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Preface

Global climate change has resulted in significant changes in local weather conditions in many

countries. Changes in rainfall and temperature threaten agricultural production and increase the

vulnerability of individuals who are dependent on agriculture. In particular, water shortages in arid

and semi-arid regions will become more prominent. In such regions, irregularly distributed rainfall

will result in increased droughts as well as extreme rainfall events. Climate-smart agriculture (CSA) is

an approach that aims to transform and reorient agricultural systems to adapt to the effects of climate

change.

This Special Issue, titled “Water Management for Climate-Smart Agriculture,” was initiated as

part of the institutional collaboration project (OKP-IRA-104278) titled ”Efficient Water Management

in Iraq By Switching to Climate-Smart Agriculture: Capacity Building and Knowledge Development”

between Wageningen University in the Netherlands and the following six universities in Iraq: the

University of Anbar, the University of Basra, the University of Kerbala, the University of Kufa, the

University of Mosul, and Salahaddin University-Erbil. The project was led by the Soil Physics and

Land Management group (SLM) at Wageningen University & Research, funded by the Dutch Ministry

of Foreign Affairs, and co-funded by the aforementioned six Iraqi universities.

The goal of this Special Issue was to gather the latest research, resulting from the mentioned

project as well as from other researchers, on topics related to climate-smart agricultural water

management to transfer knowledge and guide and support related stakeholders, researchers, and

students in achieving more sustainable and resilient agricultural systems, particularly in Iraq and

other arid/semi-arid regions. This Special Issue covers a wide range of topics, including rainwater

harvesting, drought, efficient farming practices, irrigation, and groundwater management and

recharge. As such, the knowledge presented in this Special Issue is relevant for other regions

around the world that are also coping with similar conditions of climate change and increasing water

shortages. Therefore, we trust that the knowledge provided in this Special Issue will eventually

contribute to the widespread and targeted adoption and implementation of climate-smart agricultural

water management practices where needed and where achievable.

We express our sincere appreciation to all the authors who made valuable contributions to this

Special Issue. Without their input, this Special Issue would never have been released. We also express

our gratitude to the Nuffic ‘Orange Knowledge Programme’ (OKP) for managing and funding the

OKP-IRA-104278 project.

Michel Riksen, Coen Ritsema, and Karrar Mahdi

Editors
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Abstract: Water resource management and the investigation of the quality and quantity of ground-
water and surface water is important in the Kurdistan Region of Iraq. The growing population, as
well as agricultural and industrial projects, consume huge amounts of water, especially groundwater.
A total of 572 ground and surface water samples were collected for physicochemical analysis to
determine the availability and quality of the water in the Kurdistan region. The physicochemical
parameters such as pH, electrical conductivity, and total dissolved solids were analyzed to evaluate
the suitability of the water for different purposes like livestock, irrigation, and agriculture. GIS-based
multi-criteria decision analysis (MCDA) was used to determine the suitability map of water for
irrigation purposes. Most of the groundwater samples were suitable for irrigation except for some
samples from Erbil City, especially those taken in the Makhmur district, and samples from some
small areas in the cities of Sulaymania and Duhok. All groundwater samples were acceptable for
all types of agricultural crops, except for 15 well samples that were determined not to be usable for
fruit crops. However, this water was acceptable for livestock and poultry. Most of the water wells
provided freshwater except for 36 deep wells, which supplied slightly brackish to brackish water.
Water samples were found to have low to medium salinity levels except for 26 well samples and
one spring sample that had high salinity levels, and 2 well samples with very high salinity levels.
Most of the samples had an excellent to good water classification except for 85 samples classified
as permissible, 8 classified as doubtful, and 4 classified as unsuitable for irrigation according to the
Todd classification. According to the Rhoades classification, all water samples were non-saline to
slightly saline except for 11 samples that were moderately saline.

Keywords: water quality; suitability map; water classification and uses; Kurdistan Region

1. Introduction

Water is considered the most important resource to consider when trying to achieve
sustainable agricultural development worldwide. Improving the management of water
supplies and concentrating on reducing water consumption are both necessary in order to
establish sustainable and efficient agricultural systems, especially more efficient irrigation
systems. Agricultural activities must concentrate on both the quantity and quality of water
to prevent water contamination, unsustainable usage, land loss, and desertification.

The Mediterranean region is one of the most sensitive areas in the world, with signifi-
cant decreases in rainfall and increases in temperature expected in the future [1,2]. Climate
conditions greatly affect crop production. Due to water shortages, especially during the
dry season, surface water and groundwater are used more frequently to increase crop
production. Improvements in water management are necessary to increase and diversify

Water 2021, 13, 2927. https://doi.org/10.3390/w13202927 https://www.mdpi.com/journal/water1
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food production in order to meet the needs of a growing population while simultaneously
reducing crop vulnerability to droughts, floods, and climate change.

To ensure food security and sustainable water management for agriculture, more crops
need to be irrigated drop by drop to ensure improvements in water use without negative
impacts on the quantity and quality of downstream water supplies. Given the present and
future food demands, increasing water scarcity will put a range of stresses on agricultural
productivity and exacerbate sustainability problems [3]. Water demands in the urban,
industrial, and commercial sectors increasingly exceed acceptable water supply limits,
resulting in local depletion of surface and groundwater resources. An accurate assessment
of water demand and supply outside the agricultural sector is a prerequisite to effective
water management [4]. The study of chemical characteristics of groundwater is very
important for municipal, commercial, industrial, agriculture, and drinking water supplies.
Development can contribute to the pollution of groundwater, and consideration must be
given to the protection of water quality. Physicochemical parameters were analyzed in
this study, including the temperature of water well samples (T ◦C), salinity in terms of
total dissolved solids (TDS), electrical conductivity (EC), and reactivity in terms of (pH).
One of the most conservative properties of groundwater is temperature. It is a standard
physical characteristic that is important in the concentration of the chemical properties of
water. Temperature is an important factor for geochemical reactions and organism life [5].
TDS is defined by the content of all dissolved solids in water, ionized or non-ionized, but
does not include colloidal materials, suspended sediment, and dissolved gasses [6]. EC,
or the conductance of groundwater, is a function of temperature, the type of ions present,
and the concentration of various ions’ specific conductance. Readings are usually adjusted
to 25 ◦C so that variations in conductance are a function only of the concentration and
type of dissolved constituents present [7]. pH is the negative logarithm of hydrogen ion
activity, and its value expresses the intensity of activity or alkalinity of water under normal
temperature (T ◦C) and pressure conditions [8]. Water quality is typically calculated by
comparing the measurements of physicochemical parameters to standard measurements,
which provides an estimation of possible pollutants without providing any precise data on
the quality of groundwater [9,10]. Improper management of groundwater resources results
not only in a scarcity of water, but also in a change in water quality [11]. The multi-criteria
decision approach (MCDA) is a decision-making technique that integrates qualitative
and quantitative data by decomposing problems into systematic orders based on a set of
criteria [12]. Irrigation of cropland has become a widely used practice and has greatly
increased the productivity of farmland. Irrigation has made it possible to farm in regions
that otherwise would not be farmable. There were several objectives of this research: to
give some first information of the groundwater quality; to assess the quality of water for
different purposes; to classify groundwater and irrigation water using different methods;
to determine water needs for drinking, livestock, irrigation, and agriculture; and to create
a suitability map for irrigation using MCDA for the Kurdistan Region in northern Iraq.

2. Materials and Methods

2.1. Study Area Description

The Kurdistan Region is located in northern Iraq. It covers an area of 40,643 km2 and
has a population of about 5.1 million people. Kurdistan is bordered by Turkey in the north,
the Republic of Iran in the east, the Mosul province in the west, and the Kirkuk province in
the south (Figure 1). The area includes two main rivers: the Greater Zab and the Lesser
Zab, which flows from the Tigris river.
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Figure 1. Map showing the origin of the groundwater samples taken across the Kurdistan Region.

This area is known for its semi-arid Mediterranean-type climate. Most places in
this region experience cold, rainy winters and long, hot, dry summers. Meteorological
data were collected from different meteorological ground stations in the Kurdistan region
between 2005 and 2019.

Meteorological data obtained from different meteorological stations in the cities of
Erbil, Sulaymania, Duhok, and Halabja show that the annual precipitation was about
400.3 mm in Erbil, 685.3 mm in Sulaymania, 569 mm in Duhok, and 497.7 mm in Halabja.
The maximum and minimum mean monthly relative humidity were 69.9% in January and
27.7% in July in Erbil, 70.3% in January and 24.01% in August in Sulaymania, 67.4% in
January and 26.7% in August in Duhok, and 67.7% in January and 13.7% in July in Halabja.
The maximum monthly temperature in Erbil was 35.3 ◦C in July, and the minimum monthly
temperature was 8.9 ◦C in January. In Sulaymania, the maximum monthly temperature was
33.7 ◦C in July, and the minimum was 6.8 ◦C in January. In Duhok, the maximum monthly
temperature was 33.1 ◦C in July, and the minimum was 7.7 ◦C in January. In Halabja,
the maximum monthly temperature was 35.2 ◦C in July, and the minimum was 6.2 ◦C in
January (Figure 2). In terms of evaporation, in Erbil City, the maximum mean monthly
evaporation was 13.4 mm in July, and the minimum monthly evaporation was 1.8 mm
in January. In Sulaymania City, the maximum monthly mean evaporation was 11.8 mm
in July, and the minimum was 2.3 mm in January. For Duhok City, the maximum was
11.1 mm in July, and the minimum was 1.4 mm in December. In Halabja City, the maximum
mean evaporation was 11.9 mm in July, and the minimum was 2.3 mm in December. The
mean annual sunshine duration was 8.5 h/day in Erbil City, 7.4 h/day in Sulaymania City,
7.6 h/day in Duhok City, and 7.5 h/day in Halabja City. The annual mean wind speed was
1.7 m/s in Erbil City, 1.3 m/s in Sulaymania City, 1.12 m/s in Duhok City, and 0.81 m/s in
Halabja City (Appendix A).
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Figure 2. Mean monthly rainfall and temperature in the study area for the period 2005–2019.

2.2. Geological and Tectonic Setting

The exposed geological units in the Kurdistan Region are represented by formations
that date from the Ordovician to the Tertiary period (Table 1 and Figure 3).

Table 1. Age and lithological description of the geological units.

Age Geological Unit Lithological Description

Holocene Recent alluvial deposits Different sized clastics, mixture of clay, sand, and pebbles

Pleistocene River Terraces Mixture of clay, sand, and pebbles

Pliocene Bai Hassan and
Muqdadiya formation Thick sandstone, siltstone, and conglomerate

Late Miocene Injana formation Red sandstone, siltstone, and intercalations of red clay and
pebbly sandstone

Middle
Miocene Fatha formation Layers of red claystone, limestone, marl, and lenses of

gypsum with some thin layers of siltstone

Middle-Late
Eocene Pila Spi formation Well-bedded, recrystallized limestone, dolomite, and

marly limestone

Early Eocene Gercus formation Red mudstone, sandstone, and shale, with rare
conglomerates

Paleocene Kolosh and Khurmala formations Mainly clastics: shale, limestone, marl, and mudstone
with tongues of white limestone

Late Cretaceous Dokan, Gulneri, Komitan, Aqra, Bekhme,
Shiranish, and Tanjero formations

Limestone, grey dolomite-containing bituminous
limestone, blue-grey marl, and beds of marly limestone

Early Cretaceous Chiagara, Balambo, Sarmord, Garagu, and
Qamchuqa formations

Dolostone, dolomitic limestone, some calcareous marl,
and limited shale

Late Jurassic Naokelekan and Barsrin formations Limestone, dolomitic limestone, shaley limestone,
carboniferous shale, and bituminous dolomitic shales

4
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Table 1. Cont.

Age Geological Unit Lithological Description

Middle Jurassic Sargelu formation Thin bedded shaley black limestone and shale with black
chert and brown dolomitic marl, highly fossiliferous

Early Jurassic Sarki and Sehkanian formations Dolomitic limestone with splintery fractures, which are
generally bituminous and fossiliferous

Late Triassic Baluti, Kurrachina, Beduh, and Avroman
formations

Alternations of shales, limestone, dolomites, and
dolomitic limestone

Late Permian Chaizairi formation Beds of shale, limestone, and some evaporates

Ordovician Khabourr formation Thick sandstone-shale cyclic alternations

Figure 3. Geological map showing the lithological units of the study area (After Stevanovic and Marcovich, 2003).
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The oldest unit from the Ordovician is the Khabour formation which is comprised of
thick sandstone-shale cyclic alternations. The Late Permian period is represented by the
Chaizairi formation, which includes shale, limestone, and some evaporates. The Late Trias-
sic period is represented by Baluti, Kurrachina, Beduh, and Avroman formations which
are generally composed of alternations of shales, limestone, dolomites, and dolomitic
limestone. The Early Jurassic period is represented by Sarki and Sehkanian formations
which consist of dolomitized limestone with splintery fractures, which are generally bi-
tuminous and fossiliferous. The Middle Jurassic period is represented by the Sargelu
formation, which consists of thinly bedded shaley black limestone and shale with black
chert and brown dolomitic marl, and is highly fossiliferous. The Late Jurassic period is
represented by Naokelekan and Barsrin formations which consist of limestone, dolomitic
limestone, shaley limestone, carboniferous shale, and bituminous dolomitic shales. The
Early Cretaceous period is represented by Chiagara, Balambo, Sarmord, Garagu, and
Qamchuqa formations which include dolostone, dolomitic limestone, some calcareous
marl, and limited shale. The Late Cretaceous period is represented by Dokan, Gulneri,
Komitan, Aqra, Bekhme, Shiranish, and Tanjero formations which include limestone, grey
dolomite-containing bituminous limestone, blue-grey marl, and beds of marly limestone.
The Paleogene period is represented by Khurmala, Kolosh, Pila Spi, and Gercus formations
which include interchanging layers of grey claystone, shale, silt, and sandstone with con-
glomerate lenses. Tongues of white limestone can be found in the Kolosh and Khurmala
formations. Red clay, siltstone, and sandstone, as well as a tongue of limestone, can be
found in the Gercus formation. Well-bedded, recrystallized limestone, dolomite, and marly
limestone can be found in the Pila Spi formation. The Neogene period is represented by
Fatha, Injana, Muqdadeya, and Bai Hassan formations. The Fatha formation includes
layers of red claystone, limestone, marl, and lenses of gypsum with some thin layers of
siltstone. The Injana formation includes red sandstone, siltstone, and intercalations of red
clay and pebbly sandstone. The Muqdadeya and Bai Hassan formations include sandstone,
siltstone, and conglomerate. The youngest units are represented by Quaternary deposits,
which include river terraces, the flood plain, and recent alluvial deposits, which include
poorly cemented conglomerate, muddy sandstone, and a cover of pebbly clay [13,14].

2.3. Data Collection and Water Sample Analysis

The physicochemical properties for the analysis of 572 water samples, including
535 deep well samples (169 wells in Erbil, 119 wells in Sulaymania, 209 wells in Duhok, and
18 wells in Halabja), 33 spring samples, and 4 river water samples in the study area were
collected from the database of Ministry of Agriculture and Water Resources—Groundwater
Directorate in the Kurdistan Region and field work carried out during 2020–2021. The
parameters for the samples included temperature, pH, electrical conductivity (EC), salinity,
and total dissolved solids (TDS); all these parameters were measured in situ in the field by
the portable device (HANNA instrument model Hi8314).

2.4. Interpolation and Statistical Analysis

The interpolation was done in ArcGIS 10.1 using the Kriging method to plot the
parameter distribution for the well samples. Kriging spatial interpolation assumes that the
distance or direction between sample points reflects a spatial correlation that can be used
to explain variations in the surface. This approach is an efficient geostatistical interpolation
technique focused on the special correlation of sampled points [15]. Statistical analysis of
the analyzed parameters was carried out using the SPSS program.

2.5. Geo-Information Technique

GIS-based multi-criteria decision analysis (MCDA) was used to create a suitability
map for using groundwater and surface water for irrigation purposes based on water
availability and quality. The criteria layers were assessed using the multi-criteria decision
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approach combined with the weighted overlay function in ArcGIS 10.1. This process was
used to evaluate the suitability of a specific area for a specific purpose.

2.6. Water Use and Suitability for Different Purposes

The suitability of the water for any particular use is determined by comparing the
calculated and measured physical, chemical, and biological parameters with set standards
for a particular use. In this study, the physicochemical parameters were used to compare
the calculated and measured analysis. Train classification [16] was used to determine the
suitability of the water for irrigation purposes based on the total dissolved solid (TDS).

2.7. Water Type Classification
2.7.1. Classification According to TDS

Water samples classified according to Hillel [17], Drever [18], Altoviski [19], and
Gorrell [20], depending on TDS (Table 2).

Table 2. Classifications of water according to TDS in (mg/L).

Water Class Gorrell (1958) Altoviski (1962) Drever (1997) Hillel (2000)

Fresh water 0–1000 0–1000 <1000 <500
Slightly brackish water (Marginal) — 1000–3000 — 500–1000

Brackish water 1000–10,000 3000–10,000 1000–20,000 1000–2000
Salty water 10,000–100,000 10,000–100,000 — —
Saline water — — 35,000 5000–10,000

Highly Saline Water — — — 10,000–35,000
Brine water 100,000 >100,000 >35,000 >35,000

2.7.2. Classification According to EC

Water samples classified according to USDA [21] and Mayer et al. [22], depending on
the EC parameter (Table 3).

Table 3. Classifications of water according to EC in (μS/cm).

Water Class USDA (1954) Mayer et al. (2005)

Low salinity water 100 < EC < 250 550–1200
Medium salinity water 250 < EC < 750 1200–2200

High salinity water 750 < EC < 2250 2200–5000
Very high salinity water 2250 < EC < 5000 —

2.8. Classification of the Irrigation Water
2.8.1. Todd Classification (1980)

This classification depends on electrical conductivity (Table 4).

Table 4. Water classification according to Todd [23].

EC (μS/cm) Water Class

<250 Excellent
250–750 Good
750–2000 Permissible

2000–3000 Doubtful
>3000 Unsuitable

2.8.2. Rhoades Classification (1992)

Rhoades classified irrigation water into six types based on TDS and EC (Table 5).
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Table 5. Water classification according to Rhoades [24].

Water Class EC (μS/cm) TDS (mg/L)

Non-saline <700 <500
Slightly-saline 700–2000 500–1500

Moderately saline 2000–10,000 1500–7000
Highly-saline 10,000–25,000 7000–15,000

Very highly saline 25,000–45,000 1500–35,000
Brine >45,000 >35,000

2.8.3. Don Classification (1995)

This classification depends on electrical conductivity and total dissolved solid. Don
classified irrigation water into five types (Table 6).

Table 6. Irrigation water classification according to Don [25].

Water Quality EC (μS/cm) TDS (mg/L)

Excellent 250 175
Good 250–750 175–525

Permissible 750–2000 525–1400
Doubtful 2000–3000 1400–2100

Unsuitable >3000 >2100

3. Results and Discussion

3.1. Physicochemical Parameters

The physicochemical characteristics are shown in Table 7 and Appendices B–F and H
and Section G. The electrical conductivity for the water well samples ranged between 134
and 5090 μS/cm, the spring samples ranged between 196.6 and 796.5 μS/cm, and the river
samples ranged between 297 and 480 μS/cm. The highest concentration was measured in
Erbil City in the Said-Ubaid village well, while the lowest concentration was measured in
Sulaymania City in the Qalaga village well (Figure 4).

Table 7. Basic statistics of the physicochemical parameters of water samples in the study area.

Sample Parameters
EC

(μS/cm)
pH

TDS
(mg/L)

Temperature ◦C

Wells Erbil City

Maximum 5090 9.1 3309 31
Minimum 286 6.5 186 17

Mean 643.9 7.7 419 23
SD * 560 0.5 365 1.9

Wells Sulaymani City

Maximum 3290 9.5 2139 31
Minimum 134 6.8 87 13

Mean 563.2 8.2 366.1 20
SD * 447.5 0.6 290.8 3.4

Wells Duhok City

Maximum 2400 8.6 1560 29
Minimum 220 6.3 143 14

Mean 687.5 7.5 446.9 20.4
SD * 256.6 0.3 166.8 2.2

Wells Halabja City

Maximum 2540 9.6 1651 29
Minimum 304 6.5 198 18

Mean 530.3 8.3 344.7 21.9
SD * 373.4 0.7 242.7 2.1
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Table 7. Cont.

Sample Parameters
EC

(μS/cm)
pH

TDS
(mg/L)

Temperature ◦C

Spring Samples

Maximum 796.5 8.2 509.8 26.5
Minimum 196.6 7.4 128 16.5

Mean 432.4 7.7 280.3 20.4
SD * 138.3 0.2 88.9 3.1

River Samples

Maximum 388.5 8.2 252.5 22.9
Minimum 361 8 234.7 22.2

Mean 371.5 8.2 241.5 22.5
SD * 12.7 0.1 8.3 0.3

* SD Standard Deviation.

Figure 4. Distribution of the electrical conductivity of groundwater across the Kurdistan Region.

The pH for the deep wells ranged between 6.5 and 9.6, the samples from the springs
ranged between 7.4 and 8.2, and the samples from the river ranged between 7.9 and 8.4.
The highest concentration was measured in a deep well in Amura located in Halabja City,
and the minimum concentration was measured in a deep well in Chrostana in Halabja City
(Figure 5).
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Figure 5. Distribution of the pH of groundwater across the Kurdistan Region.

Total dissolved solids in the deep wells ranged between 87 and 3309 mg/L, the spring
samples ranged between 128 and 509.8 mg/L, and the river samples ranged between
193 and 312 mg/L. The highest concentration of TDS was found in a well in the village
of Said-Ubaid in Erbil City, while the lowest concentration was measured in a well in
Sulaymania City in the village of Qalaga (Figure 6).

Figure 6. Distribution of the TDS of groundwater across the Kurdistan Region.
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The temperature in the deep wells ranged between 10 and 31 ◦C, the spring samples
ranged between 16.5 and 26.5 ◦C, and the river samples ranged between 21.4 and 23.3 ◦C.
The highest value was measured in Erbil City in the Chamadubz village well, and the
lowest value was also measured in Erbil City in the Hasarok village well (Figure 7).

Figure 7. Distribution of the temperature of groundwater across the Kurdistan Region.

3.2. Water Uses and Suitability Analysis
3.2.1. Water Use for Livestock Purposes

In order to determine water quality for livestock purposes, the water samples were
compared with the Ayers and Westcot classification of groundwater suitability for livestock
and poultry according to electrical conductivity concentration (Table 8) [26]. All the
water samples were acceptable for livestock and poultry purposes because the electrical
conductivity fell within acceptable ranges except for the Said-Ubaid water well sample
taken from Erbil city. This water was acceptable for livestock but unacceptable for poultry
because the EC concentration was more than 5000 μS/cm which has been shown to reduce
growth and increase mortality in poultry (Figure 8).
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Figure 8. Suitability map for livestock and poultry according to Ayers and Westcot (1989).

Table 8. Water quality for livestock and poultry compared with Ayers and Westcot (1989) standards.

EC
(μS/cm)

Specifications Remarks Water Samples

<1500 Excellent
This water has a relatively low level of salinity and
should present no serious burden to any livestock or

poultry

Erbil City
286–5090
(μS/cm)

1500–5000 Acceptable

This water should be satisfactory for all classes of
livestock and poultry. It may cause temporary and
mild diarrhea in livestock not accustomed to it or

watery droppings in poultry (especially at the higher
levels) but should not affect health or performance

Sulaymania City
134–3290
(μS/cm)

5000–8000 Acceptable for livestock,
unacceptable for poultry

Causes temporary diarrhea in livestock and reduced
growth and death in poultry

8000–11,000 Limited for livestock,
unacceptable for poultry

Avoid use for pregnant and lactating animals as
levels increase

Not acceptable water for poultry

Duhok City
220–2400
(μS/cm)

11,000–16,000 Limited Not acceptable for animals

>16,000 Not used
The risks posed by highly saline waters are so great
that they cannot be recommended for use under any

circumstances

Halabja City
304–2540
(μS/cm)

3.2.2. Water Use for Agricultural Purposes

The properties of Todd’s classification [23] for Agricultural crops depending on total
dissolved solids were applied for assessing water use purposes. This assessment showed
that nearly all water samples were acceptable for all types of agricultural crops barring a few
exceptions. Specifically, 16 well samples from Erbil City, 8 well samples from Sulaymania
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City, 14 well samples from Duhok City, and 2 wells from Halabja City were not suitable for
fruit crops (Table 9, Figure 9 and Appendices B–F and H and Section G).

Figure 9. Suitability map for livestock and poultry according to [19].

Table 9. Todd classification (1980) for agricultural crops compared with water samples from the study area.

Crop
Divisions

Low TDS Endurance
Medium TDS

Endurance
High TDS Endurance Water Samples

Fruit

<300 μS/cm
Avocado, lemon,

orange, apple
strawberry, picot prune,

plum

300–400 μS/cm
Olive, date, fig

cantaloupe, pomegranate

400–1000 μS/cm
Palm

Erbil City
286–5090
(μS/cm)

Sulaymania City
134–3290
(μS/cm)

Vegetable
300–400 μS/cm

Green bean, celery,
radish

400–1000 μS/cm
Cucumber, onion, peas

carrot, potato, cauliflower
lettuce, squash

1000–12,000 μS/cm
Spinach, kale,

asparagus

Duhok City
220–2400
(μS/cm)

Field crops 400–600 μS/cm
Field bean

600–1000 μS/cm
Sunflower, corn, rice, flax,

castor bean, wheat

1000–10,000 μS/cm
Cotton, sugar beet,

barley

Halabja City
304–2540
(μS/cm)

3.2.3. Water Use for Irrigation Purposes

One problem caused by irrigating cropland is the possibility of groundwater con-
tamination. Fertilizer and pesticide use need to be more carefully restricted in order to
reduce the risk of contamination [27]. The suitability of irrigation water is dependent on
the effects of its mineral content on both plants and soil, as well as the effect of salts which
could cause changes in soil structure. Infiltration increases with increasing TDS, which
is used for evaluating soil permeability [28]. Most of the water samples were acceptable
for irrigation and would not have detrimental effects on crops. Several samples of well
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water proved that the water was not suitable for irrigation, including 17 well samples from
Erbil City, 7 well samples from Sulaymania City, 52 well samples from Duhok City, and
2 well samples from Halabja City that could potentially have harmful effects on crops that
are sensitive to salinity. Additionally, 4 well samples from Erbil City, 4 well samples from
Sulaymania City, 2 well samples from Duhok City, and 1 well sample from Halabja City
could be harmful to sensitive crops. Only 4 well samples (3 wells in Erbil City and 1 well
in Sulaymania City) could be used for highly tolerant crops (Table 10 and Appendices B–F
and H and Section G).

Table 10. Train classification (1979) for irrigation water and compared with water samples from the
study area.

TDS (mg/L) Specifications Water Samples TDS Range

500 Used for irrigation; does not cause harmful
effects

Erbil City
186–3309 mg/L

500–1000 Used for irrigation but causes harmful effects on
crops sensitive to salinity

Sulaymania City
87–2139 mg/L

1000–2000 Causes harmful effects on crops, so use carefully Duhok City
143–1560 mg/L

2000–5000 Used only for irrigating highly tolerant crops Halabja City
198–1651 mg/L

3.3. Suitability Analysis

A suitability map was created by combining the derived layers to define suitable
groundwater locations for irrigation purposes. The steps for this procedure started with
reclassifying datasets using a model in ArcGIS to reclassify the interpolation maps of the
physicochemical parameters into relative classes. In this approach, for every criterion input,
each cell in the study area has a different value for each layer. To determine irrigation
suitability, the suitability map was created by integrating the derived layers. Because
combining these layers in this format is not possible, the next step was to reclassify the
previous maps into a relative four classes with a common value. In the resulted maps, the
suitable locations are referred to as number one, while number four indicates unsuitable
locations (Figure 10). After reclassification, the weighted overlay analysis was used to
create an integrated study of common values for a variety of dissimilar and miscellaneous
inputs and to produce a final suitability map for groundwater irrigation.

According to the results, the region was divided into three classes: high suitability,
low suitability, and unsuitable with respect to the input factors using the weight overly
method. In the resulting maps, the suitable locations are referred to as number one, while
the number four indicates unsuitable locations. Figure 8 shows the reclassified map of the
four criteria used in this study. High suitability defines water samples that have parameters
and concentrations within the acceptable limit, and unsuitable defines the water samples
that have concentrations over the standard or acceptable limit. Most of the groundwater
samples were suitable for irrigation except for some samples from the Makhmur district in
Erbil City, the Chamchamal and Kfri districts in Sulaymania City, and the Zawita district in
Duhok City (Figure 11).
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Figure 10. Reclassified map of the studied criteria; (a) Reclassified electrical conductivity, (b) Reclassified total dissolved
solid, (c) Reclassified pH value, and (d) Reclassified temperature value.
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Figure 11. Irrigation water suitability map of the Kurdistan Region.

3.4. Water Type and Classification of the Irrigation Water

Most of the well water samples were freshwater except for 36 deep well samples
that ranged from slightly brackish to brackish water. Considering TDS results, all the
spring samples were considered freshwater according to [17–20] (Appendices B–F and H
and Section G).

According to the [21,22], based on the EC, most of the water samples had low to
medium salinity except for 26 well samples and one spring sample that had high salinity,
and 2 well samples that had very high salinity (Appendices B–F and H and Section G).

Most of the samples had an excellent to good water classification except for 85 samples
that were classified as permissible, 8 samples that were classified as doubtful, and 4 samples
that were classified as unsuitable for irrigation according to the Todd classification based
on EC. According to the Rhoades classification, all water samples were non-saline to
slightly saline except for 11 samples that were moderately saline. According to the Don
Classification, most of the samples were excellent to good except for 85 samples that were
permissible, 8 samples that were doubtful, and 4 samples that were unsuitable for irrigation
(Appendices B–F and H and Section G).

4. Conclusions

This study examined water quality and availability as well as water use for different
purposes and the suitability of water for irrigation in the Kurdistan Region, Iraq. The
water samples were acceptable for all types of agricultural crops with the exception of
16 well samples from Erbil City, 8 well samples from Sulaymania City, 14 well samples
from Duhok City, and 2 well samples from Halabja City, which should not be used for
fruit crops. Most water samples were acceptable for livestock and poultry purposes except
for a well water sample from the Said Ubaid area of Erbil city that was acceptable for
livestock but unacceptable for poultry because of its high electrical conductivity which
causes reduced growth and increased mortality in poultry. Most of the water samples
were acceptable for irrigation and would not cause detrimental effects on crops except for
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17 well samples from Erbil City, 7 well samples from Sulaymania City, 52 well samples
from Duhok City, and 2 well samples from Halabja City that could be harmful to crops
that are sensitive to salinity. Additionally, 4 well samples from Erbil City, 4 well samples
from Sulaymania City, 2 well samples from Duhok City, and 1 well sample from Halabja
City could be harmful to crops. A total of 4 well samples (3 wells in Erbil city and 1 well in
Sulaymania city) could be used for irrigating highly tolerant crops.

Most of the deep well and spring samples were considered freshwater except for some
deep well samples that contained slightly brackish to brackish water according to the total
dissolved solids. Most samples contained water with low to medium salinity except for
some wells and one spring sample that contained water with high salinity, and two well
samples that had water with very high salinity. Suitability analysis shows that most of the
groundwater samples were suitable for irrigation except for the samples taken from the
Makhmur District in Erbil City, the Chamchamal and Kfri districts in Sulaymania City, and
the Zawita district in Duhok City.

Agricultural activities may have adverse effects on water quality due to the release of
nutrients (as a result of soil management and fertilizer application) and other chemicals like
pesticides into aquatic environments. Biological contamination (e.g., from microbiological
organisms in manure), soil erosion, and sediment burdens may increase due to poor
farming practices. As a result, farmers and other water users should try to reduce negative
effects on water quality.
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G.

Figure A1. Location Map Showing the Spring and River Samples of the Study Area.
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Appendix H

Figure A2. Hydrogeological Map (Aquifer System) across the Kurdistan Region (after Stevanovic and Marcovich, 2004).
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Abstract: Climate change and the fast growth of industrial and agricultural enterprises can have a
negative impact on groundwater quality. The evaluation of groundwater quality is an important
issue to determine the suitability of water for agriculture and other purposes in the Kurdistan Region
of Iraq. The quality of water is an important indicator for selecting the best Climate Smart Agriculture
practices that can be applied in the region. Industrial and agricultural enterprises use massive
amounts of groundwater pollutants such as fertilizers and pesticides, especially in the agriculture
sectors. Groundwater samples were collected from varying depths of 110 to 200 m for chemical
and physical analysis to determine water availability and quality as well as the effect of water use
and of drought on groundwater level fluctuation in Erbil City. The analysis includes pH, electrical
conductivity, temperature, total dissolved solids, major cations (Ca2+, Mg2+, Na+, K+) and major
anions (SO4

2−, HCO3
−, Cl−, CO3

−). The high TDS value is founded in the central part of the study
area according to groundwater flow which originates from the mountain area toward the center of
the plain. The results of the sodium adsorption ratio (SAR) shows that all water well samples are
suitable for irrigation which have a low sodium hazard and use on sodium sensitive crops must be
cautioned against, and the sodium hazard shows that there is no toxic effect on the plants because all
the groundwater samples fall in the standard limits of sodium percent, which is less than 60%. The
sodium hazard is low, based on RSC results, because it falls below the standard limit which is less
than 1.5 meq/L. All groundwater samples are classified as having excellent-to-good permeability.
The classification of the potential salinity of groundwater samples shows that nine water samples
are in the class excellent-to-good, three water samples are good-to-injurious, and four samples are
injurious-to-unsatisfactory. The water type in the area is mostly sulfate except for three samples, two
of which are of the chloride type and the third is bicarbonate.

Keywords: groundwater quality; water classification; agriculture purposes; hydrochemical indictors;
plain area

1. Introduction

Groundwater is the primary source of drinking water in the Erbil region in Kurdistan,
Iraq. As the population continues to rise, more water is required for industrial, domestic,
environmental, recreational, and agricultural purposes. When water resources are limited,
rising demand for water necessitates efficient water resource management and assessment,
particularly when the water is to be used for human consumption [1] and crop production.
Water management improvements are required to enhance and diversify food production to
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fulfil the needs of a growing population, while minimizing crop vulnerability to droughts,
floods, and climate change [2]. Water management in climate smart agriculture includes
techniques such as drip irrigation and hydroponics, which are more dependent on good
water quality. Water quality can have a negative influence on the performance of an
irrigation system due to the plugging of emitters and sprinklers. These problems can be
caused by inorganic solids (silt and sand), organic solids (algae, bacteria and slime) and
dissolved solids (calcium, iron and manganese) [3].

Therefore, groundwater chemistry based on hydro-chemical data is necessary for
obtaining basic information on water types, categorizing water for various applications,
identifying distinct groundwater aquifers, and studying various chemical processes.

The physical and chemical characteristics that impact groundwater quality in a given
area are substantially influenced by geological formations and anthropogenic activity [4].
Electrical conductivity levels reflected by salinity damage to plants are highly important
considerations in evaluating the quality of water used for irrigation because of its impact
on the osmotic pressure of the soil solution and the capacity of plants to absorb water via
their roots [5].

Groundwater chemical characteristics play an important role in identifying and as-
sessing water quality, and chemical classification shown by the concentration of various
predominant cations, anions and their interrelationships. Ion dissolution in groundwater
occurs more frequently as a result of interactions between groundwater and rock or soil,
and the evaporation process, than as a result of precipitation or other sources. The com-
position of rainwater, mineralogy of the watershed and aquifers, topography, and climate
controls the chemical composition of surface- and groundwater [6].

Groundwater fluctuation analysis estimated the variations in stored water, renewable
storage water quantity, and investment of groundwater uses [7]. Fluctuation is affected by
many factors such as rainfall intensity and quantity, Infiltration capacity of the soil and bed
rocks, groundwater depth above sea level, topography, evapotranspiration, and water well
discharge [8].

Climate change, in the form of longer and more severe droughts or more intense rainfall
events leading to flooding, can affect both the quality and quantity of water, necessitating
planning and management to mitigate its negative effects on drinking water supplies.

The main objectives of this study were to investigate the possible sources of ions
in the groundwater, and to understand the hydrogeological processes and the hydro-
chemical characteristics of the groundwater by analyzing irrigation water parameters
such as major cations and anions. This will allow for a discussion of the possibility of
using groundwater for different purposes. The spatial distribution of hydro-chemical
constituents of groundwater related to its suitability for different purposes, groundwater
classification, water (quality) type, hypothetical salts and the groundwater level fluctuation
were identified for the selected monitoring wells in the study area.

2. Materials and Methods

2.1. Study Area Description

The area of interest is located in the southwestern part of Erbil City and north of Gwer
district, which situated in Shamamek district, extending between (43◦39′17′′–44◦0′11′′ E) and
(35◦55′10′′–36◦12′24′′ N). The area covers about 663 km2, the elevation ranging from 300 m to
500 m above sea level within the foothill zone (Figure 1). The area is bordered by the Zurga
Zraw Dagh anticline in the south and southwest and Erbil City in the northeast. The crops in
the area are mainly wheat and barley, and the irrigation system is surface irrigation.
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Figure 1. Location map of the study area with water well sample locations.

2.2. Climate

The climate in the study area belongs to the semi-arid Mediterranean type. It is char-
acterized by cold and rainy winters, and long, hot, and dry summers. Meteorological data
obtained from the Erbil meteorological station for the period from 2003 to 2020 (Figure 2)
shows that annual precipitation is about 456.2 mm, maximum and minimum mean monthly
relative humidity is 70.9% in January and 27.3% in July, respectively. Maximum monthly
temperature is about 39.9 ◦C in August and the minimum is about 11.6 ◦C in January.
Maximum evaporation is 136 mm in July and the minimum is 18.7 mm in January. The
mean annual sunshine duration is 8.2 h/day, and wind speed is between 1.4 and 2.1 m/s
with an annual mean wind speed of 1.8 m/s.
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Figure 2. Mean monthly climatic parameters in the study area for the period 2003–2020.

2.3. Lithological and Tectonic Framework

The main outcrops in the study area are Pleistocene and Holocene deposits represented
by residual and older terraces consists of conglomerate, gravel, sand, clay, silt; Pliocene
deposits represented by the Bai Hassan formation consist of molasses sediment represented
by alternating claystone and conglomerate with some sandstone and siltstone, and the
Muqdadiya formation, which was laid down in a fluvial environment in a strongly sinking
fore deep, and might be considered as typical fresh water molasses with mostly Pliocene
age. The aquifer in the study area is porous aquifer.

Tectonically, the study area is a part of the Unstable Shelf Zone that was affected by
the Alpine orogeny in the Mesozoic in the Chamchamal-Butma sub-zone of the Foothill
Zone. The unstable shelf is characterized by structural trends and faces changes that are
parallel to the Zagros-Taurus suture belts [9].

2.4. Water Sampling and Analysis

Sixteen water well samples were collected in the study area in February 2022 to
investigate quality, suitability, uses and classification of the water in the study area. Garmin
eTrex 20 GPS device was used for field data collection and determining the coordination
of the deep well locations, which generally showed a spatial accuracy of ±4 m (Table 1).
Physical parameters for the samples such as temperature, pH and electrical conductivity
(EC) were measured in the field using portable EC, T and pH meters. Chemical parameters
such as major cations (Ca2+, Mg2+, Na+, K+) and major anions (SO4

2−, HCO3
−, Cl−, CO3

−)
were analyzed in the laboratory of the University of Mosul using ion chromatography
instruments. Total hardness results from the presence of divalent metallic cations of calcium
and magnesium, which are very abundant in water. The total hardness (TH) was calculated
using the equation given by Hem, 1985 [10]:

TH (as CaCO3) mg/L = (Ca2+ + Mg2+) × 50 (1)
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Table 1. Locations and depths of the wells in the Erbil plain area, UTM Coordination system.

# Name of Wells Easting Northing Elevation Well Depth (m)

1 Tandura Village
Well 395,413 3,993,026 335 180

2 Mastawa Village
Well 395,425 3,989,611 313 110

3 Aliawa Shekh
Village Well 393,348 3,985,207 993 150

4 Dil uguleKhwaru
Village Well 396,086 3,995,879 339 162

5 Doosarafatah
Village Well 401,961 3,987,191 337 195

6 Haza Village Well 403,004 3,997,753 354 200

7 Shekh Sherwan
Village Well-1 385,318 3,988,765 296 200

8 YadiQizlar Village
Well 398,120 3,982,848 321 150

9 Dheivan Village
Well-1 393,502 3,989,935 314 132

10 Binberze Gichka
Village Well 396,837 4,001,782 342 200

11 Yarmja Village
Well 394,854 3,999,461 331 120

12 Lajan Harki
Village Well-1 391,684 3,998,770 331 170

13 Sardar Village Well 404,773 3,998,649 367 171

14 Dhemat Village
Well-1 391,635 3,995,103 304 150

15 Awena Village
Well-1 382,574 3,991,776 285 180

16 Bryat Village Well 404,024 3,996,473 342 173

2.5. Groundwater Quality Assessment

The concentration of cations and anions was interrelated, and the irrigation indexes
were calculated including the sodium adsorption ratio (SAR) [11], sodium percentage
(Na%) [12], residual sodium carbonate (RSC) [11], magnesium hazard (MH) [13], potential
salinity (Ps) [14], permeability index (PI) [15], and monovalent cation adsorption ration
(MCAR) [16] were used to assess groundwater quality.

The indexes were calculated using the equations below:

SAR = Na+ (epm)/[Ca+2 + Mg+2 (epm)/2]0.5 (2)

Na% = [Na+ + K+ (epm)/Ca+2 + Mg+2 + Na+ + K+ (epm)] × 100 (3)

RSC (in epm) = (CO3
−2 + HCO3

−) − (Ca+2 + Mg+2) (4)

MH = Mg+2/(Ca+2 + Mg+2) × 100 (5)

Ps = Cl− +
√

SO4 (6)

PI = [[Na+ +
√

HCO3
−]/[Ca+2 + Mg+2 + Na+]] × 100 (7)

MCAR = Na+ + K+/(Ca+2 + Mg+2/2)0.5 (8)

The interpolation for the parameter’s concentration was carried out in ArcGIS 10.1
using the Kriging method to plot the parameter distribution for the well samples in the
study area.
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2.6. Cation Ratio of Structural Stability (CROSS)

The Cation ratio of structural stability CROSS was used to assess the soil permeability
hazard.

CROSS = CNa + 0.56CK/[(CCa + 0.60CMg)/2]0.5 (9)

The major cations commonly occur in irrigation water in soil solutions, and on soil
cations exchange sites, with concentrations and relative distributions influenced by both
natural and anthropogenic factors [17].

Rengasamy and Marchuk [18] proposed that CROSS should be more predictive than
SAR in assessing irrigation water quality for soil permeability hazard because it includes
the dispersive effect of K in addition to that of Na and differentiates the flocculating effect
of Mg from that of Ca.

2.7. Hydrochemical Formula and Water Type

Water type is always represented by account of major cations and anions in (epm%)
it exceeds than (15%) in the hydro-chemical formula, and the formula are determined
according to Ivanov (1968) formula [19]:

Anion (epm%) in decreasing order

TDS (mg/L) ——————————————————- pH

Cation (epm%) in decreasing order (10)

2.8. Groundwater Uses for Irrigation Purposes

The irrigation of cropland has become a widely used practice and has greatly increased
the productivity of farmland. It has made it possible to farm in regions that would not be
farmable without irrigation. A problem with irrigated cropland is the possibility of ground-
water contamination and the stricter restrictions that are going to have to be implemented
on the quantity of fertilizers and pesticides used to reduce the risk of contamination [20].

The classification of irrigation water depends on variables such as: Total Dissolved
Solids (TDS); Sodium Adsorption Ratio; Residual Sodium Carbonate; and Chloride.

2.8.1. Total Dissolved Solids

The suitability of irrigation water is dependent on the effect of the mineral constituent
of water on both the plant and soil, and the effect of salts on soil causing changes in soil
structure. Infiltration is increased with increase in (TDS), and is then used for evaluating
soil permeability [21].

Train classification (1979) [22] was used to assess the suitability of the water for
irrigation, comparing this classification with water samples in the study area (Table 2).

Table 2. Train classification for suitability of irrigation water.

TDS Specifications

<500 Use for irrigation does not have a harmful effect
500–1000 Use for irrigation has a harmful effect on sensitive crops for salinity

1000–2000 Has a harmful effect on crops so needs experience to use
2000–5000 Use for high tolerance crop irrigation and needs experience to use

2.8.2. Sodium Adsorption Ratio

General classification of water sodium hazard based on SAR according to Bauder et al.
(2004) [23] were used to determine the suitable water uses for irrigation (Table 3).
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Table 3. General classification of water sodium hazard based on SAR values [22].

SAR Sodium Hazard Specification

1–9 Low Use on sodium sensitive crops must be cautioned
10–17 Medium Amendments (such as gypsum) and leaching needed
18–25 High Generally unsuitable for continuous use
>26 Very high Generally unsuitable for use

2.8.3. Residual Sodium Carbonate

Higher RSC values suggest that a significant amount of calcium and some magnesium
ions precipitate from the solution, increasing the percentage of sodium in water and soil
particles and thus increasing the risk of a sodium hazard [24].

The relation between RSC and suitability of water for irrigation purposes is as in the
table below (Table 4):

Table 4. Suitability of water for irrigation purposes according to RSC.

RSC Suitability of Water for irrigation

RSC > 2.5 Unsuitable for irrigation
1.5 < RSC < 2.5 Range between suitable and unsuitable water for irrigation
RSC < 1.5 Water suitable for irrigation purposes

2.8.4. Chloride

Chloride is not adsorbed by soils but readily moves with the soil water; it is taken up
by plant roots and moves upward to accumulate in the leaves [25]. Chloride is essential to
plants in very small amounts; it can cause toxicity to sensitive crops at high concentration.
The Bauder [23] classification was used to determine the suitability of water uses for
irrigation (Table 5).

Table 5. Classification based on chloride and its effect on the crops [23].

Chloride (ppm) Effect on Crops

Below 70 Generally safe for all plants
70–140 Sensitive plants show injury

141–350 Moderately tolerant
Above 350 Plants show injury

2.9. Groundwater Classification

Classification of groundwater according to chemical indicators depends on hydro-
chemical parameters. Different types of classification were applied in this research to
classify the water such as: Piper Diagram Classification; Sholler Classification; Chadha
Classification; and Gibbs diagram classification.

2.9.1. Piper Diagram Classification (1944) [26]

This classification can be combined with the classification based on the dominant ions
present in the water. Most classifications of this type use a percentage of anion and cation
equivalents per million [27].

2.9.2. Sholler Classification (1972) [28]

In this classification, the ion concentration in (epm) units is plotted on semi-logarithm
paper. This type of diagram facilitates a visual comparison of the composition of different
water types in descending order, shown in Table 6 [29].
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Table 6. Water type according to Schoeller classification.

Cations Anions

A r(Na+K) > rMg > rCa 1 rCl > rSO4 > rHCO3
B r(Na+K) > rCa > rMg 2 rCl > rHCO3 > rSO4
C rMg > r(Na+K) > rCa 3 rSO4 > rCl > rHCO3
D rMg > rCa > r(Na+K) 4 rSO4 > rHCO3 > rCl
E rCa > r(Na+K) > rMg 5 rHCO3 > rCl > rSO4
F rCa > rMg > r(Na+K) 6 rHCO3 > rSO4 > rCl

According to this classification, parallel relationships in the hydro-chemical composi-
tion for the water reflect the effect of dissolution processes or weathering of rocks by the
water, otherwise the water composition is from another source [30].

2.9.3. Chadha Classification (1999) [31]

Chadha (1999) created a new schematic dividing the origins of ions into eight cate-
gories. The square or rectangular field in a Chadha diagram represents the overall ion
distribution and character of groundwater and is used to demonstrate geochemical compo-
sition and hydro-chemical processes. The rectangular field is divided into eight sub-fields,
each of which symbolizes a different water type, in order to determine the basic character
of groundwater (Figure 3).

Figure 3. Water type according to Chadha classification in the study area.

2.9.4. Gibbs Diagram Classification (1970) [32]

The Gibbs diagram is a method for estimating the origin of ions in groundwater by
focusing on the correlation between the concentration of cations (Na+, Ca2+) and anions
(Cl−, HCO3

−), and total dissolved solids (Figure 4).
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Figure 4. Gibbs Diagram for cations and anions in the study area.

2.10. Groundwater Level Fluctuation

The data of seven monitored wells were obtained to determine groundwater level
fluctuation during the period between 2010 until 2020, and the effect of drought periods
caused by climate change on the groundwater in the study area. The data was obtained
from the Groundwater Directorate-Erbil, Kurdistan Region.

3. Results and Discussion

3.1. Physical and Chemical Analysis

The physico-chemical analysis is shown in Table 7, and the special distribution of all
parameters analyzed are shown in Appendices A–C. The map of total dissolved solids
shows that the high value is founded in the central part of the study area according to the
groundwater flow which originates from the mountain area toward the center of the Erbil
plain (Appendices A–E).

Table 7. Physico-chemical Parameter Analysis for the Deep Wells in the study area, cations and
anions in mole/m3 unit.

SN Well Name EC μs/cm pH TDS ppm SO4
2− Cl− HCO3 CO3

−2 Ca+2 Mg+2 Na+ K+ TH

1 Tandura Village
Well 1045 7.89 679 5.5 1.6 2.5 0 5.7 1.3 2.4 0.3 350

2 Mastawa Village
Well 2740 7.52 1781 8.5 1.5 4.6 0 5.3 1.2 1.8 0.3 325

3 Aliawa Shekh
Village Well 1618 7.82 1052 5.3 0.6 3.2 0 5.9 1.6 1.6 0.1 375

4 Dil uguleKhwaru
Village Well 1189 7.65 773 4.1 3.4 2.3 0 4.6 3.4 1.6 0.2 400

5 Doosarafatah
VillageWell 921 7.8 599 5.7 0.5 3.3 0 4 2.5 2.9 0.1 325

6 Haza Village Well 1434 7.85 932 5.4 1.9 2.4 0 4.8 2.2 2.4 0.3 350

7 Shekh Sherwan
Village Well-1 917 7.86 596 6.5 1.4 2.3 0 6.3 1.24 2.5 0.3 375

8 YadiQizlar Village
Well 888 7.82 577 3.1 0.9 3.1 0 3.6 1.9 1.5 0.1 275

9 Dheivan Village
Well-1 2060 7.6 1339 24.1 2.6 4.2 0 14.5 13 3.4 0.1 1375

10 Binberze Gichka
Village Well 965 7.76 627 6.5 32 4.5 0 15 12 3.5 0.1 1350

11 Yarmja Village Well 1144 7.63 744 1.66 5.9 2.6 0 5.3 1.2 3.5 0.2 325

12 Lajan Harki Village
Well-1 1406 7.64 914 9.0 4.5 2.7 0 7 5.5 3.5 0.2 625

13 Sardar Village Well 912 7.86 593 4.5 1.6 2.4 0 5.4 1.1 1.8 0.3 325

14 Dhemat Village
Well-1 2075 7.6 1349 18.2 4.3 4.3 0 14.7 8.3 3.8 0.1 1150

15 Awena Village
Well-1 1455 7.86 946 6.3 1.5 2.4 0 4.5 2.5 2.9 0.3 350

16 Bryat Village Well 2350 7.88 1528 24.2 2.8 3.7 0 16.2 11.8 3.1 0.1 1400
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3.2. Groundwater Quality Assessment Parameters

The sodium adsorption ratio (SAR) ranges from 1.1 to 2.7, with an average of 1.7 meq/L;
the sodium percentage (Na%) ranges from 5.4% to 22%, with an average of 12.8%; the
residual sodium carbonate (RSC) ranges from −24.3 to −1.9 meq/L, with an average of
−8.9 meq/L; the monovalent cation adsorption ration (MCAR) ranges from 0.2 to 0.9, with
an average of 0.5 meq/L; the cation ratio of structural stability (CROSS) ranges from 0.9
to 2.1, with an average of 1.3 meq/L; the Ps ranges from 2.5 to 35.3, with an average of
8.4 meq/L; the PI percent ranges from 2.6% to 9.4%, with an average of 6.2%, and the
magnesium hazard (MH) ranges from 16.5 to 47.3, with an average of 31.7 meq/L (Table 8
& Appendix D). The special distribution of quality assessment parameters is shown in
Appendix E.

Table 8. Basic statistics of the chemical analysis and field parameters of groundwater samples.

Parameter Maximum Minimum Mean SD

EC (μs/cm) 2740 888 1444.9 577.2
pH 7.9 7.5 7.8 0.1
TH (ppm) 1400.0 275.0 604.7 435.3
TDS (ppm) 1781.0 577.0 939.3 375.2
SO4

2−
(mole/m3)

24.2 1.7 8.7 7.0

Cl− (mole/m3) 32.0 0.5 4.2 7.6
HCO3

−
(mole/m3) 4.6 2.3 3.2 0.8

Ca2+ (mole/m3) 16.2 3.6 7.7 4.5
Mg2+ (mole/m3) 13.0 1.1 4.4 4.3
Na+ (mole/m3) 3.8 1.5 2.6 0.8
K+ (mole/m3) 0.3 0.1 0.2 0.1
Na% 22 5.4 12.8 4.9
SAR 2.74 1.14 1.71 0.55
Ps 35.3 2.5 8.43 8.27
RSC −1.9 −24.3 −8.93 8.16
MCAR 0.9 0.2 0.5 0.25
CROSS 2.1 0.9 1.3 0.37
MH 47.3 16.5 31.7 11.4
PI% 9.4 2.6 6.3 2.23

Increased sodium levels in irrigation water cause the breakdown of well-structured
soils, which limits aeration and water permeability, resulting in lower crop develop-
ment [33]. A sodium percentage of more than 60% is considered toxic to plants; in the
samples studied there is no toxic effect on the plants because all the water samples are less
than 60% Na. General classification of the irrigation water is according to Bauder et al.,
2004 [23] and based on SAR, the water well samples which are suitable for irrigation have
a low sodium hazard and use on sodium sensitive crops must be cautioned against. Ac-
cording to Eaton (1995) [34] and based on RSC, all water samples are suitable for irrigation
because they fall below the standard limit, which less than 1.5 meq/L.

The sodium, calcium, magnesium, and bicarbonate concentrations in the soil influence
soil permeability, which also affects the quality of irrigation water over time. Nagaraju et al.
(2014) [35] classified water quality on the basis of PI into Classes I, II, and III. Classes I and
II indicate good water quality for irrigation purposes, while Class III water is unsuitable for
irrigation (Figure 5). A high permeability index is linked to underlying structural elements that
allow for widespread groundwater contamination. The groundwater samples of the study area
fall into Class I (29.05–72.75%) and were described as having excellent-to-good permeability.
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 Water samples 

Figure 5. Permeability index diagram classification of groundwater quality.

An increased proportion of Mg2+ relative to Ca2+ increases sodication in soils, which
causes the dispersion of clay particles, which destroys soil structure and lowers relative
hydraulic conductivity [36]. Magnesium ratios of more than 50 are deemed hazardous and
unsuitable for irrigation. As soils grow more alkaline, this will have a negative impact on
crop yield. All the water samples in the study area are acceptable for irrigation purposes.

The suitability of water for irrigation is not dependent on soluble salts. Because low-
solubility salts precipitate in the soil and accumulate with each irrigation treatment, the
soil salinity rises as the concentration of highly soluble salts rises [14].

The classification of the potential salinity of groundwater samples includes three
classes; 1. Excellent to Good (<5), 2. Good to Injurious (5–10), and 3. Injurious to Unsatis-
factory (>10). Nine water samples are classified as excellent-to-good, three water samples
are good-to-injurious, and four samples are in the injurious-to-unsatisfactory water class.

The MCAR ratio may predict the adsorption of monovalent ions by soil colloids on
the basis of cation exchange isotherms, but it fails to weigh the relative efficacies of Na+

and K+ in the numerator and of Ca2+ and Mg2+ in the denominator and treats members of
each pair as identical [16].

When the soil’s K+ and Mg+2 levels are low, CROSS will be similar to SAR in predicting
soil behavior. However, when these cations are present in higher amounts, CROSS will be
more effective than either SAR or MCAR [18].

The water quality types in the study area according to Ivanov, 1968 [19], are of the
Sulfate water type, except that two samples were of the chloride type and one sample of
the Bicarbonate water type (Table 9).
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Table 9. Water type of the water well samples.

Well Number Water Type

1 Na-Ca-Cl-HCO3 Sulfate
2 Na-Ca-HCO3 Sulfate
3 Na-Mg-Ca-HCO3 Sulfates
4 Na-Mg-Ca-HCO3-Cl Sulfate
5 Mg-Na-Ca-HCO3 Sulfate
6 Mg-Na-Ca-Cl-HCO3 Sulfate
7 Na-Ca-HCO3 Sulfate
8 Na-Mg-Ca-SO4 Bicarbonate
9 Mg-Ca Sulfate
10 Mg-Ca-SO4 Chloride
11 Na-Ca-SO4-HCO3 Chloride
12 Na-Mg-Ca-HCO3-Cl Sulfate
13 Na-Ca-Cl-HCO3 Sulfate
14 Mg-Ca-Cl-HCO3 Sulfate
15 Mg-Na-Ca-Cl-HCO3 Sulfate
16 Mg-Ca Sulfate

3.3. Groundwater Uses for Irrigation

Train classification of the water samples based on Total Dissolved Salts (TDS) shows
that eleven water samples, when used for irrigation, had a harmful effect on sensitive crops
for salinity, while five water samples had harmful effects on crops, and so experience is
needed before using them. According to Bauder et al., 2004 [23] and based on SAR, all
water samples have a low sodium hazard and use on sodium sensitive crops must be
carried out with caution. According to RSC, all water samples are suitable for irrigation
purposes. According to Bauder et al., 2004 [23] and based on chloride, all water samples
are suitable for irrigation and generally safe for all plants.

3.4. Groundwater Classification

The Piper Diagram Classification represents one possible system of nomenclature in
which water represented by point (A) would be called calcium bicarbonate water, and
point (B) would represent calcium, sodium, chloride water. Point (C) would represent
sodium, calcium, magnesium, chloride, and sulfate water. The plotting parameters of water
samples on this diagram indicate that most of the samples are of class (C) “sulfate water
type” except for two samples in class (B) “Chloride water type”, and one sample in class
(A) “Bicarbonate water type” (Figure 6).

According to the Shoeller Classification, all the water samples are in class E and F,
meaning that calcium is a dominant cation in the water and the anions vary, but with a
dominance of sulfate anions in most of the water samples (Table 10).

According to the Chadha classification, the water type ranges from class 4 and 6:
strong acid anion with prevailing weak acid anion and earthy alkaline prevailing felsic
alkaline and strong anion acid with prevailing weak anion acid (Figure 7).

The Gibbs classification is a method for estimating the origin of ions in groundwater
by focusing on the correlation between the concentrations of cations, anions, and TDS
(Figure 8).

The Gibbs diagram shows that the origin of the concentration of ions in the groundwa-
ter is evaporation and rock dominance. This characteristic suggests that ion dissolution in
groundwater occurs more frequently as a result of interactions between groundwater and
rock or soil and the evaporation process than as a result of precipitation or other sources.
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Figure 6. Piper trilinear diagram of major ions of water samples studied ([27]).
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Table 10. Water class according to the Shoeller Classification of water samples.

Well Number CatiIons Anions Water Class

1 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
2 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
3 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
4 rCa > rMg > r(Na+K) rSO4 > rCl > rHCO3 F 3
5 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
6 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
7 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
8 rCa > rMg > r(Na+K) rHCO3 > rSO4 > rCl F 6
9 rCa > rMg > r(Na+K) rSO4 > rHCO3 > rCl F 4

10 rCa > rMg > r(Na+K) rCl > rSO4 > rHCO3 F 1
11 rCa > r(Na+K) > rMg rCl > rHCO3 > rSO4 E 2
12 rCa > rMg > r(Na+K) rSO4 > rCl > rHCO3 F 3
13 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
14 rCa > rMg > r(Na+K) rSO4 > rHCO3 > rCl F 4
15 rCa > r(Na+K) > rMg rSO4 > rHCO3 > rCl E 4
16 rCa > rMg > r(Na+K) rSO4 > rHCO3 > rCl F 4

Figure 7. Water type according to the Chadha classification (1999) [30].
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Figure 8. Gibbs diagram for groundwater classification in the study area.

3.5. Groundwater Level Fluctuation

Many factors influence groundwater level fluctuation, including rainfall intensity,
rainfall quantity, infiltration capacity of soil and rock beds, groundwater depth above sea
level, terrain, evapotranspiration, and water well discharge [8]. Fluctuations in stored
water, renewable storage water amount, and groundwater investment were calculated
using groundwater fluctuation analysis.

Groundwater recharge in the Erbil plain depends on rainfall quantity. In rainy months,
the recharge quantity is greater than the discharge quantity in the wells, which leads to
a rise in groundwater levels, while in dry months (the summer season), the discharge
quantity is greater than recharge quantity (these may be absence recharges), which leads to
a reduction in groundwater levels.

The groundwater level was measured on a weekly basis over ten years by the Ground-
water Directorate in Erbil Governorate (from 2010 to 2020) for six monitored wells in the
study area (Daldaghan well, Khazna well, Mastawa well, Peerdawood well, Shekh Sherwan,
and Tendura-1 well). All the wells penetrate quaternary deposits and Bai Hassan Formation.
Figure 9 and Appendix F represent the groundwater fluctuation for these six wells, which
shows the depression of the groundwater table (increasing depth to groundwater) during
these periods due to the effects of climatic change as well as the effects of drought periods
on the study area.

 

Figure 9. Groundwater level fluctuation curve in Daldaghan Village monitored wells in the study area.
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4. Conclusions

The present research assessed the quality evaluation of the groundwater in the Erbil
Plain region; the parameters were analyzed using the concentration distribution of ions
in the groundwater. The findings demonstrate that using ground water for irrigation will
not harm plants because all water samples had a sodium content of less than 60%. Based
on RSC, all water samples were shown to be suitable for irrigation because they fall under
the standard limit, which is less than 1.5 meq/L. SAR indicates that the water wells are
suitable for irrigation because they have a low sodium hazard, though caution should be
exercised when using them on sodium-sensitive crops.

According to the classification of water quality of the permeability index, groundwater
samples from the study area fall into Class I, and aquifers were found to have excellent-
to-good permeability. Nine water samples were classed as excellent-to-good, three water
samples were good-to-injurious, and four samples were injurious-to-unsatisfactory, accord-
ing to the classification of the potential salinity for groundwater samples.

Since CROSS is not based on the exchange isotherm, it cannot determine how much
Na+ and K+ have been adsorbed. However, it might be used to predict dispersive effects
on soil stability and hydraulic properties based on the relative amounts of the four cations
present in the equilibrium soil solution. According to the criteria used to evaluate the water
quality, the majority of the samples are suitable for irrigation.

All the water samples are in the sulfates water type except for two groundwater samples,
which are of the chloride type (Binberze Gichka Village Well and Yarmja Village Well) and one
groundwater sample is of the bicarbonate water type (Yadi Qizlar Village Well).

Over the ten years measuring the groundwater table, fluctuation in the area for some
wells shows a depression in the groundwater table due to drought periods during this time,
as well as to global climate change.

In the future, especially in agricultural areas, we propose the inclusion of contaminants
such as pesticides in the monitoring of ground water quality. When pesticides are sprayed
on crops, they can penetrate the surface of the ground and reach water-containing aquifers.
Groundwater becomes contaminated as a result, making it unusable for both agricultural
and human purposes. We also recommend conducting research on the toxic anion and trace
elements in the study area to find out the effects of heavy metals and some toxic anions in
the area.
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Appendix A

 

  

Figure A1. Special distribution of some physiochemical parameter in the study area.
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Appendix B

  

  

Figure A2. Special distribution of the cations in the study area.
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Appendix C

  

 

Figure A3. Special distribution of the anions in the study area.

Appendix D

Table A1. Calculated parameters of irrigation water quality in the study area.

SN Well Name Na% SAR Ps RSC MCAR CROSS MH %PI

1 Tandura Village Well 16.1 1.83 4.4 −4.5 0.2 1.4 18.6 7.4
2 Mastawa Village Well 13.7 1.4 3.9 −1.9 0.2 1.1 18.5 8.1
3 Aliawa Shekh Village Well 9.7 1.15 3.3 −4.3 0.3 0.9 21.3 6.2
4 Dil uguleKhwaru Village Well 10.2 1.14 5.5 −5.7 0.7 0.9 42.5 5.4
5 Doosarafatah VillageWell 18.8 2.33 3.4 −3.2 0.6 1.8 38.5 9.1
6 Haza Village Well 16.3 1.83 4.6 −4.6 0.5 1.5 31.4 7.4
7 Shekh Sherwan Village Well-1 15.6 1.84 4.7 −5.2 0.2 1.4 16.5 7.0
8 YadiQizlar Village Well 12.2 1.26 2.5 −2.4 0.5 1.0 34.5 7.9
9 Dheivan Village Well-1 5.9 1.28 14.7 −23.3 0.9 1.0 47.3 2.8

10 Binberze Gichka Village Well 6.3 1.14 35.3 −22.5 0.8 1.1 44.4 3.0
11 Yarmja Village Well 22.0 2.74 6.7 −3.9 0.2 2.1 18.5 9.4
12 Lajan Harki Village Well-1 13.0 1.99 9.0 −9.8 0.8 1.6 44.0 5.5
13 Sardar Village Well 13.7 1.4 3.9 −4.1 0.2 1.1 16.9 6.8
14 Dhemat Village Well-1 7.8 2.67 13.4 −18.7 0.6 1.2 36.1 3.6
15 Awena Village Well-1 18.7 2.23 4.7 −4.6 0.6 1.8 35.7 8.1
16 Bryat Village Well 5.4 1.15 14.9 −24.3 0.7 0.9 42.1 2.6

66



Water 2022, 14, 2783

Appendix E

  

 

  

Figure A4. Special distribution of the quality assessment parameters in the study area.
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Appendix F

  

 
 

Figure A5. Groundwater level fluctuation curve in some of monitored wells.

References

1. Niemczynowicz, J. Urban hydrology and water management present and future challenges. Urban Water 1999, 1, 1–14. [CrossRef]
2. Seeyan, S.; Adham, A.; Mahdi, K.; Ritsema, C. Water Quality, Availability, and Uses in Rural Communities in the Kurdistan

Region, Iraq. Water 2021, 13, 2927. [CrossRef]

68



Water 2022, 14, 2783

3. Lamont, B. Maintaining Drip Irrigation System; Vegetable & Small Fruit Gazette; Penn State University Extension: Landisville, PA,
USA, 2012; Volume 16.

4. Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Application of multivariate statistical methods and inverse geochemical
modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma 2010, 159, 390–398. [CrossRef]

5. Al-Saffawi, A.Y.; Ibn Abubaka, B.S.; Abbass, L.Y.; Monguno, A.K. Assessment of groundwater quality for IWQ index in Al-Kasik
sub-district Northwestern Iraq. Niger. J. Technol. 2020, 39, 632–638. [CrossRef]

6. Seeyan, S. Hydrochemical assessment and water quality of Koysinjaq area in Kurdistan Region-Iraq. Arab. J. Geosci. 2020, 13, 491.
[CrossRef]

7. Lioyd, J.W. Water Resources of Hard Rock Aquifers in Arid and Semi-Arid Zones; Studies and Report in Hydrology 58; UNESCO:
Paris, France, 1999; 184p.

8. Wilson, E.M. Engineering Hydrology, 3rd ed.; Bloomsbury Publishing Ltd.: London, UK, 1987; 309p.
9. Jassim, S.Z.; Goff, J.C. Geology of Iraq; Dolin, Prague and Moravian Museum: Brno, Czech Republic, 2006.
10. Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water, 3rd ed.; USGS Water Supply Paper: Reston, VA,

USA, 1985; 263p.
11. Richard, L.A. Diagnosis and Improvement of Saline and Alkali Soils; Agricultural Hand Book 69; US Dept. Agric.: Washington, DC,

USA, 1954; 160p.
12. Wilcox, L.V. The Quality of water for Irrigation USE. US Dept. Tech. Bull. 1955, 962, 40.
13. Szabolcs, I.; Darab, C. Influence of irrigation water of high sodium carbonate content of soils. In Proceedings of the 8th

International Congress of ISSS, Tsukuba, Japan, 9 September 1964; pp. 803–812.
14. Doneen, L.D. Salination of Soil by Salts in the Irrigation Water. Am. Geophys. Union Trans. 1954, 35, 943–950. [CrossRef]
15. Doneen, L.D. Notes on Water Quality in Agriculture. Published as a Water Science and Engineering; Paper 4001; Department of Water

Sciences and Engineering, University of California, Davis: Oakland, CA, USA, 1964.
16. Smiles, D.E.; Smith, C.J. A survey of the cation content of piggery effluents and some consequences of their use to irrigate soils.

Aust. J. Soil Res. 2004, 42, 231–246. [CrossRef]
17. Qadir, M.; Sposito, G.; Smith, C.J.; Oster, J.D. Reassessing irrigation water quality guidelines for sodicity hazard. Agric. Water

Manag. 2021, 255, 107054. [CrossRef]
18. Rengasamy, P.; Marchuk, A. Cation ratio of soil structural stability (CROSS). Soil Res. 2011, 49, 280–285. [CrossRef]
19. Ivanov, V.V.; Barvanon, L.N.; Plotnikova, G.N. The Main Genetic Type of Earth’s Crust Mineral Water and their distribution in

the USSR. In Proceedings of the International Geological Congress of 23rd Session, Prague, Czech Republic, 19–23 August 1968;
Volume 12.

20. Grossman, Z. International Environmental Problems & Policy, a Class Website on Water Privatization and Commodification.
Produced by Students of Geography at the University of Wisconsin-Eau Claire, USA. 2004. Available online: www.uwec.sdu/
grossmzc/GEOG378.html (accessed on 12 August 2022).

21. Leavy, D.B.; Kearney, W.F. Irrigation of Native Rangeland Using Treated Waste Water from Institute Uralian processing. J. Environ.
Qual. 1999, 28, 208–217. [CrossRef]

22. Train, R.E. Quality Criteria for Water; Castle House Publication, Ltd.: London, UK, 1979; 256p.
23. Bauder, T.A.; Waskom, R.M.; Davis, J.G. Irrigation Water Quality Criteria. Colorado State University Extension: Fort Collins, CO,

USA, 2004; Available online: www.ext.colostate.eud (accessed on 12 August 2022).
24. Singh, K.K.; Tewari, G.; Kumar, S. Evaluation of Groundwater Quality for Suitability of Irrigation Purposes: A Case Study in the

Udham Singh Nagar, Uttarakhand. J. Chem. 2020, 2020, 15. [CrossRef]
25. Rijtima, P.E. Quality Standards for Irrigation Waters. Acta Hort. 1981, 119, 25–35. [CrossRef]
26. Piper, A.M. A Graphical Interpretation of Water Analysis. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [CrossRef]
27. Davis, S.N.; Dewiest, R.J. Hydrology; John Wiley & Sons., Inc.: New York, NY, USA, 1966; 463p.
28. Shoeller, M. Edute Geochimique De La Nappe Des “Stables in fericurs” Du Bassin Daquitainse. J. Hydrol. 1972, 15, 317–328. (In

French) [CrossRef]
29. Fetter, C.W. Applied Hydrogeology; Prentice-Hall, Inc., A Simon & Schuster Company: Upper Saddle River, NJ, USA, 1994; 691p.
30. Al-Jaleel, H.M. Effect of Industrial Wastes Discharge of Chemical Complex of Phosphate in Al-Qaim on Surface and Groundwater

Pollution. Ph.D. Thesis, Baghdad University, Baghdad, Iraq, 2000; 17p. (In Arabic)
31. Chadha, D.K. A Proposed New Diagram for Geochemical Classification of Natural Waters and Interpretation of Chemical Data.

Hydrogeol. J. 1999, 7, 431–439. [CrossRef]
32. Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [CrossRef] [PubMed]
33. DeHayer, Z.; Gordon, J. Classification of Irrigation Water Quality; Springer: Cham, Switzerland, 2006.
34. Eaton, F.M. Significance of Carbonates in Irrigation Waters. Soil Sci. 1950, 69, 123–133. [CrossRef]
35. Nagaraju, A.; Sunil Kumar, K.; Thejaswi, A. Assessment of groundwater quality for irrigation: A case study from Bandalamottu

lead mining area, Guntur district, Andhra Pradesh, South India. Appl. Water Sci. 2014, 4, 385–396. [CrossRef]
36. Rasouli, F.; Pouya, A.K.; Cheraghi, S.A.M. Hydrogeochemistry and Water Quality Assessment of the Kor-Sivand Basin, Fars

Province, Iran. Environ. Monit. Assess. 2012, 184, 4861–4877. [CrossRef] [PubMed]

69



Citation: Hassan, W.H.; Ghanim,

A.A.J.; Mahdi, K.; Adham, A.; Mahdi,

F.A.; Nile, B.K.; Riksen, M.; Ritsema,

C. Effect of Artificial (Pond) Recharge

on the Salinity and Groundwater

Level in Al-Dibdibba Aquifer in Iraq

Using Treated Wastewater. Water

2023, 15, 695. https://doi.org/

10.3390/w15040695

Academic Editor: Yung-Tse Hung

Received: 6 January 2023

Revised: 20 January 2023

Accepted: 9 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Effect of Artificial (Pond) Recharge on the Salinity and
Groundwater Level in Al-Dibdibba Aquifer in Iraq Using
Treated Wastewater

Waqed H. Hassan 1,2,*, Abdulnoor A. J. Ghanim 3, Karrar Mahdi 4, Ammar Adham 5, Fatima A. Mahdi 2, Basim

K. Nile 2, Michel Riksen 4 and Coen Ritsema 4

1 College of Engineering, University of Warith Al-Anbiyaa, Kerbala 56001, Iraq
2 College of Engineering, University of Kerbala, Kerbala 56001, Iraq
3 Department of Civil Engineering, College of Engineering, Najran University, Najran 61441, Saudi Arabia
4 Soil Physics and Land Management Group, Wageningen University & Research,

6708 PB Wageningen, The Netherlands
5 College of Engineering, University of Anbar, Ramadi 21450, Iraq
* Correspondence: waqed.hammed@uowa.edu.iq or waaqidh@uokerbala.edu.iq

Abstract: Groundwater is one of the most important water resources in Iraq, so efficient manage-
ment of storage, recharge, and consumption rates is required, for maintaining the sustainability of
groundwater supplies. Some of the most valuable methods for ensuring the long-term sustainability
of groundwater aquifers are those that provide artificial recharge. This study was conducted to
determine the effect of artificial recharge on groundwater levels and quality in Iraq’s Dibdibba un-
confined aquifer, utilizing groundwater modeling system software (GMS). Reclaimed water (tertiary
treatment) from Kerbala’s central wastewater treatment plant (WWTP) was used as raw water to
recharge the aquifer. The effects of this artificial recharge were determined using built-up groundwa-
ter flow (MODFLOW) and dissolved transport (MT3DMS) simulation models. Model calibration and
validation were implemented based on groundwater monitoring data from 2016 to 2017. The model
matched observed elevations at R2 = 0.96 for steady state and R2 = 0.92 in transient state simulations.
After the 3D numerical model was calibrated and validated, two scenarios were explored based on
the daily production of 5000 and 10,000 m3/d from Karbala’s WWTP. The results indicated that the
pumping of the treated wastewater through the pond would increase water levels by more than
20 cm for more than 78.2 and 110 km2 for pumping rates of 5000 and 10,000 m3/day, respectively.
More than 40 km2 would be added (reclaimed) to the agricultural areas in the region as a result of
the use of artificial recharge using a pond. Groundwater quality was also improved, as the TDS
decreased by more than 55%, down to 1900 ppm, and the EC decreased by more than 68%, down to
1500 μ.S/cm. The findings of this study can assist decision-makers in developing strategies to reduce
water scarcity and adapt to climate change.

Keywords: MODFLOW; MT3DMS; wastewater treatment plant (WWTP); GMS; groundwater

1. Introduction

Water is an essential natural resource for food production and life in general. Increasing
demands for water have resulted in scarcity in several countries around the world. This has
driven investigation of the use of groundwater as an alternate water source, to compensate
for a lack of surface water. In areas with dry and semiarid climates, groundwater has been
the main water source of irrigation, and in the Middle East, groundwater is the primary
supply of domestic water [1,2].

Iraq is experiencing an enormous increase in water demand, due to a growth in
population and economic development. Currently, there are limited supplies of water,
caused primarily by the significant reduction in the quantities of surface water supply
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coming from Iraq’s neighbors Turkey, Iran, and Syria, and the lack of a long-term agreement
with these countries to improve water quotas [3]. Therefore, groundwater is becoming an
alternate source, to compensate for the lack of surface water. However, groundwater is
facing its maximum drawdown, caused by excessive use of groundwater due to climate
change and the mismanagement of water resources [4,5]. In Iraq, natural groundwater
recharge of unconfined aquifers has been greatly affected in the last twenty years by
uncontrolled extraction, higher temperatures, and less rain [6,7]. In addition, variations in
vegetation and evapotranspiration, both indicators of soil dryness, lead to greater losses of
moisture in the soil and less underground water recharge [8].

One method to sustainably control the reduction of groundwater levels in arid-region
countries such as Iraq is to use artificial water recharge [9–12]. Generally, artificial recharge
can be performed in two ways: pumping using wells or water filtering using ponds. Pump-
ing using wells is relatively expensive and requires continuous energy to maintain the
pumping operation, while recharging water using ponds is less expensive. In addition,
ponds and other open water bodies contribute to improving the environment and reducing
temperatures, as well as being used as tourist attractions. On the other hand, the evapora-
tion losses are greater in these surface water ponds compared to wells, but this loss can
be minimized and compensated for with the availability of large amounts of raw water.
According to previous research [13–15], both the amount and quality of groundwater can
be improved by using treated wastewater (TWW), which is viable when traditional sources
of freshwater are severely limited. Treated wastewater can be used as an alternative supply
source in a number of ways, including irrigation to satisfy agricultural supplies and artificial
recharge to aquifers to limit the reduction in groundwater. These are common applications
in countries including the United States, Canada, the Netherlands, Mexico, France, Brazil,
Qatar, Egypt, Saudi Arabia, China, Cyprus, and India [16–18]. Using the artificial recharge
method has many benefits, such as being able to keep treated wastewater outflow and
excess storm water for future use. Moreover, groundwater can be artificially recharged to
prevent, or reduce the amount of, saltwater getting into coastal aquifers. In some aquifers
in Tunisia, artificial recharge using ordinary water has been shown to raise the water table
and enhance the quality of water. Following the artificial recharge of wells and over a
six-year period, the Teboulba coast aquifer (Tunisia) saw an increase in groundwater of up
to 30 m [19]. Kareem [20] confirmed the positive influence of the artificial recharge in the
Jolak basin in Karkuk, Iraq, indicating an increase in the groundwater level. Ali et al. [21]
experimentally investigated the susceptibility and efficiency of some aquifers in Salahaddin,
Iraq, to artificial recharge, to raise the groundwater table. The study revealed that all of
the aquifers studied were reasonably efficient in their reaction to injections, with small
variations due to porous media heterogeneity and the depth of unsaturated regions, which
created a varying permeability between the strata and different hydraulic characteristics of
the aquifers.

Many studies have used numerical modeling and hydro-geochemical investigations to
predict aquifer storage or recover groundwater based on exploratory simulations and sce-
nario building [2,8,22,23]. Models of groundwater flow (MODFLOW) and solute transport
(MT3DMS) have been used to anticipate and measure the effects on regional groundwater
and to reveal how geochemical processes work and how much water they produce [24].

The Dibdibba aquifer in southeast Iraq was the focus of the current study. The
increasing use of groundwater in agriculture over the last twenty years has caused a
significant drop in the groundwater table and the quality of water [25]. In 2020, Kerbala’s
initial wastewater treatment plant (WWTP), located within the border of the aquifer, became
operational. To raise the level of the groundwater, improve water quality, and utilize the
huge outlet flow of treated water of the WWTP (more than 100,000 m3/day), an artificial
recharge pond using treated wastewater was suggested. In this paper, the effect of the
artificial recharge pond on groundwater levels and water quality in the unconfined aquifer
was evaluated. During the artificial recharge period from 2022 to 2030, three-dimensional
validated numerical models created using MODFLOW and MT3DMS with GMS were used
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to consider different scenarios. The main goal of this study was to evaluate how much
artificial recharge using a pond near the Kerbala wastewater treatment plant (WWTP)
would raise water levels and improve water quality, as well as how large an area would be
affected, as well as obtaining the values for the agricultural areas that would be added and
made sustainable, resulting in an increase in the number of useful farmers and productive
yields in Karbala Province, Iraq. This province has recently faced an increase in water
consumption due to the rapid increase in population and climate changes.

2. Materials and Methods

2.1. Study Area

Figure 1 locates the study area in the middle of Iraq, between the cities of Karbala
and Najaf. It is between latitudes 31◦55′ and 32◦45′ and longitudes 43◦30′ and 44◦30′. The
Dibdibba aquifer is a shallow, unconfined groundwater aquifer with a homogeneous soil
profile and is entirely recharged by rainfall. It has an area of 1100 km2 and is surrounded by
two ledges: Tar Al-Sayyed, which is inside the city limits of Kerbala, and Tar Al-Najaf, which
is inside the city limits of Najaf province. The northern limit of the aquifer is close to Al-
Razaza Lake, which is an open-surface reservoir. Quaternary sediments define the aquifer’s
eastern boundary. The topography shows elevations between 10 and 90 m above sea level.
The primary direction of the flow of groundwater is typically from southwest to northeast,
with hydrologic gradients varying between 0.0011 and 0.0005. The average temperature
varies from 11 ◦C in winter to 37.6 ◦C in summer. The average rainfall varies between
90 mm, as recorded at the weather station in Karbala, and 112 mm at the weather station in
Najaf. In addition, 80% of annual precipitation falls between November and March, which
are the wettest months of the year. In this aquifer, water levels have dropped significantly
since 2003, negatively impacting the quality of the available water. The withdrawal of
water through overexploitation has also had a significant impact. According to previous
research [26,27], salinization of groundwater is an indication of increased irrigation water
use in agriculture, which also results in land degradation and the movement of pollutants
to unconfined aquifers. More details about the area were given in a previous paper [3].

Figure 1. The study location with the Karbala WWTP.

2.2. Hydrogeological Characterization

The conceptual groundwater flow model and the subsequent progress of the calibrated
model required an adequate explanation of the hydrologic conditions at the study site as a
starting point. It is also difficult to choose an appropriate model or create an authoritative

72



Water 2023, 15, 695

calibrated model without a clear description of the site. Only a few areas of the study
site had hydrogeological properties available, such as the aquifer’s characteristics. As
a consequence, the Kriging approach was utilized to estimate information for the entire
region, in order to create an approximation of the information required. Figure 1 depicts
the sites of the wells chosen to estimate the properties of the aquifer. The accuracy of
the calculation used to determine the artificial recharge of the aquifer was significantly
impacted by these parameters. The Dibdibba formation is composed primarily of pebbly
sandstone, sandstone, siltstone, and lime. Secondary gypsum is also present. The formation
is between 45 and 60 m thick.

2.3. Modeling Approach

A conceptual numerical model was built using the Processing MODFLOW package.
A proper representation of the hydrogeological characteristics in the research area was
necessary for the development of both the conceptual groundwater movement simulation
and for an accurately calibrated model. The model was calibrated in steady and transient
modes, based on historical data observed from 2016 to 2017. The steady state calibration
was necessary to understand the transient situation, thereby serving as the basis for the
transient models. The steady state simulation model was validated utilizing fifteen wells
with two adjustable elements. The well depths varied from 20 to 50 m, and the pump
rate was approximately 25 to 30 m3/h. The study area was divided into seven regions,
using hydraulic conductivity parameters predicted as a result of the pumping tests for
20 wells [28], and three sub-catchment regions that were naturally recharged based on the
parameters of the aquifer (Figure 2). Hydraulic conductivity and natural recharge were
considered separately for each homogeneous area in the study area. This was done to reduce
the uncertainty caused by the projected variation over the wide area studied. The GMS
program’s PEST (parameter estimation) calibration software was used to automatically
complete the parameter estimation process. In this study, the spatial statistical method
(Kriging) was utilized to interpolate groundwater table values, as well as all other aquifer
properties, including the hydraulic conductivity and the top and bottom of the aquifer
bounds. Kriging is a method for obtaining optimal and impartial estimates of geographic
characteristics at non-sampled locations, by utilizing structural features of a semivariogram
and initial group data values. It takes the spatial structure of the variable into account,
so it was chosen over the nearest neighbor approach, the arithmetic average technique,
the polynomial approximation, and the inverse distance-weighted approach. Kriging
can also provide variance distribution estimates for each estimated location, which can
serve as a primary indicator of estimated value precision or uncertainty. The conventional
Kriging method was employed in this work, to generate expected values for various
beginning input data at every unsampled position in the region. It is recommended that
the input parameters are regularly distributed for optimal performance of the Kriging
interpolation method (bell curve). To determine the degree to which the input variables
(aquifer characteristics) matched the bell curve, two testing procedures were used: the first
was drawing data histograms, and the other was a normal likelihood chart. A standard
normal likelihood chart was produced by graphing the input values of the information
versus the standard normal distribution at the point where their summed distributions
were similar. The data distribution was normal if the points clustered around a straight line.

Using trial and error, the best grid size for the models was determined, and the grid
subsequently used was composed of 3600 active cells. The width of each cell in both the x
and y directions (rows and columns) was 500 m. The model area was developed in a 3D grid
on the horizontal axis, with single unbounded layers on the vertical axis. Groundwater flow
patterns in the Dibdibba aquifer were used to establish boundary conditions. A constant-
head boundary was applied along the study area’s eastern and western edges, with values
of 5 and 35 m provided by measurements taken from various observation wells. Tar Al
Sayyed and Tar Al Najaf are specified no-flow borders, located on the northwestern and
southwestern boundaries of the study region. For the predicted values of the precipitation
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for the future period (2022–2030) in the study area, the results of expected precipitation [29]
were used in this study in the conceptual model.

 

Figure 2. Recharge and hydraulic conductivity zones of Dibdibba aquifer.

Using the calibrated models, the effects of artificial recharge on the groundwater
table and the quality of the water in the aquifer, especially in the surrounding area, were
estimated. This was done by adding a hypothetical pond with several scenarios of pumping
rates close to the WWTP. Different scenarios were considered based on the idea that
groundwater pump rates and both artificial and natural recharge will increase between
2022 and 2030. Observations of actual groundwater levels were used to check the results of
the model for the time period 2016–2017. In this study, treated wastewater was used as an
artificial source of recharge, because there is high output of treated water (100,000 m3/day)
and it is close to a wastewater treatment plant.

3. Results and Discussion

3.1. Calibration and Validation Model

The steady state calibration of the flow model allowed for the estimation of natural
groundwater recharge varying from 9 to 12 percent of the mean annual precipitation for
the Dibdibba aquifer. These ratios were similar to those employed in earlier research [3,28].
For the steady state, the results of the calibrated model were acceptable and matched the
observed data with projected groundwater table, and the determination coefficient (R2)
was around 0.96 (Figure 3). Figure 3 illustrates the calibration results of the model with
observation ground water levels in the selected wells. A scatter diagram of these results
was plotted and is shown in Figure 3. The observed value is shown by the center line.
The whiskers on the top and bottom edges represent the measured data plus the period
and the measured values minus the period, respectively. The full line displays the error,
where a green line signifies that the error is contained inside the designated range (lower
than 0.5 m). Red lines indicate errors greater than 1 m, while yellow bars indicate errors
between 0.5 and 1 m. The Parameter ESTimation (PEST) tool within the GMS software was
used to obtain the optimal solution mode compatible with the minimum errors during
the calibration process. Groundwater levels from 15 wells were used for the numerical
model calibration and validation under steady-state conditions. These wells were selected
in order to cover the entire research area and reduce the length of the simulation run during
the calibration period. In order to achieve an acceptable degree of accuracy, 15 calibrating
targets were used to simulate levels of water in the models; 14 of the lines were green (error
below 0.5 m), but one line was yellow (error over 0.5 but lower than 1.0 m). During the
conceptual model’s calibration procedure, the research area was separated into a number
of zones by hydraulic conductivity and expected natural recharge rates.

74



Water 2023, 15, 695

 
Figure 3. Simulated heads after calibration of the study aquifer under steady state.

At the end of the simulation, the numerical model produced calibrated values of these
two crucial characteristics for all the study areas. These results were an indication of high
confidence in the simulation model’s estimates, meaning that this data could be used as
the initial condition when calibrating the transient model. It was not possible to calibrate
the salinity, partly because there were not enough measurements and mostly because the
processes were too complicated [30].

3.2. Validation of the Transient Model

In order to investigate the validity of the numerical model results for the future time
period, the transient numerical model results were examined with historically observed
groundwater levels from four monitoring wells during the period 2016–2017. Building
a transient simulation mode requires the handling of a huge quantity of transitory infor-
mation from various sources, such as data on the depth of water in observation wells
and on recharging and pumping wells. The transient state was simulated by initiating
a simulated steady-state groundwater table. The aim of this operation was to measure
the groundwater table. The Dibdibba unconfined aquifer’s specific yield (Sy-value) was
determined using transient models as preliminary projections. Previous studies’ pumping
experiments gave Sy values ranging from 0.001 to 0.05 [28]. According to the agricultural
needs in the research region, different monthly pumping rates were used. Designing a
transient model requires careful consideration of the simulation time step used, because
this has a significant impact on the results of the numerical model [31]. The time period
was split into 20 time periods and four control wells, with a start time of 1 January 2016,
and an end time of 1 December 2017. The selected wells were close to the Karbala treatment
plant, especially Obs1 and Obs3 (Figure 1). Specific yield factors were chosen to serve as
the simulated results in the PEST operations during the calibration of the transient state.
This parameter varied continuously, until a satisfactorily acceptable difference between the
measured and simulated water depth was obtained from January 2016 to December 2017.
The four calibration objectives in this model are indicated by the color green (Figure 4). The
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transient numerical model was also examined using a transient scatter plot, which com-
pared the groundwater levels against the simulations. These comparisons are displayed in
Figure 4, and the models accurately predicted the measured levels with a determination
coefficient (R2) of 0.923.

Figure 4. Calibration simulated heads of the steady area during the transient simulation
(19-Oct.-2017).

The groundwater flow simulation model was validated from January 2016 to De-
cember 2017. Figure 5 shows how it nearly recreated the groundwater table fluctuations
of various earlier observation readings. Figure 5 compares the observed and estimated
fluctuations in the groundwater table in the observation wells. The transient simulation of
the conformity between the predicted and observed groundwater tables in the monitoring
wells demonstrated the simulation’s excellent performance. During the monitoring peri-
ods, all of the figures show a decreasing trend in groundwater levels. According to these
assessments, the model was adequately calibrated. Figure 5 shows that the simulation
model outputs for observation well No. 1 (Obs.1) were always lower than the measured
groundwater levels, while well No. 2 (Obs.2) always exceeded the measured groundwater
table throughout the validation time period but was still within agreeable limits. The
projected values for the other wells measured, both overestimated and underestimated
the value for the various observation periods. These patterns could be explained by the
varying prediction values for the hydrogeology characteristics of the steady area, as well as
the impact of the well’s distance from the study area’s hydraulic boundaries.

The validated numerical models were applied to project the effect of the proposed
groundwater artificial recharge using a pond on the level and quality of groundwater, with
a focus on the Kerbala WWTP zone. The amount of groundwater extraction by pumps
between 2016 and 2030, as well as both natural and artificial recharge, were taken into
account in the various scenarios.
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Figure 5. Validation in four observation wells throughout the transient duration 2016 and 2017,
(a) validation in observation wells 1 and 2, (b) validation in observation wells 3 and 4.

3.2.1. Quantitative Evaluation

In this study, three different simulation scenarios (SIM1, SIM2, and SIM3) were applied
to the prediction period 2016–2030. SIM1 used the same initial conditions, making the
assumption that the existing recharge and extraction rates would stay the same as during
2016, excluding the additional rate of artificial recharge from treated water. Based on this
first scenario (SIM1), the simulation model projected that the groundwater level would
drop by more than 1 m near the Kerbala WWTP location by 2030, and the water quality
would become worse. According to this scenario, there would be a loss of more than 2 m
of groundwater in the vicinity of the Kerbala WWTP by 2030 (Figure 6). This decline was
justified as a result of the excessive use of ground water, the decrease in natural recharge
due to the lack of precipitation, and the increased temperatures in the past few years due
to climatic changes in the region. Many agricultural areas have suffered in the last few
years due to this decline in groundwater levels, which increased withdrawal costs and
degraded water quality. Most climate studies have shown that the effects of climate change
in the region could become worse at a fairly high rate [32]. Due to this, it is expected that
this drop in water level and quality will have a greater effect on farmers and the region’s
ecosystem in the near future.
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Figure 6. The predicted groundwater elevation drops in 2030 over the study area without the use of
artificial recharge.

As a result of its closeness to the treatment plant, the significant effects of extraction
processes in this region, and the lack of natural recharge, this site is regarded as one of
the best for establishing an artificial recharge pond. These estimates of the predicted drop
in groundwater levels are sensitive to the assumptions made regarding extraction values
(11,000 m3/day), which depend on a number of other assumptions, because there have not
been enough observations in the field.

In SIM2 and SIM3, the same initial conditions as in SIM1 were implemented, with
only the addition of an artificial recharge flow that was pumped into the recharge pond at
a rate of 5000 and 10,000 m3/day, respectively. In the simulation model, the recharge pond
was represented by one cell. For operational and economic reasons, the site selected for
the recharge pond was near the WWTP. When the projected groundwater levels in 2030
for SIM1 and SIM2 were compared, it was found that an increase of up to 0.8 and 1.4 m
would be possible with an artificial recharge rate of 5000 and 10,000 m3/day, respectively
(Figure 7a,b). Taking into account a minimum rise of 0.2 m, the impacted region around
the Kerbala WWTP would be about 78.2 km2 for SIM2 and 110 km2 for SIM3. During the
study period, this expected increase would potentially be very important for lowering
withdrawal costs and adding more farmland to the region.

The results related to the monitoring well (Obs.3) situated close to the artificial recharge
zone were used to assess the temporal variation of the groundwater elevation, as illustrated
in Figure 8. As shown in Figure 8a,b, groundwater levels rose over the eight years of
the simulation by 7.5 cm and 12.3 cm each year for the SIM2 and SIM3 artificial recharge
modeling scenarios, respectively. It is important to note that the rate of rise differed between
the two scenarios because of the different pumping rates of the recharge pond. At the end
of the time simulation period (2030), the groundwater table in the observation well (Obs.3)
had increased by more than 0.67 m and 1.2 m under SIM2 and SIM3, respectively.
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Figure 7. The impact of artificial recharge using a pond in 2030: increases in groundwater levels
(a) between SIM2 and SIM1 and (b) between SIM3 and SIM1.

The prediction of the water requirements in the study region is dependent on two
important aspects. The first is the weather, which includes precipitation, temperature,
sunlight, wind velocity, and moisture. The second component is cultivation type, which
impacts the irrigation water demand and represents the plant’s modulus [33]. According
to the Iraqi Ministry of Water Resources and the Ministry of Agriculture, the maximum
irrigation water requirement for an agricultural plan is 3 m3/donum/day (one donum is
2500 m2). According to the modeling findings for the coming eight years, a new agricultural
region of more than 8950 donum (22.4 km2) could be added to the area if 5% of the reclaimed
wastewater output from the WWTP was utilized for the artificial recharge operation with a
pond. Moreover, when 10% of the treated wastewater output is used, the additional area
might be increased to 16,200 donum. This anticipated increase in farmed area would be
extremely beneficial in combating desertification, global climate change, and enhancing the
ecosystem in the study region.
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Figure 8. Changes in groundwater table (m.a.s.l) at the observation well No.3 (a) for SIM2 and (b) for
SIM3 during the simulation period.

3.2.2. Improving Groundwater Quality

The MT3DMS model within GMS Software was used to predict groundwater quality
based on the TDS and EC values of groundwater and treated water. The results of the
first scenario in this study indicated that the water quality in the aquifer will continue to
deteriorate during the coming years, as a result of the excessive withdrawal of groundwater.
Artificial recharge may be the best and most practical way to improve the quality of water
and reduce salinity. According to the laboratory results of the field samples of groundwater
taken from the operation wells near the site of the Kerbala WWTP, the groundwater was
salty, with a TDS of more than 4320 ppm and an EC of more than 4780 ppm, while the
salinity of the treated wastewater that would be injected in the artificial pond reached a
TDS of less than 1100 ppm and an EC of less than 1185 μ.S/cm.

Under the artificial recharge situation of SIM2, with a daily pumping rate of 5000 m3/d,
groundwater salinity could be lowered by up to 2400 ppm TDS close to the pond site, with
a reclaimed area of approximately 32 km2 (Figure 9a). This would extend to a 51 km2

recovery region with a TDS change of less than 3000 ppm. For the EC, the artificial recharge
pond could decrease the concentration from 4779 μ.S/cm to less than 1600 μ.S/cm near the
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recharge pond. With a decreasing ratio close to 50%, the recovery area reached 68.4 km2

(Figure 9b).

 

Figure 9. Effect of the artificial recharge on water quality under SIM2 simulation model (a) TDS and
(b) EC for the period 2022–2030.

For the third scenario, SIM3, with an increased pumping rate of 10,000 m3/d, as a
consequence of this increase, a greater effect was obtained on the quality of groundwater
(Figure 10). In fact, the reclaimed area was increased to 62.7 km2 with a TDS of 2600 ppm,
and the maximum reduction in TDS reached 1900 ppm near the pond (Figure 10a). For the
EC, the region influenced was t increased to almost 77.4 km2 with an EC of 1800 μ.S/cm and
a maximum reduction of 1200 μ.S/cm near the recharge pond, as illustrate in Figure 10b.

 
Figure 10. Effect of the artificial recharge on water quality under SIM3 simulation model (a) TDS and
(b) EC for the period 2022–2030.
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3.3. Sensitivity Analysis

Sensitivity analysis is the method used to quantify the degree of uncertainty in a cali-
brated model as a result of unknown aquifer characteristics. The aim of sensitivity analysis
was to comprehend how different model variables and hydrogeological stressors affect
the aquifer and to identify the parameters which were most sensitive, thereby requiring
special attention in future investigations. At the conclusion of the PEST iteration, sensitivity
analyses for each of the parameters were carried out. As shown in Figure 11, hydraulic
conductivity and natural recharging values at each site were examined for the steady state.
In comparison to changes in hydraulic conductivity, the model was much more sensitive to
variations in natural recharge. Compared to the other input characteristics, the largest zone
(RECH-1) natural recharge had the greatest influence on groundwater levels. The simu-
lation model results were significantly influenced by hydraulic conductivity parameters
for the regions HK-30, HK-40, and HK-70. In comparison with other regions, the relatively
small regions (HK-10, HK-20, HK-50, and HK-80) were less sensitive.

 

Figure 11. Model parameter sensitivity analysis.

4. Conclusions

The artificial recharge of groundwater is an effective way to alleviate the current water
resource crises and to improve the quality of water supplies. The effect of artificial recharge
on groundwater levels in the Dibdibba unconfined aquifer, Iraq, was investigated using
treated wastewater (tertiary treatment) from the WWTP in Kerbala. Groundwater flow and
solute transport were simulated using a 3D numerical model (MODFLOW and MT3DMS)
with GMS 10.6 software. The PEST tool was used for the automatic calibration of the
created models. The steady-state and transient groundwater levels simulated for 2016–2017
were in agreement with the observed groundwater levels. Three scenarios were simulated
using calibrated models. The first scenario applied the current situation circumstances
without an artificial recharge, while the other scenarios applied artificial recharge (5000 and
10,000 m3/day) injected into a pond with an area of 0.25 km2, to demonstrate how the
aquifer would perform between 2022 and 2030. The results revealed that during this time,
a pond that was artificially recharged at rates of 5000 and 10,000 m3/day would result
in annual increases in groundwater levels of more than 12.3 cm. This increase would
result in the recovery of groundwater levels of up to 40 km2 for the new agricultural area.
Consequently, a decrease in TDS and EC concentrations in groundwater could also be
observed at approximately 1900 ppm for TDS and 1500 μ.S/cm for EC near the pond. The
reclaimed area increased by 62.7 km2 for TDS and 77.4 km2 for EC. These results indicated
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that eight years of artificial recharge would result in a minimum recovery of groundwater
levels of 20 cm, over a recovery area measuring 110 km2. Therefore, the application of the
artificial recharge site should increase groundwater reserves and enhance water quality; the
numerical modeling used here is indicative of artificial recharge being an effective approach
for the conservation of groundwater. Furthermore, the artificial recharge had a considerable
impact on salinity. The main limitations of this study were the hydrogeological features of
the aquifer and the future estimates of the natural recharge and discharge that were used.
In addition, in this study, only salinity was considered in the water quality assessment.

The findings of this study can assist decision-makers in developing strategies to reduce
water scarcity and adapt to climate change. Moreover, other researchers can use it at full
scale and implement further field tests to decrease the uncertainty of the study, as well as
increase the number of water quality parameters, such as for heavy metals.
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Abstract: Groundwater in Iraq is considered to be an alternative water resource, especially for
areas far away from surface water. Groundwater is affected by many factors including climate
change, industrial activities, urbanization, and industrialization. In this study, the effect of artificial
recharge on the quantity of groundwater in the Dibdibba unconfined aquifer in Iraq was simulated
using a groundwater modeling system (GMS). The main raw water source used in the artificial
recharge process was the reclaimed water output (tertiary treatment) from the main wastewater
treatment plant (WWTP) in Kerbala, with 20 injection wells. After calibration and validation of the
three-dimensional numerical model used in this study and taking wastewater recharge rates into
account, two different scenarios were applied to obtain the expected behavior of the aquifer when
the groundwater levels were augmented with 5% and 10% of the daily outflow production of the
WWTP in Kerbala. The model matched the observed head elevations with R2 = 0.951 for steady
state and R2= 0.894 for transient simulations. The results indicate that the injection of treated water
through 20 wells raised the water table in more than 91 and 136 km2 for 5000 and 10,000 m3/day
pumping rates, respectively. Moreover, increasing the volume of water added to the aquifer could
lead to establishing new agricultural areas, spanning more than 62 km2, extending about 20 km along
the river.

Keywords: artificial recharge; Dibdibba aquifer; groundwater modeling system; GMS

1. Introduction

Water and groundwater play a pivotal role in food security and economic evolution
all over the world. Unfortunately, in recent decades, the ever-increasing demand for water
due to urbanization, economic development, population growth, and climate change has
caused water scarcity and restricted economic evolution in many countries. Groundwater
is used as an alternative source of water when there is a shortage of surface water. Ground-
water is the major source of irrigation water in countries with arid and semiarid climates.
In some Middle Eastern countries, the domestic water supply depends completely on
groundwater [1,2]. Efficient management of groundwater resources is necessary to meet
the growing water demand. Climate change and global warming can influence ground-
water resources in many ways, either directly or indirectly. Increasing temperatures and
changing patterns of precipitation will directly impact groundwater recharge, discharge,
water levels, and annual storage. Moreover, the rising level of the sea, increased demand
for irrigation water, and changes in vegetation cover can indirectly affect the quality of
groundwater resources. Global warming will lead to changes in plant transpiration and
evaporation rates, which denote soil dryness, causing higher soil moisture losses and
reducing natural groundwater recharge [3].
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Overexploitation of groundwater has led to a rapid decline in groundwater levels
in many parts of Iraq [4]. One way to control the drop in the groundwater table is to
artificially recharge water using wells [5,6]. Many studies have shown an increasing trend
in artificial recharge methods in numerous regions all over the world such as Finland,
The Netherlands, Belgium, Greece, Denmark, and Spain. Other regions in which artificial
recharge techniques are used include Iran, Tunisia, Morocco, and South Africa [7]. The
concept of artificial groundwater recharge technology is gaining momentum day by day
because groundwater is such a variable and precious natural resource. Artificial recharge
not only provides an efficient method of water storage allowing better management of the
available resources, but it can also affect water quality indexes [8].

The utilization of treated wastewater is an important part of a water management
planning strategy, particularly for the artificial recharge of groundwater resources and
agriculture. Consequently, reclaimed wastewater is used to improve the quantity and
quality of groundwater in an aquifer. Several studies have proven that such alternatives
are plausible when traditional fresh raw water sources become severely limited [9–13]. The
use of artificial recharge techniques has already been recognized as a way of increasing
groundwater levels and improving water quality in different groundwater aquifers [14,15].
For example, Bouri and Ben Dhia [16] reported that the groundwater level of the Teboulba
aquifer located in Tunisia rose nearly 30 m after six years of artificial well recharge.

Iraq is located in a region that suffers from water scarcity with only a few special
water resources of its own. It is facing considerable interdependent political, economic,
environmental, and security challenges [17]. Among the most important of these challenges
is the deterioration of the Euphrates and Tigris rivers, which are essential to agriculture
and water security in Iraq. Both rivers originate outside Iraqi borders in Turkey and Iran.
Iraq has no control or authority over them. The adverse impacts from the installation of
hydraulic structures such as big dams upstream on the Euphrates and Tigris rivers coupled
with climate change will further undermine the agricultural sector in Iraq, causing further
environmental deterioration and increasing desertification.

The current study focuses primarily on the unconfined Dibdibba aquifer in south-
eastern Iraq. Over the past 20 years in this aquifer, there has been a severe decline in both
groundwater levels and water quality caused by the excessive use of groundwater for
cultivation [18]. This problem has motivated numerous researchers to study hydrodynamic
systems using numerical modeling [19–21] to obtain the spatial distribution of groundwater
levels and the directions of groundwater flow or to identify the amount of re-usable
recharge by rainfall. Unfortunately, there have been no previous studies regarding artificial
recharge in the region, perhaps due to the lack of treated water or any water sources other
than rain in the study area. The first wastewater treatment plant (WWTP) in Kerbala, which
is within the boundaries of the aquifer formation, was opened in 2020.

Numerical models such as MODFLOW for simulating the flow of groundwater have
been used in several previous studies over the last decade. These types of programs are
connected to GIS technology and play a vital role in the management and evaluation
of groundwater in many regions [22,23]. Numerical modeling investigations have been
frequently used by researchers to predict the potential of an aquifer or to implement
recovery of groundwater levels depending on numerical models with multi-scenario
development [7,12,13,24–27]. In this paper, the impact of artificial recharge by wells on the
groundwater level behavior in an unconfined aquifer (Dibdibba) was evaluated based on
several scenarios using 3D calibrated numerical models constructed by the MODFLOW
application using GMS 10.4 software. The main objective of the current study is to obtain
the expected increase in groundwater levels and the range of the affected area as a result of
applying artificial recharge by selected wells. The present study focuses on the range area
near the Kerbala wastewater treatment plant (WWTP). It is the first scientific study dealing
with the process of artificial recharge in the study area (Dibdibba unconfined aquifer) and
one of the first studies in Iraq on the application and sustainability of treated water.
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2. Materials and Methods

2.1. Study Area

Iraq is a country in a semi-arid/arid region of the Middle East. Geographically, the
study area (Dibdibba aquifer) is located in central Iraq, between the cities of Najaf and
Kerbala, with coordinates between 31◦55′ N–32◦45′ N latitude and 43◦30′ E–44◦30′ E
longitude, as shown in Figure 1. The Dibdibba aquifer is an unconfined shallow aquifer
with a single soil layer and fully depends on rainfall for recharge. It covers an area of
1100 km2 and is limited by two cliffs: the Tar AlSayyed within Kerbala city boundaries in
the northwest and the Tar Al-Najaf within the boundaries of Najaf city in the south and
southwest. The Al-Razzaza lake, located near the northern boundary of the aquifer, is an
open surface reservoir. The eastern side of the aquifer is bounded by quaternary sediments.
The topography elevation ranges from 10 m to 90 m above sea level. The study area is
considered to be the most important aquifer in Iraq. The region is known for its significant
cultivation activity, which has led to a growing demand for irrigation water and thus an
increase in groundwater withdrawal. For the study area, the main direction of groundwater
flow is generally towards the Euphrates River, from the southwest to the northeast, and
the hydraulic gradient value ranges from 0.0011 to 0.0005. The mean temperature ranges
from 11 ◦C during the winter season to 37.5 ◦C during the summer. The mean annual
rainfall in the study area ranges from 90 mm at the Kerbala meteorological station to
112 mm at the meteorological station in Najaf. The wettest months of the year are between
November and March; 80% of the yearly precipitation falls in this period. Summer is the
driest season, from June to September. Scant and irregular rain falls in May and October.
Since 2003, the groundwater level has decreased and the quality of the water has been
degraded. This area has been greatly influenced by water withdrawal, especially in places
that were subject to overexploitation [28]. Moreover, other studies [29,30] have referred to
the salinization of groundwater as an indicator of the increasing use of irrigation water for
agriculture, which has led to soil leaching and the transfer of fertilizers to the unconfined
aquifer. To address the issues of the low groundwater table and the deteriorating water
quality in the Dibdibba unconfined aquifer, this study used treated municipal wastewater
as an artificial recharge source. The main reasons for choosing this type of water were its
availability in relatively large quantities (100,000 m3/day) and the location of the nearby
wastewater treatment plant.

 

Figure 1. Location of the study area with the Kerbala WWTP.

2.2. Hydrogeological Characterization

The correct description of the hydrogeological situation in the aquifer under study is
essential for understanding the value of the pertinent flow operations. Without a correct
description of the area, it is impossible to choose a suitable model or develop an authori-
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tative calibrated model. Hydrogeological characteristics of the modeled area, such as the
parameters of the aquifer, are only available for a few sites in the study area. In order to
obtain an estimate of the information needed, the Kriging method was used to predict data
across the entire region. Figure 1 shows the locations of the selected production wells used
to predict the aquifer characteristics in the study area.

These characteristics have an important impact on the accuracy of calculating the
artificial recharge of the aquifer. The most important soil attributes are the main parameters
that control the flow rate of the downward percolation and infiltration, especially with this
type of technique. Figure 2 shows the lithology formation that was identified utilizing deep
well logs and results from the infiltration test. The stratigraphic column in the area of study
includes many formations (from old to young): middle late Eocene (Al-Dammam), late
lower Miocene (Euphrates), middle Miocene (Fatha and Nfayil), upper Miocene (Injana),
and upper Miocene-Pliocene (Dibdibba). The last formation (Al-Dibdibba) represents
the top of the main unconfined aquifer and covers 1100 square kilometers of the Najaf-
Kerbala plateau. The aquifer is recharged by the seasonal stormwater, with water coming
from the eastern and northeastern areas as well as directly from rainfall falling on the
plateau [31,32]. The formation of Dibdibba consists of pebbly sandstone and sandstone
with some claystone, siltstone, and marl associated with secondary gypsum. The thickness
of the formation ranges from 45 to 60 m. The Al-Dibdibba formation is exposed at both
ridges of the Tar Al-Najaf and the Tar Al-Sayyed, taking the topmost of the uncovered
sequence, hence making up the bedrock of the desert plain between Najaf and Kerbala.

 

Figure 2. The stratigraphy and lithology of the formations in the study area.
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2.3. Groundwater Flow Simulation

In order to meet the objectives of the numerical modeling, a conceptual model was
constructed. The conceptual model represents an idealistic and simplified representation of
the problem, consisting of the spatial distribution of hydrogeological and geological units,
types and location of boundaries, and the values of the aquifer parameters. A suitable
description of the hydrogeological conditions in the study area is essential for building the
conceptual groundwater flow model as well as for developing the reliably calibrated model.
To obtain the input data for the conceptual model, a spatial statistical technique was used
for all data. The geostatistical technique (Kriging) was used in this study to interpolate the
groundwater level data and all other aquifer characteristics such as hydraulic conductivity
and the upper and lower limits of the unconfined aquifer. These terms represent the major
input data for the MODFLOW under the GMS simulation program.

In this study, the ordinary Kriging method was used to provide the estimated values
for different initial input parameters at any unsampled points in the aquifer. For the best
performance of the Kriging interpolation method, it is recommended that the input data
are normally distributed (bell curve). Two testing methods were utilized to investigate
whether or not the input data (aquifer parameters) followed a normal distribution; the first
was the drawing of histograms of the data, and the second was a normal probability (Q-Q)
plot. A normal Q-Q plot is generated by plotting the values of input data against the value
of the standard normal distribution where their cumulative distributions are equal. If the
points cluster around a straight line, the data distribution matches the normal distribution.
The experimental semivariograms and the best-fitted theoretical models for the data of
groundwater levels (head) are shown in Figure 3. The three nonlinear main different semi-
variogram models (exponential, spherical, and Gaussian) for observed groundwater head
levels were plotted as shown in Figure 3a–c, respectively. The semivariogram parameters
(i.e., nugget, partial sill, and range) were obtained for each model. To check the validity of
all the assumptions made in the development of the theoretical model and estimation of
model parameters, cross-validation was carried out on the data. It is clear from Figure 3
that the best fit of the data was the Gaussian model compared to other models. Therefore,
the Gaussian model was chosen as the final model to be used in Kriging for the initial
groundwater level data.

Figure 3. Cont.
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Figure 3. Experimental and fitted semivarigrams for the groundwater head level: spherical (a),
exponential (b), and Gaussian (c).

The second stage was the calibration of the model. Through the calibration pro-
cess, the fine-tuning of the parameters was carried out in such a way that the numerical
model could simulate groundwater levels that match the field measured values in the best
possible way. The parameter estimation process was performed automatically using the
PEST (=parameter estimation) calibration software under the GMS program. During the
calibration process, this tool operates automatically to decrease the difference between
measured and computed values by changing different aquifer parameter values such as
hydraulic conductivity and transmissibility until minimum differences are reached. The
tool uses mathematical optimization algorithms.

During the calibration process, sensitivities of the computed groundwater levels with
respect to the aquifer parameters were calculated. These statistical indexes and others
were used when deciding which aquifer parameters to consider and to detect amended
calibration. Calibration was performed for two main states of the numerical model; the first
was the steady state and the second was the transient state to investigate the performance
of models to simulate the aquifer for selected periods in the future. The calibrated steady
state is very important for the transient state as it represents the initial condition of the
transient models.

The model calibration process is an important part of any groundwater modeling
process. For the calibration under a steady-state condition, the model variables of the
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aquifer’s natural recharge and hydraulic conductivity were predicted. The steady state
was calibrated using 15 observation wells and 2 adjustable variables. The calibration of
the steady-state condition was obtained by reducing the variation between the observed
groundwater table and the simulated groundwater table, where the observed heads auto-
matically compared with heads computed by the model. The final calibrated model was
created using the parameter estimation tools (PEST) application in GMS software. The
measured values were registered, and the intervals of confidence (95%) and observation
head interval (0.5 m) were selected.

For each homogeneous region in the study area, the natural recharge and hydraulic
conductivity needed to be estimated separately in order to decrease the uncertainty result-
ing from the expected variance of the relatively large area studied. Therefore, the study
region was divided into seven zones with estimated hydraulic conductivity parameters
based on the results of the pumping test of twenty wells [33] and three sub-catchment areas
for natural recharge depending on the aquifer characteristics (Figure 4).

 
Figure 4. The divided zones of the hydraulic conductivity and natural recharge of the study area.

The model was validated using well data for the transient condition. The calibrated
models were used to estimate the effect of the suggested artificial recharge by the wells on
the aquifer groundwater table with a focus on the surrounding area. Different scenarios
were applied based on the hypothesis of groundwater pumping rates and artificial and
natural recharge over the future period between 2022 and 2030. The results of the model
were validated through the historical period 2016–2017 using realistic recharge rates drawn
from the observations.

2.3.1. Grid Design

The domain of the model was chosen to cover 1100 km2. The optimum grid size for
the model was found by trial and error. Two main criteria were considered. The first was
the stability of the results for the last three trials at least. The second was the time required
to complete the run, especially with 3D models and the use of the automatic calibration
tool (PEST), as increasing the grid size to more cells than the optimal amount caused
time-delays and irregularities in the solution, especially in the transient case. The grid
of the model was composed of 7800 active cells. The cell width along rows and columns
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(x and y directions) was set at 500 m. The model region was created horizontally on a
two-dimensional grid and vertically as a single unconfined layer. It is also important to
note that independent results of the grid were obtained. Upper elevation values of the
aquifer were determined based on a map of the topographic contour lines of the region,
Figure 5, and the aquifer’s low elevation, which comprised the top elevations minus the
depth of formation. The average depth of the geological formation was 40 m. Due to the
MODFLOW within the GMS program, we adopted the topography as a top layer and it
was determined by meters above sea level (m.a.s.l.). Consequently, all the other input and
output contour map layers were produced with the same units.

 
Figure 5. DEM of the study area.

2.3.2. Boundary Conditions

One of the most important requirements needed to solve the governing equations
describing the flow in porous media like groundwater flow is determining the boundary
conditions of the domain (study area). Boundary conditions refer to hydraulic conditions
along the perimeter of the problem domain and mathematically can be classified into three
types: constant head boundary, specified flow boundary, and head-dependent boundary.
For the study area, boundary conditions were determined based on the flow pattern of
groundwater in the Dibdibba unconfined aquifer and the observations of the groundwater
level in the wells. A constant head boundary was applied at the eastern and western
sides of the area. These head values were 35 m and 5 m, respectively, as obtained from
measurements taken at observation wells. Moreover, the two features in the study area
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(i.e., Tar Al Sayyed and Tar Al Najaf) were defined as a no-flow boundary on the study
area’s northwest and southwest edges since it matched the flow directions (streamlines).

2.3.3. Recharge Estimation

Because field recharge values are difficult to determine, calibrated recharge modeling
was used. The spatially calibrated recharge was first distributed according to the water
budget analysis and then adjusted until a good match was obtained between the calculated
and observed groundwater levels. The amount of groundwater recharge in the region was
fundamentally computed from rain infiltration, assumed to be approximately 10% of the
mean annual rainfall, as was found by other researchers [33]. The groundwater pumping
rate through produced wells to meet the water demand for irrigation in the study region
constituted a main component of the outflow of the system. There were about 3000 wells
operating in the study area aquifer until recently when the number of operating wells was
significantly decreased. According to the General Commission of Groundwater reports,
there are only 500 to 600 wells still operating in the study area. In general, well depths
ranged from 20 to 90 m and the pumping rates were between 25 and 30 m3/h. The specific
capacity of wells ranged from 5 to 220 m3/h [33].

Based on the pumps’ withdrawal rates and average well operating times, the value of
the total abstraction rate could be calculated as follows:

Total withdrawal = (pumping rate × operation time × days operation/year) × number of production wells/365 (1)

When assuming that the operation time ranges from 6 to 8 h/day with an aver-
age discharge of 8 L/s and 145 days of operation per year, the annual pumping rate is
11,000 m3/day. These calculated values were applied as input for the simulation model
due to the lack of direct field measurements.

3. Results and Discussion

By using the calibration and validation process for the numerical model and assurance
of its consistency with real aquifer conditions, the simulation model can be used for the
management of the aquifer. For this paper, the calibrated numerical model was used to
investigate the impact of artificial recharge by wells in the Al-Dibdibba region on the
groundwater levels of the unconfined aquifer. Therefore, constructing and validating an
accurate simulation model was fundamental to reaching the objectives of the research.
With the simulation model, the impact of the artificial recharge of the wells was evaluated
using several scenarios.

3.1. Steady-State Model Calibration and Validation

For the calibration and validation processes, the observation coverage in GMS was
used, where the observed values from the field were automatically compared with the
values computed by the model. The measured values were registered, and a confidence
interval (95%) and observation head interval (0.5 m) were specified. The results of the
calibration along with the calibration target bars are shown in Figure 6. The middle line
represents the observed value. The top and bottom ends of the whiskers indicate the
observed values plus the interval and the observed value minus the interval, respectively.
The filled bar shows the error; the green color indicates that the error is within the specified
interval (less than 0.5 m). Yellow bars denote that the error is between 0.5 and 1 m, and
for the red bar, the error is more than 1 m. In the calibration process, effort was put
into reducing the error or colored bar. For steady-state conditions, the calibration and
validation of the numerical model were performed with available measured groundwater
levels for 15 observed wells only. These 15 wells were chosen in such a way that they
covered the entire study regions as well as reducing the duration time of simulated run in
the calibration process (which was done automatically by using PEST tools within GMS
software).

93



Water 2021, 13, 3167

 

Figure 6. Contour map of the simulated groundwater level in meters above sea level (m.a.s.l.) after
calibration of the Dibdibba aquifer under steady-state conditions.

Figure 6 shows the calibration results and contour map of simulated groundwater
levels of the Dibdibba aquifer for steady state conditions. In Figure 6, 15 of the calibration
targets were used to represent the water level in the model, 14 bars are green (error less than
0.5 m), and one bar is yellow (error more than 0.5 and less than 1 m), so that the obtained
values matched with the measured values at an acceptable accuracy level. Moreover, the
results of the calibration model were deemed acceptable after comparing the computed
groundwater elevations with the measured values as shown in Figure 6. The model
matched the observed head with a determination coefficient (R2) of 0.951. This relatively
high correlation value was obtained by using the PEST auto-calibration tool in the GMS
software. In addition to the process of estimating hydraulic conductivities and recharge
separately for each homogeneous zone, the study area was divided into several zones for
these two important parameters during the calibration process of the conceptual model.
These validated results are an indicator for good confidence for the estimated results for
the simulated model. Consequently, the results of this steady-state calibrated model can be
used as an initial condition in the process of calibrating the transient model.
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3.2. Transient Model Validation

In the case of transient conditions, groundwater levels are a function of time. Simu-
lated steady-state aquifer levels were used as initial aquifer levels to simulate the transient
state. Measuring groundwater levels was an important calibration objective of this opera-
tion. Moreover, the transient models determined preliminary predictions of the specific
yield (Sy-values) of the Dibdibba unconfined aquifer. Values of Sy, computed from pump-
ing tests in previous studies, ranged from 0.001 to 0.05 [33]. Constructing a transient
mode ideally means managing large amounts of transient data from a diversity of sources,
including water levels in observation wells as well as recharge and pumping well data. The
values of pumping rates per month varied according to the requirements of the cultivations
in the study area. The choice of a simulation time stage is a crucial part of designing a
transient model because the determination of space and time strongly affects the numerical
model results [34].

The transient calibration model had a starting date of 1 January 2016 and the end date
was set to 1 December 2017, while the time period was divided into 23 time steps. Data
used for the calibration and validation processes included the corresponding measured
groundwater levels from 4 control wells (Figure 1). The locations of these wells approxi-
mately represented the region, especially the area near the Kerbala WWTP (Obs.1 to Obs.3)
because the results of the study will focus on it. The corresponding variable was computed
from the steady-state calibration model. The relevant discharge rates were estimated from
the realistic consumption in the study region.

In the process of calibrating the transient state, specific yield values were selected to
be the variable parameter within the PEST operation; this changed automatically until a
good match between the observed and calculated groundwater levels from January 2016
to December 2017 was achieved (Figure 7). Of the 4 calibration targets represented in the
model, only one bar was yellow and 3 were green. A transient scatter plot of observed
versus simulated groundwater levels was used to investigate the transient numerical model.
The results are shown in Figure 6. The scatter plot shows a coefficient of determination
R2 = 0.894 at the end of simulation in 1 December 2017. As expected, the congruence in
the transition state is less than the congruence in the steady state, where the determinant
coefficient (R2) was less than the value obtained in the steady state. The simulation
model of groundwater flow was validated for the period from January 2016 to December
2017. It reproduced close groundwater level variation for different previous monitoring
readings as displayed in Figure 8. A comparison between the measured and the computed
variations in groundwater levels in the monitoring wells is presented in Figure 8. The
excellent performance of the simulation was shown by the transient simulation of the
concordance between the modeled and measured groundwater levels in the observation
wells. All the figures show a declining trend in elevation during the monitoring periods.
According to these evaluations, the model was well calibrated. It is clear from Figure 8
that, for observation well No.2 (Obs.2), the simulation model results always overestimated
observed groundwater levels during the validation period but within an acceptable range
(green color bar). However, for the other observed wells, the estimated values both over-
and underestimate the values for different monitoring times. These behaviors may be due
to the different estimation ranges for the hydraulic parameters of the aquifer in addition to
the effect of the well’s distance from the boundaries of the study area.
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Figure 7. Contour map of the simulated aquifer groundwater level on 1 December 2017.

Figure 8. Cont.
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Figure 8. Validation in four observation wells during the transient period 2016–2017.

3.3. Evaluation of Artificial Recharge

The calibrated models were used to estimate the influence of the suggested artificial
recharge by wells on the elevation of groundwater, focusing on the region surrounding
the Kerbala WWTP. Different scenarios were applied, which considered the natural and
artificial recharge and the rate of groundwater withdrawal by pumps between 2016 and
2030. This was done with two simulation models (MOD1 and MOD2) that performed
calculations over the prediction time interval (2016–2030). In MOD1, the same boundary
conditions were maintained during the entire simulation period, assuming the continuity
of the present extraction and natural recharge rates of 2016 and the exclusion of the artificial
recharge rate from the WWTP. Based on this scenario, the simulated groundwater levels
would be more than 2 m lower at the Kerbala WWTP by the year 2030 (Figure 9). Therefore,
this site is considered to be one of the best sites to establish artificial recharge wells due to
its proximity to the treatment plant and the severe impact from withdrawal operations in
this area as well as the lack of natural recharge. These results of the expected decline in
groundwater levels have a sensitivity of assumptions made about the extraction values
calculated by Equation (1) (11,000 m3/day), which depend on some other assumptions due
to a lack of observation data.

In MOD2, the same boundary conditions as in MOD1 were applied with the addition
of a recharge flow of 5000 m3/day injected into 20 selected recharge wells. These recharge
wells were regularly distributed over the area near the treatment plant for economic and
operational reasons. The comparison of the simulated groundwater elevation for 2030
based on MOD1 and MOD2 illustrated that an increase of close to 1.6 m (maximum)
could be achieved with an artificial recharge pumping rate of 5000 m3/day (Figure 10a).
Considering the minimum change of 0.2 m, the affected area around the WWTP site under
recharge conditions would be about 91.6 km2, divided into two pools, one located on the
left side of the Kerbala WWTP with an area of 45.4 km2 and the other located on the right
side with an area of 45.2 km2, as shown in Figure 10a. It would spread over 18.5 km along
the river and include a 36 km2 recovery area with a groundwater level increase of more
than 0.5 m from MOD1.
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Figure 9. The expected groundwater level decline in 2030 in the study area without recharge.

Figure 10. Cont.
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Figure 10. Effect of artificial recharge in 2030: differences in groundwater elevation increases
(a) between MOD2 and MOD1 and (b) between MOD3 and MOD1.

An additional scenario, MOD3, was considered, in which 10% of the WWTP outflow
(10,000 m3/day) was used as an artificial recharge rate for the aquifer groundwater table.
As a consequence of this increase, a higher impact was obtained on the groundwater
level (Figure 10b). The positively influenced area (0.2 m) increased to 136.8 km2 and
the maximum increase in groundwater levels reached 2.8 m. The affected area extended
23 km along the river, including an 81 km2 recovery area and a rise of at least 0.5 m in the
groundwater level.

Results relative to the observation well (Obs.3) located near the artificial recharge site
as shown in Figure 1 were used to compare the temporal development of the groundwater
level. Figure 11a illustrates that the artificial recharge would increase the groundwater level,
especially near observation well No.3 (Obs.3). However, this effect diminished farther away
from the recharge wells. A groundwater level increase occurred during the next decade
of the modeling with an annual increase of 7 cm and 20 cm for 5000 and 10,000 m3/day
recharge pumping rates, respectively, as shown in Figure 10a,b. It is clear from Figure 11
that there is a difference in the rate of increase due to the difference in the pumping rates of
the recharge wells between the two scenarios. There is also a clear increase in the tendency
of the expected rise in the groundwater level after 2026 for both scenarios. This may be
due to the expected increase in the permeability of the soil surrounding the pumping well
due to continuous pumping during the period before 2026.

At the end period of the simulation, the maximum expected groundwater level of
the Obs.3 well will be close to 19.78 m.a.s.l. for the second scenario, while it could reach
21.1 m.a.s.l. for the third scenario. Consequently, the groundwater level in the area near
the KWWTP can be increased to more than 1.3 m as a result of doubling the pumping rates
(3rd scenario) during the next eight years. It is important to note that the models were
calibrated based on the regional interpolation parameters due to the availability of data,
while the effect of artificial recharge was evident in a specific area near the treatment plant
where the sites of the proposed pumping wells (for economic requirements) were located.
Therefore, these factors may cause predictive uncertainty in the expected results. As in
many previous studies [5,6,8], the effect of hydrogeological properties was very significant
in the rates of change of groundwater levels as a result of artificial recharge.
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Figure 11. Groundwater level variations in observation well No.3 (Obs.3). (a) MOD2 with 5000 m3/day
and (b) MOD3 with 10,000 m3/day, artificial recharge rate for period (January 2022 to December 2030).

The estimation of water demand in the study area depends fundamentally on two
significant factors. The first one is the climate status, which involves rainfall, temperature,
sunshine duration, wind speed, and humidity. The second factor is the type of cultivation,
which determines the demand for irrigation water and reflects the plant’s modulus [35].
According to the Ministry of Agriculture and Ministry of Water Resources (Iraq), the
maximum irrigation water demand for a proposed crop plan has been determined to be
equal to 3 m3/donum/day, (one donum = 2500 m2). Considering the simulation results
for the next ten years, a new agricultural area could be added to the region, with an area
of more than 5800 dunams (14.6 km2) if 5% of the treated water production from WWTP
was used for the artificial recharge process. The additional areas could be increased to
25,000 dunums if 10% of the treated water production was used. This expected increase
in cultivated land will be very useful in facing the phenomenon of desertification, global
warming, and improving the environment in the study area.

3.4. Sensitivity Analysis

Sensitivity analysis is a measure of uncertainty in the calibrated model caused by
uncertainty in the aquifer parameters and boundary conditions. The main objective of the
sensitivity analysis is to understand the influence of various model parameters and hydro-
geological stresses on the aquifer system and to identify the most sensitive parameter(s)
that will need spatial attention in the future studies. Sensitivity analysis was performed at
the end of PEST iterations of each of the parameters used. For steady state, the hydraulic
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conductivity and natural recharge values for each zone within the study area (Figure 4)
were examined as illustrated in Figure 12. It is clear to note that the steady-state model is
sensitive to both recharge and hydraulic conductivity to a different degree. The model is
highly sensitive to changes in natural recharge compared to its sensitivity to changes in
hydraulic conductivity. The natural recharge of the largest zone (RECH-1) has the most
significant impact in terms of predicting groundwater levels compared to other input
parameters. The hydraulic conductivity parameters for regions 1, 5, and 7 had the least
influence on the simulation model results. This behavior may be due to the large area repre-
sented by this parameter (RECH-1) relative to the other areas of parameters. The relatively
small areas (HK-1, HK-2, HK-6, HK-7, and RECH-3) were the least sensitive compared to
the other areas. It can therefore be noted that the spatial variability of parameters could
influence predictions for steady-state calibration. However, the transient model shows sen-
sitivity due to the increase and decrease in the specific yield but with a slow response. This
analysis is useful in identifying the parameters that have the greatest impact on the model
as well as the parameters that have the least impact on the model. Thus, non-sensitive
parameters can be kept constant or removed in future studies, while it is necessary to give
attention to the parameters that have a high sensitivity in the simulation model.

 

Figure 12. Sensitivity analysis of modeling parameters.

4. Conclusions

One of the main issues concerning the evolution of groundwater resource management
and its sustainability is the efficient storage and control of its recharge and consumption
rates. Artificial recharge is considered to be one of the most important tools that can help
the sustainability of groundwater aquifers. In this study, a percentage of treated water
(tertiary treatment) from the wastewater treatment plant (WWTP) in Kerbala was utilized
to investigate the impact of artificial recharge on the groundwater levels in the Dibdibba
unconfined aquifer. A three-dimensional numerical model was applied to simulate the
flow system of the unconfined aquifer using MODFLOW with GMS 10.4. The developed
models were calibrated automatically using the PEST tool. The modeled groundwater
levels matched the observed groundwater levels for steady-state and transient simulations
for the period 2016–2017.

The calibrated models were used to simulate three different scenarios. One scenario
included applying natural conditions without artificial recharge and two scenarios included
artificial recharge through wells (5000 and 10,000 m3/day) to show the response of the
aquifer for the future period 2022–2030. The results of the simulations illustrated that
during the study period, the artificial recharge of wells with a pumping rate of 5000 and
10,000 m3/day distributed over 20 injection wells would induce an annual increase of 7 cm
and 20 cm in groundwater levels, respectively. This increase would lead to recovery of
groundwater levels of up to 36 and 81 km2 around the recharge site for the 2nd and 3rd
scenarios, respectively, and extend about 20 km along the river. Moreover, it was shown that
the application of an artificial recharge project would reduce groundwater decline during
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long-term periods. In the first simulation using the artificial recharge scenario MOD2, the
total increase in water storage volume was 6.4 × 106 m3/year with a minimum increase in
groundwater level of 0.2 m at the end of the simulation period in 2030. This means that the
pumping rates could be raised to reclaim more than 14.6 km2 of the new agricultural area.
In the second artificial recharge scenario MOD3, the new area of reclaimed agricultural
land could be increased by more than 62 km2. These reclaimed areas could represent a
significant addition to important agricultural production areas since the reclaimed areas
consist of sandy soils that are suitable for cultivating multiple types of plants.
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Abstract: In the past two decades, severe drought has been a recurrent problem in Iraq due in part to
climate change. Additionally, the catastrophic drop in the discharge of the Tigris and Euphrates rivers
and their tributaries has aggravated the drought situation in Iraq, which was formerly one of the
most water-rich nations in the Middle East. The Kurdistan Region of Iraq (KRI) also has catastrophic
drought conditions. This study analyzed a Landsat time-series dataset from 1998 to 2021 to determine
the drought severity status in the KRI. The Modified Soil-Adjusted Vegetation Index (MSAVI2) and
Normalized Difference Water Index (NDWI) were used as spectral-based drought indices to evaluate
the severity of the drought and study the changes in vegetative cover, water bodies, and precipitation.
The Standardized Precipitation Index (SPI) and the Spatial Coefficient of Variation (CV) were used as
meteorologically based drought indices. According to this study, the study area had precipitation
deficits and severe droughts in 2000, 2008, 2012, and 2021. The MSAVI2 results indicated that the
vegetative cover decreased by 36.4%, 39.8%, and 46.3% in 2000, 2008, and 2012, respectively. The
SPI’s results indicated that the KRI experienced droughts in 1999, 2000, 2008, 2009, 2012, and 2021,
while the southeastern part of the KRI was most affected by drought in 2008. In 2012, the KRI’s
western and southern parts were also considerably affected by drought. Furthermore, Lake Dukan
(LD), which lost 63.9% of its surface area in 1999, experienced the most remarkable shrinkage among
water bodies. Analysis of the geographic distribution of the CV of annual precipitation indicated
that the northeastern parts, which get much more precipitation, had less spatial rainfall variability
and more uniform distribution throughout the year than other areas. Moreover, the southwest parts
exhibited a higher fluctuation in annual spatial variation. There was a statistically significant positive
correlation between MSAVI2, SPI, NDWI, and agricultural yield-based vegetation cover. The results
also revealed that low precipitation rates are always associated with declining crop yields and LD
shrinkage. These findings may be concluded to provide policymakers in the KRI with a scientific
foundation for agricultural preservation and drought mitigation.

Keywords: drought; Iraqi Kurdistan Region; normalized difference water index; standardized
precipitation index

1. Introduction

Drought is a complicated natural disaster that is difficult to diagnose (including its
onset, duration, intensity, and scope), forecast, and manage in a broader context; it has
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a very negative effect on the social, environmental, and economic status of the affected
region [1]. In general, drought results in water scarcity and is caused by low precipitation
averages, high evapotranspiration rates, a lack of natural water resources, over-exploitation
of water resources, or a combination of these factors [1,2]. Several additional climatic
elements have an essential role in the incidence of drought [3], including high temperature,
strong winds, relatively low air humidity, timing and rain patterns (particularly during
agricultural growth seasons), severity, and length [4,5]. Drought and climate variability,
as well as their associated impacts on water resources, have gained increased attention
in recent decades as nations seek to enhance mitigation and adaptation mechanisms [2].
Besides precipitation, the most crucial component of the hydrologic budget is water stress,
which can result from excessive evapotranspiration rates [6,7], overexploitation of water
resources, or a combination of these variables [8]. Drought poses significant hazards to
individuals and the environment; hence, it is crucial to understand the spatiotemporal
pattern of drought [9]. Various parts of the world are predicted to experience increasingly
frequent and severe droughts as a result of climate change [10]. When there is an extended
lack of precipitation, meteorologists talk of a meteorological drought [11]. We refer to an
agricultural drought when a lack of precipitation results in depleted soil moisture and
inadequate plant cover [12].

The periods of drought substantially harmed the agriculture sector and vulnerable
populations in the Kurdistan Region [3,13,14]. The Kurdistan Region of Iraq (KRI) has
sufficient water resources; however, these supplies are restricted and unpredictable in
time and area. According to the Ministry of Agriculture and Water Resources in the KRI,
nearly 40% of the KRI’s springs dried up during prior droughts. In addition, the water
resources in Turkey and Iran [13] mostly depend on the amount of precipitation and
seasonal snowfall, as well as the policy of running dams and reservoirs in rivers with
shared watersheds. Without international water-sharing agreements between these nations,
Iraq’s water supplies change from year to year. Water shortage and water quality will
be anticipated to deteriorate, especially once Turkey completes its dam projects and Iran
builds its planned irrigation projects. In addition, the area anticipates that population
expansion, rising water consumption, and climate change will significantly impact water
supplies. According to the 2011 Regional Development Strategy for KRI, the Tigris faced a
40% water shortfall in 2016 [15,16].

However, further research is required to comprehend drought events’ historical fre-
quency, length, and spatial extent and identify the most susceptible water-using sectors.
The studies aid academics, decision-makers, and drought planners in mitigating the neg-
ative effects of crisis-based management measures [17–19]. The estimations of surface
and groundwater are the primary sources of irrigation water required for agricultural
sustainability [20]. Given the limited study on assessing LD in terms of climate change,
evaluating how the climate has changed and fluctuated historically in connection to this
and other lakes is essential. Moreover, using satellite pictures and remote sensing [21], we
investigate the fluctuations in LD’s water area extent.

Utilizing remote sensing (RS) techniques for drought monitoring is an efficient and
effective method, especially for developing drought indices as well as related spatial
data analysis tools, while models and databases also significantly contribute nowadays in
predicting, preventing, researching, addressing, rehabilitating, and managing these phe-
nomena of drought [1,22]. This is partly because remote sensing techniques enable more
data collection over a larger geographical area and with fewer resources than ground-based
observations [22]. Whether the purpose is agricultural, meteorological, or hydrological,
satellite data can be exploited for drought monitoring. This data enables one to com-
prehend the manifestations of drought in a greater region more directly and in less time
than previous techniques [23]. Numerous studies utilize meteorological drought indices
for drought evaluation, monitoring, and decision-making. The Standardized Precipita-
tion Index (SPI) [24–26] is a frequently employed drought characterization index. This
precipitation-based indicator is practical and straightforward. In addition, SPI might be
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measured at various intervals during meteorological drought monitoring [27,28]. The Mod-
ified Soil-Adjusted Vegetation Index (MSAVI2) is also considered an excellent predictor
of dry and semi-arid vegetation cover [29,30], and was designed for low-cover areas to
map vegetation in arid mountainous environments [31]. In mountainous areas, primarily
topographic gradients govern species distributions; thus, they must be incorporated into
the mapping process [32].

The primary objectives of this study are to provide an insight into the historical
frequency, duration, and spatial extent of drought episodes and agricultural drought by:
(1) analyzing temporal trends in annual total precipitation, vegetation cover, and water
body area over the period 1998–2021; (2) calculating the frequency, degree, and variation
of drought and drought intensity over the past two decades; and (3) identifying spatial
variations in drought and drought rates based on climate variables. Agriculture and water
resources in the KRI require such an evaluation and information on vegetation cover to
launch vegetation conservation and restoration activities. This study may help decision-
makers design better strategies to enhance the KRI’s land and water management sector to
achieve the second sustainability development goal (SDG 2) adopted by the United Nations
(UN) and Nuffic program goals in Iraq for agricultural strategy planners and regional
authorities.

2. Materials and Methods

2.1. Study Area

This study was conducted in the KRI, which is situated between latitudes 33◦57′58.5′′–
37◦20′33.55′′ N and longitudes 42◦20′25.36′′–46◦19′16.475′′ E (Figure 1A), with its elevation
ranges between 88 and 3600 m (Figure 1C). It encompassed the governorates of Duhok,
Erbil, and Sulaimaniyah. The KRI has a Mediterranean climate that is cold and wet in the
winter and hot and dry in the summer [33,34]. Generally, the climate is determined by high
precipitation rates in the north and a dryer climate in the plains [35,36]. From October to
May, precipitation ranges from 350 mm in the southern regions to more than 1200 mm in
the northern and northeastern regions (Figure 1D). The rainfall distribution is unimodal
and concentrated from December to April [37]. The average daily temperature ranges
from 5 ◦C in the winter to 30 ◦C in the summer, but in the south, it can reach 50 ◦C [37].
Physiographically, the KRI can be divided into the Zagros Mountains and the foothills. The
precipitation pattern is influenced by the Mediterranean climate. On the other hand, the
KRI is split into three categories based on average annual precipitation: assured rainfall
area (above 500 mm), semi-assured rainfall area (350–500 mm), and unassured rainfall area
(below 350 mm) [33,34]. Furthermore, the total area of rainfed arable land is 10,682 km2,
which accounts for 87.6% of all agricultural land (Figure A1). Approximately 7202 km2

of the KRI’s agricultural area is devoted to the production of field crops, constituting a
significant share of the KRI’s agricultural acreage. Two field crops comprise most of the
total land area dedicated to field crops [38].

2.2. Datasets
2.2.1. Satellite Images Data

For this study, 144 Landsat images have been downloaded from the Landsat databases
on the U.S. Geological Survey website (glovis.usgs.gov (accessed on 28 May 2022)). MSAVI2
was calculated using the Google Earth Engine (GEE). Table A4 displays the JavaScript code
used to construct MSAVI2. The images were obtained between 1998 and 2021, during
April and May, when yearly vegetation growth was at its highest in the study area. The
datasets were gathered from three different Landsat satellites: L5 Thematic Mapper (TM),
L7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 OLI, which represents the data
of (Path/row: 170/34, 170/35, 169/35, 169/34, 168/35, 168/36). Landsat images offer a
30 m spatial resolution (Table A2).
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Figure 1. (A) Site map of the study area in the KRI, (B) the weather stations’ locations and their codes,
(C) the elevation map of the study area, and (D) the average of 24 years’ precipitation (mm) map.
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2.2.2. Meteorological Data

Data on annual precipitation (AP), and geographical coordinates (longitude, lati-tude,
and elevation) for 60 stations were obtained from the Ministry of Agriculture and Water
Resources of KRI for the period from 1998 to 2021 (Table A1). Additionally, Figure 1B shows
the spatial distribution of these stations. Moreover, Figure 2 shows the overall methodolog-
ical flowchart utilized in this work, illustrating the whole drought trend analysis procedure.
These data were used to estimate the SPI and CV indices.

 

Figure 2. Flowchart of the methodology.

2.3. Spectral Drought Indices

The spectral datasets were used to calculate the MSAVI2 and NDWI [39] to identify
vegetation and drought trends in time and space from a long-term sequence between 1998
and 2021 [40]. Furthermore, using ArcGIS software, 30 m high resolution satellite imagery
was used to calculate LD area in km2.

2.3.1. The Modified Soil-Adjusted Vegetation Index (MSAVI2)

MSAVI2 is an upgrade to MSAVI; although it is comparable to the SAVI index, it is
more accurate for high-exposure soil locations and simply calculates a correction factor for
soil brightness [41,42]. MSAVI2 values vary from −1 to +1, with values between −1 and
0 signifying non-plant features such as bare surface, built-up area, and water body, and
values greater than 0 representing vegetation cover. The primary objective of this step is
to mask non-vegetated areas, such as meadows, residential sites, and roadways, so that
only vegetated regions remain. Using the following formula [41,42], MSAVI2 is calculated
per pixel:

MSAVI2 =
2 ∗ NIR + 1 −

√
(2 ∗ NIR + 1)2 − 8 ∗ (NIR − RED)

2
(1)
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2.3.2. The Normalized Difference Water Index (NDWI)

LD is located in Sulaimaniyah (SU), between latitudes 35◦:30′′ and 36◦:40′′ N and
longitudes 44◦:30′′ and 46◦:20′′ E. It is considered the largest lake in the KRI and is a
reservoir created on the Little Zab River by the Dukan Dam, which was built to provide
water storage, irrigation, and hydroelectricity [15,16]. NDWI was employed to map the
surface area of LD [15,16,43].

According to McFeeters [44], water bodies can be mapped using a threshold value to
separate surfaces with detectable water from those without (NDWI values less than 0.3 vs.
NDWI values higher than or equal to 0.3). The NIR and green bands were used to calculate
the NDWI according to the equation below.

NDWI =
Green − NIR
Green + NIR

(2)

where Green refers to the green wavelengths and NIR refers to the near-infrared wave-
lengths.

2.4. Meteorological Drought Indices
2.4.1. Standardized Precipitation Index (SPI)

McKee [24] developed the SPI, which has grown in favor over the past two decades
due to it is substantial theoretical development, robustness, and applicability in drought
analyses. This study relies on spectral and meteorological indices; therefore, selecting an
appropriate index for comparing values across varied climatic regions is crucial. Con-
sequently, the SPI index was used for various analyses [45,46], including frequency and
temporal-spatial studies [47]. The SPI is the number of standard deviations from the long-
term mean of a normally distributed random variable, which is the observed value in this
case [48,49]. The drought severity varied from region to region during the stated drought
years. Moreover, the SPI index provides trend analysis for the specified regions. Using
DrinC software and the hydrological year (October–September), the default calculation
period begins in October with an annual first calculation step. The anomalous strength was
categorized after normalized SPI readings, as shown in (Table 1).

Table 1. SPI drought severity classes for wet and dry periods [26].

SPI Class

2.0 or more Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.49 Moderately wet

0.99 to −0.99 Near normal

−1.0 to −1.49 Moderate drought

−1.5 to −1.99 Severe drought

−2.0 or less Extreme drought

The SPI is computed by dividing the difference between the normalized seasonal
precipitation and its long-term seasonal mean by the standard deviation. It can be calculated
using the formula:

SPI =
Xij − Xim

σ
(3)

where Xij is the seasonal precipitation at the rain gauge station and the observation, Xim is
the long-term seasonal mean, and σ is its standard deviation.
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2.4.2. Spatial Distribution of Rainfall across the Study Area

The coefficient of variation (CV) is a statistical measure of the deviation of individual
data points from the mean. The higher the CV value, the greater the spatial variability, and
vice versa [50]. CV is used to determine the spatial distribution of annual precipitation
variability depending on data obtained from 60 locations in the KRI, using ArcGIS and the
Kriging spatial interpolation technique. The CV applied to precipitation is especially rele-
vant when comparing the results of two separate surveys or tests with different measures or
values. Multiplying the coefficient by 100 is an optional step to calculate a percentage [50].
For example, we compare the results of two tests with varying scoring mechanisms. If
sample A has a CV of 12% and sample B has a CV of 25%, then sample B has more variation
relative to its mean. The coefficient of variation is expressed as:

CV =
σ

μ
∗ 100 (4)

where: σ = standard deviation and μ = mean.

2.5. The Statistical Analyses
The Correlation Coefficient (r)

Bivariate correlations (Pearson correlation coefficient) were adopted in order to find if
the variables Crop yield (ton)/year, Crop area (km2), Average SPI (60 stations), LD area
(km2), MSAVI2 (Mean Values), and Vegetative cover based on MSAVI2 (km2) are related to
one another.

3. Results

3.1. Modified Soil-Adjusted Vegetation Index (MSAVI2)

The MSAVI2 calculated for the study area from 1998 to 2021 is presented in Table 2
for each year. The lowest mean values of MSAVI2 (0.02, 0.23, and 0.25) were recorded in
2000, 2008, and 2021, respectively. These low values occurred due to the decrease in yearly
precipitation, a crucial factor in determining the vegetation cover and MSAVI2 score in
those years. The years 2015 and 2016 produced the highest MSAVI2 rating (0.46), indicating
greater vegetation cover, as illustrated by Figures 3 and 4. The drought’s effects in 2000,
2008, and 2021 suggest that nearly all regions were affected. According to MSAVI2 results,
the most substantial loss in vegetation cover in 2000 occurred during the growing season
(April and May). Severe drought affected 7865.6 km2 (42.9%), particularly in the KRI’s
southern, central, and southeastern portions. In 2008, the percentage of land covered by
vegetation was 0.2, or 10,018.0 km2. The low vegetation percentage may have resulted from
a mismatch between seasonal precipitation and plant needs during the evaluation of the
critical growth stage.

Three key factors explained the loss and worsening of the vegetation cover in 2000.
Firstly, 1999 was also a drought year, and it may have played a significant role in the return
of drought for two consecutive years. Secondly, overgrazing; due to the severe drought in
1999 and 2000, many livestock breeders in central and southern Iraq sought to feed and
pasture in the KRI [51,52]. During 1999 and 2000, grasses, bushes, and forests experienced
a drastic reduction in vegetation coverage. Thirdly, a physiological explanation is that
drought, in most circumstances, results in an incomplete seed production physiological
cycle. In addition, it may fail to produce a sufficient number of viable seeds for the
bush, pasture, and grass, which substantially impacts the germination of seeds and the
growth of vegetation in subsequent years [11,51,53]. Figures 3–5 illustrate the spatial and
temporal distribution of MSAVI2 in the KRI from 1998 to 2021. The vegetation cover
showed significant spatial variation at the spatial scale, particularly in the middle of the
KRI, whereas the northeastern and southern regions remained the most and most minor
vegetative areas, respectively. There was an essential relationship between MSAVI2 and
precipitation averages across the KRI from 1998 to 2021.
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Figure 3. Spatial variation of the MSAVI2−based vegetation from 1998 to 2009.

 

Figure 4. Spatial variation of the MSAVI2−based vegetation from 2010 to 2021.
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Figure 5. Spatial variation of the MSAVI2−based vegetation density classes from 1998 to 2021.

This trend is consistent with the meteorological features of the study area, namely the
average rainfall and temperature. In general, precipitation was highest (about 1000 mm) in
the northeast and gradually decreased in the southwest (to around 150 mm). Additionally,
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elevation followed the same pattern of decline and indirectly influenced temperature and
precipitation. The association between vegetation cover area and MSAVI2 values and elevation
data was statistically significant [14]. The results reported in Table 2 and Figures 3–5 make
this very obvious. Based on the results presented in Table 2 and Figures 3–5, the years 2000,
2008, 2012, and 2021 were the most vulnerable to drought, as detected by the vegetation
growth in the region.

In comparison to earlier years, the vegetation cover was drastically reduced through-
out these years. During the most severe drought in 2000, the vegetative cover was reduced
to 18,339.6 km2 (representing 36.4% of the overall study area). During 1998–2021, the
average vegetation coverage was 55%, although the vegetation coverage in 2000 varied
by 36.4% from the average, and the vegetative cover area declined to 24016.1 km2 in 2021
(representing 47.7% of the overall study area).

3.2. NDWI (Waterbody Area of LD)

The spatiotemporal analysis found that LD reached its greatest extent of 282 km2 in
2019 and its smallest extent of 125 km2 in 2009 (Table 3 and Figures 6 and 7). In addition,
Figures 6 and 7 and Table 3 show that the most severe droughts in the LD area occurred
during the hydrologic years 1999, 2000, 2008, and 2009, by 140 km2, 137 km2, 135 km2, and
125 km2, respectively. Numerous causes, such as bordering countries prohibiting water
imports and territorial laws, decreasing yearly precipitation, constructing various dams
in all riparian countries, and rising water demand for agricultural activities, have been
attributed to the LD level decline [13]. Low water levels have resulted from drought years
in Iraq’s river basins, particularly the Tigris, which contributes 70% of the country’s water
resources [54].

Table 3. Area of water body in (LD) for 1998–2021.

Time, Year (LD) Area (km2) Area Ave. % (+ −)

1998 258 195 62
1999 140 195 −55
2000 137 195 −58
2001 185 195 −10
2002 225 195 30
2003 267 195 72
2004 254 195 59
2005 238 195 43
2006 216 195 21
2007 189 195 −6
2008 135 195 −60
2009 125 195 −70
2010 159 195 −37
2011 137 195 −59
2012 170 195 −26
2013 200 195 5
2014 158 195 −37
2015 149 195 −46
2016 229 195 33
2017 224 195 28
2018 207 195 12
2019 282 195 87
2020 220 195 25
2021 185 195 −10
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Figure 6. Dukan Lake area change from 1998–2009.

  

Figure 7. Dukan Lake area change from 2010–2021.
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From 1997 to 2002, the average annual discharge of the Tigris River into Iraq fell below
43,000 million cubic meters, and from 1997 to 2001, it dropped precipitously to less than
19,000 million cubic meters, or about 40% less than the average annual discharge. Some of
the low discharges are attributed to decreased precipitation in the Tigris River watersheds,
which is consistent with the expected drop in precipitation in the country due to climate
change [55–57]. According to [58], precipitation in the Turkish highlands is anticipated to
decline by 10–60% by the end of the century, resulting in a 29% reduction in Tigris flow.
According to a study undertaken at the University of California, Irvine, the total water
storage in the Tigris and Euphrates rivers, which flow through Turkey, Syria, Iraq, and Iran,
is diminishing at an alarming rate. Between 2003 and 2009, the researchers discovered that
the river basin lost around 144 km3 of fresh water [16]. Approximately 60% of this loss is
related to groundwater extraction from aquifers, which is frequently used to meet demand
when surface water resources are insufficient [36].

3.3. Standardized Precipitation Index SPI

Figure 8 depicts the spatiotemporal trends of SPI for 60 meteorological stations in
the KRI. During the drought years, the severity varied from area to area. According to
McKee et al. [26], drought arises when the SPI value is negative and disappears when the
SPI value is positive. Four years in the studied historical record, specifically 1999, 2000,
2008, and 2021, saw severe drought, measured by the SPI values. Two years, 2009 and 2012,
experienced moderate drought (Figures 8 and 9). Stations 11, 16, 19, 22, 23, 24, 40, 48, 49,
55, 56, 57, and 58 had the most severe drought in 2008, with average SPI values of −2.28,
−2.26, −2.27, −2.25, −2.19, −2.54, −2.38, −2.92, −2.24, −2.17, −2.56, −2.35, and −2.28,
respectively (Table A3).

 

Figure 8. Temporal pattern of SPI drought and wet periods for 60 meteorological stations from 1998
to 2009.
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Figure 9. Temporal pattern of SPI drought and wet periods for 60 meteorological stations from 2009
to 2021.

In addition, approximately 60% of the studied years fell under the near-normal drought
class. The range of the normalized precipitation index for the near-normal class is between
−1.0 and 1.0. Overall, there is no discernible trend in the SPI values across the study years
(Table 4), with negative and positive SPI values fluctuating over the study period (Figures 8
and 9). However, a comprehensive review of this graph revealed three instances of more
severe drought, notably 1999, 2000, 2008, 2012, and 2021 (Figures 8 and 9). The precipitation
deficits continued for at least three years, making the drought throughout these three
eras long-term. Indeed, dry years were marked by poor river flow, low groundwater
and reservoir levels, extremely dry soil, and decreased crop yields or crop failure [59].
Regardless of the severity of the drought, the entire study area in 2008 and 2012 suffered
exceptional dryness.

The SPI values computed for each site revealed that the frequency of severe drought to
extreme drought has risen in the KRI by more than three to four times during the previous
24 years. This study demonstrates that severe and intense drought occurred intermittently
over the study area, resulting in varying implications on agricultural practices and water
supplies in the KRI. The spatiotemporal patterns of SPI distribution for 60 meteorological
stations in the KRI’s sub-districts indicated drought had varying severity in most studied
areas between 1999 and 2021. The severity of these drought years varied from area to area.
Figures 8 and 9 demonstrate the trend of drought severity for each of the 60 KRI stations.
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Table 4. The frequency of drought SPI index in 60 weather stations during the 24 years.

SPI Class Extremely
Wet Very Wet Moderately

Wet
Near

Normal
Moderate
Drought

Severe
Drought

Extreme
Drought

Station No. Station
Name

2.00 or More 1.50 to 1.99
1.00 to

1.49
0.99 to
−0.99

−1.00 to
−1.49

−1.50 to
−1.99

−2 or Less

Erbil

1 Erbil 0 2 1 16 2 1 2
2 Qushtapa 0 1 1 18 1 1 2
3 Khabat 1 0 3 15 3 1 1
4 Bnaslawa 0 1 3 17 1 1 1
5 Harir 0 1 4 16 1 2 0
6 Soran 0 0 7 14 1 2 0
7 Shaqlawa 0 2 1 17 2 2 0
8 Khalifan 0 1 4 16 1 0 2
9 Choman 0 1 3 17 1 1 1

10 Sidakan 0 1 3 16 1 2 1
11 Rwanduz 0 0 6 13 4 0 1
12 Mergasur 0 1 3 17 1 0 2
13 Dibaga 1 2 4 12 3 2 0
14 Gwer 1 2 1 14 5 1 0
15 Barzewa 1 0 0 20 2 1 0
16 Bastora 0 1 3 18 0 0 2
17 Makhmor 0 2 3 15 3 0 1
18 Koya 0 2 2 17 1 1 1
19 Taqtaq 0 2 1 16 3 0 2
20 Shamamk 2 0 3 15 2 1 1

Duhok

21 Duhok 2 2 9 7 4 0 0
22 Semel 1 1 13 6 1 2 0
23 Zakho 2 1 11 7 1 2 0
24 Batel 1 3 9 8 2 1 0
25 Dam-DU 2 1 9 9 3 0 0
26 Darkar.H 1 4 7 10 2 0 0
27 Zaxo-A.S 2 0 12 7 2 1 0
28 Batifa 1 2 11 8 0 2 0
29 Kani Masi 1 2 10 8 3 0 0
30 Zaweta 2 2 10 7 2 1 0
31 Mangish 1 3 9 10 0 1 0
32 Deraluke 0 4 8 10 0 2 0
33 Akre 1 3 10 7 3 0 0
34 Amadia 1 3 8 11 0 1 0
35 Sarsink 1 2 12 8 0 1 0
36 Bamarni 0 5 8 9 2 0 0
37 Bardarash 2 3 7 8 4 0 0
38 Qasrok 1 2 11 8 2 0 0

Sulaimaniyah

39 SU 0 2 3 15 3 0 1
40 Bazian 0 0 5 16 1 1 1
41 Halabja 0 1 4 15 1 2 1
42 Penjwen 0 1 2 18 1 0 2
43 Chwarta 0 0 6 14 2 2 0
44 Dukan 0 2 3 15 2 1 1
45 Qaladiza 0 2 3 16 0 2 1
46 Rania 0 1 4 15 2 2 0
47 Said Sadiq 1 2 1 15 4 1 0
48 Qaradagh 0 2 0 18 3 0 1
49 Arbat 1 1 3 16 1 1 1
50 K-Panka 0 1 4 15 2 2 0
51 Byara 0 1 3 17 1 2 0
52 Mawat 0 2 2 15 3 1 1
53 Dar-Dikhan 1 1 3 14 3 2 0
54 Chamchamal 0 2 2 15 3 1 1
55 Kalar 2 1 2 17 0 1 1
56 Agjalar 0 1 4 16 3 0 0
57 Bngrd 0 1 4 14 3 1 1
58 Sangaw 1 0 4 15 2 1 1
59 Bawanor 2 0 1 17 3 0 1
60 Kifri 1 1 2 17 3 0 0
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Figures 8 and 9 show that the drought zone was determined by interpolating SPI data
using Kriging. The KRI’s SPI values from 1998 through 2021 are displayed in Tables 4
and A3. The data suggest an irregular cyclical pattern of dry/wet spells during the past
24 years. The initial decline in SPI values began in 1999 and continued until 2001. This
drop closely parallels the precipitation decrease seen in DU, ER, and SU provinces during
the same year. The SPI index findings were determined to be comparable to the NDWI
index results (Table 3). In 1999 and 2000, the drought was extremely severe, but in 2008, the
part of the KRI worst hit was the southeast. In 2008 and 2012, the western and southern
portions of the study area suffered moderate drought. Figures 8 and 9 depicted the SPI
values when drought conditions were found in 1999, 2000, 2008, 2012, and 2021.

In comparison, the wettest years were 2003, 2016, and 2019, respectively. According
to McKee et al. (1993), drought occurs when the SPI value is negative and dissipates
when it is positive. Table 4 demonstrates that around 57% of the studied years fell into
the near-normal drought class, with an SPI range of −1.0 to 1.0 for the near-normal class.
Table 2 displays that negative and positive SPI values alternate over the study period. The
SPI values show no clear trend throughout the studied periods (Tables 4 and A3). However,
a closer look (Figures 8 and 9) revealed that the drought was more severe in 1999, 2000,
and 2008 than in any other studied year. Drought can occur despite average precipitation
in hydrological and vegetative realms [26]. During the growing season, the absence of a
relationship between vegetative and each hydrological drought and SPI is most evident.

3.4. Spatial Pattern Variation of Precipitation

The Zagros Mountains receive the most precipitation from October through May. To
examine the spatial pattern of precipitation variability over the study area, which encom-
passes the whole KRI, the CV was calculated for each of the 60 study stations. Figure 10
and Table 5 depict the average (24−year) precipitation (mm), maximum precipitation (mm),
lowest precipitation (mm), standard deviation (%), and coefficient of variation (%). The
annual precipitation variability indicates that station #60, with a CV of 56.7%, displayed
the most temporal variability, while station #10 exhibited the least, with a CV of 23.0%.
Similarly, stations #10 and #17 had the highest and lowest annual precipitation averages,
with 1370.3 mm and 244.3 mm, respectively (Table 5).

Generally, the highest CV values are seen in the study area’s southern parts, which re-
ceive the least precipitation. The statistical results in Table 5 reveal that annual precipitation
varies significantly over time. The CV ranged from a low of around 23.1% at station #10 to
a high of approximately 56.7% at station #60. (Figure 10). In addition, the lowest annual
precipitation averages, less than 244 mm, 297.4 mm, and 293.1 mm at stations #17, #20,
and #60, respectively, occurred in low-latitude and low-elevation portions of the KRI. In
contrast, higher than 1370.3 mm of precipitation was reported at station #12 in the northern
area of the KRI. As the temperature falls with increasing height, Figure 8 depicts a rise from
all directions toward high-elevation parts. The spatial variation study reveals, in Figure 10,
that the northeast area, which received much more precipitation than other parts, had less
regional rainfall variability and a more uniform rainfall distribution than other parts.

In the southwest area, station numbers 2, 13, 14, 15, and 20 (ER), 29, 31,32, 35, and 38
(DU), and 58, 59, and 60 (SU) exhibited a large range of annual spatial variation, with CVs
of 43.9, 46.7, 51.5, and 42.8%, and 44.0, 44.3, and 41.5%, respectively. The CV was utilized
for the analysis of variability. The study findings showed a downward trend in the KRI’s
annual and seasonal rainfall series. At station #12 (1370.3 mm) and station #17 (244.3 mm),
the maximum and minimum annual precipitation averages, respectively, were recorded.
In the southern parts of the KRI, the CV% exhibited significant interannual fluctuation.
Figure A2 in Appendix A depicts the CV annual precipitation at 60 selected meteorological
stations throughout the KRI. The highest CV values are recorded in the southern parts,
characterized by low rainfall.
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Figure 10. Descriptive statistics of the average annual precipitation series data recorded at each of
the 60 weather stations.
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Table 5. Descriptive statistics of the annual precipitation series data recorded at each of the 60 weather
stations.

Station
No.

Geographical Coordinates Record
(Years)

Maximum
Rainfall (mm)

Minimum
Rainfall (mm)

Average (Annual
Rainfall) (mm)

Standard
Deviation

Coefficient of
Variation CVLongit Latitude

Erbil

1 44.009 36.191 24 645.6 114.2 337.3 125.4 37.2
2 44.028 36.001 24 681.5 106.1 301.3 132.2 43.9
3 43.674 36.273 24 733.0 125.7 317.0 122.9 38.8
4 44.140 36.154 24 694.1 118.0 338.9 131.6 38.8
5 44.365 36.551 24 1042.1 264.5 576.8 188.0 32.6
6 44.561 36.638 24 963.3 290.5 647.2 193.6 29.9
7 43.985 36.209 24 1295.5 360.5 762.9 241.9 31.7
8 44.404 36.599 24 1241.3 263.6 699.3 235.3 33.6
9 44.889 36.637 24 1131.0 271.3 750.8 221.9 29.6

10 44.671 36.797 24 1173.0 463.7 835.3 192.6 23.1
11 44.525 36.612 24 1012.4 342.4 719.6 188.0 26.1
12 44.306 36.838 24 2111.1 624.7 1370.3 392.9 28.7
13 43.805 35.873 24 663.9 94.0 267.5 125.0 46.7
14 43.481 36.045 24 601.6 93.0 256.6 132.2 51.5
15 44.633 36.627 24 1889.0 284.2 722.9 309.3 42.8
16 44.160 36.339 24 870.4 139.7 436.8 169.1 38.7
17 43.583 35.783 24 530.3 92.0 244.3 103.4 42.3
18 44.648 36.099 24 1047.6 216.8 501.8 184.1 36.7
19 44.586 35.887 24 677.6 154.9 386.2 126.7 32.8
20 43.847 36.040 24 746.4 91.0 297.4 142.9 48.1

Duhok

21 42.979 36.868 24 1120.0 217.2 531.0 210.0 39.6
22 42.854 36.873 24 995.0 142.7 455.5 172.9 38.0
23 42.682 37.144 24 1165.4 232.5 557.9 193.8 34.7
24 42.722 36.959 24 1004.0 157.4 472.2 167.4 35.5
25 43.003 36.876 24 1135.0 233.1 550.0 202.9 36.9
26 42.823 37.199 24 1187.0 242.0 540.4 210.7 39.0
27 42.659 37.160 24 1165.4 247.8 554.0 194.1 35.0
28 43.013 37.184 24 1705.5 257.2 724.8 288.1 39.7
29 43.441 37.229 24 1688.0 269.5 798.2 350.8 44.0
30 43.143 36.906 24 1768.6 280.1 788.7 319.2 40.5
31 43.093 37.035 24 1657.0 175.4 699.3 309.5 44.3
32 43.649 37.059 24 1867.0 286.8 830.1 344.3 41.5
33 43.893 36.741 24 1425.8 274.9 644.7 246.4 38.2
34 43.487 37.093 24 1650.0 349.4 800.4 286.6 35.8
35 43.350 37.050 24 2015.0 219.2 918.0 393.4 42.9
36 43.269 37.115 24 1677.5 316.4 774.6 316.2 40.8
37 43.589 36.508 24 1014.6 187.1 427.2 179.4 42.0
38 43.598 36.701 24 1262.5 201.8 543.9 222.2 40.8

Sulaimaniyah

39 45.436 35.557 24 1147.5 230.2 627.7 219.5 35.0
40 45.140 35.589 24 1209.8 201.6 652.9 246.5 37.8
41 45.974 35.186 24 1081.4 295.4 658.1 215.2 32.7
42 45.941 35.620 24 1873.4 384.0 1017.6 341.3 33.5
43 45.575 35.720 24 1212.5 355.4 741.4 220.8 29.8
44 44.953 35.954 24 1058.2 224.6 599.5 217.7 36.3
45 45.133 36.176 24 1374.5 271.2 723.1 257.6 35.6
46 44.886 36.239 24 1618.4 307.4 768.6 293.4 38.2
47 45.853 35.344 24 1159.9 265.0 575.8 217.3 37.7
48 45.390 35.309 24 1727.5 103.6 798.0 350.7 44.0
49 45.587 35.425 24 1029.7 184.3 525.0 193.4 36.8
50 45.705 35.385 24 1275.0 205.4 558.3 239.4 42.9
51 46.116 35.225 24 1300.7 285.5 700.6 246.4 35.2
52 45.410 35.901 24 1296.6 326.2 746.6 238.9 32.0
53 44.787 36.210 24 1338.6 218.1 592.1 249.8 42.2
54 45.686 35.116 24 914.3 148.9 459.8 175.7 38.2
55 44.833 35.533 24 681.8 106.3 320.4 121.7 38.0
56 44.897 35.748 24 805.0 125.0 418.6 156.5 37.4
57 45.030 36.066 24 1213.5 241.4 695.9 241.5 34.7
58 45.182 35.286 24 1089.0 144.4 499.1 214.5 43.0
59 45.509 34.823 24 900.0 139.1 389.9 175.3 45.0
60 44.966 34.683 24 868.8 134.3 293.1 166.2 56.7
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3.5. The Correlation Coefficient

The significant spatiotemporal variability of precipitation in the KRI indicates and fore-
casts an increase in drought frequency and duration. The correlation coefficients between
precipitation, SPI, MSAVI2 mean and vegetation area, crop area, and crop production from
1998 to 2021 are shown in Table 6 (average of 24 years). The analysis of variance for drought
indices indicated statistically significant differences between the studied years at p of 0.01
and p of 0.05. The results demonstrated a substantial positive correlation between MSAVI2
and precipitation (Table 6). There was a statistically significant correlation between remote
sensing-derived spectral indices and precipitation.

Table 6. Correlation coefficients between spectral indices, meteorological indices crop area, crop
yield, and annual average precipitation.

Crop Area
(km2)

(LD) Area
(km2)

MSAVI2
(km2) SPI MSAVI2

(Mean)
Precipitation

(mm)
Crop Yield
(Ton)/Year

Crop Area
(km2) 1 −0.05 0.37 0.28 0.35 0.28 0.71 **

(LD) Area
(km2) −0.05 1 0.33 0.68 ** 0.22 0.69 ** 0.05

MSAVI2 Area(km2) 0.37 0.33 1 0.69 ** 0.78 ** 0.68 ** 0.73 **
SPI 0.281 0.68 ** 0.69 ** 1 0.53 * 0.995 ** 0.42

MSAVI2
(Mean Value) 0.35 0.22 0.77 ** 0.53 * 1 0.51* 0.61 **

Precipitation
(mm) 0.28 0.69 ** 0.68 ** 0.995 ** 0.51 * 1 0.39

Crop Yield
(Ton)/Year 0.71 ** 0.05 0.73 ** 0.42 0.61 ** 0.39 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

Table 6 illustrates the relationship between the mean values of vegetation cover based
on MSAVI2 characteristics, elevation, latitude, and longitude (precipitation). The graph
indicates that as terrain elevation rises, precipitation and elevation increase, but event
duration increases. Consequently, mountain regions receive relatively heavy, strong, and
long-lasting precipitation. MSAVI2 and elevation are significantly correlated with the
event features of the study region. Surface relief greatly influences land characteristics
and productivity [60]. The lowland parts receive less precipitation than the mountainous
parts. Nevertheless, MSAVI2 measurements are related to precipitation quantity and
elevation [61].

4. Discussion

LD’s surface area has witnessed major expansions and contractions over the years.
Drought estimates are crucial and are required to evaluate how the climates of these lakes
and their environs have altered [16]. It is similar to the reports of UNESCO [36] and
Fadhil [62]. In addition, the studies show that LD experienced severe droughts in 2008 and
2009. These results are equivalent to those of prior research [15,16]. The years 1999 and 2008
experienced the most severe drought conditions, followed by 2009 and 2012. In 2008, the
southeast of the study area, comprising three stations, was the most affected region, with
this finding also supported by [63,64]. In addition, the western and southern parts of the
study area experienced mild drought conditions in 1999. A previous study [7,65] indicated
that the SPI was an effective index; for instance, the SPI at station #9 at the Choman site
for the hydrological year 2007–2008 was −2.52, while at station #13 at the Bastora site for
the same year it was −1.94. The discrepancy indicates that the precipitation at station
#9 (Choman site) in 2007–2008 was less than that at station #13 (Bastora site) in the same
time period.

These CV results accord with the findings of [33], indicating a considerable climatic
gradient from the south’s semi-arid climate to the north’s semi-wet climate. This also
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supports past rainfall patterns and our region’s understanding [66]. Elevation is the
most influential factor in the regional variation of rainfall. On the other hand, the CV
exhibited the reverse tendency [67]. In addition, the KRI’s mountainous areas receive an
abundance of seasonal precipitation. We discovered that the high seasonal precipitation
in mountainous areas is mostly the result of frequent and prolonged rainstorm episodes.
However, seasonal precipitation in certain portions of the border area is characterized
by low-intensity, short-duration occurrences [64,65,68]. Nearly everywhere to the south-
southwest of the KRI, where precipitation and altitude are frequently limited (Figure 1C,D),
the MSAVI2 reported much lower values. At all sites, MSAVI2 levels declined concurrently
with lower elevations [69–71].

The majority of KRI regions had a severe drought between 1999 and 2008. However,
the drought intensity dropped to moderate in 2000, 2009, and 2012, as confirmed by 90% of
KRI weather stations. There have been five major droughts in the previous two decades
Other than years of severe and moderate drought, the remaining years experienced drought
conditions that were near average. The lowest water levels in LD were recorded in 1999,
2000, 2008, and 2009, which is consistent with the decline in SPI values. The MSAVI2 data,
on the other hand, indicated droughts in 2000, 2008, 2012, and 2021. Therefore, SPI is a better
indicator of drought in the region than MSAVI2, in which the SPI is dependent entirely on
precipitation, whereas vegetation cover (MSAVI2) is affected by a more significant number
of factors, such as precipitation, temperature, DEM, and soil qualities [72].

5. Conclusions

Between 1999 and 2008, most KRI faced a severe drought, but 90% of KRI weather
stations indicated that the drought severity decreased to moderate in 2000, 2009, and 2012.
According to the findings, the lowest water levels in LD were recorded in 1999, 2000, 2008,
and 2009. This study shed light on historical and agricultural drought events’ frequency,
length, and spatial extent. Based on the study of rainfall data collected in the KRI from
1998 to 2021, the following may be determined: 1. The yearly precipitation is highest in
the northern portion of KRI and lowest in the southern part. 2. The yearly rainfall is quite
irregular, with a coefficient of variation of 30%. In the south and southwest of the KRI,
the precipitation’s CV was reported to vary the most spatially by 56.7%. 3. The SPI data
indicated that 2007–2008 was the driest hydrological year between 1998 and 2021. 4. The
annual precipitation series exhibits a significant correlation coefficient at most stations. The
correlations between the SPI series and the area of LD, vegetation cover, crop area, and crop
yield were significant and positive. 5. Between 1999 and 2008, spatial patterns of drought
frequency based on the SPI revealed substantial increasing trends of drought severity at
stations in the northeast, mid-latitude, and southwest parts of the KRI.

According to the spatiotemporal drought map pattern, the top and middle regions
of the KRI had moderate droughts in 1999 and 2008. SPI, NDWI, and MSAVI2 all showed
identical drought patterns, consistent with the fall in SPI values. The remainder of the region
had acute drought conditions. In contrast, the MSAVI2 data suggested droughts in 2000,
2008, 2012, and 2021. SPI relies solely on precipitation, whereas vegetation cover (MSAVI2)
is controlled by a greater variety of parameters, including precipitation, temperature,
elevation, latitude, and soil quality [72]. The results of the past 24 years indicate that
the drought’s consequences were more pronounced in the southern and southeastern
regions. In addition, these parts are characterized by expansive grain-growing plains, and
the absence of methods to mitigate the consequences of frequent droughts has led to the
desertification of these regions. Using MSAVI2 and NDWI, the present work seeks to
determine the spatiotemporal extent of drought across KRG and evaluates the performance
of the indices by comparing the estimations to the meteorological drought indicator SPI.

In general, we may infer that the drought indicators included in this study demon-
strated comparable patterns. Between indices for all analyzed meteorological stations,
robust coefficients of determination (R2) were determined. However, it is difficult to infer
from this study the precise driving mechanism underlying MSAVI2, as global warming,
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climate change, temperature fluctuations, and variation in geopotential height may have
all had a substantial effect. Continuous observation of rainfall levels and comparisons with
current consumption levels can prevent human-caused drought and aid in developing
an intense drought management program [59]. The findings give better insight into the
importance of remote sensing applications to better understand the agricultural and water
situations in data-scarce regions such as the KRI.
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Appendix A

Table A1. The Annual Precipitation (AP) (mm) (average of 24 years), DEM, and coordinates (latitude
and longitude) of the 60 meteorological stations in the IKR used in this study.

Station
No.

Station
Name

Lat- Long-
DEM
(m)

AP
(mm)

Station
No.

Station
Name

Lat- Long-
DEM
(m)

AP
(mm)

1 Erbil 36.1911 44.0092 412.7 337.3 31 Mangish 37.0351 43.0925 1030.2 689.0
2 Qushtapa 36.0009 44.0285 390.8 301.3 32 Deraluke 37.0586 43.6493 706.8 819.5
3 Khabat 36.2728 43.6739 285.9 317.0 33 Akre 36.7414 43.8933 683.1 633.7
4 Bnaslawa 36.1538 44.1400 540.7 338.9 34 Amadia 37.0925 43.4872 1148.5 790.7
5 Harir 36.5511 44.3648 837.3 576.8 35 Sarsink 37.0503 43.3503 957.1 905.9
6 Soran 36.6385 44.5614 701.6 647.2 36 Bamarni 37.1151 43.2693 1203.0 763.4
7 Shaqlawa 43.9851 36.2094 966.5 762.9 37 Bardarash 36.5082 43.5894 363.6 418.4
8 Khalifan 36.5986 44.4038 697.1 699.3 38 Qasrok 36.7009 43.5980 414.8 533.7
9 Choman 36.6374 44.8893 1178.4 750.8 39 SU 35.5572 45.4356 870.8 617.3

10 Sidakan 36.7974 44.6714 1011.3 835.3 40 Bazian 35.5890 45.1395 943.7 652.9
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Table A1. Cont.

Station
No.

Station
Name

Lat- Long-
DEM
(m)

AP
(mm)

Station
No.

Station
Name

Lat- Long-
DEM
(m)

AP
(mm)

11 Rwanduz 36.6119 44.5247 801.6 719.6 41 Halabja 35.1864 45.9739 716.6 641.4
12 Mergasur 36.8382 44.3062 1108.9 1370.3 42 Penjwen 35.6197 45.9414 1442.9 1004.2
13 Dibaga 35.8730 43.8050 328.3 267.5 43 Chwarta 35.7197 45.5747 1011.6 741.1
14 Gwer 36.0449 43.4808 309.7 256.6 44 Dukan 35.9542 44.9528 700.4 586.4
15 Barzewa 36.6268 44.6333 798.3 722.9 45 Qaladiza 36.1755 45.1333 628.2 711.7
16 Bastora 36.3389 44.1605 630.0 436.8 46 Rania 36.2391 44.8855 607.8 753.5
17 Makhmoor 35.7833 43.5833 287.7 244.3 47 Said Sadiq 35.3437 45.8534 544.1 564.6
18 Koya 36.0994 44.6481 724.5 501.8 48 Qaradagh 35.3093 45.3896 887.9 784.9
19 Taqtaq 35.8874 44.5856 397.5 386.2 49 Arbat 35.4246 45.5868 701.6 515.2
20 Shamamk 36.0400 43.8467 310.6 297.4 50 KaniPanka 35.3850 45.7046 685.8 549.6
21 Duhok 36.8679 42.9790 588.3 520.0 51 Byara 35.2251 46.1163 1333.5 693.3
22 Semel 36.8733 42.8540 491.6 445.2 52 Mawat 35.9007 45.4105 1063.8 735.4
23 Zakho 37.1436 42.6819 501.4 547.0 53 D-dikhan 35.1163 45.6863 534.6 577.4
24 Batel 36.9595 42.7217 531.0 461.1 54 Chamchamal 35.5333 44.8333 726.6 452.5
25 Dam-DU 36.8758 43.0029 605.6 538.3 55 Kalar 34.6411 45.3293 243.2 313.9
26 Dar. hajam 37.1988 42.8227 649.8 533.7 56 Agjalar 35.7483 44.8974 702.3 410.6
27 Zaxo-farh 37.1599 42.6587 447.1 542.6 57 Bngrd 36.0660 45.0299 841.2 683.5
28 Batifa 37.1840 37.1840 930.2 713.6 58 Sangaw 35.2862 45.1825 704.4 484.9
29 Kani Masi 37.2291 37.2291 1332.3 795.6 59 Bawanor 34.8233 45.5087 358.4 379.9
30 Zaweta 36.9058 36.9058 1006.4 775.6 60 Kifri 34.6833 44.9664 238.7 279.2

Table A2. Landsat data chosen for analysis were a mixture of Landsat TM5, ETM7, and Landsat OLI8.

Date
Years

Sensor
Target_WRS_Path
Target_WRS_Row

Path/Row
Date_Acquired Resolutions

1998 Landsat 5 TM 170/34,170/35, 169/35, 169/34, 168/35, 168/36 10/04, 10/04, 21/05, 21/05, 30/05, 30/05 30 m
1999 Landsat 5 TM 170/34,170/35, 169/35, 169/34, 168/35, 168/36 13/04, 13/04, 22/04, 22/04,01/05, 01/05 30 m

2000
Landsat 5 TM
Landsat 7 ETM+

170/34, 170/35,
169/35, 169/34, 168/35, 168/36 15/05, 15/05, 16/04, 16/04, 25/04, 25/04 30 m

2001 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 26/04, 26/04, 21/05, 21/05, 28/04, 28/04 30 m
2002 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 13/04, 13/04, 08/05, 08/05, 01/05, 01/05 30 m
2003 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 02/05, 02/05, 11/05, 11/05, 20/05, 20/05. 30 m
2004 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 06/05, 06/05,11/04, 27/04, 06/05, 06/05 30 m
2005 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 23/04, 23/04, 30/04, 30/04, 23/04, 23/04 30 m
2006 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 26/05, 26/05, 19/05, 19/05, 12/05, 28/05 30 m

2007
Landsat 5 TM
Landsat 7 ETM+

170/34,170/35,
169/35, 169/34, 168/35, 168/36 05/05,05/05, 20/04, 13/04, 07/05, 07/05 30 m

2008 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 15/05, 15/05, 22/04, 24/05, 15/04, 15/04 30 m

2009
Landsat 5 TM
Landsat 7 ETM+

169/35, 169/34,
170/34,170/35, 168/35, 168/36

03/05, 03/05,
02/05, 02/05, 20/05, 20/05 30 m

2010
Landsat 5 TM
Landsat 7 ETM+

170/34,170/35, 169/35, 169/34,
168/35, 168/36 26/05, 29/05, 22/05, 04/04, 05/04, 19/04 30 m

2011
Landsat 5 TM
Landsat 7 ETM+ 170/34,170/35, 169/34, 168/35, 168/36169/35, 16/05, 16/05, 08/05, 16/04, 16/04, 15/04 30 m

2012 Landsat 7 ETM+ 170/34,170/35, 169/35, 169/34, 168/35, 168/36 26/04, 26/04, 19/05, 19/05, 26/04, 26/04 30 m
2013 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 05/05, 05/05, 28/04, 28/04, 23/05, 23/05, 30 m
2014 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 06/04, 06/04, 15/04, 01/05, 24/04, 24/04 30 m
2015 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 09/04, 25/04,18/04, 01/04, 27/04, 27/04 30 m
2016 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 13/05, 13/05, 20/04, 20/04, 15/05, 15/05 30 m
2017 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 30/04, 30/04, 09/05, 09/05, 18/05, 18/05 30 m
2018 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 04,10/04, 10/04, 26/04, 19/04, 19/04 30 m
2019 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 4/04, 4/04, 13/04, 13/04, 24/05, 24/05 30 m
2020 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 08/05, 08/05, 15/04, 15/04, 23/03, 23/03 30 m
2021 Landsat 8 OLI 170/34,170/35, 169/35, 169/34, 168/35, 168/36 25/4, 10/05, 20/04, 20/04, 26/03, 26/03 30 m
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Table A3. The duration, frequency, and severity of droughts based on the SPI index in 60 weather
stations in the KRI from 1998 to 2021.

Station
No.

Long- Lat-
1997–
1998

1998–
1999

1999–
2000

2000–
2001

2001–
2002

2002–
2003

2003–
2004

2004–
2005

2005–
2006

2006–
2007

2007–
2008

2008–
2009

1 44.009 36.191 −0.68 −1.94 −0.76 −0.15 0.61 1.31 1.17 0.71 0.69 0.45 −1.16 −0.46
2 44.028 36.001 −1.11 −1.44 −1.24 0.08 0.68 0.79 0.66 0.49 0.11 0.63 −0.57 −0.37
3 43.674 36.273 0.05 −1.01 −0.84 0.32 0.25 0.74 0.65 0.25 0.56 −0.01 −1.52 −0.9
4 44.14 36.154 −0.64 −1.62 −0.6 −0.08 0.16 0.98 1.06 0.49 0.53 0.48 −1.38 −0.95
5 44.365 36.551 0.26 −1.44 −1.02 −0.72 0.69 0.71 0.77 0.32 0.38 0.58 −1.44 −0.57
6 44.561 36.638 −0.32 −0.75 −1.57 −1.01 0.76 0.9 0.79 0.34 0.8 0.64 −1.37 −0.52
7 43.985 36.209 0.35 −1.58 −1.25 −0.39 0.64 1.05 0.8 0.47 0.54 0.81 −1.71 −0.65
8 44.404 36.599 −0.27 −1.68 −1.68 0.07 0.87 0.8 0.54 0.01 0.64 0.53 −1.01 −0.45
9 44.889 36.637 −0.17 −2.09 −1.29 −0.59 0.65 0.27 1.03 0.04 0.31 0.56 −1.13 −0.39

10 44.671 36.797 0.6 −1.27 −1.24 −0.49 0.67 0.45 0.82 0.34 0.86 0.32 −1.68 −0.73
11 44.525 36.612 1.01 −1.3 −0.53 0.24 −0.06 0.25 0.99 0.42 0.87 0.94 −2.03 −0.81
12 44.306 36.838 −0.91 −1.94 −1.86 0 0.71 0.16 0.54 0.27 0.94 0.22 −1.29 −0.56
13 43.805 35.873 −1.12 −1.4 −0.78 −0.2 0.71 1.02 0.38 0.14 0.77 0.42 −0.94 −0.42
14 43.481 36.045 −0.82 −1.22 −0.47 0.13 1.05 1.75 0.22 0.07 0.41 −0.91 −0.82 −1.07
15 44.633 36.627 0.53 −0.99 −1.34 0.55 0.3 2.89 0.39 0.23 0.23 0.61 −1.81 −0.91
16 44.16 36.339 0.52 −0.74 −0.53 −0.08 0.69 0.61 0.57 −0.13 −0.14 −0.53 −1.72 −1.57
17 43.583 35.783 −0.52 −1.45 −0.46 0 0.93 1.28 0.9 0.3 0.63 0.29 −0.97 −0.82
18 44.648 36.099 0.23 −1.01 −0.62 −0.61 0.04 0.52 −0.22 −0.32 0.1 0.88 −1.43 −1.15
19 44.586 35.887 0.56 −0.89 −1 −0.41 0.04 0.35 0.47 0.18 0.27 0.51 −1.72 −1.56
20 43.847 36.04 −0.53 −1.62 −0.45 0.04 0.81 1.56 0.8 −0.17 0.21 0.17 −0.84 −0.68
21 42.979 36.868 −0.11 −1.26 −1.39 0.4 0.24 0.9 0.31 0.3 0.77 0.11 −1.4 −0.92
22 42.854 36.873 0.08 −0.99 −0.63 0.65 0.19 0.47 0.55 0.19 0.62 0.4 −1.83 −0.96
23 42.682 37.144 0.58 −1.58 −0.74 0.14 0.49 0.74 0.25 0.17 0.53 0.32 −1.71 −0.9
24 42.722 36.959 0.71 −0.9 −1.02 0.3 0.25 0.73 0.4 0.48 0.87 0.33 −1.89 −0.53
25 43.003 36.876 −0.08 −1.47 −0.46 −0.28 0.23 0.72 0.46 0.2 0.69 0.53 −1.43 −1.01
26 42.823 37.199 0.04 −1.32 −1.43 0.26 0.66 1.02 0.61 −0.67 0.18 −0.63 −0.96 −0.5
27 42.659 37.16 0.06 −1.17 −1.38 −0.1 0.28 0.5 0.48 0.26 0.44 0.27 −1.61 −0.96
28 43.013 37.184 −0.26 −1.57 −1.6 −0.45 0.3 0.7 0.23 0.32 0.75 0.53 −0.91 −0.65
29 43.441 37.229 −0.61 −1.28 −1.34 −1.01 0.4 0.16 0.24 0.38 0.59 0.55 −1.18 −0.15
30 43.143 36.906 −0.38 −1.53 −0.28 0.07 0.25 0.49 0.37 −0.03 0.76 0.18 −0.91 −1.13
31 43.093 37.035 −0.3 −1.87 −1.08 −0.24 0.2 0.54 0.3 0.01 0.73 0.33 −1.11 −0.58
32 43.649 37.059 −0.71 −1.47 −1.44 0 0.55 0.4 0.64 −0.11 0.71 0.32 −0.69 −0.75
33 43.893 36.741 0.72 −1.26 −0.74 −0.15 0.23 0.52 0.36 0.25 0.5 0.25 −1.03 −1.39
34 43.487 37.093 0.06 −1.4 −0.8 −0.45 0.5 0.23 −0.07 −0.15 0.32 0.67 −0.99 −1.03
35 43.35 37.05 −0.73 −1.83 −1.14 0.25 0.54 0.28 0.09 0.13 0.57 0.19 −0.96 −0.89
36 43.269 37.115 −0.64 −1.34 −1.29 −0.21 0.78 0.25 0.1 0.06 0.93 0.51 −1.1 −0.93
37 43.589 36.508 0.25 −0.71 −0.67 −0.49 −0.31 0.79 0.75 0.67 1.0 0.33 −1.23 −1.23
38 43.598 36.701 −0.06 −1.11 −0.93 0.04 0.3 0.57 0.55 0.44 0.89 0.19 −1.4 −1.46
39 45.436 35.557 1.28 −1.78 −0.83 −0.21 0.71 1.0 0.92 0.28 0.6 0.11 −0.92 −0.66
40 45.14 35.589 0.7 −1.28 −0.64 0.05 0.4 0.69 0.5 0.35 0.41 0.17 −1.59 −0.91
41 45.974 35.186 1.62 −2.16 −1.38 −1.01 1.08 0.76 1.46 0.96 1.17 0.32 −2.14 −0.77
42 45.941 35.62 −0.13 −1.68 −1.74 −0.65 0.72 1.02 0.64 0.3 0.69 0.41 −1.19 −0.76
43 45.575 35.72 0.81 −1.28 −1.1 −0.4 0.35 0.46 0.58 0.22 0.42 −0.03 −1.15 −0.78
44 44.953 35.954 1.71 −1.28 −0.83 −0.41 0.65 0.76 1.17 0.98 0.41 0.22 −1.85 −1.38
45 45.133 36.176 0.01 −1.68 −1.37 −0.48 0.91 1.23 1.05 0.15 0.13 −0.43 −1.19 −0.47
46 44.886 36.239 0.99 −1.35 −1.05 −0.24 0.72 0.78 0.87 0.49 0.15 0.48 −1.44 −1.06
47 45.853 35.344 1.59 −1.26 −1.27 −0.83 0.81 0.47 0.48 −0.07 0.81 0.12 −1.47 −1.0
48 45.39 35.309 0.59 −1.15 −0.86 −0.33 0.43 0.48 0.37 0.28 0.46 0.1 −2.25 −0.93
49 45.587 35.425 1.55 −1.49 −0.5 −0.46 0.74 0.42 0.34 0.02 0.32 0.02 −1.74 −0.92
50 45.705 35.385 0.79 −1.29 −0.9 −0.68 0.5 0.22 0.19 0.09 0.8 0.08 −1.27 −0.81
51 46.116 35.225 0.95 −1.42 −1.46 −0.61 0.65 0.58 0.57 0.38 −0.69 0.06 −1.1 −0.64
52 45.411 35.901 1.28 −1.23 −0.86 −0.86 0.72 0.69 0.9 0.38 −0.49 0.23 −1.61 −1.14
53 44.787 36.21 0.62 −1.45 −1.15 −1.0 1.13 0.84 0.59 0.56 0.42 −0.2 −1.62 −0.78
54 45.686 35.116 0.25 −0.86 −1.12 0.01 0.54 0.72 0.77 0.6 −0.03 −0.55 −1.66 −0.88
55 44.833 35.533 0.78 −0.06 0.1 0.16 0.96 −0.16 −0.17 0.2 −0.03 −0.53 −2.09 −0.73
56 44.897 35.748 0.45 −0.73 −0.92 −0.28 0.6 0.99 1.01 0.76 0.45 −0.22 −1.83 −1.09
57 45.03 36.066 1.29 −1.24 −1.04 −0.29 0.86 0.64 0.94 0.84 0.43 0.27 −1.98 −1.02
58 45.183 35.286 0.62 −0.81 −0.85 −0.28 0.61 0.48 0.57 0.18 1.24 1.09 −1.97 −1.12
59 45.509 34.823 0.66 −0.48 −0.54 0.35 0.7 0.22 −0.04 0.2 −0.67 −0.51 −1.67 −1.07
60 44.966 34.683 0.91 −0.68 −0.56 0.15 0.17 −0.75 −1.15 −0.38 −0.1 −0.22 −0.56 −0.19
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Table A3. Cont.

Station
No.

Long- Lat-
2009–
2010

2010–
2011

2011–
2012

2012–
2013

2013–
2014

2014–
2015

2015–
2016

2016–
2017

2017–
2018

2018–
2019

2019–
2020

2020–
2021

1 44.009 36.191 0.25 −0.09 −1.05 0.65 −0.35 0.02 0.56 −0.28 0.25 1.8 0.59 −1.3
2 44.028 36.001 0.22 −0.73 −1.12 0.62 0.12 0.4 0.85 0.06 0.38 1.9 1.03 −1.06
3 43.674 36.273 −0.3 −0.03 −0.5 0.82 −0.1 0.36 0.64 −0.38 0.03 2.19 1.0 −0.76
4 44.14 36.154 −0.2 −0.25 −0.51 0.88 0.02 0.56 0.64 −0.31 0.46 1.79 0.64 −0.66
5 44.365 36.551 0.3 −0.4 −0.43 0.8 −0.64 0.5 0.88 −0.19 0.29 1.65 0.76 −0.65
6 44.561 36.638 −0.01 −0.56 −0.48 0.53 −0.54 0.79 0.95 0.09 0.39 1.17 0.69 −0.32
7 43.985 36.209 0.31 −0.21 −0.85 1.42 −0.34 0.07 0.77 −0.56 −0.01 1.71 0.4 −1.24
8 44.404 36.599 0.23 −0.57 −0.61 0.92 −0.22 0.37 0.95 −0.01 0.46 1.54 0.5 −0.52
9 44.889 36.637 0.08 0.26 −0.27 1.09 −0.37 0.79 1.2 −0.38 0.45 1.25 0.43 −0.61

10 44.671 36.797 −0.12 0.01 −0.31 0.57 −1.18 0.31 1.29 0.44 0.39 1.3 0.2 −0.68
11 44.525 36.612 −0.27 −0.5 −0.99 0.97 −0.93 0.55 1.26 −0.27 0.17 1.27 0.4 −1.08
12 44.306 36.838 0.59 0.21 0.05 1.46 −0.32 0.27 1.33 −0.04 −0.25 1.49 0.23 −0.7
13 43.805 35.873 0.03 −0.5 −0.8 0.98 0.0 0.28 0.41 0.03 0.21 2.09 1.05 −0.8
14 43.481 36.045 −0.21 0.08 −0.78 0.37 0.41 0.06 0.56 0.18 0.2 1.82 1.07 −0.38
15 44.633 36.627 −0.41 −0.36 −0.8 0.47 −0.73 0.72 0.72 −0.4 0.16 0.9 0.24 −0.84
16 44.16 36.339 0.02 −0.3 −0.38 1.06 0.17 0.85 0.98 −0.11 0.64 1.7 0.68 −0.79
17 43.583 35.783 −0.26 −0.15 −1.05 0.6 −0.23 −0.03 0.32 −0.24 0.13 1.89 1.14 −0.8
18 44.648 36.099 0.76 0.09 0.05 0.53 −0.09 0.41 1.18 −0.23 0.5 1.95 0.82 −0.94
19 44.586 35.887 0.51 0.01 −0.33 0.72 0.14 0.47 1.26 −0.16 0.65 1.6 0.8 −1.35
20 43.847 36.04 0.12 −0.28 −1.17 0.36 −0.22 0.21 0.68 0.08 0.36 2.16 0.76 −1.06
21 42.979 36.868 0.43 −0.12 −1.03 1.21 0.68 0.27 0.39 −0.44 −0.04 1.96 0.87 −1.06
22 42.854 36.873 0.39 −0.1.0 −1.17 0.77 0.38 0.36 0.2 −0.35 −0.04 2.09 1.13 −1.23
23 42.682 37.144 0.44 0.35 −0.88 0.56 −0.38 0.42 1.18 −0.52 −0.3 2.26 0.51 −1.22
24 42.722 36.959 0.42 −0.23 −1.36 0.36 −0.11 0.11 0.53 −0.11 0.2 2.15 0.7 −1.45
25 43.003 36.876 0.6 −0.08 −1.07 1.28 0.63 0.19 0.25 −0.57 −0.03 2.03 0.88 −1.22
26 42.823 37.199 0.48 0.71 −0.2 0.99 0.68 −0.17 0.17 −0.65 −0.94 2.23 0.91 −0.57
27 42.659 37.16 0.45 0.41 −0.79 0.44 0.48 0.46 1.47 −0.52 −0.34 2.33 0.5 −1.36
28 43.013 37.184 0.51 0.14 −0.68 0.63 0.15 0.33 0.58 0.14 0.02 2.23 0.64 −0.68
29 43.441 37.229 0.68 0.27 −1.0 1.26 0.08 0.29 0.84 −0.05 0.52 1.64 0.58 0.07
30 43.143 36.906 0.43 −0.14 −1.21 1.14 0.29 0.47 0.58 −0.28 0.03 2.04 1.05 −0.72
31 43.093 37.035 0.61 0.06 −1.02 1.02 0.43 0.9 0.47 −0.17 −0.23 2.06 0.87 −0.54
32 43.649 37.059 0.28 0.47 −0.75 0.9 −0.15 0.23 0.82 −0.18 0.26 1.94 0.9 −0.44
33 43.893 36.741 0.7 0.44 −1.26 1.01 0.13 0.12 0.44 −0.59 0.04 2.13 0.67 −0.84
34 43.487 37.093 0.5 0.3 −0.68 1.28 −0.01 0.46 0.76 −0.34 0.18 1.97 0.79 −0.53
35 43.35 37.05 0.37 0.15 −0.71 1.2 0.15 0.53 0.93 0.03 0.45 1.8 0.74 −0.42
36 43.269 37.115 0.66 0.4 −0.97 1.02 0.13 0.32 0.92 −0.33 0.19 1.95 0.55 −0.59
37 43.589 36.508 0.22 0.44 −1.2 0.57 −0.38 0.38 0.3 −0.38 0.17 2.22 0.79 −1.0
38 43.598 36.701 0.47 0.46 −0.9 0.71 0.09 0.47 0.37 −0.52 0.22 2.12 0.7 −0.86
39 45.436 35.557 0.76 −0.04 −0.12 −0.62 −0.58 −1.01 0.65 −0.1 0.24 1.72 0.59 −0.88
40 45.14 35.589 0.58 −0.32 −0.5 −0.23 −0.06 0.07 0.69 −0.14 0.38 1.33 1.42 0.19
41 45.974 35.186 1.2 0.03 −0.16 0.26 −0.78 −0.37 0.84 −0.65 −0.48 1.98 −0.43 −2.51
42 45.941 35.62 0.65 −0.03 0.17 0.26 −0.07 −0.07 1.02 −0.09 0.42 1.73 0.2 −0.64
43 45.575 35.72 0.75 −0.08 −0.47 −0.06 −0.08 0.23 0.68 0.01 0.44 1.32 1.07 0.13
44 44.953 35.954 0.05 −0.35 −0.61 0 −0.47 0.17 0.94 −0.15 0.42 1.66 0.03 −1.39
45 45.133 36.176 0.34 0.03 −0.09 0.47 0.11 −0.04 1.01 −0.31 0.59 1.78 0.29 −0.79
46 44.886 36.239 0.41 −0.09 −0.49 0.37 −0.35 −0.06 0.64 −0.48 0.41 1.96 0.61 −0.99
47 45.853 35.344 0.7 −0.03 −0.46 0.08 −0.24 −0.04 1.3 −0.03 0.15 2.1 −0.09 −1.19
48 45.39 35.309 0.4 −0.19 −0.14 0.02 0.24 0.1 1.32 0.25 0.66 1.67 0.88 −0.51
49 45.587 35.425 0.74 0.03 −0.39 0.09 −0.1 −0.04 0.97 −0.24 0.42 1.84 0.54 −0.99
50 45.705 35.385 0.76 0.13 −0.39 0.06 −0.08 −0.08 0.82 −0.07 0.85 1.9 0.91 −0.54
51 46.116 35.225 0.8 −0.02 −0.15 0.23 −0.04 0.12 0.99 0.06 0.19 1.63 0.93 −0.4
52 45.411 35.901 0.69 −0.11 −0.13 0.26 −0.34 0.19 0.9 0.01 0.43 1.66 0.37 −0.84
53 44.787 36.21 0.86 0.3 −0.53 0.35 −0.22 −0.15 1.22 −0.25 0.1 2.23 0.1 −1.48
54 45.686 35.116 0.5 −0.25 −1.2 0.56 0.37 0.29 1.12 0.07 0.52 1.72 0.69 −0.66
55 44.833 35.533 0.66 −0.43 −1.46 0.62 0.34 −0.1 1.68 −0.21 −0.18 2.29 0.53 −1.91
56 44.897 35.748 0.49 −0.08 −1.11 0.04 −0.13 0.19 0.86 −0.11 0.53 1.69 0.71 −0.93
57 45.03 36.066 0.64 −0.18 −0.47 −0.03 −0.24 −0.25 0.96 −0.51 0.41 1.65 0.34 −1.29
58 45.183 35.286 0.88 −0.78 −1.12 −0.1 0.06 0.01 1.15 −0.26 0.12 2.13 0.12 −1.64
59 45.509 34.823 0.8 −0.06 −1.04 0.51 0.33 0.02 1.98 −0.32 0.22 2.29 −0.07 −1.08
60 44.966 34.683 1.24 −0.31 −1.05 −0.04 0.65 −0.28 2.82 −0.23 −0.04 1.85 0.47 −1.39
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Table A4. Google Earth Engine JavaScript for estimating MSAVI2.

/** Kawa Hakzi 2022 kawahakzy@gmail.com MSAVI2 */
// Assign a common name to the sensor-specific bands.
var LC9_BANDS = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10']; //Landsat 8
var LC8_BANDS = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B10']; //Landsat 8
var LC7_BANDS = ['B1', 'B2', 'B3', 'B4', 'B5', 'B7', 'B6_VCID_2']; //Landsat 7
var LC5_BANDS = ['B1', 'B2', 'B3', 'B4', 'B5', 'B7', 'B6']; //Llandsat 5
var STD_NAMES = ['blue', 'green', 'red', 'nir', 'swir1', 'swir2', 'temp'];
var l9 = ee.ImageCollection('LANDSAT/LC09/C02/T1_TOA').select(LC9_BANDS,
STD_NAMES)// Landsat 8
//Bands are not arranged yet
var l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA').select(LC8_BANDS,
STD_NAMES)// Landsat 8
//print(l8, 'Landsat 8')
var l7 = ee.ImageCollection('LANDSAT/LE07/C01/T1_TOA').select(LC7_BANDS, STD_NAMES)
//Landsat 7
//print(l7, 'Landsat 7')
var l5 = ee.ImageCollection('LANDSAT/LT05/C01/T1_TOA').select(LC5_BANDS, STD_NAMES)
//Landsat 5
//print(l5, 'Landsat 5')
var images = ee.ImageCollection(l5.merge(l7).merge(l8));//.merge(l9)
var table = ee.FeatureCollection("projects/ee-kawa/assets/kurdistan"),
Map.addLayer(table);
//var images = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA')
.filterBounds(table)
.filterDate('2019-04-01', '2019-05-01')
.select('B4', 'B5', 'B2', 'B3');
print(images.size());
var nir = images.select('B5');
var red = images.select('B4');
var ndvi = nir;
var clipnir = nir.filterBounds(table).mosaic().clip(table);
var clipred = red.filterBounds(table).mosaic().clip(table);
var msavi2imgmosaic = clipnir.multiply(2).add(1)
.subtract(clipnir.multiply(2).add(1).pow(2)
.subtract(clipnir.subtract(clipred).multiply(8)).sqrt()
).divide(2).rename("MSAVI2");
Map.addLayer(msavi2imgmosaic);
Map.centerObject(table, 7);
Export.image.toDrive({
image: msavi2imgmosaic,
description: 'imageToDrive_year()',
crs: 'EPSG:4326',
scale: 30,
maxPixels:200000000,
region: table )};
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Figure A1. Land use and land cover classes in the KRI.

 

Figure A2. The coefficient of variation (CV%) map of annual precipitation for 60 selected meteorolog-
ical stations across the KRI.
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Abstract: Drought is a common event in Iraq’s climate, and the country has severely suffered from
drought episodes in the last two decades. The Kurdistan Region of Iraq (KRI) is geographically
situated in the semi-arid zone in Iraq, whose water resources have been limited in the last decades
and mostly shared with other neighboring countries. To analyze drought impacts on the vegetation
cover and the land surface temperature in the KRI for a span of 20 years from 1998 to 2017, remote
sensing (RS) and Geographical Information Systems (GIS) have been adopted in this study. For this
study, 120 Landsat satellite images were downloaded and utilized, whereas six images covering the
entire study area were used for each year of the study period. The Normalized Difference Vegetation
Index (NDVI) and Land Surfaces Temperature Index (LST) were applied to produce multi-temporal
classified drought maps. Changes in the area and values of the classified NDVI and LST were
calculated and mapped. Mann–Kendall and Sen’s Slope statistical tests were used to assess the
variability of drought indices variation in 60 locations in the study area. The results revealed increases
in severity and frequency of drought over the study period, particularly in the years 2000 and 2008,
which were characterized by an increase in land surface temperatures, a decrease in vegetation area
cover, and a lack of precipitation averages. Climate conditions affect the increase/decrease of the
vegetated cover area, and geographical variability is also one factor that significantly influences the
distribution of vegetation. It can be concluded that the southeast and southwestern parts of the KRI
were subjected to the most severe droughts over the past 20 years.

Keywords: drought; KRI; NDVI; LST

1. Introduction

Among all natural disasters, drought can be considered the most complex due to the
difficulties in identifying its start, end, intensity, and extent [1]. Droughts cause enormous
sufferings for the society and the environment. Consequently, it is important to learn
drought’s spatial-temporal pattern [2]. Several environmental factors play significant roles
in the occurrence of droughts, high temperature and winds, relatively low humidity, timing,
characteristics, and patterns of rains—especially during crop growing seasons, intensity
and duration of rainfall, and onset and termination [3]. Although drought has no universal
definition, it can be simply defined as the deficit in precipitation and terrestrial water
storage (the sum of surface and subsurface water), which adversely impacts agriculture,
the environment, and the economy [4,5]. Drought has a significant adverse impact on
the socio-economic, agricultural, and environmental sectors [2]. During drought periods,
severe water stress can occur in a region due to lack of precipitation, water resources
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overexploitation, high rates of evapotranspiration, and/or an amalgamation of those
factors [6,7].

Remote sensing plays a vital role in detecting, mapping, assessing, and monitoring the
earth’s resources and natural hazards at spatiotemporal scales [2]. Various techniques and
indices have been developed to address and manage drought status. The leading cause of
drought is the lack of rainfall averages below normal levels; however, human and social
activities also lead to drought [7,8]. The occurrence of high temperatures and low moisture
levels is often related to drought events, which have become quite frequent in recent years;
thus, it is predominantly associated with climate change [9]. The influence of drought
might also vary geographically due to variability in precipitation patterns and human
resilience [7]. The National Oceanic and Atmospheric Administration (NOAA) has defined
the drought background and its effect on Iraqi lands as the decline in rainfall averages for
long periods, for a season or more, which leads to water stress-causing negative effects
on the water resources and consequently adverse impacts on the plants, animals, and
people [10]. In the series of drought development, there are two phases. The first is the
meteorological drought that occurs when there is an extended decrease in rainfall rates
compared to the normal rates. Secondly, the lack of rainfall is one reason that leads to a
decrease in soil moisture. Thus, the lack of suitable conditions for plant growth and the
dwindling of vegetation cover is called agricultural drought [11]. The drought situation in
Iraq has been stated by several researchers [12]. In recent years, the annual precipitation
averages have been declining due to global warming [13]. The Iraqi report 2009 issued by
the Coordination of Humanitarian Affairs, UNAMI, and IAU office, considered the most
important reasons for the successive droughts events in Iraq are the decrease in rainfall
rates and the water discharge rates decline of the main rivers in Iraq. Consequently, these
lead to reduced groundwater levels, the river flows, and draining water sources (springs,
deep, and shallow wells) [14]. On the other side, in a span of ten years, from 2003 to 2012,
Iraq has suffered several severe droughts, which were results from different reasons, such
as low average precipitations, higher temperatures rates, lower water income from the
upstream countries, and low efficiency in water utilization [15,16].

Iraq’s location in arid and semi-arid regions led to a high frequency of droughts,
especially during the last two decades [17]. Low precipitation and its fluctuation during
the season are normal in most North African and West Asian countries. This puts Iraq,
among other countries, in a place where serious actions on drought management must be
adopted [18]. Moreover, in 1999 a severe drought occurred in Erbil and Dohuk, where it
also suffered from moderate drought in 1986–1987, 1989–1991, 1999, and 2008 [11,19]. The
annual precipitation average in the KRI ranges is from less than 100 mm in the south to
1200 mm in the northeastern mountainous region [14]. From 1999 to 2002, Erbil suffered
from a decrease in rainfall averages and drought suffering. It also went through another
drought period in 2007–2011, indicating that Erbil is an area prone to drought [20]. More-
over, Sulaymaniyah was subjected to severe droughts from 1994 to 1998 [20,21]. On the
other hand, precipitations were significantly decreased in 2008, then a drought took place
in the governorate, and similar observations are also noted in the Duhok governorate [12].

Although a few methods were developed in remote sensing for drought monitoring,
some others further considered the influence of drought on vegetation. The Normalized
Difference Vegetation Index (NDVI) is one of the earliest vegetation indices used to monitor
drought; it has been used since the 1980s [18,22,23]. Different studies have been conducted
to explore spatiotemporal patterns of drought; however, most of those studies focused on
the methods of drought detecting and evaluating the agricultural drought’s relationships
with each rainfall average and the crop yield using the Landsat time-series dataset [18].

In Iraq, including the Kurdistan region, drought is a common event causing significant
agro-economic losses, but there is a significant lack of detailed information on the spa-
tiotemporal patterns of drought severity in the KRI, for which it can be employed to take
extra precautions for mitigating its negative impacts [20,21]. Therefore, a detailed analysis
of seasonal drought dynamics is required to identify spatiotemporal drought patterns at a
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meteorological scale and vegetative spheres [24]. Time-series patterns of droughts in the
KRI have been mapped using remote sensing (RS) and Geographic Information Systems
(GIS) using various drought indices. Since aquifer recharge, agricultural activities, and
ecological changes are affected by rainfall, the focus was on drought during the agriculture
growing season [25].

The NDVI, the land surface temperature (LST), and the LST/NDVI slope can have an
essential role in monitoring drought, low rainfall, and tracking crop growth, crop yields,
weather impact, and the environmental and economic effects [26]. For vegetated regions,
the fluctuation in weather-related NDVI cannot be detected easily, as the integrated area
of the weather component is smaller than the ecosystem component [7,27]. Hence, it
is advised to separate weather components from an ecosystem component when using
NDVI to analyze weather’s impact on vegetation [28]. Drought analysis requires both
drought-causative and responsive parameters, such as rainfall, soil moisture, potential
evapotranspiration, vegetation condition, groundwater, and surface water levels. Since
drought measuring parameters are not linearly correlated, the correlation among drought
indices is usually weak, and typically, they are not predicting similar patterns [29,30].

Using NDVI data, the changes in vegetation cover in the study area were presented,
and the trend in drought occurrences can be studied. The NDVI performance is not
without errors, such as errors during the growing season and saturation effect on dense
vegetation [31]. Therefore, the results have to be validated using other parameters to
increase the accuracy [32]. The LST is a good index of the earth’s surface’s energy balance,
providing important information about the surface’s physical properties and climate [28].
It was found that there is a negative correlation between LST and NDVI, reported by [31],
as an increase of LST was observed at several scales due to changes in vegetation cover
and soil moisture, which indicates that the surface temperature can rise rapidly with water
stress. Thus, the ratio of LST/NDVI increases during times of drought [31].

This study aims to analyze a spatial pattern for drought severity in the KRI to in-
vestigate the spatiotemporal drought characteristics to focus on the agricultural drought
assessment by analyzing vegetation stress caused by the lower precipitation. Overall, there
are two reasons for selecting the KRI as the research area. First, KRI is prone to drought
because of its geographical location and climate. Thus, mastering the mapping and classifi-
cation of drought characteristics is conducive to forecasting drought in the future. Second,
the abovementioned three areas in KRI vary significantly in terms of their topography,
NDVI, LST, and precipitation distribution, and thus, the drought characteristics differ
considerably among those three areas using Landsat time-series image-based NDVI and
LST indices for a span of twenty years from 1998 to 2017.

2. Materials and Methods

2.1. Study Area

The KRI territories were selected as the study area in this research, particularly in Erbil,
Sulaimaniyah, and Duhok governorates. The study area is located in the northern part of
Iraq. Syria borders the study area from the west, Iran from the east, and Turkey from the
north [25]. The KRI is characterized by a Mediterranean climate, which is cold and rainy in
winter and hot and dry in summer [33]. It is situated between latitudes 34◦ and 37◦ and
longitudes 41◦ and 46◦, covering an extent of about 53,000 km2, which constitutes a large
portion of the entire Iraq territory [34]. It has a diverse physical environment, whereas
the elevation ranges from 88 m in its southern parts to more than 3603 m in the north and
northeast parts (Figures 1 and 2).

KRI’s climate is characterized by high precipitation rates in the northern and moun-
tainous parts, while dry weather is governed in the plains in the southern parts [35]. In
general, the precipitation starts from October to May, with 350 mm in the southwestern
parts to more than 1200 mm in northern and northeastern parts [36]. Figure 1B and Table 1
explain the data collected from 60 meteorological stations for three different zones in the
KRI: assured rainfall zone (>500 mm), semi-assured rainfall zone (350–500 mm), and unas-
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sured rainfall zone (<350 mm) [20]. The rain-fed lands represent approximately 37.2% of
the total agricultural lands in the KRI [19]. The mean daily temperature varies from 5 ◦C in
winter to 30 ◦C in summer; however, this rises to 50 ◦C in the region’s southern parts [35].
The total area of forests and pastures in the KRI is 6486.9 and 8397.2 km2, respectively,
distributed as follows: Erbil 29%, Duhok 28.7%, and Sulaimaniyah 42.3% [25,37].

 

Figure 1. (A) Location map of the study area (B); The meteorological stations map and the spatial
distribution of annual rainfall (mm/year) in the KRI in 1998–2017 (C); Digital Elevation Model (DEM).
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Table 1. The (AP) annual precipitation (mm), elevation, and coordinates of the 60 (MT) meteorological
stations in the KRI used in this study.

MT
No.

Station
Name

Lat Long
DEM
(m)

AP
(mm)

MT No.
Station
Name

Lat Long
DEM
(m)

AP
(mm)

1 (ER) 36.19111 44.00917 412.7 326.2 31 Mangish 37.03513 43.09252 1030.2 645.0
2 Qushtapa 36.00085 44.02848 390.8 280.6 32 Deraluke 37.05859 43.64925 706.8 759.5
3 Khabat 36.27278 43.67389 285.9 290.9 33 Akre 36.74139 43.89333 683.1 600.0
4 Bnaslawa 36.1538 44.13999 540.7 320.2 34 Amadia 37.0925 43.48722 1148.5 745.7
5 Harir 36.5511 44.3648 837.3 552.2 35 Sarsink 37.05028 43.35028 957.1 841.6
6 Soran 36.63846 44.56136 701.6 625.7 36 Bamarni 37.11512 43.2693 1203.0 722.3
7 Shaqlawa 36.19111 44.00917 966.5 750.0 37 Barda 36.50822 43.58941 363.6 391.4
8 Khalifan 36.5986 44.4038 697.1 670.8 38 Qasrok 36.7009 43.59795 414.8 500.5
9 Choman 36.6374 44.8893 1178.4 732.2 39 (SU) 35.55722 45.43556 870.8 595.0

10 Sidakan 36.79736 44.6714 1011.3 822.5 40 Bazian 35.58902 45.13952 943.7 596.1
11 Rwanduz 36.61194 44.52472 801.6 712.3 41 Halabja 35.18639 45.97389 716.6 648.8
12 Mergasur 36.8382 44.3062 1108.9 1356.0 42 Penjwen 35.61972 45.94139 1442.9 968.7
13 Dibaga 35.87303 43.80496 328.3 246.2 43 Chwarta 35.71972 45.57472 1011.6 694.8
14 Gwer 36.04486 43.4808 309.7 235.3 44 Dukan 35.95417 44.95278 700.4 576.4
15 Barzewa 36.6268 44.6333 798.3 721.1 45 Qaladiza 36.1755 45.1333 628.2 681.9
16 Bastora 36.33888 44.16049 630.0 412.4 46 Rania 36.2391 44.8855 607.8 713.9
17 Makhmoor 35.7833 43.5833 287.7 228.2 47 S-sadiq 35.34369 45.85344 544.1 550.2
18 Koya 36.09944 44.64806 724.5 472.2 48 Qaradagh 35.30933 45.38961 887.9 721.7
19 Taqtaq 35.88737 44.58561 397.5 371.1 49 Arbat 35.42462 45.58683 701.6 492.5
20 Shamamk 36.0400 43.84669 310.6 276.2 50 Kani 35.38498 45.70458 685.8 498.7
21 (DU) 36.8679 42.97900 588.3 495.1 51 Byara 35.22507 46.11625 1333.5 656.3
22 Semel 36.87333 42.85400 491.6 414.4 52 Mawat 35.90074 45.4105 1063.8 712.0
23 Zakho 37.14361 42.68191 501.4 528.7 53 Darband 35.11626 45.68625 534.6 557.9
24 Batel 36.95946 42.72165 531.0 435.5 54 Chamcha 35.53333 44.83333 726.6 427.0
25 Dam-DU 36.87576 43.0029 605.6 514.2 55 Kalar 34.6411 45.32927 243.2 304.7
26 Dar. Hajam 37.19878 42.82273 649.8 509.5 56 Agjalar 35.74827 44.89741 702.3 390.0
27 zaxo-farh 37.15991 42.65873 447.1 525.2 57 Bngrd 36.06601 45.02989 841.2 666.7
28 Batifa 37.18404 37.18404 930.2 670.3 58 Sangaw 35.28623 45.1825 704.4 470.8
29 kanimasi 37.22906 37.22906 1332.3 736.2 59 Bawanor 34.82332 45.5087 358.4 364.3
30 Zaweta 36.90583 36.90583 1006.4 723.4 60 Kifri 34.68333 44.96639 238.7 279.2

The study area included Duhok (DU), Erbil (ER), and Sulaimaniyah (SU) governorates
of the KRI. It is characterized by significant seasonal variations in precipitation, temperature,
potential evaporation, wet winters, and dry summers (Figure 2). Most of the 586 mm
precipitation amounts fall from October to May. During the study period between 1998 and
2017, the highest average monthly rainfall was 134.3 mm, in January. The highest average
monthly evaporation rate was in July, with 250 mm in ER. The highest average monthly
temperature recorded in July was 41.21 ◦C in Erbil, while the lowest monthly temperature
was in January that reached 2.13 ◦C in SU.
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Figure 2. Monthly precipitation, relative humidity, potential evaporation, maximum, minimum, and
mean temperature at Duhok (DU), Erbil (ER), Sulaimaniyah (SU), and surrounding areas recorded
between 1998 and 2017.

2.2. Data
2.2.1. Landsat Datasets

For this study, 120 Landsat images were downloaded from the U.S. Geological Survey
website (https://glovis.usgs.gov/, accessed on 5 January 2022). The images were acquired
in April and May of 1997 to 2017, as the highest level of vegetation growth occurs every
year in the two months in the study area. The remotely sensed datasets were a collection of
three different sensors: L5 Thematic Mapper (TM), L7 Enhanced Thematic Mapper Plus
(ETM+), and L8 Operational Land Imager (OLI) with a spatial resolution of 30 m. They
were provided in geo-referenced format, cloudless, and free images type with (Path/row
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170/34, 170/35, 169/35, 169/34, 168/35, 168/36). The characteristics of the images used in
this study are provided in Supplementary Materials Table S1.

2.2.2. Landsat Images Preprocessing

The downloaded images were corrected by calibrating Digital Number (DN) into
radiance by using the information from their metadata files. Then, the resultant images
were converted into surface reflectance using Envi ver. 5.3. The images were then geo-
referenced to the Universal Transverse Mercator (UTM), Zone 38 North with a World
Geodetic System (WGS) 84 datum. To get good alignment of pixels in the respective images,
an image-to-image registration was performed with a Root Mean Square Error (RMSE) of
0.4 pixels [38].

Six scenes of Landsat images were combined to create a mosaic covering the entire
study area for each of the twenty years. The produced mosaic represents and covers the
entire land in the KRI and the surrounding areas. The infrared thermal band (6th) of
TM/ETM+ and Band 10 of OLI images were utilized for retrieving the LST images, while
near-infrared (NIR) and red bands were also applied to calculate the NDVI images [39].

2.2.3. Image Processing
NDVI

The near-infrared (NIR) and red bands were also applied to calculate the NDVI
images [39]. The NDVI index is calculated with the aid of the red (Red) and the near-
infrared (NIR) bands of the Landsat images, using Formula (1), as follows:

NDVI = (NIR − Red)/(NIR + Red) (1)

Theoretically, the NDVI values ranged between −1.0 and +1.0. However, the typical
range of NDVI gauged from vegetation and other earth surface materials is between
approximately −0.1 (NIR less than Red) for non-vegetated surfaces and as high as 0.9
for dense vegetative cover. The NDVI values increase with increasing green biomass,
positive seasonal changes, and favorable factors (e.g., abundant precipitation) [40,41]. The
NDVI-based vegetation density can be classified into three classes based on NDVI values,
as shown in Table 2 The USGS remote sensing phenology states the following: Areas
of barren rock, sand, or snow usually show very low NDVI values (for example, 0.1 or
less) [42]. Sparse vegetation, such as shrubs and grasslands, or senescing crops may result
in moderate NDVI values (approximately 0.2 to 0.5). High NDVI values (approximately 0.6
to 0.9) correspond to dense vegetation, such as that found in temperate and tropical forests
or crops at their peak growth stage [41–43].

Table 2. Class Classification Standards for Description of NDVI Vegetation Cover.

Class Class Classification Criterion

Bare soil and/or water (no vegetation) NDVI ≤ 0
Very Low NDVI ≤0.2

Low to Moderately Low NDVI 0.2 < NDVI ≤ 0.6
Moderately High to High NDVI 0.6 < NDVI ≤ 1

LST

The LST fraction images were produced using the Landsat thermal bands, the sixth
bands of the L5 TM, L7 ETM+, and the 10–11 of L8 TIRS. Brightness temperature can be
calculated using Plank’s law using Top of the Atmosphere radiances obtained from TIR
sensors [44]. Firstly, we calculated the changes in the five classes of droughts for the study
area within 20 years (Figure 3). We then compared the changes among the five drought
categories and selected the one which shows the most significant change than the other
four categories as the dominating one. The fraction of lands dominated by each drought
category is then counted for each period to show the temporal evolutions.
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Equations used for converting digital numbers into land surface temperature are
presented as follows:

Conversion of thermal DN values into satellite brightness temperature

TB = K2/ln((K1/Lλ) + 1) (2)

One shows the largest change compared to the other four categories. The fraction of
lands dominated by each drought category is then counted for each period to show the
temporal evolution.

K1 = Band-specific thermal conversion constant (in watts/m2 × srad × μm)
K2 = Band-specific thermal conversion constant (in kelvin)
Lλ is the spectral radiance at the sensor’s aperture, measured in watts/(m2 × star ×

μm).
Calculation of the Land Surface Temperature in Kelvin

T = TB/[1 + (λ × TB/�) lnε] (3)

where λ = wavelength of emitted radiance; � = h × c/σ (1.438 × 10−2 m·K); h = Planck’s
constant (6.626 × 10−34 J·s); σ = Boltzmann constant (1.38 × 10−23 J/K); c = velocity of
light (2.998 × 10−8 m/s); ε = emissivity, which is given by the following [45]; ε = 1.009 +
0.047 ln(NDVI).

Conversion from Kelvin to Celsius

Tc = T − 273 (4)

T = land surface temperature in Kelvin
Tc = land surface temperature in Celsius [44].

 

Figure 3. Flowchart of the methodology adopted in this study.
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2.3. Statistical Analysis for Time Series
2.3.1. Trend Detection (Mann–Kendall Test)

The nonparametric Mann–Kendall test is commonly employed to detect monotonic
trends in time series of environmental data, climate, or hydrological data [46,47]. The
Mann–Kendall test is a statistical test widely used for trend analysis in climatological and
hydrological time series [48]. There are two advantages of using this test: first, it is a
nonparametric test and does not require data to be normally distributed. Second, the test
has low sensitivity to abrupt breaks due to inhomogeneous time series [49].

The computational procedure for the Mann–Kendall test considers the time series of
n data points and Ti and Tj as two subsets of data where i = 1, 2, 3, . . . , n − 1 and j = i +
1, i + 2, i + 3, . . . , n. The data values are evaluated as an ordered time series. Each data
value is compared with all subsequent data values [46,47]. If a data value from a later time
period is higher than a data value from an earlier time period, the statistic S is incremented
by 1. On the other hand, if the data value from a later time period is lower than a data
value sampled earlier, S is decremented by 1. The net result of all such increments and
decrements yields the final value of S [50].

The Mann–Kendall’s Statistic is computed as follows:

S =
n−1

∑
i=1

∑n
j=i+1 sign(Tj − Ti) (5)

where Tj and Ti are the annual maximum daily values in years j and i, j > i, respectively.
If n < 10, the value of |S| is compared directly to Mann–Kendall’s theoretical distribu-

tion of S derived, the two-tailed test is used. At a certain probability level, H0 is rejected in
favor of H1 if the absolute value of S equals or exceeds a specified value Sα/2, where Sα/2
is the smallest S, which has the probability less than α/2 to appear in the case of no trend.
A positive (negative) value of S indicates an upward (downward) trend. For n ≥ 10, the
statistic S is approximately normally distributed with the mean and variance as follows:
E(S) = 0. The variance (σ2) for the S statistic is defined by the following:

sign(Tj − Ti) =

⎧⎨
⎩

1 if Tj − Ti > 0
0 if Tj − Ti = 0
−1 if Tj − Ti < 0

(6)

σ2 =
n(n − 1)(2n + 5)− ∑ ti(i)(ti − 1)(2ti + 5)

18
(7)

Zs =

⎧⎨
⎩

s−1
σ for S > 0
0 for S = 0

s+1
σ for S < 0

(8)

In which ti denotes the number of ties to an extent i. The summation term in the
numerator is used only if the data series contains tied values. The standard test statistic Zs
is calculated as follows:

Test statistic Z is used as a measure of significance of trend. For example, if −1.96 < Z
< 1.96 = No trend, Z > 1.96 = Increase in trend, Z < −1.96 = Decrease in trend [51].

2.3.2. Magnitude of Trend (Sen’s Slope)

Sen’s slope estimator is a nonparametric, linear slope estimator that works most
efficiently on monotonic data. Different linear regression is not significantly affected by
gross data errors, outliers, or missing data [47]. Sen’s slope method is used to regulate the
scale of the trend line. According to Sen’s method, this test computes both the slope, i.e.,
the linear rate of change, and the intercept [51]. First, a set of linear slopes is calculated
as follows:

dk = Xi − Xi/j − i (9)
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For (1 ≤ i < j ≤ n), where d is the slope, X denotes the variable, n is the number of
data, and I and j are indices. Sen’s slope is then calculated as the median from all slopes:

yat = Xt − b × t (10)

b = Median dk. The intercepts are computed for each time step t as given by the following,
and the corresponding intercept is as well as the median of all intercepts. This function also
computes the Sen’s slope’s upper and lower confidence limits [47].

2.3.3. Pearson Correlation between Indices and Ecological Parameters

Correlation coefficients were applied for each of NDVI, LST and rainfall, elevation,
and latitude for 1998 through 2017. Using bivariate correlation analysis, the strength of the
statistical relationships among drought and the individual study variables were computed
using SPSS. The correlation matrix allowed us to find the important statistical relationships
between NDVI, LST, and the study variables, such as rainfall, elevation, and latitude. A
linear relationship between observed and simulated variables was tested by the Pearson
correlation coefficient. It has a value range from −1 to + 1 of which the signs indicate
the direction of the relationship, where the absolute value indicates the strength, whereas
larger absolute values indicate stronger positive or negative associations [52].

2.3.4. Root Mean Square Error (RMSE) and Coefficient of Residual Mass (CRM)

The (RMSE), also called Root Mean Square Deviation (RMSD), is commonly used to
quantify the differences between simulated and actual values, which are called residuals.
The RMSE estimates the data scattering to be around a 1:1 relationship, which indicates
how much the model under or overestimates the measurements. On the other side, the
(CRM) value indicates the model’s tendency to over or underestimate the measurements,
whereas positive values indicate that the model underestimates the measurements, while
negative values indicate an overestimation tendency. For an ideal prediction, RMSE and
CRM values should equal 0.0 [53–59].

The RMSE of a model prediction with respect to the estimated variable X model is
defined as the square root of the mean squared error:

RMAS =

√
∑n

i=1 (Xobs,i − Xmodel,i)
2

n
(11)

where Xobs is the observed value, and Xmodel is the modeled value at time/place i.

CMR =
∑N

i=1 Pi − ∑N
i=1 Oi

∑N
i=1 Oi

(12)

where Pi is the predicted, Oi is the observed, and (i = 1 to N).

3. Results

To better understand NDVI and LST patterns and their relationships, in this study, the
produced thematic images were imported into ArcGIS 10.4.1. The resultant maps presented
in the following pages show the spatial pattern of vegetation cover according to NDVI, LST,
and the spatial distribution of annual precipitation averages from 1998 to 2017, as shown in
Table 1.

3.1. NDVI

The NDVI has been widely used to examine the relationship between spectral vege-
tation variability and vegetation growth rate changes. This study’s results revealed that
NDVI values varied from the lowest value of 0.13 in 2008 to the highest value of 0.48 in
2014 (Table 3).
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Table 3 shows the variation in vegetation status in the KRI from 1998 to 2017. As
noted, significant decreases were observed in the area of vegetation in the KRI from 2000 to
2008 due to the extreme and severe years of drought that hit Iraq, which led to decreased
agricultural land area. The total vegetation area based on NDVI in 2000 and 2008 was 7225.1
(14.4%) and 20,609.9 km2 (41.0%), respectively. The vegetation cover has been shrunk by
39% and 13%, respectively, based on the average vegetation area (54%) over 20 years. This
decline can be mainly attributed to the severe drought episodes that hit Iraq, including
the KRI in 2000 and 2008, among other factors, in addition to a significant drop in rainfall
averages. On the other side, the highest NDVI-based vegetation area was recorded in
2016, 32,315.2 km2 (64.2%), representing an increase of 10% based on the vegetation cover
average. From the viewpoint of NDVI values, the lowest values were recorded in 2000, 2008,
and 2012 at 0.196, 0.131, and 0.202, respectively. Table 3 shows the area of the NDVI-based
vegetation density classes in KRI from 1998 to 2017. In class 1, the results revealed that the
largest class area was recorded in 2000 and 2008 by 6050.0 (83.7%) and 16,453.7 km2 (79.8%),
respectively; in addition, the lowest area from class 2 at values 0.2–0.6 were recorded in
2000 and 2008 at 1175.1 (16.3%) and 4156.1 km2 (20.2%), respectively.

The NDVI results are presented in Table 3 and Figure 4, which show the spatial
variation of the NDVI-based vegetation classes in the study area from 1998 to 2017. The
maps show the impact of drought on the vegetation density in the KRI, whereas it severely
impacted some parts of the southern KRI, while there was no impact (no drought) or a
slight drought in the northeast parts of the study area. The NDVI results showed that the
drought intensity in the KRI gradually increases toward the southwest parts. The drought
regions belonging to class 1 (values < 0.2) are a large and continuous distribution. Table 3
and Figure 4 display the actual drought status episodes in 2000, 2008, and 2012 in the
KRI. Precisely, the NDVI-based low-vegetation class increased in the three drought years
to be 6050.0 (83.7%), 16,453.7 (79.8%), and 14,024.1 km2 (53.1%) in 2000, 2008, and 2012,
respectively. The maps in Figure 4 disclose that the years 2000 and 2008 were the drier
years in the KRI, particularly in the southern parts.

Table 3. The max, min, mean, and std. dev. of NDVI values and the area of vegetative cover and the
NDVI-Based Vegetation Density Classes in KRI from 1997 to 2017.

Class 1 Class 2 Class 3

Values < 0.2 0.2 < Values ≤ 0.6 0.2 < Values < 1

Years Max. Min. Mean
Std.
Dev.

Very Low NDVI
Low to

Moderately Low
NDVI

Moderately High
to High NDVI

Total Vegetative Cover

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

(km2) (%) (±%)

Total
Study
Area
(km2)

1998 0.99 0.10 0.27 0.13 9890.0 37.5 16,075.4 60.9 417.8 1.6 26,383.2 52.4 −1.6 53,000
1999 0.98 0.10 0.23 0.10 12,881.7 46.1 14,994.2 53.7 70.2 0.3 27,946.0 55.5 1.5 53,000
2000 0.99 0.02 0.20 0.13 6050.0 83.7 1175.1 16.3 0 0.0 7225.1 14.4 −39 53,000
2001 0.73 0.03 0.22 0.13 14,859.6 50.0 14,707.5 49.5 169.3 0.6 29,736.4 59.1 5 53,000
2002 0.73 0.06 0.23 0.12 14,320.6 47.6 15,741.6 52.3 51.3 0.2 30,113.5 59.8 5.8 53,000
2003 0.72 0.05 0.24 0.12 12,635.4 43.6 16,319.1 56.3 49.4 0.2 29,003.9 57.6 3.6 53,000
2004 0.72 0.04 0.21 0.12 15,076.6 49.9 15,109.7 50.0 11.3 0.0 30,197.6 60 6 53,000
2005 0.73 0.06 0.20 0.10 14,704.7 55.7 11,702.8 44.3 10.9 0.0 26,418.4 52.5 −1.5 53,000
2006 0.78 0.02 0.21 0.14 14,744.0 51.7 13,699.3 48.1 67.8 0.2 28,511.1 56.7 2.6 53,000
2007 0.73 0.11 0.29 0.11 7802.9 25.7 22,419.1 73.9 110.2 0.4 30,332.3 60.3 6.2 53,000
2008 0.64 0.02 0.13 0.09 16,453.7 79.8 4156.1 20.2 0.1 0.0 20,609.9 41 −13 53,000
2009 0.85 0.08 0.26 0.11 9091.2 36.3 15,910.7 63.6 35.4 0.1 25,037.3 49.7 −4.3 53,000
2010 0.72 0.13 0.28 0.11 7873.5 27.3 20,994.2 72.7 27 0.1 28,894.7 57.4 3.4 53,000
2011 0.76 0.06 0.22 0.13 15,185.5 56.4 11,670.7 43.4 61.3 0.2 26,917.5 53.5 −0.6 53,000
2012 0.72 0.01 0.20 0.13 14,024.1 53.1 12,340.4 46.7 36.9 0.1 26,401.4 52.5 −1.6 53,000
2013 0.63 0.16 0.29 0.09 4636.1 16.5 23,491.1 83.5 0.3 0.0 28,127.6 55.9 1.8 53,000
2014 1.00 0.29 0.48 0.12 5674.20 18.4 25,152.7 81.6 0.0 0.0 30,826.8 61.3 7.2 53,000
2015 0.64 0.18 0.31 0.08 2076.6 6.5 29,782.4 93.5 2.2 0.0 31,861.2 63.3 9.3 53,000
2016 0.72 0.18 0.30 0.08 2984.6 9.2 29,325.5 90.8 5.1 0.0 32,315.2 64.2 10.2 53,000
2017 0.64 0.18 0.28 0.07 21.4 0.1 26,111.7 96.4 963.6 3.6 27,096.8 53.8 −0.2 53,000
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Figure 4. Spatial Variation of the NDVI-Based Vegetation in 1998 to 2017.

The NDVI values were the lowest in the southwest and west parts of the region
compared to the northeastern parts, with higher vegetation and a higher NDVI value
(Figure 4). There was a significant decline in annual rainfall averages in some sites in KRI
compared to rainfall averages of the other studied locations from 1998 to 2017. Figures 5
and 6 shows the minimum values of NDVI-based vegetation cover due to the changes in
precipitation rates, whereas precipitation averages were low in some locations (Table 1).
On the other side, the precipitation averages were high in some sites, which positively
reflected the increase in NDVI values (Figure 4). Low precipitation and high temperature
play a negative role in decreasing NDVI values and vegetation cover in the southwest parts
of KRI during growing seasons.
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Figure 5. Average values of LST and NDVI in the study area (1998–2017).

 

Figure 6. Average values of LST and NDVI in the ER, SU, and DU governorates (1998–2017).

3.2. LST

The LST fraction images were derived using thermal infrared (TIR) of Landsat im-
agery, which can be utilized to express the land surface temperature and indicate drought
status [60]. The LST status of the study area in the period 1998–2017 is given in Figures 5
and 6 and Table 4. Firstly, we calculated the changes in the five classes of droughts for the
study area in 20 years (Figure 3). In this study, the changes in the five drought categories
were compared. The category in which the greatest change occurred was compared to the
other four categories, and it was considered a comparative treatment. Then, we calculated
each drought category area to show the temporal changes. Figure 5 shows the LST mean
values of each year of the study period compared with the LST average of the 20 years in
the KRI from 1998 to 2017. The temperature rate of KRI showed a steady increase, but the
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degree of temperature in the years 2002 (23 ◦C) and 2010 (22 ◦C) experienced a downward
trend. On the other hand, the LST degree of 2000 and 2008 in KRI was about 41 and 37 ◦C,
respectively. The LST rate increased sharply throughout the period, exceeding those of the
years 2002 and 2010.

Table 4 indicates that in 2000 and 2008, the highest LST value area was in class 5,
which was more than 40 ◦C. The study results revealed that a very severe drought hit
27,660.7 km2 (55.0%) of the total area in class 5 ≥ 40 ◦C. While in the year 2008, they faced
severe heat in 19,261.1 km2 (38.23%) of class 5 ≥ 40 ◦C. However, the lowest temperatures
were recorded in 2002, 2003, 2004, 2010, 2011, and 2014, which was no higher than 0.4% of
the total study area.

Table 4. LST Categories Derived from Landsat Thermal Bands for the Years 1998–2000 and Drought
Severity Areas (in km2) and Percentage based on the LST Index.

Year

Class 1
<10 ◦C

Class 2
10–20 ◦C

Class 3
20–30 ◦C

Class 4
30–40 ◦C

Class 5
> 40 ◦C

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

1998 864.3 1.7 2914.5 5.8 19,465.7 38.7 23,901.7 47.5 3181.5 6.3
1999 972.8 1.9 4379.3 8.7 15,646.5 31.1 23,061.8 45.8 6267.1 12.5
2000 424.9 0.8 321.0 0.6 3135.3 6.2 18,785.7 37.3 27,660.7 55.0
2001 589.6 1.2 8546.9 17.0 26,527.3 52.7 14,639.5 29.1 24.2 0.0
2002 1892.9 3.8 14,647.2 29.1 25,793.2 51.3 7,968.2 15.8 26.0 0.1
2003 424.9 0.8 3509.7 7.0 26,701.8 53.1 19,629.0 39.0 62.2 0.1
2004 2106.9 4.2 10,379.9 20.6 31,040.3 61.7 6,588.5 13.1 211.9 0.4
2005 1208.7 2.4 6545.3 13.0 32,586.4 64.7 9,785.2 19.4 202.0 0.4
2006 291.9 0.6 3702.6 7.4 32,097.4 63.8 14,184.1 28.2 51.6 0.1
2007 388.6 0.8 4378.6 8.7 28,483.9 56.6 13,110.3 26.0 3966.2 7.9
2008 881.4 1.8 1547.2 3.1 8150.3 16.2 20,487.5 40.7 19,261.1 38.3
2009 530.7 1.1 6669.1 13.3 25,221.3 50.1 15,938.3 31.7 1968.1 3.9
2010 1471.7 2.9 14,943.1 29.7 29,135.4 57.9 4,642.8 9.2 134.6 0.3
2011 1021.7 2.0 11,501.9 22.9 31,743.5 63.1 6,038.5 12.0 22.0 0.0
2012 223.7 0.4 1737.1 3.5 19,951.8 39.6 22,213.8 44.1 6201.3 12.3
2013 219.6 0.4 1692.6 3.4 17,799.6 35.4 30,154.3 59.9 461.5 0.9
2014 1148.9 2.3 4866.5 9.7 27,964.0 55.6 16,251.3 32.3 96.8 0.2
2015 478.2 1.0 1213.3 2.4 14,941.8 29.7 25,203.0 50.1 8491.2 16.9
2016 810.0 1.6 1483.8 2.9 22,040.9 43.8 21,873.4 43.5 4119.5 8.2
2017 1895.0 3.8 3650.5 7.3 15,964.2 31.7 20,770.0 41.3 8048.0 16.0

Over 20 years, vast areas in the southern part of Erbil and Sulaimaniyah governorates
were affected by very severe drought episodes, while most of the other parts of the study
area were characterized by slight and moderate droughts based on LST (Figure 7). The
southern parts of the study area were warmer compared to the other parts. The mean
values of LST in 2000 and 2008 were 40.7 and 36.0 ◦C, respectively. This significant increase
in surface temperature is due to the lack of rainfall, which led to a lack of moisture and
lower vegetation cover area that was mostly found in lands with lower elevation. One of
the results of the increase in LST surface temperature in the southeast and southwest of
the study area is the decrease in vegetation cover represented by NDVI in the study area.
This indicates the negative impact of the high LST on the vegetation growth environment
that led to the shrinkage in the vegetation area (NDVI) of the region. In the northeast of the
study area, only a few sites had increases in precipitation rates and decreases in the LST
values, which in turn was reflected in a vegetation increase (NDVI) at those sites (Figures 5
and 6).
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Figure 7. Drought Severity Categories based on LST Index in Years 1998–2017.

3.3. Pearson Correlation Matrix between Indices and Ecological Parameters

Correlation coefficients between latitude, elevation, rainfall, NDVI, and LST during the
years from 1998 to 2017 (average of 20 years) are calculated using SPSS and are presented
in Table 5. The analysis of variance for the drought indices showed significant differences
at p < 0.01 and p < 0.05 among the analyzed years. The relationship between precipitation,
elevation, NDVI, and LST was tested from 1998 to 2017 through Pearson correlation analysis,
and the results are presented in Table 5 and Figures 8 and 9. The results showed a significant
negative correlation between NDVI and precipitation with LST. On the other hand, there
was a positive correlation between NDVI and precipitation (Table 5 and Figures 8 and 9).
The correlation between spectral indices based on remote sensing and precipitation was
statistically significant. LST and NDVI space’s concept refers to the relationship between
NDVI with LST, and vegetation abundance was first formulated by Lambing and Ehrlich
(1996) with LST plotted as a function of NDVI [61]. In Figures 5 and 6, the lowest values
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of NDVI were observed in 2000 and 2008 with higher LST during 2000 and 2008 in ER,
DU, and SU (Figure 5). The relationship between the mean and area of NDVI and LST is
repeatedly negative.

 

Figure 8. The spatiotemporal distribution of annual precipitation (mm/year) in IKR during the
period 2008–2017.

Table 5. Pearson correlation between NDVI, LST, and ecological parameters.

Longitude Latitude Elevation Rainfall LST NDVI

Longitude 1
Latitude −0.81 ** 1
Elevation 0.2 0.25 1
Rainfall 0.14 0.34 ** 0.80 ** 1

LST 0.14 −0.59 ** −0.78 ** −0.83 ** 1
NDVI −0.03 0.53 ** 0.76 ** 0.83 ** −0.89 ** 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).
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Figure 9. Spatial pattern changes of ecological parameters and drought indices for an average of
20 years in 60 locations. (A) Relationships between elevation precipitation. (B) Relationships between
elevation and NDVI. (C) Relationships between elevation and LST. (D) Relationships between
precipitation and NDVI. (E) Relationships between precipitation and LST. (F) Relationships between
LST and NDVI.

Analysis of variance for the drought indices showed significant differences at p < 0.01
and p < 0.05 among the analyzed years. The relationship between precipitation, elevation,
NDVI, and LST was tested from 1998 to 2017 through Pearson correlation analysis, and
the results are presented in Table 5 and Figure 9. The results showed a significant negative
correlation between NDVI and precipitation with LST. On the other hand, there was a
positive correlation between NDVI and precipitation (Table 5 and Figure 9). The correlation
between spectral indices based on remote sensing and precipitation was statistically signifi-
cant. LST and NDVI space’s concept refers to the relationship between NDVI with LST and
vegetation abundance was first formulated by Lambing and Ehrlich (1996) with LST plotted
as a function of NDVI [61]. In Figures 5 and 6, the lowest values of NDVI were observed in
2000 and 2008 with higher LST during 2000 and 2008 in ER, DU, and SU (Figure 5). The
relationship between the mean and area of NDVI and LST is repeatedly negative.

The spatial distributions of the changes in (elevation, precipitation, LST, and NDVI)
from 1997 to 2017 are presented in Figure 9A–F. The negative relationships between (NDVI-
LST) and (LST-DEM) based on the monthly data from 1998–2017 at 60 different sites were
presented in Figure 9C,F. The statistical correlation between (LST-NDVI) was employed
to demonstrate the locational variations of temperature effect on vegetation activity. The
study’s findings also revealed a positive correlation between the LST and NDVI in the
northern part of the study area, while the relationship was negative between the mentioned
indices at the southern parts.
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In general, the three main factors affecting vegetation growth in the study area are the
LST, precipitation, and DEM (Figure 8B,D,F). That illustrates the significant shrinking in
precipitation averages, the vegetation cover in the southwest, and the considerable increase
of vegetation coverage in some of the KRI’s northeast parts (Figure 9A,B). Figure 6 shows
the significant decreases in LST observed in the country’s northeast, caused by increasing
NDVI and the precipitation rate. A significant increase was found in the LST values in
almost all sites southwest of the KRI, where the vegetation and precipitations are limited.
NDVI was sensitive to rainfall and temperature (Figure 9D,E). However, fluctuations were
observed in NDVI and LST during the 20 years. The decreases in NDVI were observed
during the period LST was increasing in all locations (Figure 9F).

3.4. Trend Analysis of NDVI and LST by Mann–Kendall and Sen’s Slope

This study carried out the trend analysis for NDVI and LST in the 60 meteorological
stations’ locations from 1998 to 2017. MKT and Sen’s Slope estimator were used to deter-
mine statistical inclining or declining trends. A positive sign indicates an upward slope,
while a negative sign represents a downward one. The Sen’s slope test results seem to be
fairly similar to those obtained from the MKT [52,62].

3.4.1. NDVI

Table 6 indicates the NDVI trends in the KRI through 20 years using the Mann–
Kendall test and Sen’s slope methods. Out of 60 locations, only 11 recorded significant
trends increasing at the 5% level of Sen’s estimator of slope following the Mann–Kendall
test, which was employed to figure out the change per unit time of trends observed in all
NDVI time series. Trends of NDVI have been calculated for each site individually using
Sen’s magnitude of slope (Q). In the Mann–Kendall test, the Z statistics revealed that the
series covers the KRI study area.

The majority of NDVI-based vegetation increases occurred in the northern and north-
eastern parts. Table 6 reveals the trend analysis results that statistically significant (95%
confidence level) positive trends were 2.34, 2.08, 2.21, 2.24, 2.66, 2.24, 3.47, 2.08, 2.17,
2.11, 2.11, 2.5, and 2.17 for Northeast sites, including Khabat, Mergasurer, Barzewa Battle,
Zawiya, Mangesh, Kanimasi, Amadea, Bamarni, Bazian, Halabja, Byara, and Mawat.

Table 6. NDVI Trends in the KRI over the 20 Years using the Mann–Kendall Test and Sen’s Slope
Methods.

Mann–Kendall Trends Sen’s Slope

Time Series
Location

Name

First
Year

Last
Year

N Test Z
Sen’s

Slope (Q)
Prop.

Trend (at 95%
Level of

Significance)

Erbil 1998 2017 20 0.68 0.002 0.7522 no trend
Qushtapa 1998 2017 20 1.52 0.005 0.9364 no trend

Khabat 1998 2017 20 2.34 0.008 0.9903 increasing
Bnaslawa 1998 2017 20 1.91 0.006 0.9722 no trend

harir 1998 2017 20 1.65 0.006 0.9510 no trend
Soran 1998 2017 20 1.52 0.006 0.9364 no trend

Shaqlawa 1998 2017 20 1.72 0.005 0.9572 no trend
Khalifan 1998 2017 20 1.65 0.006 0.9510 no trend
choman 1998 2017 20 1.36 0.003 0.9135 no trend
Sidakan 1998 2017 20 1.40 0.004 0.9185 no trend

Rwanduz 1998 2017 20 1.56 0.005 0.9403 no trend
Mergasur 1998 2017 20 2.08 0.007 0.9811 increasing
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Table 6. Cont.

Mann–Kendall Trends Sen’s Slope

Time Series
Location

Name

First
Year

Last
Year

N Test Z
Sen’s

Slope (Q)
Prop.

Trend (at 95%
Level of

Significance)

Dibaga 1998 2017 20 1.20 0.004 0.8850 no trend
Gwer 1998 2017 20 1.04 0.003 0.8504 no trend

barzewa 1998 2017 20 2.21 0.006 0.9863 increasing
Bastora 1998 2017 20 0.97 0.002 0.8348 no trend

Makhmoor 1998 2017 20 1.23 0.004 0.8912 no trend
Koya 1998 2017 20 1.49 0.004 0.9322 no trend

Taqtaq 1998 2017 20 1.91 0.006 0.9722 no trend
Shamamk 1998 2017 20 0.78 0.003 0.7819 no trend

Duhok 1998 2017 20 1.91 0.004 0.9722 no trend
semel 1998 2017 20 1.30 0.005 0.9028 no trend
Zakho 1998 2017 20 1.20 0.003 0.8850 no trend
Batel 1998 2017 20 2.24 0.004 0.9874 increasing

Duhok 1998 2017 20 1.56 0.005 0.9403 no trend
Darkar 1998 2017 20 1.69 0.005 0.9542 no trend

zaxo-farh 1998 2017 20 0.42 0.002 0.6634 no trend
Batifa 1998 2017 20 1.82 0.006 0.9654 no trend

kani masi 1998 2017 20 3.47 0.012 0.9997 no trend
Zaweta 1998 2017 20 2.66 0.007 0.9961 increasing

Mangish 1998 2017 20 2.24 0.008 0.9874 increasing
Deraluke 1998 2017 20 1.98 0.008 0.9761 no trend

Akre 1998 2017 20 1.46 0.004 0.9279 no trend
Amadia 1998 2017 20 2.08 0.005 0.9811 increasing
Sarsink 1998 2017 20 1.20 0.003 0.8850 no trend
Bamarni 1998 2017 20 2.17 0.008 0.9851 increasing

Bardarash 1998 2017 20 0.94 0.003 0.8266 no trend
Qasrok 1998 2017 20 1.78 0.005 0.9628 no trend

SUL 1998 2017 20 1.98 0.005 0.9761 no trend
Bazian 1998 2017 20 2.11 0.005 0.9825 increasing
Halabja 1998 2017 20 2.11 0.005 0.9825 increasing
Penjwen 1998 2017 20 1.91 0.008 0.9722 no trend
Chwarta 1998 2017 20 1.40 0.006 0.9185 no trend
Dukan 1998 2017 20 1.40 0.004 0.9185 no trend

Qaladiza 1998 2017 20 1.27 0.003 0.8971 no trend
Rania 1998 2017 20 1.36 0.003 0.9135 no trend

Said sadiq 1998 2017 20 1.59 0.005 0.9441 no trend
Qaradagh 1998 2017 20 1.33 0.003 0.9083 no trend

Arbat 1998 2017 20 0.91 0.003 0.8182 no trend
mwan 1998 2017 20 1.65 0.004 0.9510 no trend
Byara 1998 2017 20 2.50 0.008 0.9938 increasing

Mawat 1998 2017 20 2.17 0.004 0.9851 increasing
Darbandik 1998 2017 20 1.91 0.005 0.9722 no trend
Chamcha 1998 2017 20 1.20 0.004 0.8850 no trend

Kalar 1998 2017 20 0.97 0.001 0.8348 no trend
Agjalar 1998 2017 20 0.55 0.002 0.7094 no trend
bngrd 1998 2017 20 1.62 0.004 0.9476 no trend

Sangaw 1998 2017 20 1.46 0.005 0.9279 no trend
Bawanor 1998 2017 20 1.49 0.003 0.9322 no trend

Kifri 1998 2017 20 0.71 0.002 0.7623 no trend
Note: −1.96 < Z < 1.96 = No trend, Z > 1.96 = Increase in trend, Z < −1.96 = Decrease in trend.

3.4.2. LST

Table 7 illustrates that a significant trend in LST was 2.04, 2.08, 2.17, 2.01, 1.98, 2.37,
1.98, 2.01, 2.01, and 2.5, for Southwest sites, for Erbil, Qushtapa, Dibaga Gwer, Shamamk,
Makhmoor, Mangish, Chamchamal, Kalar, Bawanor and Kifri, respectively. On the other
hand, the lower trends were in Northeast sites, including Mangish—2.8, Bamarni—2.11,
Penjwen—2.95, Chwarta—2.21, and Byara—2.3.
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Table 7. LST trends in the KRI over the 20 years using the Mann–Kendall Test and Sen’s slope
methods.

Mann–Kendall Trends Sen’s Slope

Time Series
Location

Name

First
Year

Last
Year

N Test Z
Sen’s

Slope (Q)
Prop.

Trend (At 95%
Level of

Significance)

Erbil 1998 2017 20 2.04 0.456 0.9795 increasing
Qushtapa 1998 2017 20 2.08 0.492 0.9811 increasing

Khabat 1998 2017 20 1.10 0.203 0.8650 no trend
Bnaslawa 1998 2017 20 0.71 0.114 0.7623 no trend

harir 1998 2017 20 0.68 0.125 0.7522 no trend
Soran 1998 2017 20 1.07 0.150 0.8578 no trend

Shaqlawa 1998 2017 20 0.58 0.066 0.7204 no trend
Khalifan 1998 2017 20 −0.06 0.000 0.4741 no trend
choman 1998 2017 20 −1.75 −0.242 0.0399 no trend
Sidakan 1998 2017 20 −0.39 −0.051 0.3485 no trend

Rwanduz 1998 2017 20 −0.58 −0.100 0.2796 no trend
Mergasur 1998 2017 20 −1.82 −0.698 0.0346 no trend

Dibaga 1998 2017 20 2.17 0.450 0.9851 increasing
Gwer 1998 2017 20 2.01 0.172 0.9779 increasing

barzewa 1998 2017 20 −1.01 −0.114 0.1573 no trend
Bastora 1998 2017 20 1.85 0.366 0.9678 no trend

Makhmoor 1998 2017 20 2.37 0.264 0.9911 no trend
Koya 1998 2017 20 −1.40 −0.260 0.0815 no trend

Taqtaq 1998 2017 20 0.06 0.010 0.5259 no trend
Shamamk 1998 2017 20 1.98 0.179 0.9761 increasing

Duhok 1998 2017 20 −0.13 −0.025 0.4484 no trend
semel 1998 2017 20 0.13 0.009 0.5516 no trend
Zakho 1998 2017 20 0.10 0.020 0.5388 no trend
Batel 1998 2017 20 −0.03 −0.001 0.4871 no trend

Duhok Dam 1998 2017 20 0.06 0.014 0.5259 no trend
Darkar hajam 1998 2017 20 0.94 0.183 0.8266 no trend

zaxo−farh 1998 2017 20 −1.75 −0.375 0.0399 no trend
Batifa 1998 2017 20 −0.52 −0.087 0.3018 no trend

kani masi 1998 2017 20 −1.52 −0.563 0.0636 no trend
Zaweta 1998 2017 20 −1.33 −0.400 0.0917 no trend

Mangish 1998 2017 20 −2.08 −0.470 0.0189 Decreasing
Deraluke 1998 2017 20 −0.42 −0.065 0.3366 no trend

Akre 1998 2017 20 −1.69 −0.375 0.0458 no trend
Amadia 1998 2017 20 −1.07 −0.240 0.1422 no trend
Sarsink 1998 2017 20 −1.10 −0.285 0.1350 no trend
Bamarni 1998 2017 20 −2.11 −0.717 0.0175 Decreasing

Bardarash 1998 2017 20 0.23 0.031 0.5898 no trend
Qasrok 1998 2017 20 0.29 0.056 0.6149 no trend

Sulaymaniyah 1998 2017 20 0.29 0.045 0.6149 no trend
Bazian 1998 2017 20 −0.78 −0.192 0.2181 no trend
Halabja 1998 2017 20 0.84 0.183 0.8005 no trend
Penjwen 1998 2017 20 −2.95 −0.662 0.0016 Decreasing
Chwarta 1998 2017 20 −2.21 −0.540 0.0137 Decreasing
Dukan 1998 2017 20 0.52 0.065 0.6982 no trend

Qaladiza 1998 2017 20 −1.52 −0.342 0.0636 no trend
Rania 1998 2017 20 −0.32 −0.087 0.3728 no trend

Said sadiq 1998 2017 20 0.42 0.120 0.6634 no trend
Qaradagh 1998 2017 20 −0.23 −0.023 0.4102 no trend

Arbat 1998 2017 20 0.42 0.111 0.6634 no trend
mwan 1998 2017 20 −0.13 −0.034 0.4484 no trend
Byara 1998 2017 20 −2.30 −0.502 0.0106 Decreasing

Mawat 1998 2017 20 −1.85 −0.468 0.0322 no trend
Darbandikhan 1998 2017 20 0.06 0.010 0.5259 no trend
Chamchamal 1998 2017 20 1.98 0.562 0.9761 Increasing

Kalar 1998 2017 20 2.01 0.366 0.9779 Increasing
Agjalar 1998 2017 20 1.43 0.324 0.9233 no trend
bngrd 1998 2017 20 1.27 0.211 0.8971 no trend

Sangaw 1998 2017 20 0.84 0.239 0.8005 no trend
Bawanor 1998 2017 20 2.01 0.454 0.9779 Increasing

Kifri 1998 2017 20 2.50 0.237 0.9938 Increasing
Note: −1.96 < Z < 1.96 = No trend, Z > 1.96 = Increase in trend, Z < −1.96 = Decrease in trend.
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3.5. Multiple Regression Statistics, RMSE, and CRM

The Root Mean Square Error (RMSE) value indicates how predicted and observed mea-
surements match, while the Coefficient of Residual Mass (CRM) value measures a model’s
tendency to over or underestimate the measurements. Positive values for CRM indicate
that the model underestimates the measurements, and negative values overestimate [63].
For an ideal fit between the observed and predicted data, RMSE and CRM’s values should
equal 0.0 [62]. As can be seen from the statistical analysis results, the accuracy of the model
in the estimation of NDVI and LST in Tables 8 and 9 for the study periods was tested by
calculating the Coefficient of Residual Mass (CRM), Root Mean Square Error (RMSE), and
coefficient of determination (R2), respectively.

The results in Table 8 showed that the NDVI-based vegetation cover was more affected
by climatic and topographic factors (precipitation and elevation) in the study area. A
high value for multiple regression coefficients indicates strong relationships between the
variables, and the low RMSE and CRM values show a reasonable precision and low error
of the model. The multiple regression (R), RMSE, and CRM were calculated and presented
in Tables 8 and 9. The efficiency and accuracy of the models for predicting drought indices
were evaluated using statistical coefficients.

The values of regression parameters were used to predict the drought index (NDVI)
in Table 8 from 1998 to 2017. The (R) values ranged from 0.77 in 1998 to 0.87 in 2017, RMSE
from 0.039 in 2000 to 0.068 in 2005, and CRM from −0.006 in 2014 to 0.284 in 1998. These
results indicate that although the relationship between variables was stronger in 2017,
the prediction error was lower in 2008 and 2013. Comparing the observed and simulated
measurements, the model gives appropriate predictions of the drought status. Moreover,
different time scales were considered in the model. The drought predictions can be more
reliable and efficient and ensure that the developed model is suitable and efficient.

The regression analyses in Table 8 showed that the spectral indices were related to
total precipitation, geographic elevation, and latitude. The LST values of 1998 to 2017 were
(R) ranged from 0.47 in 2001 to 0.85 in 2013, and RMSE were from 2.7 in 1999 to 7.0 in 2000.

Table 8. Parameters of the regression models used for predicting drought index (NDVI) in the KRI.

y = β0 + β1 x1 + β2 x2 + β3 x3

β0 β1 β2 β3

Year R Intercept
x1

Coefficients
x2

Coefficients
x3

Coefficients
RMSE CRM

1998 0.77 −2.19 6.4 × 10−2 −9.9 × 10−7 1.6931 × 10−4 0.090 0.284
1999 0.80 −1.02 3.0 × 10−2 9.790 × 10−5 3.0739 × 10−4 0.047 0.002
2000 0.80 −1.27 3.5 × 10−2 5.872 × 10−5 2.4785 × 10−4 0.039 0.031
2001 0.72 −0.06 3 × 10−3 1.0642 × 10−4 2.1147 × 10−4 0.062 0.002
2002 0.77 −0.79 2.6 × 10−2 3.402 × 10−5 2.0132 × 10−4 0.056 0.009
2003 0.75 −0.89 2.8 × 10−2 8.010 × 10−5 8.339 × 10−5 0.046 0.000
2004 0.77 −0.94 2.8 × 10−2 2.258 × 10−5 2.0384 × 10−4 0.054 −0.004
2005 0.74 −1.03 2.9 × 10−2 7.895 × 10−5 1.7897 × 10−4 0.068 0.088
2006 0.81 −1.35 4.0 × 10−2 1.4746 × 10−4 5.234 × 10−5 0.050 −0.005
2007 0.76 0.26 −5 × 10−3 1.1165 × 10−4 1.6574 × 10−4 0.056 0.011
2008 0.78 −1.40 3.9 × 10−2 8.544 × 10−5 1.2644 × 10−4 0.043 0.016
2009 0.77 −1.67 4.9 × 10−2 7.641 × 10−5 1.7644 × 10−4 0.057 0.000
2010 0.76 −1.93 5.8 × 10−2 5.352 × 10−5 7.833 × 10−5 0.051 0.006
2011 0.84 −2.12 6.1 × 10−2 4.172 × 10−5 1.9596 × 10−4 0.054 −0.004
2012 0.74 −0.97 2.9 × 10−2 9.920 × 10−5 9.931 × 10−5 0.050 0.004
2013 0.81 −1.84 5.6 × 10−2 9.731 × 10−5 4.716 × 10−5 0.049 0.003
2014 0.73 0.86 −1.9 × 10−2 1.0719 × 10−4 2.6338 × 10−4 0.065 −0.006
2015 0.78 −0.15 8 × 10−3 9.893 × 10−5 1.3360 × 10−4 0.049 0.005
2016 0.84 −0.79 2.7 × 10−2 1.6592 × 10−4 4.533 × 10−5 0.043 0.007
2017 0.87 −0.85 2.6 × 10−2 1.6069 × 10−4 1.3260 × 10−4 0.044 −0.001

Note: When y = NDVI Drought index, x1 = Latitude, x2 = Elevation, x3 = Precipitation.
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Figure 10 illustrates the quantile–quantile plots (Q–Q) used to visually examine the
degrees of distribution. From the visual point of view, there was little difference when
choosing among the various distributions for representing the data used in the study [64].
For instance, the Q–Q plot of observed spectral indices at 60 locations in KRI versus
expected values pointed out that NDVI and LST have been fitted to better distributions, as
most of the observations fall on and around the straight line and few points are a little bit
far away from the fitted line.

Table 9. Parameters of the regression models used for predicting drought index (LST) in KRI.

y = β0 + β1 x1 + β2 x2 + β3 x3

β0 β1 β2 β3

Years R Intercept
x1

Coefficients
x2

Coefficients
x3

Coefficients
RMSE CRM

1998 0.50 200.326 −4.5090 × 100 3.79 × 10−3 −7.70 × 10−3 3.366 −0.0019
1999 0.74 162.592 −3.6067 × 100 −2.98 × 10−3 −4.37 × 10−3 2.736 0.0000
2000 0.63 115.233 −1.8216 × 100 −1.62 × 10−3 −2.774 × 10−2 7.026 −0.0271
2001 0.47 −92.048 3.2245 × 100 3.73 × 10−3 −2.01 × 10−3 4.823 −0.0374
2002 0.75 161.735 −3.8018 × 100 −3.39 × 10−3 5.0 × 10−4 2.709 0.0158
2003 0.59 −8.567 1.0771 × 100 −1.60 × 10−3 −4.29 × 10−3 3.745 −0.1117
2004 0.68 42.094 −3.318 × 10−1 −4.21 × 10−3 −8.13 × 10−3 3.456 −2.95 × 10−5

2005 0.67 −51.024 5.825 × 10−1 1.403 × 10−2 6.25 × 10−3 5.988 0.0121
2006 0.58 73.968 −1.1655 × 100 −5.41 × 10−3 −2.93 × 10−3 3.709 −0.0001
2007 0.66 137.659 −2.9794 × 100 1.17 × 10−3 −7.40 × 10−3 3.568 0.0001
2008 0.52 −71.482 3.0436 × 100 1.90 × 10−3 −2.42 × 10−3 3.626 −1.17 × 10−5

2009 0.55 168.828 −3.8644 × 100 4.77 × 10−3 −9.94 × 10−3 4.759 0.0003
2010 0.75 61.496 −7.443 × 10−1 −1.6 × 10−4 −1.737 × 10−2 4.132 −0.0002
2011 0.65 110.496 −2.2353 × 100 −5.50 × 10−3 −1.06 × 10−3 3.189 −0.0001
2012 0.75 88.654 −1.4965 × 100 −6.09 × 10−3 −5.20 × 10−3 2.774 0.0031
2013 0.85 36.517 1.13 × 10−2 1.11 × 10−3 −1.716 × 10−2 3.840 −0.0109
2014 0.83 130.942 −2.6048 × 100 −6.98 × 10−3 −1.367 × 10−2 3.522 0.0026
2015 0.80 169.176 −3.6726 × 100 −1.752 × 10−2 3.63 × 10−3 4.159 −6.24 × 10−5

2016 0.82 109.215 −1.9879 × 100 −5.89 × 10−3 −1.167 × 10−2 3.797 −0.0090
2017 0.79 200.224 4.4465 × 100 −1.164 × 10−2 −4.23 × 10−3 4.413 0.0008

Note: When y = LST Drought Index, x1 = Latitude, x2 = Elevation, x3 = Precipitation.

 

Figure 10. The Quantile–Quantile Plot (Q–Q Plot) of Observed (a) NDVI and (b) LST at 60 Locations
Versus Predicted Values.
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4. Discussion

NDVI and LST maps of the consecutive 20 years clearly show the onset and extent
of drought. According to the results shown in Table 3 and Figure 4, it can be said that the
studied region has faced drought episodes over the study period, especially in the years
2000 and 2008. The Mann–Kendall test assessed changes in drought indices at the 60 sites.
The multiple regression for the 20 years was used to understand variable climatic influences
on droughts and temporal variations and their relationships with precipitation changes,
altitude, and latitude. A considerable change in NDVI values and LST was strongly
observed in 2000 and 2008. These results correspond to the study conducted by [65,66],
whereas the year 2008 was the driest year during the study period. The occurrence of
drought is associated with reduced vegetation area and NDVI mean values. However, LST
values increased throughout the 20 years of study, particularly in 2000 and 2008 [12].

The NDVI value indicates very low vegetation, especially in the southern part of
the study area (Figure 4 and Table 3). These results correspond to the study conducted
by [34], whereas both of them found that year 2008 had the most severe drought year
during the study period. Ref. [67] assessed the spatiotemporal changes in drought in Iraq
using SPI from 1980 to 2010. They found that drought caused deterioration from normal to
extreme levels in Iraq during 2000, 2008, and 2010 (which was the driest year), while NDVI
coverage was high in the northern part of the study area in the identified period [66]. The
northern part of the study area is characterized by a topography covered with grasses and
trees, while the density of NDVI-based vegetation is less in the middle part and lesser in
the southern part [25]. The less extensive coverages of precipitation are observed in the
southern part of the study area in the KRI (Figures 2C and 8).

The terrain, trees, and shrub area may play an essential role in assessing the vegetation
increase due to the progress of laws on the protection of the environment and the prevention
of logging in the last ten years, as well as the improvement of the living costs and raising
awareness of the people living in these areas and continuous artificial afforestation in that
area [68]. After investigating drought vicissitudes in KRI changes with NDVI and LST
variation, we observed droughts’ vicissitudes in terms of frequency, duration, and intensity.
Specifically, we first calculated the changes in classes (classes 1, 2, and 3) for NDVI and
classes 1, 2, 3, 4, and 5 for LST. Then, we compared the changes among the five drought
categories and selected the one that shows the largest change compared to the other four
categories as the dominant one. The percentage of lands dominated by each drought
category was counted for each period to show the temporal evolution.

Based on the drought index scale, areas affected by drought have low NDVI [41]. NDVI
values indicated that the southwestern and western parts of KRI experienced drought
(Figures 4 and 5). However, its magnitude and spatial extension varied. Low values
indicated the dry season, while high values indicated the wet season [69]. The values
varied spatially and temporally across the region from 1998 to 2017 (Figures 3 and 4). This
was mainly because of the precipitation amount, frequency, and intensity [70]. The variation
in NDVI is controlled by meteorological variables, such as precipitation, temperature, and
relative humidity [41]. The NDVI values were spatially varied due to climate, soil, and
topographic variability.

The southern region shows a net decrease of its vegetative cover during the considered
time range. It seems to be affected by land-degradation processes caused by droughts,
which are an issue in this area [13]. It cannot be expected to perceive differences in the
vegetation or physiological (decrease or increase of certain strata) density with slight
accuracy. However, it seems to have been shown that the main decreased features of
vegetation are in the southern part of KRI. All correlations between the monthly index
values and meteorological parameters from the different locations are statistically significant
at 95%. The spatial patterns of droughts for the growing seasons in April showed rainfall
decreases, and LST values increase in the growing seasons led to an NDVI value reduction
in the southwest parts of the KRI. Thus, the increase in rainfall and the slight increase in
LST caused NDVI to rise at a few locations in the northeast. The direction or absence of
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vegetation trends often matches the precipitation trend. This indicates that the combined
effect of precipitation and temperature played an important role in decreasing NDVI values
and the area of vegetation in the southwest of KRI during the growing season [12].

The increases in LST in the south and southeast parts were due to the lack of vegetation
cover and the soil’s relative humidity due to the rainfall deficiency in these areas. These
areas have led to continuous land and crop degradation and yield losses. The increased
temperatures can cause severe natural effects on the environment, including hydrological
drought (IPCC, 2012) [71]. The increase of LST is assumed to negatively affect vegetation
strength and cause plant stress [69]. The mean LST increases in almost all parts of the
KRI, and the minimum LST increases in the mountains. In the eastern parts, maximum
LST increases in the southwestern parts of KRI. This trend pattern corresponds with the
variation in NDVI (see Figures 5–7). While the lack of precipitation is often the primary
cause of drought, increased potential evapotranspiration is linked to temperature and
relative humidity [72]. Actual evapotranspiration is additionally controlled by soil moisture,
which constitutes a limiting factor for further drying under drought conditions and other
processes impacting vegetation development and phenology; for instance, the temperature
is also relevant [70,73,74]. Another LST study by Robaa and AL-Barazanji [75] showed
that after 1995, the rising trend of the annual mean temperature over Iraq was about
0.5 ◦C/decade.

In Table 5, the correlation matrix investigates the generality of the represented LST
and NDVI relationship with respect to drought monitoring and assessment; LST and NDVI
relations show negative correlations in the study area. Usually, the relationship between
NDVI and LST is negative, as the value of NDVI increases with decreases in LST. The
LST–NDVI correlations are generally negative [39,76]. In the northeast and south parts,
where precipitation increased at some locations, there were significant changes in NDVI,
except for an insignificant increase at some sites. Increases were observed in the NDVI for
the study period except in 2000, 2008, and 2012. A sharp increase between 2000 and 2008
was observed for LST.

Precipitation was gradually increased with the increase in NDVI in the northern parts
of KRI. This increase has resulted in an increasing trend in the northeast’s NDVI values
and vegetation area. On the other hand, continuous increases in LST and decreasing
precipitation resulted in continuous decreases in NDVI in the region’s southern locations.
This indicates that LST was crucial to decreasing NDVI in these areas during the growing
season. Figures 4–7 show a constant variability in terrestrial ecosystems at different spatial
and temporal scales because of natural and/or anthropogenic causes. The droughts in
semi-arid areas significantly contribute to environmental degradation, as they limit the
development of vegetation cover and expose the soil to erosion [77].

The spatiotemporal variability of the LST–NDVI relationship on continental or global
scales has been investigated in several studies [78,79] and was based on the assumption that
complementary information in these studies may provide a more robust characterization
for different phenomena at the land’s surface. Studies have revealed a strong negative
correlation between NDVI and LST resulting from canopy transpiration’s cooling effects.
This study’s NDVI varied due to temporal and spatial variability in rainfall [80,81]. There-
fore, NDVI is a relatively good indicator of drought in KRI, and warmer temperatures
are more favorable for vegetation growth [82]. Therefore, the application of empirical
NDVI–LST-based indices must be limited to areas and periods where negative correla-
tions are observed and not on a global scale. The mean NDVI indicating the vegetation’s
greenness was strongly related to seasonal rainfall, which indicates the possibility of using
NDVI to predict drought [83]. In general, prior studies suggest that the LST–NDVI slope
sign may be governed by whether vegetation growth is water-limited (negative slope) or
energy-temperature limited (positive slope). The latter is prevalent at high latitudes or in
the evergreen tropical forests, whereas the latter may occur at lower latitudes, especially in
dry lands [84,85]. A statistical trend test provides more reliable ways to describe trends
in long time series than linear regression. Moreover, the p-values for the Mann–Kendall
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test are calculated. The Mann–Kendall statistics are shown in Table 5. Only 11 locations
(Khabat, Mergasur, Barzewa, Batel, Mangish, Deraluke, Amadia, Bazian, Halabja, Mawat,
and Darbandikhan) out of 60 showed an upward trend in NDVI.

The Mann–Kendall statistics are shown in Table 7. Nine locations show statistically
significant upward trends in LST (Erbil, Qushtapa, Dibaga, Gwer, Shamamk, Chamchamal,
Kalar, Bawanor, and Kifri). These results are in accordance with the findings of Raz-
vanchy [86]. Generally, the southern parts of the study area are warmer. In particular,
the temperature rise in the southern zone of the region is the lowest of precipitation and
low-vegetation cover and elevation and correlated to a statistically downward trend in
annual precipitation Figure 9 and Table 7. Multiple regression analysis revealed that the
correlation between rainfall, elevation, and latitude with spectral indices is significant
during the beginning of the growing season, whereas other biophysical variables play a
lesser role. One of the study objectives was to examine the feasibility of regression analysis
to make NDVI and LST forecasts.

A time series of drought indices provides a framework for evaluating drought parame-
ters of interest. In order to quantify the prediction accuracy and precision of the model, the
(R), RMSE, and CRM were calculated (see Tables 7 and 8). Some statistical coefficients eval-
uated the efficiency and accuracy of models used for predicting drought indices. Weather
and climate phenomena reflect the interaction of dynamic and thermodynamic processes
over a wide range of spatial and temporal scales. This complexity results in highly variable
atmospheric conditions, including temperatures, motions, and precipitation; events include
the persistence of drought conditions over decades of timescales. Thus, rainfall is associated
with both altitude and position [25]. However, this explanation for the spatial distribution
of precipitation was supported by dense vegetation in mountain areas, where oak forests
were more intense than the other areas. In contrast, the northeastern region dominated
the study area at a certain height. However, it became less after the first or second hill,
and in the plains of Erbil and Sulaimaniyah, where winter crops are cultivated, which are
sensitive to high temperatures and low precipitation [87,88].

5. Conclusions

This study assessed droughts status changes during 20 years of growing seasons in the
KRI. This study contributes to drought severity assessment by quantifying NDVI decrease
and LST increase during long-term climate. The resultant maps show the change pattern in
the relationship between remote sensing-based drought indices and climate factors. From
this study, the following points can be concluded:

Severe drought circumstances prevailed during 2000 and 2008 over a large KRI area.
The onset and extent of drought can be clearly observed through NDVI, LST, and pre-
cipitation maps for the studied 20 years. The land-cover classification shows that the
vegetation coverage area was more seriously affected by climatic factors (precipitation
and temperature), especially in 2000 and 2008. Considering the significant recurrence of
drought, it is crucial to satisfy the water needs of the study area by using other available
water resources, such as groundwater, for supplementary irrigation in the rainfed areas of
the southern part of KRI. The correlation between LST and NDVI in the same measured
year was significant, likely due to the delayed effect of scarce precipitation on vegetation.
More detailed investigations are needed to understand the frequency of drought and its
relationship to factors affecting it.

Landsat-based spectral drought indices were significantly correlated with precip-
itation, geographical elevation, and latitude. High values of multiple correlation and
regression indicate strong relationships between the variables, and the low RMSE and CRM
values show a reasonable precision and a low error of the resultant model. Comparing
the results obtained for the modeling indicates that the presented model gives appropriate
predictions of the drought situation. Moreover, different time scales were considered in the
model so that the drought predictions can be more reliable and efficient, and the developed
model is ensured to be suitable and efficient.
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Acute water stress was evident all over the study area in 2000, 2008, and 2012. Despite
the prevalence of drought conditions over a large area of KRI during the mentioned years,
some areas in the eastern part of the region remained unaffected by the lack of precipitation
and water stress. Those areas are characterized by humid and sub-humid climate types,
which helps keep the area green even during the drought year.

Spatial variation in the NDVI and LST resulted from the uneven distribution of rainfall
and geographical elevation effects in the study area. Since the region receives much higher
monsoonal rainfall than the western part, even in the drought year, it remains suitable for
tree and shrub growth. Unlike the meteorological data available from sparsely distributed
meteorological stations, remote sensing meteorological data and remote sensing-based
indices can be successfully used to delineate the spatiotemporal extent of drought. In the
future, studies may incorporate agricultural production and surface evaporation data to
evaluate further the mechanisms by which these factors interact during periods of drought.
Due to the large local spatial variation in rainfall, NDVI values also show a high variation,
ranging from a low area of 14.4% (7225.1 km2) in 2000 to 64.2% (32,315.2 km2) in 2016
(Table 3). On the other hand, LST indicates an upward slope in 2000, 2008, and 2012. The
regression model parameters for predicting drought indices from this dataset were disabled
to determine the annual precipitation or elevation playing a significant role in the yearly
trends in NDVI and LST.
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Abstract: To increase agricultural productivity and ensure food security, it is important to understand
the reasons for variations in irrigation over time. However, researchers often avoid investigating
water productivity due to data availability challenges. This study aimed to assess the performance
of the irrigation system for winter wheat crops using a high-resolution satellite, Sentinel 2 A/B,
combined with meteorological data and Google Earth Engine (GEE)-based remote sensing techniques.
The study area is located north of Erbil city in the Kurdistan region of Iraq (KRI) and consists of
143 farmer-owned center pivots. This study also aimed to analyze the spatiotemporal variation of key
variables (Normalized Difference Moisture Index (NDMI), Normalized Difference Vegetation Index
(NDVI), Precipitation (mm), Evapotranspiration (ETo), Crop evapotranspiration (ETc), and Irrigation
(Hours), during the wheat-growing winter season in the drought year 2021 to understand the reasons
for the variance in field performance. The finding revealed that water usage fluctuated significantly
across the seasons, while yield gradually increased from the 2021 winter season. In addition, the
study revealed a notable correlation between soil moisture based on the (NDMI) and vegetation
cover based on the (NDVI), and the increase in yield productivity and reduction in the yield gap,
specifically during the middle of the growing season (March and April). Integrating remote sensing
with meteorological data in supplementary irrigation systems can improve agriculture and water
resource management by boosting yields, improving crop quality, decreasing water consumption,
and minimizing environmental impacts. This innovative technique can potentially enhance food
security and promote environmental sustainability.

Keywords: irrigation system; NDVI; NDMI; meteorological data; center pivot

1. Introduction

Water stress is a pressing issue that affects many regions of the world, particularly in
arid and semi-arid areas where water resources are scarce. In recent years, governments and
humanitarian organizations have attempted to address this issue by improving access to
water for those living in water-stressed areas. However, as climate change and population
growth continue to pressure water resources, the problem is expected to worsen in the
coming years. In addition, water stress can impact agricultural production, which can have
an effect on the economy and food security [1,2]. Water stress can result in conflicts and mass
migrations in certain cases. Moreover, the migration of people due to water stress can pose
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new challenges for governments and humanitarian organizations. Mitigating the challenges
associated with water stress necessitates a collective endeavor from all stakeholders. Global
collaboration in water management, in conjunction with efficacious policies and practices at
the regional level, can facilitate the provision of secure and hygienic water access for all, and
avert the societal, economic, and ecological repercussions stemming from water stress [3].
Countries are being encouraged to implement innovative and sustainable measures such
as rainwater harvesting and enhanced irrigation techniques [2]. The Middle East has faced
a severe water scarcity problem in recent decades due to climate change and inadequate
management of water resources [4,5]. Water scarcity considerably limits wheat production
in Northern Iraq, especially in regions with low and erratic rainfall during the crop growth
period. In such circumstances, supplemental irrigation can boost and sustain yields over
time, particularly if applied during critical growth stages [6].

Supplementary irrigation has been identified as a plausible measure to address this
quandary. This entails the provision of supplementary water by farmers to their crops to
offset the shortfall in precipitation, especially during crucial growth phases, since wheat
necessitates varying quantities of water at distinct stages of its growth. The application
of supplementary irrigation at vital growth stages warrants the provision of adequate
water supply to the crop during its peak water requirements, and thereby augments and
preserves yields over a protracted time period, even in regions confronted with a dearth of
or erratic precipitation [1,7].

The inaccessibility of sufficient water resources can pose a formidable obstacle to
farmers, particularly during periods of drought [8]. Shallow and deep tube wells are
both employed as means to provide irrigation water. In 2007, the Ministry of Agriculture
and Water Resources of the KRI initiated a program to assist farmers with contemporary
irrigation systems, such as the center pivot, to enhance crop production after experiencing
droughts on several occasions in previous years. Nevertheless, inadequate awareness
regarding water scarcity and efficient water utilization has led some farmers to utilize
the center pivot for prolonged durations and over-irrigate by extending the center pivot
revolution time to amplify the water application depth. The assimilation of crop models
and remotely sensed data via optimization algorithms has emerged as an efficacious and
prospective technique for monitoring crop growth status and appraising crop yields, as it
ameliorates specific deficiencies and amalgamates the benefits of individual methods [9,10].

In the KRI region, groundwater is abundant and generally of reasonable quality, but it
has been heavily extracted for domestic, agricultural, and industrial purposes, resulting in
a depletion of the groundwater table level. Mitigating the effects of climate change and
rehabilitating nature requires more water management projects to ensure the efficient use
of available water. Groundwater is the primary source of inaccessible surface water, and
rainfall, groundwater, and rivers account for 51%, 48%, and 1% of crop production water,
respectively [11]. Despite an increasing number of wells and groundwater abstraction in
the Erbil plain, the aquifer is being harmed, with an average drop in groundwater levels of
50 m [2].

Agriculture is the largest water-consuming sector globally, accounting for 78–90% of
water use, followed by domestic and industrial use [12]. In Iraq, the agricultural sector is
the primary consumer of water resources. Irrigation in Iraq relies on three main sources
of water: surface water, rainwater, and groundwater, and farmers use drip, sprinkler, and
central pivot irrigation techniques [13]. Wheat and barley are the dominant crops in Iraq,
covering 73% of the total cultivated land [14]. Wheat productivity under irrigation exceeds
rainfed productivity by a factor of two to three, demonstrating the high productivity
potential of wheat varieties under irrigation [2]. Given the increasing scarcity of freshwater,
it is critical to optimize water use, particularly in irrigated agriculture [15]. Rainfall is the
primary source of water for agriculture in Iraq, accounting for 51% of water supply during
winter, while groundwater and rivers contribute 48% and 1%, respectively [16], as per the
joint report of UNDP, USAID, and FAO (2019). Farmers in arid regions are confronted with
a multitude of challenges, such as low agricultural productivity, frequent droughts, climate
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variability, high soil erosion rates, and deforestation [17]. Nevertheless, a comprehensive
study of drought must be conducted for each area to develop a research framework [18,19].
Understanding the spatial and temporal variations in crop growth is crucial for effective
crop management and achieving food security. The combination of remote sensing data
and crop growth models has proven to be a valuable approach for monitoring crop growth
and estimating crop yields.

The impact of climate change, combined with reduced water discharge in the Tigris
and Euphrates rivers, has led to more frequent droughts in Iraq, which have particu-
larly affected agriculture, resulting in significant reductions in crop yields and vegetation
cover [20]. The Erbil province, KRI, is particularly vulnerable to severe drought, with
reports indicating a reduction in precipitation and vegetation cover in 2000, 2008, 2012, and
2021 [21,22]. Southern and western parts of the KRI have been the hardest hit by rainfall
shortages, whereas the north and east have seen increased moisture levels. The FAO has
predicted that wheat crop production in northern Iraq will be approximately 50% lower in
2021 than the previous year, according to KRI authorities [8,23]. The use of secondary agri-
cultural data in combination with remote sensing can provide more accurate estimates of
irrigation performance [24]. The NDVI is a useful parameter for crop monitoring due to its
unambiguous response to irrigation interventions. Modern irrigation management strate-
gies aim to enhance agricultural productivity while minimizing water consumption [25],
which is crucial given the limited water supply in changing environmental conditions. The
NDMI can be used to describe a crop’s water stress level and is calculated as the ratio
between the difference and the sum of the refracted radiation in the near-infrared and
SWIR spectrums [26]. Effective water resource management and enhancement of water
productivity require a sound understanding and management of evapotranspiration [27].
Monitoring significantly varying Normalized Difference Vegetation Index (NDVI) values
in a region can provide valuable insight into potential pest or disease concerns and the
presence of weeds in areas of a field [28]. NDVI data can be used to display changes in
vegetation cover and analyze patterns of drought occurrences. However, the performance
of NDVI may be influenced by mistakes during the growing season and saturation effects
on dense vegetation [29]. Therefore, additional factors should be considered to improve the
precision of the results [30]. Various alternative vegetation and moisture indices are avail-
able to monitor crop growth, including the Enhanced Vegetation Index (EVI), Normalized
Difference Water Index (NDWI), Leaf Area Index (LAI), Soil Adjusted Vegetation Index
(SAVI), Thermal Vegetation Index (TVI), Crop Water Stress Index (CWSI), and Temperature
Vegetation Dryness Index (TVDI). The most appropriate index selection depends on vari-
ous factors, such as the type of crop, growth stage, and environmental conditions. NDVI
have been widely used in semi-arid areas and have shown good performance in detecting
vegetation changes [31–33]. The Normalized Difference Moisture Index (NDMI) is a reliable
indicator of vegetation water content and can be used to monitor water stress in crops or
other vegetation, particularly in areas where water stress is a concern [34,35]. NDMI is
derived from the difference between the near-infrared and mid-infrared bands of satellite
imagery. By monitoring NDMI values over time, changes in vegetation water content can
be detected and the level of water stress experienced by crops or other vegetation can be
assessed [15].

Inefficient water application occurs when the irrigation system is not appropriately
managed, resulting in uneven water distribution across the field, reduced crop yields,
and soil erosion. Such inefficiency happens when water evaporates or is lost through
other means. Minimizing water loss requires proper irrigation scheduling, use of efficient
irrigation systems, and managing the system appropriately based on remote sensing.
Monitoring through the Sentinel satellite every five days and ETo, ETc data helps ensure
proper irrigation scheduling based on remote sensing and GIS techniques. The capability to
develop agriculture effectively with limited water resources is a crucial strategic objective
for addressing future climate change and fulfilling Sustainable Development Goal 2 of the
United Nations (SDG2). The primary objective of this research is to comprehend the impact
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of drought and compare wheat production between rainfed and center pivot systems
during the study period. Additionally, it seeks to analyze the key factors that affect the
spatial and temporal variation of NDVI and NDWI in wheat cultivated on center pivots.
The study aims to investigate irrigation performance and water productivity at various
scales to develop suitable water management strategies, especially considering decreasing
water availability, rising threats from climate change, and growing population and food
demand. This study provides a new strategy for agricultural resource management by
providing consistent estimations of winter wheat water requirements and yield. This
information can be used to optimize irrigation practices and improve crop management,
particularly in arid and semi-arid regions where water availability is limited.

2. Materials and Methods

2.1. Study Area

The study area, comprising the Ain Kawa sub-district in the Erbil Governorate of
northern Iraq, is illustrated in Figure 1 and spans an estimated area of 25,525 hectares.
North Erbil was chosen as the case study region for a combination of reasons. Firstly, the
wheat, which is a crucial crop that contributes significantly to the Kurdistan Region of Iraq’s
economy, is extensively grown in the region. Secondly, Erbil is a vital agricultural center,
known as Iraq’s breadbasket, and is responsible for a substantial portion of the country’s
food supply. Finally, the need to enhance and expand the existing water management
sector in Iraq is pressing, and there are related challenges that require immediate attention.

Figure 1. Site map of the study area in Erbil, KRI.

2.2. Climate

The climatic conditions prevailing in Erbil, KRI, are predominantly continental, sub-
tropical, and semi-arid, while a Mediterranean climate characterizes the mountainous parts.
Rainfall in the mountainous areas usually occurs between December to February or Novem-
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ber to April. The average daytime temperature during winter is approximately 16 degrees
Celsius, which drops to around 2 ◦C at night, with a possibility of frost. Conversely, sum-
mers are characterized by high temperatures, with an average temperature exceeding 45 ◦C
in July and August and falling to around 25 ◦C at night [36,37]. The period of precipitation
in the region is typically between October to May, with the annual rainfall ranging between
100 and 200 mm. The Ministry of Agriculture and the Department of Meteorology in the
KRI have validated the accuracy of the average precipitation recorded during this period.
It is worth noting that farmers in the study region rely on rainfall to irrigate their crops,
although they often supplement it with irrigation to enhance crop productivity.

Meteorological Data

Figure 2 presents the data on the mean daily maximum and minimum temperature, rel-
ative humidity, wind speed, sunshine, and hours, collected from the Ministry of Agriculture
and Water Resources of Erbil for two stations during the year 2021.

 

Figure 2. Monthly precipitation, relative humidity, actual evaporation, maximum, minimum, and
mean temperature of North Erbil and surrounding areas recorded for 2021 years.

2.3. Sentinel 2 Satellite Imagery Acquisition

This study used open-access satellite data from the Sentinel 2 missions to calculate the
vegetation and water indices as a proxy for factors. Sentinel-2 is a 10 m high-resolution,
wide-swath, multispectral imaging mission that supports Copernicus Land Monitoring
investigations, such as plant, soil, and water cover monitoring, and observation of both
inland waterways and coastal regions [38]. Thirteen spatial resolution spectral bands
captured by Sentinel-2 represent TOA reflectance, including four bands at 10 m, six at
20 m, and three at 60 m spatial resolution. In addition to data from the Sentinel 2 missions,
detailed meteorological and secondary data from the literature were required, including
corn winter wheat crops for monthly, seasonal periods in 2021, with season intervals ranging
from January to May. The Copernicus Open Access Hub was used for this investigation to
obtain Level-1C products of Sentinel-2 A/B satellite data. These products contain top-of-
atmosphere (TOA) reflectance values for 13 spectral bands with spatial resolutions ranging
from 10 to 20 m. The Sentinelsat Python API was used to obtain the data for the study
area and time period of interest, which were subsequently preprocessed in Google Earth
Engine (GEE) to acquire surface reflectance values. The preprocessing procedure involved
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resampling the data to a standardized spatial resolution of 10 m, masking out clouds and
cloud shadows utilizing the SCL band, and applying a bi-directional reflectance distribution
function (BRDF) correction to consider the impact of directional effects induced by surface
roughness and slope.

In order to enable more in-depth analysis and visualization, the classified Sentinel
2 data underwent a process of division into smaller tiles. This was accomplished utiliz-
ing the ee.data.getTileUrl function in the GEE cloud-based platform, which allowed the
extraction of individual tiles based on their geographical coordinates and zoom level. The
resulting tiles were then saved in the GeoTIFF format, which can be easily imported into
QGIS and other GIS software for further processing and analysis. The classified and divided
Sentinel 2 data were subsequently subjected to a range of statistical analyses, including
frequency distributions, cross-tabulations, and spatial autocorrelation analysis, which were
performed using both GEE and QGIS software. These analyses were employed to quantify
the spatial patterns and relationships between different meteorological variables in the
study area. Additionally, it is imperative to comprehend the current status of the center
pivot’s performance for the purpose of determining its potential for improvement. As such,
a manual selection process was undertaken, which involved identifying 143 center pivot
farms in the vicinity for further investigation.

The biophysical factors were computed using the formula derived from Sentinel
2 Indices, which comprises two satellite sensors (S2A and S2B) that have generated products
with a 5-day temporal resolution (at the equator) and a 10 m spatial grid-cell resolution
since January 2021. The satellite products from the Sentinel 2 mission were obtained and
analyzed using GEE. The QGIS (v 24.3) geographic information system program utilized
the Semi-Automatic Classification Tool plugin, with the following options defined in
the plugin’s menu: (a) Band 4-RED and Band 8-NIR from Sentinel 2; (b) the study area
coordinates; (c) the time search windows from 1 January to 21 May in 2021, as well as
(Figure 3); and (d) an acceptable imagery cloud cover set to 100%. Figure 1 illustrates
a Google Earth satellite image of a farm utilizing a center-pivot irrigation system in the
study area.

 

Figure 3. Flowchart of the methodology adopted in this study.
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2.4. Validation Fields

The irrigation hours and actual evapotranspiration estimates were validated using
available measurements from 14 wheat fields (C1, C2, C3, . . . , C14) from January to May
(Figure 4). Comparison has been made the weekly evolution of irrigation, observed actual
ET, and the amount of irrigation and rainfall for the 14 wheat fields. A general coherence
was observed, suggesting the good performance of irrigation hours in mitigating crop water
stress through supplementary irrigation. The center pivot of the study area, characterized
by higher production and a regular irrigation system, had higher NDVI-based vegetation
density in fields C1 to C14, while fields in other center pivots had lower density.

 

Figure 4. Crop Calendar in Iraq [7].

2.5. Spectral Indices
2.5.1. NDVI

The Near-Infrared (NIR) and Red bands were also applied to calculate the NDVI
images [39]. The NDVI index is calculated with the aid of the red (Red) and the Near-
Infrared (NIR) bands of Sentinel-2 images, using Equation (1), as follows [39]:

NDVI = (B8 − B4)/(B8 + B4) (1)

where B4 is RED, 664.5 nm, and B8 is NIR, 835.1 nm.
Theoretically, NDVI values ranged between −1.0 and +1.0. However, the typical

range of NDVI gauged from vegetation and other earth surface materials is between
approximately −0.1 (NIR less than Red) for non-vegetated surfaces and as high as 0.9 for
dense vegetative cover. To better understand NDVI values, they are often classified into
different ranges. Typically, values between 0.1 and 0.4 indicate low vegetation density or
sparse vegetation, while values between 0.4 and 0.6 indicate moderate density or healthy
vegetation. Values above 0.6 indicate high density or very healthy vegetation. These
NDVI density classes can be beneficial when monitoring vegetation growth over time or
comparing different areas. For instance, if an area consistently has NDVI values within the
low-density range, it may indicate the need for irrigation or other interventions to promote
plant growth. Conversely, if an area consistently exhibits high NDVI values, it may suggest
a healthy and productive ecosystem [40].
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2.5.2. NDMI

The NDMI normalizes the different moisture response bands between near-infrared
(NIR) and shortwave infrared (SWIR) (Equation (2)). The linear correlation between the
NIR/SWIR ratio and leaf relative water content was discovered by Hunt Jr and Rock [41].
He calculated NDMI using the following equation:

NDMI = NIR − SWIR/NIR + SWIR (2)

where NIR is the Near-Infrared band and SWIR is the Shortwave Infrared band. The values
of these bands can be obtained from remote sensing data, such as satellite imagery.

The NDMI ranges from −1 to 1, where values closer to 1 indicate high moisture content
in vegetation, and values closer to −1 indicate low moisture content. In general, vegetation
with high moisture content reflects more NIR and absorbs more SWIR, resulting in a higher
NDMI value. NDMI is often used in agriculture and environmental monitoring to assess
vegetation health and drought conditions. It can be used to detect areas of vegetation stress,
monitor changes in soil moisture, and predict crop yields [41].

2.6. Meteorological Indices
Reference Evapotranspiration (ETo), and Crop Evapotranspiration (ETc)

The FAO Penman–Monteith equation is a close, simple representation of the physi-
cal and physiological factors governing the evapotranspiration process. Using the FAO
Penman–Monteith definition for (ETo), the formula for ETo using the Penman–Monteith
equation is:

ETo = (0.408 × delta × Rn + gamma × (900/(T + 273)) × U2 × (es − ea))/(delta + gamma × (1 + 0.34 × U2)) (3)

where:
ETo = potential evapotranspiration (mm/day).
delta = slope of the saturation vapor pressure-temperature curve (kPa/◦C).
Rn = net radiation at the crop surface (MJ/m2/day).
T = mean daily air temperature at 2 m height (◦C).
U2 = wind speed at 2 m height (m/s).
es = saturation vapor pressure (kPa).
ea = actual vapor pressure (kPa).
gamma = psychrometric constant (kPa/◦C) [42].
Crop evapotranspiration (ETc) is the amount of water lost from a crop due to evap-

oration from the soil surface and transpiration from the crop itself. It is a measure of the
amount of water required for a specific crop to achieve optimum growth and yield. Various
factors, including the climate, soil characteristics, crop type, and stage of growth, influence
ETc. The most common method used to estimate ETc is using reference evapotranspira-
tion (ETo), which is the amount of water lost from a reference crop under standardized
conditions. Once the ETo is calculated, crop coefficients are applied to adjust the ETo for
the specific crop being grown [42].

The resulting value is the crop evapotranspiration (ETc) for that crop at that location
and time. ETc is an important parameter in irrigation management, as it determines the
amount of water that must be applied to a crop to maintain optimal growth and yield. Over-
irrigation can lead to waterlogging and the leaching of nutrients, while under-irrigation
can reduce crop yield and quality. Therefore, an accurate estimation of ETc is crucial for
the efficient and sustainable use of water resources in agriculture [42]. The ETc equation is
expressed as:

ETc = Kc × ETo (4)

where:
ETc = crop evapotranspiration (mm/day).
Kc = crop coefficient (dimensionless).
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ETo = potential evapotranspiration (mm/day) [42].

3. Results and Discussion

3.1. NDVI and NDMI

Based on remote sensing data, the NDMI values show more pronounced changes
between February and March, potentially due to local farmers perceiving irrigation as
unnecessary during January and February’s cold weather. The higher variability in NDMI
values indicates that it responds to changes in soil moisture content. Similarly, the greater
vertical variability in biomass suggests that wheat biomass reacts more significantly to
moisture stress during the initial growth stage (February). This implies that crops are
more vulnerable to stress in March and April than in other months. A comparison of
NDVI- and NDMI-designated fields indicates that irrigation’s impact on crop yield varies
geographically, with a substantial yield increase observed in areas with abundant light.
To maximize yield, it is crucial to avoid water stress during the wheat’s most susceptible
seasons. However, there was a moderately negative correlation between NDVI and NDMI
in 2021. Moreover, the majority of hotspot fields exhibited higher NDMI values, while
bright spots showed early growth and greater biomass accumulation throughout the
growing stages. This difference may be related to irrigation methods and soil moisture
stress, particularly in March and April when the center pivot is essential for reducing
temperature and relieving soil moisture stress. However, some farmers do not irrigate
during January and February, which may lead to water stress. Remote sensing can detect
the effects of water stress on plants with a lag time.

The NDVI has been widely used to investigate the correlation between spectral vege-
tation variability and growth rate changes. The findings of this investigation have demon-
strated that the NDVI values fluctuated between 174.5 area/ha in January, the lowest area
of dense NDVI, and 6028.3 ha in April, the highest area. The NDVI Value is a numerical
index employed to assess vegetation health and growth. It indicates denser and healthier
vegetation, with higher values ranging from −1 to +1. The NDVI value categorizes vegeta-
tion density into different classes such as Dense, Moderate, Sparse, and Open vegetation.
The area of each category is measured in hectares (ha), a common unit in agriculture.
Table 1 shows the NDVI Area/ha for Dense Vegetation Classes for different months, which
include 1-Jan, 6-Jan, 11-Jan, 26-Jan, 15-Feb, 25-Feb, 7-Mar, 1-Apr, 11-Apr, 16-Apr, 21-Apr,
1-May, 6-May, 11-May, 16-May, and 21-May. The values of the NDVI area/ha for the Dense
category during those months are 1174.49, 386.00, 372.47, 549.33, 3191.68, 4536, 5334.15,
6028.25, 3850.27, 3327.33, 2362.02, 1789.78, 1702.87, 801.12, 171.77, and 58.61, respectively.
The Dense category signifies areas with high vegetation density, indicating the presence of
very healthy vegetation.

According to the data presented in Table 1, there was a noticeable change in the
vegetation status of the Center pivot area from January to May. Specifically, the NDVI value
of the Center pivot area decreased significantly in May due to the maturity stage of the
crops and the increase in ETo, which resulted in a reduction in the agricultural land area.
Moreover, the rise in temperature was detectable earlier, particularly during the drought
season. Thus, NDVI with NDMI can help improve our understanding of how irrigation
and climate change affect the yield and can be used as an early warning for Moisture stress.
Moreover, this information can assist farmers and policymakers in making more informed
management decisions. In order to achieve the greatest range of NDVI and NDMI values
for wheat crops in 143 central pivot areas in north Erbil, we utilized Sentinel 2 images on
coincident days. The dataset used for NDVI and NDMI was then split into two subsets:
a training dataset and a validation dataset. These datasets were collected from 1 January
2021 to 21 May 2021, covering fourteen Center pivot areas throughout the phonological
cycle to monitor various crops. The analysis of Tables 1 and 2 and Figures 5 and 6 revealed
that the study region experienced drought episodes over the study period, with March and
April 2021 being particularly affected.
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Table 1. Statistical indices of measured NDVI value, classes density, and area of each class.

Vegetation Classes 1-Jan-21 6-Jan-21 11-Jan-21 26-Jan-21 15-Feb-21 25-Feb-21 7-Mar-21 1-Apr-21

DENSE 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00
Area/ha 174.49 386.00 372.47 549.33 3191.68 4536 5334.15 6028.25

MODERATE 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60
Area/ha 411.69 1294.53 1171.53 2028.78 3269.82 3154.02 3043.28 2296.82
SPARCE 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40
Area/ha 3601.15 5261.86 4639.91 4554.1 2880.12 1410.72 1161.43 762.6

OPEN SOIL −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20
Area/ha 5055.9 3031.05 3182.37 1495.82 664.35 542.26 443.31 481.79

Vegetation Classes 11-Apr-21 16-Apr-21 21-Apr-21 1-May-21 6-May-21 11-May-21 16-May-21 21-May-21

DENSE 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00 0.60–1.00
Area/ha 3850.27 3327.33 2362.02 1789.78 1702.87 801.12 171.77 58.61

MODERATE 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60 0.40–0.60
Area/ha 2825.15 1535.55 1229.22 295.54 708.61 1184.93 409.53 126.65
SPASE 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40 0.20–0.40

Area/ha 2787.42 3660.23 4406.41 919.25 1600.48 2179.02 2961.71 2577.09
OPEN SOIL −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20 −1.00–0.20

Area/ha 442.22 626 763.32 1662.93 4208.1 5691.78 6222.15 7201.58

 

Figure 5. Temporal Variation of the NDVI Value-Based Vegetation Density Classes of Wheat Field
in 2021.
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Figure 6. Temporal Variation of the NDMI Value-Based Vegetation Density Classes of Wheat Field
in 2021.

Table 2. Statistical indices of measured NDMI Value, and area of each Classes.

NDMI Classes 1-Jan-21 6-Jan-21 11-Jan-21 26-Jan-21 15-Feb-21 25-Feb-21 7-Mar-21 1-Apr-21

HIGH
Area/ha

0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00
0.28 1.68 3.72 0.04 65.96 115.88 239.64 337.28

MODERATE
Area/ha

0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50
63.12 90.56 95.48 184.76 1618.2 2329.76 2961.12 3515.56

LOW
Area/ha

0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30
354.76 667.24 779.72 1700.92 3576.84 4301.56 4486.52 4859.68

OPEN SOIL
Area/ha

0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00
9563.54 9250.72 7202.48 3567.1 4781.4 3066.52 2331.81 921.62

NDMI Classes 11-Apr-21 16-Apr-21 21-Apr-21 1-May-21 6-May-21 11-May-21 16-May-21 21-May-21

HIGH
Area/ha

0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00 0.50–1.00
877.52 979.24 5.12 367.44 37.7 5.48 2.52 1.84

MODERATE
Area/ha

0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50 0.30–0.50
2616.08 2125.84 2313.64 1187.68 1005.96 594.6 86.76 40.36

LOW
Area/ha

0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30 0.10–0.30
3554.6 1700.84 1850.08 1024.64 1647.48 1840.68 361.7 489.92

OPEN SOIL
Area/ha

0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00 0.00–−1.00
2968.74 3588.14 4579.58 671.2 5759.16 2529.62 8867.86 9504.2

Table 1 shows the correlation between drought and reduced vegetation area/NDVI
mean values, further supporting the importance of water availability for vegetation growth.
It is also possible that other factors, such as temperature and nutrient availability, may
contribute to the observed differences in vegetation indices between the two fields. There
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is a clear difference in the vegetation indices (NDVI and NDMI) between the irrigated and
rain-fed fields during the growing season months of March and April. The irrigated field
shows a significant change in NDVI values and NDMI, which may indicate increased vege-
tation growth due to water availability. On the other hand, the rain-fed field experiences
drought during these months, which is correlated with reduced vegetation area and lower
NDVI mean values. It is worth noting that NDVI is a commonly used index for evaluating
the health and growth of vegetation, as it quantifies the chlorophyll content in plant leaves.
On the other hand, NDMI is an indicator of vegetation water content and can offer insights
into soil moisture conditions [7].

Consequently, the observed dissimilarities in NDVI and NDMI values between irri-
gated and rain-fed fields imply that water availability is a crucial determinant of vegetation
growth and productivity. Nonetheless, it was observed that NDMI values increased sig-
nificantly during the months of March and April, especially in the irrigated field, when
the crops were subjected to 72 to 96 h of irrigation per month. In contrast, the NDVI value
showed very little vegetation, particularly in the non-irrigated section of the study area
(see Figures 5 and 6).

These findings are consistent with those of a previous study by [43]. The temporal
fluctuations in NDVI and NDMI demonstrated that the drought resulted in a decline in the
value and extent of spectral indices from normal to extreme levels, with the non-irrigated
area being the driest. Conversely, the field where supplementary irrigation was applied
during the specified period had high NDVI coverage. The NDVI values revealed that
the non-irrigated area in the study region was affected by drought (see Figures 5 and 6).
However, the severity and spatial extent of the drought varied. Low values indicated a
dry season, whereas high values indicated a wet season [44]. From January to May, the
NDVI values exhibited temporal and spatial variations across the region (Figures 5 and 6),
primarily attributed to differences in precipitation amount, frequency, and intensity [45].
Moreover, meteorological factors such as precipitation, temperature, and relative humidity
were crucial in influencing NDVI variability [46]. The spatial variability of NDVI values
was determined by several factors, including climate, soil, temperature, ETo, and ETc
fluctuations (refer to Table 3).

Table 3. The fourteen fields were monitored during five months of irrigation, with irrigation hours
used for each center pivot by month.

Irrigation/h/mm

Location Longitude Latitude
Yield Kg/
Hectare

January February March April May
Total/
Hours

Mm/
Hours

Mm/
Season

1 43.96674 36.35929 3120 24 48 72 72 18 234 2.1 491.4
2 43.96334 36.36667 3400 36 48 86 72 18 260 2.1 546.0
3 43.96235 36.37074 3320 24 36 72 72 12 216 2.1 453.6
4 43.96983 36.37265 2960 24 48 72 72 12 228 2.1 478.8
5 43.97896 36.37460 3520 36 48 96 96 6 282 2.1 592.2
6 43.98112 36.36880 3360 24 48 72 80 6 230 2.1 483.0
7 43.98278 36.36585 3400 12 48 72 72 12 216 2.1 453.6
8 43.97472 36.37033 3400 12 36 72 80 12 212 2.1 445.2
9 43.97036 36.36933 3800 24 48 72 72 12 228 2.1 478.8

10 43.97635 36.36438 4800 24 48 96 96 12 276 2.1 579.6
11 43.97226 36.36283 3520 18 36 72 80 6 212 2.1 445.2
12 43.97428 36.36111 4400 24 48 72 96 24 264 2.1 554.4
13 43.95905 36.28151 5000 24 48 76 96 12 256 2.1 537.6
14 43.97158 36.28487 4800 36 48 76 96 18 274 2.1 575.4

The NDMI is a remote sensing metric used to measure how much water is in vegetation.
Higher values mean that the vegetation has more water. Such areas may be irrigated or have
access to other sources of water. The NDMI values for certain months and areas. Larger
values mean that plants are especially healthy because there is a lot of water. Specifically,
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NDMI values for the High Values category in the months of January through May. The
values for this category are 0.28, 1.68, 3.72, 0.04, 65.96, 115.88, 239.64, 337.28, 877.52, 979.24,
5.12, 367.44, 37.7, 5.48, 2.52, and 1.84, respectively. High Values in the table indicate areas
with abundant water in the vegetation, which signifies particularly healthy vegetation.
Both the NDVI and the NDMI are commonly used as remote sensing indices to measure
how healthy plants are and how much water they have. This information could be used to
improve irrigation efficiency and determine how much water plants need based on satellite
data. NDVI is typically used to estimate crop yield, vegetation cover, and photosynthetic
activity. In this study, NDVI was used to find plants that were water stressed, which is a
common problem in agriculture that uses water. Farmers can improve irrigation schedules,
increase crop yields, and waste less water by keeping an eye on NDVI values.

The NDMI index is utilized for the estimation of soil moisture and water stress in
crops, and it can aid farmers in adjusting their irrigation schedules to optimize water
usage and improve crop yield. Changes in NDVI and NDMI values prior to and following
irrigation can assist farmers in gauging the amount of water required to attain the desired
vegetation growth or moisture content. The NDMI values were observed to be at their
minimum during January and May, indicating reduced vegetation and lower NDVI values
(Figures 5 and 6), which could be attributed to decreased rainfall during those months.
However, during February, March, and April, NDMI values increased, which was positively
correlated with the application of supplementary irrigation, suggesting that irrigation had
a beneficial impact on vegetation growth during these months. The decline in NDMI values
during the growth season could be attributable to the adverse effects of high temperatures
on vegetation growth. The study area witnessed a significant decrease in annual rainfall
averages, which could have impacted overall vegetation growth. The 14 fields received
445.2 mm and 579.6 mm of irrigation water, respectively.

During the 2021 monitoring season, irrigation amounts were measured in Fields C1 to
C14 using a water meter, which recorded a total of 350 mm of water. One or two irrigation
events were performed during the early growing stage to ensure the establishment of
robust young plants. Subsequently, irrigation for Fields C1 to C14 was scheduled based on
NDMI sensor measurements to irrigate when the depletion level within the rooting zone
was ready to drop 60% of the total available below. An algorithm was executed with a crop
file created based on Fields measurements and observations and dynamically modified
during the cultivation season by adjusting weather parameters. Field-specific constraints,
such as not allowing irrigation events to occur more often than once every four days, were
integrated into the scheduling process. In cases where the generated irrigation schedule
was not followed (e.g., due to an electrical failure in the pumping station or damage to the
irrigation system), the algorithm was re-executed, and the irrigation schedule was adjusted
accordingly. Despite these adjustments, consistent violations of the first depletion threshold
occurred, as irrigation was applied either before the threshold was reached or after the
water content had fallen below it.

In dryland areas, supplemental irrigation is often necessary to support crop growth,
especially during the winter months from January to May. The region employs various
irrigation technologies, including Center pivot irrigation and homogeneous irrigation sys-
tems. Monitoring vegetation variability using central pivots is feasible, and the NDMI is a
useful input variable for irrigation prediction models, as it correlates with the NDVI, which
is considered moderate in Center Pivot techniques (as demonstrated in Figures 6 and 7).
It is crucial to validate modeling results to ensure their reliability. Figure 8 shows low
variability, indicating that the modeling approaches used in this study were robust. The
study utilized a combination of remote sensing techniques and meteorological data to
evaluate the efficacy of irrigation systems, and the results indicated that this approach was
reliable and robust. Remote sensing was employed to collect data on the water supply
to crops and its impact on crop growth, while meteorological data provided information
on weather patterns, including precipitation, temperature, humidity, ETo, and ETc, which
affected crop growth and irrigation needs. The integration of these two data types enabled
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the development of a comprehensive model for assessing irrigation system performance.
The study found that this approach was effective in providing accurate information about
the system’s performance, which could help optimize irrigation methods and enhance
crop yields.

Notably, all methodologies employed in this study were linear based. Ideally, a
well-designed irrigation system would ensure uniform water distribution, which would
result in homogeneous water consumption patterns across fields. However, several factors,
including deficient infrastructure, inadequate management practices, soil type, water
quality, and fertilization, can lead to non-uniform water use across fields and zones. The
amount of irrigation water applied in each event was measured through the use of rain
gauges positioned above the crop canopy (see Figures 7 and 8). This methodology was
proposed and implemented by María [47].

 

Figure 7. Temporal Variation of the NDVI Value of Centre pivot fields in 2021.
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Figure 8. Temporal Variation in the NDMI Value of Center pivot fields in 2021.

3.2. Crop Water Use and Water Use Efficiency

During the period from January 2021 to May 2021, a total of 14 Center pivot (C)
fields were subjected to rigorous monitoring to ascertain their irrigation schedules, crop
growth, and soil moisture profiles, enabling the assessment of water productivity. The
irrigation schedules were established by the farmers, who relied on weather forecasts
to optimize their plans. In this regard, the irrigation plan was adjusted to compensate
for the lack of spring precipitation, thereby ensuring a reliable supply of water for crop
development in the long term. However, this approach was unable to account for the
non-linear effect of water shortages during specific phonological stages on crop yields.
Irrigation was carried out using the Center pivot technique, and the monthly amount of
water was distributed evenly over two to three irrigation events, spaced two weeks apart.
The first two rounds of watering were conducted in January, following a principle that was
empirically established by the farmers as optimal for maintaining the moisture content of
Vertisol, while minimizing water losses due to frequent irrigation. The remaining fields at
each site served to verify the measurements obtained from the intensively monitored fields.
Groundwater served as the primary source of irrigation water in the wheat fields. While
direct measurements are typically more accurate, transpiration and evapotranspiration are
challenging to measure and must be derived from the Cropwat table).
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In Table 3, the validation of irrigation measurements was conducted for 14 wheat
fields (C1, C2, C3, . . . , C14) from January to May. The validation included a comparison
of the weekly evolution of irrigation and observed actual ET, along with the amount of
irrigation and rainfall for each of the 14 wheat fields. The validation fields exhibited a
high level of coherence, indicating the effectiveness of the irrigation hours in mitigating
crop water stress through supplementary irrigation. In April, the center pivot of C12, C13,
and C14 with regular irrigation had higher vegetation density and yield, as evidenced by
NDVI, whereas fields in other center pivots had lower density. Integrating remote sensing
techniques and meteorological data can provide valuable insights into the performance of
an ideal irrigation system, which can enhance crop productivity. The study results suggest
that remote sensing and meteorological data integration can facilitate the identification of
optimal irrigation schedules and strategies for specific crops and regions. By monitoring
vegetation health using remote sensing techniques, farmers and irrigation managers can
adjust irrigation schedules to match crop water requirements, thereby reducing water waste
and improving crop productivity. More frequent irrigation may be necessary in hot and
dry conditions, whereas irrigation may not be required for a certain period.

3.3. NDVI and NDMI Time Series of Wheat Crop

In the period from January to May 2021, some center-pivot fields were planted with
a single crop type, while others had alternating crop types, resulting in variations in
NDVI and NDMI time series behavior. To examine this variation, NDVI and NDMI were
compared for the Wheat Crop. Specifically, NDVI and NDMI were identified from 143 fields
where only Wheat Crop was planted throughout the study period. The fields, each with
a diameter of approximately 800 m, were divided into 2500 pixels, and the mean value
for each field was determined by averaging the NDVI and NDMI of these pixels. Crop
statistics were derived from the NDVI and NDMI time series data for the wheat crop,
including maximum (Max) and minimum (Min) values, amplitude variation (Amp), and
standard deviation (Std), to establish differences in time series behavior (see Appendix B
Tables A2 and A3). In March and April, NDVI and NDMI values fluctuated significantly
more in irrigated lands than in non-irrigated lands, possibly due to the influence of ETo
and temperature on vegetation growth. To assess the changes in vegetation, the changes
in classes (1, 2, 3, and 4) for NDVI and Dense, Moderate, Sparse, and Open soil classes
were calculated. The category with the greatest change relative to the other four was then
identified as the dominant category.

To demonstrate changes over time, the relative dominance of each class category was
computed for each period. The NDVI and NDMI indices revealed that the non-irrigated
portions of the field experienced drought conditions in February, March, and April, as
indicated by the low NDVI values. The severity and extent of the drought varied over
time and space. The values for January to May displayed spatial and temporal variability
across the region, which can be attributed to the prevailing temperature and humidity
conditions. The fluctuation in NDVI values is influenced by weather-related parameters
such as rainfall, temperature, and humidity levels. Temporal variations in climate, soil, and
temperature cause changes in NDVI values.

3.4. Evolutions of Observed NDVI and NDMI

While Figures 7 and 8 focused on the relationship between NDMI-based soil moisture
and NDVI-based vegetation health in Wheat Crop, we aim to assess the possibility of
detecting irrigation events using Sentinel-2 data by analyzing their association with real-
world data. As illustrated in Figure 8, the NDMI in the center pivot area that was irrigated
was notably higher than that in the nearby bare soil area.

In the Center pivot field, soil moisture levels were high due to irrigation, while
the other field showed significant variability in soil moisture levels before June 2021.
The wheat crop was grown and harvested frequently from January to June 2021, with
irrigation durations ranging from 12 to 96 h, as per farmer records. The field was planted
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with maize from August 2020 to December 2020, and irrigation maintained high soil
moisture levels during that period. After the maize was picked, irrigation stopped until
January 2021. This led to a sharp drop in the amount of water in the soil. However,
soil moisture increased in mid-February 2021 after an 18 mm precipitation event from
11–15 February, which was captured by the Meteorological Station and resulted in an
increase in both NDVI and NDMI (Figure 8). High temperatures are believed to impact
vegetation strength and cause plant stress. The mean NDMI values increased in all center
pivot irrigated fields, consistent with the trend of NDVI variation (see Figures 7 and 8).
Although a lack of precipitation is typically the primary cause of drought, elevated potential
evapotranspiration is associated with temperature and relative humidity. The evidence
presented indicates that soil moisture plays a limiting role in the actual evapotranspiration
process, especially during drought conditions, as it prevents excessive drying. Temperature
and other factors that influence vegetation development and phenology also have an
impact on actual evapotranspiration [48]. Thus, NDVI is a reliable sign of drought, and it
is important to use empirical NDVI-NDMI-based indices to improve the performance of
irrigation systems and increase crop yields. The average NDVI, which reflects the greenness
of vegetation, is strongly linked to seasonal rainfall, indicating the potential use of NDVI as
a drought predictor.

3.5. Correlation Matrix between NDVI and NDMI

Figure 9 displays the average NDVI time series profile for 2021, which shows a
significant correlation between NDVI and NDMI. The projected green cover increased from
about 0.40 to 0.80 between February and April, likely due to irrigation, before dropping to
0.6 by the end of April as irrigation decreased in preparation for the harvest season. The
average NDVI increased due to an increase in NDMI but then dropped to 0.20 in May after
the maturation and harvesting phase. Sentinel2 was able to detect changes in vegetation or
physiological density accurately. All monthly index values were significantly correlated
with meteorological parameters from various locations with a 95% confidence level. NDVI
increased at several locations in the 143 center pivot and rain-fed area due to increased
rainfall, irrigation, and temperature. The combination of moisture content and temperature
played a significant role in reducing NDVI values. Ongoing land and crop degradation
and yield losses occurred due to a lack of vegetation cover and relative humidity caused
by insufficient rainfall during the growing season (Table A1). Increased temperatures
can have severe natural consequences, increasing ETo and ETc. This suggests that crop
development was not uniformly distributed across the region, even in times of water
shortage, and some farmers were able to achieve acceptable crop growth by effectively using
water through supplementary irrigation and implementing good agricultural practices.
Remote-sensing-based NDVI and NDMI can provide valuable insights into the spatial and
temporal distribution of crop irrigation water requirements at the field level, which can
be compared to in situ monitoring of observed irrigation water supplied at the irrigation
district scale. Acceptable estimates of ET0 and ETc for wheat (73.7, 98.4, 125.1, 229.4, and
319.2 mm/month) and (42.7, 57.1, 93.8, 229.4, and 383.0 mm/month) were obtained under
various weather and water management conditions with irrigation periods of 12, 24, 48, 72,
and 96 h, respectively, according to farmer records for the months from January to May.
Figure 9 provide further details on this.

The significant rise in temperature can be attributed to the absence of rainfall, which
caused a lack of moisture and resulted in higher ETo and ETc. One of the consequences
of the increased ETc in April and May in the study area is the elevated temperature and
decreased NDVI (Figure 9). This indicates the adverse effect of high temperature on the
vegetation growth environment, resulting in lower vegetation values and area (NDVI) in
the region. Only a few Center pivot areas in the study saw an increase in NDMI values,
which was reflected in a vegetation increase in NDVI. Due to its location, Iraq’s climate
has transformed into a semi-arid climate, with a heavy influence from the Mediterranean
climate characterized by hot, dry summers and warm, wet winters. Rainfall, temperature,
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sunshine, and wind speed have a negative impact on wheat yield and chlorophyll content
in semi-arid environments. The study suggests that the irrigation schedule followed by
farmers compensated for the insufficient spring rainfall, resulting in sustainable crop
growth. However, this approach did not consider the non-linear effects of water scarcity
during specific phenological stages on crop yield. The newly proposed approach helps
prevent harmful stress on wheat and ensures the proper distribution of water based on
agronomic principles in a center pivot system. These results align with the findings of
Polinova et al. (2019) [25].

 

Figure 9. Monthly Precipitation, ETo, ETc, NDVI, NDMI, Average Temperature in study area recorded
in 2021.

The NDVI has been associated with numerous vegetative properties, including pho-
tosynthetic capacity. Sufficient irrigation must be provided for a larger wheat yield to
encourage strong output intensity. Figures 7 and 8 demonstrate the observed irrigation
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water supply distribution, showcasing clear shifts from one month to another in both the
applied and required irrigation water. The different shapes of the irrigation distribution
reveal that farmers’ use of irrigation water varies significantly from month to month, which
may be influenced by both farmers’ irrigation decision making and the small portion of
crop water requirements met by rainfall, which was higher in the dry months of January
and February 2021. During the research period (March), there was a slight increase in
the average NDVI, although the increase was more noticeable. The average NDVI re-
mained steady throughout the growing seasons (March to April). Even though 90% of
the precipitation occurred during the growing seasons, annual precipitation varied greatly
from 60.8 mm in January to 2.6 mm in May 2021 (Figures 9 and 10). These significant
changes seemed to impact crop development, suggesting that sufficient irrigation water
was available to support wheat growth throughout the growing season. This study defines
water consumption as the amount of water that evaporates and seeps from an agricultural
zone rather than the amount used for crop irrigation or diverted for that purpose. It was
shown that by combining remote sensing and GIS techniques, a comprehensive evaluation
of irrigation efficiency can be achieved for different irrigation systems [49].

 

Figure 10. Temporal Variation of the NDVI and NDMI Value Based Vegetation Density Classes of
143 Center pivot wheat Field in 2021.

3.6. Crop Growing Period (NDVI)

Figure 11 displays the vegetation cover trend over a period of five months, indicating
an upward trend in January, reaching its highest point in March and April, and declining
to the lowest level at the end of May, which is consistent with the reported rates. The
fluctuations in NDVI values during these months are heavily influenced by the precipitation
and irrigation water requirements, as evidenced by the strong correlation between NDVI
and NDMI, which varied in unison with an R2 of 0.904 (Figure 11). Remote sensing provides
a holistic perspective of ground conditions. This study utilized available data to explore
the correlation between irrigation schedules, crop yield, and remote sensing data. The final
stage of the research involved a comparison of the findings obtained through the analysis of
remote sensing data. By considering all the environmental factors that impact crop growth,
and by evaluating the performance of irrigation, the study aimed to determine the root
causes of variations in NDVI and NDMI values [50]. Nonetheless, it is worth mentioning
that certain factors may not be pertinent or suitable in all situations [51,52]. The study
period covered five months from January to May, with one growing season per year for
wheat (Figure 4). The variability of climatic influences on drought, temporal changes, and
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their relationship with precipitation, irrigation hours, ETo, ETc, and temperature is evident
(Figure 12).

 

Figure 11. NDMI Correlation with NDVI-wheat in 143 Center pivot wheat Field -2021.

 

Figure 12. Temporal variation of the NDVI and NDMI value-based vegetation density classes of
Center pivot wheat field from 1 January to 21 May 2021.

The NDVI is influenced by ETo, soil temperature, and irrigation, resulting in correla-
tion values of 0.49, 0.55, and 0.76, respectively. Despite this, the growth rate of the crop is
significantly affected by the NDMI. Although there is a strong relationship between NDMI
and irrigation, with a correlation of approximately 0.91, it is not statistically significant, as
shown in Figure 11 and Table A1. By analyzing 143 selected fields, it was found that the
correlation between NDVI and NDMI increased the yield output when sufficient irrigation
was provided in February, March, and April (Figure 11). Using EXLSTAT, the correlation
coefficients for NDVI, NDMI, Irrigation, ETo, and ETc were calculated during the grow-
ing season spanning from January to May, an average of five months. These correlation
coefficients are illustrated in Figures 12–14.
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Figure 13. NDMI Correlation with NDVI-wheat in 143 Center pivot wheat field products with a
5-day temporal resolution.

 

Figure 14. Principal Component Analysis of temporal Pattern changes of NDVI and NDMI with
Meteorological parameters.

The findings revealed a strong and positive association between ETc and both NDVI
and NDMI. Similarly, there was a positive correlation observed between NDVI and NDMI.
These correlations between remote sensing-derived spectral indices and meteorological
parameters were statistically significant. After 2020, the planting of maize ceased in the field,
and the surface was bare until September 2021. Both time series of NDVI and NDMI present
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fluctuations in vegetation, with peaks up to 1 and 0.5 for NDVI and NDMI, respectively,
occurring during growing seasons. High values with a maximum NDVI of 1 and NDWI
of 0.5 were observed in March 2021, which may have been caused by the presence of
supplementary irrigation. The study also noticed through the trend of increasing the value
of NDVI that the effect of supplementary irrigation during the months of the study was
different, and this change mainly depended on the amount of precipitation falling for
each month in the study area, and other environmental factors that also play a prominent
role in the growth of the wheat crop (Figure 12). The results are consistent with multiple
investigations [53–55].

Temperature is a key factor affecting the transpiration process of crops, as demon-
strated by the significant fluctuation in ET0 values between January and May, correspond-
ing to the growth and harvest stages of the crop (Figure 13). Additionally, the wheat fields
studied through farmer interviews were located in 14 Center pivot fields.

The fields had similar irrigation schedules, with an average of 48 irrigation hours
distributed over two periods in January due to sufficient rainfall. However, in February,
with a decrease in the precipitation rate and the application of fertilizers, the irrigation
requirements of the fields increased to one hour, resulting in the need for three irrigation
periods. PCA was utilized to determine the primary modes of variability in a dataset
that examined the temporal changes in NDVI and NDMI in relation to meteorological
parameters. NDVI and NDMI are remote sensing indices that are commonly used to
monitor vegetation and moisture content, respectively (Figure 14). By examining the
changes in these indices over time and their connection to temperature and precipitation,
PCA identified the crucial factors influencing the changes in vegetation and moisture
patterns. To carry out the PCA analysis, a covariance matrix of the dataset was constructed,
and the matrix was eigendecomposed to obtain the principal components, which are linear
combinations of the original variables that represent unique patterns of variability in the
data. Typically, the first few principal components account for most of the variance in the
dataset and are used to summarize the dominant modes of variability. The PCA of the
temporal pattern changes in NDVI and NDMI in relation to meteorological parameters
yielded valuable insights into the underlying factors responsible for changes in vegetation
and moisture patterns over time and can aid in the identification of critical variables for
monitoring and predicting these changes.

4. Conclusions

The NDMI is a valuable tool for detecting moisture deficiencies in crops and identify-
ing under-irrigated areas. This information can be used to divide fields into zones with
different water needs and schedule precision irrigation events as needed. Crop Monitoring
provides historical and current precipitation data, NDVI index graphs, and precipitation
monitoring graphs. By analyzing seasonal weather and precipitation patterns, it is possible
to plan precision irrigation strategies for different fields. In addition, Crop Monitoring
offers a 5-day weather forecast for each field, which helps farmers decide on the need for
watering activities to ensure proper soil moisture for crops. Precision irrigation is cost
effective, providing sufficient water supply to crops in areas with limited rainfall. Crop
Monitoring tracks changes in the NDVI for individual fields throughout the season. This
helps farmers identify areas of weak and strong productivity across the field and create
special maps for variable-rate applications of seeds and fertilizers. NDVI values can vary
throughout the growing season, indicating water stress or waterlogging, and can be visual-
ized through maps and graphs. Crop Monitoring also provides current and historical soil
moisture data and NDVI index graphs, which help farmers track the correlation between
rainfall and moisture levels in the field. NDMI values also vary throughout the growing
season and can be visualized through maps and graphs, indicating water stress or water-
logging. A decrease in NDMI values suggests water stress, while abnormally high values
could signal waterlogging. Visualization of NDMI through maps and graphs helps farmers
detect problem areas in the field and save time and resources. Water supply is a critical

183



Water 2023, 15, 1605

factor for plant growth, along with sunlight, nutrients, and soil temperature. While fields
in areas with frequent rainfall receive sufficient water for crop growth, additional watering
is necessary to maximize yields in semi-arid regions [56–58].

For a crop to progress from germination to the reproductive growth stage, where it
can begin to produce grain, it requires at least 100 mm of water. It is worth mentioning
that, according to the local meteorological station data, the 2021 crop season had the least
precipitation and was classified as a drought season. In this study, the focus was on
quantifying the loss of water due to evaporation from soil and transpiration from plants,
which is collectively known as evapotranspiration. The most commonly used method
for calculating evapotranspiration is to determine the reference evapotranspiration (ETo),
which is the amount of water that would be lost from a standardized grass surface under
specific conditions [59].

The Penman–Monteith equation is often used to calculate ETo, taking into account
weather variables such as temperature, humidity, wind speed, and solar radiation. To
adjust ETo for different crop types, a crop coefficient (Kc) is used, which represents the
ratio of the actual evapotranspiration of a crop to the reference evapotranspiration. The Kc
value is dependent on the crop growth stage, canopy cover, and other factors, and can be
determined from tables or estimated using empirical formulas. Crop evapotranspiration
(ETc) is calculated by multiplying ETo with Kc, and it represents the amount of water
required to meet the crop’s water needs. ETc is calculated for each crop growth stage and
added up over the entire growing season to estimate irrigation water requirements, which
is the amount of water needed to supplement natural precipitation to meet the crop’s water
requirements. Irrigation water requirements can be calculated for different time periods,
such as monthly, depending on the capacity of the irrigation system. This study engaged in
collaboration with farmers and implemented a systematic approach to determine optimal
irrigation water quantity and timing, aiming to satisfy crop water requirements, improve
yield, reduce water usage, and address environmental concerns. The outcomes of this
research align with findings from prior investigations. Furthermore, it was observed that
the elevated temperatures in the growing season and spring led to heightened evaporation
rates, necessitating longer irrigation periods [56–59].

This suggests a considerable need for additional irrigation during the drought year
2021. This study investigated the use of remote sensing techniques and meteorological data
to assess the ideal irrigation system performance scenarios for improving crop productivity
in the Erbil province of Iraq. The study period covered five months of the wheat growing
season. The results demonstrated that vegetation coverage was significantly affected by
climatic factors such as precipitation, irrigation hours, and temperature, particularly in the
months of March, April, and May. The study also showed that the use of supplementary
irrigation in rain-fed areas is essential to mitigate the impact of drought. The correlation
between NDMI and NDVI was significant, likely due to the delayed effect of insufficient
precipitation on vegetation. The Sentinel2 satellite provided accurate predictions of irriga-
tion conditions, and the developed model was suitable for different time scales, ensuring
the reliability and efficiency of water requirement predictions. Severe water stress was
observed throughout the rain-fed area in March, April, and May, despite the widespread
drought conditions in Iraq during that year. However, north Erbil’s center pivot irrigation
areas were unaffected by the lack of precipitation and water stress [56,57,60].

This study employed meteorological data and remote sensing-based indices to identify
optimal irrigation schedules and water use anomalies. Including agricultural production
and surface evaporation data could further improve the assessment of these factors during
drought periods. Integrating remote sensing and evapotranspiration models can support
irrigation managers in optimizing irrigation schedules and detecting areas with irrigation
problems, leading to more efficient and sustainable irrigation practices. However, remote
sensing techniques have limitations, such as inadequate spatial and temporal resolutions
and inaccurate calibration. While continuous monitoring of the same field over multiple
years is impractical due to the study area’s crop rotation method, precision irrigation
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systems that depend on integrated remote sensing and meteorological data can significantly
impact agriculture and water resource management. Such systems can provide up-to-
date information on crop health and moisture levels, which can be used to design and
optimize precision irrigation systems that deliver water and nutrients where and when
needed [56–58,60]. This approach can increase crop yields and quality, reduce water usage,
and mitigate adverse environmental impacts such as soil erosion, nutrient leaching, and
water runoff. Adopting precision irrigation systems based on remote sensing can also help
address water scarcity issues at both the global and local levels, given that agriculture
accounts for most freshwater usage worldwide. The development and adoption of such
systems represent a significant advancement in agriculture and water resource management,
which has the potential to enhance food security and environmental sustainability. Despite
some moderate research linking wheat crops with NDMI and NDVI, there is still little
investigation of wheat crop monitoring based on these indices in the KRI.
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Appendix A

Table A1. Correlation matrix (Pearson (n)).

Variables NDVI NDMI
Precipitation

(mm)
Min

Temp ◦C
Max

Temp ◦C
Humidity

%
ETo/mm/
Month

ETc/mm/
Month

Soil
Temperature

(30 cm)

Irrigation
(Hours)

NDVI 1.00 0.93 −0.86 0.42 0.63 −0.44 0.49 0.80 0.55 0.67
NDMI 0.93 1.00 −0.62 0.07 0.32 −0.12 0.15 0.59 0.22 0.89

Precipitation
(mm) −0.86 −0.62 1.00 −0.77 −0.89 0.78 −0.83 −0.95 −0.85 −0.26

Min Temp ◦C 0.42 0.07 −0.77 1.00 0.96 −0.96 0.99 0.79 0.98 −0.27
Max Temp ◦C 0.63 0.32 −0.89 0.96 1.00 −0.97 0.98 0.93 0.99 0.01
Humidity % −0.44 −0.12 0.78 −0.96 −0.97 1.00 −0.98 −0.87 −0.98 0.14

ET0/mm/month 0.49 0.15 −0.83 0.99 0.98 −0.98 1.00 0.86 1.00 −0.17
ETc/mm/month 0.80 0.59 −0.95 0.79 0.93 −0.87 0.86 1.00 0.89 0.32
Soil Temperture 0.55 0.22 −0.85 0.98 0.99 −0.98 1.00 0.89 1.00 −0.11

Irrigation (h) 0.67 0.89 −0.26 −0.27 0.01 0.14 −0.17 0.32 −0.11 1.00

Note: Values in bold are different from 0 with a significance level alpha = 0.05.
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Appendix B

Table A2. Monthly Average NDVI in 143 Center Pivot Values Zonal Statistics.

Field
NDVI-

Jan
NDVI-
Febf

NDVI-
Mar

NDVI-
Apr

NDVI-
May

Count Sum Mean St. Dev Variance Mean

1 0.71 0.81 0.81 0.77 0.31 2634.0 2209.8 0.84 0.07 0.00 0.84
2 0.20 0.56 0.72 0.83 0.53 2568.0 2198.4 0.86 0.04 0.00 0.86
3 0.65 0.85 0.84 0.80 0.31 1639.0 1425.4 0.87 0.05 0.00 0.87
4 0.57 0.85 0.83 0.80 0.35 1944.0 1678.4 0.86 0.04 0.00 0.86
5 0.84 0.88 0.85 0.80 0.36 2876.0 2507.8 0.87 0.04 0.00 0.87
6 0.18 0.43 0.61 0.80 0.53 3793.0 3089.1 0.81 0.08 0.01 0.81
7 0.41 0.61 0.68 0.79 0.44 1512.0 1237.9 0.82 0.03 0.00 0.82
8 0.40 0.61 0.62 0.76 0.43 864.0 693.0 0.80 0.06 0.00 0.80
9 0.57 0.76 0.81 0.83 0.42 865.0 765.2 0.88 0.04 0.00 0.88

10 0.40 0.70 0.77 0.80 0.47 1720.0 1417.8 0.82 0.06 0.00 0.82
11 0.19 0.53 0.65 0.73 0.45 835.0 632.5 0.76 0.06 0.00 0.76
12 0.25 0.54 0.69 0.79 0.38 1787.0 1479.5 0.83 0.07 0.00 0.83
13 0.42 0.76 0.81 0.81 0.46 1506.0 1269.7 0.84 0.04 0.00 0.84
14 0.21 0.25 0.37 0.72 0.66 1861.0 1229.1 0.66 0.18 0.03 0.66
15 0.25 0.62 0.67 0.65 0.44 829.0 558.1 0.67 0.12 0.01 0.67
16 0.23 0.56 0.65 0.74 0.38 1727.0 1332.9 0.77 0.06 0.00 0.77
17 0.18 0.43 0.62 0.74 0.47 1703.0 1363.0 0.80 0.06 0.00 0.80
18 0.40 0.78 0.79 0.84 0.58 2014.0 1732.6 0.86 0.04 0.00 0.86
19 0.44 0.82 0.81 0.80 0.53 2076.0 1773.0 0.85 0.04 0.00 0.85
20 0.72 0.89 0.88 0.81 0.37 985.0 854.9 0.87 0.05 0.00 0.87
21 0.29 0.59 0.65 0.60 0.33 1988.0 1420.8 0.71 0.23 0.05 0.71
22 0.24 0.56 0.66 0.77 0.55 844.0 662.4 0.78 0.05 0.00 0.78
23 0.73 0.79 0.66 0.74 0.77 874.0 730.8 0.84 0.10 0.01 0.84
24 0.22 0.51 0.59 0.78 0.44 1810.0 1451.4 0.80 0.06 0.00 0.80
25 0.25 0.70 0.78 0.74 0.48 1838.0 1412.2 0.77 0.05 0.00 0.77
26 0.45 0.77 0.80 0.77 0.56 1997.0 1627.5 0.81 0.14 0.02 0.81
27 0.38 0.77 0.78 0.81 0.55 2117.0 1778.2 0.84 0.04 0.00 0.84
28 0.44 0.79 0.83 0.82 0.52 1510.0 1300.7 0.86 0.04 0.00 0.86
29 0.17 0.49 0.60 0.76 0.40 1014.0 808.1 0.80 0.09 0.01 0.80
30 0.55 0.78 0.80 0.82 0.43 1986.0 1690.8 0.85 0.06 0.00 0.85
31 0.52 0.81 0.86 0.79 0.54 2013.0 1720.3 0.85 0.03 0.00 0.85
32 0.69 0.87 0.88 0.82 0.53 1699.0 1448.5 0.85 0.04 0.00 0.85
33 0.50 0.80 0.85 0.80 0.58 1097.0 938.9 0.86 0.05 0.00 0.86
34 0.50 0.86 0.85 0.82 0.52 3061.0 2688.2 0.88 0.04 0.00 0.88
35 0.63 0.86 0.85 0.83 0.44 1897.0 1628.4 0.86 0.04 0.00 0.86
36 0.27 0.72 0.81 0.75 0.35 1943.0 1653.0 0.85 0.05 0.00 0.85
37 0.32 0.69 0.74 0.81 0.49 1807.0 1531.8 0.85 0.03 0.00 0.85
38 0.29 0.61 0.71 0.74 0.33 2107.0 1663.0 0.79 0.05 0.00 0.79
39 0.56 0.83 0.81 0.63 0.31 1910.0 1511.9 0.79 0.04 0.00 0.79
40 0.52 0.81 0.80 0.65 0.26 1606.0 1311.1 0.82 0.03 0.00 0.82
41 0.37 0.75 0.81 0.75 0.41 2374.0 2018.5 0.85 0.09 0.01 0.85
42 0.42 0.71 0.75 0.77 0.36 2020.0 1614.6 0.80 0.07 0.00 0.80
43 0.22 0.60 0.72 0.80 0.64 3040.0 2545.3 0.84 0.06 0.00 0.84
44 0.41 0.81 0.81 0.80 0.46 2252.0 1917.3 0.85 0.05 0.00 0.85
45 0.45 0.79 0.81 0.77 0.41 4415.0 3704.2 0.84 0.04 0.00 0.84
46 0.48 0.82 0.85 0.81 0.51 4122.0 3596.2 0.87 0.03 0.00 0.87
47 0.35 0.61 0.66 0.67 0.30 1145.0 893.7 0.78 0.06 0.00 0.78
48 0.47 0.74 0.79 0.74 0.34 1445.0 1168.7 0.81 0.10 0.01 0.81
49 0.52 0.83 0.83 0.82 0.33 1663.0 1469.9 0.88 0.03 0.00 0.88
50 0.33 0.73 0.77 0.77 0.55 1074.0 900.4 0.84 0.05 0.00 0.84
51 0.44 0.77 0.81 0.79 0.37 1924.0 1611.9 0.84 0.04 0.00 0.84
52 0.46 0.84 0.87 0.83 0.56 3039.0 2651.7 0.87 0.03 0.00 0.87
53 0.25 0.67 0.79 0.83 0.59 1864.0 1625.3 0.87 0.04 0.00 0.87
54 0.73 0.89 0.90 0.84 0.69 1139.0 997.6 0.88 0.02 0.00 0.88
55 0.51 0.78 0.83 0.78 0.44 1167.0 972.6 0.83 0.04 0.00 0.83
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NDVI-
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NDVI-
Febf

NDVI-
Mar

NDVI-
Apr

NDVI-
May

Count Sum Mean St. Dev Variance Mean

56 0.43 0.78 0.81 0.77 0.46 612.0 508.9 0.83 0.04 0.00 0.83
57 0.53 0.86 0.89 0.84 0.52 2074.0 1802.1 0.87 0.02 0.00 0.87
58 0.44 0.83 0.86 0.78 0.46 2331.0 2037.8 0.87 0.05 0.00 0.87
59 0.44 0.80 0.83 0.79 0.40 2475.0 2078.2 0.84 0.04 0.00 0.84
60 0.20 0.46 0.59 0.76 0.35 2504.0 1993.8 0.80 0.08 0.01 0.80
61 0.41 0.72 0.75 0.77 0.33 1957.0 1614.6 0.83 0.04 0.00 0.83
62 0.33 0.66 0.77 0.77 0.33 3045.0 2469.6 0.81 0.06 0.00 0.81
63 0.24 0.70 0.72 0.81 0.46 1678.0 1405.9 0.84 0.07 0.00 0.84
64 0.47 0.82 0.84 0.77 0.34 1829.0 1515.3 0.83 0.08 0.01 0.83
65 0.25 0.43 0.53 0.59 0.39 3014.0 2110.2 0.70 0.11 0.01 0.70
66 0.61 0.79 0.81 0.71 0.28 2074.0 1670.3 0.81 0.13 0.02 0.81
67 0.45 0.86 0.88 0.81 0.53 2009.0 1781.4 0.89 0.04 0.00 0.89
68 0.23 0.68 0.75 0.81 0.50 2264.0 1911.2 0.84 0.04 0.00 0.84
69 0.18 0.39 0.62 0.81 0.51 1767.0 1487.3 0.84 0.10 0.01 0.84
70 0.29 0.72 0.75 0.83 0.50 1618.0 1383.9 0.86 0.08 0.01 0.86
71 0.42 0.83 0.84 0.81 0.44 1870.0 1594.9 0.85 0.06 0.00 0.85
72 0.37 0.75 0.79 0.83 0.50 1966.0 1695.6 0.86 0.07 0.00 0.86
73 0.53 0.83 0.84 0.74 0.25 1208.0 1004.4 0.83 0.04 0.00 0.83
74 0.54 0.86 0.85 0.75 0.25 1013.0 859.8 0.85 0.03 0.00 0.85
75 0.74 0.80 0.77 0.61 0.20 1938.0 1482.1 0.76 0.06 0.00 0.76
76 0.26 0.53 0.58 0.50 0.33 2413.0 1588.0 0.66 0.29 0.08 0.66
77 0.16 0.30 0.51 0.82 0.58 1046.0 850.2 0.81 0.05 0.00 0.81
78 0.40 0.74 0.77 0.78 0.32 1906.0 1594.4 0.84 0.08 0.01 0.84
79 0.41 0.62 0.63 0.72 0.38 1521.0 1114.7 0.73 0.07 0.01 0.73
80 0.18 0.49 0.71 0.72 0.46 1378.0 1023.4 0.74 0.15 0.02 0.74
81 0.30 0.63 0.63 0.66 0.38 1226.0 858.2 0.70 0.06 0.00 0.70
82 0.32 0.63 0.73 0.68 0.30 2679.0 2022.2 0.75 0.07 0.00 0.75
83 0.47 0.82 0.81 0.75 0.33 1704.0 1401.2 0.82 0.06 0.00 0.82
84 0.27 0.67 0.68 0.73 0.36 954.0 740.3 0.78 0.06 0.00 0.78
85 0.31 0.56 0.60 0.62 0.27 2026.0 1393.7 0.69 0.18 0.03 0.69
86 0.47 0.84 0.85 0.82 0.41 1806.0 1568.4 0.87 0.06 0.00 0.87
87 0.40 0.77 0.77 0.77 0.40 1482.0 1202.8 0.81 0.06 0.00 0.81
88 0.41 0.80 0.85 0.84 0.53 1929.0 1682.8 0.87 0.03 0.00 0.87
89 0.39 0.65 0.70 0.78 0.44 1354.0 1115.4 0.82 0.03 0.00 0.82
90 0.28 0.61 0.72 0.77 0.47 3457.0 2815.9 0.81 0.09 0.01 0.81
91 0.22 0.47 0.55 0.73 0.42 1128.0 865.4 0.77 0.06 0.00 0.77
92 0.19 0.48 0.62 0.78 0.51 1553.0 1253.3 0.81 0.11 0.01 0.81
93 0.18 0.39 0.55 0.76 0.54 1193.0 910.4 0.76 0.10 0.01 0.76
94 0.58 0.80 0.81 0.77 0.43 1696.0 1386.2 0.82 0.05 0.00 0.82
95 0.42 0.83 0.85 0.82 0.29 1732.0 1499.9 0.87 0.04 0.00 0.87
96 0.16 0.39 0.55 0.76 0.32 1258.0 998.8 0.79 0.09 0.01 0.79
97 0.19 0.55 0.73 0.74 0.45 1606.0 1306.9 0.81 0.07 0.01 0.81
98 0.47 0.84 0.87 0.81 0.47 1800.0 1531.6 0.85 0.04 0.00 0.85
99 0.21 0.56 0.64 0.75 0.43 1882.0 1486.4 0.79 0.12 0.01 0.79
100 0.35 0.71 0.76 0.79 0.55 1706.0 1401.2 0.82 0.03 0.00 0.82
101 0.41 0.75 0.78 0.82 0.41 1430.0 1233.9 0.86 0.04 0.00 0.86
102 0.51 0.81 0.81 0.80 0.31 1954.0 1654.8 0.85 0.04 0.00 0.85
103 0.42 0.79 0.84 0.83 0.33 1796.0 1571.3 0.87 0.03 0.00 0.87
104 0.37 0.76 0.80 0.83 0.48 1864.0 1587.3 0.85 0.06 0.00 0.85
105 0.26 0.56 0.61 0.69 0.19 1693.0 1216.8 0.72 0.08 0.01 0.72
106 0.23 0.40 0.50 0.73 0.34 1807.0 1346.3 0.75 0.09 0.01 0.75
107 0.27 0.58 0.62 0.73 0.33 2854.0 2193.8 0.77 0.12 0.01 0.77
108 0.23 0.64 0.69 0.81 0.67 1813.0 1480.6 0.82 0.06 0.00 0.82
109 0.39 0.71 0.79 0.73 0.52 1619.0 1358.1 0.84 0.04 0.00 0.84
110 0.56 0.84 0.84 0.73 0.48 1872.0 1557.7 0.83 0.09 0.01 0.83
111 0.33 0.73 0.83 0.77 0.49 2219.0 1893.3 0.85 0.04 0.00 0.85
112 0.38 0.69 0.78 0.63 0.40 1124.0 930.3 0.83 0.06 0.00 0.83
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113 0.43 0.77 0.79 0.68 0.25 1222.0 955.1 0.78 0.09 0.01 0.78
114 0.31 0.58 0.70 0.80 0.38 1625.0 1365.7 0.84 0.07 0.00 0.84
115 0.23 0.56 0.72 0.77 0.47 3150.0 2604.8 0.83 0.07 0.00 0.83
116 0.40 0.75 0.80 0.80 0.45 2733.0 2322.8 0.85 0.10 0.01 0.85
117 0.41 0.75 0.77 0.71 0.31 1380.0 1075.2 0.78 0.07 0.00 0.78
118 0.16 0.54 0.76 0.83 0.60 908.0 789.5 0.87 0.03 0.00 0.87
119 0.42 0.71 0.77 0.76 0.39 1422.0 1153.8 0.81 0.09 0.01 0.81
120 0.22 0.65 0.73 0.75 0.33 1188.0 978.2 0.82 0.04 0.00 0.82
121 0.27 0.71 0.73 0.79 0.55 551.0 453.8 0.82 0.05 0.00 0.82
122 0.31 0.64 0.73 0.76 0.32 1740.0 1416.5 0.81 0.05 0.00 0.81
123 0.34 0.53 0.55 0.74 0.53 936.0 726.9 0.78 0.05 0.00 0.78
124 0.43 0.79 0.84 0.80 0.50 2891.0 2422.4 0.84 0.11 0.01 0.84
125 0.42 0.74 0.80 0.77 0.36 445.0 372.6 0.84 0.06 0.00 0.84
126 0.32 0.73 0.80 0.68 0.34 2584.0 2171.8 0.84 0.03 0.00 0.84
127 0.42 0.77 0.81 0.76 0.33 761.0 649.7 0.85 0.03 0.00 0.85
128 0.39 0.75 0.79 0.75 0.32 875.0 700.9 0.80 0.04 0.00 0.80
129 0.36 0.79 0.68 0.74 0.34 1960.0 1659.0 0.85 0.09 0.01 0.85
130 0.43 0.74 0.80 0.74 0.28 2010.0 1754.8 0.87 0.03 0.00 0.87
131 0.30 0.73 0.78 0.75 0.37 805.0 651.1 0.81 0.15 0.02 0.81
132 0.50 0.80 0.85 0.74 0.49 1836.0 1583.5 0.86 0.05 0.00 0.86
133 0.26 0.52 0.64 0.69 0.32 922.0 701.8 0.76 0.08 0.01 0.76
134 0.19 0.51 0.66 0.70 0.40 1071.0 821.4 0.77 0.07 0.00 0.77
135 0.19 0.56 0.73 0.78 0.36 941.0 801.6 0.85 0.03 0.00 0.85
136 0.50 0.82 0.83 0.81 0.21 1294.0 1131.7 0.87 0.03 0.00 0.87
137 0.47 0.83 0.85 0.74 0.32 1419.0 1214.4 0.86 0.02 0.00 0.86
138 0.33 0.64 0.74 0.74 0.48 935.0 808.2 0.86 0.02 0.00 0.86
139 0.29 0.64 0.71 0.71 0.17 1201.0 958.4 0.80 0.16 0.02 0.80
140 0.50 0.75 0.78 0.75 0.35 1148.0 923.8 0.80 0.16 0.03 0.80
141 0.19 0.37 0.54 0.75 0.50 957.0 706.4 0.74 0.12 0.01 0.74
142 0.26 0.55 0.62 0.61 0.23 3077.0 2179.4 0.71 0.18 0.03 0.71
143 0.43 0.82 0.84 0.81 0.33 1062.0 946.9 0.89 0.02 0.00 0.89

Table A3. Monthly Average NDMI in 143 Center Pivot Values Zonal Statistics.

Field
NDMI-

Jan
NDMI-

Feb
NDMI-

Mar
NDMI-
April

NDMI-
May

Count Sum Mean St. Dev Variance Mean

1 0.27 0.36 0.41 0.44 0.08 658.0 181.6 0.28 0.06 0.00 0.46
2 −0.10 0.17 0.32 0.45 0.18 643.0 −69.3 −0.11 0.03 0.00 0.44
3 0.23 0.45 0.47 0.43 0.07 410.0 85.4 0.21 0.09 0.01 0.47
4 0.15 0.44 0.44 0.43 0.10 484.0 61.0 0.13 0.08 0.01 0.45
5 0.40 0.46 0.45 0.47 0.15 722.0 296.8 0.41 0.10 0.01 0.50
6 −0.12 0.06 0.21 0.41 0.14 961.0 −113.2 −0.12 0.03 0.00 0.40
7 0.04 0.19 0.28 0.42 0.14 380.0 19.1 0.05 0.06 0.00 0.42
8 0.03 0.20 0.23 0.38 0.12 213.0 5.0 0.02 0.07 0.00 0.37
9 0.14 0.33 0.41 0.47 0.16 218.0 28.8 0.13 0.07 0.00 0.49

10 0.02 0.28 0.36 0.44 0.17 427.0 8.4 0.02 0.06 0.00 0.43
11 −0.09 0.12 0.22 0.35 0.12 210.0 −20.5 −0.10 0.02 0.00 0.34
12 −0.07 0.15 0.30 0.43 0.10 447.0 −38.0 −0.08 0.04 0.00 0.43
13 0.04 0.33 0.40 0.44 0.17 375.0 9.0 0.02 0.05 0.00 0.44
14 −0.09 −0.05 0.02 0.34 0.24 465.0 −19.2 −0.04 0.08 0.01 0.27
15 −0.05 0.21 0.28 0.28 0.09 207.0 −13.3 −0.06 0.03 0.00 0.29
16 −0.08 0.16 0.24 0.36 0.08 430.0 −40.3 −0.09 0.03 0.00 0.36
17 −0.10 0.07 0.20 0.37 0.11 425.0 −44.3 −0.10 0.03 0.00 0.39
18 0.03 0.36 0.39 0.50 0.31 508.0 2.8 0.01 0.03 0.00 0.47
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19 0.06 0.41 0.42 0.48 0.29 516.0 12.1 0.02 0.03 0.00 0.48
20 0.27 0.48 0.48 0.45 0.12 245.0 64.6 0.26 0.10 0.01 0.48
21 −0.04 0.20 0.27 0.29 0.15 501.0 −24.2 −0.05 0.06 0.00 0.35
22 −0.07 0.16 0.26 0.40 0.21 216.0 −20.4 −0.09 0.04 0.00 0.37
23 0.27 0.34 0.22 0.35 0.29 219.0 63.2 0.29 0.09 0.01 0.41
24 −0.08 0.14 0.20 0.40 0.12 450.0 −33.5 −0.07 0.03 0.00 0.38
25 −0.06 0.28 0.38 0.37 0.13 457.0 −37.8 −0.08 0.04 0.00 0.38
26 0.07 0.36 0.41 0.42 0.22 498.0 27.4 0.06 0.07 0.01 0.44
27 0.02 0.35 0.38 0.47 0.26 530.0 −1.5 0.00 0.03 0.00 0.45
28 0.06 0.38 0.44 0.47 0.23 374.0 15.2 0.04 0.06 0.00 0.47
29 −0.11 0.11 0.22 0.38 0.11 254.0 −29.5 −0.12 0.03 0.00 0.37
30 0.14 0.38 0.41 0.45 0.13 495.0 63.9 0.13 0.10 0.01 0.45
31 0.12 0.39 0.47 0.47 0.26 504.0 54.9 0.11 0.07 0.00 0.48
32 0.24 0.45 0.50 0.47 0.24 423.0 99.4 0.24 0.06 0.00 0.46
33 0.09 0.37 0.46 0.45 0.27 280.0 21.6 0.08 0.06 0.00 0.47
34 0.10 0.43 0.46 0.49 0.25 768.0 56.0 0.07 0.04 0.00 0.48
35 0.20 0.46 0.48 0.50 0.19 474.0 86.9 0.18 0.07 0.01 0.50
36 −0.07 0.27 0.39 0.42 0.15 488.0 −38.5 −0.08 0.05 0.00 0.45
37 −0.02 0.28 0.35 0.45 0.17 450.0 −15.4 −0.03 0.08 0.01 0.46
38 −0.03 0.20 0.31 0.38 0.08 530.0 −22.5 −0.04 0.04 0.00 0.40
39 0.15 0.42 0.42 0.34 0.11 479.0 68.8 0.14 0.09 0.01 0.42
40 0.13 0.40 0.40 0.36 0.10 405.0 48.0 0.12 0.09 0.01 0.44
41 0.02 0.31 0.40 0.43 0.18 591.0 1.9 0.00 0.04 0.00 0.44
42 0.04 0.30 0.34 0.40 0.11 502.0 11.7 0.02 0.06 0.00 0.40
43 −0.09 0.19 0.31 0.45 0.30 763.0 −82.3 −0.11 0.03 0.00 0.42
44 0.05 0.38 0.41 0.47 0.23 564.0 9.5 0.02 0.04 0.00 0.47
45 0.06 0.38 0.43 0.43 0.11 1099.0 36.7 0.03 0.06 0.00 0.45
46 0.08 0.41 0.46 0.47 0.20 1036.0 62.0 0.06 0.06 0.00 0.49
47 −0.01 0.20 0.22 0.33 0.08 287.0 −3.4 −0.01 0.06 0.00 0.35
48 0.09 0.31 0.38 0.40 0.12 357.0 28.8 0.08 0.08 0.01 0.43
49 0.11 0.40 0.43 0.46 0.18 415.0 38.8 0.09 0.06 0.00 0.47
50 0.00 0.32 0.36 0.44 0.26 267.0 −7.0 −0.03 0.02 0.00 0.43
51 0.06 0.33 0.39 0.43 0.13 482.0 25.4 0.05 0.07 0.00 0.44
52 0.07 0.41 0.48 0.49 0.27 761.0 29.2 0.04 0.06 0.00 0.49
53 −0.07 0.24 0.37 0.49 0.30 464.0 −37.1 −0.08 0.05 0.00 0.46
54 0.28 0.48 0.54 0.52 0.35 284.0 80.6 0.28 0.09 0.01 0.53
55 0.11 0.35 0.43 0.46 0.18 292.0 28.9 0.10 0.08 0.01 0.48
56 0.05 0.35 0.41 0.44 0.18 150.0 5.0 0.03 0.06 0.00 0.45
57 0.13 0.43 0.49 0.50 0.25 518.0 56.5 0.11 0.07 0.00 0.49
58 0.06 0.39 0.45 0.46 0.24 588.0 26.0 0.04 0.07 0.00 0.47
59 0.08 0.37 0.41 0.43 0.19 618.0 33.3 0.05 0.04 0.00 0.43
60 −0.10 0.09 0.18 0.36 0.05 627.0 −66.5 −0.11 0.02 0.00 0.38
61 0.04 0.32 0.36 0.41 0.08 486.0 4.2 0.01 0.04 0.00 0.43
62 −0.02 0.26 0.37 0.41 0.09 761.0 −17.2 −0.02 0.05 0.00 0.42
63 −0.09 0.28 0.31 0.43 0.18 421.0 −46.1 −0.11 0.03 0.00 0.41
64 0.11 0.40 0.46 0.44 0.17 458.0 53.2 0.12 0.04 0.00 0.45
65 −0.05 0.09 0.16 0.28 0.15 754.0 −40.9 −0.05 0.05 0.00 0.31
66 0.19 0.37 0.42 0.41 0.07 519.0 99.6 0.19 0.11 0.01 0.46
67 0.07 0.42 0.48 0.48 0.27 503.0 21.5 0.04 0.05 0.00 0.48
68 −0.09 0.25 0.33 0.43 0.16 566.0 −57.9 −0.10 0.05 0.00 0.43
69 −0.11 0.05 0.21 0.43 0.17 442.0 −51.1 −0.12 0.09 0.01 0.43
70 −0.04 0.30 0.35 0.46 0.20 407.0 −12.6 −0.03 0.07 0.01 0.45
71 0.05 0.42 0.48 0.45 0.15 466.0 11.1 0.02 0.04 0.00 0.46
72 0.00 0.33 0.39 0.47 0.21 491.0 −17.1 −0.03 0.04 0.00 0.46
73 0.13 0.39 0.42 0.40 0.09 306.0 39.1 0.13 0.06 0.00 0.44
74 0.13 0.42 0.45 0.42 0.10 253.0 32.3 0.13 0.06 0.00 0.47
75 0.31 0.37 0.36 0.29 0.04 487.0 156.2 0.32 0.12 0.02 0.39
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76 −0.05 0.15 0.22 0.24 0.16 605.0 −37.9 −0.06 0.05 0.00 0.30
77 −0.12 −0.01 0.14 0.44 0.19 256.0 −31.5 −0.12 0.03 0.00 0.41
78 0.02 0.30 0.36 0.41 0.07 476.0 9.3 0.02 0.05 0.00 0.43
79 0.04 0.22 0.23 0.33 0.08 378.0 17.1 0.05 0.08 0.01 0.32
80 −0.12 0.11 0.30 0.35 0.12 347.0 −46.1 −0.13 0.05 0.00 0.37
81 −0.02 0.21 0.23 0.29 0.09 307.0 −10.9 −0.04 0.04 0.00 0.30
82 −0.02 0.22 0.32 0.31 0.04 671.0 −19.3 −0.03 0.04 0.00 0.36
83 0.09 0.41 0.43 0.39 0.09 426.0 26.9 0.06 0.07 0.00 0.43
84 −0.04 0.27 0.29 0.35 0.06 239.0 −11.0 −0.05 0.03 0.00 0.36
85 −0.03 0.16 0.20 0.26 0.00 506.0 −17.7 −0.04 0.09 0.01 0.30
86 0.08 0.42 0.45 0.49 0.20 450.0 24.1 0.05 0.06 0.00 0.48
87 0.04 0.35 0.37 0.42 0.16 368.0 5.1 0.01 0.05 0.00 0.40
88 0.04 0.37 0.44 0.48 0.23 485.0 0.8 0.00 0.05 0.00 0.47
89 0.03 0.26 0.30 0.43 0.15 343.0 3.0 0.01 0.04 0.00 0.43
90 −0.04 0.22 0.32 0.43 0.18 863.0 −49.0 −0.06 0.06 0.00 0.42
91 −0.08 0.11 0.17 0.38 0.12 282.0 −28.0 −0.10 0.04 0.00 0.37
92 −0.10 0.11 0.22 0.41 0.14 387.0 −38.6 −0.10 0.04 0.00 0.40
93 −0.11 0.04 0.14 0.36 0.15 302.0 −32.1 −0.11 0.04 0.00 0.34
94 0.15 0.37 0.40 0.41 0.14 432.0 60.1 0.14 0.09 0.01 0.42
95 0.05 0.41 0.44 0.49 0.10 430.0 10.8 0.03 0.06 0.00 0.50
96 −0.11 0.06 0.16 0.37 0.15 316.0 −39.2 −0.12 0.05 0.00 0.36
97 −0.09 0.14 0.30 0.37 0.10 402.0 −36.6 −0.09 0.03 0.00 0.40
98 0.08 0.42 0.48 0.49 0.24 438.0 25.5 0.06 0.06 0.00 0.49
99 −0.08 0.17 0.24 0.39 0.14 469.0 −42.2 −0.09 0.05 0.00 0.39
100 −0.02 0.29 0.37 0.43 0.19 428.0 −11.7 −0.03 0.05 0.00 0.44
101 0.05 0.34 0.39 0.47 0.13 361.0 18.1 0.05 0.08 0.01 0.47
102 0.11 0.40 0.42 0.43 0.07 485.0 45.2 0.09 0.08 0.01 0.45
103 0.04 0.36 0.43 0.47 0.12 450.0 11.2 0.02 0.05 0.00 0.48
104 0.01 0.34 0.41 0.46 0.20 465.0 −1.8 0.00 0.06 0.00 0.44
105 −0.04 0.17 0.23 0.31 0.07 424.0 −22.3 −0.05 0.03 0.00 0.32
106 −0.09 0.05 0.12 0.34 0.04 453.0 −42.9 −0.09 0.04 0.00 0.32
107 −0.05 0.19 0.23 0.36 0.07 711.0 −49.6 −0.07 0.03 0.00 0.37
108 −0.07 0.22 0.30 0.44 0.30 453.0 −31.7 −0.07 0.03 0.00 0.42
109 0.04 0.29 0.38 0.42 0.27 405.0 9.5 0.02 0.07 0.00 0.44
110 0.16 0.42 0.45 0.43 0.27 467.0 70.1 0.15 0.07 0.01 0.45
111 0.02 0.31 0.42 0.45 0.25 554.0 −2.8 0.00 0.07 0.00 0.47
112 0.02 0.26 0.36 0.33 0.14 284.0 4.8 0.02 0.06 0.00 0.41
113 0.06 0.35 0.37 0.32 0.02 305.0 17.6 0.06 0.07 0.01 0.37
114 −0.02 0.19 0.30 0.45 0.14 407.0 −13.5 −0.03 0.05 0.00 0.45
115 −0.08 0.16 0.31 0.38 0.12 785.0 −67.0 −0.09 0.03 0.00 0.41
116 0.04 0.33 0.40 0.44 0.18 684.0 13.2 0.02 0.06 0.00 0.44
117 0.04 0.33 0.37 0.35 0.08 345.0 9.5 0.03 0.06 0.00 0.38
118 −0.14 0.14 0.34 0.48 0.25 228.0 −35.0 −0.15 0.02 0.00 0.46
119 0.07 0.30 0.36 0.41 0.16 353.0 20.7 0.06 0.05 0.00 0.42
120 −0.08 0.23 0.32 0.39 0.08 298.0 −26.5 −0.09 0.04 0.00 0.42
121 −0.04 0.28 0.33 0.43 0.15 138.0 −8.9 −0.06 0.02 0.00 0.43
122 −0.02 0.23 0.32 0.39 0.07 432.0 −14.7 −0.03 0.04 0.00 0.41
123 0.00 0.14 0.17 0.38 0.21 236.0 −2.4 −0.01 0.05 0.00 0.35
124 0.05 0.35 0.43 0.46 0.24 717.0 14.7 0.02 0.05 0.00 0.45
125 0.05 0.31 0.39 0.42 0.16 119.0 3.8 0.03 0.09 0.01 0.46
126 0.00 0.31 0.40 0.37 0.13 646.0 −10.5 −0.02 0.03 0.00 0.45
127 0.06 0.35 0.40 0.43 0.14 191.0 7.3 0.04 0.04 0.00 0.46
128 0.06 0.34 0.39 0.39 0.10 213.0 7.5 0.04 0.05 0.00 0.39
129 0.04 0.37 0.35 0.42 0.20 493.0 3.2 0.01 0.05 0.00 0.46
130 0.05 0.31 0.39 0.39 0.10 500.0 15.0 0.03 0.06 0.00 0.46
131 −0.05 0.32 0.40 0.39 0.08 199.0 −14.2 −0.07 0.05 0.00 0.41
132 0.08 0.35 0.46 0.43 0.25 458.0 35.8 0.08 0.13 0.02 0.47
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Table A3. Cont.

Field
NDMI-

Jan
NDMI-

Feb
NDMI-

Mar
NDMI-
April

NDMI-
May

Count Sum Mean St. Dev Variance Mean

133 −0.05 0.14 0.25 0.35 0.09 230.0 −9.5 −0.04 0.04 0.00 0.36
134 −0.10 0.12 0.24 0.33 0.06 269.0 −26.7 −0.10 0.03 0.00 0.35
135 −0.10 0.15 0.29 0.41 0.08 236.0 −24.2 −0.10 0.02 0.00 0.44
136 0.08 0.39 0.42 0.44 0.10 324.0 16.6 0.05 0.08 0.01 0.47
137 0.09 0.39 0.45 0.42 0.06 354.0 20.4 0.06 0.05 0.00 0.48
138 0.00 0.24 0.36 0.42 0.25 233.0 −4.0 −0.02 0.04 0.00 0.48
139 −0.03 0.24 0.30 0.34 0.05 297.0 −9.8 −0.03 0.06 0.00 0.38
140 0.09 0.33 0.37 0.40 0.10 288.0 23.7 0.08 0.07 0.00 0.41
141 −0.10 0.04 0.16 0.38 0.15 240.0 −28.2 −0.12 0.07 0.00 0.34
142 −0.04 0.16 0.24 0.29 0.10 770.0 −36.6 −0.05 0.05 0.00 0.32
143 0.06 0.37 0.43 0.45 0.16 268.0 11.4 0.04 0.04 0.00 0.46
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Abstract: Iraqi greenhouses require an active microcontroller system to ensure a suitable microclimate
for crop production. At the same time, reliable and timely Water Consumption Rate (WCR) forecasts
provide an essential means to reduce the amount of water loss and maintain the environmental
conditions inside the greenhouses. The Arduino micro-controller system is tested to determine its
effectiveness in controlling the WCR, Temperature (T), Relative Humidity (RH), and Irrigation Time
(IT) levels and improving plant growth rates. The Arduino micro-controller system measurements
are compared with the traditional methods to determine the quality of the work of the new control
system. The development of mathematical models relies on T, RH, and IT indicators. Based on the
results, the new system proves to reliably identify the amount of WCR, IT, T, and RH necessary for
plant growth. A t-test for the values from the Arduino microcontroller system and traditional devices
for both conditions show no significant difference. This means that there is solid evidence that the
WCR, IT, T, and RH levels for these two groups are no different. In addition, the linear, two-factor
interaction (2FI), and quadratic models display acceptable performance very well since multiple
coefficients of determination (R2) reached 0.962, 0.969, and 0.977% with IT, T, and RH as the predictor
variables. This implies that 96.9% of the variability in the WCR is explained by the model. Therefore,
it is possible to predict weekly WCR 14 weeks in advance with reasonable accuracy.

Keywords: Arduino microcontroller; environment; sensors; models; greenhouses

1. Introduction

Agriculture is a pillar of the economic lifeline, but traditional, broad forms of agri-
culture are no longer able to meet the development requirements of modem agriculture;
therefore, developing precision agriculture has become an inevitable trend. Water repre-
sents a natural extension of the agricultural concept. Water is vital for farm production, and
more water can increase crop production [1]. Irrigation allows farmers to apply nutrients
more precisely and uniformly to the wetted root volume, where the active roots are con-
centrated. When environments of plants are consistently maintained and kept within their
comfort zone, plants are more photosynthetically efficient and can grow stress-free [2].

In arid and semi-arid zones, the main constraints limiting crop production in open
fields are the scarcity and disparity in rainfall, high temperatures, extreme solar radiation,
and the spread of weeds and diseases [3,4]. Since the beginning of this century, agriculture
in Iraq has undergone many changes [5,6]. Agriculture was making valuable contributions
to the Iraqi economy until production costs rose and farmers lacked any real support from
the government. Neighbouring countries began to produce more at lower prices, and Iraqi
farmers struggled to compete. Luckily, in the past few years, agriculture has become the
one sector that has contributed the most to national food security, economic growth, and
employment [7–9]. Greenhouses can provide high-quality products year-round with effi-
cient production resources, including fertilizer, water, pesticides, and labour. Countries like
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the United States, Europe, China, and countless others have used greenhouses to increase
crop production [10–12]. The practice of producing crops in protected environments has
developed rapidly, and by 2019, there were nearly 5,630,000 ha covered by greenhouses,
high tunnels, low tunnels, or direct covers worldwide [13]. In Iraq, the cultivated area
under greenhouses was 41,776 ha in 2019 [14].

A controlled greenhouse environment can provide suitable conditions for the optimal
growth of vegetables and flowers in Iraq. Furthermore, greenhouses can be used to
minimize the annual importation of vegetables. Greenhouses protect against high winds,
unstable air temperature, insects, and airborne diseases. In addition to crop protection,
the humidity of the air in these closed environments is considerably increased. Water
productivity is increased and freshwater resources are used more efficiently [15,16].

Automated greenhouse monitoring has been addressed on a large scale from multiple
perspectives and has been mostly focused on specific applications such as precision farming,
irrigation, environmental control, yield prediction, and weed detection, to name a few [17].
Reference [18] explained that the interest in automated greenhouse monitoring has now
reached an impressive level and noted that the interest in cultivation applications is growing
exponentially. This increasing interest is also reflected in the significant advances in relevant
technology such as various sensors as well as the development of cloud computing and
machine learning techniques [19]. New technological improvements should allow farmers
to realize their long-term expectations when using sensors in greenhouses [20]. For example,
the water monitoring system improved water sustainability and reduced the daily water
use of a beverage factory by 11% [21].

Unfortunately, due to poor management, loss of climate control, and overuse of water,
there can be heavy losses of up to 40% for crops grown in greenhouses [13,14]. One of
the major environmental stressors affecting plant growth and productivity is temperature.
High-temperature stress frequently causes physiological disturbance and reduced yield
and negatively affects the primary functions of the root systems [22,23].

Farmers took the agricultural traditions normally practiced in open fields in Iraq, such
as using large quantities of water, and transferred them to greenhouses. Because of these
traditions, water control systems and environmental sensors are not widely used, and
farmers do not think that they are useful.

Studies carried out in countries neighbouring Iraq have presented many findings
related to the use of automated monitoring in greenhouses under environmental conditions
that differ from those in Iraq. The aims of these studies were to provide specific and
non-exhaustive information on what automated monitoring should provide for greenhouse
applications in their respective countries. Following the same vein, the present study aims
to complement previous research by closely examining automated monitoring for green-
house applications. The main objective of this research is to improve the methods used for
water control systems and environmental sensors. Sensors monitor information related to
the water levels and the general environments in greenhouses. Additionally, this paper fo-
cuses on how automated greenhouse monitoring could help meet the specific requirements
of different stakeholders for several major greenhouse applications. Providing an overview
of the emerging opportunities that could enhance the role of automated monitoring in Iraq
by providing operational and efficient greenhouse application services will hopefully help
reduce crop imports. Another goal of this study is to develop a simplified mathematical
model of the water system, specifically concerning water consumption in greenhouses.

2. Materials and Methods

2.1. Test Site and Climate

The experiments were conducted in greenhouses affiliated with the College of Agricul-
ture and Forestry, Mosul University, in the Mosul Governorate (36◦23′24.1” N 43◦07′55.1” E
longitude, at an altitude of 234 m), Northern Iraq, as depicted in Figure 1. The soil was
silt loam. It consisted of 17.4% Sand, 56.7% Silt, and 25.9% Clay. Soil EC and PH were
1.607 dS/m and 7.7%, respectively.
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Figure 1. Greenhouses affiliated with the College of Agriculture and Forestry, Mosul University.
https://goo.gl/maps/SuGqvhba4uQ3Tw6s5, accessed on 6 September 2021.

The study area was similar to a Mediterranean climate (a hot semi-arid climate) with a
sweltering, prolonged, dry summer, brief and mild autumn, spring, and moderately wet,
relatively cool winter. The ranges of rainfall, temperature, relative humidity, average cloud,
and wind speed were 50–150 mm, 14–45 ◦C, 14–53%, 1–39%, and 14–22 km/h, respectively.
Table 1 presents the average seasonal rainfall during the experimental period along with
some climate characteristics.

Table 1. Average monthly climate at the test site.

Months

Climate

Temperatures
(◦C)

Precipitation
(mm)

Average Cloud
(%)

Average
Humidity (%)

January 14 156.7 32 49

February 16 71.2 29 47

March 18 179.6 36 49

April 24 62.1 27 40

May 35 10.3 14 20

June 42 0 2 14

July 45 0 1 14

August 45 0 0 15

September 38 2.3 2 14

October 32 64.4 28 24

November 21 91.9 34 47

December 17 139.7 39 53

2.2. Specifications of the Plants

Cucumber F1 Bahar was one of the more suitable plants chosen largely due to high
returns and a short growth period. The desired temperature for plant growth is between
15 ◦C and 32 ◦C with a growth period between 50 and 70 days. Humidity can range from
50 to 90% according to the growth stage [13].

2.3. Description of the Greenhouse and Control System

The greenhouse was made of galvanized steel tubes and covered with a polyethylene
material. It was also equipped with a fan and a ventilation cooling system that was
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used in the study. The dimensions of the greenhouse were 44 m in length, 9 m in width,
and 4 m in height. The greenhouse was constructed at an elevation of 234 m. The fans
were distributed inside the greenhouse according to the method described by [24] and
the standard guideline of the American Society of Agricultural Engineering [25]. The
polyethylene used as covering material (200 μm thick) had a low transmission coefficient
compared to glass. The light transmittance was 88%, with 80% U.V. and 77% infrared.

The Arduino microcontroller system (Figure 2) was developed to control all electrical
components involved in measuring temperature, humidity, and irrigation processes. The
designed control board consisted of main components such as wireless communication,
multiple voltage regulator circuitry (5 V, 6 V, and 9 V), and control modules integrated
onto a single Printed Circuit Board. The 9 Amp/hour rechargeable battery was used as
a backup when the main power supply was cut off. The Arduino was used primarily in
the microcontroller system to create an interactive electronic project that could include
different environmental sensors to measure temperature, humidity, and irrigation.

 
Figure 2. Actual prototype of the Arduino microcontroller system installed inside the greenhouse.

The Arduino microcontroller system observed daily WCR, IT, T, and RH values
obtained using WCR, IT, T, and RH sensors and readings on an LCD panel. The values could
be downloaded onto a USB flash drive. Four inputs and six outputs were used to control
the module temperature, humidity, and irrigation processes, as described in Figure 3.

Figure 3. Input and output pin connections for the Arduino microcontroller system.
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2.4. Execution of the Study and Development of Mathematical Models

The drip irrigation system used inside the greenhouse was one of the best irrigation
systems suitable for greenhouse agriculture. Four irrigation pipes extended along the
greenhouse. The irrigation pipe had drippers with a discharge of 3.6 L per hour, and
the distance between the drippers was 20 cm. Each pipe was 40 m long and contained
200 drippers. The irrigation system was operated for two days before planting to carry out
the calibration process and ensure that the drippers worked.

The traditional method used to grow this type of cucumber was followed to verify the
accuracy of measuring and controlling the temperature, humidity, and irrigation processes
(water consumption and irrigation time) of a new control unit (an Arduino microcontroller
system). The system monitored the temperature, humidity, and irrigation processes using
DHT22 and FC-28 soil moisture sensors. The system had two functions, the first one was to
turn on and off the ventilating fan, air circulation fan, and the pump when the temperature,
humidity, and soil moisture fell below a certain reference value. The secondary function of
the system was to display the status of the temperature, humidity, and soil using an LCD.
The FC-28 soil moisture sensor read soil moisture, and the DHT22 sensor read the value for
temperature and humidity throughout the greenhouse as input from the system that the
Arduino microcontroller system could process. Temperature, humidity, and soil moisture
content were measured in three locations (at the entrance, in the middle, and at the end of
the greenhouse).

The HTC-2 Digital Thermometer Hygrometer Electronic was used to measure humid-
ity and temperature using three devices placed throughout the greenhouse. An Extech
-Mo750 device was used to measure the moisture content of the soil. The details of the
devices are shown in Table 2. For the purpose of verifying the accuracy of the control, the
measurements obtained from the conventional devices (HTC-2 Digital Thermometer Hy-
grometer Electronic and Extech -Mo750) were compared with the measurements obtained
from the developed control unit. Fertilization, pest control, seed quantity, greenhouse
preparation, and irrigation systems were carried out as were typical for the study area [13].

Table 2. Specifications and range of the HTC-2 Digital Thermometer Hygrometer Electronic and
Extech -Mo750.

Extech -Mo750 HTC-2 Digital Thermometer Hygrometer Electronic

Sensor Type Integrated Contact Probe Material: ABS Size: 10.5 × 9.8 × 2.4 cm/4.13 × 3.86 × 0.94”
Power supply: 1.5 V × 1(AAA battery)

Moisture Content 0 to 50%
Accuracy ±(5% + 5 digits) FS @23 ± 5 ◦C

Temperature measurement range: −10 ◦C ~ +50 ◦C
Temperature measurement accuracy: ±1 ◦C

Temperature resolution: 0.1 ◦C

Operating Temperature (0 to 50 ◦C)
Operating Humidity < 80% RH

Humidity measurement range: 10% RH–99% RH
Humidity measurement accuracy: ±5% RH

Humidity resolution: 1%

Max Resolution 0.1%
Dimensions 14.7 × 1.6 × 1.6” (374 × 40 × 40 mm)

Weight 9.4 oz (267 g)

The Independent Samples t-test was used to test the research question. The research
question was: is there a difference in WCR, IT, T, and RH measurements between an
Arduino microcontroller system and traditional devices? Therefore, the Hypotheses was:

The null hypothesis (H0): There is no difference in mean WCR, IT, T, and RH measurements
between an Arduino microcontroller system and traditional devices.

The alternative hypothesis (H1): There is a difference in mean WCR, IT, T, and RH measure-
ments between an Arduino microcontroller system and traditional devices.
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The data analysis and building multiple mathematical models to predict the WRC
were performed using the Design-Expert Version 13 software. The software was from
Stat-Ease Inc., Minneapolis, MN, USA. The model followed the steps to building multiple
regression models described in [26].

2.5. Simulation Models

A simulation model was necessary to measure the power and efficiency of any de-
veloped forecasting algorithm. It allowed the researchers to verify the robustness of the
different algorithms by considering the component combination of the model to obtain
the best test scenario. The model’s performance was evaluated by the correctness of its
estimation, its ability to reproduce the actual return in the simulation, and its stability. We
wanted to regularly forecast the weather 14 weeks in advance and produce a new forecast
each week. Hence, the estimated model in this study was validated and evaluated based on
its forecasting power by using the mean square error (MSE), mean absolute percentage error
(MAPE), and average accuracy percentage (AAP). The following performance measure
functions were employed [27,28]:

1-The form of MSE can be written as follows:

MSE =
1
N

N

∑
1
(Actual yield − Forecasted yield)2

2-Mean absolute percentage error MAPE

MAPE =
1
N

N

∑
1

/(Actual yield − Forecasted yield)/
Actual yield

× 100

3-Average accuracy percentage AAP

AAP% = 100% − MAPE

where: N is the number of data points for I = 1, 2, . . . , N.

3. Results and Discussion

3.1. Comparison of the Arduino Microcontroller System and Traditional Devices

WCR, IT, T, and RH levels were measured during both sunny and cloudy days by
the Arduino microcontroller system and traditional devices in the greenhouse. The results
were compared using an Independent Samples t-test as described in Table 3. Levene’s test
checked the null hypothesis that the variances of the two groups were equal. In this study,
the p-value for WCR, IT, T and RH levels was 0.778, 0.589, 0.651, and 0.985, respectively.
The assumption of equal variances was not violated so we can look at the top row of Table 3.

The values of the t statistic are 1.669, 1.251, 1.298, and 1.355, and the p-value is dis-
played as 0.107, 0.222, 0.206, and 0.187. This means that there is a very small probability of
these results occurring by chance under the alternative hypothesis of difference between
the two groups. The alternative hypothesis is formally rejected when accepting the null
hypothesis. There is no difference in mean measurements between an Arduino microcon-
troller system and traditional devices. This means that there is very strong evidence that
the WCR, IT, T, and RH levels for these two groups are no different, which can be seen
clearly in Figures 4–7.

The Arduino microcontroller system was tested and compared with traditional mea-
suring methods commonly used in greenhouses. Observed values of daily WCR, IT, T, and
RH were obtained by means of WCR, IT, T, and RH sensors and readings on an LCD panel.
The values could be downloaded onto a USB flash drive.

The daily WCR, IT, T, and RH were recorded for 100 days (14 weeks) and the weekly
averages of WCR, IT, T, and RH were calculated. Figures 4–7 show the comparisons between
weekly measurements of the WCR, IT, T, and RH from the Arduino microcontroller system
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versus the traditional devices for 14 weeks during the planting season. The developed
system was able to identify the behaviour and changes in the measured levels without
significant differences as compared to the traditional methods. All these results indicate
that the developed system was able to identify the environmental conditions and the
amount and time that irrigation was used inside the greenhouses; these findings are in
accordance with [17,19,20]. Based on the results obtained from the study (Table 3 and
Figures 4–7), the Arduino microcontroller system has proven to be reliable when installed
in large greenhouses and the system saves approximately 12.5% of the water normally used
in these greenhouses. These observations agree with the results obtained by [11].

Table 3. T-test results of the independent samples for WCR, IT, T, and RH.

Independent Samples Test

Levene’s Test for
Equality of Variances

t-Test for Equality of Means

F Sig. t df
Sig.

(2-Tailed)
Std. Error
Difference

WCR
Equal variances assumed

0.081 0.778
1.669 26 0.107 0.15282

Equal variances not assumed 1.669 25.823 0.107 0.15282

IT
Equal variances assumed

0.299 0.589
1.251 26 0.222 2.57028

Equal variances not assumed 1.251 25.679 0.222 2.57028

T
Equal variances assumed

0.210 0.651
1.298 26 0.206 0.81842

Equal variances not assumed 1.298 25.463 0.206 0.81842

RH
Equal variances assumed

0.000 0.985
1.355 26 0.187 1.87472

Equal variances not assumed 1.355 25.997 0.187 1.87472
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Figure 4. Results of WCR from an Arduino microcontroller system and traditional devices by week.
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3.2. Modelling and Relationships between WCR, IT, T, and RH

In Iraqi greenhouses, measurements of temperature, humidity, and irrigation duration
that are collected by most commercial plantations are minimal since normally, only data
concerning monthly whole rainy days and daily rainfall days are available [13]. Therefore,
it is critical to provide a simplified methodology for weekly WCR using the limited temper-
ature, humidity, and irrigation time data. The mathematical models used the T, RH, and IT
data from the Arduino microcontroller system.

The resulting linear, 2FI, and quadratic equations and the corresponding values of R2
for the testing period of 14 weeks are presented in Table 4. The model equation with WCR,
IT, T, and RH in weeks as the independent variables showed that R2 = 0.962, 0.969, and
0.977, implying that the model explained well 96.2, 96.9, and 97.7% of the variability in
WCR. A linear relationship between actual and predicted weekly WCR showed a strong
positive association with high significance at p < 0.0001.

Table 4. Mathematical models under an Arduino microcontroller system in a greenhouse.

Model F-Value p-Value R2 Adj. R2 Pred. R2 Std. Dev.

WCR = −0.0173451.0.001595T + 0.004261RH + 0.05329IT 320.91 <0.0001 0.962 0.959 0.952 0.093

WCR = 8.12464 − 0.489734T − 0.119744RH + 0.052929IT
+ 0.007382T × RH − 0.002221T × IT + 0.000465RH × IT 184.02 <0.0001 0.969 0.964 0.954 0.087

WCR = 20.54747 − 1.17731T − 0.275757RH − 0.012634IT
+ 0.012368T × RH − 0.000944T × IT + 0.001470RH × IT

+ 0.008004T2 + 0.000328RH2 − 0.000588IT2
155.26 <0.0001 0.977 0.971 0.959 0.077

The F-test of overall significance indicates whether a model provides a better fit to the
data than a model that contains no independent variables. Model F-values of 320.91, 184.02,
and 155.26 and p-values less than 0.0500 indicate that the model terms are significant. The
F-values with a probability of 0.0001 indicate that the regression coefficients are nonzero.
There is only a 0.01% chance that F-values these large could occur due to noise. The
predicted R2 of 0.9528, 0.9542, and 0.9598 are in reasonable agreement with the Adjusted R2

of 0.9590, 0.9640, and 0.9713, i.e., the difference is less than 0.2 for linear, 2FI, and quadratic
models, respectively.

Figure 8 was a scatter plot that showed the correlation between predicted values and
actual values for linear, 2FI, and quadratic models to see how the models performed with
the mean and best values of the variables in every prediction. Figures graphically represent
an association of the actual and predicted WCR for all models. The magnitude of error
expressed as the difference between predicted R2 and adjusted R2 values is also shown in
the same Table 4.

The practical predictive ability of the linear, 2FI, and quadratic models was visual, and
the representation strongly suggests a goodness of fit for models in predicting WCR; the
magnitude of error was very small. The mean error is preferred for the whole population
rather than a single sample [29]. According to Figure 8A, the linear predicted model fully fit
(without deviations) to the actual values and the R2 value is 0.962. Reference [26] explained
that the best model has an R-square value above 80% and it uses the smallest number
of parameters.

202



Water 2022, 14, 1166

 
(A) Linear model (B) 2FI 

 
                                     (C) Quadratic

Figure 8. The scatter plot of the predicted vs. actual values for linear, 2FI, and quadratic models.
(A) Linear model (B) 2FI model (C) Quadratic model.

The effect of WCR varies with the degree of temperature, humidity, and irrigation
duration for the cucumber plants. Water deficit stress during pre-flowering and grain filling
stages massively affects plant performance due to the imprecise traits function. Water
stress increased the flowering days and days to maturity while it decreased the leaf number
and led to a loss of normal root architecture which further led to a reduction in yield [30].
The changes in WCR due to temperature, humidity, and irrigation duration variations
usually contribute to increasing yield [17,31]. Overall, our present study indicated that
WCR has a strong relationship with temperature, humidity, and irrigation time. These
factors accounted for increasing the R2 of the models as WCR is dependent on temperature,
humidity, and irrigation duration.

Table 5 provides a comparison between the linear forecasts and the actual values based
on the MSE, MAPE, and AAP within the studied states. The results were obtained for the
forecasted WCR for 14 weeks. The outputs of the linear model were found to be closer to
the actual values for the WCR. The finding indicated that the average accuracy percentage
for the forecasts by the linear models had a record-high value of 92.038. In contrast, the
importance of the MSE and MAPE for the model was lower. Therefore, the linear model
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was appropriate for forecasting the data and can be used as an alternative model to predict
the WCR.

Table 5. Simulation models of WCR in greenhouses.

Weeks
Actual WCR

m3
Predicted WCR

m3

1 0.6 0.589

2 0.72 0.623

3 1.44 1.285

4 1.4 1.304

5 1.42 1.357

6 1.44 1.391

7 1.68 1.592

8 1.65 1.580

9 1.67 1.564

10 1.68 1.534

11 1.82 1.677

12 1.8 1.574

13 1.8 1.576

14 1.83 1.576

MSE % 0.019

MAPE % 7.961

AAP % 92.038

4. Conclusions

The main objective of an optimal environment and evaluation is to control critical
parameters such as water consumption, irrigation time, temperature, and humidity, based
on the design of a microcontroller system in a greenhouse which is a purely sensor-based
system. The results show that the developed system maintained WCR, IT, T, and RH levels
and reduced water consumption by approximately 12.5%. We hope that the new system
will be used as a prototype for Iraqi greenhouses to automatically control and monitor
WCR, IT, T, and RH levels.

The developed models are simple, efficient, and easily applied. The models indicated
that the regression equation well represented 96.9% of the variability in weekly WCR.
A linear relationship between actual and predicted weekly WCR shows that the correla-
tion = 0.984, which is a strong positive association. Additionally, the linear model was
chosen as the best model to use in greenhouses, with the average accuracy percentage
simulation and mean square error being 92.038 and 0.01988%, respectively. The researchers
suggest conducting experiments with other crops under the same conditions to verify the
accuracy of the proposed equations. Future research could develop a raspberry pi micro-
controller system and compare it with the Arduino microcontroller system. Additionally,
the Arduino microcontroller system used in this study could be applied to other types of
crops, thus increasing the general applicability of the method presented in this article.
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Abstract: The objective of this study is to produce suitability maps for potential rainwater harvesting
techniques (RWHT) in the West Bank (WB), Palestine. These techniques aim to reduce water scarcity,
which is a major problem for the conservation of water resources in the area. Based on literature
reviews and expert recommendations, seven RWHts were selected (runoff basin system, contour
ridges, cisterns, eyebrow terrace, check dam, on-farm pond, and bench terraces). Analysis methods
performed in the Arc GIS environment include spatial analysis and data reclassification. Other
calculations include multi-criteria analysis for assigning suitability. Five criteria (rainfall, runoff,
land use, slope, and soil texture) for RWHt were analyzed to produce a suitability map for each
technique. The results show that runoff basin systems in the northeast and southwest of WB are
the most suitable, with about 50% of the area of WB moderately suitable for this technique, while
70% of the area of WB is very suitable for the contour ridge technique. Furthermore, this analysis
shows that almost 50% of the WB is very suitable for cisterns. Sixty percent of the area is very suitable
for on-farm puddling, especially in the north and southwest of WB. The areas with high suitability
for the different techniques comprehensively cover the WB, as shown in the RWHt suitability maps
and the integrated map. Nevertheless, this approach can help decision makers in making an initial
selection of RWH techniques suitable for their region.

Keywords: rainwater harvesting technique (RWHt); the West Bank (Palestine); analytical hierarchy
process method (AHP); GIS

1. Introduction

Irregular rainfall patterns and a lack of precipitation have caused water shortages
around the world. People living in many areas with highly variable rainfall and unpre-
dictable periods of drought or flooding are severely affected by water scarcity and often
face livelihood insecurity [1]. Those regions, including Palestine, are characterized by arid
to semi-arid climatic conditions and have uncertain water supplies. Population growth
to approximately 2.9 million [2] and expansion of agriculture activities increase the stress
on limited and uncertain water supplies; furthermore, the current political situation poses
another accessibility limitation of water resources for Palestinians. The water shortage
issues include the domestic and the agriculture sector. For domestic water, Palestinian
Water Authority (PWA) statistics showed that, in most of the West Bank (WB) governorates,
the average water consumption rate is (72 L/capita/d), which lies below the minimum
World Health Organization’s standards (150 L/capita/d) [3]. According to the Palestinian
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Central Bureau of Statistics (PCBS), the total domestic water supply in WB increased from
(85 MCM/year) in 2010 to (120 MCM/year) in 2015 [2]. A recent study showed that the
water supply–demand gap in the entire WB will increase from (31.7 MCM/year) in 2015 to
(41.2 MCM/year) in 2032 [4].

The main agricultural water source in WB is the groundwater (springs and wells) and
the share of water purchased from Mekorot (Israeli Water Company, Israel). In 2015, the
WB governorates’ agricultural water requirement for all crops was (75 MCM/year) with a
water supply–demand gap of (46.5 MCM/year) with almost the same amount in 2032 [4].
As a result, alternative water resources such as rainwater harvesting (RWH) are becoming
a common practice in most regions of WB [5].

In 2011, rainwater harvesting techniques (RWHt) contribute about 1.5 MCM/year for
agricultural use, whereas cisterns contribute to domestic use at about 4 MCM/year [2].
According to the 2018 PWA water plan, 10 MCM/year may be gathered via the use of
various domestic and agricultural RWH approaches [6].

As a result, non-conventional water resources, such as RWH, may be used to alleviate
water shortages in the WB, Palestine. The implementation of RWHt is promoted on a small
scale by local societies and non-governmental establishments to improve temporal and
spatial water shortage for domestic and agricultural uses. The success of RWH systems
depends heavily on their technical design and the identification of suitable sites and
techniques [6,7].

The identification of appropriate sites for the various RWHt in large areas was a
great challenge [8]. Several methodologies have been established for the identification
of RWH suitable sites. Some methodologies integrate multi-criteria decision making
(MCDM) based on geoinformation and SWAT (Soil and Water Assessment Tool) model [9],
while others used the TOPSIS multi-criteria decision analysis [10]. An intensive research
effort focused on the development of rainwater harvesting (RWH) site suitability maps
in different areas [11–13]. In contrast, less attention has been paid to the development of
RWHt suitability maps. Most studies rely on the analysis of site characteristics to determine
suitability rather than on the analysis of technical characteristics. Therefore, the preparation
of RWHt suitability maps is crucial for determining which RWH technology is suitable
for each suitable site. Thus, to successfully plan and implement RWHt, it is important to
determine suitability for both the site and the technique.

In their literature study, Ammar et al. [14] evaluated primary criteria that have been
used to identify potential RWH locations and procedures in arid and semi-arid areas
(ASARs). They classified and contrasted four primary site selection methodologies, indi-
cated three main sets of criteria for choosing RWH sites, and defined the most prevalent
RWHt utilized in ASARs. Others used different methods [15], ranging from those based
only on biophysical factors to more comprehensive ones, which included the inclusion
of socioeconomic criteria, particularly after 2000. Most studies currently employ GIS in
conjunction with hydrological models and/or multi-criteria analysis (MCA) to identify
RHW suitability sites. Shadeed and Alawna [16] used this method to identify locations for
the successful implementation of RWHt for agricultural use in the WB, Palestine. They con-
cluded that 62% of the WB is high to very high suitable for implementing RWHt. However,
they did not make a distinction between the different available RWHts. There are several
differences among these RWHt from functional, construction, and design requirements.
Not all techniques are equally suitable for every location. To select the best RWHt, it is
better to make a suitability map for each technique separately.

This study aimed at developing suitability maps for potential RWHt in the WB by em-
ploying a GIS-based MCA approach. Moreover, this study aims at preparing an integrated
RWHt for all the selected techniques that are of high value for water decision makers to
properly identify suitable techniques that can be implemented in the area. This in turn will
enhance sustainable water resources in Palestine.
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2. Materials and Methods

2.1. Study Area

The West Bank (WB), Palestine, is located in the Middle East (Figure 1) with an area of
about 5860 km2. It has a population of 2.9 million people distributed in 11 administrative
governorates [2].

Figure 1. Administrative governates of the West Bank, Palestine.

Geographically, the WB is largely made up of hills (700 and 900 m above sea level)
that run north-south and then fall to the Jordan Valley and the Dead Sea on the east side.

In general, the predominant climate is the Mediterranean, with rainy winters and hot,
dry summers; the eastern and southern parts are much drier [16]. Surface water is mainly
in the Jordan River and ephemeral wadis. However, since 1967, Palestinians do not have
the right to access the river; therefore, they mainly rely on groundwater, the discharge from
the different springs, and water purchased for domestic and agricultural use.

The average rainfall in the region is about 450 (mm/year). However, the majority of
the yearly rainfall (about 80%) falls during the winter [16] with an average runoff curve
number of about 50 [17], which indicates the potential for implementing RWH.

Widely variable land-use patterns are determined by the accessibility of water. Com-
paratively well-watered non-irrigated land within the hills is used for the grazing of
sheep and tree crops. Irrigated land within the hills and also the river basin is intensively
cultivated for various fruits and vegetables [18].
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2.2. Methodology Overview

The identification of rainwater harvesting techniques (RWHt) suitability maps in-
volved four stages:

i. Selection of RWHt;
ii. Selection of appropriate criteria for each technique;
iii. Suitability classification for each criterion;
iv. GIS application and maps suitability development.

2.2.1. RWHt Selecting

When developing a rainwater harvesting (RWH) system, selecting the appropriate
RWHt after determining the RWH site that meets the fundamental technical design require-
ments for rainwater harvesting is a critical component for assuring long-term implementa-
tion. There are numerous strategies and approaches that have been employed to conserve
rainwater all over the world.

The design requirements for RWHt as well as the assessment of their site-suitability
play a major role in determining technique suitability. The first step in the selection process
was to decide which rainwater harvesting techniques could be mapped at the country
level, as RWH is a site-specific activity. First, data were collected with respect to the most
commonly practiced RWHt in districts with similar climatic conditions and topography.

Next, an overview of the critical values for climate, soil conditions, topography, and
other variables affecting each RWHt was created and a pre-selection list for the RWHt
was made.

Finally, the pre-selected list was discussed with local experts, taking into account the
already implemented RWHt. As a result, seven RWHts were selected: runoff basin system,
contour ridges, cisterns, eyebrow terrace, check dam, on-farm pond and bench terraces.

2.2.2. Criteria Selection

This step formulates the set of criteria to choose suitable RWHts based on the primary
purpose, expert assessments, literature studies, and, most significantly, data availability. To
classify RWHt suitability and influenced by the RWH site suitability criteria, five criteria
were selected: annual precipitation (rainfall) as a climate parameter, runoff and curve
number (CN) as a hydrology parameter, land use as an agronomy parameter, slope as a
topography parameter, and soil texture as a soil parameter.

I. Rainfall

In any RWH system, the amount and distribution of rainfall are essential factors in
determining whether a specific RWHt is suitable or not in a particular location. In ASARs,
rainfall is characterized by high temporal and spatial variation [19]. When designing
rainwater harvesting systems, the catchment region should receive enough rainfall for
storage for future use.

II. Runoff depth (curve number, CN)

The depth of runoff is used to determine the amount of water available during runoff.
The runoff depth was calculated using the curve number (CN) given by the Soil Conser-
vation Service [20]. The effects of soil and land cover on rainfall and runoff predict CN.
Land-cover and soil-texture maps were used to estimate CN for each pixel in the research
region. The depth of runoff may be stated as follows:

Q =
(P − Ia)

2

(P − Ia) + S
(1)

where Q = depth of runoff (mm), P = precipitation (mm), S = potential maximum retention
(mm), and Ia = initial abstraction (mm).
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Ia = 0.2 S based on the analysis of rainfall data from small agricultural basins [21]. As
a result, Equation (1) may be written as follows.

Q =
(P − 0.2S)2

(P + 0.8S)
(2)

S may be worked out using CN as follows.

S =
25400
CN

− 254 (3)

The runoff reaction to a given rain is represented by CN, which ranges from 0 to 100.
The presence of high CNs indicates that a significant percentage of the rainfall will be the
surface runoff [22,23]. Shadeed and Almasri [17] created the CN map for the entire WB.

III. Land use (LU)

At a given location, the runoff generated by rainfall is related to the use of the land.
For example, when the land is more densely vegetated, there is less surface runoff and
there will be more water infiltration [24]. In the WB and depending on the Ministry of
Agriculture (MoA) database, there are seven different types of land uses that have been
discovered: built-up, woodland, grazing, irrigated farming, permanent crops, Arab land,
and Israeli settlements.

IV. Slope

Slope plays a direct role in selecting the appropriate RWHt since it interferes with the
structure’s design. On another hand, it has a significant impact on the runoff generation
and, thus, on the sedimentation amount, water flow velocity, and the cost (in terms of time,
materials, and effort) required to implement RWH [25]. In Arc GIS 10.2, a 30 m resolution
digital elevation model (DEM) was utilized to create the slope map.

V. Soil texture

In RWHt design, soil texture affects both surface runoff and soil infiltration rates [26,27].
The percentage of sand, silt, and clay in a soil determines its texture class. According to
Adham et al. [1], soil with fine and medium texture is usually better suited for RWH as they
retain water better. Soil texture is certainly one of the most important factors in deciding
where to build an RWHt. This importance varies from one technique to another depending
on the design and operation of each technique. In this study, four soil texture classes were
selected Sandy loam, Loamy, Clay loam, and Clay [28].

2.2.3. Criterion Suitability Classification

In this step, the different values within the different datasets were converted into a
common suitability scale using GIS and MCA. Due to the different measures and weights
for the different criteria, each of the five criteria was first classified. The wight for each
criterion was determined after assigning scores using the Analytic Hierarchy Process (AHP)
and the pairwise comparison matrix [29]. When comparing and scoring two criteria, a
continuous 9-point scale is used, with odd numbers 1, 3, 5, 7, and 9 representing the range
of suitability (not suitable–very suitable) of the criteria compared to each other. The scores
were assigned and adjusted based on active discussions with local experts and engineers,
as well as on information from previous scientific work.

2.2.4. GIS Application and Maps Suitability Development

In creating the datasets, the DEM and rainfall station data required additional analysis
to derive the input data maps for slope and precipitation. Based on the suitability scale,
a new scaled map was created for each input layer. The Spatial Analyst module of Arc
GIS 10.2 was used to determine suitability by reclassifying the criteria layers and using
the raster calculation tool. The final step is to combine the converted output layers of

211



Water 2022, 14, 2110

annual perception, land use, slope, soil texture, and CN. For each RWHt, each criterion
was classified as a numerical value and assigned a suitability value. Then, the suitability
values were classified into four groups: low (<20), moderate (20–29), high (30–39), and very
high (>39). Figure 2 shows the flowchart of the steps taken to derive the RWH suitability
map for each RWHt. A Model Builder in ArcGIS10.2.1 was established for generating a
suitability model, which included steps for calculating the suitability score for each RWHt.

Figure 2. Flow chart for the identification of RWHt suitability map.

3. Results and Discussion

3.1. Input Maps

Figure 3 shows the GIS input maps representing the levels in our model for the
suitability analysis. The long-term average annual precipitation for the entire West Bank
(WB) is shown in Figure 3a. The amount of precipitation varies greatly within the WB. In
particular, the eastern and southern parts of the WB are much drier. Potential runoff, shown
in the CN figure in Figure 3b, is low in areas with sandy loam soil in Figure 3f and very
high in built-up areas in Figure 3c. Permanent crops, including arable crops, and irrigated
farming are found mainly in the regions with higher rainfall. Pasture dominates in the
eastern part of the WB. Figure 3d shows the slope driven from the dem in Figure 3e.

3.2. Suitability Score for Each Criterion for the Rwhtt

All seven selected rainwater harvesting techniques (RWHts) were assigned a suitability
scale. All layers were reclassified according to their suitability with a specific score, as
shown in Table 1. The suitability ratings and criteria selection were the result of several
discussions with local experts and engineers with experience in developing RWHt. The
ratings were updated and modified several times depending on the previous studies to
avoid discrepancies in the allocation of points [25,30–32].
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Figure 3. Input maps for the WB: (a) annual average rainfall (b), runoff curve number, (c) land use,
(d) slope, (e) dem, and (f) soil texture.

Table 1. The suitability score of the selected rainwater harvesting techniques for the West
Bank, Palestine.
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1
Annual rainfall

(mm)

<250 7 3 9 7 5 5 5
250–500 9 9 7 9 7 7 9
500–750 3 7 5 5 9 9 7

2 Land use

Arable Land (supporting grains) 7 9 1 7 5 7 7
Built-up Areas 1 1 5 1 1 1 1

Woodland/Forest 1 1 1 3 1 1 1
Rough Grazing/Subsistence Farming 3 5 1 5 5 5 3

Irrigated Farming 1 3 9 1 9 9 1
Permanent Crops (Fruits trees) 9 7 7 9 3 3 9

Israeli Settlements 1 1 1 1 1 1 1
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Table 1. Cont.
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3
Slope

(%)

flat (0–2) 9 3 3 7 5 3 1
gentle (2–5) 7 5 9 9 9 7 1

moderate (5–10) 5 9 7 5 7 9 3
rolling (10–15) 1 7 5 3 3 5 7
hilly (15–30) 1 1 1 1 1 1 9

steep >30 1 1 1 1 1 1 5

4 Soil texture

Sandy loam 3 5 1 5 3 3 7
Loamy 5 7 3 7 5 5 5

Clay loam 9 9 5 9 7 7 9
Clay 7 3 9 3 9 9 3

5 Curve number

≤50 3 5 3 3 3 3 5
51–60 7 7 5 7 5 5 7
61–70 9 9 7 9 7 7 9
>70 5 3 9 5 9 9 3

3.3. The Potential of RWHt

Figure 4 shows potential maps for different types of RWHt. The maps identified by
the spatial analyst module show the suitability on a scale from red (not suitable) via yellow
(moderate suitable) to green (very high suitable), based on the five selected criteria. Table 2
shows the percentage per suitability class for each RWH technique for the entire WB.

Table 2. Percentage of the WB suitable for different RWH techniques.

Suitability Score
Low Moderate High Very High

<20.0 20 to 29 30 to 39 >40

On farm pond 3.4 52.9 42.8 1.0
Bench terraces 0.9 29.6 69.5 0.0
Check dam 1.7 40.1 51.7 6.4
Eyebrow terraces 14.8 72.8 12.3 0.0
Cistern 0.0 53.7 46.2 0.1
Contour ridges 3.3 33.0 59.9 3.8
Runoff basin 6.3 64.4 28.7 0.5

To obtain an overview of the suitability assessment for all selected techniques together,
Figure 5 shows an integrated suitability map created with specific analysis properties in
Arc GIS 10.2. Each RWHt has been assigned a specific color to indicate its high suitability
for a specific area in WB. The map shows a large discrepancy in the amount of land suitable
for the different RWHts.
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Figure 4. Suitability maps for different types of RWHt in the WB, Palestine, based on soil type, slope,
rainfall, land use, and curved number.
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Figure 5. Integrated suitability map of all the seven RWHts for the WB, Palestine.

From the maps in Figure 4 and the integrated map in Figure 5, it is clear that the
different RWHts have different suitability in WB. Each RWHt has its own suitability
map, which reflects the technical requirements for that technique and is influenced by the
criterion. Runoff basins are most suitable on the northern eastern and southern western
borders of WB in the relatively shallow parts, and the soil is mostly clay loam. Map statistics
show that about 50% of the area of WB is moderately suitable for this technique. Seventy
percent of the area of WB is very suitable for the contour ridge technique. Most of the
well-suited sites are in the northern east and southern east with cropland and a perceptual
range of more than 250 mm. About 50% of the total area of WB is very suitable for the
cistern technique. These areas are mainly in the northwest and southwest where the soil
texture is mainly classified as clay loam, as the infiltration rate in the catchment area of the
cistern is an important factor for suitability. Therefore, the area with high infiltration rate
and low CN value shows low suitability for the cistern.

Highly suitable areas for implementing eyebrow terraces are located mainly on the
northern and southeastern borders and in the southwestern borders of WB. Statistics
showed that about 70% of the area of WB is moderately suitable for this technique. This
can be explained by the fact that this technique is less suitable for clay soils. As for the
farm pond, the areas with high suitability for this technique are mainly located in the north
and southwest of WB, with 60% of the area with moderate slopes and clay soil being very
suitable for this technique.
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It should be noted that according to this analysis, about 80% of the area of WB, which
is mainly in the north and northwest, is highly suitable for the construction of check dams.
Figure 3d shows that these areas have a slope of 15 to 30% and a CN of 60 to 70 mm. Areas
with high suitability for the use of the bench terrace technique are located in the northeast
and southwest of WB where orchard farms are located and these areas have a hilly to steep
slopes. Map statistics show that more than 50% of the area of WB is highly suitable for
this technique.

A look at the input maps in Figure 3, the scoring system in Table 1, and the result
of the individual RWH suitability map in Figure 4 shows how the suitability maps are
strongly influenced by the score assigned to each criterion.

The relatively high suitability scores for these RWH techniques do not mean that these
are the best solutions for farmers, as socioeconomic, political, and cultural aspects were
not considered in this analysis. Bench terraces, for example, are too expensive in most
cases due to high labour costs. Eyebrow terraces are less suitable for mechanised cropping
operations because of their irregular shape. Nevertheless, this approach can help farmers
and decision makers in the initial selection of RWHts suitable for their region.

4. Conclusions

A suitability model based on GIS, created with ModelBuilder in Arc GIS 10.2, was
used to identify potential RWHts. A set of criteria (rainfall, runoff, slope, land use and soil
texture) were included in the suitability model.

According to the results of this study, this research technique provides an initial
meaningful screening of broad areas and is an extremely useful tool for assisting in the
development and implementation of a rainwater harvesting (RWH) project, especially in
arid and semi-arid environments. Arc GIS 10.2 has proven to be an extremely useful tool in
this study for integrating various information to identify ideal locations for different RW.
In screening vast regions for the applicability of RWH measures, Arc GIS 10.2 proved to be
a versatile, time-saving and cost-effective tool.

Hydrologists, decision makers, and planners will benefit from the suitability map as it
will allow them to easily identify which rainwater harvesting technique (RWHt) to use in
sites with RWH potential. The quality and accuracy of the data, as well as the way the data
were sourced, processed, and produced, were all factors in the quality of the map.

However, to confirm the applicability of the model, it needs to be calibrated and tested
in different regions and with different RWHts. In addition, as the suitability ratings have
a major impact on the maps of RWHt suitability, a validation study or pilot project is
recommended to ensure the margin of error (if any) in determining the preferences for
each RWHt. Socio-economic criteria such as investment and maintenance costs and labour
input may also be important for water harvesting. Therefore, socio-economic suitability for
different RWHts needs to be explored and included in the assessment process. These ideas
will improve the realism of the model and broaden the scope of this methodology.
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Abstract: Freshwater resources are uncertain in Palestine and their uncertainty is expected to intensify
due to climate change and the political situation. Yet, in this region, a stable freshwater supply is vital
for domestic and agricultural uses. Rainwater harvesting could help to increase freshwater availability.
This study investigates the economic feasibility of two rainwater harvesting applications in the West
Bank, with eyebrow terracing in olive groves in rural areas and domestic rooftop harvesting in urban
areas. Cost-effectiveness is estimated using a spatially explicit cost–benefit analysis. Three land zones
varying in suitability for the implementation of eyebrow terracing in olive groves are analyzed. The
potential increase in olive yield is estimated with a crop–water balance model. The potential amount
of rainfall that can be harvested with domestic rooftop harvesting is calculated based on the average
rooftop area for each of the 11 governorates individually. Costs and benefits are considered at the
household level to calculate the economic feasibility of these two applications. Although eyebrow
terracing enlarges soil moisture availability for olive trees and thereby increases olive yield by about
10–14%, construction costs are too high to make implementation cost-effective. Similarly, rooftop
harvesting can harvest about 30% on average of the annual domestic water demand and is worthwhile
in the northern and southern governorates. Yet, in this case, construction costs are generally too high
to be cost-effective. This obstructs more widespread adoption of rainwater harvesting in the West
Bank, which is urgently needed given the large impacts of climate change. Providing subsidies for
rainwater harvesting could help to make adoption more attractive for households.

Keywords: rainwater harvesting; cost–benefit analysis; aridity; urban; rural; rooftop harvesting;
eyebrow terracing; Palestine

1. Introduction

Freshwater availability is uncertain in Palestine and is expected to become even more
limited due to climate change, rapid population growth, expansion of agricultural activities,
and political implications [1]. Palestine is characterized by an arid to semi-arid climate.
Access to freshwater resources from aquifers is very limited and has been decreasing over
time due to Israeli control of Palestinian water resources [1,2]. As such, Palestinians are
seeking to have new water alternatives such as rainwater harvesting. However, due to
climate change, precipitation is expected to decrease along with an increase in dry spells
and an increase in evapotranspiration due to increasing temperature [3]. Together, this is
leading to increased water insecurity.

Yet, freshwater availability is vital for people’s daily lives in Palestine, mainly for
domestic water use and irrigation water in agriculture. Ensuring the availability and
sustainable management of water and sanitation—which is described in Sustainable Devel-
opment Goal 6—is not only vital in itself, but is also “essential for enhancing food security,
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health and wellbeing of citizens (SDG 2, 3 and 14), and the resilience of Palestinian commu-
nities in the face of water confiscation and intensifying climate change (SDG 13)” [2]. Even
though the majority of homes are connected to the water grid in Palestine (i.e., 91%) [4], the
water supply is irregular and intermittent, and about one-third of distributed water is lost
due to leakages in the water grid [2]. As a result, the average water consumption is low
and households facing intermittent supply or who are not connected to the water grid are
forced to buy tanked water at highly inflated tariffs [2]. As such, coping with increasingly
uncertain water supply is critical for Palestine.

To cope with increasing uncertainty in water availability, the government of Palestine
is intending to promote more widespread adoption of rainwater harvesting [2,5]. Rainwater
harvesting is already practiced in Palestine to some extent. It forms an additional source
of water for domestic consumption and agriculture use [6]. Implementation is promoted
on a small scale by local communities and non-governmental organizations to alleviate
temporal and spatial water shortages. People typically collect rainwater from roofs or rock
catchments and store it in cisterns in order to meet part of their water needs [6]. More
widespread adoption of rainwater harvesting could help to increase water security in
the region.

Rainwater harvesting is applied widely in arid regions around the world as a means
to provide water for agricultural and domestic uses [7,8] and is an important method to
adapt to climate change [9–11]. It is a relatively low-key solution to increase water security
for households [12], and is seen as a low-regret adaptation measure to climate change [1].
It is also promising to upscale rainwater harvesting in rural areas in order to increase crop
production [13]. Other benefits include—amongst others—reduced soil erosion, reduced
runoff peak flow, flood mitigation, and increased groundwater recharge [14]. Many differ-
ent rainwater harvesting systems exist that can be adapted to local climatic, biophysical and
socio-economic conditions, and are suitable for either the urban or rural context. Rainwater
harvesting is also relatively cheap to implement and a lot of experience and technical
knowledge is available for successful implementation given its long history [15].

Previous studies show that the success of the implementation of rainwater harvesting
systems depends heavily on their economic feasibility [14,16,17] next to their technical
design and identification of suitable sites [11,18,19]. Technical design and site suitability
have been studied previously for Palestine and show that a range of techniques and suitable
locations exist to apply rainwater harvesting [5,20,21].

Yet, the economic feasibility of implementing rainwater harvesting for households in
Palestine is unknown. The economic feasibility of rainwater harvesting can be calculated
using a cost–benefit analysis [22]. Previous cost–benefit studies about rainwater harvesting
in residential areas in other countries show that rainwater harvesting may be an efficient
strategy, but cost-efficiency depends largely on local water prices, besides cistern size
and type ([23] for Jordan; [24,25] for the USA). Often, water tariffs are heavily subsidized
and very low (e.g., [23]), making it hard for alternative water sources that require initial
investment and maintenance costs to be cost-efficient. Furthermore, often investment costs
are the main economic barrier for households to install rainwater harvesting, especially in
the global South [14,17,26], even though installation may supplement household income
when harvested rainwater can be used as irrigation water for crop production [26].

In the context of climate change and increasing uncertainty in water availability, and
in a region that is primarily dependent on rainwater for its freshwater input, it is essential
to know whether implementation of rainwater harvesting can increase water availability
and whether adoption can be cost-effective on a larger scale. Especially, given that the
Palestinian government is considering promoting rainwater harvesting as a strategic option
to overcome water shortages in Palestine on a larger scale [2,5]. When implementation
can be economically feasible, the Palestinian government could consider to stimulate
the adoption of rainwater harvesting, for example, by the means of financial stimuli,
such as subsidies.
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This study aims to investigate the economic feasibility of the implementation of
two rainwater harvesting applications in a rural and urban setting in the West Bank of
Palestine. Two types of rainwater harvesting that are commonly practiced in the West Bank
will be investigated: (1) eyebrow terraces in olive cultivation in rural areas, and (2) domestic
rooftop harvesting in residential areas [5]. A crop–water balance model is set up to estimate
the impact of rainwater harvesting by the means of eyebrow terracing on olive yield. A
rainwater harvesting calculation tool is used to estimate the amount of rainwater that can be
harvested on domestic rooftops. The resulting estimates are used to calculate the costs and
benefits of the two selected rainwater harvesting applications. These costs and benefits are
weighed in spatially explicit cost–benefit analyses to determine whether the implementation
of these two techniques is economically feasible for Palestinian households.

This study approach has two novel aspects. In contrast to previous studies that mainly
focused on analyzing one technique applied in either an urban or rural setting, the current
study will investigate two techniques in two distinct landscapes of the West Bank. It is
expected that along with differences in the amount of rainwater that can be harvested, the
costs and benefits of rainwater harvesting implementation will be different as well for rural
and urban rainwater harvesting. Another novel aspect is that the cost–benefit analyses that
are undertaken in this study are spatially explicit. This allows for us to account for spatial
variability in local climatic, biophysical and socio-economic conditions that determine
the suitability and effectiveness of rainfall capture, and ultimately cost-effectiveness of
harvesting in specific regions of the West Bank. As such, it can offer insight into which
parts of the country can be promising to implement rainwater harvesting.

2. Materials and Methods

2.1. Study Area

The study area is the West Bank of Palestine, which is subdivided into 11 governorates
(Figure 1). The surface area of the West Bank is about 5660 km2 [27]. The West Bank has a
Mediterranean climate with climate zones ranging from dry sub-humid, semi-arid, arid to
hyper-arid zones. The long-term annual average varies between 133 mm in the proximity
of the Jordan River (in Jericho) and 658 mm in the central mountains (in Salfit), with an
annual average value of about 420 mm for the entire West Bank [28].

In 2018, the West Bank had 2.9 million inhabitants and a population density of
522 persons/km2 [26]. Gross Domestic Product accounted for USD 10,715.9 million and
Gross Domestic Product per capita for USD 4154.2 in 2017 [26]. Agriculture (combined
with fisheries) accounted for 7.1% of the national GDP in Palestine in 2018 [26].

Land use in the West Bank consists of arable land (supporting grains), irrigated farming
(supporting vegetables), permanent crops (including olives, grapes, citrus, and other fruit
trees), rangeland (including rough grazing and subsistence farming), woodland and forest,
built-up areas and Israeli settlements [29]. The latter category is not considered in this
study, since it is not controlled by the Palestinian Authority.

2.2. Implementation of Eyebrow Terraces
2.2.1. Spatial Characterization Using Archetype Analysis

A spatial characterization was made of the West Bank using archetype analysis for
the implementation of eyebrow terraces in olive groves. Archetype analysis uses socio-
ecological indicators to systematically identify regions with similar conditions (so-called
archetypes) for the implementation of rainwater harvesting [13]. To this end, a baseline
map was prepared based on land use in the West Bank [29]. Suitable land use classes were
selected in which eyebrow terraces can be implemented, either in existing or new olive
groves. Suitable land use classes were arable land supporting grains and permanent crops,
including olives, oranges and grapes. The land use map shows that olive groves cover
the largest area of the permanent crops (about 80%). It also shows that the selected area
suitable for olive terracing covers 1617 km2, which constitutes about 29% of the West Bank
(Figure 2).
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Subsequently, three biophysical variables were used to define suitable areas for olive
cultivation on eyebrow terraces: precipitation, slope and available soil water capacity
(AWC) [5].

Figure 1. Map of the West Bank, showing the 11 governorates.
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Figure 2. Archetype analysis using land use, rainfall, slope and available soil water capacity (AWC)
to identify similar regions in the West Bank that are suitable for eyebrow terracing.

Precipitation

In order to define which areas are suitable for rainwater harvesting with eyebrow
terracing, the precipitation (i.e., rainfall) in the wet season was analyzed. The wet season
takes place from Nov–Dec–Jan–Feb–Mar in the West Bank and contributes to about 75%
of the annual precipitation [30]. Monthly precipitation maps were summed up for each
annual wet season to have the total precipitation of the wet season. Historical total monthly
precipitation data (in mm) for the time period 2000–2018 were collected at a spatial reso-
lution of 2.5 arc-minutes (i.e., about 5 km) from CRU-TS 4.03 [31] and downscaled with
WorldClim 2.1 [32].

From the total wet season maps, the wet season with, on average, the lowest amount
of precipitation was defined as the driest rainy season. The wet season with, on average,
the highest amount of precipitation was defined as the wettest rainy season. Within the
2000–2018 time period, the rainy season in 2016/2017 was the driest with a total average
of 194 mm (±61 S.D.), while the rainy season in 2002/2003 was the wettest with a total
average of 503 mm (±175 S.D.). Based on the amount of precipitation in the driest rainy
season, the West Bank was classified into two classes: (1) dry region (≤200 mm) and (2) wet
region (>200 mm). The wet region was defined as suitable for eyebrow terracing with olive
groves (Figure 2).

Slope

The slope was analyzed to define which areas in the West Bank can be suitable for the
implementation of eyebrow terraces. The slope was calculated in percentage (%) based
on the Digital Elevation Map (DEM) [29]. In the West Bank, slopes range between 0 and
82% and are on average 7.7%. A slope between 2 and 5% was defined as suitable for the
construction of eyebrow terraces for olive trees (Figure 2) [5].

Available Soil Water Capacity

Available soil water capacity (AWC) was analyzed to determine which areas in the
West Bank are suitable for the implementation of olive terracing. Maximum available soil
moisture (in mm/m) was collected from the SoilGrids 2017 dataset having a 250 m spatial
resolution [33]. Data for available soil water capacity (‘AWCh1’) with a field capacity at
pF 2.0 were selected in order to include the widest possible range for water uptake at field
capacity [34]. Data were extracted at a maximum of up to 1 m depth, which included
6 soil layers for AWC. From this data, the bulk estimate for available soil water capacity
within 1 m of soil depth was calculated by taking the average of the upper and lower
boundary of the depth interval (i.e., soil layer 1 at 0 cm and soil layer 6 at 100 cm; after [33]).
A boundary value of ≤12 vol% was taken as suitable for the implementation of eyebrow
terraces for olive cultivation (Figure 2) [5].
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Suitability Zones

Based on the generated suitability maps in Figure 2, three maps with suitability zones
for the implementation of eyebrow terraces were created. The land use suitability map
was used as a base layer. For the first suitability map, the rainfall and slope maps were
overlaid with the base layer and the areas that were overlapping in all three input maps
were identified as suitable. This resulted in the rainfall and slope suitability map (Figure 3).
In a similar fashion, a rainfall and AWC suitability map (using the rainfall, AWC and base-
layer maps) and an AWC and slope suitability map (using the AWC, slope and base-layer
maps) were generated (Figure 3; Table S1). This resulted in three different maps indicating
land areas that are suitable for the implementation of eyebrow terraces for olive trees.
Characteristics of the three suitability zones are listed in Figure 3.

Figure 3. Maps showing the three suitability zones for implementation of eyebrow terraces in olive
groves based on (1) rainfall and slope, (2) rainfall and available soil water capacity (AWC), and
(3) AWC and slope. Characteristics of the three suitability zones are listed, including surface area and
percentage of coverage by olives and grains. Note that some spatial overlap occurs among the three
suitability zones since they are partly selected based on the occurrence of the same suitability factor.

2.2.2. Crop–Water Balance Model

A crop–water balance model was created to estimate the impact of (limited) water
availability on potential olive yield. This is a spreadsheet model that is based on a model
developed by de Graaff [35], which allows for us to estimate the impact of soil water
conservation measures on potential crop yield at the field-scale. For this study, the model
was set up to estimate olive yield reduction (in %) at a monthly time step.

Models were created to calculate the potential yield of olive trees for the implementa-
tion of eyebrow terraces in the three defined suitability zones (see Figure 3). For each zone,
a business-as-usual scenario (without terracing) and a scenario with terracing were defined
to calculate the differences in olive yield.

The crop–water balance model has both static and dynamic data input. Static data
input is the same for all scenarios, while dynamic data input is calculated specifically
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for each of the three suitability zones. Dynamic data inputs are precipitation, potential
evapotranspiration, available soil water capacity and run-on.

Dynamic Data Input

The total monthly precipitation maps that were generated in Section 2.2.1 were used
to calculate the mean monthly precipitation maps over the time period 2000–2018 (in
mm/month). Based on these maps, the mean monthly precipitation was calculated for the
three suitability zones.

Potential evapotranspiration was collected from the Global Aridity Index and Potential
Evapotranspiration (ETo) Climate Database [36]. This dataset provides the monthly mean
potential evapotranspiration over the 1970–2000 time period with a spatial resolution of
30 arc-seconds (i.e., about 1 km). These maps were downscaled for the West Bank. For
each month, the average potential evapotranspiration (in mm/month) was calculated
over the 1970–2000 time period. Based on these maps, the monthly average potential
evapotranspiration was calculated for the three suitability zones.

Available soil water capacity was obtained from the SoilGrids 2017 dataset as previ-
ously described in Section 2.2.1. The mean bulk estimate (in mm/m) was calculated for the
three suitability zones.

The amount of rainfall run-on on eyebrow terraces in the three suitability zones was
calculated using the following formula:

RnR = R ∗ RnA
R f A

∗ CN
100

in which RnR is rainfall run-on (in mm/month), R is rainfall (in mm/month), RnA is a
run-on area (in m2), RfR is runoff area (in m2) and CN is curve number (in %; Figure S1). For
CN, a curve number map of the runoff area for the West Bank was used, which was obtained
from Shadeed and Almasri [37] and calculated using a GIS-based Soil Conservation Service
(SCS)-CN method. The curve number represents the runoff response to rainfall (in %) in
which high curve numbers indicate that a large amount of the rainfall will be runoff and
vice versa. Average curve numbers for the three suitability zones were calculated based on
the curve number map.

The above formula assumes that runoff from the surrounding runoff area will be
harvested as run-on on eyebrow terraces. The run-on area was taken as the mean surface
area of eyebrow terraces for olive trees reported in the West Bank, being 17.5 m2. The runoff
area was calculated by taking an 8 m by 7 m planting distance between olive trees, resulting
in a 56 m2 surface area from which the run-on area was extracted. This resulted in a runoff
area of 38.5 m2.

Static Data Input

Several other biophysical variables needed as input for the crop–water balance model
were defined. The rooting depth for olive trees without terracing was set at 1.2 m and with
terracing at 1.7 m [38], since it is assumed that deeper rooting depths are created when
terraces are built, based on experiences from a study in Tunisia [39] and given that terracing
has been generally found to be favorable for increasing tree rooting depth [40]. The soil
depth was set at 1 m for the West Bank, since soil depth should be set higher than the
rooting depth in the run-on area.

Input data for crop water requirements (in mm/month) and yield response to water
stress (in mm/month) were growth-stage-specific. Input for these two variables was based
on mean values for olive trees in terraced areas in Tunisia [39]. The following growth stages
have been distinguished (in months): initial (Mar), development (Apr–May–Jun), mid
(Jul–Aug), and late (Sep–Oct–Nov).

For business-as-usual scenarios, runoff was taken as 2% during light rainfall events
(<30 mm) and 20% during heavy rainfall events (≥30 mm); this was based on studies by
Hammad et al. [41,42] who measured the runoff coefficient for two winter seasons in the
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Ramallah Governorate. In the scenarios with terracing, runoff was taken as negligible since
terraces are assumed to be very effective in capturing rainfall.

Model Validation

In order to validate whether the estimated actual soil moisture content (in mm/m) in
the model was realistic, reference values for actual soil moisture content were collected from
the literature. In a study at the Wadi Natuf catchment in the Ramallah Governorate, the
lowest recurring soil water contents in the field at different soil depths were measured based
on continuous soil moisture measurements over several years for various locations [43].
Based on location data, we calculated an average minimum soil moisture content of 44
mm/m for a business-as-usual situation, and an average minimum soil moisture content of
28 mm/m was found for terraces. The values found in our models for actual soil water
content vary slightly around these reported literature values.

2.3. Implementation of Rooftop Harvesting

Calculations for the implementation of domestic rooftop harvesting are made for the
11 governorates of the West Bank individually (Figure 1) because the governorates vary
greatly in the amount of built-up land (e.g., from 1.2% in Tubas to 10.5% in Jerusalem), the
number of inhabitants (e.g., from about 50,000 in Jericho up to about 715,000 in Hebron)
and the amount and pattern of rainfall. As such, the surface area of built-up land and
rooftops was calculated for each governorate specifically.

First, the mean surface area of the rooftops of households in each governorate was
calculated. The surface area of urban areas in each governorate was calculated based on
the land use map.

The surface areas of urban areas were divided by the number of households in each
governorate, which was estimated based on the population in each governorate and the
average of six persons per household in the West Bank. As built-up land also included other
buildings than domestic rooftops (such as infrastructure, office buildings and industry), the
surface area was corrected by a division by four to approach the overall average rooftop
surface area of 150 m2 for the West Bank [28]. In practice, this resulted in an overall average
rooftop area of 154 m2 for the West Bank (Table 1).

Table 1. Estimated average rooftop surface area per household for each governorate in the West Bank.

Governorate Average Rooftop Surface Area (m2/Household)

Jenin 110.7
Tubas 123.9

Tulkarm 171.9
Nablus 106.8

Qalqiliya 90.4
Salfit 132.0

Ramallah and Al-Bireh 176.2
Jericho 307.5

Jerusalem 128.4
Bethlehem 185.7

Hebron 162.2

Total average 154.2

The potential amount of rainfall that can be harvested on average and the needed
storage capacity of the water tank were calculated for each governorate using the Sam-
SamWater Rainwater Harvesting Tool [44]. This tool uses rooftop size, rooftop type (with
associated runoff coefficient), household size and its water demand, and spatial location
(for the average amount of rainfall) to estimate the amount of rainfall that can be harvested
on a monthly basis for a year with average rainfall. To point down the spatial location,
centroids of the built-up land in each governorate were calculated using ArcGIS. The flat
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rooftop type was selected—having a runoff coefficient of 0.7—since there are typically flat
roofs in the West Bank. The average household size was set at six people per household.
The average water demand was set at 87 L/capita/day based on the daily consumption
rate per capita in the West Bank [45], resulting in a 522 L/household/day water demand
per household.

2.4. Spatially Explicit Cost–Benefit Analysis

By the means of spatially explicit cost–benefit analysis, it was calculated whether the
implementation of eyebrow terraces and domestic rooftop harvesting can be economically
feasible. The cost–benefit analysis for the implementation of eyebrow terraces is spatially
explicit in such a way that it calculates the costs and benefits explicitly for the three
land zones that are suitable for eyebrow terrace implementation (Figure 3). The cost–
benefit analyses for the implementation of rooftop harvesting are calculated for each of the
11 governorates of the West Bank, individually.

Different scenarios are considered in the cost–benefit analyses as well. Cost–benefit
analyses for eyebrow terraces were conducted for the business-as-usual and terracing
scenarios in the three suitability zones. Cost–benefit analyses for rooftop harvesting were
conducted for a scenario with 100% construction costs for installation on 100% of the
rooftops and a scenario with 50% construction costs for installation on 50% of the rooftops,
because households in the West Bank may already have some form of water reservoir
installed at their homes. All cost–benefit analyses were calculated for a time period of
20 years and reported in EUR values for the year 2018. Data that were used as input were
taken for the year 2018 (if not reported otherwise).

2.4.1. Eyebrow Terraces

In the cost–benefit analysis for eyebrow terraces, investment, maintenance and pro-
duction costs, and benefits were accounted for. For the suitability zone, a business-as-usual
and terracing scenario were estimated. The largest differences between these two scenarios
were expected in the yield of olives and grains and labor costs. As such, these two factors
were explicitly considered. The costs for fertilizers, pesticides, machinery, irrigation and
seeds were assumed to be largely similar between the two scenarios. The cost–benefit
analyses were calculated on a per-hectare basis.

The estimation of costs included investment, maintenance and production costs. The
initial investment costs were the construction costs of terraces estimated at 3495 EUR/ha,
including the manual construction of terraces estimated at 3410 EUR/ha and the incidental
use of machinery estimated at 85 EUR/ha. Yearly maintenance costs of the terraces were
estimated at 43 EUR/yr. These estimations were obtained from fieldwork for different
projects by the Palestinian Hydrology Group (personal communication, S. Hamdan, 2020).
Investment and maintenance costs for building terraces were estimated for the terracing
scenarios only since no investment or maintenance costs were involved in the business-as-
usual scenarios as no terraces were built. Here, the conventional cultivation of grains and
olives is practiced.

Production costs were calculated for both scenarios. Costs were based on the quantity
and price of labor. The price of a laborer in the West Bank was estimated at 341 EUR/month.
For olive cultivation, one month of work per year was assumed, while half the amount of
work was assumed to be needed for grain cultivation.

The estimation of benefits depended on crop price, crop yield and crop cover fraction.
The crop price for olives, wheat and barley was calculated based on the producer price
(i.e., farm gate price) which was collected from FAOSTAT [46] for the time period of
1997–2019. The annual averages for olives, wheat and barley were calculated as 1130, 386
and 320 EUR/tonne, respectively.

Crop yields for olives were calculated based on yield reduction outcomes from the
crop–water balance model and the maximum recorded olive yield in the West Bank. A
maximum yield of 2.4 tonne/ha was observed (for 2010) from olive yield data for the West
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Bank over the time period 1994–2018 [46]. Absolute effects of yield reduction for olive
production in the West Bank were calculated by assuming that the highest recorded olive
yield in the West Bank was not limited by water. Crop yields for wheat and barley were
collected from FAOSTAT [46] for the West Bank. The 5-year average of 2014–2018 was
calculated in tonne/ha based on these data.

Crop yield was expected to be affected by the implementation of terracing in existing
olive groves and on arable land producing grains in the terracing scenarios. In existing
olive groves, terraces were built in year 1, due to which there was no olive production this
year (e.g., due to potential damage to the olive trees). In year 2, olive trees were assumed
to produce olives at full production capacity. On arable land, olive trees were planted in
year 1. Since these olive trees were expected to only start bearing fruit from year 5 onwards,
up to year 4, grains were still cultivated in-between the newly planted olive trees. In this
setup, the production of grains was assumed to be at 80% of the normal production. In
year 5, terraces were built and grains were no longer cultivated. The newly planted olive
trees were assumed to start bearing fruit from year 5 onwards with a 14% annual increase
in olive production up to maximum production in year 12.

To determine crop cover fraction, the ratio between olives and grains was calculated
based on the three suitability zones and the land use map (Figure 3). In the West Bank, grains
constitute a mix of wheat and barley. The proportion between these grains was set at 64%
wheat and 36% barley, based on calculating the 5-year average of the harvested area [46].

2.4.2. Rooftop Harvesting

Cost–benefit analyses were calculated for installing rooftop harvesting in the 11 gover-
norates of the West Bank. By accounting at the level of governorates, governorate-specific
differences in rainfall, rooftop surface areas and connection to the water grid can be explic-
itly considered. Investment, maintenance and production costs were accounted for in the
cost–benefit analyses. No direct benefits were considered since the amount of rainwater
harvested was accounted for by a reduction in the costs of purchasing water.

In the cost–benefit analyses, the difference between installing rooftop harvesting as
compared to conventional water use (without rooftop harvesting) was calculated. In
conventional water use, no investment and maintenance costs were involved. For these
scenarios, the costs of using tap water and purchasing water from other sources were
solely accounted for. The cost–benefit analyses were calculated at the household level.
Two scenarios were considered: one scenario with 100% construction costs and one scenario
with 50% construction costs, since part of the residential buildings may have already had
water tanks or cisterns installed in the West Bank.

Production costs for water use were calculated based on the percentage of households
connected to the water grid and the quantity of water used (Table 2). Data were collected
regarding the percentage of households connected to the water grid [4], allowing for us
to calculate the percentage of water demand from the water grid and from other sources,
such as water trucks (Table 2). Tap water was mostly provided by the Israelian water
company Mekorot, and to a smaller extent, derived from spring discharge and water
pumped from Palestinian wells. The average water tariff for tap water is 1.2 EUR/m3. In
less well-connected areas—mostly situated in rural areas—households purchase water from
other sources, such as water trucks, at high water tariffs of 4 EUR/m3 on average [47]. The
reduced amount of water that needed to be purchased was calculated based on governorate-
specific numbers about the amount of rainwater that can be harvested. It was assumed that
the remaining part of the total water demand was purchased from the water source with
the lowest tariff (i.e., tap water). It should be noted that this is a conservative assumption
as there is evidence that households do purchase water from trucks and rural areas rely on
truck water to a large extent.
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Table 2. Household connection to the water grid and water use in the West Bank.

Region Governorates
Water Use from

Water Grid (%) 1

Water Obtained
from Other

Sources (%) 1

Tap Water Use
(m3/hh/yr)

Other Water
Source Use
(m3/hh/yr)

North Jenin, Tubas, Tulkarm,
Nablus, Qalqiliya, Salfit 87.5 12.5 166.7 23.8

Middle Ramallah and Al-Bireh,
Jericho, Jerusalem 97.8 2.2 186.3 4.2

South Bethlehem, Hebron 83.1 16.9 158.3 32.2

Note(s): 1 Based on data for 2011 [4].

Investment and maintenance costs of the installation of rooftop harvesting were
calculated. Investment costs included the costs for the construction of a cistern, purchasing
and installing a pump (to pump water from the rooftop to the water reservoir), excavation
costs (for installing the pump) and PVC piping (to lead the water from the rooftop to the
reservoir). Maintenance costs included annual rooftop and reservoir cleaning.

Since the size of the water reservoir that needs to be constructed greatly influences
construction costs, the optimal reservoir size was calculated for each governorate using
the SamSamWater Rainwater Harvesting tool [44]. This tool calculates the optimal water
reservoir size based on the average water use by households and the monthly amount
of rainwater that can be harvested based on average monthly rainfall. Optimal storage
capacities for the 11 governorates were classified into typical reservoir size classes (Table 3).
Construction costs for these reservoir size classes were calculated and used to calculate
governorate-specific construction costs.

Table 3. Reservoir size classes for rainwater storage capacity for the 11 governorates in the West Bank.

Reservoir Size Classes (m3) Governorates

20 Qalqiliya, Hebron
25 Jenin, Nablus
30 Jerusalem, Tubas, Salfit
35 Bethlehem, Jericho
40 Tulkarm, Ramallah and Al-Bireh

3. Results

3.1. Eyebrow Terraces

Olive yield can be increased by 0.24 up to 0.35 tonne/ha in the West Bank with the
implementation of eyebrow terraces in existing olive groves and planting new groves on
suitable arable land as compared to the business-as-usual scenario (Figure 4 and Table S2).
This comes down to an increase in yield of between 10 and 14% over a time period of
20 years for the three different land suitability zones (Figure 4). The maximum yield that
can be reached by implementing eyebrow terraces is 2.1 tonne/ha. Although olive yield
varies among the three suitability zones for the business-as-usual scenario, yield increases
that can be reached with the implementation of eyebrow terracing are overall similar across
the three suitability zones (Figure 4).

The crop–water balance models show that the climate in the West Bank is so dry that
even after the wet winter season, the increased water harvesting capacity of the soil (due to
implementing terracing) only helps to a small extent to improve olive yield. The scenarios
in which terracing is implemented are very effective in capturing rainfall, as the amount of
effective rainfall is doubled. However, due to the limited storage capacity of the soil, most
soil moisture that is additionally harvested with terracing is rapidly lost to drainage to
deeper groundwater during the wet months. This leaves little soil moisture during the dry
season. Thus, yield differences between the business-as-usual and terracing scenarios are
overall not that large (i.e., between 10–14% higher). As such, eyebrow terraces can capture
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a lot of rainfall, but soil capacity to store it is limited. In contrast, in the scenarios where no
terracing is implemented (business-as-usual), there is less effective rainfall, since part of
the rainfall is lost to direct runoff and there is no additional run-on. Due to this, there is no
surplus of soil moisture and no drainage to deeper groundwater.
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Figure 4. Estimated olive yield (tonne/ha) for the three suitability zones in the West Bank for the
business-as-usual (BAU) and terracing scenarios based on results from the crop–water balance models.
The arrows indicate the difference in yield between the two scenarios expressed in tonne/ha and as a
percentage in-between brackets. AWC stands for available soil water capacity.

3.2. Rooftop Harvesting

On average, 56.9 m3/hh/yr of rainwater can be harvested from domestic rooftops in
the West Bank. The lowest amount of 37.5 m3/hh/yr can be harvested in Qalqiliya, while
the highest amount of 75 m3/hh/yr can be harvested in Ramallah and Al-Bireh (Figure 5a).
In the latter governorate, this is mainly due to the occurrence of relatively large rooftops
and a higher amount of rainfall. On average, 30% of household demand can be met with
rooftop harvesting, when taking the average household consumption in the West Bank of
191 m3/hh/yr [45]. As such, rainfall is by far too low to meet household demand with
rooftop harvesting alone in the West Bank.

The optimal water reservoir size was calculated based on the monthly amount of
rainwater that can be harvested and the average water use by households (Figure 5b).
The optimal size ranges from 18 m3 in Qalqiliya up to 37 m3 in Ramallah and Al-Bireh.
This variation is due to the different amounts of rainfall that can be harvested in each
governorate. Variation in optimal reservoir size has implications for the sizes of reservoirs
that are ideally constructed for rooftop harvesting in the governorates and the costs incurred
in the cost–benefit analyses.

3.3. Cost–Benefit Analysis
3.3.1. Eyebrow Terraces

The cost–benefit analyses of implementing eyebrow terraces in the three suitability
zones show that the net results for all three scenarios are positive (Figure 6). This means
that the benefits outweigh the costs. Additionally, the internal rates of return show that the
annual growth rate of investing in eyebrow terraces is positive.
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Figure 5. Figure showing (a) the amount of rainwater that can be harvested (in m3/hh/yr) with the
installation of domestic rooftop harvesting, and (b) the optimal storage capacity of water reservoirs
(in m3) for an average rainfall year in the 11 governorates of the West Bank.

However, when values are discounted (using a discount factor of 10%), the net present
values turn out to be negative in all three scenarios. The suitability zone in which slope and
AWC determine the suitability for implementing terraces turns out to be the least negative.
When a lower discount rate would be used (i.e., ≤8.6%, as indicated by the internal rate of
return), the implementation of eyebrow terracing would pay off in this scenario. Similarly,
the other two scenarios would have a positive NPV, when the discount factor would be set
at the level of the internal rates of return.

3.3.2. Rooftop Harvesting

The cost–benefit analyses in the 11 governorates of the West Bank show that investing
in installing domestic rooftop harvesting does not pay off in any of the governorates when
assuming that for all residential buildings new reservoirs would need to be constructed
(i.e., scenario with 100% construction costs; Table 4). However, when assuming that part of
the households already has water reservoirs or cisterns installed at their homes and that
only in about 50% of the cases new reservoirs need to be constructed (i.e., scenario with
50% construction costs), the net present value becomes less negative and the internal rate of
return is positive for the governorates located in the northern and southern governorates,
making investing in installing rooftop harvesting more attractive in those regions.
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Figure 6. Results of the cost–benefit analysis for implementing eyebrow terraces in the three suitability
zones in the West Bank for the business-as-usual (BAU) and terracing scenarios. Net results are not
discounted, while net present values are discounted using a 10% discount rate. AWC stands for
available soil water capacity and EUR values are reported for the year 2018.
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Table 4. Cost–benefit analysis results for installing domestic rooftop harvesting in the 11 governorates
of the West Bank, showing scenarios with 100% and 50% construction costs.

Region Governorate

100% Construction Costs 50% Construction Costs

Net Result
(EUR) 1 NPV (EUR) 2 IRR (%) 2 Net Result

(EUR) 1 NPV (EUR) 2 IRR (%) 2

North

Jenin −421 −983 −3.2 204 −358 2.3
Tubas −472 −1148 −3.0 278 −398 2.7

Tulkarm −588 −1485 −2.9 412 −485 3.1
Nablus −426 −985 −3.2 199 −360 2.3

Qalqiliya −418 −838 −4.0 82 −338 1.2
Salfit −433 −1132 −2.7 317 −382 3.1

Middle

Ramallah and
Al-Bireh −1615 −1922 −10.7 −615 −922 −6.4

Jericho −1502 −1731 −11.8 −627 −856 −7.7
Jerusalem −1610 −1632 −23.1 −860 −883 −20.2

South
Bethlehem 57 −1067 0.3 932 −192 7.1

Hebron 108 −614 0.9 608 −114 7.3

Note(s): 1 Net result is the cost minus benefits, which is not discounted over time. 2 NPV is net present value, IRR
is internal rate of return; both are estimated using a 10% discount rate.

In the southern region of the West Bank in particular, the net result of investing in
rooftop harvesting is the most positive, demonstrating that the benefits outweigh the costs
in both scenarios of 100% and 50% reservoir construction costs. Even though this region has
the lowest rainfall, domestic rooftop harvesting can be of interest since households are the
least well-connected to the water grid (i.e., 83.1%; see Table 2). However, when discounting
values at a 10% rate over a 20-year period, the net present values become slightly negative
for this region.

In contrast, in the middle region of West Bank, the net results and net present values
are deeply negative, showing that investing in installing rooftop harvesting would not pay
off, even when assuming that water reservoirs would need to be built only in 50% of the
cases. In this region, the connection to the water grid is the best (i.e., 97.8%). Because of
this, there is a low reliance on having to purchase expensive water from other sources with
high water tariffs (e.g., water trucks). As such, rooftop harvesting does not pay off in this
region (Table 4).

Together, the results of the cost–benefit analyses show that when using a discount
rate of 10%, it does not pay off to install domestic rooftop harvesting in all governorates of
the West Bank. Additionally, when assuming that new water reservoirs would have to be
constructed only in about 50% of the cases (instead of in 100% of the cases), investing in
rooftop harvesting does not pay off in the middle region, but does become more attractive
for the northern and southern regions of the West Bank.

4. Discussion

This study aimed to investigate the economic feasibility of the implementation of
the two most commonly practiced rainwater harvesting applications in a rural and urban
setting in the West Bank of Palestine. Eyebrow terracing in olive cultivation and domestic
rooftop harvesting in urban areas were investigated. We found that—although eyebrow
terracing enlarges soil moisture availability for olive trees and thereby increases olive
yield by 10 up to 14%—construction costs are too high to make implementation cost-
effective. Similarly, we found that rooftop harvesting can harvest, on average, about 30%
of the annual domestic water demand and is worthwhile in the northern and southern
governorates in particular. Yet, also in this case, construction costs are generally too high to
be cost-effective for households to implement. As such, construction costs may obstruct
the implementation and upscaling of rainwater harvesting in rural and urban areas of the
West Bank.
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The height of the initial investment costs to install rainwater harvesting structures
forms a considerable barrier to the adoption of rainwater harvesting. Similar findings for
high construction costs have been found for both urban and rural applications in other
low-income countries in previous studies. They found that adoption by farmers may be
limited due to high initial investment costs in Kenya and Tanzania [8,48]. Similarly, initial
investment costs were the main limiting factor for upscaling urban rooftop harvesting in a
case study in Namibia [49].

Such high investment costs could be reduced, for example, by the means of mechaniza-
tion, collective investment or including the building of rooftop harvesting infrastructure
and cisterns during the construction or renovation phase of residential buildings. This
would allow for the benefit/cost ratio to increase and would make the implementation
of rainwater harvesting more attractive. This is demonstrated by the scenario with 50%
construction costs for domestic rooftop harvesting: the internal rates of return become
positive for the northern and southern governorates. These governorates are characterized
by being the most arid or the least well-connected to the water grid. This also shows that
rooftop harvesting is mostly of interest to those regions in the West Bank that are very arid
or not (well-)connected to the water grid.

The cost-effectiveness of the rainwater harvesting techniques investigated in this study
may turn out more positive in practice due to several reasons. Firstly, the construction
costs for terracing estimated in this study seem relatively high when compared to other
international case studies [50]. This may indicate that they might have been estimated too
high. Secondly, we used a conservative assumption for calculating the costs of purchasing
water for estimating the production costs of the business-as-usual scenario of rooftop
harvesting. We assumed that the cheapest source of water would be bought (i.e., tap water),
while people may be forced in practice to purchase water from other, more expensive water
sources. There is evidence that people buy water from trucks and that especially people in
rural areas depend largely on truck water [27]. Thirdly, our analysis is spatially explicit,
but analyses were made for average conditions. When cost-effectiveness can be analyzed
at a finer spatial scale or for a specific area, specific locations may turn out (more) positive.
Future research could further investigate this. If investment costs turn out lower in practice,
the implementation of these rainwater harvesting techniques can be of interest for other
arid regions in the Mediterranean and elsewhere, since these regions will have to cope with
increasing water security due to climate change similar to Palestine.

Despite the high investment costs, we found that considerable benefits can be obtained
with both types of rainwater harvesting. By using domestic rooftop harvesting, we found
that 30% of the annual domestic water demand could be met. This seems quite substantial,
given that a similar study about rooftop harvesting on residential buildings in Jordan found
that only 8% of the annual domestic water demand could be met on average [23].

We also found that olive production can be increased to some extent when eyebrow
terracing is used, leading to increased water security and an improved livelihood. However,
also a lot of harvested rainwater is lost to deep drainage due to the limited storage capacity
of the soil. Because of that, terracing had only a limited impact on increasing olive yield.
Therefore, it may be interesting to investigate whether harvested rainwater can be stored
elsewhere, for example, by diversion to a water storage reservoir or cistern. Stored water
could be used for the irrigation of olive trees in the dry season or maybe even throughout
the dry season, which can lead to a higher olive yield. Previous studies also show that farm
revenue can be considerably increased using rainwater harvesting techniques (e.g., [7,51]).

Overall, however, these benefits could not outweigh the high initial investment costs.
Given that initial investment costs are too high for households to afford, construction
costs are identified as the most important barrier to the widespread adoption of rainwater
harvesting in the West Bank. Here, a role for the government may be to lower these types
of costs by providing financial aid.

At the same time, societal benefits of the implementation of rainwater harvesting
have not been accounted for in this study, even though these may have been substantial.
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Implementation of rainwater harvesting can offer multiple societal benefits—i.e., ecosystem
services—such as improved water regulation, reduced soil erosion and improved flood
mitigation. Cost–benefit analyses of the implementation of rainwater harvesting in farming
systems in arid regions of Jordan and Tunisia found that including environmental bene-
fits increased the internal rates of return significantly and made rainwater harvesting a
compelling case for public investment [52,53].

Such societal benefits have not been accounted for, as this study only included costs
and benefits at the household level and not costs and benefits at the level of the community
or society as a whole. Yet, it is expected that the implementation of rainwater harvesting
will offer multiple societal benefits in the West Bank, particularly when it is applied at a
large scale.

An important societal benefit is that water security would be increased in the West
Bank, making it less dependent on Israel for its water supply. Another important benefit
is that the resilience of farmers and households locally would be increased, which is of
relevance in view of increasing water uncertainty due to climate change and the political
situation. Other positive offsite benefits can include increasing the recharge of shallow
groundwater and prolonged soil moisture availability downhill. This may have positive
impacts on agricultural production and natural vegetation growth downslope and in the
valleys, prolonged streamflow into the dry period and reduction in flood risk downstream.
When these societal benefits would be considered as well, the cost-effectiveness of the
two studied rainwater harvesting techniques would most likely become positive.

Given that investment costs are too high for widespread adoption, but the extensive
implementation could offer multiple societal benefits, there is a role for the government of
Palestine. Additionally, given the importance to take adaptation measures for the large,
expected impact of climate change in the region, the government could consider developing
a strategic program to promote the widespread adoption of rainwater harvesting systems.
A simple mechanism for public investment, such as subsidies, may already provide the
incentive for households to consider rainwater harvesting.

5. Conclusions

This study has aimed to investigate whether the implementation of two rainwater
harvesting techniques—one in a rural and one in an urban context—can be economically
feasible for households in the West Bank of Palestine. Eyebrow terracing in olive cultivation
and domestic rooftop harvesting in urban areas has been investigated. Although eyebrow
terracing enlarges soil moisture availability for olive trees (and thereby increases olive
yield by about 10–14%), the costs of constructing terracing are too high for them to be cost-
effective. Similarly, domestic rooftop harvesting increases water availability for domestic
use, but construction costs of installing water reservoirs are too high to be economically
feasible. This obstructs a more widespread adoption of rainwater harvesting, which is ur-
gently needed given the large impacts of climate change in the region. Providing subsidies
for rainwater harvesting could help to make adoption more attractive for households. This
will help to increase water security in the West Bank alongside providing multiple other
societal benefits, such as increasing the resilience of households and farmers.
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www.mdpi.com/article/10.3390/w15061023/s1, Table S1: three suitability types for implementation
of eyebrow terraces with olive trees analyzed in this study; Figure S1. Curve number map of the
West Bank; Table S2: estimated olive yield for the three suitability zones in the West Bank (see
Figure 3) for the business-as-usual (BAU) and terracing scenarios based on results from the crop–
water balance models.
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Abstract: Rainwater Catchment System Reliability (RCSR) is the chance that a system will deliver
the required water for an interval of time. Rainwater Harvesting (RWH) is gaining popularity as a
potential alternative water source for household or agricultural use. The reliability of the Al Abila
dam in the western desert of Iraq was analyzed using a water budget simulation model and two
explanations of reliability, time-based reliability, and volumetric reliability. To evaluate rainwater
harvesting system performance, comprehensive software utilizing a method for everyday water
balance using data from 20 years of daily rainfall. According to the findings, volumetric reliability, and
for the three climate scenarios (wet, average, and dry year), increased as the storage volume increased
until a threshold accrued on the storage capacity of 11.7 × 105 m3. While time-based reliability shows
an increase up to a storage volume of 10.2 × 105 m3. Volumetric reliability of roughly 34–75% may
be achieved, while only 14–28% time-based reliability may be achieved. Water saving efficiency
decreases with increasing demand fraction, while the runoff coefficient has no significant influence
on water effectiveness. While growing storage fraction value increases the effectiveness of water
conservation and the value of the runoff coefficient influences the water saving efficiency. For both
cases, water saving efficiency for the dam does not reach 50%. Using daily rainfall data, the technique
given in this paper might be applied to predict water savings and the RWH systems’ reliability in
different arid and semi-arid areas.

Keywords: reliability; rainwater catchment; Al-Abila dam; Iraq

1. Introduction

Iraq was seen as having abundant water supplies until the 1970s. However, water
shortages in Iraq have been brought on by the building of dams in the Tigris and Euphrates
Rivers and their tributaries outside the Iraqi border, as well as by increasing water consump-
tion, population growth, and urban and industrial expansion. Therefore, water scarcity
is among the most serious issues in arid and semi-arid regions, especially in developing
areas such as the western desert of Iraq [1,2]. As a result, both developing policies and
technology to locate alternate water supplies, and enhancing water resource management
and planning, will be crucial. Rainwater Harvesting (RWH) systems are gaining popularity
as an alternative water supply, and are seen to be viable approaches for storing water for
home or farming purposes [3–5]. However, little is known about their effect on the chance
that these systems provide the required water for a period of time, here defined as the
Rainwater Catchment System Reliability (RCSR)A water balance model based on input
and output flow may be used to evaluate available water supply [6–8]. The water balance
modeling is also useful for calculating RWH reliability. Determining the reliability of an
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RWH system is a key aspect to assess demand reliability, the probability that the system
will satisfy the water demand for a certain timeframe is described as reliability [9–12].

Baek and Cole [9] evaluated the impact of the modeling time period for the water
balance models and the concept of reliability to determine the variation in the watershed
systems’ reliability. Five concepts of reliability and weekly and daily modeling time periods
are used to assess the reliability of catchment dam systems at ten sites in Western Australia’s
dryland rural regions.

According to evaluation findings, the possibility of underestimation makes utilizing
yearly period-based prediction for reliability unsuitable for dry and semi-arid regions of
Western Australia. Volume-based predictions as well as weekly and daily period-based
predictions have the possibility of being overestimated when the pattern of growing crops
and water requirements in Western Australia is taken into account. For the design of water
harvesting schemes in the dryland agricultural lands of the southwest of Western Australia,
it is therefore advised to employ monthly period-based prediction.

Jafarzadeh et al. [10] evaluated the future reliability of RWH. Using the outcomes
from General Circulation Models (GCMs) for both historical and future eras, monthly
rainfall was predicted in the first stage. Data was then spatially downscaled. For each
month rainfall was interpolated for future periods using the standard kriging approach.
Finally, the reliability of RWH was evaluated and investigated for various roof areas and
storage tank capacities. Findings demonstrate that a reliability band of 0.05–0.45 RWHS was
calculated for the historical period and that this reliability range will increase for the future
period based on the best GCMs. Additionally, a variance in RWH reliability revealed that,
in general, RWH reliability under Representative Concentration Pathway (RCP), 2.6 rcp
will be greater than 8.6 rcp in the future.

Imteaz et al. [13] created a tank tool using daily water balance simulation. In several
Australian cities, including Melbourne, the advanced approach was regularly employed to
assess RWH tank’s reliability. Researchers looked at how reliable a specific magnitude of
rain water tank is in relation to annual volume and meeting daily estimated requirements in
Bangladesh’s megacity [14]. In conjunction with the town water delivery systems in Dhaka
City, this article examines the economic viability, adaptability, and reliability of rainwater
harvesting (RWH) systems to partially balance the daily water requirements in multistory
buildings. To evaluate the reliability and viability of the RWH systems in an urban setting,
extensive computer program was created. By examining daily rainfall data for the previous
20 years, three distinct climate scenarios—rainy, normal, and dry years—were chosen.
Results showed that within the wet climatic condition, roughly 15–25% reliability may be
reached [14].

Male and Kennedy [15] investigated the probable role of rainwater usage for home
uses in Portland, Oregon, with a focus on rainwater collection reliability. Applying the
water balance, they detailed the technique using the amount of rainfall collected, domestic
demand, and capacity of storage tanks. The capacity of the storage tank, in addition to the
catchment area’s size, was shown to be essential in determining the system’s reliability.

The reliability of RWH is critical to residents’ desire to know that it might be nec-
essary for their source of water [15,16]. Nevertheless, no comprehensive research has
been undertaken as yet on the feasibility and RWH reliability collection technology in the
sub-catchment [17,18].

Liuzzo et al. [19] looked at the efficiency of a potential RWH tank for a model single-
family home in a neighborhood. Information from more than 100 locations in Sicily was
used to test performance for various yearly precipitation amounts. The performance was
evaluated for three uses of the rainwater collected and three storage sizes (10, 15, and
20 m3). The system’s reliability was examined as a function of average annual rainfall
after the system’s performance for the full research area had been assessed. This analysis
allowed for the development of mathematical equations with regional applicability and
implementation. To determine the degree of uncertainty surrounding the regional model
provisions, a data resampling approach was used. To determine the payback period for the
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capital cost associated with the installation of the RWH system, a cost-benefit analysis was
lastly carried out.

In contrast, in a developing country such as Iraq, specifically in the western desert,
where the technique for supplying water is below enormous stress and can be vanished,
there are few comprehensive studies on the possibility of harvesting rainwater. In addition,
there is no in-depth research about the sustainability, reliability, or efficiency of any planned
RWH systems in the area, the studies are limited to investigating the suitability of the sites
and the techniques to implement RWH.

The major goal of this study is to evaluate RWH systems reliability in a sub-catchment
applying a water balance technique, by examen how much the reliability of RWH in the
sub-catchment of the Al Abila dam is influenced by the storage capacity. This will be done
by estimating the volumetric reliability and time-based reliability for wet, average, and
dry-year climate scenarios.

2. Methodology

2.1. Area and Data Utilised

Wadi Horan is placed in Al-Anbar region in western Iraq, around 450 km west of
Baghdad (Figure 1). The watershed is about 370 km2 in size and has a dry environment
by dry summers and mild winters. The average yearly rainfall is just 115 mm, where the
winter months get around 49% of the rain, the spring months 36%, the fall 15%, and the
summer months see no rain. The average annual temperature is 21 degrees Celsius, with
July being the warmest month and January being the coldest [3,20]. The yearly evaporation
possible is 3200 mm on average.

Figure 1. Study area, showing the Al-Abila dam location after [3].

Hard limestone makes up the majority of the wadi Horan’s exposed rocks [20]. They
can be utilized to protect the front edge of barriers and make a nice foundation for dams
or other barriers. In order to minimize the number of building materials required for the
dams, reduce evaporation losses, and guarantee the necessary storage, the catchment area
and potential for a hard, narrow cross-section of the wadi with vertical shoulders were
taken into con-sideration while deciding where to place the dams.
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To test the RCSR of the Al Abila dam, a 30-year rainfall dataset (1990–2020) was used
to determine the three distinct meteorological years: wet (max. rainfall), average, and dry
(min. rainfall). An average year was defined as one equivalent to a regular yearly rainfall
over a period of approximately 20 years.

The physical characteristics of the Al Abila catchment were assessed. Using a tape
measure and the Global Positioning System (GPS), the height of the dike and spillways for
the Abila dam were determined. These data were used to determine the entire volume of
water that might be gathered behind the dam. In the Abila catchment, the texture of soil
was evaluated by aggregating samples, and the slope and area were observed in the field.
DEMs and a Geographic Information System (GIS) were used.

A rainfall simulator was used to quantify runoff coefficients at many places in the
Al Abila catchment. A Kamphorst, [21], rainfall simulator was used to simulate rainfall
in the Abila catchments’ area. A device called a “rainfall simulator” attempt to replicate
the physical traits of natural rainfall as accurately as possible [22]. The instrument was
calibrated in line with Kamphorst’s instructions (1987). Each test took three minutes to
monitor the water level, taking readings every 30 s. A tube was used to catch any runoff,
and the amount was measured. At the completion of each simulation, the runoff coefficient
(C) value was computed.

The infiltration rates of the Al Abila dam were evaluated. The infiltration rate was
determined using a double-ring infiltrometer [23]. We made use of infiltrometers with
18/30 cm internal and external rings. In order to assure a trustworthy result, tests were
often conducted twice for each site. Preliminary filling of internal and external rings was to
a depth of 15 cm. More water was given to maintain equal levels once the water level in
the external ring dipped just below the level in the internal ring. A scale mounted on the
internal ring was used to measure the water level as a function of time during the test. We
kept doing this until the level of water fell to less than 5 cm, the water was then supplied
for the following iteration. In most cases, one to four repeats were carried out to guarantee
that a steady infiltration rate was attained. These results were used to assess the Al Abila
catchment’s average infiltration rate over a specific time period. The Water Harvesting
model (WHCatch) [24] uses these data types as input.

2.2. Water Harvesting Model (WHCatch)

To analys the effectiveness of the RWH approaches based on current climatic circum-
stances, we used the WHCatch basic model [24] for the Al Abila dam watershed. Based on
the water demands, the water supply, and the structures design of the RWH, the water bal-
ance of the Al Abila dam was examined. The variance between the total input and output
was used to compute the variation in water storage volume. A runoff area and a reservoir
area are the two basic components of a catchment. To increase the RWH system’s reliability,
we evaluated the performance of RWH throughout the entire system and examined the
water balance of these two components. The water storage change in the Al Abila dam was
calculated by subtracting the entire inflow from the total outflow [25]:

[Water balance calculation of any location in m3:]

ΔS = I − Q (1)

where ΔS is the storage change during a certain time period, I is the input flow, and Q is the
output flow, all together in m3. The details of this model (WH Catch) and its application
with the manual were explained and published in two articles [24]. In MS Excel, the Al-
Abila dam’s monthly water balance study was carried out to assess the dam’s effectiveness
in satisfying local water demands. We used the WHcatch program, a straightforward Visual
Basic for Applications (VBA) macro in Excel, since all input data were logged and available
there. The computations were carried out by this macro, which then recorded the results in
the appropriate cells. A WHCatch module and a Sub-catchment Class module made up the
code. The last one included a routine to carry out certain fundamental calculations as well
as all the attributes of a sub-catchment. Three general and a few private subroutines made
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up the WHCatch module. The VBA macro won’t be visible to the Excel workbook’s regular
users. Only when the further capability is needed, entering the code section will be crucial.
This tool allows for the reading of data into GIS applications, as well as all outcome is kept
and shown in the same Excel workbook. Nearly all circumstances, the shape file containing
the location’s layout and the IDs of its sub-catchments are accessible. Thus, the ID in the
Excel workbook (column name) and the ID in the sub-catchment ID in the shape file can
be collective.

2.3. The SCS–CN Method

The Soil Conservation Service (SCS) technique, created in the USA by Soil Conser-
vation Service (SCS) in 1969, is a straightforward, dependable, and consistent intellectual
approach for the determination of runoff based on rainfall. It simply depends on the
variable CN. We calculated the runoff depth using the Curve Number (CN). Following
that, the depth of runoff is applied to calculate the probable water supply following runoff.
The influence of soil and land use on precipitation and runoff makes CN dependable. An
expression for runoff depth is:

Q =
(P − Ia)

2

(P − Ia) + S
(2)

where Q is the depth of runoff (in mm), P is the amount of rainfall (in mm), S represents
the possible maximum retention (in mm), and Ia is the initial abstraction (in mm), which
accounts for all losses prior to the start of runoff, infiltration, evaporation, and water
interception. The rainfall data for numerous small rural regions were analyzed to arrive at
Ia = 0.2S.

2.4. Reliability Analysis

This research revealed two reliability categories. The following Imteaz equation is
used to calculate time-based reliability [13]:

Rt =
Td − Ud

Td
× 100 (3)

where Rt refers to time-based reliability (percentage), Ud represents the number of days
where RWH was inadequate for daily demand, and Td is how many days there are in a
year (365).

The second type of reliability is volumetric reliability (Rv) which is given by:

Rv =
∑ (VWd − VDd)

∑ VWd
(4)

where VDd is the annual water deficit and VWd is the annual water demand.

2.5. Sensitivity Analysis

Sensitivity assessments were carried out to examine the effect of the coefficient of
runoff on the efficiency of RWH storage and demand fraction. Four values of runoff
coefficient (from 0.3 to 0.6) were considered (C1 = 0.3, C2 = 0.4, C3 = 0.5, C4 = 0.6) taking
into account the infiltration and the spilling losses from the rainfall.

The relation of water saving efficiency with demand fraction and storage fraction,
respectively, were shown in sensitivity figures. Demand fraction (D/Q) is calculated using
the formula below:

D
Q

=
VWd
VWs

(5)

where VWd refers to annual water demand and VWs refers to the annual volume of
rainwater supply.
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The storage fraction (S/Q) is calculated using the following formula:

S
Q

=
SWd
VWs

(6)

where SWd is the annual storage capacity of rainwater supply.

3. Results and Discussion

The initial evaluation was carried out to see how storage capacity affects daily relia-
bility and to determine the amount of storage that offers the Abila Dam’s highest average
reliability value. The model of water balance was run on a daily basis, and throughout
the investigation, the Abila dam’s daily average reliability was calculated. The associated
percentile values were then calculated.

3.1. The Al Abila Dam Assessment

Based on the greatest depth of daily rainfall measured from the Al-Rutba station for
the years (1990–2020), the data was examined using the water balancing approach in the
Abila watershed utilizing the Water Harvesting model (WHCatch) under Microsoft Excel
to determine the variation in water storage within the volume.

The Abila Dam has a 4 × 106 m3 design capacity. Only once, in 1994, did the dam’s
reservoir fill to its intended level, as illustrated in Figure 2. Additionally, there was es-
sentially little runoff from 2000 to 2009, which left the dam’s reservoir dry and the dam
inoperable.

 

Figure 2. The total annual runoff volume and net storage volume.

The analysis showed that out of the total years (1990–2020) where surface runoff
occurred, the number of years where it entered the dam reservoir and caused the dam to
store all of its intended 4 × 106 capacity was 5.2%. According to the findings, the dam’s
reservoir is greater than the available storage. Since the base of the trench has not been
deepened to reach the hard rocky layers, the Abila dam has a problem with regular seepage
along its body. A back trench (Toe drain) downstream of the dam was also missing.

3.2. Reliability Analysis

The relation between the reliability and the storage volume was illustrated in Figure 3,
which shows where the reliability increased and then stabilized over the increasing of the

246



Water 2023, 15, 944

storage volume, for (a) wet, (b) average, and (c) dry year climate scenarios. Each scenario
shows similar profiles over the course of the increasing storage volume, while wet scenarios
show more reliability than average and dry scenarios due to the additional rainwater in
the wet year, which keeps the reservoir full. With the dry-year scenario, reliability was
within an acceptance rate as well. With no rainfall period with around 5% to 18% Rt with a
storage volume that varies from approximately 4 × 105 to 10 × 105 m3 the dam can still
provide water.

Figure 3. The percentage of time-based reliability (Rt)vs storage capacity (SC) for (a) wet, (b) average,
and (c) dry-year climate scenarios.

The figure also shows that in all three scenarios, a threshold point accrued around a
storage volume of 10.2 × 105 m3. The threshold point specifies the stage at which storage
capacity does not affect reliability. In a wet year, if the dam received all the harvested water
and its reservoir become full, then increasing the storage beyond this volume is not needed
and does not influence the dam’s reliability. This also implies the dry-year scenario.

Figure 4 represents the volumetric reliability or the proportion of water saved for
a catchment area with varied storage volume capacity. It can be seen that the influence
of increasing the storage capacity on volumetric reliability follows a similar pattern as
time-based reliability. For wet, average, and dry-year climate scenarios, the volumetric
reliability tends to a considerable increase as the storage volume increase until it remains
steady around 11.7 × 105 m3, where increasing the storage volume has no more influence
on the reliability of the dam.

For wet and average scenarios, the reliability results were more convergent for the
same storage size, for instance: at a storage capacity of 9 × 105 m3, the percentage of
volumetric reliability was 69% and 64% for the wet and average scenarios, respectively.
This may mainly be because, according to the calculation, the annual average water demand
for the catchment is considered to be constant, and it has the main influence on the value of
the volumetric reliability. After then, each distinct scenario’s variances in the amount of
captured rainfall accumulated.

According to Figures 3 and 4, the volumetric reliability value for the catchment is
discovered to be greater than the time-based reliability. Where the time-based reliability
varies from 14% to 28%, volumetric reliability ranges from around 34% to 75% for the
wet year scenario. This is mostly due to the time-based reliability was computed using
the number of days overall during which the rainwater harvest is sufficient to provide
the re-quired water demand, and this is relatively not much, due to the local’s climatic
conditions compared to the amount of water demand required to meet the daily needs.
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Figure 4. The percentage of volumetric reliability (Rv) vs. storage capacity (SC) for (a) wet, (b)
average, and (c) dry-year climate scenarios.

3.3. Sensitivity Analysis

Figure 5 shows how the runoff coefficient (C) affects water-saving efficiency in wet
year conditions. Sensitivity analysis was implemented on arrange of runoff coefficient
values starting from 0.3 to 0.6. According to the result shown in Figure 5, the coefficient of
runoff has no significant influence on water effectiveness in wet climatic conditions, and
the variety of C does not imply a significant change in the influence pattern of efficiency
as well.

 

Figure 5. Water saving efficiency dealings with runoff coefficients vs. demand fraction (D/Q).

The influence of the coefficient of runoff on water-saving efficiency is seen in Figure 6.
The results show that increasing the storage fraction leads to increased efficiency. So, when
the S/D value increases from 0.07 to 0.09, the efficiency increases by about 2%. In addition,
the results show that for the same storage fraction, the value of C has an obvious influence
on efficiency. For C1 and C4 there is an average increase of 2% in efficiency.
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Figure 6. Water saving efficiency dealings with runoff coefficients vs. storage fraction (D/Q).

The sensitivity analysis shows that the water-saving efficiency for the dam does not
reach 50% for both cases (demand fraction and storage fraction) and for the different
C values.

The efficiency has been influenced differently by changing the runoff coefficient as
shown in Figures 5 and 6. In the case of demand fraction, the change in the C value
has almost no effect on the efficiency within the same demand fraction value. While
the efficiency increases slightly with increasing the runoff coefficient for each storage
fraction value.

4. Conclusions

Recently, awareness of RWH systems as a substitute water supply has grown. These
systems can be linked with existing traditional water sources to provide supplemental
water supplies in various locations, or they can act as the primary water source in arid and
semi-arid regions in which water availability is a major concern. Additionally, using RWH
is a successful adaptation technique to combat the decline in water availability caused by
climate change. This study evaluates RWH systems reliability in a sub-catchment applying a
water balance technique by examen how much the reliability of RWH in the sub-catchment
of the Al Abila dam is influenced by the storage capacity. The reliability was investigated
using a water balance model, time-based reliability, and volumetric reliability followed
by sensitivity analysis. According to reliability correlations with varying storage volumes,
time-based reliability shows an increase throughout the wet year, average year, and dry
year, equal to a storage volume of 10.2 × 105 m3, and beyond that, the threshold point
accrued when reliability doesn’t rise with riding storage volume. The volumetric reliability,
and for the three climate scenarios (wet year, average year, and dry year), increased as
the storage volume increased until 11.7 × 105 m3, then increasing the storage volume
has no more in-fluence on the reliability of the dam. For the three scenarios, volumetric
reliability value for the catchment is detected to be greater than the time-based reliability.
The time-based reliability varies from 14% to 28%, while volumetric reliability varies from
about 34% to 75% for the wet year scenario. Despite the large storage capacity of the dam,
the reliability of the dam does not show significant value.

Water saving efficiency decreases with increasing demand fraction, while the runoff
coefficient has no significant influence on water effectiveness in wet climatic conditions.
Growing storage fraction value increases the water-saving efficiency, and the value of the
runoff coefficient influences the water-saving efficiency. For instance, there is an average
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increase of 2% in water efficiency for the same value of storage fraction. For both cases, the
water-saving efficiency of the dam does not reach 50%.

For a reliable rainwater harvesting system, this kind of study should be considered as
a design guideline to scientifically highlight the system elements that play a significant role
in increasing the reliability of any system. For instance, thresholds enable landowners to get
the most out of their systems, while saving additional costs of increasing the storage of the
rainwater harvesting system (the dam in this case). While the storage capacity is attempting
to grow, reliability does not improve. In all situations, volumetric reliability was shown
to be greater than time-based reliability, and thus could not be neglected in the design of
any new systems. Using daily rainfall data, the technique given in this paper might be
applied to forecast water conservation and the RWH systems’ reliability in different arid
and semi-arid areas.

It is important to include the impact of climate change on rainfall in future analyses.
The equations described here hold for both historical and contemporary environmental
circumstances. The performance of an RWH system may be considerably impacted by
trends. In particular, a significant decline in system efficiency may be caused by a drop
in rainfall volume and a variation in the timing of rainfall throughout the year. Deriving
future climatic scenarios from regional climate models should therefore be considered
while designing the RWH systems.

Finally, understanding the reliability of a rainwater harvesting system is critical, which
informs decision-makers and households about the design criteria of the system and how
much they expect from the system to meet water demands throughout the year.
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Abstract: Water scarcity is a major problem in the arid climate of Iraq’s Western Desert and people
struggle to manage the precarious water supply. Harvesting rainwater is one sustainable method that
can be used to increase the supply of water. Rainwater harvesting systems (RWH) are considered to
be sustainable “if they can continue collecting, utilising, and consuming natural water resources for
maximum livelihood development”. This study assessed the sustainably of the Al- Abila dam in Iraq’s
Western Desert by determining its level of functionality in harvesting water and using it effectively.
The reliability of the water supply and its potential productivity and water use efficiency were
investigated as well. The balancing storage at the end of each runoff shows that dam storage of this
magnitude is insufficient to fulfil the water demand. This research highlighted constraints that have
affected system functioning or sustainability and provided suggestions and recommendations for
risk-managed rainwater harvesting system installation methods and designs. The water conveyance
factor and adequacy of the system were low, with 60% conveyance losses. This research helps
policymakers to conduct large-scale, high-level assessments and answer basic problems about small
earth dam development and management in Anbar’s Western Desert.

Keywords: Al-Abila dam; rainwater harvesting systems; sustainability of reservoir; Western Iraqi Desert

1. Introduction

Until the 1970s, Iraq was considered to have rich water resources due to the proximity
of the Tigris and Euphrates Rivers. Unfortunately, dam construction on the tributaries of
the rivers in Turkey and Syria has resulted in water scarcity in Iraq [1]. Additionally, Iraq’s
growing population has raised the demand for water, while climate change and declining
rainfall rates have further restricted the water supply since 2007 [2]. Iraq’s Western Desert
is the area most affected by water scarcity. This arid area has had major challenges in
providing and managing water. Rainfall distribution is erratic, and the country suffers from
high evaporation rates, high temperatures, and a shortage of groundwater and surface
water [3]. Iraq’s desert accounts for around 55% of Iraq’s total land area, most of it unin-
habitable because of the lack of water. Many larger valleys, such as the Wadi Horan, Wadi
Amije, and Wadi Al Awaje, receive comparatively high amounts of floodwater [4]. The
need to develop new water sources or to optimize the use of existing sources has become
critical. Many studies show that sustainable rainwater collection is essential for better water
management, from a socio-economic as well as a biophysical development perspective.
Sustainability is a new term currently used when talking about development methods, and
it may be interpreted in a variety of ways depending on the context. It has become an
all-encompassing word that is used for nearly every system on the planet. Sustainability
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is defined as “enhancing human well-being while respecting ecological limits”, accord-
ing to the International Union for Conservation of Nature (IUCN), the United Nations
Environment Programme (UNEP), and the World Wildlife Fund (WWF) [5]. Sustainabil-
ity assessment (SA) is becoming a more widely recognized technique for assisting in the
transition to sustainability [6]. A sustainability assessment evaluates the influence of a
proposed or existing policy, plan, program, project, law, or current practice or activity
on sustainability [6]. How to measure sustainability is a recurring topic in sustainability
evaluations [7].

Rainwater harvesting systems are sustainable if they can be used and the water con-
sumed in the future to improve livelihood [8]. According to [9], rainwater harvesting
systems should have the following qualities to be sustainable: reliable water supply and
production potential; efficient water use; and minimal environmental consequences. Rain-
fall amount and quality of runoff, social and economic variables such as expertise and
investment capability, labor accessibility, and institutional backing are all elements that
influence the long-term viability of rainwater harvesting systems [8].

Rainwater harvesting systems (RWH) have been evaluated using a variety of sustain-
ability criteria. Hashimoto [10] proposed the assessment of a reservoir’s sustainability
using reliability, resilience, and vulnerability. Kjeldsen [11] evaluated several techniques for
estimating reliability, resilience, and vulnerability, concluding that the maximum values of
deficiency duration and volume provide more consistent findings than average values. To
assess sustainability, Sandoval [12] presented a geometric average of reliability, resilience,
and vulnerability.

Park [13] investigated the long-term sustainability of RWH systems in six major US
cities with variable rainfall data. There are several differences between the characteristics
of a reservoir and the characteristics of an RWH, and thus, the sustainability index (SI)
assessment procedure for the RWH was adjusted. This study introduces a new RWH
performance model as well as a method for assessing sustainability indicators.

The management and sustainability of water resources in Iraq’s Western Desert were
investigated by [14]. The system was simulated using remote sensing and numerical
analysis tools. The yearly water harvesting rate for each basin in the research region was
established, and new water collecting places were discovered for diverse agricultural uses
and community development.

Abdulhameeda [15] investigated the idea of building a series of small dams to retain
rainfall water in order to sustain and enhance the ecological system. The construction
of 13 optimal-height dams in the Horan valley would increase the water surface area
of reservoirs in this valley from 15 to 90 km2, replenishing groundwater and sustaining
rainwater collection systems.

Various disciplines, from engineering to business to policymaking, have suggested and
created a large number of methods and conceptual frameworks. Most of these frameworks
were formulated in the last decade or so but were never tested. The conceptual frameworks
have two primary features: creating objectives and evaluation criteria using sustainable
principles, and providing quantitative indicators for each assessment criterion.

This study’s objective was to evaluate the sustainability of a rainwater harvesting sys-
tem, the Al-Abila dam in the Western Desert of Iraq. In this research, we consider a system
to be sustainable if it can provide a reliable supply of water that can be used efficiently and
has productivity potential. Moreover, special attention was paid to identifying defects or
constraints that have reduced the functionality or sustainability of the system.

2. Materials and Methods

In this study, the Abila Dam in the Wadi Horan (Figure 1) was taken as a case study.
Catchment characteristics and physical characteristics were collected and measured to
evaluate the study area. To evaluate the sustainability of the dam, we assessed the reliability
of the water supply and its production potential (the water balance model was used to
estimate water supply and demand) and the effectiveness of the water use.
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2.1. Study Area

The Wadi Horan is Iraq’s biggest Wadi, extending from the Saudi border to the
Jordanian and Syrian borders. As illustrated in Figure 1, the Wadi Horan is located south of
the Euphrates River, at 32◦10′44′′ to 34◦11′00′′ N, 39◦20′00′′ to 42◦30′00′′ E. The watershed
area of the Wadi Horan is 13,370 km2, with a length of 362 km [16]. The average annual
rainfall is about 120 mm, of which around half falls in the winter, 35% in spring, and 15%
in autumn [17].

Figure 1. Wadi Horan and the location of the Al-Abila dam (study area) [17].

The temperature of the research area is similar to that of a continental hot desert [18].
July has the highest monthly mean temperature of 31 ◦C, whereas December has the lowest
monthly mean temperature of 8 ◦C. The average yearly temperature is around 20 ◦C.
Extreme temperatures and dry conditions result in a high rate of evaporation, estimated to
be approximately 3000 mm year. Evaporation averages vary month to month from April
through October. The highest monthly average evaporation recorded was 433 mm in July,
while the lowest was 79 mm in January.

Designing and implementing RWH in these regions is crucial to enhancing the water
supply as well as the quality of life in these communities. Small dams are major structures
that have been built in the Western Desert of Iraq to capture and store rainfall for use
during the dry seasons. The Wadi Horan’s exposed rocks are mostly solid limestone [17].
The limestone provides a great foundation for dams or barriers, and it can also be used to
cover the front side of the barrier, as seen in Figure 2. For building purposes, the dams
were placed in hard, narrow valley cross-sections with high shoulders to decrease the need
for construction material, minimize evaporation losses and ensure efficient storage.

Figure 2. Al-Abila Dam.
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2.2. Catchment Characteristics

The structural dimensions of the Al-Abila dam were gathered from the dam design
report, the small dam management in the Western Desert, and the global positioning system
(GPS). Table 1 shows the total amount of water that could potentially be collected behind
the dam.

Table 1. The characteristics of Al-Abila dam [19].

Name of Dam
Catchment Area

(km2)
Storage Area

(km2)
Max. Spillway

Height (m)
Storage

Capacity (m3)

Al-Abila dam 580 1.5 11 310,142

2.3. Physical Characteristics

Soil texture influences both infiltration and runoff. The textural class is determined by
sand, silt, and clay content. The actual soils in the research region range from sandy loam
to silty sand [20], with sandy and sandy loam soils being two of the most common.

The Horan valley watershed was mapped using remote sensing satellite data. The
Landsat 8 image (23 June 2019) with 30-metre spatial resolution was used for land use/cover
mapping.

2.4. Water Balance Model

The Al-Abila dam’s water balance was evaluated to estimate runoff and change in
water storage volume. A catchment has two main components: a drainage area and a
retention area [21]. An area’s water balance equation may be stated as [22]:

Δv= I − O (1)

where:
Δv = a storage change over time, in m3.
I = input volume, in m3.
O = output volume, in m3.
A more sophisticated water balance equation is possible with different inflow and

outflow variables:
Δv = Vrunoff + Vrainfall - Inf − Evp (2)

where:
Vrunoff represents the amount of upstream runoff collecting in the storage basin per

unit of time. The Soil Conservation Service Curve Number (SCS CN) model was applied to
compute Vrunoff .

Vrainfall = P × As (3)

P = is the max. daily precipitation (mm).
As = is the storage basin’s area (m2).
Inf = the storage basin’s infiltration loss (mm/day).
Evp = the maximum evaporation (mm/day).

Evp = Ev × As (4)

where:
Ev = the average yearly potential evaporation (mm/year).
In the storage area, this volume (Δv) is added to the existing volume (Si).

Si = Si + Δv (5)

If the maximum storage height is hs, then the maximum storage capacity Smax is:

Smax = hs × As (6)
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If Si > Smax, an outflow to the next sub-catchment of Vout occurs.

Vout = Si − Smax (7)

Using the aforementioned method, the overall change in storage over time (Δvt) is:

Δvt = Δv − Vout (8)

Evaporation and infiltration are two types of water losses in the reservoir. Evaporation
losses account for a considerable portion of total storage capacity in arid and semi-arid areas.
Water depths equal to a reservoir’s yearly evaporation range from 1.50 to 3.00 m, making
it an essential parameter in water balance calculations [23]. Evaporation might cause up
to half of the water held in dams to evaporate, resulting in a massive loss of resources.
Calculating lake and reservoir evaporation is a complicated process, since many variables
impact the rate of evaporation, including the water body’s climate and physiography, and
its surroundings [24–26]. As direct measurements of lake evaporation are difficult to take
and usually restricted to extremely short time periods, the percentage of evaporation losses
(40%) each year was calculated based on prior research and conversations with local experts
during this study. Infiltration differs depending on the soil texture, which includes sand,
silt, and clay. The infiltration rate of fine-textured soil is lower than that of coarse-textured
soil. The infiltration mechanism and rate are also influenced by soil structure [27]. The
design reports of the dams in the Western Desert state that the percentage of infiltration
losses in the dam reservoirs is more than 20% [28], and this is the percentage that was used
in this study.

The Al-Abila dam’s monthly water balance analysis in MS Excel was used to assess
the dam’s ability to satisfy local water needs.

2.5. Assessing the Sustainability of the Al-Abila Dam
2.5.1. Reliability of Water Supply and Potential

For the Al-Abila dam, a supply and demand analysis was conducted. Using an
ARCINFO GIS 30 m resolution Digital Elevation Model (DEM), the catchment area, mean
slope, type of soil, land use, and land cover of the Al-Abila dam’s source streams were
estimated. The surface runoff produced by the dam’s catchment regions was calculated
using the SCS CN model. The Curve Number values were selected based on land use,
hydrologic soil group (HSG), and antecedent soil moisture (ASM) status [29].

To determine runoff potential, soils were categorized into four HSGs. A-group (>90%
sand and <10% clay) had the lowest runoff potential, B-group had a moderately low runoff
potential (10–20% clay and 50–90% sand), C-group had a moderately high runoff potential
(20–40% clay and <50% sand), and D-group had a high runoff potential (>40% clay and
<50% sand). The hydrological soil group map from the data in previous studies [30] was
used in this study.

The Al-Abila dam’s water demand was calculated. The Penman–Monteith equation
was used to calculate the potential evapotranspiration of widely grown crops [21]. The
water needs of the most important crops were calculated. Based on the observed water con-
veyance factor values and a field application factor of 0.6, the gross irrigation requirement
of cultivated crops was estimated [8]. The domestic water requirements were calculated
for a home with an average-sized animal herd. To verify the feasibility of fulfilling local
water demand, a monthly water balance study of the Al-Abila dam system was performed
in MS Excel.

2.5.2. Effectiveness of Water Use

Field observations and conversations with local residents and consumers provided
information about water consumption for a specified RWH system. Interviews and a
GPS survey were used to acquire data on dam operations such as irrigation size, user
count, cropping patterns, farm distance, and allocations. The water conveyance factor and
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adequacy have both been used to evaluate the effectiveness of dam irrigation systems. The
following relationships were used to estimate the values [8].

Water conveyance =
Vr
Vd

(9)

where: Vr is the volume of water received at field in m3, and Vd is the volume of water
diverted from the dam in m3.

Adequacy =
ET × A
Vr × 0.6

(10)

Data on the use of water were gathered. Irrigation timing and crop yields were
documented. The selection and production of principle crops grown by local farmers were
studied to measure possible water consumption.

3. Results and Discussions

3.1. Land Use/Cover (LU/LC)

A land use/cover map of the Horan valley watershed was created using remote
sensing (RS) satellite data. The Landsat 8 image (23-June-2019) with 30-meter spatial
resolution was chosen. After downloading the US Geological Survey (USGS) picture, we
obtained the composite band using the ArcGIS program, selecting Arc Toolbox > Data
Management Tools > Raster > Raster Processing and, finally, Composite Band. A land
use/cover map was produced using supervised classification. Bare soil, built-up land in
Al-Rutba city, and water bodies such as dam reservoirs, agricultural land, and grass land in
the highlands and upstream and downstream of the Horan valley were among the land
use/land cover categories in the research area. Bare soil occupyied approximately 70% of
the area, and only a small portion of the land was taken up by Al-Rutba city and water
bodies, as shown in Figure 3. These findings are consistent with our past research [17].

 

Figure 3. Land use/land cover map.

3.2. Rainwater Harvesting Characteristics

In this study, the hydrological soil group map from earlier studies [30] was employed.
For the hydrological soil groups, soil properties were identified, and a GIS map was created.
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Groups A, B, C, and D are the four types of hydrological soil groups found in the research
area, as illustrated in Figure 4.

 

Figure 4. Hydrological soil group map of the Wadi Horan.

To obtain the Curve Number (CN) map of the Wadi Horan, the HSGs map and the
land use map were overlayed, as shown in Figure 5.

Figure 5. CN map for the Wadi Horan.

The USGS categorization method was used to produce the Curve Number values for
each polygon in the land–soil map, as shown in Table 2. The CN value in Wadi Horan
varied from 60 to 92 throughout the whole Horan valley.
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Table 2. Runoff Curve Number [30].

Hydrologic Soil Group (HSG)

Land Cover A B C T

Bare Soil 77 86 91 94
Built up 61 75 83 87
Water 100 100 100 100

Farmland 72 81 88 91
Grass 43 65 76 82

Table 3 shows the average characteristics and other key elements such as water avail-
ability, catchment area, and average slope of the Al-Abila dam.

Table 3. Source streams of the Al-Abila dam catchment.

Average Slope
(m/km)

Main Soil Type
Significant

LU/LC
Water

Availability
Catchment
Area (km2)

CN
Max.

Retention (S)

1.46 Sandy loam Bare land Ephemeral 580 76.5 78.2

According to Table 3, the average CN was 76.5, and based on land use analysis, bare
soil accounted for more than 70% of the total area with a CN range from 77 to 94 (as
indicated in Table 2). As a consequence, our findings are compatible with the standard CN
(Table 2) and other research such as [14,30].

3.3. Assessing the Sustainability of the Al-Abila Dam
3.3.1. Reliability of the Water Supply and Potential

The SCS CN model was used to determine the surface runoff generated by the dam’s
catchment areas. We estimated the water demand for the RWH system. The Penman–
Monteith equation was used to compute the potential evapotranspiration of regularly
planted crops. The water requirements of the most important crops were calculated.
The gross irrigation demand of cultivated crops was calculated using observed water
conveyance factor values and a field application factor of 0.6 [8]. Then, the domestic water
needs for a residence with an average-sized animal herd were determined.

In MS Excel, a monthly water budget calculation of the RWH system was performed
to see if it was enough to fulfil local water demand. Figure 6 depicts the water demand and
supply for the runoff years.
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Figure 6. A water balance (supply and demand) of the Al-Abila dam.
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The end-of-runoff balance storage indicates that dam storage does not meet the de-
mand. Furthermore, Figure 6 shows a decrease in both water supply and demand from
1990 to 2013, followed by a steep drop in both from 2014 to 2019, as expected. Water
supply reduced and fluctuated as a result of unpredictable rainfall, increasing evaporation
losses and runoff losses from overland flow, whereas demand declined as a result of the
emigration of people from this area due to the ISIS war and agricultural abandonment.
This might affect the dam’s long-term sustainability. Furthermore, surface runoff from
catchments contains a significant quantity of sediments, and the unlined irrigation channels
from the dam have a negative influence on the dam’s sustainability.

Based on statistics, surveys, and interviews with local residents conducted during the
inquiry year of 2019, when rainfall was below normal and distribution was poor, it was
revealed that each household in this area has around 10 members and owns approximately
2500 sheep. According to previous studies [4,15], the average daily human consumption
is 120 L, while the average daily animal consumption is 13 L, so human consumption
accounted for around 16% of the total water stored in the reservoir, while animal watering
accounted for about 84%, and the storage capacity was depleted in late June, as shown in
Table 4.

Table 4. Monthly water use (m3) due to human use and animal watering in the year 2019.

Month
Human Uses

(m3) ×103
Animal Watering

(m3) ×103
Residual Water

(m3) ×103

May 4 23 0.3
June 12 64 0.1
July 8 41 0

August 0 0 0
September 0 0 0

Total 24 128

3.3.2. Effectiveness of Water Use

Throughout dry seasons, the Al-Abila dam allows for the supplemental irrigation of
wheat and barley crops, while perennial streams are abstracted and utilized to irrigate
vegetable crops during the dry season. In the current scenario, water is transported
through unlined earthen channels. As indicated in Table 5, the water conveyance factor
and adequacy are poor in region 0.3, which experienced a loss of 60% from the conveyance.
Due to erratic rainfall and a lack of assistance and resources for farmers, water from
the dam is rarely used. In the investigation year of 2019, the overall volume of water
supply was around 498 × 103 m3, 33% of the total supply being used. Although losses
accounted for 67%, evaporation was the major contributor, accounting for 56% of the total
volume provided.

Table 5. The water conveyance factor for the runoff years 1990–2019.

Year
Volume of Water
Diverting (m3)

Volume of Water
Receiving (m3)

Water Conveyance

1990 15,000 5000 0.33
1993 13,000 4500 0.35
1994 14,500 4000 0.28
2006 12,000 3500 0.29
2008 11,000 4000 0.36
2010 10,000 3000 0.3
2011 8500 2750 0.32
2012 7800 2000 0.26
2013 9000 2750 0.31
2014 6000 1500 0.25
2018 5500 1500 0.27
2019 4500 1000 0.22

Average 0.3
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Constraints

The main constraints of the study were:

1. After examining the design structure maps and conducting field observations, we
discovered that there is no bottom outlet utilized to operate the dam in order to deliver
water for irrigation.

2. We detected seepage along the dam’s body based on prior studies and field interviews
with engineering supervisors.

3. Unlined irrigation canals cause a lot of water loss, erosion, and sedimentation.
4. The assessment of water projects in Iraq’s Western Desert confirmed that the Western

Desert’s water resources are poorly managed. A huge volume of water flows into the
river without being used in the Wadies upstream.

5. The Iraqi Western Desert, like all arid and semi-arid regions, suffers from a lack of
data, particularly for surface runoff in valleys.

6. Bedouins and those who live near water harvesting systems face a lack of assistance.
People are still using simple ways to convey and use water.

Suggestions and Recommendations

1. Maintain and control losses by lining the canals and grouting the concrete along the
body of the dam.

2. We propose installing hydrometric stations at the valley outlets in order to obtain
accurate surface runoff data.

3. We urge additional researchers to conduct field studies and field observations at small
dam sites to develop a better understanding of all the data needed to construct and
maintain dams in the Western Desert.

4. Organize seminars and meetings with Bedouins and local farmers to apply modern
technology and smart agriculture to this region, resulting in the best possible use of
dam irrigation systems to support local livelihoods.

4. Conclusions

The level of functionality and sustainability of the Al-Abila dam was assessed. Rain-
water harvesting techniques used in the watershed would help smallholders improve
their livelihoods. Dams for stream water abstraction would enable year-round agriculture,
which would boost household incomes while also enhancing food supply in the region.

The balancing storage at the end of each runoff shows that dam storage of this magni-
tude is insufficient to fulfil the water demand. This study indicates that, in the investigation
year 2019, when rainfall was below average and distribution was poor, the storage capacity
was depleted in late June and negatively affected dam sustainability. Moreover, the results
showed that surface runoff from catchments contained a significant quantity of sediments,
and the unlined irrigation channels from the dam produced a poor water conveyance factor
and adequacy, thus restricting the efficacy of water distribution and usage. This research
highlighted faults or constraints that have affected system functioning or sustainability
and provided suggestions and recommendations for risk-managed rainwater harvesting
system installation methods and/or designs.

This data is critical for managing small reservoirs and storage capacity. It was possible
to determine how much water a reservoir could retain at any given time. Furthermore,
knowing the storage capabilities will allow planners and water managers to quickly deter-
mine how to use and manage the available water in light of alternative applications.
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