)-DTW), for α ∈ {0, 10−4, 10−3, 10−2} and the DTW Barycenter
Averaging (DBA) [19] for updating the cluster representatives in each iteration. We run
k-means and DBA for a maximum of 100 iterations each.

We execute 10 runs of Algorithm 1 for each sparse dataset and each parameter combi-
nation (we have 5 choices for γ times 4 choices for α, which makes 12 different parameter
combinations for each dataset), showcasing the average CPU time and the average Ad-
justed Rand Index (ARI) against the ground truth clustering provided in the UCR archive.
In each run, the initial set of k cluster representatives is chosen randomly. Nevertheless, the
seeds were predefined for each run to ensure reproducibility and facilitate fair comparisons
between different methods.

To assess our approach against the standard k-means, we opted to compute a baseline
ARI for each original dataset from scratch by executing 10 runs of Algorithm 3 for each of
them with the standard DTW distance (with β = 0). As for the sparse case, the initial set
of k cluster representatives is chosen randomly with predefined seeds. For each original
dataset, we logged the average CPU time and the average Adjusted Rand Index (ARI)
against the ground truth clustering. Therefore, we ensure consistent initialization and CPU
time reporting across all runs, facilitating a comprehensive comparison and evaluation of
run times.

5.4. Dataset Level Assessment

Our experimental evaluation indicates that Algorithm 1 (Sparse Time-Series Cluster-
ing), with sufficiently many (but still logarithmic in T) inducing points and for relatively
small values of α in (αm/T)-DTW, computes clusterings with ARI metrics quite similar
to the ARI metrics of the baseline, computed by applying Algorithm 3 (i.e., standard k-
means) to the original datasets. However, the asymptotic running time of Algorithm 1 is
Ω(T2/ log2 T) times faster than the asymptotic running time of Algorithm 3.

Following the practices described in [22], in our experimental evaluation, we report
the average ARI score over 10 runs of Algorithms 1 and 3 and also rank the performance
(according to the average ARI in decreasing order) of Algorithms 1 and 3 with different
parameter configurations in all the datasets of Table 1. A comprehensive summary of the
average ARI and the average rank for each method (over all Table 1 UCR datasets for each
parameter configuration) can be found in Table 3.

300

Algorithms 2024, 17, 61

Table 3. Summarized ARI averages for different parameter configurations. The average relative order
of the results achieved by each algorithm is reported in parentheses. ARI values for each dataset are
reported in Table A1 (where α = 0) and in Table A2 (where we report average ARI over all different
values of α ∈ {0, 10−4, 10−3, 10−2}) in Appendix A.

(αT/m)-DTW

Parameter α Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

0 0.249 (2.524) 0.173 (4.270) 0.222 (3.683) 0.217 (3.492) 0.220 (3.762) 0.225 (3.270)
10−4 0.249 (2.587) 0.175 (4.365) 0.222 (3.746) 0.217 (3.635) 0.220 (3.635) 0.226 (3.032)
10−3 0.249 (2.746) 0.172 (4.508) 0.213 (3.841) 0.214 (3.317) 0.215 (3.444) 0.224 (3.143)
10−2 0.249 (2.762) 0.162 (4.381) 0.196 (4.127) 0.210 (3.476) 0.215 (3.492) 0.228 (2.762)
best 0.249 (3.254) 0.193 (4.238) 0.238 (3.810) 0.238 (3.333) 0.243 (3.333) 0.252 (3.032)

mean 0.249 (2.556) 0.171 (4.413) 0.213 (3.857) 0.215 (3.556) 0.217 (3.587) 0.226 (3.032)

In each of the first four lines of Table 3, we compare the average ARI of the standard k-
means (baseline) with the average ARI of our framework for a different number of inducing
points while maintaining the parameter α in (αT/m)-DTW constant. In the fifth (resp. the
sixth) line, we take the best (resp. the mean) ARI over all values of α, for each different
number of inducing points γ log2 T, for γ ∈ {1, 2, 3, 4, 5}.

In Table 3, we observe that average ARI values improve as the number of inducing
points increases (for every fixed value of α, see also the spread diagrams in Figure 3,
where we use α = 10−4). Moreover, for m ≤ 4 log2 T inducing points, average ARI values
slightly deteriorate as the value of α increases (see also the spread diagrams in Figure 4,
where we use m = 2 log2 T), while for m = 5 log2 T inducing points, average ARI values
marginally improve as α increases (see also the spread diagrams in Figure 5, where we use
m = 5 log2 T). We note that as the number m of inducing points increases, (αT/m)-DTW
becomes less sensitive in an increase in α. Then, a combination of many inducing points
and α ∈ [10−3, 10−2] produces quite satisfactory results (see also the spread diagrams in
Figure 5c,d. For m = 5 log2 T inducing points, keeping the best ARI over all values of α for
each dataset gives clusterings of marginally better quality on average compared against the
clusterings produced by the standard k-means algorithm (see the best ARI for m = 5 log2 T
in the best line of Table 3 and the spread diagram in Figure 5e). On the other hand, even for
m = 5 log2 T inducing points, any fixed value of α results in clusterings of slightly worse
quality on average compared against the clusterings produced by the standard k-means
algorithm (see the mean ARI for m = 5 log2 T in the mean line of Table 3 and the spread
diagram in Figure 5f).

Even though it allows for conclusions that are informative and easy to grasp, av-
eraging ARI results across different datasets (and possibly across different parameter
configurations) is inadequate for a comprehensive evaluation of the proposed framework
for Sparse Time-Series Clustering. A particularly poor or particularly good performance in
specific datasets for certain parameter configurations may significantly affect the average
ARI, potentially leading to misleading conclusions (notice also the standard deviations in
Table A2). A characteristic example is the TwoPatterns dataset (see the corresponding rows
in Tables A1 and A2), where the standard k-means achieves an average ARI of 0.870, while
the average ARI of our framework for different numbers of inducing points (where average
is taken across all values of α) ranges from 0.304 to 0.825 (see the corresponding row in
Table A1 and the large standard deviations in the corresponding row of Table A2).

301

Algorithms 2024, 17, 61

(a) ARI spread with m = log2 T
(loss = 0.073, spread = 0.031).

(b) ARI spread with m = 2 log2 T
(loss = 0.026, spread = 0.024)

(c) ARI spread with m = 3 log2 T
(loss = 0.031, spread = 0.013).

(d) ARI spread with m = 4 log2 T
(loss = 0.028, spread = 0.014).

(e) ARI spread with m = 5 log2 T
(loss = 0.023, spread = 0.015).

(f) Best ARI spread
(gain = 0.021, spread = 0.017).

(g) Mean ARI spread
(loss = 0.036, spread = 0.014).

Figure 3. Spread diagrams with comparative ARI results of Algorithm 1 against Algorithm 3 with
(10−4T/m)-DTW and m = γ log2 T inducing points, for γ ∈ {1, 2, 3, 4, 5}. The spread and the average
loss of the sparse framework are reported in the caption and in the upper left corner. We observe a
slight improvement in clustering quality as the number of inducing points increases. We observe a
small average gain in (f), where we keep the best ARI, and a small average loss in (g), where we take
the mean ARI in each dataset (both across all values of γ ∈ {1, 2, 3, 4, 5}).

To provide a more detailed picture of the quality of clusterings produced by our
framework for different datasets and how they compare against the clustering produced
by the standard k-means, in Appendix A, we present in Table A1 the average ARI for each
dataset for the baseline and our framework with m = γ log2 T inducing points, for each
value of γ ∈ {1, 2, 3, 4, 5} and α = 0, where average ARI is taken across all 10 runs for both
the standard k-means and our framework. In Table A2, we present the same information

302

Algorithms 2024, 17, 61

for all datasets along with the standard deviation computed across all 10 runs (for standard
k-means) and all 10 runs and all different values of α ∈ {0, 10−4, 10−3, 10−2}. The informa-
tion in Table A2 demonstrates the importance of careful (and possibly dependent on the
parameters of the datasets) tuning. Nevertheless, the mean (across all different datasets
and all values of α) loss of our framework for 5 log2 T inducing points is small, and keeping
the best clustering for each dataset results in a small improvement in the average clustering
quality of Algorithm 1 compared against the standard (and way more time demanding)
k-means.

(a) ARI spread with α = 0
(loss = 0.027, spread = 0.023).

(b) ARI spread with α = 10−4

(loss = 0.026, spread = 0.024).
(c) ARI spread with α = 10−3

(loss = 0.035, spread = 0.029).

(d) ARI spread with α = 10−2

(loss = 0.053, spread = 0.027).
(e) Best ARI spread

(loss = 0.011, spread = 0.023).
(f) Mean ARI spread

(loss = 0.035, spread = 0.022).

Figure 4. Spread diagrams with comparative ARI results of Sparse Time-Series Clustering against
standard k-means overall datasets for the (αT/m)-DTW distance, with different values of α ∈
{0, 10−4, 10−3, 10−2} and with m = 2 log2 T inducing points. The average spread and the average
loss of the sparse framework are reported in the caption and on the upper left corner of each plot.
We observe a slight deterioration in clustering quality as α increases and a small average loss in (e)
and (f), where we keep the best ARI and the mean ARI in each dataset (both across all values of
α ∈ {0, 10−4, 10−3, 10−2}).

5.5. Computational Efficiency

As noted in Section 4.3, an important contribution of our work is that the combined
computational complexity of our Sparse Time-Series Clustering framework is O(NT log2 T +
INk log2 T), where I is the iterations of k-means, N is the number of time series in the
dataset and T is their length, compared against a running time of O(INkT2) of the standard
k-means algorithm applied to the original dataset. Next, we evaluate the running time and
the CPU utilization of our framework in practice. .

303

Algorithms 2024, 17, 61

(a) ARI spread with α = 0
(loss = 0.024, spread = 0.016).

(b) ARI spread with α = 10−4

(loss = 0.023, spread = 0.015).
(c) ARI spread with α = 10−3

(loss = 0.024, spread = 0.021).

(d) ARI spread with α = 10−2

(loss = 0.025, spread = 0.020).
(e) Best ARI spread

(gain = 0.004, spread = 0.015).
(f) Mean ARI spread

(loss = 0.023, spread = 0.017).

Figure 5. Spread diagrams with comparative ARI results of Sparse Time-Series Clustering against
standard k-means overall datasets for the (αT/m)-DTW distance, with different values of α ∈
{0, 10−4, 10−3, 10−2} and with m = 5 log2 T inducing points. The average spread and the average
loss of the sparse framework are reported in the caption and on the upper left corner of each plot. In
contrast to the case where m = 2 log2 T, in Figure 4, with m = 5 log2 T inducing points, we observe a
stable clustering quality, and even a slight improvement, as α increases. This behavior is attributed to
the fact that larger m makes (αT/m)-DTW less sensitive to an increase in α. We also observe a small
average gain in (e), where we keep the best ARI, and a small average loss in (f), where we take the
mean ARI in each dataset (both across all values of α ∈ {0, 10−4, 10−3, 10−2}).

Table 4 displays the CPU utilization times for our framework and standard k-means
on all datasets. Specifically, we provide the following metrics: Tk is the CPU utilization time
of the standard k-means algorithm applied to the original dataset; Ta is the CPU utilization
time of the modeling phase, where Sparse Gaussian Process Regression is applied, in steps
4–6 of Algorithm 1; and Tb is the CPU utilization time of the k-means algorithm in step 7
of Algorithm 1, where Algorithm 3 is applied to the sparse time series produced by the
Sparse Gaussian Process Regression. Moreover, Ta + Tb is the total CPU utilization of our
method, (Ta + Tb)/Tk indicates the CPU utilization overhead due to the modeling process
(which dominates the running time of our framework); Tk/Tb quantifies how much slower
k-means become when applied to the original dataset compared against the same algorithm
applied to the sparsified dataset; and Ta/N is the average running time of the modeling
phase (Sparse Gaussian Process Regression) per time series in the particular dataset.

304

Algorithms 2024, 17, 61

Table 4. CPU Utilization time of the standard k-means algorithm and the modeling and the clustering
phase of Algorithm 1. Tk denotes the CPU utilization time of the standard k-means algorithm in
the original dataset; Ta denotes the CPU utilization time of the modeling phase; and Tb denotes the
CPU utilization time of the clustering phase. Ta + Tb is the total CPU utilization of our method,
(Ta + Tb)/Tk indicates the CPU utilization overhead due to the modeling process; Tk/Tb quantifies
how much slower k-means becomes when applied to the original dataset compared against the same
algorithm applied to the sparsified dataset; and Ta/N is the average running time of the modeling
phase per time series in the particular dataset.

Dataset Tk Tb Ta
Tk

Tb

(Ta + Tb)

Tk

Ta

N

Adiac 809.606 117.040 5468.717 6.9 6.9 7.002
ArrowHead 449.036 5.795 1473.779 77.5 3.3 6.985
Beef 237.538 1.238 460.083 191.9 1.9 7.668
BeetleFly 91.529 0.609 289.232 150.3 3.2 7.231
BirdChicken 152.857 0.660 312.412 231.6 2.0 7.810
Car 350.987 2.881 968.850 121.8 2.8 8.074
CBF 127.093 45.560 5959.039 2.8 47.2 6.408
Coffee 100.512 0.798 383.234 126.0 3.8 6.843
Computers 1448.839 12.139 2334.388 119.4 1.6 4.669
CricketX 2457.813 62.977 5748.995 39.0 2.4 7.371
CricketY 1731.068 61.845 5792.806 28.0 3.4 7.427
CricketZ 1628.689 62.495 5524.100 26.1 3.4 7.082
DiatomSizeReduction 702.399 8.619 2606.539 81.5 3.7 8.095
DistalPhalanxOutlineCorrect 42.445 14.438 5711.787 2.9 134.9 6.520
DistalPhalanxOutlineAgeGroup 22.358 10.411 3348.379 2.1 150.2 6.212
DistalPhalanxTW 32.310 19.760 3462.503 1.6 107.8 6.424
Earthquakes 764.784 17.812 3897.637 42.9 5.1 8.455
ECG200 10.045 4.051 1430.853 2.5 142.8 7.154
ECGFiveDays 193.677 26.262 5910.736 7.4 30.7 6.686
FaceAll 681.338 267.684 13,986.357 2.5 20.9 6.216
FaceFour 174.810 2.035 583.206 85.9 3.3 5.207
FacesUCR 656.559 168.009 9845.755 3.9 15.3 4.376
FiftyWords 3719.422 110.433 4634.011 33.7 1.3 5.120
Fish 1401.001 14.399 3173.496 97.3 2.3 9.067
GunPoint 204.587 3.420 1606.681 59.8 7.9 8.033
Ham 498.690 5.834 2085.700 85.5 4.2 9.746
Herring 393.123 2.633 972.268 149.3 2.5 7.596
InsectWingbeatSound 8642.398 137.208 8987.362 63.0 1.1 4.085
ItalyPowerDemand 48.611 26.104 6500.469 1.9 134.3 5.931
LargeKitchenAppliances 3391.768 19.276 2969.682 176.0 0.9 3.960
Lightning2 280.387 3.525 1002.119 79.6 3.6 8.282
Lightning7 266.726 4.853 1057.223 55.0 4.0 7.393
Meat 140.371 2.340 1162.826 60.0 8.3 9.690
MedicalImages 193.023 82.434 7299.850 2.3 38.2 6.398
MiddlePhalanxOutlineAgeGroup 22.883 11.684 3700.447 2.0 162.2 6.680
MiddlePhalanxOutlineCorrect 40.408 15.421 5762.425 2.6 143.0 6.467
MiddlePhalanxTW 41.743 20.060 3480.027 2.1 83.8 6.293
MoteStrain 213.246 50.299 7216.290 4.2 34.1 5.673
OliveOil 63.692 0.953 534.073 66.8 8.4 8.901
OSULeaf 2005.386 21.865 3731.238 91.7 1.9 8.442
PhalangesOutlinesCorrect 151.922 47.915 14,683.742 3.2 97.0 5.524
Plane 12.636 4.129 1233.003 3.1 97.9 0.584
ProximalPhalanxOutlineCorrect 28.106 13.378 5230.995 2.1 186.6 24.910
ProximalPhalanxOutlineAgeGroup 21.364 12.143 3819.305 1.8 179.3 6.313
ProximalPhalanxTW 33.438 19.141 3490.010 1.7 104.9 3.917
RefrigerationDevices 2699.834 16.155 2965.134 167.1 1.1 4.901
ShapeletSim 291.462 5.064 1651.373 57.6 5.7 2.202
ShapesAll 9397.260 132.630 4991.169 70.9 0.5 24.956

305

Algorithms 2024, 17, 61

Table 4. Cont.

Dataset Tk Tb Ta
Tk

Tb

(Ta + Tb)

Tk

Ta

N

SmallKitchenAppliances 1683.222 18.953 3321.628 88.8 2.0 2.768
SonyAIBORobotSurface1 34.634 15.644 3655.760 2.2 106.0 4.874
SonyAIBORobotSurface2 71.301 25.905 6676.567 2.8 94.0 10.751
Strawberry 1183.540 23.964 7845.866 49.4 6.6 8.006
SwedishLeaf 224.676 67.156 5367.119 3.3 24.2 5.460
Symbols 4984.632 43.091 9755.276 115.7 2.0 8.671
SyntheticControl 26.540 16.777 3758.807 1.6 142.3 3.685
ToeSegmentation1 464.657 8.339 1931.603 55.7 4.2 3.219
ToeSegmentation2 263.977 4.073 1176.577 64.8 4.5 4.390
Trace 225.796 4.452 1505.905 50.7 6.7 9.072
TwoLeadECG 115.038 33.520 7091.992 3.4 61.9 35.460
TwoPatterns 767.798 313.861 28,274.694 2.4 37.2 24.333
Wine 51.230 1.493 831.680 34.3 16.3 0.166
WordSynonyms 3179.780 61.514 3889.850 51.7 1.2 35.044
Worms 1540.641 9.298 2799.553 165.7 1.8 3.093

mean 982.337 37.214 4401.955 53.8 40.0 8.095

We observe that k-means runs from 1.6 (in very small datasets) up to 230 times faster
when applied to the sparsified dataset (compared against the k-means algorithm applied to
the original instance, see also Figure 6). The speed-up is due to the improved running time
for computing DTW from Θ(T2) in the original data to Θ(log2 T) in the sparsified data. As
expected, the speed-up becomes more apparent when it comes to datasets with time-series
length T above a few hundred. On average, k-means runs more than 50 times faster when
applied to the sparsified dataset than when applied to the original one.

Figure 6. CPU utilization time comparison of the k-means algorithm applied to the original datasets
(blue bars) and to the sparsified data sets (orange bars). k-means on the sparsified instance can run
up to 230 times faster than k-means on the original instance.

On the other hand, the computational overhead of Sparse Gaussian Process Regres-
sion becomes quite high, compared against the running time of the standard k-means
algorithm, when Algorithm 1 is applied to datasets of small to moderate size (and with
time series of small to moderate length). However, for datasets with larger sizes and

306

Algorithms 2024, 17, 61

longer time series, such as InsectWingbeatSound (with 2200 time series of length 256 each),
RefrigerationDevices and LargeKitchenAppliances (both with 750 time series of length
720 each), the benefits of the significantly improved asymptotic computational complexity
of our framework become apparent. In these datasets, the total Ta + Tb running time of
our framework is practically identical to the total running time of the standard k-means.
For some larger datasets, such as ShapesAll (with 1200 time series of length 512 each), the
total Ta + Tb running time of our framework is half the total running time of the standard
k-means. Moreover, there are datasets, such as ElectricDevices (with about 16,500 time
series of length 96 each), where our framework is able to run successfully in our computa-
tional infrastructure and to produce clusterings with average ARI higher than that reported
in [22], while it is impossible to successfully run the standard k-means algorithm due to the
quadratic computational complexity of DTW and/or the large size of the dataset (see also
Table 5 and Section 5.6).

Table 5. ARI results for the ElectricDevices dataset consisting of 16637 time series of length 96 each.
The best ARI computed by the standard k-means in [22] is 0.19, while our framework achieves a best
ARI of 0.21, which is 10% larger than that reported in [22].

Parameter a 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

0 0.18 0.19 0.18 0.17 0.17
10−4 0.21 0.18 0.18 0.19 0.19

10−3 0.14 0.20 0.18 0.18 0.18
10−2 0.04 0.12 0.21 0.18 0.20

In a nutshell, we observe that the total CPU utilization of our framework becomes
comparable to that of applying k-means to the original data for datasets with NT2 ranging
from 108 to 3 · 108, while the benefits of our framework’s significantly improved asymptotic
computational complexity become apparent for datasets with NT2 larger than 4 · 108. On
the other hand, if we focus on k-means only, for datasets with T at most 100, applying
k-means to sparsified datasets is about 10–20 times faster than its application to the original
data. As T grows larger to 200–400, the speed-up factor of k-means increases to 60–80, and
reaches values above 120–150 for a time-series length T above 600.

As an additional note regarding the high computational overhead due to Sparse Gaus-
sian Process Regression, we should mention that (i) SGPR could run offline, independently
of k-means (or any other shape-based time-series clustering algorithm) and only once per
time series, with the resulting sparse time series stored for any future use; and (ii) that one
could arrange for SGPR to run in parallel (and completely independently) for each different
time series, which would result in a completion time about two orders of magnitude faster,
without increasing the total CPU utilization.

5.6. Empirical Results: Time and Memory Considerations

As mentioned in Section 5.1, we excluded certain UCR univariate datasets from our
experimental evaluation, because it was impossible to successfully run the standard k-
means algorithm on the original dataset in our computational infrastructure)and [22] does
not provide running time estimations for the UCR datasets). The application of k-means to
those datasets was terminated either due to memory issues, because of the very large size
Θ(NT) of the dataset, or due to running time exceeding two days without completing a
single run of k-means.

Nevertheless, using our Sparse Time-Series Clustering framework, we managed to
obtain results for those datasets successfully, demonstrating its usefulness. For example,
Table 5 reports the ARI achieved by our framework for the ElectricDevices dataset, a very
large dataset consisting of 16637 time series of length 96 each and k = 7 clusters (this is
one of the datasets for which we could not run k-means with the original time series in our
computational infrastructure). We note that the best ARI is obtained by k-means with the
original data, and the standard DTW distance is 0.19, as reported in [22].

307

Algorithms 2024, 17, 61

6. Discussion and Future Work

Our proposed framework, as we demonstrated in Section 5, has competitive results to
the standard k-means algorithm for time-series clustering. In our comprehensive evaluation,
we highlight the significant advantages of our framework in clustering quality, CPU
utilization, and memory requirements, especially for larger datasets and for time series of
moderate to large lengths.

The bottleneck of our method in terms of CPU utilization is the modeling phase. We
underline that this step is completely independent for each time series; hence, it can be
parallelized, reducing the total running time of our framework. Moreover, SGPR can be
run once as an offline step, with its results stored for any future use. The modeling step
allows us to significantly reduce the memory requirements for the clustering step since the
time-series representation is logarithmic in the length of the original time series, making
the clustering step feasible in huge datasets (with a large number of long time series) for
the popular, but computationally demanding, DTW distance.

The extensive evaluation of our framework, including additional metrics, has been
made accessible on GitHub, providing a comprehensive resource for researchers. This
transparency ensures the reproducibility of results and facilitates further exploration and
validation. The reported CPU utilization times comprise an important addition to the thus
far assessment of time-series clustering methods.

Moving forward, there are several promising directions for future work. First, an
in-depth exploration of the tuning process is warranted to establish a correlation between
the nature of the dataset and the optimal parameter selection of the framework. This
understanding could lead to refined configurations, enhancing the effectiveness of the
proposed framework across diverse datasets and applications.

Additionally, the incorporation of different alignment distances in our framework
presents an intriguing direction of research. For instance, Frechét distance [37] and Wasser-
stein distance [38], which can be used in time-series clustering, come with computational
challenges. Therefore, our framework, with the reduction of the time-series length, may al-
low the efficient application of these distances in time-series clustering to longer univariate
time-series.

Last but not least, the extension of our framework to handle multivariate time series is
a natural direction for future work. The ability to effectively analyze and model complex,
multi-dimensional time-series data expands the range of potential applications across
diverse domains.

Author Contributions: Conceptualization, D.F.; Methodology, D.F., P.P., E.P. and M.X.; Software,
E.P. and M.X.; Validation, E.P. and M.X.; Investigation, D.F., P.P., E.P. and M.X.; Data curation, M.X.;
Writing—original draft, P.P., E.P. and M.X.; Writing—review & editing, D.F. and E.P.; Visualization,
E.P.; Supervision, D.F.; Funding acquisition, D.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers
and the procurement of high-cost research equipment grant”, project BALSAM, HFRI-FM17-1424. A
significant part of this work was made while Michalis Xefteris was a student at the National Technical
University of Athens.

Data Availability Statement: The source code, the datasets, and more results with additional
parameter configurations and for clustering quality indicators other than ARI can be found in
https://github.com/pseleni/ts_clustering (accessed on 25 January 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

308

Algorithms 2024, 17, 61

Appendix A. Tables with Detailed ARI and Results

Table A1. ARI of UCR datasets for Algorithm 3 (the baseline computed by standard k-means) and
Algorithm 1 (Sparse Time-Series Clustering) with standard DTW (i.e., β = 0) and number of inducing
points m = γ log2 T, for every γ ∈ {1, 2, 3, 4, 5}. The best ARI achieved is marked in bold. In
parenthesis, we report the relative order of the corresponding ARI among the six ones reported, from
1 (best) to 6 (worst). In the last line, we report the average ARI (and the average relative order) for
each column across all datasets.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

Adiac 0.266 (1) 0.229 (3) 0.242 (2) 0.201 (6) 0.227 (4) 0.214 (5)
ArrowHead 0.165 (2) 0.195 (1) 0.139 (4) 0.163 (3) 0.111 (6) 0.132 (5)
Beef 0.100 (2) 0.115 (1) 0.097 (3) 0.078 (6) 0.090 (4) 0.083 (5)
BeetleFly 0.091 (2) 0.036 (6) 0.051 (4) 0.048 (5) 0.079 (3) 0.118 (1)
BirdChicken 0.010 (4) 0.062 (1) 0.002 (6) 0.022 (2) 0.010 (5) 0.018 (3)
Car 0.102 (2) 0.277 (1) 0.081 (4) 0.082 (3) 0.063 (6) 0.078 (5)
CBF 0.689 (1) 0.511 (5) 0.650 (2) 0.641 (3) 0.584 (4) 0.426 (6)
Coffee 0.592 (2) 0.210 (6) 0.539 (3) 0.503 (4) 0.352 (5) 0.763 (1)
Computers 0.043 (5) 0.023 (6) 0.052 (3) 0.052 (4) 0.065 (1) 0.058 (2)
CricketX 0.218 (1) 0.106 (6) 0.153 (5) 0.157 (4) 0.167 (3) 0.187 (2)
CricketY 0.219 (1) 0.138 (6) 0.177 (4) 0.185 (2) 0.169 (5) 0.179 (3)
CricketZ 0.223 (1) 0.109 (6) 0.156 (5) 0.167 (3) 0.162 (4) 0.177 (2)
DiatomSizeReduction 0.904 (1) 0.355 (6) 0.652 (3) 0.729 (2) 0.610 (4) 0.391 (5)
DistalPhalanxOutlineCorrect 0.001 (2) −0.003 (6) 0.001 (1) −0.001 (5) −0.001 (4) −0.001 (3)
DistalPhalanxOutlineAgeGroup 0.366 (3) 0.396 (2) 0.402 (1) 0.363 (5) 0.360 (6) 0.365 (4)
DistalPhalanxTW 0.302 (4) 0.423 (1) 0.330 (3) 0.343 (2) 0.300 (5) 0.277 (6)
Earthquakes −0.043 (6) 0.027 (5) 0.033 (2) 0.027 (4) 0.030 (3) 0.034 (1)
ECG200 0.100 (5) 0.117 (2) 0.139 (1) 0.100 (4) 0.080 (6) 0.107 (3)
ECGFiveDays 0.008 (5) 0.091 (1) 0.043 (4) 0.045 (3) 0.002 (6) 0.066 (2)
FaceAll 0.461 (1) 0.072 (6) 0.209 (5) 0.367 (3) 0.358 (4) 0.455 (2)
FaceFour 0.352 (2) 0.001 (6) 0.339 (3) 0.277 (5) 0.316 (4) 0.419 (1)
FacesUCR 0.445 (2) 0.070 (6) 0.212 (5) 0.353 (3) 0.342 (4) 0.456 (1)
FiftyWords 0.325 (1) 0.210 (6) 0.241 (5) 0.274 (4) 0.299 (3) 0.311 (2)
Fish 0.283 (1) 0.204 (2) 0.172 (4) 0.179 (3) 0.169 (5) 0.138 (6)
GunPoint −0.004 (3) 0.026 (1) −0.005 (6) −0.003 (2) −0.004 (4) −0.005 (5)
Ham 0.032 (2) −0.004 (6) 0.027 (3) 0.045 (1) 0.023 (5) 0.024 (4)
Herring 0.013 (1) −0.007 (6) −0.005 (5) 0.003 (4) 0.007 (3) 0.007 (2)
InsectWingbeatSound 0.057 (4) 0.079 (2) 0.081 (1) 0.066 (3) 0.045 (5) 0.043 (6)
ItalyPowerDemand 0.004 (1) 0.000 (6) 0.001 (3) 0.001 (4) 0.001 (5) 0.002 (2)
LargeKitchenAppliances 0.170 (1) 0.065 (4) 0.080 (2) 0.065 (5) 0.051 (6) 0.066 (3)
Lightning2 0.025 (2) 0.008 (5) 0.003 (6) 0.008 (4) 0.017 (3) 0.029 (1)
Lightning7 0.293 (1) 0.197 (2) 0.162 (6) 0.169 (5) 0.190 (4) 0.190 (3)
Meat 0.630 (1) 0.225 (4) 0.186 (5) 0.095 (6) 0.418 (2) 0.277 (3)
MedicalImages 0.101 (1) 0.039 (6) 0.060 (5) 0.062 (4) 0.066 (3) 0.073 (2)
MiddlePhalanxOutlineAgeGroup 0.388 (4) 0.337 (5) 0.336 (6) 0.405 (2) 0.392 (3) 0.408 (1)
MiddlePhalanxOutlineCorrect −0.005 (6) 0.025 (1) 0.000 (3) 0.000 (2) −0.002 (4) −0.003 (5)
MiddlePhalanxTW 0.290 (5) 0.382 (1) 0.303 (4) 0.323 (3) 0.326 (2) 0.278 (6)
MoteStrain 0.029 (6) 0.386 (2) 0.398 (1) 0.364 (4) 0.372 (3) 0.357 (5)
OliveOil 0.459 (1) 0.238 (2) 0.090 (3) 0.017 (5) −0.007 (6) 0.081 (4)
OSULeaf 0.148 (1) 0.064 (6) 0.136 (3) 0.128 (5) 0.132 (4) 0.139 (2)
PhalangesOutlinesCorrect 0.006 (5) 0.012 (1) 0.001 (6) 0.006 (4) 0.010 (3) 0.010 (2)
Plane 0.825 (1) 0.665 (6) 0.734 (5) 0.770 (4) 0.815 (3) 0.818 (2)
ProximalPhalanxOutlineCorrect 0.055 (4) 0.051 (6) 0.082 (1) 0.062 (3) 0.053 (5) 0.064 (2)
ProximalPhalanxOutlineAgeGroup 0.450 (4) 0.486 (1) 0.416 (5) 0.385 (6) 0.465 (2) 0.461 (3)
ProximalPhalanxTW 0.377 (4) 0.380 (3) 0.431 (1) 0.384 (2) 0.355 (5) 0.347 (6)
RefrigerationDevices 0.076 (1) 0.002 (6) 0.008 (5) 0.026 (4) 0.040 (2) 0.033 (3)
ShapeletSim 0.006 (1) −0.003 (5) −0.003 (6) −0.001 (4) 0.002 (3) 0.004 (2)
ShapesAll 0.340 (1) 0.247 (6) 0.294 (5) 0.315 (2) 0.313 (4) 0.314 (3)

309

Algorithms 2024, 17, 61

Table A1. Cont.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

SmallKitchenAppliances 0.214 (1) 0.014 (6) 0.032 (5) 0.045 (4) 0.049 (3) 0.051 (2)
SonyAIBORobotSurface1 0.697 (1) 0.535 (4) 0.548 (3) 0.599 (2) 0.487 (6) 0.524 (5)
SonyAIBORobotSurface2 0.104 (5) −0.033 (6) 0.355 (1) 0.295 (3) 0.300 (2) 0.263 (4)
Strawberry −0.033 (6) −0.029 (5) 0.016 (1) −0.011 (3) −0.011 (2) −0.029 (4)
SwedishLeaf 0.333 (4) 0.180 (6) 0.314 (5) 0.367 (1) 0.356 (3) 0.364 (2)
Symbols 0.675 (1) 0.642 (3) 0.622 (6) 0.658 (2) 0.639 (4) 0.639 (5)
SyntheticControl 0.773 (1) 0.633 (6) 0.733 (4) 0.756 (2) 0.728 (5) 0.743 (3)
ToeSegmentation1 0.022 (4) 0.005 (6) 0.022 (3) 0.027 (1) 0.027 (2) 0.021 (5)
ToeSegmentation2 0.043 (5) 0.063 (2) 0.071 (1) 0.041 (6) 0.056 (4) 0.059 (3)
Trace 0.584 (2) 0.526 (6) 0.570 (5) 0.574 (4) 0.585 (1) 0.577 (3)
TwoLeadECG 0.074 (5) 0.011 (6) 0.817 (1) 0.138 (4) 0.519 (2) 0.371 (3)
TwoPatterns 0.870 (1) 0.304 (6) 0.702 (5) 0.825 (2) 0.813 (3) 0.799 (4)
Wine −0.004 (3) −0.005 (5) −0.005 (4) −0.002 (2) −0.002 (1) −0.007 (6)
WordSynonyms 0.240 (1) 0.169 (6) 0.172 (5) 0.202 (4) 0.221 (3) 0.223 (2)
Worms 0.083 (1) 0.031 (6) 0.074 (5) 0.079 (4) 0.080 (3) 0.082 (2)

0.249 (2.524) 0.173 (4.270) 0.222 (3.683) 0.217 (3.492) 0.220 (3.762) 0.225 (3.270)

Table A2. Average ARI (and standard deviation) of UCR datasets for Algorithm 3 (the baseline
computed by standard k-means) and Algorithm 1 (Sparse Time-Series Clustering) with number
of inducing points m = γ log2 T, for γ ∈ {1, 2, 3, 4, 5} and (αm/T)-DTW. Averages and standard
deviations are computed over ARI values of 10 different runs (for the baseline) and ARI values of 10
different runs for each different value of α{0, 10−4, 10−3, 10−2} for the sparse framework. The best
average ARI is reported in bold. In parenthesis, we report the relative order of the corresponding
average ARI among the six ones reported, from 1 (best) to 6 (worst). In the last line, we report the
average ARI (and the average relative order) for each column across all datasets.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

Adiac 0.266 ± 0.017 (1) 0.234 ± 0.005 (3) 0.240 ± 0.001 (2) 0.201 ± 0.001 (6) 0.227 ± 0.002 (4) 0.217 ± 0.005 (5)
ArrowHead 0.165 ± 0.058 (3) 0.204 ± 0.011 (1) 0.149 ± 0.019 (5) 0.178 ± 0.026 (2) 0.135 ± 0.031 (6) 0.150 ± 0.022 (4)
Beef 0.100 ± 0.032 (2) 0.114 ± 0.001 (1) 0.099 ± 0.004 (3) 0.086 ± 0.008 (6) 0.091 ± 0.006 (4) 0.086 ± 0.005 (5)
BeetleFly 0.091 ± 0.068 (2) 0.033 ± 0.005 (6) 0.049 ± 0.003 (5) 0.060 ± 0.014 (4) 0.072 ± 0.004 (3) 0.106 ± 0.008 (1)
BirdChicken 0.010 ± 0.027 (3) 0.058 ± 0.004 (1) 0.002 ± 0.000 (6) 0.010 ± 0.010 (4) 0.004 ± 0.006 (5) 0.018 ± 0.001 (2)
Car 0.102 ± 0.045 (2) 0.286 ± 0.016 (1) 0.083 ± 0.008 (5) 0.092 ± 0.013 (3) 0.081 ± 0.024 (6) 0.088 ± 0.015 (4)
CBF 0.689 ± 0.143 (1) 0.443 ± 0.107 (6) 0.583 ± 0.116 (2) 0.582 ± 0.105 (3) 0.543 ± 0.071 (4) 0.456 ± 0.043 (5)
Coffee 0.592 ± 0.243 (2) 0.217 ± 0.012 (6) 0.526 ± 0.024 (3) 0.498 ± 0.011 (4) 0.360 ± 0.008 (5) 0.745 ± 0.035 (1)
Computers 0.043 ± 0.028 (3) 0.018 ± 0.005 (6) 0.041 ± 0.018 (4) 0.041 ± 0.018 (5) 0.055 ± 0.022 (1) 0.050 ± 0.015 (2)
CricketX 0.218 ± 0.030 (1) 0.108 ± 0.003 (6) 0.151 ± 0.003 (5) 0.152 ± 0.005 (4) 0.170 ± 0.005 (3) 0.179 ± 0.009 (2)
CricketY 0.219 ± 0.028 (1) 0.136 ± 0.005 (6) 0.184 ± 0.007 (5) 0.199 ± 0.014 (2) 0.185 ± 0.014 (4) 0.192 ± 0.011 (3)
CricketZ 0.223 ± 0.017 (1) 0.111 ± 0.004 (6) 0.154 ± 0.004 (5) 0.163 ± 0.007 (4) 0.164 ± 0.002 (3) 0.179 ± 0.008 (2)
DiatomSizeReduction 0.904 ± 0.114 (1) 0.355 ± 0.001 (6) 0.647 ± 0.009 (3) 0.730 ± 0.009 (2) 0.619 ± 0.042 (4) 0.452 ± 0.050 (5)
DistalPhalanxOutlineCorrect 0.001 ± 0.001 (2) −0.003 ± 0.001 (6) 0.001 ± 0.000 (1) −0.001 ± 0.000 (5) −0.001 ± 0.000 (4) −0.001 ± 0.000 (3)
DistalPhalanxOutlineAgeGroup 0.366 ± 0.138 (4) 0.416 ± 0.013 (1) 0.401 ± 0.001 (2) 0.363 ± 0.001 (5) 0.360 ± 0.002 (6) 0.367 ± 0.001 (3)
DistalPhalanxTW 0.302 ± 0.030 (4) 0.405 ± 0.025 (1) 0.328 ± 0.006 (3) 0.337 ± 0.007 (2) 0.296 ± 0.005 (5) 0.279 ± 0.003 (6)
Earthquakes −0.043 ± 0.005 (6) 0.009 ± 0.012 (5) 0.027 ± 0.012 (3) 0.026 ± 0.010 (4) 0.035 ± 0.008 (1) 0.033 ± 0.003 (2)
ECG200 0.100 ± 0.073 (5) 0.132 ± 0.020 (2) 0.141 ± 0.005 (1) 0.106 ± 0.011 (4) 0.092 ± 0.011 (6) 0.110 ± 0.005 (3)
ECGFiveDays 0.008 ± 0.010 (5) 0.084 ± 0.011 (1) 0.026 ± 0.019 (4) 0.074 ± 0.020 (2) 0.002 ± 0.000 (6) 0.060 ± 0.007 (3)
FaceAll 0.461 ± 0.040 (2) 0.099 ± 0.016 (6) 0.228 ± 0.020 (5) 0.387 ± 0.020 (3) 0.385 ± 0.028 (4) 0.494 ± 0.042 (1)
FaceFour 0.352 ± 0.121 (2) 0.013 ± 0.019 (6) 0.332 ± 0.009 (4) 0.272 ± 0.009 (5) 0.335 ± 0.024 (3) 0.432 ± 0.018 (1)
FacesUCR 0.445 ± 0.055 (2) 0.097 ± 0.015 (6) 0.228 ± 0.015 (5) 0.375 ± 0.023 (3) 0.368 ± 0.031 (4) 0.492 ± 0.040 (1)
FiftyWords 0.325 ± 0.047 (4) 0.245 ± 0.025 (6) 0.291 ± 0.042 (5) 0.326 ± 0.045 (3) 0.346 ± 0.042 (2) 0.356 ± 0.043 (1)
Fish 0.283 ± 0.034 (1) 0.214 ± 0.009 (2) 0.182 ± 0.015 (5) 0.200 ± 0.030 (3) 0.189 ± 0.021 (4) 0.171 ± 0.044 (6)
GunPoint −0.004 ± 0.003 (3) 0.014 ± 0.011 (1) −0.005 ± 0.000 (6) −0.004 ± 0.001 (2) −0.004 ± 0.001 (4) −0.005 ± 0.000 (5)
Ham 0.032 ± 0.025 (2) −0.004 ± 0.000 (6) 0.021 ± 0.006 (5) 0.045 ± 0.001 (1) 0.028 ± 0.008 (3) 0.025 ± 0.001 (4)
Herring 0.013 ± 0.015 (1) −0.007 ± 0.001 (6) −0.005 ± 0.001 (5) 0.004 ± 0.001 (4) 0.010 ± 0.004 (2) 0.008 ± 0.001 (3)
InsectWingbeatSound 0.057 ± 0.008 (6) 0.128 ± 0.043 (5) 0.143 ± 0.055 (1) 0.139 ± 0.070 (2) 0.133 ± 0.077 (3) 0.130 ± 0.081 (4)
ItalyPowerDemand 0.004 ± 0.002 (2) 0.008 ± 0.015 (1) 0.002 ± 0.001 (3) 0.001 ± 0.001 (5) 0.001 ± 0.000 (6) 0.002 ± 0.000 (4)
LargeKitchenAppliances 0.170 ± 0.078 (1) 0.061 ± 0.004 (4) 0.068 ± 0.011 (2) 0.060 ± 0.009 (5) 0.047 ± 0.003 (6) 0.064 ± 0.013 (3)
Lightning2 0.025 ± 0.016 (2) 0.021 ± 0.027 (4) 0.021 ± 0.035 (3) 0.020 ± 0.019 (5) 0.012 ± 0.003 (6) 0.032 ± 0.004 (1)
Lightning7 0.293 ± 0.044 (1) 0.232 ± 0.038 (2) 0.197 ± 0.038 (6) 0.206 ± 0.039 (5) 0.209 ± 0.023 (4) 0.221 ± 0.038 (3)
Meat 0.630 ± 0.183 (1) 0.222 ± 0.007 (4) 0.182 ± 0.005 (5) 0.098 ± 0.003 (6) 0.415 ± 0.007 (2) 0.285 ± 0.006 (3)
MedicalImages 0.101 ± 0.018 (1) 0.031 ± 0.015 (6) 0.056 ± 0.006 (5) 0.065 ± 0.004 (4) 0.067 ± 0.001 (3) 0.078 ± 0.005 (2)
MiddlePhalanxOutlineAgeGroup 0.388 ± 0.077 (4) 0.364 ± 0.027 (5) 0.331 ± 0.010 (6) 0.393 ± 0.013 (2) 0.392 ± 0.001 (3) 0.404 ± 0.007 (1)
MiddlePhalanxOutlineCorrect −0.005 ± 0.000 (6) 0.011 ± 0.008 (1) −0.000 ± 0.000 (3) −0.000 ± 0.001 (2) −0.003 ± 0.000 (4) −0.003 ± 0.000 (5)
MiddlePhalanxTW 0.290 ± 0.104 (5) 0.396 ± 0.011 (1) 0.294 ± 0.010 (4) 0.326 ± 0.003 (2) 0.324 ± 0.005 (3) 0.280 ± 0.001 (6)

310

Algorithms 2024, 17, 61

Table A2. Cont.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

MoteStrain 0.029 ± 0.005 (6) 0.385 ± 0.009 (4) 0.402 ± 0.012 (1) 0.383 ± 0.017 (5) 0.399 ± 0.025 (2) 0.389 ± 0.045 (3)
OliveOil 0.459 ± 0.145 (1) 0.238 ± 0.000 (2) 0.087 ± 0.004 (3) 0.017 ± 0.000 (5) −0.008 ± 0.001 (6) 0.081 ± 0.000 (4)
OSULeaf 0.148 ± 0.023 (1) 0.067 ± 0.005 (6) 0.139 ± 0.003 (3) 0.126 ± 0.002 (5) 0.136 ± 0.004 (4) 0.147 ± 0.007 (2)
PhalangesOutlinesCorrect 0.006 ± 0.001 (3) 0.004 ± 0.005 (5) 0.004 ± 0.003 (6) 0.006 ± 0.000 (4) 0.010 ± 0.000 (2) 0.010 ± 0.000 (1)
Plane 0.825 ± 0.147 (1) 0.671 ± 0.008 (6) 0.733 ± 0.003 (5) 0.767 ± 0.006 (4) 0.808 ± 0.008 (3) 0.823 ± 0.004 (2)
ProximalPhalanxOutlineCorrect 0.055 ± 0.003 (4) 0.052 ± 0.000 (6) 0.085 ± 0.005 (1) 0.063 ± 0.002 (3) 0.053 ± 0.000 (5) 0.065 ± 0.001 (2)
ProximalPhalanxOutlineAgeGroup 0.450 ± 0.108 (4) 0.477 ± 0.010 (1) 0.422 ± 0.010 (5) 0.380 ± 0.009 (6) 0.463 ± 0.004 (3) 0.471 ± 0.010 (2)
ProximalPhalanxTW 0.377 ± 0.119 (3) 0.373 ± 0.010 (4) 0.425 ± 0.008 (1) 0.379 ± 0.009 (2) 0.358 ± 0.003 (5) 0.349 ± 0.002 (6)
RefrigerationDevices 0.076 ± 0.032 (1) 0.003 ± 0.002 (6) 0.008 ± 0.000 (5) 0.026 ± 0.001 (4) 0.039 ± 0.002 (2) 0.035 ± 0.002 (3)
ShapeletSim 0.006 ± 0.011 (1) −0.002 ± 0.001 (5) −0.003 ± 0.000 (6) −0.002 ± 0.001 (4) −0.000 ± 0.002 (3) 0.002 ± 0.002 (2)
ShapesAll 0.340 ± 0.027 (1) 0.265 ± 0.013 (6) 0.316 ± 0.018 (5) 0.334 ± 0.019 (4) 0.337 ± 0.021 (3) 0.338 ± 0.021 (2)
SmallKitchenAppliances 0.214 ± 0.024 (1) 0.021 ± 0.007 (6) 0.028 ± 0.006 (5) 0.043 ± 0.002 (4) 0.052 ± 0.003 (3) 0.054 ± 0.006 (2)
SonyAIBORobotSurface1 0.697 ± 0.051 (1) 0.423 ± 0.178 (6) 0.560 ± 0.016 (3) 0.599 ± 0.010 (2) 0.498 ± 0.016 (5) 0.503 ± 0.032 (4)
SonyAIBORobotSurface2 0.104 ± 0.081 (5) −0.007 ± 0.043 (6) 0.325 ± 0.029 (1) 0.321 ± 0.027 (2) 0.302 ± 0.011 (3) 0.266 ± 0.031 (4)
Strawberry −0.033 ± 0.003 (6) −0.017 ± 0.016 (4) 0.016 ± 0.001 (1) −0.012 ± 0.001 (3) −0.009 ± 0.002 (2) −0.024 ± 0.005 (5)
SwedishLeaf 0.333 ± 0.041 (4) 0.171 ± 0.012 (6) 0.321 ± 0.007 (5) 0.375 ± 0.008 (3) 0.376 ± 0.022 (2) 0.392 ± 0.023 (1)
Symbols 0.675 ± 0.103 (1) 0.641 ± 0.015 (5) 0.633 ± 0.009 (6) 0.667 ± 0.015 (2) 0.646 ± 0.026 (4) 0.652 ± 0.010 (3)
SyntheticControl 0.773 ± 0.126 (1) 0.594 ± 0.074 (6) 0.713 ± 0.019 (5) 0.751 ± 0.013 (2) 0.730 ± 0.004 (4) 0.743 ± 0.002 (3)
ToeSegmentation1 0.022 ± 0.018 (2) 0.004 ± 0.002 (6) 0.017 ± 0.008 (5) 0.025 ± 0.016 (1) 0.021 ± 0.012 (3) 0.018 ± 0.008 (4)
ToeSegmentation2 0.043 ± 0.049 (5) 0.047 ± 0.018 (4) 0.058 ± 0.017 (1) 0.042 ± 0.011 (6) 0.050 ± 0.016 (3) 0.054 ± 0.007 (2)
Trace 0.584 ± 0.116 (1) 0.489 ± 0.053 (6) 0.540 ± 0.052 (5) 0.561 ± 0.014 (4) 0.584 ± 0.001 (2) 0.576 ± 0.001 (3)
TwoLeadECG 0.074 ± 0.014 (5) 0.009 ± 0.005 (6) 0.585 ± 0.341 (1) 0.098 ± 0.055 (4) 0.342 ± 0.196 (2) 0.278 ± 0.119 (3)
TwoPatterns 0.870 ± 0.032 (1) 0.131 ± 0.119 (6) 0.348 ± 0.296 (5) 0.447 ± 0.352 (3) 0.448 ± 0.347 (2) 0.445 ± 0.347 (4)

Wine −0.004 ± 0.004 (3) −0.005 ± 0.000 (5) −0.005 ± 0.000 (4) −0.003 ± 0.001 (2) −0.002 ± 0.000
(1) −0.007 ± 0.000 (6)

WordSynonyms 0.240 ± 0.016 (3) 0.190 ± 0.016 (6) 0.206 ± 0.028 (5) 0.236 ± 0.030 (4) 0.247 ± 0.028 (2) 0.251 ± 0.025 (1)
Worms 0.083 ± 0.020 (1) 0.028 ± 0.003 (6) 0.070 ± 0.006 (5) 0.081 ± 0.002 (3) 0.080 ± 0.004 (4) 0.082 ± 0.002 (2)

0.249 (2.556) 0.171 (4.413) 0.213 (3.857) 0.215 (3.556) 0.217 (3.587) 0.226 (3.032)

References

1. Fu, T.C. A Review on Time-Series Data Mining. Eng. Appl. Artif. Intell. 2011, 24, 164–181.
2. Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38. [CrossRef]
3. Hung, J.L.; Wang, M.C.; Wang, S.; Abdelrasoul, M.; Li, Y.; He, W. Identifying at-risk students for early interventions—A

time-series clustering approach. IEEE Trans. Emerg. Top. Comput. 2015, 5, 45–55. [CrossRef]
4. Bandara, K.; Bergmeir, C.; Smyl, S. Forecasting across time series databases using recurrent neural networks on groups of similar

series: A clustering approach. Expert Syst. Appl. 2020, 140, 112896. [CrossRef]
5. Kotsakos, D.; Trajcevski, G.; Gunopulos, D.; Aggarwal, C.C. Time-Series Data Clustering. In Data Clustering: Algorithms

and Applications; Data Mining and Knowledge Discovery Series; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group:
Abingdon, UK, 2014; Volume 15, pp. 357–380.

6. Warren Liao, T. Clustering of time series data—A survey. Pattern Recognit. 2005, 38, 1857–1874. [CrossRef]
7. Gunopulos, D.; Das, G. Time series similarity measures and time series indexing. In Proceedings of the SIGMOD Conference,

Santa Barbara, CA, USA, 21–24 May 2001; p. 624.
8. Kate, R.J. Using dynamic time warping distances as features for improved time-series classification. Data Min. Knowl. Discov.

2016, 30, 283–312. [CrossRef]
9. Rakthanmanon, T.; Campana, B.; Mueen, A.; Batista, G.; Westover, B.; Zhu, Q.; Zakaria, J.; Keogh, E. Searching and mining

trillions of time series subsequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), Beijing, China, 12–16 August 2012; pp. 262–270.

10. Tan, C.W.; Webb, G.I.; Petitjean, F. Indexing and classifying gigabytes of time series under time warping. In Proceedings of the
SIAM International Conference on Data Mining, Houston, TX, USA, 27–29 April 2017; pp. 1–10.

11. Andoni, A.; Nosatzki, N.S. Edit Distance in Near-Linear Time: It’s a Constant Factor. In Proceedings of the 61st IEEE Annual
Symposium on Foundations of Computer Science (FOCS 2020), Durham, NC, USA, 16–19 November 2020; pp. 990–1001.

12. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases. In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, Santa Barbara, CA,
USA, 21–24 May 2001; SIGMOD ’01, pp. 151–162. [CrossRef]

13. Iorio, C.; Frasso, G.; D’Ambrosio, A.; Siciliano, R. Parsimonious time series clustering using P-splines. Expert Syst. Appl. 2016,
52, 26–38. [CrossRef]

14. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning); The MIT
Press: Cambridge, MA, USA, 2005.

15. Leibfried, F.; Dutordoir, V.; John, S.; Durrande, N. A tutorial on sparse Gaussian processes and variational inference. arXiv 2020,
arXiv:2012.13962.

16. Titsias, M. Variational Learning of Inducing Variables in Sparse Gaussian Processes. In Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics, Clearwater Beach, FL, USA, 16–18 April 2009; van Dyk, D., Welling, M.,
Eds.; Proceedings of Machine Learning Research; Hilton Clearwater Beach Resort: Clearwater Beach, FL, USA, 2009; Volume 5,
pp. 567–574.

311

Algorithms 2024, 17, 61

17. Quiñonero-Candela, J.; Ramussen, C.; Williams, C. Approximation methods for Gaussian process regression. In Large-Scale Kernel
Machines; MIT Press: Cambridge, MA, USA, 2007; pp. 203–223.

18. Micchelli, C.A.; Xu, Y.; Zhang, H. Universal Kernels. J. Mach. Learn. Res. 2006, 7, 2651–2667.
19. Petitjean, F.; Ketterlin, A.; Gançarski, P. A global averaging method for dynamic time warping, with applications to clustering.

Pattern Recognit. 2011, 44, 678–693. [CrossRef]
20. Dau, H.A.; Keogh, E.; Kamgar, K.; Yeh, C.C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.A.; Yanping; Hu, B.; Begum, N.; et al.

The UCR Time Series Classification Archive. 2018. Available online: https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
(accessed on 25 January 2024).

21. Faloutsos, C.; Ranganathan, M.; Manolopoulos, Y. Fast subsequence matching in time-series databases. ACM Sigmod Rec. 1994,
23, 419–429. [CrossRef]

22. Javed, A.; Lee, B.S.; Rizzo, D.M. A benchmark study on time series clustering. Mach. Learn. Appl. 2020, 1, 100001. [CrossRef]
23. Paparrizos, J.; Gravano, L. Fast and accurate time-series clustering. ACM Trans. Database Syst. (TODS) 2017, 42, 1–49. [CrossRef]
24. Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 1971, 66, 846–850. [CrossRef]
25. Morey, L.C.; Agresti, A. The measurement of classification agreement: An adjustment to the Rand statistic for chance agreement.

Educ. Psychol. Meas. 1984, 44, 33–37. [CrossRef]
26. Hubert, L.; Arabie, P. Comparing Partitions. J. Classif. 1985, 2, 193–218. [CrossRef]
27. Vinh, N.X.; Epps, J.; Bailey, J. Information theoretic measures for clusterings comparison: Is a correction for chance necessary?

In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009;
pp. 1073–1080.

28. Chatterjee, S.; Simonoff, J.S. Handbook of Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2013.
29. Wang, J. An intuitive tutorial to Gaussian processes regression. Comput. Sci. Eng. 2023, 1–8. [CrossRef]
30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
31. Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. B 1989, 45, 503–528.

[CrossRef]
32. Snelson, E.; Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. In Advances in Neural Information Processing Systems

18; MIT Press: Cambridge, MA, USA, 2006; pp. 1257–1264.
33. Csató, L.; Opper, M. Sparse online Gaussian processes. Neural Comput. 2002, 14, 641–668. [CrossRef]
34. McIntire, M.; Ratner, D.; Ermon, S. Sparse Gaussian Processes for Bayesian Optimization. In Proceedings of the UAI, New York,

NY, USA, 25–29 June 2016.
35. Gardner, J.R.; Pleiss, G.; Bindel, D.; Weinberger, K.Q.; Wilson, A.G. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference

with GPU Acceleration. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8
December 2018.

36. Tavenard, R.; Faouzi, J.; Vandewiele, G.; Divo, F.; Androz, G.; Holtz, C.; Payne, M.; Yurchak, R.; Rußwurm, M.; Kolar, K.; et al.
Tslearn, A Machine Learning Toolkit for Time Series Data. J. Mach. Learn. Res. 2020, 21, 1–6.

37. Driemel, A.; Krivošija, A.; Sohler, C. Clustering time-series under the Fréchet distance. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Arlington, VA, USA, 10–12 January 2016; pp. 766–785.

38. Muskulus, M.; Verduyn-Lunel, S. Wasserstein distances in the analysis of time-series and dynamical systems. Phys. D Nonlinear
Phenom. 2011, 240, 45–58. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

312

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Algorithms Editorial Office
E-mail: algorithms@mdpi.com

www.mdpi.com/journal/algorithms

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.

Academic Open

Access Publishing

mdpi.com ISBN 978-3-7258-0642-3

